
T E C H N O L O G Y I N A C T I O N ™

Raspberry
Pi IoT Projects

Prototyping Experiments for Makers
—
John C. Shovic

www.allitebooks.com

http://www.allitebooks.org

 Raspberry Pi IoT
Projects

 Prototyping Experiments for Makers

 John C. Shovic, PhD

www.allitebooks.com

http://www.allitebooks.org

Raspberry Pi IoT Projects: Prototyping Experiments for Makers

John C. Shovic
Liberty Lake, Washington, USA

ISBN-13 (pbk): 978-1-4842-1378-0 ISBN-13 (electronic): 978-1-4842-1377-3
DOI 10.1007/978-1-4842-1377-3

Library of Congress Control Number: 2016949468

Copyright © 2016 by John C. Shovic

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher's location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Gheorghe Chesler
Development Editor: James Markham
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, James Markham, Susan McDermott,
Matthew Moodie, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

 To my best friend Laurie and also to my cat Panther,
who is an IOT device by himself.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xv

About the Technical Reviewer ... xvii

Acknowledgments .. xix

Introduction .. xxi

Chapters at a Glance .. xxiii

 ■Chapter 1: Introduction to IOT .. 1

 ■Chapter 2: Sensing Your IOT Environment 9

 ■Chapter 3: Building a Solar Powered IOT Weather Station 63

 ■Chapter 4: Changing Your Environment with IOT and iBeacons ... 113

 ■ Chapter 5: Connecting an IOT Device to a Cloud
Server - IOTPulse .. 147

 ■Chapter 6: Using IOT for RFID and MQTT and the Raspberry Pi187

 ■Chapter 7: Computer Security and the IOT 213

 ■Appendix: Suggestions for Further Work 229

Index .. 231

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xv

About the Technical Reviewer ... xvii

Acknowledgments .. xix

Introduction .. xxi

Chapters at a Glance .. xxiii

 ■Chapter 1: Introduction to IOT .. 1

Choosing a Raspberry Pi Model .. 2

Choosing an IOT Device ... 3

Characterizing an IOT Project .. 3

Communications ... 4

Processor Power ... 4

Local Storage .. 4

Power Consumption ... 5

Functionality ... 5

Cost... 5

The Right Tools to Deal with Hardware ... 5

Writing Code in Python and the Arduino IDE ... 7

In This Book ... 8

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

 ■Chapter 2: Sensing Your IOT Environment 9

IOT Sensor Nets ... 10

IOT Characterization of This Project .. 10

How Does This Device Hook Up to the IOT?... 11

What Is an ESP8266? .. 11

The LightSwarm Design ... 12

Building Your First IOT Swarm ... 16

Installing Arduino Support on the PC or Mac .. 16

Your First Sketch for the ESP8266 .. 16

The Hardware ... 17

The Software .. 25

Self-Organizing Behavior .. 43

Monitoring and Debugging the System with the Raspberry Pi
(the Smart Guy on the Block) .. 44

LightSwarm Logging Software Written in Python ... 44

The RasPiConnect Control Panel in Real Time....................................... 54

Results .. 58

What Else Can You Do with This Architecture? 61

Conclusion ... 61

 ■Chapter 3: Building a Solar Powered IOT Weather Station 63

IOT Characterization of This Project .. 65

How Does This Device Hook Up to the IOT?... 65

Data Gathering .. 65

The Project - IOTWeatherPi ... 66

How This All Works ... 68

The Subsystems ... 68

The I2C Bus ... 71

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

Sizing Your Solar Power System ... 76

Power Up and Power Down ... 78

The Brownout Problem ... 80

Shutting Off the Pi .. 80

Starting the Pi ... 81

The Issue .. 81

Power Your Pi Up and Down with the USB Power Control 82

The USB Power Controller Board .. 83

One More Scenario ... 84

What Do You Need to Build This Project? .. 86

Connecting and Testing the Hardware .. 88

The Full Wiring List .. 90

The Software ... 95

Non-Normal Requirements for your Pi ... 95

The IOTWeatherPi Python Software .. 95

The RasPiConnect Control Panel .. 97

Improvements ... 98

Tweeting Your Weather Data ... 98

Getting Started ... 98

Registering a Twitter App .. 99

Texting Your Weather Data... 102

Supplying Your Data to the World - CWOP ... 105

CWOP .. 105

CWOP Software Interface to IOTWeatherPi ... 105

CWOP Software... 105

Example CWOP Packet ... 108

Results .. 108

Conclusion ... 110

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

 ■Chapter 4: Changing Your Environment with IOT and iBeacons113

The IOTBeaconAir .. 113

IOT Characterization of This Project .. 114

How Does This Device Hook Up to the IOT? .. 115

Hardware List ... 115

iBeacons .. 116

Bluetooth iBeacon Scanner .. 118

Phillips Hue Lighting System .. 119

Phillips Hue Hub ... 120

BeaconAir Hardware, Software, and Confi guration 121

BeaconAir Hardware Description .. 121

BeaconAir Software Description ... 121

BeaconAir Confi guration File .. 133

iBeacon Software ... 134

Trilateralization ... 134

The IOTBeaconAir Control Panel ... 135

Installing blueZ and phue on the Raspberry Pi 138

BlueZ... 139

phue .. 141

RasPiConnectServer Startup ... 141

Startup Procedure .. 141

Making IOTBeaconAir Start on Bootup ... 142

How It Works in Practice ... 143

Things to Do .. 143

The Classic Distributed System Problems ... 144

Conclusion ... 145

 ■ CONTENTS

xi

 ■ Chapter 5: Connecting an IOT Device to a Cloud
Server - IOTPulse .. 147

IOT Characterization of This Project .. 148

The Internet Of Things on the Global Network 148

Cloud Computing .. 149

Application Builders .. 150

Display and Report Generation ... 150

The IBM Bluemix Internet Of Things Solution ... 151

The IOTPulse Design .. 152

Building the IOTPulse .. 155

3D Printing Files for the IOT Case ... 157

Software Needed .. 160

The IOTPulse Code .. 160

Reviewing the Arduino IDE Serial Monitor Results ... 170

Joining IBM Bluemix and the IoT Foundation 173

Sending your Data to Bluemix .. 175

Displaying Real-Time Data on the IBM Bluemix IOT Platform 179

Advanced Topics .. 184

Historical Data .. 184

Node-RED Applications ... 185

Watson Applications ... 186

Conclusion ... 186

 ■Chapter 6: Using IOT for RFID and MQTT and the Raspberry Pi........187

IOT Characterization of This Project .. 187

What Is RFID Technology? ... 188

What Is MQTT? .. 189

Hardware Used for IOTRFID ... 190

Building an MQTT Server on a Raspberry Pi 191

 ■ CONTENTS

xii

The Software on the Raspberry Pi ... 192

Installing the MQTT “Mosquitto” ... 192

Confi guring and Starting the Mosquitto Server .. 193

Starting the Mosquitto Server .. 194

Testing the Mosquitto Server .. 194

Building the IOTRFID .. 195

The Parts Needed ... 195

Installing Arduino Support on the PC or Mac .. 196

The Hardware ... 196

What Is This Sensor We Are Using? .. 196

3D Printed Case .. 197

The Full Wiring List ... 199

The Software for the IOTRFID Project .. 201

The Libraries ... 201

The Main Software ... 202

Testing the IOTRFID System .. 205

Setting Up the Mosquitto Debug Window ... 206

Set Up a Subscriber on the Raspberry Pi ... 207

Testing the Entire IOTRFID System ... 208

What to Do with the RFID Data on the Server 210

Conclusion ... 210

 ■Chapter 7: Computer Security and the IOT 213

IOT: Top Five Things to Know About IOT Computer Security 214

Number 1: This is important. You can prove your application is insecure, but you
can’t prove your application is secure. ... 214

Number 2: Security through Obscurity Is Not Security ... 214

Number 3: Always Connected? Always Vulnerable. .. 214

 ■ CONTENTS

xiii

Number 4: Focus On What Is Important to Be Secure in your IOT Application 215

Number 5: Computer Security Rests on Three Main Aspects: Confi dentiality,
Integrity, and Availability ... 215

What Are the Dangers? .. 216

Assigning Value to Information .. 216

Building The Three Basic Security Components for IOT Computers 217

Confi dentiality - Cryptography .. 217

Integrity - Authentication .. 222

Availability - Handling DOS / Loss of Server / Watchdogs 225

Key Management .. 226

Update Management ... 227

Conclusion ... 227

 ■Appendix: Suggestions for Further Work 229
Parting Words... .. 230

Index .. 231

xv

 About the Author

 Dr. John C. Shovic is currently Chief Technical Officer
of SwitchDoc Labs, a company specializing in technical
products for the Maker Movement and the IOT; and
InstiComm, a company specializing in mobile medical
software solutions for health practitioners. He was also
Chief Technology Strategist at Stratus Global Partners
with a focus on supplying expertise in computer
security regulatory and technical areas to health care
providers. He has worked in the industry for over thirty
years and has founded seven companies: Advanced
Hardware Architectures, TriGeo Network Security, Blue
Water Technologies, MiloCreek, InstiComm, SwitchDoc
Labs, and bankCDA. As a founding member of the
bankCDA board of directors, he currently serves as the
chairman of the technology committee. He has also

served as a Professor of Computer Science at Eastern Washington University, Washington
State University, and the University of Idaho. Dr. Shovic has given over eighty invited talks
and has published over seventy papers on a variety of topics on Arduinos/Raspberry Pi’s,
HIPAA, GLB, computer security, computer forensics, and embedded systems.

xvii

 About the Technical
Reviewer

 Gheorghe Chesler is a Senior Software Engineer with expertise in Quality Assurance,
System Automation, Performance Engineering, and e-Publishing. He works at
ServiceNow as a Senior Performance Engineer, and is a principal technical consultant for
Plural Publishing, a medical-field publishing company. His preferred programming
language is Perl (so much so that he identifies with the Perl mascot, hence the camel
picture), but also worked on many Java and Objective-C projects.

xix

 Acknowledgments

 The author would like to acknowledge the hard work of the APress editorial team in
putting this book together. He would also like to acknowledge the hard work of the
Raspberry Pi Foundation and the Arduino group for putting together products and
communities that help to make the Internet Of Things more accessible to the general
public. Hurray for the democratization of technology!

xxi

 Introduction

 The Internet Of Things (IOT) is a complex concept made up of many computers and
many communication paths. Some IOT devices are connected to the Internet and some
are not. Some IOT devices form swarms that communicate among themselves. Some are
designed for a single purpose, while some are more general purpose computers. This
book is designed to show you the IOT from the inside out. By building IOT devices, the
reader will understand the basic concepts and will be able to innovate using the basics to
create his or her own IOT applications.

 These included projects will show the reader how to build their own IOT projects
and to expand upon the examples shown. The importance of Computer Security in
IOT devices is also discussed and various techniques for keeping the IOT safe from
unauthorized users or hackers. The most important takeaway from this book is in
building the projects yourself.

xxiii

 Chapters at a Glance

 In this book, we built examples of all the major parts of simple and complex IOT devices.
 In Chapter 1 , the basic concepts of IOT are explained in basic terms, and you will

learn what parts and tools are needed to start prototyping your own IOT devices.
 In Chapter 2 , you'll learn how to sense the environment with electronics and that

even the behavior of simple LightSwarm type of devices can be very unpredictable.
 Chapter 3 introduces important concepts about how to build real systems that can

respond to power issues and programming errors by the use of good system design and
watchdogs.

 Chapter 4 turns a Raspberry Pi into a battery-powered device that senses iBeacons
and controls the lighting in a house while reporting your location to a server.

 In Chapter 5 , you'll do IOT the way the big boys do by connecting up to the IBM
BlueMix IOT Server and sending our biometric pulse rates up for storage and display.

 In Chapter 6 , we'll build a small RFID Inventory system and use standard protocols
like MQTT to send information to a Raspberry Pi, a complete IOT product.

 Chapter 7 shows the dark side of the IOT, Computer Security. The way you protect
your IOT device from hackers and network problems is the most difficult part of IOT
device and system design.

 Are you totally secure? You will never know. Plan for it.
 The reference appendix provides resources for further study and suggestions for

other projects.

http://dx.doi.org/10.1007/978-1-4842-1377-3_1
http://dx.doi.org/10.1007/978-1-4842-1377-3_2
http://dx.doi.org/10.1007/978-1-4842-1377-3_3
http://dx.doi.org/10.1007/978-1-4842-1377-3_4
http://dx.doi.org/10.1007/978-1-4842-1377-3_5
http://dx.doi.org/10.1007/978-1-4842-1377-3_6
http://dx.doi.org/10.1007/978-1-4842-1377-3_7

1© John C. Shovic 2016
J. C. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3_1

 CHAPTER 1

 Introduction to IOT

 Chapter Goal: Understand What the IOT Is and How to Prototype IOT Devices

 Topics Covered in This Chapter:

• What is IOT

• Choosing a Raspberry Pi Model

• Choosing your IOT Device

• Characterization of IOT Devices

• Buying the right tools to deal with Hardware

• Writing code in Python and in the Arduino IDE

 The IOT is a name for the vast collection of “things” that are being networked together
in the home and workplace (up to 20 billion by 2020 according to Gardner, a technology
consulting firm). That is a very vast collection. And they may be underestimating it.

 We all have large numbers of computers in a modern house. I just did a walkthrough
of my house, ignoring my office (which is filled with another ~100 computers). I found 65
different devices having embedded computers. I’m sure I missed some of them. Now of
those computer-based devices, I counted 20 of them that have IP addresses, although I know
that I am missing a few (such as the thermostat). So in a real sense, this house has 20 IOT
devices. And it is only 2016 as of the writing of this book. With over 100 million households in
the United States alone, 20 billion IOT devices somehow don’t seem so many.

 So what are the three defining characteristics of the IOT?

• Networking - these IOT devices talk to one another
(M2M communication) or to servers located in the local network
or on the Internet. Being on the network allows the device the
common ability to consume and produce data.

• Sensing - IOT devices sense something about their environment.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1377-3_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-1377-3_1

CHAPTER 1 ■ INTRODUCTION TO IOT

2

• Actuators - IOT devices that do something. Lock doors, beep, turn
lights on, or turn the TV on.

 Of course, not every IOT device will have all three, but these are the characteristics of
what we will find out there.

 Is the IOT valuable? Will it make a difference? Nobody is sure what the killer
application will be, but people are betting huge sums of money that there will be a killer
application. Reading this book and doing the projects will teach you a lot about the
technology and enable you to build your own IOT applications.

 Choosing a Raspberry Pi Model
 The Raspberry Pi family of single board computers (see Figure 1-1) is a product of the
Raspberry Pi Foundation (RaspberryPi.org). They have sold over 9 million of these small,
inexpensive computers. The Raspberry Pi runs a number of different operating systems,
the most common of which is the Raspian release of Unbuntu Linux.

 Figure 1-1. Raspberry Pi 2

 Like Windows, Linux is a multitasking operating system, but unlike Windows, it is
an open source system. You can get all the source code and compile it if you wish, but I
would not recommend that to a beginner.

 One of the best parts of the Raspberry Pi is that there are a huge number of device
and sensor drivers available, which makes it a good choice for building IOT projects,

http://raspberrypi.org/

CHAPTER 1 ■ INTRODUCTION TO IOT

3

especially using it as a server for your IOT project. The Raspberry Pi is not a low-power
device, which limits its usage as an IOT device. However, it is still a great prototyping
device and a great server.

 There is a rather bewildering variety of Raspberry Pi boards available. I suggest for
this book that you get a Raspberry PI 2 or Raspberry Pi 3. While the $5.00 Raspberry Pi
Zero is tempting, it takes quite a bit of other hardware to get it to the point where it is
usable. While the Raspberry Pi 3 is more expensive ($35), it comes with a WiFi interface
built in and extra USB ports.

 Note that we are using the Raspberry Pi A+ for building the IOTWeatherPi weather
station later in this book. The reason for that is power consumption: one-half to one-third
of the power used by the more powerful Raspberry Pi models.

 There are many great tutorials on the Web for setting up your Raspberry Pi and
getting the operating system software running.

 Choosing an IOT Device
 If you think the list of Raspberry Pi boards available is bewildering, then wait until you
look at the number of IOT devices that are available. While each offering is interesting
and has unique features, I am suggesting the following devices for your first projects in
the IOT. Note that I selected these based upon the ability to customize the software and
to add your own devices without hiding ALL the complexity, hence reducing the learning
involved. That is why I am not using Lego-type devices in this book.

 We will be using the following:

• ESP8266-based boards (specifically the Adafruit Huzzah ESP8266)

• Arduino Uno and Arduino Mega2560 boards

 Characterizing an IOT Project
 When looking at a new project, the first thing to do to understand an IOT project is to look
at the six different aspects for characterizing an IOT project.

• Communications

• Processor Power

• Local Storage

• Power Consumption

• Functionality

• Cost

 When I think about these characteristics, I like to rate each one on a scale from 1–10,
1 being the least suitable for IOT and 10 being the most suitable for IOT applications.
Scoring each one forces me to think carefully about how a given project falls on the
spectrum of suitability.

CHAPTER 1 ■ INTRODUCTION TO IOT

4

 Communications
 Communications are important to IOT projects. In fact, communications are core to the
whole genre. There is a trade-off for IOT devices. The more complex the protocols and
higher the data rates, the more powerful processor you need and the more electrical
power the IOT device will consume.

 TCP/IP base communications (think web servers; HTTP-based commutation
(like REST servers); streams of data; UDP - see Chapter 2) provide the most flexibility and
functionality at a cost of processor and electrical power.

 Low-power BlueTooth and Zigbee types of connections allow much lower power for
connections with the corresponding decrease in bandwidth and functionality.

 IOT projects can be all over the map with requirements for communication flexibility
and data bandwidth requirements.

 IOT devices having full TCP/IP support are rated the highest in this category, but will
probably be marked down in other categories (such as Power Consumption).

 Processor Power
 There are a number of different ways of gauging processor power. Processor speed,
processor instruction size, and operating system all play in this calculation. For most
IOT sensor and device applications, you will not be limited by processor speed as they
are all pretty fast. However, there is one exception to this. If you are using encryption
and decryption techniques (see Chapter 7), then those operations are computationally
expensive and require more processor power to run. The trade-off can be that you have to
transmit or receive data much more slowly because of the computational requirements of
encrypting/decrypting the data. However, for many IOT projects, this is just fine.

 Higher processor power gives you the highest ratings in this category.

 Local Storage
 Local storage refers to all three of the main types of storage: RAM, EEPROM, and Flash
Memory.

 RAM (Random Access Memory) is high-data rate, read/writable memory, generally
used for data and stack storage during execution of the IOT program. EEPROM
(Electrically Erasable Programmable Read Only Memory) is used for writing small
amounts of configuration information for the IOT device to be read on power up. Flash
Memory is generally used for the program code itself. Flash is randomly readable
(as the code executes, for example), but can only be written in large blocks and very
slowly. Flash is what you are putting your code into with the Arduino IDE (see Chapter 2).

 The amount of local storage (especially RAM) will add cost to your IOT Device.
For prototyping, the more the merrier. For deployment, less is better as it will reduce
your cost.

http://dx.doi.org/10.1007/978-1-4842-1377-3_2
http://dx.doi.org/10.1007/978-1-4842-1377-3_7
http://dx.doi.org/10.1007/978-1-4842-1377-3_2

CHAPTER 1 ■ INTRODUCTION TO IOT

5

 Power Consumption
 Power consumption is the bane of all IOT devices. If you are not plugging your IOT device
in the wall, then you are running off of batteries or solar cells and every single milliwatt
counts in your design. Reducing power consumption is a complex topic that is well
beyond the introductory projects in this book. However, the concepts are well understood
by the following:

• Put your processor in sleep mode as much as possible.

• Minimize communication outside of your device.

• Try to be interrupt driven and not polling driven.

• Scour your design looking for every unnecessary amount of
current.

 The higher the number in this category, the less power the IOT unit uses.

 Functionality
 This is kind of a catch-all category that is quite subjective. For example, having additional
GPIOs (General Purpose Input Outputs) available is great for flexibility. I am continuously
running into GPIO limitations with the Adafruit Huzzah ESP8266 as there are so few
pins available. Having additional serial interfaces are very useful for debugging. Special
hardware support for encryption and decryption can make device computer security
much simpler. One of the things that I miss in most IOT prototyping system is software
debugging support hardware.

 I also include the availability of software libraries for a platform into this category.
A ten means very high functionality; low numbers mean limited functionality.

 Cost
 What is an acceptable cost for your IOT device? That depends on the value of the device
and the market for your device. A $2.50 price can be great for prototypes, but will be the
death of the product in production. You need to size the price to the product and the
market. High numbers are low-cost units and low numbers are higher-cost devices.

 The Right Tools to Deal with Hardware
 Anything is more difficult without the right tools. When you make the jump from just
doing software to doing a software / hardware mix, here is a list of tools you should have:

• 30W adjustable temperature soldering iron - heating and
connecting wires

• Soldering stand - to hold the hot soldering iron

CHAPTER 1 ■ INTRODUCTION TO IOT

6

• Solder, rosin-core, 0.031” diameter, 1/4 lb (100g) spool - to
solder with

• Solder sucker -Useful in cleaning up mistakes

• Solder wick/braid 5 ft spool - Used along with the solder sucker to
clean up soldering messes

• Panavise Jr - General purpose 360 degree mini-vise

• Digital Multimeter – Good all-around basic multimeter

• Diagonal cutters - Trimming of wires and leads

• Wire strippers - Tool for taking insulation off wires

• Micro needle-nose pliers - for bending and forming components

• Solid-core wire, 22AWG, 25 ft spools - black, red, and yellow for
bread-boarding and wiring

 Adafruit has an excellent beginners kit for $100 [https://www.adafruit.com/
products/136] . Figure 1-2 shows the tools that are in it.

 Figure 1-2. Adafruit Electronics Toolkit

www.allitebooks.com

https://www.adafruit.com/products/136]
https://www.adafruit.com/products/136]
http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO IOT

7

 Writing Code in Python and the Arduino IDE
 All the code in this book is in two languages. Specifically, Python is used for the Raspberry Pi
and C/C++ (don’t be scared, there are many examples and resources) for the Arduino IDE.

 Python is a high-level, general purpose programming language. It is designed to
emphasize code readability, and it especially keeps you out of having loose pointers
(a curse of all C/C++ programmers) and does the memory management for you. This is
the programming language of choice for the Raspberry Pi. Python has the largest set of
libraries for IOT and embedded system devices of any language for the Raspberry Pi. All
of the examples in this book that use the Raspberry Pi, use Python. I am using Python 2.7
in this book, but it is relatively easy to convert to Python 3.5. However, it is not so trivial to
find all the libraries for Python 3.5, so I suggest staying with Python 2.7 .

 Why are we using C++ for the majority of the IOT devices? There are four reasons for this:

• C programs are compiled into native code for these small devices,
giving you much better control over size and timing. Python
requires an interpreter, which is a large amount of code that
would not fit on small IOT devices, such as the Arduino. On a
Raspberry Pi, you may have a Gigabyte (GB) of RAM and 8GB of
SD Card storage. On an IOT device, you might only 2,000 bytes
(2K) and 32KB of code storage. That is a ratio of 500,000 to 1.
That is why you need efficient code on IOT devices. Yes, there is
MicroPython, but it is very limited and still uses more memory
than most Arduino boards.

• When you program in C/C++, you are closer to the hardware and
have better control of the timing of operations. This can be very
important in some situations. One of the issues of Python is that
of the memory garbage collector. Sometimes, your program will
run out of memory and Python will invoke the garbage collector
to clean up memory and set it up for reuse. This can cause your
program to not execute in the time you expected. An interesting
note is that the ESP8266 used in several chapters of this book also
has a memory garbage collector, which can cause some issues in
critical timing sequences. None of are known to exist in the code
used in this book. Keeping fingers crossed, however.

• Libraries, libraries, libraries. You can find Arduino C/C++ libraries
for almost any device and application you can imagine for IOT
applications. The Arduino library itself is filled with large amounts
of functionality, making it much easier to get your IOT application
up and running.

CHAPTER 1 ■ INTRODUCTION TO IOT

8

• Finally, the Arduino IDE (Integrated Development Environment)
is a good (but not great) environment for writing code for small
devices. It has its quirks and some disadvantages. The number
one disadvantage of the Arduino IDE is that it does not have a
built-in debugger. Even with this significant disadvantage, it runs
on Linux, Windows, and Mac, and we will use it in this book. The
Arduino IDE is widely available, and there are many resources
for learning and libraries designed for this. Other alternatives
include Visual Micro (runs on Windows, built on Microsoft Visual
Studio) and Eclipse (runs on Linux, Windows, and Mac). Eclipse
can be a nightmare to set up and update, but they have made
 improvements in the past few years .

 In This Book
 What will we be doing in future chapters? We will be building real IOT projects that
actually have a lot of functionality. Yes, it is fun to blink an LED, but it is only the first step
to really doing interesting and useful things with all this new technology. Build an IOT
weather station. Build an IOT light swarm. Build your own IOT device with your own
sensors. It is all accessible and inexpensive and within your ability whether you are an
engineer or not.

9© John C. Shovic 2016
J. C. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3_2

 CHAPTER 2

 Sensing Your IOT
Environment

 Chapter Goal: Build Your First IOT Device
 Topics Covered in This Chapter:

• Building an inexpensive IOT Sensor device based on the ESP8266
and Arduino IDE

• Setting up a simple Self-Organizing IOT Sensor Net

• Reading I2C sensor (light and color) on the Arduino devices

• Reading data from remote IOT sensors on the Raspberry Pi

• Using the Raspberry Pi for Monitoring and Debugging

• Displaying your Data on the screen and on an iPad

 In this chapter, we build our first IOT device. This simple design, a light-sensor
swarm, is easy to build and illustrates a number of IOT principles including the following:

• Distributed Control

• Self-Organization

• Passing Information to the Internet

• Swarm Behavior

 The LightSwarm architecture is a simple and flexible scheme for understanding
the idea of an IOT project using many simple small computers and sensors with shared
responsibility for control and reporting. Note that in this swarm, communication with the
Internet is handled by a Raspberry Pi. The swarm devices talk to each other, but not with
the Internet. The Raspberry Pi is located on the same WiFi access point as the swarm, but
could be located far away with some clever forwarding of packets through your WiFi router.
In this case, since we have no computer security at all in this design (see Chapter 7 for
information on making your IOT swarm and device more secure) and so we are sticking
with the local network. The exception to this is the RasPiConnect LightSwarm control
panel that can be located anywhere on the Internet and is secured by password control
and could easily be sent via https, encrypting the individual XML packets.

http://dx.doi.org/10.1007/978-1-4842-1377-3_7

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

10

 IOT Sensor Nets
 One of the major uses of the IOT will be building nets and groups of sensors. Inexpensive
sensing is just as big of a driver for the IOT as the development of inexpensive computers.
The ability for a computer to sense its environment is the key to gathering information
for analysis, action, or transmittal to the Internet. Sensor nets have been around in
academia for many years, but now the dropping prices and availability of development
tools are quickly moving sensor nets out to the mainstream. Whole industrial and
academic conferences are now held on sensor nets [www.sensornets.org] . The market
is exploding for these devices, and opportunities are huge for the creative person or group
that can figure out how to make the sensor net that will truly drive consumer sales.

 IOT Characterization of This Project
 As I discussed in Chapter 1 , the first thing to do to understand an IOT project is to look at
our six different aspects of IOT. LightSwarm is a pretty simple project and can be broken
down into the six components listed in Table 2-1 .

 Table 2-1. LightSwarm Characterization (CPLPFC)

 Aspect Rating Comments

 Communications 9 WiFi connection to Internet - can do ad-hoc mesh-
type communication

 Processor Power 7 80MHz XTensa Harvard Architecture CPU, ~80KB
Data RAM / ~35KB of Instruction RAM / 200K ROM

 Local Storage 6 4MB Flash (or 3MB file system!)

 Power Consumption 7 ~200mA transmitting, ~60mA receiving, no WiFi
~15mA, Standby ~1mA

 Functionality 7 Partial Arduino Support (limited GPIO/Analog
Inputs)

 Cost 9 < $10 and getting cheaper

 Ratings are from 1–10, 1 being the least suitable for IOT and 10 being the most
suitable for IOT applications .

 This gives us a CPLPFC rating of 7.2. This is calculated by averaging all six values
together with equal weighting. This way is great for learning and experimenting, and
could be deployed for some applications.

 The ESP8266 is an impressive device having a built-in WiFi connection, a powerful
CPU, and quite a bit of RAM and access to the Arduino libraries. It is inexpensive and
will get cheaper as time goes on. It is a powerful device for prototyping IOT applications
requiring medium levels of functionality.

www.sensornets.org
http://dx.doi.org/10.1007/978-1-4842-1377-3_1

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

11

 How Does This Device Hook Up to the IOT?
 The ESP8266 provides a WiFi transmitter/receiver, a TCP/IP stack, and firmware to support
direction connections to a local WiFi access point that then can connect to the Internet. In
this project, the ESP8266 will only be talking to devices on the local wireless network. -This
is an amazing amount of functionality for less than $10 retail. These chips can be found for
as little as $1 on the open market, if you want to roll your own printed circuit board.

 What Is an ESP8266?
 The ESP8266 is made by a company in China called Espressif [espressif.com]. They are a
fabless semiconductor company that just came out of nowhere with the first generation
of this chip and shook up the whole industry. Now all the major players are working on
inexpensive versions of an IOT chip with WiFi connectivity.

 The ESP8266 chip was originally designed for connected light bulbs but soon got used in
a variety of applications, and ESP8266 modules are currently now the most popular solutions
to add WiFi to IOT projects. While the ESP8266 has huge functionality and a good price, the
amount of current consumed by the chip makes battery-powered solutions problematic .

 The ESP8266 is enabling a whole new set of applications and communities with their
innovative and inexpensive design (Figure 2-1).

 Figure 2-1. The ESP8266 die. (Courtesy of Hackaday.io)

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

12

 We will be using a version of the ESP8266 on a breakout board designed by Adafruit
(Figure 2-2). The board provides some connections, a built-in antenna, and some power
regulation, all for less than $10.

 Figure 2-2. The Adafruit Huzzah ESP8266 . (Courtesy of adafruit.com)

 The LightSwarm Design
 There are two major design aspects of the LightSwarm project . First of all, each element
of the swarm is based on an ESP8266 with a light sensor attached. The software is what
makes this small IOT device into a swarm. In the following block diagram you can see the
major two devices. I am using the Adafruit Huzzah breakout board for the ESP8266
 [www.adafruit.com/product/2471] . Why use a breakout board? With a breakout board
you can quickly prototype devices and then move to a less-expensive design in the future.
The other electronic component (Figure 2-3) is a TCS34725 RGB light-sensor breakout
board, also from Adafruit [www.adafruit.com/products/1334] .

http://adafruit.com/
http://www.adafruit.com/product/2471]
http://www.adafruit.com/products/1334]

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

13

 The addition of a sensor to a computer is what makes this project an IOT device. I am
sensing the environment and then doing something with the information (determining
which of the Swarm has the brightest light). Figure 2-4 shows the block diagram of a
single Swarm element.

 Figure 2-3. TCS34725 Breakout Board . (Courtesy of adafruit.com)

http://adafruit.com/

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

14

 Each of the LightSwarm devices in the swarm is identical. There are no software
differences and no hardware differences. As you will see when we discuss the software,
they vote with each other and compare notes and then elect the device that has the
brightest light as the “Master,” and then the “Master” turns the red LED on the device to
show us who has been elected “Master.” The swarm is designed so devices can drop out
of the swarm, be added to the swarm dynamically, and the swarm adjusts to the new
configuration. The swarm behavior (who is the master, how long it takes information
about changing lights to propagate through the swarm, etc.) is rather complex. More
complex than expected from the simple swarm device code. There is a lesson here: simple
machines in groups can lead to large complex systems with higher-level behaviors based
on the simple machines and the way they interact.

 The behavior of the LightSwarm surprised me a number of times and it was
sometimes very difficult to figure out what was happening, even with the Raspberry Pi
logger. Figure 2-5 shows the complete LightSwarm including the Raspberry Pi.

 Figure 2-4. LightSwarm Element Block Diagram

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

15

 The Raspberry Pi in this diagram is not controlling the swarm. The Raspberry Pi
gathers data from the swarm (the current “Master” device sends information to the
Raspberry Pi), and then the Raspberry Pi can store the data and communicate it through
the Internet, in this case to an iPad-based app called RasPiConnect [www.milocreek.com] ,
 which displays the current and historical state of the LightSwarm.

 The LightSwarm project has an amazing amount of functionality and quirky self-
organizing behavior for such a simple design.

 Figure 2-5. The Light Swarm

www.milocreek.com

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

16

 Building Your First IOT Swarm
 Table 2-2 lists the parts needed to build an IOT Swarm.

 Table 2-2. Swam Parts List

 Part Number Count Description Approximate
Cost per Board

 Source

 ESP8266
Huzzah Board

 5 CPU / WiFi board $10 www.adafruit.com/
products/2471

 TCS34725
Breakout Board

 5 I2C Light Sensor $8 www.adafruit.com/
products/1334

 FTDI Cable 1 Cable for
programming the
ESP8266 from PC/Mac

 $18 www.adafruit.com/
products/70

 Installing Arduino Support on the PC or Mac
 The key to making this project work is the software. While there are many ways of
programming the ESP8266 (MicroPython) [micropython.org], NodeMCU Lua interpreter
 [nodemcu.com/index_en.html], and the Arduino IDE (Integrated Development
Environment) [www.arduino.cc/en/Main/Software]), I chose the Arduino IDE for its
flexibility and the large number of sensor and device libraries available.

 To install the Arduino IDE you need to do the following:

 a. Download the Arduino IDE package for your computer and
install the software [www.arduino.cc/en/Guide/HomePage] .

 b. Download the ESP libraries so you can use the Arduino IDE
with the ESP breakout board. Adafruit has an excellent tutorial
for installing the ESP8266 support for the Arduino IDE
[learn.adafruit.com/adafruit-huzzah-esp8266-breakout/
using-arduino-ide] .

 Your First Sketch for the ESP8266
 A great way of testing your setup is to run a small sketch that will blink the red LED on the
ESP8266 breakout board. The red LED is hooked up to GPIO 0 (General Purpose Input
Output pin 0) on the Adafruit board.

 Open a new sketch using the Arduino IDE and place the following code into the code
window, replacing the stubs provided when opening a new sketch. The code given here
will make the red LED blink.

http://www.adafruit.com/products/2471
http://www.adafruit.com/products/2471
http://www.adafruit.com/products/1334
http://www.adafruit.com/products/1334
http://www.adafruit.com/products/70
http://www.adafruit.com/products/70
https://www.arduino.cc/en/Main/Software]
https://www.arduino.cc/en/Guide/HomePage]
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide]
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide]

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

17

 void setup() {
 pinMode(0, OUTPUT);
 }

 void loop() {
 digitalWrite(0, HIGH);
 delay(500);
 digitalWrite(0, LOW);
 delay(500);
 }

 If your LED is happily blinking away now, you have correctly followed all the tutorials
and have the ESP8266 and the Arduino IDE running on your computer.

 Next I will describe the major hardware systems and then dive into the software.

 The Hardware
 The main pieces of hardware in the swarm device are the following:

• ESP8266 - CPU/WiFi Interface

• TCS34725 - Light sensor

• 9V Battery - Power

• FTDI Cable - Programming and power

 The ESP8266 communicates with other swarm devices by using the WiFi interface .
The ESP8266 uses the I2C interface to communicate with the light sensor. The WiFi is a
standard that is very common (although we use protocols to communicate that are NOT
common). See the description of UDP (User Datagram Protocol) later in this chapter. The
I2C bus interface is much less familiar and needs some explanation.

 Reviewing the I2C Bus
 An I2C bus is often used to communicate with chips or sensors that are on the same
board or located physically close to the CPU. It stands for standard Inter-IC device
bus. The I2C was first developed by Phillips (now NXP Semiconductors). To get
around licensing issues, often the bus will be called TWI (Two Wire Interface). SMBus,
developed by Intel, is a subset of I2C that defines the protocols more strictly. Modern I2C
systems take policies and rules from SMBus sometimes supporting both with minimal
reconfiguration needed. The Raspberry Pi and the Arduino are both these kinds of
devices. Even the ESP8266 used in this project can support both.

 An I2C provides good support for slow, close peripheral devices that only need be
addressed occasionally. For example, a temperature measuring device will generally only
change very slowly and so is a good candidate for the use of I2C, where a camera will
generate lots of data quickly and potentially changes often.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

18

 An I2C bus uses only two bidirectional open-drain lines (open-drain means the
device can pull a level down to ground, but cannot pull the line up to Vdd. Hence the
name open-drain). Thus a requirement of an I2C bus is that both lines are pulled up to
Vdd. This is an important area and not properly pulling up the lines is the first and most
common mistake you make when you first use an I2C bus. More on pullup resistors later
in the next section. The two lines are SDA (Serial Data Line) and the SCL (Serial Clock
Line). There are two types of devices you can connect to an I2C bus. They are Master
devices and Slave devices. Typically, you have one Master device (the Raspberry Pi in our
case) and multiple Slave devices, each with their individual 7-bit address (like 0x68 in the
case of the DS1307). There are ways to have 10-bit addresses and multiple Master devices,
but that is beyond the scope of this column. Figure 2-6 shows an I2C bus with devices and
the master connected.

 ■ SwitchDoc Note Vcc and Vdd mean the same. Gnd and Vss generally also both mean
ground. There are historical differences, but today Vcc usually is one power supply, and if
there is a second, they will call it Vdd.

 When used on the Raspberry Pi, the Raspberry Pi acts as the Master and all other
devices are connected as Slaves.

 Figure 2-6. An I2C bus with one Master (the ESP8266 in this case) and three Slave devices.
Rps are the Pullup Resistors

 ■ SwitchDoc Note If you connect an Arduino to a Raspberry Pi, you need to be
careful about voltage levels because the Raspberry Pi is a 3.3V device and the Arduino is
a 5.0V device. The ESP8266 is a 3.3V device so you also need to be careful connecting
an Arduino to an ESP8266. Before you do this, read this excellent tutorial [blog.retep.
org/2014/02/15/connecting-an-arduino-to-a-raspberry-pi-using-i2c/].

http://blog.retep.org/2014/02/15/connecting-an-arduino-to-a-raspberry-pi-using-i2c/
http://blog.retep.org/2014/02/15/connecting-an-arduino-to-a-raspberry-pi-using-i2c/

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

19

 The I2C protocol uses three types of messages:

• Single message where a master writes data to a slave;

• Single message where a master reads data from a slave;

• Combined messages , where a master issues at least two reads and/
or writes to one or more slaves.

 Lucky for us, most of the complexity of dealing with the I2C bus is hidden by drivers
and libraries.

 Pullups on the I2C Bus
 One important thing to consider on your I2C bus is a pullup resistor. The Raspberry Pi
has 1.8K ohm (1k8) resistors already attached to the SDA and SCL lines, so you really
shouldn't need any additional pullup resistors. However, you do need to look at your I2C
boards to find out if they have pullup resistors. If you have too many devices on the I2C
bus with their own pullups, your bus will stop working. The rule of thumb from Phillips
is not to let the total pullup resistors in parallel be less than 1K (1k0) ohms. You can get
a pretty good idea of what the total pullup resistance is by turning the power off on all
devices and using an ohm meter to measure the resistance on the SCL line from the SCL
line to Vdd .

 Sensor Being Used
 We are using the TCS34725 , which has RGB and Clear light-sensing elements.
Figure 2-7 shows the TCS34725 die with the optical sensor showing in the center of
the figure. An IR blocking filter, integrated on-chip and localized to the color-sensing
photodiodes, minimizes the IR spectral component of the incoming light and allows color
measurements to be made accurately. The IR filter means you'll get much truer color than
most sensors, since humans don't see IR. The sensor does see IR and thus the IR filter is
provided. The sensor also has a 3,800,000:1 dynamic range with adjustable integration
time and gain so it is suited for use behind darkened glass or directly in the light.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

20

 This is an excellent inexpensive sensor ($8 retail from Adafruit on a breakout board)
and forms the basis of our IOT sensor array. Of course, you could add many more sensors,
but having one sensor that is easy to manipulate is perfect for our first IOT project. In
Chapter 3 , we add many more sensors to the Raspberry Pi computer for a complete IOT
WeatherStation design.

 3D Printed Case
 One of the big changes in the way people build prototypes is the availability of
inexpensive 3D printers. It used to be difficult to build prototype cases and stands for
various electronic projects. Now it is easy to design a case in one of many types of 3D
software and then print it out using your 3D printer. For the swarm, I wanted a partial
case to hold the 9V battery, the ESP8266, and the light sensor. I used OpenSCAD
 [www.openscad.org] to do the design. OpenSCAD is a free 3D CAD system that appeals
to programmers. Rather than doing the entire design in a graphical environment, you
write code (consisting of various objects, joined together or subtracted from each other)
that you then compile in the environment to form a design in 3D space. OpenSCAD
comes with an IDE (Integrated Development Environment) and you place the code

 Figure 2-7. The TCS34725 Chip Die

http://dx.doi.org/10.1007/978-1-4842-1377-3_3

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

21

showing in Listing 2-1 in the editor, compile the code, and then see the results in the
attached IDE as shown in Figure 2-8 .

 Figure 2-8. OpenSCAD display

 As shown in Listing 2-1 , the OpenSCAD programming code to build this stand is
quite simple. It consists of cubes and cylinders of various sizes and types.

 Listing 2-1. Mounting Base for the IOT LightSwarm

 //
 // IOT Light Swarm Mounting Base
 //
 // SwitchDoc Labs
 // August 2015
 //

 union()
 {

 cube([80,60,3]);
 translate([-1,-1,0])
 cube([82,62,2]);

 // Mount for Battery

 translate([40,2,0])
 cube([40,1.35,20]);
 translate([40,26.10+3.3,0])
 cube([40,1.5,20]);

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

22

 // lips for battery
 translate([79,2,0])
 cube([1,28,4]);

 // pylons for ESP8266

 translate([70-1.0,35,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-1.0,56,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-34,35,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-34,56,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);

 // pylons for light sensor

 translate([10,35,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([10,49.5,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);

 translate([22,37,0])
 cylinder(h=6,r1=2.2, r2=2.2, $fn=100);
 translate([22,47,0])
 cylinder(h=6,r1=2.2, r2=2.2, $fn=100) ;
 }

 You can see the completed stand and the FTDI cable in the upcoming Figure 2-9 .
Once designed, I quickly built five of them for the LightSwarm. Figure 2-10 shows a
completed Swarm element.

 The Full Wiring List
 Table 2-3 provides the complete wiring list for a LightSwarm device. As you wire it, check
off each wire for accuracy.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

23

 Table 2-3. LightSwarm Wiring List

 From To Description

 ESP8266 / GND TCS34725 /GND Ground for I2C Light Sensor

 ESP8266 / 3V TCS34725 / 3V3 3.3V Power for I2C Light Sensor

 ESP8266 / #4 TCS34725 /SDA SDA for I2C Light Sensor

 ESP8266 / #5 TCS34725 /SCL SCL for I2C Light Sensor

 ESP8266 / GND 9VBat / “-” terminal (minus terminal) Ground for battery

 ESP8266 / VBat 9VBat / “+” terminal (plus 9V) 9V from battery

 TCS34725 / LED TCS34725 / INT Connecting these two pins
together allow for software
control of bright LED on
TCS34725 board

 The FTDI cable is plugged into the end of the Adafruit Huzzah ESP8266.
Make sure you align the black wire with the GND pin on the ESP8266 breakout board as
in Figure 2-9 . Figure 2-11 shows the fully complete LightSwarm device.

 Figure 2-9. FTDI Cable Plugged into ESP8266

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

24

 Figure 2-10. Completed LightSwarm Stand

 Figure 2-11. A Complete LightSwarm Device

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

25

 The Software
 There are two major modules written for the LightSwarm. The first is ESP8266 code for
the LightSwarm device itself (written in the Arduino IDE - written in simplified C and C++
language), and the second is the Raspberry Pi data-gathering software (written in Python
on the Raspberry Pi).

 The major design specifications for the LightSwarm Device software are the
following:

• Device self discovery.

• Device becomes master when it has the brightest light; all others
become slaves.

• Distributed voting method for determining master status.

• Self-organizing swarm. No server.

• Swarm must survive and recover from devices coming in and out
of the network.

• Master device sends data to Raspberry Pi for analysis and
distribution to Internet.

 The entire code for the LightSwarm devices is provided in Listings 2-2 though 2-11
(with the exception of the TCS74725 light-sensor driver, available here [github.com/
adafruit/Adafruit_TCS34725]). The code is also available on the APress web site
[www.apress.com] and the SwitchDoc Labs github site [github.com/switchdoclabs/
lightswarm].

 Listing 2-2. LightSwarm Code

 /*
 Cooperative IOT Self Organizing Example
 SwitchDoc Labs, August 2015

 */

 #include <ESP8266WiFi.h>
 #include <WiFiUdp.h>
 #include <Wire.h>
 #include "Adafruit_TCS34725.h"

 #undef DEBUG

 char ssid[] = "yyyyy"; // your wireless network SSID (name)
 char pass[] = "xxxxxxx"; // your wireless network password

 #define VERSIONNUMBER 28

https://github.com/adafruit/Adafruit_TCS34725]
https://github.com/adafruit/Adafruit_TCS34725]
http://www.apress.com/
https://github.com/switchdoclabs/lightswarm
https://github.com/switchdoclabs/lightswarm

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

26

 #define SWARMSIZE 5
 // 30 seconds is too old - it must be dead
 #define SWARMTOOOLD 30000

 int mySwarmID = 0;

 Next in Listing 2-3 , we define the necessary constants. Following are the definitions
of all the Swarm Commands available:

• LIGHT_UPDATE_PACKET - Packet containing current light from
a LightSwarm device. Used to determine who is master and who
is slave;

• RESET_SWARM_PACKET - All LightSwarm devices are told to
reset their software;

• CHANGE_TEST_PACKET - Designed to change the master / slave
criteria (not implemented);

• RESET_ME_PACKET - Just reset a particular LightSwarm device
ID;

• DEFINE_SERVER_LOGGER_PACKET - This is the new IP address
of the Raspberry Pi so the LightSwarm device can send data
packets;

• LOG_TO_SERVER_PACKET - Packets send from LightSwarm
devices to Raspberry Pi;

• MASTER_CHANGE_PACKET - Packet sent from LightSwarm
device when it becomes a master (not implemented);

• BLINK_BRIGHT_LED - Command to a LightSwarm device to
blink the bright LED on the TCS34725.

 After the constants in Listing 2-3 , I set up the system variables for the devices. I
am using UDP across the WiFi interface. What is UDP? UDP stands for User Datagram
Protocol. UDP uses a simple connectionless model. Connectionless means that there
is no handshake between the transmitting device and the receiving device to let the
transmitter know that the receiver is actually there. Unlike TCP (Transmission Control
 Protocol), you have no idea or guarantee of data packets being delivered to any particular
device. You can think of it as kind of a TV broadcast to your local network. Everyone gets
it, but they don’t have to read the packets. There are also subtle other effects – such as
you don’t have any guarantee that packets will arrive in the order they are sent. So why
are we using UDP instead of TCP? I am using the broadcast mode of UDP so when a
LightSwarm devices send out a message to the WiFi subnet, everybody gets it and if they
are listening on the port 2910 (set above), then they can react to the message. This is how
LightSwarm devices get discovered. Everybody starts sending packages (with random
delays introduced) and all of the LightSwarm devices figure out who is present and who
has the brightest light. Nothing in the LightSwarm system assigns IP numbers or names.
They all figure it out themselves.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

27

 Listing 2-3. LightSwarm Constants

 // Packet Types

 #define LIGHT_UPDATE_PACKET 0
 #define RESET_SWARM_PACKET 1
 #define CHANGE_TEST_PACKET 2
 #define RESET_ME_PACKET 3
 #define DEFINE_SERVER_LOGGER_PACKET 4
 #define LOG_TO_SERVER_PACKET 5
 #define MASTER_CHANGE_PACKET 6
 #define BLINK_BRIGHT_LED 7

 unsigned int localPort = 2910; // local port to listen for UDP packets

 // master variables
 boolean masterState = true; // True if master, False if not
 int swarmClear[SWARMSIZE];
 int swarmVersion[SWARMSIZE];
 int swarmState[SWARMSIZE];
 long swarmTimeStamp[SWARMSIZE]; // for aging

 IPAddress serverAddress = IPAddress(0, 0, 0, 0); // default no IP Address

 int swarmAddresses[SWARMSIZE]; // Swarm addresses

 // variables for light sensor

 int clearColor;
 int redColor;
 int blueColor;
 int greenColor;

 const int PACKET_SIZE = 14; // Light Update Packet
 const int BUFFERSIZE = 1024;

 byte packetBuffer[BUFFERSIZE]; //buffer to hold incoming and outgoing
packets

 // A UDP instance to let us send and receive packets over UDP
 WiFiUDP udp;

 /* Initialize with specific int time and gain values */
 Adafruit_TCS34725 tcs = Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_700MS,
TCS34725_GAIN_1X);

 IPAddress localIP ;

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

28

 The setup() routine shown in Listing 2-4 is only run once after reset of the ESP8266
and is used to set up all the devices and print logging information to the Serial port
on the ESP8266, where, if you have the FTDI cable connected, you can see the logging
information and debugging information on your PC or Mac.

 Listing 2-4. The Setup() Function for LightSwarm

 void setup()
 {

 Serial.begin(115200);
 Serial.println();
 Serial.println();

 Serial.println("");
 Serial.println("--------------------------");
 Serial.println("LightSwarm");
 Serial.print("Version ");
 Serial.println(VERSIONNUMBER);
 Serial.println("--------------------------");

 Serial.println(F(" 09/03/2015"));
 Serial.print(F("Compiled at:"));
 Serial.print (F(__TIME__));
 Serial.print(F(" "));
 Serial.println(F(__DATE__));
 Serial.println();
 pinMode(0, OUTPUT);

 digitalWrite(0, LOW);
 delay(500);
 digitalWrite(0, HIGH) ;

 Here we use the floating value of the analog input on the ESP8266 to set the pseudo-
random number generation seed. This will vary a bit from device to device, and so it’s not
a bad way of initializing the pseudo-random number generator. If you put a fixed number
as the argument, it will always generate the same set of pseudo-random numbers. This
can be very useful in testing. Listing 2-5 shows the setup of the random seed and the
detection of the TCS34725.

 What is a pseudo-random number generator? It is an algorithm for generating a
sequence of numbers whose properties approximate a truly random number sequence. It
is not a truly random sequence of numbers, but it is close. Good enough for our usage.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

29

 Listing 2-5. Remainder of the Setup() Function for LightSwarm

 randomSeed(analogRead(A0));
 Serial.print("analogRead(A0)=");
 Serial.println(analogRead(A0));

 if (tcs.begin()) {
 Serial.println("Found sensor");
 } else {
 Serial.println("No TCS34725 found ... check your connections");

 }

 // turn off the light
 tcs.setInterrupt(true); // true means off, false means on

 // everybody starts at 0 and changes from there
 mySwarmID = 0;

 // We start by connecting to a WiFi network
 Serial.print("LightSwarm Instance: ");
 Serial.println(mySwarmID);

 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, pass);

 // initialize Swarm Address - we start out as swarmID of 0

 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");

 Serial.println("WiFi connected") ;
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());

 Serial.println("Starting UDP");

 udp.begin(localPort);
 Serial.print("Local port: ");
 Serial.println(udp.localPort());

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

30

 // initialize light sensor and arrays
 int i;
 for (i = 0; i < SWARMSIZE; i++)
 {

 swarmAddresses[i] = 0;
 swarmClear[i] = 0;
 swarmTimeStamp[i] = -1;
 }
 swarmClear[mySwarmID] = 0;
 swarmTimeStamp[mySwarmID] = 1; // I am always in time to myself
 clearColor = swarmClear[mySwarmID];
 swarmVersion[mySwarmID] = VERSIONNUMBER;
 swarmState[mySwarmID] = masterState;
 Serial.print("clearColor =");
 Serial.println(clearColor);

 Now we have initialized all the data structures for describing our LightSwarm device
and the states of the light sensor. Listing 2-6 sets the SwarmID based on the current
device IP address. When you turn on a LightSwarm device and it connects to a WiFi
access point, the access point assigns a unique IP address to the LightSwarm device. This
is done through a process called DHCP (Dynamic Host Configuration Protocol)
[en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol]. While the number
will be different for each LightSwarm device, it is not random. Typically, if you power
a specific device down and power it up again, the access point will assign the same IP
address. However, you can’t count on this. The access point knows your specific device
because each and every WiFi interface has a specific and unique MAC (Media Access
Control) number, which is usually never changed.

 ■ SwitchDoc Note Faking MAC addresses allows you to impersonate other devices with
your device in some cases, and you can use MAC addresses to track specific machines by
looking at the network. This is why Apple, Inc. has started using random MAC addresses
in their devices while scanning for networks. If random MAC addresses aren’t used, then
researchers have confirmed that it is possible to link a specific real identity to a particular
wireless MAC address [Cunche, Mathieu. "I know your MAC Address: Targeted tracking of
individual using Wi-Fi" . 2013].

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol]
https://hal.archives-ouvertes.fr/file/index/docid/858324/filename/Wi-Fi_Stalking.pdf
https://hal.archives-ouvertes.fr/file/index/docid/858324/filename/Wi-Fi_Stalking.pdf

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

31

 Listing 2-6. Setting the SwarmID from IP Address

 // set SwarmID based on IP address

 localIP = WiFi.localIP();

 swarmAddresses[0] = localIP[3];

 mySwarmID = 0;

 Serial.print("MySwarmID=");
 Serial.println(mySwarmID);

 }

 The second main section of the LightSwarm device code is the loop() . The loop()
function does precisely what its name suggests and loops infinitely, allowing your
program to change and respond. This is the section of the code that performs the main
work of the LightSwarm code.

 void loop()
 {
 int secondsCount;
 int lastSecondsCount;

 lastSecondsCount = 0;
 #define LOGHOWOFTEN

 secondsCount = millis() / 100;

 In this Listing 2-7 , we read all the data from the TCS34725 sensor to find out how
bright the ambient light currently is. This forms the substance of the data to determine
who the master in the swarm is.

 After the delay (300) line in Listing 2-7 , I check for UDP packets being broadcast
to port 2910. Remember the way the swarm is using UDP is in broadcast mode and all
packets are being received by everybody all the time. Note, this sets a limit of how many
swarm devices you can have (limited to the subnet size) and also by the congestion of
having too many messages go through at the same time. This was pretty easy to simulate
by increasing the rate that packets are sent. The swarm still functions but the behavior
becomes more erratic and with sometimes large delays.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

32

 Listing 2-7. Reading the Light Color

 uint16_t r, g, b, c, colorTemp, lux;

 tcs.getRawData(&r, &g, &b, &c);
 colorTemp = tcs.calculateColorTemperature(r, g, b);
 lux = tcs.calculateLux(r, g, b);

 Serial.print("Color Temp: "); Serial.print(colorTemp, DEC); Serial.
print(" K - ");
 Serial.print("Lux: "); Serial.print(lux, DEC); Serial.print(" - ");
 Serial.print("R: "); Serial.print(r, DEC); Serial.print(" ");
 Serial.print("G: "); Serial.print(g, DEC); Serial.print(" ");
 Serial.print("B: "); Serial.print(b, DEC); Serial.print(" ");
 Serial.print("C: "); Serial.print(c, DEC); Serial.print(" ");
 Serial.println(" ");

 clearColor = c;
 redColor = r;
 blueColor = b;
 greenColor = g;

 swarmClear[mySwarmID] = clearColor;

 // wait to see if a reply is available
 delay(300);

 int cb = udp.parsePacket();

 if (!cb) {
 // Serial.println("no packet yet");
 Serial.print(".");
 }
 else {

 In Listing 2-8 , we interpret all the packets depending on the packet type .

 Listing 2-8. Interpreting the Packet Type

 // We've received a packet, read the data from it

 udp.read(packetBuffer, PACKET_SIZE); // read the packet into the buffer
 Serial.print("packetbuffer[1] =");
 Serial.println(packetBuffer[1]);
 if (packetBuffer[1] == LIGHT_UPDATE_PACKET)

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

33

 {
 Serial.print("LIGHT_UPDATE_PACKET received from LightSwarm #");
 Serial.println(packetBuffer[2]);
 setAndReturnMySwarmIndex(packetBuffer[2]);

 Serial.print("LS Packet Recieved from #");
 Serial.print(packetBuffer[2]);
 Serial.print(" SwarmState:");
 if (packetBuffer[3] == 0)
 Serial.print("SLAVE");
 else
 Serial.print("MASTER");
 Serial.print(" CC:");
 Serial.print(packetBuffer[5] * 256 + packetBuffer[6]);
 Serial.print(" RC:");
 Serial.print(packetBuffer[7] * 256 + packetBuffer[8]);
 Serial.print(" GC:");
 Serial.print(packetBuffer[9] * 256 + packetBuffer[10]);
 Serial.print(" BC:");
 Serial.print(packetBuffer[11] * 256 + packetBuffer[12]);
 Serial.print(" Version=");
 Serial.println(packetBuffer[4]);

 // record the incoming clear color

 swarmClear[setAndReturnMySwarmIndex(packetBuffer[2])] = packetBuffer[5]
* 256 + packetBuffer[6];

 swarmVersion[setAndReturnMySwarmIndex(packetBuffer[2])] =
packetBuffer[4];

 swarmState[setAndReturnMySwarmIndex(packetBuffer[2])] =
packetBuffer[3];

 swarmTimeStamp[setAndReturnMySwarmIndex(packetBuffer[2])] = millis();

 // Check to see if I am master!
 checkAndSetIfMaster() ;

 }

 The RESET_SWARM_PACKET command sets all of the LightSwarm devices to
master (turning on the red LED on each) and then lets the LightSwarm software vote
and determine who has the brightest light. As each device receives a LIGHT_UPDATE_
PACKET, it compares the light from that swarm device to its own sensor and becomes a
slave if their light is brighter. Eventually, the swarm figures out who has the brightest light.
I have been sending this periodically from the Raspberry Pi and watching the devices
work it out. It makes an interesting video. Listing 2-9 shows how LightSwarm interprets
incoming packets. The very last section of Listing 2-9 shows how the Swarm element
updates everybody else in the Swarm what is going on with this device and then we send
a data packet to the Raspberry Pi if we are the swarm master.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

34

 Listing 2-9. LightSwarm Packet Interpretation Code

 if (packetBuffer[1] == RESET_SWARM_PACKET)
 {
 Serial.println(">>>>>>>>>RESET_SWARM_PACKETPacket Received");
 masterState = true;
 Serial.println("Reset Swarm: I just BECAME Master (and everybody
else!)");

 digitalWrite(0, LOW);

 }

 if (packetBuffer[1] == CHANGE_TEST_PACKET)
 {
 Serial.println(">>>>>>>>>CHANGE_TEST_PACKET Packet Received");
 Serial.println("not implemented");
 int i;
 for (i = 0; i < PACKET_SIZE; i++)
 {
 if (i == 2)
 {
 Serial.print("LPS[");
 Serial.print(i);
 Serial.print("] = ");
 Serial.println(packetBuffer[i]);

 }
 else
 {
 Serial.print("LPS[");
 Serial.print(i);
 Serial.print("] = 0x");
 Serial.println(packetBuffer[i], HEX);
 }

 }

 }

 if (packetBuffer[1] == RESET_ME_PACKET)
 {
 Serial.println(">>>>>>>>>RESET_ME_PACKET Packet Received");

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

35

 if (packetBuffer[2] == swarmAddresses[mySwarmID])
 {
 masterState = true;
 Serial.println("Reset Me: I just BECAME Master");
 digitalWrite(0, LOW) ;

 }
 else
 {
 Serial.print("Wanted #");
 Serial.print(packetBuffer[2]);
 Serial.println(" Not me - reset ignored");
 }

 }

 }

 if (packetBuffer[1] == DEFINE_SERVER_LOGGER_PACKET)
 {
 Serial.println(">>>>>>>>>DEFINE_SERVER_LOGGER_PACKET Packet Received");
 serverAddress = IPAddress(packetBuffer[4], packetBuffer[5],
packetBuffer[6], packetBuffer[7]);

 Serial.print("Server address received: ");
 Serial.println(serverAddress) ;

 }
 if (packetBuffer[1] == BLINK_BRIGHT_LED)
 {
 Serial.println(">>>>>>>>>BLINK_BRIGHT_LED Packet Received");
 if (packetBuffer[2] == swarmAddresses[mySwarmID])
 {

 tcs.setInterrupt(false); // true means off, false means on
 delay(packetBuffer[4] * 100);
 tcs.setInterrupt(true); // true means off, false means on
 }
 else
 {
 Serial.print("Wanted #");
 Serial.print(packetBuffer[2]);
 Serial.println(" Not me - reset ignored");
 }

 }

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

36

 Serial.print("MasterStatus:");
 if (masterState == true)
 {
 digitalWrite(0, LOW);
 Serial.print("MASTER");
 }
 else
 {
 digitalWrite(0, HIGH);
 Serial.print("SLAVE");
 }
 Serial.print("/cc=");
 Serial.print(clearColor);
 Serial.print("/KS:");
 Serial.println(serverAddress);

 Serial.println("--------");

 int i;
 for (i = 0; i < SWARMSIZE; i++)
 {
 Serial.print("swarmAddress[");
 Serial.print(i);
 Serial.print("] = ");
 Serial.println(swarmAddresses[i]);
 }
 Serial.println("--------") ;

 broadcastARandomUpdatePacket();
 sendLogToServer();

 } // end of loop()

 Listing 2-10 is used to send out light packets to a swarm address. Although a specific
address is allowed by this function, we set the last octet of the IP address (201 in the IP
address 192.168.1.201) in the calling function to 255, which is the UDP broadcast address.

 Listing 2-10. Broadcasting to the Swarm

 // send an LIGHT Packet request to the swarms at the given address
 unsigned long sendLightUpdatePacket(IPAddress & address)
 {

 // set all bytes in the buffer to 0
 memset(packetBuffer, 0, PACKET_SIZE);
 // Initialize values needed to form Light Packet
 // (see URL above for details on the packets)
 packetBuffer[0] = 0xF0; // StartByte

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

37

 packetBuffer[1] = LIGHT_UPDATE_PACKET; // Packet Type
 packetBuffer[2] = localIP[3]; // Sending Swarm Number
 packetBuffer[3] = masterState; // 0 = slave, 1 = master
 packetBuffer[4] = VERSIONNUMBER; // Software Version
 packetBuffer[5] = (clearColor & 0xFF00) >> 8; // Clear High Byte
 packetBuffer[6] = (clearColor & 0x00FF); // Clear Low Byte
 packetBuffer[7] = (redColor & 0xFF00) >> 8; // Red High Byte
 packetBuffer[8] = (redColor & 0x00FF); // Red Low Byte
 packetBuffer[9] = (greenColor & 0xFF00) >> 8; // green High Byte
 packetBuffer[10] = (greenColor & 0x00FF); // green Low Byte
 packetBuffer[11] = (blueColor & 0xFF00) >> 8; // blue High Byte
 packetBuffer[12] = (blueColor & 0x00FF); // blue Low Byte
 packetBuffer[13] = 0x0F; //End Byte

 // all Light Packet fields have been given values, now
 // you can send a packet requesting coordination
 udp.beginPacketMulticast(address, localPort, WiFi.localIP()); //
 udp.write(packetBuffer, PACKET_SIZE);
 udp.endPacket();
 }

 // delay 0-MAXDELAY seconds
 #define MAXDELAY 500

 void broadcastARandomUpdatePacket()
 {

 int sendToLightSwarm = 255;
 Serial.print("Broadcast ToSwarm = ");
 Serial.print(sendToLightSwarm);
 Serial.print(" ");

 // delay 0-MAXDELAY seconds
 int randomDelay;
 randomDelay = random(0, MAXDELAY);
 Serial.print("Delay = ");
 Serial.print(randomDelay);
 Serial.print("ms : ");

 delay(randomDelay);

 IPAddress sendSwarmAddress(192, 168, 1, sendToLightSwarm); // my Swarm
Address

 sendLightUpdatePacket(sendSwarmAddress) ;

 }

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

38

 In the function in Listing 2-11 , I check if we just became master and also update the
status of all the LightSwarm devices. This is where the timeout function is implemented
that will remove stale or dead devices from the swarm.

 Listing 2-11. Master Check and Update

 void checkAndSetIfMaster()
 {

 int i;
 for (i = 0; i < SWARMSIZE; i++)
 {

 #ifdef DEBUG

 Serial.print("swarmClear[");
 Serial.print(i);
 Serial.print("] = ");
 Serial.print(swarmClear[i]);
 Serial.print(" swarmTimeStamp[");
 Serial.print(i);
 Serial.print("] = ");
 Serial.println(swarmTimeStamp[i]);
 #endif

 Serial.print("#");
 Serial.print(i);
 Serial.print("/");
 Serial.print(swarmState[i]);
 Serial.print("/");
 Serial.print(swarmVersion[i]);
 Serial.print(":");
 // age data
 int howLongAgo = millis() - swarmTimeStamp[i] ;

 if (swarmTimeStamp[i] == 0)
 {
 Serial.print("TO ");
 }
 else if (swarmTimeStamp[i] == -1)
 {
 Serial.print("NP ");
 }
 else if (swarmTimeStamp[i] == 1)
 {
 Serial.print("ME ");
 }

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

39

 else if (howLongAgo > SWARMTOOOLD)
 {
 Serial.print("TO ");
 swarmTimeStamp[i] = 0;
 swarmClear[i] = 0;

 }
 else
 {
 Serial.print("PR ") ;

 }
 }

 Serial.println();
 boolean setMaster = true;

 for (i = 0; i < SWARMSIZE; i++)
 {

 if (swarmClear[mySwarmID] >= swarmClear[i])
 {
 // I might be master!

 }
 else
 {
 // nope, not master
 setMaster = false;
 break;
 }

 }
 if (setMaster == true)
 {
 if (masterState == false)
 {
 Serial.println("I just BECAME Master");
 digitalWrite(0, LOW);
 }

 masterState = true;
 }

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

40

 else
 {
 if (masterState == true)
 {
 Serial.println("I just LOST Master");
 digitalWrite(0, HIGH);
 }

 masterState = false;
 }

 swarmState[mySwarmID] = masterState;

 }

 int setAndReturnMySwarmIndex(int incomingID)
 {

 int i;
 for (i = 0; i< SWARMSIZE; i++)
 {
 if (swarmAddresses[i] == incomingID)
 {
 return i ;
 }
 else
 if (swarmAddresses[i] == 0) // not in the system, so put it in
 {

 swarmAddresses[i] = incomingID;
 Serial.print("incomingID ");
 Serial.print(incomingID);
 Serial.print(" assigned #");
 Serial.println(i);
 return i;
 }

 }

 // if we get here, then we have a new swarm member.
 // Delete the oldest swarm member and add the new one in
 // (this will probably be the one that dropped out)

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

41

 int oldSwarmID;
 long oldTime;
 oldTime = millis();
 for (i = 0; i < SWARMSIZE; i++)
 {
 if (oldTime > swarmTimeStamp[i])
 {
 oldTime = swarmTimeStamp[i];
 oldSwarmID = i;
 }

 }

 // remove the old one and put this one in....
 swarmAddresses[oldSwarmID] = incomingID;
 // the rest will be filled in by Light Packet Receive

 }

 // send log packet to Server if master and server address defined

 void sendLogToServer()
 {

 // build the string

 char myBuildString[1000];
 myBuildString[0] = '\0';

 if (masterState == true)
 {
 // now check for server address defined
 if ((serverAddress[0] == 0) && (serverAddress[1] == 0))
 {
 return; // we are done. not defined
 }
 else
 {
 // now send the packet as a string with the following format:
 // swarmID, MasterSlave, SoftwareVersion, clearColor, Status |

next Swarm ID
 // 0,1,15,3883, PR | 1,0,14,399, PR |

 int i;
 char swarmString[20];
 swarmString[0] = '\0';

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

42

 for (i = 0; i < SWARMSIZE; i++)
 {

 char stateString[5];
 stateString[0] = '\0';
 if (swarmTimeStamp[i] == 0)
 {
 strcat(stateString, "TO");
 }
 else if (swarmTimeStamp[i] == -1)
 {
 strcat(stateString, "NP");
 }
 else if (swarmTimeStamp[i] == 1)
 {
 strcat(stateString, "PR");
 }
 else
 {
 strcat(stateString, "PR");
 }

 sprintf(swarmString, " %i,%i,%i,%i,%s,%i ", i, swarmState[i],
swarmVersion[i], swarmClear[i], stateString, swarmAddresses[i]);

 strcat(myBuildString, swarmString);
 if (i < SWARMSIZE - 1)
 {

 strcat(myBuildString, "|");

 }
 }

 }

 // set all bytes in the buffer to 0
 memset(packetBuffer, 0, BUFFERSIZE);
 // Initialize values needed to form Light Packet
 // (see URL above for details on the packets)
 packetBuffer[0] = 0xF0; // StartByte
 packetBuffer[1] = LOG_TO_SERVER_PACKET; // Packet Type
 packetBuffer[2] = localIP[3]; // Sending Swarm Number
 packetBuffer[3] = strlen(myBuildString); // length of string in bytes
 packetBuffer[4] = VERSIONNUMBER; // Software Version
 int i;

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

43

 for (i = 0; i < strlen(myBuildString); i++)
 {
 packetBuffer[i + 5] = myBuildString[i];// first string byte
 }

 packetBuffer[i + 5] = 0x0F; //End Byte
 Serial.print("Sending Log to Sever:");
 Serial.println(myBuildString);
 int packetLength;
 packetLength = i + 5 + 1;

 udp.beginPacket(serverAddress, localPort); //

 udp.write(packetBuffer, packetLength);
 udp.endPacket();

 }

 }

 That is the entire LightSwarm device code. When compiling this code on the Arduino
IDE targeting the Adafruit ESP8266, we get the following:

 Sketch uses 308,736 bytes (29%) of program storage space. Maximum is 1,044,464
bytes.

 Global variables use 50,572 bytes (61%) of dynamic memory, leaving 31,348 bytes for
local variables. Maximum is 81,920 bytes.

 Still a lot of space left for more code. Most of the compiled codes space above are
used by the system libraries for WiFi and running the ESP8266.

 Self-Organizing Behavior
 Why do we say that the LightSwarm code is self-organizing? It is because there is no
central control of who is the master and who is the slave. This makes the system more
reliable and able to function even in a bad environment. Self-organization is defined as
a process where some sort of order arises out of the local interactions between smaller
items in an initially disordered system.

 Typically these kinds of systems are robust and able to survive in a chaotic
environment. Self-organizing systems occur in a variety of physical, biological, and social
systems.

 One reason to build these kinds of systems is that the individual devices can be small
and not very smart, and yet the overall task or picture of the data being collected and
processed can be amazingly interesting and informative.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

44

 Monitoring and Debugging the System with the
Raspberry Pi (the Smart Guy on the Block)
 The Raspberry Pi is used in LightSwarm primarily as a data storage device for examining
the LightSwarm data and telling what is going on in the swarm. You can send a few
commands to reset the swarm, turn lights on, etc., but the swarm runs itself with or
without the Raspberry Pi running. However, debugging self-organizing systems like this
are difficult without some way of watching what is going on with the swarm, preferably
from another computer. And that is what we have done with the LightSwarm Logger
software on the Raspberry Pi. The primary design criteria for this software follows:

• Read and log information on the swarm behavior.

• Reproduce archival swarm behavior.

• Provide methods for testing swarm behavior (such as resetting the
swarm).

• Provide real-time information to the Internet on swarm behavior
and status.

 Remember that the Raspberry Pi is a full, complex, and powerful computer system that
goes way beyond what you can do with an ESP8266. First we will look at the LightSwarm
logging software and then the software that supports the RasPiConnect LightSwarm
panel. Note that we are not storing the information coming from the swarm devices in this
software, but we could easily add logging software that would populate a MySQL database
that would allow us to store and analyze the information coming in from the swarm.

 LightSwarm Logging Software Written in Python
 The entire code base of the LightSwarm Logging software is available off the APress site
[APress code site] and on the SwitchDoc Labs github site [github.com/switchdoclabs/
lightswarm_Pi]. I am picking out the most interesting code in the Logging software to
comment on and explain.

 First of all, this program is written in Python. Python is a widely used programming
language, especially with Raspberry Pi coders. There are a number of device libraries
available for building your own IOT devices and there is even a small version that runs
on the ESP8266. Python’s design philosophy emphasizes code readability. Indenting is
important in Python, so keep that in mind as you look at the code below.

 ■ SwitchDoc Note Python is “weakly typed” meaning you define a variable and the type
by the first time you use it. Some programmers like this, but I don’t. Misspelling a variable
name makes a whole new variable and can cause great confusion. My prejudice is toward
“strongly typed” languages as it tends to reduce the number of coding errors, at the cost of
having to think about and declare variables explicitly.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

45

 The first section of this program defines all the needed libraries (import statements)
and defines necessary “constants.” Python does not have a way to define constants, so you
declare variables for constant values, which by my convention are all in uppercase. There
are other ways of defining constants by using classes and functions, but they are more
complex than just defining another variable. Listing 2-13 shows how the variables and
constants are initialized.

 Listing 2-13. Import and Constant Value Declaration

 '''
 LightSwarm Raspberry Pi Logger
 SwitchDoc Labs
 September 2015
 '''

 import sys
 import time
 import random

 from netifaces import interfaces, ifaddresses, AF_INET

 from socket import *

 VERSIONNUMBER = 6
 # packet type definitions
 LIGHT_UPDATE_PACKET = 0
 RESET_SWARM_PACKET = 1
 CHANGE_TEST_PACKET = 2 # Not Implemented
 RESET_ME_PACKET = 3
 DEFINE_SERVER_LOGGER_PACKET = 4
 LOG_TO_SERVER_PACKET = 5
 MASTER_CHANGE_PACKET = 6
 BLINK_BRIGHT_LED = 7

 MYPORT = 2910

 SWARMSIZE = 5

 Listing 2-14 defines the interface between the LightSwarm Logging software and the
RasPiConnect control panel software [www.milocreek.com]. The author wrote a tutorial
about this command-passing structure in MagPi magazine reprinted on the SwitchDoc
Labs web site [www.switchdoc.com/2014/07/build-control-panels-tutorial-
raspiconnect/] . These are the three important functions:

• processCommand(s) - When a command is received from the
RasPiConnect server software running on the same computer,
this function defines all the actions to be completed when a
specific command is received from RasPiConnect.

http://www.milocreek.com/
http://www.switchdoc.com/2014/07/build-control-panels-tutorial-raspiconnect/]
http://www.switchdoc.com/2014/07/build-control-panels-tutorial-raspiconnect/]

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

46

• completeCommandWithValue(value) - call function and return a
value to RasPiConnect when you have completed a command.

• completeCommand() - call function when you have completed a
command to tell RasPiConnect you are done with the command.

 Basically, the idea is that when you ask for a data refresh or push a button on the
RasPiConnect control panel, the RasPiConnect server software sends a command to the
LightSwarm logging software that is running on a different thread in the same system.
Remember that the Raspberry Pi Linux-based system is multitasking and you can run
many different programs at once.

 Listing 2-14. RaspiConnect Code

 logString = ""
 # command from RasPiConnect Execution Code

 def completeCommand():

 f = open("/home/pi/LightSwarm/state/LSCommand.txt", "w")
 f.write("DONE")
 f.close()

 def completeCommandWithValue(value):

 f = open("/home/pi/LightSwarm/state/LSResponse.txt", "w")
 f.write(value)
 print "in completeCommandWithValue=", value
 f.close()

 completeCommand()

 def processCommand(s):
 f = open("//home/pi/LightSwarm/state/LSCommand.txt", "r")
 command = f.read()
 f.close()

 if (command == "") or (command == "DONE"):
 # Nothing to do
 return False

 # Check for our commands

 print "Processing Command: ", command
 if (command == "STATUS"):

 completeCommandWithValue(logString)

 return True

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

47

 if (command == "RESETSWARM"):

 SendRESET_SWARM_PACKET(s)

 completeCommand()

 return True

 # check for , commands

 print "command=%s" % command
 myCommandList = command.split(',')
 print "myCommandList=", myCommandList

 if (myCommandList.count > 1):
 # we have a list command

 if (myCommandList[0]== "BLINKLIGHT"):
 SendBLINK_BRIGHT_LED(s, int(myCommandList[1]), 1)

 if (myCommandList[0]== "RESETSELECTED"):
 SendRESET_ME_PACKET(s, int(myCommandList[1]))

 if (myCommandList[0]== "SENDSERVER"):
 SendDEFINE_SERVER_LOGGER_PACKET(s)

 completeCommand()

 return True

 completeCommand()

 return False

 In Listing 2-15 , I have the actual LightSwarm command implementations for sending
packets. Listing 2-15 just shows the first packet type to illustrate the concepts.

 Listing 2-15. Light Swam Command Packet Definitions

 # UDP Commands and packets

 def SendDEFINE_SERVER_LOGGER_PACKET(s):
 print "DEFINE_SERVER_LOGGER_PACKET Sent"
 s.setsockopt(SOL_SOCKET, SO_BROADCAST, 1)

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

48

 # get IP address
 for ifaceName in interfaces():
 addresses = [i['addr'] for i in ifaddresses(ifaceName).

setdefault(AF_INET, [{'addr':'No IP addr'}])]
 print '%s: %s' % (ifaceName, ', '.join(addresses))

 # last interface (wlan0) grabbed
 print addresses
 myIP = addresses[0].split('.')
 print myIP
 data= ["" for i in range(14)]

 data[0] = chr(0xF0)
 data[1] = chr(DEFINE_SERVER_LOGGER_PACKET)
 data[2] = chr(0xFF) # swarm id (FF means not part of swarm)
 data[3] = chr(VERSIONNUMBER)
 data[4] = chr(int(myIP[0])) # first octet of ip
 data[5] = chr(int(myIP[1])) # second octet of ip
 data[6] = chr(int(myIP[2])) # third octet of ip
 data[7] = chr(int(myIP[3])) # fourth octet of ip
 data[8] = chr(0x00)
 data[9] = chr(0x00)
 data[10] = chr(0x00)
 data[11] = chr(0x00)
 data[12] = chr(0x00)
 data[13] = chr(0x0F)

 s.sendto(''.join(data), ('<broadcast>', MYPORT))

 The next section of the code to be discussed is the web map that is used by the
RasPiConnect web control to display HTML code. The code in Listing 2-16 produces
Figure 2-12 .

 Figure 2-12. HTML Web Control in RasPiConnect Produced by Web Map Code in
LightSwarm Logging Software

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

49

 Listing 2-16. Web page Building Code

 # build Webmap

 def buildWebMapToFile(logString, swarmSize):

 f = open("/home/pi/RasPiConnectServer/Templates/W-1a.txt", "w")

 webresponse = ""

 swarmList = logString.split("|")
 for i in range(0,swarmSize):
 swarmElement = swarmList[i].split(",")
 print "swarmElement=", swarmElement
 webresponse += "<figure>"
 webresponse += "<figcaption"
 webresponse += " style='position: absolute; top: "
 webresponse += str(100-20)
 webresponse += "px; left: "

+str(20+120*i)+ "px;'/>\n"
 if (int(swarmElement[5]) == 0):
 webresponse += " &nb

sp;---"
 else:
 webresponse += " &nbs

p; %s" % swarmElement[5]

 webresponse += "</figcaption>"
 webresponse += "<img src='" + "192.168.1.40:9750"

 if (swarmElement[4] == "PR"):
 if (swarmElement[1] == "1"):
 webresponse += "/static/On-Master.png'

style='position: absolute; top: "
 else:
 webresponse += "/static/On-Slave.png'

style='position: absolute; top: "
 else:
 if (swarmElement[4] == "TO"):
 webresponse += "/static/Off-TimeOut.

png' style='position: absolute; top: "

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

50

 else:
 webresponse += "/static/Off-

NotPresent.png' style='position:
absolute; top: "

 webresponse += str(100)
 webresponse += "px; left: "

+str(20+120*i)+ "px;'/>\n"

 webresponse += "<figcaption"
 webresponse += " style='position: absolute; top: "
 webresponse += str(100+100)
 webresponse += "px; left: "

+str(20+120*i)+ "px;'/>\n"
 if (swarmElement[4] == "PR"):
 if (swarmElement[1] == "1"):
 webresponse += " &

nbsp;Master"
 else:
 webresponse += " &n

bsp; Slave"
 else:
 if (swarmElement[4] == "TO"):
 webresponse += "TimeOut"
 else:
 webresponse += "Not Present"

 webresponse += "</figcaption>"

 webresponse += "</figure>"

 #print webresponse
 f.write(webresponse)

 f.close()

 Listing 2-17 looks at incoming swarm IDs and builds a current table of matching IDs,
removing old ones when adding new ones. The maximum number of swarm devices you
can have is five, but can be easily increased.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

51

 Listing 2-17. Incoming Swarm Analysis Code

 def setAndReturnSwarmID(incomingID):

 for i in range(0,SWARMSIZE):
 if (swarmStatus[i][5] == incomingID):
 return i
 else:
 if (swarmStatus[i][5] == 0): # not in the system,

so put it in

 swarmStatus[i][5] = incomingID;
 print "incomingID %d " % incomingID
 print "assigned #%d" % i
 return i

 # if we get here, then we have a new swarm member.
 # Delete the oldest swarm member and add the new one in
 # (this will probably be the one that dropped out)

 oldTime = time.time();
 oldSwarmID = 0
 for i in range(0,SWARMSIZE):
 if (oldTime > swarmStatus[i][1]):
 oldTime = swarmStatus[i][1]
 oldSwarmID = i

 # remove the old one and put this one in....
 swarmStatus[oldSwarmID][5] = incomingID;
 # the rest will be filled in by Light Packet Receive
 print "oldSwarmID %i" % oldSwarmID

 return oldSwarmID

 Finally, Listing 2-18 is the main code for the Python program. It is very similar in
function to the setup() code for the ESP8266 in the Arduino IDE. We use this to define
variables, send out one-time commands, and set up the UDP interface.

 Listing 2-18. LightSwarm Logger Startup Code

 # set up sockets for UDP

 s=socket(AF_INET, SOCK_DGRAM)
 host = 'localhost';
 s.bind(('',MYPORT))

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

52

 print "--------------"
 print "LightSwarm Logger"
 print "Version ", VERSIONNUMBER
 print "--------------"

 # first send out DEFINE_SERVER_LOGGER_PACKET to tell swarm where to send
logging information

 SendDEFINE_SERVER_LOGGER_PACKET(s)
 time.sleep(3)
 SendDEFINE_SERVER_LOGGER_PACKET(s)

 # swarmStatus
 swarmStatus = [[0 for x in range(6)] for x in range(SWARMSIZE)]

 # 6 items per swarm item

 # 0 - NP Not present, P = present, TO = time out
 # 1 - timestamp of last LIGHT_UPDATE_PACKET received
 # 2 - Master or slave status M S
 # 3 - Current Test Item - 0 - CC 1 - Lux 2 - Red 3 - Green 4 - Blue
 # 4 - Current Test Direction 0 >= 1 <=
 # 5 - IP Address of Swarm

 for i in range(0,SWARMSIZE):
 swarmStatus[i][0] = "NP"
 swarmStatus[i][5] = 0

 #300 seconds round
 seconds_300_round = time.time() + 300.0

 #120 seconds round
 seconds_120_round = time.time() + 120. 0

 completeCommand() # ie RasPiConnect System - clear out old commands

 Listing 2-19 provides the main program loop. Note this is very similar to the loop()
function in the ESP8266. In this code, we check for incoming UDP packets, process
RasPiConnect commands, update status information, and perform periodic commands.
It is in this loop that we would be storing the Swarm status, packets, and information if we
wanted to reproduce the swarm behavior archivally.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

53

 Listing 2-19. Raspberry Pi Logger Main Loop

 while(1) :

 # receive datclient (data, addr)
 d = s.recvfrom(1024)

 message = d[0]
 addr = d[1]
 if (len(message) == 14):
 if (ord(message[1]) == LIGHT_UPDATE_PACKET):
 incomingSwarmID = setAndReturnSwarmID(ord(message[2]))
 swarmStatus[incomingSwarmID][0] = "P"
 swarmStatus[incomingSwarmID][1] = time.time()

 if (ord(message[1]) == RESET_SWARM_PACKET):
 print "Swarm RESET_SWARM_PACKET Received"
 print "received from addr:",addr

 if (ord(message[1]) == CHANGE_TEST_PACKET):
 print "Swarm CHANGE_TEST_PACKET Received"
 print "received from addr:",addr

 if (ord(message[1]) == RESET_ME_PACKET):
 print "Swarm RESET_ME_PACKET Received"
 print "received from addr:",addr

 if (ord(message[1]) == DEFINE_SERVER_LOGGER_PACKET):
 print "Swarm DEFINE_SERVER_LOGGER_PACKET Received"
 print "received from addr:",addr

 if (ord(message[1]) == MASTER_CHANGE_PACKET):
 print "Swarm MASTER_CHANGE_PACKET Received"
 print "received from addr:",addr

 for i in range(0,14):
 print "ls["+str(i)+"]="+format(ord(message

[i]), "#04x")
 else:
 if (ord(message[1]) == LOG_TO_SERVER_PACKET):
 print "Swarm LOG_TO_SERVER_PACKET Received"

 # process the Log Packet
 logString = parseLogPacket(message)
 buildWebMapToFile(logString, SWARMSIZE)

 else:
 print "error message length = ",len(message)

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

54

 if (time.time() > seconds_120_round):
 # do our 2 minute round
 print ">>>>doing 120 second task"
 sendTo = random.randint(0,SWARMSIZE-1)
 SendBLINK_BRIGHT_LED(s, sendTo, 1)
 seconds_120_round = time.time() + 120.0

 if (time.time() > seconds_300_round):
 # do our 2 minute round
 print ">>>>doing 300 second task"
 SendDEFINE_SERVER_LOGGER_PACKET(s)
 seconds_300_round = time.time() + 300.0

 processCommand(s)

 #print swarmStatus

 Next, I will look at parts of the RasPiConnect Server code.

 The RasPiConnect Control Panel in Real Time
 RasPiConnect (and the Arduino version, ArduinoConnect) is software designed for
the iPad and iPhone for building Internet-enabled control panels connecting to small
computers. It is designed to be light in memory and processor usage. It has prebuilt
servers in Python for the Raspberry Pi (actually any type of computer running Python)
and in C/C++ for use in the Arduino IDE. We could easily implement a version running
on the EPS8266 and plan to do that in a future project. You can do complex interface
designs using RasPiConnect. Consider the screen in Figure 2-13 showing one of six
screens used in ProjectCuracao, a massive environmental sensing solar-powered project
running remotely on the Caribbean island of Curacao [www.switchdoc.com/project-
curacao-introduction-part-1/] .

http://www.switchdoc.com/project-curacao-introduction-part-1/]
http://www.switchdoc.com/project-curacao-introduction-part-1/]

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

55

 Figure 2-14 shows the LightSwarm RasPiConnect control panel running. The control
panel shows that there are currently 3 active LightSwarm devices with 125 being the
master (with the brightest lights) while the others are slaves. You can send a variety of
commands to the swarm, such as resetting a specific swarm device, blinking lights on a
swarm device, or resetting the entire swarm.

 Figure 2-13. Project Curacao RasPiConnect Control Panel - main page

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

56

 All the software and configuration files for the RasPiConnect server and Apple app
are up on the APress download site [The Apress site] and on the github SwitchDoc Labs
site [github.com/switchdoclabs/lightswarm_RasPiConnect]

 The RasPiConnect server software is pretty straightforward. There is an excellent
tutorial for customizing the server software on the MiloCreek web site
[www.milocreek.com/wiki] .

 As an example, Listing 2-20 is the code (located in Local.py) for the Reset Swarm
button (as seen on Figure 2-14) and also the code for setting the second from the right
meter display in on the LightSwarm control panel.

 Listing 2-20. Local.py File for RasPiConnect Code for Reset Swarm Button

 # Reset Swarm

 if (objectServerID == "B-4"):

 #check for validate request
 # validate allows RasPiConnect to verify this object is here

 Figure 2-14. LightSwarm RasPiConnect Control Panel

http://www.milocreek.com/wiki]

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

57

 if (validate == "YES"):
 outgoingXMLData += Validate.buildValidateResponse("YES")
 outgoingXMLData += BuildResponse.buildFooter()
 return outgoingXMLData

 # normal response requested
 answ = "OK"
 #answ = ""
 if (Config.debug()):
 print "In local B-4"
 print("answ = %s" % answ)

 sendCommandToLightSwarmAndWait("RESETSWARM")

 responseData = "OK"

 outgoingXMLData += BuildResponse.buildResponse(responseData)
 outgoingXMLData += BuildResponse.buildFooter()
 return outgoingXMLData

 if (objectServerID == "M-1"):

 #check for validate request
 if (validate == "YES"):
 outgoingXMLData += Validate.buildValidateResponse("YES")
 outgoingXMLData += BuildResponse.buildFooter()

 return outgoingXMLData

 try:
 f = open("/home/pi/LightSwarm/state/LSStatus.txt", "r")
 logString = f.read()
 f.close()
 except:
 logString = ""

 responseData = "%3.2f" % logString.count("PR")
 print "%s = %s" % (objectServerID, responseData)

 outgoingXMLData += BuildResponse.buildResponse(responseData)
 outgoingXMLData += BuildResponse.buildFooter()
 return outgoingXMLData

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

58

 Results
 I constructed a LightSwarm consisting of five individual swarm devices. The swarm can
be seen in Figure 2-15 .

 Figure 2-15. The Light Swarm

 Finally, some results from the devices are shown in Listing 2-21 . First of all is the
serial debugging output from a LightSwarm device. First the device is initialized, receives
an IP address from the WiFi access point (named gracie in this case), and then starts
listening and sending packets. The device is swarm device #125 and receives packets from
#123 and #122 but remained the master as the CC (Clear Color) of #125 is 2610 while the
incoming packets from #123 and #122 had CC values of 310 and 499, respectively, and
were both slaves.

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

59

 Listing 2-21. Results from LightSwarm IOT Device Run on ESP8266

 LightSwarm
 Version 27

 09/03/2015
 Compiled at:21:30:47 Sep 16 2015

 analogRead(A0)=98
 44
 Found sensor
 LightSwarm Instance: 0
 Connecting to gracie

 WiFi connected
 IP address:
 192.168.1.125
 Starting UDP
 Local port: 2910
 clearColor =0
 MySwarmID=0
 Color Temp: 2390 K - Lux: 630 - R: 1188 G: 848 B: 440 C: 2610
 packetbuffer[1] =0
 LIGHT_UPDATE_PACKET received from LightSwarm #123
 incomingID 123 assigned #1
 LS Packet Recieved from #123 SwarmState:SLAVE CC:310 RC:119 GC:116 BC:69
Version=27
 #0/1/27:ME #1/0/27:PR #2/0/0:NP #3/0/0:NP #4/0/0:NP
 MasterStatus:MASTER/cc=2610/KS:0.0.0.0

 swarmAddress[0] = 125
 swarmAddress[1] = 123
 swarmAddress[2] = 0
 swarmAddress[3] = 0
 swarmAddress[4] = 0

 Broadcast ToSwarm = 255 Delay = 121ms : Color Temp: 2390 K - Lux: 630 - R:
1188 G: 848 B: 440 C: 2610
 packetbuffer[1] =0
 LIGHT_UPDATE_PACKET received from LightSwarm #122
 incomingID 122 assigned #2
 LS Packet Recieved from #122 SwarmState:SLAVE CC:499 RC:231 GC:182 BC:98
Version=27
 #0/1/27:ME #1/0/27:PR #2/0/27:PR #3/0/0:NP #4/0/0:NP
 MasterStatus:MASTER/cc=2610/KS:0.0.0.0

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

60

 swarmAddress[0] = 125
 swarmAddress[1] = 123
 swarmAddress[2] = 122
 swarmAddress[3] = 0
 swarmAddress[4] = 0

 Listing 2-22 is the output from the Raspberry Pi LightSwarm logging software.
The first thing the logging software does is send out a “DEFINE_SERVER_LOGGING_
PACKET” to tell the swarm devices the IP address (1.168.1.40) of the server so the swarm
master can send logging packets directly to the Raspberry Pi, rather than use the already
crowded UDP broadcast ports. Finally, we see a packet coming in from SwarmID #111.
Number 111 picked up the server address, and since it was the master of the swarm, it
started sending in log packets to the Raspberry Pi. Note from the log results, it looks like
#111 is a lonely swarm device with no nearby friends.

 Listing 2-22. Output from Raspberry Pi LightSwarm Logger

 LightSwarm Logger
 Version 6

 DEFINE_SERVER_LOGGER_PACKET Sent
 lo: 127.0.0.1
 eth0: No IP addr
 wlan0: 192.168
 .1.40
 ['192.168.1.40']
 ['192', '168', '1', '40']
 DEFINE_SERVER_LOGGER_PACKET Sent
 lo: 127.0.0.1
 eth0: No IP addr
 wlan0: 192.168.1.40
 ['192.168.1.40']
 ['192', '168', '1', '40']
 Swarm DEFINE_SERVER_LOGGER_PACKET Received
 received from addr: ('192.168.1.40', 2910)
 incomingID 111
 assigned #0
 Swarm LOG_TO_SERVER_PACKET Received
 Log From SwarmID: 111
 Swarm Software Version: 28
 StringLength: 80
 logString: 0,1,28,1672,PR,111 | 1,0,0,0,NP,0 | 2,0,0,0,NP,0 | 3,0,0,0,NP,0
| 4,0,0,0,NP,0
 swarmElement= [' 0', '1', '28', '1672', 'PR', '111 ']
 swarmElement= [' 1', '0', '0', '0', 'NP', '0 ']
 swarmElement= [' 2', '0', '0', '0', 'NP', '0 ']

CHAPTER 2 ■ SENSING YOUR IOT ENVIRONMENT

61

 swarmElement= [' 3', '0', '0', '0', 'NP', '0 ']
 swarmElement= [' 4', '0', '0', '0', 'NP', '0 ']
 swarmElement= [' 3', '0', '0', '0', 'NP', '0 ']
 swarmElement= [' 4', '0', '0', '0', 'NP', '0 ']

 What Else Can You Do with This Architecture?
 The LightSwarm architecture is flexible. You can change the sensor, add more sensors,
and put in more sophisticated algorithms for swarm behavior. In Chapter 5 , we extend
this architecture to more complex swarm behavior, actually changing some of the
physical environment of the swarm devices.

 Conclusion
 A good part of the IOT will be the gathering of simple, small amounts of data; some
analysis on the data; and the communication of that data to servers for action and
further analysis on the Internet. The projects in Chapters 3 and 4 are of more complex
IOT devices gathering lots of data, processing it, acting on the data, and communicating
summaries to the Internet. The LightSwarm does it differently in that the swarm elements
are simple and cooperate without a central controller to determine who has the brightest
light and then acting on that information (turning the red LED on).

 Swarms of IOT devices can be made inexpensively, can exhibit unexpected complex
behavior, and be devilishly difficult to debug.

http://dx.doi.org/10.1007/978-1-4842-1377-3_5
http://dx.doi.org/10.1007/978-1-4842-1377-3_3
http://dx.doi.org/10.1007/978-1-4842-1377-3_4

63© John C. Shovic 2016
J. C. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3_3

 CHAPTER 3

 Building a Solar Powered
IOT Weather Station

 Chapter Goal: Gathering Data and Transmission of Data across the Internet

 Topics Covered in This Chapter:

• How to build a solar powered IOT Weather System (Figure 3-1)

• How to design and size the panels and batteries

• How to gather data to analyze your system performance

• How to wire up a Raspberry Pi to a solar power system

• How to safely turn a Raspberry Pi on and off

• How to build the 3D Printed Parts for IOTWeatherPi

• How to connect your Weather Station to the IOT (Tweets, Texts,
and CWOP)

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

64

 Everybody talks about the weather. In this chapter, we are going to talk about the
weather in much more detail than just the temperature.

 In the previous chapter, we looked at building simple IOT devices that would
measure temperature and share that information with a server and other IOT devices.
It was a simple application, but still illustrated a number of important concepts. In this
chapter, we are building a much more complex and flexible project based on using the
Raspberry Pi as part of the IOT device.

 The IOTWeatherPi not only gathers thirteen different types of weather data, it also
monitors and reports its own state, status, and health.

 Figure 3-1. Overall Picture of Station

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

65

 IOT Characterization of This Project
 As I discussed in Chapter 1 , the first thing to do to understand an IOT project is to look at
our six different aspects of IOT. IOTWeatherPi is a complex product, but Table 3-1 breaks
it down into our six components .

 Table 3-1. IOTWeatherPi Characterization (CPLPFC)

 Aspect Rating Comments

 Communications 9 WiFi connection to Internet - can do AdHoc
mesh-type communication and Bluetooth

 Processor Power 7 Raspberry Pi A+ / 256Mb RAM

 Local Storage 8 8GB of SD Card

 Power Consumption 2 ~200mA consumption - Not reasonable for
small batteries

 Functionality 8 Full Linux-based system. MySQL, etc.

 Cost 2 Expensive for many applications. Board is ~$25

 Ratings are from 1–10, 1 being the least suitable for IOT and 10 being the most
suitable for IOT applications. This gives us a CPLPFC rating of 6. Great for learning, not so
good for deployment for most applications.

 No doubt about it, the Raspberry Pi is a very flexible and powerful IOT platform.
However, the power consumption, cost, and physical size of the device make it more
suitable for prototyping or for stand-alone, highly functional IOT units.

 How Does This Device Hook Up to the IOT?
 With IOTWeatherPi, we have a lot of options. We can hook up to the Internet using the
WiFi connector. We can use the Bluet ooth to hook up to local devices and we can also
use the WiFi in AdHoc mode to make local connections. In this chapter, we will be using
the WiFi interface to talk to the wider world of IOT devices.

 Data Gathering
 The IOTWeatherPi uses thirteen different sensors to detect weather connections. Because
I am using a Raspberry Pi and have good storage mechanisms and disk space, I use a
MySQL database to store all the weather data for future analysis and download. We also
use MatPlotLib to build graphs and use an iOS App called RasPiConnect to display the
information across the Internet.

http://dx.doi.org/10.1007/978-1-4842-1377-3_1

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

66

 The Project - IOTWeatherPi
 WeatherPi is a solar powered Raspberry Pi WiFi connected weather station designed for use
in the IOT by the author’s company. This is a great system to build and tinker with. All of it is
modifiable and all source code is included. Following are the most important functions :

• Senses twenty different environmental values

• Completely Solar Powered

• Has a full database containing history of the environment
(MySQL)

• Monitors and reports data on the solar powered system - great for
education!

• Self-contained and monitored for brownouts and power issues

• Can be modified remotely

• Download your data to crunch it on your PC

• Can be modified to do SMS (Text) messaging, Twitters, web pages,
and more

• Has an iPad-Based Control Panel

• Can connect to the IOT via Twitter, texting, e-mail, and WiFi

 This chapter will show you how to build a WiFi Solar Powered Raspberry Pi Weather
Station. This project grew out of a number of other projects, including the massive Project
Curacao [www.switchdoc.com/project-curacao-introduction-part-1/] , a solar
powered environmental monitoring system deployed on the Caribbean tropical island of
Curacao. Project Curacao was written up in an extensive set of articles in MagPi magazine
(starting in Issue 18 and continuing through Issue 22).

 The IOTWeatherPi Solar Powered Weather Station is an excellent education project.
There are many aspects of this project that can be looked at and analyzed for educational
purposes:

• How do solar power systems behave? Limitations and advantages.

• Temperature, Wind, and Humidity data analysis.

• Shutting down and starting up small computers on solar power.

• Add your own sensors for UV, dust and pollen count, and light
color.

 Figure 3-2 shows how IOTWeatherPi is connected to the IOT while Figure 3-3
describes all the major blocks in the project.

http://www.switchdoc.com/project-curacao-introduction-part-1/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

67

 Figure 3-2. Block Diagram of WeatherPi and the IOT

 Figure 3-3. Block Diagram of IOTWeatherPi

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

68

 How This All Works
 The IOTWeatherPi Block Diagram looks a lot more complicated than it actually is.

 The first thing to notice is that the dashed lines are individual boards
(WeatherPiArduino and SunAirPlus), which contain a lot of the block diagram; and
the second thing is that all of the sensors to the left of the diagram plug into the
WeatherPiArduino board, which simplifies the wiring. Don't be intimidated!

 The Subsystems
 The Power Subsystem of IOTWeatherPi uses a SunAirPlus [www.switchdoc.com/
sunairplus-solar-power-controllerdata-collector/] Solar Power Controller
that handles the solar panels, charging of the battery, and then supplies the 5V to the
Raspberry Pi and the rest of the system. It also contains sensors that will tell you the
current and voltage produced by the Solar Panels and consumed by the batteries and the
Raspberry Pi. Gather that Data! Figure 3-4 shows the solar charger board and the battery
pack mounted in the top of the enclosure. Figure 3-5 shows the solar cells on the top of
outside of the enclosure .

 Figure 3-4. Solar Power Controller

http://www.switchdoc.com/sunairplus-solar-power-controllerdata-collector/]
http://www.switchdoc.com/sunairplus-solar-power-controllerdata-collector/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

69

 It also contains the hardware watchdog timer and the USB PowerControl that
actually shuts off the power to the Raspberry Pi during a brownout event (after the Pi
shuts gracefully down under software control).

 The Sensor Subsystem of IOTWeatherPi uses a WeatherPiArduino [www.switchdoc.
com/weatherpiarduino-bare-board/] as the base unit and then plugs in a bunch of
optional sensors such as wind speed / direction / rain , lightning detection (how cool is
that!), inside and outside temperature, and humidity. Figure 3-6 pictures the wind and
rain sensors.

 Figure 3-5. Solar Cells

http://www.switchdoc.com/weatherpiarduino-bare-board/]
http://www.switchdoc.com/weatherpiarduino-bare-board/]
http://www.switchdoc.com/weatherrack-weather-sensors/

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

70

 The Software Subsystem of IOTWeatherPi runs in Python on the Raspberry Pi. It
collects the data, stores in in a MySQL database, builds graphs, and does housekeeping
and power monitoring.

 The IOTWeatherPi Sensor Suite senses the following environmental values:

• Wind Speed

• Wind Direction

• Rain

 Figure 3-6. Wind / Rain Sensors

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

71

• Outside Temperature

• Outside Humidity

• Lightning Detection

• Barometric Pressure (and Altitude)

• Inside Box Temperature

• Inside Box Humidity

 You can add more to the I2C bus and Analog to Digital Converter such as UV, dust
counts, light color (sensing some types of pollution), and more! It's a great platform for
expansion.

 The sensor suite is built on the WeatherPiArduino (shown in Figure 3-7) board but
there are several similar boards out there on the market.

 Figure 3-7. WeatherPiArduino

 The I2C Bus
 WeatherPi makes extensive use of the I2C bus on the Raspberry Pi.

 At SwitchDoc Labs, we love data. And we love I2C devices. We like to gather the data
using lots of I2C devices on our computers and projects. Project Curacao has a total of
twelve, IOTWeatherPi has eleven devices, and SunRover (a solar powered IOT connected
robot under development at SwitchDoc) will have over twenty and will require one I2C bus

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

72

just for controlling the motors. We are always running into conflicts with addressing on the
I2C device. Since there are no standards, sometimes multiple devices will have the same
address, such as 0x70; and you are just out of luck in running both of them on the same I2C
bus without a lot of jimmy rigging. Figure 3-8 shows the I2C Mux wired into the project.

 Figure 3-8. I2CMux in IOTWeatherPi

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

73

 To get around this addressing problem (and our conflict with an INA3221 and the
Inside Humidity Sensor) we added an I2C Bus Multiplexer to the design, which allows us
to have many more I2C devices on the bus, regardless of addressing conflicts. Table 3-2
provides a list of I2C devices in IOTWeatherPi.

 Table 3-2. I2C Addresses in IOTWeatherPi

 Device I2C Address

 BMP180 or BMP280 Barometric Pressure 0x77

 Real Time Clock DS3231 0x68

 ATC EEPROM 0x56

 ADS1015 Analog to Digital Converter 0x49

 FRAM Non-volatile storage 0x50

 ADS1015 on SunAirPlus 0x48

 INA3221 3 Channel Voltage/Current Monitor on SunAirPlus 0x40

 HTU21D-F Humidity Sensor 0x40

 Embedded Adventures Lightning Detector 0x03

 AM2315 Outdoor Temp/Humidity 0x5C

 I2C 4 Channel I2C Bus Mux 0x73

 Following is what the I2C bus looks like on the Raspberry Pi. There are four
independent buses shown for the I2C bus, but note that IOTWeatherPi only uses Bus 0
and Bus 1. Figure 3-9 shows a fully populated WeatherPiArduino board.

 Test SDL_Pi_TCA9545 Version 1.0 - SwitchDoc Labs

 Sample uses 0x73
 Program Started at:2015-05-10 20:00:56

 -----------BUS 0-------------------
 tca9545 control register B3-B0 = 0x1
 ignore Interrupts if INT3' - INT0' not connected
 tca9545 control register Interrupts = 0xc
 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: 03 -- -- -- -- -- -- -- -- -- -- -- --
 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 40: 40 -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
 50: 50 -- -- -- -- -- 56 -- -- -- -- -- -- -- -- --
 60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
 70: -- -- -- 73 -- -- -- 77

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

74

 -----------BUS 1-------------------
 tca9545 control register B3-B0 = 0x2
 ignore Interrupts if INT3' - INT0' not connected
 tca9545 control register Interrupts = 0xe
 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: -- -- -- -- -- -- -- -- -- -- -- -- --
 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 40: 40 -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 70: -- -- -- 73 -- -- -- --

 -----------BUS 2-------------------
 tca9545 control register B3-B0 = 0x4
 ignore Interrupts if INT3' - INT0' not connected
 tca9545 control register Interrupts = 0xc
 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: -- -- -- -- -- -- -- -- -- -- -- -- --
 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 70: -- -- -- 73 -- -- -- --

 -----------BUS 3-------------------
 tca9545 control register B3-B0 = 0x8
 ignore Interrupts if INT3' - INT0' not connected
 tca9545 control register Interrupts = 0xc
 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: -- -- -- -- -- -- -- -- -- -- -- -- --
 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 70: -- -- -- 73 -- -- -- --

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

75

 Figure 3-9. WeatherPiArduino Fully Loaded with Sensors

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

76

 Sizing Your Solar Power System
 One of the first things that comes up in a solar powered design is how to design the power
system. The three main questions to be asked and answered are the following:

 1. How much power do I need?

 2. How many solar panels do I need?

 3. What size battery do I need?

 The first thing you need to do when designing a solar powered system is to
determine the power requirements for your solar powered design. Our criteria are that
we want the IOTWeatherPi Raspberry Pi Model A to run all day and at least three hours
before sunrise and three hours after sunset. Our goals and budget influence our hardware
choices, so they are not totally independent. Figure 3-10 shows the solar panels with the
AM2315 outside temperature sensor on the side of the enclosure.

 Figure 3-10. Solar Power Panels on IOTWeatherPi

 Table 3-3 contains estimated power consumption for models of the Raspberry Pi,
including a Wireless USB dongle. We are assuming in each of these that you turn the
HDMI port off, which saves ~20mA.

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

77

 Table 3-3. Estimated Power Consumption for Raspberry Pi Models

 Model A Model A+ Model B Model B+ Model Pi2 B

 Current (mA) 260(200) 195(135) 480(420) 290(230) 304(240)

 Power (W) 1.3(1.0) 0.975 (0.675) 2.4 (2.1) 1.45 (1.15) 1.52 (1.2)

 Source Measured Measured Measured Measured Measured

 All of the above measurements include about 60mA for the USB WiFi Dongle.
Parenthetical numbers are without the 60mA.

 Based on the above, first I will lay out my assumptions for our Raspberry Pi Model
A+-based design. The LiPo batteries chosen will store 6600mAh. Why choose the Model
A+? It's the lowest current consuming Raspberry Pi.

 What is mAh (milli Amp hours)? A 6600mAh means you can take 100mA for 66
hours, theoretically. In actuality, you will not be able to get more than about 80% on
average depending on your battery. How fast you discharge them also makes a big
difference. The slower the discharge rate, the more mAh you can get out of the battery.
For comparison, an AA battery will hold about 1000mAh[en.wikipedia.org/wiki/AA_
battery] and a D battery will hold about 10000mAh[en.wikipedia.org/wiki/AA_battery].

 In a system like this, it is best to charge your LiPo batteries completely and then
hook up the computer and see how long it takes to discharge the battery and die. We
did this test on the IOTWeatherPi system. The results are here on switchdoc.com
[www.switchdoc.com/?p=1926] .

 Assumptions:

• Two Voltaic 3.4W 6V/530ma Solar Cells (total of 6.8W)

• 8 Hours of Sun running the cells at least at 70% of max
Delivery of current to Raspberry Pi at 85% efficiency (you
lose power in the charging and boosting circuitry)

• Raspberry Pi Model A+ takes 195mA on average (with the Wireless
USB Dongle)

• Raspberry Pi Model A+ running 24 hours per day

• 6600mAh LiPo Batteries

 Given these we can calculate total Raspberry Pi Model A runtime during a typical day:

 PiRunTime = (8 Hours * 70% * 1060mA) *85% / (195mA) = 25 hours

 Our goal was for 24 hours, so it looks like our system will work. So 16 Hours of
running the Raspberry Pi Model A+ on batteries alone will take (195mA/85%)*16 Hours
= 3670mAh, which is comfortably less than our 6600mAh batteries can store. The WIFI
dongle added about 60mA on average. It was enabled the entire time the Raspberry Pi
was on. No effort was made to minimize the power consumed by the WiFi dongle. Your
results will depend on what other loads you are driving, such as other USB devices, GPIO
loads, I2C devices, etc.

www.allitebooks.com

http://switchdoc.com/
http://www.switchdoc.com/?p=1926]
http://www.allitebooks.org

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

78

 Note that during the day, on average, we are putting into the battery about 6000mAh.
 This also means a larger battery than 6600mAh will not make much difference to

this system.
 So, on a bright sunny day, we should be able to run 24 hours a day. Looking at the

results from IOTWeatherPi being out in the sun for a week, this seems to be correct.
However, it will be cloudy and rainy and your system will run out of power. The next
most-important part of the design is how to handle brownouts! See the section below
about how to hand this nasty little problem.

 The four most important parts of verifying your Solar Power Design:

• Gather real data;

• Gather more real data;

• Gather still more real data;

• Look at your data and what it is telling you about the real system.
Rinse and Repeat.

 Power Up and Power Down
 The power system in Weather Pi consists of four parts:

• Two Solar Panels

• One 6600Ah LiPo Battery

• SunAirPlus Solar Power Controller, Pi Power Supply; and Data
Gathering system

• USB PowerControl board for Pi Power Control

 We are using 2 3.4W Solar Panels from Voltaic Systems. These are high-quality panels
that we have used in previous projects and last a long time even in the tropical sun. The
picture above is of the same panels on Project Curacao after six months in the sun. Those
are clouds reflected on the panels, not dirt. The panels are perfect.

 We selected a 6600mAh battery from Adafruit for this design. See the "Sizing your
Solar System" step below .

 We are using a SunAirPlus Solar Power Controller in this design. In Figure 3-11 you
can see how the solar power control is placed in the enclosure, above the Raspberry Pi.

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

79

 SunAirPlus includes an I2C INA3221[www.switchdoc.com/2015/03/sunairplus-
solar-power-ina3221-python-raspberry-pi-library-released/] 3 Channel Current /
Voltage Monitor and a I2C 4 channel 12 bit Analog to Digital Converter (ADS1015).
The INA3221 allows you to monitor all of the major currents and voltages in the system
(Battery / Solar Panels / Load - Computer). You can tell what your solar power project is
doing in real time.

 Following are some results from the SunAirPlus board using the onboard INA3221.
You can see that the battery is almost fully charged, and the solar cell voltage (actually a
variable power supply on the test bench) is 5.19V and it is supplying 735mA .

 Test SDL_Pi_INA3221 Version 1.0 - SwitchDoc Labs

 Sample uses 0x40 and SunAirPlus board INA3221
 Will work with the INA3221 SwitchDoc Labs Breakout Board

 LIPO_Battery Bus Voltage: 4.15 V
 LIPO_Battery Shunt Voltage: -9.12 mV
 LIPO_Battery Load Voltage: 4.14 V
 LIPO_Battery Current 1: 91.20 mA

 Figure 3-11. Solar Power Controller in Lower Part of Box

http://www.switchdoc.com/2015/03/sunairplus-solar-power-ina3221-python-raspberry-pi-library-released/]
http://www.switchdoc.com/2015/03/sunairplus-solar-power-ina3221-python-raspberry-pi-library-released/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

80

 Solar Cell Bus Voltage 2: 5.19 V
 Solar Cell Shunt Voltage 2: -73.52 mV
 Solar Cell Load Voltage 2: 5.12 V
 Solar Cell Current 2: 735.20 mA

 Output Bus Voltage 3: 4.88 V
 Output Shunt Voltage 3: 48.68 mV
 Output Load Voltage 3: 4.93 V
 Output Current 3: 486.80 mA

 You can use this board to power your projects and add a servo or stepper motor to
allow it to track the sun using photoresistors to generate even more power.

 The USB PowerController Board is basically a controlled Solid State Relay to turn the
power on and off to the Raspberry Pi. This board sits between the Solar Power Controller
(SunAirPlus) and a Raspberry Pi Model A+. The input to the board was designed to come
directly from a LiPo battery so the computer won't be turned on until the LiPo battery was
charged up above ~ 3.8V. A hysteresis circuit is provided so the board won't turn on and
then turn immediately off because the power supply is yanked down when the computer
turns on (immediately putting a load on the battery). This really happens!!!! You kill
Raspberry Pi SD Cards this way.

 The Brownout Problem
 In this important step, we are going to discuss the problem of powering down and up
your Raspberry Pi. In Solar Powered systems, this is called the " Brownout Problem ." We
will be showing how to use a simple device, the USB Power Control [www.switchdoc.com/
usb-powercontrol-board/] , from SwitchDoc Labs to solve this problem.

 One of the most important issues in designing a Raspberry Pi Solar Power System is
turning on and off. The “Brownout Problem” is a real issue. Why worry? If you have a long
string of cloudy days, you may run your battery down. You can compensate for this in
your design by adding more panels and more batteries, but that can get really expensive
and your system might still run out of power, just a lot less frequently .

 Shutting Off the Pi
 Shutting a Raspberry Pi off is pretty easy. When the battery voltage falls below some value,
you just do a “sudo shutdown -h now” and your Raspberry Pi will shut down cleanly.
After doing the test talked about here [www.switchdoc.com/?p=1926] , we chose 3.5V as
the voltage to shut down the Raspberry Pi. Figure 3-12 shows the graph of the data after
implementing these values.

http://www.switchdoc.com/usb-powercontrol-board/]
http://www.switchdoc.com/usb-powercontrol-board/]
http://www.switchdoc.com/?p=1926]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

81

 Note that in most solar power systems, you need to monitor the battery voltage and
not the 5V power supply because with most modern voltage booster systems, the circuitry
will work very hard to keep the 5V going and then just give up crashing to a much lower
voltage when it runs out of power.

 That means your computer would have little or no warning when the voltage is about
to drop. By monitoring the battery voltage, you can tell when the battery is getting low
enough and then shut down your computer safely. For LiPo batteries, this will be when
your voltage gets down to about 3.5V or so. This can all be monitored with the SunAirPlus
solar charge controller that we are using in IOTWeatherPi.

 Starting the Pi
 Enough about shutting down the computer. What about starting it up?

 The Issue
 You can’t just let the controller power up the computer. The problem is that the supply
voltage will move up and down until there is enough charge in the battery to fully supply
the computer. When the computer turns on (connecting a full load), you will pull the
battery down hard enough to brown out the computer causing the Raspberry Pi to
crash. This constant rebooting cycle can corrupt and ruin your SD card and cause your
computer to never boot at all, even when the power is restored. We had this VERY thing
happen to us 3500 miles away with Project Curacao[www.switchdoc.com/2015/02/solar-
power-project-curacao-update/] . Arduinos are more tolerant of this, but Raspberry Pi’s
do not like an ill-behaved power supply. You just can’t be sure of what state the computer
will power up at without a good power supply.

 Figure 3-12. Testing the Behavior of the IOTWeatherPi Power System

http://www.switchdoc.com/2015/02/solar-power-project-curacao-update/]
http://www.switchdoc.com/2015/02/solar-power-project-curacao-update/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

82

 This issue can be handled in a number of ways. The first is to use another computer
(like an Arduino made to be very reliable by using a WatchDog - see the Reliable
Computer series on switchdoc.com [www.switchdoc.com/2014/11/reliable-projects-
watchdog-timers-raspberry-pi-arduinos/)]to disconnect the Raspberry Pi’s power
through a latching relay or MOSFET when there isn’t enough power. Project Curacao
(www.switchdoc.com/project-curacao-introduction-part-1/) used this approach.

 We didn’t want to add an additional computer to IOTWeatherPi, so we chose a
second solution.

 Power Your Pi Up and Down with the USB Power Control
 A second (and cheaper!) way of handling the brownout and power-up problem is to use
a dedicated power controller that will shut the power off to the Raspberry Pi and restore
the power when the battery voltage is high enough to avoid ratcheting the supply voltage
up and down because of the load of the Raspberry Pi. This is called Hysteresis. We have
designed a board to do just this (called the USB PowerController[www.switchdoc.com/
usb-powercontrol-board/]) that will plug between the USB coming out of the SunAir
Solar Power Controller and the Raspberry Pi as in Figure 3-13 .

 Figure 3-13. USB PowerControl

http://switchdoc.com/
http://www.switchdoc.com/2014/11/reliable-projects-watchdog-timers-raspberry-pi-arduinos/
http://www.switchdoc.com/2014/11/reliable-projects-watchdog-timers-raspberry-pi-arduinos/
http://www.switchdoc.com/project-curacao-introduction-part-1/
http://www.switchdoc.com/usb-powercontrol-board/]
http://www.switchdoc.com/usb-powercontrol-board/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

83

 The USB Power Controller Board
 The USB PowerControl board is a USB to USB solid state relay.

 Anything you can plug into a USB port can be controlled with USB PowerControl. It's
easy to hook up. You connect a control line (a GPIO line or the output of a LiPo battery)
to the LIPOBATIN line on the USB Power Control device and if the line is LOW (< ~3.3V)
the USB Port is off. If it is HIGH (above 3.8V) the USB Port is turned on and you have 5V of
power to the USB plug.

 There is a hysteresis circuit so the board won't turn on and then turn immediately off
because the power supply is yanked down when the computer turns on (putting a load on
the battery).

 There is little software for this device. You connect it directly to your LiPo battery for
automatic control! The only software used detects the battery voltage and decides when
to shut down the computer. The USB Power Control takes care of shutting the power
to the Raspberry Pi when the battery voltage gets low enough. Note that a shutdown
Raspberry Pi still draws current (according to one quick measurement, about 100mA).
Figure 3-14 shows how you integrate the USB PowerControl into a system.

 Figure 3-14. Controlling the Raspberry Pi Power

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

84

 One More Scenario
 One last point. After thinking about the power down sequence, we came up with one
more scenario. What if:

 1. The battery voltage reaches 3.5V and the Raspberry Pi is shut
down.

 2. The USB PowerController will turn the power off when the
battery reaches about 3.4V.

 However, what if the sun comes up at this time and the battery starts charging again?
Then the USB PowerController will never reach about 3.4V and will never turn off. And
the Pi will never reboot. Not a good scenario !

 We fixed this by adding a hardware watchdog timer. For a tutorial on hardware
watchdog timers, read the SwitchDoc series starting here [www.switchdoc.com/2014/11/
reliable-projects-watchdog-timers-raspberry-pi-arduinos/] . A picture of the
WatchDog Timer is given in Figure 3-15 .

 Figure 3-15. WatchDog Timer

http://www.switchdoc.com/2014/11/reliable-projects-watchdog-timers-raspberry-pi-arduinos/]
http://www.switchdoc.com/2014/11/reliable-projects-watchdog-timers-raspberry-pi-arduinos/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

85

 We used a Dual WatchDog Timer Board [www.switchdoc.com/dual-watchdog-
timer/] to fix this problem. We set the RaspberryPi python to "pat the dog" (preventing
the watchdog timer from triggering) every 10 seconds. The timer is set to trigger after
about 200 seconds if it isn't patted. The timer is connected to pull the "COut" (TP3) point
down to ground on the USB PowerController, which shuts off the Raspberry Pi. Because
of the hysteresis circuit on the USB PowerController, the Raspberry Pi will stay off until
the battery voltage reaches ~3.9V and then the Pi will reboot. Now the above scenario will
never happen. By the way, there is no real way of using the internal Pi Watchdog to do
this. You don't want to reboot the Pi; you want to shut off the power in this scenario.

 ■ SwitchDoc Tip Building wiring cables is always a pain. You want all the wires to be
together and you want them to be compact and nice looking. One great way of doing this is to
cut the hook-up wires to the same length and then braid them together by using an electric
drill. You insert the wires and then spin the drill slowly while running your fingers slowly up
the wires. Good-looking cables every time! Figure 3-16 shows the result. Nice-looking cables.

 Figure 3-16. Braided Cables with Drill

http://www.switchdoc.com/dual-watchdog-timer/]
http://www.switchdoc.com/dual-watchdog-timer/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

86

 What Do You Need to Build This Project?
 No project is complete without a parts list. These are suggestions. There are many options
for a number of these boards. If you substitute, make sure you check for compatibility.
Figure 3-17 shows all of the parts .

 Figure 3-17. IOTWeatherPi Parts

• WeatherRack Weather Sensors [www.switchdoc.com/
weatherrack-weather-sensors/]

• BUD NEMA Box from amazon.com [www.amazon.com/gp/
product/B005T57WYI/r&tag=wwwswitchdo05-20]

• VoltaicSystems Solar Panel(s) - 2 panels [www.voltaicsystems.
com/3-5-watt-panel]

• Raspberry Pi A+ , Raspberry Pi 2, Raspberry Pi 3 (the lower the
power the better)

http://www.switchdoc.com/weatherrack-weather-sensors/]
http://www.switchdoc.com/weatherrack-weather-sensors/]
http://amazon.com/
http://www.amazon.com/gp/product/B005T57WYI/r&tag=wwwswitchdo05-20]
http://www.amazon.com/gp/product/B005T57WYI/r&tag=wwwswitchdo05-20]
http://www.voltaicsystems.com/3-5-watt-panel]
http://www.voltaicsystems.com/3-5-watt-panel]
http://www.amazon.com/gp/product/B00PEX05TO/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00PEX05TO&linkCode=as2&tag=wwwswitchdo05-20&linkId=RGN5DJ2PXJPJ6UOQ

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

87

• Raspberry Pi Compatible WiFi USB Dongle

• SunAirPlus Solar Power Controller [www.switchdoc.com/
sunairplus-solar-power-controllerdata-collector/]

• USB PowerControl [www.switchdoc.com/usb-powercontrol-
board/]

• Grove 4 Channel I2C Mux Breakout Board w/Status LEDs
[www.switchdoc.com/grove-i2c-4-channel-mux-board-
wstatus-leds/]

• SwitchDoc Labs Dual WatchDog Timer [www.switchdoc.com/
dual-watchdog-timer/]

• WeatherPiArduino Weather Board [www.switchdoc.com/
weatherboard/]

• Embedded Adventures I2C Lightning Detector MOD-1016 board
[www.embeddedadventures.com/as3935_lightning_sensor_
module_mod-1016.html]

• DS3231 RTC With EEPROM [www.switchdoc.com/ds3231-real-
time-clock-module/]

• AM2315 Outdoor Temperature and Humidity Sensor [www.
switchdoc.com/am2315-encased-i2c-temperature-and-
humidity-sensor/]

• BMP180 Barometer and Temperature Sensor [www.switchdoc.
com/wp-content/uploads/2015/01/BST-BMP180-DS000-09.pdf]

• Adafruit HTU21D-F Temperature/Humidity breakout board

• Adafruit 32KB FRAM I2C breakout board

• Adafruit ADS1015 4 Channel A/D I2C board

• Adafruit PKCELL Lithium Ion Battery Pack - 3.7V 6600mAh

• Waterproof 8 Pin Plug from amazon.com [www.amazon.com/gp/
product/B00HG9VO0S/&tag=wwwswitchdo05-20]

• 2 Dual Row 4 Position Covered Screw Terminal Block Strip from
 amazon.com [www.amazon.com/gp/product/B00SUXK2ZM/&tag=w
wwswitchdocc-20]

• RasPiConnect Control Panel [www.milocreek.com/]

http://www.switchdoc.com/sunairplus-solar-power-controllerdata-collector/]
http://www.switchdoc.com/sunairplus-solar-power-controllerdata-collector/]
http://www.switchdoc.com/usb-powercontrol-board/]
http://www.switchdoc.com/usb-powercontrol-board/]
http://www.switchdoc.com/i2c-4-channel-mux-breakout-board/]
http://www.switchdoc.com/i2c-4-channel-mux-breakout-board/]
http://www.switchdoc.com/dual-watchdog-timer/]
http://www.switchdoc.com/dual-watchdog-timer/]
http://www.switchdoc.com/weatherboard/
http://www.switchdoc.com/weatherboard/
http://www.embeddedadventures.com/as3935_lightning_sensor_module_mod-1016.html]
http://www.embeddedadventures.com/as3935_lightning_sensor_module_mod-1016.html]
http://www.switchdoc.com/ds3231-real-time-clock-module/]
http://www.switchdoc.com/ds3231-real-time-clock-module/]
http://www.switchdoc.com/am2315-encased-i2c-temperature-and-humidity-sensor/]
http://www.switchdoc.com/am2315-encased-i2c-temperature-and-humidity-sensor/]
http://www.switchdoc.com/am2315-encased-i2c-temperature-and-humidity-sensor/]
http://www.switchdoc.com/wp-content/uploads/2015/01/BST-BMP180-DS000-09.pdf
http://www.switchdoc.com/wp-content/uploads/2015/01/BST-BMP180-DS000-09.pdf
http://amazon.com/
http://www.amazon.com/gp/product/B00HG9VO0S/&tag=wwwswitchdo05-20]
http://www.amazon.com/gp/product/B00HG9VO0S/&tag=wwwswitchdo05-20]
http://amazon.com/
http://www.amazon.com/gp/product/B00SUXK2ZM/&tag=wwwswitchdocc-20]
http://www.amazon.com/gp/product/B00SUXK2ZM/&tag=wwwswitchdocc-20]
http://www.milocreek.com/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

88

 Connecting and Testing the Hardware
 As with most projects, we tend to "breadboard" the circuitry before we put it into the
enclosure. With IOTWeatherPi, we spread out the parts, wired them up, made sure each
of the major paths worked (and of course, took the obligatory nighttime geek shot), and
then started placing them in the box, attaching them with screws and posts through the
plastic. Figure 3-18 shows the wired project at night before placing it in the enclosure.

 Figure 3-18. IOTWeatherPi at Night

 Putting the IOTWeatherPi into the BUD Industries box was pretty straight forward.
We chose to put the solar power part of the circuit on top and the Raspberry Pi and the
IOTWeatherPiArduino Sensor array in the box bottom. The parts were all placed and then
all the screw holes and outside screws were sealed with silicon caulking.

 We used Gland Connectors to run the wires in and out of the box. Then we sealed
the Gland Connectors. The Gland Connectors aren't necessarily waterproof, but
they make things tighter and provide a good strain relief. We then used a waterproof
disconnectable plug to tie into the WeatherRack weather instruments. You can see these
connections in Figure 3-19 .

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

89

 In building the IOTWeatherPi Solar Powered Weather Station, we saw a couple of
parts that we decided would be good to 3D Print. In the twelve months since we bought
our SwitchDoc Labs MakerBot Replicator [makerbot.com/], we have totally changed the
way we build special parts for prototyping. And with the latest extruder and firmware
updates, the MakerBot rocks! I have done ten long prints with no problem. It used to be
Xacto knives and foam, wood and glue, but now we just build new parts when we need
them. Figure 3-20 shows the completed 3D Printed parts. The three parts we have used
3D Printing for are the following:

• Bracket with Hinges to connect solar panel panels to weather
station box (adjustable for latitude);

• Opposite hinge on which to hang solar power panels (the tabs on
the side of the rectangle are just to make sure the bracket is flat!);

• Sun Cover for AM2315 Temperature and Humidity Sensor -
we killed the Humidity sensor by not covering the AM2315
in Project Curacao [www.switchdoc.com/project-curacao-
environmental-subsystem-part-4/] .

 Figure 3-19. IOTWeatherPi Connections

http://makerbot.com/]
http://www.switchdoc.com/project-curacao-environmental-subsystem-part-4/]
http://www.switchdoc.com/project-curacao-environmental-subsystem-part-4/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

90

 The OpenSCAD files for building these parts are located at www.switchdoc.com/wp-
content/uploads/2015/04/WeatherPi3D-041115.zip .

 The Full Wiring List
 Table 3-4 provides the complete wiring list for IOTWeatherPi. As you wire it, check off
each wire for accuracy.

 Key:

 Raspberry Pi A+: PiA+

 Grove I2C Bus Mux: GI2CM

 Dual WatchDog Timer Board: WDT

 WeatherPiArduino: WPA

 USB Power Control: USBPC

 SunAirPlus: SAP

 Figure 3-20. 3D Printed Parts

http://www.switchdoc.com/wp-content/uploads/2015/04/WeatherPi3D-041115.zip
http://www.switchdoc.com/wp-content/uploads/2015/04/WeatherPi3D-041115.zip
http://www.switchdoc.com/wp-content/uploads/2015/04/WeatherPi3D-041115.zip

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

91

 Table 3-4. IOTWeatherPi Wiring List

 Raspberry Pi A+ (PiA+)

 GPIO Header

 From To Description

 PiA+ GPIO/Pin 1: 3.3V IGI2CM JP1/Pin 3:VCC Power for I2C Mux Board -
Computer Interface

 PiA+ GPIO/Pin 2: 5.0V WDT JP1/Pin 1:VDD Power for Dual WatchDog
Timer Board

 PiA+ GPIO/Pin 3: SDA GI2CM JP1/Pin2:SDA SDA for I2C Mux
Board - Computer
Interface

 PiA+ GPIO/Pin 5: SCL GI2CM JP1/Pin1:SCL SCL for I2C Mux Board -
Computer Interface

 PiA+ GPIO/Pin 6: GND GI2CM JP1/Pin4:GND GND for I2C Mux Board -
Computer Interface

 PiA+ GPIO/Pin 11 GPIO 17 WDT JP2/Pin1:DOG1_
TRIGGER

 Trigger Input for
WatchDog 1 Timer (Pat the
Dog)

 PiA+ GPIO/Pin 12: GPIO 18 WPA JP13/Pin1: LD-IRQ Interrupt Request from
the AS3935 on Lightning
Detector Board

 PiA+ GPIO/Pin 16: GPIO 23 WPA JP2/
Pin3:Anemometer

 Anemometer Output from
WeatherRack - Interrupt

 PiA+ GPIO/Pin 17: 3.3V VCC Screw Connector To provide more 3.3V
Connections

 PiA+ GPIO/Pin 18: GPIO 24 WPA JP2/Pin 2:Rain
Bucket

 Rain Bucket Output from
WeatherRack - Interrupt

 PiA+ GPIO/Pin 22: GPIO 25 SAP JP13/Pin8: EXTGP0 GP0 on SunAir Board -
Yellow LED display

 Grove I2C Mux Board (GI2CM)

 From To Description

 JP1 - Computer

 GI2CM JP1/Pin 2:SDA PiA+ GPIO/Pin 3:SDA SDA to I2C Mux Board -
Computer Interface

 GI2CM JP1/Pin 1: SCL PiA+ GPIO/Pin 5:SDA SCL to I2C Mux Board -
Computer Interface

 GI2CM JP1/Pin 4: GND PiA+ GPIO/Pin 6:GND GND for I2C Mux Board -
Computer Interface

(continued)

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

92

 Raspberry Pi A+ (PiA+)

 GI2CM JP1/Pin 3: VCC PiA+ GPIO/Pin 1: 3.3V Power for I2C Mux Board
- Computer Interface

 JP2 - I2C Bus 0 WeatherPiArduino I2C
Bus

 GI2CM JP2/Pin 3: VDU0 WPA JP1/Pin 2: VDD 3.3V from WPA Board

 GI2CM JP2/Pin 2: GND WPA JP1/Pin 1: GND GND for WPA Board

 GI2CM JP2/Pin 5: SC0 WPA JP4/Pin 1: SCL SCL for WPA Board

 GI2CM JP2/Pin 4: SD0 WPA JP4/Pin 2: SDA SDA for WPA Board

 JP3 - I2C Bus 1 SunAirPlus I2C Bus

 GI2CM JP3/Pin 3: VDU1 SPA JP23/Pin 3: VDD 5.0V for Bus 1 for I2C
Mux

 GI2CM JP3/Pin 2: GND SAP JP13/Pin 4: GND GND for SAP Board

 GI2CM JP3/Pin 5: SC1 SAP JP13/Pin 1: EXTSCL SCL for SAP Board

 GI2CM JP3/Pin 4: SD1 SAP JP13/Pin 2: EXTSDA SDA for SAP Board

 JP4 - I2C Bus 3 Auxiliary GND for WDT
Board

 GND for WDT Board

 GI2CM JP4/Pin2: GND WDT JP1/Pin 1:GND GND for WDT Board

 Dual WatchDog Timer Board (WDT)

 From To Description

 JP1

 WDT JP1/Pin 1: VDD PiA+ GPIO/Pin 2:VDD
(5.0V)

 WDT JP1/Pin 2: GND GI2CM JP4/Pin 2:GND GND for WDT Board

 JP2

 WDT JP2/Pin 1: DOG1_
TRIGGER

 PiA+ GPIO/Pin 11:GPIO
17

 WDT Trigger from
Raspberry Pi

 JP3

 WDT JP3/Pin 1: DOG1_
ARDUINORESET

 USBPC: TP3 - COUT Solder Wire to TP3
- COUT on USB
PowerControl

(continued)

Table 3-4. (continued)

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

93

 Raspberry Pi A+ (PiA+)

 WeatherPiArduino (WPA)

 From To Description

 JP1

 WPA JP1/Pin 1: GND GI2CMux JP2/Pin 2: GND GND for WPA Board
from I2CMux

 WPA JP1/Pin 2: 3V3 GI2CMux JP2/Pin 3:
VDU0

 3.3V for I2C Bus 0 from
WPA

 JP2

 WPA JP2/Pin 2: Rain Bucket PiA+ GPIO/Pin 18:
GPIO 24

 Rain Bucket Output from
WeatherRack - Interrupt

 WPA JP2/Pin 3: Anemometer PiA+ GPIO/Pin 16:
GPIO 23

 Anemometer Output
from WeatherRack -
Interrupt

 JP4

 WPA JP4/Pin 1: SCL GI2CMux JP4/Pin 5: SCL SCL from I2C Mux Board

 WPA JP4/Pin 2: SDA GI2CMux JP4/Pin 4: SDA SDA from I2C Mux Board

 WPA JP4/Pin 3: 3V3 VCC Screw Connector 3.3V From Pi/Screw
Connector

 JP13

 WPA JP13/Pin 1: LD- IRQ PiA+ GPIO/Pin 12: GPIO
18

 Interrupt Request from
the AS3935 on Lightning
Detector Board

 USB Power Control (USBPC)

 From To Description

 USBIN: USB Connector from
SAP

 USB A OUT on SAP

 USBOUT: USB Connector to
PiA+

 USB Power Input on PiA+

 JP1

 USBOUT JP1/Pin 1: LIPOBATIN SAP JP4/Pin1: LiPo
Battery Out

 SAP Plus of LiPo Battery
Out to USB PowerControl

 TP3 - COUT: WDT JP3/Pin 1: DOG1_
ARDUINORESET

 Shuts USB Power Control
down if Raspberry Pi
has been shut down and
LIPOBATIN < ~3.9V

(continued)

Table 3-4. (continued)

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

94

 Raspberry Pi A+ (PiA+)

 SunAirPlus (SAP)

 From To Description

 USB A Out: USBIN on USBPC

 J5 Battery: To LiPo Battery Pack

 J6 Solar: To Solar Panels

 JP4

 SAP JP4/Pin 1: USBPC: JP1/Pin1
LIPOBATIN

 SAP Plus of LiPo Battery
Out to USB PowerControl

 JP10

 SAP JP10/Pin 1: SCL SCL (5.0V) Connected to Outdoor
Temp/Hum AM2315
Sensor - works better on
5.0V I2C Bus

 SAP JP10/Pin 2: SDA SDA (5.0V) Connected to Outdoor
Temp/Hum AM2315
Sensor - works better on
5.0V I2C Bus

 SAP JP10/Pin 3: VDD5 VDD5 Connected to Outdoor
Temp/Hum AM2315
Sensor - works better on
5.0V I2C Bus

 SAP JP10/Pin 4: GND GND Connected to Outdoor
Temp/Hum AM2315
Sensor - works better on
5.0V I2C Bus

 JP13

 SAP JP13/Pin 1: EXTSCL GI2CMux JP3/Pin 5: SC1

 SAP JP13/Pin 2: EXTSDA GI2CMux JP3/Pin 4: SD1

 SAP JP13/Pin 3: VDD SPA JP23/Pin2: VDD5 5V I2C Interface from SAP

 SAP JP13/Pin 4: GND GI2CMux JP3/Pin 2: GND GND form I2CMux Board

 SAP JP13/Pin 8: EXTGP0 PiA+ GPIO/Pin 22:
GPIO 25

 Line from Raspberry Pi to
flash SAP Yellow LED on
GP0

 JP23

 SAP JP23/Pin 2: VDD5 SAP JP13/Pin 3: VDD 5.0V for SAP I2C Bus to
I2CMux

 SAP JP23/Pin 3: VDD5 GI2CMux JP3/Pin 3: VDU1 5.0V for I2CMux I2C Bus1

Table 3-4. (continued)

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

95

 The Software
 A big part of the IOTWeatherPi Project is the software. All of the Python software
for this project is up on github at the switchdoclabs section [https://github.com/
switchdoclabs/WeatherPi] . I also included all of the various libraries for the I2C devices
we are using.

 Non-Normal Requirements for your Pi
 You will need to add the following software and libraries to your Raspberry Pi:

• MySQL. There are lots of tutorials on the Internet for installing
MySQL. Here is the one we used [raspberrywebserver.com/sql-
databases/using-mysql-on-a-raspberry-pi.html]. The structure of
the WeatherPi MySQL database in mysqldump format is located
on github [https://github.com/switchdoclabs/WeatherPiSQL] .
You can use this file to build the MySQL database for the
IOTWeatherPi Project.

• MatPlotLib. This is the graphing subsystem with a great interface
to Python. It is a bit more complex to install, so I wrote a
tutorial on how to install it on SwitchDoc.com [www.switchdoc.
com/2014/01/matplotlib-raspberry-pi-mysql-and-project-
curacao/] . Note that the installation takes a long time, about
eight hours on a Raspberry Pi (mostly unattended).

 The IOTWeatherPi Python Software
 The IOTWeatherPi software is pretty simple. The application was much less complex than
the Project Curacao software [, www.switchdoc.com/project-curacao-software-system-
part-6/] so I decided not use the apscheduler package and decided just to use a simple
loop with an "every 15 seconds" type of control. Here is the main loop:

 secondCount = 1
 while True:

 # process Interrupts from Lightning

 if (as3935Interrupt == True):
 process_as3935_interrupt()

 # process commands from RasPiConnect
 print "-- "

 processCommand()

https://github.com/switchdoclabs/WeatherPi]
https://github.com/switchdoclabs/WeatherPi]
http://raspberrywebserver.com/sql-databases/using-mysql-on-a-raspberry-pi.html]
http://raspberrywebserver.com/sql-databases/using-mysql-on-a-raspberry-pi.html]
https://github.com/switchdoclabs/WeatherPiSQL]
http://switchdoc.com/
http://www.switchdoc.com/2014/01/matplotlib-raspberry-pi-mysql-and-project-curacao/]
http://www.switchdoc.com/2014/01/matplotlib-raspberry-pi-mysql-and-project-curacao/]
http://www.switchdoc.com/2014/01/matplotlib-raspberry-pi-mysql-and-project-curacao/]
http://www.switchdoc.com/project-curacao-software-system-part-6/]
http://www.switchdoc.com/project-curacao-software-system-part-6/]
http://apscheduler.readthedocs.org/en/latest/

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

96

 if ((secondCount % 10) == 0):
 # print every 10 seconds
 sampleAndDisplay()
 patTheDog() # reset the WatchDog Timer
 blinkSunAirLED2X(2)

 # every 5 minutes, push data to mysql and check for shutdown

 if ((secondCount % (5*60)) == 0):
 # print every 300 seconds
 sampleWeather()
 sampleSunAirPlus()
 writeWeatherRecord()
 writePowerRecord()

 if (batteryVoltage < 3.5):
 print "--->>>>Time to Shutdown<<<<---"
 shutdownPi("low voltage shutdown")

 # every 15 minutes, build new graphs

 if ((secondCount % (15*60)) == 0):
 # print every 900 seconds
 sampleAndDisplay()

 # every 48 hours, reboot
 if ((secondCount % (60*60*48)) == 0):
 # reboot every 48() hours
 rebootPi("48 hour reboot")

 secondCount = secondCount + 1
 # reset secondCount to prevent overflow forever

 if (secondCount == 1000001):
 secondCount = 1

 time.sleep(1.0)

 Note that we reboot the Pi every two days. Why do we do that? We have noticed that
after heavy usage of MatPlotLib and/or MySQL, that sometimes after a long time, you run
out of resources, giving all sorts of odd behavior. Since the RaspberryPi A+ has a small
amount of RAM, rebooting is the easiest way of fixing it.

 Check out all the code up on github.com [https://github.com/switchdoclabs/
WeatherPi].

 The code for the RasPiConnect [www.milocreek.com/] control panel is discussed in
the next section.

http://www.milocreek.com/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

97

 Figure 3-21. IOTWeatherPi Control Panel

 The RasPiConnect Control Panel
 I use RasPiConnect to build our control panels for our projects. It allows us to put graphs,
controls, buttons, sliders, etc., up on our iPad/iPhone screens without having to write
apps. RasPiConnect works on Raspberry Pi's and on Arduinos. We have used this software
on five different projects, with IOTWeatherPi being the latest.

 How to build a control panel for IOTWeatherPi is beyond the scope of this chapter,
but here is the tutorial [www.switchdoc.com/?p=523] that we wrote for doing what we
are doing for IOTWeatherPi. We are using the same command-passing mechanism
in IOTWeatherPi that we used in MouseAir. RasPiConnect comes with an excellent,
comprehensive manual here [www.milocreek.com/wiki/index.php/Main_Page] .

 All the RasPiConnect code that we used in IOTWeatherPi is on github under github.
com/switchdoclabs [https://github.com/switchdoclabs/WeatherPi-RasPiConnect] .
Note that only the directory local is uploaded as that is the only place changes to the code
are made as explained in the RasPiConnect manual.

 The IOTWeatherPi has been outside for about 16 weeks now. Working perfectly.
You can see the box being charged up and then going to battery power as the sun moves
behind the house. We have had hot days and cold nights as we are just starting to move out
of spring into summer. It is not quite generating enough electricity to run 24 hours at the
moment (because it is in the shade until 9 a.m. and after about 3 p.m. - not quite 8 hours
of sun). This will be fixed when I move it up to the top of the house where it will have sun
about 12 hours a day on average (when the sun is not behind clouds!). Figure 3-21 shows
the graph of the solar power performance after a week of sunshine.

http://www.switchdoc.com/?p=523]
http://www.milocreek.com/wiki/index.php/Main_Page]
http://github.com/switchdoclabs
http://github.com/switchdoclabs
https://github.com/switchdoclabs/WeatherPi-RasPiConnect]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

98

 Improvements
 We aren't building graphs for the Wind Speed, Direction, and Rain yet. We are just
reporting the current values on the RasPiConnect control panel. All the data is being
saved into MySQL, however.

 The temperature and lightning displays need to be fixed and improved.
 The cool thing is that all of this can be done remotely!

 Tweeting Your Weather Data
 Tweeting is a great way of reading short messages from people with little to say. With
the IOT IOTWeatherPi, you can join this epic project to be in on the fun. Of course,
some people do have interesting things to say and now you can start tweeting IOT
weather information. You may not have a lot of followers, but you can follow your IOT
IOTWeatherPi from anywhere!

 Getting Started
 The first thing to do is install the Twython software [https://twython.readthedocs.org/
en/latest/] . This is a Python library that will allow your application to post new Tweets
and interact with Twitter outside of the Twitter web site.

 Copy and paste these commands one at a time on your Raspberry Pi. Most of these
require an answer to continue. The first two (update/upgrade) are general commands
that update your Raspberry Pi to the latest and greatest software. A good thing to do in
general.

 sudo apt-get update
 sudo apt-get upgrade
 sudo apt-get install python-setuptools
 sudo apt-get install python-dev
 sudo easy_install pip
 sudo pip install twython
 sudo apt-get install libffi-dev libssl-dev
 sudo pip install --upgrade pyopenssl ndg-httpsclient pyasn1 pip
 sudo pip install requests

 Now we have Twython installed on your IOTWeatherPi. Figure 3-22 shows an iPhone
screenshot of the resulting Tweets.

https://twython.readthedocs.org/en/latest/]
https://twython.readthedocs.org/en/latest/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

99

 Figure 3-22. IOTWeatherPi Tweeting

 Registering a Twitter App
 The Twitter API (Application Programming Interface) is a REST interface. A REST
(Representational State Transfer) interface is a software architecture style for building
 scalable web services .

 RESTful systems typically, but not always (and specifically does regarding the Twitter
Interface), communicate over the Internet with the same HTTP verbs (GET, POST, PUT,
DELETE, etc.), which web browsers use to retrieve web pages and to send data to remote
servers.

 The first thing you need to do is set up a new Twitter account for your project. In
general, you don’t want to tweet your temperature and things through your personal
account and to all your followers. Doing that is a great way to get de-followed very
quickly. Go to Twitter and do that now. When you have done that, move to the next
paragraph.

https://en.wikipedia.org/wiki/Software_architecture_styles_and_patterns
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/HTTP_verbs
https://en.wikipedia.org/wiki/Web_page

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

100

 In order to use the Twitter API, you will need to register a new application (your
IOTWeatherPi in this case). Do that from this link [https://apps.twitter.com/app/new]
– no need to specify a callback URL, and just make up a web site if you like. Figure 3-23
shows the initial application screen.

 Next, go to the Keys and Access Tokens and create an Access Token. Keep this page
open. You will need to put the tokens in your application.

 Look in the Twitter subdirectory in the IOTWeatherPi software directory and edit the
twitter.py file to add your ACCESS_KEY (which is the Access Token on the Twitter page) .

 #!/usr/bin/env python

 # twitter.py
 # SwitchDoc Labs
 # 07/23/15

 import sys

 import datetime

 from twython import Twython

 Figure 3-23. Twitter Application Screen

https://apps.twitter.com/app/new]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

101

 def sendTweet(twitter, tweetString):

 # if conflocal.py is not found, import default conf.py

 # Check for user imports
 try:
 import conflocal as conf
 except ImportError:
 import conf

 today = datetime.datetime.utcnow()
 datestring = today.strftime("%H:%M:%S UTC:")

 try:
 sendString = datestring + tweetString
 twitter.update_status(status=sendString)
 return 0

 except:
 return 1

 Following is the initialization code in WeatherPi.py:

 # setup twitter
 from twython import Twython

 import twitter

 twitterObject = Twython(conf.CONSUMER_KEY,conf.CONSUMER_SECRET,conf.ACCESS_
TOKEN,conf.ACCESS_TOKEN_SECRET)

 You put the initialization codes (CONSUMER_KEY, etc.) into conf.py from the Twitter
development page.

 Here is the code in IOTWeatherPi that does the temperature and humidity tweet
every 30 minutes:

 # every 30 minutes, check wifi connections and tweet

 if ((secondCount % (30*60)) == 0):
 # print every 900 seconds
 WLAN_check()

 # send tweet
 tweetString = "OutsideTemp: %0.1fC OutsideHum: %0.1f%%

Wind: %0.1fKPH" % (outsideTemperature, outsideHumidity,
currentWindSpeed * 1.6)

 twitter.sendTweet(twitterObject, tweetString)

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

102

 And the lightning warning tweet:

 twitter.sendTweet(twitterObject, "IOTWeatherPi Lightning Detected"
+ str(distance) + "km away.")

 Now your IOTWeatherPi is connected to Twitter. Next, we will set up the
IOTWeatherPi to text us the same information.

 Texting Your Weather Data
 Texting from your WeatherPi is much simpler than even tweeting. The key is to figure
out what carrier you are texting to and incorporate the gateway in your e-mail address
(Table 3-5).

 Table 3-5. Text Messaging E-Mail Addresses

 Carrier E-Mail to SMS gateway

 Alltel [insert 10-digit number] @message.alltel.com

 AT&T [insert 10-digit number] @txt.att.net

 Boost Mobile [insert 10-digit number] @myboostmobile.com

 Sprint [insert 10-digit number] @messaging.sprintpcs.com

 T-Mobile [insert 10-digit number] @tmomail.net

 US Cellular [insert 10-digit number] @email.uscc.net

 Verizon [insert 10-digit number] @vtext.com

 Virgin Mobile [insert 10-digit number] @vmobl.com

 More carriers and gateways are listed here [citation https://en.wikipedia.org/
wiki/SMS_gateway]

 The code for texting is thus the same as the code for sending e-mails.
 Here is the code for sending e-mails in IOTWeatherPi:

 def sendEmail(source, message, subject, toaddress, fromaddress, filename):
 # if conflocal.py is not found, import default conf.py

 # Check for user imports
 try:
 import conflocal as conf
 except ImportError:
 import conf

 # Import smtplib for the actual sending function
 import smtplib

http://www.digitaltrends.com/mobile/
http://www.verizonwireless.com/
https://en.wikipedia.org/wiki/SMS_gateway
https://en.wikipedia.org/wiki/SMS_gateway

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

103

 # Here are the email package modules we'll need
 from email.mime.image import MIMEImage
 from email.mime.multipart import MIMEMultipart
 from email.mime.text import MIMEText

 COMMASPACE = ', '

 # Create the container (outer) email message.
 msg = MIMEMultipart()
 msg['Subject'] = subject
 # me == the sender's email address
 # family = the list of all recipients' email addresses
 msg['From'] = fromaddress
 msg['To'] = toaddress
 #msg.attach(message)

 mainbody = MIMEText(message, 'plain')
 msg.attach(mainbody)

 # Assume we know that the image files are all in PNG format
 # Open the files in binary mode. Let the MIMEImage class

automatically
 # guess the specific image type.
 if (filename != ""):
 fp = open(filename, 'rb')
 img = MIMEImage(fp.read())
 fp.close()
 msg.attach(img)

 # Send the email via our own SMTP server.

 try:
 # open up a line with the server
 s = smtplib.SMTP("smtp.gmail.com", 587)
 s.ehlo()
 s.starttls()
 s.ehlo()

 # login, send email, logout
 s.login(conf.mailUser, conf.mailPassword)
 s.sendmail(conf.mailUser, toaddress, msg.as_string())
 #s.close()

 s.quit()

 except:

 print("sendmail exception raised")
 return 0

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

104

 Figure 3-24. A Lightning Storm Moves by SwitchDoc Labs

 Note that the addresses for to and from are defined in conf.py along with the Twitter
information.

 And here is the single line of code to send a lightning warning text message:

 sendemail.sendEmail("test", "IOTWeatherPi Lightning Detected\n",
as3935LastStatus, conf.textnotifyAddress, conf.textfromAddress, "");

 Figure 3-24 shows that a set of text messages was delivered to me in Curacao from
3,500 miles away from our IOTWeatherPi at SwitchDoc Labs .

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

105

 Supplying Your Data to the World - CWOP
 There are a number of web sites and companies that would love you to send them your
weather data. Two of these are CWOP and WeatherUnderground. For the purposes of this
project, we will send the data to CWOP (Citizens Weather Observation Program).

 CWOP
 The Citizen Weather Observer Program (CWOP) is a network of privately owned
electronic weather stations concentrated in the United States but also located in over 150
countries. Network participation allows volunteers with computerized weather stations to
send automated surface weather observations to the National Weather Service. This data
is then used by the Rapid Refresh forecast model to produce short-term forecasts (3 to 12
hours into the future) of conditions across the United States' lower 48 states .

 CWOP Observations are also redistributed to the public.
 The CWOP was originally set up by amateur radio operators experimenting with

 packet radio , but now contains a majority of Internet-only connected stations. As of July
2015, more than 10,000 stations worldwide report regularly to the CWOP network.

 CWOP Software Interface to IOTWeatherPi
 When you talk to the CWOP server , you use a protocol called APRS (Automatic Packet
Reporting System).

 APRS was originally an amateur radio-based system for real-time communications
of information of immediate value in the local area. Now it is used in a number of
applications where data packets need to be disseminated to multiple locations.

 The software that I am using in this project is based on the excellent work of Tom
Hayward and his pywxtd project [https://github.com/kd7lxl/pywxtd] . We have
removed the weather station parsing code and the daemon code and are just using the
APRS libraries to send the data to CWOP.

 CWOP Software
 The CWOP software reads data from the IOTWeather station and sends an APRS packet
to the CWOP servers with our current weather data .

 First is the post_CWOP code used to send the packet to the CWOP servers. We install
the CWOP code in the main IOTWeatherPi loop to fire every 15 minutes:

 # every 15 minutes, build new graphs

 if ((secondCount % (15*60)) == 0):
 # print every 900 seconds
 sampleWeather()
 sampleSunAirPlus()
 doAllGraphs.doAllGraphs()
 # send our CWOP data

https://en.wikipedia.org/wiki/Weather_station
https://en.wikipedia.org/wiki/Rapid_Refresh
https://en.wikipedia.org/wiki/Contiguous_United_States
https://en.wikipedia.org/wiki/Packet_radio
https://github.com/kd7lxl/pywxtd]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

106

 # wind direction - degrees from true north
 # wind speed - integer MPH
 # wind gust - integer MPH
 # temperature - degrees F
 # rain since midnight - hundredths of inches
 # humidity - % where 100% = 00
 # pressure - 5 numbers in tenths of millibars

 CWOP.post_CWOP(wind_dir=currentWindDirection, wind_
speed=currentWindSpeed, wind_gust=currentWindGust, temperat
ure=CtoFInteger(outsideTemperature), rain_since_midnight=0,
humidity=convertHumidity(outsideHumidity), pressure=int(bmp1
80SeaLevel*100+0.5))

 Next, we have the code we use to construct the CWOP APRS packets :

 #!/usr/bin/env python

 # SwitchDoc Labs
 # July 24, 2015
 # Version 1.0

 """
 initially from Tom Hayward
 builds and submits an
 APRS weather packet to the APRS-IS/CWOP.
 BSD License and stuff
 Copyright 2010 Tom Hayward <tom@tomh.us>
 """
 import sys, os, time
 from datetime import datetime, timedelta

 from socket import *

 sys.path.append('..')

 # Check for user imports
 try:
 import conflocal as conf
 except ImportError:
 import conf

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

107

 def make_aprs_wx(wind_dir=None, wind_speed=None, wind_gust=None,
temperature=None, rain_since_midnight=None, humidity=None, pressure=None):
 """
 Assembles the payload of the APRS weather packet .
 """
 def str_or_dots(number, length):
 """
 If parameter is None, fill space with dots. Else, zero-pad.
 """
 if number is None:
 return '.'*length
 else:
 format_type = {
 'int': 'd',
 'float': '.0f',
 }[type(number).__name__]
 return ''.join(('%0',str(length),format_type)) % number

 timeStringZulu = time.strftime("%d%H%M")
 return '@%sz%s/%s_%s/%sg%st%sP%sh%sb%s%s' % (
 timeStringZulu,
 conf.STATIONLATITUDE,
 conf.STATIONLONGITUDE,
 str_or_dots(wind_dir, 3),
 str_or_dots(wind_speed, 3),
 str_or_dots(wind_gust, 3),
 str_or_dots(temperature, 3),
 str_or_dots(rain_since_midnight, 3),
 str_or_dots(humidity, 2),
 str_or_dots(pressure, 5),
 conf.STATION_TYPE
)

 def post_CWOP(wind_dir=None, wind_speed=None, wind_gust=None,
temperature=None, rain_since_midnight=None, humidity=None, pressure=None):

 # post to aprs
 wx = make_aprs_wx(wind_dir=wind_dir, wind_speed=wind_speed, wind_
gust=wind_gust, temperature=temperature, rain_since_midnight=rain_since_
midnight, humidity=humidity, pressure=pressure)

 print time.strftime("%Y-%m-%d %H:%M:%S"), wx

 send_aprs(conf.APRS_HOST, conf.APRS_PORT, conf.APRS_USER, conf.
APRS_PASS, conf.CALLSIGN, wx)

 return

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

108

 Example CWOP Packet
 I had a difficult time figuring out exactly what format of APRS to send. Here is an example
of the actual packets we send:

 EW7667>APRS,TCPIP:@251954z4739.22N/11705.11W_158/004g006t076P000h49b01015IO
TWeatherPi

 Results
 Here is the packet and data as received by the CWOP server rom IOTWeatherPi (our
CWOP registration number is EW7667). Now we are connected to the IOT for weather
stations!

 Here are some of the recorded packets from finds.com:

 EW7667>APRS,TCPXX*,qAX,CWOP-3:@252056z4739.22N/11705.11W_045/009g013t075P000
h46b10147IOTWeatherPi
 EW7667>APRS,TCPXX*,qAX,CWOP-3:@252116z4739.22N/11705.11W_045/010g036t077P000
h44b10146IOTWeatherPi
 EW7667>APRS,TCPXX*,qAX,CWOP-3:@252135z4739.22N/11705.11W_045/008g006t077P000
h42b10143IOTWeatherPi

 When you have collected a lot of data, findu.com will display some cool graphs as
shown in findu.com . See Figure 3-25 [www.findu.com/cgi-bin/wxpage.cgi?call=EW766
7 & last=48 & radar =***] .

http://findu.com/
http://findu.com/
http://www.findu.com/cgi-bin/wxpage.cgi?call=EW7667&last=48&radar
http://www.findu.com/cgi-bin/wxpage.cgi?call=EW7667&last=48&radar

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

109

 Figure 3-25. Example of Fully Populated Weather Site EW7666

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

110

 It is amazing what you can do with hardware such as the Raspberry Pi and off-the-
shelf sensors to sense the environment. With a CPLPFC rating of 6, IOTWeatherPi is
probably not a commercially deployable system in the IOT, but it is a great base unit to
experiment with and get familiar with hardware and software for the IOT.

 Here are some additional ideas for projects based on IOTWeatherPi:

• Replacing the WiFi with a GSM data connection - This would use
the Cellular Data Network for communications.

• Make a custom Facebook posting with your weather - This would use
the Facebook API to make automated postings, much like Twitter.

 Conclusion
 In Figure 3-26 , we show the IOTWeatherPi with the optional Lightning Pylon out in the wild
[www.instructables.com/id/Lightning-Detector-for-Raspberry-Pi-WeatherPi-Weat/] .

 Figure 3-26. IOTWeatherPi Deployed

http://www.instructables.com/id/Lightning-Detector-for-Raspberry-Pi-WeatherPi-Weat/]

CHAPTER 3 ■ BUILDING A SOLAR POWERED IOT WEATHER STATION

111

• Adding a GPS receiver and storing that data. You now have a
mobile weather station! When it gets back to WiFi, all the stored
data will be available. You could tweet your location and the local
conditions on the fly with a GSM connection.

• Adding additional air quality sensors, UV sensors, dust sensors.
You have a lot of input / output pins and I2C addressing space
that you can fill with more interesting sensors.

 The main power expense in IOTWeatherPi is the Raspberry Pi. By replacing the
Raspberry Pi with a small Arduino (and dramatically reducing the functionality -
Arduinos aren’t anywhere near as powerful as the combination of the Raspberry Pi and
Linux), you could improve your CPLPFC rating substantially.

 Next? We move on to using the Raspberry Pi to detect iBeacons and figure out where
you are when you carry the RaspberryPi around with you. With IOTBeaconAir, we will
modify the lights using Philips Hue lights to light your way.

113© John C. Shovic 2016
J. C. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3_4

 CHAPTER 4

 Changing Your Environment
with IOT and iBeacons

 Chapter Goal: Gather Location Data on Your IOT device: Locate Where You Are and
Deliver Location Dependent Data and Conduct Actions on Where You Are

 Topics Covered in This Chapter:

• iBeacons and how can you use them

• Detecting and reading iBeacons from the Raspberry Pi

• Finding your location – Trilateralization in a fuzzy world

• Displaying your Location on a Control Panel

• Turning lights off and on by your location

 In Chapter 3 , you saw a flexible, solar powered system to deliver data to the IOT
(in this case including the National Oceanic and Atmospheric Administration (NOAA)
through the weather interface, CWOP. IOTWeatherPi delivered a lot of information on a
regular basis.

 In this chapter, we take our new IOT device, IOTBeaconAir, to another level. Now we
are collecting less information (and even sending less to the IOT), but we are taking data
on the environment (where you are) and using it to change the environment (the amount
of lighting where you are). This takes us to quite another level of interaction with the IOT.

 The IOTBeaconAir
 IOTBeaconAir is a portable Raspberry Pi based project that reads the “advertising”
packets emitted by iBeacons, roughly calculates your position, and then turns on lights
that are close to you. The Pi then calculates the brightness based on just how close you
are. The idea is that you can walk around your house with your Pi and the lights will
follow you.

 In other words, I am using iBeacons to figure out where my portable Pi is physically
located (in a pouch on my hip as I walk around the house) and then I control various
devices with the Pi.

http://dx.doi.org/10.1007/978-1-4842-1377-3_3

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

114

 The unique aspect of IOTBeaconAir versus the many other extant Pi based iBeacon
projects is that I am not programming the Raspberry Pi to be an iBeacon; I am doing the
opposite. I am using the Pi to read other iBeacons. I am using specialized iBeacons in this
project, but you could also build your own iBeacons out of Raspberry Pi's and then read
them via Bluetooth with this project.

 This project is based around a portable Raspberry Pi ModelB connected with
a Bluetooth 4.0 USB dongle and a Wi-Pi Wireless USB dongle. The completed
IOTBeaconAir Portable Pi project is shown in Figure 4-1 .

 Figure 4-1. IOTBeaconAir Portable Pi

 IOT Characterization of This Project
 As I discussed in Chapter 1 , the first thing to do to understand an IOT project is to
look at our six different aspects of IOT. IOTBeaconAir is a much simpler project than
IOTWeatherPi. Table 4-1 shows our six components.

http://dx.doi.org/10.1007/978-1-4842-1377-3_1

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

115

 Ratings are from 1–10, 1 being the least suitable for IOT and 10 being the most
suitable for IOT applications.

 This gives us a CPLPFC rating of 5.8, a little less than IOTWeatherPi (6). Great for
learning, not so good for deployment for most applications.

 No doubt about it, the Raspberry Pi is a very flexible and powerful IOT platform.
However, the power consumption, cost, and physical size of the device make it more
suitable for prototyping or for stand-alone highly functional IOT units.

 How Does This Device Hook Up to the IOT?
 With IOTBeaconAir, like the previous chapter, we have a lot of options. We can hook up
to the Internet using the WiFi connector. We can use the Bluetooth to hook up to local
devices, and we can also use the WiFi in AdHoc mode to make local connections. In this
chapter, we will be using the WiFi interface to talk to the wider world of IOT devices.

 Hardware List
 Following is a list of the hardware you’ll need in order to build this project:

• Raspberry Pi Model B+

• Adafruit USB Battery Pack for Raspberry Pi - 10000mAh - 2 x 5V @ 2A

• Estimote Beacons Developer Kit

• KST Technologies Particle iBeacons

• IOGear Bluetooth 4.0 USB Micro Adapter - Model GBU521

• Wi-Pi Raspberry Pi 802.11n Wireless Adapter

 Table 4-1. Components of the IOTBeaconAir Project

 IOTBeaconAir Characterization (CPLPFC)

 Aspect Rating Comments

 Communications 9 WiFi connection to Internet - can do AdHoc mesh-type
communication and Bluetooth

 Processor Power 8 Raspberry Pi B+ / 256Mb RAM

 Local Storage 8 8GB of SD Card

 Power Consumption 1 ~300mA consumption - Not reasonable for small
batteries

 Functionality 8 Full Linux-based system. MySQL, etc.

 Cost 1 Expensive for many applications. Board is ~$25+

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

116

 iBeacons
 iBeacon is the Apple trademark for a low-powered Bluetooth device. An iBeacon is a
low-powered, low-cost transmitter that can notify nearby devices of their presence and a
rough approximation of range. There are a number of manufacturers that are producing
these devices and most smartphones (and Raspberry Pi's!) can be made to act as an
iBeacon. It uses Bluetooth Low Energy (BLE), also known as Bluetooth Smart iBeacons
can also be received on Bluetooth 4.0 devices that support dual mode (such as the IOGear
dongle specified above). Note that receiving iBeacons on a generic Bluetooth dongle can
be quite problematic. Stick with the IOGear Model GBU521 if you can.

 Applications of iBeacons include location-aware advertising, social media check-
ins, or notifications sent to your smartphone or Pi. An iBeacon transmits an advertising
packet containing an UDID (Unique Device Identifier) that identifies the manufacturer
and then a major and minor number that can be used to identify the specific device.
It also sends out an RSSI (Relative Signal Strength Indicator) that can be used to
approximate the distance to the iBeacon device.

 It is important to note that almost all the logic behind an iBeacon deployment is
through the supporting application on the device (a Raspberry Pi in our case). The only
role of the iBeacon is to advertise to the device of its own existence at a physical location.
In some cases, you can connect to an individual device through the iBeacon's GATT
(General ATTribute profile) although some iBeacons have a proprietary interface (like the
Estimote iBeacons) that prohibit this.

 This requirement of having the application device (like a smartphone or Raspberry
Pi) read and take actions on the position of the iBeacons remains a roadblock to
widespread adoption of iBeacons in the marketplace. Doing it any other way (say for the
iBeacons to detect your phone) is a big privacy concern and so things are likely to stay
this way for the foreseeable future. See Chapter 7 , “Computer Security and the IOT,” for a
number of reasons that this is a good thing.

 The iBeacons we used are shown in Figure 4-2 .

 Figure 4-2. iBeacons

http://dx.doi.org/10.1007/978-1-4842-1377-3_7

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

117

 I used two types of iBeacons: Estimote and KS Technologies Particles. Both worked
adequately with regard to receiving advertising packets, but the Estimote beacons have a
proprietary interface that makes it not Linux and Raspberry Pi friendly, so I recommend
the Particle iBeacons because you can read and write to the devices from the Raspberry
Pi. The Estimote only supports a proprietary SDK on Android and iPhone. Of course, you
can always roll your own iBeacon using a Raspberry Pi [www.wadewegner.com/2014/05/
create-an-ibeacon-transmitter-with-the-raspberry-pi/] . The Particle iBeacon is
shown in Figure 4-3 .

 Figure 4-3. Inside of a Particle iBeacon

http://www.wadewegner.com/2014/05/create-an-ibeacon-transmitter-with-the-raspberry-pi/]
http://www.wadewegner.com/2014/05/create-an-ibeacon-transmitter-with-the-raspberry-pi/]

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

118

 There are four major pieces of software in IOTBeaconAir: the Bluetooth iBeacon
Scanner, the Philips Hue interface, the main IOTBeaconAir software, and the
RasPiConnect Server software.

 Bluetooth iBeacon Scanner
 Technically, this was the most difficult part of the IOTBeaconAir system. The software
available to do this was not very reliable and did not produce the kind of information
I was interested in. Figure 4-4 shows the iBeacons near to my lab bench using the
BTLExplorer App on my iPhone from KS Technologies.

 Figure 4-4. BTLExplorer App Showing iBeacons

 Note that we are picking up on an Estimote beacon and two Particle beacons.
Interestingly enough, we are also picking up an Apple TV located about 40 feet away. I was
not aware that the Apple TV was broadcasting an iBeacon packet, but on checking it is used
for an undocumented way of setting up the Apple TV from your iPhone. The numbers don't
make a lot of sense in the iBeacon advertising packet, but that is a problem for another day.

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

119

 The biggest issue with this project was to be able to reliably read iBeacon data from
a Bluetooth Dongle (I'm using an IOGear Bluetooth 4.0 USB Micro Adapter - Model
GBU521). A number of the methods out there on the Web were less than satisfactory
(doing hcidump scans) and often ended up hanging the Bluetooth on the Pi, requiring a
reboot. Once I went to using my software library, I have zero hang-ups and the software
runs for days.

 iBeacons use Bluetooth Low Energy (BLE) protocols to communicate, which is
a relatively new type of Bluetooth and has spotty support. Finally I stumbled upon
a program using blueZ (Linux Bluetooth Library) native calls, which with a lot of
modifications, bug fixes, and cutting of code I didn't need, I had a iBeacon scanner that
worked every time. I have posted my working version on the SwitchDoc Labs github
(github.com/switchdoclabs/iBeacon-Scanner-) so you can download it and test your
setup.

 The blescan.py program is easy to test and use but requires some setup on the
Raspberry Pi. See the section below on installing all the required software on the
Raspberry Pi.

 Here is the output from the programming running in SwitchDoc Labs. We have a lot
of iBeacons sitting around.

 pi@BeaconAir ~/blescanner $ sudo python testblescan.py
 ble thread started

 cf:68:cc:c7:33:10,b9407f30f5f8466eaff925556b57fe6d,13072,52423,-74,-78
 cf:68:cc:c7:33:10,74696d6f74650e160a181033c7cc68cf,46608,13255,-52,-77
 da:f4:2e:a0:70:b1,b9407f30f5f8466eaff925556b57fe6d,28849,11936,-74,-79
 da:f4:2e:a0:70:b1,74696d6f74650e160a18b170a02ef4da,46769,28832,46,-78
 dd:5d:d3:35:09:dd,8aefb0316c32486f825be26fa193487d,1,1,-64,-78
 c3:11:48:9b:cf:fa,8aefb0316c32486f825be26fa193487d,0,0,-64,-73
 fd:5b:12:7f:02:e4,b9407f30f5f8466eaff925556b57fe6d,740,4735,-74,-79
 fd:5b:12:7f:02:e4,74696d6f74650e160a18e4027f125bfd,46820,639,18,-80
 dd:5d:d3:35:09:dd,8aefb0316c32486f825be26fa193487d,1,1,-64,-77

 We are finding eight different iBeacons, which matches the actual count. Before
you can do this, you need to install the latest version of bluez, the Bluetooth stack for the
Raspberry Pi (instructions below). Note: You could use apt-get, but the apt-get version is
old and has patchy support for iBeacons.

 Phillips Hue Lighting System
 The Phillips Hue lighting system is a Zigbee-based wireless way of controlling intensity,
color combinations, and on/off from a Phillips Hub based on your local network. The
standard apps for Android and iOS are very powerful, but for us Raspberry Pi people, the
best part is that Phillips has released the API for the hub for the DIY crowd. It's somewhat
expensive ($60/bulb) but robust and very easy to use and to hack. All commands are
sent via wireless or Ethernet to the Phillips Hue Hub and the Hub communicates to the
individual devices.

https://github.com/switchdoclabs/ibeacon-scanner-

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

120

 What Is Zigbee ?

 ZigBee is a joint specification for a suite of high-level communication protocols used to
create personal area networks built from small, low-power digital radios. In this regard, it is
very similar to Low Power Bluetooth. The transmission distance is limited to about 10–100
meters, depending on the power output and the transmission environment. The Phillips Hue
ZigBee devices work well within a house, but sometimes you will see lights jump on and off
the network in what seems to be humidity-related events. Given the frequencies and low-
power characteristics of ZigBee, this could certainly be the case.

 The ZigBee technology is meant to be simpler and less expensive than Bluetooth and
WiFi, not only in dollar cost, but also processor overhead to deal with the communications
channel. Just imagine what the processor has to do to interpret an incoming TCP/IP packet
and get to the user data. ZigBee can be used without the really “heavy” protocol stack to
communicate with local devices through a mesh network to reach more distant Zigbees
(see Chapter 6) and then pass to a “beefier” processor, such as a Raspberry Pi to send
information into the IOT on the Internet.

 ZigBee is typically used in low-data rate IOT applications that require long battery life (a
very important feature!) and secure networking. ZigBee networks are secured by 128-bit
symmetric encryption keys. See Chapter 7 for a discussion of encryption keys. ZigBee has
a defined rate of 250 kbit/s, which is not very fast for web access but you can send a lot of
data with that speed.

 The ZigBee name refers to the waggle dance of honey bees after their return to the beehive .

 Phillips Hue Hub
 The Phillips Hue hub communicates via authenticated JSON packets. There are a
number of Python packages designed for communication with the Phillips Hue Hub.
We chose to use one written by Studio Imaginaire (studioimaginaire.com/en) called
phue. It is a group of smart French people that did a great job producing the phue library.
Considering the IOTBeaconAir logo was designed in France, it seemed appropriate to use
this library. You can download it at github.com/studioimaginaire/phue . See installation
instructions below.

 Our test rooms for IOTBeaconAir has 10 Phillips Hue A19 Standard bulbs, 3 Phillips
Hue BR-30 down wash lights, and 2 Phillips Friends of Hue Bloom lights. It was expensive
but worth it (the A19 bulbs are $60 apiece, BR30 bulbs $60 apiece, and the Blooms are $80
apiece). These prices should decrease in the future.

http://dx.doi.org/10.1007/978-1-4842-1377-3_6
http://dx.doi.org/10.1007/978-1-4842-1377-3_7
http://studioimaginaire.com/en
https://github.com/studioimaginaire/phue

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

121

 BeaconAir Hardware, Software, and Configuration
 To work with the BeaconAir, you need to know about the hardware and software. You also
need to know about how the software is configured. The following subsections cover each
of these topics.

 BeaconAir Hardware Description
 The IOTBeaconAir hardware is pretty straightforward. We use a stock Raspberry Model
B+ with a Wi-Pi WiFi USB dongle and an IOGear Bluetooth 4.0 USB dongle. Everything
else is done in software. Figure 4-5 shows the system, as well as showing how iBeacons
that allow us to find the approximate physical position of our IOTBeaconAir Portable Pi.

 Figure 4-5. IOTBeaconAir System Diagram

 BeaconAir Software Description
 The IOTBeaconAir software consists of four major pieces. I have described the iBeacon
Scanner and the Phillips Hue Python library phue above. The two major pieces remaining
are the main program loop and the RasPiConnect Local.py / control panel.

 The IOTBeaconAir software block diagram is shown in Figure 4-6 .

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

122

 The main software runs in a loop, with a sleep of 0.25 seconds at the end. It checks
for two sources of work. First it checks a queue that is connected to the iBeacon Scanning
software running in a background thread. If the queue is empty, we have no new
iBeacon reports so we go down and check to see if there are commands waiting from the
RasPiConnect control panel.

 if (queueBLE.empty() == False):
 result = queueBLE.get(False)

 # process commands from RasPiConnect
 processCommand()

 If the queue has iBeacon results to deliver, we then go through the main loop and
process the iBeacon information, set various informational parameters, build the new
web page to deliver to RasPiConnect, and control the lights.

 I have removed the debugging information to make things clearer. All calculations
are done in meters and converted to pixels for display.

 The first thing we do is process the incoming iBeacon list to fill our beacon arrays.
We then clear out old values.

 Figure 4-6. IOTBeaconAir Software Block Diagram

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

123

 result = queueBLE.get(False)

 utils.processiBeaconList(result,currentiBeaconRSSI, currentiBeaconTimeStamp,
rollingiBeaconRSSI)
 utils.clearOldValues(10,currentiBeaconRSSI, currentiBeaconTimeStamp,rolling
iBeaconRSSI)

 Next we calculate the current IOTBeaconAir physical position but only if we have
greater than three beacons.

 # update position
 if (utils.haveThreeGoodBeacons(rollingiBeaconRSSI) >= 3):
 oldbeacons = beacons
 beacons = utils.get3ClosestBeacons(rollingiBeaconRSSI)
 if (cmp(oldbeacons, beacons) != 0):

 bubblelog.writeToBubbleLog("closebeacons:%i,%i,%i" % (beacons[0],
beacons[1], beacons[2]))
 myPosition = utils.XgetXYFrom3Beacons

(beacons[0],beacons[1],beacons[2], rollingiBeaconRSSI)

 I now have the latest calculated position. Next I calculate the jitter in the position.
A big value of jitter says either you are moving or there are significant amounts of noise in
the iBeacon reports or both.

 # calculate jitter in position
 jitter = (((lastPosition[0] - myPosition[0])/lastPosition[0]) +
((lastPosition[1] - myPosition[1])/lastPosition[1]))/2.0
 jitter = jitter * 100.0 # to get to percent
 lastPosition = myPosition

 Now I write out the jitter for RasPiconnect to read and send to the jitter graph on the
control panel.

 f = open("/home/pi/BeaconAir/state/distancejitter.txt", "w")

 f.write(str(jitter))
 f.close()

 Next I calculate the distance from my position to all the lights and then turn the light
on, change brightness, or turn it off depending on the distance.

 lights.checkForLightTrigger(myPosition, LIGHT_DISTANCE_SENSITIVITY,
LIGHT_BRIGHTNESS_SENSITIVITY, currentLightState)

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

124

 Next the web page is built for display on RasPiConnect.

 # build webpage
 webmap.buildWebMapToFile(myPosition, rollingiBeaconRSSI, currentLightState,
DISPLAY_BEACON_ON, DISPLAY_LIGHTS_ON)

 Finally, I update the current beacon count and build the graph for display on
RasPiConnect.

 # build beacon count graph

 iBeaconChart.iBeacondetect(rollingiBeaconRSSI)
 else:
 # lost position
 myPosition = [-myPosition[0], -myPosition[1]]

 That is the entire main program for IOTBeaconAir.
 Following is the full listing of the main program of IOTBeaconAir:

 #!/usr/bin/python

 # BeaconAir - Reads iBeacons and controls HUE lights
 # SwitchDoc Labs February 2016
 #
 #
 import sys
 import time
 import utils

 sys.path.append('./ble')
 sys.path.append('./config')

 # if conflocal.py is not found, import default conf.py

 # Check for user imports
 try:
 import conflocal as conf
 except ImportError:
 import conf

 import bleThread

 import lights
 import webmap
 import bubblelog
 import iBeaconChart

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

125

 from threading import Thread
 from Queue import Queue

 # State Variables

 currentiBeaconRSSI=[]
 rollingiBeaconRSSI=[]
 currentiBeaconTimeStamp=[]

 # Light State Variables

 currentLightState= []

 LIGHT_BRIGHTNESS_SENSITIVITY = 2.0
 LIGHT_DISTANCE_SENSITIVITY = 2.0
 BEACON_ON = True
 DISPLAY_BEACON_ON = True
 DISPLAY_LIGHTS_ON = True

 # init state variables
 for beacon in conf.BeaconList:
 currentiBeaconRSSI.append(0)
 rollingiBeaconRSSI.append(0)
 currentiBeaconTimeStamp.append(time.time())

 # init light state variables
 for light in conf.LightList:
 currentLightState.append(0)

 lights.initializeHue('192.168.1.6')

 lights.setInitialLightState(currentLightState)

 # recieve commands from RasPiConnect Execution Code

 def completeCommand():

 f = open("/home/pi/BeaconAir/state/BeaconAirCommand.txt", "w")
 f.write("DONE")
 f.close()

 def processCommand():
 global LIGHT_BRIGHTNESS_SENSITIVITY
 global LIGHT_DISTANCE_SENSITIVITY
 global BEACON_ON
 global DISPLAY_BEACON_ON
 global DISPLAY_LIGHTS_ON
 global currentLightState

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

126

 f = open("/home/pi/BeaconAir/state/BeaconAirCommand.txt", "r")
 command = f.read()
 f.close()

 if (command == "") or (command == "DONE"):
 # Nothing to do
 return False

 # Check for our commands

 print "Processing Command: ", command

 if (command == "BEACONON"):
 BEACON_ON = True
 completeCommand()
 return True

 if (command == "BEACONOFF"):
 BEACON_ON = False
 completeCommand()
 return True

 if (command == "ALLLIGHTSON"):
 lights.allLights(True, currentLightState)
 completeCommand()
 return True

 if (command == "ALLLIGHTSOFF"):
 lights.allLights(False, currentLightState)
 completeCommand()
 return True

 if (command == "BEACONON"):
 BEACON_ON = True
 completeCommand()
 return True

 if (command == "BEACONOFF"):
 BEACON_ON = False
 completeCommand()
 return True

 if (command == "DISPLAYBEACONON"):
 DISPLAY_BEACON_ON = True
 completeCommand()
 return True

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

127

 if (command == "DISPLAYBEACONOFF"):
 DISPLAY_BEACON_ON = False
 completeCommand()
 return True

 if (command == "DISPLAYLIGHTSON"):
 DISPLAY_LIGHTS_ON = True
 completeCommand()
 return True

 if (command == "DISPLAYLIGHTSOFF"):
 DISPLAY_LIGHTS_ON = False
 completeCommand()
 return True

 if (command == "UPDATESENSITIVITIES"):

 try:
 f = open("/home/pi/BeaconAir/state/

distanceSensitivity.txt", "r")
 commandresponse = f.read()
 LIGHT_DISTANCE_SENSITIVITY = float(commandresponse)
 f.close()
 except:
 LIGHT_DISTANCE_SENSITIVITY = 2.0

 try:
 f = open("/home/pi/BeaconAir/state/

brightnessSensitivity.txt", "r")
 commandresponse = f.read()
 f.close()
 LIGHT_BRIGHTNESS_SENSITIVITY = float(commandresponse)
 except:
 LIGHT_BRIGHTNESS_SENSITIVITY = 2.0
 print "LIGHT_DISTANCE_SENSITIVITY, LIGHT_BRIGHTNESS_
SENSITIVITY= ", LIGHT_DISTANCE_SENSITIVITY, LIGHT_BRIGHTNESS_SENSITIVITY
 completeCommand()
 return True

 completeCommand()
 return True

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

128

 # build configuration Table

 # set up BLE thread
 # set up a communication queue

 queueBLE = Queue()
 BLEThread = Thread(target=bleThread.bleDetect, args=(__name__,10,queueBLE,))
 BLEThread.daemon = True
 BLEThread.start()

 bubblelog.writeToBubbleLog("BeaconAir Started")

 # the main loop of BeaconAir
 myPosition = [0,0]
 lastPosition = [1,1]
 beacons = []
 while True:
 if (BEACON_ON == True):
 # check for iBeacon Updates
 print "Queue Length =", queueBLE.qsize()
 if (queueBLE.empty() == False):
 result = queueBLE.get(False)
 print "------"

 utils.processiBeaconList(result,currentiBeaconRSSI,
currentiBeaconTimeStamp,rollingiBeaconRSSI)

 utils.clearOldValues(10,currentiBeaconRSSI, currenti
BeaconTimeStamp,rollingiBeaconRSSI)

 for beacon in conf.BeaconList:
 utils.printBeaconDistance(beacon,

currentiBeaconRSSI, currentiBeaconTimeStamp,
rollingiBeaconRSSI)

 # update position
 if (utils.haveThreeGoodBeacons(rollingiBeaconRSSI)

>= 3):
 oldbeacons = beacons
 beacons = utils.get3ClosestBeacons(rollingi

BeaconRSSI)
 print "beacons=", beacons
 if (cmp(oldbeacons, beacons) != 0):

 bubblelog.writeToBubbleLog("close
beacons:%i,%i,%i" % (beacons[0],
beacons[1], beacons[2]))

 # setup for Kludge
 #rollingiBeaconRSSI[7] =

rollingiBeaconRSSI[6]

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

129

 myPosition = utils.getXYFrom3Beacon
s(beacons[0],beacons[1],beacons[2],
rollingiBeaconRSSI)

 print "myPosition1 = %3.2f,%3.2f" %
(myPosition[0], myPosition[1])

 #bubblelog.writeToBubbleLog("position
updated:%3.2f,%3.2f" % (myPosition[0],
myPosition[1]))

 # calculate jitter in position
 jitter = (((lastPosition[0] -

myPosition[0])/lastPosition[0]) +
((lastPosition[1] - myPosition[1])/
lastPosition[1]))/2.0

 jitter = jitter * 100.0 # to get to
percent

 lastPosition = myPosition
 print "jitter=", jitter

 f = open("/home/pi/BeaconAir/state/
distancejitter.txt", "w")

 f.write(str(jitter))
 f.close()

 for light in conf.LightList:
 lightdistance = utils.

distanceBetween
TwoPoints([light[2],light[3]],
myPosition)

 print "distance to light %i : %3.2f"
% (light[0], lightdistance)

 print "LIGHT_DISTANCE_SENSITIVITY, LIGHT_
BRIGHTNESS_SENSITIVITY= ", LIGHT_DISTANCE_
SENSITIVITY, LIGHT_BRIGHTNESS_SENSITIVITY

 lights.checkForLightTrigger(myPositi
on, LIGHT_DISTANCE_SENSITIVITY, LIGHT_
BRIGHTNESS_SENSITIVITY, currentLightState)

 print "DISPLAY_BEACON_ON, DISPLAY_LIGHTS_
ON", DISPLAY_BEACON_ON, DISPLAY_LIGHTS_ON

 # build webpage
 webmap.buildWebMapToFile(myPosition,

rollingiBeaconRSSI, currentLightState,
DISPLAY_BEACON_ON, DISPLAY_LIGHTS_ON)

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

130

 # build beacon count graph

 iBeaconChart.iBeacondetect(rollingiBeaconRSSI)
 else:
 # lost position
 myPosition = [-myPosition[0],

-myPosition[1]]

 #print currentiBeaconRSSI
 #print currentiBeaconTimeStamp

 # end of BEACON_ON - always process commands
 else:
 if (queueBLE.empty() == False):
 result = queueBLE.get(False)
 print "------"
 print "Beacon Disabled"
 # process commands from RasPiConnect

 processCommand()

 time.sleep(0.25)

 One very interesting part of IOTBeaconAir is building the HTML-based map showing
position, beacons, and lights.

 As I started this project, I felt that building this live map was going to be the
biggest problem. I looked at building a live map with Matplotlib on the Pi, but it was
computationally expensive and complicated. Then I looked at HTML drawing solutions
and I found that it was almost trivial to do so. I used a Remote Webview in RasPiConnect
for the control panel. Figure 4-7 shows the completed HTML map .

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

131

 To make this HTML map work, follow these steps:

 1. Build a JPEG with the plan of your office or house. I took a
picture of the house plans and then used GIMP [www.gimp.org]
to draw the walls on the JPEG and then remove the JPEG layer.
Worked like a champ. Then I had to measure a wall in meters
and use GIMP to measure the same wall in pixels, and I had
my meters to pixels constant (0.0375 m/px in my case). I put
the 0,0 point at the top of the JPEG and then x is positive going
to the right and y is positive down the left side.

 Figure 4-7. HTML House Map

http://www.gimp.org

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

132

 2. In the configuration file, figure out the positions x,y for each of
the lights and the beacon and put in the configuration file.

• Run the software. The resulting HTML code looks like the
 following :

 <html><head><title></title><style>body,html,iframe{margin:0;padding:0;}
 </style></head><body><div style='position: relative; left: 0; top: 0;'>
 <img src='http://example.example.com:9600/static/mainplanfull.png'
style='position: relative; top: 0; left: 0;'/>
 <img src='http://example.example.com:9600/static/iBeacon.png'
style='position: absolute; top: 490px; left: 299px;'/>
 <img src='http://example.example.com:9600/static/iBeacon.png'
style='position: absolute; top: 19px; left: 122px;'/>
 <img src='http://example.example.com:9600/static/iBeacon.png'
style='position: absolute; top: 127px; left: 122px;'/>
 <img src='http://example.example.com:9600/static/iBeacon.png'
style='position: absolute; top: 40px; left: 173px;'/>
 <img src='http://example.example.com:9600/static/iBeacon.png'
style='position: absolute; top: 118px; left: 183px;'/>
 <img src='http://example.example.com:9600/static/iBeacon.png'
style='position: absolute; top: 128px; left: 257px;'/>
 <img src='http://example.example.com:9600/static/iBeacon.png'
style='position: absolute; top: 418px; left: 300px;'/>
 <img src='http://example.example.com:9600/static/iBeacon.png'
style='position: absolute; top: 453px; left: 275px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 418px; left: 315px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 473px; left: 315px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 19px; left: 132px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 30px; left: 173px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 118px; left: 173px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 109px; left: 122px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 8px; left: 222px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 42px; left: 16px;'/>
 <img src='http://example.example.com:9600/static/OffLightBulb.png'
style='position: absolute; top: 98px; left: 16px;'/>
 <img src='http://example.example.com:9600/static/red-pin.png'
style='position: absolute; top: 378px; left: 217px;'/>
 </div></body></html>

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

133

 This works like a champ. I made my icons with transparent backgrounds (again
using GIMP) .

 BeaconAir Configuration File
 The IOTBeaconAir Configuration file needs to be set up before the system can be used. It
is located under config in the main directory. The three major parts of the configuration
file are the following:

 Scaling Factors
 Beacon Configuration
 Light Configuration

 The following declarations show two of the scaling factors used in the project:

 def pixelConv(pixels):
 return pixels * 0.0375 # in meters

 def meterToPixel(meters):
 return int(meters / 0.0375) # in pixels

 Our beacon configuration is accomplished as follows:

 # Beacon format:
 # BeaconNumber, LocalName, x, y, UDID, Major, Minor, Measured Power
(from spec), x in px, y in px
 # BeaconNumber is incremental from 0 up. Don't skip a number
 BeaconList=[]
 BeaconCount = 0

 Beacon = [BeaconCount,"Estimote #0 Beacon", pixelConv(314),
pixelConv(507), "b9407f30f5f8466eaff925556b57fe6d", 64507, 5414, -64,
314, 507]
 BeaconList.append(Beacon)
 BeaconCount += 1

 Finally, there is our light configuration:

 #list of lights
 #Light Format
 # LightNumber, LocalName, x, y, pixel x, pixel y, light on/off (1/0),
huelightnumber

 LightList=[]
 LightCount = 0
 Light = [LightCount, "Lab Left", pixelConv(330), pixelConv(435),330, 435,0, 2]
 LightList.append(Light)
 LightCount += 1

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

134

 You can get the Hue light number from the Phillips App under Light overview, or
you can write a short program (look at the phue examples) to get the dictionary from the
Phillips Hue Hub.

 iBeacon Software
 The iBeacons are problematic. They aren't very accurate and lots of different environmental
factors affect the RSSI (received power). If you have your IOTBeaconAir sensitivities
set high, you can sit in one place and watch the lights grow brighter and dimmer as the
received signals vary. It's kind of a visual map of the electromagnetic spectrum. Setting your
brightness sensitivities lower will increase the sensitivity, while the light range higher
clears this up.

 There are two functions used by IOTBeaconAir to determine position. First is the
calculation of distance from RSSI . We use a smoothing function on the received RSSI
values to reduce the jitter. For example:

 def calculateDistanceWithRSSI(rssi,beaconnumber):

 beacon = conf.BeaconList[beaconnumber];
 txPower = beacon[7]
 ratio_db = txPower - rssi;
 ratio_linear = pow(10, ratio_db / 10);
 r = pow(ratio_linear, .5);
 return r

 The result from this function is already scaled in meters.

 Trilateralization
 The second key piece is the calculation of position by using Trilateration. Trilateration
is the method of determining the position of a point, given the distance to three control
points. [citation: en.wikipedia.org/wiki/Trilateration].

 ■ SwitchDoc Note When you hear someone talking about detecting where something is
by measuring distance from points, they usually say “Triangulation” where they really mean
“Trilateration.” What is the difference? You use triangulation when you know the angle to an
object from two different sources. Then you can locate the object on a plane.

 In the case of iBeacons, all we know is the distance. We don’t know anything about
direction. We can use three distances (or iBeacons in this case) and fix the location of the
Raspberry Pi on a plane. It occurs to me that we could put a directional Bluetooth antenna
on a stepper motor and possibly use that to use triangulation, which means we would only
need two iBeacons to find our position, rather than three as in trilateration.

https://en.wikipedia.org/wiki/Trilateration]

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

135

 The purpose of the following getXYFrom3Beacons function is to take the information
from the three selected iBeacons found (a,b,c) and calculate the XY coordinates of your
IOTBeaconAir device.

 def getXYFrom3Beacons(beaconnumbera, beaconnumberb, beaconnumberc,
rollingRSSIArray):

 beacona = conf.BeaconList[beaconnumbera];
 beaconb = conf.BeaconList[beaconnumberb];
 beaconc = conf.BeaconList[beaconnumberc];
 xa = float(beacona[2])
 ya = float(beacona[3])
 xb = float(beaconb[2])
 yb = float(beaconb[3])
 xc = float(beaconc[2])
 yc = float(beaconc[3])

 ra = float(calculateDistanceWithRSSI(rollingRSSIArray[beaconnumbera],
beaconnumbera))

 rb = float(calculateDistanceWithRSSI(rollingRSSIArray[beaconnumberb],
beaconnumberb))

 rc = float(calculateDistanceWithRSSI(rollingRSSIArray[beaconnumberc],
beaconnumberc))

 S = (pow(xc, 2.) - pow(xb, 2.) + pow(yc, 2.) - pow(yb, 2.) +
pow(rb, 2.) - pow(rc, 2.)) / 2.0

 T = (pow(xa, 2.) - pow(xb, 2.) + pow(ya, 2.) - pow(yb, 2.) +
pow(rb, 2.) - pow(ra, 2.)) / 2.0

 try:
 y = ((T * (xb - xc)) - (S * (xb - xa))) / (((ya - yb) *

(xb - xc)) - ((yc - yb) * (xb - xa)))
 x = ((y * (ya - yb)) - T) / (xb - xa)

 except ZeroDivisionError as detail:
 print 'Handling run-time error:', detail
 return [-1,-1]

 point = [x, y]
 return point

 The IOTBeaconAir Control Panel
 The IOTBeaconAir control panel is built using an app called RasPiConnect (www.
milocreek.com). It allows me to build elaborate control panels on iPhones and iPads with
almost no coding and especially no coding at all on the iPad/iPhone. The response is good,
especially on a local network, and I get a lot of fun and colorful buttons and controls to use.
I have used this app on four projects now and I'm getting quite good at using it.

http://www.milocreek.com/
http://www.milocreek.com/

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

136

 The completed control panel is shown in Figure 4-8 .

 Figure 4-8. RasPiConnect Control Screen for IOTBeaconAir

 The right side of the control panel has to do with the HTML map and control of
the lights. The Remote Webview HTML control has already been discussed. The Green
logging box is a Bubble Talk control and can be set up to read periodically from the
server and write out logging information to the control panel. The code is contained in
bubblelog.py in the IOTBeaconAir directory. In the above example you can see the close
beacons drifting slightly, changing the ranking of which beacon is closest. Finally we see
that two lights are turned on (you can see the results in the house map). Below that is a
graph, showing how many beacons are being read. The above graph could happen if you
walked out of range of the beacons and then walked back into the range.

 The controls on the left side are used to set the distance in meters for which to turn
the lights on for and the second control sets the brightness of the light. For example,
you can set the brightness sensitivity to 1 meter and it will start getting bright at 1 meter
and grow brighter as you get closer. It would be easy to modify the software to change
the colors of the Phillips Hue bulbs according to distance or time of day. The graph on
the bottom of the right side is a Dynamic SparkLine control set to advance every time
(event driven) there is a change to the jitter value. You could also set it to a timed event,
which means it advances all the time and just adds new values as they come in from
IOTBeaconAir.

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

137

 The code for all of the buttons is quite similar. Pushing a button on the iPad sends
an HTML XML packet to the Raspberry Pi software, which then writes to a command file,
which IOTBeaconAir then picks up and executes the requested functions .

 In RasPiConnectServer (Local.py file) the block of code for the “All Lights On” button
(a Feedback Button – FB-2) is the following:

 # FB-2 - turns lights on and off
 if (objectServerID == "FB-2"):
 #check for validate request
 # validate allows RasPiConnect to verify this object is here
 if (validate == "YES"):
 outgoingXMLData += Validate.buildValidateResponse("YES")
 outgoingXMLData += BuildResponse.buildFooter()
 return outgoingXMLData

 # not validate request, so execute

 responseData = "XXX"

 if (objectName is None):
 objectName = "XXX"

 lowername = objectName.lower()

 if (lowername == "all lights on"):

 status = sendCommandToBeaconAirAndWait("ALLLIGHTSON")
 responseData = "all lights off"
 responseData = responseData.title()

 elif (lowername == "all lights off"):

 status = sendCommandToBeaconAirAndWait("ALLLIGHTSOFF")
 responseData = "all lights on"
 responseData = responseData.title()

 # defaults to on
 else:
 status = sendCommandToBeaconAirAndWait("ALLLIGHTSON")
 lowername = "all lights off"
 responseData = lowername.title()

 outgoingXMLData += BuildResponse.buildResponse(responseData)
 outgoingXMLData += BuildResponse.buildFooter()
 return outgoingXMLData

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

138

 When the button value comes (“all lights off”), the code compares it, sends a
command to IOTBeaconAir, and then toggles the value (“all lights on”) and sends it back
to the RasPiConnect App setting up the next button push (which will next turn all the
lights on). The rest of the code is boilerplate building the RasPiConnect XML request and
handling an error condition that sometimes happens (the button goes blank).

 The IOTBeaconAir code to handle the command file request is simple:

 if (command == "ALLLIGHTSON"):
 lights.allLights(True, currentLightState)
 completeCommand()
 return True

 if (command == "ALLLIGHTSOFF"):
 lights.allLights(False, currentLightState)
 completeCommand()
 return True

 All of the controls follow the same design pattern, although the graphing controls
are a bit more complicated. To follow any command through the system, figure out what
the control ID you are looking for is (FB-2 in our example above), and track it through
Local.py and then see what the command does in IOTBeaconAir.py. In some cases,
such as the graphs, IOTBeaconAir is building the graph data, writing it to a file, and then
RasPiConnectServer reads it in Local.py. The Remote Webview (the house map, W-10
is the object ID) is one of these controls that reads in a file generated by IOTBeaconAir.
py (see the software in webmap.py). The RasPiConnect XML configuration file for
IOTBeaconAir is on github.com/switchdoclabs.

 The last thing to note is how to build the cool IOTBeaconAir background on the
control panel screen. The trick is to build a JPEG or PNG file on any graphical app
(such as Grafio on the iPad[tentouchapps.com/grafio/] or GIMP), add it to the iPad
photo library, and then select the picture for the control panel background for the
IOTBeaconAir page in RaspiConnect. This gives you an instant professional-looking
background.

 Installing blueZ and phue on the Raspberry Pi
 Now it’s time to install blueZ and phue on the Pi. Be prepared. The installs will take a
while, too, especially the install of bluez. You can use the standard apt-get version of
blueZ, but the standard apt-get version is old and has patchy support for iBeacons.
Instead of using apt-get for the main blueZ package, we are downloading the source and
compiling it on the Raspberry Pi. All the commands for doing this are included in the
following steps. It is still a very good apt-get for the auxiliary package, which installs as
shown below.

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

139

 BlueZ
 To install blueZ on a Raspberry Pi 3 or an older version of the Pi running the new Jessie
distribution or newer distribution, run the following commands in a terminal window:

 sudo apt-get update && sudo apt-get upgrade

 sudo apt-get install libusb-dev
 sudo apt-get install libglib2.0-dev --fix-missing
 sudo apt-get install libudev-dev
 sudo apt-get install libical-dev
 sudo apt-get install libreadline-dev
 sudo apt-get install libdbus-glib-1-dev

 sudo apt-get install bluetooth bluez blueman

 sudo apt-get install python-bluez
 sudo shutdown -r now

 To install a new version of blueZ on the Pi on older versions of the Raspberry Pi
(RPi2 and before the Raspian Jessie distribution), do the following:

 sudo apt-get install libusb-dev
 sudo apt-get install libdbus-1-dev
 sudo apt-get install libglib2.0-dev --fix-missing
 sudo apt-get install libudev-dev
 sudo apt-get install libical-dev
 sudo apt-get install libreadline-dev

 sudo mkdir bluez
 cd bluez
 sudo wget www.kernel.org/pub/linux/bluetooth/bluez-5.19.tar.gz
 sudo gunzip bluez-5.19.tar.gz
 sudo tar xvf bluez-5.19.tar
 cd bluez-5.19
 sudo ./configure --disable-systemd
 sudo make
 sudo make install

 sudo apt-get install python-bluez

 sudo shutdown -r now

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

140

 Now you have bluez installed and running on your Raspberry Pi. Next install your
USB Bluetooth 4.0 Dongle and start the checkout. For example:

 pi@BeaconAir ~/BeaconAir/ble $ lsusb

 Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
 Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
 Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
 Bus 001 Device 004: ID 0a5c:21e8 Broadcom Corp.

 Note, your USB Bluetooth dongle should show up something like this depending on
what you have plugged into your USB bus. You can see a lot more information about the
USB device by typing this:

 sudo lsusb -v -d 0a5c:

 Now you can look for the Bluetooth device using hciconfig:

 pi@BeaconAir ~/BeaconAir/ble $ hciconfig
 hci0: Type: BR/EDR Bus: USB
 BD Address: 00:02:72:CC:DF:D1 ACL MTU: 1021:8 SCO MTU: 64:1
 UP RUNNING
 RX bytes:9071808 acl:0 sco:0 events:230151 errors:0
 TX bytes:1166 acl:0 sco:0 commands:100 errors:0
 Finally, turn on the device:

 pi@BeaconAir ~/BeaconAir/ble $ sudo hciconfig hci0 up

 And now run the blescanner (github.com/switchdoclabs/iBeacon-Scanner-)
command to see what iBeacons might be around you. If you don't have an iBeacon, you
can simulate it on with either your iPhone or Android phone with any number of apps on
the App Store.

 cd /home/pi/BeaconAir/ble

 pi@BeaconAir ~/ble $ sudo python testblescan.py
 ble thread started

 cf:68:cc:c7:33:10,b9407f30f5f8466eaff925556b57fe6d,13072,52423,-74,-78
 cf:68:cc:c7:33:10,74696d6f74650e160a181033c7cc68cf,46608,13255,-52,-77
 da:f4:2e:a0:70:b1,b9407f30f5f8466eaff925556b57fe6d,28849,11936,-74,-79
 da:f4:2e:a0:70:b1,74696d6f74650e160a18b170a02ef4da,46769,28832,46,-78
 dd:5d:d3:35:09:dd,8aefb0316c32486f825be26fa193487d,1,1,-64,-78
 c3:11:48:9b:cf:fa,8aefb0316c32486f825be26fa193487d,0,0,-64,-73
 fd:5b:12:7f:02:e4,b9407f30f5f8466eaff925556b57fe6d,740,4735,-74,-79
 fd:5b:12:7f:02:e4,74696d6f74650e160a18e4027f125bfd,46820,639,18,-80
 dd:5d:d3:35:09:dd,8aefb0316c32486f825be26fa193487d,1,1,-64,-77

https://github.com/switchdoclabs/ibeacon-scanner-

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

141

 The content of each line above is this:

 example: cf:68:cc:c7:33:10,b9407f30f5f8466eaff925556b57fe6d,
13072,52423,-74,-78
 Beacon MAC Address,iBeacon UDID, iBeacon Major Number, iBeacon Minor Number,
TX Power at 1m, RSSI

 Note that there are some odd devices above that are NOT my Estimote
(b9407f30f5f8466eaff925556b57fe6d) or Particle (8aefb0316c32486f825be26fa193487d)
iBeacons. The txPower for the Estimote and Particle devices behave correctly. The odd
devices have larger numbers or actually numbers that vary. Interesting information .

 phue
 The installation of phue on your Pi is simple. One approach is to execute the so-called
easy install. For example:

 sudo easy_install phue

 The alternative is to invoke pip as follows:

 sudo pip install phue

 Note that after the first time you run IOTBeaconAir on your Raspberry Pi, the phue
library will quit telling you that you need to push the Phillips Hue Hub button and rerun
the software. IOTBeaconAir will then be paired with the Phillips Hue Hub.

 RasPiConnectServer Startup
 Now that all the code has been installed for iBeaconIOT, you need to start up the code.
The startup procedure steps follow.

 Startup Procedure
 To start up IOTBeaconAir, you need to do three things.

 1. Turn on the Bluetooth dongle as follows:

 sudo hciconfig hci0 up

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

142

 2. Change to the IOTBeaconAir directory. Start up the
IOTBeaconAir python programming by invoking either

 sudo python IOTBeaconAir.py (in its own terminal window)

 or

 sudo nohup python IOTBeaconAir.py & (from the command line)

 3. Change to the RasPiConnectServer directory. Start the
RasPiConnectServer. You can execute either this command:

 sudo sh startserver.sh (in its own terminal window)

 or this one:

 sudo nohup sh startserver.sh & (from the command line)

 If you use nohup, you can close the terminal window and the program keeps running
in the background until you reboot or kill the program. All of the debug data goes into a
file nohup.out in the start directory. If you want to watch what is going on using nohup, go
to the program directory and type tail -f nohup.out on the command line .

 Making IOTBeaconAir Start on Bootup
 You can make IOTBeaconAir start when the Pi boots by editing /etc/rc.local. The /etc/
rc.local script is a script on the Raspberry Pi that runs when Linux first boots. To edit it,
you will need root privileges. Invoking the editor via sudo is the way to go here:

 sudo nano /etc/rc.local

 Then add the following lines to the rc.local file. Place the newly added
lines before the exit 0 statement.

 sudo hciconfig hci0 up

 date >> /var/log/RasPiConnectServer.log
 echo "Starting RasPiConnectServer…" >> /var/log/RasPiConnectServer.log
 nohup /home/pi/RasPiConnectServer/startserver.sh >>/var/log/
RasPiConnectServer.log 2>&1 &

 date >> /var/log/BeaconAir.log
 echo "Starting IOTBeaconAir.." >> /var/log/BeaconAir.log
 cd /home/pi/BeaconAir/
 nohup sudo python IOTBeaconAir.py >>/var/log/RasPiConnectServer.log 2>&1 &

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

143

 How It Works in Practice
 IOTBeaconAir does work. As I walk around with the IOTBeaconAir Portable Pi in a
fanny pack, the lights come on and off. I have published a video of the action on
 www.switchdoc.com .

 However, the iBeacons are not very reliable and will vary significantly just sitting in
one spot. You can watch the little red pin bounce around on the control panel. A lot could
be done to smooth this out by doing a little signal processing at the cost of response time.
It certainly makes an interesting demo to show people.

 Things to Do
 You can use the MQTT techniques of Chapters 5 and 6 to connect the IOTBeaconAir to an
external IOT Server or tweet your location as in Chapter 3 .

 One idea I had for another project revolving around iBeacons was to reverse the
system. Carry an iBeacon and build a mesh network of Raspberry Pi's all listening to the
iBeacon via my BLE scanner program and then communicating the RSSI information to
a central Pi that would figure out the location of the iBeacon and report it to the control
panel. Now granted, it's more expensive than buying a bunch of iBeacons and one Pi, but
it would have some really interesting data flows and the response time could be excellent.
It would be a lot better for the user as she would just have to carry a small iBeacon
in her pocket! Better for the fashion conscious than a fanny pack. Figure 4-9 shows
IOTBeaconAir installed in a very fashion-conscious fanny pack.

 Figure 4-9. IOTBeaconAir Ready to Walk

http://www.switchdoc.com/
http://dx.doi.org/10.1007/978-1-4842-1377-3_5
http://dx.doi.org/10.1007/978-1-4842-1377-3_6
http://dx.doi.org/10.1007/978-1-4842-1377-3_3

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

144

 The first thing I would add to this unit is the ability for the Raspberry Pi to sense the
light levels in the environment. Why turn the lights on if it is already bright in the room?

 The Classic Distributed System Problems
 Now I will talk about the classic problem with groups of IOT devices. What do you do if
two IOT units are telling your lights two different things? Who wins?

 If we were to build a bunch of these devices and put them on other members of the
household (other people or the cat), we now need to build an arbitration system. What do
I mean by that? We have to “arbitrate” the information coming in from the IOT devices. In
computer speak, a group of IOTBeaconAir units with no central coordinator becomes a
distributed system. From the Wikipedia definition of distributed systems [en.wikipedia.
org/wiki/Distributed_computing] , “A distributed system is a software system in which
components located on networked computers communicate and coordinate their actions
by passing messages. The components interact with each other in order to achieve a
common goal. Three significant characteristics of distributed systems are: concurrency of
components, lack of a global clock, and independent failure of components.” You can see
from this that any group of IOT devices fit within this definition.

 Since there is no global server for IOTBeaconAir, there is no mechanism currently
defined to handle arbitration of actions based on detection. In general, it is easier to
resolve these kinds of issues by using a global server. But, this makes your system more
susceptible to failure of the server. Group self-organization and group arbitration is a
better way to go, but it is much more complicated to design, implement, and test.

 Here are some of the questions to arbitrate once you have multiple IOT units of
IOTBeaconAir:

• Which IOTBeaconAir turns the lights on?

• Which IOTBeaconAir turns the lights off?

• How do you handle one person leaving the room?

• How do you rank the IOTBeaconAir units to one another? Is the
cat on the bottom or top of the priority list?

• How do you handle people turning lights on or off by hand?

• How do you detect a person sitting down to read versus walking
through the house?

 And the list goes on. Any time you put more than one IOT device in control of
anything physical at all, things can get very complicated.

https://en.wikipedia.org/wiki/Distributed_computing]
https://en.wikipedia.org/wiki/Distributed_computing]

CHAPTER 4 ■ CHANGING YOUR ENVIRONMENT WITH IOT AND IBEACONS

145

 Conclusion
 In Chapter 3 , we built an IOT Weather device that generated and supplied information
to the rest of the Internet. In this chapter you saw how IOTBeaconAir reverses that. It
gathers information from the IOT devices (iBeacons) around itself, and then modifies the
environment without going out to the Internet (or the wider IOT) at all. This is a much
more localized IOT application.

 In Chapter 6 , we’ll extend this idea further by building an RFID (Radio Frequency
IDentification) unit that will gather information from passive units (that are only
activated when they are being interrogated for information) and then do both major
functions. Send data to the Internet and modify the local environment.

 For all of the software, see the following:

 github/switchdoclabs/BeaconAirPython

 github/switchdoclabs/BeaconAirRasPiConnectLocal

 github/switchdoclabs/iBeacon-Scanner-

 For more on IOTBeaconAir and discussion: www.switchdoc.com

http://dx.doi.org/10.1007/978-1-4842-1377-3_3
http://dx.doi.org/10.1007/978-1-4842-1377-3_6
http://www.switchdoc.com/

147© John C. Shovic 2016
J. C. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3_5

 CHAPTER 5

 Connecting an IOT Device to
a Cloud Server - IOTPulse

 Chapter Goal: Build a Portable IOT Device for Reading Your Pulse

 Topics Covered in This Chapter:

• IOT on a Global Network

• Bluemix and the Internet Of Things

• The IOTPulse Design

• Building the IOTPulse Device

• Connecting and testing the hardware and software for IOTPulse

• Setting up IBM Bluemix and Connecting IOTPulse

• Examining Results and Advanced Features

 This chapter will show the reader how to connect an IOT device to a cloud server,
IBM Bluemix. The complexity in this chapter is not building the device, but rather
navigating the setup process for adding your device to the cloud.

 A major part of designing devices that will connect with the IOT is to determine
what to do with the data after you have gathered it. A huge amount of data and no way to
store it or analyze it is not very useful. An IOT project device generally is very CPU limited
and also only has a limited amount of storage available. You generally have to send the
data collected by a sensor-filled IOT device up to a bigger computer and storage cloud to
perform complex analysis and determine actions on that data.

 In this chapter, we are building a device to collect the pulse rate from a person, and
then periodically (every 10 seconds) send it up to a cloud-based storage and analysis
system called the IBM Bluemix IOT Foundation.

 Before we selected the IBM Bluemix for this chapter, we also looked at three other
providers. We determined that the Amazon IOT solution was too “heavy” for these small
devices because of the protocol and encryption required. The two other smaller vendors
were rejected because of length of time in existence and limited analysis functionality. It
should be pointed out that the smaller vendors had distinctly superior display capabilities
out of the box from either of the two majors.

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

148

 The IBM Bluemix system brought a good mix of flexible protocols, a “light” method
for sending data, and an amazing collection of analytical tools. Ramifications of the IBM
Bluemix methodology on encryption versus the Amazon IOT solution will be discussed in
Chapter 7 , “Computer Security and the IOT.”

 IOT Characterization of This Project
 As we discussed in Chapter 1 , the first thing to do to understand an IOT project is to look
at our six different aspects of IOT shown in Table 5-1 . IOTPulse is a more complex project
than LightSwarm and is much closer to a production IOT device.

 Table 5-1. IOTPulse Characterization (CPLPFC)

 Aspect Rating Comments

 Communications 9 WiFi connection to Internet -

 Processor Power 7 80MHz XTensa Harvard Architecture CPU, ~80KB
Data RAM / ~35KB of Instruction RAM / 200K ROM

 Local Storage 8 4MB Flash (or 3MB file system!)

 Power Consumption 8 ~200mA transmitting, ~60mA receiving, noWiFi
~15mA, Standby ~1mA

 Functionality 7 Partial Arduino Support (limited GPIO/Analog Inputs)

 Cost 9 < $10 and getting cheaper

 Ratings are from 1–10, 1 being the least suitable for IOT and 10 being the most
suitable for IOT applications.

 This gives us a CPLPFC rating of 8.0. Great for learning and experimenting, and it
could be deployed for some market applications.

 The ESP8266 provides a WiFi transmitter/receiver, a TCP/IP stack, and firmware to
support direction connections to a local WiFi access point, which then can connect to
the Internet. The data generated by the IOTPulse design will be sent to IBM’s Bluemix
Cloud IOT site.

 The Internet Of Things on the Global Network
 As was stated in the introduction, what do you do with all this data you are gathering?
Whether it is the age of your milk in the refrigerator, your current blood sugar or pulse
rate, or your home security system, the data needs to be stored and analyzed; or what is
the point of gathering it?

 Sometimes you don’t need to store the data. Sometimes the local devices can do
the necessary actions (like in the LightSwarm project in Chapter 2), but there are many
applications that require more computing resources than might be available among the
local IOT devices.

http://dx.doi.org/10.1007/978-1-4842-1377-3_7
http://dx.doi.org/10.1007/978-1-4842-1377-3_1
http://dx.doi.org/10.1007/978-1-4842-1377-3_2

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

149

 This is the situation that has led to the development of server-based (often on a
computing cloud) support software for the upcoming IOT explosion. In Chapter 2 , we
used a Raspberry Pi to gather the data from the LightSwarm and log the rather complex
behavior of the cooperative swarm itself for later analysis. If you have a thousand devices,
you most likely are not going to be able to host your server on a Raspberry Pi, which has
limited CPU power and storage. Another major problem with basing your system on
physical servers that you control (like Raspberry Pis, but also rack mount servers with
much larger CPU and memory capabilities) is that of scalability. If suddenly you have
10,000 devices connecting to your servers instead of 1,000 devices, you need to be able to
scale quickly and effectively.

 It is this realization that IOT systems need to scale quickly and efficiently that has
moved the IOT back-end applications into the realm of cloud computing. For an IOT
application, there are three main areas that need to be addressed. They are the following:
Cloud Computing, Application Builders, and Report and Generation software.

 Cloud Computing
 Cloud computing is evolving quickly to morph into more services, ubiquitous back
ends, high-speed network connectivity, and multiple languages and solutions. The
National Institute of Science and Technology (NIST) provides a document that defines
cloud computing for government purposes [http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf] . While parts of it are already outdated, it does give a
good base definition of cloud computing.

 NIST defines cloud computing as this: “Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction.”

 The essential characteristics of cloud computing are the following:

 1. On-Demand - User can provision computing services as
needed without requiring interaction with service provider.

 2. High Internet Connectivity - Cloud capabilities are available
over the network and accessed through mechanisms that
promote multiple platform usage (not just desktops, but many
other types of computers and devices).

 3. Ability to Pool Resources - Resources such as memory, CPU
power, and storage are pooled to support multiple users and
customers according to user demand.

 4. Rapid Scaling - Capabilities and resources can be provisioned
and released automatically or under user control. With the
proper system and software, the cloud can look to be virtually
unlimited to the user or application.

http://dx.doi.org/10.1007/978-1-4842-1377-3_2
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf]
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf]

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

150

 5. Ability to Limit (or Meter) Resources - A cloud will be able to
limit resources and optimize resource use at several levels of
abstraction.

 6. Ability to Charge for Service - A cloud service is able to
account for resource usage, be able to monitor those
resources, and report usage in a transparent manner for both
the supplier and the user of the system.

 Application Builders
 There is no way that a cloud provider can anticipate every application or use for data that
an IOT provider will need. A good cloud provider will support major types of databases
and a variety of standard software Application Programming Interfaces (APIs). It will
provide analytical tools for the data and a variety of different services for manipulating that
data. A cloud application (or cloud app) is a program that runs in a cloud environment. It
has some aspects of a pure local app (for an iPad or a desktop) and some aspects of a pure
web-based app. A local app will reside entirely on your local computer, while a web app
is generally stored entirely on a remote computer and is delivered via a browser interface.
There are web apps that are a hybrid (such as WebEx) that have a very light client on the
browser side (still an app, but a small one) that connects up via an API to a much more
complex program on the server side. The application builders in IBM Bluemix have a
heavier client (running the graphics and editing part of the application) and then deliver
the user design to the servers via an API.

 In the IOT world, an application often has both aspects, where the local computer
contains part of the application (say sensor data gathering) and the cloud contains the
back-end heavy metal processing for the full application. The IOTPulse project is one of
these mixed types of applications.

 Display and Report Generation
 Displaying pertinent information to the user about the user’s IOT devices and what
actions they are performing on the user’s behalf is an important aspect that will lead to
the adoption of widespread IOT applications. It is argued by some that it is important not
to overwhelm the user with data about what is going on. However, we believe that the
“overwhelming” part of the IOT can be handled with hierarchical interfaces. The top-most
level of the user interface may only display the very basic information needed by the user
(say temperature and furnace status). The author attended an early meeting on what was
to become the IOT at Microsoft in Redmond, Washington, and the speaker called the most
basic mode “Grandma Mode” because he felt there was a need to support substantially
every type of user that was going to be using the product with a simple interface.

 We felt this was true as far as it went, but with the IOT, the ability for a device and
software interface to show what is going on with the data being gathered is paramount.
A method and interface needs to be provided for the user to really drill down and look at
what is happening inside his network and device at several different levels. Not as part
of the “Grandma Mode” interface, but another set of interfaces that are accessible to any
user if the user should wish.

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

151

 Doing this hierarchical interface is a key part of establishing the necessary trust
between the user and the IOT device.

 A well-designed cloud-based application and report generation system needs to
provide the application developer many different ways of analyzing the data, acting on
the data, and displaying the data. The cloud developer will never be able to supply all the
possible build interfaces that the app developer will need for every application.

 The IBM Bluemix Internet Of Things Solution
 Bluemix (Figure 5-1) is an IOT-focused implementation of IBM's Open Cloud
Architecture that enables you to create, deploy, and manage cloud applications for the
Internet Of Things.

 Figure 5-1. The IBM Bluemix Logo

 There is a growing ecosystem of runtime frameworks and services, including
non-IBM third-party solutions and applications. Bluemix provides a dashboard for you
to create, view, and manage your applications, IOT devices, and desired services The
Bluemix dashboards also provide the ability to manage organizations, spaces, and (very
importantly!) user access.

 We did find that the “dashboard” paradigm in the Bluemix system somewhat of a
misnomer and a bit confusing. Instead of having one dashboard, you have dashboards
for every service that you attach. It's easy to get lost in the sequence. But with some
perseverance we got through the learning curve.

 Bluemix provides access to a wide variety of services that can be incorporated into an
application from multiple vendors.

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

152

 For more complex applications than the IOTPulse device, you have a set of
application libraries that you can build your applications connecting to a variety of
databases functions and frameworks. Here are some of the more common ones:

• Node.js

• PHP

• Python

• Ruby

 All in all, Bluemix is a good implementation of a cloud-based IOT platform to build upon.
 Note that Bluemix is an evolving platform, and there will be changes going forward

in their product maturation process.
 There are many features that are free for prototypes (such as IOTPulse), and all of

the features mentioned in this chapter are free for use on Bluemix. Looking through
the paid services and rates, it seems that they are reasonable for both small and large
 applications .

 The IOTPulse Design
 The IOTPulse design consists of three blocks. The first block is the ESP8266 and the 9V
battery, which contains the computer; the WiFi interface; and a single Analog to Digital
Converter (ADC) pin, called A on the ESP8266 board and A0 inside the Arduino IDE
software. The ESP8266 is responsible for doing the signal processing and translation of
the incoming analog heartbeat signal to a digital heartbeats per minute (BPM) and then
will periodically send the latest BPM up to the Bluemix IOT cloud.

 The second block is the Pulse Sensor Amped, which is an open source hardware
design by www.pulsesensor.com . Figure 5-2 shows the schematic for the Pulse Sensor. The
key thing to take away from the pulse sensor is that it is designed to get an approximate
measure of heart rate through the skin in a non-invasive way. It works by shining a bright
green LED into your skin and then detecting the relative changes in light intensity to the
sensor. With a small amount of signal shaping, you can detect pulse rate via an analog
output signal.

 Figure 5-2. Schematic for the Pulse Sensor

http://www.pulsesensor.com/

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

153

 For more information on the technique, see photoplethysmogram [https://
en.wikipedia.org/wiki/Photoplethysmogram] .

 The third block is a resistor-based voltage divider. The issue that we are solving with
this voltage divider is that the signal output from the Pulse Sensor is about 1.5V and the
 ADC input on the ESP8266 only goes up to 1V. For a full description on how a voltage
divider works, check out the Wikipedia article [https://en.wikipedia.org/wiki/
Voltage_divider] .

 We need to take 1.5V down to about 0.6V for the ESP8266 and the software to work.
The Pulse Sensor provides a signal that on the average is about 1.5V, which is too high
for the ESP8266 ADC to work correctly. With the choice of a 26K Ohm resistor for R1 in
Figure 5-3 and an 18K Ohm resistor for R2 in Figure 5-3 , we get the following ratio of input
to output voltage:

 Vout = Vin * R2/(R1 + R2)

 Vout = 1.5V * 18K/(26K + 18K) = 0.6V

 Figure 5-3. Simple Voltage Divider

 The 0.6V is comfortably in the 0.0 - 1.0V range of the ESP8266 ADC and works
well. There is virtually no current drain through this voltage divider because of the high
resistance of the voltage divider (44K Ohms).

 Why does this work? It is because the software in the ESP8266 is calculating the
heartbeat by looking at relative changes in the light intensity and not the absolute voltage.
As long as the input value is changing, the ESP8266 will pick up the pulse.

https://en.wikipedia.org/wiki/Photoplethysmogram]
https://en.wikipedia.org/wiki/Photoplethysmogram]
https://en.wikipedia.org/wiki/Voltage_divider]
https://en.wikipedia.org/wiki/Voltage_divider]

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

154

 If we did not put the voltage divider on the output of the Pulse Sensor, then the
ADC in the ESP8266 would always be pegged to the highest level (1.0V) and the sensor
software would not be able to pick up a pulse.

 Because the ESP8266 ADC is so limited, there are better solutions out there for an
ADC. Two of the easier to use boards are these:

• Seeedstudio Grove I2C ADC – 1 channel, 12 bits (requires
5V – needs some help to work with the ESP8266)
[www.seeedstudio.com/wiki/Grove_-_I2C_ADC]

• SwitchDoc Labs Grove I2C ADC – 4 channels, 16 bits 3.3V/5V
compatible [www.switchdoc.com/grove-4-channel-16-bit-adc-
based-ads1115/]

 Figure 5-4 shows the block diagram, including the voltage divider, of the IOTPulse
project. The completed IOTPulse device, including the 3D Printed case is shown
in Figure 5-5 .

 Figure 5-4. Block Diagram of IOTPulse

http://www.seeedstudio.com/wiki/Grove_-_I2C_ADC
http://www.switchdoc.com/grove-4-channel-16-bit-adc-based-ads1115/
http://www.switchdoc.com/grove-4-channel-16-bit-adc-based-ads1115/

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

155

 Building the IOTPulse
 The parts list is shown in Table 5-2 , followed by the wiring list. The parts for the IOTPulse
device are readily available and only the voltage divider will require any soldering.

 Figure 5-5. IOTPulse in Case

 Table 5-2. Parts List

 Part Number Count Description Approximate
Cost per Board

 Source

 ESP8266
Huzzah Board

 1 CPU / WiFi board $10 http://www.adafruit.
com/products/2471

 Pulse Sensor
Amped

 1 I2C Light Sensor $25 www.Pulsesensor.com

 FTDI Cable 1 Cable for
programming the
ESP8266 from
PC/Mac

 $11 http://www.switchdoc.
com/inexpensive-ftdi-
cable-for-arduino-
esp8266-includes-usb-
cable/

(continued)

http://www.adafruit.com/products/2471
http://www.adafruit.com/products/2471
http://www.pulsesensor.com/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

156

 Figure 5-6. FTDI Cable Plugged into the Huzzah Board. Note GND Connection

 Part Number Count Description Approximate
Cost per Board

 Source

 26K Ohm
Resistor

 1 1/4 watt $17 for a large
mix of resistors
(Joe Knows
Electronics)

 http://amzn.
to/1QCASLB

 18K Ohm
Resistor

 1 1/4 watt $17 for a large
mix of resistors
(Joe Knows
Electronics)

 http://amzn.
to/1QCASLB

Table 5-2. (continued)

 Plugging the FTDI Cable into the ESP8266
 An FTDI cable is plugged into the end of the Adafruit Huzzah ESP8266. Make sure you
align the GND pin on the FTDI Cable with the GND pin on the ESP8266 breakout board
as shown in Figure 5-6 .

http://amzn.to/1QCASLB
http://amzn.to/1QCASLB
http://amzn.to/1QCASLB
http://amzn.to/1QCASLB

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

157

 Table 5-3 contains the wiring list for the IOTPulse project.

 Table 5-3. IOTPulse Wiring List

 From To Description

 ESP8266/GND PulseSensor / GND (Black Wire) Ground for Pulse Sensor

 ESP8266/3V PulseSensor / 3.3V (Red Wire) 3.3V Power for Pulse Sensor

 PulseSensor/Output
(Purple Wire)

 26K / Port A Top of the Resistor Divider

 26K/Port B 18K / Port A Middle of the Resistor Divider

 18K/Port A ESP8266 / GND Ground for bottom of Resistor
Divider

 26K/Port B ESP8266 / A0 A0 - Analog to Digital
Converter input on ESP8266

 3D Printing Files for the IOT Case
 Finding a case for a custom project can always be a problem. All of the projects in the chapters
have suggested using 3D Printing to build cases that fit the project, and the IOTPulse project
is no different. The most interesting part of this case is the way we designed a bevel that
goes around the base so the top case will snap onto the bottom case (Figure 5-7).

 Figure 5-7. IOT Case

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

158

 We have introduced openSCAD , a free code-based 3D Modeler in previous chapters.
There are hundreds of example models on Thingverse.com and the openSCAD web site
to choose from and to learn from. Listing 5-1 contains the code that builds the case shown
in Figure 5-7 .

 Listing 5-1. openSCAD code for the IOT Case

 //
 // IOTPulse Case
 //
 // SwitchDoc Labs
 // August 2015
 //

 include <RoundedRect.scad>

 module rcube(size=[30, 20, 10], radius=[3, 2, 1], center=true)
 hull() {
 translate(center ? [0,0,0] : size/2) {
 cube(size-2*radius+[2*radius[0],0,0],center=true);
 cube(size-2*radius+[0,2*radius[1],0],center=true);
 cube(size-2*radius+[0,0,2*radius[2]],center=true);

 for(x = [-0.5,0.5], y = [-0.5,0.5], z = [-0.5,0.5])
 translate([x * (size[0] - 2*radius[0]),
 y * (size[1] - 2*radius[1]),
 z * (size[2] - 2*radius[2])])
 scale([radius[0], radius[1], radius[2]])
 // sphere(1.0,$fn=4*4);
 sphere(1.0,$fn=6*6);
 }
 }

 module IOTPulseTopCase()
 {

 difference()
 {
 //cube([82,62,25]);

 rcube(size=[82,62,30],radius=[5,5,5],center=false);

 #translate([2,2,2])
 cube([78,58,25]);

 #translate([-10,-10,25])
 cube([100,100,50]);

 // hole for pulse meter 18mm

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

159

 translate([-5,62/2,12.5])
 #rotate([0,90,0])
 cylinder(h=10,r=10,10);

 // hole for seeing light
 #translate([82-20,10,-2])
 cylinder(h=10,r=5,10);

 // hole for seeing wifi light
 #translate([82-43,10,-2])
 cylinder(h=10,r=5,10);

 }

 }

 union()
 {

 cube([78,58,4]);
 translate([-2,-2,0])
 cube([82,62,2]);

 // Mount for Battery

 translate([40-2,2,0])
 cube([40-2,1.35,20]);
 translate([40-2,26.10+3.3,0])
 cube([40-2,1.5,20]);

 // lips for battery
 translate([79-2,3,0])
 cube([1,28,6]);

 // plyons for ESP8266

 translate([70-1.0,35,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-1.0,56,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-34,35,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-34,56,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);

 // plyons for resistors for divider

 // gap of 2.3mm

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

160

 translate([15,35,2])
 cube([1,5,5]);

 translate([15+3,35,2])
 cube([1,5,5]);

 translate([15,45,2])
 cube([1,5,5]);

 translate([15+3,45,2])
 cube([1,5,5]);

 // top case

 translate([0,70,0])
 IOTPulseTopCase();
 }

 The code for the IOTPulse case is broken into two main sections. The main program
builds the lower part of the case while the top of the case is located in the function
IOTPulseTopCase(). When building models with openSCAD, it is a good idea to break
different parts into functions even if you are only calling them once. It simplifies the code.
Now, let us look at the software for IOTPulse.

 Software Needed
 For you to program the IOT Pulse board you will need a Mac or PC to program the
ESP8266 via the Arduino IDE. See Chapter 2 for how to set up the Arduino IDE with the
ESP8266 libraries.

 The IOTPulse Code
 There are three files that are part of the build for the IOTPulse software. The IOTPulse.ino
is the main Arduino IDE file (in the C language), and the other two files (Interrupt.h and
AllSerialHandling.h) are included in the main file. While the code is fairly straightforward,
comments need to be made for each module.

 IOTPulse.ino
 IOTPulse.ino is the main program for IOTPulse (Listing 5-2). It consists of two major
functions, setup() and loop() . The setup() function initializes the ESP8266 WiFi code,
reads an IP address using DCHP from the local wireless access point, and initializes
variables for containing micros(), which is a function returning the number of
microseconds since the reboot of the ESP8266 micros() is a timekeeping function. Note
that the ESP8266 does not have a real-time clock on board and really doesn’t know what
time it is. It only knows how long it has been running. If you wish to set the time of day
in the ESP8266, please check out the NTP protocol in this Instructable[http://www.
instructables.com/id/Internet-time-syncronized-clock-for-Arduino/] .

http://dx.doi.org/10.1007/978-1-4842-1377-3_2
http://www.instructables.com/id/Internet-time-syncronized-clock-for-Arduino/]
http://www.instructables.com/id/Internet-time-syncronized-clock-for-Arduino/]

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

161

 In the IOTPulse project, we really don’t care what time it is. When we send a
sample to the Bluemix IOT Platform, our friend IBM will timestamp the reception of the
data. If we cared about our time, we could build an NTP receiver and synchronize it to
network time at a specific NTP server. We are much more interested in intervals of time
(specifically 2 milliseconds and 10 seconds intervals) rather than absolute time.

 The loop() function contains the code for ongoing operation of the IOTPulse data-
gathering operation. We basically do four things in the loop() function:

• We check the value of QS. If QS is true, then the software
in Interrupt.h has found a BPM (Beats Per Minute) and IBI
(Interval Between beats) value for the current pulse rate for our
PulseSensor connected to your ear.

• Next, if 10 seconds have elapsed (10,000,000 microseconds), we
send the current value of BPM and IBI up to the IBM Bluemix
IOT cloud. We then reset the time to wait for the next 10-second
interval, which is stored in the oldIOTTime variable. The actual
time for the next interval is oldIOTTime + 10 seconds (10,000,000
microseconds) .

• If 2 milliseconds have elapsed since oldPulseTime variable
(initialized in loop()), we call the timerCallback() function
defined in Interrupt.h. We then reset the oldPulseTime variable
and wait for another 2ms.

 Note at the end of the loop() function, there is a yield() function. This MUST be
called periodically for the ESP8266 software to continue running the WiFi interface and
other housekeeping functions. Remember, unlike a regular Arduino, there is a great deal
going on in the background to keep this chip running and connected to the network.

 One limitation of the current ESP8266 software is that you can’t use the timers
[http://www.switchdoc.com/2015/10/iot-esp8266-timer-tutorial-arduino-ide/] to
generate interrupts without causing the WiFi to fail and stop connecting to the local WiFI
access point and the Internet.

 This makes it very difficult to generate an interrupt to the computer every 2ms as
is called for by the PulseSensor. You could generate an interrupt every 2ms by using an
external hardware timer and then connecting the output of the hardware timer to one of
the GPIO pins on the ESP8266, which can all be programmed to generate an interrupt to
the CPU.

 To solve this issue, we use a scheduling technique that is more CPU intensive (read
uses more power) than the interrupt scheme. We check the time periodically and run the
PulseSensor software every 2ms and also connect to the IBM Bluemix every 10 seconds.

 The biggest disadvantage of this is that we cannot “sleep” the processor very easily.
We are looking for an alternative architecture for this problem and are watching the
ESP8266 development web sites for solutions.

 However, with the exception of power consumption, the current solution works well.

http://www.switchdoc.com/2015/10/iot-esp8266-timer-tutorial-arduino-ide/]

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

162

 Listing 5-2. IOTPulse.ino

 /*
 SwitchDoc Labs Code for IOT Pulse
 Connects Pulse detector to the IBM Bluemix IoT using a ESP8266 processor
 based on pulsecounting code from www.pulsesensor.com
 November 2015

 ---------------------- Notes ---------------------- ----------------------
 This code:
 1) Blinks an LED to User's Live Heartbeat PIN 0

 2) Determines BPM

 3) Sends information to the IBM Bluemix IOT
 */

 extern "C" {
 #include "user_interface.h"
 }
 #include <ESP8266WiFi.h>
 #include <PubSubClient.h> // https://github.com/knolleary/pubsubclient/
releases/tag/v2.3

 //--
 //Local WiFi Variables

 const char* ssid = "yourssid";
 const char* password = "yourpassword";

 #define IOTPULSEVERSION 004

 // IBM BlueMix IOT Foundation Data

 #define ORG "XXXXX"
 #define DEVICE_TYPE "IOTPulse-01"
 #define DEVICE_ID "1"
 #define TOKEN "YYYYYYYYY"

 // setup for IOT IBM

 char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
 char topic[] = "iot-2/evt/status/fmt/json";
 char authMethod[] = "use-token-auth";
 char token[] = TOKEN;
 char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

163

 //--

 // Variables
 int pulsePin = A0; // Pulse Sensor purple wire connected to

analog pin 0
 int blinkPin = 0; // pin to blink led at each beat
 int fadePin = 5; // pin to do fancy classy fading blink

at each beat
 int fadeRate = 0; // used to fade LED on with PWM on fadePin

 // Volatile Variables, used in the interrupt service routine!
 volatile int BPM; // int that holds raw Analog in 0.

updated every 2mS
 volatile int Signal; // holds the incoming raw data
 volatile int IBI = 600; // int that holds the time interval

between beats! Must be seeded!
 volatile boolean Pulse = false; // "True" when User's live heartbeat is

detected. "False" when not a "live beat".
 volatile boolean QS = false; // becomes true when Arduoino finds a beat.

 // Regards Serial OutPut -- Set This Up to your needs
 static boolean serialData = true; // Set to 'false' by Default. Re-set to

'true' to see Arduino Serial Monitor data

 #include "AllSerialHandling.h"
 #include "Interrupt.h"

 void callback(char* topic, byte* payload, unsigned int length) {
 Serial.println("callback invoked from IOT BlueMix");
 }

 WiFiClient wifiClient;
 PubSubClient client(server, 1883, callback, wifiClient);

 unsigned long oldPulseTime;
 unsigned long oldIOTTime;

 void setup() {

 pinMode(blinkPin, OUTPUT); // pin that will blink to your heartbeat!

 Serial.begin(115200); // we agree to talk fast!

 Serial.println("----------------");
 Serial.println("IOTPulse IBM Bluemix IOT");
 Serial.println("----------------");

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

164

 Serial.print("Connecting to ");
 Serial.print(ssid);

 // NOTE below: Newer versions of the ESP8266 Libraries may require the
following statement

 // instead of the other statement. WiFi.SSID() has changed definitions in
new versions

 // if (strcmp (WiFi.SSID().c_str(), ssid) != 0) {

 if (strcmp (WiFi.SSID(), ssid) != 0) {
 WiFi.begin(ssid, password);
 }
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");

 Serial.print("Local WiFi connected, IP address: ");
 Serial.println(WiFi.localIP());

 // interruptSetup(); // sets up to read Pulse Sensor
signal every 2mS

 // Note: Interrupts based on os_timer seems to break the ESP8266
WiFi. Moving to micros() polling methodology

 oldPulseTime = micros();
 oldIOTTime = micros();
 }

 int sampleCount = 0;
 int beatCount = 0;

 int beatValue = 0;
 unsigned long newPulseDeltaTime;
 unsigned long newIOTDeltaTime;

 // Where the Magic Happens
 void loop() {

 //serialOutput() ;

 if (QS == true) { // A Heartbeat Was Found
 // BPM and IBI have been Determined
 // Quantified Self "QS" true when arduino finds a heartbeat
 digitalWrite(blinkPin, LOW); // Blink LED, we got a beat.
 beatCount++;

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

165

 serialOutputWhenBeatHappens(); // A Beat Happened, Output that to serial.
 QS = false; // reset the Quantified Self flag for

next time
 }

 newPulseDeltaTime = micros() - oldPulseTime; // doing this handles the 71
second rollover because of unsighned arithmetic

 newIOTDeltaTime = micros() - oldIOTTime; // doing this handles the 71
second rollover because of unsighned arithmetic

 // do this every ten seconds
 if (newIOTDeltaTime > 10000000) // check for 10sec work to be done
 {

 Serial.print("IOT Delta time =");
 Serial.println(newIOTDeltaTime);
 sampleCount++;

 // Sending payload: {"d":{"IOTPulse":"IP1","VER":2"SC":0,"BPM":235,"IBI":252}}

 String payload = "{\"d\":{\"IOTPulse\":\"IP1\",";
 payload += "\"VER\":";
 payload += IOTPULSEVERSION;
 payload += ",\"SC\":";
 payload += sampleCount;
 payload += ",\"BPM\":";
 payload += BPM;
 payload += ",\"IBI\":";
 payload += IBI;
 payload += ",\"BC\":";
 payload += beatCount;
 payload += "}}";

 if (!!!client.connected()) {
 Serial.print("Reconnecting client to ");
 Serial.println(server);
 while (!!!client.connect(clientId, authMethod, token)) {
 Serial.print(".");
 delay(500);
 }
 Serial.println();
 }

 Serial.print("Sending IOTPulse payload: ");
 Serial.println(payload);

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

166

 if (client.publish(topic, (char*) payload.c_str())) {
 Serial.println("BlueMix IOT Publish ok");
 } else {
 Serial.println("BlueMix IOT Publish failed");
 }
 oldIOTTime = micros();

 // restart the pulse counter
 restartPulse();
 }

 //Serial.print("micros()=");
 //Serial.println(micros());

 if (newPulseDeltaTime > 2000) // check for 2ms work to be done
 {

 //Serial.print("Pulse Delta time =");
 //Serial.println(newPulseDeltaTime);
 // do the work for pulse calculation
 timerCallback(NULL);

 oldPulseTime = micros();
 }

 yield(); // take a break
 }

 AllserialHandling.h (Listing 5-3) contains the serial output debugging routines that
are useful when modifying the code.

 Listing 5-3. AllSerialHandling.h

 //////////
 ///////// All Serial Handling Code,
 ///////// It's Changeable with the 'serialVisual' variable
 ///////// Set it to 'true' or 'false' when it's declared at start of code.
 /////////

 void sendDataToSerial(char symbol, int data);

 void serialOutput() { // Decide How To Output Serial.

 sendDataToSerial('S', Signal); // goes to sendDataToSerial function
 }

 // Decides How To OutPut BPM and IBI Data
 void serialOutputWhenBeatHappens() {

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

167

 if (serialData == true) { // Code to Make the Serial Monitor
Visualizer Work

 Serial.print("*** Heart-Beat Happened *** "); //ASCII Art Madness
 Serial.print("BPM: ");
 Serial.print(BPM);
 Serial.print(" IBI: ");
 Serial.print(IBI);
 Serial.println(" ");
 }
 }

 // Sends Data to Pulse Sensor Processing App, Native Mac App, or Third-
party Serial Readers.
 void sendDataToSerial(char symbol, int data) {
 Serial.print(symbol);

 Serial.println(data);
 }

 Interrupt.h (Listing 5-4) is called this because the original PulseSensor software used
an Arduino timer to generate a 2ms interrupt. As is explained above, the ESP8266 is not
currently capable of doing the same thing while maintaining a functional WiFi interface.
The function timerCallback() in Interrupt.h is now called at a scheduled time by the
loop() function in the IOTPulse.ino file.

 Basically, timerCallback() acts as a detector and averaging filter that detects the
upswing on the PulseSensor output and then builds a set of times for IBI (Interval
Between beats) and provides an average. It adjusts to the recorded levels coming from
the PulseSensor because the actual level is not as important as the time interval between
adjusted pulses from the PulseSensor. The software acts as a peak and trough detector
with an average system that removes high-frequency noise.

 Listing 5-4. Interrupt.h

 volatile int rate[10]; // array to hold last ten IBI values
 volatile unsigned long sampleCounter = 0; // used to determine pulse timing
 volatile unsigned long lastBeatTime = 0; // used to find IBI
 volatile int P = 680; // used to find peak in pulse

wave, seeded 512
 volatile int T = 680; // used to find trough in pulse

wave, seeded 512
 volatile int thresh = 700; // used to find instant moment of

heart beat, seeded 525
 volatile int amp = 100; // used to hold amplitude of pulse

waveform, seeded
 volatile boolean firstBeat = true; // used to seed rate array so we

startup with reasonable BPM

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

168

 volatile boolean secondBeat = false; // used to seed rate array so we
startup with reasonable BPM

 void restartPulse()
 {

 sampleCounter = 0; // used to determine pulse timing
 lastBeatTime = 0; // used to find IBI
 P = 680; // used to find peak in pulse wave, seeded 512
 T = 680; // used to find trough in pulse wave, seeded 512
 thresh = 700; // used to find instant moment of heart beat,

seeded 525
 amp = 100; // used to hold amplitude of pulse waveform, seeded
 firstBeat = true; // used to seed rate array so we startup with

reasonable BPM
 secondBeat = false;

 }
 void timerCallback(void *pArg);

 // Timer makes sure that we take a reading every 2 miliseconds
 void timerCallback(void *pArg) { // triggered on interrupts
 //cli(); // disable interrupts while we

do this
 Signal = analogRead(pulsePin); // read the Pulse Sensor
 //Serial.print("Signal-A0-:");
 //Serial.println(Signal);

 sampleCounter += 2; // keep track of the time in
mS with this variable

 int N = sampleCounter - lastBeatTime; // monitor the time since the
last beat to avoid noise

 // find the peak and trough of the pulse wave
 if (Signal < thresh && N > (IBI / 5) * 3) { // avoid dichrotic noise by

waiting 3/5 of last IBI
 if (Signal < T) { // T is the trough
 T = Signal; // keep track of lowest point

in pulse wave
 }
 }

 if (Signal > thresh && Signal > P) { // thresh condition helps
avoid noise

 P = Signal; // P is the peak
 } // keep track of highest point

in pulse wave

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

169

 // NOW IT'S TIME TO LOOK FOR THE HEART BEAT
 // signal surges up in value every time there is a pulse
 if (N > 250) { // avoid high frequency noise
 if ((Signal > thresh) && (Pulse == false) && (N > (IBI / 5) * 3)) {
 Pulse = true; // set the Pulse flag when we

think there is a pulse
 digitalWrite(blinkPin, LOW); // turn on LED
 IBI = sampleCounter - lastBeatTime; // measure time between beats

in mS
 lastBeatTime = sampleCounter; // keep track of time for next

pulse

 if (secondBeat) { // if this is the second beat,
if secondBeat == TRUE

 secondBeat = false; // clear secondBeat flag
 for (int i = 0; i <= 9; i++) { // seed the running total to

get a realisitic BPM at startup
 rate[i] = IBI;
 }
 }

 if (firstBeat) { // if it's the first time we found
a beat, if firstBeat == TRUE

 firstBeat = false; // clear firstBeat flag
 secondBeat = true; // set the second beat flag
 //sei(); // enable interrupts again
 return; // IBI value is unreliable so

discard it
 }

 // keep a running total of the last 10 IBI values
 word runningTotal = 0; // clear the runningTotal variable

 for (int i = 0; i <= 8; i++) { // shift data in the rate array
 rate[i] = rate[i + 1]; // and drop the oldest IBI value
 runningTotal += rate[i]; // add up the 9 oldest IBI values
 }

 rate[9] = IBI; // add the latest IBI to the
rate array

 runningTotal += rate[9]; // add the latest IBI to
runningTotal

 runningTotal /= 10; // average the last 10 IBI values
 BPM = 60000 / runningTotal; // how many beats can fit into

a minute? that's BPM!
 // reduce to 83% based on comparison
 BPM= (BPM * 83)/100;
 QS = true; // set Quantified Self flag
 // QS FLAG IS NOT CLEARED INSIDE THIS ISR
 }
 }

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

170

 if (Signal < thresh && Pulse == true) { // when the values are going
down, the beat is over

 digitalWrite(blinkPin, HIGH); // turn off pin 13 LED
 Pulse = false; // reset the Pulse flag so we can

do it again
 amp = P - T; // get amplitude of the pulse wave
 thresh = amp / 2 + T; // set thresh at 50% of the amplitude
 P = thresh; // reset these for next time
 T = thresh;
 }

 if (N > 2500) { // if 2.5 seconds go by without
a beat
 thresh = 512; // set thresh default
 P = 512; // set P default
 T = 512; // set T default
 lastBeatTime = sampleCounter; // bring the lastBeatTime up to date
 firstBeat = true; // set these to avoid noise
 secondBeat = false; // when we get the heartbeat back
 }

 //sei(); // enable interrupts when youre done!
 }// end isr

 Reviewing the Arduino IDE Serial Monitor Results
 Listing 5-5 shows the output from the Serial Monitor on the Arduino IDE as you run the
software. Note that this code was run after joining the IBM Bluemix IOT as shown later in
this chapter. If you haven’t joined the Bluemix IOT yet, then you will see an “authentication
failed” error every time that the IOTPulse software tries to contact Bluemix.

 Listing 5-5. Serial Monitor Output

 IOTPulse IBM Bluemix IOT

 Connecting to gracie........
 Local WiFi connected, IP address: 192.168.1.117
 *** Heart-Beat Happened *** BPM: 92 IBI: 534
 *** Heart-Beat Happened *** BPM: 91 IBI: 630
 *** Heart-Beat Happened *** BPM: 92 IBI: 468
 *** Heart-Beat Happened *** BPM: 91 IBI: 590
 *** Heart-Beat Happened *** BPM: 92 IBI: 516
 *** Heart-Beat Happened *** BPM: 91 IBI: 548
 *** Heart-Beat Happened *** BPM: 91 IBI: 530
 *** Heart-Beat Happened *** BPM: 91 IBI: 556
 *** Heart-Beat Happened *** BPM: 91 IBI: 540
 *** Heart-Beat Happened *** BPM: 91 IBI: 530

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

171

 *** Heart-Beat Happened *** BPM: 90 IBI: 586
 *** Heart-Beat Happened *** BPM: 92 IBI: 538
 *** Heart-Beat Happened *** BPM: 90 IBI: 540
 *** Heart-Beat Happened *** BPM: 91 IBI: 564
 IOT Delta time =10000002
 Reconnecting client to 4183lj.messaging.internetofthings.ibmcloud.com
 .
 Sending IOTPulse payload: {"d":{"IOTPulse":"IP1","VER":4,"SC":1,"BPM":91,"I
BI":564,"BC":14}}
 BlueMix IOT Publish ok
 *** Heart-Beat Happened *** BPM: 87 IBI: 564
 *** Heart-Beat Happened *** BPM: 87 IBI: 574
 *** Heart-Beat Happened *** BPM: 87 IBI: 546
 *** Heart-Beat Happened *** BPM: 87 IBI: 566
 *** Heart-Beat Happened *** BPM: 87 IBI: 572
 *** Heart-Beat Happened *** BPM: 87 IBI: 584
 *** Heart-Beat Happened *** BPM: 87 IBI: 570
 *** Heart-Beat Happened *** BPM: 87 IBI: 582
 *** Heart-Beat Happened *** BPM: 87 IBI: 590
 *** Heart-Beat Happened *** BPM: 86 IBI: 582
 *** Heart-Beat Happened *** BPM: 86 IBI: 572
 *** Heart-Beat Happened *** BPM: 85 IBI: 610
 *** Heart-Beat Happened *** BPM: 85 IBI: 572
 IOT Delta time =10000009
 Reconnecting client to 4183lj.messaging.internetofthings.ibmcloud.com
 .
 Sending IOTPulse payload: {"d":{"IOTPulse":"IP1","VER":4,"SC":2,"BPM":85,"I
BI":572,"BC":27}}
 BlueMix IOT Publish ok
 *** Heart-Beat Happened *** BPM: 108 IBI: 456
 *** Heart-Beat Happened *** BPM: 106 IBI: 562
 *** Heart-Beat Happened *** BPM: 103 IBI: 568
 *** Heart-Beat Happened *** BPM: 101 IBI: 574
 *** Heart-Beat Happened *** BPM: 98 IBI: 576
 *** Heart-Beat Happened *** BPM: 96 IBI: 582

 Figure 5-8 shows the completed IOTPulse device in the case. Note the holes on the
top to view the LEDs on the ESP8266 board. Figure 5-9 shows the pulse sensor clipped on
an ear. Notice the green LED used for sensing the pulse rate in the ear.

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

172

 Figure 5-9. IOTPulse Sensor on Ear

 Figure 5-8. IOTPulse in Case

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

173

 Joining IBM Bluemix and the IoT Foundation
 The IBM BlueMix and the IoT Foundation are the two key IOT cloud services we will
be using to connect up the IOTPulse device to the cloud. The tasks that need to be
done to connect up mostly have to do with setting up user accounts and putting billing
information into the system. Note that we are using the free levels of the Bluemix system,
but IBM still requires billing information. The most important technical information we
will gather is how to authenticate our IOT device to the IBM cloud. Figure 5-10 describes
the overall architecture of the Bluemix/IoT Foundation cloud application.

 Figure 5-10. IBM Bluemix Block Diagram

 The IoT Foundation is the IBM Bluemix service that we will need to hook up the
ESP8266 to the Bluemix cloud service. You will need to create an IBM ID account. You can
do so on the Bluemix home page shown in Figure 5-11 .

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

174

 The steps to join IBM Bluemix are the following:

 1. Create an IBM ID account here ;

 2. Validate your account through the IBM sent e-mail;

 3. Go to the IBM Bluemix site and click Log In;

 4. Sign in on the login page;

 5. Go to the Bluemix Dashboard;

 6. Click USE SERVICES OR APIS;

 7. Add the Internet of Things Foundation Service (It is WAY
down at the bottom of the list on the web page).

 You should then have a screen similar to the one in Figure 5-12 , with the exception of
the “IoT Real-Time Insights” panel, which will be added to your Bluemix account later in
this chapter.

 Figure 5-11. IBM Bluemix First Page

https://www.ibm.com/account/profile/us?page=reg&okurl=www-947.ibm.com/FIM/sps/IBM_WWW_SAML20_EXTERNAL/saml20/logininitial?RequestBinding=HTTPPost&ResponseBinding=HTTPPost&NameIdFormat=Email&PartnerId=https://idaas.ng.bluemix.net/sps/saml20sp/saml20&failurl=https://idaas.ng.bluemix.net/idaas/public/tamlogin.jsp&cancelurl=https://idaas.ng.bluemix.net/idaas/public/tamlogin.jsp&lang=en_US
https://console.ng.bluemix.net/

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

175

 Figure 5-12. Bluemix Dashboard

 Sending your Data to Bluemix
 First of all, what do we send up to Bluemix from the ESP8266? It turns out the data
protocols are pretty straightforward There are two major protocols that require
descriptions.

 MQTT and JSON.

 MQTT
 MQTT is a publish-subscribe-based "light weight" messaging protocol for use on top
of the TCP/IP protocol, such as the WiFi packets that we are using in this project. It is
designed for connections with remote locations where a "small code footprint" is required
or the network bandwidth is limited. Both of these conditions are met with an ESP8266
IOT design, so it makes sense to use. There is also an excellent library available for MQTT
for the Arduino IDE [https://github.com/knolleary/pubsubclient] . The publish-
subscribe messaging pattern requires a message broker. The broker is responsible for
distributing messages to interested clients based on the topic of a message (Figure 5-13) .

https://github.com/knolleary/pubsubclient]

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

176

 Publish-subscribe is a pattern where senders of messages, called publishers (in this
case our ESP8266 is the publisher), don't program the messages to be sent directly to
subscribers, but instead characterize message payloads into classes without the specific
knowledge of which subscribers the messages are sent to. Similarly, subscribers (the IBM
Bluemix IOT in this case) will only receive messages that are of interest without specific
knowledge of which publishers there are. The IBM Bluemix operates as the broker in this
system and routes the published data to the appropriate subscribers inside of Bluemix.

 JSON Data Payload
 JSON is an open standard format that uses human-readable text to transmit data objects
consisting of attribute–value pairs. It is the primary data format used for asynchronous
browser/server communication, largely replacing XML. XML is a "heavier" protocol that
is also hierarchical in nature, but with a great deal more redundancy that JSON. Yes, there
are class wars going on for people that advocate JSON over XML, but in today’s world
of higher speed communication, it rarely matters. You can make the argument that the
higher data density of JSON is a better choice for IOT applications.

 Here is an example of the data packet we are using in the ESP8266 Bluemix code in
JSON for the LightSwarm data payload:

 {"d":
 {
 "LightSwarm IOT":"LS1",
 "sampleCount":2118,
 "lightValue": 383
 }
 }

 Figure 5-13. MQTT Publish-Subscribe Protocol

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

177

 Figure 5-14. Connect your Devices to Bluemix

 Authentication
 We need to have a secure method of authenticating that our ESP8266 device is allowed
to put data into the right slots inside the IBM Bluemix. This is done in our case by
exchanging a cryptographic token that was generated by Bluemix and included in our
ESP8266 code.

 To do this we need to go back to the Bluemix account that you set up in the previous
posting and complete the following steps:

 1. Click the Internet of Things Foundation icon on the Bluemix
dashboard.

 2. Next, click the Launch dashboard button under “Connect
your devices” (Figure 5-14).

 3. Go to the Devices Tab and “Add Device” down at the bottom
of the page.

 4. Click “Create Device Type,” and the screen in Figure 5-15
 appears .

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

178

 Figure 5-15. Create Bluemix Device Type

 We would suggest you use IOTPulse-01 for the name of the device type.
 Move through the rest of the steps. There are many configuration options that nearly

all can be left blank in our current application. You are required to have a device type and
a device ID.

 When the device has been created, you’ll see the Device Credentials page. Be sure
to save those details, as they are used to authenticate your ESP8266 Arduino IDE sketch
in in the next step (we have not found any way of recovering these credentials from the
Bluemix system). Obviously, don't use the credentials in Figure 5-16 . They will not work.
You need to create your own.

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

179

 Displaying Real-Time Data on the IBM Bluemix IOT
Platform
 In order to get a display going in the Bluemix platform, we need to connect our device to
the IoT Real-Time Insights service on Bluemix. The following sections discuss this.

 Adding Real-Time Insights
 Step 1: Add the IoT Real-Time Insights service to your Bluemix dashboard. Open the
Bluemix dashboard (the first dashboard after login) and click “USE SERVICES OR APIS”
and add the IoT Real-time Insights as a service. It is way down at the bottom of the page.
You will then see the screen in Figure 5-17 .

 Figure 5-16. Bluemix Credential Screen

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

180

 Step 2: Connect our device to the IoT Real-Time Insights Page by generating an
API key and then generating a data source. Click the IoT Real-Time Insights block
shown in Figure 5-16 .

 Step 3: Generate the API keys for using the Data Source and create API keys to
connect the two services (IoT Foundation and IoT Real-Time Display):

 1. From the Bluemix dashboard, click the Internet of Things tile.

 2. Click Launch dashboard to open the Internet of Things
Foundation dashboard.

 3. Navigate to Access > API Keys.

 4. Click Generate API Key.

 5. Make a note of the API Key, Authentication Token, and
the Organization ID that is displayed at the top of the IoT
Foundation dashboard. You use this information in IoT Real-
Time Insights to connect the services. These keys will remain
displayed in the data source.

 Figure 5-17. IoT Real-Time Insights

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

181

 1. Go to Devices > Manage Schemas and click Add new message
schema.

 2. Enter a name for the message schema: for example,
IOTMessageSchema.

 3. Click Link new data source and select the data source and
device type that corresponds to your IoT Foundation instance
and device. Event types for your device are here .

 4. Add one or more data points that you want to include in the
device dashboards (sampleCount and lightValue in our example).

 5. The available data points are defined in the JSON payload of
the messages that are sent by a device.

 6. Click Select from connected device.

 7. In the Add data points dialog, select one or more data points
to add, and then click OK .

 8. The selected data points are added with the description set to
the name of the data point.

 9. Then click the green arrow (on the left side of the screen) to
save the information and create the data source .

 Figure 5-18. Adding the Data Source

 Adding the Data Source
 Adding the data source (our IOTPulse device) consists of the following (Figure 5-18):

https://www.ng.bluemix.net/docs/services/iotrtinsights/devices.html#identify-datapoints

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

182

 Figure 5-19. IOT Data Starts to Flow

 Now we add the displays to visualize our data.

 Adding the Dashboard to the IoT Real-Time Display
 From the screen in Figure 5-20 , click Launch IoT Real-Time Insights Dashboard in the
lower right-hand column.

 Once all of the configuration data is in place and the authentication information is in
place in the IOTPulse program, data should start to flow as shown in Figure 5-19 .

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

183

 Figure 5-20. IoT Real-Time Insights

 Click dashboard and browse dashboards. Add a new dashboard. Then do the following:

 1. Add new component;

 2. Select chart;

 3. Add line to the chart;

 4. Select your device and then select lightValue as the parameter;

 5. Click the green arrow.

 Figure 5-21 shows the IBM BlueMix screen for laying out your dashboard interface.

 Figure 5-21. Building your IoT Real-Time Dashboard

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

184

 If your ESP8266 is running and sending data up to the IBM Bluemix IOT, then you
will see the values start to populate the graph, as shown in Figure 5-22 .

 Figure 5-22. Bluemix IoT Real-Time Dashboard Operational

 Advanced Topics
 The IBM cloud offerings have literally hundreds of options and possibilities for bringing
your IOT data to the cloud. Below we show a few of these “apps” available on the Bluemix
system. We will show how to graph your historical IOT data and introduce a complex, but
very powerful, programming system, Node-RED.

 Historical Data
 Non-real-time historical data can also be viewed in Bluemix (Figure 5-23). This requires
you to build an app (not as complex as you might think) and then deploy the app. A
good tutorial for this is located on the IBM Bluemix web site [https://www.ng.bluemix.
net/docs/starters/install_cli.html] . It does require you to install a command-line
interface for Cloud Foundry on your computer.

https://www.ng.bluemix.net/docs/starters/install_cli.html]
https://www.ng.bluemix.net/docs/starters/install_cli.html]

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

185

 One thing this historical data graph of our pulse rate does show is that the data from
IOTPulse could be improved by more filtering. The average of the heart rate looks good,
but the jumps up and down look like noise, especially earlier in the graph.

 Node-RED Applications
 Node-RED is a graphical tool for wiring together devices, external APIs, and online
services. You use a browser-based flow editor that makes it simple to wire together flows
from an extensive library And it is easy to add your own nodes.

 Node-RED is fully supported by IBM Bluemix. It is primarily an event-based software
generation system. If an event happens (such as IOTPulse sending data), you can take
that data and process it in various ways, send it to other applications, and store it in
databases. Other inputs can cause displays to be updated, queries to be sent to databases,
and many other events .

 We built a small Node-RED application for IOTPulse shown in Figure 5-24 .

 Figure 5-23. Historical IOTPulse Data

CHAPTER 5 ■ CONNECTING AN IOT DEVICE TO A CLOUD SERVER - IOTPULSE

186

 Watson Applications
 One of the more exciting class of applications that can be built in Bluemix are those
utilizing the IBM Watson software. All of the Watson services on the Bluemix platform
are accessed via HTTP transfers known as REST services. REST stands for Representation
State Transfer and is a common way of accessing web-based services.

 Watson supports a number of very sophisticated services all available to your device
and applications in Bluemix:

• Speech to Text

• Text to Speech

• Language Translation

• Support for User Dialogs

• Determining the “Tone” for Text

• Visual Recognition

• Image Analysis - Objects, People, and Text

 Conclusion
 The future of the IOT is data: how to gather it, how to transmit it, how to analyze and
display it, and how to act on it. The IOTPulse project shows how to gather data and how
to send it up to a cloud computing system for analysis and actions.

 With a proper sensor, the IOTPulse project could be a commercial product. The
sensor and analysis of the heart rate are definitely not medical grade, but still illustrates
the principles of the IOT device and the device relationship with the IOT cloud.

 Figure 5-24. Node-RED Application Flow for IOTPulse

187© John C. Shovic 2016
J. C. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3_6

 CHAPTER 6

 Using IOT for RFID and
MQTT and the Raspberry Pi

 Chapter Goal: Build an IOT device for Reading RFID Tags on Various Packages

 Topics Covered in this Chapter:

• Introduction to RFID

• Introduction to MQTT Publish / Subscribe Systems and Servers

• Building a Raspberry Pi Based MQTT server

• Building an RFID Reader to Connect to the IOT

• Connecting your RFID Reader to your MQTT Raspberry Pi Server

• What to do with the RFID data on the Server

 The world of IOT is dominated by small computers having small amounts of
resources and power to communicate information with the rest of the world. MQTT
is a publish-subscribe, lightweight protocol for IOT devices to communicate with the
server and through the server, with each other. MQTT is also available for “mesh”-
type networks, like Zigbee, that allow device-to-device communication. RFID (Radio
Frequency IDentification) is an inexpensive way of reading uniquely numbered cards
and tags via radio waves from short distances. RFID and its cousin, NFC (Near Field
Communications) are showing up in more and more applications.

 In this chapter, we build an RFID device and then connect through an MQTT
publisher to an MQTT broker as in Chapter 5 , but with the difference that we are
replacing the IBM Bluemix MQTT broker with a Mosquitto broker running on a $20
Raspberry Pi.

 IOT Characterization of This Project
 As we discussed in Chapter 1 , the first thing to do to understand an IOT project is to
look at our six different aspects of IOT. ITORFID is a simpler project than our other four
projects, but the dataflow is much more complex.

http://dx.doi.org/10.1007/978-1-4842-1377-3_5
http://dx.doi.org/10.1007/978-1-4842-1377-3_1

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

188

 Table 6-1 characterizes different aspects of the project. Ratings are from 1–10, 1 being
the least suitable for IOT and 10 being the most suitable for IOT applications. This gives
us a CPLPFC rating of 8.3. Great for learning and experimenting, and it could be deployed
for some market applications.

 Table 6-1. IOT Characterization of the Project

 Aspect Rating Comments

 Communications 9 WiFi connection to Internet -

 Processor Power 9 80MHz XTensa Harvard Architecture CPU,
~80KB Data RAM / ~35KB of Instruction RAM /
200K ROM

 Local Storage 8 4MB Flash (or 3MB file system!)

 Power Consumption 8 ~200mA transmitting, ~60mA receiving, noWiFi
~15mA, Standby ~1mA

 Functionality 7 Partial Arduino Support (limited GPIO/Analog
Inputs)

 Cost 9 < $12 and getting cheaper

 Note that the power consumption in this application could be dramatically reduced
by adding a power down mode, say after 5 minutes of not using the RFID Reader.

 What Is RFID Technology?
 Radio Frequency Identification (RFID) is the use of radio waves to transfer data,
specifically in the area of identifying and tracking tags attached to objects, people, and
animals. Often the RFID Tag has no power supply and is activated and powered by
radio waves beamed at the RFID Tag. This technology goes back to the 1940s and was
first demonstrated by Theremin in the Soviet Union. Interestingly enough, he used this
technology to put a covert listening device in the United States Embassy conference room
in 1946. It was used for six years when in 1952, it was discovered that the seal contained a
microphone and a resonant cavity that could be stimulated from an outside radio signal.
While this used a resonant cavity that changed its shape when stimulated by sound
waves, and hence modulated a reflected radio wave beamed at the unit, it is considered a
predecessor to RFID technology.

 [en.wikipedia.org/wiki/The_Thing_(listening_device)]

 RFID tags can be active, passive (no battery power - we are using this technology
in this chapter), and battery assisted passive. A passive tag contains no battery, instead
using the radio energy transmitted by the RFID Reader. To operate a passive tag, it needs
to be hit with a power level roughly one thousand times greater than the resulting signal
transmissions.

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

189

 When an RFID Tag is hit by a beam of radio waves from a transmitter, the passive tag
is powered up and transmits back the tag identification number and other information.
This may be a unique serial number, a stock or lot number, or other specific information.
Since tags have unique numbers, the RFID system can read multiple tags simultaneously,
with some clever programming of the receiver and transmitter.

 There are a number of different RFID standards in common use. There are three
standards for putting ID chips in pets, which of course are not compatible with each other
and require different readers. The short-range tags we are using in this chapter operated
at the low frequency of 125kHz and can go up to 100mm (Figure 6-1). Other tags can be
picked up (with active RFID technology) up to 100 meters.

 While RFID and NFC technologies are designed for short distance use, the addition of a
large power transmitter and a large antenna can change the meaning of “short distance.”

 Figure 6-1. 125kHz Card-Shaped RFID Tag

 What Is MQTT?
 In Chapter 5 , we used an MQTT publisher module to talk to the IBM MQTT broker at IBM
Bluemix.

 To refresh the reader’s memory, MQTT is a publish-subscribe-based “light weight”
messaging protocol for use on top of the TCP/IP protocol, such as the WiFi packets that
we are using in this project. It is designed for connections with remote locations where a
“small code footprint” is required or the network bandwidth is limited.

http://dx.doi.org/10.1007/978-1-4842-1377-3_5

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

190

 Publish-subscribe is a pattern where senders of messages, called publishers (in
this case our project IOTRFID is the publisher), don't program the messages to be sent
directly to subscribers, but instead characterize message payloads into classes.

 You can think of it as writing stories for a newspaper where you don’t know who will
be subscribing to the article.

 Hardware Used for IOTRFID
 There are there major parts to the hardware from the IOTRFID (Figure 6-2). The first is
the ESP8266 Adafruit Huzzah that we have seen in previous chapters.

 The RFID reading circuit is a small inexpensive board from Seeedstudio in China.
The key reason this board was chosen was the fact it works on 3.3V (which is the same as
the ESP8266) and requires no external components (well, yes, it does require an antenna
that is included).

 We also purchased a 125KHz RFID Tag from SparkFun. Be careful of the RFID Tag
you buy. Not all are compatible.

 Figure 6-2. Block Diagram of IOTRFID

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

191

 Building an MQTT Server on a Raspberry Pi
 As described in Chapter 5 , MQTT requires a message broker. The design pattern is this:

 1. IOTRFID publishes a payload;

 2. Raspberry Pi MQTT broker receives the payload;

 3. Raspberry Pi MQTT broker disseminates to all subscribing
objects (which may be different processes in the same
machine - as in our case - or even different machines entirely.

 In Chapter 5 , we used the IBM Bluemix as the message broker. In the IOTRFID
project we are going to build a message broker on the Raspberry Pi.

 Figure 6-3 shows the dataflow in the entire application - including the Raspberry Pi.
The dataflow in this application is basically one way: from the RFID Tag to the Raspberry Pi
mosquitto server. Note, however, there are two channels available over the WiFi and you could
send commands back to the IOTRFID project telling the user information about the part being
inventoried. For example, you could display the destination for the box or the expiration date.

 Figure 6-3. Dataflow of Complete System

http://dx.doi.org/10.1007/978-1-4842-1377-3_5
http://dx.doi.org/10.1007/978-1-4842-1377-3_5

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

192

 There are a number of MQTT brokers available for different machines. For this
project, we have selected one of the most popular and stable brokers, “Mosquitto.” Note
the two “t”’s in Mosquitto. The bane of spell checkers everywhere.

 Mosquitto supports MQTT v3.1/3.1.1 and is easily installed on the Raspberry Pi and
somewhat less easy to configure. Next we step through installing and configuring the
Mosquitto broker.

 The Software on the Raspberry Pi
 We start by setting up the software on the Raspberry Pi. We do this so our IOTRFID has
something to talk to when we set turn the IOTRFID on.

 Installing the MQTT “Mosquitto”
 Unfortunately, the Raspberry Pi normal “apt-get” archives do not contain the latest
version of the Mosquitto software. If you don’t install the latest version of the broker, you
will get odd errors (because of version compatibility errors) and it will not work. So, the
first thing is to open a Terminal window (or log in using ssh) to your Raspberry Pi and do
the following:

 sudo wget http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key
 sudo apt-key add mosquitto-repo.gpg.key
 cd /etc/apt/sources.list.d/
 sudo wget http://repo.mosquitto.org/debian/mosquitto-wheezy.list
 sudo apt-get update
 sudo apt-get install mosquitto

 Next we can install the three parts of Mosquitto proper.

• mosquitto - the MQTT broker (or in other words, a server)

• mosquitto-clients – command-line clients, very useful in
debugging

• python-mosquitto - the Python language bindings

 Execute the following command to install these three parts:

 sudo apt-get install mosquitto mosquitto-clients python-mosquitto

 As is the case with most packages from Debian, the broker is immediately started.
Since we have to configure it first, stop it:

 sudo /etc/init.d/mosquitto stop

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

193

 Configuring and Starting the Mosquitto Server
 Before using Mosquitto, we need to set up the configuration file. The configuration file is
located at /etc/mosquitto.

 Open the file as follows:

 sudo nano /etc/mosquitto/mosquitto.conf

 You should see the following:

 # Place your local configuration in /etc/mosquitto/conf.d/
 #
 # A full description of the configuration file is at
 # /usr/share/doc/mosquitto/examples/mosquitto.conf.example

 pid_file /var/run/mosquitto.pid

 persistence true
 persistence_location /var/lib/mosquitto/

 log_dest file /var/log/mosquitto/mosquitto.log

 include_dir /etc/mosquitto/conf.d

 Change the “log_dest” line to:

 log_dest topic

 This puts the logging information as a “topic” so we can subscribe to it later on to see
what is going on in our IOTRFID system.

 Next add the following six lines:

 log_type error
 log_type warning
 log_type notice
 log_type information

 connection_messages true
 log_timestamp true

 Now your /etc/mosquitto.conf files should look like this:

 # Place your local configuration in /etc/mosquitto/conf.d/
 #
 # A full description of the configuration file is at
 # /usr/share/doc/mosquitto/examples/mosquitto.conf.example

 pid_file /var/run/mosquitto.pid

 persistence true
 persistence_location /var/lib/mosquitto/

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

194

 log_dest topic

 log_type error
 log_type warning
 log_type notice
 log_type information

 connection_messages true
 log_timestamp true

 include_dir /etc/mosquitto/conf.d

 Starting the Mosquitto Server
 Now start the mosquitto server:

 sudo /etc/init.d/mosquitto start

 The server should start, and you are ready to move on to testing.

 Testing the Mosquitto Server
 Open up two more terminal windows.

 In Terminal window 1 type:

 mosquitto_sub -d -t hello/world

 In Terminal window 2 type:

 mosquitto_pub -d -t hello/world -m "Hello from Terminal window 2!"

 When you have done the second statement you should see this in the Terminal 1
window.

 ~ $ sudo mosquitto_sub -d -t hello/world
 Client mosqsub/3014-LightSwarm sending CONNECT
 Client mosqsub/3014-LightSwarm received CONNACK
 Client mosqsub/3014-LightSwarm sending SUBSCRIBE (Mid: 1, Topic: hello/
world, QoS: 0)
 Client mosqsub/3014-LightSwarm received SUBACK
 Subscribed (mid: 1): 0
 Client mosqsub/3014-LightSwarm received PUBLISH (d0, q0, r0, m0, 'hello/
world', ... (32 bytes))
 Greetings from Terminal window 2

 Now you are running the Mosquitto broker successfully.
 Next, let’s build the IOTRFID device.

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

195

 Building the IOTRFID
 The IOTRFID project consists of four major parts:

• ESP8266

• RFID Reader

• Software for the ESP8266

• Software for the Raspberry Pi

 The purpose of this project is to prototype an inventory control system that uses
RFID tags. The ESP8266 controls the RFID Reader and reports the RFID Tag to the
Raspberry Pi server. We then use MQTT through the WiFi interface on the ESP8266 to
send the inventory information to the Raspberry Pi. The Raspberry Pi could then use the
RFID information to work with a database, alert the end customer, etc.

 The Parts Needed
 The IOTRFID can be assembled for about $35 from the sources in Table 6-2 .

 Table 6-2. Parts List for IOTRFID

 Part Number Count Description Approximate
Cost per Board

 Source

 ESP8266
Huzzah Board

 1 CPU / WiFi
board

 $10 www.adafruit.com/
products/2471

 Mini 125kHz
RFID Reader

 1 125kHz RFID
Serial Reader

 $11 www.seeedstudio.
com/depot/Mini-
125Khz-RFID-Module-
External-LEDBuzzer-
Port-70mm-Reading-
Distance-p-1724.html

 125kHz RFID
 Tags

 1 RFID Tag
compatible with
Mini 125kHz
RFID Reader

 $2 www.sparkfun.com/
products/8310

 FTDI Cable 1 Cable for
programming
the ESP8266
from PC/Mac

 $11 www.switchdoc.com/
inexpensive-ftdi-
cable-for-arduino-
esp8266-includes-
usb-cable/

http://www.adafruit.com/products/2471
http://www.adafruit.com/products/2471
http://www.seeedstudio.com/depot/Mini-125Khz-RFID-Module-External-LEDBuzzer-Port-70mm-Reading-Distance-p-1724.html
http://www.seeedstudio.com/depot/Mini-125Khz-RFID-Module-External-LEDBuzzer-Port-70mm-Reading-Distance-p-1724.html
http://www.seeedstudio.com/depot/Mini-125Khz-RFID-Module-External-LEDBuzzer-Port-70mm-Reading-Distance-p-1724.html
http://www.seeedstudio.com/depot/Mini-125Khz-RFID-Module-External-LEDBuzzer-Port-70mm-Reading-Distance-p-1724.html
http://www.seeedstudio.com/depot/Mini-125Khz-RFID-Module-External-LEDBuzzer-Port-70mm-Reading-Distance-p-1724.html
http://www.seeedstudio.com/depot/Mini-125Khz-RFID-Module-External-LEDBuzzer-Port-70mm-Reading-Distance-p-1724.html
http://www.sparkfun.com/products/8310
http://www.sparkfun.com/products/8310
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/
http://www.switchdoc.com/inexpensive-ftdi-cable-for-arduino-esp8266-includes-usb-cable/

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

196

 Installing Arduino Support on the PC or Mac
 Once again, the key to making this project work is the development software. While there
are many ways of programming the ESP8266 (MicroPython [https://micropython.org] ,
NodeMCU Lua interpreter [http://nodemcu.com] and the Arduino IDE (Integrated
Development Environment) [https://www.arduino.cc/en/Main/Software]), we chose
the Arduino IDE for its flexibility and the large number of sensors and device libraries
available.

 To install the Arduino IDE you need to do the following:

 1. Download the Arduino IDE package for your computer and
install the software [https://www.arduino.cc/en/Guide/
HomePage] .

 2. Download the ESP libraries so you can use the Arduino
IDE with the ESP breakout board. Adafruit has an excellent
tutorial for installing the ESP8266 support for the Arduino IDE
[https://learn.adafruit.com/adafruit-huzzah-esp8266-
breakout/using-arduino-ide] .

 The Hardware
 The main pieces of hardware in the swarm device are these:

• ESP8266 - CPU/WiFi Interface

• Mini 125kHz RFID Reader

• 9V Battery - Power

• FTDI Cable - Programming and Power

 The ESP8266 communicates with the Raspberry Pi by using the WiFi interface.
The ESP8266 uses a serial interface to communicate with the light sensor. The WiFi is a
standard that is very common. The serial interface used is one wire (Tx line on the RFID
Reader to Rx on the ESP8266 - Pin GPIO #4 on the ESP8266). In a serial interface, one bit
at a time is sent along with stop and start bits for each byte. The data is sent at 9600 baud,
which is an old way of saying about 9600 bits per second.

 What Is This Sensor We Are Using?
 The Mini 125kHz RFID Reader is a simple, inexpensive 125kHz RFID Tag reader with a
range of about 70mm. Note that the range for a reader like this is set by a combination of
the output power of the reader and the antenna design.

 If you have a bigger antenna and more power, you can read RFID tags at a much
larger distance. A quick check on the Web showed the record for passive 125kHz RFID
tags is around 10 or 15 meters. Better antennas that are focused on a beam could do even
better than this. Don’t assume that someone cannot read the cards in your wallet if they
really wanted to do that.

https://www.arduino.cc/en/Guide/HomePage]
https://www.arduino.cc/en/Guide/HomePage]
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide]
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide]

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

197

 3D Printed Case
 The 3D printed case for this project has a holder for a 9 volt battery, pylons to hold the
antenna in place, a slot to mount the RFID Reader board, and pylons for the ESP8266. The
code is for OpenSCAD, a free 3D CAD system that appeals to programmers. Figure 6-4
shows the 3D printed case with pylons for mounting the boards.

 Figure 6-4. 3D Printed Case for the IOTRFID Project

 The following OpenSCAD code builds the mounting base step by step by merging
basic shapes such as cubes and cones. We also build a stand to keep the battery from
sliding across the base.

 //
 // IOT IOTFRFID Mounting Base
 //
 // SwitchDoc Labs
 // February 2016
 //

 union()
 {

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

198

 cube([130,60,2]);
 translate([-1,-1,0])
 cube([132,62,1]);

 // Mount for Battery

 translate([-30,0,0])
 union ()
 {
 translate([40,2,0])
 cube([40,1.35,20]);
 translate([40,26.10+3.3,0])
 cube([40,1.5,20]);

 // lips for battery
 translate([79,2,0])
 cube([1,28,4]);

 // plyons for ESP8266

 translate([70-1.0,35,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-1.0,56,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-34,35,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 translate([70-34,56,0])
 cylinder(h=10,r1=2.2, r2=1.35/2, $fn=100);
 }

 // stand for board

 translate([15,40,0])
 union ()
 {
 translate([40,2,0])
 cube([20,1.35,7]);
 translate([40,3.55+1.35,0])
 cube([20,1.35,7]);
 }
 // plyons for RFID board

 translate([50,0,0])
 union()
 {
 translate([33+36.0,10,0])
 cylinder(h=10,r1=3.2, r2=2.40/2, $fn=100);
 translate([33+36.0,50,0])
 cylinder(h=10,r1=3.2, r2=2.40/2, $fn=100);

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

199

 translate([36,10,0])
 cylinder(h=10,r1=3.2, r2=2.40/2, $fn=100);
 translate([36,50,0])
 cylinder(h=10,r1=3.2, r2=2.40/2, $fn=100);
 }

 }

 The Full Wiring List
 Figure 6-5 shows the back of the Mini 125kHz RFID Reader to clearly display the pin
labels on the back of the board.

 Figure 6-5. Closeup of Mini RFID Board

 Following is the complete wiring list for the IOTRFID project. As you wire it, check off
each wire for accuracy.

 The Key for Table 6-3 is below. Table 6-3 contains all the wiring information for
building the IOTRFID. Follow it closely to make your project work the first time. This table
contains all of the individual wiring connections to complete the project.

 ESP8266 Huzzah Board: ESP8266

 Mini 125kHz RFID Reader: RFIDBoard

 9V Battery: 9VBat

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

200

 Table 6-3. Wiring List for the IOTRFID Project

 ESP8266 Huzzah Board (ESP8266)

 From To Description

 ESP8266 / GND RFIDBoard /G Ground for RFID Reader board

 ESP8266 / 3V RFIDBoard /V 3.3V Power for RFID Board

 ESP8266 / #5 RFIDBoard /Rx RFID Board Receiver (not used in
this project)

 ESP8266 / #4 RFIDBoard /Tx RFID Board Serial Transmitter

 ESP8266 / GND 9VBat / “-” terminal (minus
terminal)

 Ground for battery

 ESP8266 / VBat 9VBat / “+” terminal (plus 9V) 9V from battery

 RFIDBoard / T1 RFID Antenna JST2 Plug Lead from Antenna - Push plug over
T1 and T2 - order doesn’t matter

 RFIDBoard / T2 RFID Antenna JST2 Plug Lead from Antenna - Push plug
over T1 and T2 - order doesn’t
matter

 Figure 6-6 shows the JST2 Plug pushed over the two pins on the RFID board
connecting the RFID board with the Antenna.

 Figure 6-6. Closeup of RFID Antenna JST2 Plug

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

201

 Your completed IOTRFID project should look similar to Figure 6-7 .

 The Software for the IOTRFID Project
 No computer-based project is complete without the software to make the computer and
board perform the functions designed. The main code IOTRFID is very short and makes
good use of existing libraries.

 The Libraries
 In this project, we are using two libraries. Because we didn’t have to modify the libraries
to make them work with the ESP8266, we have not reproduced them here. The two
libraries are the following:

 seeedRFID - The library for interfacing the ESP8266 to the
RFID Reader. Basically a simple shell around the SoftSerial
Arduino libraries. [https://github.com/Seeed-Studio/
RFID_Library]

 Figure 6-7. The Completed IOTRFID Project

https://github.com/Seeed-Studio/RFID_Library]
https://github.com/Seeed-Studio/RFID_Library]

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

202

 PubSubClient - A simple client for MQTT. This is a very
usable and well-documented library. We use this library to
talk to the MQTT server (mosquitto) on the Raspberry Pi.
[http://pubsubclient.knolleary.net]

 The Main Software
 The ESP8266 Arduino IDE software for this project is relatively straightforward. You will see
some similarities to the IBM Bluemix software in the last chapter. The main difference is that
you are now doing both ends of the MQTT connections. Remember to put your own WiFi
access point and password in the code as well as entering the IP address of your Raspberry Pi.

 The general flow of the software consists of first initializing the WiFi connection and
the RFID hardware and then going into a loop, checking for RFID Tag events.

 /*
 SwitchDoc Labs Code for IOT RFID
 IOT RFID uses publish subscribe to communicate to Raspberry Pi
 January 2016
 */

 // BOF preprocessor bug prevent - insert on top of your arduino-code
 #if 1
 __asm volatile ("nop");
 #endif

 // Board options

 #pragma GCC diagnostic ignored "-Wwrite-strings"

 extern "C" {
 #include "user_interface.h"
 }
 #include <ESP8266WiFi.h>
 #include "PubSubClient.h"

 #include "seeedRFID.h"

 #define RFID_RX_PIN 4
 #define RFID_TX_PIN 5

 #undef TEST

 SeeedRFID RFID(RFID_RX_PIN, RFID_TX_PIN);
 RFIDdata tag;

 int count = 0; // counter for buffer array

 // Variables

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

203

 int blinkPin = 0; // pin to blink led at each reception of
RFID code

 #include "Utils.h"

 //--
 //Local WiFi Variables

 const char* ssid = "YOURWIFIACCESSPOINT";
 const char* password = "YOURWIFIPASSWORD";

 #define IOTRFIDVERSION 005
 // Raspberry Pi Information

 #define ORG "switchdoc"
 #define DEVICE_TYPE "IOTRFID-01"
 #define DEVICE_ID "1"
 #define TOKEN "ul!fjH!y8y0gDREmsA"

 // setup for IOT Raspberry Pi

 char server[] = "192.168.1.40"; // Replace with YOUR RASPBERRY IP Number
 char topic[] = "IOTRFID";
 char authMethod[] = "use-token-auth";
 char token[] = TOKEN;
 char clientId[] = "IOTRFID";

 void callback(char* topic, byte* payload, unsigned int length) {
 Serial.println("callback invoked from IOT RFID");
 }

 WiFiClient wifiClient;
 PubSubClient client(server, 1883, callback, wifiClient);

 void setup() {
 // put your setup code here, to run once:

 pinMode(0, OUTPUT);

 Serial.begin(9600); // we agree to talk fast!

 Serial.println("----------------");
 Serial.println("IOTRFID publish/subscribe Inventory");
 Serial.println("----------------");

 // signal start of code - three quick blinks
 blinkLED(3, 250);

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

204

 Serial.print("Connecting to WiFi ");

 if (strcmp (WiFi.SSID().c_str(), ssid) != 0) {
 WiFi.begin(ssid, password);
 }
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");

 Serial.print("Local WiFi connected, IP address: ");
 Serial.println(WiFi.localIP());

 blinkLED(5, 500);
 }

 void loop() {
 // put your main code here, to run repeatedly:

 count = 0;

 if (!!!client.connected()) {
 Serial.print("Reconnecting client to ");
 Serial.println(server);
 while (!!!client.connect(clientId)) {
 Serial.print(".");
 delay(500);
 }
 Serial.println();
 }

 // Check for RFID available

 String payload;

 if (RFID.isAvailable())
 {
 tag = RFID.data();
 Serial.print("RFID card number read: ");
 Serial.println(RFID.cardNumber());
 #ifdef TEST
 Serial.print("RFID raw data: ");
 for (int i = 0; i < tag.dataLen; i++) {
 Serial.print(tag.raw[i], HEX);
 Serial.print('\t');
 }
 #endif

 // Sending payload

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

205

 payload = "{\"d\":{\"IOTRFID\":\"IR1\",";
 payload += "\"VER\":\"";
 payload += IOTRFIDVERSION;
 payload += "\",\"RFID_ID\":\"";
 payload += String(RFID.cardNumber());
 payload += "\"";
 payload += "}}";

 // check for message

 Serial.println(payload.length());

 count = 0;

 if (payload.length() >= 53) // good message
 {
 Serial.print("Sending IOTRFID payload: ");
 Serial.println(payload);

 if (client.publish(topic, (char*) payload.c_str())) {
 Serial.println("IOTRFID Publish ok");
 blinkLED(1, 500);
 } else {
 Serial.println("IOTRFID Publish failed");
 blinkLED(2, 500);
 }
 }

 else
 {
 delay(500);
 }
 }

 yield(); // This is necessary for the ESP8266 to do the background tasks
 }

 Testing the IOTRFID System
 Using the Arduino IDE, flash the ESP8266 with the IOTRFID software above.

 After it has been flashed, you should see the following on the Arduino serial monitor:

 IOTRFID publish/subscribe Inventory

 Connecting to WiFi
 Local WiFi connected, IP address: 192.168.1.135
 Reconnecting client to 192.168.1.40

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

206

 Leave the IOTRFID running for now.

 Setting Up the Mosquitto Debug Window
 Go back into Terminal window 1 from earlier in the chapter and hold down the control
key and click “c” (control-c) to kill the running process from the previous step. If you had
closed it, open up another Terminal window and following the instructions below.

 Build a python file for our debug and logging subscription to the Mosquitto broker:

 nano IOTRFIDLogSubscribe.py

 Enter the following code:

 #
 # SwitchDoc Labs
 #
 # Display logging subscription
 #
 # January 2016
 #

 import paho.mqtt.client as mqtt

 # The callback for when the client receives a CONNACK response from the
server.
 def on_connect(client, userdata, flags, rc):
 print("Connected with result code "+str(rc))

 # Subscribing in on_connect() means that if we lose the connection and
 # reconnect then subscriptions will be renewed.
 client.subscribe("$SYS/broker/log/#");

 # The callback for when a PUBLISH message is received from the server.
 def on_message(client, userdata, msg):
 print(msg.topic+" "+str(msg.payload))

 client = mqtt.Client()
 client.on_connect = on_connect
 client.on_message = on_message

 client.connect("localhost", 1883, 60)

 # Blocking call that processes network traffic, dispatches callbacks and
 # handles reconnecting.
 # Other loop*() functions are available that give a threaded interface and a
 # manual interface.
 client.loop_forever()

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

207

 Then run the code by typing this:

 sudo python IOTRFIDLogSubscribe.py

 We use “sudo” to make sure that python is running with root privileges to avoid any
potential permissions issues.

 If you left your IOTRFID running, you will see this:

 Connected with result code 0
 SYS/broker/log/N 1454535157: Client IOTRFID has exceeded timeout,
disconnecting.
 $SYS/broker/log/N 1454535157: Socket error on client IOTRFID, disconnecting.
 $SYS/broker/log/N 1454535157: New connection from 192.168.1.135 on port
1883.
 $SYS/broker/log/N 1454535157: New client connected from 192.168.1.135 as
IOTRFID (c1, k15).

 This means that your IOTRFID is connected to the Mosquitto MQTT broker.

 Next, let’s go to another Terminal window and set up a subscriber on the Raspberry
Pi to our IOTRFID device.

 Set Up a Subscriber on the Raspberry Pi
 In another Terminal window on the Raspberry Pi, build another python file by typing the
following:

 sudo nano IOTRFIDSubscriber.py

 Enter the following code:

 #
 #
 # IOTRFID Subscribe Module
 #
 # Receives inventory message from IOTRFID
 # SwitchDoc Labs January 2016
 #

 import json

 import paho.mqtt.client as mqtt

 def filter_non_printable(str):
 return ''.join([c for c in str if ord(c) > 31 or ord(c) == 9])

 # The callback for when the client receives a CONNACK response from the
server.
 def on_connect(client, userdata, flags, rc):
 print("Connected with result code "+str(rc))

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

208

 # Subscribing in on_connect() means that if we lose the connection and
 # reconnect then subscriptions will be renewed.
 client.subscribe("IOTRFID/#")

 # The callback for when a PUBLISH message is received from the server.
 def on_message(client, userdata, msg):
 print(msg.topic+" "+str(msg.payload))
 result = json.loads(filter_non_printable(msg.payload)) # result is now a
dict / filter start and stop characters
 InventoryRFID = result['d']['RFID_ID']

 print
 print("IOTRFID Inventory Number Received From ID#"+result['d']
['IOTRFID'])
 print("Inventory Item = " + InventoryRFID)
 print

 client = mqtt.Client()
 client.on_connect = on_connect
 client.on_message = on_message

 client.connect("localhost", 1883, 60)

 # Blocking call that processes network traffic, dispatches callbacks and
 # handles reconnecting.
 # Other loop*() functions are available that give a threaded interface and a
 # manual interface.
 client.loop_forever()

 Execute the code by typing this:

 sudo python IOTRFIDSubscriber.py

 You will see the following:

 Connected with result code 0

 Next, we will run the full system test.

 Testing the Entire IOTRFID System
 Take your RFID Tag card and wave it over the IOTRFID antenna as shown in Figure 6-8 .

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

209

 If your IOTRFID is running, you should see something similar to the following in the
Arduino IDE Serial Window:

 Reconnecting client to 192.168.1.40

 RFID card number read: 2413943
 53
 Sending IOTRFID payload: {"d":{"IOTRFID":"IR1","VER":"5","RFID_
ID":"2413943"}}
 IOTRFID Publish ok

 And over in terminal 2, you should see something similar to this:

 IOTRFID {"d":{"IOTRFID":"IR1","VER":"5","RFID_ID":"2413943"}}
 IOTRFID Inventory Number Recieved From ID#IR1
 Inventory Item = 2413943

 If you look at the debug window in Terminal 1, you should see something like this if
you have no errors:

 $SYS/broker/log/N 1454536590: New client connected from 192.168.1.135 as
IOTRFID (c1, k15).

 Figure 6-8. RFID Tag Card over the IOTRFID Device

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

210

 $SYS/broker/log/N 1454536615: Client IOTRFID has exceeded timeout,
disconnecting.
 $SYS/broker/log/N 1454536615: Socket error on client IOTRFID, disconnecting.
 $SYS/broker/log/N 1454536615: New connection from 192.168.1.135 on port
1883.
 $SYS/broker/log/N 1454536615: New client connected from 192.168.1.135 as
IOTRFID (c1, k15).

 You just successfully published an MQTT message form IOTRFID to the Mosquitto
MQTT broker on the Raspberry Pi and received it on a MQTT subscriber in Terminal 2.

 You have connected your IOT device into your own MQTT broker just as you did
with IBM Bluemix in the previous chapter.

 What to Do with the RFID Data on the Server
 In our subscriber example, we have a very small piece of code that is handling the RFID
inventory information coming in from IOTRFID. This section is the “on_message”
function shown below:

 # The callback for when a PUBLISH message is received from the server.
 def on_message(client, userdata, msg):
 print(msg.topic+" "+str(msg.payload))
 result = json.loads(filter_non_printable(msg.payload)) # result is now a
dict / filter start and stop characters
 InventoryRFID = result['d']['RFID_ID']

 print
 print("IOTRFID Inventory Number Received From ID#"+result['d']
['IOTRFID'])
 print("Inventory Item = " + InventoryRFID)
 print

 While we are just printing it out to the screen, if you were building an actual
inventory system, this function is where you would call the database, action programs,
and other publish-subscribe nodes that need to be notified that this piece of inventory
has been scanned.

 Conclusion
 It should be somewhat surprising that we can duplicate a significant amount of the
functionality of IBM Bluemix with less than only $50 worth of hardware. In truth,
we have done that with this project. However, there are lots of things missing in our
implementation versus the IBM Bluemix system. Our system has no redundancy, no way
to scale it up to tens of thousands of devices, is lacking a real administrative control panel,
and has not addressed the very important issue of computer security and hackability.

CHAPTER 6 ■ USING IOT FOR RFID AND MQTT AND THE RASPBERRY PI

211

 The concepts we have explored in this chapter should give the reader some very
solid insights into the technology and turn a black box (like IBM Bluemix) into something
that is easier to understand.

 As far as computer security goes for IOT devices, this is an excellent segue into our
next chapter, “Computer Security and the IOT.”

213© John C. Shovic 2016
J. C. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3_7

 CHAPTER 7

 Computer Security and
the IOT

 Chapter Goal: Understand the Basics of IOT Computer Security

 Topics Covered in This Chapter:

• The Top Five Things to Worry About

• What Computer Security Is

• Computer Security for Communications

• Computer Security for Hardware Devices

• Protecting your Users

 Why are we worried about computer security on the IOT?
 Hackers are everywhere. They attack our banks. They attack our stores (think Target).

They are trying to attack our infrastructure (power, water, sewer, etc.). Now, with the
advent of IOT, they have a gateway into your home.

 Guess what? They are going to attack your IOT device. You may think you are safe
because you are not very important (see no. 2 below - not being important is not a good
defense); they will attack.

 Understand one very important fact. Hackers rarely attack something specific. They
use programs to attack thousands and tens of thousands of things at a time. Then they
just wait for the results. If you are exposed on the Internet, they WILL find you. Your job is
to make sure they can’t do anything important about it.

 Who are the hackers ? There are the black hat people trying to make money from
attacks or ransomware. There are nation-states doing this (and not just the United States,
China, and Russia, either. North Korea and many other nations have programs). It’s just
not that expensive to do and the Internet gives you access to anywhere.

 There are white hat hackers that are trying to find and fix security issues in programs
and on the Internet. These people are trying to actually help the problem.

 Oh, and then there is a whole other category of people that are somewhere in the middle.
Gray hats if you like. These are people that are not really sure what they are doing. People can
download hacking programs and run them without having any idea what is going on. These
people are called “Script Kiddies” and can cause all sorts of damage on purpose or not.

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

214

 IOT: Top Five Things to Know About IOT Computer
Security
 The author has run a computer security company and has taught computer security and
information warfare at the undergraduate and graduate level at several universities. In
this chapter I am taking a different look at computer security than most technical books.
While I am discussing methods of encryption and authentication, I am also taking a top-
level view of the problem and a realistic view of what can and can't be done with the small
computers that make up the IOT.

 With that, let’s start with my thoughts about the Top Five Things to Know About IOT
Computer Security.

 Number 1: This is important . You can prove your
application is insecure , but you can’t prove your
application is secure.
 “What? That doesn't make any sense. My application only has 200 lines of code in it and I
can see that it is secure!”

 There are two things to consider here . First of all is that those 200 lines have been
compiled by a compiler that has 100,000+ lines of code. The operating system you are running
on has at least 25,000 lines of code (yes, even an Arduino) and millions of lines of code in a
Raspberry Pi or Windows machine. Your 200 lines of code interact with tens of thousands
of lines of code. You don't know how big your own program is. You don't know about the
compiler. You don't know about the operating system. Yes, some micro-controllers allow you
to set up everything, but in today’s development systems this is the exception, not the rule.

 The second thing to consider is a proven theorem from Matt Bishop’s excellent book
[Computer Security: Art and Science, Matt Bishop] on Computer Security: “It is undecidable
whether a given state of a given protection system is safe for a given generic right.”

 What does this mean? It means that “You can tell if your computer program is
insecure, but you can't know if it is secure.”

 Ouch.

 Number 2: Security through Obscurity Is Not Security
 An IOT system that relies on secrecy of the implementations or components of the system
is not security. Obscurity can be part of a defense in-depth strategy but should not be
relied on to provide security. Yes, someone can take your design and reverse engineer it
and find out everything about it. Using a different port for SSH doesn't even slow down
hackers these days. People can snoop on what you are sending and figure it out. Your
system needs to rely on the key to your system and not the structure of the lock.

 Number 3: Always Connected? Always Vulnerable.
 Every moment that your IOT device is connected to the Internet or the network is a
moment that it can be attacked. Keep your device off the network as much as possible.
This saves power, too, which is often a defining design criteria.

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

215

 Number 4: Focus On What Is Important to Be Secure in
your IOT Application
 Does a hacker care that the temperature in your aquarium is 85 degrees? Probably not.
Do you want them to be able to change the temperature in your aquarium? Probably
not. Do you want your front door lock (that is connected to the Internet?) to be secure?
Yes, all the time. And no, you don't want hackers to be able to tell if the door is locked or
unlocked. Just remember all the encryption in the world doesn't matter if a person has
the key. In this case, either a physical key or a cryptographic key. Both can open your
door. In our door lock IOT application, we must keep the key safe.

 Number 5: Computer Security Rests on Three Main
Aspects: Confidentiality, Integrity, and Availability
 Confidentiality is defined as the concealment of information or resources. Keeping
things secret (like keys) so the hackers can't use them.

 Integrity is defined as the trustworthiness of the data or resources. Making sure
that a hacker can't forge the directives to open your house door or car doors. Oh, that
happens. Not good when it does.

 Availability refers to the ability to access information or resources when required. If
someone is doing a Denial of Service on your house or your Internet provider, you can't
get to your door lock. Yes, even with an Internet-connected door lock, you should take
your physical key along. And don't set the access code to your birthday.

 In this chapter, I am going to talk about some IOT applicable techniques for
addressing all three parts of the Triad. The CIA Triad is shown in Figure 7-1 .

 Figure 7-1. The CIA Triad

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

216

 What Are the Dangers?
 The dangers of computer insecurity depends on your information type and actuators of
your IOT device. First, let’s talk about information types.

 The danger of hacking your device to gain information completely depends on the
“value” of the information, both in a local sense and in a temporal sense. For example,
a sensor reading the temperature in your closet probably isn’t worth very much at any
one time and knowing the temperature of your closet ten hours ago (temporal value) is
probably even worth less.

 Going the other direction, transmitting your password for your WiFi in the clear from
an IOT device is a valuable piece of information; and in most systems, it is still valuable
from ten hours in the past.

 So, the value of information has two main components. Is the information valuable
at the time of production, and does it continue to remain valuable as time advances?

 Assigning Value to Information
 In a real sense, the ultimate risk of data disclosure can be described as the value of the
information disclosed. In the recent Target store information loss, it was expensive.
The value of the information lost (credit card and customer information) was high, not
only in fraud, but in fraud prevention (replacing all those cards) and eventually cost
the CEO of Target his job. Now, note, because of these remedial actions, the time value
of the information lost declined rapidly after the disclosure. What was the value of the
information lost to Target? Somewhere around $10 or $15 million. While that might seem
like a lot of money, it was less than 1 percent of the company’s revenues.

 After reimbursement from insurance and minus tax deductions, it was probably even
less. The startling conclusion after looking at the reports is that big data breaches don’t
cost all that much to these companies. Similar numbers and costs apply to the Sony and
the Home Depot data breaches. The costs just aren’t material to these large companies.

 All the consumers inconvenienced by getting new credit cards, or having fraud on
their card, or their identity stolen would probably feel differently.

 On a much smaller scale, I have experienced this on a more personal level. In 2000,
I started a bank (yes, a real FDIC-insured actual bank) and have served on the board of
directors since then. Naturally, I have served as chairman of the Technology Committee.
It’s been interesting.

 In the mid-2000s, our Visa payment provider was compromised and we had a small
fraud problem with the compromised cards (around $2,000) that the regulations say
we were responsible for. We also had about $10,000 of cost in issuing new cards. We got
a small reimbursement from our cyber-insurance but we had to go after the payment
provider. After six months that went nowhere (they didn’t want to pay anything even if it
was clearly their fault), we gave up. So who really pays in this case? You, the consumer,
with higher costs passed on to you.

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

217

 Most academic papers focus on the cost of data loss and exposure in large- and
medium-size enterprises. There is surprisingly little work about the cost of information
loss and exposure in IOT.

 So, how do you assign value to information in the IOT? You look at what it means to
the user to have the data lost or compromised and estimate a financial (or personal) harm
to the user. The companies above focus on cost to themselves. In the IOT you need to look
at the cost to the end user.

 What happens if someone hacks your front wireless door lock? How about your TV?
According to reports, the Samsung Smart TV listens to you even when you aren’t talking
to the TV. They warn you not to discuss sensitive information around your TV. Good grief.
When it was disclosed that it was possible to hack into the Samsung Smart TV camera on
the top of the set, they suggested putting black tape over it or pushing it into the set with a
pencil. Samsung is a $180 billion a year company. You would think they would put a little
more into computer security.

 Gartner forecasts [www.gartner.com/newsroom/id/3165317] that there will be 6.4
billion IOT “things” connected by the end of 2016. And they further forecast that by 2020
it will be 20 billion “things” connected. Using the rough numbers of the amount Gartner
forecasts that will be spent on the global IOT security market (about $7 billion in 2015
and increasing to $30 billion in 2020), we come up with an interesting number. The
amount that will be spent on securing the IOT will be about $1 per IOT device. Now this is
something we can use in our budgeting for IOT development. My gut feel is that is about
right.

 Back to the value of information. In 2016, 5.5 million IOT devices get connected
every day. These devices being connected include cars, kitchen appliances, smart TVs,
wristwatches, toys, medical instruments, etc., etc.

 When an IOT device gets connected, it needs to be protected.

 Building The Three Basic Security Components
for IOT Computers
 Computer security is a complex topic with lots of interactions between different systems
and subsystems in even a simple transaction from an IOT device to a server across the
Internet. We are going to now return to the CIA Triad (Confidentiality, Integrity, and
Availability) and see what we can do with each of these concepts in practice on these
small computers.

 Confidentiality - Cryptography
 Confidentiality is defined as concealment of information. As was mentioned earlier,
you can almost always get information out of device if you have physical access to the
device. What we are focusing on in this section is protecting the information transmission
channel rather than the physical IOT device itself.

http://www.gartner.com/newsroom/id/3165317]

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

218

 Note from no. 2 above, obscurity doesn’t count as far as computer security goes. If
we are transmitting valuable information, then we need to encrypt it using cryptographic
techniques. What is cryptography? Cryptographic techniques include uses for all of
the CIA Triad, but here we are going to focus on encryption that is a subset of these
techniques.

 Discussing cryptography and encryption techniques can easily fill an entire book so
I will stay away from the math and focus on the application. The one thing we do need to
discuss is that modern cryptography is very heavily based on math and computer science
methodologies. All of these techniques below can be broken based on the theoretical
considerations of the algorithms, but it is impractical to do so by any known techniques.
That makes these techniques “Computationally Secure.” Someday in the future they may
be able to read your thermometer, but will it be worth it? Depends on the value of the
information.

 There is one important thing to realize about encryption and cryptography.
These algorithms tend to be computationally expensive in terms of amount of CPU
clocks and RAM memory to do these calculations. Remember that IOT devices
don’t have a lot of CPU clocks or a lot of RAM memory. Therefore, use the minimum
amount of these techniques to protect your data. You need to be smart to save battery
and RAM space.

 Cryptography on the Arduino
 There are basically two ways for Arduino to communicate with external devices.
You either have a network connection (Ethernet, Bluetooth, WiFi, Zigbee, or other
networks), or you have a serial connector (USB, straight serial). While the techniques
described in this section are applicable to both kinds of connections, we will focus on
the network-type techniques. For the Arduino I am going to focus on using AES. While
this next example is run on Arduino Mega2560, it can also be run on an ESP8266 with
minimal changes.

 AES is what they call a symmetric block cipher used by the U.S. government to
protect classified information. It’s pretty good encryption and can’t be broken at the
writing of this chapter by brute force attacks. However, as Bruce Shinier has said, “Attacks
always get better; they never get worse.”

 Following are just some of the AES libraries available for the Arduino:

• github.com/DavyLandman/AESLib

• spaniakos.github.io/AES/index.html

• utter.chaos.org.uk:/~markt/AES-library.zip

 We are using an Arduino Mega2560 (shown in Figure 7-2) instead of an Arduino Uno
because the Mega2560 has 8K bytes of SRAM available versus 2K bytes in the Uno.

http://utter.chaos.org.uk/~markt/AES-library.zip

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

219

 We are going to use the Davy Landman library for our examples. To install into your
Arduino library, follow the directions in the README.md file. Following is an example of
how to use the AES library in an Arduino program. You can substitute any Arduino for this
example. However, it does not compile under the ESP8266 Arduino IDE unless changes
are made to the AES library itself.

 //
 //
 // AES Library Test
 // SwitchDoc Labs
 // February 2016
 //

 #include <AESLib.h>

 // 256 bit key for AES
 uint8_t key[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};

 Figure 7-2. Arduino Mega2560

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

220

 void setup() {

 Serial.begin(115200);
 }

 void loop() {
 // put your main code here, to run repeatedly:

 // 16 bytes
 char data[] = "01234567890Hello";

 int sizeOfArray;
 int i;

 sizeOfArray = sizeof(data) / sizeof(char);

 Serial.println();

 Serial.print("data to be encrypted (ASCII format):\t ");
 Serial.println(data);

 Serial.print("data to be encrypted (Hex format):\t ");

 for (i = 0; i < sizeOfArray - 1; i++)
 {
 if (uint8_t(data[i]) < 0x10)
 Serial.print("0");
 Serial.print(uint8_t(data[i]), HEX);

 }
 Serial.println();

 // Now we encrypt the data using a 256 byte AES key

 aes256_enc_single(key, data);

 // print the encrypted data out in Hex

 Serial.print("encrypted (in Hex):\t\t\t ");

 for (i = 0; i < sizeOfArray - 1; i++)
 {
 if (uint8_t(data[i]) < 0x10)
 Serial.print("0");
 Serial.print(uint8_t(data[i]), HEX);

 }
 Serial.println();

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

221

 // Now decrypt the data and print it out

 aes256_dec_single(key, data);
 Serial.print("decrypted:\t\t\t\t ");
 Serial.println(data);
 }

 Note the key given at the beginning of the program. This 256-bit key is what you need
both to encrypt and decrypt the data. Granted, this is not a very good key in our example.

 Below is an example of the results of the program:

 data to be encrypted (ASCII format): 01234567890Hello
 data to be encrypted (Hex format): 303132333435363738393048656C6C6F
 encrypted (in Hex): 438693C632D91AF2283651F416BBA61E
 decrypted: 01234567890Hello

 This is the single piece of secret information. Both ends of the communication
channel need to have this key for AES to work.

 Key management (how to send these keys around) is a key topic of IOT computer
security design and will be discussed later in this chapter.

 Looking at this program, you could see how you could decompile this code and
retrieve the secret key. This is an example of why physical access to the device can often
lead to the ability to hack the device and then the network of devices.

 How fast are these libraries on an Arduino? Based on a 16MHz ATMega328, a 128-bit
AES key can generate about 27,000 bytes per second. Using a 256-bit key gets you about
20,000 bytes per second.

 Now that is full bore CPU usage, so if you have other things to do with the processor
(as is almost certainly the case), you won’t be able to make these data rates continuously.

 Note that AES libraries are already built into the firmware for the ESP8266, but as of
the writing of this chapter there really are no complete examples of how to use them and
the documentation is very sparse.

 Cryptography on the Raspberry Pi
 The Raspberry Pi has a far richer set of cryptography libraries available in the operating
system or as easily available downloads. For example, if you are communicating using
web requests (between Raspberry Pi’s or Linux-based computers), you can use SSL
to encrypt the traffic between the two nodes. It is highly standardized, and if properly
configured is strongly secure. Why don’t we use SSL on an Arduino or ESP8266-based
system? Two reasons: first, memory / processing power limitations; and second is the
problem of distribution of the certificates necessary for secure SSL links. This is another
variant of the key distribution problem.

 The same AES-256 functions are available on the Raspberry Pi so they could be used
in communicating with an Arduino. However, this method is a long way from the full SSL
implementation used by modern web browsers and computer (think https:// instead
of http://) .

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

222

 The Spaniakos AES encryption library as cited above under the Cryptography on the
Arduino section is also available for the Raspberry Pi.

 Note that there are hardware implementations of AES starting to appear for Arduinos
and Raspberry Pi.

 Integrity - Authentication
 Integrity is defined as the trustworthiness of the data or resources. Note the difference
between Integrity and Encryption. When I speak of integrity, I am speaking of making
sure that the directives or data sent to my IOT device has not been changed en route and
that I know for sure who sent it. The directives or data may or may not be encrypted.

 Looking at this from a value-of-information perspective, this means that we don’t
really care if a hacker looks at the data (I am turning up the heat in my house), but we use
integrity to make sure that a hacker cannot forge the directive or data and that the hacker
cannot change the data itself.

 There are many ways of using cryptographic algorithms for establishing the integrity
of the contents of the message and establishing who sent the message.

 Establishing that the message has not been changed en route can be done by using
what is called a cryptographic hash on the message. In concept, you take each byte of the
message and by using a cryptographic algorithm, you can determine that the message has
not been changed – with a very, very high degree of certainty.

 Cryptographic Hashes on the Arduino / Raspberry Pi
 In order to prove that the message has not been altered on transit, you will need to send
the message + the hash across the network. Much like the encryption example above, you
need to take your message and cryptographically hash the message to generate the hash
codes. We will use the fork from Cathedrow library [https://github.com/maniacbug/
Cryptosuite] for this example.

 However, the libraries required some tweaking to make them work in the newer
versions of the Arduino IDE, so I have included them in the download of this software as
additional tabs. This will work with an Arduino board and an ESP8266 board.

 //
 // SHA256 Hash Test
 //
 // For both the Arduino and ESP8266
 // SwitchDoc Labs
 //
 // February 2016

 #include "sha256.h"

http://github.com/maniacbug/Cryptosuite]
http://github.com/maniacbug/Cryptosuite]

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

223

 void printHash(uint8_t* hash) {
 int i;
 for (i = 0; i < 32; i++) {
 Serial.print("0123456789abcdef"[hash[i] >> 4]);
 Serial.print("0123456789abcdef"[hash[i] & 0xf]);
 }
 Serial.println();
 }

 void setup() {

 Serial.begin(115200);
 Serial.println("SHA256 Hash Test");
 Serial.println();

 }

 void loop() {

 uint8_t *hash;
 Sha256.init();
 String hashMessage;
 int i;

 while (1)
 {

 hashMessage = "This is a message to hash-";
 hashMessage = hashMessage + String(i % 10);
 Serial.print("Hashing Message: ");
 Serial.println(hashMessage);
 Sha256.print(hashMessage);

 hash = Sha256.result();

 printHash(hash);
 Serial.println();
 delay(5000);

 i++;

 }

 }

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

224

 The results are as follows:

 SHA256 Hash Test
 Hashing Message: This is a message to hash-2
 f2a47cefff87600aeb9089cf1f11a51b833ccdd91b808df75b7238fc78ba53f2

 Hashing Message: This is a message to hash-3
 5d135bc35a33004cad4c4ed37fc0011c1475f09c6ddd7dec01c348734e575f41

 Hashing Message: This is a message to hash-4
 fe1aa898ab0e041d1ce4539b388439c75a221efab0672896fc5e14b699c01492

 If the hashed message is changed, the SHA256 hash will change. You can say that the
message has not been changed en route to your device. Note we have no cryptographic
key to exchange. SHA256 will work the same everywhere.

 SwitchDoc Note Proving something has not been altered in transit will tell you it is good.
However, what if we just have a slightly corrupted message? This could be caused by noise
in the line (think satellite communication). If you want to correct errors in a message like
this, a whole other set of algorithms is used. Reed-Solomon error correction codes are a
great example of these. You can correct the data, then decrypt it. Obviously, you need to
encrypt the message first and then put these codes over the top of the encrypted data to
make your communication channel more reliable. Reversing the order (encrypting the
Reed-Solomon code) makes no sense and will not provide error correction.

 The Raspberry Pi code is very similar.
 So, this seems pretty straightforward. What are we missing? We have the proof that

the message has not been changed. Great. Proof of data integrity.
 However, we have not proved that the data has not been forged using a man-in-

the-middle attack. Now we have to look at the last part of data integrity. Proof where it is
coming from, or in other words, non-repudiation.

 Non-repudiation is usually based upon some variation of Public/Private Key
Encryption.

 It works like this. Bob has a private key, only known to him. He also has a public key
that he gives to anybody who wants to communicate with him. When Bob wants to send a
message to Alice, he encodes the message with his private key and sends it to Alice. Alice
uses the public key she got from Bob to decrypt the message. If it successfully decrypts,
then Alice knows that the message came from Bob.

 So, using this public/private key method, we can encrypt the message and prove it
came from Bob and is unaltered. Reversing the procedure, we can send a message to Bob
from Alice safely.

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

225

 OK, looks perfect. What are the complications? Once again we are back to key
exchanges. Both our IOT server and the IOT device have to have private keys and publish
public keys to the server. This does sound like a lot of work. And it is. Those more-
sophisticated readers will notice that this sounds a lot like SSH/HTTPS. Correct. And as
noted above, those are big libraries for small computers, although the Raspberry Pi can
handle it, the Arduino class of processors really can’t. The ESP8266 is barely able to do
this (and does it for their over the air update option) but they are not distributing keys.
They update a one-way communication. For bidirectional communication links, you
need keys for both directions.

 There is a whole additional level of complexity laid on top of this. Certificates must
be traceable to a known trusted authority to prove the system hasn’t been compromised.

 Showing examples of the public/private key software is well beyond the scope of
this book. Some keywords to look for are “Digital Signature, Diffie-Hellman, and RSA
Public Key Encryption” when searching for this technology. A good example of a system
showing this kind of a system between an Arduino and a Windows PC is available at this
link: github.com/arpitchauhan/cryptographic-protocols-arduino-and-PC/

 The overall methodology used is as follows:

• Public keys are exchanged securely between the two devices
(note: both have their own private key).

• After the Public keys are exchanged, you can transfer a key for
AES encryption.

• Now the devices can communicate securely and safely using AES
as in the example above.

 An important thing to remember is public/private key encryption is much more
computationally expensive than AES encryption. This is why you exchange your AES keys
with this scheme and then just use AES to send the data in normal operation.

 Availability - Handling DOS / Loss of Server / Watchdogs
 There really isn't a lot of difference between an attack to deny you service (DOS), the
Internet going down, your wireless router rebooting, or your microwave oven going crazy.
All of these things disrupt your communication path to your IOT device.

 One thing that commercial wireless IOT devices are especially vulnerable to is the
inability to talk to the server because of electrical noise in the environment whether
generated by error or on purpose. When you are planning your IOT device, you need
to make sure you design it so your device can handle a disruption of communication
service, whether it is done on purpose or by equipment failure. There needs to be some
method for telling the user or consumer that you have a fault.

 How does the military get around this? It uses complex schemes like frequency
hopping radios, large amounts of radiated radio power to “burn through” the noise, and
big antennas. These are not techniques that are cheaply available to our IOT devices.

https://github.com/arpitchauhan/cryptographic-protocols-arduino-and-PC/

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

226

 Key Management
 Key management is a hard problem. Configuration management of IOT devices is
difficult. From the sections earlier in this chapter, we need to have a shared key to do
AES256 encryption to keep our communication confidential. We also need keys to prove
that the message has come from the correct person or server.

 Remember that ANY time your IOT device is communicating with the Internet or the
local area network, there is a possibility of compromise.

 There are two approaches to key management on IOT devices. The first is by using
hardware key management.

 Companies like Infineon build chips that include private and public keys that can
be used to build networks of IOT devices. You can establish trusted certificates (linking to
a trusted certificate authority) at the time of manufacture and then establishing a set of
software protocols for using these keys after deployment. As the process and chips become
less expensive, I believe we will see more and more of these types of systems deployed.
At the writing of this book, these chips are not cheap. Using one will roughly double the
price of your IOT device in many cases. What about physical access to these devices? Yes,
you can compromise a device by taking it and tearing it apart (and I don’t just mean taking
the screws out. I’m talking about removing the plastic from the chips and going through
the chip with a microscope. Remember our discussion about the value of information? It’s
probably not worth doing all of this to compromise your thermostat or toaster.

 The second method is to use software to distribute the keys during configuration
(or even during manufacturing). These methods in general are called PKI (Public Key
Infrastructure).

 Generally, many IOT devices are more vulnerable to attacks than normal servers,
PCs, and smartphones because they operate with embedded software (firmware) that
has been developed without online security in mind. There are many examples of really
bad software flaws that can include back-end management with default passwords that
are easily found on the Internet and non-encrypted communications. People are actively
hacking into things like routers and other connected devices and using them in DOS
(Denial Of Service) attacks. Think of our LightSwarm devices in a previous chapter. You
could program them all to start sending messages as quickly as possible and create your
own DOS attack. During the development of the LightSwarm, I inadvertently did that very
thing. I overwhelmed the Raspberry Pi server by sending messages all at once, as quickly
as possible.

 Another real issue with IOT devices is that the internal IOT device firmware may not
be updated for years (or the company may go out of business) and the infrastructure for
updating these devices just doesn’t exist or not.

 The use of current PKI methods are just impractical to scale to the upcoming
multiple billions of IOT devices projected to be connected to the network. Because of this
many manufacturers take short cuts to secure their devices. For example, all of the IOT
devices may share a single key (either an AES encryption key or a single public/private
key pair). This method does supply a significant amount of security, but if the single key
is compromised (as has happened many times in the computer industry. Think Sony and
Microsoft) then the entire network is open to hackers.

 The industry has the mathematic and technical tools to protect the IOT. What we
don’t have is a simple and secure method for distributing the keys to all of the IOT.

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

227

 This is a problem that has not been solved yet and probably won’t be before we
deploy another few billion computers.

 Update Management
 According to one pundit (actually me), the two biggest problems for keeping IOT devices
safe are the following:

• Lack of remote updating capability

• Remote updating capability

 Being able to update your firmware is key to avoiding obsolescence and to recover
from flaws that come to light after deployment of devices. This is one very important
channel of information that needs to be cryptographically secured, both from a data
integrity point of view and to make sure it is only being updated from where it should
be updated from (non-repudiation). The techniques above can be used to do these very
things.

 If anybody can figure out how to fool your updating system, the person can
reprogram your entire system.

 Conclusion
 Why would someone want to break into your thermostat? To provide an entrance to your
network. Remember the Target data breach I talked about earlier? That was initiated via a
cooling system maintenance application. They got in the network via the air conditioner.

 The IOT represents a huge opportunity to improve people’s lives and experiences.
With great power comes great responsibility. When you design your Internet Of Things
killer application and device, design security in from the beginning. Don't tack it on at
the end.

 Watch the news. In the near future, you will see articles about people (and programs)
hacking into cars – oh wait, they are already doing that. You will see articles about people
hacking into hotel door locks – oh wait, they are already doing that. And you will see
people hacking into your home thermostat – oh wait, they are already doing that, too.

 Following is an example from an Amazon review:

 The man wrote that his wife had left him for another man
and then moved her new man into their old home that they
had shared, which had a Honeywell WiFi thermostat. The
ex-lover could still control the thermostat through the mobile
app installed on his smartphone, so he used it to change the
environment for the couple now living in his old house:

 “Since this past Ohio winter has been so cold I’ve been
messing with the temp while the new lovebirds are sleeping.
Doesn’t everyone want to wake up at 7 a.m. to a 40 degree
house? When they are away on their weekend getaways, I

CHAPTER 7 ■ COMPUTER SECURITY AND THE IOT

228

crank the heat up to 80 degrees and back down to 40 before
they arrive home. I can only imagine what their electricity bills
might be. It makes me smile. I know this won’t last forever,
but I can’t help but smile every time I log in and see that it still
works. I also can’t wait for warmer weather when I can crank
the heat up to 80 degrees while the lovebirds are sleeping.
After all, who doesn’t want to wake up to an 80 degree home
in the middle of June?”

 Now granted, that isn’t really a technical hack – more of a social engineering
experience, but it shows what can be done with these little systems.

 Your Nest Thermostat (insert your own IOT example here) can be a gateway into
your home. In many systems, like the Nest Thermostat, you are only one password from
being hacked. Makes a good argument for good passwords on ANY system that is exposed
to the Internet.

 And remember that all devices are vulnerable to being hacked with physical access.
So make sure you keep your “real” metal keys safe, too.

229© John C. Shovic 2016
J. C. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3

 APPENDIX

 Suggestions for Further Work

 The IOT is an area of active research and now active deployment. Nobody in the
industry has yet found the “killer application” that will take the IOT to mass consumer
deployment, but it is just a matter of time. If you took the time to build the IOT projects in
the previous chapters, you now have a basic set of skills to prototype and innovate in the
IOT space. There is no better way of learning a new set of abilities than actually building
things. That is the mantra of the Maker Movement.

 Following are some of the IOT projects that I am currently working on. They are good
suggestions for further work on your own, if you are so inclined.

• OurWeather - a no-soldering required IOT Weather Station kit for
ages 8 and up

• Air Quality IOT device

• Low Power RF Links for IOT devices

• SunRover - Solar Powered IOT Connector Robot

• SunGrassHopper - IOT Connected small solar-powered robot

• Cloud Cover Detecting IOT sensor

• Building IOT Devices using Grove Connectors for easy and fast
prototyping

 Another idea is to regularly scour the following web sites for new devices and new
sensors:

• www.sparkfun.com

• www.adafruit.com

• www.seeedstudio.com

• www.tinysine.com

 For more technical users:

• www.digkey.com

• www.mouser.com

• www.texasinstruments.com

http://www.sparkfun.com/
http://www.adafruit.com/
http://www.seeedstudio.com/
http://www.tinysine.com/
http://www.digkey.com/
http://www.mouser.com/
http://www.texasinstruments.com/

APPENDIX ■ SUGGESTIONS FOR FURTHER WORK

230

 When I see a new sensor that is interesting, I jump on it, build a project, and publish
it in either magazines or on my blog. There are new IOT base devices (like the Adafruit
Huzzah) coming online every day. If you see one and you are interested, buy it and build
something. Come visit my blog and join the conversation at www.switchdoc.com .

 Parting Words . . .
 The IOT is going to be big. Just how big, nobody knows. The technologies that are now
exploding in the marketplace are accessible to the reasonably technically minded person.
As always, I feel the best learning is by the doing. If you have built the five projects in
this book, then you have a really good idea of what is going on with the devices in your
household or workplace. IOT probably doesn’t mean “Black Box” to the reader anymore.

 Have you ever heard of Metcalfe’s Law ? It states that “the value of a
telecommunications network is proportional to the square of the number of connected
users of the system.”

 Substitute “connected IOT Device” for “connected users” and read it again. The
world is at the cusp of something. It might just be bigger than the Internet. Oh wait. It will
be the Internet. The Internet Of Things will be much larger than the Internet of connected
people.

 Keep reading the blogs and building things. Stay current with the technology and the
future won’t be nearly as mysterious as it was when you started this book.

http://www.switchdoc.com/

231© John Shovic 2016
J. Shovic, Raspberry Pi IoT Projects, DOI 10.1007/978-1-4842-1377-3

 A
 Analog to digital

converter (ADC) , 152–154
 Application Programming

Interfaces (APIs) , 99, 150
 Arduino Mega2560 , 219
 Automatic packet reporting

system (APRS) , 105–107

 B
 Bluetooth low energy (BLE) , 116, 119, 140
 Brownout problem , 80

 C
 Citizen weather observer program

(CWOP)
 APRS packets , 105–108
 EW7667 , 108–109

 Cloud computing , 149–150
 Cryptography

 Arduino , 218–221
 confi dentiality , 217
 cryptographic hashes , 222–225
 Raspberry Pi , 221

 D
 Dynamic Host Confi guration

Protocol (DHCP) , 30

 E, F, G, H
 ESP8266

 Adafruit Huzzah ESP8266 , 12
 ADC , 152–154

 ESP8266 die , 11
 FTDI cable , 156–157
 IOTPulse design , 152
 IOTRFID project , 195, 199–200

 LightSwarm design , 12, 17
 Hackers , 213, 215, 226

 I
 iBeacons

 BlueZ , 139–141
 bootup , 142
 classic distributed system , 144
 control panel , 135, 137
 phue , 141
 startup procedure , 141–142
 trilateralization , 134–135

 IBM BlueMix
 architecture , 173
 authentication , 177, 179
 cloud architecture , 151
 data source , 181
 JSON , 176
 MQTT , 175–176
 real-time insights , 179–180, 182–183

 IOT base devices , 230
 IOTBeaconAir

 BLE , 116
 bluetooth scanner , 118–119
 confi guration , 133
 CPLPFC , 115
 hardware , 115, 121
 Phillips Hue lighting system , 119–120
 RSSI , 134
 software

 architecture , 122
 HTML map , 130–133
 program , 124–130

 Index

■ INDEX

232

 IOT characterization , 188
 IOT computer security , 214

 assigning values , 216–217
 CIA triad , 215
 confi guration management , 226
 cryptography

 Arduino , 218–221
 confi dentiality , 217
 cryptographic hashes , 222–225
 Raspberry Pi , 221

 DOS / Loss of Server /
Watchdogs , 225

 hacking dangers , 216
 integrity, authentication , 222
 security components , 220, 222–223
 update management , 227

 IOT devices
 Arduino IDE , 7–8
 characteristics , 3–5
 Python , 7–8

 IOT projects , 229
 IOTPulse

 ADC , 152
 APIs , 150
 architecture , 154
 Arduino IDE , 170–172
 cloud computing , 149
 CPLPFC , 148
 3D printing , 157–160
 FTDI cable , 156–157
 IBM Bluemix , 151–152
 IOTPulse.ino

 AllSerialHandling.h , 166
 Interrupt.h , 167–168, 170
 setup() and loop() , 160–161

 Node-RED , 185
 voltage divider , 153
 Watson applications , 186

 IOTRFID , 190
 Arduino IDE installation , 196
 3D printed case , 197–198
 hardware , 196
 libraries , 201–202
 Mosquitto debug window , 206–207
 parts list , 195
 Raspberry Pi settings , 207–208
 RFID Antenna JST2 plug , 200
 RFID board , 199
 RFID data , 210
 sensor , 196
 software , 202–205

 testing , 205, 209–210
 wiring list , 200

 J, K
 JSON data payload , 176

 L
 LightSwarm architecture

 CPLPFC , 10
 Curacao RasPiConnect

control panel , 55
 ESP8266 , 11–12
 hardware

 FTDI cable , 23
 I2C bus , 17–19
 TCS34725 , 19–20, 22
 WiFi interface , 17
 wiring List , 23

 Logger software
 constant value declaration , 45
 loop() , 52–53
 RaspiConnect Code , 46–47
 startup code , 51–52
 web map code , 48, 50

 RasPiConnect , 15
 Reset Swarm , 56–57
 self-organization , 43
 software

 broadcasting , 36–37
 constants , 27
 loop() , 31
 master check and update , 38–43
 packet interpretation code , 34–36
 packet type , 32–33
 Setup() Function , 28–29
 specifi cations , 25

 TCS34725 breakout board , 12–13

 M
 Metcalfe’s Law , 230
 MQTT

 defi nition , 189–190
 server building on Raspberry Pi

 confi guration , 193–194
 datafl ow , 191
 installation , 192
 testing , 194–195

■ INDEX

233

 N, O
 Node-RED , 185–186

 P, Q
 Phillips Hue hub , 120
 Phillips Hue lighting system , 119–120

 R
 Radio frequency identifi cation

(RFID) , 188–189
 Raspberry Pi

 blueZ and phue installation , 138–141
 cryptography , 221–222
 IOTBeaconAir , 113
 Light Swarm , 15
 model selection process , 2–3
 MQTT server

 confi guration , 193–194
 datafl ow , 191
 installation , 192
 testing , 194–195

 power controller , 83
 Raspberry Pi 2 , 2

 Relative signal strength indicator
(RSSI) , 134

 RFID Antenna JST2 Plug , 200
 RSSI . See Relative signal strength

indicator (RSSI)

 S
 Solar powered IOT weather system

 architecture , 67
 Brownout problem , 80
 components , 65
 connecting and testing , 88–90

 CWOP (see Citizen weather observer
program (CWOP))

 functions , 66
 I2C devices , 71–76
 power consumption , 76–77
 power controller , 68
 power up and power down , 78–80
 Python software , 95–96
 RasPiConnect control panel , 97
 requirements , 86–87
 solar cells , 68–69
 SwitchDoc Labs , 104–105
 Twitter API , 98–101
 USB power control , 82–83
 WatchDog Timer , 84
 weather data, texting , 102–104
 WeatherPiArduino , 71
 wind/rain sensors , 69–70
 wiring list , 90–91

 T
 TCP . See Transmission control

protocol (TCP)
 TCS34725 , 12–13, 19–20, 22
 Transmission control protocol (TCP) , 26

 U, V
 Unique Device Identifi er (UDID) , 116
 User datagram protocol (UDP) , 26

 W, X, Y
 Watson applications , 186

 Z
 Zigbee , 120

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapters at a Glance
	Chapter 1: Introduction to IOT
	Choosing a Raspberry Pi Model
	Choosing an IOT Device
	Characterizing an IOT Project
	Communications
	Processor Power
	Local Storage
	Power Consumption
	Functionality
	Cost

	The Right Tools to Deal with Hardware
	Writing Code in Python and the Arduino IDE
	In This Book

	Chapter 2: Sensing Your IOT Environment
	IOT Sensor Nets
	IOT Characterization of This Project
	How Does This Device Hook Up to the IOT?
	What Is an ESP8266?
	The LightSwarm Design

	Building Your First IOT Swarm
	Installing Arduino Support on the PC or Mac
	Your First Sketch for the ESP8266
	The Hardware
	Reviewing the I2C Bus
	Pullups on the I2C Bus
	Sensor Being Used
	3D Printed Case

	The Full Wiring List

	The Software

	Self-Organizing Behavior
	Monitoring and Debugging the System with the Raspberry Pi (the Smart Guy on the Block)
	LightSwarm Logging Software Written in Python

	The RasPiConnect Control Panel in Real Time
	Results
	What Else Can You Do with This Architecture?
	Conclusion

	Chapter 3: Building a Solar Powered IOT Weather Station
	IOT Characterization of This Project
	How Does This Device Hook Up to the IOT?
	Data Gathering
	The Project - IOTWeatherPi
	How This All Works
	The Subsystems
	The I2C Bus

	Sizing Your Solar Power System
	Power Up and Power Down
	The Brownout Problem
	Shutting Off the Pi

	Starting the Pi
	The Issue
	Power Your Pi Up and Down with the USB Power Control
	The USB Power Controller Board
	One More Scenario

	What Do You Need to Build This Project?
	Connecting and Testing the Hardware
	The Full Wiring List
	The Software
	Non-Normal Requirements for your Pi
	The IOTWeatherPi Python Software
	The RasPiConnect Control Panel
	Improvements

	Tweeting Your Weather Data
	Getting Started
	Registering a Twitter App

	Texting Your Weather Data
	Supplying Your Data to the World - CWOP
	CWOP
	CWOP Software Interface to IOTWeatherPi
	CWOP Software
	Example CWOP Packet
	Results

	Conclusion

	Chapter 4: Changing Your Environment with IOT and iBeacons
	The IOTBeaconAir
	IOT Characterization of This Project
	How Does This Device Hook Up to the IOT?
	Hardware List

	iBeacons
	Bluetooth iBeacon Scanner
	Phillips Hue Lighting System
	Phillips Hue Hub

	BeaconAir Hardware, Software, and Configuration
	BeaconAir Hardware Description
	BeaconAir Software Description
	BeaconAir Configuration File
	iBeacon Software
	Trilateralization
	The IOTBeaconAir Control Panel

	Installing blueZ and phue on the Raspberry Pi
	BlueZ
	phue

	RasPiConnectServer Startup
	Startup Procedure
	Making IOTBeaconAir Start on Bootup
	How It Works in Practice

	Things to Do
	The Classic Distributed System Problems
	Conclusion

	Chapter 5: Connecting an IOT Device to a Cloud Server - IOTPulse
	IOT Characterization of This Project
	The Internet Of Things on the Global Network
	Cloud Computing
	Application Builders
	Display and Report Generation
	The IBM Bluemix Internet Of Things Solution

	The IOTPulse Design
	Building the IOTPulse
	Plugging the FTDI Cable into the ESP8266

	3D Printing Files for the IOT Case
	Software Needed
	The IOTPulse Code
	IOTPulse.ino

	Reviewing the Arduino IDE Serial Monitor Results

	Joining IBM Bluemix and the IoT Foundation
	Sending your Data to Bluemix
	MQTT
	JSON Data Payload
	Authentication

	Displaying Real-Time Data on the IBM Bluemix IOT Platform
	Adding Real-Time Insights
	Adding the Data Source
	Adding the Dashboard to the IoT Real-Time Display

	Advanced Topics
	Historical Data
	Node-RED Applications
	Watson Applications

	Conclusion

	Chapter 6: Using IOT for RFID and MQTT and the Raspberry Pi
	IOT Characterization of This Project
	What Is RFID Technology?
	What Is MQTT?
	Hardware Used for IOTRFID
	Building an MQTT Server on a Raspberry Pi
	The Software on the Raspberry Pi
	Installing the MQTT “Mosquitto”
	Configuring and Starting the Mosquitto Server
	Starting the Mosquitto Server
	Testing the Mosquitto Server

	Building the IOTRFID
	The Parts Needed
	Installing Arduino Support on the PC or Mac
	The Hardware
	What Is This Sensor We Are Using?
	3D Printed Case
	The Full Wiring List

	The Software for the IOTRFID Project
	The Libraries
	The Main Software
	Testing the IOTRFID System
	Setting Up the Mosquitto Debug Window
	Set Up a Subscriber on the Raspberry Pi
	Testing the Entire IOTRFID System

	What to Do with the RFID Data on the Server
	Conclusion

	Chapter 7: Computer Security and the IOT
	IOT: Top Five Things to Know About IOT Computer Security
	Number 1: This is important. You can prove your application is insecure, but you can’t prove your application is secure.
	Number 2: Security through Obscurity Is Not Security
	Number 3: Always Connected? Always Vulnerable.
	Number 4: Focus On What Is Important to Be Secure in your IOT Application
	Number 5: Computer Security Rests on Three Main Aspects: Confidentiality, Integrity, and Availability

	What Are the Dangers?
	Assigning Value to Information
	Building The Three Basic Security Components for IOT Computers
	Confidentiality - Cryptography
	Cryptography on the Arduino
	Cryptography on the Raspberry Pi

	Integrity - Authentication
	Cryptographic Hashes on the Arduino / Raspberry Pi

	Availability - Handling DOS / Loss of Server / Watchdogs

	Key Management
	Update Management
	Conclusion

	Suggestions for Further Work
	Parting Words . . .

	Index

