
www.allitebooks.com

http://www.allitebooks.org

Rake Task Management
Essentials

Deploy, test, and build software to solve real-world
automation challenges using Rake

Andrey Koleshko

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Rake Task Management Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1140414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-077-3

www.packtpub.com

Cover Image by Kim Nousaine (kimberlyjg@icloud.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Andrey Koleshko

Reviewers
Mario Miguel Agüero Obando

Stuart Ellis

Avinasha Sastry

Commissioning Editor
Grant Mizen

Acquisition Editor
Neha Nagwekar

Content Development Editor
Priya Singh

Technical Editor
Dennis John

Copy Editor
Stuti Srivastava

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Ameesha Green

Indexer
Mehreen Deshmukh

Graphics
Sheetal Aute

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andrey Koleshko had his first touch with programming while at school,
when he worked on Pascal. He had been solving basic algorithmic tasks. The first
programming language he used at the beginning of his career was Java. He worked
with this language for a year and then migrated to the Ruby language, which he
worked with for the next four years. Of these four years, he worked with Altoros for
three. He had an amazing time there, learning the language and technologies deeply.

Currently, he works at a local cloud hosting company. The company change provided
him with the opportunity to deal with a lot of challenges concerning application
architecture, code testing, debugging, and deployment processes. As a result, he has
been able to contribute to some famous Ruby libraries. More detailed information
about his contributions can be found on GitHub at http://github.com/ka8725.

He mostly works with the Rails framework. He openly shares all of his thoughts
and his most interesting experiences through his blog at http://railsguides.net.
He has recently started to learn the Python programming language.

He lives in Minsk, Belarus, and likes to watch and play sports such as soccer,
ping-pong, and volleyball. He also likes travelling to tropical countries with
his wife. Teaching people gives him immense pleasure.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgements

I'm thankful to many people who've helped me write this book. But firstly, I would
like to thank the publishers who offered me an opportunity to write this book. If it
wasn't for them, who knows what would have happened with this book. Thankfully,
the Packt Publishing team was very supportive and helped me deliver this useful
book with high quality. A big thanks goes to Sergey Avseyev, who always supported
me in the technical and difficult parts of the book. He also made me believe that I
could write this book from scratch. I would also like to thank Lee Hambley, who
shared his experience with me, and as a result, the last chapter of the book is more
hands-on. I have no doubt now that Rake has a very successful future despite other
competitive tools.

I'm grateful to my wife for allowing me to allocate enough time to write the chapters.
Lastly, I would like to acknowledge the creator of Rake, Jim Weirich. He created a
really great and powerful tool. Unfortunately, he won't be with us to see this book
published. He passed away recently. But anyway, I believe that he would be happy
that his creation helped develop this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mario Miguel Agüero Obando is a software engineer with experience in both
frontend and backend sides of software development. He has worked in intensive
data processing applications and also in new UX designs.

He is also an experienced programming trainer and has reviewed several
technical books.

Stuart Ellis works for a Ruby on Rails and mobile software development company,
where he wears many hats. He has also worked as a .NET and Ruby programmer,
tamed various brands of databases, managed different combinations of Windows
and Linux, and studied history. He has always been a Yorkshireman.

Avinasha Sastry has been involved in technology and startups right from his college
days. He has never worked in big companies because he loves the business challenges
in startups as much as he loves technology. He has been working with SupportBee for
the last three years. He is an avid reader, a Harry Potter fan, and a globetrotter.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: The Software Task Management Tool – Rake 7

Installing Rake 8
Introducing rake tasks 9
The command-line arguments 10
Using global Rakefiles to run tasks anywhere 11
Defining custom rake tasks 13
Task dependencies – prerequisites 14

Multiple tasks definitions 15
Passing arguments to the tasks 16

The structure of a Rake project 19
Using the import method to load other Rakefiles 19
Running rake tasks from other tasks 21

The code conventions of Rake 23
Summary 25

Chapter 2: Working with Files 27
Using file tasks to work with files 27
The characteristics of the file task dependencies 29
Creating a folder with the directory method 34
Using Rake's file utilities 35

Using the FileList module functionality to collect the files 36
Using pathmap to transform file lists 37
Introducing the FileUtils module 41

A practical example of automatically generating a config file 42
Summary 43

Chapter 3: Working with Rules 45
Understanding the duplication of the file tasks 45
Using a rule to get rid of the duplicated file tasks 47

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Detecting a source for the rule dynamically 48
Using a regular expression to match more tasks 50
Summary 50

Chapter 4: Cleaning Up a Build 51
Setting up a project 51
The cleaning tasks 54
Summary 56

Chapter 5: Running Tasks in Parallel 57
Defining tasks with parallel prerequisites 57
Thread safety of multitasks 61
Multiple task definitions with a common prerequisite 61
Applying multitasks in practice 62
Summary 63

Chapter 6: Debugging Rake Tasks 65
Using command-line arguments for debugging 65
Getting a dependency's resolution with --prereqs 67
Using the --rules option to trace the rule resolution 68
Using the Ruby approach to debug a Rake project 69
Summary 71

Chapter 7: Integration with Rails 73
Introducing Rake's integration with Rails 73
Custom rake tasks in a Rails project 75
Recurrent running of tasks 76
Summary 78

Chapter 8: Testing Rake Tasks 79
The need for tests 79
Writing tests for rake tasks 80
Summary 85

Chapter 9: Continuous Integration 87
Introducing Jenkins 87
Setting up Jenkins 88
Configuring Jenkins to run rake tasks 91
Summary 92

Chapter 10: Relentless Automation 93
Examples of Rake being used by famous gems 93

The pain of task execution 94
Sinatra using Rake to run tests 95
Sinatra using Rake to generate documentation 96
Capistrano extending the Rake implementation 97

Table of Contents

[iii]

Other examples of Sinatra using Rake 98
Thor – the next generation of Rake 99
Summary 100

Index 103

Preface
Maybe every Ruby developer who is familiar with Rails knows what Rake is.
However, many of them are unaware of the complete power of this tool and
its real aim. The goal of this book is to improve this situation.

Have you ever had to perform boring, repetitive tasks while deploying your
project? I assume here that a project is not only something written in Ruby or
another programming language, but it can also consist of operations with files. For
example, it might be a book or the documentation of a project that you are writing
in Markdown and then compiling into HTML. Or it can be compiling a lot of files
to one package. Have you ever wished to build a project or run tests on a project
whenever it undergoes a change? All this stuff is easily made possible by programs
called software management tools. Rake is one such program.

Rake was initially implemented as a Ruby version of Make—a commonly used
build utility. However, calling Rake a build utility undermines its true power.
Rake is actually an automation tool—it's a way to put all those tasks that you
perform under the project into one neat and tidy place.

Basically, build automation includes the following processes:

• Compiling the computer source code into binary code
• Packaging the binary code
• Running tests
• Deployment to production systems
• Creating documentation and/or release notes

Rake can be used in all these situations, and this book shows you how Rake performs
all the steps. After reading this book, you will know Rake better and be able to write
more clear and robust Rake code.

Preface

[2]

What this book covers
Chapter 1, The Software Task Management Tool – Rake, introduces you to the basic usage
of Rake and its command-line utilities. You will learn what a rake task is and how
to set dependencies between rake tasks, what a default rake task is, Rakefile, and
the global Rakefile. This chapter also contains information about the Rake project
structure and how to organize the code.

Chapter 2, Working with Files, explains the foundational features of Rake that help us
work with files. This is mandatory information because of Rake's orientation—it is built
to be an automation tool. You will see that there is a special rake task for file processing
called file. The main part of the chapter contains the explanation of utilities that are
offered by Rake to work with the files: FileList and FileUtils. At the end, you will
be given a real-world example on how to apply the acquired knowledge.

Chapter 3, Working with Rules, will show how knowing a rule task may allow you to
write more robust and precise code.

Chapter 4, Cleaning Up a Build, describes one of the useful features of Rake—the
capability to clean the build of your project with the clean standard task.

Chapter 5, Running Tasks in Parallel, helps us figure out how to speed up the resulting
task execution with multitask. We will learn which basic problems may arise while
implementing parallelism and how to avoid them.

Chapter 6, Debugging Rake Tasks, provides the basic knowledge to debug Rake
projects. You will be provided with an example on how to debug rake tasks
inherent to Rake techniques and also to Ruby projects in general.

Chapter 7, Integration with Rails, provides an overview of how Rake is integrated into
the famous Ruby web framework, Rails. The chapter shows how to write custom
rake tasks in a Rails project and run them manually or automatically on schedule.

Chapter 8, Testing Rake Tasks, details the reasons we should test rake tasks. Also,
you will see an example of how to write the tests with MiniTest—a built-in Ruby
test framework.

Chapter 9, Continuous Integration, briefly introduces you to Jenkins—a continuous
integration software. You will see how to configure it and run rake tasks with its help.

Chapter 10, Relentless Automation, doesn't introduce any new Rake terms, but you
will find useful examples of the Rake appliance by popular programs. You will be
introduced to the Thor utility, which can replace Rake in some circumstances. Then
we will compare both of these frameworks. Finally, we will briefly gather all the
information that was provided throughout the book.

Preface

[3]

What you need for this book
To run the examples in this book, you must have Ruby installed. The examples
can be run in all operation systems where Ruby can be installed. However, a few
chapters provide examples that may be run only on Unix-based systems such as
Linux and OS X. The command-line examples are written in a Unix-like style, but
Windows users will also be able to run them.

Who this book is for
This book requires basic knowledge of Ruby because Rake is written in this
programming language. But it doesn't mean that gurus of other languages will not be
able to understand the examples. If you are working with a build automation tool that
doesn't fit your requirements or seems too complicated, this book is what you need.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

task :hello do
 puts 'Hello, Rake!'
end

Any command-line input is written as follows:

$ rake task2

All command-line outputs have been highlighted and will appear as follows:

rake aborted!

this is an error

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You will
be redirected to the configuration page of the created project. There you will find the
Build section with the Add build step dropdown."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

The Software Task
Management Tool – Rake

In this chapter, we will cover the installation of Rake, the definition of basic terms
such as rake task and Rakefile, and how to use them for easy programming issues.
The introduction will be given using straightforward examples to explain the terms
as clearly as possible. You will see that Rake is a tool that is written in the Ruby
programming language, and that's why any Ruby code can be written in a Rake
application. Also, you have the choice of using any available Ruby library in a
Rake project. This feature makes Rake the winner compared to many other build
tools, which use their own limited languages. The chapter will serve as a base for
introducing Rake's Domain Specific Language (DSL) and project file structuring.

In this chapter, we will cover the following topics:

• Installing Rake
• Introducing rake tasks
• The command-line arguments
• Using global Rakefiles to run tasks anywhere
• Defining custom rake tasks
• The structure of a Rake project
• The code conventions of Rake

The Software Task Management Tool – Rake

[8]

Installing Rake
As Rake is a Ruby library, you should first install Ruby on the system if you don't
have it installed already. The installation process is different for each operating
system. However, we will see the installation example only for the Debian
operating system family.

Just open the terminal and write the following installation command:

$ sudo apt-get install ruby

If you have an operating system that doesn't contain the apt-get
utility and if you have problems with the Ruby installation, please
refer to the official instructions at https://www.ruby-lang.
org/en/installation. There are a lot of ways to install Ruby, so
please choose your operating system from the list on this page and
select your desired installation method.

Rake is included in the Ruby core as Ruby 1.9, so you don't have to install it as a
separate gem. However, if you still use Ruby 1.8 or an older version, you will have
to install Rake as a gem. Use the following command to install the gem:

$ gem install rake

The Ruby release cycle is slower than that of Rake and sometimes,
you need to install it as a gem to work around some special issues.
So you can still install Rake as a gem and in some cases, this is a
requirement even for Ruby Version 1.9 and higher.

To check if you have installed it correctly, open your terminal and type the
following command:

$ rake --version

This should return the installed Rake version.

The next sign that Rake is installed and is working correctly is an error that you see
after typing the rake command in the terminal:

$ mkdir ~/test-rake

$ cd ~/test-rake

$ rake

rake aborted!

Chapter 1

[9]

No Rakefile found (looking for: rakefile, Rakefile, rakefile.rb,
Rakefile.rb)

(See full trace by running task with --trace)

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Introducing rake tasks
From the previous error message, it's clear that first you need to have Rakefile. As
you can see, there are four variants of its name: rakefile, Rakefile, rakefile.rb,
and Rakefile.rb. The most popularly used variant is Rakefile. Rails also uses it.
However, you can choose any variant for your project. There is no convention that
prohibits the user from using any of the four suggested variants.

Rakefile is a file that is required for any Rake-based project. Apart from the fact that
its content usually contains DSL, it's also a general Ruby file. Also, you can write any
Ruby code in it. Perform the following steps to get started:

1. Let's create a Rakefile in the current folder, which will just say Hello Rake,
using the following commands:
$ echo "puts 'Hello Rake'" > Rakefile

$ cat Rakefile

puts 'Hello Rake'

Here, the first line creates a Rakefile with the content, puts 'Hello Rake',
and the second line just shows us its content to make sure that we've done
everything correctly.

2. Now, run rake as we tried it before, using the following command:
$ rake

Hello Rake

rake aborted!

Don't know how to build task 'default'

(See full trace by running task with --trace)

The message has changed and it says Hello Rake. Then, it gets aborted
because of another error message. At this moment, we have made the first
step in learning Rake.

The Software Task Management Tool – Rake

[10]

3. Now, we have to define a default rake task that will be executed when you
try to start Rake without any arguments. To do so, open your editor and
change the created Rakefile with the following content:
task :default do
 puts 'Hello Rake'
end

4. Now, run rake again:
$ rake

Hello, Rake

The output that says Hello, Rake demonstrates that the task works correctly.

The command-line arguments
The most commonly used rake command-line argument is -T. It shows us a list of
available rake tasks that you have already defined.

We have defined the default rake task, and if we try to show the list of all rake
tasks, it should be there. However, take a look at what happens in real life using
the following command:

$ rake -T

The list is empty. Why? The answer lies within Rake. Run the rake command with
the -h option to get the whole list of arguments. Pay attention to the description of
the -T option, as shown in the following command-line output:

-T, --tasks [PATTERN] Display the tasks (matching optional PATTERN) with
descriptions, then exit.

You can get more information on Rake in the repository at the following
GitHub link at https://github.com/jimweirich/rake.

The word description is the cornerstone here. It's a new term that we should know.
Additionally, there is also an optional description to name a rake task. However, it's
recommended that you define it because you won't see the list of all the defined rake
tasks that we've already seen. It will be inconvenient for you to read your Rakefile
every time you try to run some rake task. Just accept it as a rule: always leave a
description for the defined rake tasks.

Chapter 1

[11]

Now, add a description to your rake tasks with the desc method call, as shown in
the following lines of code:

desc "Says 'Hello, Rake'"
task :default do
 puts 'Hello, Rake.'
end

As you see, it's rather easy. Run the rake -T command again and you will see an
output as shown:

$ rake -T

rake default # Says 'Hello, Rake'

If you want to list all the tasks even if they don't have descriptions,
you can pass an -A option with the -T option to the rake command.
The resulting command will look like this: rake -T -A.

Using global Rakefiles to run tasks
anywhere
By default, Rake is looking for tasks that are placed in the current folder (that is, the
folder where you run the rake command) in the Rakefile. Assume that we need to
have a rake task that can be executed in any folder. For example, say that we have a
rake task that cleans the Linux files ending with ~. The following Rakefile defines the
rake task to remove them:

desc 'Cleans backup files *~'
task :default do
 files = Dir['*~']
 rm(files)
end

Here, we get temporary files in the current folder and remove them with the rm
method. This method is defined in the FileUtils module, which is included in
Rake as well. So, we will discuss it in the next chapters.

When you are in the current folder, check this rake task using the Rakefile:

$ rake

rm

The Software Task Management Tool – Rake

[12]

Here, we see that the rm command was executed and Rake explicitly said this in
the second line. If you don't want to see this verbose message, pass the -q option
to the command.

However, what would happen if we go to the folder one level up? When you try to
type the rake command, you will have an error message that says that no Rakefile
was found. We can get rid of this problem by passing the -f option with the path to
the Rakefile as shown in the following lines of code:

$ rake -f ~/my-rake-task/Rakefile

rm

This works well, but you may agree with me that it's too unhandy. Rake produces
one useful feature to make this situation work the way we want. It's based on the
method of finding the Rakefile. First, Rake tries to find the Rakefile in the current
folder. If Rake can't find it there, the search continues till it reaches the user's home
folder. If there is no Rakefile there, it finally raises an exception saying that the
Rakefile was not found. We can apply this behavior to our issue. Just move the
Rakefile to your home folder and mark the rake tasks defined in it as available for
the current user everywhere. Open the terminal and type the following commands to
achieve the expected output:

$ mv ~/my-rake-task/Rakefile ~/

$ cd ~/my-rake-task

$ rake

(in /Users/andrey)

rm

As you can see, this works as expected, and there is one more new line, as follows:

(in /Users/andrey)

This command says that the Rakefile was found at the user home folder. You can
disable showing this information by passing the -s option.

There is another way to define global Rakefiles. You have an option to define them
in the ~/.rake folder, and they can be executed from any folder with the help of the
-g option. The following is the Rake output of the help command:

-g, --system Using system wide (global) rakefiles (usually '~/.rake/*.
rake').

Chapter 1

[13]

So, let's define a global Rakefile in this way and check it in action. The following is
an example of how to do it through the terminal:

$ mkdir ~/.rake

$ touch ~/.rake/hello.rake

$ echo -e 'task "hello" do\n puts "Hello, Rake"\nend' > ~/.rake/hello.
rake

$ rake -g hello

Hello, Rake

Defining custom rake tasks
So far, we defined only one task named default. Rake allows you to define your
custom tasks with any name. The common form of the custom rake task definition is
passing a task name to the task method and a block as a second argument. The block
defines some action and usually contains some Ruby code. The rake task might have
an optional description, which is defined with the desc method. This method accepts
a text for the description of the task. The following code snippet is an example of
defining a custom rake task:

desc 'Restart web server'
task :restart do
 touch '~/restart.txt'
end

This is an example of a possible rake task to restart Passenger (this is a module for
the Nginx web server, which works with the Rails applications). We name the task
restart. To run this task, just pass its name as the second argument to the rake
command as shown in the following line of code:

$ rake restart

If you have a lot of tasks, it's handy to enclose them to the named spaces, as shown in
the following code snippet:

namespace :server do
 desc 'Restart web server'
 task :restart do
 touch './tmp/restart.txt'
 end
end

The Software Task Management Tool – Rake

[14]

You can also run the task in the command line using the following command:

$ rake server:restart

Actually, the task method accepts more arguments. However, they are related to
other topics that are explained further along in the book in Chapter 2, Working with
Files, and Chapter 3, Working with Rules.

Task dependencies – prerequisites
Sometimes, you have to write tasks that depend on other tasks. For example, when
I'm going to seed data in my project, I want to clean all the persisting data that can
break my code. In this case, we can say that our seed data task depends on the clean
seed data task. The following code example shows us a Rakefile for this case:

task :clean do
 puts 'Cleaning data...'
end

task :seed => :clean do
 puts 'Seeding data...'
end

The preceding code executes the clean do task before running the seed task.
The result of the execution of this task is shown below the following line of code:

$ rake seed

Cleaning data...

Seeding data...

It works as expected.

If you have to run the task from another namespace, pass its whole name as a string,
as shown in the following code snippet:

namespace :db do
 task :clean do
 puts 'Cleaning data...'
 end
end

task :seed => 'db:clean' do
 puts 'Seeding data...'
end

Chapter 1

[15]

However, if the dependent task is in the same namespace, you don't have to pass it
as a string, as shown in the following code snippet:

namespace :db do
 task :clean do
 puts 'Cleaning data...'
 end

 task :seed => :clean do
 puts 'Seeding data...'
 end
end

Earlier in this chapter, we defined the default rake task. To be honest, we did
it just to understand what happens on running rake without arguments and to
introduce Rake in a few steps giving as less information as possible in an interactive
way. However, in the practical word, nobody defines the default rake task with an
action. Setting dependencies is a convenient feature. It allows the default task to
refer to some other task as many times as you want without regression. For example,
today, the default task runs a doc:generate task but tomorrow, we decide to run
a test:run task instead. In such a situation, we can just change the prerequisite and
that's it. So, always define your default rake task with the following template:

task :default => :some_task

It's also possible to pass many prerequisites for a task. The following line of code is
an example of how to do this:

task :task1 => [:task2, :task3]

Multiple tasks definitions
A task might be specified more than once. Each specification adds its dependencies
and implementation to the existing definition. This allows one part of a Rakefile to
specify the actions and a different Rakefile (perhaps a separately generated one) to
specify the dependencies.

For example, take a look a Rakefile that contains the following code:

task :name => [:prereq1, :prereq2] do
 # action
end

The Software Task Management Tool – Rake

[16]

It can be rewritten as the following code:

task :name
task :name => [:prereq1]
task :name => [:prereq2]
task :name do
 # action
end

Passing arguments to the tasks
Assume that you have a rake task that sets the title for our blog and you want to
pass it from the command line; this should be optional. If you don't pass the title
of the blog, the default title should be set.

We have two solutions to solve this problem. The first solution is to pass parameters
through the environment variable that is passed into the ENV variable in Ruby code
(ENV is a hash-like accessor for environment variables, and it is available in any
Ruby program). The second solution is using the built-in Rake syntax—you just pass
variables to each task through square braces. The first use case doesn't allow you
to pass variables for each task in isolation. The variables are shared among all the
tasks in the Rakefile. So, the preferable style is the second choice. However, we are
shown two alternatives, which will be discussed in the next sections.

The first alternative
The first alternative is a case where we pass variables using environment variables.
The following code represents a Rakefile:

task :set_title do
 title = ENV['TITLE'] || 'Blog'
 puts "Setting the title: #{title}"
end

The following code is a usage example:

$ rake set_title TITLE='My Blog'

Setting the title: My Blog

$ rake set_title # default title should be set in this case

Setting the title: Blog

In the preceding example, the ENV variable approach can be used without any
caution. The following code snippet represents the collision in sharing the variable
between the tasks. Check the following Rakefile:

task :task1 do

Chapter 1

[17]

 puts "#{ENV['TITLE']} in task1"
end

task :task2 do
 puts "#{ENV['TITLE']} in task2"
end

The following code is an example of usage:

$ rake task1 task2 TITLE='test'

test in task1

test in task2

You can see that the TITLE variable is accessible in both the tasks and is the same.
Sometimes, you don't want to get this behavior and you need to pass the variables
to each task individually.

A variable declared within a rake command will not persist in the environment.
The following terminal output will confirm this statement:

$ export TITLE='Default Title'

$ rake set_title TITLE='My Blog'

Setting the title: My Blog

$ echo $TITLE

Default Title

The second variant
The second variant has a built-in Rake feature. The following is the Rakefile code:

task :set_title, [:title] do |t, args|
 args.with_defaults(:title => 'Blog')
 puts "Setting title: #{args.title}"
end

Please ignore the t variable at this moment; you will see what it
means and what its usages are in Chapter 2, Working with Files.

Look at args, which is a hash-like object of the Rake::TasksArguments class. It
has a useful method that is used here, named with_defaults, to merge the given
arguments from the command line and the default values. If you don't pass the
variables through the command line, the default variable for the title will be set.

www.allitebooks.com

http://www.allitebooks.org

The Software Task Management Tool – Rake

[18]

The following code depicts how it may be used:

$ rake "set_title[My Blog]"

Setting title: My Blog

$ rake set_title

Setting title: Blog

Here, to pass the argument as a string with space (My Blog), I have enclosed the rake
task with the argument within quotes. It's not the only case where I have to enclose
the task name within double quotes. There are some terminals that don't understand
the squared parentheses in the command line and should escape them with \ at the
end of the code line of the rake task that is enclosed within the double quotes.

You are also able to pass multiple arguments to the rake task by separating them
with a comma, as shown in the following line of command:

$ rake "name[Andrey,Koleshko]"

The task declaration for the preceding task is as follows:

task :name, [:first_name, :last_name] do |t, args|
 puts "First name is #{args.first_name}"
 puts "Last name is #{args.last_name}"
end

Finally, you are able to pass variable-length parameters to the task with a comma, as
we did in the previous example. In this case, you may use the extras method on the
given args variable:

task :email, [:message] do |t, args|
 puts "Message: #{args.message}"
 puts "Recipients: #{args.extras}"
 puts "All variables: #{args.to_a}"
end

In the following example, the first argument will be assigned to the message variable
on the args variable and the remaining arguments will go to the extras method. If
you want to have an array that passes all the variables including the one associated
with the message variable, you can call the to_a method on the args variable, as
demonstrated in the preceding Rakefile.

$ rake "email[Hello Rake, ka8725@gmail.com, test@example.com]"

Message: Hello Rake

Recipients: ["ka8725@gmail.com", "test@example.com"]

All variables: ["Hello Rake", "ka8725@gmail.com", "test@example.com"]

Chapter 1

[19]

The structure of a Rake project
Apart from the necessary Rakefile, there is a technique that allows us to form a good
structure of a Rake project. Say that you have a very complicated Rake project with
a lot of tasks. It's a good idea to split them into separate files and include them in the
Rakefile. Fortunately, Rake already has this feature and you shouldn't care about
implementing this feature from the scratch. Just place your separated files to the
rakelib folder (it can be changed to custom by passing the -R option), give these
files a .rake extension, and that's it. You don't have to do anything additional. Files
with the *.rake extensions are included in the Rakefile automatically for you.
Nonstandard extension such as .rake for the files should not scare you. These are
the usual Ruby files. There you can write any Ruby code, define their rake tasks,
include the related libraries, and so on. So, take this feature as a good thing to
refactor a Rake project.

To approve the things said in this section, please open the terminal and check the
following example:

$ mkdir rakelib

$ cat > rakelib/clean.rake

task :clean do

 puts 'Cleaning...'

end

^D

$ cat > Rakefile

task :default => :clean

^D

$ rake

Cleaning...

In this example, ^D is a keyboard shortcut: Ctrl + D. The cat utility writes the
standard output to the files here.

Using the import method to load other
Rakefiles
It's possible to include other Ruby files or Rakefiles to describe a current Rakefile.
It can be achieved by a standard require Ruby statement. However, what do we do
when the including files depend on some method or variable defined in the describing
Rakefile? To demonstrate the situation, create the following two files in a folder:

• rakefile

• dep.rb

The Software Task Management Tool – Rake

[20]

The rakefile has some tasks definition, a method definition, and a require
statement, as shown in the following code snippet:

require './dep.rb'

def method_from_rakefile
 puts 'it is a rakefile method'
end

task :a do
 puts 'task a'
end

task :b do
 puts 'task b'
end

The dep.rb file just defines a new task that has both the prerequisites tasks, a and
b. Also, it calls the defined method, method_from_rakefile(), for some reason, as
shown in the following code snippet:

method_from_rakefile()

task :c => [:a, :b] do
 puts 'task c'
end

Trying to run a rake task defined in Rakefile will cause an exception that says that
there is no defined method_from_rakefile while the dep.rb file is loading:

$ rake c

rake aborted!

undefined method `method_from_rakefile' for main:Object

~/dep.rb:1:in `<top (required)>'

~/rakefile:1:in `<top (required)>'

(See full trace by running task with --trace)

The exception occurs when the dep.rb file is required by the Rakefile. The problem
here is caused because the required file loaded even before the Rakefile could load.
One of the possible solutions here is just to move the require statement to the last
line of the Rakefile. As a result, the method and tasks required for the dep.rb file
will be defined at the time of the dep.rb file being included in the Rakefile. To be
honest, the solution seems like a hack; this is the Rake way.

Chapter 1

[21]

Fortunately, Rake provides us with a tool to resolve this issue—the import method.
It does what we really want here; the import statement may be used in any line of
the Rakefile, and this doesn't apply to the loading process at all. The imported
files will be loaded after the whole Rakefile is loaded. Its usage looks similar to
the require statement and is shown in the following line of code:

import(filenames)

Here, you are able to pass more than one file.

There is one more feature of the import method. If you pass the filenames to the
import task, they are evaluated first, and this allows us to generate the dependent
files on the fly. Look at the following Rakefile:

task 'dep.rb' do
 sh %Q{echo "puts 'Hello, from the dep.rb'" > dep.rb}
end

task :hello => 'dep.rb'

import 'dep.rb'

This example generates the dep.rb file on the file due to the import 'dep.rb'
call that evaluates the 'dep.rb' task. The result of the hello task execution is
shown as follows:

$ rake hello

echo "puts 'Hello, from the dep.rb'" > dep.rb

Hello, from the dep.rb

It is a really helpful feature that can not only help you in writing the Rake project,
but also in a simple Ruby project.

Running rake tasks from other tasks
Sometimes, you will have to execute some defined task from your task manually. For
this purpose, you have two methods of the Rake::Task class: execute and invoke.
The difference between the two methods is that execute doesn't call dependent
tasks, but the invoke method does. Both of these methods also accept arguments that
can be passed to the tasks if you need them. Their usage is the same and is shown as
follows. The following is the first code:

Rake::Task['hello'].invoke

The Software Task Management Tool – Rake

[22]

The following is the second code:

Rake::Task['hello'].execute

With the Rake::Task['hello'] code, we got the hello rake task. It returns an
instance of the Rake::Task class and then, we are able to run any method on this.
In the preceding examples, we called invoke and execute.

To get the namespaced task by name, like in the previous example, use a syntax or
similar to the following line of code:

Rake::Task['my:hello']

One more difference between these methods is that the invoke method can't be
executed twice without some trick. If you need to run the task more than once with
the invoke method, use the reenable method as shown in the following code snippet:

Rake::Task['hello'].invoke
Rake::Task['hello'].reenable
Rake::Task['hello'].invoke

These capabilities can be used when you need to run some other rake task after a
current task has been executed. Look at the following example that depicts how to
use it in task actions. It demonstrates the usage of the invoke and reenable methods:

task :clean do
 puts 'cleaning data...'
end

task :process do
 puts 'processing some data...'
 Rake::Task['clean'].invoke
end

task :process_with_double_clean do
 puts 'processing some data...'
 Rake::Task['clean'].invoke
 Rake::Task['clean'].invoke
end

task :process_with_double_clean_and_reenable do
 puts 'processing some data...'

 Rake::Task['clean'].invoke
 Rake::Task['clean'].reenable
 Rake::Task['clean'].invoke
end

Chapter 1

[23]

Try to paste this code in a Rakefile and run the process, process_with_double_
clean, and process_with_double_clean_and_reenable tasks to find the difference
between them. The following code is the output of the executions:

$ rake -f rakefile22 process

processing some data...

cleaning data...

$ rake -f rakefile22 process_with_double_clean

processing some data...

cleaning data...

$ rake -f rakefile22 process_with_double_clean_and_reenable

processing some data...

cleaning data...

cleaning data...

The code conventions of Rake
The words namespace, desc, task, touch, and so on in the Rakefile are general
methods and, of course, you are able to pass parentheses when you pass the
parameters there, as shown in the following code snippet:

namespace(:server) do
 desc('Restart web server')
 task(:restart) do
 touch('./tmp/restart.txt')
 end
end

However, the code looks quite ugly now, so it's recommended that you avoid using
styles such as the one used here. Rake has its own DSL, and if you follow it, the code
will be more readable.

The namespace and task methods are the basic methods that accept blocks that make
the Rake code very expressive. For the task method, the block in the task definitions is
optional, similar to what we saw in the Task dependencies – prerequisites section.

The blocks can be specified with either a do/end pair or with curly braces in Ruby.
To specify a Rakefile, it's strongly recommended that you define rake tasks only
with do/end. Because the Rakefile idiom tends to leave off parentheses on the tasks
definitions, unusual ambiguities can arise when using curly braces. Take a look at the
following proposed Rakefile:

def dependent_tasks
 [:task2, :task3]

The Software Task Management Tool – Rake

[24]

end

task :task2 do
 puts 'In task2...'
end

task :task3 do
 puts 'In task3...'
end

task :task1 => dependent_tasks {
 puts 'In task1...' # We are expecting this code to be run but it's
not
}

The following is the result of the execution of task1:

$ rake task1

In task2...

In task3...

The defined action in task1 is not evaluated. It leads to unexpected behavior. Because
curly braces have a higher precedence than do/end, the block is associated with the
dependent_tasks method rather than the task method.

A variant of passing the block after the dependent task name is not valid Ruby code
at all, as shown:

require 'rake'
task :task1 => :task2 { }

It might seem strange but unfortunately, this code doesn't work and gives a syntax
error as shown:

=> SyntaxError: syntax error, unexpected '{', expecting end-of-input

The conclusion of this is that if you just follow the Rakefile convention, you won't
have problems with Rake's unexpected behavior.

Finally, the last tip for Rakefiles description: don't use the new style of a hash
definition in the task prerequisites (in other words, don't describe tasks dependencies
like this: task1: :task2). Often, only one prerequisite, defined at the first instance,
transforms to the list of prerequisites and then you will have to translate the hash
definition to the old style (in other words, the task1: :task2 code transforms to
:task1 => [:task2, task3]). Usually, all the task definitions contain the hash
rocket instead of the colon notation. The conclusion here is simple: use the old style
of the creation of Ruby hashes in the rake tasks definitions.

Chapter 1

[25]

Summary
In this chapter, you learned what Rake is, what you have to do to start using Rake,
how to use the rake command-line tool, how to write and run rake tasks, how to
set their dependencies, and how to structure the code. There was some advice about
Rake's DSL and an explanation on why should you follow it. This chapter doesn't
demonstrate any real examples of how to use Rake because this knowledge is not
enough to work with the files, but please be patient because you will see them in the
upcoming chapters.

The next chapter will explain the basics to work with files using Rake. Also, you will
see the first real example of put the knowledge of both these chapters to practice.

Working with Files
Rake is a tool that is intended to work primarily with files, and it actually has the
best instruments to do this. In this chapter, we will see what Rake provides us with
so we can work with files. We will look at utilities in order to work with them and at
the end of the chapter, you will see how this information can be applied in practice.

In this chapter, we will discuss the following topics:

• Using file tasks to work with files
• The characteristics of the file task dependencies
• Creating a folder with the directory method
• Using Rake's file utilities
• A practical example of automatically generating a config file

Using file tasks to work with files
Often, you have to transform files from one type to another using a utility. For
example, compiling source code to byte code in a language such as C or Java, or
converting PNG images to JPG, and so on. For these challenges, Rake has many
useful arms in its arsenal.

Assume that we have a Ruby project and it has a YAML-generated config file ending
with .yaml and, for some reason, we have decided to rename it so that it ends with
.yml. This process might have to be repeated very often as the file is generated by a
third-party tool. Hence, we have to automate this process. We could do it manually
with the following command:

$ mv settings.yaml settings.yml

Working with Files

[28]

The Rake produces a special type of task for cases like this. This is the file task.
To define a file task, use a file method. The usage of this task is similar to general
tasks. Honestly, it inherits all the general task behaviors. In a file task, we can set
the prerequisites and write a task action or set description and so on. See a possible
solution to the task of moving the settings.yaml file using the file task in the
following example. This is the Rakefile with the file task:

file 'settings.yml' => 'settings.yaml' do
 mv 'settings.yaml', 'settings.yml'
end

With this code, we have defined the settings.yml file task that depends on the
settings.yaml file. This means that if there is no settings.yaml file, then the file
task will fail with the corresponding message. Try this file task in action using the
terminal as shown in the following lines:

$ echo '' > settings.yml

$ rake settings.yml

mv settings.yaml settings.yml

$ rake settings.yml

rake aborted!

Don't know how to build task 'settings.yml'

Tasks: TOP => settings.yml

(See full trace by running task with --trace)

As you can see, the generated settings.yaml file was moved to settings.yml and
the second attempt to run the command was not successful. The settings.yml file
task depends on the settings.yaml file, but we don't have it at the moment. The
resolution is exactly the same as that of general rake tasks.

In addition to general task behavior, the file task has a very useful feature. If source
files (prerequisites) are not changed, the second attempt won't execute the file task
action at all. The file task handles timestamp changes for source files, and if they
are not touched, Rake decides to not run this file task. Try this with the example of
copying files rather than moving them in the previous example. Create this Rakefile
to check the feature out:

file 'settings.yml' => 'settings.yaml' do
 cp 'settings.yaml', 'settings.yml'
end

Chapter 2

[29]

Now, create an empty settings.yaml file and make sure that there is no settings.
yml file in the folder with Rakefile. Try to run it a few times and see that Rake
hasn't changed the timestamps of the new settings.yml file. The following is the
output of the terminal for the investigation:

$ rake -f rakefile01 settings.yml

cp settings.yaml settings.yml

$ stat -f "%m%t%Sm %N" settings.yml

1395252779 Mar 19 21:12:59 2014 settings.yml

$ rake -f rakefile01 settings.yml

$ stat -f "%m%t%Sm %N" settings.yml

1395252779 Mar 19 21:12:59 2014 settings.yml

The mv method of the previous example and the cp method are methods of the
FileUtils module that will be introduced later in this chapter. For now, just know
that they can be called in the rake tasks as we saw in the examples and they do what
the corresponding commands in the terminal do.

The characteristics of the file task
dependencies
In real life, we encounter more complicated examples like we have just seen. Often, a
project build contains a lot of transformations of many files.

Consider that you have a blog and it contains a lot of articles. To build the site, you
have to translate each chapter from the Markdown format to HTML. This will allow
you to publish the blog on the Internet.

Markdown is a plain text formatting syntax designed so that it can be
optionally converted to HTML using a tool by the same name. More about
this can be found at http://en.wikipedia.org/wiki/Markdown.

To convert articles from Markdown to HTML, we will use the pandoc
(http://johnmacfarlane.net/pandoc/) command-line utility. If you use Linux,
your system's package manager may already contain it, and the installation is very
easy. Use the following command to install pandoc:

$ apt-get install pandoc

Working with Files

[30]

If you want to know more about the utility, or if you have some other
operating system and have installation troubles, please refer to the official
website. It's located at http://johnmacfarlane.net/pandoc.

The following is a Rakefile with some simplification:

task :default => 'blog.html'

file 'article1.html' => 'article1.md' do
 sh 'pandoc -s article1.md -o article1.html'
end

file 'article2.html' => 'article2.md' do
 sh 'pandoc -s article2.md -o article2.html'
end

file 'blog.html' => ['article1.html', 'article2.html'] do
 File.open('blog.html', 'w') do |f|
 html = <<-EOS
 <!DOCTYPE html>
 <html>
 <head>
 <title>Rake essential</title>
 </head>
 <body>
 Article 1

 Article 2
 </body>
 </html>
 EOS
 f.write(html)
 end
end

This example contains code that might be unfamiliar for you.
This is the creation of a multiline string to build the HTML:
<< -EOS … EOS. It's called heredoc. More about this can be
found at http://en.wikipedia.org/wiki/Here_document.

Chapter 2

[31]

On the first line, we defined the default task and it is linked to the task that will
generate the blog. It's already familiar to you. The following two file tasks define
tasks to generate HTML articles for each one. The last file task, book.html, looks
messy for now. We said that it depends on two file tasks: article1.html and
article2.html. This means that when Rake tries to process the blog.html task, it
will try to run both these tasks sequentially, and if they are done, the code in the blog
will be executed. There is nothing difficult here; we just created the book.html page
with links to the articles mentioned.

To run this example, you have to have the pandoc utility installed.
Create the proposed Rakefile in the folder with these two files:
article1.md and article2.md. These files might contain any
text or might just be blank. It doesn't matter. The command to run is
rake or rake blog.html.

This Rakefile has some disadvantages and we think that you can see them. Firstly,
if we add new posts in our blog, we will have to change this code. It would be better
to not change Rakefile and have Rake find all chapters itself. The second thing that
might be refactored is inserting links to the resulting blog.html.

The following is an example to simplify this:

task :default => 'blog.html'

articles = ['article1', 'article2']

articles.each do |article|
 file "#{article}.html" => "#{article}.md" do
 sh "pandoc -s #{article}.md -o #{article}.html"
 end
end

file 'blog.html' => articles.map { |a| "#{a}.html" } do
 File.open('blog.html', 'w') do |f|
 article_links = articles.map do |article|
 <<-EOS

 Article #{article.match(/\d+$/)}

 EOS
 end

Working with Files

[32]

 html = <<-EOS
 <!DOCTYPE html>
 <html>
 <head>
 <title>Rake essential</title>
 </head>
 <body>
 #{article_links.join('
')}
 </body>
 </html>
 EOS
 f.write(html)
 end
end

This code is more universal now. If you write a new chapter, you won't have to
change a lot of code. All you will have to do is add the name of the file without the
extension to the articles array, and it will add it to the generated book. However,
there is still a problem with generating the blog.html file: even if you add a new
filename article to the array, it won't generate a new file. Here, Rake is powerless in
detecting when to generate a new file (remember that Rake only takes care of the file
and won't run it if the related files' timestamps are not changed). The only solution
here is deleting the blog.html file every time you run Rake. The FileUtils.rm
method will help us with this problem. There is one more useful feature of the file
method that might be useful in refactoring the blog.html task. It yields one optional
argument—the task object. It contains information about the task name, related tasks,
and so on. Look at this Rakefile that demonstrates this with the following code:

require_relative 'blog_generator'

articles = ['article1', 'article2']

task :default => 'blog.html'

articles.each do |article|
 file "#{article}.html" => "#{article}.md" do
 sh "pandoc -s #{article}.md -o #{article}.html"
 end
end

FileUtils.rm('blog.html', force: true)

file 'blog.html' => articles.map { |a| "#{a}.html" } do |t|
 BlogGenerator.new(t).perform
end

Chapter 2

[33]

Now look at the new code. The first change is the new line, FileUtils.rm(blog.
html, force: true) that removes the blog.html file each time Rake is run. The
:force option tells the rm method to not raise an exception if there is no such file.
We may have this situation, for example, on the first run or if we have deleted the
blog.html file ourselves. The next change consists of getting the t parameter in
the blog to define the blog.html file task. It is then used to get the task name for
the generating file and to get dependent tasks with the prerequisites method. It
returns a string array with names of the dependent tasks.

Dive into the content of the file task, blog.html—it doesn't require any external
information. This allows us to easily move the code to a separate file. Let's do this
in the next step of refactoring. Create the BlogGenerator class; its initializer
accepts the task and has one method, perform, which generates the site. Move it
to a separate file and insert it into Rakefile with the require_relative method.

So, the blog_generator.rb looks like the following code:

class BlogGenerator
 def initialize(task)
 @task = task
 end

 def perform
 article_links = @task.prerequisites.map do |article|
 <<-EOS

 Article #{article.match(/\d+/)}

 EOS
 end
 html = <<-EOS
 <!DOCTYPE html>
 <html>
 <head>
 <title>Rake essential</title>
 </head>
 <body>
 #{article_links.join('
')}
 </body>
 </html>
 EOS

 File.write(@task.name, html)
 end
end

Working with Files

[34]

The given Rakefile looks like the following code:

require_relative 'blog_generator'

articles = ['article1', 'article2']

task :default => 'blog.html'

articles.each do |article|
 file "#{article}.html" => "#{article}.md" do
 sh "pandoc -s #{article}.md -o #{article}.html"
 end
end

FileUtils.rm('blog.html', force: true)

file 'blog.html' => articles.map { |a| "#{a}.html" } do |t|
 BlogGenerator.new(t).perform
end

This code is much more flexible now and looks better. However, we still have to
change the Rakefile code to inform the blog generator to generate a new article if we
add one. In Chapter 3, Working with Rules, you will learn how to get rid of this issue.

Creating a folder with the directory
method
Sometimes, you will have to create folders with nesting. You can create files and
folders with file tasks. If you need to create a folder tree, you can achieve this with
the file tasks' definitions and their dependencies. The following is an example of
this usage:

file 'my_gem' do |t| mkdir t.name end
file 'my_gem/tests" => ['my_gem'] do |t| mkdir t.name end
file 'my_gem/tests/fixtures" => ['my_gem/tests/fixtures'] do |t|
 mkdir t.name
end

When you try to execute the my_gem/tests/fixtures task, it will first call the
dependent my_gem/tests task and then the call will be passed to the my_gem task.
The tasks create folders with their name. Finally, we will have created a ready-to-use
folder path, my_gem/tests/fixtures.

Chapter 2

[35]

Another way is to use the FileUtils#mkdir_p method, which might be used
in the task action or just in the Rakefile context. However, this is not the Rake
way. There is a special way to define folder tasks in the Rake language: using the
directory method. The following is an example of how we could use it in the
previous code snippet:

directory 'my_gem/tests/fixtures'

That's it. This is a like a synonym for FileUtils#mkdir_p, but it also defines the
Rake task that could be used in the prerequisites of other tasks:

directory 'my_gem/tests/fixtures'

file 'README.md' => 'my_gem/tests/fixtures' do
 sh 'echo test > my_gem/tests/fixtures README.md'
end

Now, when you call the README.md task, it will try to call the my_gem/tests/
fixtures task to create the required folder for the file.

The directory method doesn't accept any arguments except the name of the folder to
be created. However, if you need to add prerequisites or actions for the directory task,
you can achieve this with the file method, as shown in the following code snippet:

directory 'my_gem'
file 'my_gem' => ['otherdata']
file 'my_gem' do
 cp Dir['gem_template/**/*'], 'my_gem'
end

Using Rake's file utilities
Rake provides us with a few helpful modules and methods. They may be very useful
in some cases, especially while working with files. Knowing them might help you
keep Rakefiles clean and precise. The following is a list of these features:

• The FileList module
• The FileUtils module
• The pathmap method

The next three sections will explore them in detail.

Working with Files

[36]

Using the FileList module functionality to
collect the files
There is only one thing remaining in our Rakefile that would be great to get rid
of. Currently, there is a need to change the list of articles manually. Luckily, Rake
provides us with a tool to solve this problem—Rake::FileList. It provides agile
instruments to tune your own list of files to be generated. It is flexible enough to filter
the list of files by the category of your choice. It also enables you to filter out temp
files that are generated by your editor, folders that have to be ignored, and files with
some features that can be detected dynamically (timestamps are included files to
control the version system for example). Now, take a look at how it can be used for
our Rakefile:

require_relative 'blog_generator'

articles = Rake::FileList.new('**/*.md', '**/*.markdown') do |files|
 files.exclude('~*')
 files.exclude(/^temp.+\//)
 files.exclude do |file|
 File.zero?(file)
 end
 end

task :default => 'blog.html'

articles.ext.each do |article|
 file "#{article}.html" => "#{article}.md" do
 sh "pandoc -s #{article}.md -o #{article}.html"
 end

 file "#{article}.html" => "#{article}.markdown" do
 sh "pandoc -s #{article}.markdown -o #{article}.html"
 end
end

FileUtils.rm('blog.html', force: true)

file 'blog.html' => articles.ext('.html') do |t|
 BlogGenerator.new(t).perform
end

Chapter 2

[37]

Take a look at how we defined the articles list. It was created by the
Rake::FileList class. Its initializer accepted the list of file masks; we got all the
files with the .md and .markdown extensions in any folder; then, the list got filtered
out by the ~* pattern. (This is a list of temp files that are generated by the Emacs
editor.) Then, we ignored the files in the folders that start with the word temp (see
the /^temp.+\// regular expression). The last filter demonstrates how to filter out
files with zero size that should be ignored by us too. Pay attention to the useful
method named .ext, which is used here to construct the list of filenames. We will
demonstrate it separately:

$ irb -r rake --prompt=simple

>> articles = Rake::FileList.new('**/*.md', '**/*.markdown')

=> ["article1.md", "article2.md", "article3.md"]

>> articles.ext

=> ["article1", "article2", "article3"]

>> articles.ext('.html')

=> ["article1.html", "article2.html", "article3.html"]

Look at how the irb tool is run. We passed the argument -r rake to automatically
require the rake library to the Ruby shell and --prompt=simple to get a simplified
output of evaluating the code. Without this option, the Ruby shell will output
unnecessary information such as the command number, the current context, and
line numbers of the typed code. Because you are using this option the verbosity
won't distract you from the important text. For a detailed explanation of the IRB
utility and its command-line arguments, refer to the official documentation at
http://ruby-doc.org/stdlib-2.1.0/libdoc/irb/rdoc/IRB.html.

Using pathmap to transform file lists
Working with list files and folders, we often have to transform a batch of files from
one type to another. We have already seen the .ext method in action. However, in
some cases, this won't be enough. Rake provides one more interesting method for this
purpose—pathmap. It might be called on the FileList object or on any string because
Rake extends the String class. It accepts two arguments: the required specification
and an optional block. The #pathmap method collects the path according to the given
specification. The specification controls the details of the mapping. The following
special patterns are recognized:

• %p: This is the complete path.
• %f: This is the base filename of the path with its file extension, but without

any directories.
• %n: This is the filename of the path without its file extension.

www.allitebooks.com

http://www.allitebooks.org

Working with Files

[38]

• %d: This is the directory list of the path.
• %x: This is the file extension of the path. It is an empty string if there is

no extension.
• %X: This includes everything but the file extension.
• %s: This is the alternate file separator if defined; otherwise, use the standard

file separator.
• %%: This is a percent sign.

Assume that we have the following list of files and directories: file1.txt,
file2.pdf, sources/file3.txt, and bin/file4. To demonstrate how all these
specifications work, we prefer to provide the results in a table. This table will contain
the results of calling #pathmap on a given file list for each specification. The testing
code is as follows:

require 'rake'
list = FileList['file1.txt', 'file2.pdf', 'sources/file3.txt', 'bin/
file4']
list.pathmap('%p')
list.pathmap('%f')
list.pathmap('%n')
list.pathmap('%d')
list.pathmap('%x')
list.pathmap('%X')
list.pathmap('%s')
list.pathmap('%%')

You can construct the FileList object not only with the .new method that we used
before, but also with the .[] method that is used in the previous code.

The result of the execution of each call to #pathmap is provided in the following table:

Specification Result
%p ["file1.txt", "file2.pdf",

"sources/file3.txt", "bin/file4"]

%f ["file1.txt", "file2.pdf", "file3.
txt", "file4"]

%n ["file1", "file2", "file3",
"file4"]

%d [".", ".", "sources", "bin"]

%x [".txt", ".pdf", ".txt", ""]

Chapter 2

[39]

Specification Result
%X ["file1", "file2", "sources/file3",

"bin/file4"]

%s ["/", "/", "/", "/"]

%% ["%", "%", "%", "%"]

It is good to be aware of what each specification produces, but let's see how we
could use it in practice. Say, we are going to transform all the given files in the
list to the HTML format. Using the #pathmap method, we can achieve this quite
easily with list.pathmap('%X.html'), and the resulting list will be ["file1.
html", "file2.html", "sources/file3.html", "bin/file4.html"].

In the next example, you are going to move all the files from the list to a folder
named output. So, it will be fine to get the list of all files to the folder using the
following command:

>> list.pathmap('output/%f')

=> ["output/file1.txt", "output/file2.pdf", "output/file3.txt",
"output/file4"]

We can use the following command if the resulting file list needs to have the
same extension:

>> list.pathmap('output/%X.html')

=> ["output/file1.html", "output/file2.html", "output/sources/file3.
html", "output/bin/file4.html"]

You also can combine the specifications using the following code:

>> list.pathmap('output%s%n%s%f')

=> ["output/file1/file1.txt", "output/file2/file2.pdf", "output/file3/
file3.txt", "output/file4/file4"]

The %d specifier can also have a numeric prefix (for example, %2d). If the number is
positive, it only returns (up to) n directories in the path, starting from the left-hand
side. If the value of n is negative, it returns (up to) |n| directories from the right-
hand side of the path, as follows:

>> 'a/b/c/d/file.txt'.pathmap("%2d")

=> 'a/b'

>> 'a/b/c/d/file.txt'.pathmap("%-2d")

=> 'c/d'

Working with Files

[40]

You have to generate a list of arguments for the command line from the given file list
once. For example, it's no secret that to run Ruby scripts, you should include some
libraries before running it, as shown in the following line of code. In particular, if you
are running a unit test, you have to do it. In other cases, the test will fail:

$ ruby -Ilib/my_class -Ilib/common test/my_class_test.rb

With #pathmap, you are ready to construct this very easily:

require 'rake'
list = FileList['lib/my_class', 'lib/common']
ruby "#{list.pathmap('-I%p')} test/my_class_test.rb"

We are using a new method here, named ruby. It's defined in the FileUtils
module. It takes arguments to pass to the command line and executes the ruby
command with them. FileList defines the to_s method that is used in the string
interpolation. As you can see, its behavior is different from the implementation of
Array. It just joins all the items in the path with spaces between them. If you want to
get the string that is returned by Array#to_s from FileList, you have to explicitly
convert FileList to Array:

require 'rake'
list = FileList['lib/my_class', 'lib/common']

list.to_s # => "lib/my_class lib/common"
list.to_a.to_s # => "[\"lib/my_class\", \"lib/common\"]"

list.pathmap('-I%p').to_s # => "-Ilib/my_class -Ilib/common"
list.pathmap('-I%p').to_a.to_s # => "[\"-Ilib/my_class\", \"-Ilib/
common\"]"

There is one more useful feature of the specifications to translate the sources
folder to the output folder. The %d, %p, %f, %n, %x, and %X operators can take
a pattern/replacement argument to perform simple string substitutions on a
particular part of the path. The pattern and replacement should be separated by
a comma and should be enclosed within curly braces. The replacement should
be after the % character but before the operator letter, for example, %{in,out}d.
Multiple replacements can also be defined by separating them with semicolons,
for example, %{in,out;old,new}d. Assimilate the information in the following
example, which could be applied in real life:

>> "app/assets/js/app.coffee".pathmap("%{^app/assets/js,public}X.js")

=> "public/app.js"

Chapter 2

[41]

Remember that %X gives us the file path without an extension and it won't be difficult
to understand substituting the leading app/assets/js folder in the public folder,
and the ending extension .coffee to the .js with this specification: %{^app/
assets/js,public}X.js.

As you can see, the regular expressions may be used in patterns of the specifications
(^ is an element of the regular expression, which means a beginning of the line). The
replacement text might contain backreferences of the pattern:

>> "app/assets/js/app.coffee".pathmap("%{^app/assets/(js),public/new-\\1}
X.js")

=> "public/new-js/app.js"

You can find full information about backreferences and usage examples
at http://www.regular-expressions.info/backref.html.

However, pay attention to the fact that the power of regular expressions is restricted
here. Curly braces, commas, and semicolons are excluded from both the pattern and
replacement text.

If you find #pathname and #ext methods useful and would like to use them in your
project without using all the Rake features, you can do so with the following single
line of code:

require 'rake/ext/string'

Introducing the FileUtils module
We've already mentioned this module in the book. It contains a lot of useful methods
to work with files. So, if you have some task that requires you to work with files, just
remember that there is a library like this one, and if you look through this module,
you might find a suitable method for your issue. You have a good chance of avoiding
reinventing the wheel. All operations with files and directories (copying, removing,
moving, creating, changing permissions, linking, and so on) exist in this module.

Check out the entire documentation of each method of this module at
http://goo.gl/ec4arH.

Working with Files

[42]

A practical example of automatically
generating a config file
Now that you have some knowledge, we would like to show you how Rake can
be used in practice. Every Rails developer knows that the first step they have to
take when they have a new project is to create the config/database.yml file. It's a
rather boring process and includes a lot of manual processes. If there is a config/
database.yml.template file, you are lucky and you have to just copy it to config/
database.yml. However, if this template file is not in the project, you will have
to copy it from another project or find it on the Internet, in the documentation, or
somewhere else. The next step consists of changing the configuration itself. As usual,
it includes changing the username, password, adapter, and database. Also, you have
to change these variables for each environment. It's a boring process, isn't it? So, we
decided that if we create a task to automate this process, it will be useful. We hope
your Rake arsenal is complete and prepared to attack this code:

require 'yaml'

desc 'Generates database.yml, optional arguments: [adapter, user,
password]'
task :dbconfig => 'database.yml'

file 'database.yml', [:adapter, :username, :password] do |t, args|
 Dir.chdir('config')
 args.with_defaults(:project_path => Dir.pwd)
 DBConfigGenerator.new(t, args).generate
end

class DBConfigGenerator
 ENVIRONMENTS = %w(production development test)
 DEFAULTS = {
 'adapter' => 'postgresql',
 'encoding' => 'unicode',
 'username' => Etc.getlogin,
 'pool' => 5,
 'password' => nil
 }

 def initialize(task, options = {})
 @database_pattern = "#{options[:project_path].pathmap('%-1d')}_%s"
 @template = {}
 @output_file = task.name
 @defaults = DEFAULTS.tap do |defaults|

Chapter 2

[43]

 defaults.each_key do |k|
 defaults[k] = options[k] if options[k]
 end
 end
 end

 def generate
 ENVIRONMENTS.each do |env|
 @template[env] = @defaults.merge('database' => @database_pattern
% env)
 end

 File.write(@output_file, @template.to_yaml)
 end
end

Put this in the ~/.rake/copy_db_config.rb file and you will be able to execute
this task everywhere with this command: rake -g dbconfig. As you have already
guessed, we created the global rake task here.

Summary
This chapter covered the basic features of Rake for working with files. Now, you
should be able to use Rake to solve any file problems that you might encounter in your
daily work. At the end of the chapter, we saw an example that used this knowledge.

However, one more problem that may seem inconvenient to you is its code
duplication in the file tasks' definitions. In the next chapter, you will see how to
improve the code of this chapter with rules. You will be introduced to rules and
see how to use them in practice.

Working with Rules
In the previous chapter, we saw how to work with files. This knowledge will be
enough for you to manage any task with files that you might have. However,
sometimes, the code will look messy and you will find it inconvenient. So, the goal of
this chapter is to improve the code and get rid of duplication in a task's actions. The
chapter covers a technique to get rid of duplication of code in a task's body with the
help of rules. The rules allow us to specify the templates with which we can catch
a lot of task names and evaluate corresponding actions. This feature might help in
many situations while writing a Rake project.

In this chapter, we will cover the following topics:

• Understanding the duplication of the file tasks
• Using a rule to get rid of the duplicated file tasks
• Detecting a source for the rule dynamically
• Using a regular expression to match more tasks

Understanding the duplication of the file
tasks
In the previous chapter, we successfully created the blog builder. Let's revise the
Rakefile that we've written to do it:

require_relative 'blog_generator'

articles = Rake::FileList.new('**/*.md',
 '**/*.markdown') do |files|
 files.exclude('~*')
 files.exclude(/^temp.+\//)
 files.exclude do |file|

Working with Rules

[46]

 File.zero?(file)
 end
 end

task :default => 'blog.html'

articles.ext.each do |article|
 file "#{article}.html" => "#{article}.md" do
 sh "pandoc -s #{article}.md -o #{article}.html"
 end

 file "#{article}.html" => "#{article}.markdown" do
 sh "pandoc -s #{article}.markdown -o #{article}.html"
 end
end

FileUtils.rm('blog.html', force: true)

file 'blog.html' => articles.ext('.html') do |t|
 BlogGenerator.new(t).perform
end

The following problems arise with the highlighted chunk of code:

• First of all, it contains the duplication of the task definitions.
• Secondly, we should iterate through all the articles to define all of these tasks

that lead to a lot of task definitions. This is not a good thing.

In object-oriented programming, we always try to keep a class' interface narrow,
because a bloated interface leads to lot of mess. When you define a new rake task,
you define new functions, and that's what extends the interface of Rakefile. When
you have a large number of tasks, the complexity of managing them will bother
you. Moreover, when you define a rake task, a new instance of the Rake::Task
class occupies the memory (for the file task, the instance of Rake::FileTask will be
allocated). It would be great to have an opportunity to define patterns for both of
these tasks and combine them in to one. In this chapter, we will try to refactor and
improve this code to solve the problems stated previously with one more useful
feature of Rake called rule.

Chapter 3

[47]

Using a rule to get rid of the duplicated
file tasks
To get rid of duplicated file tasks, there is a special rake task called rule. This is a
general rake task, but it has one peculiarity. It allows us to define a mask for a task
rather than the exact name. We will postpone the whole explanation of this, and for
now, we will only see how to do this with the rule method. The following is our
fixed Rakefile with a rule method:

require_relative 'blog_generator'

articles = Rake::FileList.new('**/*.md',
 '**/*.markdown') do |files|
 files.exclude('~*')
 files.exclude(/^temp.+\//)
 files.exclude do |file|
 File.zero?(file)
 end
 end
task :default => 'blog.html'

rule '.html' => '.md' do |t|
 sh "pandoc -s #{t.source} -o #{t.name}"
end

rule '.html' => '.markdown' do |t|
 sh "pandoc -s #{t.source} -o #{t.name}"
end

FileUtils.rm('blog.html', force: true)

file 'blog.html' => articles.ext('.html') do |t|
 BlogGenerator.new(t).perform
end

There is a default rake task that depends on the blog.html task. Also, blog.html
depends on the list of *.html file tasks. This list is an extension replacement of all the
markdown files to the .html extension.

Working with Rules

[48]

In the previous example, we achieved some results: we removed the iteration
from all the tasks manually to define the two tasks for each article to translate
the Markdown file to the HTML file. As a result, we won't have a lot of tasks in
the feature. As you might have guessed, the signature of the rule method is the
same for a task or file. However, there is one big difference: you pass a pattern to
define dependencies and a task name rather than string values. The rules from these
rake tasks will catch all the tasks that end with .html. The first rule defines that
it depends on files ending with .md, while the second rule matches files that end
with .markdown. For example, if we try to run the task.html task, the rules will
be associated with it and they will be dependent on task.md (first rule) or task.
markdown (second rule).

There is still one more improvement that we need to add in the code: we can replace
the two task rules with one without loosing all the features. The content of both
rules is the same, so it would be great to use only one rule for this purpose. Rake's
documentation says that we can pass proc in place of a dependency definition.

In Ruby, proc is a type of closure or anonymous function. If you are not
familiar with this, please refer to the Ruby documentation to learn more
about it: http://ruby-doc.org/core-2.1.0/Proc.html.

The proc object yields one option, task_name, and then we are able to do everything
we want with this to define the dynamic prerequisites. In other words, we should
translate task_name to a demanding task that really exists. If a dependent task
doesn't exist, an exception will be raised by Rake that there is no such task. For our
case, possible values for task_name are the articles list with extensions replaced
from .md or .markdown to .html. Remember how rule works to understand this:
blog.html depends on the list of *.html tasks that are taken from the list of articles,
which are in the Markdown format (.md or .markdown).

Detecting a source for the rule
dynamically
Say, we have this list of articles in our blog: article1.md, article2.md, and
article3.markdown. When we get the value of task_name, which is one among
article1.html, article2.html, or article3.html, there is no information on
what the source is. If the value of task_name is article1.html, what is the source?
Is it article1.md or article1.mardown? To understand this, we should define it
dynamically. The possible solution is to go through articles and see if there is a file
named article1.md or article1.mardown there. This is a possibility with proc too.
Describing this is rather complicated.

Chapter 3

[49]

The following example might give you some clarity:

require_relative 'blog_generator'

articles = Rake::FileList.new('**/*.md',
 '**/*.markdown') do |files|
 files.exclude('~*')
 files.exclude(/^temp.+\//)
 files.exclude do |file|
 File.zero?(file)
 end
 end

task :default => 'blog.html'

detect_file = proc do |task_name|
 articles.detect { |article| article.ext == task_name.ext }
end

rule '.html' => detect_file do |t|
 sh "pandoc -s #{t.source} -o #{t.name}"
end

FileUtils.rm('blog.html', force: true)

file 'blog.html' => articles.ext('.html') do |t|
 BlogGenerator.new(t).perform
end

Take a look at detect_file—it's the proc object that I just explained. It just iterates
through all articles in the Markdown format and tries to detect the filenames without
extensions. If it's detected, the real filename of the Markdown file will be returned.
Finally, figuratively speaking, a rake task such as article.html ⇒ article1.md
will be defined. (Actually, this task will not be defined. This is just an example of
how the dependency is achieved and how the Rake will work when the article1.
md file is persisted in the blog folder.)

Working with Rules

[50]

Using a regular expression to match
more tasks
It's possible to pass a regular expression as a rule pattern in the rule definition. The
following example shows you how to do it:

rule /\.html$/ => '.md' do |t|
 sh "pandoc -s #{t.source} -o #{t.name}"
end

We used the new method in the preceding example, source, which is called on the
task. Its name explicitly says what it does—it returns the name of the source. In our
case, this is the Markdown file.

Summary
This chapter covered one of the painful themes in the programming world: how to
refactor the repeated code. The chapter also explained how to achieve this with rules.

In the next chapter, you will see how to remove the files generated by the rake tasks
using the standard features of Rake.

Cleaning Up a Build
Sometimes, you will have to clean the generated files with rake tasks to get into
the initial state of the build for some reason. Maybe you would like to delete
intermediate files while building or removing produced files to make sure that the
build is clean and generates new files with confidence. In this situation, the built-in
mechanisms of Rake could help you, and this chapter is about these mechanisms.

The solution is based on a simple idea, so the chapter includes the following topics:

• Setting up a project
• The cleaning tasks

Setting up a project
To write this book, I had been using the AsciiDoc format and the git-scribe tool to
generate output formats such as PDF, MOBI, HTML, and so on. However, these tools
bring some inconvenience with them. For example, to generate a PDF format, many
temporary files are generated and left in the output folder. In this case, Rake brings
special instruments out of the box, and this chapter is about their usage.

The AsciiDoc file format was designed especially to write books.
You can find more information about this on the official page at
http://www.methods.co.nz/asciidoc.
More information about the git-scribe tool can be found at
https://github.com/schacon/git-scribe.

Cleaning Up a Build

[52]

Firstly, it's recommended that you to try out this tool in action to understand what
this chapter will explain further. So, please go to the main page of git-scribe
and install this tool following the installation instructions in the README file. Then,
generate the skeleton of the book with the following command:

$ git scribe init <directory name>

This is enough to generate the book into the proposed formats from the generated
template. Currently, the tool may generate the HTML, PDF, EPUB, or MOBI formats.
It also generates a site for the book from the template that can be changed manually
for your purposes. The git-scribe tool is a kind of software that can be excellently
solved with Rake. Unfortunately, it was written from scratch with pure Ruby,
and that's why we can't extend this program with rake tasks by defining the task
prerequisites or other Rake features. However, this would be the best choice to solve
the problem.

So let's write a wrapper for the tool with rake tasks. The first change is to create a
task to generate any format from the proposed formats using the git-scribe gen
command (the git-scribe gen pdf command looks too long, so we will cut it
down to two words: rake pdf). You can already imagine how to do this because
this operation is rather simple. The second change is to create a task to clean the
temporary files from the output folder.

Start and try the git-scribe tool in action. Firstly, let's bootstrap the application on
which we have to perform the experiment:

1. Generate the book project with the following command:
$ git scribe init the-book

2. Go to the generated template of the project. Use the following command to
do this:
$ cd the-book

3. Make sure that there is no output folder there yet.
4. Run the following command to generate the book in the PDF format:

$ git scribe gen pdf

These commands should create the output folder with a lot of files with different
types. The following is an output from my terminal (you should be getting this list
as well):

$ cd ~/projects

$ git-scribe init the-book

initializing the-book

Chapter 4

[53]

$ cd the-book/

$ ls -ln

total 16

-rw-r--r-- 1 501 20 303 Dec 17 01:07 LICENSE

-rw-r--r-- 1 501 20 300 Dec 17 01:07 README.asciidoc

drwxr-xr-x 6 501 20 204 Dec 17 01:07 book

$ git-scribe gen pdf

GENERATING PDF

GENERATING DOCBOOK

Making portrait pages on A4 paper (210mmx297mm)

Dec 17, 2013 1:16:59 AM org.apache.fop.events.LoggingEventListener
processEvent

INFO: Rendered page #1.

Dec 17, 2013 1:17:00 AM org.apache.fop.events.LoggingEventListener
processEvent

INFO: Rendered page #2.

$ ls -ln output

total 168

-rw-r--r-- 1 501 20 48465 Dec 17 01:16 book.fo

-rw-r--r-- 1 501 20 27736 Dec 17 01:17 book.pdf

-rw-r--r-- 1 501 20 3016 Dec 17 01:16 book.xml

-rw-r--r-- 1 501 20 153 Dec 17 01:16 chapter2.asc

drwxr-xr-x 4 501 20 136 Dec 17 01:16 image

drwxr-xr-x 3 501 20 102 Dec 17 01:16 include

drwxr-xr-x 4 501 20 136 Dec 17 01:16 stylesheets

Look at the result of the last command. The output folder contains a huge list of
files that are not interesting to us. They are temporary, so we have to delete them
somehow. In this case, the standard rake task that is named clean could help us.
Further, we will write Rakefile to solve our tasks and you will see how to use it.

Start with the task wrapper to generate the book to these possible formats: HTML,
PDF, EPUB, or MOBI. The following is an instance of Rakefile that is saved in the
generated book project:

FORMATS = [:pdf, :html, :mobi, :epub]

FORMATS.each do |f|
 desc "Generate the book in '#{f}'"

Cleaning Up a Build

[54]

 task f do |t|
 sh "git-scribe gen #{t.name}"
 end
end

There is no new information for you here. Notice that we haven't used flexible tasks
such as file and rule, which are more appropriate for tasks like this one because
we can't completely manipulate the whole processing files including filenames. As
the filename of the book is hardcoded in the git-scribe tool, we wouldn't benefit
from their usage. Now we have crept closer to the clean tasks.

The cleaning tasks
At this stage, we need to be introduced to some terms that we should know in order
to write clean tasks. To be able to define clean tasks, we have to include the cleaner
with the following line of code:

require 'rake/clean'

This defines two constants, CLEAN and CLOBBER, and two tasks, clean and clobber.

• CLEAN: This is a list of files to be cleaned. The clean task goes though this list
and removes them.

• CLOBBER: This is a list of generated files. These are files that are produced by
rake tasks and they are usually the last files in the chain. The clobber task
goes through this list and removes these files. This task has one prerequisite:
it has to be a clean task.

The idea of using clean tasks is very simple. Just add the necessary files or folders to
both these lists and run the appropriate tasks, as shown in the following code snippet
(it's up to you to separate the files to clean or clobber). That's it, let's do this:

require 'rake/clean'

FORMATS = [:pdf, :html, :mobi, :epub]

FORMATS.each do |f|
 desc "Generate the book in '#{f}'"
 task f do |t|
 sh "git-scribe gen #{t.name}"
 end

 CLOBBER.include("output/*.#{f}")

Chapter 4

[55]

end

CLEAN.include('output/*.asc')
CLEAN.include('output/*.fo')
CLEAN.include('output/*.xml')
CLEAN.include('output/stylesheets/')
CLEAN.include('output/include/')

CLOBBER.include('output/image/')

Now it's time to check out the PDF task:

$ rake pdf

git-scribe gen pdf

GENERATING PDF

GENERATING DOCBOOK

Making portrait pages on A4 paper (210mmx297mm)

Dec 17, 2013 2:54:59 AM org.apache.fop.events.LoggingEventListener
processEvent

INFO: Rendered page #1.

Dec 17, 2013 2:55:00 AM org.apache.fop.events.LoggingEventListener
processEvent

INFO: Rendered page #2.

$ ls -ln output

total 168

-rw-r--r-- 1 501 20 48465 Dec 17 02:54 book.fo

-rw-r--r-- 1 501 20 27736 Dec 17 02:55 book.pdf

-rw-r--r-- 1 501 20 3016 Dec 17 02:54 book.xml

-rw-r--r-- 1 501 20 153 Dec 17 02:54 chapter2.asc

drwxr-xr-x 4 501 20 136 Dec 17 02:54 image

drwxr-xr-x 3 501 20 102 Dec 17 02:54 include

drwxr-xr-x 4 501 20 136 Dec 17 02:54 stylesheets

As you saw, the command generated not only the demanding PDF file, but also a lot
of unnecessary files. Remove them with the clobber task, as shown in the following
lines of code:

$ rake clobber

$ ls -ln output

Cleaning Up a Build

[56]

The clobber task depends on the clean task that is called at first and deletes all files
and folders except the image folder (it is required by the html format, and we should
delete it in the clobber task). Then, the clobber task completely removes the entire
content of the output folder. The last command approves that the output folder is
clear after the clobber task is invoked.

Summary
This chapter described one more useful feature of Rake: the capability to clean the
build of your project with the standard clean task that goes out of the box.

In the next chapter, we will see how Rake is good at multithreading and how to run
rake tasks in parallel.

Running Tasks in Parallel
To speed up rake tasks, you could do a lot of things, starting with simple refactoring
and ending with algorithm improvements. However, the easiest and the most efficient
way is parallelism. It means that you invoke your chunks of code simultaneously in
their own threads, if that's possible, instead of executing them consequently. This is
why the finish time will be shorter in theory.

In this chapter, we will see how to use this feature and how Rake uses
multithreading to run tasks in parallel. The chapter includes the following topics:

• Defining tasks with parallel prerequisites
• Thread safety of multitasks
• Multiple task definitions with a common prerequisite
• Applying multitasks in practice

Defining tasks with parallel prerequisites
Describing rake tasks that depend on other tasks that should be executed in
parallel is actually a straightforward, solvable problem. Just define your tasks with
a multitask method instead of the task method, as shown in the following code
snippet, and that's it:

multitask :setup => [:install_ruby, :install_nginx, :install_rails] do
 puts "The build is completed"
end

In this example, the tasks install_ruby, install_nginx, and install_rails will
be executed in parallel before the action of the setup task. This means that for each
dependent task, a Ruby thread will be created and they will be run at the same time.
The setup task will wait for the threads until they are finished.

Running Tasks in Parallel

[58]

Check out the following Rakefile that will be used to verify the previously
mentioned statements:

task :task1 do
 puts 'Action of task 1'
end

task :task2 do
 puts 'Action of task 2'
end

multitask :task3 => [:task1, :task2] do
 puts 'Action of task 3'
end

Now, open the terminal and try to run the task3 task a few times to see that the
tasks are running in a random order, as shown in the following lines of command:

$ rake task3

Action of task 1

Action of task 2

Action of task 3

$ rake task3

Action of task 2

Action of task 1

Action of task 3

As you can see, the order of the execution of task1 and task2 is not predictable
because they are run in the threads. The first time, task1 is executed before task2
and the second time, the order is the opposite. Pay attention to the fact that you may
have other results, and to see different orders, you will have to run the task3 task
more times than we did here. When you have to deal with a thread, the order of their
running is always unpredictable. This is why you mustn't rely on the order of the
task execution in your rake tasks if you are going to run them in parallel.

For example, the following Rakefile is sensitive to the order of the execution of the
dependent tasks:

task :set_a do
 @a = 2
end

task :set_b do

Chapter 5

[59]

 @b = 3 + @a
end

multitask :sum => [:set_a, :set_b] do
 puts "@b = #{@b}"
end

When you run the sum task, you get an exception and the task gets interrupted. For
example, if the set_b task is run before the set_a task, the @a variable will not be
initialized; it will contain nil, so the expression in the set_b task @b = 3 + @a will
fail: 3 + nil gives an exception in Ruby. You can observe it in the interactive Ruby
shell; try this in the command line:

$ irb --simple-prompt

>> 3 + nil

TypeError: nil can't be coerced into Fixnum

So sometimes, everything will work (when the set_a task is run before set_b)
without errors as we expect, but sometimes you will have an exception (when the
set_b task is run before set_a). Try the following by yourself in the terminal on the
sum rake task:

$ rake sum

rake aborted!

nil can't be coerced into Fixnum

...

$ rake sum

@b = 5

When we ran the task for the first time, it failed because the set_b task was executed
before task_a. However, the second execution was successful because of the correct
order. Note that to get both the results (fail and pass), you may need to run the task
more than twice because of the unpredictability of the execution of the tasks.

In the following diagram, you may see how the tasks would be executed when
defined with the task method. In this case, the working flow is sequential and the
tasks are run one by one. The resulting time will be the sum of the time periods of
the execution of each task. In this example, it will be the following:

Time period 1 + Time period 2 + Time period 3

Running Tasks in Parallel

[60]

The following is a figure that shows us the sequential task execution:

Time period 1

Taks1

Time period 2

Taks2

Time period 3

Taks3

Now, in the next figure, you can see what is going on when we define the task
dependencies with the multitask method. The task1 and task2 tasks are executed
at the same time, so the resulting time will be lesser:

Time period 1 + Time period 2

Here, Time period 1 is a period of time to execute both the tasks (task1 and task2)
in parallel.

The following is a figure that shows us the parallel task execution:

Time period 1

Taks1

Time period 2

Taks2

Taks3

Chapter 5

[61]

Thread safety of multitasks
Rake's internal data structures are thread-safe, so we don't have to do extra
synchronization for the benefit of Rake. However, if we have shared variables or
resources (for example, the database or files) and the parallel tasks are simultaneously
performing operations under them, we must prevent race conditions with additional
effort. Basically, this requires using additional tools to synchronize the data.

You've already seen the problem with the @a variable in the previous example.
To get rid of the problem, we have to ask the set_b task to wait for the set_a
task. However, as we don't have public access to their threads, we can't to do this,
so they can't be executed in parallel. In the example, multitasking is redundant
and a sequential execution will be more appropriate there; be careful when using
multitasking because of this particular reason.

Unfortunately, this book is not intended to explain the
multithreading theme and how it works in Ruby. To get more
information, please refer to http://goo.gl/GaeHgd.

Multiple task definitions with a common
prerequisite
Assume that we have rake tasks that have a common prerequisite and at the same
time, these tasks are prerequisites for a multitask. Which order will we get for the
task execution when we run the multitask? You may think that the multitask's
prerequisites will be run in parallel and the common prerequisite will run as many
times as the number of the multitask's prerequisites. However, this is not true;
actually, the multitask's prerequisites will wait until the common prerequisite gets
completed. As a result, the common prerequisite will be run only once.

The following example will demonstrate the idea clearly:

task :copy_src => [:prepare_for_copy] do
 puts 'In the #copy_src'
end

task :copy_bin => [:prepare_for_copy] do
 puts 'In the #copy_bin'
end

task :prepare_for_copy do
 puts 'In the #prepare_for_copy'

Running Tasks in Parallel

[62]

end

multitask :all_copy => [:copy_src, :copy_bin] do
 puts 'In the #all_copy'
end

We get the following output as a result of the task execution:

$ rake all_copy

In the #prepare_for_copy

In the #copy_src

In the #copy_bin

In the #all_copy

The copy_src and copy_bin tasks have a common prerequisite—the prepare_
for_copy task. So, when the all_copy method of multitask tries to execute its
prerequisites in parallel, the secondary common prerequisite prepare_for_copy
will be run first. Then, the copy_src and copy_bin prerequisites will be run. Please
note that despite the fact that the prepare_for_copy is occurring in two places as a
prerequisite, it is run only once.

Applying multitasks in practice
Every Ruby developer knows about the bundler gem: the tool used to manage the
gem dependencies in the projects. It is based on Rake's ideas and its usage is rather
simple. You write to Gemfile the list of the gems that are required by the application
and then just inform the bundler to install them with command prompt.

In the old versions, the bundler would download the gems from the Internet and
sequentially install them one by one to a system. The main disadvantage of this
process was that it was too long and would take a lot of time. The resulting time was
dependent on the connection speed of the Internet, the number of dependent gems,
and many other factors.

However, life goes ahead and the current bundler's release (Version 1.5.0) is able to
install the gems in parallel. The resulting time of the installation process is decreased
by a huge amount. This is a real-life example from where multitasks can be applied.
With the new version of bundler, you can install gems in parallel:

$ bundle install -j 4

Chapter 5

[63]

In this example, the number 4 is a number of threads to be spawned to install
the gems.

If you are not familiar with the bundler and are ready to
learn more about this tool, refer to the information provided
at http://bundler.io/.

Summary
In this chapter, we figured out how to speed up the resulting time of the task
execution with Rake multitasks. We learned about the basic problems that might
arise when we use parallelism and how to avoid them. Whether it would be
reasonable to use multitasking or not is up to you. It depends on the issue that is
being resolved. Sometimes, it may speed up the execution process, but sometimes it
may lead to unexpected behavior. However, if you choose to use multitasks, just be
attentive to them.

The next chapter will share ideas on how to debug a Rake project.

Debugging Rake Tasks
Debugging is an unavoidable process when building applications, and this concerns
Rake applications too. Rake provides a lot of techniques that will be helpful in many
situations not only while writing, but also while using a Rake application. In this
chapter, we will look into a number of debugging tools that are available out of the
box. There will an example on using Ruby's debugger to debug a Rake code.

In this chapter, we will cover the following topics:

• Using command-line arguments for debugging
• Getting a dependency's resolution with --prereqs
• Using the --rules option to trace the rule resolution
• Using the Ruby approach to debug a Rake project

Using command-line arguments for
debugging
The main information in the development process is a backtrace—a report of a
certain point in time during the execution of a program. When a rake task fails, you
won't need the whole backtrace; Rake narrows it in the default behavior. To explain
the idea, see the following Rakefile with failed task1:

task :task1 do
 raise 'this is an error'
end

task :task2 => :task1 do
 puts 'task 2'
end

Debugging Rake Tasks

[66]

The following is a result of the task2 execution:

$ rake task2

rake aborted!

this is an error

~/rakefile:2:in `block in <top (required)>'

Tasks: TOP => task2 => task1

(See full trace by running task with --trace)

Notice that the backtrace contains only one line of code (~/rakefile:2:in 'block
in <top (required)>'). To see the full trace of the code execution, use the
--backtrace option:

$ rake --backtrace task2

rake aborted!

this is an error

~/rakefile1:2:in `block in <top (required)>'

.../ruby/gems/2.1.0/gems/rake-10.1.1/lib/rake/task.rb:236:in `call'

.../ruby/gems/2.1.0/gems/rake-10.1.1/lib/rake/task.rb:236:in `block in
execute'

… # the following lines will contain a lot of lines, so they are omitted
here

Tasks: TOP => task2 => task1

If the execution doesn't fail, the result won't contain the backtrace. Note the presence
of leading … in each line at the beginning of the backtrace. We cut them intentionally
for better readability. However, you will have full paths for Ruby libraries if you run
this example by yourself. So, just be aware that the destinations for the libraries (that
is, the backtrace lines) differ and depend on how you have installed Ruby, the gems
that are used in your project, and other files that are required to run the task.

If you want to see the order of the execution of the tasks, you can use a --trace
option (also, there is a short form of this option, -t). By the way, this suggestion
is from Rake for when the rake task fails (we mean the text (See full trace by
running task with –trace)).

An example of its usage is as follows:

$ rake --trace task2

** Invoke task2 (first_time)

** Invoke task1 (first_time)

** Execute task1

Chapter 6

[67]

task 1

** Execute task2

task 2

As you can see, the output contains rather useful information such as the order of the
execution of tasks including prerequisites and the detailed outcome of each one. If
the task raises an exception, the whole backtrace will be showed too, when executed
with the --backtrace option.

The backtrace may contain a lot of lines that describe dependent libraries, including
a Ruby core. Sometimes it may be rather difficult to find a bug in this enormous
text. In this situation, a --suppress-backtrace option could help you filter out the
undesired lines, provided there's a pattern by you. The following is a usage example:

$ rake --suppress-backtrace /ruby/2.1.0/ task2

Now the backtrace will not contain Ruby's internal calls, which are not of interest to
us in general. The option is ignored with a --trace option passed at the same time.

Getting a dependency's resolution
with --prereqs
Another useful option that only shows us the task dependency resolution and
nothing more is -P or --prereqs. Unlike the --trace option, it doesn't execute
the tasks, as shown in the following lines of command:

$ rake -P

rake task1

rake task2

 task1

The list contains the defined tasks and their dependencies with indentation. Take a
look at the task1 text that is shifted in the last line. It is written after rake task2 and
it means that task2 is dependent on task1.

Debugging Rake Tasks

[68]

Using the --rules option to trace the rule
resolution
The relationship between tasks becomes the most difficult when the tasks are rules.
In this case, a rule task may be suited for many task names. For example, when the
rule specifies a regular expression instead of a name. In this case, the rules that were
described previously won't help us anyway.

When you run a task that was accepted by a rule, it's very useful to know which task
will be executed and in which order. Rake provides us with a --rules option to
show us a rule's resolution. Take a look at the following Rakefile from Chapter 3,
Working with Rules:

require 'rake/clean'

BOOK = 'book/book.asc'
CHAPTERS = FileList['book/*.asc'].exclude(BOOK)
DOCX_OUTPUT = 'output/%n.docx'
ODT_OUTPUT = 'output/%n.odt'

CLEAN.include('output/*.html')
CLOBBER.include('output')

namespace :generate do
 directory 'output'

 desc 'Generate only one article with given number'
 task :article, [:number] do |t, args|
 num = args.number
 article = CHAPTERS.detect { |ch| ch =~ /#{num}.asc$/ }
 Rake::Task[article.pathmap(DOCX_OUTPUT)].invoke
 Rake::Task[:clean].invoke
 end

 desc 'Generate articles one by one'
 task :articles => CHAPTERS.pathmap(DOCX_OUTPUT)
 task :articles => CHAPTERS.pathmap(ODT_OUTPUT)
 task :articles => [:clean]

 desc 'Generate the entire book'
 task :book => BOOK.pathmap(DOCX_OUTPUT)
 task :book => [:clean]

 file 'output/book.html' => ['book/book.asc'] do |t|

Chapter 6

[69]

 sh "asciidoc -d book -o #{t.name} book/book.asc"
 end

 rule /\.docx|\.odt$/ => '.html' do |t|
 sh "pandoc -s #{t.source} -o #{t.name}"
 end

 rule '.html' => proc { |name| name.pathmap('book/%n.asc') } do |t|
 sh "asciidoc -o #{t.name} #{t.source}"
 end

 rule '.asc' => 'output'
end

It's complicated to demonstrate the output of the rule's resolution on the
generate:article[number] task:

The following is the output of the $ rake --rules generate:article[1] command:

As you can see, the information contains a chain of rule executions. This
information may be very useful when you have an unexpected behavior
in the rule task's execution.

Using the Ruby approach to debug a
Rake project
As you already know that a Rake project is a Ruby project; therefore, all manipulations
that you may use with a Ruby project can be applied to Rake project. So, you are able
to use general debuggers from the Ruby world.

Debugging Rake Tasks

[70]

Currently, there are two tools to debug the Ruby code: debugger and pry. While
these tools may be used for the debugging process, they are slightly different type of
tools: the debugger tool is specifically a debugger in many programming languages,
but the pry tool is an improved console that is designed to work in multiple contexts,
including the applications running in the background. We can use either as per our
requirement. The idea is the same for both of these tools, and the following steps will
be performed for each:

1. Install the tool.
2. Add a breakpoint.
3. Run a rake task. The code will be paused on the breakpoint.
4. Investigate the environment.

debugger and pry are third-party tools. You can find more
information about them at https://github.com/cldwalker/
debugger and https://github.com/pry/pry, respectively.

Before using a debugger, you need to install it. Here, you have two choices: using
bundler or installing gem to the system or gemset. It depends on how you organize a
project code, but if you are going to maintain the project, you will have to eventually
use bundler.

We will demonstrate the usage of debugger. Say, we have the following Rakefile:

require 'debugger'

task :test do
 puts 'starting the test task'
 debugger
 puts 'ending the test task'
end

When you run the test task, the code will be stopped on the debugger line, shown
as follows:

$ rake test

starting the test task

~/rakefile:6

puts 'ending the test task'

[1, 10] in ~/rakefile

 1 require 'debugger'

Chapter 6

[71]

 2

 3 task :test do

 4 puts 'starting the test task'

 5 debugger

=> 6 puts 'ending the test task'

 7 end

(rdb:1)

Now you will be able to execute chunks of code here from the environment and
investigate a problem, if you have one.

This code is tested by Ruby Version 2.1.0 or lower and it works
correctly, but according to the README file for debugger, the
tool does not fully support the current releases of Ruby. So, if you
have troubles with debugging this code with the debugger tool,
you can try to debug it using the pry utility.

There are a lot of available commands for the debugger tool. To get their full list, use
the help command. Just type it in the current mode of the debugger tool and press
the Enter key. If you want to know what a command does, type help <command>.
For example, to see what the continue command does, type help continue. The
most frequently used commands in the debug process are next or continue. The
next command executes the current line and goes to the next one; the continue
command runs the code until it meets the next breakpoint or runs the code until the
end if there are no more breakpoints.

To describe how to use the full power of the debug tools, we will need to dive into
a large amount of information. This topic is worth a separate book, but here we are
limited to a brief introduction. If you want to learn more about the tool, please follow
the official documentation at https://github.com/cldwalker/debugger.

Summary
This chapter provided us with a basic knowledge to debug Rake projects. We learned
how to figure out the order of the tasks that will be executed. We briefly saw how to
use the Ruby debug tool in the example of the debugger gem.

In the next chapter, you will be introduced to the theme of how Rake is integrated
with the most famous Ruby framework, Rails.

Integration with Rails
This chapter explains how Rake is used by Rails. This is a framework that is used by
a major bulk of Ruby developers to develop web applications.

You may ask why we are going to explain the Rails framework here. Well, this is a
reasonable question. Firstly, because it will clarify one of Rake's primary activities—
deploying a system to production; secondly, because of its popularity; and finally,
because you don't need to have any special knowledge to understand the ideas that
will be given further.

In this chapter, we will cover the following topics:

• Introducing Rake's integration with Rails
• Custom rake tasks in a Rails project
• Recurrent running of tasks

Introducing Rake's integration with Rails
Before starting the theme analysis, install the Rails gem and generate a Rails
application, or you can just open a Rails project that is ready if you have it. The
installation is a rather easy process:

$ gem install rails

$ rails g test_app

This command will generate a skeleton of the Rails application.

If you face any issues during this process, please follow the
official site at http://rubyonrails.org.

Integration with Rails

[74]

Now, go to the test_app folder; see if there is a Rakefile there. As you may have
already guessed, this is the first sign that the application uses Rake. Although Rails
is not a full Rake application, it uses it as an auxiliary tool. If you open Rakefile,
you probably won't understand what is going on there. To be honest, you should not
care about its content at all because this is an example of how a Rake project could
be structured. The file contains only two lines of code! However, you may see that
after using the rake -T command, the Rails application has a lot of tasks. This means
that all the tasks are defined separately in the core of Rails. The authors of Rails have
adopted Rake to their needs and made a lot of changes and customized their Rake
project structure.

If you want to know how this works under the hood, you can open the Rails sources
and go through the code and try to figure it out, but we omit this journey in this book
because it's out of the scope of this book.

Another interesting thing apart from the Rake code structure is the feature that
defines custom rake tasks. To define your own rake task, you can just place a .rake
file in the lib/tasks folder. Remember that Rake loads the .rake files from the
rakelib folder with default settings.

Rails comes with a helpful utility that may be used to generate may be used to
generate a Rails component. The component may be migration, model, controller,
or other class for a Rails application. It's interesting that there is a generator for rake
tasks too. It means that you are able to create rake tasks for Rake manually or with
the generator. Its usage is very easy and is shown as follows:

$ rails g task namespace task1 task2

The command will generate a file with the following content in the path lib/tasks/
namespace.rake:

namespace :namespace do
 desc "TODO"
 task :task1 => :environment do
 end

 desc "TODO"
 task :task2 => :environment do
 end
end

More information about the Rails task generator can be found
on the blog post at http://goo.gl/l1XSqm.

Chapter 7

[75]

Note that all the generated tasks have one prerequisite—environment. This is a task
that loads the Rails environment for the application and allows you to use defined
classes in the task's actions. For example, if you omit the prerequisite and try to use
the User action model that is defined at app/models/user.rb (app/models is the
default folder of Rails where all the models for the application are defined), you will
get an exception saying that no User class has been defined. So, just be attentive
and don't panic when you have an error like this and stay confident that the code is
written correctly.

Apart from writing custom rake tasks, Rails allows us to use core tasks. They are
divided by the appliance; some of them are used to work with the database, the
assets, the routes, and so on. We are not going to study them here because of their
huge number. All this information can be found in the official documentation at
http://guides.rubyonrails.org/command_line.html#rake.

This sums up the integration of the Rake in Rails.

Custom rake tasks in a Rails project
Now, let's figure out why the custom rake tasks are used in a Rails project. First of
all, they are aimed to support tasks that make something recur with the project. For
example, this can be generating a sitemap.xml file for the site, cleaning up old data,
backing up the database, sending e-mails in the background, and similar tasks.

In the demonstration, the custom rake tasks in a Rake project have no special steps.
Assume that we have orders in our system and we have to delete them if their
status is deleted. There aren't any special steps to write a custom rake task to solve
this problem. Just open the terminal and generate the following rake task:

$ rails g task orders cleanup

 create lib/tasks/orders.rake

Now open the generated file and write the following code there:

namespace :orders do
 desc 'Remove old orders with the deleted status'
 task :cleanup => :environment do
 Order.where(:status => 'deleted').find_each(&:destroy)
 end
end

To run this rake task, just use the rake command as usual, shown as follows:

$ rake orders:cleanup

Integration with Rails

[76]

As you can see, it's that simple for a plain Rake project. However, there are some
additional conveniences with the generator and the loading environment; you don't
have to worry about the classes that are required to run the action, and you are not
obligated to require them one by one.

Recurrent running of tasks
By now, everything is fine and there is nothing to disturb us; we have solved our
issue, it's ready to use, and we can run it manually tomorrow, after tomorrow, and
on any day in the future, or we can forgot about it completely. It would be great
to run this task automatically each day or every week or even hourly. The main
problem is how to run this task on the schedule. In Unix-like systems, there is a utility
that enables these type of tasks—cron.

To learn more about cron, use the man cron command on the
Unix-like operating system; there is an excellent blog post about it at
http://goo.gl/XZ4GrC. For people who use Windows, there is
an analogue program at http://cronw.sourceforge.net. There
is also a program included in Windows and you don't even have to
install third-party tools for this at all. This tool is called Task Scheduler
(http://en.wikipedia.org/wiki/Task_Scheduler).

We are not going to dive into the depth of cron now, but you need to know some
basic information about how the utility works. There is a config file for cron that
describes what to do and when and follows the following format:

command to be executed

day of week (0-6) (0 is Sunday, or use names)
month (1-12)
day of month (1-31)
hour (0-23)
min (0-59)

* * * * *

For instance, assume that we have to write the current date to a file at 12:00 every
day. To solve this issue we could use the cron tool and its config would look like
the following:

0 12 * * * /bin/date > ~/tmpfile

Chapter 7

[77]

You don't have to change the configuration manually; you have to do it with the
crontab utility that goes with cron out of the box on Unix-like systems. So, to
configure and test the previous example, run the crontab -e command. An editor
will open for you to write this line of code down there; the number line in which you
will insert it is irrelevant. Save the editor and that's it; the job will be done at 12:00, so
now you have to wait for this time or make some changes to your current time.

Okay, now you know how to do this on the server—just go to the server, run the
crontab -e command, and paste the code to run the rake task. Brilliant, but it's
not the end of the story; to write the line of code properly, you have to worry about
where Rake is installed because cron requires the entire path to the set of programs
where the project is installed as well as the task name. You will have to change these
lines when some of this information is changed. There is a ready solution for these
issues—the whenever gem.

Check out the documentation on how to use it at
https://github.com/javan/whenever.

In our case, we have to install it according to the documentation and change the
configuration file. The installation is very simple:

1. Just add a line of code to the Gemfile that is situated in the root folder
of the project:
gem 'whenever', :require => false

2. Run the bundle install command.
3. Then, run the wheneverize command. This command will generate a

config/schedule.rb file.
4. Paste the following lines of code there:

every :day, :at => '12:20pm' do
 rake 'orders:cleanup'
end

5. Now, run the whenever -w command. It will set the properly generated
config file to the cron config. Pay attention to the fact that it won't delete
other cron jobs if you have some in config; it's very handy because the
config change won't affect other systems that use the cron config either.

Integration with Rails

[78]

Summary
In this chapter, we gave you a brief overview on how the Rake is integrated to
Rails and also on how to write the custom Rake tasks and run them manually
or automatically on schedule.

The next chapter will provide you with ideas on how to test the rake tasks. There will
be explanations on why we have to test the rake tasks at all. Finally, you will see an
example of how to employ them using Ruby's internal test framework.

Testing Rake Tasks
In this chapter, you will find information on how to test the rake tasks. It is important
to understand that if you don't perform the tests, your rake tasks may fail just like a
usual program. This is why the chapter starts by providing cases when the tasks fail,
along with the reasons for their failure. Here, we will provide you with an example
on how to test rake tasks using Ruby's embedded unit test framework—MiniTest.

In this chapter, we will cover the following topics:

• The need for tests
• Writing tests for rake tasks

The need for tests
The rake tasks are not run as often as regular code from the application. Consider a
basic situation when you have a web application with rake tasks that have not been
tested. At first glance, after deploying the code to a server and manually testing the
application through the web interface, you can be confident that the application
works. However, because the rake tasks are usually run by a scheduler, it may be
a time bomb. Finally, when the time comes to execute a rake task, it doesn't work
because it wasn't tested! Such issues might often occur at the start of your career as a
Ruby programmer.

Testing Rake Tasks

[80]

For example, each Rails application has a db:seed rake task. This task is often used
to initialize the application using some essential data. For example, it could contain
the code to create an administrator in our application. The code is defined in the
db/seeds.rb folder that is related to the root of the application. The following
is a basic Ruby code to create an administrator in our application:

User.create!({
 :admin => 'example@email.com',
 :password => 'password'
})

Suppose one particular day we created this code and manually ran the rake task with
the rake db:seed command. Several days passed and we decided to add validation
to the user model for the name presence. The previous code won't work in this case,
but as we don't test the db:seed tasks, all other tests are passed and we are ready to
deploy the application because everybody has already forgotten about this piece of
code and nobody knows that it doesn't work at all. The issue will be detected when
the application is initially deployed to a production server. At that moment, we may
have a lot of outdated tasks. The problem keeps cropping up again and again until
we finally decide to write the tests for rake tasks. So, in order to avoid mistakes such
as these, writing tests may provide us with an airbag.

Writing tests for rake tasks
Now, when you are prepared to write the tests, it's time to figure out how to do it.
To demonstrate this, assume that we have to write a rake task named send_email,
which has these optional arguments: subject and body. The task should write
the given strings to a sent_email.txt file (this is for the purpose of simplicity to
demonstrate the tests; in reality, you may want to use a real mailer).

Start to solve the problem statement. The following is a basic class Mailer that will
be used in the rake task (place this code in the mailer.rb file):

class Mailer
 DESTINATION = 'sent_email.txt'.freeze
 DEFAULT_SUBJECT = 'Greeting!'
 DEFAULT_BODY = 'Hello!'

 def initialize(options = {})
 @subject = options[:subject] || DEFAULT_SUBJECT
 @body = options[:body] || DEFAULT_BODY
 end

 def send

Chapter 8

[81]

 puts 'Sending email...'
 File.open(DESTINATION, 'w') do |f|
 f << "Subject: #{@subject}\n"
 f << @body
 end
 puts 'Done!'
 end
end

The interface of the class is very simple. Its initializer accepts subject and body as
parameters of hash, and then we are ready to use the send method on the object of
this class to create the sent_email.txt file. This is a simulation to send e-mails for
easier the demonstration of the tests.

The following is Rakefile (it's assumed that this file is in the folder where you
created mailer.rb):

require 'rake/clean'
require_relative './mailer'

CLOBBER.include(Mailer::DESTINATION)

desc "Sending email. The email is saved to the file
#{Mailer::DESTINATION}"
task :send_email, :subject, :body do |t, args|
 Mailer.new({
 :subject => args.subject,
 :body => args.body
 }).send
end

As you can see, there are no complications here. It's quite a simple task. Besides
the send_email task, it also defines the clobber task to remove the generated file
sent_email.txt. The send_email task has arguments that may be passed through
the command line. At this point, we are able to check the rake task using the
following commands:

$ rake send_email

Sending email...

Done!

$ cat sent_email.txt

Subject: Greeting!

Hello!

$ rake "send_email[Test, Hi]"

Testing Rake Tasks

[82]

Sending email...

Done!

$ cat sent_email.txt

Subject: Test

Hi

$ rake clobber

Now we will talk about the final file that you will see in this chapter. There are many
test frameworks for Ruby; here, we will take a look at the tests within the MiniTest
framework that is in-built in Ruby since Version 1.9. So, you don't have to install any
additional software except Ruby 1.9 to run these Ruby tests.

Check out the online documentation for the MiniTest framework
at http://goo.gl/elz2hH.

Now let's try to test the tasks from the previous Rakefile. These are tests for
send_email and the clobber rake tasks (place this code in the file with the
send_mail_test.rb name in the test folder, which should be created in the
folder where you have the previous two files):

require 'minitest/autorun'
require 'rake'

class TestSendEmail < MiniTest::Unit::TestCase
 def setup
 Rake.application.init
 Rake.application.load_rakefile

 @task = Rake::Task[:send_email]
 @task.reenable
 end

 def teardown
 if File.exists?(Mailer::DESTINATION)
 File.delete(Mailer::DESTINATION)
 end
 end

 def test_sending_email_with_default_params
 @task.invoke
 assert_equal email, "Subject: Greeting!\nHello!"

Chapter 8

[83]

 end

 def test_sending_email_with_custom_subject_and_body
 @task.invoke('Test', 'Hi!')
 assert_equal email, "Subject: Test\nHi!"
 end

 def test_clobber_task_deletes_email
 @task.invoke
 Rake::Task[:clobber].invoke
 refute File.exists?(Mailer::DESTINATION)
 end

 private

 def email
 File.readlines(Mailer::DESTINATION).join
 end
end

Let's figure out what is going on here. In the beginning, we check the setup method.
This is a cornerstone to test the rake tasks. To get ready to test a task, we have to
initialize the Rake application first. Kindly note that we don't use the rake utility in
these tasks because the tests would be rather inefficient if we test them by invoking
commands with the code. For example, in this case, we won't have access to the rake
task's internals and so we won't be able to make stubs, but sometimes, it's reasonable
to replace real classes with their fake replacements in the tests.

The technique that is explained here is called Test-driven Development (TDD).
If you are new to this, please follow the wiki page at http://en.wikipedia.org/
wiki/Test-driven_development for more details.

After initializing the Rake application, we get the rake task and save it to the @task
variable. This variable is then made accessible in each test. The last line of the setup
method allows us to run the rake task several times. By default, the Rake counts the
task starts and doesn't allow us to invoke the tasks again. This line of code resets the
counter and provides us with an opportunity to run a task with the invoke method
as many times as we want per one test. To avoid this behavior, a method named
reenable is defined in Rake::Task. The next method, teardown, will be executed
after each test run.

Testing Rake Tasks

[84]

The lines after the teardown method define the tests themselves. They are the same
as the ones for general Ruby unit tests. There are two tests for the send_email task
and one for the clobber task:

• The first one tests the execution of the rake task without parameters
• The second one tests the rake task for the acceptance of the command-line

arguments, subject and body
• The third test tests the clobber task that should delete the generated file

Note that the test file is placed to the separated subdirectory—test. We have done
this to separate the tests from the main code. In real life, we have to split the code
into many files because of its complexity. Following the known programming
paradigm divide and conquer, we get huge benefits from this improvement.

Having the main logic in classes but not in the rake task actions is
a good practice and allows us to test the classes in isolation. This is
much easier than testing the rake tasks themselves.

Now, let's stop the theory for a while and just try to run the tests that are written.
To run the tests, use the following command:

$ ruby test/send_mail_test.rb

The output of the command should look like the following:

MiniTest::Unit::TestCase is now Minitest::Test. From test/send_email_
test.rb:4:in `<main>'

Run options: --seed 19500

Running:

Sending email...

Done!

.Sending email...

Done!

Sending email...

Done!

.Sending email...

Done!

Sending email...

Done!

Chapter 8

[85]

Sending email...

Done!

.

Finished in 0.013278s, 225.9376 runs/s, 225.9376 assertions/s.

3 runs, 3 assertions, 0 failures, 0 errors, 0 skips

We can see that there are three tests and all of them have passed. Also, the output
includes the outgoing messages from the send_mail task.

If you are interested in working with Rails, there is a useful article about how to
test rake tasks in Rails with RSpec at http://goo.gl/baLy0R. RSpec is another test
framework for Ruby (http://rspec.info).

Summary
In this chapter, we explained to you why we should test the rake tasks. Then,
you saw an example of how to write tests for the rake tasks with the MiniTest
testing framework.

In the next chapter, you will learn how Rake can be useful for continuous integration
with an example of the Jenkins tool. You will also see how to install the Rake plugin
for Jenkins.

Continuous Integration
Running tests is one of the goals of a build automation system. Continuous
integration is a practice in software engineering that involves running the test
process. A continuous integration system can run any kind of tasks, jobs, or their
bundles, but it's often used to run tests. The goal of this chapter is to demonstrate
how to use Rake in bundle with continuous integration with the help of a continuous
integration tool called Jenkins.

In this chapter, we will cover the following topics:

• Introducing Jenkins
• Setting up Jenkins
• Configuring Jenkins to run rake tasks

Introducing Jenkins
Jenkins is a tool that provides continuous integration services written in Java. Simply
speaking, Jenkins' aim is to track changes performed by a software. For example, we
have a Rails application that is under a version control system (the Ruby community
currently prefers using Git), and we want to run the tests on each commit (or a
change) to the project. When the tests fail, we would like to be informed about it via
an e-mail. Jenkins could help us in the automation of this process. It may track the
changes in the project and send e-mails accordingly.

Git is a famous version control system. More information about
Git can be found at http://git-scm.com.

www.allitebooks.com

http://www.allitebooks.org

Continuous Integration

[88]

Note that you can set up Jenkins the way you want: for many types of tasks and
to handle many events. However, the examples used in this chapter are intended
to show you how to use Rake tasks. If you want to know more, please refer to the
official documentation at http://jenkins-ci.org.

Now let's understand Jenkins and its workings through the following diagram:

Developers

Project

Jenkins

Tests

Recipients interested in the
tests running result

I’m changedMake changes

We are done

Run

Send report

The diagram explains the process of tracking the changes in the project, running the
tests, and sending the notification to the developers. The following is the sequence of
the processes:

1. Developers make changes in the project.
2. Jenkins receives a notification about the changes.
3. Jenkins runs the tests.
4. Jenkins sends e-mails to the developers after running the tests.

Steps 2 to 4 are configured in Jenkins, and in this chapter, you will see how to do this
in detail.

Setting up Jenkins
There are many ways to install Jenkins. You can download the compiled version
and install it within your operating system in a few seconds! However, Jenkins is
usually run on a separate machine that is accessed 24 hours a day. However, it will
be costly to buy or rent a server just for demonstration; this is why the chapter will
demonstrate this on a virtual machine. For this purpose, we will use the VirtualBox
and Vagrant command-line tools. We have to go through the following steps to set
up Jenkins:

1. Firstly, install VirtualBox. Download it from the official site at
https://www.virtualbox.org and follow the instructions given.

Chapter 9

[89]

2. We should have a command-line tool for the easy configuration of virtual
machines. For this purpose, install Vagrant. Go to the http://www.vagrantup.
com/downloads page and download the application for your operating system.

3. Then, install it as a basic application though the installer of your operating
system. To make sure that you have installed Vagrant correctly, type the
following command in the terminal:
$ vagrant -v

Vagrant 1.4.3

The command should output the version of the installed Vagrant application.

4. Now, it's time to get a virtual machine. For this purpose, get ready to use a
box that I've created especially for your usage at http://goo.gl/OCBgKj.
This is a Debian operating system based on Linux. Run the following
command to generate the configuration file for the virtual machine:
$ vagrant init jenkins http://goo.gl/OCBgKj

5. This command will generate Vagrantfile. This is a configuration file for the
virtual server. Jenkins provides us with a web interface for its configuration,
and we are going to use it. For this, the server should have opened HTTP
access. In other words, it should have an IP address that we could type in the
browser to get access to the web interface.

6. To achieve this, we should configure the virtual machine. Open the generated
Vagrantfile and uncomment (remove the starting # symbol in a line) the
following line of code:
config.vm.network :hostonly, "192.168.33.10"

7. The following command will download the box created by me. Configure
and start the virtual server (the size of the box is about 300 MB, so be ready
to wait for some time):
$ vagrant up

8. If you didn't have any errors during the installation of the server, you are
ready to open the server's terminal with the following command:
$ vagrant ssh

9. Now you are on the server and the command line is ready to install Jenkins.
According to the official documentation (http://goo.gl/OzEX4p), use the
following commands:
$ wget -q -O - http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key
| sudo apt-key add -

Continuous Integration

[90]

$ sudo sh -c 'echo deb http://pkg.jenkins-ci.org/debian binary/ >
/etc/apt/sources.list.d/jenkins.list'

$ sudo apt-get update

$ sudo apt-get install -y jenkins

Note that you have to run these commands on the server.
If you have some problems installing Jenkins with the
preceding commands, try to follow these instructions given
at http://pkg.jenkins-ci.org/debian-stable.
They are written especially for the Debian operating system.

That's it. We have installed Jenkins.

10. Open your favorite browser and paste the following link at
http://192.168.33.10:8080.

You should see the web interface of Jenkins. The following is a screenshot of the
screen that you should have:

Until now, Ruby and Rake have not been installed to the server. So, install them
separately using the following command:

$ sudo apt-get install -y ruby rake

Chapter 9

[91]

Configuring Jenkins to run rake tasks
Now it is time to demonstrate Jenkins in action. As we are going to run the rake
tasks in our project build, we have to install the Rake plugin for Jenkins. Perform the
following steps:

1. Go to http://192.168.33.10:8080/pluginManager, find the Rake plugin
there, and install it.

2. In the next step, create an application in Jenkins. To do so, go to
http://192.168.33.10:8080/view/All/newJob. Fill in the job name
and the project name (let it be Test rake task), select Build a free-style
software project option from the proposed, and click on the OK button at
the bottom of the page.

3. You will be redirected to the configuration page of the created project. There,
you will find the Build section with the Add build step dropdown. Choose
the Invoke Rake option from the dropdown.

4. You will see the Tasks input. Considering that we are going to run the Rake
task db:migrate, fill in the field with this task.

5. Now, we should configure the path to the folder of our Rake project for
Jenkins. Click on the Advanced button in the section and additional fields
will appear.

6. Find the Rake working directory input field. This field needs the path where
our Rakefile will be present. Type the path /home/vagrant/rakeproject
into it.
The following screenshot shows us what the final section will look like:

Continuous Integration

[92]

7. To test the rake task manually, find the Build now link in the sidebar situated
on the left-hand side when you are on the project page. Click on this link and
the process will start.

8. After running each build, a report will be generated with the logs, and you will
be able to see the console output. The first result will fail because Rakefile is
not present there yet, so you have to see the fails in the console output.

9. Now, create a valid Rakefile in the /home/vagrant/rakeproject path on
the server:
task 'db:migrate' do
 puts 'Hello for Rake!'
end

10. Run the build again and it will be fixed.

It is possible to configure Jenkins to run builds automatically on each change of the
Rakefile, but the investigation of this is left to you.

Summary
In this chapter, we were briefly introduced to Jenkins, the continuous integration
software. We saw how to configure it using an example that showed us how to use
rake tasks.

The next chapter is the last chapter of the book and our goal will be to summarize
the knowledge you have gained from all the chapters. Also, you will find some
information about the tools inspired by Rake, which are very successful in the
Ruby world.

Relentless Automation
In this chapter, you will find real examples on how Rake is used by famous
applications. You will also get to learn about the tools that are inspired by Rake and
have familiar DSL. Also, you will be introduced to a similar Rake tool that has some
advantages over Rake.

In this chapter, we will cover the following topics:

• Examples of Rake being used by famous gems
• Other examples of Sinatra using Rake
• Thor—the next generation of Rake

Examples of Rake being used by famous
gems
Currently, Rake is used by the Ruby community in general. The most frequent
application of Rake is to automate running tests and generating the project
documentation. There are tons of gems that use Rake for these purposes. You may
choose to trust me or check it out yourself by visiting http://github.com. In this
chapter, we will examine a Sinatra gem that is more suitable for us. It uses Rake for
both these tasks: running tests and generating documentation.

Sinatra is a lightweight framework that allows us to create web
applications with minimum effort. To read more about this, check
out the official documentation at http://www.sinatrarb.com.

Relentless Automation

[94]

There is one more interesting application of Rake. Some tools inherit the basic classes
of Rake and in this way, extend the functionality and the DSL for their needs. One
of the most famous tools that use Rake like this is Capistrano. It's a deployment tool
that has been rewritten recently from pure Ruby implementations to inheritance
from Rake. Further, you will see what the benefits of this change were.

Capistrano is a remote server automation and deployment tool
written in Ruby (official site http://capistranorb.com).

The pain of task execution
To understand why a lot of gems use Rake as a task executor, we should figure out
what the problem with running the tests without Rake is. In Chapter 8, Testing Rake
Tasks, we have already seen how to write and run the tests that are placed in one file.
This is a rather simple process, and the following command-line example serves as a
reminder for you:

$ ruby test/some_feature_test.rb

However, the most frequently used form looks like the following command line:

$ ruby -Ilib -Itest test/some_feature_test.rb

This command additionally loads the required libraries to run the tests. So, in this
example, the lib and test folders will be loaded before the execution of the code
in the some_feature_test.rb file. You should not make a big effort to run the tests
that are situated in one file.

Imagine that we need to run all projects' tests and they are placed in many files. How
do we run them by a single command? Well, it may be not so straightforward if you
don't know the bash or some Ruby tricks. According to http://stackoverflow.com,
people run the tests by one command in many ways. The following are examples some
of them:

$ ruby -e 'ARGV.each { |path| require path }' test/test_*.rb

$ for file in spec/*.rb; do ruby $file; done

Stack Overflow is a popular site where users ask questions
and get answers from more experienced users.

You may argue with the conclusion that these commands are not suitable at all
because you have to remember these complicated commands and need to spend
a lot of time to achieve the simple result.

Chapter 10

[95]

Sinatra using Rake to run tests
Sinatra has a lot of tasks that are separated by many files. Let's figure out how the
issue is solved in this gem. There is only one case that explains us how to do it—
open its sources and look into Rakefile. Sources of Sinatra are placed on GitHub at
https://github.com/sinatra/sinatra. Open the Readme file in the browser after
following the link http://goo.gl/M6gq79 and peek into the online file, or clone the
Git repository to your local machine and open the file using your favorite editor. We
are interested in the following code in Rakefile:

...
require 'rake/testtask'
...
Rake::TestTask.new(:test) do |t|
 t.test_files = FileList['test/*_test.rb']
 t.ruby_opts = ['-rubygems'] if defined? Gem
 t.ruby_opts << '-I.'
 t.warning = true
end
...

These lines of code do some magic. This is another feature of Rake that hasn't been
described yet in the book. So, this is the right time to do so. As you might have guessed,
this piece of code creates the test task and the lines in the block configure the task. At
first, we set the list of test files for the task and then we set the command-line options:
-rubygems if there is a defined Gem constant (There are operating systems which don't
have installed rubygems as a gem. The rubygems gem can be installed as a package
(or just program) to the system. In this way the Gem variable won't be defined and we
should use the -rubygems option to run a Ruby script/test. It tells to load path with
installed rubygems in $LOAD_PATH—this is a variable that contains a list of paths to
find libraries in Ruby scripts.) and -I. to include the current folder in the runtime
execution. The warning option speaks for itself.

Pay attention to the fact that you have to require the defined class Rake::TestTask
to use this with the require 'rake/testtask' statement in the beginning of
Rakefile. With the lines of code from the previous snippet, we are able to run the
tests placed in the test folder. It's assumed that the test files end with _test.rb.
Now, the command to run the tests transforms to the following:

$ rake test

Often, maintainers of Ruby gems set the default task to test, and in this case, the
command is cut to one word:

$ rake

Relentless Automation

[96]

Go back to Chapter 1, The Software Task Management Tool – Rake to revise how to set
the default task to test in Rakefile:

rake :default => :test

There are many other useful options of Rake::TestTask. For example, the verbose
option expects a Boolean value and shows you the constructed command that runs
the tests, the libs option includes folders to the command line, and pattern allows
you to set patterns for the test files (the default is test/test*.rb). To find more
options, look at the sources of Rake::TestTask at http://goo.gl/SjwSsz.

Gems that use the RSpec tool for tests usually don't need to have some external
helper execute the tests because RSpec has its own convention to name the tests files
and decide where to place them. If you follow the RSpec convention to run all tests,
you have to use the following simple command:

$ rspec

Sinatra using Rake to generate
documentation
The task to generate documentation in Sinatra is rather simple; it just runs the
external yardoc utility to generate them. To conclude this, you may look into the
Rakefile of Sinatra:

desc 'Generate RDoc under doc/api'
task 'doc' => ['doc:api']
task('doc:api') { sh "yardoc -o doc/api" }
CLEAN.include 'doc/api'

There is nothing new for you here. Two tasks are defined here: doc and doc:api. They
are just aliases as you see—the doc task depends on the doc:api task. However, the
doc task's action is absent, so it is created just to give the doc:api task pseudonym.
The last line of the code example is familiar for you from Chapter 4, Cleaning Up a Build.
It just adds the generated docs in the list of tasks to be removed by the clean task.

Yardoc is a Ruby documentation tool. To get to know more
about it, please follow the official site at http://yardoc.org.

If Sinatra uses such processes to generate the documentation, it doesn't mean that
other gems do the same or that you should follow this approach in your project too.
There are many other techniques to generate the documentation. For instance, you
can use the rdoc gem or even write your generator from the scratch using Rake.

Chapter 10

[97]

Capistrano extending the Rake
implementation
As Ruby is an object-oriented language and Rake is written in this language, you are
able to inherit the basic classes of Rake and change its standard behavior. This allows
you to create power tools with DSL. In fact, the newest version of Capistrano v3 uses
Rake in this way. The following is a good example to see this appliance in action.

First of all, take a look at the capistrano/application.rb file (short link:
http://goo.gl/iJv7xq):

module Capistrano
 class Application < Rake::Application

 def initialize
 super
 @rakefiles = %w{capfile Capfile capfile.rb Capfile.rb} <<
capfile
 end

 def name
 "cap"
 end

 def run
 Rake.application = self
 super
 end

 ...

 end

end

The idea here is simple—just inherit the base class of Rake Capistrano::Application
and change the parent methods. This chunk of code changes the possible names
of Rakefile and changes the name of the rake command to cap. Also, the run
method was slightly modified, as it changes the application attribute of Rake to
self, so now, Rake will use the Capistrano::Application class instead of the
Rake::Application class in its core. In the bin folder, you can see this class in action
in the cap file (short link: http://goo.gl/59LPs7):

#!/usr/bin/env ruby
require 'capistrano/all'
Capistrano::Application.new.run

Relentless Automation

[98]

This code allows us to use the cap command, but in reality, it just tunes Rake. This
means that you are able to use this command as the rake utility. The cap command
accepts all the rake options.

You can see the trick when extending DSL in the dsl/task_enhancements.rb file
found at http://goo.gl/OzABkA. It adds such useful DSL methods as before,
after, and remote_file.

Capistrano v2 was built in pure Ruby and recently it was rewritten to Rake.
The following are the benefits from the architecture changes:

• V3 is faster.
• It is easier to work with.
• It has better modularization. The tool can now be used to easily write

extensions for other languages . Currently, there are extensions for PHP's
Symphony and WordPress.

• It has a better DSL.
• It has the ability to integrate Capistrano with other deployment tools such as

Chef and Puppet.

If you have a project with similar problems, inheriting the functionality and extending
the DSL may be a better choice for you, rather than writing the application from scratch.

Other examples of Sinatra using Rake
If you look at the Rakefile of Sinatra, you may see that there a lot of examples of the
Rake appliance. For example, you could find a task to package the Sinatra into a gem:

file package('.gem') =>
 %w[pkg/ sinatra.gemspec] + spec.files do |f|
 sh "gem build sinatra.gemspec"
 mv File.basename(f.name), f.name
end

You will also find how the developers configure the list for the clobber task (go
back to Chapter 4, Cleaning Up a Build), installation tasks, and so on. Reviewing a real
example is a good practice to consolidate knowledge, but here, we have limited the
scope to be able to fully investigate Rakefile, so this exercise is delegated to you.

Chapter 10

[99]

Thor – the next generation of Rake
There is a tool that can be used as an alternative to Rake and promises to get rid of
Rake's disadvantage—parsing command-line arguments (as you can remember from
Chapter 1, The Software Task Management Tool – Rake, it was a little bit inconvenient).
The tool is Thor (official page: http://whatisthor.com). Another advantage of this
tool is a great feature that is completely absent in Rake—generators. For example,
Rails uses Thor's generators to generate a skeleton for an application.

Now, let's create some test task of Thor. Say, the task should just get an optional
argument, an e-mail, and just write this to the standard output. Just create this file
with the following code and the name test.thor:

class Test < Thor
 desc 'send_email', 'Send mail'
 method_option :email,
 :aliases => '-e',
 :desc => 'email of a recipient'
 def send_email
 puts "Recipient: #{options[:email]}"
 end
end

Now if you have installed Thor, you will be able to run the test:send_email task
from the command line and pass the -e (or --email) argument, as shown:

$ thor test:send_email -e 'ka8725@gmail.com'

Recipient: ka8725@gmail.com

$ thor test:send_email --email 'ka8725@gmail.com'

Recipient: ka8725@gmail.com

To install Thor, use the gem command as shown:
$ gem install thor

Researching on the generator feature of Thor has been proposed for you. In fact, Thor
has some features that are more convenient than Rake, for example, installing a task
to the system or uninstalling it, creating executable scripts, and so on. Unfortunately,
this will require an entire new book. If you are really interested in this tool, please
follow the official site at http://whatisthor.com and its GitHub wiki page at
http://goo.gl/q9aONf.

Relentless Automation

[100]

Despite the fact that Thor has some advantages over Rake, it can't replace it
completely, because it only solves some specific tasks. Thor doesn't have as powerful
instruments to work with files as Rake. Also, remember that Rake is embedded in
Ruby. This is the biggest advantage because you don't have to install any third-party
tools. However, simultaneous usage of these tools may bring you the real power that
exists in Rails.

Summary
We have come to the end of this book, so let's revise what we learned. At the start,
there was an explanation of Rake's foundation and its DSL. We saw what a Rakefile
is, how to define custom tasks and their prerequisites, what the default rake task is,
how to define global rake tasks, and how to use the rake command-line utility and
its common options.

Next, you were taught how to work with files and what arsenal Rake has for
operations with the files. How to refactor and get rid of task duplication with rule
was explained in next chapter. After that, we saw how to clean a build with the
standard features of Rake, such as CLOBBER and CLEAN lists. Software productivity
is the main problem of Ruby, and sometimes, parallelism might speed up a Rake
application with multitask. Chapter 5, Running Tasks in Parallel, explained when it's
rational to use multitasking and how to use it.

Then, we discussed another existing problem in the programming world—debugging.
You were shown how to debug rake tasks with help of the rake command-line tool's
arguments and with the debugger gem.

Any Rails application contains Rake and a Rake application is always ready to use
them in a convenient way. This was presented in Chapter 7, Integration with Rails. This
chapter also showed you how to run the recurrent rake tasks. You can run them on
any Rake or Ruby project as well, but as it's used often with the Rails bundle, this
information was provided in this chapter.

Why you should test rake tasks and what is possible if you skip this was discussed
in the next chapter. After this, you walked through the Jenkins installation and saw
how it may use the Rake as an installed plugin. Jenkins is a continuous integration
tool, so this knowledge may be applied to any other similar software.

Chapter 10

[101]

Thor was discussed at the end of the book, and you could put it there because the
emphasis was on the real examples of the Rake usage.

This book doesn't contain exhaustive information about Rake. The examples given in
the book are simplified. But now you've read it, you are ready to start your journey
in to the Rake world. I hope this information will help you at this point. However,
if you have a rather complicated project, you will have to perform tasks such as
maintaining, refactoring, and changing the architecture. These are unavoidable
processes of any project. The situations discussed in this book may not help you in
such case. Reading the source code of Rake (https://github.com/jimweirich/
rake) and other great tools such as Capistrano (https://github.com/capistrano/
capistrano) is the single best way to do this.

Index
Symbols
--prereqs

used, for getting dependency resolution 67
--rules option

used, for tracing rule resolution 68, 69
--suppress-backtrace option 67

A
args variable 18
arguments, passing to tasks

first alternative 16
second variant 17, 18

B
backtrace

about 65
working with 66, 67

blog generator 34
BlogGenerator class 33
bundler gem

about 62
URL 63

C
Capistrano tool

Rake implementation, extending 97, 98
Rake, used by 94
URL 94

clean task 54-56

clobber task 54-56
command-line arguments

about 10, 11
used, for debugging 65-67

common prerequisite
used, for multiple task definitions 61, 62

config file, automatically generated
practical example 42, 43

continuous integration 87
cron

about 76
URL 76

custom rake tasks
defining 13, 14
using, in Rails 75

D
debugger tool

URL 71
used, for debugging Ruby code 70, 71

debugging
command-line arguments, used for 65-67

dependency resolution
getting, --prereqs used 67

desc method 11
directory method

used, for creating folder 34, 35
Domain Specific Language. See DSL
DSL 7
duplicated file tasks

eliminating, rule method used 47, 48

[104]

E
Emacs editor 37
ENV variable 16

F
FileList module

used, for collecting files 36, 37
file lists

transforming, pathmap method used 37-41
files

collecting, FileList module used 36, 37
file task, used for working with 27-29

file task dependencies
characteristics 29-34

file tasks
used, for working with files 27-29

file tasks duplication 45, 46
file utilities, Rake

FileList module 36, 37
FileUtils module 41
pathmap method 37-41

FileUtils#mkdir_p method 35
FileUtils module 41
FileUtils.rm method 32
folder

creating, directory method used 34, 35

G
gems

Rake usage, examples 93, 94
Rake, used as task executor 94

generators 99
Git

about 87
URL 87

git-scribe tool
using 52

global Rakefile
used, for running tasks 11, 12

H
heredoc 30

I
import method

used, for loading Rakefiles 19-21

J
Jenkins

about 87
configuring, to run rake tasks 91, 92
setting up 88-90
URL 88
working 88

M
message variable 18
method_from_rakefile() method 20
MiniTest 79
multiple tasks

defining, with common prerequisite 61, 62
multiple tasks definitions

arguments, passing to tasks 16-18
multitask method

used, for defining tasks 57
multitasks

applying 62
multitasks thread safety 61

P
parallelism 57
parallel prerequisites

used, for defining tasks 57-60
parallel task execution 60
pathmap method

used, for transforming file lists 37-41
prerequisites method 33
project

setting up 51-53

R
race conditions

preventing 61
Rails

custom rake tasks, using in 75, 76

[105]

Rake, integrating in 73-75
Rake

installing 8
integrating, in Rails 73-75

Rake code conventions
about 23
using 23, 24

Rakefile
about 9
creating 9
loading, import method used 19-21

Rakefile, global
used, for running tasks 11, 12

Rake project
debugging, Ruby approach used 69-71

Rake project structure
about 19
import method, using to load

Rakefiles 19-21
rake tasks, running from other tasks 21-23

rake tasks
about 9, 10
running, from other tasks 21-23
tests, writing for 80-85

rake tasks, custom
defining 13, 14
using, in Rails 75, 76

rake tasks dependencies
multiple tasks definitions 15-18
prerequisites 14, 15

rake tasks, testing
need for 79, 80

rake -T command 11
Rake usage examples

documentation, generating in Sinatra 96
in Capistrano 97
other Sinatra examples 98
task, executing 94
test, running in Sinatra 95, 96

regular expression
used, for matching tasks 50

repeated runs, rake tasks 76, 77

RSpec
URL 85

Ruby approach
used, for debugging Rake project 69-71

rule method
source, dynamically detecting for 48
used, for eliminating duplicated file

tasks 47, 48
rule resolution

tracing, --rules option used 68, 69

S
Sinatra

Rake used, for generating
documentation 96

Rake used, for running tests 95, 96
Rake usage, examples 98
URL 93

source
dynamically detecting, for rule

method 48, 49

T
task execution 94
tasks

arguments, passing to 16
defining, multitask method used 57
defining, with parallel prerequisites 57-60
matching, regular expression used 50
running, global Rakefiles used 11, 12

Task Scheduler tool
URL 76

task work
cleaning 54, 55

Test-driven Development (TDD) 83
tests

running 84
writing, for rake tasks 80-85

Thor
URL 99
versus Rake 99, 100

TITLE variable 17

[106]

W
whenever gem

installing 77

Y
Yardoc

URL 96

V
Vagrant

URL 89
version control system

Git 87
VirtualBox

URL 88

Thank you for buying
Rake Task Management Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant RubyMine Assimilation
ISBN: 978-1-84969-876-4 Paperback: 66 pages

Utilize the RubyMine IDE to develop your own Ruby
on Rails applications

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Incorporate features of RubyMine into your
everyday Ruby and Ruby on Rails development
workflow.

3. Learn about the integrated testing and
debugging tools to make your coding
bulletproof and productive.

4. Become an expert at deploying Rails
applications directly from RubyMine.

Instant RubyMotion App
Development
ISBN: 978-1-84969-652-4 Paperback: 54 pages

A jump start to quickly learn how to program iOS
applications with the elegance and simplicity of Ruby

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn the structure of iPhone and iPad
applications.

3. Discover how to simplify iOS apps with Ruby.

4. Get to grips with how to leverage Ruby
libraries to quickly and efficiently write apps!

Please check www.PacktPub.com for information on our titles

Designing and Implementing Test
Automation Frameworks with QTP
ISBN: 978-1-78217-102-7 Paperback: 160 pages

Learn how to design and implement a test
automation framework block by block

1. A simple and easy demonstration of the
important concepts will enable you to translate
abstract ideas into practice.

2. Each chapter begins with an outline and a brief
statement of content to help the reader establish
perspective.

3. An alternative approach to developing generic
components for test automation.

RubyMotion iOS Development
Essentials
ISBN: 978-1-84969-522-0 Paperback: 262 pages

Create apps that utilize iOS device capabilities
without learning Objective-C

1. Get your iOS apps ready faster with
RubyMotion.

2. Use iOS device capabilities such as GPS,
camera, multitouch, and many more in your
apps.

3. Learn how to test your apps and launch them
on the AppStore.

4. Use Xcode with RubyMotion and extend your
RubyMotion apps with Gems.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Software Task Management Tool – Rake
	Installing Rake
	Introducing rake tasks
	The command-line arguments
	Using global Rakefiles to run tasks anywhere
	Defining custom rake tasks
	Task dependencies – prerequisites
	Multiple tasks definitions
	Passing arguments to the tasks

	The structure of a Rake project
	Using the import method to load other Rakefiles
	Running rake tasks from other tasks

	The code conventions of Rake
	Summary

	Chapter 2: Working with Files
	Using file tasks to work with files
	The characteristics of the file task dependencies
	Creating a folder with the directory method
	Using Rake's file utilities
	Using the FileList module functionality to collect the files
	Using pathmap to transform file lists
	Introducing the FileUtils module

	A practical example of automatically generating a config file
	Summary

	Chapter 3: Working with Rules
	Understanding the duplication of the file tasks
	Using a rule to get rid of the duplicated file tasks
	Detecting a source for the rule dynamically
	Using a regular expression to match more tasks
	Summary

	Chapter 4: Cleaning Up a Build
	Setting up a project
	The cleaning tasks
	Summary

	Chapter 5: Running Tasks in Parallel
	Defining tasks with parallel prerequisites
	Thread safety of multitasks
	Multiple task definitions with a common prerequisite
	Applying multitasks in practice
	Summary

	Chapter 6: Debugging Rake Tasks
	Using command-line arguments for debugging
	Getting a dependency's resolution
with --prereqs
	Using the --rules option to trace the rule resolution
	Using the Ruby approach to debug a Rake project
	Summary

	Chapter 7: Integration with Rails
	Introducing Rake's integration with Rails
	Custom rake tasks in a Rails project
	Recurrent running of tasks
	Summary

	Chapter 8: Testing Rake Tasks
	The need for tests
	Writing tests for rake tasks
	Summary

	Chapter 9: Continuous Integration
	Introducing Jenkins
	Setting up Jenkins
	Configuring Jenkins to run rake tasks
	Summary

	Chapter 10: Relentless Automation
	Examples of Rake being used by famous gems
	The pain of task execution
	Sinatra using Rake to run tests
	Sinatra using Rake to generate documentation
	Capistrano extending the Rake implementation

	Other examples of Sinatra using Rake
	Thor – the next generation of Rake
	Summary

	Index

