
www.allitebooks.com

http://www.allitebooks.org

R Object-oriented Programming

A practical guide to help you learn and understand the
programming techniques necessary to exploit the full
power of R

Kelly Black

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

R Object-oriented Programming

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1201014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-668-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Kelly Black

Reviewers
Mzabalazo Z. Ngwenya

Prabhanjan Tattar

Tengfei Yin

Commissioning Editor
Akram Hussain

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Parita Khedekar

Technical Editor
Tanvi Bhatt

Copy Editors
Simran Bhogal

Sarang Chari

Ameesha Green

Paul Hindle

Karuna Narayanan

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Priya Sane

Graphics
Disha Haria

Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Kelly Black is a faculty member in the Department of Mathematics at Clarkson
University. His background is in numerical analysis with a focus on the use of
spectral methods and stochastic differential equations. He makes extensive use of
R in the analysis of the results of Monte-Carlo simulations.

In addition to using R for his research interests, Kelly also uses the R environment
for his statistics classes. He has extensive experience sharing his experiences
with R in the classroom. The use of R to explore datasets is an important part of
the curriculum.

I would like to thank my wife and daughter for their support and
inspiration. You are my life, and we do this together.

I also wish to thank to thank the people who took a direct role in
bringing this book to completion. In particular, thanks go to the
Content Development Editor, Parita Khedekar, for her work in
assembling everything, keeping me on track, and ensuring the
overall integrity of this book. Additional thanks go to the Technical
Editor, Tanvi Bhatt, for maintaining the integrity of the book as a
whole and, technical guidance. Thank you!

I would also like to thank the reviewers. Unfortunately, some of your
insights were not able to be integrated into this work. I did read your
reviews and valued them. I tried to balance your concerns to the best
of my ability. Thank you as well.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mzabalazo Z. Ngwenya has worked extensively in the field of statistical
consulting and currently works as a biometrician. He has an MSc in Mathematical
Statistics from the University of Cape Town and is presently studying for a PhD.
His research interests include statistical computing, machine learning, and spatial
statistics. Previously, he was involved in reviewing Packt Publishing's Learning
RStudio for R Statistical Computing, R Statistical Application Development by Example
Beginner's Guide, and Machine Learning with R.

Prabhanjan Tattar is currently working as a Business Analysis Senior Advisor
at Dell Global Analytics, Dell. He has 7 years of experience as a statistical analyst.
Survival analysis and statistical inference are his main areas of research/interest,
and he has published several research papers in peer-reviewed journals and also
authored two books on R: R Statistical Application Development by Example, Packt
Publishing, and A Course in Statistics with R, Narosa Publishing. The R packages, gpk
and RSADBE are also maintained by him.

Tengfei Yin earned his PhD in Molecular, Cellular, and Developmental Biology
(MCDB) with a focus on computational biology and bioinformatics from Iowa State
University, with a minor in Statistics. His research interests include information
visualization, high-throughput biological data analysis, data mining, and applied
statistical genetics. He has developed and maintained several software packages in R
and Bioconductor.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Data Types 7

Assignment 7
The workspace 9
Discrete data types 11

Integer 11
Logical 13
Character 15
Factors 16

Continuous data types 17
Double 17
Complex 18

Special data types 19
Notes on the as and is functions 20

Summary 21
Chapter 2: Organizing Data 23

Basic data structures 23
Vectors 23
Lists 24
Data frames 26
Tables 27
Matrices and arrays 28
Censoring data 30
Appending rows and columns 31

Operations on data structures 32
The apply commands 33

apply 33
lapply and sapply 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

tapply 35
mapply 35

Summary 35
Chapter 3: Saving Data and Printing Results 37

File and directory information 37
Entering data 39

Entering data from the command line 39
Reading tables from files 41
CSV files 42
Fixed-width files 43

Printing results and saving data 44
Saving a workspace 44
The cat command 45
The print, format, and paste commands 45

Primitive input/output 47
Network options 48

Opening a socket 48
Basic socket operations 50

Summary 50
Chapter 4: Calculating Probabilities and Random Numbers 53

Overview 54
Distribution functions 55
Cumulative distribution functions 57
Inverse cumulative distribution functions 58
Generating pseudorandom numbers 59
Sampling 60
Summary 61

Chapter 5: Character and String Operations 63
Basic string operations 63
Six focused tasks 64

Determining the length of a string 64
Location of a substring 65
Extracting or changing a substring 66
Transforming the case 67
Splitting strings 67
Creating formatted strings 68

Regular expressions 69
Summary 70

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 6: Converting and Defining Time Variables 71
Introduction and assumptions 71
Converting strings to time data types 72
Converting time data types to strings 75
Operations on time data types 76
Summary 78

Chapter 7: Basic Programming 79
Conditional execution 79
Loop constructs 82

The for loop 82
The while loop 82
The repeat loop 83
Break and next statements 84

Functions 85
Defining a function 85
Arguments to functions 87
Scope 90

Executing scripts 94
Summary 96

Chapter 8: S3 Classes 97
Defining classes and methods 98
Defining objects and inheritance 101
Encapsulation 106
A final note 107
Summary 108

Chapter 9: S4 Classes 111
Introducing the Ant class 111
Defining an S4 class 112
Defining methods for an S4 class 117

Defining new methods 117
Polymorphism 119
Extending the existing methods 121

Inheritance 124
Miscellaneous notes 130
Summary 132

Chapter 10: Case Study – Course Grades 133
Overview 133
The Course class 134

The definition of the Course class 135

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Reading grades from a file 137
The assignment classes 138

The NumericGrade class 140
The LetterGrade class 144
Example – reading grades from a file 146

Defining indexing operations 150
Redefining existing functions 152
Redefining arithmetic operations 157
Summary 160

Chapter 11: Case Study – Simulation 161
The simulation classes 162
The Monte-Carlo class 165
Examples 167
Summary 168

Appendix: Package Management 169
Index 171

Preface
The R environment is a powerful software suite that started as a model for the S
language originally developed at Bell Laboratories. The original code base was
created by Ross Ihaka and Robert Gentleman in 1993. It rapidly grew with the help
of others, and it has since become a standard in statistical computing. The software
suite itself has grown well beyond an implementation of a language and has become
an "environment". It is extensible, and the wide variety of packages that are available
help make it a powerful resource that continues to grow in popularity
and power.

Our aim in this book is to provide a resource for programming using the R language,
and we assume that you will be making use of the R environment to implement and
test your code. The book can be roughly divided into four parts. In the first part, we
provide a discussion of the basic ideas and topics necessary to understand how R
classifies data and the options that can be used to make calculations from data. In
the second part, we provide a discussion of how R organizes data and the options
available to keep track of data, display data, and read and save data. In the third
part, we provide a discussion on programming topics specific to the R language and
the options available for object-oriented programming. In the fourth part, we provide
several extended examples as a way to demonstrate how all of the topics can fit
together to solve problems.

Preface

[2]

What this book covers
A list of the chapters is given here. The first three chapters focus on the basic
requirements associated with getting data into the system and the most basic tasks
associated with calculations associated with data. The next three chapters focus on
the miscellaneous issues that arise in practice when working with and examining
data including the mechanics of dealing with different data types. The next three
chapters focus on basic and advanced programming topics. The final three chapters
provide more detailed examples to demonstrate how all of the ideas can be brought
together to solve problems.

Chapter 1, Data Types, offers a broad overview of the different data types. This
includes basic representations such as float, double, complex, factors, and integer
representations, and it also includes examples of how to enter vectors through the
interactive shell. A brief discussion of the most basic operations and how to interact
with the R shell is also given.

Chapter 2, Organizing Data, offers a more detailed look at the way data is organized
within the R environment. Additional topics include how to access the data as well
as how to perform basic operations on the various data structures. The primary data
structures examined are lists, arrays, tables, and data frames.

Chapter 3, Saving Data and Printing Results, offers a detailed look at the ways to bring
data into the R environment and builds on the topics discussed in the previous
chapter. Additional topics revolve around the ways to display results as well as
various ways to save data.

Chapter 4, Calculating Probabilities and Random Numbers, offers a detailed examination
of the probability and sampling features of the R language. The R environment
includes a number of features to aid in the way data can be analyzed. Any statistical
analysis includes an underlying reliance on probability, and it is a topic that cannot
be ignored. The availability of a wide variety of probability and sampling options is
one of the strengths of the R language, and we explore some of the options in
this chapter.

Chapter 5, Character and String Operations, offers a detailed examination of the various
options available for examining, testing, and performing operations on strings. This
is an important topic because it is not uncommon for datasets to have inconsistencies,
and a routine that reads data from a file should include some basic checks.

Chapter 6, Converting and Defining Time Variables, offers a detailed examination of
the time data structure. A basic introduction is given in the first chapter, and more
details are provided in this chapter. The prevalence of time-related data makes the
topic of these data structures too important to ignore.

Preface

[3]

Chapter 7, Basic Programming, offers a detailed examination of the most basic flow
controls and programming features of the R language. The chapter provides details
about conditional execution as well as the various looping constructs. Additionally,
mundane topics associated with writing programs, execution, and formatting are
also discussed.

Chapter 8, S3 Classes, offers a detailed examination of S3 classes. This is the first and
most common approach to object-oriented programming. The use of S3 classes can
be confusing to people already familiar with object-oriented programming, but their
flexibility has made them a popular way to approach object-oriented programming
in R.

Chapter 9, S4 Classes, offers a detailed examination of S4 classes. This is a more
recent approach to object-oriented programming compared to S3 classes. It is a more
structured approach and is more familiar to people who have experience with object-
oriented programming.

Chapter 10, Case Study – Course Grades, offers an in-depth example of a grade-tracking
application. This is the first of three examples, and it is the simplest example. It was
chosen as it is something that is likely to be more familiar to a wider range of people.

Chapter 11, Case Study – Simulation, offers an in-depth example of an application
that is used to generate data based on Monte-Carlo simulations. The application
demonstrates how an object-oriented approach can be used to create an environment
used to execute simulations, organize the results, and perform a basic analysis on
the results.

Chapter 12, Case Study – Regression, offers an in-depth example of an application
that offers a wide range of options you can use to perform regression. Regression
is a common task and occurs in a wide variety of contexts. The application that is
developed demonstrates a flexible way to handle both continuous and ordinal data
as a way to demonstrate the use of a flexible object-oriented approach. You can
download this chapter form https://www.packtpub.com/sites/default/files/
downloads/6682OS_Case_Study_Regression.pdf.

Appendix, Package Management, gives a brief overview of installing, updating, and
removing packages is given. Packages are libraries that can be added to R that extend
its capabilities. Being able to extend R and make use of other libraries represents one
R's more powerful features.

https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_Study_Regression.pdf
https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_Study_Regression.pdf

Preface

[4]

What you need for this book
It is assumed that you will be working in the R environment, and the example code
has been developed and tested for R version 3.0.1 and later. The R environment is a
type of free software and is made available through the efforts and generosity of the R
Foundation. It can be downloaded from http://www.r-project.org/. The material
in the first half of the book assumes that you have access to R and can work from the
interactive command line within the R environment. The material in the second half
of the book assumes that you are familiar with programming and can write and save
computer code. At a minimum, you should have access to a programming editor and
should be familiar with directory structures and search paths.

Who this book is for
If you are familiar with programming and wish to gain a basic understanding of
the R environment and learn how to create programming applications using the R
language, this is the book for you. It is assumed that you have some exposure to the
R environment and have a basic understanding of R. This book does not provide
extensive motivations for certain approaches and practices assuming that the reader
is comfortable in the development of software applications.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"A list is created using the list command, and a variable can be tested or coerced
using the is.list and as.list commands."

A block of code is set as follows:

> x = rnorm(5,mean=10,sd=3)
> x
[1] 11.172719 8.784284 10.074035 5.735171 10.800138
> pnorm(abs(x-10),mean=0,sd=3)-pnorm(-abs(x-10),mean=0,sd=3)
[1] 0.30413363 0.31469803 0.01968849 0.84486037 0.21030971
>

http://www.r-project.org/

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

> v <- c(1,3,5,7,-10)
> v
[1] 1 3 5 7 -10
> v[4]
[1] 7
> v[2] <- v[1]-v[5]
> v
[1] 1 11 5 7 -10

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[6]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. An additional source for the
examples in this book can be found at https://github.com/KellyBlack/R-
Object-Oriented-Programming. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Copyright violations
Violation of copyright laws for material on the Internet is an ongoing problem
across all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form, on the
Internet, please provide us with the location address or website name immediately
so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
https://github.com/KellyBlack/R-Object-Oriented-Programming
https://github.com/KellyBlack/R-Object-Oriented-Programming
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Data Types
In this chapter, we provide a broad overview of the different data types available in
the R environment. This material is introductory in nature, and this chapter ensures
that important information on implementing algorithms is available to you. There
are roughly five parts in this chapter:

• Working with variables in the R environment: This section gives you a
broad overview of interacting with the R shell, creating variables, deleting
variables, saving variables, and loading variables

• Discrete data types: This section gives you an overview of the principle data
types used to represent discrete data

• Continuous data types: This section gives you an overview of the principle
data types used to represent continuous data

• Introduction to vectors: This section gives you an introduction to vectors and
manipulating vectors in R

• Special data types: This section gives you a list of other data types that do
not fit in the other categories or have other meanings

Assignment
The R environment is an interactive shell. Commands are entered using the
keyboard, and the environment should feel familiar to anyone used to MATLAB or
the Python interactive interpreter. To assign a value to a variable, you can usually
use the = symbol in the same way as these other interpreters. The difference with
R, however, is that there are other ways to assign a variable, and their behavior
depends on the context.

Data Types

[8]

Another way to assign a value to a variable is to use the <- symbols (sometimes
called operators). At first glance, it seems odd to have different ways to assign a
value, but we will see that variables can be saved in different environments. The
same name may be used in different environments, and the name can be ambiguous.
We will adopt the use of the <- operator in this text because it is the most common
operator, and it is also the least likely to cause confusion in different contexts.

The R environment manages memory and variable names dynamically. To create
a new variable, simply assign a value to it, as follows:

> a <- 6
> a
[1] 6

A variable has a scope, and the meaning of a variable name can vary depending
on the context. For example, if you refer to a variable within a function (think
subroutine) or after attaching a dataset, then there may be multiple variables in
the workspace with the same name. The R environment maintains a search path
to determine which variable to use, and we will discuss these details as they arise.

The <- operator for the assignment will work in any context while the = operator
only works for complete expressions. Another option is to use the <<- operator. The
advantage of the <<- operator is that it instructs the R environment to search parent
environments to see whether the variable already exists. In some contexts, within a
function for example, the <- operator will create a new variable; however, the <<-
operator will make use of an existing variable outside of the function if it is found.

Another way to assign variables is to use the -> and ->> operators. These operators
are similar to those given previously. The only difference is that they reverse the
direction of assignment, as follows:

> 14.5 -> a
> 1/12.0 ->> b
> a
[1] 14.5
> b
[1] 0.08333333

Chapter 1

[9]

The workspace
The R environment keeps track of variables as well as allocates and manages
memory as it is requested. One command to list the currently defined variables is
the ls command. A variable can be deleted using the rm command. In the following
example, the a and b variables have been changed, and the a variable is deleted:

> a <- 17.5
> b <- 99/4
> ls()
[1] "a" "b"
> objects()
[1] "a" "b"
> rm(a)
> ls()
[1] "b"

If you wish to delete all of the variables in the workspace, the list option in the rm
command can be combined with the ls command, as follows:

> ls()
[1] "b"
> rm(list=ls())
> ls()
character(0)

A wide variety of other options are available. For example, there are directory
options to show and set the current directory, as follows:

> getwd()
[1] "/home/black"
> setwd("/tmp")
> getwd()
[1] "/tmp"
> dir()
 [1] "antActivity.R" "betterS3.R"
 [3] "chiSquaredArea.R" "firstS3.R"
[5] "math100.csv" "opsTesting.R"
[7] "probabilityExampleOne.png" "s3.R"
[9] "s4Example.R"

Data Types

[10]

Another important task is to save and load a workspace. The save and save.image
commands can be used to save the current workspace. The save command allows
you to save a particular variable, and the save.image command allows you to save
the entire workspace. The usage of these commands is as follows:

> save(a,file="a.RData")
> save.image("wholeworkspace.Rdata")

These commands have a variety of options. For example, the ascii option is a
commonly used option to ensure that the data file is in a (nearly) human-readable
form. The help command can be used to get more details and see more of the
options that are available. In the following example, the variable a is saved in a file,
a.RData, and the file is saved in a human-readable format:

> save(a,file="a.RData",ascii=TRUE)
> save.image(" wholeworkspace.RData",ascii=TRUE)
> help(save)

As an alternative to the help command, the ? operator can also be used to get
the help page for a given command. An additional command is the help.search
command that is used to search the help files for a given string. The ?? operator is
also available to perform a search for a given string.

The information in a file can be read back into the workspace using the
load command:

> load("a.RData")
> ls()
[1] "a"
> a
[1] 19

Another question that arises with respect to a variable is how it is stored. The two
commands to determine this are mode and storage.mode. You should try to use
these commands for each of the data types described in the following subsections.
Basically, these commands can make it easier to determine whether a variable is a
numeric value or another basic data type.

The previous commands provide options for saving the values of the variables
within a workspace. They do not save the commands that you have entered. These
commands are referred to as the history within the R workspace, and you can save
your history using the savehistory command. The history can be displayed using
the history command, and the loadhistory command can be used to replay the
commands in a file.

Chapter 1

[11]

The last command given here is the command to quit, q(). Some people consider this
to be the most important command because without it you would never be able to
leave R. The rest of us are not sure why it is necessary.

Discrete data types
One of the features of the R environment is the rich collection of data types that are
available. Here, we briefly list some of the built-in data types that describe discrete
data. The four data types discussed are the integer, logical, character, and factor data
types. We also introduce the idea of a vector, which is the default data structure for
any variable. A list of the commands discussed here is given in Table 2 and Table 3.

It should be noted that the default data type in R, for a number, is a double precision
number. Strings can be interpreted in a variety of ways, usually as either a string or a
factor. You should be careful to make sure that R is storing information in the format
that you want, and it is important to double-check this important aspect of how data
is tracked.

Integer
The first discrete data type examined is the integer type. Values are 32-bit integers.
In most circumstances, a number must be explicitly cast as being an integer, as the
default type in R is a double precision number. There are a variety of commands
used to cast integers as well as allocate space for integers. The integer command
takes a number for an argument and will return a vector of integers whose length is
given by the argument:

> bubba <- integer(12)
> bubba
 [1] 0 0 0 0 0 0 0 0 0 0 0 0
> bubba[1]
[1] 0
> bubba[2]
[1] 0
> bubba[[4]]
[1] 0
> b[4] <- 15
> b
 [1] 0 0 0 15 0 0 0 0 0 0 0 0

Data Types

[12]

In the preceding example, a vector of twelve integers was defined. The default values
are zero, and the individual entries in the vector are accessed using braces. The first
entry in the vector has index 1, so in this example, bubba[1] refers to the initial
entry in the vector. Note that there are two ways to access an element in the vector:
single versus double braces. For a vector, the two methods are nearly the same, but
when we explore the use of lists as opposed to vectors, the meaning will change. In
short, the double braces return objects of the same type as the elements within the
vector, and the single braces return values of the same type as the variable itself.
For example, using single braces on a list will return a list, while double braces may
return a vector.

A number can be cast as an integer using the as.integer command. A variable's
type can be checked using the typeof command. The typeof command indicates
how R stores the object and is different from the class command, which is an
attribute that you can change or query:

> as.integer(13.2)
[1] 13
> thisNumber <- as.integer(8/3)
> typeof(thisNumber)
[1] "integer"

Note that a sequence of numbers can be automatically created using either the
: operator or the seq command:

> 1:5
[1] 1 2 3 4 5
> myNum <- as.integer(1:5)

> myNum[1]
[1] 1
> myNum[3]
[1] 3

> seq(4,11,by=2)
[1] 4 6 8 10
> otherNums <- seq(4,11,by=2)

> otherNums[3]
[1] 8

Chapter 1

[13]

A common task is to determine whether or not a variable is of a certain type. For
integers, the is.integer command is used to determine whether or not a variable
has an integer type:

> a <- 1.2
> typeof(a)
[1] "double"
> is.integer(a)
[1] FALSE

> a <- as.integer(1.2)
> typeof(a)
[1] "integer"
> is.integer(a)
[1] TRUE

Logical
Logical data consists of variables that are either true or false. The words TRUE and
FALSE are used to designate the two possible values of a logical variable. (The TRUE
value can also be abbreviated to T, and the FALSE value can be abbreviated to F.)
The basic commands associated with logical variables are similar to the commands
for integers discussed in the previous subsection. The logical command is used
to allocate a vector of Boolean values. In the following example, a logical vector of
length 10 is created. The default value is FALSE, and the Boolean not operator is used
to flip the values to evaluate to TRUE:

> b <- logical(10)
> b
 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> b[3]
[1] FALSE
> !b
 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> !b[5]
[1] TRUE
> typeof(b)
[1] "logical"
> mode(b)
[1] "logical"
> storage.mode(b)
[1] "logical"
> b[3] <- TRUE
> b
 [1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Data Types

[14]

To cast a value to a logical type, you can use the as.logical command. Note that zero
is mapped to a value of FALSE and other numbers are mapped to a value of TRUE:

> a <- -1:1
> a
[1] -1 0 1
> as.logical(a)
[1] TRUE FALSE TRUE

To determine whether or not a value has a logical type, you use the
is.logical command:

> b <- logical(4)
> b
[1] FALSE FALSE FALSE FALSE
> is.logical(b)
[1] TRUE

The standard operators for logical operations are available, and a list of some of the
more common operations is given in Table 1. Note that there is a difference between
operations such as & and &&. A single & is used to perform an and operation on each
pairwise element of two vectors, while the double && returns a single logical result
using only the first elements of the vectors:

> l1 <- c(TRUE,FALSE)
> l2 <- c(TRUE,TRUE)
> l1&l1
[1] TRUE FALSE
> l1&&l1
[1] TRUE
> l1|l2
[1] TRUE TRUE
> l1||l2
[1] TRUE

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. An additional source for the examples in this book can be found
at https://github.com/KellyBlack/R-Object-Oriented-
Programming. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
https://github.com/KellyBlack/R-Object-Oriented-Programming
https://github.com/KellyBlack/R-Object-Oriented-Programming
http://www.packtpub.com/support

Chapter 1

[15]

The following table shows various logical operators and their description:

Logical Operator Description
< Less than
> Greater that
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to
| Entrywise or
|| Or
! Not
& Entrywise and
&& And
xor(a,b) Exclusive or

Table 1 – list of operators for logical variables

Character
One common way to store information is to save data as characters or strings.
Character data is defined using either single or double quotes:

> a <- "hello"
> a
[1] "hello"
> b <- 'there'
> b
[1] "there"
> typeof(a)
[1] "character"

The character command can be used to allocate a vector of character-valued
strings, as follows:

> many <- character(3)
> many
[1] "" "" ""
> many[2] <- "this is the second"
> many[3] <- 'yo, third!'
> many[1] <- "and the first"
> many
[1] "and the first" "this is the second" "yo, third!"

Data Types

[16]

A value can be cast as a character using the as.character command, as follows:

> a <- 3.0
> a
[1] 3
> b <- as.character(a)
> b
[1] "3"

Finally, the is.character command takes a single argument, and it returns a value
of TRUE if the argument is a string:

> a <- as.character(4.5)
> a
[1] "4.5"
> is.character(a)
[1] TRUE

Factors
Another common way to record data is to provide a discrete set of levels. For example,
the results of an individual trial in an experiment may be denoted by a value of a, b,
or c. Ordinal data of this kind is referred to as a factor in R. The commands and ideas
are roughly parallel to the data types described previously. There are some subtle
differences with factors, though. Factors are used to designate different levels and can
be considered ordered or unordered. There are a large number of options, and it is
wise to consult the help pages for factors using the (help(factor)) command. One
thing to note, though, is that the typeof command for a factor will return an integer.

Factors can be defined using the factor command, as follows:

> lev <- factor(x=c("one","two","three","one"))
> lev
[1] one two three one
Levels: one three two
> levels(lev)
[1] "one" "three" "two"
> sort(lev)
[1] one one two three
Levels: one two three

> lev <- factor(x=c("one","two","three","one"),levels=c("one","two",
"three"))
> lev

Chapter 1

[17]

[1] one two three one
Levels: one two three
> levels(lev)
[1] "one" "two" "three"
> sort(lev)
[1] one one two three
Levels: one two three

The techniques used to cast a variable to a factor or test whether a variable is a
factor are similar to the previous examples. A variable can be cast as a factor using
the as.factor command. Also, the is.factor command can be used to determine
whether or not a variable has a type of factor.

Continuous data types
The data types for continuous data types are given here. The double and complex
data types are given. A list of the commands discussed here is given in Table 2
and Table 3.

Double
The default numeric data type in R is a double precision number. The commands are
similar to those of the integer data type discussed previously. The double command
can be used to allocate a vector of double precision numbers, and the numbers
within the vector are accessed using braces:

> d <- double(8)
> d
[1] 0 0 0 0 0 0 0 0
> typeof(d)
[1] "double"
> d[3] <- 17
> d
[1] 0 0 17 0 0 0 0 0

The techniques used to cast a variable to a double precision number and test whether
a variable is a double precision number are similar to the examples seen previously.
A variable can be cast as a double precision number using the as.double command.
Also, to determine whether a variable is a double precision number, the as.double
command can be used.

Data Types

[18]

Complex
Arithmetic for complex numbers is supported in R, and most math functions will
react properly when given a complex number. You can append i to the end of a
number to force it to be the imaginary part of a complex number, as follows:

> 1i
[1] 0+1i
> 1i*1i
[1] -1+0i
> z <- 3+2i
> z
[1] 3+2i
> z*z
[1] 5+12i
> Mod(z)
[1] 3.605551
> Re(z)
[1] 3
> Im(z)
[1] 2
> Arg(z)
[1] 0.5880026
> Conj(z)
[1] 3-2i

The complex command can also be used to define a vector of complex numbers.
There are a number of options for the complex command, so a quick check of the
help page, (help(complex)), is recommended:

> z <- complex(3)
> z
[1] 0+0i 0+0i 0+0i
> typeof(z)
[1] "complex"
> z <- complex(real=c(1,2),imag=c(3,4))
> z
[1] 1+3i 2+4i
> Re(z)
[1] 1 2

The techniques to cast a variable to a complex number and to test whether or not a
variable is a complex number are similar to the methods seen previously. A variable
can be cast as complex using the as.complex command. Also, to test whether or not
a variable is a complex number, the as.complex command can be used.

Chapter 1

[19]

Special data types
There are two other common data types that occur that are important. We will
discuss these two data types and provide a note about objects. The two data types
are NA and NULL. These are brief comments, as these are recurring topics that we will
revisit many times.

The first data type is a constant, NA. This is a type used to indicate a missing value. It
is a constant in R, and a variable can be tested using the is.na command, as follows:

> n <- c(NA,2,3,NA,5)
> n
[1] NA 2 3 NA 5
> is.na(n)
[1] TRUE FALSE FALSE TRUE FALSE
> n[!is.na(n)]
[1] 2 3 5

Another special type is the NULL type. It has the same meaning as the null keyword
in the C language. It is not an actual type but is used to determine whether or not an
object exists:

> a <- NULL
> typeof(a)
[1] "NULL"

Finally, we'll quickly explore the term objects. The variables that we defined in all
of the preceding examples are treated as objects within the R environment. When we
start writing functions and creating classes, it will be important to realize that they
are treated like variables. The names used to assign variables are just a shortcut for R
to determine where an object is located.

For example, the complex command is used to allocate a vector of complex values.
The command is defined to be a set of instructions, and there is an object called
complex that points to those instructions:

> complex
function (length.out = 0L, real = numeric(), imaginary = numeric(),
 modulus = 1, argument = 0)
{
 if (missing(modulus) && missing(argument)) {
 .Internal(complex(length.out, real, imaginary))
 }
 else {
 n <- max(length.out, length(argument), length(modulus))

www.allitebooks.com

http://www.allitebooks.org

Data Types

[20]

 rep_len(modulus, n) * exp((0+1i) * rep_len(argument,
 n))
 }
}
<bytecode: 0x2489c80>
<environment: namespace:base>

There is a difference between calling the complex()function and referring to the set
of instructions located at complex.

Notes on the as and is functions
Two common tasks are to determine whether a variable is of a given type and to cast
a variable to different types. The commands to determine whether a variable is of a
given type generally start with the is prefix, and the commands to cast a variable to
a different type generally start with the as prefix. The list of commands to determine
whether a variable is of a given type are given in the following table:

Type to check Command
Integer is.integer

Logical is.logical

Character is.character

Factor is.factor

Double is.double

Complex is.complex

NA is.NA

List is.list

Table 2 – commands to determine whether a variable is of a particular type

The commands used to cast a variable to a different type are given in Table 3. These
commands take a single argument and return a variable of the given type. For
example, the as.character command can be used to convert a number to a string.

Chapter 1

[21]

The commands in the previous table are used to test what type a variable has. The
following table provides the commands that are used to change a variable of one
type to another type:

Type to convert to Command
Integer as.integer

Logical as.logical

Character as.character

Factor as.factor

Double as.double

Complex as.complex

NA as.NA

List as.list

Table 3 – commands to cast a variable into a particular type

Summary
In this chapter, we examined some of the data types available in the R environment.
These include discrete data types such as integers and factors. It also includes
continuous data types such as real and complex data types. We also examined ways
to test a variable to determine what type it is.

In the next chapter, we look at the data structures that can be used to keep track of
data. This includes vectors and data types such as lists and data frames that can be
constructed from vectors.

Organizing Data
In this chapter, we will explore the primary data structures that are used to organize
data. Some of the details about accessing information within data structures will be
discussed, and some of the ways to apply different operations to parts of the data
within a data structure will be discussed too. There are roughly three parts to
this chapter:

• Basic data structures: This section gives you information on using vectors,
lists, data frames, tables, matrices, and time series

• Accessing and managing memory: This section gives you an overview of the
basic ways to gain access and censor specific elements

• Operations on data structures: This section gives you an overview of the
operations and methods used to apply operations within the different kinds
of data structures

Basic data structures
The basic data structures used to organize data within the R environment include
vectors, lists, data frames, tables, and matrices. Here, we provide details for each of
these data structures and demonstrate how to create them. This chapter does not
include information about how to read data from a file, and the focus is on the data
structures themselves. More information about reading from a file can be found in
Chapter 3, Saving Data and Printing Results.

Vectors
The default data structure in R is the vector. For example, if you define a variable as
a single number, R will treat it as a vector of length one:

> a <- 5
> a[1]
[1] 5

Organizing Data

[24]

Vectors represent a convenient and straightforward way to store a long list of
numbers. Please see Chapter 1, Data Types, to see more examples of creating vectors.
One useful and common way to define a vector is to use the c command. The
c command concatenates a set of arguments to form a single vector:

> v <- c(1,3,5,7,-10)
> v
[1] 1 3 5 7 -10
> v[4]
[1] 7
> v[2] <- v[1]-v[5]
> v
[1] 1 11 5 7 -10

Two other methods to generate vectors make use of the : notation and the seq
command. The : notation is used to create a list of sequentially numbered values for
given start and end values. The seq command does the same thing, but it provides
more options to determine the increment between values in the vector:

> 1:5
[1] 1 2 3 4 5
> 10:14
[1] 10 11 12 13 14
> a <- 3:7
> a
[1] 3 4 5 6 7
> b <- seq(3,5)
> b
[1] 3 4 5
> b <- seq(3,10,by=3)
> b
[1] 3 6 9

Lists
Another important type is the list. Lists are flexible and are an unstructured way of
organizing information. A list can be thought of as a collection of named objects. A
list is created using the list command, and a variable can be tested or coerced using
the is.list and as.list commands. A component within a list is accessed using
the $ character to denote which object within the list to use. As an example, suppose
that we want to create a list to keep track of the parameters for an experiment. The
first component, called means, will be a vector of the assumed means. The second
component will be the confidence level, and the third component will be the value
of a parameter for the experiment called maxRealEigen:

Chapter 2

[25]

> assumedMeans <- c(1.0,1.5,2.1)
> alpha <- 0.05
> eigenValue <- 3+2i
> l <- list(means=assumedMeans,alpha=alpha,maxRealEigen=eigenValue)
> l
$means
[1] 1.0 1.5 2.1
$alpha
[1] 0.05
$maxRealEigen
[1] 3+2i

> l$means
[1] 1.0 1.5 2.1
> l$means[2]
[1] 1.5

The names and attributes commands can be used to determine the components
within a list. The attributes command is a more generic command that can be used
to list the components of classes and a wider range of objects. Note that the names
command can also be used to rename the components of a list. In the following
example, we use the previous example but change the names of the elements:

> l <- list(means=c(1.0,1.5,2.1),alpha=0.05,maxRealEigen=3+2i)
> names(l)
[1] "means" "alpha" "maxRealEigen"
> names(l) <- c("assumedMeans","confidenceLevels","maximumRealValue")
> l
$assumedMeans
[1] 1.0 1.5 2.1
$confidenceLevels
[1] 0.05
$maximumRealValue
[1] 3+2i

Organizing Data

[26]

Data frames
A data frame is similar to a list, and many of the operations are similar. The primary
difference is that all of the components of a data frame must have the same number of
elements. This is one of the most common ways to store information, and many of the
functions available to read data from a file return a data frame by default. For example,
suppose we ask five people two questions. The first question is, "Do you have a pet
cat?" The second question is, "How many rooms in your house need new carpet?":

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+ Q2=c(2,0,1,2,0))
> d
 Q1 Q2
1 y 2
2 n 0
3 y 1
4 y 2
5 n 0
> d$Q1
[1] y n y y n
Levels: n y
> summary(d)
 Q1 Q2
 n:2 Min. :0
 y:3 1st Qu.:0
 Median :1
 Mean :1
 3rd Qu.:2
 Max. :2

The names and attributes commands have the same behaviors with data frames
as lists. In the preceding example, we take the data frame defined in the previous
example and rename the fields to something more descriptive:

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+ Q2=c(2,0,1,2,0))
> names(d) <- c("HaveCat","NumberRooms")
> d
 HaveCat NumberRooms
1 y 2
2 n 0
3 y 1
4 y 2
5 n 0

Chapter 2

[27]

Tables
Tables can be easily constructed and R will automatically generate frequency tables
from categorical data. The table command has a number of options, but we focus on
basic examples here. More details can be found using the help(table) command.
In the next example, we take the data from the preceding cat questions and create a
table from the answers from the first question:

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+ Q2=c(2,0,1,2,0))
> q1Results <- table(d$Q1)
> q1Results
n y
2 3
> summary(q1Results)
Number of cases in table: 5
Number of factors: 1

If you wish to create a two way table, then simply provide two vectors to the
table command to get the cross tabulation. Again, we look at the data from the
cat questions. Note that we have to convert the second question to a factor:

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+ Q2=c(2,0,1,2,0))
> results <- table(d$Q1,as.factor(d$Q2))
> results
 0 1 2
 n 2 0 0
 y 0 1 2
> summary(results)
Number of cases in table: 5
Number of factors: 2
Test for independence of all factors:
 Chisq = 5, df = 2, p-value = 0.08208
 Chi-squared approximation may be incorrect

The rows and columns of the table have names associated with them, and the
rownames and colnames commands can be used to assign the names. These
commands are similar to the names command. In the preceding example, the names
in the table are not descriptive. In the following example, we build the table and
rename the rows and columns:

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+ Q2=c(2,0,1,2,0))
> results <- table(d$Q1,as.factor(d$Q2))

Organizing Data

[28]

> rownames(results) <- c("No Cat","Has Cat")
> colnames(results) <- c("No room","One room","Two rooms")
> results
 No room One room Two rooms
 No Cat 2 0 0
 Has Cat 0 1 2

One last note; the argument to the table command requires ordinal data. If you have
numeric data, it can be quickly transformed to encode which interval contains each
number. The cut command takes the numeric data and a vector of break points that
indicate the cutoff points between each interval, as follows:

> a <- c(-0.8,-0.7,0.9,-1.4,-0.3,1.2)
> b <- cut(a,breaks=c(-1.5,-1,-0.5,0,0.5,1.0,1.5))
> b
[1] (-1,-0.5] (-1,-0.5] (0.5,1] (-1.5,-1] (-0.5,0] (1,1.5]
Levels: (-1.5,-1] (-1,-0.5] (-0.5,0] (0,0.5] (0.5,1] (1,1.5]
> summary(b)
(-1.5,-1] (-1,-0.5] (-0.5,0] (0,0.5] (0.5,1] (1,1.5]
 1 2 1 0 1 1
> table(b)
b
(-1.5,-1] (-1,-0.5] (-0.5,0] (0,0.5] (0.5,1] (1,1.5]
 1 2 1 0 1 1

Matrices and arrays
Tables are a special case of an array. An array or a matrix can be constructed directly
using either the array or matrix commands. The array command takes a vector
and dimensions, and it constructs an array using column major order. If you wish to
provide the data in row major order, then the command to transpose the result is t:

> a <- c(1,2,3,4,5,6)
> A <- array(a,c(2,3))
> A
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> t(A)
 [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

Chapter 2

[29]

You are not limited to two-dimensional arrays. The dim option can include any
number of dimensions. In the following example, a three-dimensional array is
created by using three numbers for the number of dimensions:

> A <- array(1:24,c(2,3,4),dimnames=c("row","col","dep"))
> A
, , 1

 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

 [,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

, , 3

 [,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18

, , 4

 [,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> A[2,3,4]
[1] 24

A matrix is a two-dimensional array and is a special case that can be created using
the matrix command. Rather than using the dimensions, the matrix command
requires that you specify the number of rows or columns. The command has an
additional option to specify whether or not the data is in row major or column
major order:

> B <- matrix(1:12,nrow=3)
> B
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Organizing Data

[30]

> B <- matrix(1:12,nrow=3,byrow=TRUE)
> B
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

Both matrices and arrays can be manipulated to determine or change their
dimensions. The dim command can be used to get or set this information:

> C <- matrix(1:12,ncol=3)
> C
 [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> dim(C)
[1] 4 3
> dim(C) <- c(3,4)
> C
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Censoring data
Using a logical vector as an index is useful for limiting data that is examined.
For example, to limit a vector to examine only the positive values in the data set,
a logical comparison can be used for the index into the vector:

> u <- 1:6
> v <- c(-1,1,-2,2,-3,3)
> u
[1] 1 2 3 4 5 6
> v
[1] -1 1 -2 2 -3 3
> u[v > 0]
[1] 2 4 6
> u[v < 0] = -2*u[v < 0]
> u
[1] -2 2 -6 4 -10 6

Chapter 2

[31]

Another useful aspect of a logical index into a vector is the use of the NA data type.
The is.na function and a logical NOT operator (!) can be a useful tool when a vector
contains data that is not defined:

> v <- c(1,2,3,NA,4,NA)
> v
[1] 1 2 3 NA 4 NA
> v[is.na(v)]
[1] NA NA
> v[!is.na(v)]
[1] 1 2 3 4

Note that many functions have optional arguments to specify how R should react
to data that contains a value with the NA type. Unfortunately, the way this is done
is not consistent, and you should use the help command with respect to any
particular function:

> v <- c(1,2,3,NA,4,NA)
> v
[1] 1 2 3 NA 4 NA
> mean(v)
[1] NA
> mean(v,na.rm=TRUE)
[1] 2.5

In this last example, the na.rm option in the mean function is set to TRUE to specify
that R should ignore the entries in the vector that are NA.

Appending rows and columns
The cbind and rbind commands can be used to append data to existing objects.
These commands can be used on vectors, matrices, arrays, and they are extended to
also act on data frames. The following examples use data frames, as that is a common
operation. You should be careful and try the commands on arrays to make sure that
the operation behaves in the way you expect.

The cbind command is used to combine the columns of the data given as arguments:

> d <- data.frame(one=c(1,2,3),two=as.factor(c("one","two","three")))
> e <- c("ein","zwei","drei")
> newDataFrame <- cbind(d,third=e)
> newDataFrame
 one two third
1 1 one ein

Organizing Data

[32]

2 2 two zwei
3 3 three drei
> newDataFrame$third
[1] ein zwei drei
Levels: drei ein zwei

If the arguments to the cbind command are two data frames (or two arrays), then the
command combines all of the columns from all of the data frames (arrays):

> d <- data.frame(one=c(1,2,3),two=as.factor(c("one","two","three")))
> e <- data.frame(three=c(4,5,6),four=as.factor(c("vier","funf","sec
hs")))
> newDataFrame <- cbind(d,e)
> newDataFrame
 one two three four
1 1 one 4 vier
2 2 two 5 funf
3 3 three 6 sechs

The rbind command concatenates the rows of the objects passed to it. The command
uses the names of the columns to determine how to append the data. The number
and names of the columns must be identical:

> d <- data.frame(one=c(1,2,3),two=as.factor(c("one","two","three")))
> e <- data.frame(one=c(4,5,6),two=as.factor(c("vier","funf","sec
hs")))
> newDataFrame <- rbind(d,e)
> newDataFrame
 one two
1 1 one
2 2 two
3 3 three
4 4 vier
5 5 funf
6 6 sechs

Operations on data structures
The R environment has a rich set of options available for performing operations
on data within the various data structures. These operations can be performed in a
variety of ways and can be restricted according to various criteria. The focus of this
section is the purpose and formats of the various apply commands.

Chapter 2

[33]

The apply commands are used to instruct R to use a given command on specific
parts of a list, vector, or array. Each data type has different versions of the apply
commands that are available. Before discussing the different commands, it is
important to define the notion of the margins of a table or array. The margins are
defined along any dimension, and the dimension used must be specified. The margin
command can be used to determine the sum of the row, columns, or the entire
column of an array or table:

> A <- matrix(1:12,nrow=3,byrow=TRUE)
> A
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
> margin.table(A)
[1] 78
> margin.table(A,1)
[1] 10 26 42
> margin.table(A,2)
[1] 15 18 21 24

The last two commands specify the optional margin argument. The margin.
table(A,1) command specifies that the sums are in the first dimension, that is, the
rows. The margin.table(A,2) command specifies that the sums are in the second
dimension, that is, the columns. The idea of specifying which dimension to use in a
command can be important when using the apply commands.

The apply commands
The various apply commands are used to operate on the different data structures.
Each one—apply, lapply, sapply, tapply, and mapply—will be briefly discussed
in order in the following sections.

apply
The apply command is used to apply a given function across a given margin of an
array or table. For example, to take the sum of a row or column from a two way
table, use the apply command with arguments for the table, the sum command, and
which dimension to use:

> A <- matrix(1:12,nrow=3,byrow=TRUE)
> A
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4

Organizing Data

[34]

[2,] 5 6 7 8
[3,] 9 10 11 12
> apply(A,1,sum)
[1] 10 26 42
> apply(A,2,sum)
[1] 15 18 21 24

You should be able to verify these results using the rowSums and colSums commands
as well as the margin.table command discussed previously.

lapply and sapply
The lapply command is used to apply a function to each element in a list. The result
is a list, where each component of the returned object is the function applied to the
object in the original list with the same name:

> theList <- list(one=c(1,2,3),two=c(TRUE,FALSE,TRUE,TRUE))
> sumResult <- lapply(theList,sum)
> sumResult
$one
[1] 6

$two
[1] 3

> typeof(sumResult)
[1] "list"
> sumResult$one
[1] 6

The sapply command is similar to the lapply command, and it performs the same
operation. The difference is that the result is coerced to be a vector if possible:

> theList <- list(one=c(1,2,3),two=c(TRUE,FALSE,TRUE,TRUE))
> meanResult <- sapply(theList,mean)
> meanResult
 one two
2.00 0.75
> typeof(meanResult)
[1] "double"

Chapter 2

[35]

tapply
The tapply command is used to apply a function to different parts of data within
an array. The function takes at least three arguments. The first is the data to apply
an operation, the second is the set of factors that defines how the data is organized
with respect to the different levels, and the third is the operation to perform. In the
following example, a vector is defined that has the diameter of trees. A second vector
is defined, which specifies what kind of tree was measured for each observation. The
goal is to find the standard deviation for each type of tree:

> diameters <- c(28.8, 27.3, 45.8, 34.8, 25.3)
> tree <- as.factor(c("pine","pine","oak","pine","oak"))
> tapply(diameters,tree,sd)
 oak pine
14.495689 3.968627

mapply
The last command to examine is the mapply command. The mapply command
takes a function to apply and a list of arrays. The function takes the first elements
of each array and applies the function to that list. It then takes the second elements
of each array and applies the function. This is repeated until it goes through every
element. Note that if one of the arrays has fewer elements than the others, the mapply
command will reset and start at the beginning of that array to fill in the missing values:

> a <- c(1,2,3)
> b <- c(1,2,3)
> mapply(sum,a,b)
[1] 2 4 6
>

Summary
In this chapter, we examined the basic data structures available to help organize
data. These data structures include vectors, lists, data frames, tables, and arrays.
We examined some of the ways to manage the data structures using the rbind
and cbind commands. Finally, we examined some of the methods available to
perform calculations on the data within the data structure and examined the various
functions available to apply commands to parts of the data within the data structure.

In the next chapter, we will build on these ideas and examine how to get information
from a data file and into the various data structures. We will also examine the methods
available to produce formatted output to display the results of calculations on data.

Saving Data and
Printing Results

This chapter provides you with a broad overview of the ways to get information into
as well as out of the R environment. There are various packages that are available
and related to this important function, but we will focus on a subset of the basic,
built-in functions. The chapter is divided into the following five sections:

• File and directory information: This section gives you a brief overview of
how files and directories are organized in the R environment

• Input: This section gives you an overview of the methods that can be used to
bring data into the R environment

• Output: This section gives you an overview of the methods available to get
data out of the R environment

• Primitive input/output: This section gives you an overview of the methods
you can use to write data in binary or character forms in predefined formats

• Network options: This section gives you a brief overview of the methods
associated with creating and manipulating sockets

File and directory information
Before discussing how to save or read data, we first need to examine R's facilities for
getting information about files and directories. We will first discuss the commands
used to work with directories and files, and then discuss the commands used to
manipulate the current working directory. The basic commands to list directory
and file information are the dir, list.dirs, and list.files commands. The basic
commands to list and change the current working directory are getwd and setwd.

Saving Data and Printing Results

[38]

The dir, list.dirs, and list.files commands are used to get information
about directories and files within directories. By default, the commands will get
information about the directories in the current working directory:

> dir()
[1] "R" "bin" "csv"
> d <- dir()
> d[1]
[1] "R"

The preceding commands also accept a wide variety of options. Use of the help
command is recommended to see more details:

> list.files('./csv')
[1] "network.csv" "trees.csv"
> f <- list.files('./csv')
> f[2]
[1] "trees.csv"

These commands have an optional parameter for specifying a pattern, and the
pattern is a regular expression. The topic of regular expressions is beyond the scope
of this discussion, but it offers a very powerful option for specifying a filter to
determine the names of files. For example, all of the files that begin with the letter n
can be easily determined:

> f <- list.files('./csv',pattern='^n')
> f
[1] "network.csv"

Another important topic is the idea of the current working directory. When the R
environment seeks a file or directory whose name is given in a relative form, it starts
from the current working directory. There are several other ways to specify the
current directory, and it is part of the majority of graphical interfaces. Unfortunately,
it varies across the different interfaces.

The commands to manipulate the current working directory via the command line
are the getwd and setwd commands. The names of directories (folders) are separated
using forward slashes:

> getwd()
[1] "/tmp/examples"
> d <- getwd()
> d
[1] "/tmp/examples"

Chapter 3

[39]

Entering data
Having discussed the ideas associated with directories and files, we can now discuss
how to read data. Here, we will provide an overview of the different ways to get
information from a file. We will begin with a short overview about entering data
from the command line followed by examples for reading a text file in the form of a
table, from a csv file, and fixed width files. Finally, we will discuss more primitive
methods to read from a binary file.

It is important to note that we rely on the topics discussed in Chapter 1, Data Types
and Chapter 2, Organizing Data. I assume that you are familiar with the various
data types given in Chapter 1, Data Types, as well as the data structures discussed in
Chapter 2, Organizing Data. In this chapter, we will explore a small number of ways
to read data into R. There are a large number of libraries available to read data in a
wide variety of formats such as JSON, XML, SAS, Excel, and other file formats. There
are also more options available in the base R distribution. To see more options, type
read and press the TAB key (no space after the letters read) to see a partial list of
other options.

Entering data from the command line
We will examine two ways to read data including reading keyboard input from
the command line and reading data from a file. We first examine some techniques
used to obtain information through the command line. More details can be found
in Chapter 2, Organizing Data, and we will explore additional ways to enter data
including the use of the scan and data.entry commands.

In addition to concatenating information with the c command, there are additional
commands to make it easier to define data. The first command we will examine is
the scan command. If you simply assign a variable using the scan command with
no arguments, then you are prompted and required to enter the numbers from the
command line. If you enter a blank line (just hit the Enter key), then the previous
values are returned as a vector:

> x <- scan()
1: 28.8
2: 27.3
3: 45.8
4: 34.8
5: 23.5
6:
Read 5 items
> x
[1] 28.8 27.3 45.8 34.8 23.5

www.allitebooks.com

http://www.allitebooks.org

Saving Data and Printing Results

[40]

In this example, the scan command is used to prompt us to enter a set of numbers.
After a blank entry is given, the command returns a vector with the previous values.

If you provide a filename, then the scan command will read the values from the file
as if you had typed them on the command line. Suppose that we have a file called
diameters.csv with the following contents:

28.8
27.3
45.8
34.8
25.3

You can read the contents using the scan command as follows:

> x <- scan("diameters.csv")
Read 5 items
> x
[1] 28.8 27.3 45.8 34.8 25.3

You can read more complex data from a file using the scan command, but you must
specify the structure of the file. This means that you have to specify the data types.
Here, assume that we have a data file called trees.csv:

pine,28.8
pine,27.3
oak,45.8
pine,34.8
oak,25.3

The first column is the character data, and the second column is the numeric data.
The information on each line is separated by a comma. The scan command assumes
that the information is separated using white space (spaces and tabs), so in this
case, we have to specify that a comma is used as the separator within the file. In the
following example, the file is read, and the format is given using the what argument:

> x <- scan("trees.csv",what=list("character","double"),sep=",")
Read 5 records
> x
[[1]]
[1] "pine" "pine" "oak" "pine" "oak"

[[2]]
[1] "28.8" "27.3" "45.8" "34.8" "25.3"

Chapter 3

[41]

Another method for entering data is to use the data.entry command. The command
will open up a graphical interface if it is available on your system. The details can
vary depending on your operating system and the graphical interface that you
are using.

Reading tables from files
One common method used to read data from a file is to read it as a table. This
assumes that the file is nicely formatted and arranged in convenient rows and
columns. A command to read data in this form is the read.table command. There
are a large number of options for this command, and it is highly recommended that
you use the help command, help(read.table), to see more complete details about
this command.

The first example demonstrates how to read a simple file. It is assumed that you have
a file called trialTable.dat in the following format:

1 2 3
3 5 6

The file has no header, and the values are separated by spaces (white space). In this
simple format, the file can be read with the default options:

> trial <- read.table("trialTable.dat")
> trial
 V1 V2 V3
1 1 2 3
2 3 5 6
> typeof(trial)
[1] "list"
> names(trial)
[1] "V1" "V2" "V3"

The result is a list of values. No names were specified for the names of the columns,
and the default values for the column names have been used.

Saving Data and Printing Results

[42]

CSV files
The read.table command offers a general way to read the data from a file with a
known structure. One common file structure is a file where the values are separated
by commas, or a csv file. The command to read a csv file is the read.csv command.
There is an alternate version of the command, read.csv2, which has a different set
of defaults. The difference is that the defaults for read.csv2 are defined to allow a
simple way of reading a file in which the delimiter between the decimal values is a
comma and the values are separated by semicolons, which are more commonly used
in some European countries.

The read.csv command is similar to the read.table command. The primary
difference is that the result is returned as a data frame, and a greater range of data
types for the columns are recognized.

In the preceding examples, the trialTable.csv file is read into the workspace. The
same file can be read using the read.csv command. The trialTable.csv file does
not have a header, and the numbers are separated using spaces:

> trial <- read.csv("trialTable.csv",header=FALSE,sep=' ')
> trial
 V1 V2 V3
1 1 2 3
2 3 5 6
> typeof(trial)
[1] "list"

In the next example, we have a data file in which each line has the same number of
columns, and the data fields are separated by commas. The file was downloaded
from http://www.bea.gov/. The first six lines of the file are used to identify
information about the data in a human-readable form, but that information should
be ignored by the read.csv function. The other thing to note is that the seventh line
is a header; it has information that defines the label used to refer to the columns. The
last thing to note is that the numbers are separated by commas. All of these details
must be specified if we want to read the file using the read.csv command. This
second file, inventories.csv, can be read using the read.csv command, as follows:

inventories <- read.csv("inventories.csv", +
skip=6,header=TRUE,sep=",")
> typeof(inventories)
[1] "list"
> names(inventories)
 [1] "Line" "X" "X1994.1" "X1994.2" "X1994.3" "X1994.4"
"X1995.1"
 [8] "X1995.2" "X1995.3" "X1995.4" "X1996.1" "X1996.2" "X1996.3"
"X1996.4"

http://www.bea.gov/

Chapter 3

[43]

Fixed-width files
Another common file format is a fixed width file. In a fixed width file, every line
has the same format and the information within a given line is strictly organized by
columns. A file in this format can be read using the read.fwf command. To use the
read.fwf command, you must specify the name of the file and the width of each
column. You can instruct R to ignore a column by providing a negative value for the
width of the column.

In this example, we assume that a file with the name trialFWF.dat is in the current
working directory. The contents of the file are as follows:

12312345121234
B 100ZZ 18
C 200YY 20
D 300XX 22

The first three columns are assumed to contain letters, the next five columns contain
numbers, the next two columns have letters, and the last four columns are numbers.
In the example file, the top row should be ignored as it is used to demonstrate how
the file is organized. The skip option is used to indicate how many lines to ignore at
the top of the file:

> trial <- read.fwf('trialFWF.dat',c(3,5,2,4),skip=1)
> trial
 V1 V2 V3 V4
1 B 100 ZZ 18
2 C 200 YY 20
3 D 300 XX 22
> trial$V1
[1] B C D
Levels: B C D

Note that when a width is given as a negative number, that column is ignored:

> trial <- read.fwf('trialFWF.dat',c(3,-5,2,4),skip=1)
> trial
 V1 V2 V3
1 B ZZ 18
2 C YY 20
3 D XX 22

Saving Data and Printing Results

[44]

Printing results and saving data
We will explore the options available to take information stored within the R
environment and express that information in either human- or machine-readable
forms. We will start with a brief discussion on saving the workspace in an R
environment. Next, we will discuss various commands that can be used to print
information to either the screen or a file. Finally, we will discuss the primitive
commands that can be used for basic file operations.

Saving a workspace
There are two commands used to save the information in the current workspace.
The first is the save command, which allows you to save particular variables. The
second is the save.image command, which allows you to save all the variables
within the workspace.

The save command requires a list of variables to save, and the name of a file to
save the variables. There are a wide variety of options, but in the most basic form
you simply save specific variables from the current workspace. Here, we use the ls
command to first list the variables in the current workspace and then use the save
command to save two variables, inventories and trees:

> dir()
[1] "diameters.csv" "inventories.csv" "network.csv" "trees.csv"
[5] "trialFWF.dat" "trialTable.csv"
> ls()
[1] "a" "d" "f" "inventories" "trees"
[6] "trial" "x" "y"
> save(inventories,trees,file="theInventories.RData")
> dir()
[1] "diameters.csv" "inventories.csv" "network.csv"
[4] "theInventories.RData" "trees.csv" "trialFWF.dat"
[7] "trialTable.csv"

The save.image command requires only one argument; the name of the file used to
save the information:

> dir()
[1] "diameters.csv" "inventories.csv" "network.csv"
[4] "theInventories.RData" "trees.csv" "trialFWF.dat"
[7] "trialTable.csv"
> save.image("wholeShebang.RData")
> dir()

Chapter 3

[45]

[1] "diameters.csv" "inventories.csv" "network.csv"
[4] "theInventories.RData" "trees.csv" "trialFWF.dat"
[7] "trialTable.csv" "wholeShebang.RData"

If you start a new R session, the information that has been saved using a save or
save.image command can be read using the load command:

> ls()
character(0)
> dir()
[1] "diameters.csv" "inventories.csv" "network.csv"
[4] "theInventories.RData" "trees.csv" "trialFWF.dat"
[7] "trialTable.csv" "wholeShebang.RData"
> load("theInventories.RData")
> ls()
[1] "inventories" "trees"

The cat command
The cat command can be used to take a list of variables, convert them to a text form,
and concatenate the results. If no file or connector is specified, the result is printed to
the screen; otherwise, the connector is used to determine how the result is handled.
Note that there is an additional set of commands, the various write commands, but
those commands are convenient routines that allow a shorthand notation to access
the cat commands. These commands are primarily used in scripts:

> one <- "A"
> two <- "B"
> cat(one,two,"\n")
A B

The cat command allows you to specify a number of options. For example, you
can specify the separator between variables, labels to be used, or whether or not to
append to a given file:

> cat(one,two,"\n",sep=" - ")
A - B -

The print, format, and paste commands
We examine three ways to display information using the print, format, and paste
commands. These can be used by programs to display the formatted output. The
three commands provide numerous options to ensure that the information appears
in human-readable forms.

Saving Data and Printing Results

[46]

The print command is used to display the contents of a single variable, as follows:

> one <- "A"
> print(one)
[1] "A"

The paste command takes a list of variables, converts them to characters, and
concatenates the result. This is a useful command to dynamically create annotations
for plots and figures, as follows:

> one <- "A"
> two <- "B"
> numbers <- paste(one,two)
> numbers
[1] "A B"
> numbers <- paste(one,two,sep="/")
> numbers
[1] "A/B"

In this example, the numbers variable is a string, and it is the result of converting
the arguments to a string and concatenating the results. In the second part of the
example, the separator was changed from the default, a space, to a forward slash.

The format command converts an R object to a string, and it allows a large number
of options to specify the appearance of the object:

> three <- exp(1)
> nice <- format(three,digits=2)
> nice
[1] "2.7"
> nice <- format(three,digits=12)
> nice
[1] "2.71828182846"
> nice <- format(three,digits=3,width=5,justify="right")
> nice
[1] " 2.72"
> nice <- format(three,digits=3,width=8,justify="right",decimal.
mark="#")
> nice
[1] " 2#72"

In this example, the format command is used in various ways to convert a numeric
variable to a string. The various options to change the number of digits and the total
number of characters has been changed to refine the results.

Chapter 3

[47]

Primitive input/output
There are a number of primitive commands that offer fine grain control for
reading and writing information to and from a file. We do not provide extensive
examples here because these commands are more useful when combined with the
programming commands that are explored in later chapters.

Before discussing these commands, it is important to discuss the idea of a connector.
A connector is a generic way to treat a data source. This can be a file, an HTTP
connection, a database connection, or another network connection. In this section,
we only explore one type of connector, that is, the basic text file connector. More
information can be found using the help command, help(file). The file
command is used to create a connector to a file. The arguments to the file command
are similar to the fopen command found in the C language.

The most basic use of the file command requires that you provide a name of a file
and the mode that will be used in manipulating the file. The mode can tell R whether
the file will be used to read or write as well as whether or not it is a binary file. In this
first example, we will open a file and write a double precision number and then a
character string. In the next example that follows, we will open the file and read the
information back into the workspace. To write the information, we will first use the
file command to open a file, call twoBinaryValues.dat, and use the binary mode.
We will then use the writeBin command to write the two values. We assume here
that a double precision number requires four bytes:

> fileConnector = file("twoBinaryValues.dat",open="wb")
> theNumber = as.double(2.72)
> writeBin(theNumber,fileConnector,size=4)
> note <- "hello there!"
> nchar(note)
[1] 12
> writeBin(note,fileConnector,size=nchar(note))
> close(fileConnector)

In this example, a file connector is created to write information in a binary format.
Two variables are then written to the file, and the file is closed. The same information
is read in the next example. The readBin command is used to read the information
from the file:

> fileConnector = file("twoBinaryValues.dat",open="rb")
> value <- readBin(fileConnector,double(),1,size=4)
> value
[1] 2.72
> note <- readBin(fileConnector,character(),12,size=1)

Saving Data and Printing Results

[48]

> note
[1] "hello there!"
> close(fileConnector)

There are a number of commands that can be used to read and write character data.
The writeChar and readChar commands are used to write and read character data
in a similar way as the writeBin and readBin commands. The writeLines and
readLines commands can be used to write whole lines as characters at one time.

Network options
Another way to read information is through a network connection using sockets.
The methods available to manipulate sockets will be briefly explored in this
section. We first explore the high level socket commands that make use of the
socketConnection command to create a connector. Next, some of the more basic
options are briefly stated. This is an advanced topic beyond the scope of this book,
but it is provided here as a matter of completeness.

Opening a socket
The socketConnection command will create a network connection to a given host
using a port number. The command returns a connector that can be treated the
same as a file connector. In the following example, a connection is opened to the
waterdata.usgs.gov website using the standard HTTP port, 80. It then sends the
HTTP header necessary to request the data for the daily flow rates for the South
Colton station on the Raquette River in northern New York:

> usgs <- socketConnection(host = "waterdata.usgs.gov",80)
> writeLines("GET /ny/nwis/dv?cb_00060=on&format=rdb&site_
no=04267500&referred_module=sw&period=&begin_date=2013-05-08&end_
date=2014-05-08 HTTP/1.1",con=usgs)
> writeLines("Host: waterdata.usgs.gov",con=usgs)
> writeLines("\n\n",con=usgs)
> lines = readLines(usgs)
> lines
 [1] "HTTP/1.1 200 OK"
 [2] "Date: Fri, 09 May 2014 16:28:26 GMT"
 [3] "Server: Apache"
 [4] "AMF-Ver: 4.02"
 [5] "Connection: close"
 [6] "Transfer-Encoding: chunked"
 [7] "Content-Type: text/plain"
 [8] ""

waterdata.usgs.gov

Chapter 3

[49]

 [9] "3bc"
 [10] "# ---------------------------------- WARNING ------------------
----------------------"
 [11] "# The data you have obtained from this automated U.S.
Geological Survey database"
 [12] "# have not received Director's approval and as such are
provisional and subject to"
 [13] "# revision. The data are released on the condition that
neither the USGS nor the"
 [14] "# United States Government may be held liable for any damages
resulting from its use."
 [15] "# Additional info: http://waterdata.usgs.gov/ny/nwis/?provisio
nal"
 [16] "#"
 [17] "# File-format description: http://waterdata.usgs.gov/
nwis/?tab_delimited_format_info"
 [18] "# Automated-retrieval info: http://help.waterdata.usgs.gov/faq/
automated-retrievals"
 [19] "#"
 [20] "# Contact: gs-w_support_nwisweb@usgs.gov"
 [21] "# retrieved: 2014-05-09 12:28:35 EDT (vaww01)"
 [22] "#"
 [23] "# Data for the following 1 site(s) are contained in this file"
 [24] "# USGS 04267500 RAQUETTE RIVER AT SOUTH COLTON NY"

...[Deleted Lines]...

[425] "USGS\t04267500\t2014-05-07\t5810\tP"
[426] "USGS\t04267500\t2014-05-08\t5640\tP"
[427] ""
[428] "0"
[429] ""
> close(usgs)

In this example, a socket connection is created. It is used to make a connection to a
URL with a given port. The socket connector is then used to send an HTTP header
to request a particular page from the given host. The resulting page is read using
the readLines command. The readLines command is used to read every line as a
string, and the information in the vector will have to be parsed to transform it into a
useable form.

Saving Data and Printing Results

[50]

Basic socket operations
Aside from the higher level option given in the previous section, there are also more
primitive commands for creating and using a socket. The commands examined are
the make.socket, read.socket, write.socket, and the close.socket commands.
Sockets are scarce resources, and checks need to be put in place to ensure that they
are released when something goes wrong. For that reason, a socket is usually created
within a function with extra checks. The example here is basic, and it is provided
simply to demonstrate the commands. You should see the help pages for the socket
commands for a more comprehensive example.

To replicate the preceding example, the socket is opened, and the HTTP request
is submitted:

> socketRead <- make.socket("waterdata.usgs.gov",80)
> write.socket(socketRead,"GET /ny/nwis/
dv?cb_00060=on&format=rdb&site_no=04267500&referred_
module=sw&period=&begin_date=2013-05-08&end_date=2014-05-08
HTTP/1.1\n");
> write.socket(socketRead,"Host: waterdata.usgs.gov\n\n\n");
> incoming <- read.socket(socketRead);
> close.socket(socketRead)
[1] FALSE

The incoming variable will now contain the result of the operation.

Summary
In this chapter, we have explored some of the facilities available to read and write
information to a file as well as ways to enter data from the command line. We
examined the ways to change between directories and get the directory information.

After examining ways to read data, we explored some of the ways that the information
can be displayed. We first examined how to print information on the command line,
and we then explored how to save data to a local file. We also explored how the
current work space could be saved and recalled for use in a later session.

One important topic explored was how to work with files that do not follow a basic
format. We examined the commands necessary to read data, in both text and binary
forms where the data file follows a predefined structure.

Chapter 3

[51]

The final topic explored was how to use network connections to read information.
This included the use of a socket connector to allow access to relatively
well-structured information. We also explored more primitive options that
allow us to create sockets and manipulate them in a more basic form.

In the previous chapters, we examined the basic ways to store data. In the chapter
that follows, Chapter 4, Calculating Probabilities and Random Numbers, we get our
first glimpse of the functions available to help us understand how to interpret data.
We will explore some of the options available to work with various predefined
probability distributions.

Calculating Probabilities and
Random Numbers

In this chapter, we provide a broad overview of the functions related to probability
distributions. This includes functions associated with probability distributions,
Random Number Generation, and issues associated with sampling. The chapter is
divided into five parts:

• Distribution functions: This section gives you a brief overview of the
ideas and concepts behind random variables and approximating the
height of a probability mass function of a probability density function for
a given distribution

• The cumulative distribution function: This section gives you an overview
of how to approximate the cumulative distribution for a given distribution

• The inverse cumulative distribution function: This section gives you an
overview of how to approximate the inverse cumulative distribution function
for a given distribution

• Random Number Generation (RNG): This section gives you an overview of
how R generates pseudorandom numbers with examples of how to generate
random numbers for a given distribution

• Sampling: This section gives you an overview of sampling data from a
given vector

Calculating Probabilities and Random Numbers

[54]

Overview
The base R environment has options for approximating many of the properties
associated with probability distributions. This is not a complete discussion,
and a more complete list can be found within the R environment using the
help(Distributions) command. In this chapter, we will discuss how R can be used
to approximate distribution functions, how to approximate cumulative distribution
functions, how to approximate inverse cumulative distribution functions, Random
Number Generation (RNG), and sampling.

The commands used for the first set of topics have a common format, and each
command has the form of a prefix and a suffix. The suffix specifies the distribution
by name. For example, the norm suffix refers to the normal distribution. A list of the
distributions available in the base R installation is given in Table 1. The prefix is one
of the following:

• d: This determines the value of the distribution function, for example, dnorm
is the height of the normal's probability distribution function

• p: This determines the cumulative distribution, for example, pnorm is the
cumulative distribution function for the normal distribution

• q: This determines the inverse cumulative distribution, for example, qnorm is
the inverse cumulative distribution function for the normal distribution

• r: This generates random numbers according to the distribution, for example,
rnorm calculates random numbers that follow a normal distribution

As an example, to determine the probability that a Poisson distribution will return a
given value, the command to use is dpois, and the command to get the probability
that a Poisson distribution is less than or equal to a particular value is ppois.

In this chapter, we assume that you are familiar with the idea of a random variable.
In short, a random variable is a function, and the function assigns a number for each
outcome in the sample space associated with an experiment. A continuous random
variable is a function that can include a continuous range of values in the values it
can return. A discrete random variable can only return numbers from a discrete set
of values. The following table shows the distributions available in R:

Chapter 4

[55]

Discrete Continuous
Name Suffix Name Suffix
Beta beta χ2 chisq

Binomial binom Exponential exp

Cauchy cauchy F f

Geometric geom Gamma gamma

Hypergeometric hyper Log Normal lnorm

Multinomial mutlinom Normal norm

Negative Binomial nbinom Student t t

Poisson pois Uniform unif

Weibull weibull

Table 1 – a list of distributions and the suffix used in R to refer to them

Distribution functions
We will first discuss the way to calculate the value of a distribution function in R.
We will then discuss discrete distributions and then continuous distributions. The
distribution function is used to determine the probabilities that a particular event
will occur. In the case of a discrete distribution, the function is called a probability
mass function, and for a continuous distribution it is called a probability distribution
function. For a discrete distribution, the probabilities are calculated using a sum
where f(i) is the probability mass function:

() () ,
b

i a
p a x b f i

=

≤ ≤ =∑

Each distribution has its own parameters associated with it, and judicial use of the
help command is highly recommended. For example, to get more information about
the Poisson distribution, the help(dpois) command can be used. In the case of the
Poisson distribution, there are two parameters required for the dpois command.
The first is x and the second is lambda. The function returns the probabilities that a
Poisson random variable with the lambda parameter returns the values given by x.

Calculating Probabilities and Random Numbers

[56]

For example, to plot the probabilities for a Poisson distribution with parameter 10,
the following commands are used to generate the values that can be returned
(called x), and a bar plot is used to display them:

> x <- 0:20
> probabilities <- dpois(x,10.0)
> barplot(probabilities,names.arg=x,xlab="x",ylab="p", +
 main="Poission Dist, l=10.0")

For the continuous distribution, the random variable can take on a range of values,
and instead of adding, we find the area under a curve, f(s), called the probability
density function:

() () .
b

a
p b x a f s ds≤ ≤ = ∫

In the next example, we use the χ2 distribution. The idea behind the χ2 distribution
is that you sample n independent random variables that follow a standard normal
distribution. You then square the values that were sampled and add them up. The
result is defined to be an χ2 distribution. Note that there is one parameter, n, and it is
generally specified by giving the number of degrees of freedom, which is defined to be
n-1. The number of degrees of freedom is often referred to as df.

For this example, the command to obtain an approximation for the probability
density function is dchisq, and it takes two arguments, x and df. Here, we plot the
probability density function for two χ2 distributions with two different parameters.
First a range of values, x, is defined, and then the height of the probability density
function for an χ2 distribution with df=30 is plotted. Next, another χ2 distribution
with df=35 is plotted on the same plot using the points command:

> x <- seq(0.0,100.0,by=0.1)
> prob <- dchisq(x,df=30)
> plot(x,prob,main="Chi Squared Dist.",xlab='x',ylab='p',col=2,type=
"l")
> probTwo <- dchisq(x,df=35)
> points(x,probTwo,col=3,type="l")

Chapter 4

[57]

Cumulative distribution functions
Another important tool used to approximate probabilities is the cumulative
distribution function. In many situations, we are required to determine the
probability that a random variable will return a value within some given range
of values. The cumulative distribution allows us to use a shortcut to calculate the
resulting probability. As in the previous section, we look at discrete and continuous
distributions separately. We examine the definition and look at examples for
both cases.

For a discrete distribution, the cumulative distribution function is defined to be the
following equation:

() () ().
a

i
F a p x a f i

=−∞

= ≤ = ∑

From this definition, the probability that a random variable is between two numbers
can be determined by the following equation:

() () ().p a x b F a F b≤ < = −

Please note the details in the inequality. In the case of discrete distributions, it
matters if less than or equal is used as opposed to less than.

For a Poisson distribution, the command to determine the cumulative distribution
function is the ppois command, and it has the same arguments as the dpois
command discussed earlier. The following example mirrors the example in the
previous section, and the cumulative distribution function is plotted for a Poisson
distribution with parameter 10.0:

> x <- 0:20
> cdf <- ppois(x,10.0)
> barplot(cdf,names.arg=x)

The cumulative distribution function for a continuous random variable is defined
in the same way as that of a discrete random variable. The only difference is that
instead of a sum we use an integral, as follows:

() () () .
a

F a p x a f s ds
−∞

− ≤ ∫

Calculating Probabilities and Random Numbers

[58]

This definition gives the same result as before, and the probability that a random
variable is between two numbers can be determined by using the following equation:

() () ().p a x b F a F b≤ < = −

The following example compares the cumulative distribution functions for two χ2
distributions where the first has 30 degrees of freedom and the second has 35 degrees
of freedom:

> x <- seq(0.0,100.0,by=0.1)
> cdf <- pchisq(x,df=30)
> plot(x,cdf,main="Chi Squared Dist.",xlab='x',ylab='p',col=2,
+ type="l")
> cdfTwo <- pchisq(x,df=35)
> points(x,cdfTwo,col=3,type="l")

Inverse cumulative distribution functions
The cumulative distribution function is often used to calculate probabilities, but in
other circumstances the goal is to find a range of values given the probability. In this
case, the inverse cumulative distribution function can be used to determine a value
of the random variable that corresponds to a given probability. The idea is that given
the probability, you want to solve for the value of a in the expression:

() ()p p x a F a= ≤ =

For example, suppose that we have a Poisson random variable with parameter 10.0
and wish to find the value of a for which the probability of the random variable is
less than a is 0.5. Using the qpois command, we can determine the value:

> a <- qpois(0.5,10.0)
> a
[1] 10

This result indicates that the probability that a Poisson random variable with
parameter 10.0 is less than 10.0 is 0.5, or put another way the median is 10.0. Since
this is also the mean of the random variable, we can see that there is no skew
associated with the distribution.

Chapter 4

[59]

We now do the same for the χ2 distribution with 30 degrees of freedom. The qchisq
command can be used to determine the median for this distribution:

> a <- qchisq(0.5,df=30)
> a
[1] 29.33603

In this case, we see that the median is less than the mean, which is 30, so the χ2
distribution with 30 degrees of freedom is skewed to the left since the median is to
the left of the mean.

Generating pseudorandom numbers
A common task in simulations is to generate random numbers that follow a given
distribution. We explore this important topic, but it is important to make a few notes
about Random Number Generation. First, and foremost, despite the nomenclature,
the numbers are not random because they are generated using a deterministic
algorithm. Secondly, when debugging and comparing code used to simulate a
stochastic process, it is important to be able to generate numbers in a repeatable
way to ensure that the results are consistent.

Before discussing generating random numbers, we provide some minimal
background information about how R generates random numbers. This is a complex
topic, and you can find more details using the help(RNG) command. One thing to
note is that the .Random.seed variable has the value of the current seed, but it is not
defined until you do so explicitly or a command is called that requires that a random
number be generated. The variable can be set directly, but it is better to change it
using the set.seed command. Also, the algorithm that is used to generate random
numbers can be set or obtained using the RNGkind command. Note that the save
command can be used as a convenient way to save the seed if repeatability of your
results is important as you make changes to established code.

Random Number Generation can be a daunting subject, but we primarily focus on
how to generate random numbers according to a given distribution. As before, we
first examine a discrete distribution; the Poisson distribution with parameter 10.0.
We then examine an χ2 distribution with 30 degrees of freedom. In each case, we
generate one hundred random numbers and create a histogram of the results.

Calculating Probabilities and Random Numbers

[60]

First we examine the discrete distribution. The rpois command can be used to
generate the number. It takes two parameters, the number of points to approximate
and the parameter associated with the distribution:

> numbers <- rpois(100,10.0)
> hist(numbers,main="100 Samples of a Poisson Dist.",xlab="x")

Likewise, a χ2 distribution can also be sampled, and the results are plotted using
a histogram:

> numbers <- rchisq(100,df=30)
> hist(numbers,main="100 Samples from a Chi-Squared Dist.",xlab="x")

Sampling
The final topic that we will discuss is sampling. This can also be a complicated
subject, and it is often used in bootstrapping and a wide variety of other techniques.
Because of its prevalence, we provide it as a separate section.

The sole focus of this section is on the sample command. It may seem odd to grant
such attention to a single command, but sampling is a complex topic with more
opinions associated with it than there are statisticians. The sample command
requires at least one argument, a vector or a number, and it returns a set of values
chosen at random. The options for the command allow you to specify how many
samples to take, whether or not to use replacement, and a probability distribution if
you do not wish to use a uniform mass function.

The sample function's behavior depends on whether or not you give it a vector or a
number. If you pass a number to it (that is, a vector of length 1), it will sample from
the set of whole, positive numbers less than or equal to that number:

> sample(3)
[1] 3 2 1
> sample(5)
[1] 2 3 1 4 5
> sample(5.6)
[1] 5 1 4 3 2

If you pass it a vector whose length is greater than 1, it will sample from the elements
in the vector:

> x <- c(1,3,5,7)
> sample(x)
[1] 7 1 5 3

Chapter 4

[61]

If you do not specify the number of samples to take, it will use the number of objects
passed to it. The size parameter allows you to specify a different number of samples:

> x <- c(1,3,5,7)
> sample(x,size=2)
[1] 1 7
> sample(x,size=3)
[1] 1 3 5
> sample(x,size=8)
Error in sample.int(length(x), size, replace, prob) :
 cannot take a sample larger than the population when 'replace =
FALSE'

In the preceding example, the number of samples is larger than the number of
elements available. To avoid an error, you have to specify sampling with replacement:

> x <- c(1,3,5,7)
> sample(x,size=8,replace=TRUE)
[1] 3 5 5 5 3 7 5 1

In the previous examples, the samples were found using the default algorithm.
The default is to use a uniform probability mass function meaning every element has
the same likelihood of being chosen. You can change this behavior by specifying a
vector of probabilities that has the likelihood of choosing each particular element of
the vector:

> x <- c(1,3,5,7)
> sample(x,size=8,replace=TRUE,p=c(0.05,.10,.15,.70))
[1] 7 3 3 7 7 7 7 5

Summary
In this chapter, we examined a broad overview of some of the probability functions
in the base R installation. These include functions to approximate the distribution
function, the cumulative distribution function, and the inverse cumulative
distribution. We also examined how to generate pseudo-random numbers for the
various distributions. The final topic explored was the use of the sample command,
which is used for sampling from a given dataset stored as a vector.

In the next chapter, we step back from the more mathematical ideas explored in
this chapter and look at the programming facilities that can be used to manipulate
strings. This is an important topic as it is not uncommon for datasets to include string
variables, and it is often necessary to extract or add information to the variables
within a dataset.

Character and String
Operations

This chapter will provide you with a broad overview of the operations available for
the manipulation of character and string objects. This is a relatively concise chapter,
and the focus is on basic operations. There are roughly two parts in this chapter:

• Basic string operations: This section gives you a broad overview of the most
basic string operations

• Regular expressions: This section gives you a brief introduction of three
commands that make use of regular expressions

Basic string operations
In some situations, data is kept in the form of characters or strings, whereas in some
other situations the strings must be parsed or investigated as part of a statistical
analysis. Because of the prevalence of data in the form of strings, the R language has
a rich set of options available for manipulating strings. In this chapter, we investigate
some of the options available, and our investigation is divided into two parts. They
are as follows:

• In the first part, we examine a number of basic string operations whose
function is focused on particular operations

• In the second part, we examine the functions that are based on regular
expressions that offer a powerful set of wide ranging operations

Character and String Operations

[64]

The use of regular expressions represent a powerful set of tools for string
manipulation, but the cost is greater complexity. In this chapter, we only focus on
the most basic uses of these functions as their most common uses tend to be parts of
more complex code that may use a complicated combination of the commands.

As a way to make the connection between the commands, we assume a common
data set throughout this chapter. In particular, we assume that we have a set
of URLs:

> urls <- c("https://duckduckgo.com?q=Johann+Carl+Friedrich+Gauss",
 "https://search.yahoo.com/search?p=Jean+Baptiste+Joseph+Fourier",
 "http://www.bing.com/search?q=Isaac+Newton",
 "http://www.google.com/search?q=Brahmagupta")

We will examine various ways to pull information from each URL. Such a task may
be necessary either to pull information from a website or to perform an analysis on
the URLs themselves.

Six focused tasks
We first examine six specific tasks. These operations are to determine the length of
a string, location of a substring, extract or replace a substring, change the case of a
string, split a string into separate parts, and express a combination of objects as a
single string. Please note that the examples will make extensive use of the definition
of the url vector that is defined in the previous section.

Determining the length of a string
The nchar command is used to determine the length of a string. This option can be
used as part of a simple statistic for a set of strings or can be part of a programming
tool when it is necessary to iterate over a string. You can specify how the count is
calculated with options to count the number of characters, bytes, or width of the
resulting string. In most cases, these values will be the same but can differ depending
on the Unicode settings for your environment:

> nchar(urls)
[1] 52 62 41 42

Chapter 5

[65]

The nchar command tries to coerce its argument to a string, which means that it
interprets the values of objects whose type is NA as the string NA. Another side effect
is that it can return an error when used on factors:

>> nchar(c("one",NA,1234))
[1] 3 2 4
> nchar(as.factor(c("a","b","a","a","b","c")))
Error in nchar(as.factor(c("a", "b", "a", "a", "b", "c"))) :
 'nchar()' requires a character vector

If you are running R within a Unicode environment such as UTF-8, this command
may return an error. If this is the case, try the allowNA=TRUE option to see whether
the results are appropriate.

One last note; there is an additional command, nzchar, which tests to determine
whether the character width of the string has zero length. This function returns a
logical value, and it is true if the string does not have a zero length. As an example,
suppose you have a list of file types with an empty string being an unrecognized file
type. You may want to use nzchar to create a mask to skip or ignore an empty string:

> fileTypes <- c("txt","","html","txt")
> nzchar(fileTypes)
[1] TRUE FALSE TRUE TRUE
> fileTypes[nzchar(fileTypes)]
[1] "txt" "html" "txt"

Location of a substring
In some circumstances, it is necessary to determine the location within a string for
the occurrence of a substring. For example, it might be necessary to search a set of
filenames to determine whether they contain a match for a predetermined parameter.
The command to return the location of a substring is the regexp command. This
command has many options, and it is explored in more detail in the following
section. Here, we use it in its most basic form to determine the location of
a substring.

Using the definition of the vector, urls, as an example, we may wish to find the
location of the colons in the URLs. The colons are the delimiter between the protocol
and the host name, and we cannot assume it will always be in the same position:

> colons <- regexpr(":",urls)
> colons
[1] 6 6 5 5
attr(,"match.length")
[1] 1 1 1 1

Character and String Operations

[66]

attr(,"useBytes")
[1] TRUE
> colons[2]
[1] 6
> colons[3]
[1] 5

Note that the assumed position of the first character is one and not zero.

Extracting or changing a substring
There are two commands available to change a substring within a string. The two
commands are substr and substring, and their arguments are identical. The
substring command is compatible with S, but we focus on the R command substr.
The command has two forms. One form can be used to extract a substring, and the
other form can be used to change the value of a substring.

First, we examine the option to extract a substring. The command takes a string, the
location of the start of the substring, and the location of the end of the substring.
Making use of the previous example, we now use the urls vector defined at the start
of the chapter and determine the protocol for each URL:

> protocols <- substr(urls,1,colons-1)
> protocols
[1] "https" "https" "http" "http"

A substring can be replaced by combining the substr command and the assignment
operator. Unfortunately, the length of the string inserted must be the same length
as the string being replaced, which can return nonintuitive results. Here, we replace
each of the protocols in the urls vector with a mailto protocol:

> colons <- regexpr(":",urls)
> mailto <- urls
> substr(mailto,1,colons-1) <- c("mailto","mailto","mailto")
> mailto
[1] "mailt://duckduckgo.com?q=Johann+Carl+Friedrich+Gauss"
[2] "mailt://search.yahoo.com/search?p=Jean+Baptiste+Joseph+Fourier"
[3] "mail://www.bing.com/search?q=Isaac+Newton"
[4] "mail://www.google.com/search?q=Brahmagupta"

Note that the string "http" has fewer characters than the string "mailto," and the
command has truncated the new string that is substituted into the original string.

Chapter 5

[67]

Transforming the case
In some analyses, the case of a letter may not be considered important. In these
situations, it may be necessary to convert the case of a string. The tolower and
toupper commands can be used to ensure that a string is in the expected form:

> tolower(urls[1])
[1] "https://duckduckgo.com?q=johann+carl+friedrich+gauss"
> toupper(urls[2])
[1] "HTTPS://SEARCH.YAHOO.COM/SEARCH?P=JEAN+BAPTISTE+JOSEPH+FOURIER"

An additional command, chartr, enables more fine-grained control of character
replacement. The idea is that there are some characters in the original string that we
want to replace, and we know what the replacement characters are. For example,
going back to the urls vector defined previously, we may want to replace the
occurrences of = with a # character to delimit the end of the URL and the start of the
argument list. Suppose we also want to replace the + characters with spaces. We can
do so by using the chartr command, where the first argument is a string whose
character elements will be changed, the second argument is a string that contains the
replacement characters, and the third argument is the string to change:

> > chartr("=+","# ",urls)
[1] "https://duckduckgo.com?q#Johann Carl Friedrich Gauss"
[2] "https://search.yahoo.com/search?p#Jean Baptiste Joseph Fourier"
[3] "http://www.bing.com/search?q#Isaac Newton"
[4] "http://www.google.com/search?q#Brahmagupta"

Splitting strings
A string can be divided into multiple parts using the strsplit command. This is
useful if you have data in a predefined format and wish to divide the strings into
component pieces for a separate analysis. Using the urls vector defined earlier,
we may wish to divide each URL into its protocol and the rest of the information:

> splitURL <- strsplit(urls,":")
> splitURL
[[1]]
[1] "https"
[2] "//duckduckgo.com?q=Johann+Carl+Friedrich+Gauss"

[[2]]
[1] "https"
[2] "//search.yahoo.com/search?p=Jean+Baptiste+Joseph+Fourier"

Character and String Operations

[68]

[[3]]
[1] "http"
[2] "//www.bing.com/search?q=Isaac+Newton"

[[4]]
[1] "http"
[2] "//www.google.com/search?q=Brahmagupta"

> splitURL[[1]]
[1] "https"
[2] "//duckduckgo.com?q=Johann+Carl+Friedrich+Gauss"
> splitURL[[1]][2]
[1] "//duckduckgo.com?q=Johann+Carl+Friedrich+Gauss"

Note that it returns a list, and each entry in the list is a vector of strings that have
been split.

Creating formatted strings
The sprintf function allows you to take a combination of objects and express them
as a formatted string. The paste, format, and print commands have been examined
in Chapter 3, Saving Data and Printing Results, and those functions can be used to
accomplish similar results. The primary difference is that the sprintf function acts
like the C language's sprintf function. For example, suppose we have a loop that
performs an analysis on the text found at each of the URLs found in the urls vector
defined earlier. As part of the analysis, we may have the result of a calculation stored
in a variable and wish to use that number in the title for a graph. In the following
example, we simply set the value, though, to keep the example more streamlined:

> n <- 1
> calculation <- 123.0
> theTitle <- sprintf("URL: %s, Count=%d",urls[n],calculation)
> theTitle
[1] "URL: https://duckduckgo.com?q=Johann+Carl+Friedrich+Gauss,
Count=123"

The %s characters refer to a string in the argument list, and %d refers to an integer
next in the argument list. These definitions follow the same specification as the C
language definition of sprintf.

Chapter 5

[69]

Regular expressions
The commands examined in the previous section lack flexibility, but they are
straightforward in their implementation. The use of regular expressions, on the
other hand, offers a more elegant approach in many circumstances, but they can be
more complex. We briefly examine a few commands that allow string manipulations
via regular expressions, and we assume that you are familiar with regular
expressions. To get more information about regular expressions in R you can use the
help(regular expression) command.

In this section, we will focus on the gregexpr and gsub commands. There are a
number of other commands that are listed when you enter the help(gregexpr)
command. Also, the commands have a number of options, but we will only examine
their most basic forms. As a quick note, the pattern submitted to the grep command
discussed earlier can also be a regular expression.

The gregexpr command is a general command that returns the number of results
with respect to the regular expression. In particular, it will return the location of a
match, whether or not a match was found, and the number of characters in match.
The first argument to the function is a pattern and then the strings to match. The
function returns a list that has information about match. In the following example,
we examine the results of searching for the = delimiter in the first entry in our urls
vector defined earlier:

> loc <- gregexpr("=",urls[[1]])
> loc
[[1]]
[1] 25
attr(,"match.length")
[1] 1
attr(,"useBytes")
[1] TRUE

> loc[[1]][1]
[1] 25

Note that the function returns a list. Since the use of a single brace returns another
list, we use the double braces to ensure that we return the element within the list as
a vector.

Character and String Operations

[70]

The sub command can be used to replace all occurrences of a pattern within a string.
This function takes three arguments, the pattern, the replacement string, and the
strings that are used to perform the operation:

> sub("\\?.*$","",urls)
[1] "https://duckduckgo.com" "https://search.yahoo.com/search"
[3] "http://www.bing.com/search" "http://www.google.com/search"

Note that two backslashes must be used in the previous example. The first backslash
is used to indicate that the next character is a symbol to be interpreted, and if a
second backslash is used, then it means to interpret the pair as a single backslash.

Summary
In this chapter, we have explored a variety of ways to manipulate string variables.
Two broad categories have been explored. The first set of functions provide a
number of functions with a narrow range of functionality. These functions are
relatively straightforward but must often be used together to accomplish complex
tasks. The second set of functions make use of regular expressions, and they can be
used to accomplish a complex set of tasks using a small number of steps.

In the next chapter, we move on to the topic of working with variables associated
with time. This includes translating strings into R's built-in time types, and it also
includes the kind of operations that can be performed on time variables.

Converting and Defining
Time Variables

This chapter provides a broad overview of the ways to convert and store time
variables. This is a mundane topic, but it is common to have data that contains date
and time information in a wide variety of forms. There are roughly three parts in
this chapter:

• Converting strings to time data types: This section gives you an introduction
to the methods available to take a time stamp in text format and convert it
into one of R's internal time formats

• Converting time data types to strings: This section gives you an introduction
to the methods available to take a time data type and convert it to a string so
that it can be saved to a file in a standard format

• Operations on time data types: This section gives you an overview of the
methods and techniques used to perform basic arithmetic on time data types

Introduction and assumptions
Date and time formations are often saved as part of the information within a
dataset. Converting the information into a date or time variable is one of the less
exciting chores to perform, and it is something that requires a great deal of care. In
this chapter, we will discuss the ways of transforming strings and data types and
demonstrate how to perform basic arithmetic operations. It is important to note that
working with time and date data occurs in a number of different contexts, and there
are a number of different libraries, such as chron, lubridate, and date, to help you
work with time and data variables.

Converting and Defining Time Variables

[72]

Our focus here, though, is on R's built-in functions used to work with time and date
data. It is important to note that the commands explored here can be sensitive to
small variations within a data file, and you should always double check your work
especially with respect to time data. It can be a tedious task, but it is important to
make sure that the data is correct. If you commonly work with time data, you should
read the details found using the help(DateTimeClasses) command.

Another complication is that time zones can change, and the general practices
associated with time data can change. For example, new time zones can be changed,
created, or removed, or a region can change its time zone. You should always ensure
that your practices associated with time data are consistent with the practice used to
generate the data that you have.

Converting strings to time data types
The first task to examine is to take a string and convert it to each of the internal time
formats. The strptime command will take a string and convert it to a POSIXlt time
variable. If you wish to convert a string to a POSIXct data type, you can cast the
result of strptime using the as.POSIXct command. We first focus on converting a
string to a POSIXlt data type and provide an example at the end of this section to be
converted to a POSIXct data type.

To convert a string to a time data type, the format for the string must be specified,
and the formatting options must conform to the ISO C99/POSIX standard. The string
includes a sequence of literal characters and a partial list of conversion substrings,
which is given in Table 1. For example, the %Y-%m-%d %H:%M:%S string indicates that
the date should look like 2014-05-14 09:54:10 when referring to May 14, 2014 at 9:54
in the morning. A string is assumed to include any number of predefined strings.
Anything else is considered to be a literal character that must appear exactly as it
appears in the format string.

Once the format string has been specified, the strptime command can be used to
convert a string into the POSIXlt data type. The arguments for the command are the
strings to convert, followed by the format string:

> theTime <- c("08:30:00 1867-07-01","18:15:00 1864-10-27")
> converted <- strptime(theTime,"%H:%M:%S %Y-%m-%d")
> converted
[1] "1867-07-01 08:30:00" "1864-10-27 18:15:00"
> typeof(converted[1])
[1] "list"
> converted[1]-converted[2]
Time difference of 976.5938 days

Chapter 6

[73]

The command also accepts an optional time zone option, as follows:

> theTime <- c("08:30:00 1867-07-01","18:15:00 1864-10-27")
> converted <- strptime(theTime,"%H:%M:%S %Y-%m-%d", +
 tz="Canada/Eastern")
> converted
[1] "1867-07-01 08:30:00 EST" "1864-10-27 18:15:00 EST"
> converted[1]-converted[2]
Time difference of 976.5938 days

The results returned by the strptime command are of the POSIXlt data type.
They can be converted using the as.POSIXct command:

> theTime <- c("08:30:00 1867-07-01","18:15:00 1864-10-27")
> converted <- strptime(theTime,"%H:%M:%S %Y-%m-%d",tz="Canada/
Eastern")
> converted
[1] "1867-07-01 08:30:00 EST" "1864-10-27 18:15:00 EST"
> typeof(converted[1])
[1] "list"
> otherTime <- as.POSIXct(converted)
> otherTime
[1] "1867-07-01 08:30:00 EST" "1864-10-27 18:15:00 EST"
> typeof(otherTime[1])
[1] "double"
> cat(otherTime[1],"\n")
-3234681000

Note that when the date variables are printed, they are converted to a human-readable
format. This is convenient, but it can hide the underlying data type. Again, you should
be careful about variables that have a time data type since it is easy to lose track of how
the R environment is actually treating the values.

Another important concern that you should be wary of is that the strptime
command will not give a visible indication when an error occurs. It will return NA in
place of each error, as follows:

> aTime <- c("2014-05-05 08:00:00","2014/05/05 08:00:00")
> internal <- strptime(aTime,"%Y/%m/%d %H:%M:%S")
> internal
[1] NA "2014-05-05 08:00:00"
> is.na(internal)
[1] TRUE FALSE

Converting and Defining Time Variables

[74]

Another way to save the date and time information in a file is to specify the date and
time in one column. If the information from the file is stored as a data frame, then a
new column can be added that contains the information saved in an internal format:

> fileInfo <- data.frame(time=c("2014-01-01 00:00:00",
+ "2013-12-31 23:59:50","2013-12-31 23:55:12"),
+ happiness=c(1.0,0.9,0.8))
> fileInfo
 time happiness
1 2014-01-01 00:00:00 1.0
2 2013-12-31 23:59:50 0.9
3 2013-12-31 23:55:12 0.8
> fileInfo$internalTime <- strptime(fileInfo$time,"%Y-%m-%d %H:%M:%S")
> fileInfo
 time happiness internalTime
1 2014-01-01 00:00:00 1.0 2014-01-01 00:00:00
2 2013-12-31 23:59:50 0.9 2013-12-31 23:59:50
3 2013-12-31 23:55:12 0.8 2013-12-31 23:55:12
> summary(fileInfo)
 time happiness internalTime
 2013-12-31 23:55:12:1 Min. :0.80 Min. :2013-12-31 23:55:12
 2013-12-31 23:59:50:1 1st Qu.:0.85 1st Qu.:2013-12-31 23:57:31
 2014-01-01 00:00:00:1 Median :0.90 Median :2013-12-31 23:59:50
 Mean :0.90 Mean :2013-12-31 23:58:20
 3rd Qu.:0.95 3rd Qu.:2013-12-31 23:59:55
 Max. :1.00 Max. :2014-01-01 00:00:00

The various commands used to convert a string to a time or date variable have a
large variety of options. These options can be found with R using the help(trptime)
command. A list of the options can also be found in the following table:

Format
string

Meaning Format
string

Meaning

%a Abbreviation for the name of
the day of the week

%p Indicator for "A.M." or "P.M."

%A Full name of the day of the
week

%S Seconds as a number (00-61); leap
seconds are allowed

%b Abbreviation for the name of
the month

%U Weak of the year as a number
(00-53)

%B Full name of the month %w Weekday as a number
(0=Sunday, 1=Monday, ...,
6=Saturday)

Chapter 6

[75]

Format
string

Meaning Format
string

Meaning

%c The date and time in the
format
%a %b %e %H:%M:%S %Y

%x Date in the form "%y/%m/%d"

%d Day of the month as a
number (01 through 31)

%X Time in the format "%H:%M:%S"

%H Hours as a number (00-23);
note that 24 is allowed as
an exception when used as
24:00:00

%y Year as two digits ("00-99"), and
00-68 refer to the 2000s while 69-
99 refer to the 1900s

%I Hours in 12 hour format as a
number (01-12)

%Y Year as four digits (>=1582)

%j Day of the year as a number
(001-366)

%z Offset from UTC (-0500 is five
hours behind UTC)

%m Month as a number (01-12) %Z Time zone as a string (only
available for converting time
to a string)

%M Minute as a number (00-59)

Table 1 – characters used to define the formats of dates

More options are available and can be viewed using the help(strftime) command
within the R environment.

Converting time data types to strings
A date and time variable can be converted to a string using the strftime command.
Its format is similar to the strptime command, except it has one additional option
to determine whether or not to include time zone information in the resulting string.
The command is a convenience function, and it calls either the format.POSIXlt or
format.POSIXct command depending on the data type of the time variable. We
focus on the strftime command because it is familiar to people from a wider variety
of programming experiences.

The strftime command requires a time variable and a format. It returns a string in
the given format (some format options are given in Table 1):

> theTime <- c("08:30:00 1867-07-01","18:15:00 1864-10-27")
> converted <- strptime(theTime,"%H:%M:%S %Y-%m-%d",
+ tz="Canada/Eastern")
> converted
[1] "1867-07-01 08:30:00 EST" "1864-10-27 18:15:00 EST"

Converting and Defining Time Variables

[76]

> typeof(converted)
[1] "list"
> backAgain <- strftime(converted,"%j - %B")
> backAgain
[1] "182 - July" "301 - October"
> typeof(backAgain[1])
[1] "character"

Operations on time data types
A variety of arithmetic operations are available for the time data types, and you
should be especially wary when performing any operations. The units that are
returned can vary depending on the context. It is extremely easy to lose track of the
units and make a spurious comparison. In this section, I'll introduce some of the
basic operations and then discuss the difftime command. It is possible to perform
any operation without the difftime command, but the command has an important
advantage: it allows you to explicitly define the units.

When you perform simple arithmetic on time data types, it acts in the way you
might expect:

> earlier <- strptime("2014-01-01 00:00:00","%Y-%m-%d %H:%M:%S")
> later <- strptime("2014-01-02 00:00:00","%Y-%m-%d %H:%M:%S")
> later-earlier
Time difference of 1 days
> timeDiff <- later-earlier
> timeDiff
Time difference of 1 days
> as.double(timeDiff)
[1] 1
> earlier+timeDiff
[1] "2014-01-02 EST"

Note that in the previous example, the units used are given in days. One small
change, though, results in a different kind of result:

> earlier <- strptime("2014-01-01 00:00:00","%Y-%m-%d %H:%M:%S")
> later <- strptime("2014-01-01 12:00:00","%Y-%m-%d %H:%M:%S")
> later-earlier
Time difference of 12 hours
> timeDiff <- later-earlier
> timeDiff
Time difference of 12 hours
> as.double(timeDiff)
[1] 12

Chapter 6

[77]

The R environment will keep track of the difference and its units. If you look at
the difftime variable in the previous example, it contains information about what
it means:

> attributes(timeDiff)
$units
[1] "hours"

$class
[1] "difftime"

> attr(timeDiff,"units")
[1] "hours"

You can specify the units by casting the result as a numeric value and providing the
units to use:

> earlier <- strptime("2014-01-01 00:00:00","%Y-%m-%d %H:%M:%S")
> later <- strptime("2014-01-01 12:00:00","%Y-%m-%d %H:%M:%S")
> timeDiff <- later-earlier
> timeDiff
Time difference of 12 hours
> as.numeric(timeDiff,units="weeks")
[1] 0.07142857
> as.numeric(timeDiff,units="secs")
[1] 43200

Because of potential ambiguities, it is usually advantageous to use the difftime
command. The difftime command offers a wide range of options, and you should
carefully read its help page, help(difftime), to see the options and details. In its
most basic use, you can find the difference between two times, and you can specify
what units to use:

> earlier <- strptime("2014-01-01 00:00:00","%Y-%m-%d %H:%M:%S")
> later <- strptime("2014-01-01 12:00:00","%Y-%m-%d %H:%M:%S")
> timeDiff <- difftime(later,earlier,units="sec")
> timeDiff
Time difference of 43200 secs
> timeDiff <- difftime(later,earlier,units="day")
> timeDiff
Time difference of 0.5 days

The units that are available are auto, secs, mins, hours, days, or weeks.

Converting and Defining Time Variables

[78]

One final note; the difftime data type offers a convenient way to perform some
time arithmetic options. The as.difftime command can be used to specify a
time interval, and you can specify the units, so it is more likely that the results
are consistent with your expectations:

> later <- strptime("2014-01-01 12:00:00","%Y-%m-%d %H:%M:%S")
> oneHour = as.difftime(1,units="hours")
> later+oneHour
[1] "2014-01-01 13:00:00 EST"

Summary
A broad overview of the options available to convert between strings and the two
time data types was given in this chapter. The strptime command is used to convert
a string into a POSIXlt variable. The strftime command is used to convert a time
data type into a string. Finally, the basic operators used to perform arithmetic
operations between two time variables was discussed, with an emphasis on using
the difftime command. We also explored the use of the difftime data type.

Basic Programming
In the previous chapters, we explored the basic aspects of how R stores information
and the different ways to organize information. We will now explore the way that
operations can be defined and executed, and write a program in R. The ability to
create algorithms that combine functions to complete complicated tasks is one of R's
best features. We continue the exploration of programming in the next two chapters
and focus on object-oriented approaches. This chapter is divided into four parts:

• Conditional execution: In this section, we will introduce if-then-else blocks
and discuss logical operators

• Loop constructs: In this section, we will explore three different ways to
implement loops

• Functions: In this section, we will discuss how to define functions in R and
explore some of the important considerations associated with functions

• Script execution: In this section, we will discuss how to execute a set of
commands that have been saved in a file

Conditional execution
The first control construct examined is the if statement. An if statement will
determine whether or not a code block should be executed, and it has an optional
else statement. An additional if statement can be chained to an else statement to
create a cascade of options.

In its most basic form, an if statement has the following form:

if(condition)
 code block

Basic Programming

[80]

The condition can be a logical statement constructed from the operators given in
the next table, or it can be a numeric result. If the condition is numeric, then zero is
considered to be FALSE, otherwise the statement is TRUE. The code block can either
be a single statement or a set of statements enclosed in braces:

> # check if 1 is less than 2
> if(1<2)
+ cat("one is smaller than two.\n")
one is smaller than two.
> if(2>1) {
+ cat("But two is bigger yet.\n")
+ }
But two is bigger yet.

Note that a comment is included in the previous code. The # character is used to
denote a comment. Anything after the # character is ignored.

The if statement can be extended using an else statement. The else statement allows
you to specify a code block to execute if the condition does not evaluate to TRUE:

> if(1>2) {
+ cat("One is the most biggest number\n") # Say something wrong
+ } else {
+ cat("One is the loneliest number\n") # Say something less
wrong
+ }
One is the loneliest number

The first thing to note about these examples is that a Kernighan and Ritchie (K&R)
indentation style is adopted. We adopted the K&R style because the else statement
must be on the same line as the closing brace. The second thing to note is that
another if statement can be appended to the else statement so that a standard
if-then-else block can be constructed:

> if(0) {
+ cat("Yes, that is FALSE.\n")
+ } else if (1) {
+ cat("Yes that is TRUE\n")
+ } else {
+ cat("Whatever")
+ }
Yes that is TRUE

Chapter 7

[81]

One potential issue is that R does not have a scalar type and assumes most data types
are arranged in vectors. This can lead to potential problems with a logical statement.
The first element in the vector is used to decide whether a whole statement is TRUE
or FALSE. Fortunately, R will give a warning if the condition evaluates to a vector of
length greater than one:

> x <- c(1,2)
> if(x < 2) {
+ cat("Oh yes it is\n")
+ }
Oh yes it is
Warning message:
In if (x < 2) { :
 the condition has length > 1 and only the first element will be used

This is something to keep in mind when deciding which logical operator to use in an
if statement. For example, the | operator will perform a logical OR on all elements of
the vectors, but the || operator will only perform a logical OR on the first elements of
the vectors:

> x <- c(FALSE,FALSE,TRUE)
> y <- c(FALSE,TRUE,TRUE)
> x|y
[1] FALSE TRUE TRUE
> x||y
[1] FALSE

A variety of logical operators are recognized. Some provide comparisons between
all entries in a vector and others are for comparisons only for the first elements in the
vectors. A list of the operators is given in the following table:

Operator Description Operator Description
< Less than (vector) | Or (vector)
> Greater than (vector) || Or (first entry only)
<= Less than or equal (vector) ! Not (vector)
>= Greater than or equal (vector) & And (vector)
== Equal to (vector) && And (first entry only)
!= Not equal to (vector) xor(a,b) Exclusive or (vector)

Table 1 – The logical operators including comparison operators

Basic Programming

[82]

Loop constructs
Another important programming task is to create a set of instructions that can be
repeated in a structured way. There are three loop constructs in R: for, while, and
repeat loops. We will explore each of these loop constructs and discuss the break
and next commands, which can control how the instructions within a loop's code
block are executed. More details are available using the help(Control) command.

The for loop
A for loop takes a vector, and it repeats a block of code for each value in the vector.
The syntax is as follows:

for(var in vector)
 code block

The for loop repeats a set of instructions for every value within a vector in the
appropriate order. It can be memory intensive if you need to repeat the loop a lot of
times and the vector is not already stored in the workspace. An example of a simple
for loop is given here:

> for(lupe in seq(1,2,by=0.33))
+ {
+ cat("The value of lupe is ",lupe,"\n")
+ }
The value of lupe is 1
The value of lupe is 1.33
The value of lupe is 1.66
The value of lupe is 1.99

The while loop
A while loop will execute a code block as long as a given expression is true. The
syntax is as follows:

while(condition)
 code block

Chapter 7

[83]

They are often used when the number of iterations is not known in advance and the
loop is repeated until some criteria is met. Also, the while loop has some advantages
over the for loop. It can be more efficient, especially with respect to memory, and
it is more flexible (RMemory, Please refer to RMemory: Hadley Wickham, memory,
2014, http://adv-r.had.co.nz/memory.html for more information on this topic).
For example, instead of constructing a large vector to iterate over its elements, a
single index can be used. On the down side, it can be harder to read, and it can
require a little more care when writing the code. An example is given here:

> lupe <- 1.0;
> while(lupe <= 2.0)
+ {
+ cat("The value of lupe is ",lupe,"\n")
+ lupe <- lupe + 0.33
+ }
The value of lupe is 1
The value of lupe is 1.33
The value of lupe is 1.66
The value of lupe is 1.99

The repeat loop
A repeat loop is used to denote a block of code that will be repeatedly executed
until an explicit breakout of the block is executed. The primary advantage of
the repeat loop is that the start of the code block will always be executed. One
disadvantage is that it can be difficult to read. The syntax is relatively simple:

repeat
 code block

You must use a break command to tell R to exit the code block. The break command
is described in the next subsection in more detail. An example of a repeat loop is
given in the following example, and it is a brief example of simulation of a random
walk in the complex plane:

positions <- complex(0) # Initialize the history of positions
currentPos <- 0.0+0.0i # Start at the origin
NUMBERSTEPS <- 50 # Number of steps to take
angleFacing <- 0.0 # direction it is facing
stdDev <- 1.0 # std dev. of the change in the angle

step <- as.integer(0)
repeat
 {
 ## Update the current time step

http://adv-r.had.co.nz/memory.html

Basic Programming

[84]

 step <- step + as.integer(1)

 ## Check to see if it is time to stop
 if(step>MAXNUMBER)
 break

 ## Add new people to the line and update the length
 angle <- angle + rnorm(1,0.0,stdDev)
 currentPos <- currentPos + exp(angle*1.0i)
 positions <- c(positions,currentPos)

 }
plot(Re(positions),Im(positions),type="l")

Break and next statements
The break and next statements are used to influence which part of the code in the
current loop will be executed. The break statement will move to the very end of the
current block and it will stop the execution of the loop. The next statement will act
as if the end of the code block was reached and start over at the beginning of the
code block to begin the next iteration.

As a demonstration, we build on the simulation of the random walk in the previous
example. We alter the model by placing a restriction on the position. If a step moves
to the left-hand part of the plane, it is ignored:

positions <- complex(0) # Initialize the history of positions
currentPos <- 0.0+0.0i # Start at the origin
NUMBERSTEPS <- 50 # Number of steps to take
angleFacing <- 0.0 # direction it is facing
stdDev <- 1.0 # std dev. of the change in the angle

step <- as.integer(0)
repeat
 {
 ## Add new people to the line and update the length
 newAngle <- angle + rnorm(1,0.0,stdDev)
 proposedStep <- currentPos + exp(newAngle*1.0i)
 if(Re(proposedStep) < 0.0)
 next # Ignore this step. It moves to neg. real parts

 ## update the position
 angle <- newAngle
 currentPos <- proposedStep

Chapter 7

[85]

 positions <- c(positions,currentPos)

 ## Update the current time step
 step <- step + as.integer(1)

 ## Check to see if it is time to stop
 if(step>MAXNUMBER)
 break
 }
plot(Re(positions),Im(positions),type="l")

Functions
Another common programming task is to define a function or subroutine that can be
executed with a single call. Defining and using functions can be complicated because
of the technical details associated with working with variables that exist in different
contexts but may have the same name. Another problem that arises is that everything
in R is an object. Up to this point, we have quietly ignored this issue, but it is a
technical issue that we must now consider. In this section, we will first demonstrate
how to define a function. We will then discuss the details about how arguments are
passed to a function. Finally, we discuss the technical details of how R determines
what a variable name means.

Before we get into those details, we will provide a note about how R keeps track of
functions. When we define a variable, R treats that variable as an object that can be
accessed using the name we assign to the variable. Likewise, when you define a new
function, it is assigned a variable name, and the variable is an object.

Defining a function
As previously mentioned, when a function is defined, it is assigned to an object and
treated like any other variable. The format for a function definition is as follows:

function (arg1, arg2, …)
 code block

Basic Programming

[86]

This will create an object, and you must assign a variable name to the object. If you
print out the value of the variable, it will print out the definition of the function. In
the following example, suppose we need a function used to simulate a random walk
in the complex plane. The function takes the current position and adds a unit step in
a random direction:

> updatePosition <- function(currentPos)
+ {
+ newDirection <- exp(1i*runif(1,0.0,2.0*pi))
+ currentPos + newDirection
+ }
>
> updatePosition(0.0)
[1] 0.9919473-0.1266517i
> updatePosition
function(currentPos)
{
 newDirection <- exp(1i*runif(1,0.0,2.0*pi))
 currentPos + newDirection
}

One oddity associated with functions is that the value it returns is the last expression
evaluated within the code block.

There are times when you want a function to perform operations that impact more
than one variable. In such cases, you may need to return a combination of results.
For difficult results that cannot be expressed as a vector, you can return the result as
a list. In the following example, we extend the previous example and wish to return
the new position as well as the updated direction of movement:

> updatePosition <- function(currentPos,angle,stdDev)
+ {
+ angle <- angle + rnorm(1,0,stdDev)
+ list(newPos=currentPos + exp(angle*1.0i),
+ newAngle=angle)
+ }
>
> pos <- updatePosition(2.0,0.0,1.0)
> pos
$newPos
[1] 2.986467+0.163962i

$newAngle
[1] 0.164706

Chapter 7

[87]

> pos$newPos
[1] 2.986467+0.163962i

It is possible to explicitly specify the value returned by a function using the return
command. The return command takes at most one argument. The command
will exit the function and return the value given in the argument if it exists. In the
following example, we build on our example of a random walk in the complex plane.
Here, we assume that the left-hand side of the plane is not reachable, and if the real
part of a step is negative, then the step moves in the opposite direction:

> updatePosition <- function(currentPos,angle,stdDev)
+ {
+ angle <- angle + rnorm(1,0.0,stdDev)
+ newStep <- exp(angle*1.0i)
+ if(Re(currentPos + newStep)<0.0)
+ {
+ # This would be a move in the left hand part of the
 # plane.
+ # Move in the opposite direction.
+ return(list(newPos=currentPos - newStep,
+ newAngle=angle+pi))
+ }
+ # All is good. Accept this move.
+ return(list(newPos=currentPos + newStep,
+ angle=angle))
+ }
>
> pos <- updatePosition(-0.1+2i,0.0,1.0)
> pos$newPos
[1] 0.459425+2.828881i

Arguments to functions
We have discussed how to define a new function and briefly discussed how to pass
arguments to a function. We now focus on some details about passing arguments to a
function. First, we note that the arguments that are passed to a function are passed as
values and not references. Any changes you make to an argument do not impact the
variable outside the function. In the following example, we go back to our function to
update the position for a random walk in the complex plane. We pass the angle to the
function that is changed within the function but not outside of the function:

> updatePosition <- function(currentPos,angle,stdDev)
+ {
+ angle <- angle + rnorm(1,0.0,stdDev)

Basic Programming

[88]

+ currentPos + exp(1i*angle)
+ }
>
> angle <- 0.0
> updatePosition(1+2i,angle,1.0)
[1] 0.250178+2.661639i
> angle
[1] 0

Another important point is that you can provide default values for some
arguments. If a default value is given for a variable, then it is not required
while calling the function:

> updatePosition <- function(currentPos,angle=0.0)
+ {
+ print(noquote(paste("Angle is ",angle)))
+ angle <- angle + runif(1,0.0,2.0*pi)
+ currentPos + exp(1i*angle)
+ }
>
> updatePosition(1+2i)
[1] Angle is 0
[1] 0.091507+2.417901i
> updatePosition(1+2i,pi)
[1] Angle is 3.14159265358979
[1] 0.029198+2.239884i

There are circumstances in which you might wish to check whether a particular
argument has been specified when the function is called. This can be done using the
missing command. In the next example, we test whether or not the angle is provided:

> updatePosition <- function(currentPos,angle=0.0)
+ {
+ if(missing(angle))
+ {
+ warning("Using the default drift: ",angle)
+ }
+ angle <- angle + runif(1,0.0,2.0*pi)
+ currentPos + exp(1i*angle)
+ }
>
> updatePosition(1+2i)
[1] 0.552725+1.105604i

Chapter 7

[89]

Warning message:
In updatePosition(1 + (0+2i)) : Using the default drift: 0
> updatePosition(1+2i,pi)
[1] 0.054151+1.675394i

Note that the warning command was used to print out a message. When executing a
function, it may be beneficial to print a warning or to stop the execution of the function
due to an error condition. The stop and warning commands can be used for these
situations. The warning command prints out a warning and continues execution as
normal. The stop command will print out a message and exit the function:

> updatePosition <- function(currentPos,angle=0.0)
+ {
+ if(abs(angle) > 2.0*pi)
+ {
+ stop("I arbitrarily do not like angles that big")
+ }
+ angle <- angle + runif(1,0.0,2.0*pi)
+ currentPos + exp(1i*angle)
+ }
>
> pos1 <- updatePosition(1+2i)
> pos2 <- updatePosition(1+2i,3.0*pi)
Error in updatePosition(1 + (0+2i), 3 * pi) :
 I arbitrarily do not like angles that big
> pos2
Error: object 'pos2' not found

Note that in the last line, the stop command was called and the function did
not return a value. The result is that the variable pos2 does not exist. Be careful
though, as if the variable pos2 had been previously defined, it would retain its
previous value.

In the preceding examples, there is an assumption about the order of the arguments
when calling a function. In the previous examples, the arguments are matched
according to the order they appear in the function call. You can circumvent this
convention by specifying the name when you call the function. The caveat is that
R does not require that the name should match exactly, and it will try to match the
names using the first characters in the name. If the match is ambiguous, you will get
an error message:

> matching <- function(argOne,argTwo)
+ {
+ return(paste("I got this: ",argOne,' ',argTwo))
+ }

www.allitebooks.com

http://www.allitebooks.org

Basic Programming

[90]

> matching(argTwo="second",argOne="First")
[1] "I got this: First second"
> matching(argT="2nd",argO="1st")
[1] "I got this: 1st 2nd"
> matching(argT="two",arg="one")
Error in matching(argT = "two", arg = "one") :
 argument 2 matches multiple formal arguments

The last issue to discuss is how to limit the potential values that an argument may
have. The default values for an argument can be given as a vector of values. If no
argument is given, it defaults to the first entry in the vector. If you wish to limit the
values to be one of the values in the vector, you can use the match.arg function to
test the value:

> updatePosition <- function(currentPos,angle=0.0,
+ dist=c("uniform","normal"))
+ {
+ dist <- match.arg(dist)
+ print(dist)
+ # Update position code would go below
+ }
>
> updatePosition(0.0,0.0)
[1] "uniform"
> updatePosition(0.0,0.0,"uniform")
[1] "uniform"
> updatePosition(0.0,0.0,"neither")
Error in match.arg(dist) : 'arg' should be one of "uniform", "normal"

Scope
An important question when dealing with a function is how to decide what a
symbol means. This idea is referred to as scope, and the language used to describe
the ideas associated with scope can be confusing. Unfortunately, it is something
that needs to be considered, and we try to discuss some of the ideas here. It is also
important to note that the details discussed here represent an area in which R is
not consistent with the S_PLUS language, so be careful about generalizing these
ideas. For further information, you can enter the demo(scoping) command in the R
environment and a brief demonstration of the notion of scope is given. If you enter
the help(environment) command, you can also find more details.

Chapter 7

[91]

The basic idea is that R maintains a hierarchy of environments. Each environment
has a list of symbols that are associated with that environment. You can create a new
environment that is embedded within another environment. The new.env command
is used to create an environment. This environment holds its own variables, and
variables can be created using the assign command. The values can be obtained
using the get command:

> envOne <- new.env()
> typeof(envOne)
[1] "environment"
> ls()
[1] "envOne"
> ls(envOne)
character(0)
>
>
> assign("bubba",12,envir=envOne)
> ls()
[1] "envOne"
> ls(envOne)
[1] "bubba"
> envOne$bubba
[1] 12
> get("bubba",envOne)
[1] 12
> bubba
Error: object 'bubba' not found

Note that in the preceding example, we used the optional environment argument
to the ls command, which specifies which environment to use. The environment
is used to guide R in how to interpret the meaning of a symbol. The R environment
maintains a path that it uses to search in a particular order to find a symbol. One
way to manipulate the path is to use the attach and detach commands. The attach
and detach commands have numerous options, but we focus on how to use it with
environments. We also provide a warning that using these commands can lead to
confusion about the meaning of a symbol, and you should exercise caution when
using these commands:

> ls()
character(0)
> one <- 2
> ls()
[1] "one"
> envTwo <- new.env()

Basic Programming

[92]

> assign("two",3,envir=envTwo)
> two
Error: object 'two' not found
> attach(envTwo)
> ls()
[1] "envTwo" "one"
> two
[1] 3
> detach(envTwo)
> two
Error: object 'two' not found

The reason we explore this topic here is that when you define a function, a new
environment is created that exists within the function. When you use a symbol
within a function, it can be ambiguous as to what it means. If that symbol has been
previously defined within the function, then it is treated as a local variable. If that
symbol exists in the parent environment, then it is possible to get access to it or
change its value. In Chapter 1, Data Types, it was briefly noted that the <- operator is
used to assign a variable in the local context. The <<- operator is used to tell R to first
search the parent environment:

> one <- 2
> changeOne <- function(a)
+ {
+ one <- a
+ return(one)
+ }
> changeOne(3)
[1] 3
> one
[1] 2
> realyChangeOne <- function(a)
+ {
+ one <<- a
+ return(one)
+ }
> realyChangeOne(3)
[1] 3
> one
[1] 3

Chapter 7

[93]

Again, <<- tells R to use the parent of the current environment. That means that
if you create a function within a function, the use of the <<- operator within the
innermost function will look for a variable in the original (outermost) function.
This idea is examined in the following example:

> market <- function(rutabagas)
+ {
+ money <- 0
+ return(list(
+ numberRutabagas = function()
+ {
+ return(rutabagas)
+ },
+ revenue = function()
+ {
+ return(money)
+ },
+ harvestRutabagas = function(amount)
+ {
+ rutabagas <<- rutabagas + amount
+ },
+ sellRutabagas = function(amount)
+ {
+ if(rutabagas >= amount)
+ {
+ rutabagas <<- rutabagas - amount
+ money <<- money + amount*0.5
+ }
+ else
+ {
+ warning("We do not have that many rutabagas")
+ }
+ return(rutabagas)
+ }))
+ }
> farmerJoe <- market(20)
> farmerJoe$numberRutabagas()
[1] 20
> farmerJoe$sellRutabagas(6)
[1] 14
> farmerJoe$numberRutabagas()
[1] 14

Basic Programming

[94]

Warning message:
In farmerJoe$sellRutabagas(15) : We do not have that many rutabagas
> farmerJoe$harvestRutabagas(10)
> farmerJoe$numberRutabagas()
[1] 24

Note that the preceding example gives us our first taste of object-oriented
programming. We will explore this in more detail in Chapter 8, S3 Classes,
 and will build on the idea.

Executing scripts
The final topic is how to execute a set of commands that have been saved in a file
using the command line in an interactive R session. All of our examples have been
contrived, and the reason for this is to try to focus on a specific idea. The real power
of R though is the ability to put together a set of commands and have them executed
in order. This can be accomplished using the source command.

We need to have a file to execute. We assume that you have the file given here.
You can create this file using any editor capable of saving simple text files, and we
assume that the name of the file is simpleExecute.R:

File simpleExecute.R
This is a simple example used to demonstrate the source command.
This script will prompt the person running it to enter a number,
and it will find the square root of the number.
It tests the original
number to make sure it is positive and prints out an appropriate
warning message if it is negative.

x <- as.double(readline("What is the value of x? ")) # Read in a
number
cat("I got the number ",format(x,digits=6),".\n")
if(x < 0)
 {
 # The number is negative. What are they thinking?
 print("Why would you give me a negative number?")
 x <- abs(x)
 }

Find the square root and assign it the variable "y."
y <- sqrt(x)

Chapter 7

[95]

You can execute the file using the source command. One important thing is that the
R environment must find it on your local machine. You can either specify the search
path or you can specify the current working directory. The easiest way to do this
depends on how you are running R, the interface you are using, and your operating
system. We assume that you can specify the current working directory (folder),
and the file given earlier is in that directory. Once you specify the current working
directory, you can execute the commands using the source command, as follows:

> source('simpleExecute.R')
What is the value of x? 2.3
I got the number 2.3 .
> source('simpleExecute.R')
What is the value of x? -2.3
I got the number -2.3 .
[1] "Why would you give me a negative number, jerk?"
> source('simpleExecute.R',echo=TRUE)

> x <- as.double(readline("What is the value of x? "))
What is the value of x? -2.3

> cat("I got the number ",format(x,digits=6),".\n")
I got the number -2.3 .

> if(x < 0)
+ {
+ print("Why would you give me a negative number, jerk?")
+ x <- abs(x)
+ }
[1] "Why would you give me a negative number, jerk?"

> y <- sqrt(x)

The command has a number of options. One option not explored here is the verbose
option. This is a helpful option for debugging, and you should try to add the
verbose=TRUE option. An example is omitted because referring to it as verbose is
an understatement.

Basic Programming

[96]

Summary
This chapter introduced basic ideas to specify optional execution of certain
commands and the three basic loop constructs. We had to take a side trip to discuss
the idea of scope and explore how R finds and interprets the meaning of a variable
name. You can combine these ideas to create and implement algorithms and execute
commands in a file.

This chapter also includes our first taste of object-oriented programming in the
sense of an S3 class. We build on this idea in the next chapter where the S3 class is
formally defined. In doing so, we explore how existing functions can be extended to
accommodate arguments that include a class that we have constructed.

S3 Classes
This is the second chapter in our introduction to programming. In the preceding
chapter, we explored the basic control structures that help us to define the code that
is executed, and we had our first taste of objects. We will now build on the idea of
object-oriented programming, concentrating on S3 classes. There are two approaches,
S3 and S4 classes. It is common for some people to use only one exclusively.

This chapter is divided into three parts:

• Defining classes and methods: This section will give a general idea of how
methods are defined whose function depends on the class name of the
primary argument

• Objects and inheritance: In this section, we will discuss the way in which
objects of a given class can be defined; we will also introduce the idea of
inheritance in the context of S3 classes

• Encapsulation: In this section, we will discuss the importance of
encapsulation with respect to a class and how it is handled within the
context of an R class

At first glance, S3 objects do not appear to behave like objects as defined in other
languages. The definition is an odd implementation compared to Java or C++. On the
plus side, S3 objects are relatively simple and can offer a powerful way to deal with a
wide variety of circumstances.

S3 Classes

[98]

We have seen a variety of data structures as well as functions, and in this chapter,
we will see how the class attribute can be used to dictate how a function responds
when a list is passed to a function. The idea is that the class attribute for an object
is a vector of names, and the vector represents an ordered set of names to search
when deciding what action a function should take. We will build on and extend
one example throughout this chapter. The idea is that we wish to create a set of
classes that can be used to simulate a random variable, which follows a geometric
distribution. There will be two classes. The first class is for a fair coin, in which we
flip the coin until heads is tossed. The second class is for a fair, six-sided die, in which
we roll until a 1 is rolled.

Defining classes and methods
The class command is similar to other attribute commands, and it can be used to
either set or get information about an object's class. An object's class is a vector, and
each item in the vector is the name of a class. The first element in the class vector is
the object's base class, and it inherits from the other classes as you read from left
to right.

We first focus on the situation where an object has a single class and will examine
inheritance in the section that follows. The example examined throughout this chapter
is used to simulate one experiment that follows a geometric distribution. The idea
is that you repeat some experiment and stop when the first success occurs. First, we
examine two classes, and we construct a function that will take an action depending on
the class name. The first class is used to represent a fair, six-sided die. The die will be
rolled, giving an integer between 1 and 6 inclusive, and the experiment stops when a
1 is returned. The second class represents a fair coin. The coin will be flipped returning
either an H or a T, and the experiment stops when H is returned.

The two class definitions are illustrated in the following figure. Each class keeps
track of the trials, and the results are kept in a vector. The two methods include a
method to reset the history, but more will be added when we examine inheritance.
In this example, we are not creating methods in the traditional sense but are creating
functions that take appropriate action based on the class name of the argument
passed to them. Have a look at the following diagram:

+Roll History: Character Vector

+reset (): NULL

<<Roll Die>>
Die

<<Flip Coin>>

Coin

+Flip History: Character Vector

+reset (): NULL

The methods associated with the die and coin classes

Chapter 8

[99]

First, we define the two classes. Each class is composed of a list, and the class names
are set to Die and Coin respectively. (The names are strings that we make up.) Each
class consists of a list with a single numeric vector that initially has a length of zero.
In each of the following cases, the list is created manually, and a class name is defined.
We could have used a vector, but we used a list so that the examples are consistent
with the way we extend the classes later:

> oneDie <- list(trials=character(0))
> class(oneDie) <- "Die"

> oneCoin <- list(trials=character(0))
> class(oneCoin) <- "Coin"

First, we define two sets of functions. The first set of functions resets the history, and
the second set performs a single Bernoulli trial. We first focus on a routine to reset
and initialize the history, and define a function called reset. The reset function
makes use of three different functions. The first uses the UseMethod command,
which will tell R to search for the appropriate function to call. The decision is based
on the class name of the object passed to it as the first argument. The UseMethod
command looks for other functions whose names have the form resetTrial.class_
name, where the class_name suffix must exactly match the name of the class. The
exception is the default suffix that is executed if no other function is found:

reset <- function(theObject)
 {
 UseMethod("reset",theObject)
 print("Reset the Trials")
 }

reset.default <- function(theObject)
 {
 print("Uh oh, not sure what to do here!\n")
 return(theObject)
 }

reset.Die <- function(theObject)
 {
 theObject$trials <- character(0)
 print("Reset the die\n")
 return(theObject)
 }

reset.Coin <- function(theObject)

S3 Classes

[100]

 {
 theObject$trials <- character(0)
 print("Reset the coin\n")
 return(theObject)
 }

Note that the functions return the object passed to them. Recall that R passes
arguments as values. Any changes you make to the variable are local to the function,
so the new value must be returned. We can now call the resetTrial function, and it
will decide which function to call, given the argument passed to it. Have a look at the
following code:

> oneDie$trials = c("3","4","1")
> oneDie$trials
[1] "3" "4" "1"

> oneDie <- reset(oneDie)
 Reset the die

> oneDie
$trials
character(0)

attr(,"class")
[1] "Die"

> oneCoin$trials = c("H","H","T")
> oneCoin <- reset(oneCoin)
Reset the coin

> oneDie$trials
character(0)
> # Look at an example that will fail and use the default function.
> v <- c(1,2,3)
> v <- reset(v)
[1] "Uh oh, not sure what to do here!\n"
> v
[1] 1 2 3

Note that the print command after the UseMethod command in the function
resetTrial is not executed. When the return function is called, any commands
that follow the UseMethod command are not executed.

Chapter 8

[101]

Defining objects and inheritance
The examples given in the previous section should invoke a twinge of shame for
those familiar with object-oriented principles, and you should be assured that I
felt appropriately embarrassed to share them. It was done, though, to keep the
introduction to S3 classes as simple as possible. One issue is that the two classes are
closely related, and the functions include a great deal of repeated code. We will now
examine how inheritance can be used to avoid this problem.

In this section, we define a base class, GeometricTrial, and then redefine the
routines so that the Die and Coin classes can be derived from the base class. In doing
so, we can demonstrate how inheritance is implemented in the context of an S3 class.
Additionally, we respect the idea of encapsulation, which is the principle that an
object of a given class should update its own elements using methods from within
the class. We explore this issue in greater detail in the section that follows.

We will now rethink the whole class structure. The die and the coin are closely
related, and the only difference is the result returned from a single trial. We
reimagine the classes to take advantage of the commonalities between the coin
and the die. The new class structure is shown in the following diagram:

<<Flip Coin>>
Coin

+singleTrial(): list

<<Roll Die>>
Die

+singleTrial(): list

<<Base Class>>
GeometricTrial

+reset(): NULL
+getHistory(): factor
+singleTrial(): list
+simulation(): Factor

+History: Character

S3 Classes

[102]

In addition to the change in the classes, we also change the way in which the classes
are defined. In this case, we define functions that will act as constructors for each class.
Each constructor will use the class command to append the name of the class to the
object's class attribute. As previously mentioned, the class attribute for an object is a
vector. When you call the UseMethod command, R will search for a function whose
class matches the first element in the vector. If it does not find that function, it looks
for a function that matches the second element, and it proceeds until it reaches the last
element in the vector. If it does not find anything, it calls the default function. With
this in mind, we now examine new definitions of the classes. Rather than manually
creating the class, we define functions that will create a list representing the class,
append a class name to the class attribute, and then return the list. There are three
classes, and we will define one function for each class. The first function is used to
define a constructor for an object of the GeometricTrial class:

GeometricTrial <- function()
 {
 # Create the basic data structure - a list that keeps track of
 # a set of trials.

 # Create the basic methods as part of a list to be returned.
 me = list(
 # Define the history to keep track of the trials.
 history = character(0)
)

 # Define my class identifier and return the list.
 class(me) <- append(class(me),"GeometricTrial")
 return(me)
 }

Prior to returning the list, the append function is used to add the new class name
to the end of the current class attribute. This idea is used in classes that are derived
from the GeometricTrial classes as well. The constructor for the Die and Coin
classes can now be defined, and both constructors explicitly call the constructor
for the parent class, perform any actions associated with the current class, and
then append the current class name to the class attribute:

Die <- function()
{
 # Define the object by first calling the constructor for the base
class
 me <- GeometricTrial()

Chapter 8

[103]

 # Add the class name to the end of the list of class names
 class(me) <- append(class(me),"Die")
 return(me)
}

Coin <- function()
{
 # Define the object by calling the constructor for the base class
 me <- GeometricTrial()

 # Add the class name to the end of the list of class names
 class(me) <- append(class(me),"Coin")
 return(me)
}

The GeometricTrial class includes four methods. The reset method behaves
exactly like the reset method discussed in the previous section. The getHistory
method is an accessor for a data element and is discussed in the following section.
We will now discuss the simulation method, and a discussion on the singleTrial
method will follow.

The simulation method is used to simulate a single experiment. The history is
first cleared, and the singleTrial method is repeatedly called until a successful
result is returned. We first define the base simulation function, the default
simulation function, and then the simulation function used by the GeometricTrial
class, as follows:

simulation <- function(theObject)
 {
 UseMethod("simulation",theObject)
 }

simulation.default <- function(theObject)
 {
 warning("Default simulation method called on unrecognized
object.")
 return(theObject)
 }

Define a method to run a simulation of a geometric trial.
simulation.GeometricTrial = function(theObject)
 {
 theObject <- reset(theObject) # Reset the history

S3 Classes

[104]

 # before the trial.
 repeat
 {
 ## perform a single trial and add it to the history
 thisTrial <- singleTrial(theObject)
 theObject <- appendEvent(theObject,thisTrial$result)
 if(thisTrial$success)
 {
 break # The trial resulted in a success. Time
 # to stop!
 }
 } # The trial was not a success. Keep going.

 return(theObject)

 }

The effort to define a default function may not appear to be a worthwhile endeavor.
However, this practice is generally employed to ensure that the system can
responsibly react if the methods you define are called by mistake.

The final step is to define the singleTrial methods. This method is executed by the
child classes, Die and Coin. Again, the base and default methods are created. In this
case, though, there are also methods for each of the three classes. The base function
calls the UseMethod function, which scrolls through the class attribute for the first
function to call. We use a method for the GeometricTrial class to demonstrate
the order of the calls as well as the NextMethod function. The NextMethod function
continues the search in the class attribute and will call the next function based on the
class names that follow the current class:

singleTrial.default = function(theObject)
 {
 ## Just generate a default success
 warning("Unrecognized object found for the singleTrial
method")
 return(list(result="1",success=TRUE))
 }

singleTrial.GeometricTrial = function(theObject)
 {
 NextMethod("singleTrial",theObject)
 }

singleTrial.Coin = function(theObject)

Chapter 8

[105]

 {
 ## Perform a single coin flip
 value <- as.character(
 cut(as.integer(1+trunc(runif(1,0,2))),c(0,1,2),labels=c("
H","T")))
 return(list(result=value,success=(value=="H")))
 }

singleTrial.Die = function(theObject)
 {
 ## Perform a single die roll
 value <- as.integer(1+trunc(runif(1,0,6)))
 return(list(result=value,success=(value==1)))
 }

With these methods defined and the getHistory method defined in the following
section, the class will be complete. Objects of the Coin and Die class can be created,
and simulations can be executed, as follows:

> coin <- Coin()
> coin <- simulation(coin)
> getHistory(coin)
[1] H
Levels: H
> coin <- simulation(coin)
> getHistory(coin)
[1] T T H
Levels: H T
>
> die <- Die()
> die <- simulation(die)
> getHistory(die)
[1] 1
Levels: 1
> die <- simulation(die)
> getHistory(die)
[1] 6 5 5 6 2 1
Levels: 1 2 5 6

S3 Classes

[106]

Encapsulation
The final method for the getHistory class will now be defined. It is defined in a
separate section to stress an important point. An S3 object is generally a basic data
structure, such as a vector or a list that has an additional class attribute defined. The
functions that are defined for the class react to the class attribute in a predictable way.

One side effect is that every element of an object from a given class is public data.
The elements contained within an object can always be accessed. The result is that
when programming in R, we must take extra steps to maintain discipline with
respect to accessing the data elements maintained by an object. Code that directly
accesses data elements within an object may work when first written, but any change
to the class constructor risks breaking code in the other methods defined for a class.

With respect to our previous example, we have an accessor, the getHistory method.
If we have an object, called oneDie, from the Die class, we can easily get the history
using oneDie$history. If we later decide to change the data structure used to store
the history, then any code directly accessing this variable is likely to fail.

Instead, we write an accessor method, getHistory, which is designed to return
a vector that has the history in the form of a vector of factors. It is important to
maintain discipline and only use this method to get a copy of the history. Have a
look at the following code:

getHistory <- function(theObject)
 {
 UseMethod("getHistory",theObject)
 }

getHistory.default <- function(theObject)
 {
 return(factor()) # Just return an empty vector of factors
 }

getHistory.GeometricTrial <- function(theObject)
 {
 return(as.factor(theObject$history))
 }

Chapter 8

[107]

A final note
There is one final note to share about S3 classes. If you have used R, you most likely
have used them. Many functions are defined to react according to the class name of
their first argument. Have a look at the following diagram:

<<Flip Coin>>
Coin

+SingleTrial(): list

<<Roll Die>>
Die

+SingleTrial(): list

<<Base Class>>
GeometricTrial

+Reset(): NULL
+getHistory(): factor
+SingleTrial(): list
+Simulation(): Factor

+History: Character

A common example of this is the plot command. If you type the plot command
without arguments, you can see its definition, as follows:

> plot
function (x, y, ...)
UseMethod("plot")
<bytecode: 0x32fdd50>
<environment: namespace:graphics>
>

The plot command will react differently depending on what kind of object you
passed to it. If you wish to see what classes the plot command can handle, you can
use the methods command to list them:

> methods(plot)
 [1] plot.HoltWinters* plot.TukeyHSD* plot.acf*
 [4] plot.data.frame* plot.decomposed.ts* plot.default
 [7] plot.dendrogram* plot.density* plot.ecdf
[10] plot.factor* plot.formula* plot.function
[13] plot.hclust* plot.histogram* plot.isoreg*
[16] plot.lm* plot.medpolish* plot.mlm*
[19] plot.ppr* plot.prcomp* plot.princomp*
[22] plot.profile.nls* plot.spec* plot.stepfun

S3 Classes

[108]

[25] plot.stl* plot.table* plot.ts
[28] plot.tskernel*

 Non-visible functions are asterisked
>

One of the greatest advantages of the S3 class definition is that it is simple to build
on what is already available. In the example from the previous section, I would like
to have the plot command react appropriately according to whether or not I pass it
a class of the type Die or Coin. Assuming that I have the previous classes, Die and
Coin, defined, I merely have to define two new plot functions, as follows:

> plot.Die <- function(theDie,theTitle)
+ {
+ plot(theDie$getHistory(),
+ xlab="Value After A Die Roll",ylab="Frequency",
+ main=theTitle)
+ }
>
> plot.Coin <- function(theCoin,theTitle)
+ {
+ plot(theCoin$getHistory(),
+ xlab="Value After Coin Flip",ylab="Frequency",
+ main=theTitle)
+ }
> plot(aCoin,"This Here Trial")
> plot(aDie,"A More Better Trial")

It is common to use this idea to extend a number of commands. Some common
examples include the print and the format functions.

Summary
We have explored how to create S3 classes, and we did so in the context of two
examples. The first example focused on how to define functions that will react based
on the class name of the first argument given to the function. The first example did not
make full use of basic object-oriented principles, as it is an attempt to simply introduce
the idea of S3 classes. The second example extended the first example to provide a
simple example of how inheritance is implemented. It demonstrated how inheritance
is implemented in the context of an S3 class. It also provided a demonstration of how
encapsulation is implemented under the framework of an S3 class.

Chapter 8

[109]

One downside to the approach is that there is little type checking. It is possible to
make changes to an object that can make it inconsistent with the original definition.
When a change is made to an object, no checks are implemented to ensure that an
object has the properties that are expected of it.

One way to avoid this issue is to make use of S4 classes. The approach associated
with S4 classes is examined in the next chapter. Another advantage is that the S4
approach will look more familiar to those already familiar with object-oriented
approaches to programming.

S4 Classes
This chapter is the third part in our introduction to programming. We examined
S3 classes in the previous chapter. We will now examine S4 classes. The approach
associated with S3 classes is more flexible, and the approach associated with S4
classes is a more formal and structured definition.

This chapter is roughly divided into four parts:

• Class definition: This section gives you an overview of how a class is defined
and how the data (slots) associated with the class are specified

• Class methods: This section gives you an overview of how methods that are
associated with a class are defined

• Inheritance: This section gives you an overview of how child classes that
build on the definition of a parent class can be defined

• Miscellaneous commands: This section explains four commands that can be
used to explore a given object or class

Introducing the Ant class
We defined the idea of control flow structures in Chapter 7, Basic Programming, and
introduced the idea of an S3 class in Chapter 8 ,S3 Classes. We will now introduce the
idea of S4 classes, which is a more formal way to implement classes in R. One of the
odd quirks of S4 classes is that you first define the class along with its data, and then
you define the methods separately.

As a result of this separation in the way a class is defined, we will first discuss the
general idea of how to define a class and its data. We will then discuss how to add a
method to an existing class. Next, we will discuss how inheritance is implemented.
Finally, we will provide a few notes about other options that do not fit nicely in the
categories mentioned earlier.

S4 Classes

[112]

In the previous chapter, we took an example and then modified it. The approach
associated with an S4 class is less flexible and requires a bit more forethought in
terms of how a class is defined. We will take a different approach in this chapter
and create a complete class from the beginning. In this case, we will build on an
idea proposed by Cole and Cheshire. The authors proposed a cellular automata
simulation to mimic how ants move within a colony.

As part of a simulation, we will assume that we need an Ant class. We will depart
from the paper and assume that the ants are not homogeneous. We will then assume
that there are male (drones) and female ants, and the females can be either workers
or soldiers. We will need an ant base class, which is discussed in the first two
sections of this chapter as a means to demonstrate how to create an S4 class. In the
third section, we will define a hierarchy of classes based on the original Ant class.
This hierarchy includes male and female classes. The worker class will then inherit
from the female class, and the soldier class will inherit from the worker class.

Defining an S4 class
We will define the base Ant class called Ant. The class is represented in the following
figure. The class is used to represent the fundamental aspects that we need to track
for an ant, and we focus on creating the class and data. The methods are constructed
in a separate step and are examined in the next section.

+ etLength(ength: numeric(1))S l
+GetLength(): numeric (1)
+ etPosition(currentPosition: numeric(3))S
+GetPosition()(): numeric(3)
+GetProbabi ities(): numeric(2)l
+ etProbabi ties(probabilities: numeric(2))S li
+ etActivityLeve (ants: Ant(N))S l
+ etActivityLeve (deactivate logical)S l :
+GetActivityLeve (): numeric(1)l
+Ca cSu Distances(ants : Ant (N)): nu eric(1)l m m
+DetermineActivityLeve (ants: Ant(N))l

<<Base C ass>>l
Ant

+Length: numeric(1) = 4mm
+Position: numeric(3) = (0,0,0)
+pA: numeric(1) = 0.05
+p : numeric(1) = 0.1I
+activityLeve : numeric(1) = 0.5l

Chapter 9

[113]

A class is created using the setClass command. When creating the class, we specify
the data in a character vector using the slots argument. The slots argument is
a vector of character objects and represents the names of the data elements. These
elements are often referred to as the slots within the class.

Some of the arguments that we will discuss here are optional, but it is a good practice
to use them. In particular, we will specify a set of default values (the prototype)
and a function to check whether the data is consistent (a validity function). Also,
it is a good practice to keep all of the steps necessary to create a class within the
same file. To that end, we assume that you will not be entering the commands from
the command line. They are all found within a single file, so the formatting of the
examples will reflect the lack of the R workspace markers.

The first step is to define the class using the setClass command. This command
defines a new class by name, and it also returns a generator that can be used to
construct an object for the new class. The first argument is the name of the class
followed by the data to be included in the class. We will also include the default
initial values and the definition of the function used to ensure that the data is
consistent. The validity function can be set separately using the setValidity
command. The data types for the slots are character values that match the names
of the R data types which will be returned by the class command:

Define the base Ant class.
Ant <- setClass(
 # Set the name of the class
 "Ant",

 # Name the data types (slots) that the class will track
 slots = c(
 Length="numeric", # the length (size) of this ant.

 Position="numeric", # the position of this ant.
 # (a 3 vector!)

 pA="numeric", # Probability that an ant will
 # transition from active to
 # inactive.

 pI="numeric", # Probability that an ant will
 # transition from inactive to
 # active.

 ActivityLevel="numeric" # The ant's current activity
 # level.

S4 Classes

[114]

),

 # Set the default values for the slots. (optional)
 prototype=list(
 Length=4.0,
 Position=c(0.0,0.0,0.0),
 pA=0.05,
 pI=0.1,
 ActivityLevel=0.5
),

 # Make a function that can test to see if the data is consistent.
 # (optional)
 validity=function(object)
 {
 # Check to see if the activity level and length is
 # non-negative.
 # See the discussion on the @ notation in the text below.
 if(object@ActivityLevel<0.0) {
 return("Error: The activity level is negative")
 } else if (object@Length<0.0) {
 return("Error: The length is negative")
 }
 return(TRUE)
 }
)

With this definition, there are two ways to create an Ant object: one is using the
new command and the other is using the Ant generator, which is created after the
successful execution of the setClass command. Note that in the following examples,
the default values can be overridden when a new object is created:

> ant1 <- new("Ant")
> ant1
An object of class "Ant"
Slot "Length":
[1] 4

Slot "Position":
[1] 0 0 0

Slot "pA":
[1] 0.05

Slot "pI":

Chapter 9

[115]

[1] 0.1

Slot "ActivityLevel":
[1] 0.5

We can specify the default values when creating a new object.

> ant2 <- new("Ant",Length=4.5)
> ant2
An object of class "Ant"
Slot "Length":
[1] 4.5

Slot "Position":
[1] 0 0 0

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

The object can also be created using the generator that is defined when creating the
class using the setClass command.

> ant3 <- Ant(Length=5.0,Position=c(3.0,2.0,1.0))
> ant3
An object of class "Ant"
Slot "Length":
[1] 5

Slot "Position":
[1] 3 2 1

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

S4 Classes

[116]

> class(ant3)
[1] "Ant"
attr(,"package")
[1] ".GlobalEnv"
> getClass(ant3)
An object of class "Ant"
Slot "Length":
[1] 5

Slot "Position":
[1] 3 2 1

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

When the object is created and a validity function is defined, the validity function
will determine whether the given initial values are consistent:

> ant4 <- Ant(Length=-1.0,Position=c(3.0,2.0,1.0))
Error in validObject(.Object) :
 invalid class "Ant" object: Error: The length is negative
> ant4
Error: object 'ant4' not found

In the last steps, the attempted creation of ant4, an error message is displayed.
The new variable, ant4, was not created. If you wish to test whether the object was
created, you must be careful to ensure that the variable name used does not exist
prior to the attempted creation of the new object. Also, the validity function is only
executed when a request to create a new object is made. If you change the values of
the data later, the validity function is not called.

Before we move on to discuss methods, we need to figure out how to get access to
the data within an object. The syntax is different from other data structures, and we
use @ to indicate that we want to access an element from within the object. This can
be used to get a copy of the value or to set the value of an element:

> adomAnt <- Ant(Length=5.0,Position=c(-1.0,2.0,1.0))
> adomAnt@Length
[1] 5

Chapter 9

[117]

> adomAnt@Position
[1] -1 2 1
> adomAnt@ActivityLevel = -5.0
> adomAnt@ActivityLevel
[1] -5

Note that in the preceding example, we set a value for the activity level that is not
allowed according to the validity function. Since it was set after the object was
created, no check is performed. The validity function is only executed during the
creation of the object or if the validObject function is called.

One final note: it is generally a bad form to work directly with an element within an
object, and a better practice is to create methods that obtain or change an individual
element within an object. It is a best practice to be careful about the encapsulation
of an object's slots. The R environment does not recognize the idea of private versus
public data, and the onus is on the programmer to maintain discipline with respect
to this important principle.

Defining methods for an S4 class
When a new class is defined, the data elements are defined, but the methods
associated with the class are defined on a separate stage. Methods are implemented
in a manner similar to the one used for S3 classes. A function is defined, and the way
the function reacts depends on its arguments. If a method is used to change one of
the data components of an object, then it must return a copy of the object, just as we
saw with S3 classes.

The creation of new methods is discussed in two steps. We will first discuss how
to define a method for a class where the method does not yet exist. Next, we will
discuss some predefined methods that are available and how to extend them to
accommodate a new class.

Defining new methods
The first step to create a new method is to reserve the name. Some functions are
included by default, such as the initialize, print or show commands, and we
will later see how to extend them. To reserve a new name, you must first use the
setGeneric command. At the very least, you need to give this command the name
of the function as a character string. As in the previous section, we will use more
options as an attempt to practice safe programming.

S4 Classes

[118]

The methods to be created are shown in preceding figure. There are a number of
methods, but we will only define four here. All of the methods are accessors; they
are used to either get or set values of the data components. We will only define the
methods associated with the length slot in this text, and you can see the rest of the
code in the examples available on the website. The other methods closely follow the
code used for the length slot. There are two methods to set the activity level, and
those codes are examined separately to provide an example of how a method can
be overloaded.

First, we will define the methods to get and set the length. We will first create
the method to get the length, as it is a little more straightforward. The first step is
to tell R that a new function will be defined, and the name is reserved using the
setGeneric command. The method that is called when an Ant object is passed to
the command is defined using the setMethod command:

setGeneric(name="GetLength",
 def=function(antie)
 {
 standardGeneric("GetLength")
 }
)

setMethod(f="GetLength",
 signature="Ant",
 definition=function(antie)
 {
 return(antie@Length)
 }
)

Now that the GetLength function is defined, it can be used to get the length
component for an Ant object:

> ant2 <- new("Ant",Length=4.5)
> GetLength(ant2)
[1] 4.5

The method to set the length is similar, but there is one difference. The method must
return a copy of the object passed to it, and it requires an additional argument:

setGeneric(name="SetLength",
 def=function(antie,newLength)
 {
 standardGeneric("SetLength")

Chapter 9

[119]

 }
)

setMethod(f="SetLength",
 signature="Ant",
 definition=function(antie,newLength)
 {
 if(newLength>0.0) {
 antie@Length = newLength
 } else {
 warning("Error - invalid length passed");
 }

 return(antie)
 }
)

When setting the length, the new object must be set using the object that is passed
back from the function:

> ant2 <- new("Ant",Length=4.5)
> ant2@Length
[1] 4.5
> ant2 <- SetLength(ant2,6.25)
> ant2@Length
[1] 6.25

Polymorphism
The definition of S4 classes allows methods to be overloaded. That is, multiple
functions that have the same name can be defined, and the function that is executed
is determined by the arguments' types. We will now examine this idea in the context
of defining the methods used to set the activity level in the Ant class.

Two or more functions can have the same name, but the types of the arguments
passed to them differ. There are two methods to set the activity level. One takes a
floating point number and sets the activity level based to the value passed to it. The
other takes a logical value and sets the activity level to zero if the argument is FALSE;
otherwise, it sets it to a default value.

S4 Classes

[120]

The idea is to use the signature option in the setMethod command. It is set to a
vector of class names, and the order of the class names is used to determine which
function should be called for a given set of arguments. An important thing to note,
though, is that the prototype defined in the setGeneric command defines the names
of the arguments, and the argument names in both methods must be exactly the
same and in the same order:

setGeneric(name="SetActivityLevel",
 def=function(antie,activity)
 {
 standardGeneric("SetActivityLevel")
 }
)

setMethod(f="SetActivityLevel",
 signature=c("Ant","logical"),
 definition=function(antie,activity)
 {
 if(activity) {
 antie@ActivityLevel = 0.1
 } else {
 antie@ActivityLevel = 0.0
 }
 return(antie)
 }
)

setMethod(f="SetActivityLevel",
 signature=c("Ant","numeric"),
 definition=function(antie,activity)
 {
 if(activity>=0.0) {
 antie@ActivityLevel = activity
 } else {
 warning("The activity level cannot be negative")
 }
 return(antie)
 }
)

Chapter 9

[121]

Once the two methods are defined, R will use the class names of the arguments to
determine which function to call in a given context:

> ant2 <- SetActivityLevel(ant2,0.1)
> ant2@ActivityLevel
[1] 0.1
> ant2 <- SetActivityLevel(ant2,FALSE)
> ant2@ActivityLevel
[1] 0

There are two additional data types recognized by the signature option: ANY and
missing. These can be used to match any data type or a missing value. Also note that
we have left out the use of ellipses (…) for the arguments in the preceding examples.
The … argument must be the last argument and is used to indicate that any remaining
parameters are passed as they appear in the original call to the function. Ellipses
can make the use of the overloaded functions in a more flexible way than indicated.
More information can be found using the help(dotsMethods) command.

Extending the existing methods
There are a number of generic functions defined in a basic R session, and we will
examine how to extend an existing function. For example, the show command is a
generic function whose behavior depends on the class name of the object passed to it.
Since the function name is already reserved, the setGeneric command is not used to
reserve the function name.

The show command is a standard example. The command takes an object and
converts it to a character value to be displayed. The command defines how other
commands print out and express an object. In the preceding example, a new class
called coordinate is defined; this keeps track of two values, x and y, for
a coordinate, and we will add one method to set the values of the coordinate:

Define the base coordinates class.
Coordinate <- setClass(
 # Set the name of the class
 "Coordinate",

 # Name the data types (slots) that the class will track
 slots = c(
 x="numeric", # the x position
 y="numeric" # the y position
),

 # Set the default values for the slots. (optional)

S4 Classes

[122]

 prototype=list(
 x=0.0,
 y=0.0
),

 # Make a function that can test to see if the data is consistent.
 # (optional)
 # This is not called if you have an initialize function defined!
 validity=function(object)
 {
 # Check to see if the coordinate is outside of a circle of
 # radius 100
 print("Checking the validity of the point")
 if(object@x*object@x+object@y*object@y>100.0*100.0) {
 return(paste("Error: The point is too far ",
 "away from the origin."))
 }
 return(TRUE)
 }
)

Add a method to set the value of a coordinate
setGeneric(name="SetPoint",
 def=function(coord,x,y)
 {
 standardGeneric("SetPoint")
 }
)

setMethod(f="SetPoint",
 signature="Coordinate",
 def=function(coord,x,y)
 {
 print("Setting the point")
 coord@x = x
 coord@y = y
 return(coord)
 }
)

Chapter 9

[123]

We will now extend the show method so that it can properly react to a coordinate
object. As it is reserved, we do not have to use the setGeneric command but can
simply define it:

setMethod(f="show",
 signature="Coordinate",
 def=function(object)
 {
 cat("The coordinate is X: ",object@x," Y:
",object@y,"\n")
 }
)

As noted previously, the signature option must match the original definition of a
function that you wish to extend. You can use the getMethod('show') command
to examine the signature for the function. With the new method in place, the show
command is used to convert a coordinate object to a string when it is printed:

> point <- Coordinate(x=1,y=5)
[1] "Checking the validity of the point"
> print(point)
The coordinate is X: 1 Y: 5
> point
The coordinate is X: 1 Y: 5

Another import predefined method is the initialize command. If the initialize
command is created for a class, then it is called when a new object is created. That
is, you can define an initialize function to act as a constructor. If an initialize
function is defined for a class, the validator is not called. You have to manually call
the validator using the validObject command. Also note that the prototype for
the initialize command requires the name of the first argument to be an object,
and the default values are given for the remaining arguments in case a new object is
created without specifying any values for the slots:

setMethod(f="initialize",
 signature="Coordinate",
 def=function(.Object,x=0.0,y=0.0)
 {
 print("Checking the point")
 .Object = SetPoint(.Object,x,y)
 validObject(.Object) # you must explicitly call the
 # inspector
 return(.Object)
 }
)

S4 Classes

[124]

Now, when you create a new object, the new initialize function is called
immediately:

> point <- Coordinate(x=2,y=3)
[1] "Checking the point"
[1] "Setting the point"
[1] "Checking the validity of the point"
> point
The coordinate is X: 2 Y: 3

Using the initialize and validity functions together can result in surprising
code paths. This is especially true when inheriting from one class and calling the
initialize function of a parent class from the child class. It is important to test
codes to ensure that the code is executing in the order that you expect. Personally,
I try to use either validator or constructor, but not both.

Inheritance
The Ant class discussed in the first section of this chapter provided an example of
how to define a class and then define the methods associated with the class. We will
now extend the class by creating new classes that inherit from the base class. The
original Ant class is shown in the preceding figure, and now, we will propose four
classes that inherit from the base class. Two new classes that inherit from Ant are
the Male and Female classes. The Worker class inherits from the Female class, while
the Soldier class inherits from the Worker class. The relationships are shown in the
following figure. The code for all of the new classes is included in our example codes
available at our website, but we will only focus on two of the new classes in the text
to keep our discussion more focused.

Chapter 9

[125]

+ etLength(ength: numeric(1))S l
+GetLength(): numeric (1)
+ etPosition(currentPosition: numeric(3))S
+GetPosition()(): numeric(3)
+GetProbabi ities(): numeric(2)l
+ etProbabi ties(probabilities: numeric(2))S li
+ etActivityLeve (ants: Ant(N))S l
+ etActivityLeve (deactivate logical)S l :
+GetActivityLeve (): numeric(1)l
+Ca cSu Distances(ants : Ant (N)): nu eric(1)l m m
+DetermineActivityLeve (ants: Ant(N))l

<<Base C ass>>l
Ant

+Length: numeric(1) = 4mm
+Position: numeric(3) = (0,0,0)
+pA: numeric(1) = 0.05
+p : numeric(1) = 0.1I
+activityLeve : numeric(1) = 0.5l

+GetOff pring(): numeric(1)S
+ etOff pring(offspring: numeric(1))S S
+Ca cActivityLeve (neighbors: Ant): numericl l

Male
<< C ass>>Drone l

+Offspring: integer = 0
Female

<<Base Workers Class>>

+ : = 0food numeric

+GetFood(): numeric(1)
+SetFood(food:numeric(1))
+CalcSumDistances(neighbors:Ant): numeric

Soldier
<<Soldier Class>>

+attack: logical = FALSE

+GetAttack(): logical(1)
+SetAttack(attack:logical(1))
+CalcActivityLevel(neighbors:Ant): numeric

Worker
<< orker Class>>W

+GetForaging(): logical(1)
+SetForaging(foraging:logical(1))
+CalcActivityLevel(neighbors:Ant): numeric
+GetAlarm(): logical(1)
+SetAlarm(alarm:logical(1))
+CalcActivityLevel(ants:Ant(N)): numeric(1)

+foraging: logical = FALSE
+alarm: logical = FALSE

Relationships between the classes that inherit from the base Ant class

S4 Classes

[126]

When a new class is created, it can inherit from an existing class by setting the
contains parameter. This can be set to a vector of classes for multiple inheritance.
However, we will focus on single inheritance here to avoid discussing the
complications associated with determining how R finds a method when there are
collisions. Assuming that the Ant base class given in the first section has already been
defined in the current session, the child classes can be defined. The details for the
two classes, Female and Worker, are discussed here.

First, the FemaleAnt class is defined. It adds a new slot, Food, and inherits from the
Ant class. Before defining the FemaleAnt class, we add a caveat about the Ant class.
The base Ant class should have been a virtual class. We would not ordinarily create
an object of the Ant class. We did not make it a virtual class in order to simplify our
introduction. We are wiser now and wish to demonstrate how to define a virtual
class. The FemaleAnt class will be a virtual class to demonstrate the idea. We will
make it a virtual class by including the VIRTUAL character string in the contains
parameter, and it will not be possible to create an object of the FemaleAnt class:

Define the female ant class.
FemaleAnt <- setClass(
 # Set the name of the class
 "FemaleAnt",

 # Name the data types (slots) that the class will track
 slots = c(
 Food ="numeric" # The number of food units carried
),

 # Set the default values for the slots. (optional)
 prototype=list(
 Food=0
),

 # Make a function that can test to see if the data is consistent.
 # (optional)
 # This is not called if you have an initialize function defined!
 validity=function(object)
 {
 print("Validity: FemaleAnt")
 # Check to see if the number of offspring is non-negative.
 if(object@Food<0) {
 return("Error: The number of food units is negative")
 }
 return(TRUE)

Chapter 9

[127]

 },

 # This class inherits from the Ant class
 contains=c("Ant","VIRTUAL")
)

Now, we will define a WorkerAnt class that inherits from the FemaleAnt class:

Define the worker ant class.
WorkerAnt <- setClass(
 # Set the name of the class
 "WorkerAnt",

 # Name the data types (slots) that the class will track
 slots = c(
 Foraging ="logical", # Whether or not the ant is actively
 # looking for food

 Alarm = "logical" # Whether or not the ant is actively
 # announcing an alarm.

),

 # Set the default values for the slots. (optional)
 prototype=list(
 Foraging = FALSE,
 Alarm = FALSE
),

 # Make a function that can test to see if the data is consistent.
 # (optional)
 # This is not called if you have an initialize function defined!
 validity=function(object)
 {
 print("Validity: WorkerAnt")
 return(TRUE)
 },

 # This class inherits from the FemaleAnt class
 contains="FemaleAnt"
)

S4 Classes

[128]

When a new worker is created, it inherits from the FemaleAnt class:

> worker <- WorkerAnt(Position=c(-1,3,5),Length=2.5)
> worker
An object of class "WorkerAnt"
Slot "Foraging":
[1] FALSE

Slot "Alarm":
[1] FALSE

Slot "Food":
[1] 0

Slot "Length":
[1] 2.5

Slot "Position":
[1] -1 3 5

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

> worker <- SetLength(worker,3.5)
> GetLength(worker)
[1] 3.5

We have not defined the relevant methods in the preceding examples. The code
is available in our set of examples, and we will not discuss most of it to keep this
discussion more focused. We will examine the initialize method, though. The
reason to do so is to explore the callNextMethod command. The callNextMethod
command is used to request that R searches for and executes a method of the same
name that is a member of a parent class.

Chapter 9

[129]

We chose the initialize method because a common task is to build a chain of
constructors that initialize the data associated for the class associated with each
constructor. We have not yet created any of the initialize methods and start with
the base Ant class:

setMethod(f="initialize",
 signature="Ant",
 def=function(.Object,Length=4,Position=c(0.0,0.0,0.0))
 {
 print("Ant initialize")
 .Object = SetLength(.Object,Length)
 .Object = SetPosition(.Object,Position)
 #validObject(.Object) # you must explicitly call the
 # inspector
 return(.Object)
 }
)

The constructor takes three arguments: the object itself (.Object), the length, and
the position of the ant, and default values are given in case none are provided when
a new object is created. The validObject command is commented out. You should
try uncommenting the line and create new objects to see whether the validator can in
turn call the initialize method. Another important feature is that the initialize method
returns a copy of the object.

The initialize command is created for the FemaleAnt class, and the arguments to the
initialize command should be respected when the request to callNextMethod for the
next function is made:

setMethod(f="initialize",
 signature="FemaleAnt",
 def=function(.Object,Length=4,Position=c(0.0,0.0,0.0))
 {
 print("FemaleAnt initialize ")
 .Object <- callNextMethod(.Object,Length,Position)
 #validObject(.Object) # you must explicitly call the
inspector
 return(.Object)
 }
)

The callNextMethod command is used to call the initialize method associated with
the Ant class. The arguments are arranged to match the definition of the Ant class,
and it returns a new copy of the current object.

S4 Classes

[130]

Finally, the initialize function for the WorkerAnt class is created. It also makes use
of callNextMethod to ensure that the method of the same name associated with the
parent class is also called:

setMethod(f="initialize",
 signature="WorkerAnt",
 def=function(.Object,Length=4,Position=c(0.0,0.0,0.0))
 {
 print("WorkerAnt initialize")
 .Object <- callNextMethod(.Object,Length,Position)
 #validObject(.Object) # you must explicitly call the
 # inspector
 return(.Object)
 }
)

Now, when a new object of the WorkerAnt class is created, the initialize method
associated with the WorkerAnt class is called, and each associated method for each
parent class is called in turn:

> worker <- WorkerAnt(Position=c(-1,3,5),Length=2.5)
[1] "WorkerAnt initialize"
[1] "FemaleAnt initialize "
[1] "Ant initialize"

Miscellaneous notes
In the previous sections, we discussed how to create a new class as well as how
to define a hierarchy of classes. We will now discuss four commands that are
helpful when working with classes: the slotNames, getSlots, getClass, and slot
commands. Each command is briefly discussed in turn, and it is assumed that the
Ant, FemaleAnt, and WorkerAnt classes that are given in the previous section are
defined in the current workspace.

The first command, the slotnames command, is used to list the data components
of an object of some class. It returns the names of each component as a vector
of characters:

> worker <- WorkerAnt(Position=c(1,2,3),Length=5.6)
> slotNames(worker)
[1] "Foraging" "Alarm" "Food" "Length"
[5] "Position" "pA" "pI" "ActivityLevel"

Chapter 9

[131]

The getSlots command is similar to the slotNames command. The difference is
that the argument is a character variable which is the name of the class you want
to investigate:

> getSlots("WorkerAnt")
 Foraging Alarm Food Length Position
 "logical" "logical" "numeric" "numeric" "numeric"
 pA pI ActivityLevel
 "numeric" "numeric" "numeric"

The getClass command has two forms. If the argument is an object, the command
will print out the details for the object. If the argument is a character string, then it
will print out the details for the class whose name is the same as the argument:

> worker <- WorkerAnt(Position=c(1,2,3),Length=5.6)
> getClass(worker)
An object of class "WorkerAnt"
Slot "Foraging":
[1] FALSE

Slot "Alarm":
[1] FALSE

Slot "Food":
[1] 0

Slot "Length":
[1] 5.6

Slot "Position":
[1] 1 2 3

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

> getClass("WorkerAnt")
Class "WorkerAnt" [in ".GlobalEnv"]

S4 Classes

[132]

Slots:

Name: Foraging Alarm Food Length
Position
Class: logical logical numeric numeric
numeric

Name: pA pI ActivityLevel
Class: numeric numeric numeric

Extends:
Class "FemaleAnt", directly
Class "Ant", by class "FemaleAnt", distance 2

Known Subclasses: "SoldierAnt"

Finally, we will examine the slot command. The slot command is used to retrieve
the value of a slot for a given object based on the name of the slot:

> worker <- WorkerAnt(Position=c(1,2,3),Length=5.6)
> slot(worker,"Position")
[1] 1 2 3

Summary
We introduced the idea of an S4 class and provided several examples. The S4 class
is constructed in at least two stages. The first stage is to define the name of the class
and the associated data components. The methods associated with the class are then
defined in a separate step.

In addition to defining a class and its method, the idea of inheritance was explored.
A partial example was given in this chapter; it built on a base class defined in the first
section of the chapter. Additionally, the method to call-associated methods in parent
classes was also explored, and the example made use of the constructor (or initialize
method) to demonstrate how to build a chain of constructors.

Finally, four useful commands were explained. The four commands offered different
ways to get information about a class or about an object of a given class.

For more information, you can refer to Mobile Cellular Automata Models of Ant
Behavior: Movement Activity of Leptothorax allardycei, Blaine J. Cole and David Cheshire,
The American Naturalist.

Case Study – Course Grades
This chapter is our first case study. We bring together the ideas from the previous
chapters and provide an extended example. Some new ideas are introduced, and
they should make more sense in the context of a full example.

This chapter is roughly divided into four parts:

• The Course class: This section gives you an overview of the S4 class that will
contain a list of grades for a course. The grades are kept in a list with each
graded task as a separate object.

• The assignment classes: This section gives you an overview of the S4 classes
used to keep the grades for a specific graded task. This class has two derived
classes. One derived class is to keep track of grades that have a numeric
score, and the other is to keep track of grades that consist of letters.

• Extending existing functions: This section includes a brief discussion of how
existing functions can be extended to react in an appropriate way to an object
that is one of the assignment classes. We focus on the summary, plot, and
show commands.

• Extending operations: This section includes a discussion on how to extend
arithmetic and access functions by building on existing methods.

Overview
All the previous chapters focus on specific topics, and here we bring together a
number of different topics to examine an extended example. All of the classes
examined here are S4 classes. These classes are used to read in a CSV file that
contains the grades for students in a class. There is one class that defines how to read
a grade file and how to interpret a column. Another set of classes is defined and the
classes are used to track the information for a single assignment. An object of this
class will include all the scores for the assignments of all students.

Case Study – Course Grades

[134]

We first discuss the new Course class, which is used to keep track of all the
assignments. Next, we discuss the assignment classes that are used to keep track
of the grades for a single assignment. Once the classes are defined, the details on
extending the summary, plot, and show commands are given to demonstrate how
common commands can be extended to react when passed a newly defined object.
Finally, some basic arithmetic and accessor operators are redefined so that the R
system will react in an appropriate manner when using familiar operations, such
as addition or multiplication.

The Course class includes objects whose type is one of the assignment classes,
and it seems more natural to define the assignment classes first. The actions of the
assignment classes are more intricate and include more details, while the Course
class is relatively straightforward. To keep the introduction to the classes more
gentle, we'll first discuss the Course class.

The Course class
The Course class is used to keep track of all of the grades for a course. This class will
read in the information from a file, decide whether grades are numeric grades or letter
grades, and create an appropriate assignment object to hold the grades. The details for
the class are shown in the following figure. We'll first discuss the data and then the
methods associated with the class. We'll then give some details on how to define the
class. Most of the code associated with the accessors is omitted for the sake of brevity,
but the full code is available on the website associated with this book.

+GetFi eName(): character()l
+ etFi eName(course: Course,fi eName: Character): character()S l l
+GetGrades(): list
+ etGrades(course: Course,grades: ist)S l
+GetGradeTypes(): character()
+SetGradeTypes(course: Course,gradeTypes: character())
+ReadGrades()

Course
+GradesFi e: character()l
+GradeTypes: character()
+Grades: list

First, there are three data structures (slots) associated with the class. The first is the
name of the CSV file that contains all of the grades for the class. The second is a
vector of prefixes used to determine what kind of graded tasks are in the file. The last
is a list that contains all of the assignments.

Chapter 10

[135]

There are seven methods. All but one are used to set and get the values for the
three slots. The accessor routines to get and set the filename are given here, and the
others are not included in the text here. The last routine is used to read the grades,
and it is a complex method that reads the data from the file and then determines
whether the assignment has numerical or letter grades. It then defines an appropriate
assignment object.

The definition of the Course class
The Course class definition is given and then the accessors for the slots are stated.
It is an S4 class. In this case, we do not provide any checks to ensure that the
information in the slots is consistent to reduce the complexity of the example:

###
Create the Course class to keep track of all grades
Course <- setClass(
 # Set the name for the class
 "Course",

 # Define the slots
 slots = c(
 GradesFile = "character",
 GradeTypes = "character",
 Grades = "list"
),

 # Set the default values for the slots. (optional)
 prototype=list(
 GradesFile = "",
 GradeTypes = c("test","hw","quiz","project"),
 Grades = list()
),

 # Make a function that can test to see if the data is consistent.
 # This is not called if you have an initialize function defined!
 validity=function(object)
 {
 return(TRUE)
 }
)

Case Study – Course Grades

[136]

Each of the slots includes a set of accessor functions to assist in retrieving or setting
information tracked by the class. We only provide the details for one set of accessors.
The methods to set and get the filename are given. Neither of these methods exist in
the default R environment so they must be created first, as follows:

Define the methods used to retrieve or set the values within a
Course object.
setGeneric(name="GetFileName",
 def=function(course)
 {
 standardGeneric("GetFileName")
 }
)

setMethod(f="GetFileName",
 signature="Course",
 definition=function(course)
 {
 return(course@GradesFile)
 }
)

setGeneric(name="SetFileName",
 def=function(course,fileName)
 {
 standardGeneric("SetFileName")
 }
)

setMethod(f="SetFileName",
 signature="Course",
 definition=function(course,fileName)
 {
 course@GradesFile = fileName
 return(course)
 }
)

Chapter 10

[137]

Reading grades from a file
The last method examined is the method to read the data from a given file. We will
examine the Grades list within the Course class before providing a listing. This slot
is a list, and each element within the list is an assignment object. (The assignment
classes are discussed in the next section of this chapter.) The name of the object
within the list is the same as the name found in the first row of the CSV file.

The ReadGrades method first reads the csv file. It then goes through the columns
that were read from the file, and the names of the columns are assumed to be in
the first row of the file. If the first letters in the name of a column match one of the
strings that are in the vector (found in the GradeTypes slot), then it is assumed that
the column represents a graded item. There are two kinds of assignments: numerical
grades or letter grades. If a column from the data file is determined to be a graded
item, then its type is checked. If the type is a numeric type, then it is assumed that
the course type is for a numeric grade (an object from the NumericGrade class);
otherwise, it is assumed to be a letter grade (an object from the LetterGrade class):

setGeneric(name="ReadGrades",
 def=function(course)
 {
 standardGeneric("ReadGrades")
 }
)

setMethod(f="ReadGrades",
 signature="Course",
 definition=function(course)
 {
 grades <- read.csv(GetFileName(course))
 convertedGrades <- list()
 courseTypes <- GetGradeTypes(course)
 for (gradeItem in names(grades))
 {
 # Go through each column from the file.
 for (type in courseTypes)
 {
 # go through each course type and determine if
 # this column is a quiz/test/hw/?
 if(length(grep(type,gradeItem))>0)
 {
 # The prefix for the name matches one of
 # the predefined types.

Case Study – Course Grades

[138]

 if((class(grades[[gradeItem]])=="numer
ic") ||
 (class(grades[[gradeItem]])=="integ
er")) {
 thisItem <- NumericGrade()
 #print(paste("This item,",gradeItem,
 # ",is a numeric grade item.",
 # class(thisItem)))

 } else {
 thisItem <- LetterGrade()
 #print(paste("This item,",gradeItem,
 # ", is a letter grade.",
 # class(thisItem)))
 }
 # Convert the values into their
 # respective grades.
 thisItem <- SetValue(thisItem,
 grades[[gradeItem]])
 #print(paste("class: ",class(thisItem)))
 convertedGrades[gradeItem] <- thisItem
 }
 }
 }
 return(SetGrades(course,convertedGrades))
 }
)

The Course class is used to organize the grades for a whole class. The scores for an
individual assignment are kept in one of the assignment classes, which is examined
in the following section.

The assignment classes
There are two assignment classes, and they are both derived from the assignment
class. The first class is the NumericGrade class, which keeps track of a numeric
grade. The second class is the LetterGrade class, which keeps track of a letter
grade. The details of the classes are shown in the next figure. The definition of the
Assignment class is given in the following figure, and the details about the accessors
are omitted for the sake of brevity. The complete code is available on the website for
this book.

Chapter 10

[139]

+GetName(): character()
+ etName(name: character()): character()S
+GetNumber(): numeric()
+SetNumber(number: numeric())

Assignment
+Name: character() = Test
+Number: numeric() = 0

+Get cale(): listS
+setScale(assignment,scale: list)
+GetValue()
+GetLetterGrade()
+ etVa ue(assignment,va ue: character())S l l
+GradeReport(assignment, maxGrade: numeric=NA,

div: numeric()=10)

LetterGrade
+Value: character()
+Scale: list+GetValue(): numeric ())

+ etValue(value: nu eric())S m
+GradeReport (assignment ,maxGrade: numeric()=NA,

div: numeric()=10)

+ : n ic()=0.0Value umer
NumericGrade

The details of the NumericGrade and LetterGrade classes are given in separate
subsections in this chapter. Once the classes are given, examples are provided to
demonstrate how to use the Course class to read the grades from a file and create
the necessary assignment objects.

The assignment class is the base class for the NumericGrade and LetterGrade
classes. The class only has two slots: the name and a number. The name is used
to display the information related to the assignment, and the number can further
identify the set of grades. For example, the grades for test 3 from a class might
have a name, Test, and number set to the value of 3.

The definition for the class is given here:

###
Create the base assignment class
#
This is used to represent the grades for one assignment.
Assignment <- setClass(
 # Set the name for the class
 "Assignment",

 # Define the slots
 slots = c(
 Name = "character",

Case Study – Course Grades

[140]

 Number = "numeric"
),

 # Set the default values for the slots. (optional)
 prototype=list(
 Name = "Test",
 Number = as.integer(1)
),

 # Make a function that can test to see if the data is consistent.
 # This is not called if you have an initialize function defined!
 validity=function(object)
 {
 if(object@Number < 0) {
 object@Number <- 0
 warning(paste("A negative number for the assignment ",
 "number is passed. It is set to zero.")
 }
 return(TRUE)
 }
)

The primary purpose of the Assignment class is to act as the base class for other
types of assignments. The two classes, NumericGrade and LetterGrade, that inherit
from the assignment class are discussed in the following sections.

The NumericGrade class
The first class we examine that inherits from the Assignment class is the
NumericGrade class. This class is used to retain the grades for an assignment whose
grades are numbers. The class has only one slot, a numeric vector of grades. The
definition is given here:

##
Create the class to keep track of the grades that are numeric in
nature.
#
This is used to represent the numeric grades for one assignment.
NumericGrade <- setClass(
 # Set the name for the class with a numeric grade associated with
 # it.
 "NumericGrade",

 # Define the slots

Chapter 10

[141]

 slots = c(
 Value = "numeric"
),

 # Set the default values for the slots. (optional)
 prototype=list(
 Value = 0.0
),

 # Make a function that can test to see if the data is consistent.
 # (optional)
 # This is not called if you have an initialize function defined!
 validity=function(object)
 {
 if(object@Value < 0) {
 object@Value <- 0
 warning(paste("A negative number for the assignment value",
 "is passed. It is set to zero."))
 }
 return(TRUE)
 },

 # This class inherits from the Assignment class
 contains="Assignment"

)

The methods for the class include the routines to set and get the values of the grades
as well as a method to print out a report. The method to get the grades is given here
as an example:

Create the methods to retrieve and set the values of the
NumericGrade class.
setGeneric(name="GetValue",
 def=function(assignment)
 {
 standardGeneric("GetValue")
 }
)

setMethod(f="GetValue",
 signature="NumericGrade",
 definition=function(assignment)
 {

Case Study – Course Grades

[142]

 return(assignment@Value)
 }
)

There is one other method to be defined, and it is used to print out a report based on
the scores. The method for the grade report prints out a five-point summary of the
grades, the frequency of the grades divided into ten percent intervals (90-100 percent,
80-90 percent, 70-80 percent, and so on), a stem-leaf plot of the grades, and a sorted
list of the grades. The report method includes a call to the summary command to
get the five-point summary for the grades. The summary function is overridden, and
the details are given in a later section, Redefining existing functions.

The definition of the report method is given here:

setGeneric(name="GradeReport",
 def=function(assignment,maxGrade=NA,div=10)
 {
 standardGeneric("GradeReport")
 }
)

setMethod(f="GradeReport",
 signature="Assignment",
 definition=function(assignment,maxGrade=NA,div=10)
 {
 print(noquote(paste("Grade report for",
 GetName(assignment))))
print(noquote(''))
print(summary(assignment)) # Print out a five
 # point summary for the data
values <- GetValue(assignment) # Get the raw scores.
if(is.na(maxGrade)) {
 # The maxGrade was not set. Assume the max score
 # from the data is the maximum possible.
 maxGrade <- max(values)
 warning(paste("The max gade is not set, and it is",
 "assumed to be",maxGrade))
 }

 skip <- maxGrade*div/100; # Set
the width of the intervals.

Chapter 10

[143]

 # Move the max grade up to make sure that the left sided
 # cut will have an interval to contain the top scores.
 while(maxGrade<=max(values))
 {
 maxGrade = maxGrade + skip
 }

 # Determine the number of intervals.
numLower <- ceiling((maxGrade-min(values))/skip)

Determine all of the cutoff points
bins=c(seq(maxGrade-numLower*skip,
 max(c(values,maxGrade)),by=skip))

 # Convert the data into factors
levs <- cut(values,breaks=bins,right=FALSE)

Determine the frequencies for the different levels.
gradeFreqs <- table(levs)

 print(noquote(''))
 print(noquote("Stem Leaf plot of grades:"))
 print(stem(values))
 print(noquote(''))

 print(noquote("Grade Frequencies:"))
 print(gradeFreqs)
 print(noquote(''))

 print(noquote("Sorted Grades:"))
 print(sort(values))
 }
)

Case Study – Course Grades

[144]

The LetterGrade class
The second class that inherits from the Assignment class is the LetterGrade class.
This class is used to keep track of grades that are assigned as letter grades. It is
similar to the NumericGrade class, except it has two slots. The first slot is a character
vector with the grades. The second slot is a list that contains the possible letter grades
as the name, and the value associated with each letter grade is its numeric value used
for calculations.

The definition of the LetterGrade class is given here:

###
Create the class to keep track of the grades that are letters in
nature.
#
This is used to represent the letter grades for one assignment.
LetterGrade <- setClass(
 # Set the name for the class with a numeric grade associated
 # with it.
 "LetterGrade",

 # Define the slots
 slots = c(
 Value = "character",
 Scale = "list"
),

 # Set the default values for the slots. (optional)
 prototype=list(
 Value = "F",
 Scale = list(
 'A+'=98,'A'=95,'A-'=92,
 'B+'=88,'B'=85,'B-'=83,
 'C+'=78,'C'=75,'C-'=73,
 'D+'=68,'D'=65,'D-'=63,
 'F+'=58,'F'=55,'F-'=53,
 "NA"=0)
),

 # Make a function that can test to see if the data is
 #consistent.
 # (optional)
 # This is not called if you have an initialize function
 #defined!

Chapter 10

[145]

 validity=function(object)
 {
 pos <- grep(paste(object@Value,"$",sep=""),
 names(object@Scale))
 if(length(pos) != 1) {
 object@Value <- 'F-'
 warning("The grade is not recognized.")
 }
 return(TRUE)
 },

 # This class inherits from the Assignment class
 contains="Assignment"

)

The class has the usual accessor methods to get and set the values of the slots. We
give the method to set the value of the grades because it is a complex exercise. The
method must convert each grade to a character because they may be passed as a
factor. The method must also go through and make sure that each grade is the one
that is already defined. It does this using the grep command and the names of the
list in the Scales slot, as follows:

setMethod(f="SetValue",
 signature="LetterGrade",
 definition=function(assignment,value)
 {
 # Loop through each item in the vector of values. Also,
 # convert the value to a character vector. We need the
 # scale list inside the loop so grab a copy now for
 # later use.
 lupe <- 1
 value <- as.character(value)
 theScale <- GetScale(assignment)
 theNames <- names(theScale)
 while(lupe <= length(value))
 {
 # Determine whether this item can be found in the
 # list of scale items. Express it as a regular
 # expression and make sure it is an exact match
 # by using first and last place markers.
 thePattern <- paste("^",sub("\\+","\\\\+",
 value[lupe]),"$",sep="")
 pos <- grep(thePattern,theNames)

Case Study – Course Grades

[146]

 if(value[lupe]=="") {
 #An empty string was passed.
 value[lupe] <- "NA"
 } else if(length(pos) != 1) {
 # This item was not found. Print a warning and make it an NA
 warning(paste("The grade \"",value[lupe],
 "\"is not recognized. It is set to NA.",
 sep=""))
 value[lupe] <- "NA"
 }
 lupe <- lupe + 1
 }
 assignment@Value <- value
 return(assignment)
 }
)

The final method examined here is the method to print out a grade report. It is a
simpler method compared to the same method in the NumericGrade class. In this
case, the only results to print are the frequency of occurrences for each possible
letter grade:

setMethod(f="GradeReport",
 signature="LetterGrade",
 definition=function(assignment,maxGrade=NA,div=10)
 {
 print(noquote(''))
 print(noquote(paste("Grade report for",
 GetName(assignment))))
print(noquote(''))
print(summary(assignment)) # Print out a five
 # point summary for the data
 }
)

Example – reading grades from a file
A short example is given to demonstrate how to read a class file. We assume that a
CSV file, called shortList.csv, is in the current working directory. The first task to
accomplish is to execute the file that contains the class definitions, grades.R. Once
the class is defined, the filename is set, and the file is read.

Chapter 10

[147]

First, in this example, the file with the shortList.csv grades is assumed to be
the following:

section,test1,project1,final
3,75,B+,89
2,68,B,94
3,98,B+,110
2,76,A-,93
1,96,A+,112
1,81,B+,91
2,19,A,70
2,52,B+,70
2,88,A,71

The default value for the GradeTypes slot in the Course class is the following:

GradeTypes = c("test","hw","quiz","project")

Any column in the file whose name starts with one of the strings in the GradeTypes
vector is assumed to be a recognized grade. The test1, test2, hw1, hw2, hw3,
quiz1, quiz2, and project1 columns are recognized as being a graded item. The
column whose name is final is not in the default vector and is not recognized, so the
GradeTypes slot should be replaced:

> source('grades.R')
> dir(pattern="csv$")
[1] "math100.csv" "shortList.csv"
> course <- Course()
> course <- SetGradeTypes(course,c("test","hw","quiz","project",
 "final"))
> course <- SetFileName(course,"shortList.csv")
> course <- ReadGrades(course)
> course
An object of class "Course"
Slot "GradesFile":
[1] "shortList.csv"

Slot "GradeTypes":
[1] "test" "hw" "quiz" "project" "final"

Slot "Grades":
$test1
An object of class "NumericGrade"

Case Study – Course Grades

[148]

Slot "Value":
[1] 75 68 98 76 96 81 19 52 88

Slot "Name":
[1] "Test"

Slot "Number":
[1] 1

$project1
An object of class "LetterGrade"
Slot "Value":
[1] "B+" "B" "B+" "A-" "A+" "B+" "A" "B+" "A"

Slot "Scale":
$'A+'
[1] 98

$A
[1] 95

$'A-'
[1] 92

$'B+'
[1] 88

$B
[1] 85

$'B-'
[1] 83

$'C+'
[1] 78

$C
[1] 75

$'C-'
[1] 73

$'D+'

Chapter 10

[149]

[1] 68

$D
[1] 65

$'D-'
[1] 63

$'F+'
[1] 58

$F
[1] 55

$'F-'
[1] 53

$'NA'
[1] 0

Slot "Name":
[1] "Test"

Slot "Number":
[1] 1

$final
An object of class "NumericGrade"
Slot "Value":
[1] 89 94 110 93 112 91 70 70 71

Slot "Name":
[1] "Test"

Slot "Number":
[1] 1

Case Study – Course Grades

[150]

Defining indexing operations
An object that is a Course class can have many assignment objects in its Grades slot.
We did not define a special method to get a particular assignment, and no method is
defined to save an assignment. We examine how to do this is in this section, and the
discussion revolves around redefining the [operation.

First we redefine the [operation used to get an assignment. The idea is that we want
to get a copy of an assignment by enclosing the name of the assignment as defined
in the original file within square braces. To do this, we can redefine the operation. In
this case, we want to be able to pass any kind of object within the braces, which will
allow us to also use integers to index by location in the list:

setMethod("[",
 signature(x="Course",i="ANY"),
 definition=function(x,i=1)
 {
 #print(paste("Get grade item",i))
 return(x@Grades[[i]])
 }
)

We would like to also be able to get a grade within an assignment. In this case, we
will pass two arguments within the braces. The first task is to get the assignment
using the previous definition and then get the grade within the assignment whose
index matches the second argument:

setMethod("[",
 signature(x="Course",i="ANY",j="numeric"),
 definition=function(x,i=1,j=1)
 {
 #print(paste("course value",i,j))
 allGrades <- GetValue(x[i])
 return(allGrades[[j]])
 }
)

We assume that the operations are defined in a file called ops.R. Once these methods
are read and executed, the [operation is used in the following example to get a copy
of test1 or to examine the third grade in test1:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
> course <- Course()
> course <- SetFileName(course,"shortList.csv")

Chapter 10

[151]

> course <- ReadGrades(course)
> course['test1']
[1] Assignment: Test
[1] (9) Grades:
[1] 75 68 98 76 96 81 19 52 88
> course['test1',3]
[1] 98
>

The final topic to examine in this section is the use of the [operation to set the value
of an entry. The approach is similar to the methods used to get information given
earlier. The only difference is that instead of using the setMethod function, we use
the setReplace method, and the last argument to the function is the value to set the
corresponding entry in the appropriate object:

setReplaceMethod("[",
 signature("NumericGrade"),
 definition=function(x,i,value)
 {
 #print(paste("grade value",i,value))
 x@Value[i] = value
 return(x)
 }
)

setReplaceMethod("[",
 signature("Course"),
 definition=function(x,i,j,value)
 {
 #print(paste("course grade",i,j,value))
 grades <- x@Grades[[i]]
 grades[j] <- value
 x@Grades[i] <- grades
 return(x)
 }
)

With these definitions in place, a value within the course for a specific grade can be
easily set, as follows:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
>
> course <- Course()

Case Study – Course Grades

[152]

> course <- SetFileName(course,"shortList.csv")
> course <- ReadGrades(course)
> print(course['test1'])
[1] Assignment: Test
[1] (9) Grades:
[1] 75 68 98 76 96 81 19 52 88
> print(course['test1',3])
[1] 98
>
> course['test1',3] <- 99.1
> print(course['test1',3])
[1] 99.1
>

Redefining existing functions
As mentioned previously, the summary, show, and plot commands are extended to
react in an appropriate way when passed a NumericGrade or LetterGrade object.
Extending these functions is done by simply defining a new method for these
functions using the setMethod command. Each of these commands already exist, so
it is not necessary to reserve the names using the setGeneric command. That is, we
simply define the method to associate with the command when passed an object that
is a member of the NumericGrade or LetterGrade class.

We extend the summary command in the first example. In this case, the function
should have a different behavior if the object passed to it is NumericGrade versus
LetterGrade. For an object that is LetterGrade, the summary command retrieves
the grades and prints out a frequency table for the grades:

setMethod(f="summary",
 signature="LetterGrade",
 definition=function(object,...)
 {
 # Get the letter grades as factors and return the
 # frequency table.
 values <- GetLetterGrade(object)
 return(summary(as.factor(values)))
 }
)

Chapter 10

[153]

In this example, the only other kind of assignment that can be created is
NumericGrade, but in the future, the class may be extended. Instead of creating a
summary function solely for the NumericGrade class, we create a summary function
for its base class, Assignment. In this way, an argument to the summary command
that is derived from the Assignment class will obtain the object's grades, and the
grades are assumed to be a numeric vector. The summary command can then be
invoked on the vector:

setMethod(f="summary",
 signature="Assignment",
 definition=function(object,...)
 {
 # Get the grade values and return the five point
 # summary.
 values <- GetValue(object)
 return(summary(values))
 }
)

In the following example, the necessary files are read, and the information from
the shortList.csv file is read. Copies of two different assignments, test1 and
project1, are found, and a summary for each object is printed:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
Creating a generic function for 'plot' from package 'graphics' in the
global environment
Creating a generic function for 'summary' from package 'base' in the
global environment
>
> course <- Course()
> course <- SetFileName(course,"shortList.csv")
> course <- ReadGrades(course)
> x <- course['test1']
> summary(x)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 19.00 68.00 76.00 72.56 88.00 98.00
> p <- course['project1']
> summary(p)
 A A+ A- B B+
 2 1 1 1 4
>

Case Study – Course Grades

[154]

The files available in the repository for this book contain definitions for the show,
summary, and plot commands. We examine one more here. The plot command
for a NumericGrade object is a bit more complicated than the other examples. The
plot command obtains the grades from the object passed to it, and it prints out a
histogram, adds a box plot at the top of the histogram, and the rug command is used
to display the data values on the same plot.

The arguments to the command include the maximum grade for the assignment.
This argument is required because in some circumstances, extra credit is available
and some students may achieve a higher score than is allocated for the rest of
the class, and in other situations, no student may achieve a perfect score. If this
argument is not provided, then the maximum score is used.

A second argument is included that indicates what percentages to use. The default is
10, which indicates that the breaks in the histogram are made at the 10 percent marks
for the scores. For example, if the default of 10 is used, then the scores in the 90-100
range are counted together.

The final argument is the ellipses symbol (...), which indicates that other arguments
can be passed to the function. The same symbol is used in the plot command
within the method. The idea is that all of the extra parameters are passed to the plot
command. This allows us to set a wide array of plot parameters through the method
without having to catch any special cases:

setMethod(f="plot",
 signature="Assignment",
 definition=function(x,maxGrade=NA,div=10,...)
 {

 #print("Plotting an assignment")

 values <- GetValue(x) # Get the raw scores
 if(is.na(maxGrade)) {
 # The maxGrade was not set. Assume the max score from
 # the data is the maximum possible.
 maxGrade <- max(values)
 warning(paste("The max gade is not set, ",
 " and it is assumed to be",
 maxGrade))
 }

Chapter 10

[155]

 skip <- maxGrade*div/100; # Set the width of the
 # intervals.
Determine the number of intervals.
numLower <- ceiling((maxGrade-min(values))/skip)

Determine the cut off values between the bins in the
histogram.
bins=c(seq(maxGrade-numLower*skip,
 max(c(values,maxGrade)),by=skip))
if(max(bins)<max(values)) {
 # The bins do not include the maximum value. Adjust
 # the bound on the upper most bin.
 bins[length(bins)] <- max(values);
}
Convert the data into factors
levs <- cut(values,breaks=bins,right=FALSE)
Determine the frequencies for the different levels.
gradeFreqs <- table(levs)
Get the max frequency
top <- max(gradeFreqs)
Plot the histogram.
hist(values,breaks=bins,
 freq=TRUE,
 ylim=c(0,top+1),axes=FALSE,
 col=grey((seq(length(bins)-1,1,by=-1)/
 (length(bins)-1))),
 right=FALSE,...)

Add a box plot across the top
boxplot(values,horizontal=TRUE,at=top+0.5,add=TRUE,
 axes=FALSE)

 # Plot the raw data as a strip chart across the bottom
 rug(values)

Case Study – Course Grades

[156]

 # Turn on only the left and lower axes.
 axis(side=1,at=bins)
 axis(side=2,at=seq(0,top+1,by=1))

 }
)

In the following example, a larger data file is read. The results from test2 are
plotted, and the method automatically generates the plot as described earlier:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
>
> course <- Course()
> course <- SetFileName(course,"math100.csv")
> course <- ReadGrades(course)
>
> x <- course['test2']
> plot(x,maxGrade=100,main='Student Scores From Test 2')
Warning message:
In plot.histogram(r, freq = freq1, col = col, border = border, angle =
angle, :
 the AREAS in the plot are wrong -- rather use 'freq = FALSE'
>

Note that a warning message is printed. The maximum grade is specified as 100, but
there are some students in the class who achieved a 102 because of extra credit. The
breaks in the histogram include the students who achieved a higher grade than the
maximum grade in the top 10 percent, and that set of values has a different width
than the others. The resulting plot is shown in the following screenshot:

Chapter 10

[157]

The histogram created by the plot command given the information in the math-100.csv grade file

Redefining arithmetic operations
The last topic that we're going to examine is how to define basic arithmetic
operations on assignments. In particular, we'll examine how to perform arithmetic
operations on two NumericGrade objects and how to add a set of values to a
NumericGrade object. This can be done in the R environment by extending one of the
sets of generic groups that is used to collect similar operations. The different groups
include the Arith, Compare, Ops, Logic, Math, Math2, Summary, and Complex groups.
The Ops group includes the Arith, Compare, and Logic operations, and we extend
this group to include objects from the NumericGrades class.

Case Study – Course Grades

[158]

We use the setMethod function for the Ops group to define operations involving
NumericGrade objects. The resulting function obtains the grades and performs the
requisite operation using the callGeneric command. The quirk of the system is
that it must return a NumericGrade object, and the last step is to set the value of the
grades for the first NumericGrade object sent to the function:

setMethod("Ops", signature(e1="NumericGrade", e2="NumericGrade"),
 function(e1, e2) {
 theSum <- callGeneric(GetValue(e1), GetValue(e2))
 return(SetValue(e1,theSum))
 }
)

setMethod("Ops", signature(e1="NumericGrade", e2="numeric"),
 function(e1, e2) {
 theSum <- callGeneric(GetValue(e1), e2)
 return(SetValue(e1,theSum))
 }
)

setMethod("Ops", signature(e1="numeric", e2="NumericGrade"),
 function(e1, e2) {
 theSum <- callGeneric(e1, GetValue(e2))
 return(SetValue(e1,theSum))
 }
)

In the following example, the grades from the math100.csv file are read. A copy of
the scores taken from the test1 and test2 assignments are obtained, and the simple
average is found by adding them and dividing by two:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
>
> course <- Course()
> course <- SetFileName(course,"math100.csv")
> course <- ReadGrades(course)
> x <- course['test1']
> y <- course['test2']
> z <- (x + y)/2
> print(z)
[1] Assignment: Test

Chapter 10

[159]

[1] (327) Grades:
 [1] 80.0 76.0 95.5 83.0 98.0 87.0 45.5 66.5 94.0 76.5
63.5 83.5
 [13] 66.0 52.5 85.5 35.5 82.5 90.5 89.5 51.0 71.0 53.5
80.0 75.5
 [25] 39.0 61.5 0.0 72.5 84.0 70.0 97.5 76.0 52.0 73.0
68.5 55.5
 [37] 44.0 86.0 64.0 59.0 61.5 58.0 43.5 95.5 53.5 60.0
77.5 56.5
 [49] 93.5 52.5 97.5 55.0 98.0 68.0 63.0 46.5 74.5 26.5
78.5 69.0
 [61] 84.5 92.5 78.5 78.0 84.5 11.0 51.0 96.0 73.0 95.0
94.0 82.5
 [73] 93.0 0.0 86.0 44.5 75.0 51.5 57.5 100.0 48.0 64.5
57.0 65.0
 [85] 75.5 76.5 62.0 19.0 52.0 52.5 79.0 71.5 63.0 24.0
91.0 99.5
 [97] 0.0 73.0 62.0 0.0 66.5 88.5 77.5 91.5 48.0 63.5
53.5 87.5
[109] 80.5 0.0 55.5 85.0 40.5 79.0 0.0 92.5 60.5 91.5
41.5 51.0
[121] 67.0 76.0 76.5 60.5 85.5 64.5 87.5 31.0 87.0 0.0
98.5 60.5
[133] 91.0 86.5 48.0 54.5 54.0 34.0 56.5 0.0 61.5 84.5
44.5 64.0
[145] 64.0 59.5 75.5 60.5 61.5 83.0 66.0 52.5 72.0 66.5
72.5 81.0
[157] 98.0 64.5 78.5 77.0 19.0 80.5 33.0 53.5 44.0 74.0
74.0 58.5
[169] 45.0 83.0 60.0 78.0 70.0 79.0 60.0 96.5 68.5 92.0
63.5 93.5
[181] 62.5 64.0 82.5 90.0 57.5 71.0 54.0 29.5 45.0 79.5
27.5 94.5
[193] 74.5 71.0 0.0 0.0 31.0 77.0 49.0 48.5 52.0 100.5
75.5 90.5
[205] 79.0 62.0 92.5 57.5 83.0 0.0 45.5 72.5 76.5 85.0
34.5 90.5
[217] 100.5 74.5 82.0 0.0 63.0 79.5 47.5 67.5 80.5 58.0
82.0 60.0
[229] 68.0 61.5 62.0 54.5 68.5 69.0 87.5 44.0 65.5 53.0
47.0 66.0
[241] 64.0 93.0 52.0 51.5 81.0 67.0 92.5 85.0 36.0 76.5
78.0 49.5
[253] 42.5 86.0 76.0 43.0 74.0 90.5 44.5 40.5 45.0 50.5
48.0 80.0
[265] 87.0 88.0 59.5 59.5 48.0 62.0 94.0 80.0 71.0 64.0
65.0 43.5

Case Study – Course Grades

[160]

[277] 61.0 0.0 57.0 33.0 91.0 100.0 66.0 91.5 98.0 70.0
60.0 91.5
[289] 91.0 81.5 42.0 80.0 67.0 64.5 64.5 55.5 88.5 73.5
81.5 99.5
[301] 59.5 65.0 77.5 58.5 89.5 100.5 44.5 85.5 0.0 70.5
90.0 85.5
[313] 81.0 64.5 51.0 76.5 54.5 88.0 58.5 56.0 23.0 36.0
88.5 71.5
[325] 56.0 66.5 16.5
>

Summary
An extended example making use of S4 classes was examined in this chapter, and
a set of classes are defined to read and track the grades for a class. The Course class
keeps track of a number of assignments, and it reads the contents of a CSV file and
automatically determines which columns are grades and whether or not they are
numerical grades or letter grades.

The grades for a particular assignment are kept in one of two classes. The
NumericGrade class keeps track of numerical grades, and the LetterGrade class
keeps track of letter grades. Both classes are derived from the Assignment base class.

A number of examples were given, and highlights from the code were given. The
full set of code can be found on the website associated with this book, and we
recommend that you closely examine the code. The three files that include the
definitions for this class are the grades.R, ops.R, and overriding.R files.

In the next chapter, another set of classes are developed. The classes in that chapter
provide an example of a set of classes that can be used to generate the results from a
stochastic process and manage the results from a large number of simulations. The
classes can be used to generate results from either a discrete or continuous process,
and the distribution of the results can be explored.

Case Study – Simulation
We will now examine a set of S3 classes designed to implement a Monte-Carlo
simulation. The example scripts include a class to generate a single simulation
as well as a class to run and collect the results from multiple simulations. The
simulation class includes two derived classes. One is used for simulations of a
discrete stochastic process, and the other is for simulations of a stochastic
differential equation.

This section is roughly divided into the following parts:

• The simulation classes
• The Monte-Carlo class
• Examples

We will first examine a set of simulation classes that are designed to generate a single
simulation of a stochastic system. The classes make use of a base class to manage
the parameters. Two classes are derived from the base class. The first derived class
is used to simulate a discrete stochastic system. The second derived class is used to
approximate a stochastic differential equation.

After examining the simulation classes, a master class is used to manage the
Monte-Carlo simulations. The Monte-Carlo class accepts a simulation class and
collects the results from multiple simulations. Our focus is on the basic structure
of the classes, so we do not discuss statistical methods for the data.

We briefly examine an example using the classes in the last section of this chapter.
The example focuses on how to create an object from the discrete stochastic
simulation class and how to generate results.

Case Study – Simulation

[162]

The simulation classes
The simulation classes consist of three parts. The Simulation class is the base class,
and two classes, DiscreteSimulation and ContinuousSimulation, are derived
from the base class. We assume that the definitions for these classes are kept in a
separate file, simulationS3.R.

The base class, Simulation, is used to manage the parameters and results for a single
simulation. The data includes the final time used in the simulation and accessor
methods are defined for the data:

########################Create the base simulation class
##
This is used to represent a single simulation
Simulation <- function()
 {

 ## Create the list used to represent an
 ## object for this class
 me = list(
 simulationResults = matrix(0)
)

 ## Set the name for the class
 class(me) <- append(class(me),"Simulation")
 return(me)

 }# Set the data values that are the result of a simulation.
setSimulation <- function(theSimulation)
 {
 UseMethod("setSimulation",theSimulation)
 }
setSimulation <- function(theSimulation,simulationResults)
 {
 ## Set the value of the variable theSimulation
 theSimulation$simulationResults <- simulationResults
 return(theSimulation)
 }
]
method to return the data from the current set of results.
getFinalValues <- function(theSimulation)
 {
 UseMethod("getFinalValues",theSimulation)

Chapter 11

[163]

 }
getFinalValues <- function(theSimulation)
 {
 ## Get the value of the data pair at the last time step
 size <- dim(theSimulation$simulationResults)
 return(c(theSimulation$simulationResults[size[1],1],
 theSimulation$simulationResults[size[1],2]))
 }

Note that the class includes an addition method, getFinalValues, which is used to
retrieve the last values approximated in the simulation. This method is required by
the Monte-Carlo class defined in the next section. The results are used to determine
the requisite statistics.

The next two classes are the DiscreteSimulation and ContinuousSimulation
classes. The DiscreteSimulation class is used to generate an approximation to the
discrete stochastic system given by the following equation:

1 1 1 1 2 2,n n n n n n nx ax bx y NW y gx dy N W+ += + + = + +

In the preceding equation, a, b, N1, g, d, and N2 are constants, and W1 and W2 are
normally distributed random variables with a mean of zero and a standard deviation
of one. The ContinuousSimulation class is used to generate an approximation using
the Milstein scheme to the stochastic differential equation:

1 1 2 2() , ()dx axy by dt N dW dy gx dy dt N dW= + + = + +

In the preceding equation, a, b, N1, g, d, and N2 are constants, and W1 and W2 are
independent Wiener processes.

The complete scripts for all of the classes can be found in the code that accompanies
this text. In the interest of brevity, we only look at one derived class: the
DiscreteSimulation class. The definition of the class is given here:

###
Create a simulation for a discrete simulation.
##
This is used to represent the results from a discrete simulation.
DiscreteSimulation <- function()
 {
 ## Define the base class and get the environment

Case Study – Simulation

[164]

 me <- Simulation()
 me$N <- 0

 ## Set the name for the class with a numeric grade associated with
 ## it.
 class(me) <- append(class(me),"DiscreteSimulation")
 return(me)
 }

The final method specific to this class is the singleSimulation method that is used
to conduct one simulation and save the results. The methods necessary to define the
discrete simulation class are as follows:

the methods to do the actual simulations.
singleSimulation <- function(simulation,N,T,x0,y0,alpha,beta,
 gamma,delta, noiseOne,noiseTwo)
 {
 UseMethod("singleSimulation",simulation)
 }

singleSimulation.DiscreteSimulation <-function(
 simulation,N,T,x0,y0,alpha,beta,gamma,delta,noiseOne,noiseTwo)
 {
 ## Make an approximation for one run of the discrete model
 ## with the given parameters. Store the approximation in
 ## the simulation slot when done.

 ## initialize the necessary variables.
 x <- matrix(data=double(N*2),nrow=N,ncol=2)
 x[1,1] <- x0
 x[1,2] <- y0
 lupe <- 2

 ## Go through and make N iterations of the stochastic model.
 while(lupe <= N)
 {
 dW <- rnorm(2,mean=0,sd=1) # Generate two random numbers
 # with a normal dist.
 ## Take one step of the discrete model
 x[lupe,1] <- alpha*x[lupe-1,1] + beta*x[lupe-1,1]*x[lupe-1,2]
+
 noiseOne*dW[1]
 x[lupe,2] <- gamma*x[lupe-1,1] + delta*x[lupe-1,2] +
 noiseTwo*dW[2]

Chapter 11

[165]

 lupe <- lupe + 1
 }

 ## Save the simulation and return the result.
 simulation <- setSimulation(simulation,x)
 return(simulation)
 }

The Monte-Carlo class
The final class examined is the MonteCarlo class. The MonteCarlo class is used
to keep track of the results from multiple simulations. Here, we provide a partial
list of the code for the class and then provide the methods used to generate
multiple simulations.

First, the code required to define the class is given here:

##
Create the Monte Carlo class
#
This class is used to make many simulations
MonteCarlo <- function()
{

 # Define the slots
 me = list(

 ## First define the parameters for the stochastic model
 N = 0,
 T = 0,
 x0 = 0,
 y0 = 0,
 alpha = 0,
 beta = 0,
 gamma = 0,
 delta = 0,
 noiseOne = 0,
 noiseTwo = 0,

 ## Define the data to track and the number of trials
 xData = 0,
 yData = 0

)

Case Study – Simulation

[166]

 ## Set the name for the class
 class(me) <- append(class(me),"MonteCarlo")
 return(me)
}

Define the method used to initialize the data prior to a run.
prepare <- function(monteCarlo,number)
 {
 UseMethod("prepare",monteCarlo)
 }
prepare.MonteCarlo <- function(monteCarlo,number)
 {
 ## Set the number of trials and initialize the values to
 ## zeroes.
 monteCarlo$xData <- double(number)
 monteCarlo$yData <- double(number)
 return(monteCarlo)
 }

The class requires an additional method. The simulations method is used to create
multiple simulations and record the results:

simulations <- function(monteCarlo,number,simulation)
 {
 UseMethod("simulations",monteCarlo)
 }

simulations.MonteCarlo <- function(monteCarlo,number,simulation)
 {
 ## Set the number of trials and initialize the values
 monteCarlo <- prepare(monteCarlo,number)
 params <- getParams(monteCarlo) # get the parameters

 ## Perform the simulations
 lupe <- 0
 while(lupe < number)
 {
 lupe <- lupe + 1 # increment the count
 ## Perform a single simulation.
 simulation <- singleSimulation(
 simulation,
 params[1],params[2],params[3],params[4],params[5],
 params[6],params[7],params[8],params[9],params[10])

Chapter 11

[167]

 ## Get the last values of the simulation and record them.
 values <- getFinalValues(simulation)
 monteCarlo <- setValue(monteCarlo,values[1],values[2],lupe)
 }

 return(monteCarlo)
 }

Examples
We will now provide a brief example to demonstrate how to use the Simulation
and MonteCarlo classes described in the previous sections. We focus on the discrete
simulation class, but additional examples can be found in the code that accompanies
this text. In this example, we assume that the definitions for the simulation and
MonteCarlo classes are contained in two files, simulationS3.R and monteCarloS3.R.

The Monte-Carlo simulations can be created by first creating an object from the
MontyCarlo class and setting the values of the parameters as follows:

> source('simulationS3.R')
> source('monteCarloS3.R')

> monty <- MonteCarlo()
> monty$setParams(100,1,
 1.0,2.0,
 1.2,-0.3,0.65,0.2,
 0.03,0.04)

Now that an object from the MonteCarlo class is defined, an object from the
DiscreteSimulation class is created, and the simulation object is used to generate
the results from 500 simulations:

> a <- DiscreteSimulation()
> monty <- simulations(monty,500,a)

At this point, the monty object has the results from 500 simulations. The results can
be found using the getValues method, as follows:

> summary(results[,1])
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.6480 0.7792 0.8231 0.8213 0.8595 1.0110
> summary(results[,2])
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.4978 0.6232 0.6590 0.6632 0.7064 0.8918

Case Study – Simulation

[168]

Alternatively, methods can be defined that extend existing methods. For
example, the hist function can be extended to accommodate an object from
the MonteCarlo class:

the methods to plot the results
hist.MonteCarlo <- function(x,main="",...)
 {
 par(mfrow=c(2,1))
 values <- getValues(x)
 isValid <- (!is.na(values[,1])) && (!is.infinite(values[,1]))
 hist(values[isValid,1],xlab="x",main=main,...)
 hist(values[isValid,2],xlab="y",main="",...)
 }

With this definition, a histogram can be easily created:

hist(monty,main="Results from a Discrete Simulation")

Summary
An example of an S3 class was defined that can be used to keep track of a set of
simulations. The classes include a separate class used to create a single simulation.
The single simulation can be an approximation of either a discrete or continuous
stochastic process. Another class is developed that can keep track of the results from
a large number of simulations.

In the next chapter, we look at another extended example. The focus in the next
chapter is on creating a set of S3 classes to provide a general way to handle
regression tasks for a variety of data types. You can download this chapter from
https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_
Study_Regression.pdf.

https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_Study_Regression.pdf
https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_Study_Regression.pdf

Package Management
A brief overview of working with packages is provided here. This is given as a
reference to the basic commands used to manage packages. It is not exhaustive
and serves only as a brief reference to manage packages associated with your
installation of R.

The appendix has four parts:

• An overview on how to access a package
• An overview on how to install a package
• An overview on how to remove a package
• An overview on how to update packages

One of R's greatest strengths is the ability to use specialized packages, and a wide
range of packages are available. Some of the packages are included in the regular
installation, and some packages must be installed and maintained separately.
We provide a brief overview of how to install, remove, and upgrade the installed
packages on your system.

We first discuss two commands that are commonly used when working with
packages. The first is the installed.packages command. This command will list all
of the packages that are part of your installation. The other command is the library
command. The library command is used to tell R to make use of the commands
available in a given library. In the following example, the first command displays
information about the splines package, and the second command must be entered
before using the spline package:

> library(help = "splines")
> library(splines)

Package Management

[170]

If a package is not part of your installation, you need to install it. The command
to install a package is, oddly enough, the install.package command. In the
following example, the car package, which is used for additional regression options,
is installed. The full details are not provided. You must reply to a series of questions
posed and then R will automatically fetch and install the package for you:

> install.packages("car")

A package can also be easily removed using the remove.packages command. In the
following example, we remove the car package:

> remove.packages("car")

The last topic discussed is how to update your packages. To update all of your
packages, simply use the update.packages command. In the following example,
the command is entered and the full details are not provided. After submitting the
command, you are given a list of packages that can be updated and you must decide
which packages will be updated on your system:

> update.packages()

Index
Symbols
: notation 24
character 80
%d character 68
(help(factor)) command 16
& operation 14
&& operation 14
? operator 10
<- operator 8, 92
<<- operator

about 92
advantages 8

= operator 8
%s character 68

A
Ant class 112, 124
Ant object

Ant generator 114
creating 114
new command 114

append function 102
apply commands

about 33
apply command 33
lapply command 34
mapply command 35
sapply command 34
tapply command 35

arguments
passing, to functions 87-89

arithmetic operations
redefining 157, 158

array command 28

arrays, data structure 28, 29
as.character command 16, 20
ascii option 10
as.difftime command 78
as.double command 17
as.factor command 17
as function 20, 21
as.integer command 12
as.list command 24
as.POSIXct command 72, 73
assign command 91
assignment classes

about 138-140
grades, reading from file 146, 147
LetterGrade class 138, 144-146
NumericGrade class 138-142

assignment, variables 7, 8
attach command 91
attributes command 25

B
base R environment 54
basic data structures

about 23
arrays 28, 29
columns, appending 31, 32
data, censoring 30, 31
data frames 26
lists 24, 25
matrices 28, 29
rows, appending 31, 32
tables 27, 28
vectors 23, 24

basic string operations 63, 64
break statement 84

[172]

C
callGeneric command 158
callNextMethod command 128, 129
cat command 45
cbind command 31
c command 24
character command 15
character, discrete data type 15, 16
class command 12, 98, 102, 113
classes

defining 98-100
colnames command 27
colSums command 34
columns

appending 31, 32
command line

data, entering from 39-41
complex command 18, 19
complex, continuous data type 18
conditional execution 79-81
continuous data types

about 17
complex 18
double 17

ContinuousSimulation class 163
Course class

about 134, 135
defining 135, 136
Grades, reading from file 137, 138

CSV files 42
cumulative distribution function 53, 57, 58
cut command 28

D
data

censoring 30, 31
entering 39
saving 44

data, entering
CSV files 42
fixed width file 43
from command line 39-41
tables, reading from files 41

data.entry command 41
data frames, data structure 26

data types, R environment 7
detach command 91
difftime command 76, 77
dim command 30
dir command 38
directory information 37, 38
discrete data types

about 11
character 15, 16
factors 16, 17
integer 11-13
logical 13-15

DiscreteSimulation class 163
distribution functions 53-56
double command 17
double, continuous data type 17
dpois command 57

E
else statement 79, 80
encapsulation 106
examples

used, for demonstrating MonteCarlo class
usage 167, 168

used, for demonstrating Simulation class
usage 167, 168

existing functions
extending 121-124
redefining 152-156

F
factor command 16
factors, discrete data type 16, 17
FALSE value 13
file command 47
file information 37, 38
fixed width file 43
for loop

about 82
versus while loop 83

format command 45, 46
formatted strings

creating 68
functions

about 85

[173]

arguments, passing to 87-89
defining 85, 86
scope 90-94

G
GeometricTrial class

getHistory method 103
reset method 103
simulation method 103
singleTrial method 103

getClass command 131
get command 91
getFinalValues method 163
getHistory method 103
GetLength function 118
getMethod('show') command 123
getSlots command 131
getwd command 37, 38
grade file

reading 133, 134
gregexpr command 69
grep command 145

H
help command 10, 47
help(Control) command 82
help(DateTimeClasses) command 72
help(Distributions) command 54
help(dpois) command 55
help(regular expression) command 69
help(RNG) command 59
help.search command 10

I
if statement 79
indexing operations

defining 150, 151
inheritance

about 124-130
defining 101-105

initialize function 123
installed.packages command 169
integer command 11
integer, discrete data type 11, 13

inverse cumulative distribution
function 53, 58, 59

is.character command 16
is.factor command 17
is function 20, 21
is.integer command 13
is.list command 24
is.na command 19

K
Kernighan and Ritchie (K&R) 80

L
lambda parameter 55
lapply command 34
length of string

determining 64, 65
LetterGrade class 138, 144-146
library command 169
list command 24
list.dirs command 38
list.files command 38
lists, data structure 24, 25
load command 45
loadhistory command 10
logical command 13
logical, discrete data type 13, 14
logical operators

! 15
!= 15
& 15
&& 15
< 15
<= 15
== 15
> 15
>= 15
| 15
|| 15
xor(a,b) 15

loop constructs
about 82
break statement 84
for loops 82
next statement 84

[174]

repeat loops 83
while loops 82, 83

ls command 44, 91

M
mapply command 35
margin command 33
margin.table(A,1) command 33
margin.table(A,2) command 33
match.arg function 90
matrices, data structure 28, 29
matrix command 29
methods

defining 98-100
defining, for S4 class 117

methods, S4 class
existing methods, extending 121-124
new methods, defining 117-119
polymorphism 119-121

miscellaneous notes, S4 Classes 130-132
missing command 88
mode command 10
Monte-Carlo class 161, 165, 166

N
names command 25
nchar command 64
network options

about 48
socket, opening 48, 49
socket operations 50

new.env command 91
new methods

defining 117-119
NextMethod function 104
next statement 84
NumericGrade class 138, 140-142

O
objects

defining 101-105
operations, on data structures

about 32, 33
apply commands 33

operators
!= 81
< 81
<= 81
== 81
> 81
>= 81

options, help(trptime) command
%a 74
%A 74
%b 74
%B 74
%c 75
%d 75
%H 75
%I 75
%j 75
%m 75
%M 75
%p 74
%S 74
%U 74
%w 74
%x 75
%X 75
%y 75
%Y 75
%z 75
%Z 75

options, R environment
cat command 45
format command 45, 46
paste command 45, 46
print command 45, 46
workspace, saving 44

P
packages

about 169
accessing 169
installing 169
removing 170
updating 170

paste command 45, 46
plot command 107, 154
points command 56

[175]

polymorphism 119-121
ppois command 57
prefix

d 54
p 54
q 54
r 54

primitive input/output 47
print command 45, 46
pseudorandom numbers

generating 59

Q
qchisq command 59
q() command 11
qpois command 58

R
Random Number Generation (RNG) 53, 54
rbind command 31, 32
readBin command 47
readChar command 48
read.csv command 42
read.fwf command 43
ReadGrades method 137
readLines command 48, 49
read.table command 41
regexp command 65
regular expressions 69
remove.packages command 170
repeat loop

advantages 83
disadvantages 83

report method 142
reset function 99
resetTrial function 100
results

printing 44
return command 87
rm command 9
RNGkind command 59
rownames command 27
rows

appending 31, 32
rowSums command 34
rpois command 60

S
S3 class

about 107, 108
advantages 108

S3 object 106
S4 class

defining 112-117
methods, defining for 117

sample command 60
sampling 53, 60, 61
sapply command 34
save command 10, 44, 59
savehistory command 10
save.image command 10, 44
scan command 39, 40
scope 90-94
scripts

executing 94, 95
seq command 24
setClass command 113
setGeneric command 117, 118, 120
setMethod command 152
set.seed command 59
setValidity command 113
setwd command 37, 38
show command 121
signature option

ANY 121
missing 121

simulation classes
about 162-164
ContinuousSimulation class 162, 163
DiscreteSimulation class 162, 163
Simulation class 162

simulation method 103
simulations method 166
singleSimulation method 164
singleTrial method 103
skip option 43
slot command 132
slotnames command 130
slots argument 113
socketConnection command 48
socket operations 50
special data types

about 19, 20

[176]

as function 20, 21
is function 20, 21

S_PLUS language 90
sprintf function 68
stop command 89
storage.mode command 10
strftime command 75
strings

converting, to time data types 72-75
splitting 67
time data types, converting to 75

strptime command 72
strsplit command 67
sub command 70
substring

changing 66
extracting 66
location 65

T
tables, data structure 27, 28
tapply command 35
time data types

converting, to strings 75
operations on 76, 77
strings, converting to 72-75

transform case 67
TRUE value 13
typeof command 12

U
update.packages command 170
UseMethod command 99, 102

V
vectors, data structure 23, 24

W
warning command 89
while loop

about 82, 83
versus for loop 83

workspace
about 9, 10
saving 44

writeBin command 47
writeChar command 48
writeLines command 48

Thank you for buying
R Object-oriented Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

SignalR Real-time Application
Cookbook
ISBN: 978-1-78328-595-2 Paperback: 292 pages

Use SignalR to create real-time, bidirectional, and
asynchronous applications based on standard web
technologies

1. Build high performance real-time
web applications.

2. Broadcast messages from the server to
many clients simultaneously.

3. Implement complex and reactive architectures.

Data Manipulation with R
ISBN: 978-1-78328-109-1 Paperback: 102 pages

Perform group-wise data manipulation and deal with
large datasets using R efficiently and effectively

1. Perform factor manipulation and string
processing.

2. Learn group-wise data manipulation
using plyr.

3. Handle large datasets, interact with database
software, and manipulate data using sqldf.

Please check www.PacktPub.com for information on our titles

R Statistical Application
Development by Example
Beginner's Guide
ISBN: 978-1-84951-944-1 Paperback: 344 pages

Learn R Statistical Application Development from
scratch in a clear and pedagogical manner

1. A self-learning guide for the user who needs
statistical tools for understanding uncertainty
in computer science data.

2. Essential descriptive statistics, effective data
visualization, and efficient model building.

Introduction to R for Quantitative
Finance
ISBN: 978-1-78328-093-3 Paperback: 164 pages

Solve a diverse range of problems with R, one of the
most powerful tools for quantitative finance

1. Use time series analysis to model and forecast
house prices.

2. Estimate the term structure of interest rates
using prices of government bonds.

3. Detect systemically important financial
institutions by employing financial
network analysis.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Data Types
	Assignment
	The workspace
	Discrete data types
	Integer
	Logical
	Character
	Factors

	Continuous data types
	Double
	Complex

	Special data types
	Notes on as and is functions

	Summary

	Chapter 2: Organizing Data
	Basic data structures
	Vectors
	Lists
	Data frames
	Tables
	Matrices and arrays
	Censoring data
	Appending rows and columns

	Operations on data structures
	The apply commands
	apply
	lapply and sapply

	tapply
	mapply

	Summary

	Chapter 3: Saving Data and Printing Results
	File and directory information
	Entering data
	Entering data from the command line
	Reading tables from files
	CSV files
	Fixed width files

	Printing results and saving data
	Saving a workspace
	The cat command
	The print, format, and paste commands

	Primitive input/output
	Network options
	Opening a socket
	Basic socket operations

	Summary

	Chapter 4: Calculating Probabilities and Random Numbers
	Overview
	Distribution functions
	Cumulative distribution functions
	Inverse cumulative distribution functions
	Generating pseudorandom numbers
	Sampling
	Summary

	Chapter 5: Character and String Operations
	Basic string operations
	Six focused tasks
	Determine the length of a string
	Location of a substring
	Extracting or changing a substring
	Transform case
	Splitting strings
	Creating formatted strings

	Regular expressions
	Summary

	Chapter 6: Converting and Defining Time Variables
	Introduction and assumptions
	Converting strings to time data types
	Converting time data types to strings
	Operations on time data types
	Summary

	Chapter 7: Basic Programming
	Conditional execution
	Loop constructs
	for loops
	while loops
	repeat loops
	Break and next statements

	Functions
	Defining a function
	Arguments to functions
	Scope

	Executing scripts
	Summary

	Chapter 8: S3 Classes
	Defining classes and methods
	Defining objects and inheritance
	Encapsulation
	A final note
	Summary

	Chapter 9: S4 Classes
	Introducing the Ant class
	Defining an S4 class
	Defining methods for an S4 class
	Defining new methods
	Polymorphism
	Extending the existing methods

	Inheritance
	Miscellaneous notes
	Summary

	Chapter 10: Case Study – Course Grades
	Overview
	The Course class
	The definition of the Course class
	Reading Grades from a file

	The assignment classes
	The NumericGrade class
	The LetterGrade class
	Example – reading grades from a file

	Defining indexing operations
	Redefining existing functions
	Redefining arithmetic operations
	Summary

	Chapter 11: Case Study – Simulation
	The simulation classes
	The Monte-Carlo class
	Examples
	Summary

	Appendix: Package Management
	Index

