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Preface
The R environment is a powerful software suite that started as a model for the S 
language originally developed at Bell Laboratories. The original code base was 
created by Ross Ihaka and Robert Gentleman in 1993. It rapidly grew with the help 
of others, and it has since become a standard in statistical computing. The software 
suite itself has grown well beyond an implementation of a language and has become 
an "environment". It is extensible, and the wide variety of packages that are available 
help make it a powerful resource that continues to grow in popularity  
and power.

Our aim in this book is to provide a resource for programming using the R language, 
and we assume that you will be making use of the R environment to implement and 
test your code. The book can be roughly divided into four parts. In the first part, we 
provide a discussion of the basic ideas and topics necessary to understand how R 
classifies data and the options that can be used to make calculations from data. In 
the second part, we provide a discussion of how R organizes data and the options 
available to keep track of data, display data, and read and save data. In the third 
part, we provide a discussion on programming topics specific to the R language and 
the options available for object-oriented programming. In the fourth part, we provide 
several extended examples as a way to demonstrate how all of the topics can fit 
together to solve problems.
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What this book covers
A list of the chapters is given here. The first three chapters focus on the basic 
requirements associated with getting data into the system and the most basic tasks 
associated with calculations associated with data. The next three chapters focus on 
the miscellaneous issues that arise in practice when working with and examining 
data including the mechanics of dealing with different data types. The next three 
chapters focus on basic and advanced programming topics. The final three chapters 
provide more detailed examples to demonstrate how all of the ideas can be brought 
together to solve problems.

Chapter 1, Data Types, offers a broad overview of the different data types. This 
includes basic representations such as float, double, complex, factors, and integer 
representations, and it also includes examples of how to enter vectors through the 
interactive shell. A brief discussion of the most basic operations and how to interact 
with the R shell is also given.

Chapter 2, Organizing Data, offers a more detailed look at the way data is organized 
within the R environment. Additional topics include how to access the data as well 
as how to perform basic operations on the various data structures. The primary data 
structures examined are lists, arrays, tables, and data frames.

Chapter 3, Saving Data and Printing Results, offers a detailed look at the ways to bring 
data into the R environment and builds on the topics discussed in the previous 
chapter. Additional topics revolve around the ways to display results as well as 
various ways to save data.

Chapter 4, Calculating Probabilities and Random Numbers, offers a detailed examination 
of the probability and sampling features of the R language. The R environment 
includes a number of features to aid in the way data can be analyzed. Any statistical 
analysis includes an underlying reliance on probability, and it is a topic that cannot 
be ignored. The availability of a wide variety of probability and sampling options is 
one of the strengths of the R language, and we explore some of the options in  
this chapter.

Chapter 5, Character and String Operations, offers a detailed examination of the various 
options available for examining, testing, and performing operations on strings. This 
is an important topic because it is not uncommon for datasets to have inconsistencies, 
and a routine that reads data from a file should include some basic checks.

Chapter 6, Converting and Defining Time Variables, offers a detailed examination of 
the time data structure. A basic introduction is given in the first chapter, and more 
details are provided in this chapter. The prevalence of time-related data makes the 
topic of these data structures too important to ignore.



Preface

[ 3 ]

Chapter 7, Basic Programming, offers a detailed examination of the most basic flow 
controls and programming features of the R language. The chapter provides details 
about conditional execution as well as the various looping constructs. Additionally, 
mundane topics associated with writing programs, execution, and formatting are 
also discussed.

Chapter 8, S3 Classes, offers a detailed examination of S3 classes. This is the first and 
most common approach to object-oriented programming. The use of S3 classes can 
be confusing to people already familiar with object-oriented programming, but their 
flexibility has made them a popular way to approach object-oriented programming 
in R.

Chapter 9, S4 Classes, offers a detailed examination of S4 classes. This is a more 
recent approach to object-oriented programming compared to S3 classes. It is a more 
structured approach and is more familiar to people who have experience with object-
oriented programming.

Chapter 10, Case Study – Course Grades, offers an in-depth example of a grade-tracking 
application. This is the first of three examples, and it is the simplest example. It was 
chosen as it is something that is likely to be more familiar to a wider range of people.

Chapter 11, Case Study – Simulation, offers an in-depth example of an application 
that is used to generate data based on Monte-Carlo simulations. The application 
demonstrates how an object-oriented approach can be used to create an environment 
used to execute simulations, organize the results, and perform a basic analysis on  
the results.

Chapter 12, Case Study – Regression, offers an in-depth example of an application 
that offers a wide range of options you can use to perform regression. Regression 
is a common task and occurs in a wide variety of contexts. The application that is 
developed demonstrates a flexible way to handle both continuous and ordinal data 
as a way to demonstrate the use of a flexible object-oriented approach. You can 
download this chapter form https://www.packtpub.com/sites/default/files/
downloads/6682OS_Case_Study_Regression.pdf.

Appendix, Package Management, gives a brief overview of installing, updating, and 
removing packages is given. Packages are libraries that can be added to R that extend 
its capabilities. Being able to extend R and make use of other libraries represents one 
R's more powerful features.

https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_Study_Regression.pdf
https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_Study_Regression.pdf
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What you need for this book
It is assumed that you will be working in the R environment, and the example code 
has been developed and tested for R version 3.0.1 and later. The R environment is a 
type of free software and is made available through the efforts and generosity of the R 
Foundation. It can be downloaded from http://www.r-project.org/. The material 
in the first half of the book assumes that you have access to R and can work from the 
interactive command line within the R environment. The material in the second half 
of the book assumes that you are familiar with programming and can write and save 
computer code. At a minimum, you should have access to a programming editor and 
should be familiar with directory structures and search paths.

Who this book is for
If you are familiar with programming and wish to gain a basic understanding of 
the R environment and learn how to create programming applications using the R 
language, this is the book for you. It is assumed that you have some exposure to the 
R environment and have a basic understanding of R. This book does not provide 
extensive motivations for certain approaches and practices assuming that the reader 
is comfortable in the development of software applications.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"A list is created using the list command, and a variable can be tested or coerced 
using the is.list and as.list commands."

A block of code is set as follows:

> x = rnorm(5,mean=10,sd=3)
> x
[1] 11.172719  8.784284 10.074035  5.735171 10.800138
> pnorm(abs(x-10),mean=0,sd=3)-pnorm(-abs(x-10),mean=0,sd=3)
[1] 0.30413363 0.31469803 0.01968849 0.84486037 0.21030971
>

http://www.r-project.org/
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When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

> v <- c(1,3,5,7,-10)
> v
[1]   1   3   5   7 -10
> v[4]
[1] 7
> v[2] <- v[1]-v[5]
> v
[1]   1  11   5   7 -10

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

www.packtpub.com/authors
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Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. An additional source for the 
examples in this book can be found at https://github.com/KellyBlack/R-
Object-Oriented-Programming. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Copyright violations
Violation of copyright laws for material on the Internet is an ongoing problem 
across all media. At Packt, we take the protection of our copyright and licenses very 
seriously. If you come across any illegal copies of our works, in any form, on the 
Internet, please provide us with the location address or website name immediately 
so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
https://github.com/KellyBlack/R-Object-Oriented-Programming
https://github.com/KellyBlack/R-Object-Oriented-Programming
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Data Types
In this chapter, we provide a broad overview of the different data types available in 
the R environment. This material is introductory in nature, and this chapter ensures 
that important information on implementing algorithms is available to you. There 
are roughly five parts in this chapter:

• Working with variables in the R environment: This section gives you a 
broad overview of interacting with the R shell, creating variables, deleting 
variables, saving variables, and loading variables

• Discrete data types: This section gives you an overview of the principle data 
types used to represent discrete data

• Continuous data types: This section gives you an overview of the principle 
data types used to represent continuous data

• Introduction to vectors: This section gives you an introduction to vectors and 
manipulating vectors in R

• Special data types: This section gives you a list of other data types that do 
not fit in the other categories or have other meanings

Assignment
The R environment is an interactive shell. Commands are entered using the 
keyboard, and the environment should feel familiar to anyone used to MATLAB or 
the Python interactive interpreter. To assign a value to a variable, you can usually 
use the = symbol in the same way as these other interpreters. The difference with 
R, however, is that there are other ways to assign a variable, and their behavior 
depends on the context.
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Another way to assign a value to a variable is to use the <- symbols (sometimes 
called operators). At first glance, it seems odd to have different ways to assign a 
value, but we will see that variables can be saved in different environments. The 
same name may be used in different environments, and the name can be ambiguous. 
We will adopt the use of the <- operator in this text because it is the most common 
operator, and it is also the least likely to cause confusion in different contexts.

The R environment manages memory and variable names dynamically. To create  
a new variable, simply assign a value to it, as follows:

> a <- 6
> a
[1] 6

A variable has a scope, and the meaning of a variable name can vary depending 
on the context. For example, if you refer to a variable within a function (think 
subroutine) or after attaching a dataset, then there may be multiple variables in  
the workspace with the same name. The R environment maintains a search path  
to determine which variable to use, and we will discuss these details as they arise.

The <- operator for the assignment will work in any context while the = operator 
only works for complete expressions. Another option is to use the <<- operator. The 
advantage of the <<- operator is that it instructs the R environment to search parent 
environments to see whether the variable already exists. In some contexts, within a 
function for example, the <- operator will create a new variable; however, the <<- 
operator will make use of an existing variable outside of the function if it is found.

Another way to assign variables is to use the -> and ->> operators. These operators 
are similar to those given previously. The only difference is that they reverse the 
direction of assignment, as follows:

> 14.5 -> a
> 1/12.0 ->> b
> a
[1] 14.5
> b
[1] 0.08333333
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The workspace
The R environment keeps track of variables as well as allocates and manages 
memory as it is requested. One command to list the currently defined variables is 
the ls command. A variable can be deleted using the rm command. In the following 
example, the a and b variables have been changed, and the a  variable is deleted:

> a <-  17.5
> b <- 99/4
> ls()
[1] "a" "b"
> objects()
[1] "a" "b"
> rm(a)
> ls()
[1] "b"

If you wish to delete all of the variables in the workspace, the list option in the rm 
command can be combined with the ls command, as follows:

> ls()
[1] "b"
> rm(list=ls())
> ls()
character(0)

A wide variety of other options are available. For example, there are directory 
options to show and set the current directory, as follows:

> getwd()
[1] "/home/black"
> setwd("/tmp")
> getwd()
[1] "/tmp"
> dir()
 [1] "antActivity.R"             "betterS3.R"               
 [3] "chiSquaredArea.R"          "firstS3.R"                
[5] "math100.csv"               "opsTesting.R"             
[7] "probabilityExampleOne.png" "s3.R"                      
[9] "s4Example.R"
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Another important task is to save and load a workspace. The save and save.image 
commands can be used to save the current workspace. The save command allows 
you to save a particular variable, and the save.image command allows you to save 
the entire workspace. The usage of these commands is as follows:

> save(a,file="a.RData")
> save.image("wholeworkspace.Rdata")

These commands have a variety of options. For example, the ascii option is a 
commonly used option to ensure that the data file is in a (nearly) human-readable 
form. The help command can be used to get more details and see more of the 
options that are available. In the following example, the variable a is saved in a file, 
a.RData, and the file is saved in a human-readable format:

> save(a,file="a.RData",ascii=TRUE)
> save.image(" wholeworkspace.RData",ascii=TRUE)
> help(save)

As an alternative to the help command, the ? operator can also be used to get 
the help page for a given command. An additional command is the help.search 
command that is used to search the help files for a given string. The ?? operator is 
also available to perform a search for a given string.

The information in a file can be read back into the workspace using the  
load command:

> load("a.RData")
> ls()
[1] "a"
> a
[1] 19

Another question that arises with respect to a variable is how it is stored. The two 
commands to determine this are mode and storage.mode. You should try to use 
these commands for each of the data types described in the following subsections. 
Basically, these commands can make it easier to determine whether a variable is a 
numeric value or another basic data type.

The previous commands provide options for saving the values of the variables 
within a workspace. They do not save the commands that you have entered. These 
commands are referred to as the history within the R workspace, and you can save 
your history using the savehistory command. The history can be displayed using 
the history command, and the loadhistory command can be used to replay the 
commands in a file.
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The last command given here is the command to quit, q(). Some people consider this 
to be the most important command because without it you would never be able to 
leave R. The rest of us are not sure why it is necessary.

Discrete data types
One of the features of the R environment is the rich collection of data types that are 
available. Here, we briefly list some of the built-in data types that describe discrete 
data. The four data types discussed are the integer, logical, character, and factor data 
types. We also introduce the idea of a vector, which  is the default data structure for 
any variable. A list of the commands discussed here is given in Table 2 and Table 3.

It should be noted that the default data type in R, for a number, is a double precision 
number. Strings can be interpreted in a variety of ways, usually as either a string or a 
factor. You should be careful to make sure that R is storing information in the format 
that you want, and it is important to double-check this important aspect of how data 
is tracked.

Integer
The first discrete data type examined is the integer type. Values are 32-bit integers. 
In most circumstances, a number must be explicitly cast as being an integer, as the 
default type in R is a double precision number. There are a variety of commands 
used to cast integers as well as allocate space for integers. The integer command 
takes a number for an argument and will return a vector of integers whose length is 
given by the argument:

> bubba <- integer(12)
> bubba
 [1] 0 0 0 0 0 0 0 0 0 0 0 0
> bubba[1]
[1] 0
> bubba[2]
[1] 0
> bubba[[4]]
[1] 0
>  b[4] <- 15
> b
 [1]  0  0  0 15  0  0  0  0  0  0  0  0
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In the preceding example, a vector of twelve integers was defined. The default values 
are zero, and the individual entries in the vector are accessed using braces. The first 
entry in the vector has index 1, so in this example, bubba[1] refers to the initial 
entry in the vector. Note that there are two ways to access an element in the vector: 
single versus double braces. For a vector, the two methods are nearly the same, but 
when we explore the use of lists as opposed to vectors, the meaning will change. In 
short, the double braces return objects of the same type as the elements within the 
vector, and the single braces return values of the same type as the variable itself. 
For example, using single braces on a list will return a list, while double braces may 
return a vector.

A number can be cast as an integer using the as.integer command. A variable's 
type can be checked using the typeof command. The typeof command indicates 
how R stores the object and is different from the class command, which is an 
attribute that you can change or query:

> as.integer(13.2)
[1] 13
> thisNumber <- as.integer(8/3)
> typeof(thisNumber)
[1] "integer"

Note that a sequence of numbers can be automatically created using either the  
: operator or the seq command:

> 1:5
[1] 1 2 3 4 5
> myNum <- as.integer(1:5)

> myNum[1]
[1] 1
> myNum[3]
[1] 3

> seq(4,11,by=2)
[1]  4  6  8 10
> otherNums <- seq(4,11,by=2)

> otherNums[3]
[1] 8
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A common task is to determine whether or not a variable is of a certain type. For 
integers, the is.integer command is used to determine whether or not a variable 
has an integer type:

> a <- 1.2
> typeof(a)
[1] "double"
> is.integer(a)
[1] FALSE

> a <- as.integer(1.2)
> typeof(a)
[1] "integer"
> is.integer(a)
[1] TRUE

Logical
Logical data consists of variables that are either true or false. The words TRUE and 
FALSE are used to designate the two possible values of a logical variable. (The TRUE  
value can also be abbreviated to T, and the FALSE value can be abbreviated to F.) 
The basic commands associated with logical variables are similar to the commands 
for integers discussed in the previous subsection. The logical command is used 
to allocate a vector of Boolean values. In the following example, a logical vector of 
length 10 is created. The default value is FALSE, and the Boolean not operator is used 
to flip the values to evaluate to TRUE:

> b <- logical(10)
> b
 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> b[3]
[1] FALSE
> !b
 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> !b[5]
[1] TRUE
> typeof(b)
[1] "logical"
> mode(b)
[1] "logical"
> storage.mode(b)
[1] "logical"
>  b[3] <- TRUE
> b
 [1] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
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To cast a value to a logical type, you can use the as.logical command. Note that zero 
is mapped to a value of FALSE and other numbers are mapped to a value of TRUE:

> a <- -1:1
> a
[1] -1  0  1
> as.logical(a)
[1]  TRUE FALSE  TRUE

To determine whether or not a value has a logical type, you use the  
is.logical command:

> b <- logical(4)
> b
[1] FALSE FALSE FALSE FALSE
> is.logical(b)
[1] TRUE

The standard operators for logical operations are available, and a list of some of the 
more common operations is given in Table 1. Note that there is a difference between 
operations such as & and &&. A single & is used to perform an and operation on each 
pairwise element of two vectors, while the double && returns a single logical result 
using only the first elements of the vectors:

> l1 <- c(TRUE,FALSE)
> l2 <- c(TRUE,TRUE)
> l1&l1
[1]  TRUE FALSE
> l1&&l1
[1] TRUE
> l1|l2
[1] TRUE TRUE
> l1||l2
[1] TRUE

You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.
com. An additional source for the examples in this book can be found 
at https://github.com/KellyBlack/R-Object-Oriented-
Programming. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files 
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
https://github.com/KellyBlack/R-Object-Oriented-Programming
https://github.com/KellyBlack/R-Object-Oriented-Programming
http://www.packtpub.com/support
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The following table shows various logical operators and their description:

Logical Operator Description
< Less than
> Greater that
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to
| Entrywise or
|| Or
! Not
& Entrywise and
&& And
xor(a,b) Exclusive or

Table 1 – list of operators for logical variables

Character
One common way to store information is to save data as characters or strings. 
Character data is defined using either single or double quotes:

> a <- "hello"
> a
[1] "hello"
> b <- 'there'
> b
[1] "there"
> typeof(a)
[1] "character"

The character command can be used to allocate a vector of character-valued  
strings, as follows:

> many <- character(3)
> many
[1] "" "" ""
> many[2] <- "this is the second"
> many[3] <- 'yo, third!'
> many[1] <- "and the first"
> many
[1] "and the first"      "this is the second" "yo, third!"        
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A value can be cast as a character using the as.character command, as follows:

> a <- 3.0
> a
[1] 3
> b <- as.character(a)
> b
[1] "3"

Finally, the is.character command takes a single argument, and it returns a value 
of TRUE if the argument is a string:

> a <- as.character(4.5)
> a
[1] "4.5"
> is.character(a)
[1] TRUE

Factors
Another common way to record data is to provide a discrete set of levels. For example, 
the results of an individual trial in an experiment may be denoted by a value of a, b, 
or c. Ordinal data of this kind is referred to as a factor in R. The commands and ideas 
are roughly parallel to the data types described previously. There are some subtle 
differences with factors, though. Factors are used to designate different levels and can 
be considered ordered or unordered. There are a large number of options, and it is 
wise to consult the help pages for factors using the (help(factor)) command. One 
thing to note, though, is that the typeof command for a factor will return an integer.

Factors can be defined using the factor command, as follows:

> lev <- factor(x=c("one","two","three","one"))
> lev
[1] one   two   three one  
Levels: one three two
> levels(lev)
[1] "one"   "three" "two"  
> sort(lev)
[1] one   one   two   three
Levels: one two three

>  lev <- factor(x=c("one","two","three","one"),levels=c("one","two",
"three"))
> lev
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[1] one   two   three one  
Levels: one two three
> levels(lev)
[1] "one"   "two"   "three"
> sort(lev)
[1] one   one   two   three
Levels: one two three

The techniques used to cast a variable to a factor or test whether a variable is a 
factor are similar to the previous examples. A variable can be cast as a factor using 
the as.factor command. Also, the is.factor command can be used to determine 
whether or not a variable has a type of factor.

Continuous data types
The data types for continuous data types are given here. The double and complex 
data types are given. A list of the commands discussed here is given in Table 2  
and Table 3.

Double
The default numeric data type in R is a double precision number. The commands are 
similar to those of the integer data type discussed previously. The double command 
can be used to allocate a vector of double precision numbers, and the numbers 
within the vector are accessed using braces:

> d <- double(8)
> d
[1] 0 0 0 0 0 0 0 0
> typeof(d)
[1] "double"
> d[3] <- 17
> d
[1]  0  0 17  0  0  0  0  0

The techniques used to cast a variable to a double precision number and test whether 
a variable is a double precision number are similar to the examples seen previously. 
A variable can be cast as a double precision number using the as.double command. 
Also, to determine whether a variable is a double precision number, the as.double 
command can be used.
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Complex
Arithmetic for complex numbers is supported in R, and most math functions will 
react properly when given a complex number. You can append i to the end of a 
number to force it to be the imaginary part of a complex number, as follows:

> 1i
[1] 0+1i
> 1i*1i
[1] -1+0i
> z <- 3+2i
> z
[1] 3+2i
> z*z
[1] 5+12i
> Mod(z)
[1] 3.605551
> Re(z)
[1] 3
> Im(z)
[1] 2
> Arg(z)
[1] 0.5880026
> Conj(z)
[1] 3-2i

The complex command can also be used to define a vector of complex numbers. 
There are a number of options for the complex command, so a quick check of the 
help page, (help(complex)), is recommended:

> z <- complex(3)
> z
[1] 0+0i 0+0i 0+0i
> typeof(z)
[1] "complex"
> z <- complex(real=c(1,2),imag=c(3,4))
> z
[1] 1+3i 2+4i
> Re(z)
[1] 1 2

The techniques to cast a variable to a complex number and to test whether or not a 
variable is a complex number are similar to the methods seen previously. A variable 
can be cast as complex using the as.complex command. Also, to test whether or not 
a variable is a complex number, the as.complex command can be used.
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Special data types
There are two other common data types that occur that are important. We will 
discuss these two data types and provide a note about objects. The two data types 
are NA and NULL. These are brief comments, as these are recurring topics that we will 
revisit many times.

The first data type is a constant, NA. This is a type used to indicate a missing value. It 
is a constant in R, and a variable can be tested using the is.na command, as follows:

> n <- c(NA,2,3,NA,5)
> n
[1] NA  2  3 NA  5
> is.na(n)
[1]  TRUE FALSE FALSE  TRUE FALSE
> n[!is.na(n)]
[1] 2 3 5

Another special type is the NULL type. It has the same meaning as the null keyword 
in the C language. It is not an actual type but is used to determine whether or not an 
object exists:

> a <- NULL
> typeof(a)
[1] "NULL"

Finally, we'll quickly explore the term objects. The variables that we defined in all 
of the preceding examples are treated as objects within the R environment. When we 
start writing functions and creating classes, it will be important to realize that they 
are treated like variables. The names used to assign variables are just a shortcut for R 
to determine where an object is located.

For example, the complex command is used to allocate a vector of complex values. 
The command is defined to be a set of instructions, and there is an object called 
complex that points to those instructions:

> complex
function (length.out = 0L, real = numeric(), imaginary = numeric(),
    modulus = 1, argument = 0)
{
    if (missing(modulus) && missing(argument)) {
        .Internal(complex(length.out, real, imaginary))
    }
    else {
        n <- max(length.out, length(argument), length(modulus))

www.allitebooks.com

http://www.allitebooks.org
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        rep_len(modulus, n) * exp((0+1i) * rep_len(argument,
            n))
    }
}
<bytecode: 0x2489c80>
<environment: namespace:base>

There is a difference between calling the complex()function and referring to the set 
of instructions located at complex.

Notes on the as and is functions
Two common tasks are to determine whether a variable is of a given type and to cast 
a variable to different types. The commands to determine whether a variable is of a 
given type generally start with the is prefix, and the commands to cast a variable to 
a different type generally start with the as prefix. The list of commands to determine 
whether a variable is of a given type are given in the following table:

Type to check Command
Integer is.integer

Logical is.logical

Character is.character

Factor is.factor

Double is.double

Complex is.complex

NA is.NA

List is.list

Table 2 – commands to determine whether a variable is of a particular type

The commands used to cast a variable to a different type are given in Table 3. These 
commands take a single argument and return a variable of the given type. For 
example, the as.character command can be used to convert a number to a string.
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The commands in the previous table are used to test what type a variable has. The 
following table provides the commands that are used to change a variable of one 
type to another type:

Type to convert to Command
Integer as.integer

Logical as.logical

Character as.character

Factor as.factor

Double as.double

Complex as.complex

NA as.NA

List as.list

Table 3 – commands to cast a variable into a particular type

Summary
In this chapter, we examined some of the data types available in the R environment. 
These include discrete data types such as integers and factors. It also includes 
continuous data types such as real and complex data types. We also examined ways 
to test a variable to determine what type it is.

In the next chapter, we look at the data structures that can be used to keep track of 
data. This includes vectors and data types such as lists and data frames that can be 
constructed from vectors.





Organizing Data
In this chapter, we will explore the primary data structures that are used to organize 
data. Some of the details about accessing information within data structures will be 
discussed, and some of the ways to apply different operations to parts of the data 
within a data structure will be discussed too. There are roughly three parts to  
this chapter:

• Basic data structures: This section gives you information on using vectors, 
lists, data frames, tables, matrices, and time series

• Accessing and managing memory: This section gives you an overview of the 
basic ways to gain access and censor specific elements

• Operations on data structures: This section gives you an overview of the 
operations and methods used to apply operations within the different kinds 
of data structures

Basic data structures
The basic data structures used to organize data within the R environment include 
vectors, lists, data frames, tables, and matrices. Here, we provide details for each of 
these data structures and demonstrate how to create them. This chapter does not 
include information about how to read data from a file, and the focus is on the data 
structures themselves. More information about reading from a file can be found in 
Chapter 3, Saving Data and Printing Results.

Vectors
The default data structure in R is the vector. For example, if you define a variable as 
a single number, R will treat it as a vector of length one:

> a <- 5
> a[1]
[1] 5
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Vectors represent a convenient and straightforward way to store a long list of 
numbers. Please see Chapter 1, Data Types, to see more examples of creating vectors. 
One useful and common way to define a vector is to use the c command. The  
c command concatenates a set of arguments to form a single vector:

> v <- c(1,3,5,7,-10)
> v
[1]   1   3   5   7 -10
> v[4]
[1] 7
> v[2] <- v[1]-v[5]
> v
[1]   1  11   5   7 -10

Two other methods to generate vectors make use of the : notation and the seq 
command. The : notation is used to create a list of sequentially numbered values for  
given start and end values. The seq command does the same thing, but it provides 
more options to determine the increment between values in the vector:

> 1:5
[1] 1 2 3 4 5
> 10:14
[1] 10 11 12 13 14
> a <- 3:7
> a
[1] 3 4 5 6 7
> b <- seq(3,5)
> b
[1] 3 4 5
> b <- seq(3,10,by=3)
> b
[1] 3 6 9

Lists
Another important type is the list. Lists are flexible and are an unstructured way of 
organizing information. A list can be thought of as a collection of named objects. A 
list is created using the list command, and a variable can be tested or coerced using 
the is.list and as.list commands. A component within a list is accessed using 
the $ character to denote which object within the list to use. As an example, suppose 
that we want to create a list to keep track of the parameters for an experiment. The 
first component, called means, will be a vector of the assumed means. The second 
component will be the confidence level, and the third component will be the value  
of a parameter for the experiment called maxRealEigen:



Chapter 2

[ 25 ]

> assumedMeans <- c(1.0,1.5,2.1)
> alpha <- 0.05
> eigenValue <- 3+2i
> l <- list(means=assumedMeans,alpha=alpha,maxRealEigen=eigenValue)
> l
$means
[1] 1.0 1.5 2.1
$alpha
[1] 0.05
$maxRealEigen
[1] 3+2i

> l$means
[1] 1.0 1.5 2.1
> l$means[2]
[1] 1.5

The names and attributes commands can be used to determine the components 
within a list. The attributes command is a more generic command that can be used 
to list the components of classes and a wider range of objects. Note that the names 
command can also be used to rename the components of a list. In the following 
example, we use the previous example but change the names of the elements:

> l <- list(means=c(1.0,1.5,2.1),alpha=0.05,maxRealEigen=3+2i)
> names(l)
[1] "means"        "alpha"        "maxRealEigen"
> names(l) <- c("assumedMeans","confidenceLevels","maximumRealValue")
> l
$assumedMeans
[1] 1.0 1.5 2.1
$confidenceLevels
[1] 0.05
$maximumRealValue
[1] 3+2i
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Data frames
A data frame is similar to a list, and many of the operations are similar. The primary 
difference is that all of the components of a data frame must have the same number of 
elements. This is one of the most common ways to store information, and many of the 
functions available to read data from a file return a data frame by default. For example, 
suppose we ask five people two questions. The first question is, "Do you have a pet 
cat?" The second question is, "How many rooms in your house need new carpet?":

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+                 Q2=c(2,0,1,2,0))
> d
  Q1 Q2
1  y  2
2  n  0
3  y  1
4  y  2
5  n  0
> d$Q1
[1] y n y y n
Levels: n y
> summary(d)
 Q1          Q2   
 n:2   Min.   :0  
 y:3   1st Qu.:0  
       Median :1  
       Mean   :1  
       3rd Qu.:2  
       Max.   :2

The names and attributes commands have the same behaviors with data frames 
as lists. In the preceding example, we take the data frame defined in the previous 
example and rename the fields to something more descriptive:

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+                 Q2=c(2,0,1,2,0))
> names(d) <- c("HaveCat","NumberRooms")
> d
  HaveCat NumberRooms
1       y           2
2       n           0
3       y           1
4       y           2
5       n           0
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Tables
Tables can be easily constructed and R will automatically generate frequency tables 
from categorical data. The table command has a number of options, but we focus on 
basic examples here. More details can be found using the help(table) command. 
In the next example, we take the data from the preceding cat questions and create a 
table from the answers from the first question:

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+                 Q2=c(2,0,1,2,0))
> q1Results <- table(d$Q1)
> q1Results
n y 
2 3 
> summary(q1Results)
Number of cases in table: 5 
Number of factors: 1

If you wish to create a two way table, then simply provide two vectors to the  
table command to get the cross tabulation. Again, we look at the data from the  
cat questions. Note that we have to convert the second question to a factor:

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+                 Q2=c(2,0,1,2,0))
> results <- table(d$Q1,as.factor(d$Q2))
> results
    0 1 2
  n 2 0 0
  y 0 1 2
> summary(results)
Number of cases in table: 5 
Number of factors: 2 
Test for independence of all factors:
        Chisq = 5, df = 2, p-value = 0.08208
        Chi-squared approximation may be incorrect

The rows and columns of the table have names associated with them, and the 
rownames and colnames commands can be used to assign the names. These 
commands are similar to the names command. In the preceding example, the names 
in the table are not descriptive. In the following example, we build the table and 
rename the rows and columns:

> d <- data.frame(Q1=as.factor(c("y","n","y","y","n")),
+                 Q2=c(2,0,1,2,0))
> results <- table(d$Q1,as.factor(d$Q2))
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> rownames(results) <- c("No Cat","Has Cat")
> colnames(results) <- c("No room","One room","Two rooms")
> results
          No room One room Two rooms
  No Cat        2        0         0
  Has Cat       0        1         2

One last note; the argument to the table command requires ordinal data. If you have 
numeric data, it can be quickly transformed to encode which interval contains each 
number. The cut command takes the numeric data and a vector of break points that 
indicate the cutoff points between each interval, as follows:

> a <- c(-0.8,-0.7,0.9,-1.4,-0.3,1.2)
> b <- cut(a,breaks=c(-1.5,-1,-0.5,0,0.5,1.0,1.5))
> b
[1] (-1,-0.5] (-1,-0.5] (0.5,1]   (-1.5,-1] (-0.5,0]  (1,1.5]  
Levels: (-1.5,-1] (-1,-0.5] (-0.5,0] (0,0.5] (0.5,1] (1,1.5]
> summary(b)
(-1.5,-1] (-1,-0.5]  (-0.5,0]   (0,0.5]   (0.5,1]   (1,1.5] 
        1         2         1         0         1         1 
> table(b)
b
(-1.5,-1] (-1,-0.5]  (-0.5,0]   (0,0.5]   (0.5,1]   (1,1.5] 
        1         2         1         0         1         1 

Matrices and arrays
Tables are a special case of an array. An array or a matrix can be constructed directly 
using either the array or matrix commands. The array command takes a vector 
and dimensions, and it constructs an array using column major order. If you wish to 
provide the data in row major order, then the command to transpose the result is t:

> a <- c(1,2,3,4,5,6)
> A <- array(a,c(2,3))
> A
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6
> t(A)
     [,1] [,2]
[1,]    1    2
[2,]    3    4
[3,]    5    6
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You are not limited to two-dimensional arrays. The dim option can include any 
number of dimensions. In the following example, a three-dimensional array is 
created by using three numbers for the number of dimensions:

> A <- array(1:24,c(2,3,4),dimnames=c("row","col","dep"))
> A
, , 1

     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6

, , 2

     [,1] [,2] [,3]
[1,]    7    9   11
[2,]    8   10   12

, , 3

     [,1] [,2] [,3]
[1,]   13   15   17
[2,]   14   16   18

, , 4

     [,1] [,2] [,3]
[1,]   19   21   23
[2,]   20   22   24
> A[2,3,4]
[1] 24

A matrix is a two-dimensional array and is a special case that can be created using 
the matrix command. Rather than using the dimensions, the matrix command 
requires that you specify the number of rows or columns. The command has an 
additional option to specify whether or not the data is in row major or column  
major order:

> B <- matrix(1:12,nrow=3)
> B
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
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> B <- matrix(1:12,nrow=3,byrow=TRUE)
> B
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12

Both matrices and arrays can be manipulated to determine or change their 
dimensions. The dim command can be used to get or set this information:

> C <- matrix(1:12,ncol=3)
> C
     [,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12
> dim(C)
[1] 4 3
> dim(C) <- c(3,4)
> C
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

Censoring data
Using a logical vector as an index is useful for limiting data that is examined.  
For example, to limit a vector to examine only the positive values in the data set,  
a logical comparison can be used for the index into the vector:

> u <- 1:6
> v <- c(-1,1,-2,2,-3,3)
> u
[1] 1 2 3 4 5 6
> v
[1] -1  1 -2  2 -3  3
> u[v > 0]
[1] 2 4 6
> u[v < 0] = -2*u[v < 0]
> u
[1]  -2   2  -6   4 -10   6
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Another useful aspect of a logical index into a vector is the use of the NA data type. 
The is.na function and a logical NOT operator (!) can be a useful tool when a vector 
contains data that is not defined:

> v <- c(1,2,3,NA,4,NA)
> v
[1]  1  2  3 NA  4 NA
> v[is.na(v)]
[1] NA NA
> v[!is.na(v)]
[1] 1 2 3 4

Note that many functions have optional arguments to specify how R should react  
to data that contains a value with the NA type. Unfortunately, the way this is done  
is not consistent, and you should use the help command with respect to any 
particular function:

> v <- c(1,2,3,NA,4,NA)
> v
[1]  1  2  3 NA  4 NA
> mean(v)
[1] NA
> mean(v,na.rm=TRUE)
[1] 2.5

In this last example, the na.rm option in the mean function is set to TRUE to specify 
that R should ignore the entries in the vector that are NA.

Appending rows and columns
The cbind and rbind commands can be used to append data to existing objects. 
These commands can be used on vectors, matrices, arrays, and they are extended to 
also act on data frames. The following examples use data frames, as that is a common 
operation. You should be careful and try the commands on arrays to make sure that 
the operation behaves in the way you expect.

The cbind command is used to combine the columns of the data given as arguments:

> d <- data.frame(one=c(1,2,3),two=as.factor(c("one","two","three")))
> e <- c("ein","zwei","drei")
> newDataFrame <- cbind(d,third=e)
> newDataFrame
  one   two third
1   1   one   ein



Organizing Data

[ 32 ]

2   2   two  zwei
3   3 three  drei
> newDataFrame$third
[1] ein  zwei drei
Levels: drei ein zwei

If the arguments to the cbind command are two data frames (or two arrays), then the 
command combines all of the columns from all of the data frames (arrays):

> d <- data.frame(one=c(1,2,3),two=as.factor(c("one","two","three")))
> e <- data.frame(three=c(4,5,6),four=as.factor(c("vier","funf","sec
hs")))
> newDataFrame <- cbind(d,e)
> newDataFrame
  one   two three  four
1   1   one     4  vier
2   2   two     5  funf
3   3 three     6 sechs

The rbind command concatenates the rows of the objects passed to it. The command 
uses the names of the columns to determine how to append the data. The number 
and names of the columns must be identical:

> d <- data.frame(one=c(1,2,3),two=as.factor(c("one","two","three")))
> e <- data.frame(one=c(4,5,6),two=as.factor(c("vier","funf","sec
hs")))
> newDataFrame <- rbind(d,e)
> newDataFrame
  one   two
1   1   one
2   2   two
3   3 three
4   4  vier
5   5  funf
6   6 sechs

Operations on data structures
The R environment has a rich set of options available for performing operations 
on data within the various data structures. These operations can be performed in a 
variety of ways and can be restricted according to various criteria. The focus of this 
section is the purpose and formats of the various apply commands.
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The apply commands are used to instruct R to use a given command on specific 
parts of a list, vector, or array. Each data type has different versions of the apply 
commands that are available. Before discussing the different commands, it is 
important to define the notion of the margins of a table or array. The margins are 
defined along any dimension, and the dimension used must be specified. The margin 
command can be used to determine the sum of the row, columns, or the entire 
column of an array or table:

> A <- matrix(1:12,nrow=3,byrow=TRUE)
> A
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12
> margin.table(A)
[1] 78
> margin.table(A,1)
[1] 10 26 42
> margin.table(A,2)
[1] 15 18 21 24

The last two commands specify the optional margin argument. The margin.
table(A,1) command specifies that the sums are in the first dimension, that is, the 
rows. The margin.table(A,2) command specifies that the sums are in the second 
dimension, that is, the columns. The idea of specifying which dimension to use in a 
command can be important when using the apply commands.

The apply commands
The various apply commands are used to operate on the different data structures. 
Each one—apply, lapply, sapply, tapply, and mapply—will be briefly discussed  
in order in the following sections.

apply
The apply command is used to apply a given function across a given margin of an 
array or table. For example, to take the sum of a row or column from a two way 
table, use the apply command with arguments for the table, the sum command, and 
which dimension to use:

> A <- matrix(1:12,nrow=3,byrow=TRUE)
> A
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
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[2,]    5    6    7    8
[3,]    9   10   11   12
> apply(A,1,sum)
[1] 10 26 42
> apply(A,2,sum)
[1] 15 18 21 24

You should be able to verify these results using the rowSums and colSums commands 
as well as the margin.table command discussed previously.

lapply and sapply
The lapply command is used to apply a function to each element in a list. The result 
is a list, where each component of the returned object is the function applied to the 
object in the original list with the same name:

> theList <- list(one=c(1,2,3),two=c(TRUE,FALSE,TRUE,TRUE))
> sumResult <-  lapply(theList,sum)
> sumResult
$one
[1] 6

$two
[1] 3

> typeof(sumResult)
[1] "list"
> sumResult$one
[1] 6

The sapply command is similar to the lapply command, and it performs the same 
operation. The difference is that the result is coerced to be a vector if possible:

> theList <- list(one=c(1,2,3),two=c(TRUE,FALSE,TRUE,TRUE))
> meanResult <- sapply(theList,mean)
> meanResult
 one  two 
2.00 0.75 
> typeof(meanResult)
[1] "double"
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tapply
The tapply command is used to apply a function to different parts of data within 
an array. The function takes at least three arguments. The first is the data to apply 
an operation, the second is the set of factors that defines how the data is organized 
with respect to the different levels, and the third is the operation to perform. In the 
following example, a vector is defined that has the diameter of trees. A second vector 
is defined, which specifies what kind of tree was measured for each observation. The 
goal is to find the standard deviation for each type of tree:

> diameters <- c(28.8, 27.3, 45.8, 34.8, 25.3)
> tree <- as.factor(c("pine","pine","oak","pine","oak"))
> tapply(diameters,tree,sd)
      oak      pine 
14.495689  3.968627 

mapply
The last command to examine is the mapply command. The mapply command  
takes a function to apply and a list of arrays. The function takes the first elements 
of each array and applies the function to that list. It then takes the second elements 
of each array and applies the function. This is repeated until it goes through every 
element. Note that if one of the arrays has fewer elements than the others, the mapply 
command will reset and start at the beginning of that array to fill in the missing values:

> a <- c(1,2,3)
> b <- c(1,2,3)
> mapply(sum,a,b)
[1] 2 4 6
>

Summary
In this chapter, we examined the basic data structures available to help organize 
data. These data structures include vectors, lists, data frames, tables, and arrays. 
We examined some of the ways to manage the data structures using the rbind 
and cbind commands. Finally, we examined some of the methods available to 
perform calculations on the data within the data structure and examined the various 
functions available to apply commands to parts of the data within the data structure.

In the next chapter, we will build on these ideas and examine how to get information 
from a data file and into the various data structures. We will also examine the methods 
available to produce formatted output to display the results of calculations on data.





Saving Data and  
Printing Results

This chapter provides you with a broad overview of the ways to get information into 
as well as out of the R environment. There are various packages that are available 
and related to this important function, but we will focus on a subset of the basic, 
built-in functions. The chapter is divided into the following five sections:

• File and directory information: This section gives you a brief overview of 
how files and directories are organized in the R environment

• Input: This section gives you an overview of the methods that can be used to 
bring data into the R environment

• Output: This section gives you an overview of the methods available to get 
data out of the R environment

• Primitive input/output: This section gives you an overview of the methods 
you can use to write data in binary or character forms in predefined formats

• Network options: This section gives you a brief overview of the methods 
associated with creating and manipulating sockets

File and directory information
Before discussing how to save or read data, we first need to examine R's facilities for 
getting information about files and directories. We will first discuss the commands 
used to work with directories and files, and then discuss the commands used to 
manipulate the current working directory. The basic commands to list directory 
and file information are the dir, list.dirs, and list.files commands. The basic 
commands to list and change the current working directory are getwd and setwd.
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The dir, list.dirs, and list.files commands are used to get information 
about directories and files within directories. By default, the commands will get 
information about the directories in the current working directory:

> dir()
[1] "R"   "bin" "csv"
> d <- dir()
> d[1]
[1] "R"

The preceding commands also accept a wide variety of options. Use of the help 
command is recommended to see more details:

> list.files('./csv')
[1] "network.csv" "trees.csv"  
> f <- list.files('./csv')
> f[2]
[1] "trees.csv"

These commands have an optional parameter for specifying a pattern, and the 
pattern is a regular expression. The topic of regular expressions is beyond the scope 
of this discussion, but it offers a very powerful option for specifying a filter to 
determine the names of files. For example, all of the files that begin with the letter n 
can be easily determined:

> f <- list.files('./csv',pattern='^n')
> f
[1] "network.csv"

Another important topic is the idea of the current working directory. When the R 
environment seeks a file or directory whose name is given in a relative form, it starts 
from the current working directory. There are several other ways to specify the 
current directory, and it is part of the majority of graphical interfaces. Unfortunately, 
it varies across the different interfaces.

The commands to manipulate the current working directory via the command line 
are the getwd and setwd commands. The names of directories (folders) are separated 
using forward slashes:

> getwd()
[1] "/tmp/examples"
> d <- getwd()
> d
[1] "/tmp/examples"
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Entering data
Having discussed the ideas associated with directories and files, we can now discuss 
how to read data. Here, we will provide an overview of the different ways to get 
information from a file. We will begin with a short overview about entering data 
from the command line followed by examples for reading a text file in the form of a 
table, from a csv file, and fixed width files. Finally, we will discuss more primitive 
methods to read from a binary file.

It is important to note that we rely on the topics discussed in Chapter 1, Data Types 
and Chapter 2, Organizing Data. I assume that you are familiar with the various 
data types given in Chapter 1, Data Types, as well as the data structures discussed in 
Chapter 2, Organizing Data. In this chapter, we will explore a small number of ways 
to read data into R. There are a large number of libraries available to read data in a 
wide variety of formats such as JSON, XML, SAS, Excel, and other file formats. There 
are also more options available in the base R distribution. To see more options, type 
read and press the TAB key (no space after the letters read) to see a partial list of 
other options.

Entering data from the command line
We will examine two ways to read data including reading keyboard input from 
the command line and reading data from a file. We first examine some techniques 
used to obtain information through the command line. More details can be found 
in Chapter 2, Organizing Data, and we will explore additional ways to enter data 
including the use of the scan and data.entry commands.

In addition to concatenating information with the c command, there are additional 
commands to make it easier to define data. The first command we will examine is 
the scan command. If you simply assign a variable using the scan command with 
no arguments, then you are prompted and required to enter the numbers from the 
command line. If you enter a blank line (just hit the Enter key), then the previous 
values are returned as a vector:

> x <- scan()
1: 28.8
2: 27.3
3: 45.8
4: 34.8
5: 23.5
6: 
Read 5 items
> x
[1] 28.8 27.3 45.8 34.8 23.5

www.allitebooks.com

http://www.allitebooks.org
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In this example, the scan command is used to prompt us to enter a set of numbers. 
After a blank entry is given, the command returns a vector with the previous values.

If you provide a filename, then the scan command will read the values from the file 
as if you had typed them on the command line. Suppose that we have a file called 
diameters.csv with the following contents:

28.8
27.3
45.8
34.8
25.3

You can read the contents using the scan command as follows:

> x <- scan("diameters.csv")
Read 5 items
> x
[1] 28.8 27.3 45.8 34.8 25.3

You can read more complex data from a file using the scan command, but you must 
specify the structure of the file. This means that you have to specify the data types. 
Here, assume that we have a data file called trees.csv:

pine,28.8
pine,27.3
oak,45.8
pine,34.8
oak,25.3

The first column is the character data, and the second column is the numeric data. 
The information on each line is separated by a comma. The scan command assumes 
that the information is separated using white space (spaces and tabs), so in this 
case, we have to specify that a comma is used as the separator within the file. In the 
following example, the file is read, and the format is given using the what argument:

> x <- scan("trees.csv",what=list("character","double"),sep=",")
Read 5 records
> x
[[1]]
[1] "pine" "pine" "oak"  "pine" "oak" 

[[2]]
[1] "28.8" "27.3" "45.8" "34.8" "25.3"
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Another method for entering data is to use the data.entry command. The command 
will open up a graphical interface if it is available on your system. The details can 
vary depending on your operating system and the graphical interface that you  
are using.

Reading tables from files
One common method used to read data from a file is to read it as a table. This 
assumes that the file is nicely formatted and arranged in convenient rows and 
columns. A command to read data in this form is the read.table command. There 
are a large number of options for this command, and it is highly recommended that 
you use the help command, help(read.table), to see more complete details about 
this command.

The first example demonstrates how to read a simple file. It is assumed that you have 
a file called trialTable.dat in the following format:

1 2 3
3 5 6

The file has no header, and the values are separated by spaces (white space). In this 
simple format, the file can be read with the default options:

> trial <- read.table("trialTable.dat")
> trial
  V1 V2 V3
1  1  2  3
2  3  5  6
> typeof(trial)
[1] "list"
> names(trial)
[1] "V1" "V2" "V3"

The result is a list of values. No names were specified for the names of the columns, 
and the default values for the column names have been used.
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CSV files
The read.table command offers a general way to read the data from a file with a 
known structure. One common file structure is a file where the values are separated 
by commas, or a csv file. The command to read a csv file is the read.csv command. 
There is an alternate version of the command, read.csv2, which has a different set 
of defaults. The difference is that the defaults for read.csv2 are defined to allow a 
simple way of reading a file in which the delimiter between the decimal values is a 
comma and the values are separated by semicolons, which are more commonly used 
in some European countries.

The read.csv command is similar to the read.table command. The primary 
difference is that the result is returned as a data frame, and a greater range of data 
types for the columns are recognized.

In the preceding examples, the trialTable.csv file is read into the workspace. The 
same file can be read using the read.csv command. The trialTable.csv file does 
not have a header, and the numbers are separated using spaces:

> trial <- read.csv("trialTable.csv",header=FALSE,sep=' ')
> trial
  V1 V2 V3
1  1  2  3
2  3  5  6
> typeof(trial)
[1] "list"

In the next example, we have a data file in which each line has the same number of 
columns, and the data fields are separated by commas. The file was downloaded 
from http://www.bea.gov/. The first six lines of the file are used to identify 
information about the data in a human-readable form, but that information should 
be ignored by the read.csv function. The other thing to note is that the seventh line 
is a header; it has information that defines the label used to refer to the columns. The 
last thing to note is that the numbers are separated by commas. All of these details 
must be specified if we want to read the file using the read.csv command. This 
second file, inventories.csv, can be read using the read.csv command, as follows:

inventories <- read.csv("inventories.csv", + 
skip=6,header=TRUE,sep=",")
> typeof(inventories)
[1] "list"
> names(inventories)
 [1] "Line"    "X"       "X1994.1" "X1994.2" "X1994.3" "X1994.4" 
"X1995.1"
 [8] "X1995.2" "X1995.3" "X1995.4" "X1996.1" "X1996.2" "X1996.3" 
"X1996.4"

http://www.bea.gov/
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Fixed-width files
Another common file format is a fixed width file. In a fixed width file, every line 
has the same format and the information within a given line is strictly organized by 
columns. A file in this format can be read using the read.fwf command. To use the 
read.fwf command, you must specify the name of the file and the width of each 
column. You can instruct R to ignore a column by providing a negative value for the 
width of the column.

In this example, we assume that a file with the name trialFWF.dat is in the current 
working directory. The contents of the file are as follows:

12312345121234
B    100ZZ  18
C    200YY  20
D    300XX  22

The first three columns are assumed to contain letters, the next five columns contain 
numbers, the next two columns have letters, and the last four columns are numbers. 
In the example file, the top row should be ignored as it is used to demonstrate how 
the file is organized. The skip option is used to indicate how many lines to ignore at 
the top of the file:

> trial <- read.fwf('trialFWF.dat',c(3,5,2,4),skip=1)
> trial
   V1  V2 V3 V4
1 B   100 ZZ 18
2 C   200 YY 20
3 D   300 XX 22
> trial$V1
[1] B   C   D  
Levels: B   C   D  

Note that when a width is given as a negative number, that column is ignored:

> trial <- read.fwf('trialFWF.dat',c(3,-5,2,4),skip=1)
> trial
   V1 V2 V3
1 B   ZZ 18
2 C   YY 20
3 D   XX 22
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Printing results and saving data
We will explore the options available to take information stored within the R 
environment and express that information in either human- or machine-readable 
forms. We will start with a brief discussion on saving the workspace in an R 
environment. Next, we will discuss various commands that can be used to print 
information to either the screen or a file. Finally, we will discuss the primitive 
commands that can be used for basic file operations.

Saving a workspace
There are two commands used to save the information in the current workspace.  
The first is the save command, which allows you to save particular variables. The 
second is the save.image command, which allows you to save all the variables 
within the workspace.

The save command requires a list of variables to save, and the name of a file to 
save the variables. There are a wide variety of options, but in the most basic form 
you simply save specific variables from the current workspace. Here, we use the ls 
command to first list the variables in the current workspace and then use the save 
command to save two variables, inventories and trees:

> dir()
[1] "diameters.csv"  "inventories.csv" "network.csv" "trees.csv"
[5] "trialFWF.dat"   "trialTable.csv" 
> ls()
[1] "a"        "d"        "f"        "inventories" "trees" 
[6] "trial"    "x"        "y" 
> save(inventories,trees,file="theInventories.RData")
> dir()
[1] "diameters.csv"        "inventories.csv"      "network.csv"     
[4] "theInventories.RData" "trees.csv"            "trialFWF.dat"    
[7] "trialTable.csv"      

The save.image command requires only one argument; the name of the file used to 
save the information:

> dir()
[1] "diameters.csv"        "inventories.csv"      "network.csv"    
[4] "theInventories.RData" "trees.csv"            "trialFWF.dat"   
[7] "trialTable.csv"      
> save.image("wholeShebang.RData")
> dir()
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[1] "diameters.csv"        "inventories.csv"      "network.csv"   
[4] "theInventories.RData" "trees.csv"            "trialFWF.dat"  
[7] "trialTable.csv"       "wholeShebang.RData"  

If you start a new R session, the information that has been saved using a save or 
save.image command can be read using the load command:

> ls()
character(0)
> dir()
[1] "diameters.csv"        "inventories.csv"      "network.csv"      
[4] "theInventories.RData" "trees.csv"            "trialFWF.dat"      
[7] "trialTable.csv"       "wholeShebang.RData"
> load("theInventories.RData")
> ls()
[1] "inventories" "trees"      

The cat command
The cat command can be used to take a list of variables, convert them to a text form, 
and concatenate the results. If no file or connector is specified, the result is printed to 
the screen; otherwise, the connector is used to determine how the result is handled. 
Note that there is an additional set of commands, the various write commands, but 
those commands are convenient routines that allow a shorthand notation to access 
the cat commands. These commands are primarily used in scripts:

> one <- "A"
> two <- "B"
> cat(one,two,"\n")
A B 

The cat command allows you to specify a number of options. For example, you 
can specify the separator between variables, labels to be used, or whether or not to 
append to a given file:

> cat(one,two,"\n",sep=" - ")
A - B - 

The print, format, and paste commands
We examine three ways to display information using the print, format, and paste 
commands. These can be used by programs to display the formatted output. The 
three commands provide numerous options to ensure that the information appears 
in human-readable forms.
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The print command is used to display the contents of a single variable, as follows:

> one <- "A"
> print(one)
[1] "A"

The paste command takes a list of variables, converts them to characters, and 
concatenates the result. This is a useful command to dynamically create annotations 
for plots and figures, as follows:

> one <- "A"
> two <- "B"
> numbers <- paste(one,two)
> numbers
[1] "A B"
> numbers <- paste(one,two,sep="/")
> numbers
[1] "A/B"

In this example, the numbers variable is a string, and it is the result of converting 
the arguments to a string and concatenating the results. In the second part of the 
example, the separator was changed from the default, a space, to a forward slash.

The format command converts an R object to a string, and it allows a large number 
of options to specify the appearance of the object:

> three <- exp(1)
> nice <- format(three,digits=2)
> nice
[1] "2.7"
> nice <- format(three,digits=12)
> nice
[1] "2.71828182846"
> nice <- format(three,digits=3,width=5,justify="right")
> nice
[1] " 2.72"
> nice <- format(three,digits=3,width=8,justify="right",decimal.
mark="#")
> nice
[1] "    2#72"

In this example, the format command is used in various ways to convert a numeric 
variable to a string. The various options to change the number of digits and the total 
number of characters has been changed to refine the results.
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Primitive input/output
There are a number of primitive commands that offer fine grain control for 
reading and writing information to and from a file. We do not provide extensive 
examples here because these commands are more useful when combined with the 
programming commands that are explored in later chapters.

Before discussing these commands, it is important to discuss the idea of a connector. 
A connector is a generic way to treat a data source. This can be a file, an HTTP 
connection, a database connection, or another network connection. In this section, 
we only explore one type of connector, that is, the basic text file connector. More 
information can be found using the help command, help(file). The file 
command is used to create a connector to a file. The arguments to the file command 
are similar to the fopen command found in the C language.

The most basic use of the file command requires that you provide a name of a file 
and the mode that will be used in manipulating the file. The mode can tell R whether 
the file will be used to read or write as well as whether or not it is a binary file. In this 
first example, we will open a file and write a double precision number and then a 
character string. In the next example that follows, we will open the file and read the 
information back into the workspace. To write the information, we will first use the 
file command to open a file, call twoBinaryValues.dat, and use the binary mode. 
We will then use the writeBin command to write the two values. We assume here 
that a double precision number requires four bytes:

> fileConnector = file("twoBinaryValues.dat",open="wb")
> theNumber = as.double(2.72)
> writeBin(theNumber,fileConnector,size=4)
> note <- "hello there!"
> nchar(note)
[1] 12
> writeBin(note,fileConnector,size=nchar(note))
> close(fileConnector)

In this example, a file connector is created to write information in a binary format. 
Two variables are then written to the file, and the file is closed. The same information 
is read in the next example. The readBin command is used to read the information 
from the file:

> fileConnector = file("twoBinaryValues.dat",open="rb")
> value <- readBin(fileConnector,double(),1,size=4)
> value
[1] 2.72
> note <- readBin(fileConnector,character(),12,size=1)
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> note
[1] "hello there!"
> close(fileConnector)

There are a number of commands that can be used to read and write character data. 
The writeChar and readChar commands are used to write and read character data 
in a similar way as the writeBin and readBin commands. The writeLines and 
readLines commands can be used to write whole lines as characters at one time.

Network options
Another way to read information is through a network connection using sockets. 
The methods available to manipulate sockets will be briefly explored in this 
section. We first explore the high level socket commands that make use of the 
socketConnection command to create a connector. Next, some of the more basic 
options are briefly stated. This is an advanced topic beyond the scope of this book, 
but it is provided here as a matter of completeness.

Opening a socket
The socketConnection command will create a network connection to a given host 
using a port number. The command returns a connector that can be treated the 
same as a file connector. In the following example, a connection is opened to the 
waterdata.usgs.gov website using the standard HTTP port, 80. It then sends the 
HTTP header necessary to request the data for the daily flow rates for the South 
Colton station on the Raquette River in northern New York:

> usgs <- socketConnection(host = "waterdata.usgs.gov",80)
> writeLines("GET /ny/nwis/dv?cb_00060=on&format=rdb&site_
no=04267500&referred_module=sw&period=&begin_date=2013-05-08&end_
date=2014-05-08 HTTP/1.1",con=usgs)
> writeLines("Host: waterdata.usgs.gov",con=usgs)
> writeLines("\n\n",con=usgs)
> lines = readLines(usgs)
> lines
  [1] "HTTP/1.1 200 OK"                                                                      
  [2] "Date: Fri, 09 May 2014 16:28:26 GMT"                                                  
  [3] "Server: Apache"                                                                       
  [4] "AMF-Ver: 4.02"                                                                        
  [5] "Connection: close"                                                                    
  [6] "Transfer-Encoding: chunked"                                                           
  [7] "Content-Type: text/plain"                                                             
  [8] ""                                                                                     

waterdata.usgs.gov
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  [9] "3bc"                                                                                  
 [10] "# ---------------------------------- WARNING ------------------
----------------------"
 [11] "# The data you have obtained from this automated U.S. 
Geological Survey database"     
 [12] "# have not received Director's approval and as such are 
provisional and subject to"   
 [13] "# revision.  The data are released on the condition that 
neither the USGS nor the"    
 [14] "# United States Government may be held liable for any damages 
resulting from its use."
 [15] "# Additional info: http://waterdata.usgs.gov/ny/nwis/?provisio
nal"                    
 [16] "#"                                                                                    
 [17] "# File-format description:  http://waterdata.usgs.gov/
nwis/?tab_delimited_format_info"
 [18] "# Automated-retrieval info: http://help.waterdata.usgs.gov/faq/
automated-retrievals"  
 [19] "#"                                                                                    
 [20] "# Contact:   gs-w_support_nwisweb@usgs.gov"                                           
 [21] "# retrieved: 2014-05-09 12:28:35 EDT       (vaww01)"                                  
 [22] "#"                                                                                    
 [23] "# Data for the following 1 site(s) are contained in this file"                        
 [24] "#    USGS 04267500 RAQUETTE RIVER AT SOUTH COLTON NY"                                 

...[Deleted Lines]...

[425] "USGS\t04267500\t2014-05-07\t5810\tP"                                                  
[426] "USGS\t04267500\t2014-05-08\t5640\tP"                                                  
[427] ""                                                                                     
[428] "0"                                                                                    
[429] ""                                                                                     
> close(usgs)

In this example, a socket connection is created. It is used to make a connection to a 
URL with a given port. The socket connector is then used to send an HTTP header 
to request a particular page from the given host. The resulting page is read using 
the readLines command. The readLines command is used to read every line as a 
string, and the information in the vector will have to be parsed to transform it into a 
useable form.
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Basic socket operations
Aside from the higher level option given in the previous section, there are also more 
primitive commands for creating and using a socket. The commands examined are 
the make.socket, read.socket, write.socket, and the close.socket commands. 
Sockets are scarce resources, and checks need to be put in place to ensure that they 
are released when something goes wrong. For that reason, a socket is usually created 
within a function with extra checks. The example here is basic, and it is provided 
simply to demonstrate the commands. You should see the help pages for the socket 
commands for a more comprehensive example.

To replicate the preceding example, the socket is opened, and the HTTP request  
is submitted:

> socketRead <- make.socket("waterdata.usgs.gov",80)
> write.socket(socketRead,"GET /ny/nwis/
dv?cb_00060=on&format=rdb&site_no=04267500&referred_
module=sw&period=&begin_date=2013-05-08&end_date=2014-05-08 
HTTP/1.1\n");
> write.socket(socketRead,"Host: waterdata.usgs.gov\n\n\n");
> incoming <- read.socket(socketRead);
> close.socket(socketRead)
[1] FALSE

The incoming variable will now contain the result of the operation.

Summary
In this chapter, we have explored some of the facilities available to read and write 
information to a file as well as ways to enter data from the command line. We 
examined the ways to change between directories and get the directory information.

After examining ways to read data, we explored some of the ways that the information 
can be displayed. We first examined how to print information on the command line, 
and we then explored how to save data to a local file. We also explored how the 
current work space could be saved and recalled for use in a later session.

One important topic explored was how to work with files that do not follow a basic 
format. We examined the commands necessary to read data, in both text and binary 
forms where the data file follows a predefined structure.
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The final topic explored was how to use network connections to read information. 
This included the use of a socket connector to allow access to relatively  
well-structured information. We also explored more primitive options that  
allow us to create sockets and manipulate them in a more basic form.

In the previous chapters, we examined the basic ways to store data. In the chapter 
that follows, Chapter 4, Calculating Probabilities and Random Numbers, we get our 
first glimpse of the functions available to help us understand how to interpret data. 
We will explore some of the options available to work with various predefined 
probability distributions.





Calculating Probabilities and 
Random Numbers

In this chapter, we provide a broad overview of the functions related to probability 
distributions. This includes functions associated with probability distributions, 
Random Number Generation, and issues associated with sampling. The chapter is 
divided into five parts:

• Distribution functions: This section gives you a brief overview of the  
ideas and concepts behind random variables and approximating the  
height of a probability mass function of a probability density function for  
a given distribution

• The cumulative distribution function: This section gives you an overview  
of how to approximate the cumulative distribution for a given distribution

• The inverse cumulative distribution function: This section gives you an 
overview of how to approximate the inverse cumulative distribution function 
for a given distribution

• Random Number Generation (RNG): This section gives you an overview of 
how R generates pseudorandom numbers with examples of how to generate 
random numbers for a given distribution

• Sampling: This section gives you an overview of sampling data from a  
given vector
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Overview
The base R environment has options for approximating many of the properties 
associated with probability distributions. This is not a complete discussion, 
and a more complete list can be found within the R environment using the 
help(Distributions) command. In this chapter, we will discuss how R can be used 
to approximate distribution functions, how to approximate cumulative distribution 
functions, how to approximate inverse cumulative distribution functions, Random 
Number Generation (RNG), and sampling.

The commands used for the first set of topics have a common format, and each 
command has the form of a prefix and a suffix. The suffix specifies the distribution 
by name. For example, the norm suffix refers to the normal distribution. A list of the 
distributions available in the base R installation is given in Table 1. The prefix is one 
of the following:

• d: This determines the value of the distribution function, for example, dnorm 
is the height of the normal's probability distribution function

• p: This determines the cumulative distribution, for example, pnorm is the 
cumulative distribution function for the normal distribution

• q: This determines the inverse cumulative distribution, for example, qnorm is 
the inverse cumulative distribution function for the normal distribution

• r: This generates random numbers according to the distribution, for example, 
rnorm calculates random numbers that follow a normal distribution

As an example, to determine the probability that a Poisson distribution will return a 
given value, the command to use is dpois, and the command to get the probability 
that a Poisson distribution is less than or equal to a particular value is ppois.

In this chapter, we assume that you are familiar with the idea of a random variable. 
In short, a random variable is a function, and the function assigns a number for each 
outcome in the sample space associated with an experiment. A continuous random 
variable is a function that can include a continuous range of values in the values it 
can return. A discrete random variable can only return numbers from a discrete set 
of values. The following table shows the distributions available in R:
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Discrete Continuous 
Name Suffix Name Suffix
Beta beta χ2 chisq

Binomial binom Exponential exp

Cauchy cauchy F f

Geometric geom Gamma gamma

Hypergeometric hyper Log Normal lnorm

Multinomial mutlinom Normal norm

Negative Binomial nbinom Student t t

Poisson pois Uniform unif

Weibull weibull

Table 1 – a list of distributions and the suffix used in R to refer to them

Distribution functions
We will first discuss the way to calculate the value of a distribution function in R. 
We will then discuss discrete distributions and then continuous distributions. The 
distribution function is used to determine the probabilities that a particular event 
will occur. In the case of a discrete distribution, the function is called a probability 
mass function, and for a continuous distribution it is called a probability distribution 
function. For a discrete distribution, the probabilities are calculated using a sum 
where f(i) is the probability mass function:

( ) ( ) ,
b

i a
p a x b f i

=

≤ ≤ =∑

Each distribution has its own parameters associated with it, and judicial use of the 
help command is highly recommended. For example, to get more information about 
the Poisson distribution, the help(dpois) command can be used. In the case of the 
Poisson distribution, there are two parameters required for the dpois command. 
The first is x and the second is lambda. The function returns the probabilities that a 
Poisson random variable with the lambda parameter returns the values given by x.
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For example, to plot the probabilities for a Poisson distribution with parameter 10, 
the following commands are used to generate the values that can be returned  
(called x), and a bar plot is used to display them:

> x <- 0:20
> probabilities <- dpois(x,10.0)
> barplot(probabilities,names.arg=x,xlab="x",ylab="p", +  
  main="Poission Dist, l=10.0")

For the continuous distribution, the random variable can take on a range of values, 
and instead of adding, we find the area under a curve, f(s), called the probability 
density function:

( ) ( ) .
b

a
p b x a f s ds≤ ≤ = ∫

In the next example, we use the χ2 distribution. The idea behind the χ2 distribution 
is that you sample n independent random variables that follow a standard normal 
distribution. You then square the values that were sampled and add them up. The 
result is defined to be an χ2 distribution. Note that there is one parameter, n, and it is 
generally specified by giving the number of degrees of freedom, which is defined to be 
n-1. The number of degrees of freedom is often referred to as df.

For this example, the command to obtain an approximation for the probability 
density function is dchisq, and it takes two arguments, x and df. Here, we plot the 
probability density function for two χ2 distributions with two different parameters. 
First a range of values, x, is defined, and then the height of the probability density 
function for an χ2 distribution with df=30 is plotted. Next, another χ2 distribution 
with df=35 is plotted on the same plot using the points command:

> x <- seq(0.0,100.0,by=0.1)
> prob <- dchisq(x,df=30)
> plot(x,prob,main="Chi Squared Dist.",xlab='x',ylab='p',col=2,type=
"l")
> probTwo <- dchisq(x,df=35)
> points(x,probTwo,col=3,type="l")
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Cumulative distribution functions
Another important tool used to approximate probabilities is the cumulative 
distribution function. In many situations, we are required to determine the 
probability that a random variable will return a value within some given range 
of values. The cumulative distribution allows us to use a shortcut to calculate the 
resulting probability. As in the previous section, we look at discrete and continuous 
distributions separately. We examine the definition and look at examples for  
both cases.

For a discrete distribution, the cumulative distribution function is defined to be the 
following equation:

( ) ( ) ( ).
a

i
F a p x a f i

=−∞

= ≤ = ∑

From this definition, the probability that a random variable is between two numbers 
can be determined by the following equation:

( ) ( ) ( ).p a x b F a F b≤ < = −

Please note the details in the inequality. In the case of discrete distributions, it 
matters if less than or equal is used as opposed to less than.

For a Poisson distribution, the command to determine the cumulative distribution 
function is the ppois command, and it has the same arguments as the dpois 
command discussed earlier. The following example mirrors the example in the 
previous section, and the cumulative distribution function is plotted for a Poisson 
distribution with parameter 10.0:

> x <- 0:20
> cdf <- ppois(x,10.0)
> barplot(cdf,names.arg=x)

The cumulative distribution function for a continuous random variable is defined 
in the same way as that of a discrete random variable. The only difference is that 
instead of a sum we use an integral, as follows:

( ) ( ) ( ) .
a

F a p x a f s ds
−∞

− ≤ ∫
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This definition gives the same result as before, and the probability that a random 
variable is between two numbers can be determined by using the following equation:

( ) ( ) ( ).p a x b F a F b≤ < = −

The following example compares the cumulative distribution functions for two χ2 
distributions where the first has 30 degrees of freedom and the second has 35 degrees 
of freedom:

> x <- seq(0.0,100.0,by=0.1)
> cdf <- pchisq(x,df=30)
> plot(x,cdf,main="Chi Squared Dist.",xlab='x',ylab='p',col=2,
+      type="l")
> cdfTwo <- pchisq(x,df=35)
> points(x,cdfTwo,col=3,type="l")

Inverse cumulative distribution functions
The cumulative distribution function is often used to calculate probabilities, but in 
other circumstances the goal is to find a range of values given the probability. In this 
case, the inverse cumulative distribution function can be used to determine a value 
of the random variable that corresponds to a given probability. The idea is that given 
the probability, you want to solve for the value of a in the expression:

( ) ( )p p x a F a= ≤ =

For example, suppose that we have a Poisson random variable with parameter 10.0 
and wish to find the value of a for which the probability of the random variable is 
less than a is 0.5. Using the qpois command, we can determine the value:

> a <- qpois(0.5,10.0)
> a
[1] 10

This result indicates that the probability that a Poisson random variable with 
parameter 10.0 is less than 10.0 is 0.5, or put another way the median is 10.0. Since 
this is also the mean of the random variable, we can see that there is no skew 
associated with the distribution.
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We now do the same for the χ2 distribution with 30 degrees of freedom. The qchisq 
command can be used to determine the median for this distribution:

> a <- qchisq(0.5,df=30)
> a
[1] 29.33603

In this case, we see that the median is less than the mean, which is 30, so the χ2 
distribution with 30 degrees of freedom is skewed to the left since the median is to 
the left of the mean.

Generating pseudorandom numbers
A common task in simulations is to generate random numbers that follow a given 
distribution. We explore this important topic, but it is important to make a few notes 
about Random Number Generation. First, and foremost, despite the nomenclature, 
the numbers are not random because they are generated using a deterministic 
algorithm. Secondly, when debugging and comparing code used to simulate a 
stochastic process, it is important to be able to generate numbers in a repeatable  
way to ensure that the results are consistent.

Before discussing generating random numbers, we provide some minimal 
background information about how R generates random numbers. This is a complex 
topic, and you can find more details using the help(RNG) command. One thing to 
note is that the .Random.seed variable has the value of the current seed, but it is not 
defined until you do so explicitly or a command is called that requires that a random 
number be generated. The variable can be set directly, but it is better to change it 
using the set.seed command. Also, the algorithm that is used to generate random 
numbers can be set or obtained using the RNGkind command. Note that the save 
command can be used as a convenient way to save the seed if repeatability of your 
results is important as you make changes to established code.

Random Number Generation can be a daunting subject, but we primarily focus on 
how to generate random numbers according to a given distribution. As before, we 
first examine a discrete distribution; the Poisson distribution with parameter 10.0. 
We then examine an χ2 distribution with 30 degrees of freedom. In each case, we 
generate one hundred random numbers and create a histogram of the results.
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First we examine the discrete distribution. The rpois command can be used to 
generate the number. It takes two parameters, the number of points to approximate 
and the parameter associated with the distribution:

> numbers <- rpois(100,10.0)
> hist(numbers,main="100 Samples of a Poisson Dist.",xlab="x")

Likewise, a χ2 distribution can also be sampled, and the results are plotted using  
a histogram:

> numbers <- rchisq(100,df=30)
> hist(numbers,main="100 Samples from a Chi-Squared Dist.",xlab="x")

Sampling
The final topic that we will discuss is sampling. This can also be a complicated 
subject, and it is often used in bootstrapping and a wide variety of other techniques. 
Because of its prevalence, we provide it as a separate section.

The sole focus of this section is on the sample command. It may seem odd to grant 
such attention to a single command, but sampling is a complex topic with more 
opinions associated with it than there are statisticians. The sample command 
requires at least one argument, a vector or a number, and it returns a set of values 
chosen at random. The options for the command allow you to specify how many 
samples to take, whether or not to use replacement, and a probability distribution if 
you do not wish to use a uniform mass function.

The sample function's behavior depends on whether or not you give it a vector or a 
number. If you pass a number to it (that is, a vector of length 1), it will sample from 
the set of whole, positive numbers less than or equal to that number:

> sample(3)
[1] 3 2 1
> sample(5)
[1] 2 3 1 4 5
> sample(5.6)
[1] 5 1 4 3 2

If you pass it a vector whose length is greater than 1, it will sample from the elements 
in the vector:

> x <- c(1,3,5,7)
> sample(x)
[1] 7 1 5 3
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If you do not specify the number of samples to take, it will use the number of objects 
passed to it. The size parameter allows you to specify a different number of samples:

> x <- c(1,3,5,7)
> sample(x,size=2)
[1] 1 7
> sample(x,size=3)
[1] 1 3 5
> sample(x,size=8)
Error in sample.int(length(x), size, replace, prob) : 
  cannot take a sample larger than the population when 'replace = 
FALSE'

In the preceding example, the number of samples is larger than the number of 
elements available. To avoid an error, you have to specify sampling with replacement:

> x <- c(1,3,5,7)
> sample(x,size=8,replace=TRUE)
[1] 3 5 5 5 3 7 5 1

In the previous examples, the samples were found using the default algorithm.  
The default is to use a uniform probability mass function meaning every element has 
the same likelihood of being chosen. You can change this behavior by specifying a 
vector of probabilities that has the likelihood of choosing each particular element of 
the vector:

> x <- c(1,3,5,7)
> sample(x,size=8,replace=TRUE,p=c(0.05,.10,.15,.70))
[1] 7 3 3 7 7 7 7 5

Summary
In this chapter, we examined a broad overview of some of the probability functions 
in the base R installation. These include functions to approximate the distribution 
function, the cumulative distribution function, and the inverse cumulative 
distribution. We also examined how to generate pseudo-random numbers for the 
various distributions. The final topic explored was the use of the sample command, 
which is used for sampling from a given dataset stored as a vector.

In the next chapter, we step back from the more mathematical ideas explored in 
this chapter and look at the programming facilities that can be used to manipulate 
strings. This is an important topic as it is not uncommon for datasets to include string 
variables, and it is often necessary to extract or add information to the variables 
within a dataset.





Character and String 
Operations

This chapter will provide you with a broad overview of the operations available for 
the manipulation of character and string objects. This is a relatively concise chapter, 
and the focus is on basic operations. There are roughly two parts in this chapter:

• Basic string operations: This section gives you a broad overview of the most 
basic string operations

• Regular expressions: This section gives you a brief introduction of three 
commands that make use of regular expressions

Basic string operations
In some situations, data is kept in the form of characters or strings, whereas in some 
other situations the strings must be parsed or investigated as part of a statistical 
analysis. Because of the prevalence of data in the form of strings, the R language has 
a rich set of options available for manipulating strings. In this chapter, we investigate 
some of the options available, and our investigation is divided into two parts. They 
are as follows:

• In the first part, we examine a number of basic string operations whose 
function is focused on particular operations

• In the second part, we examine the functions that are based on regular 
expressions that offer a powerful set of wide ranging operations
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The use of regular expressions represent a powerful set of tools for string 
manipulation, but the cost is greater complexity. In this chapter, we only focus on 
the most basic uses of these functions as their most common uses tend to be parts of 
more complex code that may use a complicated combination of the commands.

As a way to make the connection between the commands, we assume a common 
data set throughout this chapter. In particular, we assume that we have a set  
of URLs:

> urls <- c("https://duckduckgo.com?q=Johann+Carl+Friedrich+Gauss",
     "https://search.yahoo.com/search?p=Jean+Baptiste+Joseph+Fourier",
     "http://www.bing.com/search?q=Isaac+Newton",
     "http://www.google.com/search?q=Brahmagupta")

We will examine various ways to pull information from each URL. Such a task may 
be necessary either to pull information from a website or to perform an analysis on 
the URLs themselves.

Six focused tasks
We first examine six specific tasks. These operations are to determine the length of 
a string, location of a substring, extract or replace a substring, change the case of a 
string, split a string into separate parts, and express a combination of objects as a 
single string. Please note that the examples will make extensive use of the definition 
of the url vector that is defined in the previous section.

Determining the length of a string
The nchar command is used to determine the length of a string. This option can be 
used as part of a simple statistic for a set of strings or can be part of a programming 
tool when it is necessary to iterate over a string. You can specify how the count is 
calculated with options to count the number of characters, bytes, or width of the 
resulting string. In most cases, these values will be the same but can differ depending 
on the Unicode settings for your environment:

> nchar(urls)
[1] 52 62 41 42
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The nchar command tries to coerce its argument to a string, which means that it 
interprets the values of objects whose type is NA as the string NA. Another side effect 
is that it can return an error when used on factors:

>> nchar(c("one",NA,1234))
[1] 3 2 4
> nchar(as.factor(c("a","b","a","a","b","c"))) 
Error in nchar(as.factor(c("a", "b", "a", "a", "b", "c"))) : 
  'nchar()' requires a character vector

If you are running R within a Unicode environment such as UTF-8, this command 
may return an error. If this is the case, try the allowNA=TRUE option to see whether 
the results are appropriate.

One last note; there is an additional command, nzchar, which tests to determine 
whether the character width of the string has zero length. This function returns a 
logical value, and it is true if the string does not have a zero length. As an example, 
suppose you have a list of file types with an empty string being an unrecognized file 
type. You may want to use nzchar to create a mask to skip or ignore an empty string:

> fileTypes <- c("txt","","html","txt")
> nzchar(fileTypes)
[1]  TRUE FALSE  TRUE  TRUE
> fileTypes[nzchar(fileTypes)]
[1] "txt"  "html" "txt"

Location of a substring
In some circumstances, it is necessary to determine the location within a string for 
the occurrence of a substring. For example, it might be necessary to search a set of 
filenames to determine whether they contain a match for a predetermined parameter. 
The command to return the location of a substring is the regexp command. This 
command has many options, and it is explored in more detail in the following 
section. Here, we use it in its most basic form to determine the location of  
a substring.

Using the definition of the vector, urls, as an example, we may wish to find the 
location of the colons in the URLs. The colons are the delimiter between the protocol 
and the host name, and we cannot assume it will always be in the same position:

> colons <- regexpr(":",urls)
> colons
[1] 6 6 5 5
attr(,"match.length")
[1] 1 1 1 1
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attr(,"useBytes")
[1] TRUE
> colons[2]
[1] 6
> colons[3]
[1] 5

Note that the assumed position of the first character is one and not zero.

Extracting or changing a substring
There are two commands available to change a substring within a string. The two 
commands are substr and substring, and their arguments are identical. The 
substring command is compatible with S, but we focus on the R command substr. 
The command has two forms. One form can be used to extract a substring, and the 
other form can be used to change the value of a substring.

First, we examine the option to extract a substring. The command takes a string, the 
location of the start of the substring, and the location of the end of the substring. 
Making use of the previous example, we now use the urls vector defined at the start 
of the chapter and determine the protocol for each URL:

> protocols <- substr(urls,1,colons-1)
> protocols
[1] "https" "https" "http"  "http"

A substring can be replaced by combining the substr command and the assignment 
operator. Unfortunately, the length of the string inserted must be the same length 
as the string being replaced, which can return nonintuitive results. Here, we replace 
each of the protocols in the urls vector with a mailto protocol:

> colons <- regexpr(":",urls)
> mailto <- urls
> substr(mailto,1,colons-1) <- c("mailto","mailto","mailto")
> mailto
[1] "mailt://duckduckgo.com?q=Johann+Carl+Friedrich+Gauss"          
[2] "mailt://search.yahoo.com/search?p=Jean+Baptiste+Joseph+Fourier"
[3] "mail://www.bing.com/search?q=Isaac+Newton"                     
[4] "mail://www.google.com/search?q=Brahmagupta"

Note that the string "http" has fewer characters than the string "mailto," and the 
command has truncated the new string that is substituted into the original string.
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Transforming the case
In some analyses, the case of a letter may not be considered important. In these 
situations, it may be necessary to convert the case of a string. The tolower and 
toupper commands can be used to ensure that a string is in the expected form:

> tolower(urls[1])
[1] "https://duckduckgo.com?q=johann+carl+friedrich+gauss"
> toupper(urls[2])
[1] "HTTPS://SEARCH.YAHOO.COM/SEARCH?P=JEAN+BAPTISTE+JOSEPH+FOURIER"

An additional command, chartr, enables more fine-grained control of character 
replacement. The idea is that there are some characters in the original string that we 
want to replace, and we know what the replacement characters are. For example, 
going back to the urls vector defined previously, we may want to replace the 
occurrences of = with a # character to delimit the end of the URL and the start of the 
argument list. Suppose we also want to replace the + characters with spaces. We can 
do so by using the chartr command, where the first argument is a string whose 
character elements will be changed, the second argument is a string that contains the 
replacement characters, and the third argument is the string to change:

> > chartr("=+","# ",urls)
[1] "https://duckduckgo.com?q#Johann Carl Friedrich Gauss"          
[2] "https://search.yahoo.com/search?p#Jean Baptiste Joseph Fourier"
[3] "http://www.bing.com/search?q#Isaac Newton"                     
[4] "http://www.google.com/search?q#Brahmagupta"

Splitting strings
A string can be divided into multiple parts using the strsplit command. This is 
useful if you have data in a predefined format and wish to divide the strings into 
component pieces for a separate analysis. Using the urls vector defined earlier,  
we may wish to divide each URL into its protocol and the rest of the information:

> splitURL <- strsplit(urls,":")
> splitURL
[[1]]
[1] "https"                                         
[2] "//duckduckgo.com?q=Johann+Carl+Friedrich+Gauss"

[[2]]
[1] "https"                                                   
[2] "//search.yahoo.com/search?p=Jean+Baptiste+Joseph+Fourier"
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[[3]]
[1] "http"                                
[2] "//www.bing.com/search?q=Isaac+Newton"

[[4]]
[1] "http"                                 
[2] "//www.google.com/search?q=Brahmagupta"

> splitURL[[1]]
[1] "https"                                         
[2] "//duckduckgo.com?q=Johann+Carl+Friedrich+Gauss"
> splitURL[[1]][2]
[1] "//duckduckgo.com?q=Johann+Carl+Friedrich+Gauss"

Note that it returns a list, and each entry in the list is a vector of strings that have 
been split.

Creating formatted strings
The sprintf function allows you to take a combination of objects and express them 
as a formatted string. The paste, format, and print commands have been examined 
in Chapter 3, Saving Data and Printing Results, and those functions can be used to 
accomplish similar results. The primary difference is that the sprintf function acts 
like the C language's sprintf function. For example, suppose we have a loop that 
performs an analysis on the text found at each of the URLs found in the urls vector 
defined earlier. As part of the analysis, we may have the result of a calculation stored 
in a variable and wish to use that number in the title for a graph. In the following 
example, we simply set the value, though, to keep the example more streamlined:

> n <- 1
> calculation <- 123.0
> theTitle <- sprintf("URL: %s, Count=%d",urls[n],calculation)
> theTitle
[1] "URL: https://duckduckgo.com?q=Johann+Carl+Friedrich+Gauss, 
Count=123" 

The %s characters refer to a string in the argument list, and %d refers to an integer 
next in the argument list. These definitions follow the same specification as the C 
language definition of sprintf.



Chapter 5

[ 69 ]

Regular expressions
The commands examined in the previous section lack flexibility, but they are 
straightforward in their implementation. The use of regular expressions, on the 
other hand, offers a more elegant approach in many circumstances, but they can be 
more complex. We briefly examine a few commands that allow string manipulations 
via regular expressions, and we assume that you are familiar with regular 
expressions. To get more information about regular expressions in R you can use the 
help(regular expression) command.

In this section, we will focus on the gregexpr and gsub commands. There are a 
number of other commands that are listed when you enter the help(gregexpr) 
command. Also, the commands have a number of options, but we will only examine 
their most basic forms. As a quick note, the pattern submitted to the grep command 
discussed earlier can also be a regular expression.

The gregexpr command is a general command that returns the number of results 
with respect to the regular expression. In particular, it will return the location of a 
match, whether or not a match was found, and the number of characters in match. 
The first argument to the function is a pattern and then the strings to match. The 
function returns a list that has information about match. In the following example, 
we examine the results of searching for the = delimiter in the first entry in our urls 
vector defined earlier:

> loc <- gregexpr("=",urls[[1]])
> loc
[[1]]
[1] 25
attr(,"match.length")
[1] 1
attr(,"useBytes")
[1] TRUE

> loc[[1]][1]
[1] 25

Note that the function returns a list. Since the use of a single brace returns another 
list, we use the double braces to ensure that we return the element within the list as  
a vector.



Character and String Operations

[ 70 ]

The sub command can be used to replace all occurrences of a pattern within a string. 
This function takes three arguments, the pattern, the replacement string, and the 
strings that are used to perform the operation:

> sub("\\?.*$","",urls)
[1] "https://duckduckgo.com"         "https://search.yahoo.com/search"
[3] "http://www.bing.com/search"     "http://www.google.com/search"

Note that two backslashes must be used in the previous example. The first backslash 
is used to indicate that the next character is a symbol to be interpreted, and if a 
second backslash is used, then it means to interpret the pair as a single backslash.

Summary
In this chapter, we have explored a variety of ways to manipulate string variables. 
Two broad categories have been explored. The first set of functions provide a 
number of functions with a narrow range of functionality. These functions are 
relatively straightforward but must often be used together to accomplish complex 
tasks. The second set of functions make use of regular expressions, and they can be 
used to accomplish a complex set of tasks using a small number of steps.

In the next chapter, we move on to the topic of working with variables associated 
with time. This includes translating strings into R's built-in time types, and it also 
includes the kind of operations that can be performed on time variables.



Converting and Defining  
Time Variables

This chapter provides a broad overview of the ways to convert and store time 
variables. This is a mundane topic, but it is common to have data that contains date 
and time information in a wide variety of forms. There are roughly three parts in  
this chapter:

• Converting strings to time data types: This section gives you an introduction 
to the methods available to take a time stamp in text format and convert it 
into one of R's internal time formats

• Converting time data types to strings: This section gives you an introduction 
to the methods available to take a time data type and convert it to a string so 
that it can be saved to a file in a standard format

• Operations on time data types: This section gives you an overview of the 
methods and techniques used to perform basic arithmetic on time data types

Introduction and assumptions
Date and time formations are often saved as part of the information within a 
dataset. Converting the information into a date or time variable is one of the less 
exciting chores to perform, and it is something that requires a great deal of care. In 
this chapter, we will discuss the ways of transforming strings and data types and 
demonstrate how to perform basic arithmetic operations. It is important to note that 
working with time and date data occurs in a number of different contexts, and there 
are a number of different libraries, such as chron, lubridate, and date, to help you 
work with time and data variables. 
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Our focus here, though, is on R's built-in functions used to work with time and date 
data. It is important to note that the commands explored here can be sensitive to 
small variations within a data file, and you should always double check your work 
especially with respect to time data. It can be a tedious task, but it is important to 
make sure that the data is correct. If you commonly work with time data, you should 
read the details found using the help(DateTimeClasses) command.

Another complication is that time zones can change, and the general practices 
associated with time data can change. For example, new time zones can be changed, 
created, or removed, or a region can change its time zone. You should always ensure 
that your practices associated with time data are consistent with the practice used to 
generate the data that you have.

Converting strings to time data types
The first task to examine is to take a string and convert it to each of the internal time 
formats. The strptime command will take a string and convert it to a POSIXlt time 
variable. If you wish to convert a string to a POSIXct data type, you can cast the 
result of strptime using the as.POSIXct command. We first focus on converting a 
string to a POSIXlt data type and provide an example at the end of this section to be 
converted to a POSIXct data type.

To convert a string to a time data type, the format for the string must be specified, 
and the formatting options must conform to the ISO C99/POSIX standard. The string 
includes a sequence of literal characters and a partial list of conversion substrings, 
which is given in Table 1. For example, the %Y-%m-%d %H:%M:%S string indicates that 
the date should look like 2014-05-14 09:54:10 when referring to May 14, 2014 at 9:54 
in the morning. A string is assumed to include any number of predefined strings. 
Anything else is considered to be a literal character that must appear exactly as it 
appears in the format string.

Once the format string has been specified, the strptime command can be used to 
convert a string into the POSIXlt data type. The arguments for the command are the 
strings to convert, followed by the format string:

> theTime <- c("08:30:00 1867-07-01","18:15:00 1864-10-27")
> converted <- strptime(theTime,"%H:%M:%S %Y-%m-%d")
> converted
[1] "1867-07-01 08:30:00" "1864-10-27 18:15:00"
> typeof(converted[1])
[1] "list"
> converted[1]-converted[2]
Time difference of 976.5938 days



Chapter 6

[ 73 ]

The command also accepts an optional time zone option, as follows:

> theTime <- c("08:30:00 1867-07-01","18:15:00 1864-10-27")
> converted <- strptime(theTime,"%H:%M:%S %Y-%m-%d", +  
                        tz="Canada/Eastern")
> converted
[1] "1867-07-01 08:30:00 EST" "1864-10-27 18:15:00 EST"
> converted[1]-converted[2]
Time difference of 976.5938 days

The results returned by the strptime command are of the POSIXlt data type.  
They can be converted using the as.POSIXct command:

> theTime <- c("08:30:00 1867-07-01","18:15:00 1864-10-27")
> converted <- strptime(theTime,"%H:%M:%S %Y-%m-%d",tz="Canada/
Eastern")
> converted
[1] "1867-07-01 08:30:00 EST" "1864-10-27 18:15:00 EST"
> typeof(converted[1])
[1] "list"
> otherTime <- as.POSIXct(converted)
> otherTime
[1] "1867-07-01 08:30:00 EST" "1864-10-27 18:15:00 EST"
> typeof(otherTime[1])
[1] "double"
> cat(otherTime[1],"\n")
-3234681000 

Note that when the date variables are printed, they are converted to a human-readable 
format. This is convenient, but it can hide the underlying data type. Again, you should 
be careful about variables that have a time data type since it is easy to lose track of how 
the R environment is actually treating the values.

Another important concern that you should be wary of is that the strptime 
command will not give a visible indication when an error occurs. It will return NA in 
place of each error, as follows:

> aTime <- c("2014-05-05 08:00:00","2014/05/05 08:00:00")
> internal <- strptime(aTime,"%Y/%m/%d %H:%M:%S")
> internal
[1] NA                    "2014-05-05 08:00:00"
> is.na(internal)
[1]  TRUE FALSE 
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Another way to save the date and time information in a file is to specify the date and 
time in one column. If the information from the file is stored as a data frame, then a 
new column can be added that contains the information saved in an internal format:

> fileInfo <- data.frame(time=c("2014-01-01 00:00:00",
+ "2013-12-31 23:59:50","2013-12-31 23:55:12"),
+ happiness=c(1.0,0.9,0.8))
> fileInfo
                 time happiness
1 2014-01-01 00:00:00       1.0
2 2013-12-31 23:59:50       0.9
3 2013-12-31 23:55:12       0.8
> fileInfo$internalTime <- strptime(fileInfo$time,"%Y-%m-%d %H:%M:%S")
> fileInfo
                 time happiness        internalTime
1 2014-01-01 00:00:00       1.0 2014-01-01 00:00:00
2 2013-12-31 23:59:50       0.9 2013-12-31 23:59:50
3 2013-12-31 23:55:12       0.8 2013-12-31 23:55:12
> summary(fileInfo)
                  time     happiness     internalTime                
 2013-12-31 23:55:12:1   Min.   :0.80   Min.   :2013-12-31 23:55:12  
 2013-12-31 23:59:50:1   1st Qu.:0.85   1st Qu.:2013-12-31 23:57:31  
 2014-01-01 00:00:00:1   Median :0.90   Median :2013-12-31 23:59:50  
                         Mean   :0.90   Mean   :2013-12-31 23:58:20  
                         3rd Qu.:0.95   3rd Qu.:2013-12-31 23:59:55  
                         Max.   :1.00   Max.   :2014-01-01 00:00:00  

The various commands used to convert a string to a time or date variable have a 
large variety of options. These options can be found with R using the help(trptime)  
command. A list of the options can also be found in the following table:

Format 
string

Meaning Format 
string

Meaning

%a Abbreviation for the name of 
the day of the week

%p Indicator for "A.M." or "P.M."

%A Full name of the day of the 
week

%S Seconds as a number (00-61); leap 
seconds are allowed

%b Abbreviation for the name of 
the month

%U Weak of the year as a number 
(00-53)

%B Full name of the month %w Weekday as a number 
(0=Sunday, 1=Monday, ..., 
6=Saturday)
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Format 
string

Meaning Format 
string

Meaning

%c The date and time in the 
format 
%a %b %e %H:%M:%S %Y

%x Date in the form "%y/%m/%d"

%d Day of the month as a 
number (01 through 31)

%X Time in the format "%H:%M:%S"

%H Hours as a number (00-23);  
note that 24 is allowed as 
an exception when used as 
24:00:00

%y Year as two digits ("00-99"), and 
00-68 refer to the 2000s while 69-
99 refer to the 1900s

%I Hours in 12 hour format as a 
number (01-12)

%Y Year as four digits (>=1582)

%j Day of the year as a number 
(001-366)

%z Offset from UTC (-0500 is five 
hours behind UTC)

%m Month as a number (01-12) %Z Time zone as a string (only 
available for converting time  
to a string)

%M Minute as a number (00-59)

Table 1 – characters used to define the formats of dates

More options are available and can be viewed using the help(strftime) command 
within the R environment.

Converting time data types to strings
A date and time variable can be converted to a string using the strftime command. 
Its format is similar to the strptime command, except it has one additional option 
to determine whether or not to include time zone information in the resulting string. 
The command is a convenience function, and it calls either the format.POSIXlt or 
format.POSIXct command depending on the data type of the time variable. We 
focus on the strftime command because it is familiar to people from a wider variety 
of programming experiences.

The strftime command requires a time variable and a format. It returns a string in 
the given format (some format options are given in Table 1):

> theTime <- c("08:30:00 1867-07-01","18:15:00 1864-10-27")
> converted <- strptime(theTime,"%H:%M:%S %Y-%m-%d",
+ tz="Canada/Eastern")
> converted
[1] "1867-07-01 08:30:00 EST" "1864-10-27 18:15:00 EST"
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> typeof(converted)
[1] "list"
> backAgain <- strftime(converted,"%j - %B")
> backAgain
[1] "182 - July"    "301 - October"
> typeof(backAgain[1])
[1] "character"

Operations on time data types
A variety of arithmetic operations are available for the time data types, and you 
should be especially wary when performing any operations. The units that are 
returned can vary depending on the context. It is extremely easy to lose track of the 
units and make a spurious comparison. In this section, I'll introduce some of the 
basic operations and then discuss the difftime command. It is possible to perform 
any operation without the difftime command, but the command has an important 
advantage: it allows you to explicitly define the units.

When you perform simple arithmetic on time data types, it acts in the way you  
might expect:

> earlier <- strptime("2014-01-01 00:00:00","%Y-%m-%d %H:%M:%S")
> later <- strptime("2014-01-02 00:00:00","%Y-%m-%d %H:%M:%S")
> later-earlier
Time difference of 1 days
> timeDiff <- later-earlier
> timeDiff
Time difference of 1 days
> as.double(timeDiff)
[1] 1
> earlier+timeDiff
[1] "2014-01-02 EST"

Note that in the previous example, the units used are given in days. One small 
change, though, results in a different kind of result:

> earlier <- strptime("2014-01-01 00:00:00","%Y-%m-%d %H:%M:%S")
> later <- strptime("2014-01-01 12:00:00","%Y-%m-%d %H:%M:%S")
> later-earlier
Time difference of 12 hours
> timeDiff <- later-earlier
> timeDiff
Time difference of 12 hours
> as.double(timeDiff)
[1] 12
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The R environment will keep track of the difference and its units. If you look at  
the difftime variable in the previous example, it contains information about what  
it means:

> attributes(timeDiff)
$units
[1] "hours"

$class
[1] "difftime"

> attr(timeDiff,"units")
[1] "hours" 

You can specify the units by casting the result as a numeric value and providing the 
units to use:

> earlier <- strptime("2014-01-01 00:00:00","%Y-%m-%d %H:%M:%S")
> later <- strptime("2014-01-01 12:00:00","%Y-%m-%d %H:%M:%S")
> timeDiff <- later-earlier
> timeDiff
Time difference of 12 hours
> as.numeric(timeDiff,units="weeks")
[1] 0.07142857
> as.numeric(timeDiff,units="secs")
[1] 43200

Because of potential ambiguities, it is usually advantageous to use the difftime 
command. The difftime command offers a wide range of options, and you should 
carefully read its help page, help(difftime), to see the options and details. In its 
most basic use, you can find the difference between two times, and you can specify 
what units to use:

> earlier <- strptime("2014-01-01 00:00:00","%Y-%m-%d %H:%M:%S")
> later <- strptime("2014-01-01 12:00:00","%Y-%m-%d %H:%M:%S")
> timeDiff <- difftime(later,earlier,units="sec")
> timeDiff
Time difference of 43200 secs
> timeDiff <- difftime(later,earlier,units="day")
> timeDiff
Time difference of 0.5 days

The units that are available are auto, secs, mins, hours, days, or weeks.
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One final note; the difftime data type offers a convenient way to perform some  
time arithmetic options. The as.difftime command can be used to specify a  
time interval, and you can specify the units, so it is more likely that the results  
are consistent with your expectations:

> later <- strptime("2014-01-01 12:00:00","%Y-%m-%d %H:%M:%S")
> oneHour = as.difftime(1,units="hours")
> later+oneHour
[1] "2014-01-01 13:00:00 EST"

Summary
A broad overview of the options available to convert between strings and the two 
time data types was given in this chapter. The strptime command is used to convert 
a string into a POSIXlt variable. The strftime command is used to convert a time 
data type into a string. Finally, the basic operators used to perform arithmetic 
operations between two time variables was discussed, with an emphasis on using  
the difftime command. We also explored the use of the difftime data type.



Basic Programming
In the previous chapters, we explored the basic aspects of how R stores information 
and the different ways to organize information. We will now explore the way that 
operations can be defined and executed, and write a program in R. The ability to 
create algorithms that combine functions to complete complicated tasks is one of R's 
best features. We continue the exploration of programming in the next two chapters 
and focus on object-oriented approaches. This chapter is divided into four parts:

• Conditional execution: In this section, we will introduce if-then-else blocks 
and discuss logical operators

• Loop constructs: In this section, we will explore three different ways to 
implement loops

• Functions: In this section, we will discuss how to define functions in R and 
explore some of the important considerations associated with functions

• Script execution: In this section, we will discuss how to execute a set of 
commands that have been saved in a file

Conditional execution
The first control construct examined is the if statement. An if statement will 
determine whether or not a code block should be executed, and it has an optional 
else statement. An additional if statement can be chained to an else statement to 
create a cascade of options.

In its most basic form, an if statement has the following form:

if(condition)
  code block
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The condition can be a logical statement constructed from the operators given in 
the next table, or it can be a numeric result. If the condition is numeric, then zero is 
considered to be FALSE, otherwise the statement is TRUE. The code block can either  
be a single statement or a set of statements enclosed in braces:

> # check if 1 is less than 2
> if(1<2)
+    cat("one is smaller than two.\n")
one is smaller than two.
> if(2>1) {
+    cat("But two is bigger yet.\n")
+ }
But two is bigger yet.

Note that a comment is included in the previous code. The # character is used to 
denote a comment. Anything after the # character is ignored.

The if statement can be extended using an else statement. The else statement allows 
you to specify a code block to execute if the condition does not evaluate to TRUE:

> if(1>2) {
+    cat("One is the most biggest number\n")  # Say something wrong
+ } else {
+    cat("One is the loneliest number\n")     # Say something less 
wrong
+ }
One is the loneliest number

The first thing to note about these examples is that a Kernighan and Ritchie (K&R) 
indentation style is adopted. We adopted the K&R style because the else statement 
must be on the same line as the closing brace. The second thing to note is that 
another if statement can be appended to the else statement so that a standard  
if-then-else block can be constructed:

> if(0) {
+    cat("Yes, that is FALSE.\n")
+ } else if (1) {
+    cat("Yes that is TRUE\n")
+ } else {
+    cat("Whatever")
+ }
Yes that is TRUE
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One potential issue is that R does not have a scalar type and assumes most data types 
are arranged in vectors. This can lead to potential problems with a logical statement. 
The first element in the vector is used to decide whether a whole statement is TRUE 
or FALSE. Fortunately, R will give a warning if the condition evaluates to a vector of 
length greater than one:

> x <- c(1,2)
> if(x < 2) {
+   cat("Oh yes it is\n")
+ }
Oh yes it is
Warning message:
In if (x < 2) { :
  the condition has length > 1 and only the first element will be used

This is something to keep in mind when deciding which logical operator to use in an 
if statement. For example, the | operator will perform a logical OR on all elements of 
the vectors, but the || operator will only perform a logical OR on the first elements of 
the vectors:

> x <- c(FALSE,FALSE,TRUE)
> y <- c(FALSE,TRUE,TRUE)
> x|y
[1] FALSE  TRUE  TRUE
> x||y
[1] FALSE

A variety of logical operators are recognized. Some provide comparisons between 
all entries in a vector and others are for comparisons only for the first elements in the 
vectors. A list of the operators is given in the following table:

Operator Description Operator Description
< Less than (vector) | Or (vector)
> Greater than (vector) || Or (first entry only)
<= Less than or equal (vector) ! Not (vector)
>= Greater than or equal (vector) & And (vector)
== Equal to (vector) && And (first entry only)
!= Not equal to (vector) xor(a,b) Exclusive or (vector)

Table 1 – The logical operators including comparison operators
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Loop constructs
Another important programming task is to create a set of instructions that can be 
repeated in a structured way. There are three loop constructs in R: for, while, and 
repeat loops. We will explore each of these loop constructs and discuss the break 
and next commands, which can control how the instructions within a loop's code 
block are executed. More details are available using the help(Control) command.

The for loop
A for loop takes a vector, and it repeats a block of code for each value in the vector. 
The syntax is as follows:

for(var in vector)
  code block

The for loop repeats a set of instructions for every value within a vector in the 
appropriate order. It can be memory intensive if you need to repeat the loop a lot of 
times and the vector is not already stored in the workspace. An example of a simple 
for loop is given here:

> for(lupe in seq(1,2,by=0.33))
+ {
+    cat("The value of lupe is ",lupe,"\n")
+ }
The value of lupe is  1 
The value of lupe is  1.33 
The value of lupe is  1.66 
The value of lupe is  1.99 

The while loop
A while loop will execute a code block as long as a given expression is true. The 
syntax is as follows:

while(condition)
  code block
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They are often used when the number of iterations is not known in advance and the 
loop is repeated until some criteria is met. Also, the while loop has some advantages 
over the for loop. It can be more efficient, especially with respect to memory, and 
it is more flexible (RMemory, Please refer to RMemory: Hadley Wickham, memory, 
2014, http://adv-r.had.co.nz/memory.html for more information on this topic). 
For example, instead of constructing a large vector to iterate over its elements, a 
single index can be used. On the down side, it can be harder to read, and it can 
require a little more care when writing the code. An example is given here:

> lupe <- 1.0;
> while(lupe <= 2.0)
+ {
+     cat("The value of lupe is ",lupe,"\n")
+     lupe <- lupe + 0.33
+ }
The value of lupe is  1 
The value of lupe is  1.33 
The value of lupe is  1.66 
The value of lupe is  1.99 

The repeat loop
A repeat loop is used to denote a block of code that will be repeatedly executed 
until an explicit breakout of the block is executed. The primary advantage of 
the repeat loop is that the start of the code block will always be executed. One 
disadvantage is that it can be difficult to read. The syntax is relatively simple:

repeat
  code block

You must use a break command to tell R to exit the code block. The break command 
is described in the next subsection in more detail. An example of a repeat loop is 
given in the following example, and it is a brief example of simulation of a random 
walk in the complex plane:

positions   <- complex(0) # Initialize the history of positions
currentPos  <- 0.0+0.0i   # Start at the origin
NUMBERSTEPS <- 50         # Number of steps to take
angleFacing <- 0.0        # direction it is facing
stdDev      <- 1.0        # std dev. of the change in the angle

step <- as.integer(0)
repeat
    {
        ## Update the current time step

http://adv-r.had.co.nz/memory.html
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        step <- step + as.integer(1)

        ## Check to see if it is time to stop
        if(step>MAXNUMBER)
            break

        ## Add new people to the line and update the length
        angle <- angle + rnorm(1,0.0,stdDev)
        currentPos <- currentPos + exp(angle*1.0i)
        positions  <- c(positions,currentPos)
        
    }
plot(Re(positions),Im(positions),type="l")

Break and next statements
The break and next statements are used to influence which part of the code in the 
current loop will be executed. The break statement will move to the very end of the 
current block and it will stop the execution of the loop. The next statement will act 
as if the end of the code block was reached and start over at the beginning of the 
code block to begin the next iteration.

As a demonstration, we build on the simulation of the random walk in the previous 
example. We alter the model by placing a restriction on the position. If a step moves 
to the left-hand part of the plane, it is ignored:

positions   <- complex(0) # Initialize the history of positions
currentPos  <- 0.0+0.0i   # Start at the origin
NUMBERSTEPS <- 50         # Number of steps to take
angleFacing <- 0.0        # direction it is facing
stdDev      <- 1.0        # std dev. of the change in the angle

step <- as.integer(0)
repeat
    {
        ## Add new people to the line and update the length
        newAngle     <- angle + rnorm(1,0.0,stdDev)
        proposedStep <- currentPos + exp(newAngle*1.0i)
        if(Re(proposedStep) < 0.0)
           next   # Ignore this step. It moves to neg. real parts

        ## update the position
        angle      <- newAngle
        currentPos <- proposedStep
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        positions  <- c(positions,currentPos)

        ## Update the current time step
        step <- step + as.integer(1)

        ## Check to see if it is time to stop
        if(step>MAXNUMBER)
            break
    }
plot(Re(positions),Im(positions),type="l")

Functions
Another common programming task is to define a function or subroutine that can be 
executed with a single call. Defining and using functions can be complicated because 
of the technical details associated with working with variables that exist in different 
contexts but may have the same name. Another problem that arises is that everything 
in R is an object. Up to this point, we have quietly ignored this issue, but it is a 
technical issue that we must now consider. In this section, we will first demonstrate 
how to define a function. We will then discuss the details about how arguments are 
passed to a function. Finally, we discuss the technical details of how R determines 
what a variable name means.

Before we get into those details, we will provide a note about how R keeps track of  
functions. When we define a variable, R treats that variable as an object that can be 
accessed using the name we assign to the variable. Likewise, when you define a new 
function, it is assigned a variable name, and the variable is an object.

Defining a function
As previously mentioned, when a function is defined, it is assigned to an object and 
treated like any other variable. The format for a function definition is as follows:

function (arg1, arg2, … ) 
  code block
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This will create an object, and you must assign a variable name to the object. If you 
print out the value of the variable, it will print out the definition of the function. In 
the following example, suppose we need a function used to simulate a random walk 
in the complex plane. The function takes the current position and adds a unit step in 
a random direction:

> updatePosition <- function(currentPos)
+ {
+     newDirection <- exp(1i*runif(1,0.0,2.0*pi))
+     currentPos + newDirection
+ }
> 
> updatePosition(0.0)
[1] 0.9919473-0.1266517i
> updatePosition
function(currentPos)
{
    newDirection <- exp(1i*runif(1,0.0,2.0*pi))
    currentPos + newDirection
}

One oddity associated with functions is that the value it returns is the last expression 
evaluated within the code block.

There are times when you want a function to perform operations that impact more 
than one variable. In such cases, you may need to return a combination of results. 
For difficult results that cannot be expressed as a vector, you can return the result as 
a list. In the following example, we extend the previous example and wish to return 
the new position as well as the updated direction of movement:

> updatePosition <- function(currentPos,angle,stdDev)
+ {
+     angle <- angle + rnorm(1,0,stdDev)
+     list(newPos=currentPos + exp(angle*1.0i),
+          newAngle=angle)
+ }
> 
> pos <- updatePosition(2.0,0.0,1.0)
> pos
$newPos
[1] 2.986467+0.163962i

$newAngle
[1] 0.164706
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> pos$newPos
[1] 2.986467+0.163962i

It is possible to explicitly specify the value returned by a function using the return 
command. The return command takes at most one argument. The command 
will exit the function and return the value given in the argument if it exists. In the 
following example, we build on our example of a random walk in the complex plane. 
Here, we assume that the left-hand side of the plane is not reachable, and if the real 
part of a step is negative, then the step moves in the opposite direction:

> updatePosition <- function(currentPos,angle,stdDev)
+ {
+     angle <- angle + rnorm(1,0.0,stdDev)
+     newStep <- exp(angle*1.0i)
+     if(Re(currentPos + newStep)<0.0)
+         {
+              # This would be a move in the left hand part of the
               # plane.
+             # Move in the opposite direction.
+             return(list(newPos=currentPos - newStep,
+                         newAngle=angle+pi))
+         }
+     # All is good. Accept this move.
+     return(list(newPos=currentPos + newStep,
+                 angle=angle))
+ }
> 
> pos <- updatePosition(-0.1+2i,0.0,1.0)
> pos$newPos
[1] 0.459425+2.828881i

Arguments to functions
We have discussed how to define a new function and briefly discussed how to pass 
arguments to a function. We now focus on some details about passing arguments to a 
function. First, we note that the arguments that are passed to a function are passed as 
values and not references. Any changes you make to an argument do not impact the 
variable outside the function. In the following example, we go back to our function to 
update the position for a random walk in the complex plane. We pass the angle to the 
function that is changed within the function but not outside of the function:

> updatePosition <- function(currentPos,angle,stdDev)
+ {
+     angle <- angle + rnorm(1,0.0,stdDev)



Basic Programming

[ 88 ]

+     currentPos + exp(1i*angle)
+ }
> 
> angle <- 0.0
> updatePosition(1+2i,angle,1.0)
[1] 0.250178+2.661639i
> angle
[1] 0

Another important point is that you can provide default values for some  
arguments. If a default value is given for a variable, then it is not required  
while calling the function:

> updatePosition <- function(currentPos,angle=0.0)
+ {
+     print(noquote(paste("Angle is ",angle)))
+     angle <- angle + runif(1,0.0,2.0*pi)
+     currentPos + exp(1i*angle)
+ }
> 
> updatePosition(1+2i)
[1] Angle is  0
[1] 0.091507+2.417901i
> updatePosition(1+2i,pi)
[1] Angle is  3.14159265358979
[1] 0.029198+2.239884i

There are circumstances in which you might wish to check whether a particular 
argument has been specified when the function is called. This can be done using the 
missing command. In the next example, we test whether or not the angle is provided:

> updatePosition <- function(currentPos,angle=0.0)
+ {
+     if(missing(angle))
+         {
+             warning("Using the default drift: ",angle)
+         }
+     angle <- angle + runif(1,0.0,2.0*pi)
+     currentPos + exp(1i*angle)
+ }
> 
> updatePosition(1+2i)
[1] 0.552725+1.105604i
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Warning message:
In updatePosition(1 + (0+2i)) : Using the default drift: 0
> updatePosition(1+2i,pi)
[1] 0.054151+1.675394i

Note that the warning command was used to print out a message. When executing a 
function, it may be beneficial to print a warning or to stop the execution of the function 
due to an error condition. The stop and warning commands can be used for these 
situations. The warning command prints out a warning and continues execution as 
normal. The stop command will print out a message and exit the function:

> updatePosition <- function(currentPos,angle=0.0)
+ {
+     if(abs(angle) > 2.0*pi)
+         {
+             stop("I arbitrarily do not like angles that big")
+         }
+     angle <- angle + runif(1,0.0,2.0*pi)
+     currentPos + exp(1i*angle)
+ }
> 
> pos1 <- updatePosition(1+2i)
> pos2 <- updatePosition(1+2i,3.0*pi)
Error in updatePosition(1 + (0+2i), 3 * pi) : 
  I arbitrarily do not like angles that big
> pos2
Error: object 'pos2' not found

Note that in the last line, the stop command was called and the function did  
not return a value. The result is that the variable pos2 does not exist. Be careful 
though, as if the variable pos2 had been previously defined, it would retain its 
previous value.

In the preceding examples, there is an assumption about the order of the arguments 
when calling a function. In the previous examples, the arguments are matched 
according to the order they appear in the function call. You can circumvent this 
convention by specifying the name when you call the function. The caveat is that 
R does not require that the name should match exactly, and it will try to match the 
names using the first characters in the name. If the match is ambiguous, you will get 
an error message:

> matching <- function(argOne,argTwo)
+ {
+    return(paste("I got this: ",argOne,' ',argTwo))
+ }

www.allitebooks.com
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> matching(argTwo="second",argOne="First")
[1] "I got this:  First   second"
> matching(argT="2nd",argO="1st")
[1] "I got this:  1st   2nd"
> matching(argT="two",arg="one")
Error in matching(argT = "two", arg = "one") : 
  argument 2 matches multiple formal arguments

The last issue to discuss is how to limit the potential values that an argument may 
have. The default values for an argument can be given as a vector of values. If no 
argument is given, it defaults to the first entry in the vector. If you wish to limit the 
values to be one of the values in the vector, you can use the match.arg function to 
test the value:

> updatePosition <- function(currentPos,angle=0.0,
+                   dist=c("uniform","normal"))
+     {
+         dist <- match.arg(dist)
+         print(dist)
+         # Update position code would go below
+     }
> 
> updatePosition(0.0,0.0)
[1] "uniform"
> updatePosition(0.0,0.0,"uniform")
[1] "uniform"
> updatePosition(0.0,0.0,"neither")
Error in match.arg(dist) : 'arg' should be one of "uniform", "normal"

Scope
An important question when dealing with a function is how to decide what a 
symbol means. This idea is referred to as scope, and the language used to describe 
the ideas associated with scope can be confusing. Unfortunately, it is something 
that needs to be considered, and we try to discuss some of the ideas here. It is also 
important to note that the details discussed here represent an area in which R is 
not consistent with the S_PLUS language, so be careful about generalizing these 
ideas. For further information, you can enter the demo(scoping) command in the R 
environment and a brief demonstration of the notion of scope is given. If you enter 
the help(environment) command, you can also find more details.
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The basic idea is that R maintains a hierarchy of environments. Each environment 
has a list of symbols that are associated with that environment. You can create a new 
environment that is embedded within another environment. The new.env command 
is used to create an environment. This environment holds its own variables, and 
variables can be created using the assign command. The values can be obtained 
using the get command:

> envOne <- new.env()
> typeof(envOne)
[1] "environment"
> ls()
[1] "envOne"
> ls(envOne)
character(0)
> 
> 
> assign("bubba",12,envir=envOne)
> ls()
[1] "envOne"
> ls(envOne)
[1] "bubba"
> envOne$bubba
[1] 12
> get("bubba",envOne)
[1] 12
> bubba
Error: object 'bubba' not found

Note that in the preceding example, we used the optional environment argument 
to the ls command, which specifies which environment to use. The environment 
is used to guide R in how to interpret the meaning of a symbol. The R environment 
maintains a path that it uses to search in a particular order to find a symbol. One 
way to manipulate the path is to use the attach and detach commands. The attach 
and detach commands have numerous options, but we focus on how to use it with 
environments. We also provide a warning that using these commands can lead to 
confusion about the meaning of a symbol, and you should exercise caution when 
using these commands:

> ls()
character(0)
> one <- 2
> ls()
[1] "one"
> envTwo <- new.env()
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> assign("two",3,envir=envTwo)
> two
Error: object 'two' not found
> attach(envTwo)
> ls()
[1] "envTwo" "one"   
> two
[1] 3
> detach(envTwo)
> two
Error: object 'two' not found

The reason we explore this topic here is that when you define a function, a new 
environment is created that exists within the function. When you use a symbol 
within a function, it can be ambiguous as to what it means. If that symbol has been 
previously defined within the function, then it is treated as a local variable. If that 
symbol exists in the parent environment, then it is possible to get access to it or 
change its value. In Chapter 1, Data Types, it was briefly noted that the <- operator is 
used to assign a variable in the local context. The <<- operator is used to tell R to first 
search the parent environment:

> one <- 2
> changeOne <- function(a)
+ {
+    one <- a
+    return(one)
+ }
> changeOne(3)
[1] 3
> one
[1] 2
> realyChangeOne <- function(a)
+ {
+    one <<- a
+    return(one)
+ }
> realyChangeOne(3)
[1] 3
> one
[1] 3
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Again, <<- tells R to use the parent of the current environment. That means that 
if you create a function within a function, the use of the <<- operator within the 
innermost function will look for a variable in the original (outermost) function.  
This idea is examined in the following example:

> market <- function(rutabagas)
+ {
+     money <- 0
+     return(list(
+         numberRutabagas = function()
+         {
+             return(rutabagas)
+         },
+         revenue = function()
+         {
+             return(money)
+         },
+         harvestRutabagas = function(amount)
+         {
+             rutabagas <<- rutabagas + amount
+         },
+         sellRutabagas = function(amount)
+         {
+             if(rutabagas >= amount)
+                 {
+                     rutabagas <<- rutabagas - amount
+                     money <<- money + amount*0.5
+                 }
+             else
+                 {
+                     warning("We do not have that many rutabagas")
+                 }
+             return(rutabagas)
+         }))
+ }
> farmerJoe <- market(20)
> farmerJoe$numberRutabagas()
[1] 20
> farmerJoe$sellRutabagas(6)
[1] 14
> farmerJoe$numberRutabagas()
[1] 14
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Warning message:
In farmerJoe$sellRutabagas(15) : We do not have that many rutabagas
> farmerJoe$harvestRutabagas(10)
> farmerJoe$numberRutabagas()
[1] 24

Note that the preceding example gives us our first taste of object-oriented 
programming. We will explore this in more detail in Chapter 8, S3 Classes,  
  and will build on the idea.

Executing scripts
The final topic is how to execute a set of commands that have been saved in a file 
using the command line in an interactive R session. All of our examples have been 
contrived, and the reason for this is to try to focus on a specific idea. The real power 
of R though is the ability to put together a set of commands and have them executed 
in order. This can be accomplished using the source command.

We need to have a file to execute. We assume that you have the file given here. 
You can create this file using any editor capable of saving simple text files, and we 
assume that the name of the file is simpleExecute.R:

# File simpleExecute.R
# This is a simple example used to demonstrate the source command.
# This script will prompt the person running it to enter a number,
# and it will find the square root of the number. 
# It tests the original
# number to make sure it is positive and prints out an appropriate
# warning message if it is negative.

x <- as.double(readline("What is the value of x? "))     # Read in a 
number
cat("I got the number ",format(x,digits=6),".\n")
if(x < 0)
    {
        # The number is negative. What are they thinking?
        print("Why would you give me a negative number?")
        x <- abs(x)
    }

# Find the square root and assign it the variable "y."
y <- sqrt(x)
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You can execute the file using the source command. One important thing is that the 
R environment must find it on your local machine. You can either specify the search 
path or you can specify the current working directory. The easiest way to do this 
depends on how you are running R, the interface you are using, and your operating 
system. We assume that you can specify the current working directory (folder), 
and the file given earlier is in that directory. Once you specify the current working 
directory, you can execute the commands using the source command, as follows:

> source('simpleExecute.R')
What is the value of x? 2.3
I got the number  2.3 .
> source('simpleExecute.R')
What is the value of x? -2.3
I got the number  -2.3 .
[1] "Why would you give me a negative number, jerk?"
> source('simpleExecute.R',echo=TRUE)

> x <- as.double(readline("What is the value of x? "))
What is the value of x? -2.3

> cat("I got the number ",format(x,digits=6),".\n")
I got the number  -2.3 .

> if(x < 0)
+     {
+         print("Why would you give me a negative number, jerk?")
+         x <- abs(x)
+     }
[1] "Why would you give me a negative number, jerk?"

> y <- sqrt(x)

The command has a number of options. One option not explored here is the verbose 
option. This is a helpful option for debugging, and you should try to add the 
verbose=TRUE option. An example is omitted because referring to it as verbose is  
an understatement.
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Summary
This chapter introduced basic ideas to specify optional execution of certain 
commands and the three basic loop constructs. We had to take a side trip to discuss 
the idea of scope and explore how R finds and interprets the meaning of a variable 
name. You can combine these ideas to create and implement algorithms and execute 
commands in a file.

This chapter also includes our first taste of object-oriented programming in the 
sense of an S3 class. We build on this idea in the next chapter where the S3 class is 
formally defined. In doing so, we explore how existing functions can be extended to 
accommodate arguments that include a class that we have constructed.



S3 Classes
This is the second chapter in our introduction to programming. In the preceding 
chapter, we explored the basic control structures that help us to define the code that 
is executed, and we had our first taste of objects. We will now build on the idea of 
object-oriented programming, concentrating on S3 classes. There are two approaches, 
S3 and S4 classes. It is common for some people to use only one exclusively.

This chapter is divided into three parts:

• Defining classes and methods: This section will give a general idea of how 
methods are defined whose function depends on the class name of the 
primary argument

• Objects and inheritance: In this section, we will discuss the way in which 
objects of a given class can be defined; we will also introduce the idea of 
inheritance in the context of S3 classes

• Encapsulation: In this section, we will discuss the importance of 
encapsulation with respect to a class and how it is handled within the  
context of an R class

At first glance, S3 objects do not appear to behave like objects as defined in other 
languages. The definition is an odd implementation compared to Java or C++. On the 
plus side, S3 objects are relatively simple and can offer a powerful way to deal with a 
wide variety of circumstances.
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We have seen a variety of data structures as well as functions, and in this chapter, 
we will see how the class attribute can be used to dictate how a function responds 
when a list is passed to a function. The idea is that the class attribute for an object 
is a vector of names, and the vector represents an ordered set of names to search 
when deciding what action a function should take. We will build on and extend 
one example throughout this chapter. The idea is that we wish to create a set of 
classes that can be used to simulate a random variable, which follows a geometric 
distribution. There will be two classes. The first class is for a fair coin, in which we 
flip the coin until heads is tossed. The second class is for a fair, six-sided die, in which 
we roll until a 1 is rolled.

Defining classes and methods
The class command is similar to other attribute commands, and it can be used to 
either set or get information about an object's class. An object's class is a vector, and 
each item in the vector is the name of a class. The first element in the class vector is 
the object's base class, and it inherits from the other classes as you read from left  
to right. 

We first focus on the situation where an object has a single class and will examine 
inheritance in the section that follows. The example examined throughout this chapter 
is used to simulate one experiment that follows a geometric distribution. The idea 
is that you repeat some experiment and stop when the first success occurs. First, we 
examine two classes, and we construct a function that will take an action depending on 
the class name. The first class is used to represent a fair, six-sided die. The die will be 
rolled, giving an integer between 1 and 6 inclusive, and the experiment stops when a  
1 is returned. The second class represents a fair coin. The coin will be flipped returning 
either an H or a T, and the experiment stops when H is returned. 

The two class definitions are illustrated in the following figure. Each class keeps 
track of the trials, and the results are kept in a vector. The two methods include a 
method to reset the history, but more will be added when we examine inheritance. 
In this example, we are not creating methods in the traditional sense but are creating 
functions that take appropriate action based on the class name of the argument 
passed to them. Have a look at the following diagram:

+Roll History: Character Vector

+reset (): NULL

<<Roll Die>>
Die

<<Flip Coin>>

Coin

+Flip History: Character Vector

+reset (): NULL

The methods associated with the die and coin classes
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First, we define the two classes. Each class is composed of a list, and the class names 
are set to Die and Coin respectively. (The names are strings that we make up.) Each 
class consists of a list with a single numeric vector that initially has a length of zero.  
In each of the following cases, the list is created manually, and a class name is defined. 
We could have used a vector, but we used a list so that the examples are consistent 
with the way we extend the classes later:

> oneDie <- list(trials=character(0))
> class(oneDie) <- "Die"

> oneCoin <- list(trials=character(0))
> class(oneCoin) <- "Coin"

First, we define two sets of functions. The first set of functions resets the history, and 
the second set performs a single Bernoulli trial. We first focus on a routine to reset 
and initialize the history, and define a function called reset. The reset function 
makes use of three different functions. The first uses the UseMethod command, 
which will tell R to search for the appropriate function to call. The decision is based 
on the class name of the object passed to it as the first argument. The UseMethod 
command looks for other functions whose names have the form resetTrial.class_
name, where the class_name suffix must exactly match the name of the class. The 
exception is the default suffix that is executed if no other function is found:

reset <- function(theObject)
    {
        UseMethod("reset",theObject)
        print("Reset the Trials")
    }

reset.default <- function(theObject)
    {
        print("Uh oh, not sure what to do here!\n")
        return(theObject)
    }

reset.Die <- function(theObject)
    {
        theObject$trials <- character(0)
        print("Reset the die\n")
        return(theObject)
    }

reset.Coin <- function(theObject)
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    {
        theObject$trials <- character(0)
        print("Reset the coin\n")
        return(theObject)
    } 

Note that the functions return the object passed to them. Recall that R passes 
arguments as values. Any changes you make to the variable are local to the function, 
so the new value must be returned. We can now call the resetTrial function, and it 
will decide which function to call, given the argument passed to it. Have a look at the 
following code:

> oneDie$trials = c("3","4","1")
> oneDie$trials
[1] "3" "4" "1"

> oneDie <- reset(oneDie)
  Reset the die

> oneDie
$trials
character(0)

attr(,"class")
[1] "Die"

> oneCoin$trials = c("H","H","T")
> oneCoin <- reset(oneCoin)
Reset the coin

> oneDie$trials
character(0)
> # Look at an example that will fail and use the default function.
> v <- c(1,2,3)
> v <- reset(v)
[1] "Uh oh, not sure what to do here!\n"
> v
[1] 1 2 3

Note that the print command after the UseMethod command in the function 
resetTrial is not executed. When the return function is called, any commands  
that follow the UseMethod command are not executed.
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Defining objects and inheritance
The examples given in the previous section should invoke a twinge of shame for 
those familiar with object-oriented principles, and you should be assured that I 
felt appropriately embarrassed to share them. It was done, though, to keep the 
introduction to S3 classes as simple as possible. One issue is that the two classes are 
closely related, and the functions include a great deal of repeated code. We will now 
examine how inheritance can be used to avoid this problem.

In this section, we define a base class, GeometricTrial, and then redefine the 
routines so that the Die and Coin classes can be derived from the base class. In doing 
so, we can demonstrate how inheritance is implemented in the context of an S3 class. 
Additionally, we respect the idea of encapsulation, which is the principle that an 
object of a given class should update its own elements using methods from within 
the class. We explore this issue in greater detail in the section that follows.

We will now rethink the whole class structure. The die and the coin are closely 
related, and the only difference is the result returned from a single trial. We 
reimagine the classes to take advantage of the commonalities between the coin  
and the die. The new class structure is shown in the following diagram:

<<Flip Coin>>
Coin

+singleTrial(): list

<<Roll Die>>
Die

+singleTrial(): list

<<Base Class>>
GeometricTrial

+reset(): NULL
+getHistory(): factor
+singleTrial(): list
+simulation(): Factor

+History: Character
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In addition to the change in the classes, we also change the way in which the classes 
are defined. In this case, we define functions that will act as constructors for each class. 
Each constructor will use the class command to append the name of the class to the 
object's class attribute. As previously mentioned, the class attribute for an object is a 
vector. When you call the UseMethod command, R will search for a function whose 
class matches the first element in the vector. If it does not find that function, it looks 
for a function that matches the second element, and it proceeds until it reaches the last 
element in the vector. If it does not find anything, it calls the default function. With 
this in mind, we now examine new definitions of the classes. Rather than manually 
creating the class, we define functions that will create a list representing the class, 
append a class name to the class attribute, and then return the list. There are three 
classes, and we will define one function for each class. The first function is used to 
define a constructor for an object of the GeometricTrial class:

GeometricTrial <- function()
    {
        # Create the basic data structure - a list that keeps track of
        # a set of trials. 
        
        # Create the basic methods as part of a list to be returned.
        me = list(            
            # Define the history to keep track of the trials.
            history = character(0)
            )

        # Define my class identifier and return the list.
        class(me) <- append(class(me),"GeometricTrial")
        return(me)
    }

Prior to returning the list, the append function is used to add the new class name  
to the end of the current class attribute. This idea is used in classes that are derived 
from the GeometricTrial classes as well. The constructor for the Die and Coin 
classes can now be defined, and both constructors explicitly call the constructor  
for the parent class, perform any actions associated with the current class, and  
then append the current class name to the class attribute:

Die <- function()
{
    # Define the object by first calling the constructor for the base 
class
    me <- GeometricTrial()
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    # Add the class name to the end of the list of class names
    class(me) <- append(class(me),"Die")
    return(me)
}

Coin <- function()
{
    # Define the object by calling the constructor for the base class
    me <- GeometricTrial()

    # Add the class name to the end of the list of class names
    class(me) <- append(class(me),"Coin")
    return(me)
}

The GeometricTrial class includes four methods. The reset method behaves 
exactly like the reset method discussed in the previous section. The getHistory 
method is an accessor for a data element and is discussed in the following section. 
We will now discuss the simulation method, and a discussion on the singleTrial 
method will follow.

The simulation method is used to simulate a single experiment. The history is  
first cleared, and the singleTrial method is repeatedly called until a successful 
result is returned. We first define the base simulation function, the default 
simulation function, and then the simulation function used by the GeometricTrial 
class, as follows:

simulation <- function(theObject)
    {
        UseMethod("simulation",theObject)
    }

simulation.default <- function(theObject)
    {
        warning("Default simulation method called on unrecognized 
object.")
        return(theObject)
    }

## Define a method to run a simulation of a geometric trial.
simulation.GeometricTrial = function(theObject)
    {
        theObject <- reset(theObject)  # Reset the history
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                                        # before the trial.
        repeat
            {
                ## perform a single trial and add it to the history
                thisTrial  <- singleTrial(theObject)
                theObject <- appendEvent(theObject,thisTrial$result)
                if(thisTrial$success)
                    {
                        break  # The trial resulted in a success. Time
                               # to stop!
                    }
            } # The trial was not a success. Keep going.

        return(theObject)

    }

The effort to define a default function may not appear to be a worthwhile endeavor. 
However, this practice is generally employed to ensure that the system can 
responsibly react if the methods you define are called by mistake.

The final step is to define the singleTrial methods. This method is executed by the 
child classes, Die and Coin. Again, the base and default methods are created. In this 
case, though, there are also methods for each of the three classes. The base function 
calls the UseMethod function, which scrolls through the class attribute for the first 
function to call. We use a method for the GeometricTrial class to demonstrate 
the order of the calls as well as the NextMethod function. The NextMethod function 
continues the search in the class attribute and will call the next function based on the 
class names that follow the current class:

singleTrial.default = function(theObject)
    {
        ## Just generate a default success
        warning("Unrecognized object found for the singleTrial 
method")
        return(list(result="1",success=TRUE))
    }

singleTrial.GeometricTrial = function(theObject)
    {
        NextMethod("singleTrial",theObject)
    }

singleTrial.Coin = function(theObject)
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    {
        ## Perform a single coin flip
        value <- as.character(
            cut(as.integer(1+trunc(runif(1,0,2))),c(0,1,2),labels=c("
H","T")))
        return(list(result=value,success=(value=="H")))
    }

singleTrial.Die = function(theObject)
    {
        ## Perform a single die roll
        value <- as.integer(1+trunc(runif(1,0,6)))
        return(list(result=value,success=(value==1)))
    }

With these methods defined and the getHistory method defined in the following 
section, the class will be complete. Objects of the Coin and Die class can be created, 
and simulations can be executed, as follows:

> coin <- Coin()
> coin <- simulation(coin)
> getHistory(coin)
[1] H
Levels: H
> coin <- simulation(coin)
> getHistory(coin)
[1] T T H
Levels: H T
>
> die <- Die()
> die <- simulation(die)
> getHistory(die)
[1] 1
Levels: 1
> die <- simulation(die)
> getHistory(die)
[1] 6 5 5 6 2 1
Levels: 1 2 5 6
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Encapsulation
The final method for the getHistory class will now be defined. It is defined in a 
separate section to stress an important point. An S3 object is generally a basic data 
structure, such as a vector or a list that has an additional class attribute defined. The 
functions that are defined for the class react to the class attribute in a predictable way.

One side effect is that every element of an object from a given class is public data. 
The elements contained within an object can always be accessed. The result is that 
when programming in R, we must take extra steps to maintain discipline with 
respect to accessing the data elements maintained by an object. Code that directly 
accesses data elements within an object may work when first written, but any change 
to the class constructor risks breaking code in the other methods defined for a class.

With respect to our previous example, we have an accessor, the getHistory method. 
If we have an object, called oneDie, from the Die class, we can easily get the history 
using oneDie$history. If we later decide to change the data structure used to store 
the history, then any code directly accessing this variable is likely to fail.

Instead, we write an accessor method, getHistory, which is designed to return 
a vector that has the history in the form of a vector of factors. It is important to 
maintain discipline and only use this method to get a copy of the history. Have a 
look at the following code:

getHistory <- function(theObject)
    {
        UseMethod("getHistory",theObject)
    }

getHistory.default <- function(theObject)
    {
        return(factor()) # Just return an empty vector of factors
    }

getHistory.GeometricTrial <- function(theObject)
    {
        return(as.factor(theObject$history))
    }
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A final note
There is one final note to share about S3 classes. If you have used R, you most likely 
have used them. Many functions are defined to react according to the class name of 
their first argument. Have a look at the following diagram:

<<Flip Coin>>
Coin

+SingleTrial(): list

<<Roll Die>>
Die

+SingleTrial(): list

<<Base Class>>
GeometricTrial

+Reset(): NULL
+getHistory(): factor
+SingleTrial(): list
+Simulation(): Factor

+History: Character

A common example of this is the plot command. If you type the plot command 
without arguments, you can see its definition, as follows:

> plot
function (x, y, ...) 
UseMethod("plot")
<bytecode: 0x32fdd50>
<environment: namespace:graphics>
> 

The plot command will react differently depending on what kind of object you 
passed to it. If you wish to see what classes the plot command can handle, you can 
use the methods command to list them:

> methods(plot)
 [1] plot.HoltWinters*   plot.TukeyHSD*      plot.acf*     
 [4] plot.data.frame*    plot.decomposed.ts* plot.default  
 [7] plot.dendrogram*    plot.density*       plot.ecdf     
[10] plot.factor*        plot.formula*       plot.function 
[13] plot.hclust*        plot.histogram*     plot.isoreg*  
[16] plot.lm*            plot.medpolish*     plot.mlm*     
[19] plot.ppr*           plot.prcomp*        plot.princomp*
[22] plot.profile.nls*   plot.spec*          plot.stepfun  
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[25] plot.stl*           plot.table*         plot.ts       
[28] plot.tskernel*     

   Non-visible functions are asterisked
> 

One of the greatest advantages of the S3 class definition is that it is simple to build 
on what is already available. In the example from the previous section, I would like 
to have the plot command react appropriately according to whether or not I pass it 
a class of the type Die or Coin. Assuming that I have the previous classes, Die and 
Coin, defined, I merely have to define two new plot functions, as follows:

> plot.Die <- function(theDie,theTitle)
+     {
+         plot(theDie$getHistory(),
+              xlab="Value After A Die Roll",ylab="Frequency",
+              main=theTitle)
+     }
> 
> plot.Coin <- function(theCoin,theTitle)
+     {
+         plot(theCoin$getHistory(),
+              xlab="Value After Coin Flip",ylab="Frequency",
+              main=theTitle)
+     }
> plot(aCoin,"This Here Trial")
> plot(aDie,"A More Better Trial")

It is common to use this idea to extend a number of commands. Some common 
examples include the print and the format functions.

Summary
We have explored how to create S3 classes, and we did so in the context of two 
examples. The first example focused on how to define functions that will react based 
on the class name of the first argument given to the function. The first example did not 
make full use of basic object-oriented principles, as it is an attempt to simply introduce 
the idea of S3 classes. The second example extended the first example to provide a 
simple example of how inheritance is implemented. It demonstrated how inheritance 
is implemented in the context of an S3 class. It also provided a demonstration of how 
encapsulation is implemented under the framework of an S3 class.
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One downside to the approach is that there is little type checking. It is possible to 
make changes to an object that can make it inconsistent with the original definition. 
When a change is made to an object, no checks are implemented to ensure that an 
object has the properties that are expected of it.

One way to avoid this issue is to make use of S4 classes. The approach associated 
with S4 classes is examined in the next chapter. Another advantage is that the S4 
approach will look more familiar to those already familiar with object-oriented 
approaches to programming.





S4 Classes
This chapter is the third part in our introduction to programming. We examined 
S3 classes in the previous chapter. We will now examine S4 classes. The approach 
associated with S3 classes is more flexible, and the approach associated with S4 
classes is a more formal and structured definition.

This chapter is roughly divided into four parts:

• Class definition: This section gives you an overview of how a class is defined 
and how the data (slots) associated with the class are specified

• Class methods: This section gives you an overview of how methods that are 
associated with a class are defined

• Inheritance: This section gives you an overview of how child classes that 
build on the definition of a parent class can be defined

• Miscellaneous commands: This section explains four commands that can be 
used to explore a given object or class

Introducing the Ant class
We defined the idea of control flow structures in Chapter 7, Basic Programming, and 
introduced the idea of an S3 class in Chapter 8 ,S3 Classes. We will now introduce the 
idea of S4 classes, which is a more formal way to implement classes in R. One of the 
odd quirks of S4 classes is that you first define the class along with its data, and then 
you define the methods separately.

As a result of this separation in the way a class is defined, we will first discuss the 
general idea of how to define a class and its data. We will then discuss how to add a 
method to an existing class. Next, we will discuss how inheritance is implemented. 
Finally, we will provide a few notes about other options that do not fit nicely in the 
categories mentioned earlier.
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In the previous chapter, we took an example and then modified it. The approach 
associated with an S4 class is less flexible and requires a bit more forethought in 
terms of how a class is defined. We will take a different approach in this chapter 
and create a complete class from the beginning. In this case, we will build on an 
idea proposed by Cole and Cheshire. The authors proposed a cellular automata 
simulation to mimic how ants move within a colony.

As part of a simulation, we will assume that we need an Ant class. We will depart 
from the paper and assume that the ants are not homogeneous. We will then assume 
that there are male (drones) and female ants, and the females can be either workers 
or soldiers. We will need an ant base class, which is discussed in the first two 
sections of this chapter as a means to demonstrate how to create an S4 class. In the 
third section, we will define a hierarchy of classes based on the original Ant class. 
This hierarchy includes male and female classes. The worker class will then inherit 
from the female class, and the soldier class will inherit from the worker class.

Defining an S4 class
We will define the base Ant class called Ant. The class is represented in the following 
figure. The class is used to represent the fundamental aspects that we need to track 
for an ant, and we focus on creating the class and data. The methods are constructed 
in a separate step and are examined in the next section.

+ etLength( ength: numeric(1))S l
+GetLength(): numeric (1)
+ etPosition(currentPosition: numeric(3))S
+GetPosition()(): numeric(3)
+GetProbabi ities(): numeric(2)l
+ etProbabi ties(probabilities: numeric(2))S li
+ etActivityLeve (ants: Ant(N))S l
+ etActivityLeve (deactivate  logical)S l :
+GetActivityLeve (): numeric(1)l
+Ca cSu Distances(ants : Ant (N) ): nu eric(1)l m m
+DetermineActivityLeve (ants: Ant(N))l

<<Base C ass>>l
Ant

+Length: numeric(1) = 4mm
+Position: numeric(3) = (0,0,0)
+pA: numeric(1) = 0.05
+p : numeric(1) = 0.1I
+activityLeve : numeric(1) = 0.5l
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A class is created using the setClass command. When creating the class, we specify 
the data in a character vector using the slots argument. The slots argument is 
a vector of character objects and represents the names of the data elements. These 
elements are often referred to as the slots within the class.

Some of the arguments that we will discuss here are optional, but it is a good practice 
to use them. In particular, we will specify a set of default values (the prototype) 
and a function to check whether the data is consistent (a validity function). Also, 
it is a good practice to keep all of the steps necessary to create a class within the 
same file. To that end, we assume that you will not be entering the commands from 
the command line. They are all found within a single file, so the formatting of the 
examples will reflect the lack of the R workspace markers.

The first step is to define the class using the setClass command. This command 
defines a new class by name, and it also returns a generator that can be used to 
construct an object for the new class. The first argument is the name of the class 
followed by the data to be included in the class. We will also include the default 
initial values and the definition of the function used to ensure that the data is 
consistent. The validity function can be set separately using the setValidity 
command. The data types for the slots are character values that match the names  
of the R data types which will be returned by the class command:

# Define the base Ant class.
Ant <- setClass(
    # Set the name of the class
    "Ant",

    # Name the data types (slots) that the class will track
    slots = c(
        Length="numeric",           # the length (size) of this ant.
        
        Position="numeric",         # the position of this ant. 
                                    # (a 3 vector!)
        
        pA="numeric",               # Probability that an ant will 
                                    # transition from active to 
                                    # inactive.

        pI="numeric",               # Probability that an ant will 
                                    # transition from inactive to 
                                    # active.

        ActivityLevel="numeric"     # The ant's current activity
                                    # level.
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        ),

    # Set the default values for the slots. (optional)
    prototype=list(
        Length=4.0,
        Position=c(0.0,0.0,0.0),
        pA=0.05,
        pI=0.1,
        ActivityLevel=0.5
        ),

    # Make a function that can test to see if the data is consistent.
    # (optional)
    validity=function(object)
    {
        # Check to see if the activity level and length is
        # non-negative.
        # See the discussion on the @ notation in the text below.
        if(object@ActivityLevel<0.0) {
            return("Error: The activity level is negative")
        } else if (object@Length<0.0) {
            return("Error: The length is negative")
        }
        return(TRUE)
    }
    )

With this definition, there are two ways to create an Ant object: one is using the 
new command and the other is using the Ant generator, which is created after the 
successful execution of the setClass command. Note that in the following examples, 
the default values can be overridden when a new object is created:

> ant1 <- new("Ant")
> ant1
An object of class "Ant"
Slot "Length":
[1] 4

Slot "Position":
[1] 0 0 0

Slot "pA":
[1] 0.05

Slot "pI":
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[1] 0.1

Slot "ActivityLevel":
[1] 0.5

We can specify the default values when creating a new object.

> ant2 <- new("Ant",Length=4.5)
> ant2
An object of class "Ant"
Slot "Length":
[1] 4.5

Slot "Position":
[1] 0 0 0

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

The object can also be created using the generator that is defined when creating the 
class using the setClass command.

> ant3 <- Ant(Length=5.0,Position=c(3.0,2.0,1.0))
> ant3
An object of class "Ant"
Slot "Length":
[1] 5

Slot "Position":
[1] 3 2 1

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5
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> class(ant3)
[1] "Ant"
attr(,"package")
[1] ".GlobalEnv"
> getClass(ant3)
An object of class "Ant"
Slot "Length":
[1] 5

Slot "Position":
[1] 3 2 1

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

When the object is created and a validity function is defined, the validity function 
will determine whether the given initial values are consistent:

> ant4 <- Ant(Length=-1.0,Position=c(3.0,2.0,1.0))
Error in validObject(.Object) : 
  invalid class "Ant" object: Error: The length is negative
> ant4
Error: object 'ant4' not found

In the last steps, the attempted creation of ant4, an error message is displayed. 
The new variable, ant4, was not created. If you wish to test whether the object was 
created, you must be careful to ensure that the variable name used does not exist 
prior to the attempted creation of the new object. Also, the validity function is only 
executed when a request to create a new object is made. If you change the values of 
the data later, the validity function is not called.

Before we move on to discuss methods, we need to figure out how to get access to 
the data within an object. The syntax is different from other data structures, and we 
use @ to indicate that we want to access an element from within the object. This can 
be used to get a copy of the value or to set the value of an element:

> adomAnt <- Ant(Length=5.0,Position=c(-1.0,2.0,1.0))
> adomAnt@Length
[1] 5



Chapter 9

[ 117 ]

> adomAnt@Position
[1] -1  2  1
> adomAnt@ActivityLevel = -5.0
> adomAnt@ActivityLevel
[1] -5

Note that in the preceding example, we set a value for the activity level that is not 
allowed according to the validity function. Since it was set after the object was 
created, no check is performed. The validity function is only executed during the 
creation of the object or if the validObject function is called.

One final note: it is generally a bad form to work directly with an element within an 
object, and a better practice is to create methods that obtain or change an individual 
element within an object. It is a best practice to be careful about the encapsulation 
of an object's slots. The R environment does not recognize the idea of private versus 
public data, and the onus is on the programmer to maintain discipline with respect 
to this important principle.

Defining methods for an S4 class
When a new class is defined, the data elements are defined, but the methods 
associated with the class are defined on a separate stage. Methods are implemented 
in a manner similar to the one used for S3 classes. A function is defined, and the way 
the function reacts depends on its arguments. If a method is used to change one of 
the data components of an object, then it must return a copy of the object, just as we 
saw with S3 classes.

The creation of new methods is discussed in two steps. We will first discuss how 
to define a method for a class where the method does not yet exist. Next, we will 
discuss some predefined methods that are available and how to extend them to 
accommodate a new class.

Defining new methods
The first step to create a new method is to reserve the name. Some functions are 
included by default, such as the initialize, print or show commands, and we 
will later see how to extend them. To reserve a new name, you must first use the 
setGeneric command. At the very least, you need to give this command the name 
of the function as a character string. As in the previous section, we will use more 
options as an attempt to practice safe programming.
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The methods to be created are shown in preceding figure. There are a number of 
methods, but we will only define four here. All of the methods are accessors; they 
are used to either get or set values of the data components. We will only define the 
methods associated with the length slot in this text, and you can see the rest of the 
code in the examples available on the website. The other methods closely follow the 
code used for the length slot. There are two methods to set the activity level, and 
those codes are examined separately to provide an example of how a method can  
be overloaded.

First, we will define the methods to get and set the length. We will first create 
the method to get the length, as it is a little more straightforward. The first step is 
to tell R that a new function will be defined, and the name is reserved using the 
setGeneric command. The method that is called when an Ant object is passed to  
the command is defined using the setMethod command:

setGeneric(name="GetLength",
           def=function(antie)
           {
               standardGeneric("GetLength")
           }
           )

setMethod(f="GetLength",
          signature="Ant",
          definition=function(antie)
          {
              return(antie@Length)
          }
          )

Now that the GetLength function is defined, it can be used to get the length 
component for an Ant object:

>  ant2 <- new("Ant",Length=4.5)
> GetLength(ant2)
[1] 4.5

The method to set the length is similar, but there is one difference. The method must 
return a copy of the object passed to it, and it requires an additional argument:

setGeneric(name="SetLength",
           def=function(antie,newLength)
           {
               standardGeneric("SetLength")
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           }
           )

setMethod(f="SetLength",
          signature="Ant",
          definition=function(antie,newLength)
          {
              if(newLength>0.0) {
                  antie@Length = newLength
              } else {
                  warning("Error - invalid length passed");
              }

              return(antie)
          }
          )

When setting the length, the new object must be set using the object that is passed 
back from the function:

> ant2 <- new("Ant",Length=4.5)
> ant2@Length
[1] 4.5
> ant2 <- SetLength(ant2,6.25)
> ant2@Length
[1] 6.25

Polymorphism
The definition of S4 classes allows methods to be overloaded. That is, multiple 
functions that have the same name can be defined, and the function that is executed 
is determined by the arguments' types. We will now examine this idea in the context 
of defining the methods used to set the activity level in the Ant class.

Two or more functions can have the same name, but the types of the arguments 
passed to them differ. There are two methods to set the activity level. One takes a 
floating point number and sets the activity level based to the value passed to it. The 
other takes a logical value and sets the activity level to zero if the argument is FALSE; 
otherwise, it sets it to a default value.
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The idea is to use the signature option in the setMethod command. It is set to a 
vector of class names, and the order of the class names is used to determine which 
function should be called for a given set of arguments. An important thing to note, 
though, is that the prototype defined in the setGeneric command defines the names 
of the arguments, and the argument names in both methods must be exactly the 
same and in the same order:

setGeneric(name="SetActivityLevel",
           def=function(antie,activity)
           {
               standardGeneric("SetActivityLevel")
           }
           )

setMethod(f="SetActivityLevel",
          signature=c("Ant","logical"),
          definition=function(antie,activity)
          {
              if(activity) {
                  antie@ActivityLevel = 0.1
              } else {
                  antie@ActivityLevel = 0.0
              }
              return(antie)
          }
          )

setMethod(f="SetActivityLevel",
          signature=c("Ant","numeric"),
          definition=function(antie,activity)
          {
              if(activity>=0.0) {
                  antie@ActivityLevel = activity
              } else {
                  warning("The activity level cannot be negative")
              }
              return(antie)
          }
          )
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Once the two methods are defined, R will use the class names of the arguments to 
determine which function to call in a given context:

> ant2 <- SetActivityLevel(ant2,0.1)
> ant2@ActivityLevel
[1] 0.1
> ant2 <- SetActivityLevel(ant2,FALSE)
> ant2@ActivityLevel
[1] 0

There are two additional data types recognized by the signature option: ANY and 
missing. These can be used to match any data type or a missing value. Also note that 
we have left out the use of ellipses (…) for the arguments in the preceding examples. 
The … argument must be the last argument and is used to indicate that any remaining 
parameters are passed as they appear in the original call to the function. Ellipses 
can make the use of the overloaded functions in a more flexible way than indicated. 
More information can be found using the help(dotsMethods) command.

Extending the existing methods
There are a number of generic functions defined in a basic R session, and we will 
examine how to extend an existing function. For example, the show command is a 
generic function whose behavior depends on the class name of the object passed to it. 
Since the function name is already reserved, the setGeneric command is not used to 
reserve the function name.

The show command is a standard example. The command takes an object and 
converts it to a character value to be displayed. The command defines how other 
commands print out and express an object. In the preceding example, a new class 
called coordinate is defined; this keeps track of two values, x and y, for  
a coordinate, and we will add one method to set the values of the coordinate:

# Define the base coordinates class.
Coordinate <- setClass(
    # Set the name of the class
    "Coordinate",

    # Name the data types (slots) that the class will track
    slots = c(
        x="numeric",  # the x position
        y="numeric"   # the y position
        ),

    # Set the default values for the slots. (optional)
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    prototype=list(
        x=0.0,
        y=0.0
        ),

    # Make a function that can test to see if the data is consistent.
    # (optional)
    # This is not called if you have an initialize function defined!
    validity=function(object)
    {
        # Check to see if the coordinate is outside of a circle of
        # radius 100
        print("Checking the validity of the point")
        if(object@x*object@x+object@y*object@y>100.0*100.0) {
            return(paste("Error: The point is too far ",
            "away from the origin."))
        } 
        return(TRUE)
    }
    )

# Add a method to set the value of a coordinate
setGeneric(name="SetPoint",
           def=function(coord,x,y)
           {
               standardGeneric("SetPoint")
           }
           )

setMethod(f="SetPoint",
          signature="Coordinate",
          def=function(coord,x,y)
          {
              print("Setting the point")
              coord@x = x
              coord@y = y
              return(coord)
          }
          )
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We will now extend the show method so that it can properly react to a coordinate 
object. As it is reserved, we do not have to use the setGeneric command but can 
simply define it:

setMethod(f="show",
          signature="Coordinate",
          def=function(object)
          {
              cat("The coordinate is X: ",object@x," Y: 
",object@y,"\n")
          }
          )

As noted previously, the signature option must match the original definition of a 
function that you wish to extend. You can use the getMethod('show') command 
to examine the signature for the function. With the new method in place, the show 
command is used to convert a coordinate object to a string when it is printed:

> point <- Coordinate(x=1,y=5)
[1] "Checking the validity of the point"
> print(point)
The coordinate is X:  1  Y:  5 
> point
The coordinate is X:  1  Y:  5 

Another import predefined method is the initialize command. If the initialize 
command is created for a class, then it is called when a new object is created. That 
is, you can define an initialize function to act as a constructor. If an initialize 
function is defined for a class, the validator is not called. You have to manually call 
the validator using the validObject command. Also note that the prototype for 
the initialize command requires the name of the first argument to be an object, 
and the default values are given for the remaining arguments in case a new object is 
created without specifying any values for the slots:

setMethod(f="initialize",
          signature="Coordinate",
          def=function(.Object,x=0.0,y=0.0)
          {
              print("Checking the point")
              .Object = SetPoint(.Object,x,y)
              validObject(.Object) # you must explicitly call the 
                                   # inspector
              return(.Object)
          }
          )
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Now, when you create a new object, the new initialize function is called 
immediately:

> point <- Coordinate(x=2,y=3)
[1] "Checking the point"
[1] "Setting the point"
[1] "Checking the validity of the point"
> point
The coordinate is X:  2  Y:  3 

Using the initialize and validity functions together can result in surprising 
code paths. This is especially true when inheriting from one class and calling the 
initialize function of a parent class from the child class. It is important to test 
codes to ensure that the code is executing in the order that you expect. Personally,  
I try to use either validator or constructor, but not both.

Inheritance
The Ant class discussed in the first section of this chapter provided an example of 
how to define a class and then define the methods associated with the class. We will 
now extend the class by creating new classes that inherit from the base class. The 
original Ant class is shown in the preceding figure, and now, we will propose four 
classes that inherit from the base class. Two new classes that inherit from Ant are 
the Male and Female classes. The Worker class inherits from the Female class, while 
the Soldier class inherits from the Worker class. The relationships are shown in the 
following figure. The code for all of the new classes is included in our example codes 
available at our website, but we will only focus on two of the new classes in the text 
to keep our discussion more focused.
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+ etLength( ength: numeric(1))S l
+GetLength(): numeric (1)
+ etPosition(currentPosition: numeric(3))S
+GetPosition()(): numeric(3)
+GetProbabi ities(): numeric(2)l
+ etProbabi ties(probabilities: numeric(2))S li
+ etActivityLeve (ants: Ant(N))S l
+ etActivityLeve (deactivate  logical)S l :
+GetActivityLeve (): numeric(1)l
+Ca cSu Distances(ants : Ant (N) ): nu eric(1)l m m
+DetermineActivityLeve (ants: Ant(N))l

<<Base C ass>>l
Ant

+Length: numeric(1) = 4mm
+Position: numeric(3) = (0,0,0)
+pA: numeric(1) = 0.05
+p : numeric(1) = 0.1I
+activityLeve : numeric(1) = 0.5l

+GetOff pring(): numeric(1)S
+ etOff pring(offspring: numeric(1))S S
+Ca cActivityLeve (neighbors: Ant): numericl l

Male
<< C ass>>Drone l

+Offspring: integer = 0
Female

<<Base Workers Class>>

+ : = 0food  numeric

+GetFood(): numeric(1)
+SetFood(food:numeric(1))
+CalcSumDistances(neighbors:Ant): numeric

Soldier
<<Soldier Class>>

+attack: logical = FALSE

+GetAttack(): logical(1)
+SetAttack(attack:logical(1))
+CalcActivityLevel(neighbors:Ant): numeric

Worker
<< orker Class>>W

+GetForaging(): logical(1)
+SetForaging(foraging:logical(1))
+CalcActivityLevel(neighbors:Ant): numeric
+GetAlarm(): logical(1)
+SetAlarm(alarm:logical(1))
+CalcActivityLevel(ants:Ant(N)): numeric(1)

+foraging: logical = FALSE
+alarm: logical = FALSE

Relationships between the classes that inherit from the base Ant class
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When a new class is created, it can inherit from an existing class by setting the 
contains parameter. This can be set to a vector of classes for multiple inheritance. 
However, we will focus on single inheritance here to avoid discussing the 
complications associated with determining how R finds a method when there are 
collisions. Assuming that the Ant base class given in the first section has already been 
defined in the current session, the child classes can be defined. The details for the 
two classes, Female and Worker, are discussed here.

First, the FemaleAnt class is defined. It adds a new slot, Food, and inherits from the 
Ant class. Before defining the FemaleAnt class, we add a caveat about the Ant class. 
The base Ant class should have been a virtual class. We would not ordinarily create 
an object of the Ant class. We did not make it a virtual class in order to simplify our 
introduction. We are wiser now and wish to demonstrate how to define a virtual 
class. The FemaleAnt class will be a virtual class to demonstrate the idea. We will 
make it a virtual class by including the VIRTUAL character string in the contains 
parameter, and it will not be possible to create an object of the FemaleAnt class:

# Define the female ant class.
FemaleAnt <- setClass(
    # Set the name of the class
    "FemaleAnt",

    # Name the data types (slots) that the class will track
    slots = c(
        Food ="numeric"     # The number of food units carried
        ),

    # Set the default values for the slots. (optional)
    prototype=list(
        Food=0
        ),

    # Make a function that can test to see if the data is consistent.
    # (optional)
    # This is not called if you have an initialize function defined!
    validity=function(object)
    {
        print("Validity: FemaleAnt")
        # Check to see if the number of offspring is non-negative.
        if(object@Food<0) {
            return("Error: The number of food units is negative")
        }
        return(TRUE)
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    },

    # This class inherits from the Ant class
    contains=c("Ant","VIRTUAL")
    )

Now, we will define a WorkerAnt class that inherits from the FemaleAnt class:

# Define the worker  ant class.
WorkerAnt <- setClass(
    # Set the name of the class
    "WorkerAnt",

    # Name the data types (slots) that the class will track
    slots = c(
        Foraging ="logical",    # Whether or not the ant is actively
                                # looking for food

        Alarm = "logical"       # Whether or not the ant is actively
                                # announcing an alarm.
        
        ),

    # Set the default values for the slots. (optional)
    prototype=list(
        Foraging = FALSE,
        Alarm    = FALSE
        ),

    # Make a function that can test to see if the data is consistent.
    # (optional)
    # This is not called if you have an initialize function defined!
    validity=function(object)
    {
        print("Validity: WorkerAnt")
        return(TRUE)
    },

    # This class inherits from the FemaleAnt class
    contains="FemaleAnt"
    )
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When a new worker is created, it inherits from the FemaleAnt class:

> worker <- WorkerAnt(Position=c(-1,3,5),Length=2.5)
> worker
An object of class "WorkerAnt"
Slot "Foraging":
[1] FALSE

Slot "Alarm":
[1] FALSE

Slot "Food":
[1] 0

Slot "Length":
[1] 2.5

Slot "Position":
[1] -1  3  5

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

> worker <- SetLength(worker,3.5)
> GetLength(worker)
[1] 3.5

We have not defined the relevant methods in the preceding examples. The code 
is available in our set of examples, and we will not discuss most of it to keep this 
discussion more focused. We will examine the initialize method, though. The 
reason to do so is to explore the callNextMethod command. The callNextMethod 
command is used to request that R searches for and executes a method of the same 
name that is a member of a parent class.
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We chose the initialize method because a common task is to build a chain of 
constructors that initialize the data associated for the class associated with each 
constructor. We have not yet created any of the initialize methods and start with  
the base Ant class:

setMethod(f="initialize",
          signature="Ant",
          def=function(.Object,Length=4,Position=c(0.0,0.0,0.0))
          {
              print("Ant initialize")
              .Object = SetLength(.Object,Length)
              .Object = SetPosition(.Object,Position)
              #validObject(.Object) # you must explicitly call the
                                    # inspector
              return(.Object)
          }
          )

The constructor takes three arguments: the object itself (.Object), the length, and 
the position of the ant, and default values are given in case none are provided when 
a new object is created. The validObject command is commented out. You should 
try uncommenting the line and create new objects to see whether the validator can in 
turn call the initialize method. Another important feature is that the initialize method 
returns a copy of the object.

The initialize command is created for the FemaleAnt class, and the arguments to the 
initialize command should be respected when the request to callNextMethod for the 
next function is made:

setMethod(f="initialize",
          signature="FemaleAnt",
          def=function(.Object,Length=4,Position=c(0.0,0.0,0.0))
          {
              print("FemaleAnt initialize ")
              .Object <- callNextMethod(.Object,Length,Position)
              #validObject(.Object)  # you must explicitly call the 
inspector
              return(.Object)
          }
          )

The callNextMethod command is used to call the initialize method associated with 
the Ant class. The arguments are arranged to match the definition of the Ant class, 
and it returns a new copy of the current object.
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Finally, the initialize function for the WorkerAnt class is created. It also makes use 
of callNextMethod to ensure that the method of the same name associated with the 
parent class is also called:

setMethod(f="initialize",
          signature="WorkerAnt",
          def=function(.Object,Length=4,Position=c(0.0,0.0,0.0))
          {
              print("WorkerAnt initialize")
              .Object <- callNextMethod(.Object,Length,Position)
              #validObject(.Object) # you must explicitly call the
                                    # inspector
              return(.Object)
          }
          )

Now, when a new object of the WorkerAnt class is created, the initialize method 
associated with the WorkerAnt class is called, and each associated method for each 
parent class is called in turn:

> worker <- WorkerAnt(Position=c(-1,3,5),Length=2.5)
[1] "WorkerAnt initialize"
[1] "FemaleAnt initialize "
[1] "Ant initialize"

Miscellaneous notes
In the previous sections, we discussed how to create a new class as well as how 
to define a hierarchy of classes. We will now discuss four commands that are 
helpful when working with classes: the slotNames, getSlots, getClass, and slot 
commands. Each command is briefly discussed in turn, and it is assumed that the 
Ant, FemaleAnt, and WorkerAnt classes that are given in the previous section are 
defined in the current workspace.

The first command, the slotnames command, is used to list the data components  
of an object of some class. It returns the names of each component as a vector  
of characters:

> worker <- WorkerAnt(Position=c(1,2,3),Length=5.6)
> slotNames(worker)
[1] "Foraging"      "Alarm"         "Food"          "Length"       
[5] "Position"      "pA"            "pI"            "ActivityLevel"



Chapter 9

[ 131 ]

The getSlots command is similar to the slotNames command. The difference is  
that the argument is a character variable which is the name of the class you want  
to investigate:

> getSlots("WorkerAnt")
     Foraging         Alarm          Food        Length      Position 
    "logical"     "logical"     "numeric"     "numeric"     "numeric" 
           pA            pI ActivityLevel 
    "numeric"     "numeric"     "numeric" 

The getClass command has two forms. If the argument is an object, the command 
will print out the details for the object. If the argument is a character string, then it 
will print out the details for the class whose name is the same as the argument:

> worker <- WorkerAnt(Position=c(1,2,3),Length=5.6)
> getClass(worker)
An object of class "WorkerAnt"
Slot "Foraging":
[1] FALSE

Slot "Alarm":
[1] FALSE

Slot "Food":
[1] 0

Slot "Length":
[1] 5.6

Slot "Position":
[1] 1 2 3

Slot "pA":
[1] 0.05

Slot "pI":
[1] 0.1

Slot "ActivityLevel":
[1] 0.5

> getClass("WorkerAnt")
Class "WorkerAnt" [in ".GlobalEnv"]
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Slots:
                                                                            
Name:       Foraging         Alarm          Food        Length      
Position
Class:       logical       logical       numeric       numeric       
numeric
                                                
Name:             pA            pI ActivityLevel
Class:       numeric       numeric       numeric

Extends: 
Class "FemaleAnt", directly
Class "Ant", by class "FemaleAnt", distance 2

Known Subclasses: "SoldierAnt"

Finally, we will examine the slot command. The slot command is used to retrieve 
the value of a slot for a given object based on the name of the slot:

> worker <- WorkerAnt(Position=c(1,2,3),Length=5.6)
> slot(worker,"Position")
[1] 1 2 3

Summary
We introduced the idea of an S4 class and provided several examples. The S4 class 
is constructed in at least two stages. The first stage is to define the name of the class 
and the associated data components. The methods associated with the class are then 
defined in a separate step.

In addition to defining a class and its method, the idea of inheritance was explored. 
A partial example was given in this chapter; it built on a base class defined in the first 
section of the chapter. Additionally, the method to call-associated methods in parent 
classes was also explored, and the example made use of the constructor (or initialize 
method) to demonstrate how to build a chain of constructors.

Finally, four useful commands were explained. The four commands offered different 
ways to get information about a class or about an object of a given class.

For more information, you can refer to Mobile Cellular Automata Models of Ant 
Behavior: Movement Activity of Leptothorax allardycei, Blaine J. Cole and David Cheshire, 
The American Naturalist.



Case Study – Course Grades
This chapter is our first case study. We bring together the ideas from the previous 
chapters and provide an extended example. Some new ideas are introduced, and 
they should make more sense in the context of a full example.

This chapter is roughly divided into four parts:

• The Course class: This section gives you an overview of the S4 class that will 
contain a list of grades for a course. The grades are kept in a list with each 
graded task as a separate object.

• The assignment classes: This section gives you an overview of the S4 classes 
used to keep the grades for a specific graded task. This class has two derived 
classes. One derived class is to keep track of grades that have a numeric 
score, and the other is to keep track of grades that consist of letters.

• Extending existing functions: This section includes a brief discussion of how 
existing functions can be extended to react in an appropriate way to an object 
that is one of the assignment classes. We focus on the summary, plot, and 
show commands.

• Extending operations: This section includes a discussion on how to extend 
arithmetic and access functions by building on existing methods.

Overview
All the previous chapters focus on specific topics, and here we bring together a 
number of different topics to examine an extended example. All of the classes 
examined here are S4 classes. These classes are used to read in a CSV file that 
contains the grades for students in a class. There is one class that defines how to read 
a grade file and how to interpret a column. Another set of classes is defined and the 
classes are used to track the information for a single assignment. An object of this 
class will include all the scores for the assignments of all students.
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We first discuss the new Course class, which is used to keep track of all the 
assignments. Next, we discuss the assignment classes that are used to keep track 
of the grades for a single assignment. Once the classes are defined, the details on 
extending the summary, plot, and show commands are given to demonstrate how 
common commands can be extended to react when passed a newly defined object. 
Finally, some basic arithmetic and accessor operators are redefined so that the R 
system will react in an appropriate manner when using familiar operations, such  
as addition or multiplication.

The Course class includes objects whose type is one of the assignment classes, 
and it seems more natural to define the assignment classes first. The actions of the 
assignment classes are more intricate and include more details, while the Course 
class is relatively straightforward. To keep the introduction to the classes more 
gentle, we'll first discuss the Course class.

The Course class
The Course class is used to keep track of all of the grades for a course. This class will 
read in the information from a file, decide whether grades are numeric grades or letter 
grades, and create an appropriate assignment object to hold the grades. The details for 
the class are shown in the following figure. We'll first discuss the data and then the 
methods associated with the class. We'll then give some details on how to define the 
class. Most of the code associated with the accessors is omitted for the sake of brevity, 
but the full code is available on the website associated with this book.

+GetFi eName(): character()l
+ etFi eName(course: Course,fi eName: Character): character()S l l
+GetGrades(): list
+ etGrades(course: Course,grades: ist)S l
+GetGradeTypes(): character()
+SetGradeTypes(course: Course,gradeTypes: character())
+ReadGrades()

Course
+GradesFi e: character()l
+GradeTypes: character()
+Grades: list

First, there are three data structures (slots) associated with the class. The first is the 
name of the CSV file that contains all of the grades for the class. The second is a 
vector of prefixes used to determine what kind of graded tasks are in the file. The last 
is a list that contains all of the assignments.
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There are seven methods. All but one are used to set and get the values for the  
three slots. The accessor routines to get and set the filename are given here, and the 
others are not included in the text here. The last routine is used to read the grades, 
and it is a complex method that reads the data from the file and then determines 
whether the assignment has numerical or letter grades. It then defines an appropriate 
assignment object.

The definition of the Course class 
The Course class definition is given and then the accessors for the slots are stated. 
It is an S4 class. In this case, we do not provide any checks to ensure that the 
information in the slots is consistent to reduce the complexity of the example:

###############################################
# Create the Course class to keep track of all grades
Course <- setClass(
    # Set the name for the class
    "Course",

    # Define the slots
    slots = c(
        GradesFile = "character",
        GradeTypes = "character",
        Grades     = "list"
        ),

    # Set the default values for the slots. (optional)
    prototype=list(
        GradesFile = "",
        GradeTypes = c("test","hw","quiz","project"),
        Grades     = list()
        ),

    # Make a function that can test to see if the data is consistent.
    # This is not called if you have an initialize function defined!
    validity=function(object)
    {
        return(TRUE)
    }
    )
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Each of the slots includes a set of accessor functions to assist in retrieving or setting 
information tracked by the class. We only provide the details for one set of accessors. 
The methods to set and get the filename are given. Neither of these methods exist in 
the default R environment so they must be created first, as follows:

# Define the methods used to retrieve or set the values within a 
Course object.
setGeneric(name="GetFileName",
           def=function(course)
           {
               standardGeneric("GetFileName")
           }
           )

setMethod(f="GetFileName",
          signature="Course",
          definition=function(course)
          {
              return(course@GradesFile)
          }
          )

setGeneric(name="SetFileName",
           def=function(course,fileName)
           {
               standardGeneric("SetFileName")
           }
           )

setMethod(f="SetFileName",
          signature="Course",
          definition=function(course,fileName)
          {
              course@GradesFile = fileName
              return(course)
          }
          )
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Reading grades from a file
The last method examined is the method to read the data from a given file. We will 
examine the Grades list within the Course class before providing a listing. This slot 
is a list, and each element within the list is an assignment object. (The assignment 
classes are discussed in the next section of this chapter.) The name of the object 
within the list is the same as the name found in the first row of the CSV file.

The ReadGrades method first reads the csv file. It then goes through the columns 
that were read from the file, and the names of the columns are assumed to be in 
the first row of the file. If the first letters in the name of a column match one of the 
strings that are in the vector (found in the GradeTypes slot), then it is assumed that 
the column represents a graded item. There are two kinds of assignments: numerical 
grades or letter grades. If a column from the data file is determined to be a graded 
item, then its type is checked. If the type is a numeric type, then it is assumed that 
the course type is for a numeric grade (an object from the NumericGrade class); 
otherwise, it is assumed to be a letter grade (an object from the LetterGrade class):

setGeneric(name="ReadGrades",
           def=function(course)
           {
               standardGeneric("ReadGrades")
           }
           )

setMethod(f="ReadGrades",
          signature="Course",
          definition=function(course)
          {
              grades <- read.csv(GetFileName(course))
              convertedGrades <- list()
              courseTypes <- GetGradeTypes(course)
              for (gradeItem in names(grades))
              {
                  # Go through each column from the file.
                  for (type in courseTypes)
                  {
                      # go through each course type and determine if
                      # this column is a quiz/test/hw/?
                      if(length(grep(type,gradeItem))>0)
                          {
                              # The prefix for the name matches one of 
                              # the predefined types.
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                              if((class(grades[[gradeItem]])=="numer
ic") ||
                                 (class(grades[[gradeItem]])=="integ
er")) {
                                  thisItem <- NumericGrade()
                                  #print(paste("This item,",gradeItem,
                                  #  ",is a numeric grade item.",
                                  #  class(thisItem)))

     } else {
        thisItem <- LetterGrade()
        #print(paste("This item,",gradeItem,
        #    ", is a letter grade.",
        #    class(thisItem)))
     }
     # Convert the values into their
     # respective grades.
     thisItem <- SetValue(thisItem,
                 grades[[gradeItem]])
                              #print(paste("class: ",class(thisItem)))
                              convertedGrades[gradeItem] <- thisItem
                          }
                  }
              }
              return(SetGrades(course,convertedGrades))
          }
          )

The Course class is used to organize the grades for a whole class. The scores for an 
individual assignment are kept in one of the assignment classes, which is examined 
in the following section.

The assignment classes
There are two assignment classes, and they are both derived from the assignment 
class. The first class is the NumericGrade class, which keeps  track of a numeric 
grade. The second class is the LetterGrade class, which keeps track of a letter 
grade. The details of the classes are shown in the next figure. The definition of the 
Assignment class is given in the following figure, and the details about the accessors 
are omitted for the sake of brevity. The complete code is available on the website for 
this book.
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+GetName(): character()
+ etName(name: character()): character()S
+GetNumber(): numeric()
+SetNumber(number: numeric())

Assignment
+Name: character() = Test
+Number: numeric() = 0

+Get cale(): listS
+setScale(assignment,scale: list)
+GetValue()
+GetLetterGrade()
+ etVa ue(assignment,va ue: character())S l l
+GradeReport(assignment, maxGrade: numeric=NA,

div: numeric()=10)

LetterGrade
+Value: character()
+Scale: list+GetValue(): numeric ())

+ etValue(value: nu eric())S m
+GradeReport (assignment ,maxGrade: numeric()=NA,

div: numeric()=10)

+ : n ic()=0.0Value umer
NumericGrade

The details of the NumericGrade and LetterGrade classes are given in separate 
subsections in this chapter. Once the classes are given, examples are provided to 
demonstrate how to use the Course class to read the grades from a file and create  
the necessary assignment objects.

The assignment class is the base class for the NumericGrade and LetterGrade 
classes. The class only has two slots: the name and a number. The name is used 
to display the information related to the assignment, and the number can further 
identify the set of grades. For example, the grades for test 3 from a class might  
have a name, Test, and number set to the value of 3.

The definition for the class is given here:

###############################################
# Create the base assignment class
#
# This is used to represent the grades for one assignment.
Assignment <- setClass(
    # Set the name for the class
    "Assignment",

    # Define the slots
    slots = c(
        Name = "character",
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        Number = "numeric"
        ),

    # Set the default values for the slots. (optional)
    prototype=list(
        Name = "Test",
        Number = as.integer(1)
        ),

    # Make a function that can test to see if the data is consistent.
    # This is not called if you have an initialize function defined!
    validity=function(object)
    {
        if(object@Number < 0) {
            object@Number <- 0
            warning(paste("A negative number for the assignment ",
            "number is passed. It is set to zero.")
        }
        return(TRUE)
    }
    )

The primary purpose of the Assignment class is to act as the base class for other 
types of assignments. The two classes, NumericGrade and LetterGrade, that inherit 
from the assignment class are discussed in the following sections.

The NumericGrade class
The first class we examine that inherits from the Assignment class is the 
NumericGrade class. This class is used to retain the grades for an assignment whose 
grades are numbers. The class has only one slot, a numeric vector of grades. The 
definition is given here:

##############################################
# Create the class to keep track of the grades that are numeric in
# nature.
#
# This is used to represent the numeric grades for one assignment.
NumericGrade <- setClass(
    # Set the name for the class with a numeric grade associated with
    # it. 
    "NumericGrade",

    # Define the slots
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    slots = c(
        Value = "numeric"
        ),

    # Set the default values for the slots. (optional)
    prototype=list(
        Value = 0.0
        ),

    # Make a function that can test to see if the data is consistent.
    # (optional)
    # This is not called if you have an initialize function defined!
    validity=function(object)
    {
        if(object@Value < 0) {
            object@Value <- 0
            warning(paste("A negative number for the assignment value",
            "is passed. It is set to zero."))
        }
        return(TRUE)
    },

    # This class inherits from the Assignment class
    contains="Assignment"

    )

The methods for the class include the routines to set and get the values of the grades 
as well as a method to print out a report. The method to get the grades is given here 
as an example:

# Create the methods to retrieve and set the values of the 
NumericGrade class.
setGeneric(name="GetValue",
           def=function(assignment)
           {
               standardGeneric("GetValue")
           }
           )

setMethod(f="GetValue",
          signature="NumericGrade",
          definition=function(assignment)
          {
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              return(assignment@Value)
          }
          )

There is one other method to be defined, and it is used to print out a report based on 
the scores. The method for the grade report prints out a five-point summary of the 
grades, the frequency of the grades divided into ten percent intervals (90-100 percent, 
80-90 percent, 70-80 percent, and so on), a stem-leaf plot of the grades, and a sorted 
list of the grades. The report method includes a call to the summary command to 
get the five-point summary for the grades. The summary function is overridden, and 
the details are given in a later section, Redefining existing functions.

The definition of the report method is given here:

setGeneric(name="GradeReport",
           def=function(assignment,maxGrade=NA,div=10)
           {
               standardGeneric("GradeReport")
           }
           )

setMethod(f="GradeReport",
          signature="Assignment",
          definition=function(assignment,maxGrade=NA,div=10)
          {
              print(noquote(paste("Grade report for",
      GetName(assignment))))
print(noquote(''))
print(summary(assignment))  # Print out a five
                            # point summary for the data
values <- GetValue(assignment)  # Get the raw scores.
if(is.na(maxGrade)) {
   # The maxGrade was not set. Assume the max score
   # from the data is the maximum possible.
   maxGrade <- max(values)
   warning(paste("The max gade is not set, and it is",
       "assumed to be",maxGrade))
              }
              
              skip <- maxGrade*div/100;                        # Set 
the width of the intervals.
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              # Move the max grade up to make sure that the left sided
              # cut will have an interval to contain the top scores.
              while(maxGrade<=max(values))
                  {
                      maxGrade = maxGrade + skip
                  }
              
              # Determine the number of intervals.
numLower <- ceiling((maxGrade-min(values))/skip) 

# Determine all of the cutoff points
bins=c(seq(maxGrade-numLower*skip,
       max(c(values,maxGrade)),by=skip))

 # Convert the data  into factors
levs <- cut(values,breaks=bins,right=FALSE)

# Determine the frequencies for the  different levels.
gradeFreqs <- table(levs)

              print(noquote(''))
              print(noquote("Stem Leaf plot of grades:"))
              print(stem(values))
              print(noquote(''))
              
              print(noquote("Grade Frequencies:"))
              print(gradeFreqs)
              print(noquote(''))

              print(noquote("Sorted Grades:"))
              print(sort(values))
          }
          )
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The LetterGrade class
The second class that inherits from the Assignment class is the LetterGrade class. 
This class is used to keep track of grades that are assigned as letter grades. It is 
similar to the NumericGrade class, except it has two slots. The first slot is a character 
vector with the grades. The second slot is a list that contains the possible letter grades 
as the name, and the value associated with each letter grade is its numeric value used 
for calculations.

The definition of the LetterGrade class is given here:

#############################################################
# Create the class to keep track of the grades that are letters in
# nature.
#
# This is used to represent the letter grades for one assignment.
LetterGrade <- setClass(
    # Set the name for the class with a numeric grade associated 
    # with it.
    "LetterGrade",

    # Define the slots
    slots = c(
        Value = "character",
        Scale = "list"
        ),

    # Set the default values for the slots. (optional)
    prototype=list(
        Value = "F",
        Scale = list(
            'A+'=98,'A'=95,'A-'=92,
            'B+'=88,'B'=85,'B-'=83,
            'C+'=78,'C'=75,'C-'=73,
            'D+'=68,'D'=65,'D-'=63,
            'F+'=58,'F'=55,'F-'=53,
            "NA"=0)
        ),

    # Make a function that can test to see if the data is  
    #consistent.
    # (optional)
    # This is not called if you have an initialize function  
    #defined!
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    validity=function(object)
    {
        pos <- grep(paste(object@Value,"$",sep=""),
           names(object@Scale))
        if(length(pos) != 1) {
            object@Value <- 'F-'
            warning("The grade is not recognized.")
        }
        return(TRUE)
    },

    # This class inherits from the Assignment class
    contains="Assignment"

    )

The class has the usual accessor methods to get and set the values of the slots. We 
give the method to set the value of the grades because it is a complex exercise. The 
method must convert each grade to a character because they may be passed as a 
factor. The method must also go through and make sure that each grade is the one 
that is already defined. It does this using the grep command and the names of the 
list in the Scales slot, as follows:

setMethod(f="SetValue",
          signature="LetterGrade",
          definition=function(assignment,value)
          {
              # Loop through each item in the vector of values. Also,
              # convert the value to a character vector. We need the
              # scale list inside the loop so grab a copy now for
              # later use.
              lupe <- 1
              value <- as.character(value)
              theScale <- GetScale(assignment)
              theNames <- names(theScale)
              while(lupe <= length(value))
                  {
                # Determine whether this item can be found in the
                # list of scale items. Express it as a regular
                # expression and make sure it is an exact match
                # by using first and last place markers.
                thePattern <- paste("^",sub("\\+","\\\\+",
                    value[lupe]),"$",sep="")
                      pos <- grep(thePattern,theNames)
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                      if(value[lupe]=="") {
                          #An empty string was passed.
                          value[lupe] <- "NA"
                      } else if(length(pos) != 1) {
      # This item was not found. Print a warning and make it an NA
                          warning(paste("The grade \"",value[lupe],
          "\"is not recognized. It is set to NA.",
          sep=""))
                          value[lupe] <- "NA"
                      } 
                      lupe <- lupe + 1
                  }
              assignment@Value <- value
              return(assignment)
          }
          )

The final method examined here is the method to print out a grade report. It is a 
simpler method compared to the same method in the NumericGrade class. In this 
case, the only results to print are the frequency of occurrences for each possible  
letter grade:

setMethod(f="GradeReport",
          signature="LetterGrade",
          definition=function(assignment,maxGrade=NA,div=10)
          {
              print(noquote(''))
              print(noquote(paste("Grade report for",
       GetName(assignment))))
print(noquote(''))
print(summary(assignment))  # Print out a five
                       # point summary for the data
          }
          )

Example – reading grades from a file
A short example is given to demonstrate how to read a class file. We assume that a 
CSV file, called shortList.csv, is in the current working directory. The first task to 
accomplish is to execute the file that contains the class definitions, grades.R. Once 
the class is defined, the filename is set, and the file is read.
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First, in this example, the file with the shortList.csv grades is assumed to be  
the following:

section,test1,project1,final
3,75,B+,89
2,68,B,94
3,98,B+,110
2,76,A-,93
1,96,A+,112
1,81,B+,91
2,19,A,70
2,52,B+,70
2,88,A,71

The default value for the GradeTypes slot in the Course class is the following:

GradeTypes = c("test","hw","quiz","project")

Any column in the file whose name starts with one of the strings in the GradeTypes 
vector is assumed to be a recognized grade. The test1, test2, hw1, hw2, hw3, 
quiz1, quiz2, and project1 columns are recognized as being a graded item. The 
column whose name is final is not in the default vector and is not recognized, so the 
GradeTypes slot should be replaced:

> source('grades.R')
> dir(pattern="csv$")
[1] "math100.csv"   "shortList.csv"
> course <- Course()
> course <- SetGradeTypes(course,c("test","hw","quiz","project",
                                   "final"))
> course <- SetFileName(course,"shortList.csv")
> course <- ReadGrades(course)
> course
An object of class "Course"
Slot "GradesFile":
[1] "shortList.csv"

Slot "GradeTypes":
[1] "test"    "hw"      "quiz"    "project" "final"  

Slot "Grades":
$test1
An object of class "NumericGrade"
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Slot "Value":
[1] 75 68 98 76 96 81 19 52 88

Slot "Name":
[1] "Test"

Slot "Number":
[1] 1

$project1
An object of class "LetterGrade"
Slot "Value":
[1] "B+" "B"  "B+" "A-" "A+" "B+" "A"  "B+" "A" 

Slot "Scale":
$'A+'
[1] 98

$A
[1] 95

$'A-'
[1] 92

$'B+'
[1] 88

$B
[1] 85

$'B-'
[1] 83

$'C+'
[1] 78

$C
[1] 75

$'C-'
[1] 73

$'D+'
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[1] 68

$D
[1] 65

$'D-'
[1] 63

$'F+'
[1] 58

$F
[1] 55

$'F-'
[1] 53

$'NA'
[1] 0

Slot "Name":
[1] "Test"

Slot "Number":
[1] 1

$final
An object of class "NumericGrade"
Slot "Value":
[1]  89  94 110  93 112  91  70  70  71

Slot "Name":
[1] "Test"

Slot "Number":
[1] 1
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Defining indexing operations
An object that is a Course class can have many assignment objects in its Grades slot. 
We did not define a special method to get a particular assignment, and no method is 
defined to save an assignment. We examine how to do this is in this section, and the 
discussion revolves around redefining the [ operation.

First we redefine the [ operation used to get an assignment. The idea is that we want 
to get a copy of an assignment by enclosing the name of the assignment as defined 
in the original file within square braces. To do this, we can redefine the operation. In 
this case, we want to be able to pass any kind of object within the braces, which will 
allow us to also use integers to index by location in the list:

setMethod("[",
          signature(x="Course",i="ANY"),
          definition=function(x,i=1)
          {
              #print(paste("Get grade item",i))
              return(x@Grades[[i]])
          }
          )

We would like to also be able to get a grade within an assignment. In this case, we 
will pass two arguments within the braces. The first task is to get the assignment 
using the previous definition and then get the grade within the assignment whose 
index matches the second argument:

setMethod("[",
          signature(x="Course",i="ANY",j="numeric"),
          definition=function(x,i=1,j=1)
          {
              #print(paste("course value",i,j))
              allGrades <- GetValue(x[i])
              return(allGrades[[j]])
          }
          )

We assume that the operations are defined in a file called ops.R. Once these methods 
are read and executed, the [ operation is used in the following example to get a copy 
of test1 or to examine the third grade in test1:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
> course <- Course()
> course <- SetFileName(course,"shortList.csv")
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> course <- ReadGrades(course)
> course['test1']
[1] Assignment: Test
[1] (9) Grades:
[1] 75 68 98 76 96 81 19 52 88
> course['test1',3]
[1] 98
> 

The final topic to examine in this section is the use of the [ operation to set the value 
of an entry. The approach is similar to the methods used to get information given 
earlier. The only difference is that instead of using the setMethod function, we use 
the setReplace method, and the last argument to the function is the value to set the 
corresponding entry in the appropriate object:

setReplaceMethod("[",
          signature("NumericGrade"),
          definition=function(x,i,value)
          {
              #print(paste("grade value",i,value))
              x@Value[i] = value
              return(x)
          }
          )

setReplaceMethod("[",
                 signature("Course"),
                 definition=function(x,i,j,value)
                 {
                     #print(paste("course grade",i,j,value))
                     grades <- x@Grades[[i]]
                     grades[j] <- value
                     x@Grades[i] <- grades
                     return(x)
                 }
                 )

With these definitions in place, a value within the course for a specific grade can be 
easily set, as follows:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
> 
> course <- Course()
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> course <- SetFileName(course,"shortList.csv")
> course <- ReadGrades(course)
> print(course['test1'])
[1] Assignment: Test
[1] (9) Grades:
[1] 75 68 98 76 96 81 19 52 88
> print(course['test1',3])
[1] 98
> 
> course['test1',3] <- 99.1
> print(course['test1',3])
[1] 99.1
>

Redefining existing functions
As mentioned previously, the summary, show, and plot commands are extended to 
react in an appropriate way when passed a NumericGrade or LetterGrade object. 
Extending these functions is done by simply defining a new method for these 
functions using the setMethod command. Each of these commands already exist, so 
it is not necessary to reserve the names using the setGeneric command. That is, we 
simply define the method to associate with the command when passed an object that 
is a member of the NumericGrade or LetterGrade class.

We extend the summary command in the first example. In this case, the function 
should have a different behavior if the object passed to it is NumericGrade versus 
LetterGrade. For an object that is LetterGrade, the summary command retrieves  
the grades and prints out a frequency table for the grades:

setMethod(f="summary",
          signature="LetterGrade",
          definition=function(object,...)
          {
              # Get the letter grades as factors and return the
              # frequency table.
              values <- GetLetterGrade(object)
              return(summary(as.factor(values)))
          }
          )
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In this example, the only other kind of assignment that can be created is 
NumericGrade, but in the future, the class may be extended. Instead of creating a 
summary function solely for the NumericGrade class, we create a summary function 
for its base class, Assignment. In this way, an argument to the summary command 
that is derived from the Assignment class will obtain the object's grades, and the 
grades are assumed to be a numeric vector. The summary command can then be 
invoked on the vector:

setMethod(f="summary",
          signature="Assignment",
          definition=function(object,...)
          {
              # Get the grade values and return the five point
              # summary.
              values <- GetValue(object)
              return(summary(values))
          }
          )

In the following example, the necessary files are read, and the information from 
the shortList.csv file is read. Copies of two different assignments, test1 and 
project1, are found, and a summary for each object is printed:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
Creating a generic function for 'plot' from package 'graphics' in the 
global environment
Creating a generic function for 'summary' from package 'base' in the 
global environment
> 
> course <- Course()
> course <- SetFileName(course,"shortList.csv")
> course <- ReadGrades(course)
> x <- course['test1']
> summary(x)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  19.00   68.00   76.00   72.56   88.00   98.00 
> p <- course['project1']
> summary(p)
 A A+ A-  B B+ 
 2  1  1  1  4 
> 
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The files available in the repository for this book contain definitions for the show, 
summary, and plot commands. We examine one more here. The plot command 
for a NumericGrade object is a bit more complicated than the other examples. The 
plot command obtains the grades from the object passed to it, and it prints out a 
histogram, adds a box plot at the top of the histogram, and the rug command is used 
to display the data values on the same plot.

The arguments to the command include the maximum grade for the assignment. 
This argument is required because in some circumstances, extra credit is available 
and some students may achieve a higher score than is allocated for the rest of 
the class, and in other situations, no student may achieve a perfect score. If this 
argument is not provided, then the maximum score is used.

A second argument is included that indicates what percentages to use. The default is 
10, which indicates that the breaks in the histogram are made at the 10 percent marks 
for the scores. For example, if the default of 10 is used, then the scores in the 90-100 
range are counted together.

The final argument is the ellipses symbol (...), which indicates that other arguments 
can be passed to the function. The same symbol is used in the plot command 
within the method. The idea is that all of the extra parameters are passed to the plot 
command. This allows us to set a wide array of plot parameters through the method 
without having to catch any special cases:

setMethod(f="plot",
          signature="Assignment",
          definition=function(x,maxGrade=NA,div=10,...)
          {

            #print("Plotting an assignment")
            
            values <- GetValue(x) # Get the raw scores
            if(is.na(maxGrade)) {
              # The maxGrade was not set. Assume the max score from
              # the data is the maximum possible.
              maxGrade <- max(values)
              warning(paste("The max gade is not set, ",
              " and it is assumed to be", 
              maxGrade))
            }



Chapter 10

[ 155 ]

            skip <- maxGrade*div/100; # Set the width of the
                          # intervals.
#  Determine the number of intervals.
numLower <- ceiling((maxGrade-min(values))/skip) 

# Determine the cut off values between the bins in the
# histogram.
bins=c(seq(maxGrade-numLower*skip,
           max(c(values,maxGrade)),by=skip))
if(max(bins)<max(values)) {
   # The bins do not include the maximum value. Adjust
   # the bound on the upper most bin.
   bins[length(bins)] <- max(values);
}
# Convert the data into factors
levs <- cut(values,breaks=bins,right=FALSE) 
# Determine the frequencies for the different levels.
gradeFreqs <- table(levs)
# Get the max frequency
top <- max(gradeFreqs)
# Plot the histogram.
hist(values,breaks=bins,
    freq=TRUE,
    ylim=c(0,top+1),axes=FALSE,
    col=grey((seq(length(bins)-1,1,by=-1)/
                (length(bins)-1))),
     right=FALSE,...)

# Add a box plot across the top
boxplot(values,horizontal=TRUE,at=top+0.5,add=TRUE,
        axes=FALSE)

            # Plot the raw data as a strip chart across the bottom
            rug(values)
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            # Turn on only the left and lower axes.
            axis(side=1,at=bins)
            axis(side=2,at=seq(0,top+1,by=1))
              
          }
          )

In the following example, a larger data file is read. The results from test2 are 
plotted, and the method automatically generates the plot as described earlier:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
> 
> course <- Course()
> course <- SetFileName(course,"math100.csv")
> course <- ReadGrades(course)
> 
> x <- course['test2']
> plot(x,maxGrade=100,main='Student Scores From Test 2')
Warning message:
In plot.histogram(r, freq = freq1, col = col, border = border, angle = 
angle,  :
  the AREAS in the plot are wrong -- rather use 'freq = FALSE'
> 

Note that a warning message is printed. The maximum grade is specified as 100, but 
there are some students in the class who achieved a 102 because of extra credit. The 
breaks in the histogram include the students who achieved a higher grade than the 
maximum grade in the top 10 percent, and that set of values has a different width 
than the others. The resulting plot is shown in the following screenshot:
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The histogram created by the plot command given the information in the math-100.csv grade file

Redefining arithmetic operations
The last topic that we're going to examine is how to define basic arithmetic 
operations on assignments. In particular, we'll examine how to perform arithmetic 
operations on two NumericGrade objects and how to add a set of values to a 
NumericGrade object. This can be done in the R environment by extending one of the 
sets of generic groups that is used to collect similar operations. The different groups 
include the Arith, Compare, Ops, Logic, Math, Math2, Summary, and Complex groups. 
The Ops group includes the Arith, Compare, and Logic operations, and we extend 
this group to include objects from the NumericGrades class.
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We use the setMethod function for the Ops group to define operations involving 
NumericGrade objects. The resulting function obtains the grades and performs the 
requisite operation using the callGeneric command. The quirk of the system is 
that it must return a NumericGrade object, and the last step is to set the value of the 
grades for the first NumericGrade object sent to the function:

setMethod("Ops", signature(e1="NumericGrade", e2="NumericGrade"),
    function(e1, e2) {
        theSum <- callGeneric(GetValue(e1), GetValue(e2))
        return(SetValue(e1,theSum))
    }
)

setMethod("Ops", signature(e1="NumericGrade", e2="numeric"),
    function(e1, e2) {
        theSum <- callGeneric(GetValue(e1), e2)
        return(SetValue(e1,theSum))
    }
)

setMethod("Ops", signature(e1="numeric", e2="NumericGrade"),
    function(e1, e2) {
        theSum <- callGeneric(e1, GetValue(e2))
        return(SetValue(e1,theSum))
    }
)

In the following example, the grades from the math100.csv file are read. A copy of 
the scores taken from the test1 and test2 assignments are obtained, and the simple 
average is found by adding them and dividing by two:

> source('grades.R')
> source('ops.R')
> source('overriding.R')
> 
> course <- Course()
> course <- SetFileName(course,"math100.csv")
> course <- ReadGrades(course)
> x <- course['test1']
> y <- course['test2']
> z <- (x + y)/2
> print(z)
[1] Assignment: Test
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[1] (327) Grades:
  [1]  80.0  76.0  95.5  83.0  98.0  87.0  45.5  66.5  94.0  76.5  
63.5  83.5
 [13]  66.0  52.5  85.5  35.5  82.5  90.5  89.5  51.0  71.0  53.5  
80.0  75.5
 [25]  39.0  61.5   0.0  72.5  84.0  70.0  97.5  76.0  52.0  73.0  
68.5  55.5
 [37]  44.0  86.0  64.0  59.0  61.5  58.0  43.5  95.5  53.5  60.0  
77.5  56.5
 [49]  93.5  52.5  97.5  55.0  98.0  68.0  63.0  46.5  74.5  26.5  
78.5  69.0
 [61]  84.5  92.5  78.5  78.0  84.5  11.0  51.0  96.0  73.0  95.0  
94.0  82.5
 [73]  93.0   0.0  86.0  44.5  75.0  51.5  57.5 100.0  48.0  64.5  
57.0  65.0
 [85]  75.5  76.5  62.0  19.0  52.0  52.5  79.0  71.5  63.0  24.0  
91.0  99.5
 [97]   0.0  73.0  62.0   0.0  66.5  88.5  77.5  91.5  48.0  63.5  
53.5  87.5
[109]  80.5   0.0  55.5  85.0  40.5  79.0   0.0  92.5  60.5  91.5  
41.5  51.0
[121]  67.0  76.0  76.5  60.5  85.5  64.5  87.5  31.0  87.0   0.0  
98.5  60.5
[133]  91.0  86.5  48.0  54.5  54.0  34.0  56.5   0.0  61.5  84.5  
44.5  64.0
[145]  64.0  59.5  75.5  60.5  61.5  83.0  66.0  52.5  72.0  66.5  
72.5  81.0
[157]  98.0  64.5  78.5  77.0  19.0  80.5  33.0  53.5  44.0  74.0  
74.0  58.5
[169]  45.0  83.0  60.0  78.0  70.0  79.0  60.0  96.5  68.5  92.0  
63.5  93.5
[181]  62.5  64.0  82.5  90.0  57.5  71.0  54.0  29.5  45.0  79.5  
27.5  94.5
[193]  74.5  71.0   0.0   0.0  31.0  77.0  49.0  48.5  52.0 100.5  
75.5  90.5
[205]  79.0  62.0  92.5  57.5  83.0   0.0  45.5  72.5  76.5  85.0  
34.5  90.5
[217] 100.5  74.5  82.0   0.0  63.0  79.5  47.5  67.5  80.5  58.0  
82.0  60.0
[229]  68.0  61.5  62.0  54.5  68.5  69.0  87.5  44.0  65.5  53.0  
47.0  66.0
[241]  64.0  93.0  52.0  51.5  81.0  67.0  92.5  85.0  36.0  76.5  
78.0  49.5
[253]  42.5  86.0  76.0  43.0  74.0  90.5  44.5  40.5  45.0  50.5  
48.0  80.0
[265]  87.0  88.0  59.5  59.5  48.0  62.0  94.0  80.0  71.0  64.0  
65.0  43.5
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[277]  61.0   0.0  57.0  33.0  91.0 100.0  66.0  91.5  98.0  70.0  
60.0  91.5
[289]  91.0  81.5  42.0  80.0  67.0  64.5  64.5  55.5  88.5  73.5  
81.5  99.5
[301]  59.5  65.0  77.5  58.5  89.5 100.5  44.5  85.5   0.0  70.5  
90.0  85.5
[313]  81.0  64.5  51.0  76.5  54.5  88.0  58.5  56.0  23.0  36.0  
88.5  71.5
[325]  56.0  66.5  16.5
> 

Summary
An extended example making use of S4 classes was examined in this chapter, and 
a set of classes are defined to read and track the grades for a class. The Course class 
keeps track of a number of assignments, and it reads the contents of a CSV file and 
automatically determines which columns are grades and whether or not they are 
numerical grades or letter grades.

The grades for a particular assignment are kept in one of two classes. The 
NumericGrade class keeps track of numerical grades, and the LetterGrade class 
keeps track of letter grades. Both classes are derived from the Assignment base class.

A number of examples were given, and highlights from the code were given. The 
full set of code can be found on the website associated with this book, and we 
recommend that you closely examine the code. The three files that include the 
definitions for this class are the grades.R, ops.R, and overriding.R files.

In the next chapter, another set of classes are developed. The classes in that chapter 
provide an example of a set of classes that can be used to generate the results from a 
stochastic process and manage the results from a large number of simulations. The 
classes can be used to generate results from either a discrete or continuous process, 
and the distribution of the results can be explored.
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We will now examine a set of S3 classes designed to implement a Monte-Carlo 
simulation. The example scripts include a class to generate a single simulation 
as well as a class to run and collect the results from multiple simulations. The 
simulation class includes two derived classes. One is used for simulations of a 
discrete stochastic process, and the other is for simulations of a stochastic  
differential equation.

This section is roughly divided into the following parts:

• The simulation classes
• The Monte-Carlo class
• Examples

We will first examine a set of simulation classes that are designed to generate a single 
simulation of a stochastic system. The classes make use of a base class to manage 
the parameters. Two classes are derived from the base class. The first derived class 
is used to simulate a discrete stochastic system. The second derived class is used to 
approximate a stochastic differential equation.

After examining the simulation classes, a master class is used to manage the  
Monte-Carlo simulations. The Monte-Carlo class accepts a simulation class and 
collects the results from multiple simulations. Our focus is on the basic structure  
of the classes, so we do not discuss statistical methods for the data.

We briefly examine an example using the classes in the last section of this chapter. 
The example focuses on how to create an object from the discrete stochastic 
simulation class and how to generate results.
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The simulation classes
The simulation classes consist of three parts. The Simulation class is the base class, 
and two classes, DiscreteSimulation and ContinuousSimulation, are derived 
from the base class. We assume that the definitions for these classes are kept in a 
separate file, simulationS3.R.

The base class, Simulation, is used to manage the parameters and results for a single 
simulation. The data includes the final time used in the simulation and accessor 
methods are defined for the data:

########################Create the base simulation class
##
## This is used to represent a single simulation
Simulation <- function()
  {
      
      ## Create the list used to represent an
      ## object for this class
      me = list(
          simulationResults = matrix(0)
          )

      ## Set the name for the class
      class(me) <- append(class(me),"Simulation")
      return(me)

  }# Set the data values that are the result of a simulation.
setSimulation <- function(theSimulation)
    {
        UseMethod("setSimulation",theSimulation)
    }
setSimulation <- function(theSimulation,simulationResults)
    {
        ## Set the value of the  variable theSimulation
        theSimulation$simulationResults <- simulationResults
        return(theSimulation)
    }
]
## method to return the data from the current set of results.
getFinalValues <- function(theSimulation)
    {
        UseMethod("getFinalValues",theSimulation)
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    }
getFinalValues <- function(theSimulation)
    {
        ## Get the value of the data pair at the last time step
        size <- dim(theSimulation$simulationResults)
        return(c(theSimulation$simulationResults[size[1],1],
                 theSimulation$simulationResults[size[1],2]))
    }

Note that the class includes an addition method, getFinalValues, which is used to 
retrieve the last values approximated in the simulation. This method is required by 
the Monte-Carlo class defined in the next section. The results are used to determine 
the requisite statistics.

The next two classes are the DiscreteSimulation and ContinuousSimulation 
classes. The DiscreteSimulation class is used to generate an approximation to the 
discrete stochastic system given by the following equation:

1 1 1 1 2 2,n n n n n n nx ax bx y NW y gx dy N W+ += + + = + +

In the preceding equation, a, b, N1, g, d, and N2 are constants, and W1 and W2 are 
normally distributed random variables with a mean of zero and a standard deviation 
of one. The ContinuousSimulation class is used to generate an approximation using 
the Milstein scheme to the stochastic differential equation:

1 1 2 2( ) , ( )dx axy by dt N dW dy gx dy dt N dW= + + = + +

In the preceding equation, a, b, N1, g, d, and N2 are constants, and W1 and W2 are 
independent Wiener processes.

The complete scripts for all of the classes can be found in the code that accompanies 
this text. In the interest of brevity, we only look at one derived class: the 
DiscreteSimulation class. The definition of the class is given here:

#############################################################
## Create a simulation for a discrete simulation.
##
## This is used to represent the results from a discrete simulation.
DiscreteSimulation <- function()
  {
    ## Define the base class and get the environment
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    me <- Simulation()
    me$N <- 0

    ## Set the name for the class with a numeric grade associated with
    ## it.
    class(me) <- append(class(me),"DiscreteSimulation")
    return(me)
  }

The final method specific to this class is the singleSimulation method that is used 
to conduct one simulation and save the results. The methods necessary to define the 
discrete simulation class are as follows:

# the methods to do the actual simulations.
singleSimulation <- function(simulation,N,T,x0,y0,alpha,beta,
   gamma,delta, noiseOne,noiseTwo)
  {
    UseMethod("singleSimulation",simulation)
  }

singleSimulation.DiscreteSimulation <-function(
  simulation,N,T,x0,y0,alpha,beta,gamma,delta,noiseOne,noiseTwo)
  {
    ## Make an approximation for one run of the discrete model
    ## with the given parameters. Store the approximation in
    ## the simulation slot when done.

    ## initialize the necessary variables.
    x <- matrix(data=double(N*2),nrow=N,ncol=2)
    x[1,1] <- x0
    x[1,2] <- y0
    lupe <- 2

    ## Go through and make N iterations of the stochastic model.
    while(lupe <= N)
      {
        dW <- rnorm(2,mean=0,sd=1)    # Generate two random numbers
                                      # with a normal dist.
        ## Take one step of the discrete model
        x[lupe,1] <- alpha*x[lupe-1,1] + beta*x[lupe-1,1]*x[lupe-1,2] 
+
          noiseOne*dW[1]
        x[lupe,2] <- gamma*x[lupe-1,1] + delta*x[lupe-1,2] +
          noiseTwo*dW[2]
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        lupe <- lupe + 1
      }

    ## Save the simulation and return the result.
    simulation <- setSimulation(simulation,x)
    return(simulation)
  }

The Monte-Carlo class
The final class examined is the MonteCarlo class. The MonteCarlo class is used  
to keep track of the results from multiple simulations. Here, we provide a partial  
list of the code for the class and then provide the methods used to generate  
multiple simulations.

First, the code required to define the class is given here:

############################################################
# Create the Monte Carlo class
#
# This class is used to make many simulations
MonteCarlo <- function()
{

    # Define the slots
    me = list(

        ## First define the parameters for the stochastic model
        N        = 0,
        T        = 0,
        x0       = 0,
        y0       = 0,
        alpha    = 0,
        beta     = 0,
        gamma    = 0,
        delta    = 0,
        noiseOne = 0,
        noiseTwo = 0,

        ## Define the data to track and the number of trials
        xData = 0,
        yData = 0

      )
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  ## Set the name for the class
  class(me) <- append(class(me),"MonteCarlo")
  return(me)
}

# Define the method used to initialize the data prior to a run.
prepare <- function(monteCarlo,number)
    {
        UseMethod("prepare",monteCarlo)
    }
prepare.MonteCarlo <- function(monteCarlo,number)
    {
        ## Set the number of trials and initialize the values to
        ## zeroes.
        monteCarlo$xData <- double(number)
        monteCarlo$yData <- double(number)
        return(monteCarlo)
    }

The class requires an additional method. The simulations method is used to create 
multiple simulations and record the results:

simulations <- function(monteCarlo,number,simulation)
  {
    UseMethod("simulations",monteCarlo)
  }

simulations.MonteCarlo <- function(monteCarlo,number,simulation)
  {
    ## Set the number of trials and initialize the values
    monteCarlo <- prepare(monteCarlo,number)
    params <- getParams(monteCarlo)   # get the parameters

    ## Perform the simulations
    lupe <- 0
    while(lupe < number)
      {
        lupe <- lupe + 1 # increment the count
        ## Perform a single simulation.
        simulation <- singleSimulation(
          simulation,
          params[1],params[2],params[3],params[4],params[5],
          params[6],params[7],params[8],params[9],params[10])
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        ## Get the last values of the simulation and record them.
        values <- getFinalValues(simulation)
        monteCarlo <- setValue(monteCarlo,values[1],values[2],lupe)
      }

    return(monteCarlo)
  }

Examples
We will now provide a brief example to demonstrate how to use the Simulation 
and MonteCarlo classes described in the previous sections. We focus on the discrete 
simulation class, but additional examples can be found in the code that accompanies 
this text. In this example, we assume that the definitions for the simulation and 
MonteCarlo classes are contained in two files, simulationS3.R and monteCarloS3.R.

The Monte-Carlo simulations can be created by first creating an object from the 
MontyCarlo class and setting the values of the parameters as follows:

> source('simulationS3.R')
> source('monteCarloS3.R')

> monty <- MonteCarlo()
> monty$setParams(100,1,
                1.0,2.0,
                1.2,-0.3,0.65,0.2,
                0.03,0.04)

Now that an object from the MonteCarlo class is defined, an object from the 
DiscreteSimulation class is created, and the simulation object is used to generate 
the results from 500 simulations:

> a <- DiscreteSimulation()
> monty <- simulations(monty,500,a)

At this point, the monty object has the results from 500 simulations. The results can 
be found using the getValues method, as follows:

> summary(results[,1])
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
 0.6480  0.7792  0.8231  0.8213  0.8595  1.0110
> summary(results[,2])
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
 0.4978  0.6232  0.6590  0.6632  0.7064  0.8918
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Alternatively, methods can be defined that extend existing methods. For  
example, the hist function can be extended to accommodate an object from  
the MonteCarlo class:

# the methods to plot the results
hist.MonteCarlo <- function(x,main="",...)
  {
      par(mfrow=c(2,1))
      values <- getValues(x)
      isValid <- (!is.na(values[,1])) && (!is.infinite(values[,1]))
      hist(values[isValid,1],xlab="x",main=main,...)
      hist(values[isValid,2],xlab="y",main="",...)
  }

With this definition, a histogram can be easily created:

hist(monty,main="Results from a Discrete Simulation")

Summary
An example of an S3 class was defined that can be used to keep track of a set of 
simulations. The classes include a separate class used to create a single simulation. 
The single simulation can be an approximation of either a discrete or continuous 
stochastic process. Another class is developed that can keep track of the results from 
a large number of simulations.

In the next chapter, we look at another extended example. The focus in the next 
chapter is on creating a set of S3 classes to provide a general way to handle 
regression tasks for a variety of data types. You can download this chapter from 
https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_
Study_Regression.pdf.

https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_Study_Regression.pdf
https://www.packtpub.com/sites/default/files/downloads/6682OS_Case_Study_Regression.pdf


Package Management
A brief overview of working with packages is provided here. This is given as a 
reference to the basic commands used to manage packages. It is not exhaustive  
and serves only as a brief reference to manage packages associated with your 
installation of R.

The appendix has four parts:

• An overview on how to access a package
• An overview on how to install a package
• An overview on how to remove a package
• An overview on how to update packages

One of R's greatest strengths is the ability to use specialized packages, and a wide 
range of packages are available. Some of the packages are included in the regular 
installation, and some packages must be installed and maintained separately. 
We provide a brief overview of how to install, remove, and upgrade the installed 
packages on your system.

We first discuss two commands that are commonly used when working with 
packages. The first is the installed.packages command. This command will list all 
of the packages that are part of your installation. The other command is the library 
command. The library command is used to tell R to make use of the commands 
available in a given library. In the following example, the first command displays 
information about the splines package, and the second command must be entered 
before using the spline package:

> library(help = "splines")
> library(splines)
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If a package is not part of your installation, you need to install it. The command 
to install a package is, oddly enough, the install.package command. In the 
following example, the car package, which is used for additional regression options, 
is installed. The full details are not provided. You must reply to a series of questions 
posed and then R will automatically fetch and install the package for you:

> install.packages("car")

A package can also be easily removed using the remove.packages command. In the 
following example, we remove the car package:

> remove.packages("car")

The last topic discussed is how to update your packages. To update all of your 
packages, simply use the update.packages command. In the following example, 
the command is entered and the full details are not provided. After submitting the 
command, you are given a list of packages that can be updated and you must decide 
which packages will be updated on your system:

> update.packages()
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