
www.allitebooks.com

http://www.allitebooks.org

ReactJS Blueprints

Create powerful applications with ReactJS, the most
popular platform for web developers today

Sven A. Robbestad

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

ReactJS Blueprints

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1250716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-654-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Sven A. Robbestad

Reviewers
Michele Bertoli

Tassinari Olivier

Acquisition Editor
Reshma Raman

Content Development Editor
Merwyn D'souza

Sachin Karnani

Technical Editor
Abhishek R. Kotian

Copy Editor
Gladson Monteiro

Project Coordinator
Nikhil Nair

Ritika Manoj

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Sven has spent many months writing ReactJS Blueprints, and it shows. This book is
a great way to get up and running with ReactJS quickly and to understand the best
way to architect applications with ReactJS.

One of the best parts about Sven's writing is how pragmatic the examples are.
Each concept is tied together with the next through the judicious use of real-world,
relatable examples, and each concept is explained in detail as it's introduced.

Today, frontend developers are facing increasing JavaScript fatigue and an
overwhelming number of competing frameworks, libraries, and build tools.
ReactJS Blueprints can serve as your roadmap for navigating this vibrant—and
daunting—ecosystem with clarity and ease.

Once you've completed ReactJS Blueprints, you'll be in the perfect position to begin
a new ReactJS app or bring ReactJS into your existing system. This book is truly a
one-stop-shop for ReactJS and modern web application architecture in general,
and it is a lot of fun to read too!

Pete Hunt

CEO at Smyte, member of the original React.js team at Facebook

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sven A. Robbestad is a developer with a keen interest in the Web and the
languages you use for developing for the Web. He started programming at a young
age, beginning with C on the Commodore Amiga. He made the Web his career in the
early 90s. His favorite programming language is JavaScript, but he likes to work with
an assortment of languages, such as Python, PHP, and Java, to mention a few. In his
spare time, he loves engaging with fellow programmers, traveling, and speaking at
conferences.

I would like to thank my wife, Monica, and my children, Ida Alana
and Henry Alexander, for their patience. I know that living with
a developer is challenging and even more so when he's writing a
book. I would also like to thank Packt Publishing for giving me this
opportunity, and the editorial team, especially Merwyn and Reshma.
It's been a joy.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Michele Bertoli is a frontend developer with a passion for beautiful UIs.

Born in Italy, he moved to London with his family to look for new exciting job
opportunities. He has a degree in computer science, and he loves clean and
well-tested code. Currently, he is working at YPlan, crafting modern JavaScript
applications with React.js. He is a big fan of open source and is always trying
to learn something new.

I would like to thank my wife and my son for making my days better
with their smiles and the WEBdeBS community, which helped me to
move forward in my career.

Tassinari Olivier is a curious and persevering person who has always loved
discovering new technologies. His passion for building things started at a very
young age, and he began to launch websites 8 years ago while studying maths,
physics, and computer sciences. He was involved in the development of Material
UI at a very early stage and became one of the top committers. Though he is
currently working as a frontend engineer at Doctolib, a company streamlining
access to healthcare, he spends a lot of time contributing to the open
source community.

I would line to thank Reshma Raman for reaching me and providing
me with the opportunity to review my first book. I would also like to
thank my family for their support.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
http://
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: Diving Headfirst into ReactJS	 1

Introducing ReactJS	 2
Modern JavaScript development	 2

Component specification	 3
Props and states	 3

Props	 3
States	 6

render	 7
statics	 7
propTypes	 8
displayName	 8

Life cycle methods	 8
componentDidMount	 8
componentWillMount	 9
shouldComponentUpdate	 9
componentWillReceiveProps	 10
componentWillUpdate	 10
componentDidUpdate	 11
componentWillUnmount	 11

Synthetic events and the Virtual DOM	 11
The DOM	 11
The virtual DOM	 12
Synthetic event handlers	 13
Putting it all together	 13

Composition	 16
Developing with modern frontend tools	 16

Browserify	 17

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Scaffolding our React app	 18
Running the app	 22

Summary	 22
Chapter 2: Creating a Web Shop	 23

An overview of the components	 23
Setting up a shop	 25

Creating the layout	 25
Adding your own CSS code	 27
Adding a route handler	 28
The menu and footer	 30
Creating the pages	 33
Creating a database of products	 36
Creating a data store to fetch the products	 39
Building the product's listing and the item page	 42
Creating a cart store	 50
Checking out	 53
Providing a receipt	 64

Summary	 68
Chapter 3: Responsive Web Development with ReactJS	 71

Creating a flexible layout	 72
Choosing the right framework	 73

Setting up your app with Bootstrap	 75
Summary	 123

Chapter 4: Building a Real-Time Search App	 125
Creating your own search API	 126

Getting started with your API	 126
Creating the API	 127
Importing documents	 129
Querying the API	 129
Creating a wildcard search	 130
Securing your API	 134

Creating your ReactJS search app	 136
Setting up your app	 137
Creating a search service	 142

Testing the service	 145
Setting up the store	 146
Creating the search view	 147
Performing searches	 151
Navigating the search results with the arrow keys	 159
Debouncing the search	 161

Table of Contents

[iii]

Moving beyond the quick search to the results page	 162
Setting up the results page	 163
Setting up pagination	 165
Setting up endless scroll	 169

Summary	 172
Chapter 5: Creating a Map App with HTML5 APIs	 173

The state of HTML5 APIs	 173
The High Resolution Time API	 174
The Vibration API	 176
The Battery Status API	 177
The Page Visibility API	 178
The Geolocation API	 179

Creating our map app	 180
Setting up geolocation	 185
Showing static maps	 195
Creating an interactive map	 211

Summary	 216
Chapter 6: Advanced React	 217

A new bundling strategy	 218
How Browserify works	 218
How Webpack works	 221
A difficult choice – Browserify or Webpack	 224

Creating a new scaffold with Webpack	 225
The Babel configuration	 226
The Webpack configuration	 227
Adding assets	 228
Creating an Express server	 229
Adding ReactJS to the mix	 231
Starting the server	 232

Introducing Redux	 233
The global store	 234
Understanding actions	 235
Understanding reducers	 235
Installing Redux	 236

Creating a login app	 237
Creating an action	 237
Creating a reducer	 239
Creating a store	 241
Adding devtools	 241
Tying the files together	 242

Table of Contents

[iv]

Handling refresh	 247
The Login API	 248
Summary	 253

Chapter 7: Reactagram	 255
Getting started	 256
Setting up the routes 	 265
Creating a higher order function	 267
Creating a random username	 270
Creating a welcome screen	 272
Taking a picture	 276
Adding filters	 283
Adding the stream	 286
Creating an item page and adding comments	 288
Wrapping up	 292
Summary	 294

Chapter 8: Deploying Your App to the Cloud	 295
Choosing a cloud provider	 296
Setting up cloud deployment with npm	 297
Preparing your Browserify app for cloud deployment	 299

The actual process	 300
Deploying a Webpack app to the cloud	 304
Summary	 311

Chapter 9: Creating a Shared App	 313
Server rendering versus client rendering	 313
Terminology confusion	 315
Developing a server-rendered app	 316

Adding packages	 316
Adding CSS	 317
Adding Bootstrap CDN to index.html	 318
Creating components	 319
Setting up a server-rendered Express React server	 329
Setting up Webpack for server-rendering	 333
Setting up npm scripts for server rendering	 334

Adding Redux to your server-rendered app	 335
Adding packages	 336
Adding files	 336
Adding server rendering	 345
Performing faster cloud deployment	 347

The final structure	 347
Summary	 349

Table of Contents

[v]

Chapter 10: Making a Game	 351
The optimal Webpack configuration	 352

Scripting with ShellJS	 354
Static typechecking with Flow	 356

Creating an HTML5 canvas engine	 357
Creating the game	 365

Responding to keyboard events	 388
Further improvements	 393
Summary	 394

Index	 395

[vii]

Preface
ReactJS was developed as a tool to solve a problem with the application state, but
it quickly grew to become the dominant library for web development. It became
popular because it threw away the HTML-centric way of developing web apps for
JavaScript, which proved to be a remarkably developer-friendly way to develop web
apps. With the help of this book, discover how you can take advantage of ReactJS to
create web apps that are fun to code and easy to understand.

What this book covers
Chapter 1, Diving Headfirst into ReactJS, introduces you to the ReactJS library,
teaches you how to structure your code, and introduces modular components.

Chapter 2, Create a Web Shop, walks you through the building of a web shop,
from front page to checkout, and explains the unidirectional data flow pattern.

Chapter 3, Responsive Web Development with ReactJS, teaches you how to develop
responsive apps with ReactJS and gives instructions on how to build a basic
responsive app.

Chapter 4, Building a Real-Time Search App, walks you through the construction of an
application that accepts input and returns data from an API.

Chapter 5, Creating a Map App with HTML5 APIs, teaches you how to access HTML5
APIs while building a map application.

Chapter 6, Advanced React, demonstrates how to transition to JavaScript 2015 classes,
implements Redux, and walks you through a login application.

Chapter 7, Reactagram, walks you through building an Instagram-like application
with Firebase as the backend.

Chapter 8, Deploying Your App to the Cloud, covers Cloud strategies and guides you to
make production-ready deploys of your apps.

Preface

[viii]

Chapter 9, Creating a Shared App, covers how to create a fully isomorphic app, and
walks you through a blueprint for server-side rendering with Redux.

Chapter 10, Making a Game, walks you through the building of a game engine and
game in ReactJS.

What you need for this book
Developing web apps doesn't require any special equipment. You need a computer
(Windows, Linux, or Mac), a code editor (any will do), an Internet connection, and a
console application.

Who this book is for
This book is for those who want to develop applications with ReactJS. With its wide
variety of topics, it caters to both inexperienced developers as well as advanced
developers, and it doesn't require any prior experience with ReactJS.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

<Button bsSize="medium"
 onClick={CartActions.AddToCart.bind(null,
 this.props.productData)}>
 Add to cart
</Button>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

getInitialState() {
 return {
 results: [],
 resultsToShow: 10,

Preface

[ix]

 numResults: 0,
 threshold: -60,
 increase: 3,
 showResults: true
 }
},

Any command-line input or output is written as follows:

npm install --save body-parser@1.14.1 cors@2.7.1 crypto@0.0.3
express@4.13.3 mongoose@@4.3.0 passport@0.3.2

passport-http-bearer@1.0.1

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "The connection to
the payment API should be hooked up to the Proceed to checkout button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[x]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by entering
the book's name in the Search box. Please note that you need to be logged in to your
Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/reactjsblueprints. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/reactjsblueprints
https://github.com/PacktPublishing/reactjsblueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Diving Headfirst into ReactJS
Welcome dear reader! In this book, you'll find a set of blueprints that you can use to
develop modern web apps with ReactJS.

This chapter will introduce you to ReactJS and cover how to work with a component-
based architecture. You will learn all the important concepts in ReactJS, such as
creating and mounting components, working with props and states, understanding
the life cycle methods, and setting up a development workflow for efficient
development.

In this chapter we will:

•	 Introduce ReactJS
•	 Explore the props and states
•	 Learn all about the important life cycle methods
•	 Walk through synthetic events and the virtual DOM
•	 Learn the modern JavaScript developer's workflow
•	 Composition
•	 Create a basic scaffolding for all our apps

Even if you have previous experience with ReactJS, it's worth reading through this
chapter, especially the scaffolding part, as we'll be using this scaffold for the majority
of the blueprints in this book.

Let's begin!

Diving Headfirst into ReactJS

[2]

Introducing ReactJS
To efficiently develop with ReactJS, it is vital to understand what it is and is
not. ReactJS is not a framework. ReactJS describes itself as the V in the MVC
(Model-View-Controller) design pattern. It's a view library that you can combine
with frameworks such as AngularJS, Ember, and Meteor or even in conjunction
with other popular JavaScript libraries, such as Knockout.

Many people use React on its own and combine it with a data flow pattern called
Flux. The idea behind Flux is to establish unidirectional data flow, meaning that data
should originate at a single point in your app and flow downwards. We'll look more
closely into this pattern in Chapter 2, Creating a Web Shop.

Modern JavaScript development
In 2015, JavaScript got its first major upgrade in many years. The syntax is JavaScript
2015. You may know it as EcmaScript 6. The EcmaScript committee decided on
a name change in mid-2015, and from now on, JavaScript is going to be updated
yearly. Modern browsers are slowly implementing support for the new features.

A note on the code you'll be seeing in this book. We will be using
JavaScript 2015 throughout the book. Evergreen browsers such
as Firefox, Chrome, and Microsoft Edge will implement the new
functionality on their own timeline, which means that some browsers
may support new features before others, while some features may
not be implemented at all.

You will most likely find yourself in a situation where you'd like to take advantage of
new language features without wanting to wait for it to be implemented. Backwards
compatibility is also an issue because you don't want to leave your users behind.

The solution to both of these concerns is to use a transpiler to generate a baseline
EcmaScript-5-compatible code, such as Traceur or Babel. Since Babel was partly built
with ReactJS in mind, I suggest that you go with this one, and throughout the book,
we'll be depending on Babel for our transpiling needs.

We'll be exploring the modern developer's workflow in this book by developing and
iterating a scaffolding or a basic setup that we can use when starting new projects.
When setting up and using this scaffolding, we'll rely heavily on the terminal, Node.
js and npm. Don't worry if this is unfamiliar ground for you. We'll go slow.

Chapter 1

[3]

Component specification
ReactJS components have a built-in set of methods and properties that you'll come
to rely on. Some of them are for debugging, such as displayName and propTypes;
some for setting initial data, such as getInitialState and getDefaultProps; and
finally, there are a number of methods dealing with the component life cycle, such as
componentDidMount, componentShouldUpdate, and more.

Props and states
Data within a component can come from the outside (props) or be instantiated from
the inside (states).

For testability and immutability concerns, it's desirable to rely on data that is passed
to components as much as possible rather than working with an internal state.
However, there are lots of reasons why you'd want to use an internal state, so let's
take a detailed look at props and states and when you want to use which.

Props
Let's look at a simple component:

import React from 'react';
import { render } from 'react-dom';

const App = React.createClass({
 render() {
 return (
 <div>My first component</div>
);
 }
});

render(<App />, document.querySelector('#app'));

When you execute this component, you will see the words My first component in
your browser window.

Note that the app renders to div with the id app.

Diving Headfirst into ReactJS

[4]

The corresponding HTML file needs to look something like this:

<!DOCTYPE html>
<body>
 <div id="app"></div>
</body>

<script type="text/javascript" src="app.js"></script>

This component defines a constant called app, which creates a React component with
the built-in createClass method.

The render method is the only required method in a ReactJS component. You
can eschew all other methods, but this one. In render, you can either write a
combination of HTML and JavaScript called JSX or compose your HTML code using
ReactJS elements.

JavaScript doesn't understand JSX, so when you write JSX code, you
need to convert it to JavaScript before executing it in the JavaScript
environment. The easiest way to convert JSX is using the Babel
transpiler because it will do this automatically.

Whichever way you decide to do it, the following JSX code will be transformed:

<div>My first component</div>

It will be transformed to this:

React.createElement("div", null, "My first component");

The createElement() method accepts three parameters: the html tag, a null field,
and the HTML code. The second field is actually an object with properties (or null).
We'll get back to this a little bit later.

Let's introduce the concept of properties and make this component a bit more
interesting:

const App = React.createClass ({
 render() {
 return (
 <div>{this.props.greeting}</div>
);
 }
});

render(<App greeting="Hello world!"/>,
document.querySelector('#app'));

Chapter 1

[5]

All component properties are available for use by accessing this.props. Here, we
set an initial message, Hello World!, and now, this is what you see when you execute
the component:

Props cannot be modified and should be treated as immutable.

Note that props are sent together with the call to
the component.

You can send as many properties as you want, and they are always available under
this.props.

If you have multiple properties that you want to send, just add them sequentially to
the component call:

<App greeting="Hello world" message="Enjoy the day" />

You can set a component's initial props by calling getDefaultProps. This can be
helpful when you anticipate that a prop will be used, but it's not available until a
later point in the component's life cycle:

getDefaultProps() {
 return {
 greeting: ""
 }
}

If you call the component by adding a greeting, the component will simply show an
empty page. If you don't have an initial prop, React will throw an error and complain
that you're referencing a property that doesn't exist.

Diving Headfirst into ReactJS

[6]

States
States are similar to props, but are meant for variables that are only available within
the component. You can set a state in the same way as props:

setInitialState() {
 return {
 greeting: "Hello world!"
 }
}

Also, you can call the variable with this.state:

render() {
 return (
 <div>{this.state.greeting}</div>
);
}

Similar to props, if you try to use a nonexisting state variable, ReactJS will throw
an error.

A state is primarily used when you make changes that only make sense within the
component. Let's look at an example to understand this:

getInitialState: function () {
 return {
 random_number: 0
 }
},
componentDidMount(){
 setInterval(()=>{
 this.setState({
 random_number: Math.random()*100
 });
 },1000)
},
render() {
 return (
 <div>{this.state.random_number}</div>
);
}

Chapter 1

[7]

Here, we set a random_number variable to 0. We access the built-in
componentDidMount method and start an interval that sets a new random number
for this variable every second. In the render, we simply output the variable. Every
time the state changes, ReactJS responds by re-rendering the output. Whenever you
run setState, ReactJS triggers a re-render of the component. It's worth taking care
to limit the number of times you apply setState, as you may run into performance
issues if you're liberal with the use of them.

render
This is the only required method in a component. It should return a single child
element, such as a JSX structure, but if you don't want to render anything, it can also
return null or false to indicate that you don't want anything rendered:

render(){
 return (<div>My component</div>);
}

statics
This object can be used to define static methods that can be called on the component:

import React from 'react';
const App = React.createClass ({
 statics: {
 myMethod: (foo) => {
 return foo == "bar";
 }
 },
 render() {
 return null;
 }
});
console.log(App.myMethod('bar')); // true

Note that static methods don't have access to the props or state of
your components.

Diving Headfirst into ReactJS

[8]

propTypes
This object allows you to validate props being passed to your components. This is
an optional tool to help you when developing your apps and will show up in your
console log if the props you pass to a component do not match your specifications:

propTypes: {
 myOptionalObject: React.PropTypes.object,
 aRequiredString: React.PropTypes.string.isRequired,
 anOptionalNumber: React.PropTypes.number,
 aValueOfAnyKind: React.PropTypes.any,
 customProp: function(props, propName, componentName) {
 if (!/matchme/.test(props[propName])) {
 return new Error('Validation failed!');
 }
 }
}

The final example creates a custom validator, which you can use to validate even
more complex data values.

displayName
This value is set automatically if you don't set it explicitly, and it is used for
debugging purposes:

displayName: "My component Name"

Life cycle methods
Life cycle methods are a set of functions that you can override in your component.
Initially, all but shouldComponentUpdate (which defaults to true) is empty.

componentDidMount
This is one of the most common methods you'll employ in your apps. Here's where
you place any functions you want to run directly after the component has been
rendered for the first time.

Chapter 1

[9]

You have access to the current contents of states and props in this method, but take
care to never run setState in here, as that will trigger an endless update loop.

It's worth noting that if you're making a server-side app, this component will not be
called. In this case, you'll have to rely on componentWillMount instead:

componentDidMount() {
 // Executed after the component is mounted
}

componentWillMount
This method will be executed before the component is rendered for the first time.
You have access to the current component's state and props here, and unlike
componentDidMount, it's safe to run setState here (ReactJS will understand that
state changes in this method should be set immediately and not trigger a re-render).

This method is executed on both server-side and client-side apps:

componentWillMount() {
 // Executed before the component is mounted
}

shouldComponentUpdate
This method is invoked whenever the component receives new props or a change in
state occurs.

By default, shouldComponentUpdate returns a true value. If you override it and
return false, the component will never be updated despite receiving updated props
or a new state. This can be useful if you create a component that should only be
updated if certain conditions are met or if it should never be updated at all. You can
benefit from speed increases if you set this to false when you have a component
that should never be updated. However, you should take great care when using this
method because careless use can lead to bugs that can be very hard to track down.

www.allitebooks.com

http://www.allitebooks.org

Diving Headfirst into ReactJS

[10]

componentWillReceiveProps
This method lets you compare the incoming props and can be used as an opportunity
to react to a prop transition before the render method is called. Invoke this method
with componentWillReceiveProps(object nextProps) in order to access the
incoming props with nextProps.

It's worth noting that if you call setState here, an additional re-render will not be
triggered. It's not called for the initial render.

There's no analogous method to react to a pure state change, but you can use
componentWillUpdate if you need a way to react to state changes before they
are rendered.

This method is not executed on the initial render:

componentWillReceiveProps(nextProps) {
 // you can compare nextProps with this.props
 // and optionally set a new state or execute functions
 // based on the new props

}

componentWillUpdate
This method is executed before the rendering, when the component receives new
props or states but not on the initial render.

Invoke this method with componentWillUpdate(object nextProps, object
nextState) in order to access the incoming props and states with nextProps and
nextState.

Since you can evaluate a new state in this method, calling setState here will trigger
an endless loop. This means that you cannot use setState in this method. If you want
to run setState based on a prop change, use componentWillReceiveProps instead:

componentWillUpdate (nextProps) {
 // you can compare nextProps with this.props
 // or nextState with this.state
}

Chapter 1

[11]

componentDidUpdate
This method is executed whenever the component receives new props or states and
the render method has been executed:

componentDidUpdate() {
 // Execute functions after the component has been updated
}

componentWillUnmount
The final life cycle method is componentWillUnmount. This is invoked just before
the component is unmounted from the DOM. If you need to clean up memory or
invalidate timers, this is the place to do it:

componentWillUnmount() {
 // Execute functions before the component is unmounted
 // from the DOM
}

Synthetic events and the Virtual DOM
Let's explore the differences between the regular DOM and the virtual DOM and
what you need to consider when writing your code.

The DOM
The Document Object Model (DOM) is a programming API for HTML documents.
Whenever you ask a browser to render HTML, it parses what you have written and
turns it into a DOM and then displays it in the browser. It is very forgiving, so you
can write invalid HTML and still get the result you want without even knowing you
made a mistake.

For instance, say, you write the following line of code and parse it with a web browser:

 <p>I made a new paragraph! :)

Diving Headfirst into ReactJS

[12]

After this, the DOM will show the following structure:

The closing </p> tag is automatically inserted for you, and a DOM element for the
<p> tag has been created with all its associated properties.

ReactJS is not as forgiving. If you write the same HTML in your render method,
it will fail to render and throw an «Unterminated JSX contents» error. This is
because JSX requires a strict match between opening and closing tags. This is actually
a good thing because it helps you with writing syntactically correct HTML.

The virtual DOM
The virtual DOM is basically a simpler implementation of the real DOM.

ReactJS doesn't work directly with the DOM. It uses a concept of virtual DOM,
whereby it maintains a smaller and more simplified internal set of elements, and
only pushes changes to the visible DOM when there has been a change of state in the
set of elements. This enables you to switch out parts of your visible elements without
the other elements being affected, and in short, this makes the process of DOM
updates very efficient. The best part of this is that you get it all for free. You don't
have to worry about it because ReactJS handles everything in the background.

Chapter 1

[13]

It does, however, mean that you cannot look for changes in the DOM and make
changes directly, like you would normally do with libraries, such as jQuery, or
native JavaScript functions, such as getElementById().

Instead, you need to attach a reference named refs to the elements you want
to target. You can do this by adding ref="myReference" to your element. The
reference is now available through a call to React.findDOMNode(this.refs.
myReference).

Synthetic event handlers
Whenever you call an event handler within ReactJS, they are passed an instance of
SyntheticEvent instead of the native event handler. This has the same interface as
the native event handler's, except it's cross-browser compatible so you can use it
without worrying whether you need to make exceptions in your code for different
browser implementations.

The events are triggered in a bubbling phase. This means that the event is first
captured down to the deepest target and then propagated to outer elements.

Sometimes, you may find yourself wanting to capture the event immediately.
In such cases, adding Capture behind the event can achieve this. For instance,
to capture onClick immediately, use onClickCapture and so on.

You can stop propagation by calling event.stopPropagation() or
event.preventDefault() where appropriate.

A complete list of the available event handlers is available at
https://facebook.github.io/react/docs/events.html.

Putting it all together
When we put all this together, we can extend the sample app with referenced
elements and an event handler:

import React from 'react';
import {render} from 'react-dom';

const App = React.createClass ({

 getInitialState() {
 return {
 greeting: "",

https://facebook.github.io/react/docs/events.html

Diving Headfirst into ReactJS

[14]

 message: ""
 }
 },

 componentWillMount() {
 this.setState ({
 greeting: this.props.greeting
 });
 },

 componentDidMount() {
 this.refs.input.focus();
 },

 handleClear: function (event) {
 this.refs.input.value="";
 this.setState ({
 message: ""
 });
 },

 handleChange: function (event) {
 this.setState ({
 message: event.target.value
 });
 },

 render: function () {
 return (
 <div>
 <h1>Refs and data binding</h1>
 <h2>{this.state.greeting}</h2>
 Type a message:

 <input type="text" ref="input"
 onChange={this.handleChange} />

 Your message: {this.state.message}

 <input type="button"
 value="Clear"
 onClick={this.handleClear}
 />

Chapter 1

[15]

 </div>

);
 }

});

render (
 <App greeting="Let's bind some values" />,
 document.getElementById('#app')
);

Let's start at the end. As we did earlier, we initialize our app by rendering a single
ReactJS component called app with a single prop onto the element with the #app ID.

Before the app mounts, we set initial values for our two state values: greeting and
message. Before the app mounts, we set the state for greeting to be the same value as
the greeting property passed to the app.

We then add the input box and a clear button as well as some text in our render
method and attach an onChange handler and an onClick handler to these. We also
add ref to the input box.

After the component has mounted, we locate the message box by its ref parameter
and tell the browser to focus on it.

Finally, we can go the event handlers. The onChange handler is bound to
handleChange. It will activate on every key press and save a new message state,
which is the current content of the input box. ReactJS will then re-render the content
in the render method. In the reconciliation process, it will note that the value in
the input box is different from the last render, and it will make sure that this box is
rendered with the updated value. At the same time, ReactJS will also populate the
empty text element after Your message: with the state value.

The handleClear method simply resets the message state and clears the input box
using refs.

This example is slightly contrived. It could be shortened quite a bit, and storing
props as states is generally something you should avoid, unless you have a very
good reason for doing so. In my experience, working with a local state is the single
most bug-prone code you will encounter and the hardest code to write tests for.

Diving Headfirst into ReactJS

[16]

Composition
Composition is the act of combining things together to make more complex things
and then putting these things together to make even more complex things, and so on.

Knowing how to put together ReactJS components is vital when creating apps that
go beyond Hello World. An app composed of many small parts is more manageable
than a single large monolith app.

Composing apps is very simple with ReactJS. For instance, the Hello World app we
just created can be imported into a new component with the following code:

const HelloWorld = require("./helloworld.jsx");
const HelloWorld = require("./helloworld.jsx");

In your new component, you can use the HelloWorld variable like this:

render() {
 return <div>
 <HelloWorld />
</div>
}

Every component you created can be imported and used in this manner, and this is
one of the many compelling reasons for choosing ReactJS.

Developing with modern frontend tools
It's hard to overstate the importance of Node.js and npm in modern JavaScript
development. These key pieces of technology are central to the development of
JavaScript web apps, and we'll be relying on Node.js and npm for the applications
that we will be developing in this book.

Node.js is available for Windows, Mac, and Linux, and is a breeze to install. We'll
be using Node.js and npm for all of the examples in this book. We'll also be using
EcmaScript 2015 and a transpiler to convert the code to a baseline JavaScript code
that is compatible with older browsers.

If you haven't been using this workflow before, get ready to be excited because
not only will it make you more productive, it will also open a world of developer
goodness.

Let's begin.

Chapter 1

[17]

Browserify
The traditional method of developing for the Web had you manually adding scripts
to your index.html file. It usually consisted of a mix of frameworks or libraries
topped off with your own code, which you then added sequentially so that it was
loaded and executed in the correct order. There are a few drawbacks to this method
of development. Version control becomes difficult because you have no good way
of controlling whether newer versions of your external libraries are compatible with
the rest of your code. As a consequence, many web apps ship with old JavaScript
libraries. Organizing your scripts is another problem because you have to add and
remove old versions manually when upgrading. File size is also problematic because
many libraries ship with more bells and whistles than you need.

Wouldn't it be nice if we had tools that could keep your dependencies up to date,
inform you when there are incompatibility issues, and remove code you don't use?
The answer to all of this is yes, and fortunately, such utilities exist.

The only drawback is that you have to change the way you write your code. Instead
of writing scripts that rely on global environment variables, you write modular code
that is self-contained, and you always specify your dependencies up front. If you
think that this doesn't sound like much of a drawback, you're right. In fact, it's a
huge improvement because this makes it very easy to read and understand code
and allows easy dependency injection when writing tests.

Two of the most popular tools for assembling modular code are Browserify
and Webpack.

In the beginning, we'll focus on Browserify for the simple reason that it's very easy
to work with and has excellent plugin support. We'll look at Webpack in Chapter 6,
Advanced React. Both of these tools will analyze your application, figure out which
modules you're using, and assemble a JavaScript file that contains everything you
need to load the code in a browser.

In order for this to work, you need a base file, a starting point for your application.
In our scaffold, we'll call this app.jsx. This file will contain references to your
modules and the components that it uses. When you create new components and
connect them to app.jsx or the children of app.jsx, Browserify will add them to
the bundle.

A number of tools exist to enhance the bundle generation with Browserify.
For EcmaScript 2015 and newer JavaScript code, we'll use Babelify. It's a handy
tool that in addition to converting JavaScript to EcmaScript 5 will also to convert
React-specific code such as JSX. In other words, you don't have to use a separate
JSX transformer in order to use JSX.

Diving Headfirst into ReactJS

[18]

We'll also be using Browser-sync, which is a tool that auto reloads your code while
you edit. This speeds up the development process immensely, and after using it for
a while, you'll never want to go back to refreshing your app manually.

Scaffolding our React app
These are the steps we'll be taking to set up our development workflow:

1.	 Create an npm project.
2.	 Install dependencies.
3.	 Create a server file.
4.	 Create a development directory.
5.	 Create our base app.jsx file.
6.	 Run the server.

First of all, make sure that you have npm installed. If not, head over to https://
nodejs.org/download/ and download the installer. The detailed explanation of the
preceding steps is as follows:

1.	 Create a directory where you want the app to be sorted and open a terminal
window and cd in this folder.
Initialize your app by typing npm init followed by the Enter key. Give
the project a name and answer the few questions that follow or just leave
them empty.

2.	 We're going to grab a few packages from npm to get started. Issuing the
following command will get the packages and add the dependencies to
your newly created package.json file:
npm install –-save babelify@7.2.0 browserify-middleware@7.0.0
express@4.13.3 react@0.14.3 reactify@1.1.1 browser-sync@2.10.0
babel-preset-react@6.3.13 babel-preset-es2015@6.3.13
browserify@12.0.1 react-dom@0.14.3 watchify@3.6.1

Babel requires a configuration file called .babelrc. Add it to the
following code:

{
 "presets": ["es2015","react"]
}

https://nodejs.org/download/
https://nodejs.org/download/

Chapter 1

[19]

3.	 Create a new text file with your favorite text editor, add the following code,
and save it as server.js:
var express = require("express");
var browserify = require('browserify-middleware');
var babelify = require("babelify");
var browserSync = require('browser-sync');
var app = express();
var port = process.env.PORT || 8080;

This segment sets up our app using express as our web server. It also
initalizes browserify, babelify, and browser-sync. Finally, we set up
our app to run on port 8080. The line process.env.PORT || 8080 simply
means that you can override the port by prefixing the server script with PORT
8085 to run on port 8085 or any other port you'd like to use:
browserify.settings ({
 transform: [babelify.configure({
 })],
 presets: ["es2015", "react"],
 extensions: ['.js', '.jsx'],
 grep: /\.jsx?$/
});

This sets up Browserify to transform all code with that of the file extension
.jsx with Babelify. The stage 0 configuration means that we want to use
experimental code that has yet to be approved by the EcmaScript committee:
// serve client code via browserify
app.get('/bundle.js', browserify(__dirname+'/source/app.jsx'));

We want to reference our JavaScript bundle with <script src="bundle.
js"></script> in our index.html file. When the web server notices a call
for this file, we tell the server to send the browserified app.jsx file in our
source folder instead:
// resources
app.get(['*.png','*.jpg','*.css','*.map'], function (req,
res) {
 res.sendFile(__dirname+"/public/"+req.path);
});

With this configuration, we tell the web server to serve any of the listed files
from public.folder:
// all other requests will be routed to index.html
app.get('*', function (req, res) {
 res.sendFile(__dirname+"/public/index.html");
});

Diving Headfirst into ReactJS

[20]

This line instructs the web server to serve index.html if the user accesses the
root path:
// Run the server
app.listen(port,function() {
 browserSync ({
 proxy: 'localhost:' + port,
 files: ['source/**/*.{jsx}','public/**/*.{css}'],
 options: {
 ignored: 'node_modules'
 }
 });
});

Finally, this runs the web server with browser-sync, proxying your app at
the port you choose. This means that if you specify port 8080 as your port,
your front-facing port will be a proxy port (usually 3000), which will access
8080 on your behalf.
We tell browser-sync to monitor all JSX files in our source/ folder and
our CSS files in our public/ folder. Whenever these change, browser-sync
will update and refresh the page. We also tell it to ignore all the files in the
node_modules/ folder. This is generally wise to do because the folder will
often contain thousands of files, and you don't want to waste time waiting
for these files to be scanned.

4.	 Next, create two a directories called public and source. Add the following
three files: index.html and app.css to your public folder and app.jsx to
your source folder.

Write this in the index.html file:
<!DOCTYPE html>
<html>
 <head>
 <title>ReactJS Blueprints</title>
 <meta charset="utf-8">
 <link rel="stylesheet" href="app.css" />

 </head>
 <body>
 <div id="container"></div>
 <script src="bundle.js"></script>
 </body>

</html>

Chapter 1

[21]

Write this in the app.css file:
body {
 background:#eee;
 padding:22px;
}
br {
 line-height: 2em;
}
h1 {
 font-size:24px;
}
h2 {
 font-size:18px;
}

Write this in the app.jsx file:
'use strict';
import React from 'react';
import { render } from 'react-dom';
const App = React.createClass({
 render() {
 return (
 <section>
 <h1>My scaffold</h1>
 <p>Hello world</p>
 </section>
);
 }
});

render (
 <App />,
 document.getElementById('container')
);

Your file structure should now look like this:

Diving Headfirst into ReactJS

[22]

Running the app
Go the root of the app, type node server, and then press Enter. This will start a node
server and in a few seconds,	 browser-sync will open a web browser with the
location http://localhost:3000. If you have any other web servers or processes
running on port 3000, browser-sync will choose a different port. Take a look at the
console output to make sure which port it has chosen.

You will see the contents of your render method from app.jsx on the screen. In the
background, Browserify has employed Babelify to convert your JSX and ES2015 code
as well as your imported dependencies to a single bundle.js file that is served on
http://localhost:3000. The app and CSS code will be refreshed every time you
make a change in the code while this server is running, so I urge you to experiment
with the code, implement a few life cycle methods, try working with states and
props, and generally get a feel of working with ReactJS.

If this is your first time working with this kind of setup, I'd imagine you feel quite a
rush surging through you right now. This setup is very empowering and fun to work
with, and best of all, it's almost effortless to scaffold.

Summary
In this chapter, we looked at all the important concepts you will come to work
with when you develop applications with ReactJS. We looked at the component
specification, how to compose components, and life cycle methods before we went
to look at how to set up and structure a ReactJS app. Finally, we went through the
scaffolding that we'll be using for the blueprints in this book.

In the next chapter, we'll go through our first blueprint and create a web shop.
We'll explore the concept of unidirectional data flow by taking advantage of the
Flux pattern.

[23]

Creating a Web Shop
Selling merchandise online has been a staple of the Web since it was commercialized
in the 1990s. In this chapter, we will explore how we can leverage the power of
ReactJS to create our very own web shop.

We'll start by creating a number of different components, such as a home page,
a products page, a checkout and receipt page, and we'll fetch products from data
stores via a concept called Flux.

When we're finished, you'll have a complete blueprint that you can expand upon
and apply your own styling to.

Let's get started!

An overview of the components
When creating any kind of website, it's often beneficial to create a mock-up of how
you want the page to look before proceeding to write any code. This makes it easier
to visualize how you want your site to look and what components you need to create.
You can use any kind of mockup tool to create this, even a sheet of paper will do.

Looking at our website mock-up, we can see that we need to create the following
components:

•	 A layout component
•	 A home page component for the front page
•	 A menu component with a brand name and the most important links
•	 A company information component
•	 A product list component

Creating a Web Shop

[24]

•	 An item component
•	 A checkout component
•	 A receipt component

These are just the view components. In addition to these, we'll need to create data
stores and actions and subcomponents for the main ones. For instance, for the
product component on the front page, you will need a picture element, description,
price, and a buy button, and any time you need a list or table, you need to make
another subcomponent, and so on.

We'll create these as we go along. Let's take a look at the following image:

Copyright2015 Your Webshop

Add to cart

World’s best novel
Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore.
$21.90(24% off)

Your Brand

ABC

Copyright2015 Your Webshop

Add to cart

World’s best novel
Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore.
$21.90(24% off)

Your Brand

ABC 10:34 AM

Product

Copyright2015 Your Webshop. All rights reserved.

Add to cart

World’s best novel
Lorem ipsum dolor sit amet,consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore.
$21.90(24% off)Product

Product Product Product

Add to cart Add to cart Add to cart

Your Brand Home Products Company Checkout

http://localhost:8080

Your webshop

$6.99 (80%off)
Fantasy book

$8.99 (34%off)
Mystery book

$7.99 (62%off)
Adventure book

The preceding mock-up shows the product list page as seen on a desktop and as
viewed on a smart phone. It's worthwhile to sketch up mock-ups for all the platforms
you intend to support. It's also a good idea to make sketches of all the different pages
and states they can have.

Chapter 2

[25]

Setting up a shop
We'll be using the code from Chapter 1, Diving Headfirst into ReactJS, as the basis for
this web shop. Make a duplicate of the code from the first chapter and make sure that
it's running before you continue making changes.

Copy the code to another directory and run it by executing node
server.js. It should start up a server and automatically open a
browser window for you.

Creating the layout
First of all, we need a basic layout for our webshop. There are many options
available for you. For instance, you can choose any one of the many open source CSS
frameworks, such as Bootstrap or Foundation, or you can strike your own path and
build up a basic grid and bring in elements as you see fit.

For simplicity's sake, we'll be going with Bootstrap for this webshop. It's a hugely
popular framework that is easy to work with and has excellent support for React.

As noted, we'll be using the scaffolding from Chapter 1, Diving Headfirst into ReactJS.
In addition, we're going to need a few more packages, most notably: react-
bootstrap, react-router, lodash, Reflux, superagent and react-router-
bootstrap. For simplicities sake, replace the dependencies section in your package.
json with these values and run npm install in your command line:

"devDependencies": {
 "babel-preset-es2015": "6.9.0",
 "babel-preset-react": "6.11.1",
 "babelify": "7.3.0",
 "browser-sync": "2.13.0",
 "browserify": "13.0.1",
 "browserify-middleware": "7.0.0",
 "history": "3.0.0",
 "jsxstyle": "0.0.18",
 "lodash": "4.13.1",
 "react": "15.1.0",
 "react-bootstrap": "0.29.5",
 "react-dom": "15.1.0",
 "react-router": "2.5.2",
 "react-router-bootstrap": "0.23.0",
 "reactify": "1.1.1",
 "reflux": "0.4.1",

Creating a Web Shop

[26]

 "serve-favicon": "2.3.0",
 "superagent": "2.1.0",
 "uglifyjs": "2.4.10",
 "watchify": "3.7.0"
}

The --save-dev option saves the dependencies in your package.json file under
the devDependencies key as shown in the preceding code. On a production
build, these dependencies will not be installed, and this makes the deployment go
faster. We'll take a look at how to create a production build in Chapter 8, Deploying
Your App to the Cloud. If you rather want to put these packages in your regular
dependencies section, use --save instead of --save-dev and in your package.json
the preceding packages will reside in your dependencies section rather than in your
devDependencies.

We also need the Bootstrap, and we'll use a Content Delivery Network (CDN) to fetch
it. Add the following code snippet to the <head> section of your index.html file:

<link rel="stylesheet" type="text/css"
href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap-
glyphicons.css" />

<link rel="stylesheet" type="text/css"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstra
p.min.css" />

Whether you want to support the older version of Internet Explorer is your choice,
but if you do, you're going to need to add this part to the <head> section of your
index.html file:

<!--[if lt IE 9]>
 <script>
 (function() {
 var ef = function(){};
 window.console = window.console ||
 {log:ef,warn:ef,error:ef,dir:ef};
 }());
 </script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/
 html5shiv.min.js"></script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/
 html5shiv-printshiv.min.js"></script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/1.11.3/
 jquery.min.js"></script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/es5-shim/
 3.4.0/es5-shim.js"></script>

Chapter 2

[27]

 <script src="//cdnjs.cloudflare.com/ajax/libs/es5-shim/
 3.4.0/es5-sham.js"></script>
<![endif]-->

This adds a polyfill to your code base. A polyfill adds support for HTML5 features
that older browsers don't support.

We also want to use the modern features of Internet Explorer, so let's add the
following meta tag:

<meta http-equiv="X-UA-Compatible" content="IE=edge">

This setting tells the browser to render according to the most recent version of the
standard. This tag was introduced in IE8, so this tag won't matter if your users are
using IE7 or lower. Additional settings are IE=5 to IE=11 and IE=EmulateIE7 to
IE=EmulateIE11. Using the emulate instructions informs Internet Explorer how to
render in the standards and quirks mode. For instance, EmulateIE9 renders the page
as IE9 in the standards mode and as IE5 in the quirks mode.

Which settings you choose is dependent on your target platform, and unless you have
a very specific IE version in mind, going with IE=edge is probably the safest option.

In order for the smart phones to show the page in proper scale, we need to add this
meta tag as well:

<meta name="viewport" content="width=device-width, initial-
scale=1">

This notifies the smart phone browser that you want to display the page in full
width with a scale of 1. You can play with the scale and width, but in most cases,
this setting is what you want.

Adding your own CSS code
We already have a CSS file in the public folder. We're going to use a very basic CSS
layout and rely on Bootstrap for the most part. Edit public/app.css and replace it
with the following code:

body {
 background:#eee;
 padding:62px 0 0 0;
}
.row {
 padding:0 0 20px 0;
}

Creating a Web Shop

[28]

.summary {
 border-bottom: 3px double black;
}

The padding is there simply to make sure that the content falls inside the menu
(that we'll be creating in the upcoming section called The menu and footer).

Adding a route handler
Let's open the app.jsx file, remove everything from the initial scaffold, and replace
it with the following code:

"use strict";

import React from "react";
import Router from "react-router";
import Routes from "./routes.jsx";
import { render } from "react-dom";

render (
 Routes,
 document.getElementById('container')
);

In our imports section, we're now adding react-router and a new file
called routes.jsx. You'll note that we're fetching Route from react-router by
encapsulating it in braces. This is called destructuring and is identical to fetching it
with var Route = require("react-router").Route, which is quite easy to type.

The next thing we do is let the router control our app by applying Router.run,
provide it with the contents of our new routes file, then mount it on the <div> tag
with the id container as we did before.

Of course, to run this, you need to create a file called router.jsx. It should look
like this:

"use strict";

import React from "react";
import Layout from './layout.jsx';
import { Router, Route, browserHistory } from 'react-router'

const Routes = (
 <Router history={browserHistory}>

Chapter 2

[29]

 <Route handler={Layout} path="/">
 </Route>
 </Router>
);

module.exports = Routes;

It's pretty straightforward as you can see, since we're not creating any routes just yet.
Again, we're importing react, react-router, and route, and also a new file called
layout.jsx, which will be our primary route handler.

At the end, we're exporting the contents of the Routes as Routes. This is a necessary
step because this is what allows you to import it later in your other scripts. You
could simplify this by putting module.exports = instead of const Routes = in the
module declaration and then skip the last line. It's your choice, but I think it's a good
practice to structure your code by putting the imports first, the code in the middle,
and then what the module exports last.

This is what should go into the layout.jsx file:

"use strict";

import React from "react";

const Layout = React.createClass ({
 render() {
 return (
 <div>
 { React.cloneElement(
 this.props.children,
 this.state
) }
 </div>
);
 }
});

This page is completely empty. The only thing we've added for now is the route
handler. This is where the contents of your route changes will go. Everything you
put around it will not be changed when you switch to a new route, so this is where
you place static elements, such as headers, footers, and asides.

www.allitebooks.com

http://www.allitebooks.org

Creating a Web Shop

[30]

When you have put all of this together, you've got all the pieces you need to start
building your webshop. You have now implemented the following:

•	 The scaffold from Chapter 1, Diving Headfirst into ReactJS
•	 Bootstrap for ReactJS
•	 A way to handle route changes
•	 A polyfill for older browsers

Don't be discouraged when your web browser shows a blank web page when you
run this code. This is the expected output at this point.

The menu and footer
It's time to start working on the visible menu components. Let's begin with the menu
and the footer. Looking at our mock-up, we see that we want to build a full-width
section with the brand name of the shop and the menu links, and at the bottom, we
want a single centered line of text with a copyright notice.

We'll do this by adding the following import to our import section in the layout.
jsx file:

import Menu from "./components/menu.jsx";
import Footer from "./components/footer";

Replace the render function with this code snippet:

render() {
 return (
 <div>
 <Menu />

 { React.cloneElement (
 this.props.children,
 this.state
) }

 <Footer />

 </div>
);
}

Chapter 2

[31]

Next, create a directory called components and place a file called menu.jsx in there.
Add the following code inside the menu.jsx file:

"use strict";
import React from "react";
import { Nav, NavItem, Navbar, Button };
import { Link } from 'react-router';
import { LinkContainer } from "react-router-bootstrap";

These imports pull in Nav, NavItem, Navbar, Button, and LinkContainer via
destructuring, as mentioned in Chapter 1, Diving Headfirst into ReactJS:

const Menu = React.createClass ({
 render() {
 return (
 <Navbar inverse fixedTop>
 <Navbar.Header>
 <Navbar.Brand>
 <Link to="/">My webshop</Link>
 </Navbar.Brand>
 <Navbar.Toggle />
 </Navbar.Header>

We create a Navbar instance with a linked brandname. If you want an image instead
of a text brand, you can insert a JSX node instead of a text string, like this:

brand={<img src="http://placehold.it/100/30/"
height="30" width="100" alt="My webshop" />}.

The fixedTop option creates a fixed Navbar instance that sticks to the top of your
screen. Replace it with staticTop if you want a floating Navbar instance instead.
You can also add inverse if you want a black Navbar instance instead of a grey one:

 <Navbar.Collapse>
 <Nav>
 <LinkContainer eventKey={1} to="/company">
 <Button bsStyle="link">
 About
 </Button>
 </LinkContainer>

 <LinkContainer eventKey={2} to="/products">
 <Button bsStyle="link">
 Products
 </Button>

Creating a Web Shop

[32]

 </LinkContainer>
 </Nav>

 <Nav pullRight>
 <LinkContainer to="/checkout">
 <Button bsStyle="link">
 Your cart: {this.props.cart.length} items
 </Button>
 </LinkContainer>
 </Nav>
 </Navbar.Collapse>
 </Navbar>

We add three navigation items in our navigation bar, like in our mock-up. We also
provide a right keyword so that the items in your Navbar instance are aligned to the
right. These links redirect to those pages that we haven't made yet, so we will have to
make these next:

);
 }
});
module.exports = Menu;

That's it for the menu. We also need to add the footer, so go ahead and add a file
called footer.jsx in the components folder and add the following code:

"use strict";
import React from "react";

const Footer = React.createClass({
 render() {
 return (
 <footer className="footer text-center">
 <div className="container">
 <p className="text-muted">Copyright 2015 Your Webshop.
 All rights reserved.
 </p>
 </div>
 </footer>
);
 }

});
module.exports = Footer;

Chapter 2

[33]

Creating the pages
Let's create a subfolder called pages and add the following files:

•	 pages/products.jsx:
"use strict";
import React from "react";

const Products = React.createClass ({
 render() {
 return (
 <div />
);
 }
});
module.exports = Products;

•	 pages/company.jsx:
"use strict";
import React from "react";
import { Grid, Row, Col, Panel } from "react-bootstrap";

const Company = React.createClass ({
 render() {
 return (
 <Grid>
 <Row>
 <Col xs={12}>
 <Panel>
 <h1>The company</h1>

 <p>Contact information</p>
 <p>Phone number</p>
 <p>History of our company</p>

 </Panel>
 </Col>
 </Row>
 </Grid>
);
 }

});
module.exports = Company;

Creating a Web Shop

[34]

•	 pages/checkout.jsx:
"use strict";
import React from "react";

const Products = React.createClass ({
 render() {
 return (
 <div />
);
 }
});
module.exports = Checkout;

•	 pages/receipt.jsx:
"use strict";
import React from "react";

const Receipt = React.createClass ({
 render() {
 return (
 <div />
);
 }
});
module.exports = Receipt;

•	 pages/item.jsx:
"use strict";
import React from "react";

const Item = React.createClass ({
 render() {
 return (
 <div />
);
 }
});
module.exports = Item;

•	 pages/home.jsx:

"use strict";
import React from "react";
import { Grid, Row, Col, Jumbotron } from "react-
bootstrap";

Chapter 2

[35]

import { LinkContainer } from "react-router-botstrap";
import { Link } from 'react-router';

const Home = React.createClass ({
 render() {
 return (
 <Grid>
 <Row>
 <Col xs={12}>
 <Jumbotron>
 <h1>My webshop!</h1>

 <p>
 Welcome to my webshop.
 This is a simple information
 unit where you can showcase
 your best products or
 tell a little about your webshop.
 </p>

 <p>
 <LinkContainer to="/products">
 <Button bsStyle="primary"
 to="/products">View products</Button>
 </LinkContainer>
 </p>
 </Jumbotron>
 </Col>
 </Row>
 </Grid>
);
 }

});
module.exports = Home;

Now, let's add the links we just created in our routes. Open the routes.jsx file
and add the following content to the imports section:

import Products from "./pages/products.jsx";
import Home from "./pages/home.jsx";
import Company from "./pages/company.jsx";
import Item from "./pages/item.jsx";
import Checkout from "./pages/checkout.jsx";
import Receipt from "./pages/receipt.jsx";

Creating a Web Shop

[36]

Replace the <Route handler={Layout} path="/"></Route> code block with this:

<Route handler={Layout}>
 <Route name="home"
 path="/"
 handler={Home} />
 <Route name="company"
 path="company"
 handler={Company} />
 <Route name="products"
 path="products"
 handler={Products} />
 <Route name="item"
 path="item/:id"
 handler={Item} />
 <Route name="checkout"
 path="checkout"
 handler={Checkout} />
 <Route name="receipt"
 path="receipt"
 handler={Receipt} />
</Route>

We've added the receipt page to our file structure and the routes, but it will not be
visible in the menu bar because you should only be redirected to the receipt page
after you've checked out an order.

If you run the app now, you'll see a menu bar on top of the screen, which you can
click on. You'll note that when you click on any of the menu options, the app will
route to the chosen page. You'll also note that the chosen route will be highlighted
in the menu bar, which makes it easy to know where you are, without looking at the
route in the address bar.

When you open the app in the responsive mode in your web browser or open the
app on a smartphone, you'll note that the menu collapses and that a Hamburger
button appears instead of the menu links. When you click on this button, the menu
expands and presents the links in a drop-down menu.

Creating a database of products
Your shops need products, so we're going to provide a small set of items for our
web shop.

Chapter 2

[37]

This kind of data is usually stored in some kind of database. The database can be
self provided either locally or remotely or you can use any of the many cloud-
based database services. Traditionally, you would use a database based on SQL
(Structured Query Language), but nowadays, it's common to go for the NoSQL
document-based approach. This is what we'll do for our webshop, and we'll simply
use a flat file for the data.

Create a file and call it products.json, save it in the public folder, and add the
following content:

{
 "products": {
 "main_offering": [
 {
 "World's best novel": {
 "SKU": "NOV",
 "price": "$21.90",
 "savings": "24% off",
 "description": "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit",
 "image": "http://placehold.it/{size}&text=The Novel"
 }
 }
],
 "sale_offerings": [
 {
 "Fantasy book": {
 "SKU": "FAN",
 "price": "$6.99",
 "savings": "80% off",
 "description": "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit",
 "image": "http://placehold.it/{size}&text=Fantasy"
 }
 },
 {
 "Mystery book": {
 "SKU": "MYS",
 "price": "$8.99",
 "savings": "34% off",
 "description": "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit",
 "image": "http://placehold.it/{size}&text=Mystery"
 }
 },

Creating a Web Shop

[38]

 {
 "Adventure book": {
 "SKU": "ADV",
 "price": "$7.99",
 "savings": "62% off",
 "description": "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit",
 "image": "http://placehold.it/{size}&text=Adventure"
 }
 },
 {
 "Science fiction book": {
 "SKU": "SCI",
 "price": "$5.99",
 "savings": "32% off",
 "description": "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit",
 "image": "http://placehold.it/{size}&text=Sci-Fi"
 }
 },
 {
 "Childrens book": {
 "SKU": "CHI",
 "price": "$7.99",
 "savings": "12% off",
 "description": "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit",
 "image": "http://placehold.it/{size}&text=Childrens"
 }
 },
 {
 "Economics book": {
 "SKU": "ECO",
 "price": "$25.99",
 "savings": "7% off",
 "description": "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit",
 "image": "http://placehold.it/{size}&text=Economics"
 }
 }
]
 }
}

Chapter 2

[39]

This file is equivalent to what you would find if you inserted a few products in
a NoSQL database, such as MongoDB. The syntax is JSON (JavaScript Object
Notation), an open format that transports data as attribute-value pairs. It's simple
and language-independent, and just by looking at the preceding structure, you can
easily understand its data structure and contents.

The fields should be self-explanatory, but let's walk through them. There are two
groups of products, one for the main range and one for the sales range. The main
range has only one item and the sales range has six. The products in each list
have a title, an SKU (store keeping unit, for example, a product code), a price, a
conveniently formatted savings text, a description, and an image URL. We've elected
to insert a placeholder code for the pixel size of the image because we want to be able
to dynamically alter the sizes when we present the pictures to the user.

We want to access this file by going to http://localhost:3000/products.json,
so we need to make an addition to server.js. Edit this file, and before the line with
app.listen, add the following code and restart the server:

// json
app.get('*.json', function (req, res) {
 res.sendFile(__dirname+"/public/"+req.path);
});

When you access http://localhost:3000/products.json, you should be served
our products.

Creating a data store to fetch the products
The application architecture suggested for use with ReactJS is called Flux. It's not a
framework though, but can be seen as more of a pattern to transmit data.

Flux consists of three major parts: the dispatchers, stores, and actions. The central
idea behind Flux is a concept known as unidirectional data flow. The idea is that your
app should have a store to hold your data and that your components should listen
to it for updates. You interact with it using dispatchers, which you can think of as
messengers that pass instructions to your actions. In your actions, you can fetch new
data and pass it over to the store, which in turn emits data to your components.

This pattern avoids the common problem of having multiple places where you need
to update the state of your application, which often leads to bugs that are hard to
track down.

Creating a Web Shop

[40]

This may be a bit much to digest, so let's take a quick look at the individual
components:

•	 Dispatcher: This is the central hub. It receives actions and sends payloads to
all of its registered callbacks.

•	 Actions: These refer to helper methods that facilitate the passing of data to
the dispatcher.

•	 Stores: These are logic containers that have callbacks registered on the
dispatcher, which emits state changes to all registered callbacks.

•	 Views: This refers to those React components that get a state from the stores
and pass data to any of the descendants in their component tree.

There are a multitude of different Flux implementations. For this chapter, I've chosen
Reflux as the Flux implementation, but we'll look at a different implementation called
Redux in Chapter 6, Advanced React, and an alternate solution in Chapter 7, Reactagram.

Reflux ditches the concept of a single central dispatcher, choosing to merge the
concept of dispatcher and action. This lets us get away with less code and results in a
code base that is easier to understand.

Let's create a Reflux implementation.

We already installed Reflux and the HTTP request library called Superagent that
we'll use to fetch our product's data when we bootstrapped our application at the
beginning of the chapter, so we're ready to start with Reflux right away.

Let's create our first store. Make two folders: stores and actions. Create two files,
stores/products.js and actions/products.js.

Stores and Actions are regular JavaScript files, and unlike the ReactJS
components, they don't use .jsx file ending.

In actions/products.js, add the following code:

"use strict";

import Reflux from 'reflux';

const Actions = {
 FetchProducts: Reflux.createAction("FetchProducts")
};

module.exports = Actions;

Chapter 2

[41]

In this file, we define a single key called FetchProducts. We then assign a Reflux
action with the same name. It's possible to define a different name, but this will
only lead to confusion later, so in order to keep the code base sane, it's advisable to
duplicate the key name.

In stores/products.js, add the following code:

"use strict";
import Reflux from 'reflux';
import Request from 'superagent';
import Actions from './actions/products';

Here, we import the action that we just created along with superagent and reflux:

const ProductStore = Reflux.createStore ({

 init() {
 this.listenTo(Actions.FetchProducts, this.onFetchProducts);

The init() method will be executed once and is run immediately on import. This
means that it starts executing everything that you've put in init() as soon as the
page is processed:

 },
 onFetchProducts() {
 Request
 .get('/products.json')
 .end((err, res)=> {
 this.trigger(JSON.parse(res.text));
 });
 }

Here, we simply access product.json, and when it's loaded, we emit the result to
all those components that listen to updates from this store. Emits with Reflux is done
using the this.trigger() built-in method and it emits the object that you pass
within the parentheses:

});

module.exports = ProductStore;

Now that this is taken care of, the next step is to listen to updates from this store in
our code. Open layout.jsx and add the following imports:

import Actions from "./actions/products"
import ProductStore from "./stores/products"

Creating a Web Shop

[42]

Then, add the following code just above the render() method:

mixins:[
 Reflux.listenTo(ProductStore, 'onFetchProducts')
],
componentDidMount() {
 Actions.FetchProducts();
},
onFetchProducts(data){
 this.setState({products: data.products});
},

This is exciting because we're finally starting to populate our app with content.
Whenever the store emits data now, this component will pick it up and propagate it
to its children components via the state object.

Building the product's listing and the item
page
The view we're going to build now will present users with a selection of your book
titles. It will start with the main offering as a full-size column and then provide other
offerings in three smaller columns.

Let's open pages/products.jsx and write code that will display the product's data.
Replace everything in the file with the following code:

"use strict";
import React from "react";
import { Grid, Row, Col, Button } from "react-bootstrap";
import { Link } from "react-router";

const Products = React.createClass ({
 propTypes: {
 products: React.PropTypes.object
 },
 getDefaultProps() {
 return {
 products: {
 main_offering: [],
 sale_offerings: []
 }
 }
 },

Chapter 2

[43]

 render() {
 return (
 <Grid>
 <Offerings productData={this.props.products.main_offering}
 type={"main"} maxProducts={1}/>
 <Offerings productData=
 {this.props.products.sale_offerings}
 type={"ribbon"} maxProducts={3}/>
 </Grid>
);
 }
});

We expect to receive a data property called products with two lists: a main offering
and a sales offering. You'll probably remember these from products.json, where
we defined them. In our render code, we create a Bootstrap grid and create two
nodes with a new component called offerings. We're providing three properties to
this component: a list of products, a type, and maximum amount of products that we
want to display. In this context, type is a string and can be either main or ribbon:

const Offerings = React.createClass ({
 propTypes: {
 type: React.PropTypes.oneOf(['main', 'ribbon']),
 maxProducts: React.PropTypes.number,
 productData: React.propTypes.array
 },
 getDefaultProps() {
 return {
 type: "main",
 maxProducts: 3
 }
 },
 render() {
 let productData = this.props.productData.filter((data, idx)=>
 {
 return idx < this.props.maxProducts;
 });
 let data = productData.map((data, idx)=> {
 if(this.props.type === "main") {
 return <MainOffering
 {...this.props} key={idx}
 productData={data}/>
 }

Creating a Web Shop

[44]

 else if(this.props.type === "main") {
 return <RibbonOffering
 {...this.props} key={idx}
 productData={data}/>
 }
 });
 return <Row>{data}</Row>;
 }
});

In the map function, we have assigned a new property called key. This is to help
ReactJS uniquely identify the components. Any component with a key will be
reordered and reused in the rendering process.

When you're dealing with props, it's usually a good idea to define a set of default
properties for the data you want to work with. It's also a way of documenting by
writing easily understandable code. In this example, it's very easy to infer just by
looking at the property type and the default property that maxProducts defines
the maximum number of products to be displayed. However, type is still hard to
understand. As you know, it's a string and can be main. Knowing that it also can be
assigned as a ribbon is something that you need to read the rest of the source code
to understand. In these cases, it may be helpful to provide the optional values in a
docblock code. For instance, documenting this property can be done by adding a
docblock like this: @param {string} type "main"|"ribbon".

Reducing the product data is done by applying a filter function to the list of
products and returning the first matches by the index value. We then run a map
function on the remaining data and return either a MainOffering component if
type is main or a RibbonOffering component if type is ribbon:

const MainOffering = React.createClass ({
 propTypes: {
 productData: React.PropTypes.object
 },
 render() {
 const title = Object.keys(this.props.productData);
 if(this.props.productData[title]){
 (<Col xs={12}>
 <Col md={3} sm={4} xs={12}>
 <p>
 <img src={this.props.productData[title].
 image.replace("{size}","200x150")}/>
 </p>
 </Col>

Chapter 2

[45]

 <Col md={9} sm={8} xs={12}>
 <Link to={"/item/"+this.props.productData[title].SKU}>
 <h4>{title}</h4>
 </Link>

 <p>
 {this.props.productData[title].description}
 </p>

 <p>
 {this.props.productData[title].price}
 {" "}
 ({this.props.productData[title].savings})
 </p>

 <p>
 <Button bsSize="large">Add to cart</Button>
 </p>
 </Col>
 </Col>
)} else {
 return null;
 }
 }
});

The MainOffering component creates a full-sized column with a large product
image to the left and it also creates a price, description, and a buy button to the right.
The product image gets the 200 x 150 by way of replacing the {size} template with
a string value. Placehold.it is a convient service that you can use to display a
dummy image until you've got a real image to show. There are a number of such
services online, ranging from the plain ones, such as placehold.it, to services
showing dogs and cats to nature, technology, and architecture:

const RibbonOffering = React.createClass ({
 propTypes: {
 productData: React.PropTypes.object
 },
 render() {
 const title = Object.keys(this.props.productData);
 if(this.props.productData) {
 return (<Col md={4} sm={4} xs={12}>
 <Col xs={12}>
 <p>
 <img src={this.props.productData[title].image.

Creating a Web Shop

[46]

 replace("{size}","200x80")}/>
 </p>
 </Col>
 <Col xs={12}>
 <Link to={"/item/"+this.props.productData[title].SKU}>
 <h4>{title}</h4>
 </Link>

 <p>
 {this.props.productData[title].description}
 </p>

 <p>
 {this.props.productData[title].price}
 {" "}
 ({this.props.productData[title].savings})
 </p>

 <p>
 <Button bsSize="large">Add to cart</Button>
 </p>
 </Col>
 </Col>)
 }
 else {
 return null;
 }
 }
});

It's worth mentioning here that in the render() method, we either return a ReactJS
node or null if this.props.productData has a title. The reason that we do this is
because when we mount the component, productData will be unpopulated. If we
try to use the property at this point, ReactJS will return an error. It will be populated
as soon as the data has been fetched in the store, and that may take a few milliseconds
or it may take a bit long depending on a number of things, but primarily, it depends
on latency, which means it's very unlikely that the data is available when you mount
the component. In any case, you shouldn't rely on that, so it's better to return nothing
until the data is available:

module.exports = Products;

We've defined a number of components in this file, but note that we only export
the main one, called products. The other components will not be available via
destructuring because they have not been exported.

Chapter 2

[47]

We've linked our items to the item page, so we need to flesh it out and retrieve the
item data when the customer visits this page.

Open pages/item.jsx and replace the content with this code:

"use strict";
import React from "react";
import Reflux from "reflux";
import { Router, State } from "react-router";
import { Grid, Row, Col, Button } from "react-bootstrap";
import CartActions from "../actions/cart";

const Item = React.createClass ({
 mixins: [
 Router.State
],
 render() {
 if (!this.props.products) return null;

 // Find the requested product in our product list
 let products = this.props.products.main_offering.
 concat(this.props.products.sale_offerings);
 let data = products.filter((item)=> {
 return item[Object.keys(item)].SKU ===
 this.props.routeParams.id;
 });

Here, we take advantage of the fact that all of our products exist as a property to this
page and that they simply return a filtered object list from the complete product list.
The filter is based on this.getParams().id. This is a built-in mixin provided by
react-router, which fetches the id key defined in routes.jsx.

A mixin is a piece of code that contains methods that can be included in other pieces
of code without the use of inheritance. This is advantageous because it allows easy
code injection and reuse. This has drawbacks as well because uncritical use of mixins
can lead to confusion regarding the origin of the code you're using:

 if(!data.length){
 return (<Grid>
 <Row>
 <Col xs={12}>
 <h1>Product missing</h1>
 <p>
 I'm sorry, but the product could not be found.
 </p>

Creating a Web Shop

[48]

 </Col>
 </Row>
 </Grid>)} else {
 return (<Grid>
 <Row>
 <Col xs={12}>
 <ProductInfo productData={data[0]}/>
 </Col>
 </Row>
 </Grid>
)};
 }
});

This return declaration checks the new object list for its length and either provides
the item information or an information block informing the customer that the
product couldn't be found:

const ProductInfo = React.createClass ({
 propTypes: {
 productData: React.PropTypes.object
 },
 render() {
 const title = Object.keys(this.props.productData);
 if(this.props.productData[title]){
 (<Col xs={12}>
 <Col md={3} sm={4} xs={12}>
 <p>
 <img src={this.props.productData[title].
 image.replace("{size}","200x150")}/>
 </p>
 </Col>
 <Col md={9} sm={8} xs={12}>
 <h4>{title}</h4>
 <p>
 {this.props.productData[title].description}
 </p>

 <p>
 {this.props.productData[title].price}
 {" "}
 ({this.props.productData[title].savings})
 </p>

 <p>
 <Button bsSize="large"

Chapter 2

[49]

 onClick={CartActions.AddToCart.
 bind(null, this.props.productData)}>
 Add to cart
 </Button>
 </p>
 </Col>
 </Col>
)}
 else {
 return null;
 }
 }
});
module.exports = Item;

The last piece of code prints out the product information.

This is how the final result should appear:

The final piece of the puzzle adds the action that puts the item in your cart. For that,
we need to make another action file and a cart store.

Creating a Web Shop

[50]

Creating a cart store
We'll need to add two more files to our project, actions/cart.js and store/
carts.js. Create these files and add this code to the actions file:

"use strict";

import Reflux from "reflux";

const Cart = {
 AddToCart: Reflux.createAction("AddToCart"),
 RemoveFromCart: Reflux.createAction("RemoveFromCart"),
 ClearCart: Reflux.createAction("ClearCart")
};

module.exports = Cart;

We define three actions, one for adding items, one for removing them, and the third
for clearing the cart.

Open store/carts.js and add the following piece of code:

"use strict";
import Reflux from "reflux";
import CartActions from "../actions/cart";
let _cart = {cart: []};

This is our store object. Initializing it outside CartStore itself makes it private and
hidden, making it impossible to import CartStore and modify the store object
directly. It's customary, but not necessary, to prefix such objects with an underscore.
It's simply a way of indicating that we're working with a private object:

const CartStore = Reflux.createStore ({

 init() {
 this.listenTo(CartActions.AddToCart, this.onAddToCart);
 this.listenTo(CartActions.RemoveFromCart,
 this.onRemoveFromCart);
 this.listenTo(CartActions.ClearCart, this.onClearCart);
 },

These are the actions we'll listen and respond to. Whenever any of the preceding
actions are called in our code, the function that we connect to the action will be
executed:

 onAddToCart(item){
 _cart.cart.push(item);

Chapter 2

[51]

 this.emit();
 },

When we call CartActions.AddToCart with an item in our code, this code will add
the item to our cart object. We then call this.emit(), which is our store emitter.
We could just as easily call this.trigger directly (which is the native Reflux
function for emitting data), but having a single function responsible for emitting data
is beneficial if you need to perform any functions or execute any code before emitting
the data:

 onRemoveFromCart(item) {
 _cart.cart = _cart.cart.filter((cartItem)=> {
 return item !== cartItem
 });
 this.emit();
 },

This function removes an item from our cart object using the built-in filter
function in JavaScript. The filter function returns a new array when called,
excluding the item we want removed. We then simply emit the altered cart object:

 onClearCart() {
 _cart.cart = [];
 this.emit();
 },

This resets the cart and emits the empty cart object:

 emit() {
 this.trigger(_cart);
 }

In this function, we emit the cart object. Any component that listens to this store
will receive the object and render the new data:

});

module.exports = CartStore;

We also want to provide the user with some indication of the state of his/her cart,
so open up menu.jsx and replace NavItemLink for the Checkout section with the
following piece of code:

<NavItemLink
 to="/checkout">
 Your cart: {this.props.cart.length} items
</NavItemLink>

Creating a Web Shop

[52]

Before render(), add a defaultProps section with this code:

 getDefaultProps() {
 return {
 cart: []
 }
 },

All state changes go through layout.jsx, so open this file and add the following
import:

import CartStore from "./stores/cart"

In the mixins section, add a listener for the cart store and the function that is to be
run when the cart emits data. The code should now look like this:

 mixins: [
 Reflux.listenTo(ProductStore, 'onFetchProducts'),
 Reflux.listenTo(CartStore, 'onCartUpdated')
],
 onCartUpdated(data){
 this.setState({cart: data.cart});
 },

The Menu component needs to receive the new state, so provide it with this code:

<Menu {...this.state} />

Finally, we need to add the action to the Add to cart buttons. Edit pages/products.
jsx and replace the button code in MainOffering and RibbonOffering with this
code:

<Button bsSize="large"
 onClick={CartActions.AddToCart.bind(null,
 this.props.productData)}>
 Add to cart
</Button>

Add the following line of code to the imports section as well:

import CartActions from "../actions/cart";

You're set. When you click on the Add to cart button in the products page now,
the cart will be updated and the menu count will also be updated immediately.

Chapter 2

[53]

Checking out
What good is a webshop if your customers cannot check out? After all, that's what
they're here for. Let's set up a check out screen and let the customer enter a delivery
address.

We need to create some new files: stores/customer.js, actions/customer.js,
and components/customerdata.jsx.

Open actions/customer.js and add this code:

"use strict";

import Reflux from "reflux";

const Actions = {
 SaveAddress: Reflux.createAction("SaveAddress")
};

module.exports = Actions;

Creating a Web Shop

[54]

This single action will be responsible for address management.

Next, open stores/customer.js and add this code:

"use strict";
import Reflux from "reflux";
import CustomerActions from "../actions/customer";
let _customer = {customer: [], validAddress: false};

As in cart.js, here we define a private object to store the state of our store. As you
can read from the object definition, we'll store a customer list and a Boolean address
validator. We will also import the customer action file that we just created:

const CustomerStore = Reflux.createStore({

 init() {
 this.listenTo(CustomerActions.SaveAddress,
 this.onSaveAddress);
 },

 onSaveAddress(address) {
 _customer = address;
 this.emit();
 },

 emit() {
 this.trigger(_customer);
 }
});

module.exports = CustomerStore;

You'll recognize the structure of this code from the cart.js file. We listen to the
SaveAddress action and execute the connected function whenever the action is
called. Finally, the emitter is called every time the state object is changed.

Before we edit the last new file, let's open checkout.jsx and set up the code we
need there. Replace the current content with this code:

"use strict";
import React from "react";
import { Grid, Button, Table, Well } from "react-bootstrap";
import CartActions from "../actions/cart";
import CustomerData from "../components/customerdata";

Chapter 2

[55]

We import two new functions from React-Bootstrap and two of the new files that
we just created:

const Checkout = React.createClass ({
 propTypes: {
 cart: React.PropTypes.array,
 customer: React.PropTypes.object
 },
 getDefaultProps() {
 return {
 cart: [],
 customer: {
 address: {},
 validAddress: false
 }
 }
 },

In this section, we initialize the component with two properties: a cart array and a
customer object:

 render() {
 let CheckoutEnabled = (this.props.customer.validAddress &&
 this.props.cart.length > 0);
 return (
 <Grid>
 <Well bsSize="small">
 <p>Please confirm your order and checkout your cart</p>
 </Well>

 <Cart {...this.props} />

 <CustomerData {...this.props} />

 <Button disabled={!CheckoutEnabled}
 bsStyle={CheckoutEnabled ?
 "success" : "default"}>
 Proceed to checkout
 </Button>

 </Grid>
);
 }
});

Creating a Web Shop

[56]

We define a Boolean variable that controls whether the checkout button is visible or
not. Our requirements are simply that we want at least one item in our cart and that
the customer has entered a valid name address.

We then display a simple message to our customer inside a Bootstrap well. Next, we
display the cart contents (which we'll define in the following code snippet), and then,
we present a series of input fields where the customer can add an address. Finally,
we display a button that takes the user to the payment window:

const Cart = React.createClass ({
 propTypes: {
 cart: React.PropTypes.array
 },
 render() {
 let total = 0;
 this.props.cart.forEach((data)=> {
 total += parseFloat(data[Object.keys(data)].
 price.replace("$", ""));
 });

 let tableData = this.props.cart.map((data, idx)=> {
 return <CartElement productData={data} key={idx}/>
 });

 if (!tableData.length) {
 tableData = (<tr>
 <td colSpan="3">Your cart is empty</td>
 </tr>);
 }
 return <Table striped condensed>
 <thead>
 <tr>
 <th width="40%">Name</th>
 <th width="30%">Price</th>
 <th width="30%"></th>
 </tr>
 </thead>
 <tbody>
 {tableData}
 <tr className="summary" border>
 <td>Order total:</td>
 <td>${total}</td>
 <td>

Chapter 2

[57]

 {tableData.length ?
 <Button bsSize="xsmall" bsStyle="danger"
 onClick={CartActions.ClearCart}>
 Clear Cart
 </Button> : null}
 </td>
 </tr>
 </tbody>
 </Table>;
 }
});

Cart is another React component that takes care of displaying a table with the
contents of the customer's cart, including a total amount for the order. We initialize
a variable for the total amount and set it to zero. We then use the built-in forEach
function in JavaScript to loop and walkthrough the cart contents and create an order
total. Since the prices come with a dollar symbol from the JSON file, we need to strip
out this before adding the sums (or else JavaScript would simply concatenate the
strings). We also use parseFloat to convert the string into a float.

In reality, this is not an ideal solution because you don't want to use float values
when working with prices.

Try adding 0.1 and 0.2 with JavaScript to understand
why (hint: it won't equal 0.3).

The best solution is to use integers and divide by 100 whenever you want to display
fractional values. For that reason, products.json could be updated to include a
price field like this: "display_price": "$21.90","price": "2190". Then, we'd
work with price in our code, but use display_price in our views.

Next, we walk through our cart content again, but this time using JavaScript's
built-in map function. We return a new array populated with CartElement nodes.
We then render a table and insert the new array that we just created:

const CartElement = React.createClass ({
 render() {
 const title = Object.keys(this.props.productData);
 if(title) {
 (<tr>
 <td>{title}</td>
 <td>{this.props.productData[title].price}</td>

Creating a Web Shop

[58]

 <td>
 <Button bsSize="xsmall" bsStyle="danger"
 onClick={CartActions.RemoveFromCart.bind
 (null, this.props.productData)}>
 Remove
 </Button>
 </td>
 </tr>
)
 }
 else {
 return null
 }
 }
}
);

module.exports = Checkout;

The CartElement component should look familiar to you with one exception, the
onClick method has a bind. We do this because we want to pass along the product
data when the customer clicks on the Remove button. The first element in the bind
is the event and the second is the data. We don't need to pass along the event, so we
simply set that to null.

Let's take a look at the following screenshot:

Chapter 2

[59]

We also need to add the code for customerdata.jsx so let's open this file and add
the following code:

"use strict";
import React from "react";
import { FormGroup, FormControl, InputGroup, Button }
 from "react-bootstrap";
 import CustomerActions from "../actions/customer";
 import clone from 'lodash/clone';

const CustomerData = React.createClass ({
 getDefaultProps() {
 return {
 customer: {

Creating a Web Shop

[60]

 address: {},
 validAddress: false
 }
 }
 },
 getInitialState() {
 return {
 customer:{
 name: this.props.customer.address.name ?
 this.props.customer.address.name : "",
 address: this.props.customer.address.address ?
 this.props.customer.address.address : "",
 zipCode: this.props.customer.address.zipCode ?
 this.props.customer.address.zipCode : "",
 city: this.props.customer.address.city ?
 this.props.customer.address.city : ""
 },
 validAddress: this.props.customer.validAddress ?
 this.props.customer.validAddress : false
 };
 },

This might look a bit complicated, but the idea here is that we'll set the customer
name and address validation to the same as this.props if it exists, but if not, we use
the default values of empty strings and set Boolean to false for address validation.

The reason we do this is that we want to display whatever data the customer has
entered if he/she chooses to add data to the checkout screen, but then decides to
visit another part of the store before proceeding to the checkout screen:

 validationStateName() {
 if (this.state.customer.name.length > 5)
 return "success";
 else if (this.state.customer.name.length > 2)
 return "warning";
 else
 return "error";
 },

 handleChangeName(event) {
 let customer = clone(this.state.customer);
 customer.name = event.target.form[0].value;
 this.setState({
 customer,

Chapter 2

[61]

 validAddress: this.checkAllValidations()
 });
 CustomerActions.SaveAddress(this.state);
 },

This is the first of four similar sections that deal with input validation. The validation is
only based on string length, but it can be replaced with any desired validation logic.

In handleChangeName, we clone the state in a local variable (making sure we don't
accidentally mutate the state manually), and then, we set the new value for the name
from the input field. The input value is fetched via refs, which is a ReactJS concept.
A reference can be set to any element and accessed via this.refs.

Next, on every change, we check all the validations that we've set up. If all are valid,
we set the address validator to Boolean as true. Finally, we save the state and then
run the action that will store the new address in the customer store. This change will
be emitted to layout.jsx, which will then pass the data back to this component, and
others which listens to the customer store.

 validationStateAddress() {
 if (this.state.customer.address.length > 5)
 return "success";
 else if (this.state.customer.address.length > 2)
 return "warning";
 else
 return "error";
 },

 handleChangeAddress(event) {
 let customer = clone(this.state.customer);
 customer.address =
 event.target.form[1].value;
 this.setState({
 customer,
 validAddress: this.checkAllValidations()
 });
 CustomerActions.SaveAddress(this.state);
 },

 validationStateZipCode() {
 if (this.state.customer.zipCode.length > 5)
 return "success";
 else if (this.state.customer.zipCode.length > 2)
 return "warning";

Creating a Web Shop

[62]

 else
 return "error";
 },

 handleChangeZipCode(event) {
 let customer = clone(this.state.customer);
 customer.zipCode =
 event.target.form[2].value;
 this.setState({
 customer,
 validAddress: this.checkAllValidations()
 });
 CustomerActions.SaveAddress(this.state);
 },

 validationStateCity() {
 if (this.state.customer.city.length > 5)
 return "success";
 else if (this.state.customer.city.length > 2)
 return "warning";
 else
 return "error";
 },

 handleChangeCity(event) {
 let customer = clone(this.state.customer);
 customer.city =
 event.target.form[3].value;
 this.setState({
 customer,
 validAddress: this.checkAllValidations()
 });
 CustomerActions.SaveAddress(this.state);
 },

 checkAllValidations() {
 return ("success" == this.validationStateName() &&
 "success" == this.validationStateAddress() &&
 "success" == this.validationStateZipCode() &&
 "success" == this.validationStateCity());
 },

Chapter 2

[63]

This function returns Boolean as true or false depending on all validation checks:

 render() {
 return (
 <div>
 <form>
 <FormGroup>
 <FormControl
 type="text"
 value={ this.state.customer.address.name }
 placeholder="Enter your name"
 label="Name"
 bsStyle={ this.validationStateName() }
 hasFeedback
 onChange={ this.handleChangeName }
 />
 </FormGroup>

Here, we use the Bootstrap FormGroup and FormControl functions and set the
styling based on the validation check. We set the ref parameter here that we use to
access the value when we save the name in our customer store. Every time the input
field is changed, it's sent to the onChange handler, handleChangeName. The rest of
the input fields are identical, except that they call upon different change handlers
and validators:

 <FormGroup>
 <FormControl
 type="text"
 value={ this.state.customer.address }
 placeholder="Enter your street address"
 label="Street "
 bsStyle={ this.validationStateAddress() }
 hasFeedback
 onChange={ this.handleChangeAddress } />
 </FormGroup>

 <FormGroup>
 <FormControl
 type="text"
 value={ this.state.customer.zipCode }
 placeholder="Enter your zip code"
 label="Zip Code"
 bsStyle={ this.validationStateZipCode() }
 hasFeedback

Creating a Web Shop

[64]

 onChange={ this.handleChangeZipCode } />

 </FormGroup>
 <FormGroup>

 <FormControl
 type="text"
 value={ this.state.customer.city }
 placeholder="Enter your city"
 label="City"
 bsStyle={this.validationStateCity()}
 hasFeedback
 onChange={this.handleChangeCity}/>

 </FormGroup>
 </form>
 </div>
);
 }

});
module.exports = CustomerData;

In order to propagate the changes in the new customer store from the layout to the
children components, we need to make a change in layout.jsx. Open the file and
add this import:

import CustomerStore from "./stores/customer"

Then, in the mixins, add this line of code:

Reflux.listenTo(CustomerStore, 'onCustomerUpdated')

Providing a receipt
The next logical step is to take care of payment and provide a receipt for the
customer. For payments, you need an account with a payment provider, such
as PayPal, Klarna, BitPay, and so on. Integration is usually very straightforward,
and it goes like this:

1.	 You connect to a data API provided by the payment provider.
2.	 Transmit your API key and the order data.
3.	 After the payment process is finished, the payment provider will redirect

to your receipt page and let you know whether the payment was successful
or not.

Chapter 2

[65]

The connection to the payment API should be hooked up to the Proceed to checkout
button. As the integration with a payment provider differs with every provider, we'll
simply provide a receipt page without verifying the payment.

Open checkout.jsx and add the following import:

import { LinkContainer } from "react-router-bootstrap";

Then, replace the checkout button with this code:

<LinkContainer to="/receipt">
 <Button
 disabled={!CheckoutEnabled}
 bsStyle= {
 CheckoutEnabled ? "success" : "default"
 }>
 Proceed to checkout
 </Button>
</LinkContainer>

Open receipt.jsx and replace the content with this code:

"use strict";
import React from "react";
import { Grid, Row, Col, Panel, Table } from "react-bootstrap";
import Router from "react-router";
import CartActions from "../actions/cart"
const Receipt = React.createClass ({
 mixins: [
 Router.Navigation
],
 componentDidMount() {
 if(!this.props.cart.length) {
 this.props.history.pushState('/');
 }
 },

Here, we tap into the history method and notify it to send the customer to the home
page if there's no cart data. This is a simple validation to check whether the customer
has entered the receipt page outside the predefined path.

Creating a Web Shop

[66]

This solution is not very robust. When you set it up with a payment provider, you
will send an identifier to the provider. You need to store this identifier and use this
instead to decide whether to show the receipt page and what to show:

 propTypes: {
 cart: React.PropTypes.array,
 customer: React.PropTypes.object
 },
 getDefaultProps() {
 return {
 cart: [],
 customer: {
 address: {},
 validAddress: false
 }
 }
 },
 componentWillUnmount() {
 CartActions.ClearCart();
 },
 render() {
 let total = 0;
 this.props.cart.forEach((data)=> {
 total += parseFloat(data[Object.keys(data)].
 price.replace("$", ""));
 });
 let orderData = this.props.cart.map((data, idx)=> {
 return <OrderElement productData={data} key={idx}/>
 });

 return (
 <Grid>
 <Row>
 <Col xs={12}>
 <h3 className="text-center">
 Invoice for your purchase</h3>
 </Col>
 </Row>
 <Row>
 <Col xs={12} md={12} pullLeft>
 <Panel header={"Billing details"}>
 {this.props.customer.address.name}

 {this.props.customer.address.address}

Chapter 2

[67]

 {this.props.customer.address.zipCode}

 {this.props.customer.address.city}
 </Panel>
 </Col>
 <Col xs={12} md={12}>
 <Panel header={"Order summary"}>
 <Table>
 <thead>
 <th>Item Name</th>
 <th>Item Price</th>
 </thead>
 {orderData}
 <tr>
 <td>Total</td>
 <td>${total}</td>
 </tr>
 </Table>
 </Panel>
 </Col>
 </Row>
 </Grid >
);
 }
});

We're reusing code from the checkout page here to show the cart content and the
order total. We're also creating a new OrderElement component in order to display
the list of items in the customer's cart:

const OrderElement = React.createClass ({
 render() {
 const title = Object.keys(this.props.productData);
 if(title) {
 (<tr>
 <td>{title}</td>
 <td>{this.props.productData[title].price}</td>
 </tr>
)
 }
 else {
 return null;
 }
 }
 }

Creating a Web Shop

[68]

);

module.exports = Receipt;

Summary
We've finished our first blueprint, the webshop. You now have a fully functioning
shop built with ReactJS. Let's take a look at what we've built in this chapter.

First, we started detailing the components that we needed to create and made a basic
mock-up of how we wanted the site to look. We wanted the design to be responsive
and the content visible on a range of devices, from the smallest smart phones to
tablets and desktop computers screens.

Chapter 2

[69]

We then worked on the layout and chose to use Bootstrap to help us with the
responsive functionality. We took the scaffolding from Chapter 1, Diving Headfirst into
ReactJS, and extended it by adding a small number of node modules from the npm
registry, chiefly, react-router, react-bootstrap, and the promise-based request
library, superagent.

We built the web shop based on the concept of unidirectional data flow, following the
established Flux pattern where actions go back to the store and the store emits data to
the components. Furthermore, we set it up so that all data is routed through the central
app and propagated as properties to the child components. This is a powerful pattern
because it leaves you with no uncertainty as to where your data originates from, and
every part of your app has access to the same data with the same state.

While making the webshop, we resolved a number of technical hurdles, such as
routing, form validation, and array filtering.

The final app is a basic working webshop that is ready to be developed and styled
further.

In the next chapter, we'll look at how to develop responsive apps with ReactJS!

[71]

Responsive Web
Development with ReactJS

A few years ago, building web apps was relatively easy. Your web apps were
viewed on desktops and laptops with roughly the same screen sizes and could
create a lightweight mobile version to serve the few mobile users who visited your
site. Today the tables have turned and mobile devices are just as important, often
even more so than desktops and laptops. The screen sizes today can vary from a 4"
smartphone to a 9" tablet and any size in between.

In this chapter, we'll be looking at the practice of building a web app suitable to work
on any device, regardless of size or whether the app will be viewed on a desktop or
mobile browser. The goal is to create an app environment that moulds itself to the
user's setup and provides a gratifying experience for everyone.

The term "responsive development" is an umbrella term covering a range of design
techniques such as adaptive, fluid, liquid, or elastic layouts, and hybrid or mobile
development. It can be broken into two main components: a flexible layout and
flexible media content.

We'll cover everything you need to create a responsive app in ReactJS in these topics:

•	 Creating a flexible layout
•	 Choosing the right framework
•	 Setting up a responsive app with Bootstrap
•	 Creating a flexible grid
•	 Creating a responsive menu and navigation
•	 Creating responsive wells
•	 Creating responsive panels

Responsive Web Development with ReactJS

[72]

•	 Creating responsive alerts
•	 Embedding media and video content
•	 Creating responsive buttons
•	 Creating dynamic progress bars
•	 Creating fluid carousels
•	 Working with fluid images and the picture element
•	 Creating responsive form fields
•	 Using glyph- and font-awesome icons
•	 Creating a responsive landing page

Creating a flexible layout
Flexible layouts change in width based on the size of a user's viewport. Viewport is a
generic term for the viewable area of the user's device. It's preferred over terms such
as a window or browser size because not all devices use Windows. You may design
the layout to use a percentage of the user's width or not assign any width at all and
have the layout fill up the viewport regardless of how big or small it is.

Before we talk about all the advantages of a flexible layout, let's briefly look at its
counterpart, the fixed width layout.

Fixed width means setting the overall width of a page to a predetermined pixel
value and then designing the app elements with this constraint in mind. Before the
explosive proliferation of web-enabled mobile devices, this was the primary design
technique for developing web applications.

A fixed width design has certain benefits. The main benefit is that it gives designers
complete control of the look. Basically, the user sees what the designer designs. It's
also easier to structure, and working with fixed width elements, such as images and
forms, is less of a hassle.

The obvious drawback with this type of design is that you end up with a rigid layout
that doesn't change based on any variation in the user environment. You will often
end with excessive white space for devices with large viewports, upsetting certain
design principles, or a design that is too wide for devices with small viewports.

Going with a fixed width design may be appropriate for some use cases, but as it
depends on your decision to guess which layout constraints work best for most users
of your app, you're likely to exclude a potentially huge group of users from using
your app.

Chapter 3

[73]

For this reason, a responsive app should generally be designed with a flexible layout
in order to remain usable for every user of your app.

An adaptive app generally refers to an app that is easily modifiable when a
change occurs, while responsive means to react quickly to changes. The terms are
interchangeable, and when we use the term "responsive", it's usually inferred that it
should also be adaptive. Elastic and fluid roughly mean the same and usually describe
a percentage-based design that molds to changes in browser or viewport size.

Mobile development, on the other hand, means creating a separate version of your
app that is meant to run exclusively on cell phone browsers. This is occasionally a
good approach, but it comes with several tradeoffs, such as maintaining a separate
code base, relying on browser sniffing to send users to the mobile version, and
problems with search engine optimization (SEO), since you have to maintain
separate URLs for the mobile and the desktop version.

Hybrid apps refer to mobile apps that are developed in such a manner that they can
be hosted inside a native application that utilizes a mobile platform's WebView.
You can think of WebView as an exclusive, full-screen browser for your app that
is hooked inside the mobile platform's native environment. The benefit of this
approach is that you can use standard development practices for the Web, and in
addition, you can gain access to native capabilities that are often restricted to access
from inside the mobile browsers. Another benefit is that you can publish your app
on native app stores.

Developing native apps with ReactJS is an attractive proposition, and with the React
Native project, it's also a viable option. With React Native, you can use everything that
you've learned about ReactJS and apply it to develop apps that can run on Apple and
Android devices and that can be published on Apple's App Store and Google Play.

Choosing the right framework
While it's certainly possible to set up a flexible layout on your own, using a
responsive framework makes a lot of sense. For reasons such as you'll save a lot of
time using a framework that's already been battle tested and maintained for many
years by a team of skilled designers. You can also take advantage of the fact that a
widely used responsive framework has a lot of helpful resources on the Web. The
drawback is that you will need to learn how the framework expects you to lay out
your pages, and that sometimes, you may not entirely agree on the design decisions
that the frameworks imposes on you.

Responsive Web Development with ReactJS

[74]

With these considerations in mind, let's take a look at some of the major frameworks
that are available for you:

•	 Bootstrap: The undisputed leader of the pack is Bootstrap. It's massively
popular and there are tons of resources and extensions available. The tie-in
with the React-Bootstrap project also makes this a very obvious choice when
developing web apps in ReactJS.

•	 Zurb Foundation: Foundation is the second biggest player after Bootstrap
and a natural choice if you decide that Bootstrap is not for you. It's a mature
framework that offers a lot of complexity for very little effort.

•	 Pure: Pure by Yahoo! is a lightweight and modular framework. It's perfect
if you're concerned about the byte size of other frameworks (this one checks
in at around 4 KB, while Bootstrap checks in around 150 KB and Foundation
at 350 KB).

•	 Material Design: Material Design by Google is a very strong contender.
It brings a lot of fresh ideas to the table and is an exciting alternative to
Bootstrap and Foundation. There's also a ReactJS implementation called
Material UI that brings together Material Design and ReactJS, which makes
this an attractive alternative to Bootstrap and React-Bootstrap. Material
Design is highly opinionated in how the UX elements it provides should
behave and interact, while Bootstrap and the others give you more freedom
on how you set up your interactions.

It's obviously not easy to choose one framework that's right for every project.
Another choice that we did not mention previously was doing it alone, that is,
creating the grid and the flexible layout all on your own. It's absolutely a doable
strategy, but it comes with certain drawbacks.

The major drawback is that you won't benefit from many years of tweaking and
testing. Even though most modern browsers are quite capable, your code will often
be run on a myriad of browsers and devices. It's very likely that your users will
run into issues that you don't know about because you simply don't have the same
hardware setup.

In the end, you have to decide whether you want to design apps or you desire to
create a new flexible CSS framework. That choice should make it clear why in this
chapter we have chosen a particular framework to focus on, and that framework
is Bootstrap.

Bootstrap is without doubt the most mature and popular of the preceding
frameworks and has excellent support in the community. The web landscape is still
evolving at a fast pace, and you can be confident that Bootstrap will evolve with it.

Chapter 3

[75]

Setting up your app with Bootstrap
We've already looked at an implementation of Bootstrap and React-Bootstrap in the
previous chapter, but we only skimmed the surface as to what you can do. Let's take
a closer look at what React-Bootstrap can provide us.

Start this project by making a copy of the scaffolding from Chapter 1, Diving Headfirst
into ReactJS, and then add React-Bootstrap to your project. Open a terminal, go to
the root of your project, and replace your dependencies or your devDependencies
(whichever you prefer) with the following list, then issue an npm install command
from your command line:

"devDependencies": {
 "babel-preset-es2015": "6.9.0",
 "babel-preset-react": "6.11.1",
 "babelify": "7.3.0",
 "browser-sync": "2.13.0",
 "browserify": "13.0.1",
 "browserify-middleware": "7.0.0",
 "history": "3.0.0",
 "jsxstyle": "0.0.18",
 "react": "15.1.0",
 "react-bootstrap": "0.29.5",
 "react-dom": "15.1.0",
 "react-router": "2.5.2",
 "reactify": "1.1.1",
 "serve-favicon": "2.3.0",
 "superagent": "2.1.0",
 "uglifyjs": "2.4.10",
 "watchify": "3.7.0"
},

Additionally, you'll need to either download the Bootstrap CSS or use a CDN to
include it in your index.html file. Then, add the following to the <head> section of
index.html:

<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-
scale=1">

<link rel="stylesheet" type="text/css"
href="//netdna.bootstrapcdn.com/font-awesome/3.2.1/css/
font-awesome.min.css">
<link rel="stylesheet" type="text/css"
href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/
bootstrap-glyphicons.css" />

Responsive Web Development with ReactJS

[76]

<link rel="stylesheet" type="text/css"
href="//netdna.bootstrapcdn.com/bootstrap/3.3.5/css/
bootstrap.min.css" />

Creating a flexible grid
At the heart of CSS frameworks such as Bootstrap lies the concept of the grid. The
Grid is a structure that allows you to stack content horizontally and vertically in
a consistent manner. It provides a predictable layout scaffolding that is easy to
visualize when you code.

Grids are made up of two main components: rows and columns. Within each row,
you can add a number of columns, from one to as many as 12, depending on the
framework. Some frameworks, such as Bootstrap, also add a container that you can
wrap around the rows and columns.

Using a grid is ideal for a responsive design. You can effortlessly craft websites that
look great on both large desktop browsers as well as small mobile browsers.

It's all down to how you structure your columns. For instance, you can set up a
column to be of full width when the browser width is less than or equal to 320 pixels
(a typical mobile browser width), and one-third width when the browser width is
greater than a given pixel size. The method you employ when toggling classes on
browser dimension is called media queries. All grid frameworks come with built-in
classes for toggling sizes based on media queries; you will rarely need to write your
own media queries.

The grid system in Bootstrap utilizes 12 columns and can optionally be set to be fluid
by initializing it with <Grid fluid={true}>. It defaults to nonfluid, but it's worth
noting that both settings return a responsive grid. The main difference is that a fluid
grid has 100% width all the time and continually readjusts at every width change. A
nonfluid grid is controlled by media queries and changes widths when the width of
the viewport crosses certain thresholds.

Grid columns can be differentiated with these properties:

•	 xs: This is for extra small devices such as phones (<768 px)
•	 sm: This is for small devices such as tablets (≥768 px)
•	 md: This is for medium devices such as desktops (≥992 px)
•	 lg: This is for large devices such as desktops (≥1200 px)

You can also use push and offset in combination with the preceding properties, so,
for instance, you can use xsOffset to offset a column visible on extra small devices,
and so on. The difference between offset and push is that offset will force other
columns to move, while push will overlap other columns.

Chapter 3

[77]

Sizes bubble upwards. If you define an xs property but no sm, md, or lg properties,
all columns will use the xs settings. If you define xs and sm properties, extra small
viewports will use the xs property, while all other viewports will use the sm property.

Let's look at a practical example. Create a file in your source/examples folder
(create the folder if it doesn't exist), call it grid.jsx, and add the following code:

'use strict';
import React from 'react';
import {Grid,Row,Col} from "react-bootstrap";

In our scripts, we only import what we currently need. In this example, we need
Grid, Row, and Col, so we'll name these and make sure that they're imported and
available under those names.

While it would be more convenient to import all the components without naming
each one specifically, being specific with your imports makes it easier to understand
what you require in the file you're working on. It will also potentially result in a
smaller footprint when bundling your JavaScript code for deployment because the
bundler can remove all components that are available but never used. Note that this
is not true for current versions of Browserify or Webpack (which we'll talk about in
Chapter 6, Advanced React), but is in the pipeline, at least for Webpack.

When you're importing a single component from a larger library,
import it with this method:

const Row = require('react-bootstrap').Row;

This will import just the desired component while ignoring the rest of
the library. If you do this consistently, your bundle size will decrease.

Let's take a look at the following code:

const GridExample = React.createClass ({
 render: function () {
 return (
 <div>
 <h2>The grid</h2>

 <Grid fluid={true}>
 <Row>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>

Responsive Web Development with ReactJS

[78]

 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 <Col xs = { 1 }> 1 </Col>
 </Row>

 <Row>
 <Col xs = { 2 } sm = { 4 }> xs2 sm4 </Col>
 <Col xs = { 4 } sm = { 4 }> xs4 sm4 </Col>
 <Col xs = { 6 } sm = { 4 }> xs6 sm4 </Col>
 </Row>

This row will show different column sizes for extra small devices and small to
large devices:

Remember that sizes bubble upwards, but not downwards.

 <Row>
 <Col
 xs = { 6 }
 sm = { 4 }
 md = { 8 }
 lg = { 2 }>
 xs6 sm4 md8 lg2
 </Col>
 <Col
 xs = { 6 }
 sm = { 8 }
 md = { 4 }>
 xs6 sm8 md4 lg10
 </Col>
 </Row>

This row shows two columns that change drastically depending on the viewport.
On smart phones, the columns are of equal width. On small viewports, the left-hand
side column covers one third of the row and the right-hand side column covers the
rest. On medium viewports, the left-hand side column is suddenly the dominant
column, but on very large viewports, the left-hand side column is again reduced
to a much smaller proportion.

Chapter 3

[79]

This is obviously a contrived setting meant to demonstrate the capabilities of the
grid. This would be a very strange setting for a live app:

 <Row>
 <Col
 xs = { 3 }
 xsOffset = { 1 }>
 3 offset 1
 </Col>
 <Col
 xs = { 7 }
 xsOffset = { 1 }>
 7 offset 1
 </Col>
 </Row>

Both columns start with an offset here. This will create a column of empty space at
the beginning of each column:

 <Row>
 <Col
 xs = { 4 }
 xsPush = { 1 }>
 4 push 1 (overlaps)
 </Col>
 <Col
 xs={ 7 }
 xsOffset = { 1 }>
 7 offset 1
 </Col>
 </Row>

Push moves the column to the right, but doesn't force the other column to move, so it
will overlap the next column. This means that the offset in the second column will be
overlapped by the contents of the first column:

 </Grid>
 </div>
);
 }
});

module.exports = GridExample;

www.allitebooks.com

http://www.allitebooks.org

Responsive Web Development with ReactJS

[80]

In order to view this example, open app.jsx and replace the content with this code:

'use strict';
import React from 'react';
import ReactDom from 'react-dom';
import GridExample from './examples/grid.jsx';

ReactDom.render ((<div>
 <GridExample />
 </div>),
 document.getElementById('container')
);

We'll create a lot of components in this chapter, and they can all be added
to app.jsx by adding an import statement in the head of your code.
ReactJS requires you to capitalize your components when you import
them. The name you give to the import can then be used in your render
code by adding the name in brackets.

When creating a grid, it can be very beneficial to make it visible while you're setting
it up. You can add this to app.css to make it appear in your browser:

div[class*="col-"] {
 border: 1px dotted rgba(60, 60, 60, 0.5);
 padding: 10px;
 background-color: #eee;
 text-align: center;
 border-radius: 3px;
 min-height: 40px;
 line-height: 40px;
}

This styling will make it easy to view and debug the columns that we're adding.

Bootstrap's grid system is very versatile and makes it easy to structure your page just
the way you want it. The grid you've made in this example is visible and fluid on all
devices you throw at it.

Chapter 3

[81]

Creating a responsive menu and navigation bar
This was extensively covered in Chapter 2, Creating a Web Shop, so we'll just set up a
basic menu here and refer to the previous chapter for details on how to connect to a
router and set up links that work.

Create a file in your source/examples folder, call it navbar.jsx, and add the
following code:

'use strict';
import React from 'react';
import { Nav,
 Navbar,
 NavBrand,
 NavItem,
 NavDropdown,
 MenuItem
} from 'react-bootstrap';

const Navigation = React.createClass ({
 render() {

Responsive Web Development with ReactJS

[82]

 return (
 <Navbar inverse fixedTop>
 <Navbar.Header>
 <Navbar.Brand>
 Responsive Web app
 </Navbar.Brand>
 <Navbar.Toggle/>
 </Navbar.Header>
 <Navbar.Collapse>

Adding Navbar.Collapse automatically makes this a mobile-friendly navigation
bar that replaces the menu items with a Hamburger button when the viewport is less
than 768 pixels:

 <Nav role="navigation" eventKey={0} pullRight>
 <NavItem
 eventKey={ 1 }
 href = "#">
 Link
 </NavItem>
 <NavItem
 eventKey = { 2 }
 href = "#">
 Link
 </NavItem>
 <NavDropdown
 eventKey = { 3 }
 title = "Dropdown"
 id = "collapsible-nav-dropdown">
 <MenuItem eventKey={ 3.1 }>
 Action
 </MenuItem>
 <MenuItem eventKey={ 3.2 }>
 Another action
 </MenuItem>
 <MenuItem eventKey={ 3.3 }>
 Something else here
 </MenuItem>
 <MenuItem divider />
 <MenuItem eventKey={ 3.3 }>
 Separated link
 </MenuItem>
 </NavDropdown>
 </Nav>

Chapter 3

[83]

 <Nav pullRight>
 <NavItem eventKey = { 1 } href = "#">
 Link Right
 </NavItem>
 <NavItem eventKey = { 2 } href = "#">
 Link Right
 </NavItem>
 </Nav>
 </Navbar.Collapse>
 </Navbar>
);
 }
});

module.exports = Navigation;

You can set the following properties on the main Navbar component:

•	 defaultExpanded: This will expand Navbar on small devices if it is set to true
•	 expanded: This sets the Navbar component expanded on runtime (requires

onToggle)
•	 fixedBottom: This will fix the Navbar component at the bottom of the

viewport
•	 fixedTop: This will fix the Navbar component at the top of the viewport
•	 staticTop: This will float Navbar along with the page
•	 fluid: This works in the same way as the fluid setting in the grid
•	 inverse: This inverses the colors in Navbar
•	 onToggle: This is a function that you can run when Navbar is toggled
•	 componentClass: This is used to add your own classes to Navbar

Creating responsive wells
A well is an inset that can be used for good effect. It's an easy, but effective way of
emphasizing content. It's also very simple to set up in Bootstrap.

Add a new file in source/examples, name it wells.jsx, and add this code:

'use strict';
import React from 'react';
import { Well } from 'react-bootstrap';

const Wells = React.createClass ({
 render() {

Responsive Web Development with ReactJS

[84]

 return (
 <Well bsSize = "large">
 Hi, I'm a large well.
 </Well>
);
 }
});

module.exports = Wells;

You can set the following properties on the Wells component:

•	 bsSize: A well can be either small or large

Creating responsive panels
A panel is like a well, but with more information and functionality.

It can have a heading and it can be collapsible, so it's a good candidate for presenting
information, containing forms, and so on.

Let's create a basic panel. Add a new file in source/components, name it panels.
jsx, and add this code:

'use strict';
import React from 'react';
import { Panel, Button, PanelGroup, Accordion }

Chapter 3

[85]

 from 'react-bootstrap';

const Panels = React.createClass ({
 getInitialState() {
 return {
 open: false,
 activeKey: 1
 }
 },
 render() {
 return (
 <div>
 <h2>Panels</h2>
 <div>
 <Button
 onClick = { ()=> this.setState ({
 open: !this.state.open })}>
 { !this.state.open ? "Open" : "Close" }
 </Button>
 <Panel
 collapsible
 expanded = { this.state.open }>
 This text is hidden until you click the button.
 </Panel>

This panel is closed by default and controlled by the component's state variable,
open. When you click on the button, it executes the internal setState function. The
state simply reverses the Boolean value of the open variable using the rather clever
not operator. When we use it, we say that we want the opposite of the current
value, which is either true or false:

 </div>
 </div>
);
 }
});

module.exports = Panels;

There's a bit more that we can do with the panel component, but let's briefly look at
which other properties we can set on Panel first:

•	 header (string): Add this to the Panel initializer and pass a value to give
the header some content.

Responsive Web Development with ReactJS

[86]

•	 footer (string): This is the same as the header but creates the information
block at the bottom instead of at the top.

•	 bsStyle (string): This makes the content meaningful by adding a context
class. You can choose between all the common Bootstrap context names:
primary, success, danger, info, warning, as well as default.

•	 expanded (boolean): This can either be true or false. This needs to be
coupled with collapsible.

•	 defaultExpanded (boolean): This too can be true or false. This does not
override the expanded function.

You will often want to display more than one panel and group them together.
This can be achieved by adding a component called PanelGroup.

PanelGroups is a wrapper that you set around all the panels you want to group.
The code looks like this if you want to group two panels:

<PanelGroup
 activeKey = { this.state.activeKey }
 onSelect = { (activeKey)=>
 this.setState({ activeKey: activeKey })}
 accordion>

 <Panel
 collapsible
 expanded = { this.state.open }
 header = "Panel 1 - Controlled PanelGroup"
 eventKey = "1"
 bsStyle = "info">
 Panel 1 content
 </Panel>

 <Panel
 collapsible
 expanded = {this.state.open}
 header = "Panel 2 - Controlled PanelGroup"
 eventKey = "2"
 bsStyle = "info">
 Panel 2 content
 </Panel>
</PanelGroup>

Chapter 3

[87]

This is a controlled PanelGroup instance. This means that only one panel will be
open at any time, and this is signified by adding the activeKey attribute to the
PanelGroup initializer. When you click on the panels in the group, the function in
the onSelect() method is called, and it updates the active panel state, which then
tells ReactJS to open the active panel and close the inactive one.

You can also create an uncontrolled PanelGroup instance by simply dropping
the activeKey and onSelect attributes from the PanelGroup initializer and the
expanded attribute from the Panel initializers:

<PanelGroup accordion>
 <Panel
 collapsible
 header = "Panel 3 - Uncontrolled PanelGroup"
 eventKey = "3"
 bsStyle = "info">
 Panel 3 content
 </Panel>

 <Panel
 collapsible
 header = "Panel 4 - Uncontrolled PanelGroup"
 eventKey = "4"
 bsStyle = "info">
 Panel 4 content
 </Panel>
</PanelGroup>

The main difference between them is that with the controlled groups, one panel will be
toggled open every time, but with uncontrolled groups, the user can close all panels.

Finally, if all you want are uncontrolled panel groups, you can ditch the PanelGroup
component and import the Accordion component instead. <Accordion /> is an
alias for <PanelGroup accordion />. It doesn't really save you much code, but may
be easier to remember. The code looks like this:

<Accordion>
 <Panel
 collapsible
 header = "Panel 5 - Accordion"
 eventKey = "5"
 bsStyle = "info">
 Panel 5 content
 </Panel>

 <Panel

Responsive Web Development with ReactJS

[88]

 collapsible
 header = "Panel 6 - Accordion"
 eventKey = "6"
 bsStyle = "info">
 Panel 6 content
 </Panel>
</Accordion>

Creating responsive alerts
Much like panels, alerts are padded information blocks with a few added features,
and they're good for displaying timely information to the user.

Let's take a look at what you can do with alerts.

Create a file called examples/alerts.jsx and add this code:

'use strict';
import React from 'react';

Chapter 3

[89]

import { Alert, Button } from "react-bootstrap";

const AlertExample = React.createClass ({
 getInitialState() {
 return {
 alertVisible: true
 };
 },

This is our flag to keep the alert visible. When this is set to false, the alert is hidden:

 render(){
 if(this.state.alertVisible){
 return (<Alert bsStyle="danger" isDismissable
 onDismiss={()=>{this.setState({alertVisible:false})}}>

Here, there are two attributes to be noted. The first is isDismissable, which renders
a button that allows the user to dismiss the alert. This attribute is optional.

The second is onDismiss, which is a function that is called when the user clicks on
the Dismiss button. In this case, the alertVisible flag is set to 0, and the render
function now returns null instead of an Alert component:

 <h4>An error has occurred!</h4>
 <p>Try something else and hope for the best.</p>
 <p>
 <Button bsStyle="danger">Do this</Button>
 or
 <Button onClick=
 {()=>{this.setState({alertVisible:false})}}>
 Forget it</Button>

The Action button isn't set up to do anything, so clicking on it is fruitless at this time.
The Hide button receives a function that will set the alertVisible flag to 0 and hide
the Alert box:

 </p>
 </Alert>)}
 else {
 return null;
 }
 }
});

module.exports = Alerts;

Responsive Web Development with ReactJS

[90]

Responsively embedded media and video content
Embedding YouTube videos can be a worthwhile addition to your site, so let's create
a custom component to handle this.

For this module, we need another dependency, so go ahead and open a terminal,
navigate to the root folder, and execute this install command:

npm install --save classnames

The classnames component allows you to dynamically define classes that are to
be included with simple true and false comparisons, and it is easier to use and
understand than relying on string concatenation and if...else statements.

Create a folder called components and a file in that folder called media.jsx,
and then, add this code:

'use strict';
import React from 'react';
import ClassNames from 'classnames';

const Media = React.createClass ({
 propTypes: {
 wideScreen: React.PropTypes.bool,
 type: React.PropTypes.string,
 src: React.PropTypes.string.isRequired,
 width: React.PropTypes.number,
 height: React.PropTypes.number
 },
 getDefaultProps() {
 return {
 src: "",
 type: "video",
 wideScreen: false,
 allowFullScreen: false,
 width:0,
 height:0
 }
 },

We will require one property: the YouTube source. The others are optional. If
widescreen is not provided, the component will show the video in the 4:3 aspect ratio:

 render() {
 let responsiveStyle = ClassNames ({
 "embed-responsive": true,
 "embed-responsive-16by9": this.props.wideScreen,

Chapter 3

[91]

 "embed-responsive-4by3": !this.props.wideScreen
 });
 let divStyle, ifStyle;
 divStyle = this.props.height ?
 {paddingBottom:this.props.height} : null;
 ifStyle = this.props.height ?
 {height:this.props.height, width:this.props.width} : null;

 if(this.props.src) {
 if(this.props.type === "video") {
 return (<div className={responsiveStyle}
 style={divStyle}>
 <iframe className="embed-responsive-item"
 src={ this.props.src }
 style={ifStyle}
 allowFullScreen={ this.props.allowFullScreen }>
 </iframe>
 </div>);
 } else {
 return (<div className={ responsiveStyle }
 style={ divStyle }>
 <embed frameBorder='0'
 src={ this.props.src }
 style={ ifStyle }
 allowFullScreen={ this.props.allowFullScreen }/>
 </div>)
 }
 }
 else {
 return null;
 }
 }
});

module.exports = Media;

This snippet returns an iframe or embed element based on the type of media being
passed. The responsive classes are based on the ones provided by Bootstrap and will
scale the media to any viewport automatically.

Open app.jsx and add this import:

import Media from './components/media;

Responsive Web Development with ReactJS

[92]

Then, add < Media src="//www.youtube.com/embed/x7cQ3mrcKaY"/> to the
render() method (or any other video you want to display). You can also add the
wideScreen optional attribute to show the video in a 16 x 9 size and allowFullScreen
if you want to allow the user to view the video in full screen. You can also pass height
and width parameters in order to make it consistent with your layout.

Of course, this component is not just for videos, but any type of media content.
For instance, try replacing the code in app.jsx with this:

'use strict';
import React from 'react';
import ReactDom from 'react-dom';
import Media from './components/media.jsx';
import { Grid, Row, Col } from "react-bootstrap";

ReactDom.render((<Grid fluid={true}>
 <Row>
 <Col xs={12} md={6}>
 <Media type="image/svg+xml"
 src="https://upload.wikimedia.org/wikipedia/commons/e/
 e5/Black-crowned_Night_Heron.svg" />
 </Col>
 <Col xs = { 12 } md = { 6 }>
 <Media
 type = "video"
 src = "//www.youtube.com/embed/x7cQ3mrcKaY" />
 </Col>
 </Row>
</Grid>),
document.getElementById('container')
);

This will show a grid with two columns, one with an SVG and the other with a video
from YouTube.

Creating responsive buttons
Buttons are ubiquitous on any web app. They're responsible for a lot of user
interaction that you'll do in your apps, so it's worth knowing the many types of
buttons available to you.

Some of the options available to you are extra-small, small, and large buttons,
full-width buttons, the active and disabled state, grouping, dropup and dropdown,
and the loading state. Let's look at the code.

Chapter 3

[93]

Create a file called examples/buttons.jsx and add the following code:

'use strict';
import React from 'react';
import { Button, ButtonGroup, ButtonToolbar, DropdownButton,
 MenuItem, SplitButton } from 'react-bootstrap';

const Buttons = React.createClass({
 getInitialState() {
 return {
 isLoading: false
 }
 },
 setLoading() {
 this.setState({ isLoading: true });
 setTimeout(() => {
 this.setState({ isLoading: false });
 }, 2000);
 },

When we execute setLoading, we set the isLoading state to true, and then, we set
a timer that reverts the state to false after 2 seconds:

 render() {
 let isLoading = this.state.isLoading;

 return (
 <div>
 <h2> Buttons </h2>
 <h5> Simple buttons </h5>
 <ButtonToolbar>

ButtonToolbar along with ButtonGroup are the two components that you can use
for grouping buttons. The main difference between them is that ButtonToolbar will
preserve the spacing between multiple inline buttons or button groups, whereas
ButtonGroup will not:

 <Button> Default </Button>

 <Button bsStyle = "primary"> Primary </Button>

 <Button bsStyle = "success"> Success </Button>

 <Button bsStyle = "info"> Info </Button>

 <Button bsStyle = "warning"> Warning </Button>

Responsive Web Development with ReactJS

[94]

 <Button bsStyle = "danger"> Danger </Button>

 <Button bsStyle = "link"> Link </Button>

The styles provide visual weight and identify the primary action of the button.
The final style, link, makes the button look like a normal link but maintains the
button's behavior:

 </ButtonToolbar>

 <h5>Full-width buttons</h5>
 <ButtonToolbar>
 <Button
 bsStyle = "primary"
 bsSize = "xsmall"
 block>
 Extra small block button (full-width)
 </Button>
 <Button
 bsStyle = "info"
 bsSize = "small"
 block>
 Small block button (full-width)
 </Button>
 <Button
 bsStyle = "success"
 bsSize = "large"
 block>
 Large block button (full-width)
 </Button>
 </ButtonToolbar>

Adding block turns it into a full-width button. The bsSize attribute is available for
all the buttons and can be xsmall, small, or large:

 <h5> Active, non-active and disabled buttons </h5>
 <ButtonToolbar>
 <Button> Default button - Non-active </Button>
 <Button active> Default button – Active </Button>

To set the button's active state, simply add the active attribute:

 <Button disabled> Default button – Disabled </Button>
 </ButtonToolbar>

Chapter 3

[95]

Adding the disabled attribute makes the button look unclickable by fading it to 50%
of the original opacity:

 <h5>Loading state</h5>
 <Button
 bsStyle = "primary"
 disabled = { isLoading }
 onClick = { !isLoading ? this.setLoading : null }>
 { isLoading ? 'Loading...' : 'Loading state' }
 </Button>

This button receives a click action and hands it over to the setLoading function,
as shown in the preceding code. As long as the isLoading state is set to false, it will
have a disabled attribute and show the text Loading…:

 <h5> Groups and Toolbar </h5>
 <ButtonToolbar>
 <ButtonGroup>
 <Button> 1 </Button>
 <Button> 2 </Button>
 <Button> 3 </Button>
 </ButtonGroup>

 <ButtonGroup>
 <Button> 4 </Button>
 <Button> 5 </Button>
 </ButtonGroup>
 </ButtonToolbar>

This segment shows how you can combine ButtonToolbar and ButtonGroup to
maintain two or more sets of visually grouped buttons. Another striking effect you
can add to ButtonGroup is the vertical attribute, which will show the button
stacked on top of each other instead of side by side:

 <h5> Dropdown buttons </h5>
 <ButtonToolbar>
 <DropdownButton
 title = "Dropdown"
 id = "bg-nested-dropdown">
 <MenuItem
 bsStyle = "link"
 eventKey = "1">
 Dropdown link
 </MenuItem>
 <MenuItem
 bsStyle = "link"

Responsive Web Development with ReactJS

[96]

 eventKey = "2">
 Dropdown link
 </MenuItem>
 </DropdownButton>

Our final set of buttons shows us the various ways in which you can add drop-down
and split-button effects. This preceding code is the simplest set of drop-down buttons
that you can show, and all you need to do is wrap them inside the DropdownButton
component:

 <DropdownButton
 noCaret
 title = "Dropdown noCaret"
 id = "bg-nested-dropdown-nocaret">
 <MenuItem
 bsStyle="link"
 eventKey="1">
 Dropdown link
 </MenuItem>
 <MenuItem
 bsStyle = "link"
 eventKey = "2">
 Dropdown link
 </MenuItem>
 </DropdownButton>

This next set adds the noCaret attribute to illustrate how you can create a drop-down
button without any visual clue that it will display a set of buttons when you click on it:

 <DropdownButton
 dropup
 title = "Dropup"
 id="bg-nested-dropup">
 <MenuItem
 bsStyle = "link"
 eventKey = "1">
 Dropdown link
 </MenuItem>
 <MenuItem
 bsStyle = "link"
 eventKey = "2">
 Dropdown link
 </MenuItem>
 </DropdownButton>

Chapter 3

[97]

You can turn the dropdown into a dropup instead by adding the dropup attribute:

 <SplitButton
 bsStyle = "success"
 title="Splitbutton down"
 id="successbutton">
 <MenuItem eventKey = "1"> Action </MenuItem>
 <MenuItem eventKey = "2"> Another action </MenuItem>
 </SplitButton>
 <SplitButton
 dropup
 bsStyle = "success"
 title = "Splitbutton up"
 id = "successbutton">
 <MenuItem eventKey = "1"> Action </MenuItem>
 <MenuItem eventKey = "2"> Another action </MenuItem>
 </SplitButton>

Similarly, you can create a split button effect by wrapping the buttons inside the
SplitButton component instead of the DropdownButton component:

 </ButtonToolbar>

 </div>
);
 }
});

module.exports = Buttons;

Responsive Web Development with ReactJS

[98]

The following screenshot shows the output of this code:

Creating dynamic progress bars
Progress bars can be used to show users the state of a process and how much is left
to process until it's finished.

Create a file called examples/progressbars.jsx and add this code:

'use strict';
import React from 'react';
import { ProgressBar } from 'react-bootstrap';
let tickInterval;

In this component, we want to create an interval for progress bars. We create a
variable to hold the interval because we want to be able to access it later in the
unmount method:

const ProgressBars = React.createClass ({
 getInitialState() {

Chapter 3

[99]

 return {
 progress: 0
 }
 },
 componentDidMount() {
 tickInterval = setInterval(this.tick, 500);
 },
 componentWillUnmount() {
 clearInterval(tickInterval);
 },

We create an interval when we mount the component, telling it to execute our tick
method every 500 milliseconds:

 tick() {
 this.setState({ progress: this.state.progress < 100 ?
 ++this.state.progress : 0 })
 },

The tick() method updates our internal progress variable by adding 1 to it if it's
less than 100 or resetting to 0 if it isn't:

 render() {
 return (
 <div>
 <h2> ProgressBars </h2>
 <ProgressBar
 active
 now = { this.state.progress } />

 <ProgressBar
 striped
 bsStyle = "success"
 now = { this.state.progress } />

 <ProgressBar
 now = { this.state.progress }
 label = "%(percent)s%" />

All of the progress bars will now update and display an ever-increasing progress
until it completely fills up and then resets to empty when it does.

If you apply the active attribute, the progress bar will be animated. You can also
furnish it with stripes by adding the striped attribute.

Responsive Web Development with ReactJS

[100]

You can add your own custom label or use one of the following to interpolate the
current value:

•	 %(percent)s%: This adds a percentage value
•	 %(bsStyle)s: This shows the current style
•	 %(now)s: This shows the current value
•	 %(max)s: This shows the max value (couple this by setting max={x}, where x

is any number)
•	 %(min)s: This shows the minx value (couple this by setting min={x}, where x

is any number)

Let's take a look at the following code snippet:

 <ProgressBar>
 <ProgressBar
 bsStyle = "warning"
 now = { 20 }
 key = { 1 }
 label = "System Files" />
 <ProgressBar
 bsStyle="danger"
 active
 striped
 now = { 40 }
 key = { 3 }
 label = "Crunching" />
 </ProgressBar>

It's possible to nest several progress bars on top of each other by wrapping them
inside ProgressBar:

 </div>
);
 }
});

module.exports = ProgressBarExample;

Creating fluid carousels
A carousel is a component that is used for cycling through elements, such as a
slideshow. The functionality is quite complex, but can be achieved with very
little code.

Chapter 3

[101]

Let's take a look at it. Create a new file called examples/carousels.jsx and add
this code:

'use strict';
import React from 'react';
import {Carousel,CarouselItem} from 'react-bootstrap';

const Carousels = React.createClass({
 getInitialState() {
 return {
 index: 0,
 direction: null
 };
 },
 handleSelect(selectedIndex, selectedDirection) {
 this.setState({
 index: selectedIndex,
 direction: selectedDirection
 });
 },

The direction can be either prev or next:

 render() {
 return (
 <div>
 <h2>Uncontrolled Carousel</h2>
 <Carousel>
 <CarouselItem>
 <img
 width = "100%"
 height = { 150 }
 alt = "600x150"
 src = "http://placehold.it/600x150"/>
 <div className = "carousel-caption">
 <h3> Slide label 1 </h3>
 <p> Lorem ipsum dolor sit amet </p>
 </div>
 </CarouselItem>
 <CarouselItem>
 <img
 width = "100%"
 height = { 150 }
 alt = "600x150"

Responsive Web Development with ReactJS

[102]

 src = "http://placehold.it/600x150"/>
 <div className = "carousel-caption">
 <h3> Slide label 2 </h3>
 <p> Nulla vitae elit libero, a pharetra augue. </p>
 </div>
 </CarouselItem>
 </Carousel>

The first carousel that we create is uncontrolled. That is, it animates itself
automatically, but can be manually triggered by the user:

 <h2>Controlled Carousel</h2>
 <Carousel activeIndex = {this.state.index}
 direction = {this.state.direction}
 onSelect = {this.handleSelect}>

The second carousel is controlled and won't be animated until the user clicks on
the left-hand side or the right-hand side arrow. When the user clicks on one of the
arrows, the handleSelect function receives the desired direction and animates
the carousel.

By default, the carousel uses the left and right arrow icons from the included
Glyphicon set. You can specify your own arrows using the nextIcon and
prevIcon attributes:

 <CarouselItem>
 <img
 width = "100%"
 height = {150}
 alt = "600x150"
 src = "http://placehold.it/600x150"/>
 <div className = "carousel-caption">
 <h3> Slide label 1 </h3>
 <p> Lorem ipsum dolor sit amet </p>
 </div>
 </CarouselItem>
 <CarouselItem>
 <img
 width = "100%"
 height = {150}
 alt = "600x150"
 src = "http://placehold.it/600x150"/>
 <div className = "carousel-caption">
 <h3> Slide label 2 </h3>
 <p> Nulla vitae elit libero, a pharetra augue. </p>

Chapter 3

[103]

 </div>
 </CarouselItem>
 </Carousel
 </div>
);
 }
});

module.exports = CarouselExample;

Working with fluid images and the picture element
The topic of responsive images is a subject fraught with difficulty. On one hand,
there's the issue of simply scaling and presenting the images in a responsive manner.
On the other, you'll often want to download smaller images for small devices and
hire images for desktops.

Let's look at how you can set up the responsive code first.

Create a file called examples/images.jsx and add the following code:

'use strict';
import React from 'react';

Responsive Web Development with ReactJS

[104]

import { Image, Thumbnail, Button, Grid, Row, Col }
 from 'react-bootstrap';

const Images = React.createClass ({
 render() {
 return (
 <div>
 <h2> Images </h2>
 <Grid fluid = { true }>
 <Row>
 <Col xs={ 12 } sm={ 4 }>
 <Image src="http://placehold.it/140x180" portrait />
 </Col>
 <Col xs={ 12 } sm={ 4 }>
 <Image src="http://placehold.it/140x180" circle />
 </Col>
 <Col xs={ 12 } sm={ 4 }>
 <Image src="http://placehold.it/140x180" rounded />
 </Col>
 </Row>

We'll start by defining Grid and then create a set of three columns (2 if on small
mobile devices). In the columns, we add three images with three available attributes:
portrait, circle, and rounded.

This will scale well to any viewport.

Next, we create another row, this time, using a component called Thumbnail rather
than Image. This component makes it easy for us to add any kind of HTML data that
goes along with your image, such as a headline, a description, and an action button:

 <Row>
 <Col xs={ 12 } sm={ 4 }>
 <Thumbnail
 src = "http://placehold.it/140x180">
 <h3> Thumbnail label </h3>
 <p> Description </p>
 <p>
 <Button
 bsSize = "large"
 bsStyle = "danger">
 Button
 </Button>
 </p>

Chapter 3

[105]

 </Thumbnail>
 </Col>

 <Col xs={ 12 } sm={ 4 }>
 <Thumbnail
 src="http://placehold.it/140x180">
 <h3> Thumbnail label </h3>
 <p> Description </p>
 <p>
 <Button
 bsSize = "large"
 bsStyle = "warning">
 Button
 </Button>
 </p>
 </Thumbnail>
 </Col>

 <Col xs={ 12 } sm={ 4 }>
 <Thumbnail
 src="http://placehold.it/140x180">
 <h3> Thumbnail label </h3>
 <p> Description </p>
 <p>
 <Button
 bsSize = "large"
 bsStyle = "info">
 Button
 </Button>
 </p>
 </Thumbnail>
 </Col>
 </Row>
 </Grid>
 </div>
);
 }
});

module.exports = Images;

To show this component in your app, open app.jsx and add this import:

import Images from './examples/images.jsx';

Responsive Web Development with ReactJS

[106]

Then, add <Images /> to the render() method.

Reducing your footprint
When serving small devices, it's a good idea to limit the amount of data they need to
download in order to view the contents of your app. After all, if your target audience
is users with mobile phones, it's probably not a good idea to serve them with high-
resolution images that may take several seconds to download.

There's no universal solution to this problem yet, but there are several decent ways
of tackling it. Let's look at a few ways you can go about solving this problem.

One option is to look at the device your user is using to view your app. This is called
sniffing and usually means identifying metrics such as the user agent and viewport
size in order to serve different images for desktops and mobile phones. The problem
with this solution is that it's not very reliable. User agents can be faked, and a small
viewport size doesn't automatically translate into a user surfing your app on a small
device.

Another option is media queries (which we'll discuss in more depth a little bit later).
This works well for static elements, such as images that you can place in your menus,
toolbars, and other fixed content, but not so for dynamic elements.

Chapter 3

[107]

One decent solution that's recently come into play is the use of a new element called
<picture>. This element lets you use the concept of media queries dynamically and
load different images based on the requirements that you specify.

Let's look at how this works in HTML:

<picture>
 <source
 media="(min-width: 750px)"
 srcSet="http://placehold.it/500x300" />
 <source
 media="(min-width: 375px)"
 srcSet="http://placehold.it/250x150" />
 <img
 src="http://placehold.it/100x100"
 alt="The default image" />
</picture>

This block will download and show a large image if the browser viewport is at least
750 px; it will show a medium image if the viewport is at least 375 px, and a small
image if neither conditions are met. This element scales gracefully, so if the user has
a browser that doesn't support this element, it will show the image named in the
 element.

The media query here is relatively simple. You can get pretty creative with your
queries and include attributes, such as the orientation and pixel ratio. Here's a
media query that matches smart phones in the portrait mode:

only screen and (max-device-width: 721px) and (orientation:
portrait) and (-webkit-min-device-pixel-ratio: 1.5), only screen
and (max-device-width: 721px) and (orientation: portrait) and
(min-device-pixel-ratio: 1.5), only screen and (max-width: 359px)

This one matches tables with retina displays in the portrait mode:

only screen and (min-device-width: 768px) and (max-device-width:
1024px) and (orientation: portrait) and
(-webkit-min-device-pixel-ratio: 2)

Creating a Reactified picture element
We want to work within the confines of ReactJS, so we don't want segments such
as the previous one where we break out of the mould and use plain HTML instead
of a ReactJS component for our pictures. However, since it doesn't exist, we need to
create one.

Responsive Web Development with ReactJS

[108]

For this module, we need another dependency, so go ahead and execute the
following command in your terminal (if you haven't done so already):

npm install --save classnames

Next, create a new file in your components folder and call it picture.jsx. Let's start
using the following code:

'use strict';
import React from 'react';
import ClassNames from 'classnames';

const Picture = React.createClass ({
 propTypes: {
 imgSet: React.PropTypes.arrayOf(
 React.PropTypes.shape({
 media: React.PropTypes.string.isRequired,
 src: React.PropTypes.string.isRequired
 }).isRequired
),
 defaultImage: React.PropTypes.shape ({
 src: React.PropTypes.string.isRequired,
 alt: React.PropTypes.string.isRequired
 }).isRequired,
 rounded: React.PropTypes.bool,
 circle: React.PropTypes.bool,
 thumbnail: React.PropTypes.bool,
 portrait: React.PropTypes.bool,
 width: React.PropTypes.any,
 height: React.PropTypes.any
 },
 getDefaultProps() {
 return {
 imgSet: [],
 defaultImage: {},
 rounded: false,
 circle: false,
 thumbnail: false,
 portrait: false,
 width: "auto",
 height: "auto"
 }
 },

Chapter 3

[109]

We'll start by adding a set of property types and their default values. Note that two
of the values, imgSet and defaultImage, are defined as shapes. That's because we
want to define the property types inside the objects and instruct ReactJS to let us
know if we forget some values or pass the wrong value type.

We also require a few values that are specific to Bootstrap, and you'll probably
recognize them from the preceding Image examples. Since we're creating our
own image component, we want to be able to add attributes such as rounded and
portrait, and this is how we make sure we do that:

 render() {
 let classes = ClassNames ({
 'img-responsive': this.props.responsive,
 'img-portrait': this.props.portrait,
 'img-rounded': this.props.rounded,
 'img-circle': this.props.circle,
 'img-thumbnail': this.props.thumbnail
 });

Here, we use the ClassNames component to add the correct Bootstrap classes if we
pass along the attributes we mentioned previously:

 return (
 <picture>
 { this.props.imgSet.map((img, idx)=> {
 return <source key={ idx }
 media={ img.media }
 srcSet={ img.src } />
 }) }

For every element in imgSet, we add a source item:

 { <img className={ classes }
 src={ this.props.defaultImage.src }
 width={ this.props.width }
 height={ this.props.height }
 alt={ this.props.defaultImage.alt }/> }

Then, we add the default image along with the width and height attributes. If you
don't specify the width and height, it will be set to auto. It's usually a good idea to
set the width and height because that makes it easier for the browser to lay out the
page initially and prevents it from jumping in case the document is served before the
images are completely downloaded:

 </picture>
)

Responsive Web Development with ReactJS

[110]

 }
});

module.exports = Picture;

Let's use the new component in examples/images.jsx. Open the file and add
this import:

import Picture from './../components/picture';

Immediately after the import line, add these variables:

let imgSet = [
 {media: "only screen and (min-width: 650px) and (orientation:
 landscape)", src: "http://placehold.it/500x300"},
 {media: "only screen and (min-width: 465px) and (orientation:
 portrait)", src: "http://placehold.it/200x500"},
 {media: "only screen and (min-width: 465px) and (orientation:
 landscape)", src: "http://placehold.it/250x150"}
];
let defaultImage = {src: "http://placehold.it/100x100",
 alt: "The default image"};

Finally, add this code just before </Grid> in the render() method:

<Row>
 <Col xs={12}>
 <Picture
 imgSet={ imgSet }
 defaultImage={ defaultImage }
 circle />
 </Col>
</Row>

When you reload the app in the browser, you'll see a rounded image in your
browser, and depending on your viewport size, you'll either see an image with the
dimensions 500 x 300, 200 x 500, 250 x 150, or 100 x 100. Resize the browser and play
around with the settings to see how it works in practice.

Creating responsive form fields
Forms are tricky because you'll often need to verify the input and present some
feedback in case the user does something you didn't expect. We'll look at both the
issues here, creating responsive forms and presenting feedback to the user.

Chapter 3

[111]

Create a new file, call it examples/formfields.jsx, and add this code:

'use strict';
import React from 'react';
import ClassNames from 'classnames';
import { FormGroup, FormControl, InputGroup, ButtonInput }
 from 'react-bootstrap';

const Formfields = React.createClass ({
 getInitialState() {
 return {
 name: '',
 email: '',
 password: ''
 };
 },

 validateEmail() {
 let length = this.state.email.length;
 let validEmail = this.state.email
 .match(/^[^\s@]+@[^\s@]+\.[^\s@]+$/);
 if (validEmail) return 'success';
 else if (length > 5) return 'warning';
 else if (length > 0) return 'error';
 },

When this function is executed, it gets the e-mail string from the state and then uses a
rather complicated regex query to check whether the e-mail is written in the correct
format. It's hardly foolproof, but it's good enough. If the e-mail is deemed valid, the
function returns 'success'. If not, it either returns 'error' or 'warning', both
providing visual clues to the user that the e-mail is not entered correctly:

 validatePassword() {
 let pw = this.state.password;
 if (pw.length < 5) return null;
 let containsNumber = pw.match(/[0-9]/);
 let hasCapitalLetter = pw.toLowerCase() !== pw;
 return containsNumber && hasCapitalLetter ? 'success' :
 'error';
 },

Responsive Web Development with ReactJS

[112]

This simple validator function checks whether the password has a number and an
uppercase letter. If it does and the length is five characters or more, it will return
'success'. If not, it will return 'error':

 handlePasswordChange() {
 this.setState({password: this.refs.inputPassword.getValue()})
 },
 handleEmailChange() {
 this.setState({email: this.refs.inputEmail.getValue()})
 },

These two functions fetch the input values via this.refs and stores them as state
variables. Go back to Chapter 1, Diving Headfirst into ReactJS, if you want to learn
more about refs:

 validateForm() {
 return (this.validateEmail() === this.validatePassword());
 },

This function returns true if both validator functions return the 'success' string:

 render() {
 return (
 <form>
 <Input type="text" label="Name"
 placeholder="Enter your name"/>
 <Input type="email" label="Email Address"
 placeholder="Enter your email"
 onChange={this.handleEmailChange}
 ref="inputEmail"
 bsStyle={this.validateEmail()}/>

The second input field has several interesting attributes. It has an onChange attribute,
which makes sure to call a function whenever new input is entered into the field. It
has a ref attribute so that it's possible to find it later via this.refs. Finally it has a
bsStyle attribute that can receive null, 'success', 'warning', or 'error'. It will
turn the border green on 'success', yellow on 'warning', and red on 'error':

 <Input type="password"
 label="Password"
 onChange={ this.handlePasswordChange }
 ref="inputPassword"
 bsStyle={ this.validatePassword() }/>
 <ButtonInput type="submit"
 value="Submit this form"
 disabled={ !(this.validateForm()) }
 />

Chapter 3

[113]

This button is disabled as long as the validator functions don't return 'success'.
When they do, the user is allowed to proceed and push the button:

 </form>
);
 }
});

module.exports = Forms;

To show this component in your app, open app.jsx and add this import:

import Formfields from './examples/formfields.jsx';

Then, add <Formfields /> to the render() method.

The Formfields component we've created here can be extended with more input
fields and more validators. Let's briefly look at the different input types that you
can use:

Select:

<Input type="select"
 label="Select"
 placeholder="select"
 ref="inputSelect">
 <option value="1">First select</option>
 <option value="2">Second select</option>
</Input>
<Input type="select"
 label="Multiple Select"
 multiple
 ref="inputMultipleSelect">
 <option value="1">First select</option>
 <option value="2">Second select</option>
</Input>

These two select fields let the user select from a list one at a time or several items at
once by adding the multiple attribute.

File:

<Input type="file" label="File" help="Instructions"/>

The text in help will be displayed underneath the file upload box. You can add an
onChange handler to immediately upload files.

Responsive Web Development with ReactJS

[114]

Checkbox:

<Input type="checkbox"
 label="Checkbox"
 checked={ this.state.inputCheckBoxOne }
 onChange={ this.handleCheckboxChange }
 ref={ CheckBoxOne }
 readOnly={ false }
 ref="inputCheckboxOne"/>

Since ReactJS will render everything literally, you need to either explicitly control
the checked status of your checkboxes or leave it out completely. In the preceding
snippet, we control the checked status by setting the state of CheckBoxOne in
handleCheckboxChange.

Note that if you provide the checked attribute, you must provide an
onChange handler; otherwise, ReactJS will throw a warning in your
console. If you want to provide a checked value to a checkbox without
controlling it, use the defaultChecked attribute instead.

Radio:

<Input type="radio"
 label="Radio"
 checked={ this.state.checkedRadioButton=="RadioOne" }
 onChange={ this.handleRadioChange.bind(null,"RadioOne") }
 readOnly={ false }/>
<Input type="radio"
 label="Radio"
 checked={ this.state.checkedRadioButton=="RadioTwo" }
 onChange={ this.handleRadioChange.bind(null,"RadioTwo") }
 readOnly={ false } />

Within a form, only one radio button can be checked. As with checkboxes, you can
control the checked status by adding a checked attribute and an onChange handler
or use defaultChecked if you want to precheck a radio button.

In the preceding snippet, we used bind instead of refs to pass the value along to
the function. In JavaScript, bind() produces a new that will have this set to the first
parameter passed to bind(). We're not interested in this; however, because that's
just the synthetic mouse click event, we'll set this to null and fix another argument
to the bind using partial function application. Simply put, we'll provide the
radio button name to handleRadioChange.

Chapter 3

[115]

The handleRadioChange() function looks like this:

handleRadioChange(val) {
 this.setState({ checkedRadioButton: val });
}

The reason we're doing it this way is that it's difficult to know which radio button
reference you need in order to fetch unless you create a unique onChange handler
for each radio button. This is not uncommon though, and either way is fine.

Textarea:

 <Input type="textarea"
 label="Text Area"
 placeholder="textarea" />

Text areas are input fields where you can enter longer paragraphs of text. You can
add an onChange handler if you need to apply functions when text is entered.

Using Glyphicons and font-awesome icons
Glyphicons is a set of about 200 glyphs provided with Bootstrap. We added them to
our index.html file in the beginning of the chapter, when we fetched Bootstrap from
a CDN, so they're already included and ready to be used in your app.

You can use Glyphicons anywhere you would use a text string because they're
provided as a font set rather than a set of images.

Responsive Web Development with ReactJS

[116]

You add them to your code by importing them with this line of code:

import { Glyphicon } from "react-bootstrap";

You can add a glyph in your code by writing <Glyphicon glyph="cloud"/> to add
a cloud or <Glyphicon glyph="envelope"/> to add an envelope.

You can easily add glyphs to input elements using one of the sets of special
attributes: addonBefore, addonAfter, buttonBefore, or buttonAfter.

For instance, if you want to add a dollar or a euro sign before an input field that
takes money as an input parameter, use a code block like this:

const euro = <Glyphicon glyph = "euro" />;
const usd = <Glyphicon glyph = "usd" />;
<Input type = "text"
 addonBefore={ usd }
 addonAfter = ".00" />
<Input type = "text"
 addonBefore={ euro }
 addonAfter = ".00" />

The complete set of glyphs and how they look is available in the code distributed
with this book. It's in the examples folder and the file is called glyphicons.jsx.
If you import this file and add it to app.jsx, the entire set will be displayed in
your browser.

Bootstrap also provides another set of icons in font awesome. We included this
library in the beginning of the chapter in addition to Glyphicons. Before you build
your app, it's useful to decide between either font-awesome or Glyphicons icons so
that you have one less library for your users to download.

Font-awesome library doesn't have a component equivalent to Glyphicons, so let's
make one. Create a file called fontawesome in your components folder and add
this code:

import React from 'react';

const FontAwesome = React.createClass ({
 propTypes: {
 icon: React.PropTypes.string
 },
 getDefaultProps() {
 return {
 icon: ""
 }

Chapter 3

[117]

 },
 render() {
 if(this.props.icon){
 return (<i className={ "fa fa-" + this.props.icon } />);
 } else {
 return null;
 }
 }
});

module.exports = FontAwesome;

The preceding code should be very familiar. What it does is it takes a single property
called icon and returns a font-awesome icon element. It doesn't verify that the icon
exists, so you need to familiarize yourself with more than 500 icons in the set in
advance.

To use this component, import it by adding import FontAwesome from './
components/fontawesome.jsx'; in app.jsx, and then in your render code, add
<FontAwesome icon="facebook"/> to display a Facebook icon. You can use
this component in the same manner as you would use the Glyphicon component,
including the preceding input element example.

Creating a responsive landing page
When developing responsive web apps, there comes a point when you need to
differentiate between small and large devices in your code. Let's put together a
landing page and demonstrate how you can use the size of the viewport in your
code to present your app content.

This app will be entirely contained in app.jsx. Remove the existing code in app.jsx
(or rename it to example.jsx if you want to keep a copy of what you've done), and
remove all code in app.css as well. Add the following to app.jsx:

'use strict';
import React from 'react';
import ReactDom from 'react-dom';
import { Grid, Row, Col, Button, Carousel, CarouselItem,
 FormGroup, FormControl, InputGroup } from "react-bootstrap";
import FontAwesome from './components/fontawesome.jsx';

We will be relying on the FontAwesome component that we created earlier:

const App = React.createClass ({
 getInitialState() {
 return {

Responsive Web Development with ReactJS

[118]

 vHeight: 320,
 vWidth: 480
 }
 },

We'll store the viewport height and width as state variables:

 componentDidMount() {
 window.addEventListener('resize', (e) => {
 this.calculateViewport();
 }, true);
 this.calculateViewport();
 },

The state variables will initially be set to 320 x 480, but as soon as the app mounts,
we'll calculate the real values. First, we'll add an event listener that will execute a
function anytime the viewport changes. Second, we'll run the function for the
first time:

 calculateViewport() {
 let vHeight = Math.max(document.documentElement.clientHeight,
 window.innerHeight || 0);
 let vWidth = Math.max(document.documentElement.clientWidth,
 window.innerWidth || 0);
 this.setState({
 vHeight: vHeight,
 vWidth: vWidth
 })
 },

The viewport calculation will use the most appropriate value and store it as the
component's state:

 renderSmallForm() {
 return (
 <form style={{ paddingTop: 15 }}>
 <div
 style={{
 width: (this.state.vWidth/2),
 textAlign:'center',
 margin:'0 auto'
 }}>
 <FormGroup>
 <FormControl
 type="text"
 bsSize="large"

Chapter 3

[119]

 placeholder="Enter your email address" />

 <Button
 bsSize="large"
 bsStyle="primary"
 onClick={ this.handleClick }>
 Sign up
 </Button>
 </FormGroup>
 </div>
 </form>);
 },

We'll create two render functions for the form on the landing page. Note that we set
all CSS inline inside double curly braces, and that the width will automatically be
half of the viewport width:

 renderLargeForm() {
 return (
 <form style={{ paddingTop:30 }}>
 <div
 style = {{ width:(this.state.vWidth/2),
 textAlign:'center',
 margin:'0 auto' }}>
 <FormGroup>
 <FormControl
 type="text"
 bsSize="large"
 placeholder = "Enter your email address" />
 <InputGroup.Button>
 <Button
 bsSize = "large"
 bsStyle = "primary"
 onClick = { this.handleClick }>
 Sign up
 </Button>
 </InputGroup.Button>
 </FormGroup>
 </div>
 </form>);
 },

The main difference between the small and the large form is that the large form uses
input groups to show the input field and the Submit button on the same horizontal
line. The small form puts the button under the input field.

Responsive Web Development with ReactJS

[120]

We added an onClick handler to our form, so let's proceed by adding this function:

handleClick(event){
 // process the input any way you like
 console.log(event.target.form[0].value);
},

We won't actually process the click event beyond logging the value, but the function
shows you how to grab the value from the form based on the event that occurs when
the user clicks on the Submit button.

Next, we'll the functions for the social icons.

 renderSocialIcons() {
 return (<Row>
 <Col xs={12} style=
 {{fontSize:32,paddingTop:35,position:'fixed',
 bottom:10,textAlign:'center'}}>
 <FontAwesome
 icon="google-plus"/>
 <a href="#" style=
 {{paddingLeft:15,color:'#eee'}}><FontAwesome
 icon="facebook"/>
 <a href="#" style=
 {{paddingLeft:15,color:'#eee'}}><FontAwesome
 icon="twitter"/>
 <a href="#" style=
 {{paddingLeft:15,color:'#eee'}}><FontAwesome
 icon="github"/>
 <a href="#" style=
 {{paddingLeft:15,color:'#eee'}}><FontAwesome
 icon="pinterest"/>
 </Col>
 </Row>)
 },

The social icons use the images from the font-awesome library. The font size is set to
32 pixels in order to show large, crisp buttons that are easy to hit with your fingers
on smart phones:

 render() {
 let vWidth = this.state.vWidth;
 let vHeight = this.state.vHeight;
 let formCode = vWidth <= 480 ?
 this.renderSmallForm() : this.renderLargeForm();
 let socialIcons = vHeight >= 320 ?
 this.renderSocialIcons() : null;

Chapter 3

[121]

This simple snippet toggles the rendering of small and large forms and hides the
social icons whenever the viewport height is less than 320 pixels:

 return (<div>
 <Grid fluid style = {{
 margin: '0 auto',
 width: '100%',
 minHeight: '100%',
 background: '#114',
 color: '#eee',
 overflow: 'hidden'
 }}>
 <Row style = {{ height: vHeight }}>
 <Col
 sm = {12}
 style = {{ marginTop: (vHeight/20) }}>

The margin top will be set to a dynamic pixel value that equals 1/20 of the
viewport height:

 <h1 style = {{ textAlign: 'center' }}>
 Welcome!
 </h1>
 <div style = {{maxHeight: 250,
 maxWidth: 500,
 margin: '0 auto' }}>
 <Carousel>
 <CarouselItem
 style = {{ maxHeight: 250,
 maxWidth: 500 }}>
 <img
 width = "100%"
 alt = "500x200" src=
 "http://placehold.it/500x220/f0f0f0/008800?
 text=It+will+amaze+you"/>
 </CarouselItem>
 <CarouselItem
 style = {{ maxHeight: 250,
 maxWidth: 500 }}>
 <img
 width="100%"
 alt="500x200" src=
 "http://placehold.it/500x220/000000/
 f0f0f0?text=It+will+excite+you"/>
 </CarouselItem>

Responsive Web Development with ReactJS

[122]

 <CarouselItem
 style = {{ maxHeight: 250,
 maxWidth: 500 }}>
 <img
 width = "100%"
 alt = "500x200" src=
 "http://placehold.it/500x220/880000/
 eeeeee?text=Sign+up+now!"/>
 </CarouselItem>
 </Carousel>
 </div>
 </Col>
 <Col xs = { 12 }>
 { formCode }
 </Col>
 <Col xs = { 12 } >
 <p style = {{ textAlign:'center',
 paddingTop: 15 }}>
 Your email will not be shared and will only be
 used once to notify you when the app
 launches.
 </p>
 </Col>
 </Row>
 { socialIcons }

This is how we add the socialIcons variable. It will either be a ReactJS element
or null:

 </Grid>
 </div>)
 }

});

ReactDom.render ((
 <App />),
 document.getElementById('container')
);

We reused some of the components from this chapter in this simple app and added a
few new techniques. You could get the same result using media queries and CSS, but
you would write more code and split the logic between JavaScript and CSS. It may
look strange to write style code inline, but one of the main benefits of this approach
is that it enables you to write very advanced styling rules in the same programming
language as the rest of your app.

Chapter 3

[123]

Summary
In this chapter, we've covered the aspects around creating a responsive web app
that will work on any device. We looked at some of the different frameworks that
are available for ReactJS, and we took a deep dive into using react-bootstrap for
our purposes. In most cases, we could get by with using the components from
React-Bootstrap, but in certain cases, such as pictures and media, we also made
our own components.

Finally, we combined a few of the components we made earlier along with some
new techniques, such as programmatic inline styling and event listeners to tackle
viewport resizing, and made a simple, responsive landing page.

In the next chapter, we'll be working on a real-time search app. We'll be covering
the concept of data stores and efficient querying and provide a smooth, responsive
experience for users. Turn the page to get working.

[125]

Building a Real-Time
Search App

Search is an important feature in most apps. Depending on the kind of application
you're developing, you can get away with setting up a field for looking up simple
keywords, or you may have to delve into a world of fuzzy algorithms and lookup
tables. In this chapter, we'll create a real-time search app that mimics a web search
engine. We'll work on quick searches that appear as you type, displaying the search
results and providing the endless scrolling feature. We'll also create our own search
API to handle our requests.

The application of these techniques are only limited by your imagination. On that
note, let's get started.

These are the major topics that we'll cover in this chapter:

•	 Creating your own search API
•	 Connecting your API to MongoDB
•	 Setting up API routing
•	 Performing regex-based searches
•	 Securing your API
•	 Creating a ReactJS search app
•	 Setting up react-router to handle non-hashed routes
•	 Listening to event handlers
•	 Creating a service layer
•	 Connecting to your API
•	 Pagination
•	 Endless scrolling

Building a Real-Time Search App

[126]

Creating your own search API
Data fetching is a topic fraught with uncertainty, and there really does not exist a
recommended way of dealing with it that will make sense to everyone.

Two of the main strategies you can search between are as follows: either query a
data source directly or query an API. Which one is more extensible and future proof?
Let's look at it from the perspective of your search controller. Querying the data
source directly means setting up connectors and the logic involved inside your app.
You need to construct a proper search query, and then you usually need to parse the
results. Your data fetching logic is now strongly tied to the data source.

Querying an API means sending a search query and retrieving a preformatted result.
Now, your app is only loosely tied to the API, and switching it out is often simply a
matter of changing the API URL.

It's usually preferable to establish loose ties rather than strong ties, so we'll start
this chapter by creating a Node.js API before moving on to the ReactJS app that
will display the search results to the user.

Getting started with your API
Let's start by creating an empty project. Create a folder to store your files, open a
terminal, and change the directory to the folder. Run npm init. The installer will
ask you a number of questions, but the defaults are all fine so go ahead and press
Enter until the command is finished. You will be left with a barebones package.json
file that npm will use to store your dependency configuration. Next, install express,
mongoose, cors, morgan, and body-parser by executing this command:
npm install --save express@4.12.3 mongoose@4.0.2 body-parser@1.12.3
cors@2.7.1 morgan@1.7.0

Morgan is a middleware utility designed for automatic logging of requests and
responses.

Mongoose is a utility for connecting to MongoDB, a very simple and popular
document-oriented non-relational database. It's a good choice for the kind of API we
want to create because it excels at query speeds and outputs JSON data by default.

Before you continue, make sure you have MongoDB installed on your system.
You can do this by typing in mongo in your terminal. If it's installed, it will
display something like this:

MongoDB shell version: 3.0.7

connecting to: test

>

Chapter 4

[127]

If it displays an error or command not found, you need to install MongoDB before
proceeding. There are different ways to accomplish this depending on which operating
system is installed on your computer. If you're on a Mac, you can install MongoDB
with Homebrew by issuing brew install mongodb. If you don't have Homebrew, you
can go to http://brew.sh/ for instructions on how to install it. Windows users and
Mac users who don't want to use Homebrew can install MongoDB by downloading an
executable from https://www.mongodb.org/downloads.

Creating the API
Create a file called server.js in the root folder and add the following code:

'use strict';
var express = require('express');
var bodyparser = require('body-parser');
var app = express();
var morgan = require('morgan');
var cors = require('cors');
app.use(cors({credentials: true, origin: true}));
var mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/websearchapi/sites');

This will set up our dependencies and make them ready for use. We're opening our
app for cross-origin requests with the use of the cors library. This is necessary when
we're not running the API on the same domain and port as the app itself.

We'll then create a schema that describes what kind of data we'll be working with.
A schema in Mongoose maps to a MongoDB collection and defines the shape of the
documents within that collection.

Note that this is idiomatic to Mongoose as MongoDB is schema-less
by default.

Add this schema to server.js:

var siteSchema = new mongoose.Schema({
 title: String,
 link: String,
 desc: String
});

As you can see, it's a very simple schema and all the attributes share the same
SchemaType object. The permitted types are String, Number, Date, Buffer, Boolean,
Mixed, ObjectId, and Array.

http://brew.sh/
https://www.mongodb.org/downloads

Building a Real-Time Search App

[128]

To use our schema definition, we need to convert our siteSchema object into a model
we can work with. To do so, we pass it to mongoose.model(modelName, schema):

var searchDb = mongoose.model('sites', siteSchema);

Next, we need to define our routes. We'll start by defining a simple search route that
takes a title as a query and returns a set of matching results:

var routes = function (app) {
 app.use(bodyparser.json());

 app.get('/search/:title', function (req, res) {
 searchDb.find({title: req.params.title}, function (err, data) {
 if (err) return res.status(500)
 .send({
 'msg': 'couldn\'t find anything'
 });
 res.json(data);
 });
 });
};

Let's finish it up by starting the server:

var router = express.Router();
routes(router);
app.use('/v1', router);
var port = process.env.PORT || 5000;
app.listen(port, function () {
 console.log('server listening on port ' + (process.env.PORT ||
port));
});

Here, we tell express to use our defined router and prefix it with v1. The full path to
the API will be http://localhost:5000/v1/search/title. You can now start the
API by executing node server.js.

We have added process.env to some of the variables. The point of this is to make it
easy to override the values when we start the app. If we want to start the app on port
2999, we will need to start the app with PORT=2999 node server.js.

Chapter 4

[129]

Importing documents
Inserting documents into a MongoDB collection isn't very complicated. You log
in to MongoDB via the terminal, select the database, and run db.collection.
insert({}). Inserting documents manually looks like this:

$ mongo

MongoDB shell version: 3.0.7

connecting to: test

> use websearchapi

switched to db websearchapi

> db.sites.insert({"title": ["Algorithm Design Paradigms"], "link":
["http://www.csc.liv.ac.uk/~ped/teachadmin/algor/algor.html"], "desc":
["A course by Paul Dunne at the University of Liverpool. Slides and
notes in HTML and PS.\r"]})

WriteResult({ "nInserted" : 1 })

>

This will of course take a lot of time, and making up a set of titles, links, and
descriptions is not a particularly fruitful endeavor. It's fortunate that there's a wide
range of free and open sets available for us to use. One such database is dmoz.org,
and I've taken the liberty of downloading a sample selection from the database and
making it available at https://websearchapi.herokuapp.com/v1/sites.json in
JSON format. Download this set and import it with the mongoimport tool, like this:

mongoimport --host localhost --db websearchapi --collection sites <
sites.json

When executed, it will place 598 documents in your API database.

Querying the API
A get query can be executed by your browser. Just type in the address and a title
from the sample JSON file, for instance, http://localhost:5000/v1/search/
CoreChain.

You may also use the command line with tools such as cURL or HTTPie. The latter
is designed to make command-line interactions with web services more human-
friendly than the likes of cURL, so it's absolutely worth checking it out, and it's the
one we'll be using in this chapter to test our API.

dmoz.org
https://websearchapi.herokuapp.com/v1/sites.json

Building a Real-Time Search App

[130]

Here's the output from the preceding query with HTTPie:

$ http http://localhost:5000/v1/search/CoreChain

HTTP/1.1 200 OK

Connection: keep-alive

Content-Length: 144

Content-Type: application/json; charset=utf-8

Date: Thu, 05 May 2016 11:09:48 GMT

ETag: W/"90-+q3XcPaDzte23IiyDJxmow"

X-Powered-By: Express

[

 {

 "_id": "56336529aed5e6116a772bb0",

 "desc": "JavaScript library for displaying graphs.\r",

 "link": "http://www.corechain.com/",

 "title": "CoreChain"

 }

]

This is very nice, but notice that the routing we've created demands an exact match
for the title. Searching for corechain or Corechain will not return any results.
Querying Cubism.js will return one result, but Cubism will return nothing.

Clearly, this is not a very query-friendly API.

Creating a wildcard search
Introducing wildcard searches would make the API more user-friendly, but you
cannot use traditional SQL-based approaches, such as LIKE, since MongoDB doesn't
support these kinds of operations.

On the other hand, MongoDB comes with full support for regular expressions, so it's
entirely possible to construct a query that mimics LIKE.

In MongoDB, you can use a regular expression object to create a regular expression:

{ <field>: /pattern/<options> }

Chapter 4

[131]

You can also create a regular expression with any of the following syntaxes:

{ <field>: { $regex: /pattern/, $options: '<options>' } }

{ <field>: { $regex: 'pattern', $options: '<options>' } }

{ <field>: { $regex: /pattern/<options> } }

The following <options> are available for use with a regular expression:

•	 i: This is for case insensitivity to match uppercase and lowercase characters.
•	 m: For patterns that include anchors (that is, ^ for the start and $ for the

end), match the anchors at the beginning or end of each line for strings with
multiline values. Without this option, these anchors will only match at the
beginning or end of the string.

•	 x: This is the "extended" capability to ignore all whitespace characters in the
$regex pattern unless escaped or included in a character class.

•	 s: This allows the dot character (.) to match all the characters, including
newline characters.

Using x and s requires $regex with the $options syntax.

Now that we know this, let's start by creating a wildcard query:

 app.get('/search/:title', function (req, res) {
 searchDb.find({title:
 { $regex: '^' + req.params.title + '*', $options: 'i' } },
 function (err, data) {
 res.json(data);
 });
 });

Remember to restart your node server instance every time you make
changes to the query logic. You can do this by breaking the instance using
a keyboard shortcut, such as CTRL + C (Mac), and then running node
server.js again.

This query returns any titles that start with the search word, and it will perform a
case-insensitive search.

Building a Real-Time Search App

[132]

If you remove the first anchor (^), it will match all occurrences of the word in
the string:

 app.get('/search/:title', function (req, res) {
 searchDb.find({title:
 { $regex: req.params.title +'*', $options: 'ix' } },
 function (err, data) {
 res.json(data);
 });
 });

This is the query that we'll be using for quick searches. It will return hits for Cubism,
cubism, and even ubi:

$ http http://localhost:5000/v1/search/ubi

HTTP/1.1 200 OK

Access-Control-Allow-Credentials: true

Connection: keep-alive

Content-Length: 1235

Content-Type: application/json; charset=utf-8

Date: Thu, 05 May 2016 11:07:00 GMT

ETag: W/"4d3-Pr1JAiSI46vMRz2ogRCF0Q"

Vary: Origin

X-Powered-By: Express

[

 {

 "_id": "572b29507d406be7852e8279",

 "desc": "The component oriented simple scripting language with a
 robust component composition model.\r",

 "link": "http://www.lubankit.org/",

 "title": "Luban"

 },

 {

 "_id": "572b29507d406be7852e82a4",

 "desc": "A specification of a new 'bubble sort' in three or more
 dimensions, with illustrative images.\r",

 "link": "http://www.tropicalcoder.com/3dBubbleSort.htm",

 "title": "Three Dimensional Bubble Sort"

 },

Chapter 4

[133]

 {

 "_id": "572b29507d406be7852e82ab",

 "desc": "Comprehensive list of publications by L. Barthe on
 modelling from sketching, point based modelling, subdivision
 surfaces and implicit modelling.\r",

 "link": "http://www.irit.fr/~Loic.Barthe/",

 "title": "Publications by Loic Barthe"

 },

 {

 "_id": "572b29507d406be7852e8315",

 "desc": "D3 plugin for visualizing time series.\r",

 "link": "http://square.github.io/cubism/",

 "title": "Cubism.js"

 },

 {

 "_id": "572b29507d406be7852e848a",

 "desc": "Browserling and Node modules.\r",

 "link": "http://substack.net/",

 "title": "Substack"

 },

 {

 "_id": "572b29507d406be7852e848d",

 "desc": "Google tech talk presented by Ryan Dahl creator of the
 node.js. Explains its design and how to get started with it.\r",

 "link": "https://www.youtube.com/watch?v=F6k8lTrAE2g",

 "title": "Youtube : Node.js: JavaScript on the Server"

 }

]

This will do for the kind of app we're building now. There are many ways to
construct a regular expression, and you may further refine it according to your
needs. More advanced matching is possible by implementing soundex, fuzzy matching,
or Levenshtein distance, although none of these are supported by MongoDB.

Soundex is a phonetic algorithm for indexing names by sound as pronounced in
English. It is appropriate when you want to do name lookups and allow users to find
correct results despite minor differences in spelling.

Building a Real-Time Search App

[134]

Fuzzy matching is the technique of finding strings that match a string, approximately,
not exactly. The closeness of a match is measured in terms of operations necessary
to convert the string into an exact match. A well-known and often used algorithm is
Levenshtein. It's a simple algorithm that provides good results, but it's not supported
by MongoDB. Measuring the Levenshtein distance must thus be done by fetching the
entire result set and then applying the algorithm for the search query on all the strings.
The speed of the operation grows linearly with the number of documents in your
database, so unless you have a very small document set, this is most likely not
worth doing.

If you want these kinds of features, you need to look somewhere else. Elasticsearch
(https://www.elastic.co/) is a good alternative that's worth looking into. You
can easily combine a node API, like the one we just created, with an Elasticsearch
instance in the backend instead of MongoDB, or a combination of the two.

Securing your API
Right now, your API is accessible to anyone if you put it online. This is not an ideal
situation, although you can argue that since you only support GET requests, it's not
much different than putting up a simple website.

Suppose that you add PUT and DELETE at some point. You'd definitely want to
protect it from anyone having complete access to it.

Let's look at a simple way of securing it by adding a bearer token to our app. We'll
be using the Node.js authentication module, Passport, to protect our API. Passport
has more than 300 strategies of varying applicability. We'll chose the bearer token
strategy, so install the following two modules:

npm install --save passport@0.3.0 passport-http-bearer@1.0.1

In index.js, add the following import statements to the head of the file:

var passport = require('passport');
var Strategy = require('passport-http-bearer').Strategy;

Next, add the following code just below the line with mongoose.connect:

var appToken = '1234567890';

passport.use(new Strategy(
 function (token, cb) {
 console.log(token);
 if (token === appToken) {

https://www.elastic.co/

Chapter 4

[135]

 return cb(null, true);
 }
 return cb(null, false);

 })
);

You also need to change the route, so replace the search route with this:

 app.get('/search/:title',
 passport.authenticate('bearer', {session: false}),
 function (req, res) {
 searchDb.find({title: { $regex: '^' + req.params.title + '*',
$options: 'i' } },
 function (err, data) {
 if(err) return console.log('find error:', err);
 if(!data.length)
 return res.status(500)
 .send({
 'msg': 'No results'
 })
 res.json(data);
 });
 });

When you restart the app, the request will now require the user to send a bearer
token with 1234567890 as the content. If the token is correct, the app will return true
and execute the query; if not, it will return a simple message saying Unauthorized:

$ http http://localhost:5000/v1/search/react 'Authorization:Bearer
1234567890'

Access-Control-Allow-Credentials: true

Connection: keep-alive

Content-Length: 290

Content-Type: application/json; charset=utf-8

Date: Thu, 05 May 2016 11:15:32 GMT

ETag: W/"122-7QHSA2Gb7qRseLzxE1QBhg"

Vary: Origin

X-Powered-By: Express

[

 {

 "_id": "572b29507d406be7852e8388",

 "desc": "A JavaScript library for building user interfaces.\r",

Building a Real-Time Search App

[136]

 "link": "http://facebook.github.io/react/",

 "title": "React"

 },

 {

 "_id": "572b29507d406be7852e8479",

 "desc": "Node.js humour.\r",

 "link": "http://nodejsreactions.tumblr.com/",

 "title": "Node.js Reactions"

 }

]

Admittedly, bearer tokens provide a very weak security layer. It's still possible for
a potential hacker to sniff your API request and reuse your tokens, but making
the tokens short-lived and changing them every now and then can help increase
the security. To make it really secure, it's often used in combination with user
authentication.

Creating your ReactJS search app
Start this project by making a copy of the scaffolding from Chapter 1, Diving Headfirst
into ReactJS, (you will find the code file for this along with the code bundle for this
book on the Packt Publishing website), and then add React-Bootstrap to your
project. Open up a terminal, go to the root of your project, and issue an npm install
command for React-Bootstrap:

npm install --save react-bootstrap@0.29.3 classnames@2.2.5 history@2.1.1
react-router@2.4.0 react-router-bootstrap@0.23.0 superagent@1.8.3
reflux@0.4.1

The dependencies section in package.json should now look like this:

"dependencies": {
 "babel-preset-es2015": "^6.6.0",
 "babel-preset-react": "^6.5.0",
 "babel-tape-runner": "^2.0.0",
 "babelify": "^7.3.0",
 "browser-sync": "^2.12.5",
 "browserify": "^13.0.0",
 "browserify-middleware": "^7.0.0",
 "classnames": "^2.2.5",
 "easescroll": "0.0.10",
 "eslint": "^2.9.0",
 "history": "^2.1.1",

Chapter 4

[137]

 "lodash": "^4.11.2",
 "react": "^15.0.2",
 "react-bootstrap": "^0.29.3",
 "react-dom": "^15.0.2",
 "react-router": "^2.4.0",
 "react-router-bootstrap": "^0.23.0",
 "reactify": "^1.1.1",
 "reflux": "^0.4.1",
 "serve-favicon": "^2.3.0",
 "superagent": "^1.8.3",
 "tape": "^4.5.1",
 "url": "^0.11.0",
 "basic-auth": "^1.0.3"
}

If package.json doesn't look like this, please update it and then run npm install
in a terminal from the root of your project. You also need to add the Bootstrap CSS
files to the <head> section of your index.html file:

<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet" type="text/css" href="//netdna.bootstrapcdn.
com/font-awesome/3.2.1/css/font-awesome.min.css">
<link rel="stylesheet" type="text/css" href="//netdna.bootstrapcdn.
com/bootstrap/3.3.5/css/bootstrap.min.css" />

Put the preceding code above the line with app.css so that you're able to override
the styles from Bootstrap.

Finally, create a components folder inside your source folder, then copy the
components fontawesome.jsx and picture.jsx from Chapter 3, Responsive Web
Development with ReactJS, into this folder.

Setting up your app
Let's start with our application root, source/app.jsx. Replace the contents with
this code:

'use strict';
import React from 'react';
import { Router, Route, DefaultRoute }
 from 'react-router';
import { render } from 'react-dom'
import Search from './components/search.jsx';

Building a Real-Time Search App

[138]

import Results from './components/results.jsx';
import Layout from './components/layout.jsx';
import SearchActions from './actions/search.js';

You need to create these four files in your components folder in order for the app to
compile. We'll do this shortly. Now, refer to the following:

import { browserHistory } from 'react-router'

The preceding code sets up a route with the browser history library. One of the
primary benefits of this library is that you can avoid hashtags in your URL, so the
app can reference absolute paths such as http://localhost:3000/search and
http://localhost:3000/search/term:

render((
 <Router history={ browserHistory }>
 <Route component={Layout}>
 <Route path="/" component={Search}>
 <Route path="search" component={Results}/>
 </Route>
 </Route>
 </Router>
), document.getElementById('container'));

Let's create the skeleton files for SearchActions, Search, Results, and the complete
Layout file.

Create source/actions/search.js and add this:

'use strict';
import Reflux from "reflux";
let actions = {
 performSearch: Reflux.createAction("performSearch"),
 emitSearchData: Reflux.createAction("emitSearchData")
};

export default actions;

This sets up two actions that we'll use in search.jsx.

Create source/components/search.jsx and add this:

'use strict';
import React from 'react';
const Search = React.createClass({
 render() {
 return <div/>;

Chapter 4

[139]

 }
});

export default Search;

Create source/components/results.jsx and add this:

'use strict';
import React from 'react';
const Results = React.createClass({
 render() {
 return <div/>;
 }
});

export default Results;

Create source/components/layout.jsx and add this:

'use strict';
import React from 'react';
import Reflux from 'reflux';
import {Row} from "react-bootstrap";
import Footer from "./footer.jsx";

const Layout = React.createClass({
 render() {
 return (<div>

 {this.props.children}

This code propagates pages from the router hierarchy that we set up in app.jsx:

 <Footer />

We'll also create a basic fixed footer for our app, as follows:

 </div>);
 }
});

export default Layout;

Building a Real-Time Search App

[140]

Create source/components/footer.jsx and add this:

'use strict';
import React from 'react';

const Footer = React.createClass({
 render(){
 return (<footer className="footer text-center">
 <div className="container">
 <p className="text-muted">The Web Searcher</p>
 </div>
 </footer>);
 }

});
export default Footer;

The app should now compile and you'll be greeted with a footer message. We'll need
to apply a few styles to fix it to the bottom of the page. Open public/app.css and
replace the contents with this styling:

html {
 position: relative;
 min-height: 100%;
}
body {
 margin-top: 60px;
 margin-bottom: 60px;
}
.footer {
 position: absolute;
 bottom: 0;
 width: 100%;
 height: 60px;
 background-color: #f5f5f5;
}

Setting the page to 100 percent minimum height and setting the footer to the absolute
position at the bottom will make sure it stays fixed. Now, have a look at this:

*:focus {
 outline: none
}

Chapter 4

[141]

The preceding code is to avoid an outline border from appearing when you click on
focused divisions. Next, complete the public/app.css with the following styling to
make the search results stand out:

.header {
 background-color: transparent;
 border-color: transparent;
}
.quicksearch {
 padding-left: 0;
 margin-bottom: 20px;
 width: 95.5%;
 background: white;
 z-index: 1;
}
.fullsearch .list-group-item{
 border:0;
 z-index: 0;
}
ul.fullsearch li:hover, ul.quicksearch li:active, ul.quicksearch
li:focus {
 color: #3c763d;
 background-color: #dff0d8;
 outline: 0;
 border: 0;
}
ul.quicksearch li:hover, ul.quicksearch li:active, ul.quicksearch
li:focus {
 color: #3c763d;
 background-color: #dff0d8;
 outline: 0;
 border: 0;
}
.container {
 width: auto;
 max-width: 680px;
 padding: 0 15px;
}
.container .text-muted {
 margin: 20px 0;
}

Building a Real-Time Search App

[142]

Creating a search service
Before you go ahead and create a view layer for your search, you need a way to
connect to your API. You could go about creating this in a variety of ways, and this is
one situation where you won't find an authoritative answer. Some prefer to put this
in the action layer, others in the store, and some would be perfectly happy to add it
to the view layer.

We're going to take a cue from the MVC architecture and create a service layer.
We'll access the service from the action file you created earlier. We're going to do
this for the simple reason that it separates the search into a small and easily testable
subsection of our code. For simplified development and easy testing, you always
want to make your components as small as possible.

Create a folder called in service within your source folder and add these three
files: index.js, request.js, and search.js.

Let's start by adding the code for request.js:

'use strict';
import Agent from 'superagent';

SuperAgent is a light-weight client-side HTTP request library that makes working
with AJAX a lot less painful than it normally is. It's also fully compatible with node,
which is a huge benefit when performing server-side rendering. We'll delve into
server-side rendering in Chapter 9, Creating a Shared App. Check out the following
examples:

class Request {

 constructor(baseUrl) {
 this.baseUrl = baseUrl;
 }

 get(query, params) {
 return this.httpAgent(query, 'get', params, null);
 }

 post(url, params, data, options) {
 return this.httpAgent(url, 'post', params, data)
 }

 put(url, params, data) {
 return this.httpAgent(url, 'put', params, data)
 }

Chapter 4

[143]

We're actually only going to use the get function in our app. Other methods have
been added as examples. You could make additions or deletions here, or even merge
them into a common function (though that would increase the complexity of using
the function).

All operations are sent to the httpAgent function:

 httpAgent(url, httpMethod, params, data) {
 const absoluteUrl = this.baseUrl + url;
 let req = Agent[httpMethod](absoluteUrl)
 .timeout(5000);

 let token = '1234567890';

 req.set('Authorization', 'Bearer ' + token);
 req.withCredentials();

We're adding the bearer token scheme that we developed in our API earlier. If you
skipped that part, you can remove the preceding two lines, though it doesn't matter
to the API if it receives a bearer token and has no method to handle it. In such cases,
it will simply discard the information.

It's worth noting that hardcoding the token in the service is terribly unsecure. To
make it more secure, you could, for instance, set up a scheme where you can create
a new token in the browser's session storage with regular intervals and replace
the hardcoded variable with a lookup instead. Let's take a look at the following
code snippet:

 if (data)
 req.send(data);

 if (params)
 req.query(params);

 return this.sendAgent(req);
 }

After we're done adding parameters, we need to send the request via the sendAgent
function. This function returns a promise that we can listen to, which will in time be
either rejected or resolved. A promise is a construct used for synchronization. It's a
proxy for a result that is initially unknown. When we return a promise in our code,
we get an object that will eventually contain the data that we want:

 sendAgent(req) {
 return new Promise(function (resolve, reject) {
 req.end(function (err, res) {

Building a Real-Time Search App

[144]

 if (err) {
 reject(err);
 } else if (res.error) {
 reject(res.error);
 }
 else {
 resolve(JSON.parse(res.text));
 }
 });
 });
 }

}

export default Request;

The next file we'll add code for is search.js:

'use strict';
import Request from './request.js';

}

export default SearchService;

This simply imports and extends the code we created in request.js. As we don't
need to extend or modify any of the request code, we'll simply leave it as it is.

The final file is index.js:

'use strict';
import SearchService from './search.js';
exports.searchService = new SearchService('http://localhost:5000/v1/
search/');

This is where we specify the endpoint from where we connect to our API. The
preceding setting specifies the API running at localhost. You can substitute this with
the example interface at http://websearchapi.herokuapp.com/v1/search/ if
you'd like to test your code with an external service.

It's usually a good idea to store endpoints and other configuration details in
a separate configuration file. Let's create a config.js file and place it in the
source folder:

'use strict';
export const Config = {
 'urls':{

http://websearchapi.herokuapp.com/v1/search/

Chapter 4

[145]

 'search' : 'http://localhost:5000/v1/search/'
 }
};

Then, change the contents of service/index.js to this:

import {Config} from '../config.js';
import SearchService from './search.js';
exports.searchService = new SearchService(Config.urls.search);

Note that we needed to dereference the config name from config.js. This is because
we exported it as a named export with exports rather than module.exports. If we
had declared the variable first and exported it with module.exports, we wouldn't
have had to dereference it.

The difference is that exports is simply a helper to module. In the end, the module
will use module.exports, and Config will be available as a named property to
the module.

You can also import it with this command: const Config = require('../config.
js') or import * as Config from '../config.js'. Both variants will set up a
Config variable that you can access with Config.Config.

Testing the service
We've made the service, but does it work? Let's find out. We'll use a small and very
competent test framework called Tape. Install this with the following:

npm install --save babel-tape-runner@2.0.0 tape@4.5.1

We add babel-tape-runner since we're using ECMAScript 6 throughout our app
and we'd like to use it in our test scripts as well.

In the root of the project, create the test/service folders and add a file called
search.js and add this code:

import test from 'tape';
import {searchService} from '../../source/service/index.js';
test('A passing test', (assert) => {
 searchService.get('Understanding SoundEx Algorithms')
 .then((result)=> {
 assert.equals(result[0].title,
 "Understanding SoundEx Algorithms","Exact match found for
 \"Understanding SoundEx Algorithms\"");
 assert.end();
 });
});

Building a Real-Time Search App

[146]

This test will import the search service and search for a specific title in the database.
It will return pass if an exact match is found. You can run it by using a terminal and
going to the root folder and executing ./.bin/babel-tape-runner test/service/
search.js.

Note that the API server must be up and running before your start
the test.

The result should look like this:

$./.bin/babel-tape-runner test/service/search.js

TAP version 13

A passing test

ok 1 Exact match found for "Understanding SoundEx Algorithms"

1..1

tests 1

pass 1

ok

Note that if you install tape and babel-tape-runner globally with
the -g flag, then you don't need to specify the binary version from node_
modules and simply run the test with babel-tape-runner test/
service/search.js. To make it even easier to run the tests, you can
add a script inside the scripts section of your package.json file. If
you add the test command to the tests script, you can execute the test
by simply executing npm test.

Setting up the store
The store will be very simple. We're going to be performing the service calls in the
action, so the store will simply hold the results of the service calls and pass them on
to the components.

In the source folder, create a new folder and name it store. Then create a new file,
name it search.js and add this code:

"use strict";
import Reflux from "reflux";
import SearchActions from "../actions/search";

Chapter 4

[147]

import {searchService} from "../service/index.js";
let _history = {};

This is the store state. Setting the variable outside the store definition automatically
makes this a private variable that is only accessible to the store itself, and not to the
instances of the store. Refer to the ensuing code:

const SearchStore = Reflux.createStore ({

 init() {
 this.listenTo(SearchActions.emitSearchData, this.
emitSearchResults)
 },

The line in init() sets up a listener for the emitSearchData action. Whenever this
action is called, the emitSearchResults function is executed:

 emitSearchResults(results) {
 if (!_history[JSON.stringify(results.query)])
 _history[JSON.stringify(results.query)] = results.response;
 this.trigger(_history[JSON.stringify(results.query)]);
 }

These lines look a bit complicated, so let's examine the logic from the last line up. The
trigger action emits the results from the _history variable under the results.query
key, which is the search term being used. The search term is wrapped with JSON.
stringify, which is a method that converts JSON data into a string. This allows us
to keep the query with spaces and use it as an object key for our _history variable.

The two lines that precede the trigger checks whether the search term has been
stored in _history and adds it if it hasn't. We currently don't have a method to deal
with the history, but it's conceivable that the store could be extended with such a
function later:

});

export default SearchStore;

Creating the search view
We're finally ready to start work on the view components. Let's open search.jsx
and flesh it out with some content. We'll add a lot of code, so we'll take it step
by step.

Building a Real-Time Search App

[148]

Start out by replacing the contents with this code:

import React, { Component, PropTypes } from 'react';
import {Grid,Col,Row,Button,Input,Panel,ListGroup,ListGroupItem} from
'react-bootstrap';
import FontAwesome from '../components/fontawesome.jsx';
import Picture from '../components/picture.jsx';

Remember to copy the FontAwesome and Picture components from Chapter 3,
Responsive Web Development with ReactJS, to the source/components folder, let's
take a look at the following code snippet:

import SearchActions from '../actions/search.js';
import Reflux from 'reflux';
import { findDOMNode } from 'react-dom';
import { Router, Link } from 'react-router'
import Footer from "./footer.jsx";
import SearchStore from "../store/search.js";

const Search = React.createClass ({
 contextTypes: {
 router: React.PropTypes.object.isRequired
 },
 getInitialState() {
 return {
 showQuickSearch: false
 }
 },

QuickSearch will pop up a set of search results as you type. We want to keep this
hidden initially, let's take a look at the following code:

 renderQuickSearch() {
 },

The quick-search currently does nothing, let's take a look at the following code snippet:

 renderImages() {
 const searchIcon = <FontAwesome style={{fontSize:20}}
icon="search"/>;
 const imgSet = [
 {
 media: "only screen and (min-width: 601px)",
 src: " http://websearchapp.herokuapp.com/large.png"
 },
 {

Chapter 4

[149]

 media: "only screen and (max-width: 600px)",
 src: "http://websearchapp.herokuapp.com/small.png"
 }
];
 const defaultImage = {
 src: "http://websearchapp.herokuapp.com/default.png",
 alt: "SearchTheWeb logo"
 };
 return {
 searchIcon: searchIcon,
 logoSet: imgSet,
 defaultImage: defaultImage
 }
},

Using the Picture component means we can provide a high-resolution version for
desktop and tablet users and a smaller version for mobile users. A full description of
this component can be found in Chapter 3, Responsive Web Development with ReactJS.
Now refer to the following code:

render() {
 return (<Grid>
 <Row>
 <Col xs={ 12 } style={{ textAlign:"center" }}>
 <Picture
 imgSet={ this.renderImages().logoSet }
 defaultImage={ this.renderImages().defaultImage }/>
 </Col>
 </Row>
 <Row>
 <Col xs={12}>
 <form>
 <FormGroup>
 <InputGroup>
 <InputGroup.Addon>
 { this.renderImages().searchIcon }
 </InputGroup.Addon>
 <FormControl
 ref="searchInput"
 type="text" />
 <InputGroup.Button>
 <Button onClick={ this.handleSearchButton }>
 Search
 </Button>
 </InputGroup.Button>
 </InputGroup>

Building a Real-Time Search App

[150]

 </FormGroup>
 </form>
 <ListGroup style={{display:this.state.showQuickSearch ?
 'block':'none'}}
 className="quicksearch">
 {this.renderQuickSearch()}
 </ListGroup>
 </Col>
 </Row>
 <Row>
 <Col xs={12}>
 {this.props.children}

This will propagate a children page from the routing setup in app.jsx:

 </Col>
 </Row>

 </Grid>);
 }
});

export default Search;

Things are finally happening on screen. If you open your web browser now, you'll
see a logo on the screen; below it, you'll find a search field with a magnifying glass
to the left and a Search button to the right.

However, nothing happens when you start typing, and no results appear when
you click on the Search button. Clearly, there's more work ahead.

Let's flesh out the QuickSearch method. Replace the empty block with this code:

renderQuickSearch(){
 return this.state.results.map((result, idx)=> {
 if (idx < 5) {
 return (<ListGroupItem key={"f"+idx}
 onClick={this.handleClick.bind(null,idx)}
 header={result.title}>{result.desc}

 <a bsStyle="link" style={{padding:0}}
 href={result.link} target="_blank">{result.link}

 </ListGroupItem>)
 }
 })
 },

Chapter 4

[151]

And, replace the initial state block with this code:

getInitialState(){
 return {
 showQuickSearch: false,
 results: [],
 numResults: 0
 }
},

The QuickSearch method now iterates over the results from the state and adds a
ListGroupItem item with an onClick handler, a header, a description, and a link.
We'll add the results variable to the initial state to avoid the app from stopping
because of an undefined state variable.

Next up, we need to add the onClick handler to the code. To do this, add the
following:

handleClick(targetIndex) {
 if (this.state.numResults >= targetIndex) {
 window.open(this.state.results[targetIndex].link, "_blank");
 }
},

This code will force the browser to load the URL contained in the target index,
which corresponds to targetIndex.

Yet, typing anything in the input field still doesn't do anything. Let's do something
about it.

Performing searches
The idea now is to present a real-time search while the user types in the search input.
We've already created the setup for this to happen; all we need is to connect the act
of typing into action.

The first idea that springs to mind is to add an onChange handler to the input field
itself. This is the easiest way to accomplish the first milestone, presenting the search.
It would look like this:

<form>
 <FormGroup>
 <InputGroup>
 <InputGroup.Addon>
 { this.renderImages().searchIcon }
 </InputGroup.Addon>

Building a Real-Time Search App

[152]

 <FormControl
 ref="searchInput"
 type="text" />
 <InputGroup.Button>
 <Button onClick={ this.handleSearchButton }>
 Search
 </Button>
 </InputGroup.Button>
 </InputGroup>
 </FormGroup>
</form>

Next, you'd add a performSearch method to the code, like this:

performSearch() {
 console.log(findDOMNode(this.refs.searchInput).value);
},

When you start typing now, the console log will immediately start filling up
with values:

This is quite decent, but for a search page that only consists of a single input field
and nothing more, it would be nice to not have to manually focus on the search
field in order to input values.

Chapter 4

[153]

Let's drop the onChange handler and start the search process as soon as the user
inputs data.

Add the following two methods to search.jsx:

componentDidMount() {
 document.getElementById("container")
 .addEventListener('keypress', this. handleKeypress);
 document.getElementById("container")
 .addEventListener('keydown', this.handleKeypress);
},
componentWillUnmount() {
 document.getElementById("container")
 .removeEventListener('keypress', this.handleKeypress);
 document.getElementById("container")
 .removeEventListener('keydown', this.handleKeypress);
},

This sets up two event listeners when the component mounts. The keypress event
listener takes care of ordinary key events, while the keydown event listener makes
sure we can capture the arrow key input as well.

The handleKeypress method is quite complex, so let's add the code and examine it
step by step.

When you've registered these event listeners, you'll be able to capture every
key event from the user. If the user hits the key A, an object will be sent to the
handleKeypress function with a lot of information about the event. Here's a
subsection of the attributes from the event object that is of particular interest to us:

altKey: false
charCode: 97
ctrlKey: false
keyCode: 97
shiftKey: false
metaKey: false
type: "keypress"

It tells us it's a keypress event (the arrow keys would register as a keydown event).
The charCode parameter is 97, and neither the Alt key, the Meta key, the Ctrl key,
or the Shift key was used in conjunction with the event.

We can decode charCode with a native JavaScript function. If you execute String.
fromCharCode(97), you'll get a string back with a lowercase a.

Building a Real-Time Search App

[154]

Working with key events based on knowing the numbers is doable, but it's better to
map the numbers to friendlier strings, so we'll add an object to hold the charCode
parameters for us. Add this to the top of the file, just below the imports but above
the createClass definition:

const keys = {
 "BACKSPACE": 8,
 "ESCAPE": 27,
 "UP": 38,
 "LEFT": 37,
 "RIGHT": 39,
 "DOWN": 40,
 "ENTER": 13
};

Now we can type keys.BACKSPACE and it will send the number 8 and so on.

Let's add the handleKeypress function:

handleKeypress (e) {
 if (e.ctrlKey || e.metaKey) {
 return;
 }

If we detect that the user is using either the Ctrl or Meta key (CMD on Mac), we
terminate the function. This allows the user to use regular OS methods, such as
copy/paste or Ctrl + A to select all of the text, let's take a look at the following
code snippet:

 const inputField = findDOMNode(this.refs.searchInput);
 const charCode = (typeof e.which == "number") ?
 e.which : e.keyCode

We define a variable to hold the input field, so we don't have to look it up more than
once. For compatibility reasons, we also make sure we get a valid character code by
checking whether the character type passed to us is a number. Refer to the following:

 switch (charCode) {
 case keys.BACKSPACE:
 inputField.value.length <= 0 ?
 this.closeSearchField(e) : null;
 break;

Chapter 4

[155]

We add a closeSearchField function in order to hide the search results even if it's
populated. We do this because we don't want it to remain open when the user has
cleared out all of the text and is ready to start a new search, let's take a look at the
following code snippet:

 case keys.ESCAPE:
 this.closeSearchField(e);
 break;

We'll also hide the search results if the user presses the Esc key, let's take a look at the
following code snippet:

 case keys.LEFT:
 case keys.RIGHT:
 // allow left and right but don't perform search
 break;

These checks don't do anything, but they'll prevent the switch to hit default and
thus trigger a search, let's take a look at the following code snippet:

 case keys.UP:
 if (this.state.activeIndex > -1) {
 this.setState(
 {activeIndex: this.state.activeIndex - 1}
);
 }
 if (this.state.activeIndex < 0) {
 inputField.focus();
 e.preventDefault();
 }
 break;

We've added special handling for the arrow keys. When the user presses the up
arrow, the activeIndex will decrease as long as it's zero or above. This will make
sure we'll never have to deal with an invalid activeIndex parameter (less than -1):

 case keys.DOWN:
 if (this.state.activeIndex < 5
 && this.state.numResults > (1 + this.state.activeIndex)) {
 this.setState({activeIndex: this.state.activeIndex + 1});
 }
 e.preventDefault();
 break;

Building a Real-Time Search App

[156]

We've defined that the maximum number of results for the quick search is 5. This
snippet will make sure activeIndex never goes above 5:

 case keys.ENTER:
 e.preventDefault();
 if (this.state.activeIndex === -1 ||
 inputField === document.activeElement) {
 if (inputField.value.length > 1) {
 this.context.router.push(null,
 `/search?q=${inputField.value}`, null);
 this.closeSearchField(e);
 SearchActions.showResults();
 }
 }
 else {
 if (this.state.numResults >= this.state.activeIndex) {
 window.open(this.state.results[this.state.activeIndex].
 link, '_blank');
 }
 }
 break;

This switch does one of two things. First, if activeIndex is -1, it means the user
has not navigated to any of the quick search results, and we'll simply go to the
results page for all the matches. The same will happen if activeIndex is not -1 but
inputfield still has focus (inputField === document.activeElement).

Second, if activeIndex is not -1, the user has navigated below the input and made a
choice. In that case, we'll send the user to the desired URL:

 default:
 inputField.focus();
 this.performSearch();
 if (!this.state.showQuickSearch) {
 this.setState({showQuickSearch: true});
 }
 SearchActions.hideResults();
 break;
 }
 },

Finally, if none of the switches are valid, for instance, a regular key has been pressed,
then we'll perform a search. We'll also hide any potential complete results with the
SearchActions.hideResults() action.

Chapter 4

[157]

This code will not compile until we add hideResults to our actions, so open
actions/search.js and add these lines to the actions object:

 hideResults: Reflux.createAction("hideResults"),
 showResults: Reflux.createAction("showResults"),

The code will compile and when you start typing in the browser, the input field will
be focused and will receive input. It's finally time to hook up our search service, and
we'll do that in the actions file you just edited. Add these two lines at the top of the
file, just beneath the first import:

import {searchService} from "../service/index.js";
let _history = {};

We'll create a private _history variable to hold our search history. It's not strictly
necessary, but we'll use it to reduce the number of API calls we're going to make.

Next, add this snippet:

actions.performSearch.listen((query) => {
 if(_history[JSON.stringify(query)]){
 actions.emitSearchData({query:query,response:
 _history[JSON.stringify(query)]});
 }
 else {
 searchService.get(query)
 .then((response) => {
 _history[JSON.stringify(query)]=response;
 actions.emitSearchData({query:query,response:response});
 }).catch((err) => {
 // do some error handling
 })
 }
});

This code will make sure we call our API whenever performSearch is triggered.
Whenever a result is returned from the search service, we store it in our _history
object, and we'll make sure to check whether there's a result ready for us before we
send a new query to the search service. This will save us a trip to the API and the
user will get a faster response.

Building a Real-Time Search App

[158]

Next, add the code that will actually perform the search when we type or hit the
button. Replace the code inside performSearch() with this:

performSearch(){
 const val = findDOMNode(this.refs.searchInput).value;
 val.length > 1 ?
 SearchActions.performSearch(val) :
 this.setState({results: []});
},

We'll need to do one more thing before we can see the results in the browser, but
you can verify that it works by typing in search queries and examining the network
traffic in the developer tools:

To show our results in the browser, we'll need to add a listener that can react to the
changes in the store.

Open components/search.jsx and add this code just before getInitialState:

mixins: [
 Reflux.listenTo(SearchStore, "getSearchResults")
],
getSearchResults(res) {
 this.setState({results: res, numResults:
 res.length < 5 ? res.length : 5});
},

Chapter 4

[159]

What this code does is tell React to call getSearchResults when SearchStore emits
new data. The function it calls stores up to five results in the component state. When
you type in something now, a list group will pop up beneath the search field with
the results.

You can use your mouse to hover over any result and click on it to visit the link it
refers to.

Navigating the search results with the arrow
keys
Since we've already put in so much work with the keyboard events, it would be a
shame to not utilize it even more. You're already using your keyboard when you're
searching, so it seems natural to be able to navigate the search results with the arrow
keys as well, and then press Enter to go to the page you've selected.

Open search.jsx. In getInitialState add this key:

activeIndex: -1,

Then, in the renderQuickSearch function, add the highlighted line with className:

renderQuickSearch() {
 return this.state.results.map((result, idx)=> {
 if (idx < 5) {
 return (<ListGroupItem key={ "f" + idx }
 className={ this.state.activeIndex === idx ?
 "list-group-item-success":""}
 onClick={this.handleClick.bind(null,idx)}
 header={result.title}>{ result.desc }

 <a bsStyle="link" style={{padding:0}}
 href={ result.link } target="_blank">
 { result.link }

 </ListGroupItem>)
 }
 })
},

Building a Real-Time Search App

[160]

Now you'll be able to move up and down with the arrow keys and hit Enter to
visit the active link. There's a couple of things about this solution that's a little bit
annoying though. For one, when you're navigating up and down, the input field
stays focused. If you enter something else, you'll get a new set of search results, but
the active index will stay the same as before, possibly being out of bounds if the new
result returns fewer results than the previous one. Second, the up and down action
moves the cursor in the input field, and that is quite disconcerting.

The first problem is quite easy to solve; it's simply a matter of adding
activeIndex:-1 to the getSearchResults function, but the second problem
requires us to resort to an old web developer trick. There's simply no way to
"unfocus" the input field, so instead, we'll create a hidden and invisible input
field that we'll send the focus to.

Add this code to just above the input field in the render method:

<input type="text" ref="hiddeninput"
 style={{left:-100000,top:-100000,position: 'absolute',
 display:'block',height:0,width:0,zIndex:0,
 padding:0,margin:0}}/>

And then go to the switch method and add the highlighted line to the down
arrow action:

 case keys.DOWN:
 if (this.state.activeIndex < 5
 && this.state.numResults > (1 + this.state.activeIndex)) {
 this.setState({activeIndex: this.state.activeIndex + 1});
 }
 findDOMNode(this.refs.hiddeninput).focus();
 e.preventDefault();
 break;

When the app recompiles, you'll be able to navigate up and down, and the proper
input field will only activate when you've navigated up to the top. The rest of the
time the hidden input field will have focus, but as it's placed outside the viewport,
no one will see it or be able to use it. Let's take a look at the following screenshot:

Chapter 4

[161]

Debouncing the search
Every keypress class submits a new search to the API. Even with the history
variable system we've implemented, that's quite a hammering we're bringing down
on our API. It's not in the user's best interest either, because it will probably lead to a
slew of irrelevant hits. Imagine you're interested in searching for JavaScript. You're
probably not interested in getting results for j, ja, jav, Java, javas, javasc, javascr,
javascri, and JavaScript, but this is currently what's happening.

Fortunately, it's quite easy to improve the user experience by simply delaying the
search. Go to the switch statement and replace the content with this:

default:
 inputField.focus();
 delay(() => {
 if (inputField.value.length >= 2) {
 this.performSearch();
 }
 }, 400);
 if (!this.state.showQuickSearch) {
 this.setState({showQuickSearch: true});
 }
 SearchActions.hideResults();
 break;

Building a Real-Time Search App

[162]

You'll need the delay function as well, so add it to the top of the file, just below
the imports:

let delay = (() => {
 var timer = 0;
 return function (callback, ms) {
 clearTimeout(timer);
 timer = setTimeout(callback, ms);
 };
})();

This code will make sure the results are delayed just enough to allow the user to type
in a query before exiting, but not make it feel sluggish. You should experiment with
the milliseconds setting to suit your needs best.

Moving beyond the quick search to the
results page
We're almost done with the component now. The final piece of code we'll add to
search.jsx is the functionality for handling the search button and preparing to
move on to the next page. To do this, add the following:

handleSearchButton(e) {
 const val = findDOMNode(this.refs.searchInput).value;
 if (val.length > 1) {
 this.context.router.push(`/search?q=${val}`);
 this.closeSearchField(e);
 SearchActions.showResults();
 }
},
closeSearchField(e) {
 e.preventDefault();
 this.setState({showQuickSearch: false});
},

This code will close the search field and send us to a new route using push from
react-router.

The push parameter is supported by the 2.0 branch of react-router, so all we need to
do is add a context type to our component. We can do this by adding these lines at
the top of the component (just beneath the line with React.createClass):

contextTypes: {
 router: React.PropTypes.object.isRequired
},

Chapter 4

[163]

childContextTypes: {
 location: React.PropTypes.object
},
getChildContext() {
 return { location: this.props.location }
},

Setting up the results page
The purpose of the results page is to show all of the search results. Traditionally,
you show a list of 10-20 results and the paging functionality, which allows you to
show more results until you reach the end.

Let's set up the results page and start with a traditional pager.

Open components/results.jsx and replace the contents with the following:

import React, { Component, PropTypes } from 'react';
import Reflux from 'reflux';
import {Router, Link, Lifecycle } from 'react-router'
import SearchActions from '../actions/search.js';
import SearchStore from "../store/search.js";
import {Button,ListGroup,ListGroupItem} from 'react-bootstrap';
import {findDOMNode} from 'react-dom';

const Results = React.createClass ({
 contextTypes: {
 location: React.PropTypes.object
 },

Setting the contextType object is necessary in order to retrieve the query parameter
from the URL. Now look at the following:

 getInitialState() {
 return {
 results: [],
 resultsToShow: 10,
 numResults: 0,
 showResults: true
 }
 },

Building a Real-Time Search App

[164]

Here we define that the results should be visible by default. This is necessary for
users that go to the search page directly. We also define that we want to show 10
results per page, let's take a look at the following code:

 componentWillMount() {
 SearchActions.performSearch(this.context.location.query.q);
 },

We want to kick off the search as soon as possible in order to have something to
display to the user. If we're moving on from the front page, the results will already
be ready in the _history variable and will be available before the component is
mounted. Refer to the following code:

 mixins: [
 Reflux.listenTo(SearchStore, "getSearchResults"),
 Reflux.listenTo(SearchActions.hideResults, "hideResults"),
 Reflux.listenTo(SearchActions.showResults, "showResults")
],

The hideResults and showResults methods are actions that will be used when the
user starts a new query. Instead of pushing the results down or displaying the quick
search above the results, we simply hide the existing results:

 hideResults() {
 this.setState({showResults: false});
 },
 showResults() {
 this.setState({showResults: true});
 },

These setState functions react to the preceding actions, as follows:

 getSearchResults(res) {
 let resultsToShow = this.state.resultsToShow;
 if (res.length < resultsToShow) {
 resultsToShow = res.length;
 }
 this.setState({results: res, numResults: res.length,
 resultsToShow: resultsToShow});
 },

When we retrieve fewer results than this.state.resultsToShow, we adjust the
state variable to the number of results in the set, let's take a look at the following
code snippet:

 renderSearch(){
 return this.state.results.map((result, idx)=> {

Chapter 4

[165]

 if (idx < this.state.resultsToShow) {
 return <ListGroupItem key={"f"+idx}
 header={result.title}>{result.desc}

 <Button bsStyle="link" style={{padding:0}}>
 <a href={result.link}
 target="_blank">{result.link}
 </Button>
 </ListGroupItem>
 }
 })
 },

This renderer is almost identical to the one in search.jsx. The main difference is
that we return a button with a link style and that we don't have an activeIndex
attribute that we check, let's take a look at the remaining code:

 render() {
 return (this.state.showResults) ? (
 <div>
 <div style={{textAlign:"center"}}>
 Showing {this.state.resultsToShow} out of
 {this.state.numResults} hits
 </div>
 <ListGroup className="fullsearch">
 {this.renderSearch()}
 </ListGroup>
 </div>
): null;
 }
});
export default Results;

Setting up pagination
Let's start by adding an attribute to getInitialState and a resetState function:

getInitialState() {
 return {
 results: [],
 resultsToShow: 10,
 numResults: 0,
 showResults: true,
 activePage: 1
 }
},

Building a Real-Time Search App

[166]

resetState() {
 this.setState({
 resultsToShow: 10,
 showResults: true,
 activePage: 1
 })
},

The resetState function needs to be added to getSearchResults:

getSearchResults(res) {
 this.resetState();
 let resultsToShow = this.state.resultsToShow;
 if (res.length < resultsToShow) {
 resultsToShow = res.length;
 }
 this.setState({results: res, numResults: res.length,
 resultsToShow: resultsToShow});
},

There's absolutely no problem running two setStates objects one after the other.
They will simply be queued on a first come, first served basis.

Next, add a pager:

renderPager() {
 return (<Pagination
 prev
 next
 items={Math.ceil(this.state.results.length/
 this.state.resultsToShow)}
 maxButtons={10}
 activePage={this.state.activePage}
 onSelect={this.handleSelect}/>)
},

This pager will automatically populate a number of buttons on the page, in this
case, 10. The number of items is determined by the number of results divided by the
number of items to show on each page. Math.ceil rounds up to the nearest integer,
so if you get 54 results, the number of pages will be rounded up to 6 from 5.4. The
first five pages will show ten results, and the last page will show the remaining
four results.

Chapter 4

[167]

In order to use the pagination component, we need to add it to the imports section,
so replace the react-bootstrap import with this:

import {Button,ListGroup,ListGroupItem,Pagination} from 'react-
bootstrap';

To show the pager, replace the render with this:

render() {
 let start = -this.state.resultsToShow +
 (this.state.activePage*this.state.resultsToShow);
 let end=this.state.activePage*this.state.resultsToShow;
 return (this.state.showResults) ? (
 <div>
 <div style={{textAlign:"center"}}>
 Showing {start}-{end} out of {this.state.numResults} hits
 </div>
 <ListGroup className="fullsearch">
 {this.renderSearch()}
 </ListGroup>
 <div style={{textAlign:"center"}}>
 {this.renderPager()}
 </div>
 </div>
) : null;
 }

And, add the handleSelect function:

handleSelect(eventKey) {
 this.setState ({
 activePage: eventKey
 });
},

That's all you need to set up a pager. There's only one problem. When you click on
Next, you are left at the bottom position, and as a user, that doesn't feel right. Let's
add a nice scroll to it with this dependency:

npm install --save easescroll@0.0.10

We'll add it to the imports section:

import Scroller from 'easescroll';

Building a Real-Time Search App

[168]

Add this to the handleSelect function:

handleSelect(event, selectedEvent) {
 this.setState({
 activePage: selectedEvent.eventKey
 });
 Scroller(220, 50, 'easeOutSine');
},

There are lots of scroll variants to choose from. Here are some other settings you
can try:

 Scroller(220, 500, 'elastic');
 Scroller(220, 500, easeInOutQuint);
 Scroller(220, 50, 'bouncePast');

Let's take a look at the following screenshot:

Chapter 4

[169]

Setting up endless scroll
Endless scroll is a very popular functionality, and it so happens that it's very easy to
implement in ReactJS. Let's go back to the state of the code as it was before we added
the pager and implement endless scrolling instead.

Endless scrolling works by simply loading more items as you reach the end of the
page. There are no pagers involved. You simply scroll, and then you scroll some more.

Let's see how we can add this to our code.

First, we need to add a couple of attributes to getInitialState:

 getInitialState() {
 return {
 results: [],
 resultsToShow: 10,
 numResults: 0,
 threshold: -60,
 increase: 3,
 showResults: true
 }
 },

The threshold variable is given in pixels and will activate when we reach 60 pixels
from the bottom. The increase variable is how many more items we'll load at a
time. It's usually the same as the resultToShow variable, but in this case, three
proved to be very visual.

We'll then add an event listener to mount (and remove it when we're done with it):

componentDidMount: function () {
 this.attachScrollListener();
},
componentWillUnmount: function () {
 this.detachScrollListener();
},
attachScrollListener: function () {
 window.addEventListener('scroll', this.scrollListener);
 this.scrollListener();
},
detachScrollListener: function () {
 window.removeEventListener('scroll', this.scrollListener);
},

Building a Real-Time Search App

[170]

These event listeners will listen to the scroll event. It will also start scrollListener
as soon as the component is mounted.

Next, we'll add the actual function:

scrollListener: function () {
 const component = findDOMNode(this);
 if(!component) return;
 let scrollTop;

 if((window.pageYOffset != 'undefined')) {
 scrollTop = window.pageYOffset;
 } else {
 scrollTop = (document.documentElement ||
 document.body.parentNode || document.body).scrollTop;
 }

 const reachedTreshold = (this.topPosition(self) +
 self.offsetHeight - scrollTop -
 window.innerHeight < Number(this.state.threshold));

 const hasMore = (this.state.resultsToShow +
 this.state.increase < this.state.numResults);

 if(reachedTreshold && hasMore) {

While we still have more results, increase the number of results to show with the
number in this.state.increase, let's take a look at the following code:

 this.setState ({
 resultsToShow: (this.state.increase +
 this.state.resultsToShow <= this.state.numResults) ?
 this.state.increase + this.state.resultsToShow :
 this.state.numResults
 });
 } else {
 this.setState({resultsToShow: this.state.numResults});

When we can increase no more, we set resultsToShow to be identical to the number
of results received, let's take a look at the following code snippet:

 }
},
topPosition: function (el) {
 if (!el) {
 return 0;

Chapter 4

[171]

 }
 return el.offsetTop + this.topPosition(el.offsetParent);
},

This function simply finds the top position of the component within the viewport.

When you scroll down now, the page will load new snippets until it runs out of
results. It can definitely be argued that this is a simplistic endless scroll and it's
neither endless nor does it actually load more content.

However, it's easy to modify it in such a way that instead of setting a new state
immediately, it sends an action call that triggers a service call to load more data. In
this case, the listener needs to be detached until a new set of data arrives, and when
it does, reattach the listener and set up a new state like we did earlier. If you truly
have an endless amount of data to fetch, this method will not let you down.

We are getting close to completion. There's only one more thing to add. The input
field is not populated when you go to the results page directly. It's not critically
important, but it's a nice feature, so let's add it.

In the componentWillMount function in results.jsx, add this line:

 SearchActions.setInputText(this.context.location.query.q);

Then, open search.jsx again and add this line to the mixins:

 Reflux.listenTo(SearchActions.setInputText, "setInputText")

In the same file, add the function that sets the input text:

setInputText(val) {
 findDOMNode(this.refs.searchInput).value = val;
},

And finally, in actions/search.js, add this to the actions object:

 setInputText: Reflux.createAction("setInputText")

If you navigate directly to the results page now, for instance, by going locally to
your test site http://localhost:3001/search?q=javascript or remotely to the
example app http://websearchapp.herokuapp.com/search?q=javascript, you'll
find the input field being set with whatever you would add to the q variable.

http://websearchapp.herokuapp.com/search?q=javascript

Building a Real-Time Search App

[172]

Summary
In this chapter, we made a working API and hooked it up to a MongoDB instance
before marching to make a snappy search application that displays results as you
search in real time. Furthermore, we looked at event listeners for keyboard actions
as well as scroll actions and put them to work.

Congratulations! That was a lot of hard work.

The finished project can be viewed online at https://
reactjsblueprints-chapter4.herokuapp.com.

You can improve the project in many ways. For instance, the search component
is quite long and hard to maintain. It's a good idea to split it up into a number of
smaller components.

You can also implement an update method so that every click on a search result gets
stored in your MongoDB instance. This makes it possible for you to range popular
hits among your users.

In the next chapter, we'll venture outside and look at making a map-based
application and using the HTML5 Geolocation API.

https://reactjsblueprints-chapter4.herokuapp.com
https://reactjsblueprints-chapter4.herokuapp.com

[173]

Creating a Map App with
HTML5 APIs

In this chapter, we'll cover a variety of HTML5 APIs with ReactJS, and we'll generate
a map-based application that can run on your desktop browser as well as your
mobile device.

In brief, these are the topics that we will cover:

•	 An overview of useful HTML5 APIs
°° The High Resolution Time API
°° The Vibration API
°° The Battery Status API
°° The Page Visibility API
°° The Geolocation API

•	 Reverse geolocation
•	 Static and interactive maps

The state of HTML5 APIs
The HTML5 specification has added a number of useful APIs that you may
not have tried yet. The reason is likely to be a combination of lack of browser
support and knowing that they exist. A lot of APIs have been introduced since the
dawn of HTML5. Some have reached stability; some are still up and coming; and
sadly, some have fallen to the wayside and are about to be deprecated—like the
highly promising getUserMedia API—or are not able to get enough traction to
gain support on all browsers.

Creating a Map App with HTML5 APIs

[174]

Let's take a look at the most interesting APIs available right now and how you can
use them to create powerful web applications. We'll use several of these in the map
application we will create later in the chapter.

The High Resolution Time API
If your website loads too slowly, users will become frustrated and leave. Measuring
the execution time and page load is therefore one of the most important aspects of
user experience, but unfortunately, it's also one of the most difficult to troubleshoot.

For historical reasons, the most commonly used method of measuring page load is
using the Date API to compare timestamps. This was the best tool available for a
long time, but there are a number of problems with this approach.

JavaScript time is infamous for being inaccurate (for instance, some versions of
Internet Explorer simply round down time representation if the results are less than
a certain threshold, making it virtually impossible to retrieve correct measurements).
The Date API can only be used once the code is running in the browser, which
means that you cannot measure processes involving the server or network. It also
introduces overhead and clutter in your code.

In short, you deserve a better tool, something that's native to the browser, provides
fine precision, and doesn't clutter up your code base. Fortunately, all of this is
already available to you in the form of the High Resolution Time API. It provides
the current time in sub-millisecond resolution. Unlike the Date API, it is not subject
to system clock skew or adjustments, and since it's native, no additional overhead
is created.

The API exposes only one method, called now(). It returns a very accurate timestamp
with a precision to a thousandth of a millisecond, allowing you to have accurate
performance tests of your code.

It's very easy to replace instances of your code where you use the Date API with
the High Resolution Time API. For instance, the following code uses the Date API
(and may log a positive or negative number, or zero):

var mark_start = Date.now();
doSomething();
var duration = (Date.now() - mark_start);

A similar operation with performance.now() looks like the next segment and will
not only be more accurate, but always positive as well:

var mark_start = performance.now();
doSomething();
var duration = (performance.now() - mark_start);

Chapter 5

[175]

As noted, the High Resolution Time API originally exposed only one method, but
through the User Timing API, you can access a few more methods that let you
measure performance without littering your code base with excess variables:

performance.mark('startTask')
doSomething();
performance.mark('endTask');
performance.measure('taskDuration','startTask','endTask');

You can fetch existing marks by type or name by calling either performance.
getEntriesByType('measure') or performance.getEntriesByType('mark').
You can also get a list of all the entries by calling performance.getEntries():

performance.getEntriesByName('taskDuration')

You can easily get rid of any marks you've set up by calling performance.
clearMarks(). Calling it with no value will clear all marks, but you can also remove
single marks by calling clearMarks() with the mark you want to remove. The same
goes for measures, using performance.clearMeasure().

Using performance.mark() and performance.measure() is great for measuring
the execution time of your code, but using them to measure page load is still rather
clunky. To help troubleshoot page loads, a third API has been developed, which
extends the High Resolution Time API even further. This is called the Navigation
Timing API and provides measurements related to DNS lookup, TCP connection,
redirects, DOM building, and so on.

It works by recording the time when milestones in the page load process occur.
There are many measured events given in milliseconds that can be accessed through
the PerformanceTiming interface. You can easily use these records to calculate the
many factors that surround page load time. For instance, you can measure the time
taken for the page to be visible to the user by subtracting timing.navigationStart
from timing.loadEventEnd, or measure how long the DNS lookup takes by
subtracting timing.domainLookupStart from timing.domainLookupEnd.

The performance.navigation object also stores two attributes that can be used
to find out whether a page load is triggered by a redirect, back/forward button,
or normal URL load.

All of these methods combined enable you to find the bottlenecks in your
application. We'll be using the API for debugging information and highlighting
which parts of the app take the most time to load.

Browser support for these APIs vary. Both the High Resolution Time API and
Navigation Timing API are supported by modern browsers, but the Resource
Timing API is not supported by Safari or Safari Mobile, so you need to practice
defensive coding in order to avoid TypeErrors preventing your page from working.

Creating a Map App with HTML5 APIs

[176]

The Vibration API
The Vibration API offers the ability to interact with the mobile device's built-in
vibration hardware component. If the API is not supported, nothing will happen;
therefore, it's safe to use on devices that do not support it.

The API is activated by applying the navigator.vibrate method. It accepts either a
single number to vibrate once or an array of values to alternately vibrate, pause, and
then vibrate again. Passing a value of 0, an empty array, or an array containing all
zeros will cancel any currently ongoing vibration pattern:

// Vibrate for one second
navigator.vibrate(1000);

// Vibrate for two seconds, wait one second,
// then vibrate for two seconds
navigator.vibrate([2000, 1000, 2000]);

// Any of these will terminate the vibration early
navigator.vibrate();
navigator.vibrate(0);
navigator.vibrate([]);

The API is targeted against mobile devices and has been around since 2012. Android
devices running Chrome or Firefox support the API, but there is no support for the
API on Safari or on mobile, and it seems there never will be.

This is unfortunate because vibration has a number of valid use cases, for instance,
to provide tactile feedback when the user interacts with buttons or form controls or
to alert the user of a notification.

You can, of course, also use it for fun, for instance, by playing a popular melody:

// Super Mario Theme Intro
navigator.
vibrate([125,75,125,275,200,275,125,75,125,275,200,600,200,600]);

// The Darth Vader Theme
navigator.vibrate([500,110,500,110,450,110,200,110,170,40,450,110,
200,110,170,40,500]);

// James Bond 007
navigator.vibrate([200,100,200,275,425,100,200,100,200,275,425,100,
75,25,75,125,75,125,75,25,75,125,100,100]);

Chapter 5

[177]

A fun list of Vibration API tunes can be found at https://gearside.com/custom-
vibration-patterns-mobile-devices/.

We'll be using the Vibration API in our map app to respond to button clicks.

The Battery Status API
The Battery Status API lets you inspect the state of a device's battery and fire events
about changes in battery level or status. This can be quite useful because we can
use this information to disable battery-draining operations, and hold off on AJAX
requests and other network-related traffic when the battery is running low.

The API exposes four methods and four events. The methods are charging,
chargingTime, dischargingTime, and level and the events are chargingchange,
levelchange, chargingtimechange, and dischargingtimechange.

You can add event listeners to your mount method in order to respond to changes in
battery status:

componentWillMount() {
 if("battery" in navigator) {
 navigator.getBattery().then((battery)=> {
 battery.addEventListener('chargingchange',
 this.onChargingchange);

 battery.addEventListener('levelchange',
 this.onLevelchange);

 battery.addEventListener('chargingtimechange',
 this.onChargingtimechange);

 battery.addEventListener('dischargingtimechange',
 this.onDischargingtimechange);
 });
 }
}

There's no need to add the event listeners if the browser doesn't support the Battery
API, so it's a good idea to check that the navigator object contains battery before
adding any event listeners:

onChargingchange(){
 console.log("Battery charging? " +
 (navigator.battery.charging ? "Yes" : "No"));
},

https://gearside.com/custom-vibration-patterns-mobile-devices/
https://gearside.com/custom-vibration-patterns-mobile-devices/

Creating a Map App with HTML5 APIs

[178]

onLevelchange() {
 console.log("Battery level: " +
 navigator.battery.level * 100 + "%");
},
onChargingtimechange() {
 console.log("Battery charging time: " +
 navigator.battery.chargingTime + " seconds");
},
onDischargingtimechange() {
 console.log("Battery discharging time: " +
 navigator.battery.dischargingTime + " seconds");
}

These functions will fire anytime a change happens with your battery status.

The Battery API is supported by Firefox, Chrome, and the Android browser.
Neither Safari nor IE support it.

We'll use this in our map app to warn users about switching to static maps if the
battery is running low.

The Page Visibility API
The Page Visibility API lets us detect whether our page is visible or in focus, hidden,
or not in focus (that is, either minimized or tabbed).

The API doesn't have any methods, but it exposes the visibilitychange event,
which we can use to detect changes in the state of the page's visibility and two
read-only properties, hidden and visibilityState. When a user minimizes
the web page or moves to another tab, the API sends a visibilitychange event
regarding the visibility of the page.

It can easily be added to your React component in the mount method:

componentWillMount(){
 document.addEventListener('visibilitychange',
 this.onVisibilityChange);
}

And then, you can monitor any changes in the page visibility in the
onVisibilityChange function:

onVisibilityChange(event){
 console.log(document.hidden);
 console.log(document.visibilityState);
}

Chapter 5

[179]

You can use this to halt the execution of any network activity that isn't necessary when
the user isn't actively using your page. You may also want to pause the execution if
you're showing content, like an image carousel that shouldn't advance to the next slide
unless the user is viewing the page, or if you're serving video or game content. When
the user revisits your page, you can continue the execution seamlessly.

We won't be using this API in our map app, but we'll be sure to use it in Chapter 9,
Creating a Shared App, when we make a game that should pause when the player
minimizes or tabs the window.

Browser support is excellent. The API is supported by all major browsers.

The Geolocation API
The Geolocation API defines a high-level interface to locate information, such as
latitude and longitude, which is linked to the device hosting it.

Knowing where your user is located is a powerful tool and can be used to serve
localized content, personalize ads or search results, and draw a map of your
surroundings.

The API doesn't concern itself with the location source, so it is entirely up to the
device as to where it gets its information. Common sources are GPS, location inferred
from network signals, Wi-Fi, Bluetooth, MAC address, RFID, GSM cell ID, and so on;
it includes manual user input as well. Because it can derive its information from so
many sources, the API is usable from a number of devices, including cell phones
and desktop computers.

The API exposes three methods that belong to the navigator.geolocation object:
getCurrentPosition, watchPosition, and clearWatch. Both getCurrentPosition
and watchPosition perform the same task. The difference is that the first method
performs a one-time request, while the latter continually monitors the device
for changes.

The coordinates contain these properties: latitude, longitude, altitude,
accuracy, altitudeAccuracy, heading, and speed. Desktop browsers usually
won't report any values other than latitude and longitude.

Retrieving a position returns an object with a timestamp and a set of coordinates.
The timestamp lets you know when the location was detected, which can be useful
if you need to know how fresh the data is:

// Retrieves your current location with all options
var options = {
 enableHighAccuracy: true,

Creating a Map App with HTML5 APIs

[180]

 timeout: 1000,
 maximumAge: 0
};

var success = (pos) => {
 var coords = pos.coords;
 console.log('Your current position is: ' +
 '\nLatitude : ' + coords.latitude +
 '\nLongitude: ' + coords.longitude +
 '\nAccuracy is more or less ' + coords.accuracy + ' meters.'+
 '\nLocation detected: '+new Date(pos.timestamp));
};

var error = (err) => {
 console.warn('ERROR(' + err.code + '): ' + err.message);
};

navigator.geolocation.getCurrentPosition(success, error, options);

The clearWatch function can be called to stop monitoring if you've started
watchPosition:

// Sets up a basic watcher
let watcher=navigator.geolocation.watchPosition(
 (pos) =>{console.log(pos.coords)},
 (err)=> {console.warn('ERROR(' + err.code + '): ' +
 err.message)},
 null);

// Removes the watcher
navigator.geolocation.clearWatch(watcher)

This API will be central to our map application. In fact, we won't show the user any
content unless we are able to get a current location. Browser support is fortunately
excellent, since it's supported by all major applications.

Creating our map app
Let's start with the basic setup from the first chapter. As usual, we'll be extending the
scaffold with a few extra packages:

npm install --save-dev classnames@2.2.1 react-bootstrap@0.29.3
reflux@0.4.1 url@0.11.0 lodash.pick@3.1.0 lodash.identiy@3.0.0
leaflet@0.7.7

Chapter 5

[181]

Most of these packages should be familiar to you. The ones we haven't used in the
earlier chapters are url, two utility functions from the lodash library, and
the leaflet map library. We'll use the url function for URL resolution and parsing.
The lodash functions will come in handy when we need to compose a URL to the
map service of our choice. Leaflet is an open source JavaScript library for interactive
maps. We'll get back to it when we add an interactive map to our app.

The devDependencies section in package.json should now look like this:

"devDependencies": {
 "babel-preset-es2015": "^6.3.13",
 "babel-preset-react": "^6.3.13",
 "babelify": "^7.2.0",
 "browser-sync": "^2.10.0",
 "browserify": "^13.0.0",
 "browserify-middleware": "^7.0.0",
 "classnames": "^2.2.1",
 "lodash": "^4.11.2",
 "react": "^15.0.2",
 "react-bootstrap": "^0.29.3",
 "react-dom": "^15.0.2",
 "reactify": "^1.1.1",
 "reflux": "^0.4.1",
 "serve-favicon": "^2.3.0",
 "superagent": "^1.5.0",
 "url": "^0.11.0",
 "watchify": "^3.6.1"
}

Let's open public/index.html and add some code:

<link rel="stylesheet" type="text/css" href="//netdna.bootstrapcdn.
com/bootstrap/3.3.5/css/bootstrap.min.css"/>
<link rel="stylesheet"
 href="//cdnjs.cloudflare.com/ajax/libs/leaflet/0.7.7/leaflet.css"/>

We'll need the Bootstrap CSS and the Leaflet CSS to display our maps properly.

Creating a Map App with HTML5 APIs

[182]

We'll also need to apply some styles, so open public/app.css and replace the
content with the following style:

/** SPINNER **/
.spinner {
 width: 40px;
 height: 40px;

 position: relative;
 margin: 100px auto;
}

.double-bounce1, .double-bounce2 {
 width: 100%;
 height: 100%;
 border-radius: 50%;
 background-color: #333;
 opacity: 0.6;
 position: absolute;
 top: 0;
 left: 0;

 -webkit-animation: sk-bounce 2.0s infinite ease-in-out;
 animation: sk-bounce 2.0s infinite ease-in-out;
}

.double-bounce2 {
 -webkit-animation-delay: -1.0s;
 animation-delay: -1.0s;
}

@-webkit-keyframes sk-bounce {
 0%, 100% { -webkit-transform: scale(0.0) }
 50% { -webkit-transform: scale(1.0) }
}

@keyframes sk-bounce {
 0%, 100% {
 transform: scale(0.0);
 -webkit-transform: scale(0.0);
 } 50% {
 transform: scale(1.0);
 -webkit-transform: scale(1.0);
 }
}

Chapter 5

[183]

The first styles we add are a set of bouncing balls. These will be displayed while
we're fetching content on the first load of the app, so it's important that they look
good and that they convey to the user that something is happening. This set of code
is provided by http://tobiasahlin.com/spinkit/. On this site, you'll find a few
more examples of simple loading spinners animated with hardware-accelerated
CSS animations.

We'll create two different types of maps, one static and one interactive. We're
also going to set up zoom and exit buttons and make sure they look okay on
smaller devices:

/** MAPS **/
.static-map{
 margin: 20px 0 0 0;
}

.map-title {
 color: #DDD;
 position: absolute;
 bottom: 10px;
 margin: 0;
 padding: 0;
 left: 35%;
 font-size: 18px;
 text-shadow: 3px 3px 8px rgba(200, 200, 200, 1);
}

.map-button{
 height: 100px;
 margin-bottom: 20px;
}

.map {
 position: absolute;
 left: 15px;
 right: 0;
 top: 30px;
 bottom: 0;
}

.buttonBack {
 position: absolute;
 padding: 10px;
 width:55px;

http://tobiasahlin.com/spinkit/

Creating a Map App with HTML5 APIs

[184]

 height:60px;
 top: -80px;
 right: 25px;
 z-index: 10;
}

.buttonMinus {
 position: absolute;
 padding: 10px;
 width:40px;
 height:60px;
 top: 25px;
 right: 25px;
}

.buttonPlus {
 position: absolute;
 padding: 10px;
 width:40px;
 height:60px;
 top: 100px;
 right: 25px;
}

These buttons let us zoom in and out when using static maps. They're placed near
the upper right-hand side of the screen, and they mimic the functionality of an
interactive map:

@media screen and (max-width: 600px) {
 .container {
 padding: 0;
 margin: 0
 }
 h1{
 font-size:18px;
 }
 .container-fluid{
 padding: 0;
 margin: 0 0 0 20px;
 }
 .map-title {
 left: 15%;
 z-index:10;

Chapter 5

[185]

 top: 20px;
 color: #666;
 }
}

The media query makes some small alterations to the style to make sure the maps are
visible and have a proper margin on small devices.

When you start your server now with node server.js, you should see a blank
screen in your browser. We're ready to get on with our app.

Setting up geolocation
We'll start by creating a service that fetches our reverse geolocation.

Create a folder called service in the source folder and call it geo.js. Add the
following content to it:

'use strict';
import config from '../config.json';
import utils from 'url';
const lodash = {
 pick: require('lodash.pick'),
 identity: require('lodash.identity')
};
import request from 'superagent';

We'll need the utilities we installed as part of the Bootstrap process. The url utils
parameter will create a URL string for us based on a set of keys and properties.
Lodash pick creates an object composed of the picked object properties, while
identity returns the first argument provided to it.

We'll also need to create a config.json file holding the parameters that we will use
to construct the URL string, let's take a look at the following code snippet:

class Geo {
 reverseGeo(coords) {
 const url = utils.format({
 protocol: config.openstreetmap.protocol,
 hostname: config.openstreetmap.host,
 pathname: config.openstreetmap.path,
 query: lodash.pick({
 format: config.openstreetmap.format,
 zoom: config.openstreetmap.zoom,

Creating a Map App with HTML5 APIs

[186]

 addressdetails: config.openstreetmap.addressdetails,
 lat: coords.latitude,
 lon: coords.longitude
 }, lodash.identity)
 });

 const req = request.get(url)
 .timeout(config.timeout)

We construct our request with a timeout. Superagent has a few other options you
can set, such as accept headers, query parameters, and more, let's take a look at the
following code snippet:

 const promise = new Promise(function (resolve, reject) {
 req.end(function (err, res) {
 if (err) {
 reject(err);
 } else if (res.error) {
 reject(res.error);

There is a long-standing bug in Superagent where some errors (4xx and 5xx) aren't
set with the err object as documented, so we need to check both err and res.error
in order to catch all the errors, let's take a look at the following code snippet:

 }
 else {
 try {
 resolve(res.text);
 } catch (e) {
 reject(e);
 }
 }
 });
 });

 return promise;
 }
}
export default Geo;

We will return our request through a Promise instance. Promise is an object that is
used for deferred and asynchronous computations. It represents an operation that
hasn't completed yet, but is expected to in the future.

Chapter 5

[187]

Next, create a file called config.json and place it in your source folder, and add the
following content:

{
 timeout: 10000,
 "openstreetmap": {
 "name": "OpenStreetMap",
 "protocol": "https",
 "host": "nominatim.openstreetmap.org",
 "path": "reverse",
 "format": "json",
 "zoom": "18",
 "addressdetails": "1"
 }
}

OpenStreetMap is an openly licensed map of the world created by volunteers using
local knowledge, GPS tracks, and donated sources. It is reported to have over 2
million users who have collected data using manual survey, GPS devices, aerial
photography, and other free sources.

We'll be using the service to fetch reverse geolocation as well as use it in combination
with Leaflet to create an interactive map in the later part of this chapter.

Let's make sure we can retrieve our current location and the reverse geolocation.
Open app.jsx and replace the content with the following code:

'use strict';

import React from 'react';
import { render } from 'react-dom';
import { Grid, Row, Col, Button, ButtonGroup,
 Alert, FormGroup, ControlLabel, FormControl }
 from 'react-bootstrap';
import GeoService from './service/geo';
const Geo = new GeoService();

const App = React.createClass({
 getInitialState(){
 return {
 locationFetched: false,
 provider: null,
 providerKey: null,
 mapType: 'static',
 lon: false,

Creating a Map App with HTML5 APIs

[188]

 lat: false,
 display_name: "",
 address: {},
 zoom: 8,
 serviceStatus:{up:true, e:""},
 alertVisible: false
 }
 },

We're going to use all of these state variables in our app eventually, but the ones
we'll update and use now are locationFetched, lon, and lat. The state of the first
variable will decide whether we'll show a loading animation or a result from the
geo lookups, let's take a look at the following code snippet:

 componentDidMount(){
 if ("mark" in performance) performance.mark('fetch_start');
 this.fetchLocation();
 },

We set up a marker before we call the function that fetches the current position and
the reverse geolocation:

 fetchLocation(){
 navigator.geolocation.getCurrentPosition(
 (res)=> {
 const coords = res.coords;
 this.setState({
 lat: coords.latitude,
 lon: coords.longitude
 });

 this.fetchReverseGeo(coords);
 },
 (err)=> {
 console.warn(err)
 },
 null);
 },

We use the one-time request from navigator.geolocation to fetch the user's
current position. We then store this in our component state. We also send a call
to fetchReverseGeo with the coordinates:

 fetchReverseGeo(coords){
 Geo.reverseGeo(coords)
 .then((data)=> {

Chapter 5

[189]

 if(data === undefined){
 this.setState({alertVisible: true})
 }

This will be used to display an alert a little bit later:

 else {
 let json = JSON.parse(data);
 if (json.error) {
 this.setState({ alertVisible: true })
 } else {
 if ("mark" in performance)
 performance.mark("fetch_end");
 if ("measure" in performance)
 performance.measure("fetch_geo_time",
 "fetch_start","fetch_end");

We're done with fetching data, so let's measure how long it took. We can fetch the
time by using the fetch_geo_time keyword anytime we want, as it appears in the
preceding code. Now, consider this:

 this.setState({
 address: json.address,
 display_name: json.display_name,
 lat: json.lat,
 lon: json.lon,
 locationFetched: true
 });

 if ("vibrate" in navigator) navigator.vibrate(500);

After we receive the position, we store it in our component state, and for the browser
and devices that have vibration support, we send off a short vibration to let the user
know the app is ready to be used. Refer to the following:

 }
 }
 }).catch((e) => {
 let message;
 if(e.message) message = e.message;
 else message = e;
 this.setState({
 serviceStatus: {
 up: false,
 error: message}

Creating a Map App with HTML5 APIs

[190]

 })
 });
 },

When we catch an error, we store the error message as part of our component state.
We will either receive the error as an object with a message property or as a string,
so we make sure that we check this before storing it. Moving on to the next part:

 renderError(){
 return (<Row>
 <Col xs={ 12 }>
 <h1>Error</h1>
 Sorry, but I could not serve any content.

Error message:
 { this.state.serviceStatus.error }

 </Col>
 </Row>)
 },

In the event that any of the third-party services we rely on are down or unavailable,
we short circuit the app and display an error message, as shown in the preceding
code:

 renderBouncingBalls(){
 return (<Row>
 <Col xs= { 12 }>
 <div className = "spinner">
 <div className = "double-bounce1"></div>
 <div className = "double-bounce2"></div>
 </div>
 </Col>
 </Row>)
 },

We present the SpinKit bouncing balls in this block. It is always shown before all
necessary data is fully loaded, let's take a look at the following code snippet:

 renderContent(){
 return (<div>
 <Row>

 <Col xs = { 12 }>
 <h1>Your coordinates</h1>
 </Col>

Chapter 5

[191]

 <Col xs = { 12 }>
 <small>Longitude:</small>
 { " " }{ this.state.lon }
 { " " }
 <small>Latitude:</small>
 { " " }{ this.state.lat }
 </Col>

 <Col xs={12}>
 <small>Address: </small>

We let the user know that we got a set of coordinates and a real world address:

 { this.state.address.county?
 this.state.address.county + ", " : "" }
 { this.state.address.state?
 this.state.address.state + ", " : "" }
 { this.state.address.country ?
 this.state.address.country: "" }
 </Col>
 </Row>

 <Row>
 <Col xs={12}>
 {this.state.provider ?
 this.renderMapView() :
 this.renderButtons()}

This if-else block will either show a map of the world, static or interactive,
depending on the user's choice; alternatively, it will display a set of buttons
and the option to select a new location.

We could also have used routing to toggle between these choices. But this would
mean setting up a map route, a home route, and so on. This is often a good idea, but
it's not always necessary, and this app shows how you can structure a simple app
without the use of routing, let's take a look at the following code snippet:

 </Col>
 </Row>

 <Row>
 <Col xs={12}>
 {this.state.provider ? <div/> : <div>
 <h3>Debug information</h3>
 {this.debugDNSLookup()}

Creating a Map App with HTML5 APIs

[192]

 {this.debugConnectionLookup()}
 {this.debugAPIDelay()}
 {this.debugPageLoadDelay()}
 {this.debugFetchTime()}

We display the debug information from the High Resolution Time API here. We
delegate each section into a function. This is called separation of concerns. The
purpose is to encapsulate sections of code to increase modularity and simplify
development. When reading the code, it's much easier to understand that when the
program asks for {this.debugDNSLookup()}, it returns some information about the
DNS lookup time. If we inlined the function, it would be harder to understand the
purpose of the code block:

 </div>}
 </Col>
 </Row>
 </div>);
 },
 debugPageLoadDelay(){
 return "timing" in performance ?
 <div>Page load delay experienced
 from page load start to navigation start:{" "}
 {Math.round(((performance.timing.loadEventEnd -
 performance.timing.navigationStart) / 1000)
 * 100) / 100} seconds.</div> : <div/>
 },

In each of the debug functions, we check whether the performance object has support
for the method we want to use. Most modern browsers support the High Resolution
Time API, but support for the User Timing API is more spotty.

The math operation converts the time in milliseconds into seconds:

 debugAPIDelay(){
 return "getEntriesByName" in performance ?
 (<div>Delay experienced fetching reverse geo
 (after navigation start):{" "}
 {Math.round((performance.getEntriesByName(
 "fetch_geo_time")[0].duration / 1000) * 100) / 100}
 {" seconds"}.</div>) : <div/>
 },

 debugFetchTime(){
 return "timing" in performance ?
 <div>Fetch Time: {performance.timing.responseEnd -

Chapter 5

[193]

 performance.timing.fetchStart} ms.</div> : null
 },

 debugDNSLookup(){
 return "timing" in performance ?
 <div> DNS lookup: {performance.timing.domainLookupEnd -
 performance.timing.domainLookupStart} ms.</div> : null
 },

 debugConnectionLookup(){
 return "timing" in performance ?
 <div>Connection lookup: {performance.timing.connectEnd -
 performance.timing.connectStart} ms. </div> : null
 },

 renderGrid(content){
 return <Grid>
 {content}
 </Grid>
 },

 render() {
 if(!this.state.serviceStatus.up){
 return this.renderGrid(this.renderError());

If an error occurs, for instance, if the SuperAgent request call fails, we display an error
message instead of providing any content, let's take a look at the following code:

 }
 else if(!this.state.locationFetched){
 return this.renderGrid(this.renderBouncingBalls());

We'll show a set of bouncing balls until we have a position and a location, let's take
a look at the following code:

 }
 else {
 return this.renderGrid(this.renderContent());

If everything is good, we render the content:

 }
 }
});

Creating a Map App with HTML5 APIs

[194]

render(
 <App greeting="Chapter 5"/>,
 document.getElementById('app')
);

When you've added this code, you should see the app start with a set of bouncing
balls. Then, after it has fetched your location, you should see your coordinates in
longitude and latitude values as well as your real location address. Below this, you
should see a few lines of debug information.

One note about the largesse of this component: When writing components or indeed
any code, the need to refactor increases roughly in tandem with the time you spend
writing it. This component is a prime example because it now contains a lot of
different logic. It does geolocation, debugging, as well as rendering. It would be
wise to split it up into several different components for separation of concerns, as
talked about in the comment to the renderContent() method. Let's take a look at the
following screenshot:

The location should be quite accurate, and thanks to the comprehensive list of
real-world addresses in OpenStreetMap, the translation to your current location
should also be fairly close to where you are as well.

Chapter 5

[195]

The debug information lets you know how much time it takes from when the app
is loaded until the view is ready. When running on localhost, DNS and connection
lookup are always loaded in 0 milliseconds, instantaneously. When you are running
your app on an external server, these numbers will go up and reflect how much time
it would take to lookup your server and connect to it.

In the preceding screenshot, you'll notice it doesn't take much time before the page
is loaded and ready to be served. The really slow part of it is the amount of time you
spend waiting for the app to fetch location data from reverse geolocation. As per the
screenshot, it took approximately 1.5 seconds. This number will usually fluctuate
between 1-10 seconds, and you won't be able to reduce it unless you find a way to
cache the request.

Now that we know we are able to fetch the user position and address, let's create
some maps.

Showing static maps
A static map is simply an image snapshot of your chosen position. Using static maps
has many benefits over interactive maps, for instance:

•	 No overhead. It's a plain image, so it's both fast and lightweight.
•	 You can pre-render and cache the map. This means less hits to the map

provider and that you might get away with a smaller data plan.
•	 Static also means that you have complete control of the map. Using a third-

party service often means surrendering some control to the service.

There are a number of map providers that we can use to show maps of the world
in addition to OpenStreetMap. Among those are Yahoo! Maps, Bing Maps, Google
Maps, MapQuest, and more.

We'll be setting up our app to connect to a few of these services, so you can compare
and decide which one you prefer.

Let's open config.json again and add a few more endpoints. Add this just before
the closing bracket of the file (make sure to add a comma after openstreetmap):

"google": {
 "name": "google",
 "providerKey": "",
 "url": "http://maps.googleapis.com/maps/api/staticmap",
 "mapType": "roadmap",
 "pushpin": false,
 "query": {

Creating a Map App with HTML5 APIs

[196]

 "markerColor": "color:purple",
 "markerLabel": "label:A"
 },
 "join": "x"
},

"bing": {
 "name": "bing",
 "providerKey": "",
 "url": "https://dev.virtualearth.net/REST/V1/Imagery/Map/Road/",
 "query": {},
 "pushpin": true,
 "join": ","
},

"mapQuest": {
 "name": "mapQuest",
 "url": "https://www.mapquestapi.com/staticmap/v4/getmap",
 "providerKey": "",
 "mapType": "map",
 "icon": "red_1-1",
 "query": {},
 "pushpin": false
}

For Bing and mapQuest, you need to set the providerKey key before you can
use them. For Bing Maps, go to the Bing Maps Dev Center at https://www.
bingmapsportal.com/, sign in, select Keys under My Account, and add an
application to receive a key.

For mapQuest, go to https://developer.mapquest.com/plan_purchase/steps/
business_edition/business_edition_free and create a free account. Create an
application and retrieve your key.

For Google, go to https://developers.google.com/maps/documentation/
static-maps/get-api-key and register a free API key.

In order to use the endpoints, we'll need to set up a service and a factory. Create
source/service/map-factory.js and add this code:

'use strict';

import MapService from './map-service';

const mapService = new MapService();

https://www.bingmapsportal.com/
https://www.bingmapsportal.com/
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free
https://developers.google.com/maps/documentation/static-maps/get-api-key
https://developers.google.com/maps/documentation/static-maps/get-api-key

Chapter 5

[197]

export default class MapFactory {
 getMap(params) {
 return mapService.getMap(params);
 }
}

Then, create source/service/map-service.js and add this code:

'use strict';

import config from '../config.json';
import utils from 'url';

export default class MapService {
 getMap(params) {
 let url;
 let c = config[params.provider];
 let size = [params.width, params.height].join(c.join);
 let loc = [params.lat, params.lon].join(",");

We'll send param in the name of the provider, and we'll fetch the configuration data
based on this.

The map providers have different requirements for how you should join the size
parameter, so we take the width and the height and join them based on the value in
the configuration.

All providers agree that latitude and longitude should be joined by a comma,
so we set up a location variable in this format. Refer to the following code:

 let markers = Object.keys(c.query).length ?
 Object.keys(c.query).map((param)=> {
 return c.query[param];
 }).reduce((a, b)=> {
 return [a, b].join("|") + "|" + loc;
 }) : "";

This snippet will add any markers you've configured in config.json. We'll only use
this variable if there are any configured markers:

 let key = c.providerKey ? "key=" + c.providerKey : "";
 let maptype = c.mapType ? "maptype=" + c.mapType : "";
 let pushpin = c.pushpin ? "pp=" + loc + ";4;A": "";
 if (markers.length) markers = "markers=" + markers;

Creating a Map App with HTML5 APIs

[198]

We'll add the key and set the map type from the configuration. Bing calls the
markers pushpin, so this variable is only used in Bing Maps:

 if(params.provider === "bing"){
 url = `${c.url}/${loc}/${params.zoom}?${maptype}¢er=${loc}&s
ize=${size}&${pushpin}&${markers}&${key}`;
 }
 else {
 url = `${c.url}?${maptype}¢er=${loc}&zoom=${params.zoom}&siz
e=${size}&${pushpin}&${markers}&${key}`;
 }

We'll set up two different URLs based on whether we're serving a Bing Map or
a map from any other provider. Notice that we're using ES6 template strings to
compose our URL. These are composed with backticks and use string substitution
with the ${ } syntax.

It's a different method than the one we used in source/service/geo.js, and in
truth, we could have gone with the same approach here. Finally, we pass along
the id variable from params and the finished map URL to our return function:

 return {
 id: params.id,
 data: {
 mapSrc: url
 }
 };
 }
}

Next, we need to create a view for the static maps. What we'll do is create three
buttons that will enable us to open a map for our current location with all three map
providers. Your app should look something like the one in the following screenshot:

Chapter 5

[199]

Create a folder called views under the source folder, add a file called static-map.
jsx, and add this code:

'use strict';

import React from 'react';
import { render } from 'react-dom';
import { Button } from 'react-bootstrap';

import Map from '../components/static-map.jsx';

const StaticMapView = React.createClass({
 propTypes: {
 provider: React.PropTypes.string.isRequired,
 providerKey: React.PropTypes.string,
 mapType: React.PropTypes.string,
 lon: React.PropTypes.number.isRequired,
 lat: React.PropTypes.number.isRequired,
 display_name: React.PropTypes.string,
 address: React.PropTypes.object.isRequired
 },

Creating a Map App with HTML5 APIs

[200]

 getDefaultProps(){
 return {
 provider: 'google',
 providerKey: '',
 mapType: 'static',
 lon: 0,
 lat: 0,
 display_name: "",
 address: {}
 }
 },

 getInitialState(){
 return {
 zoom: 8
 }
 },

 lessZoom(){
 this.setState({
 zoom: this.state.zoom > 1 ?
 this.state.zoom -1 : 1
 });
 },

 moreZoom(){
 this.setState({
 zoom: this.state.zoom < 18 ?
 this.state.zoom + 1 : 18
 });
 },

As seen in the preceding code, we'll allow zooming as long as it's between 1 and 18.
We'll use the current height and width of the device to set up our map canvas:

 getHeightWidth(){
 const w = window.innerWidth
 || document.documentElement.clientWidth
 || document.body.clientWidth;

 const h = window.innerHeight
 || document.documentElement.clientHeight
 || document.body.clientHeight;
 return { w, h };
 },

Chapter 5

[201]

These buttons will allow us to increase or decrease zoom, or exit back to the
main menu:

 render: function () {
 return (<div>
 <Button
 onClick = { this.lessZoom }
 bsStyle = "primary"
 className = "buttonMinus">
 -</Button>
 <Button
 onClick = { this.moreZoom }
 bsStyle = "primary"
 className = "buttonPlus">
 +</Button>
 <Button
 onClick = { this.props.goBack }
 bsStyle = "success"
 className = "buttonBack">
 Exit</Button>

Refer to the following code:

 <div className="map-title" >
 { this.props.address.road }{ ", " }
 { this.props.address.county }
 </div>
 <Map provider = { this.props.provider }
 providerKey = { this.props.providerKey }
 id = { this.props.provider + "-map" }
 lon = { this.props.lon }
 lat = { this.props.lat }
 zoom = { this.state.zoom }
 height = { this.getHeightWidth().h-150 }
 width = { this.getHeightWidth().w-150 }
 />
 </div>)
 }
});
export default StaticMapView;

Creating a Map App with HTML5 APIs

[202]

You may wonder if there's any particular reason why we put this file in a view folder
while the other files went into the component folder. There's not a programmatic
reason for it. All files could be put into the component folder, and React wouldn't
bat an eye. The purpose is to provide the programmer with a clue on how the data is
meant to be structured, hopefully making it easier to understand when going back
and editing the project.

Next, we need to create a component called static-map that will take our map
properties and serve along a valid image.

Create a folder called components, add a new file called static-map.jsx, and add
the following code:

'use strict';

import React from 'react';
import MapFactory from '../service/map-factory';

const factory = new MapFactory();
const StaticMap = React.createClass({
 propTypes: {
 provider: React.PropTypes.string.isRequired,
 providerKey: React.PropTypes.string,
 id: React.PropTypes.string.isRequired,
 lon: React.PropTypes.string.isRequired,
 lat: React.PropTypes.string.isRequired,
 height: React.PropTypes.number.isRequired,
 width: React.PropTypes.number.isRequired,
 zoom: React.PropTypes.number
 },

 getDefaultProps(){
 return {
 provider: '',
 providerKey: '',
 id: 'map',
 lat: "0",
 lon: "0",
 height: 0,
 width: 0,
 zoom: 8
 }
 },

Chapter 5

[203]

 getLocation () {
 return factory.getMap({
 providerKey: this.props.providerKey,
 provider: this.props.provider,
 id: this.props.id,
 lon: this.props.lon,
 lat: this.props.lat,
 height: this.props.height,
 width: this.props.width,
 zoom: this.props.zoom
 });
 },

 render () {
 const location = this.getLocation();

The location object contains our map URL and all of the associated data that the
map-factory parameter has produced:

 let mapSrc;
 let style;

 if (!location.data || !location.data.mapSrc) {
 return null;
 }

 mapSrc = location.data.mapSrc;

 style = {
 width: '100%',
 height: this.props.height
 };

 return (
 <div style = { style }
 className = "map-container">
 <img style={ style }
 src={ mapSrc }
 className = "static-map" />
 </div>
);
 }
});
export default StaticMap;

Creating a Map App with HTML5 APIs

[204]

This is all the plumbing we need to present our static maps. Let's open up app.jsx
and add the code that will tie these files together.

In between the two rows in the render method, add a new row with this code:

<Row>
 <Col xs = { 12 }>
 { this.state.provider ?
 this.renderMapView() :
 this.renderButtons() }
 </Col>
</Row>

In our previous apps, we used routes to navigate back and forth, but this time, we're
going to skip routes altogether and use these variables to show different states of
our app.

We're also going to need to add the two referenced functions, so add the following:

renderButtons(){
 return (<div>
 <h2>Static maps</h2>

 <ButtonGroup block vertical>
 <Button
 className = "map-button"
 bsStyle = "info"
 onClick = { this.setProvider.bind(null,'google','static') }>
 Open static Google Map for { this.state.address.state }
 { ", " }
 { this.state.address.country }</Button>

 <Button
 className = "map-button"
 bsStyle = "info"
 onClick = { this.setProvider.bind(null,'bing','static') }>
 Open Bing map for { this.state.address.state }{ ", " }
 { this.state.address.country }</Button>

 <Button
 className = "map-button"
 bsStyle = "info"

Chapter 5

[205]

 onClick = { this.setProvider.bind(null,'mapQuest','static') }>
 Open MapQuest map for { this.state.address.state }{ ", " }
 { this.state.address.country }</Button>

 </ButtonGroup>
 </div>)
},

setProvider(provider, mapType){
 let providerKey = "";

 if (hasOwnProperty.call(config[provider], 'providerKey')) {
 providerKey = config[provider].providerKey;
 }

 this.setState({
 provider: provider,
 providerKey: providerKey,
 mapType: mapType});

 // provide tactile feedback if vibration is supported
 if ("vibrate" in navigator) navigator.vibrate(50);
},

At the top of the file, add these two imports:

import StaticMapView from './views/static-map.jsx';
import config from './config.json';

And then finally, add the two functions referenced in the preceding code:

renderMapView(){
 return (<StaticMapView { ...this.state }
 goBack={ this.goBack }/>);
},

goBack(){
 this.setState({ provider: null });
},

The goBack method simply nulls the provider. This will toggle whether we see the
buttons or a map in the main view render.

Creating a Map App with HTML5 APIs

[206]

When you open your app now, you'll see three different buttons enabling you
to open a map of your current location with either Google Maps, Bing Maps, or
MapQuest. The picture will show the current location in Bing Maps, as in the
following screenshot:

Without some clever hardcoding, you can't open any location other than your own.
Let's create an input box that lets you select a different location based on longitude
and latitude and a select box that will conveniently set the location to any of a
predefined number of world cities.

Add these functions to app.jsx:

 validateLongitude(){
 const val = this.state.lon;
 if (val > -180 && val <= 180) {
 return "success"
 } else {
 return "error";
 }
 },

Chapter 5

[207]

As seen in the preceding code, valid longitude values are between negative 180
and positive 180 degrees. We'll fetch the current values passed to us from the
event handler:

 handleLongitudeChange(event){
 this.setState({ lon: event.target.value });
},

Valid latitude values are between negative 90 and positive 90 degrees:

 validateLatitude(){
 const val = this.state.lat;
 if (val > -90 && val <= 90) {
 return "success"
 } else {
 return "error";
 }
 },

Whenever the user clicks on the Fetch button, we execute a new reverse geolocation
search:

 handleLatitudeChange(event){
 this.setState({ lat: event.target.value });
 },

 handleFetchClick(){
 this.fetchReverseGeo({
 latitude: this.state.lat,
 longitude: this.state.lon
 });
 },

Here's the new geolocation search:

 handleAlertDismiss() {
 this.setState({
 alertVisible: false
 });
 },

 handleAlertShow() {
 this.setState({
 alertVisible: true
 });
 },

Creating a Map App with HTML5 APIs

[208]

 handleSelect(e){
 switch(e.target.value){
 case "london":
 this.fetchReverseGeo({
 latitude: 51.50722,
 longitude:-0.12750
 });
 case "dublin":
 this.fetchReverseGeo({
 latitude: 53.347205,
 longitude:-6.259113
 });
 case "barcelona":
 this.fetchReverseGeo({
 latitude: 41.386964,
 longitude: 2.170036
 });
 case "newyork":
 this.fetchReverseGeo({
 latitude: 40.723189,
 longitude:-74.003340
 });
 case "tokyo":
 this.fetchReverseGeo({
 latitude: 35.707743,
 longitude:139.733580
 });
 case "beijing":
 this.fetchReverseGeo({
 latitude: 39.895591,
 longitude:116.413371
 });
 }
 },

Above the header with static maps in render(), add this:

<h2>Try a different location</h2>
<FormGroup>
 <ControlLabel>Longitude</ControlLabel>
 <FormControl
 type="text"
 onChange={ this.handleLongitudeChange }
 defaultValue={this.state.lon}
 placeholder="Enter longitude"

Chapter 5

[209]

 label="Longitude"
 help="Longitude measures how far east or west of the prime
 meridian a place is located. A valid longitude is
 between -180 and +180 degrees."
 validationState={this.validateLongitude()}
 />
 <FormControl.Feedback />
 </FormGroup>

 <FormGroup>
 <ControlLabel>Latitude</ControlLabel>
 <FormControl type="text"
 onChange={ this.handleLatitudeChange }
 defaultValue={this.state.lat}
 placeholder="Enter latitude"
 label="Latitude"
 help="Latitude measures how far north or south of the equator
 a place is located. A valid longitude is between -90
 and +90 degrees."
 validationState={this.validateLongitude()}
 />
 <FormControl.Feedback />
 </FormGroup>

{this.state.alertVisible ?
 <Alert bsStyle="danger"
 onDismiss={this.handleAlertDismiss}
 dismissAfter={2500}>
 <h4>Error!</h4>

 <p>Couldn't geocode this coordinates...</p>
 </Alert> : <div/>}

This alert will only be shown if the user tries to fetch a set of invalid coordinates.
It will automatically disappear after 2,500 milliseconds, let's take a look at the
following code:

 <Button bsStyle="primary"
 onClick={this.handleFetchClick}>
 Fetch new geolocation
 </Button>

 <p>(note, this will fetch the closest location based on the new
 input values)</p>

Creating a Map App with HTML5 APIs

[210]

<FormGroup>
 <FormControl
 componentClass="select"
 onChange={this.handleSelect}
 placeholder="select location">
 <option defaultSelected value="">
 Choose a location
 </option>
 <option value="london">London</option>
 <option value="dublin">Dublin</option>
 <option value="tokyo">Tokyo</option>
 <option value="beijing">Bejing</option>
 <option value="newyork">New York</option>
 </FormControl>
 </FormGroup>

Let's take a look at the following screenshot:

Chapter 5

[211]

Creating an interactive map
Interactive maps offer a level of interactivity that is often expected by users
presented with a map on a website.

There are a number of benefits in displaying an interactive map instead of a
plain image:

•	 You can set markers outside the current viewport. It's perfect when you want
to display a small map, but provide information about locations that can be
discovered by moving or zooming the map.

•	 Interactive maps provide a playground for your users, making it more likely
that they'll spend time at your site.

•	 Interactive content generally makes the app feel better compared to static
content.

For our interactive map, we'll be using a combination of Leaflet and
OpenStreetMap. They're both open source and free resources, making them an
excellent choice for our budding map app.

Create a new file in source/views and call it interactive-map.jsx. Add the
following code to it:

'use strict';

import React from 'react';
import {Button} from 'react-bootstrap';
import L from 'leaflet';

 L.Icon.Default.imagePath =
 " https://reactjsblueprints-chapter5.herokuapp.com/images";

const DynamicMapView = React.createClass({
 propTypes: {
 createMap: React.PropTypes.func,
 goBack: React.PropTypes.func.isRequired,
 center: React.PropTypes.array.isRequired,
 lon: React.PropTypes.string.isRequired,
 lat: React.PropTypes.string.isRequired,
 zoom: React.PropTypes.number
 },
 map:{},
 getDefaultProps(){

Creating a Map App with HTML5 APIs

[212]

 return {
 center: [0, 0],
 zoom: 8
 }
 },
 createMap: function (element) {
 this.map = L.map(element);
 L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',
 {attribution: '©
 OpenStreetMap contributors'}).addTo(this.map);
 return this.map;
 },

The Leaflet package fetches image tiles from openstreetmap.org with x, y, and
zoom parameters. Refer to the following code:

 setupMap: function () {
 this.map.setView([this.props.lat, this.props.lon],
 this.props.zoom);
 this.setMarker(this.props.lat, this.props.lon);
 },

This is the function we use when creating a map. We set the view with our chosen
latitude, longitude, and zoom, and add a marker to the middle of the view.

More markers can be added by passing a location object to the internal setMarker
function:

 setMarker(lat,lon){
 L.marker([lat, lon]).addTo(this.map);
 },
 componentDidMount: function () {
 if (this.props.createMap) {
 this.map = this.props.createMap(this.refs.map);
 } else {
 this.map = this.createMap(this.refs.map);
 }

 this.setupMap();
 },

openstreetmap.org

Chapter 5

[213]

On mounting it, we create a map with the internal function createMap, unless we
pass along an external function via props, such as follows:

 getHeightWidth(){
 const w = window.innerWidth
 || document.documentElement.clientWidth
 || document.body.clientWidth;

 const h = window.innerHeight
 || document.documentElement.clientHeight
 || document.body.clientHeight;
 return { w, h };
 },
 render: function () {
 const style = {
 width: '95%',
 height: this.getHeightWidth().h - 200
 };

We use inline styles to set the height of the map to 200 pixels less than the height of
the viewport:

 return (<div>
 <Button
 onClick={this.props.goBack}
 className="buttonBack">
 Exit</Button>
 <div style={style} ref="map" className="map"></div>
 {navigator.battery ?
 navigator.battery.level<0.3 ?
 <div>
 Note: Your battery is running low
 ({navigator.battery.level*100}% remaining).
 You may want to exit to the main menu and
 use the static maps instead.</div>
 :<div/>
 :<div/>
 }

Creating a Map App with HTML5 APIs

[214]

We'll notify the user if we notice that the battery is running low on the device.
To continually monitor the battery status, we'd need to set up an event listener
described earlier in this chapter:

 </div>);
 }
});
export default DynamicMapView;

Next, open app.jsx and add the following code snippet at the end of
renderButtons(), just above the closing <div />, such as follows:

<h1>Interactive maps</h1>
<ButtonGroup block vertical>
 <Button
 className="map-button"
 bsStyle="primary"
 onClick={this.setProvider.bind(null,
 'openstreetmap','interactive')}>
 Open interactive Open Street Map for 	
 {this.state.address.state? this.state.address.state+", ":""}
 {this.state.address.country}
 </Button>

</ButtonGroup>

Next, replace the code in renderMapView() with this code:

renderMapView(){
 return this.state.mapType === 'static' ?
 (<StaticMapView {...this.state} goBack={this.goBack}/>) :
 <DynamicMapView {...this.state} goBack={this.goBack}/>;
},

Finally, add the interactive-map view to the import section:

import DynamicMapView from './views/interactive-map.jsx';

Chapter 5

[215]

Let's take a look at the following screenshot:

You should now be able to load the app and click on the Interactive Map button
and be presented with an interactive map of your location. You can pinch, move,
and zoom the map, and it will work on a smartphone or a tablet as well as on your
desktop browser.

You can extend this map with new markers and even different tiles. We've used
OpenStreetMap throughout this app, but it's very easy to switch out. Take a look
at https://leaflet-extras.github.io/leaflet-providers/preview/ for an
overview of what kind of tiles you can use.

There's also a wide array of plugins to choose from, and you'll find those at
http://leafletjs.com/plugins.html.

https://leaflet-extras.github.io/leaflet-providers/preview/
http://leafletjs.com/plugins.html

Creating a Map App with HTML5 APIs

[216]

Summary
In this chapter, we examined the state of several useful HTML5 APIs. We then put
them to good use when creating a map application that serves both static
and interactive maps.

The static maps are set up to use a variety of different proprietary services, while
the interactive map is set up to use the free and open maps service, OpenStreepMap,
using a popular library called Leaflet.

You can extend the interactive map by adding markers for a set of queries. For
instance, you could use a service such as Google Maps to fetch a list of restaurants
(Sushi restaurants, for example), and add a fish marker to each location using the
Leaflet library. The possibilities are endless.

The finished project can be viewed online at https://
reactjsblueprints-chapter5.herokuapp.com.

In the next chapter, we will create an application that requires the user to create an
account and log in to take advantage of all the features of the app.

https://reactjsblueprints-chapter5.herokuapp.com
https://reactjsblueprints-chapter5.herokuapp.com

[217]

Advanced React
In the first part of this chapter, we'll look at Webpack, Redux, and how to write
components with the new class syntax introduced in JavaScript 2015. Writing
ReactJS components with the class syntax is a little bit different than using React.
createClass, so we'll be looking at the differences and the pros and cons.

In the second part of this chapter, we'll write an app that handles authentication
using Redux.

This is what we'll cover in this chapter:

•	 A new bundling strategy:
°° How Browserify works
°° How Webpack works
°° A difficult choice

•	 Creating a new scaffold with Webpack
°° The Babel configuration
°° The Webpack configuration
°° Adding assets
°° Creating an Express server
°° Adding ReactJS to the mix
°° Starting the server

Advanced React

[218]

•	 Introducing Redux
°° The single store
°° Actions in Redux
°° Understanding reducers
°° Adding Devtools

•	 Create a login API

A new bundling strategy
Until now, we've been using Browserify, but from now on, we'll switch to Webpack.
You may wonder why we should make this switch and what the differences between
the technologies are.

Let's take a closer look at both of them.

How Browserify works
Browserify works by examining the entry point that you specify and building a
dependency tree based on all the files and modules you require in your code. Each
dependency gets wrapped in a closure code, which contains the module's source
code, a map of the module's dependencies, and a key. It injects features that are
native to the node but don't exist in JavaScript, such as module handling.

In short, it is able to analyze your source code, find and wrap up all your
dependencies, and compile them into a single bundle. It's very performant and is an
excellent start up tool for new projects.

Using it in practice is as simple as writing a set of code and sending it to Browserify.
Let's write two files that require each other.

Let's call the first one helloworld.js and place the following code into it:

module.exports = function () {
 return 'Hello world!';
}

Let's call the second one entry.js and place the following code into it:

var Hello = require("./helloworld");
console.log(Hello());

Chapter 6

[219]

Then, pass both the files to Browserify from the command line, like this:

browserify entry.js

The result will be an immediately invoked function expression (IIFE for short)
containing your "hello world" code. An IIFE is also referred to as an anonymous
self-executing function or simply a code block that executes as soon as you load it.

The generated code looks rather incomprehensible, but let's try to understand it:

(function e(t, n, r) {
 function s(o, u) {
 if (!n[o]) {
 if (!t[o]) {
 var a = typeof require == "function" && require;
 if (!u && a) return a(o, !0);
 if (i) return i(o, !0);
 var f = new Error("Cannot find module '" + o + "'");
 throw f.code = "MODULE_NOT_FOUND", f
 }
 var l = n[o] = {
 exports: {}
 };
 t[o][0].call(l.exports, function(e) {
 var n = t[o][1][e];
 return s(n ? n : e)
 }, l, l.exports, e, t, n, r)
 }
 return n[o].exports
 }
 var i = typeof require == "function" && require;
 for (var o = 0; o < r.length; o++) s(r[o]);
 return s
})

This entire first block passes the module source and executes it. The first argument
takes our source code, the second a cache (usually empty), and the third a key,
mapping it to the module it is required from.

The inner function is an internal cache function. It's used at the end of the function to
either retrieve the function from the cache, or store it so that it's ready the next time it's
requested. Here, a required module is listed, along with the entire source code:

({
 1: [function(require, module, exports) {
 var Hello = require("./helloworld");

Advanced React

[220]

 console.log(Hello());

 }, {
 "./helloworld": 2
 }],
 2: [function(require, module, exports) {
 module.exports = (function() {
 return 'Hello world!';
 })

 }, {}]
}, {}, [1]);

Note that this is passed in a parenthesis with three arguments,
matching the IIFE function.

It's not vital that you fully understand how this works. The important thing to take
away is that Browserify will generate a complete static bundle containing all of your
code and will also take care of how they relate to each other.

So far, Browserify looks fantastic. However, there is a fly in the ointment. If you want
to do something more with your code—for instance, minify it or convert JavaScript
2015 to ECMAScript 5 or the ReactJS JSX code to plain JavaScript—you would need
to pass additional transforms to it.

Browserify has a huge ecosystem of transforms that you can use to transmogrify
your code. Knowing how to wire it up is the hard part, and the fact that Browserify
itself is not entirely opinionated on the matter means that you are left on your own.

Let's add a JavaScript 2015 transform to illustrate how you run Browserify with
transforms. Change helloworld.js to this code:

import Hello from "./helloworld";
console.log(Hello());

Running the standard browserify command now will result in a parse error.
Let's try it with the Babel transformer that we've been using in our scaffold:

browserify entry.js --transform [babelify --presets [es2015]]

The code will now parse.

Chapter 6

[221]

If you compare the resulting code, you'll notice that the generated
JavaScript 2015 code from Babel is rather different from the code
Browserify generated using plain ECMAScript 5. It's a little bit bigger (in
this example, it's approximately 25 percent larger, but it's a very small
sample code set, so the difference won't be as dramatic with a more
realistic code set).

You can run the code in several ways. You can create an HTML file and reference
it in a script tag, or you can simply open a browser and paste it into the console
window in Chrome or the Scratchpad in FireFox. The result will be the same in
any case; the text Hello world! will appear in your console log.

How Webpack works
Like Browserify, Webpack is a module bundler. It's operationally similar to
Browserify but is very different under the hood. There are many differences, but the
key difference is that Webpack can be used dynamically, while Browserify is strictly
static. We'll take a look at how Webpack works and show how this can benefit us
greatly while using Webpack to write code.

As with Browserify, generating code with Webpack is initiated from an entry file.
Let's use the "Hello World" code from the previous example (the ECMAScript 5
version). Webpack requires you to specify an output file, so let's write it to bundle.
js like this:

webpack helloworld.js --output-filename bundle.js

The generated code is a lot more verbose than Browserify by default and is actually
quite readable (adding the -p parameter will generate a minified version).

Running the preceding code will result in the following code being generated:

(function(modules) { // webpackBootstrap
 var installedModules = {};
 function __webpack_require__(moduleId) {

 if(installedModules[moduleId])
 return installedModules[moduleId].exports;

 var module = installedModules[moduleId] = {
 exports: {},
 id: moduleId,
 loaded: false
 };

Advanced React

[222]

Like Browserify, Webpack generates an IIFE. The first thing it does is set up a
module cache and then check whether the module is cached. If not, the module
is put into the cache, let's take a look at the following code snippet:

 modules[moduleId].call(module.exports, module, module.exports,
 __webpack_require__);
 module.loaded = true;
 return module.exports;
}

Next, it executes the module function, flags it as loaded, and returns the exports of
the module, let's take a look at the following code snippet:

__webpack_require__.m = modules;
__webpack_require__.c = installedModules;
__webpack_require__.p = "";
return __webpack_require__(0);
})

Then, it exposes the module's object, cache, and the public path and then returns the
entry module, let's take a look at the following code snippet:

([
 /* 0 */
 /***/ function(module, exports, __webpack_require__) {

 var Hello = __webpack_require__(1);
 console.log(Hello());

Hello is now assigned to __webpack_require__(1). The number refers to the next
module (since it starts counting at 0). Now refer to the following:

 /***/ },
 /* 1 */
 /***/ function(module, exports) {

 module.exports = (function () {
 return 'Hello world!';
 })
 }
]);

Both module sources themselves are executed as arguments to the IIFE.

Chapter 6

[223]

So far, both Webpack and Browserify look very much alike. They both analyze
your entry file and wrap the sources in a self-executable closure. They also include
a caching strategy and maintain a relation tree so that it can tell how the module
requires one another.

In fact, just by looking at the generated code, it's hard to see that there's much to
separate them, different code styles aside.

There's a very big difference, however, and that is how Webpack has organized its
ecosystem and configuration strategy. While it's true the configuration is convoluted
and slightly hard to understand, it's hard to argue against the results you can achieve.

You can configure Webpack to do (almost) anything you want, including replacing
the current code loaded in your browser with the updated code while preserving
the state of the app. This is called hot module replacement or hmr for short.

Webpack is configured by writing a special configuration file, usually called
webpack.config.js. In this file, you specify the entry and output parameters,
plugins, module loaders, and various other configuration parameters.

A very basic config file looks like this:

var webpack = require('webpack');
module.exports = {
 entry: [
 './entry'
],
 output: {
 path: './',
 filename: 'bundle.js'
 }
};

It's executed by issuing this command from the command line:

webpack --config webpack.config.js

Or simply, without the config parameters, Webpack will automatically look for the
presence of webpack.config.js.

Advanced React

[224]

In order to convert the source files before bundling, you use module loaders.
Adding this section to the Webpack config file will make sure Babel converts
JavaScript 2015 code into ECMAScript 5:

module: {
 loaders: [{
 test: /.js?$/',
 loader: 'babel',
 exclude: /node_modules/,
 query: {
 presets: ['es2015','react']
 }
 }]
}

Let's review the options in detail:

•	 The first option (required), test, is a regex match that tells Webpack which
files this loader operates on. The regex tells Webpack to look for files with
a period followed by the letters js and then any optional letters (?) before
the end ($). This makes sure the loader reads both plain JavaScript files
and JSX files.

•	 The second option (required), loader, is the name of the package that we'll
use to convert the code.

•	 The third option (optional), exclude, is another regex used to explicitly
ignore a set of folders or files.

•	 The final option (optional), query, contains special configuration options for
your loader. In our case, it contains options for the Babel loader. For Babel,
the recommended way to do it is actually setting them in a special file called
.babelrc. We'll be doing this later in the scaffold that we'll develop.

A difficult choice – Browserify or Webpack
Browserify gets points for being easy to get started with, but loses out because of the
increase in complexity when you need to add transforms and because it's, in general,
more limited than Webpack.

Webpack is harder to grasp initially, but progressively gets more useful as you
unravel the complexity. The big upside to using Webpack is its ability to replace code
in runtime with its ecosystem of hot reload tools, and the powerful, opinionated way
in which it can be extended to suit every need. It's worth noting that there's efforts
underway to develop an hmr module for Browserify as well. You can preview the
project at https://github.com/AgentME/browserify-hmr.

https://github.com/AgentME/browserify-hmr

Chapter 6

[225]

They're both terrific tools, and it's worth learning to use both. For some types
of projects, using Browserify makes the most sense, and for others, Webpack is
clearly the way to go.

Moving on, we'll create a new basic setup, a scaffold, which we'll use when
developing a login app with Redux later in this chapter.

This is going to be a lot of fun!

Creating a new scaffold with Webpack
Create a new folder and initialize it with npm init and then add the following
dependencies:

npm i --save-dev babel-core@6.8.0 babel-loader@6.2.4 babel-plugin-
react-transform@2.0.2 babel-preset-es2015@6.6.0 babel-preset-react@6.5.0
react@15.0.2 react-dom@15.0.2 react-transform-catch-errors@1.0.2
react-transform-hmr@1.0.4 redbox-react@1.2.4 webpack@1.13.0 webpack-
dev-middleware@1.6.1 webpack-hot-middleware@2.10.0 && npm i --save
express@4.13.4

All but one of the dependencies will be saved as devDependencies. When you
perform an npm install command later, all modules in both the dependencies
section and the devDependencies section will be installed.

You can specify which section to install by providing npm with either the dev or
production flag. For instance, this will install only the packages in the dependencies
section:

npm install --production

Your package.json file should now look like this:

{
 "name": "chapter6",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "babel-core": "^6.8.0",
 "babel-loader": "^6.2.4",

Advanced React

[226]

 "babel-plugin-react-transform": "^2.0.2",
 "babel-preset-es2015": "^6.6.0",
 "babel-preset-react": "^6.5.0",
 "react": "^15.0.2",
 "react-dom": "^15.0.2",
 "react-transform-catch-errors": "^1.0.2",
 "react-transform-hmr": "^1.0.4",
 "redbox-react": "^1.2.4",
 "webpack": "^1.13.0",
 "webpack-dev-middleware": "^1.6.1",
 "webpack-hot-middleware": "^2.10.0"
 },
 "dependencies": {
 "express": "^4.13.4"
 }
}

The Babel configuration
Next, create a new file, name it .babelrc (no prefix before the dot), and add the
following code to it:

{
 "presets": ["react", "es2015"],
 "env": {
 "development": {
 "plugins": [
 ["react-transform", {
 "transforms": [{
 "transform": "react-transform-hmr",
 "imports": ["react"],
 "locals": ["module"]
 }, {
 "transform": "react-transform-catch-errors",
 "imports": ["react", "redbox-react"]
 }]
 }]
]
 }
 }
}

Chapter 6

[227]

This configuration file will be used by Babel to use the presets we just installed
(React and ES2015). It will also instruct Babel which transforms we'd like to use.
Putting the transforms inside the env:development file will make sure it won't be
accidentally enabled in production.

The Webpack configuration
Next, let's add the Webpack configuration module. Create a new file called webpack.
config.js and add this code to it:

var path = require('path');
var webpack = require('webpack');

module.exports = {
 devtool: 'cheap-module-eval-source-map',
 entry: [
 'webpack-hot-middleware/client',
 './source/index'
],

This will instruct Webpack to first use the hot module replacement as the initial entry
point and then our source root. Now refer to the following:

 output: {
 path: path.join(__dirname, 'public'),
 filename: 'bundle.js',
 publicPath: '/assets/'
 },

We'll set the output path to be the public folder, meaning that any content that is
accessed should reside in this folder. We'll also instruct Webpack to use the bundle.
js filename and specify that it should be accessed from the assets folder.

In our index.html file, we will access the file via a script tag pointing to assets/
bundle.js, but we won't actually put a real bundle.js file in the assets folder.

The hot middleware client will make sure that when we try to access the bundle, the
generated bundle will be served instead.

When we're ready to create the real bundle for production, we'll generate a bundle.js
file with the production flag parameter and store it in public/assets/bundle.js:

 plugins: [
 new webpack.optimize.OccurenceOrderPlugin(),
 new webpack.NoErrorsPlugin(),
 new webpack.HotModuleReplacementPlugin()
],

Advanced React

[228]

We'll use three plugins. The first one makes sure the modules are loaded in order,
the second is to prevent unnecessary error reporting in our console log, and the third
one is to enable the hot module loader, such as follows:

 module: {
 loaders: [{
 tests: /\.js?$/,
 loaders: ['babel'],
 include: path.join(__dirname, 'source')
 }]
 },

We'll add the Babel loader so that any JavaScript or JSX file gets transpiled before
being bundled:

 resolve: {
 extensions: ['', '.js', '.jsx']
 }
};

And finally, we'll tell Webpack to resolve files that we import regardless of them
having the .js or .jsx extension. This means that we will not have to write import
foo from 'foo.jsx', but can write import foo from 'foo' instead.

Adding assets
Next, let's add the assets folder and the files we'll reference there. We'll create it in
the root folder rather than create a public folder. (We actually won't need to do this
at all. This folder is not necessary to create while in development mode).

Create the folder and add two files: app.css and favicon.ico.

The favicon.ico is not strictly necessary, so you may choose to drop it. You can
probably find one scattered around your computer, or create one by going to favicon
generator sites such as http://www.favicon.cc.

The reason it's included here is this: if it's not present, you'll see failed requests for
the icon in your log every time you reload your site, so it represents log noise that's
worth getting rid of.

Open assets/app.css and add this code:

body {
 font-family: serif;
 padding: 50px;
}

http://www.favicon.cc

Chapter 6

[229]

This simply adds a general padding of 50 pixels around the body.

Next, we need to add an index.html file. Create it in the root of your app and add
this content:

<!DOCTYPE html>
<html>
 <head>
 <title>ReactJS + Webpack Scaffold</title>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <link rel="stylesheet" href="app.css">
 </head>
 <body>
 <div id="app"></div>
 <script src="assets/bundle.js"></script>
 </body>
</html>

Creating an Express server
We also need to create an Express app to power our development server.
Add server.js to your root folder and then add this code:

var path = require('path');

This module lets us join path strings in a more comfortable and safe manner than
concatenating strings. For one, it takes away our worry of knowing whether the
directory path has a trailing slash or not.

You almost always get this wrong on your first try when you're
concatenating strings manually.

We'll use the Express web server, Webpack, and the Webpack config we just created:

var express = require('express');
var webpack = require('webpack');
var config = require('./webpack.config');
var port = process.env.PORT || 8080;

Advanced React

[230]

We'll preset the port we're going to use as 8080 unless it's specified as a parameter
to the node. To specify parameters, such as the port, start the server in a way that it
would look like PORT=8081 node server.js:

var app = express();
var compiler = webpack(config);

We'll create a local variable called app and point it to a new instance of the Express
web server. We'll also create another variable called compiler that will configure
Webpack to use our config file. This is equivalent to starting Webpack from the
command line with webpack –config webpack.config.js:

app.use('/', express.static(path.join(__dirname, 'assets')));

We'll define the assets folder as a static folder in Express. This is built-in
middleware that configures Express to look for files in the provided folders.
Middleware is software that serves to glue applications together or provide
additional functionality. The static middleware lets us reference app.css directly
in the link tag in our index.html file rather than referencing the assets folder:

app.use(require('webpack-dev-middleware')(compiler, {
 quiet: true,
 noInfo: true,
 publicPath: config.output.publicPath
}));

We'll tell Express to use webpack-dev-middleware with the compiler variable, along
with some extra instructions (noInfo will prevent the console log from showing the
Webpack compile information every time it recompiles; publicPath instructs the
middleware to use the path we defined in our config file, and quiet hushes up any
other debug that noInfo covers):

app.use(require("webpack-hot-middleware")(compiler, {
 log: console.log,
 path: '/__webpack_hmr',
 heartbeat: 10 * 1000
}));

This instructs Express to use the hot middleware package (while the previous one
told it to use the dev middleware). The dev middleware is a wrapper for Webpack
that serves the files emitted from Webpack in memory rather than bundling them
as files. When we couple this with the hot middleware package, we gain the ability
to have any code changes reloaded and executed in the browser. The heartbeat
parameter tells the middleware how often it should update.

Chapter 6

[231]

You can adjust the heartbeat to update more often, but the number chosen works
rather well:

app.get('*', function(req, res) {
 res.sendFile(path.join(__dirname, 'index.html'));
});

This section routes every request to the Express app to our root folder:

app.listen(port, 'localhost', function(err) {
 if (err) {
 console.log(err);
 return;
 }

Finally, we start the app on the chosen port:

 console.log('Listening at http://localhost:'+port);
});

The server is now ready. All you need to complete your setup now is add a ReactJS
component. We'll use the new ES6 class-based syntax rather than the createClass
syntax we've used until now.

Adding ReactJS to the mix
Add a new folder called source and add a file called index.jsx. Then, add
this code:

'use strict';
import React, { Component, PropTypes } from 'react';
import { render } from 'react-dom';

class App extends Component {
 render() {
 return <div>
 <h1>ReactJS Blueprints Chapter 6 Webpack scaffold</h1>
 <div>
 To use:
 <p>
 1. Run npm i to install
 </p>
 <p>
 2. Run npm start to run dev server
 </p>
 <p>

Advanced React

[232]

 3. View results in http://localhost:8080/

 </p>
 <p>
 4. Success
 </p>
 </div>

 </div>
 }

The render function looks the same as before.

Note that we've also not used commas anymore to separate our functions.
They aren't necessary within a class.

Let's take a look at the following code snippet:

}

render(
 <App />,
 document.getElementById('app')
);

The last function call is made to react-dom render, which takes care of populating
the document container with the app ID along with the contents of our source file.

Starting the server
We're ready to run our server and be able to see the results for the first time.
Start the app by executing node server.js in your terminal and open
http://localhost:8080 in your browser:

Chapter 6

[233]

You should now be greeted with the intro text you added to source/index.jsx.

Congratulations! You've completed all the steps necessary to get going with
Webpack and hot reload.

Granted, this setup is a bit more complex as compared to the Browserify setup,
but the benefits of increased complexity will be apparent to you as you go ahead
and make modifications to your source files; you'll be able to see the changes being
updated in your browser as soon as you hit the Save button.

This is superior to the way we did it before because the app is able to keep the state
of the app intact, even while reloading changes in your code. This means that when
you're developing a complex app, you don't need to reiterate a lot of state changes to
reach some code that you changed. This is guaranteed to save you a lot of time and
frustration in the long run.

Introducing Redux
Until now, we've used Reflux to handle store and state interaction, but moving
forward, we'll use a different implementation of the Flux architecture. It's called
Redux and is quickly gaining traction as a superior Flux implementation.

It's also infamous for being hard to understand, throwing both newcomers and
experienced developers off-kilter with its duality of simplicity and complexity.
This is partly because it's purely a functional approach to Flux.

Advanced React

[234]

When ReactJS was first introduced to the public in late 2013 / early 2014, you would
often hear it mentioned together with functional programming.

However, there's no inherent requirement to write functional code when writing
React, and JavaScript itself being a multi-paradigm language is neither strictly
functional nor strictly procedural, imperative, or even object-oriented.

There are a number of benefits to choosing a functional approach:

•	 No side-effects allowed, that is, the operation is stateless
•	 Always returns the same output for a given input
•	 Ideal for creating recursive operations
•	 Ideal for parallel execution
•	 Easy to establish the single source of truth
•	 Easy to debug
•	 Easy to persist the store state for a faster development cycle
•	 Easy to create functionalities, such as undo and redo
•	 Easy to inject a store state for server rendering

The concept of stateless operations is possibly the number one benefit, as it makes
it very easy to reason the state of your application. We already used this approach
with the Reflux example in our first app in Chapter 2, Creating a Web Shop, where the
store state was only changed in the main app and then propagated downward to
all the app's children. This is, however, not the idiomatic Reflux approach, because
it's actually designed to create many stores and have the children listen to changes
separately.

The application state is the single hardest part of any application, and every single
implementation of Flux has attempted to solve this problem. Redux solves it by not
actually doing Flux at all; it actually uses an amalgamation of the ideas of Flux and
the functional programming language, Elm.

There are three parts to Redux: actions, reducers, and the global store.

The global store
In Redux, there is only one global store. It is an object that holds the state of your
entire application. You create a store by passing your root-reducing function
(or reducer for short) to a method called createStore.

Chapter 6

[235]

Rather than creating more stores, you use a concept called reducer composition
to split data-handling logic. You will then need to use a function called
combineReducers to create a single root reducer.

The createStore function is derived from Redux and is usually called once in
the root of your app (or your store file). It is then passed on to your app and then
propagated to the app's children.

The only way to change the state of the store is to dispatch an action to it. This is
not the same as a Flux dispatcher, because Redux doesn't have one. You can also
subscribe to changes from the store in order to update your components when the
store changes state.

Understanding actions
An action is an object that represents an intention to change the state. It must have a
type field that indicates what kind of action is being performed. They can be defined
as constants and imported from other modules.

Apart from this requirement, designing the structure of an object is entirely up
to you.

A basic action object can look like this:

{
 type: 'UPDATE',
 payload: {
 value: "some value"
 }
}

The payload property is optional and can work like objects we discussed earlier or
any other valid JavaScript type, such as a function or primitive.

Understanding reducers
A reducer is a function that accepts an accumulation along with a value and returns
a new accumulation. In other words, it returns the next state based on the previous
state and an action.

It must be a pure function, free of side effects, and it does not mutate the existing state.

For smaller apps, it's okay to start with a single reducer, but as your app grows, you
split off smaller reducers that manage specific parts of your state tree.

Advanced React

[236]

This is what's called reducer composition and is the fundamental pattern of building
apps with Redux.

You start with a single reducer, but as your app grows, you need to split it off into
smaller reducers that manage specific parts of the state tree. Because reducers are just
functions, you can control the order in which they are called, pass additional data, or
even make reusable reducers for common tasks such as pagination.

It's okay to have many reducers. In fact, it's encouraged.

Installing Redux
Let's add Redux to our scaffold and see how it works. You only need two packages
when getting started with redux: redux and react-redux. We'll add a few more to
our app that will help us debug when we are developing the app. First, install these
dependencies:

npm install --save-dev redux@3.5.2 redux-devtools@3.3.1 react-redux@4.4.5
redux-thunk@2.1.0 isomorphic-fetch@2.2.0 react-bootstrap@0.29.4 redux-
devtools-dock-monitor@1.1.1 redux-devtools-log-monitor@1.0.11

When this is done, the devDepencies section of your package.json file should have
these packages:

"devDependencies": {
 "react-redux": "^4.4.5",
 "redux": "^3.5.2",
 "redux-thunk": "^2.1.0",
 "redux-devtools": "^3.3.1",
 "isomorphic-fetch": "^2.2.0",
 "react-bootstrap": "^0.29.4",
 "redux-devtools-dock-monitor": "^1.1.1",
 "redux-devtools-log-monitor": "^1.0.11"
}

It's worth noting that new versions get released all the time,
so it's good to make sure you have the same version numbers
that were current when these examples were written. You can
install the exact version numbers when you install packages
by adding the version number to the install command, like
we've done in the preceding code snippet.

Chapter 6

[237]

Creating a login app
Now that we've made a new scaffold based on Webpack and added Redux to the mix,
let's go ahead and make an app that handles authentication using the new libraries.

Creating an action
We're going to start by adding an action. The app we'll be making is a login app,
where you'll be prompted for a username and password upon entry.

Let's start by making a folder structure separating the functionality. Create a folder
called actions within the source folder and add a file called login.js; then, add
this code:

'use strict';
import fetch from 'isomorphic-fetch';

Fetch is a new interface for fetching resources. It will be recognizable if you've used
XMLHttpRequest in the past or Superagent with Promises, as we've used in previous
chapters. The new API supports Promises out of the box, supporting a generic
definition of Request and Response objects. It also provides a definition for concepts
such as Cross-Origin Resource Sharing (CORS) and HTTP Origin header semantics.

We could have used Fetch right out of the box with Babel, but this package is
preferable because it adds Fetch as a global function that has a consistent API for
use in both server and client code. This will be in a later chapter where we'll create
an isomorphic app. Consider the following code:

export const LOGIN_USER = 'LOGIN_USER';

This defines a single action constant that we can use when we want to dispatch the
action. Now check this out:

export function login(userData) {

With this, we create and export a single function called login that accepts a userData
object. Now we'll create a body variable that holds the username and password:

 const body = { username: userData.username,
 password: userData.password };

Advanced React

[238]

This is not strictly necessary as we can easily pass the userData object along, but
the idea is that by making it explicit, we're sending a username and password and
nothing else. This will be easy to understand when you look at the next chunk
of code:

 const options = {headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer 1234567890'
 },
 method: 'post',
 body: JSON.stringify(body)
}

We will send the POST request with an Accept header and Content-Type, both
specifying that we're working with JSON data. We'll also send an authorization
header with a bearer token.

You have seen this bearer token before, in Chapter 4, Building a Real-Time Search App.
The API that we're going to reference is very similar to the one we built then.
We'll look at the API as soon as we're finished with the frontend code.

The body is passed through the JSON.stringify() method because we can't send
a raw JavaScript object through HTTP. The method converts an object to a proper
JSON representation, optionally replacing values if a replacer function is specified.
Check this out:

 return dispatch => {
 return fetch(`http://reactjsblueprints-
 useradmin.herokuapp.com/v1/login`, options)
 .then(response => response.json())
 .then(json => dispatch(setLoginDetails(json)))
 }
}

This is the return section of our login function. It first connects to our login API
through the fetch function, which returns a Promise.

Notice that we're using the new backticks available through
JavaScript 2015.

Chapter 6

[239]

When the Promise is resolved, we fetch the JSON response from the object through
the native json() method available with the fetch API. Finally, we return the JSON
data through a dispatch to an internal function called setLoginDetails:

function setLoginDetails(json) {
 if(json.length === 0) {
 return {
 type: LOGIN_FAIL,
 timestamp: Date.now()
 }
 }
 return {
 type: LOGIN_USER,
 loginResponse: json,
 timestamp: Date.now()
 }
}

If json contains a valid response, setLoginDetails returns an action object with
a type that maps to the LOGIN_USER string value and two custom values. Remember
that an action must always return a type and that anything else it returns is optional
and up to you. If the json parameter is empty, the function returns LOGIN_FAIL.

Creating a reducer
The next file we're going to add is a reducer. We'll put it in a folder of its own.
So create a folder called reducers within source and add a file called login.js
(same as the action), then add this code:

'use strict';
import {
 LOGIN_USER,
 LOGIN_FAIL
} from '../actions/login';
import { combineReducers } from 'redux'

We'll import the file we just created as well as the combineReducer() method from
Redux. We'll only create one reducer for now, but I like to add it from the start since
it's typical to add more reducers as the app grows. It generally makes sense to have
a root file to combine reducers as the number of your reducers grow. Next, we'll
declare a function that expects a state object and action as its arguments:

function user(state = {
 message: "",
 userData: {}
}, action){

Advanced React

[240]

When action.type returns a successful state, we return the state and add or update
the userData and timestamp parameters:

switch(action.type) {
 case LOGIN_USER:
 return {
 ...state,
 userData: action.loginResponse[0],
 timestamp: action.timestamp
 };

Note that in order to use the spread operator in our reducer, we need to add a new
preset to our .babelrc configuration. This is not part of EcmaScript 6 but is proposed
as an extension to the language. Open up your terminal and run this command:

npm install –save-dev babel-preset-stage-2

Next, modify the presets section in .babelrc so that it looks like this:

"presets": ["react", "es2015", "stage-2"]

We'll also add a case in case there is a failure to log the user in:

 case LOGIN_FAIL:
 return {
 ...state,
 userData: [],
 error: "Invalid login",
 timestamp: action.timestamp
 };

Finally, we'll add a default case. It's not strictly necessary, but it's generally prudent to
handle any unforeseen cases like this:

 default:
 return state
 }
}

const rootReducer = combineReducers({user});

export default rootReducer

Chapter 6

[241]

Creating a store
The next file we're going to add is a store. Create a folder called stores within your
source folder, add the store.js file, and then add this code:

'use strict';
import rootReducer from '../reducers/login';

We'll import the reducer we just created:

import { persistState } from 'redux-devtools';
import { compose, createStore, applyMiddleware } from 'redux';
import thunk from 'redux-thunk';
import DevTools from '../devtools';

We'll need a few methods from Redux. The devtools package is needed for
development only and must be removed when going to production.

In computer science, thunk is an anonymous expression that has no parameters of
its own wrapped in an argument expression. A redux-thunk package lets you write
action creators that return a function instead of an action. The thunk package can
be used to delay the dispatch of an action, or to dispatch only if a certain condition
is met. The inner function receives the store methods dispatch and getState()
as parameters.

We'll use this to send an asynchronous dispatch to our login API:

const configureStore = compose(
 applyMiddleware(thunk),
 DevTools.instrument()
)(createStore);
const store = configureStore(rootReducer);

export default store;

Adding devtools
Devtools are the primary way you will work with the state in your app. We'll install
the default log and dock monitors, but you may develop your own if they don't
suit you.

Add a file called devtools.js to your source folder and add this code:

'use strict';
import React from 'react';

Advanced React

[242]

import { createDevTools } from 'redux-devtools';

import LogMonitor from 'redux-devtools-log-monitor';
import DockMonitor from 'redux-devtools-dock-monitor';

Monitors are separate packages, and you can make custom ones, let's take a look at
the following code:

const DevTools = createDevTools(

Monitors are individually adjustable with props. Take a look at the source code for
the devtools to learn more about how they're built. Here, we put LogMonitor inside
a DockMonitor class:

 <DockMonitor toggleVisibilityKey='ctrl-h'
 changePositionKey='ctrl-q'>
 <LogMonitor theme='tomorrow' />
 </DockMonitor>
);

export default DevTools;

Tying the files together
It's time to tie the app together. Open index.jsx and replace the existing content
with this code:

import React, { Component, PropTypes } from 'react'
import { Grid, Row, Col, Button, Input } from 'react-bootstrap';
import { render, findDOMNode } from 'react-dom';
import store from './stores/store';
import { login } from './actions/login'
import { Provider } from 'react-redux'
import { connect } from 'react-redux'
import DevTools from './devtools';

This adds all the files we created and the methods we needed from ReactJS. Now
refer to the following code:

class App extends Component {

 handleSelect() {
 const { dispatch } = this.props;
 dispatch(
 login(
 {

Chapter 6

[243]

 username: findDOMNode(this.refs.username).value,
 password: findDOMNode(this.refs.password).value
 }))
 }

This function dispatches the login action we defined in actions/login.js with
the contents of the username and password input fields defined in the render()
method, as follows:

 renderWelcomeMessage() {
 const { user } = this.props;
 let response;
 if(user.userData.name) {
 response = "Welcome "+user.userData.name;
 }
 else {
 response = user.error;
 }
 return (<div>
 { response }
 </div>);
 }

This is a small piece of JSX code that we use to display either a welcome message
or an error message after a login attempt. Now check out the following code:

 renderInput() {
 return <form>
 <div>
 <FormGroup>
 <ControlLabel>Username</ControlLabel>
 <FormControl type= "text"
 ref = "username"
 placeholder= "username"
 />
 <FormControl.Feedback />
 </FormGroup>
 </div>

 <div>
 <FormGroup>
 <ControlLabel>Password</ControlLabel>
 <FormControl type= "password"
 ref = "password"

Advanced React

[244]

 placeholder= "password"
 />
 <FormControl.Feedback />
 </FormGroup>
 </div>

 <Button onClick={this.handleSelect.bind(this)}>Log
 in</Button>
 </form>)
 }

These are the input fields for logging in a user.

Note that we must bind the context ourselves with .bind(this).

With createClass, binds were created automatically, but no such magic exists
when you use JavaScript 2015 classes. The next iteration of JavaScript may bring
a proposed new syntactic sugar for bind (::), which means that we could have
used this.handleSelect without explicitly binding it, but it's still a way off from
being implemented:

 render () {
 const { user } = this.props;
 return (
 <Grid>
 <DevTools store={store} />
 <Row>
 <Col xs={ 12 }>
 <h3> Please log in </h3>
 </Col>

 <Col xs={ 12 }>
 { this.renderInput() }
 </Col>

 <Col xs={ 12 }>
 { this.renderWelcomeMessage() }
 </Col>
 </Row>
 </Grid>
);
 }
};

Chapter 6

[245]

This render block simply presents the visitor with the option to log in. The app will
attempt to log in when the user clicks on Enter, and it will either present the visitor
with a welcome message or the invalid login message.

This function converts the app state to a set of properties that we can pass to the
children components:

function mapStateToProps(state) {
 const { user } = state;
 const {
 message
 } = user || {
 message: ""
 }

 return {
 user
 }
}

This is where we define the app with the Redux connect() method, which connects
a React component to a Redux store. Rather than modifying the component in place,
it returns a new component class that we can render:

const LoginApp = connect(mapStateToProps)(App);

We create a new component class that wraps the LoginApp component inside a
Provider component:

class Root extends Component {
 render() {
 return (
 <Provider store={store}>
 <LoginApp />
 </Provider>
)
 }
}

Advanced React

[246]

The Provider component is special because it is responsible for passing the store
as a property to the children components. It's recommended that you create a root
component wrapping the app inside Provider, unless you want to manually pass
the store yourself to all children components. Finally, we pass the Root component
to render it and to ask it to display the contents inside div with the ID App in
index.html:

render(
 <Root />,
 document.getElementById('app')
);

The result of doing this is illustrated in the following screenshot:

The app itself looks very unassuming, but it's worth looking at the devtools to the right
of the screen. This is the Redux dev tools, and it tells you that you have an app state
with a user object with two keys. If you click on user, it will open and show you that it
consists of an object with an empty message string and an empty userData object.

This is exactly how we configured it in source/index.jsx, so if you see this, it's
working as expected.

Chapter 6

[247]

Try to log in by typing in a username and password. Hint: the combo
darth/vader or john/sarah will let you log in.

Notice that you can now instantly navigate through your app state by clicking on the
action buttons in your developer toolbar.

Handling refresh
Your app is ready and you're able to log in, but if you refresh, your login information
is gone.

While it'd be nice if your users never refreshed your page after login, it's not feasible
to expect this behavior from your users, and you'd surely be left with users either
complaining or leaving your site and never coming back.

What we need to do is find a way to inject the previous state in our stores upon
initializing. Fortunately, this is not very hard; we just need a secure place to store
the data that we want to survive a refresh.

To this end, we'll use sessionStorage. It is similar to localStorage, the only
difference being that while data stored in localStorage has no expiration set,
any data stored in sessionStorage gets cleared when the page session ends.

A session lasts for as long as the browser window is open and it survives page
reloads and restores.

It doesn't support opening the same page in a new tab or a window, which is the
main difference between this and, for instance, session cookies.

The first thing we'll do is change actions/login.js and modify the function
setLoginDetails. Replace the function with this code (and note that now we
will export it):

export function setLoginDetails(json) {
 const loginData = {
 type: LOGIN_USER,
 loginResponse: json,
 timestamp: Date.now()
 };
 sessionStorage.setItem('login',JSON.stringify(loginData));
 return loginData;
}

Advanced React

[248]

We'll then enter index.jsx and add the function to our imports. Add it to the line
with imports from actions/login like this:

import { login, setLoginDetails } from './actions/login'

And then, we'll add a new function within the App class:

componentWillMount() {
 const { dispatch, } = this.props;
 let storedSessionLogin = sessionStorage.getItem('login');
 if(storedSessionLogin){
 dispatch(
 setLoginDetails(
 JSON.parse(storedSessionLogin).loginResponse)
);
 }
 }

Before the component mounts, it will check whether there's a stored entry inside
sessionStorage that holds the user info. If there is, it will dispatch an action call
to setLoginDetails, which will simply set the state to logged in and display the
familiar welcome message.

And that's all you need to do.

There are other ways to inject a state than by simply dispatching actions. You
could do it in the mapStateToProps function and set an initial state based on
sessionStorage, session cookies, or some other source of data (we'll come
back to this when making an isomorphic app).

The Login API
In the app we just created, we logged in to an existing API. You may wonder how
the API is constructed, so let's take a look at it.

To create the API, start a new project and execute npm init to create an empty
package.json file. Then, install the following packages:

npm install --save body-parser@1.14.1 cors@2.7.1 crypto@0.0.3
express@4.13.3 mongoose@@4.3.0 passport@0.3.2 passport-http-bearer@1.0.1

Chapter 6

[249]

Your package.json file should now look like this:

{
 "name": "chapter6_login_api",
 "version": "1.0.0",
 "description": "Login API for Chapter 6 ReactJS Blueprints",
 "main": "index.js",
 "dependencies": {
 "body-parser": "^1.14.1",
 "cors": "^2.7.1",
 "crypto": "0.0.3",
 "express": "^4.13.3",
 "mongoose": "^4.3.0",
 "passport": "^0.3.2",
 "passport-http-bearer": "^1.0.1"
 },
 "scripts": {
 "test": "echo \"Error: no test specified\" "
 },
 "author": "Your name <your@email>",
 "license": "ISC"
}

We'll use 3 to hold our user data as we did in Chapter 4, Building a Real-Time Search
App, and I refer you to this chapter to set it up on your system.

The entire API is a single Express application. Create a file in the root of your app
called index.js and add this code:

'use strict';
var express = require('express');
var bodyparser = require('body-parser');
var mongoose = require('mongoose');
var cors = require('cors');
var passport = require('passport');
var Strategy = require('passport-http-bearer').Strategy;

var app = express();
app.use(cors({credentials: true, origin: true}));

Advanced React

[250]

Cross-Origin Resource Sharing (CORS) defines a way in which a browser and server
can interact to safely determine whether or not to allow a cross-origin request. It's
famous for making life hard for API developers, so it's worth your while to install
the cors package and use it in your Express app to alleviate the pain:

mongoose.connect(process.env.MONGOLAB_URI ||
 'mongodb://localhost/loginapp/users');

We'll use a free MongoLab instance if it exists in our config file, or a local MongoDB
database if not. We'll use the same token as in Chapter 4, Building a Real-Time Search
App, but we'll look at making it more secure in a later chapter:

var appToken = '1234567890';

passport.use(new Strategy(
 function (token, cb) {
 //console.log(token);
 if (token === appToken) {
 return cb(null, true);
 }
 return cb(null, false);
 })
);

The database model is very simple, but could be expanded to add user e-mail
addresses and more information if it's deemed as worthwhile to fetch. However,
the more information you ask for, the less likely it is that the user will sign up for
your service:

var userSchema = new mongoose.Schema({
 id: String,
 username: String,
 password: String
});

var userDb = mongoose.model('users', userSchema);

We'll encrypt all passwords stored in the database with AES 256-bit encryption. This
is a very strong form of security (and is in fact the same as the TLS/SSL encryption
used for secure communication on the Internet):

var crypto = require('crypto'),
 algorithm = 'aes-256-ctr',
 password = '2vdbhs4Gttb2';

Chapter 6

[251]

Refer to the following lines of code:

function encrypt(text) {
 var cipher = crypto.createCipher(algorithm,password)
 var crypted = cipher.update(text,'utf8','hex')
 crypted += cipher.final('hex');
 return crypted;
}

function decrypt(text) {
 var decipher = crypto.createDecipher(algorithm,password)
 var dec = decipher.update(text,'hex','utf8')
 dec += decipher.final('utf8');
 return dec;
}

These are the functions we'll use to encrypt and decrypt user passwords. We'll accept
user password as text, then encrypt it and check whether the encrypted version
exists in our database. Now check this out:

var routes = function (app) {
 app.use(bodyparser.json());

 app.get('/',
 function (req, res) {
 res.json(({"message":"The current version of this API is v1.
 Please access by sending a POST request to /v1/login."}));
 });

 app.get('/login',
 passport.authenticate('bearer', {session: false}),
 function (req, res) {
 res.json(({"message":
 "GET is not allowed. Please POST request with username
 and password."}));
 });

This API needs POST data, so we'll display helpful information to anyone trying to
access this via GET, since it isn't possible to fetch any data with the GET method.

Advanced React

[252]

We'll look for usernames and passwords and make sure we lowercase them because
we don't support variable case strings:

 app.post('/login',
 passport.authenticate('bearer', {session: false}),
 function (req, res) {
 var username = req.body.username.toLowerCase();
 var password = req.body.password.toLowerCase();

 userDb.find({login: username,
 password: encrypt(password)},
 {password:0},
 function (err, data) {
 res.json(data);
 });
 });
}

Moreover, we'll also specify that the password should not be a part of the resulting
result set by setting the field to 0 or false.

We'll then search our database for a user that has the requested username and the
provided password (but we need to make sure to look for the encrypted version).
This way, we never know what the user's real password is. The API will use /v1 as
the route prefix:

var router = express.Router();
routes(router);
app.use('/v1', router);

Note that you could alternately use an accept header to separate between versions
of your API:

var port = 5000;
app.listen(process.env.PORT || port, function () {
 console.log('server listening on port ' + (process.env.PORT ||
 port));
});

Chapter 6

[253]

Finally, we can start the API. When we try to send a GET request, we get the anticipated
error response, and when we send a valid body with the correct username and
password, the API delivers the data it has. Let's take a look at the following screenshot:

Summary
Congratulations! With this, you've just completed the advanced ReactJS chapter.

You've learned the difference between Browserify and Webpack and made a new
basic setup with Webpack and hot module replacement that provides you with a
fantastic developer experience.

You've also learned how to create React components using JavaScript 2016 classes
and how to add the popular state management library: Redux. Furthermore, you
wrote another API, this time the one used for logging in users with a username
and password.

Advanced React

[254]

Pat yourself on the back, because this was a very heavy chapter.

The finished project can be viewed online at https://
reactjsblueprints-chapter6.herokuapp.com.

In the next chapter, we'll use what we've learned in the last couple of chapters to
write a web app that relies heavily on web APIs and the Webpack/Redux setup
from this chapter. Roll up your sleeves because we're going to make a social network
based around snapping images.

https://reactjsblueprints-chapter6.herokuapp.com
https://reactjsblueprints-chapter6.herokuapp.com

[255]

Reactagram
In this chapter, we'll apply the skills we've developed in the previous chapters and
assemble a social web app based around photos. The app will be usable on desktop
browsers as well as native phones and tablets.

We'll explore an alternative to the Flux architecture in this chapter by connecting to a
real-time database solution called Firebase. We'll create a higher order function that
we'll implement as a singleton wrapped around our routes. This setup will enable us
to provide our users with real-time streaming as well as the like functionality in our
app while still adhering to the principle of one-way data flow.

We'll also explore another cloud-based service called Cloudinary. It's a cloud service
for uploading and hosting images. It's a pay service, but has a generous free tier that
will suffice our needs. We'll make an upload service in our Express server that will
handle image uploading, and we'll also explore image manipulation in canvas.

These are the topics that we'll cover:

•	 Using the web camera API
•	 Capturing photo input to an HTML5 canvas
•	 Applying an image filter by manipulating canvas pixels
•	 Connecting to Firebase and uploading images to the cloud
•	 Viewing a stream of all the submitted photos in real time
•	 Real-time comments and likes

Reactagram

[256]

Getting started
We'll start by using the Webpack scaffold we developed in Chapter 6, Advanced React.
These are the dependencies we need to install from npm:

"devDependencies": {
 "autoprefixer": "^6.2.3",
 "babel-core": "^6.3.26",
 "babel-loader": "^6.2.0",
 "babel-plugin-react-transform": "^2.0.0",
 "babel-preset-es2015": "^6.3.13",
 "babel-preset-react": "^6.3.13",
 "babel-tape-runner": "^2.0.0",
 "classnames": "^2.2.3",
 "exif-component": "^1.0.1",
 "exif-js": "^2.1.1",
 "firebase": "^2.3.2",
 "history": "^1.17.0",
 "imagetocanvas": "^1.1.5",
 "react": "^0.14.5",
 "react-bootstrap": "^0.28.2",
 "react-dom": "^0.14.5",
 "react-router": "^1.0.3",
 "react-transform-catch-errors": "^1.0.1",
 "react-transform-hmr": "^1.0.1",
 "reactfire": "^0.5.1",
 "redbox-react": "^1.2.0",
 "superagent": "^1.6.1",
 "webpack": "^1.12.9",
 "webpack-dev-middleware": "^1.4.0",
 "webpack-hot-middleware": "^2.6.0"
},
"dependencies": {
 "body-parser": "^1.14.2",
 "cloudinary": "^1.3.0",
 "cors": "^2.7.1",
 "envs": "^0.1.6",
 "express": "^4.13.3",
 "path": "^0.12.7"
}

We'll use the same setup as in the previous chapter, but we'll make some minor
changes to server.js, add a few lines to index.html, and add some content to our
CSS file.

Chapter 7

[257]

This is the tree structure in our original Webpack scaffold:

├── assets
│ ├── app.css
│ ├── favicon.ico
│ └── index.html
├── package.json
├── server.js
├── source
│ └── index.jsx
└── webpack.config.js

It's worth making sure that your structure is identical to this one.

We'll need to make a few modifications to our server.js file. We're going to
set up an upload service that we will access from our app, so it needs support for
Cross-Origin Resource Sharing (CORS) and a POST route in addition to our normal
GET routes.

Open server.js and replace the content with this:

'use strict';
var path = require('path');
var express = require('express');
var webpack = require('webpack');
var config = require('./webpack.config');
var port = process.env.PORT || 8080;
var app = express();
var cors = require('cors');
var compiler = webpack(config);
var cloudinary = require('cloudinary');
var bodyParser = require('body-parser');
app.use(bodyParser.json({limit:'50mb'}));

Our app needs the body-parser package in order to access the request data in our
POST route. We're going to be sending images to our route, so we also need to make
sure that the data limit is higher than the default value. Refer to the following code:

app.use(cors());

app.use(require('webpack-dev-middleware')(compiler, {
 noInfo:true,
 publicPath: config.output.publicPath,
 stats: {
 colors: true
 }

Reactagram

[258]

}));

var isProduction = process.env.NODE_ENV === 'production';

app.use(require('webpack-hot-middleware')(compiler));
app.use(express.static(path.join(__dirname, "assets")));

cloudinary.config({
 cloud_name: 'YOUR_CLOUD_NAME',
 api_key: 'YOUR_API_KEY',
 api_secret: 'YOUR_API_SECRET'
});

var routes = function (app) {
 app.post('/upload', function(req, res) {
 cloudinary.uploader.upload(req.body.image, function(result) {
 res.send(JSON.stringify(result));
 });
 });

This POST call will handle image uploads in our app. It will send the image to
Cloudinary and store it for later retrieval in our image stream. You will have to
create an account at http://cloudinary.com/ and replace the API credentials we
just saw with the real credentials in your user administration section. The following
is the major change we're making:

 app.get('*', function(req, res) {
 res.sendFile(path.join(__dirname, 'assets','index.html'));
 });
}

This makes sure that any request to any file that's not part of the static asset folder
will be routed to index.html. This is important because it will allow us to access
dynamic routes using the history API instead of using hashed routes, let's take a look
at the following code snippet:

var router = express.Router();
routes(router);
app.use(router);
app.listen(port, 'localhost', function(err) {
 if (err) {
 console.log(err);
 return;
 }

http://cloudinary.com/

Chapter 7

[259]

 console.log('Listening at http://localhost:'+port);
});

Next, open assets/index.html and replace the contents with this code:

<!DOCTYPE html>
<html>
 <head>
 <title>Reactagram</title>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1, maximum-scale=1">
 <link rel="stylesheet" type="text/css"
 href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap-
 glyphicons.css" />
 <link rel="stylesheet"
 type="text/css"href="https://maxcdn.bootstrapcdn.com/
 bootstrap/3.3.5/css/bootstrap.min.css" />
 <link href='https://fonts.googleapis.com/css?family=Bitter'
 rel='stylesheet' type='text/css'>
 <link rel="stylesheet" href="/app.css">
 </head>
 <body>
 <div id="app"></div>
 <script src="/assets/bundle.js"></script>
 </body>
</html>

We're going to rely on Bootstrap for our grid layout, so we need to add the Bootstrap
CSS files. We're also going to add the free Bitter font family as our main font for the
app.

The last thing we'll change is app.css. We'll add a set of styles that'll make sure the
app we're building is functional on the Web as well as on tablets and smartphones.

Open app.css and replace the content with this styling:

body {
 font-family: 'Bitter', serif;
 padding: 15px;
 margin-top: 60px;
}

Reactagram

[260]

This applies the Bitter font as the main font for our app and adds a top margin for
our navigation header:

body {
 font-family: 'Bitter', serif;
 padding: 15px;
 margin-top: 60px;
}

.header {
 padding: 10px;
 font-size: 18px;
 margin: 5px;
}

h1 {
 font-size: 18px;
}

ul {
 list-style-type: none;
}

#camera {
 position: absolute;
 opacity: 1;
}

.hidden {
 display: none;
}

The hidden class will be applied to all the elements that should stay hidden and out
of sight. Now check out the following:

@media all and (max-width: 320px) {
 .canvas {
 padding: 0;
 text-align: center;
 margin: 0 auto;
 display: block;
 z-index: 10;
 position: fixed;
 left: 10px;
 top: 60px;
 }
}

Chapter 7

[261]

This is our only media query. It will make sure the canvas stays in a centered and
fixed position on small smartphones. The height and width of imageCanvas will be
overwritten when the user uploads images, so these values are only defaults:

#imageCanvas {
 max-width: 300px;
 height: 300px;
 margin: 0px auto;
 border: 1px solid #333;
}

The following is the code to set the left and right menu buttons in our header.
They'll be our navigation elements:

.menuButtonLeft {
 position: fixed;
 padding-right: 15px;
 height: 50px;
 border-right: 2px solid #999;
 padding-top: 16px;
 top: 0;
 left: 30px;
 color: #999;
 z-index: 1;
}

.menuButtonRight {
 padding-left: 15px;
 height: 50px;
 border-left: 2px solid #999;
 padding-top: 16px;
 top: 0;
 position: fixed;
 right: 30px;
 color: #999;
 z-index: 1;
}

Check out the following lines of code:

.nav a:visited, .nav a:link {
 color: #999; }
.nav a:hover, a:focus {
 color: #fff;
 text-decoration: none;
}

Reactagram

[262]

.logo {
 padding-top: 16px;
 margin: 0 auto;
 text-align: center;
}

.filterButtonGrayscale {
 position: fixed;
 bottom: 55px;
 left: 40px;
 z-index:2;
}

.filterButtonThreshold {
 position: fixed;
 bottom: 55px;
 right: 40px;
 z-index:2;
}

.filterButtonBrightness {
 position: fixed;
 bottom: 10px;
 left: 40px;
 z-index:2;
}

.filterButtonSave {
 position: fixed;
 bottom: 10px;
 right: 40px;
 z-index:2;
}

This is about the Filter buttons. They will be displayed after the images have been
captured but before they are sent to the app, let's take a look at the following code
snippet:

.stream {
 transition: all .5s ease-in;
 -webkit-animation-duration: 1s;
 animation-duration: 1s;
 -webkit-animation-fill-mode: both;
 animation-fill-mode: both;
 height: 480px;
 margin-top: 10px;
 padding: 0; }
 .stream img {

Chapter 7

[263]

 border: 2px solid #333;
 }

We're going to reuse the spinner from the earlier chapters. This will be displayed
while the user is uploading images:

 .spinner {
 width: 40px;
 height: 40px;
 display: none;
 position: relative;
 margin: 100px auto;
 }

 .double-bounce1, .double-bounce2 {
 width: 100%;
 height: 100%;
 border-radius: 50%;
 background-color: #333;
 opacity: 0.6;
 position: absolute;
 top: 0;
 left: 0;
 -webkit-animation: sk-bounce 2.0s infinite ease-in-out;
 animation: sk-bounce 2.0s infinite ease-in-out;
 }

 .double-bounce2 {
 -webkit-animation-delay: -1.0s;
 animation-delay: -1.0s;
 }

 @-webkit-keyframes sk-bounce {
 0%, 100% {
 -webkit-transform: scale(0);
 }
 50% {
 -webkit-transform: scale(1);
 }
 }
 @keyframes sk-bounce {
 0%, 100% {
 transform: scale(0);
 -webkit-transform: scale(0);
 }
 50% {
 transform: scale(1);
 -webkit-transform: scale(1);
 }
 }
}

Reactagram

[264]

The basic setup of our app is now complete, and you can run it by issuing this
command in your terminal:

node server.js

You should see Webpack compile your app, and when ready, log this information in
your terminal window (with a different hash and millisecond count of course):

Listening at http://localhost:8080

webpack built c870b4500e3efe8b5030 in 1462ms

You'll also need to register accounts at Firebase and Cloudinary. Both services are
free for development use. You can register an account with Firebase by visiting
https://www.firebase.com/ and registering a database name to use when
developing this app.

The following screenshot shows how the app will look on an iPhone once we're done
writing the code:

https://www.firebase.com/

Chapter 7

[265]

Setting up the routes
Let's start this app by setting up the router configuration in the root of our app.

Open index.jsx and replace the contents with this code:

import React from 'react';
import {render} from 'react-dom';
import config from './config';
import RoutesConfig from './routes';

render(
 RoutesConfig(config),
 document.getElementById('app')
);

You'll notice that we reference two files that we haven't created yet, so let's go ahead
and add them to our app.

Create config.js in the root of the source folder and then add this code:

var rootUrl = "https://YOURAPP.firebaseio.com/";

Replace YOURAPP with the name of your registered Firebase app, let's take a look at
the following code snippet:

var rootDb = "imageStream";
var likesDb = "likes";

module.exports = {
 rootUrl: rootUrl,
 rootDb: rootDb,
 fbImageStream: rootUrl + rootDb,
 fbLikes: rootUrl + likesDb
}

Then, create routes.jsx and add this code:

import React from 'react';
import { Link,
 Router,
 Route,
 NoMatch,
 IndexRoute,
 browserHistory
}
from 'react-router'

Reactagram

[266]

import App from './components/app';
import Welcome from './components/welcome';
import Camera from './components/camera';
import Stream from './components/stream';
import Item from './components/item';
import config from './config';
import FBConnect from './fbconnect';

Here, we're importing a number of components that we haven't created yet. We'll
proceed by creating the components one by one, starting with FBConnect. This
component is special because it's a higher order component that will make sure that
the components it wraps will be provided with a correct state. It works much in the
same way as Redux, which we explored in Chapter 6, Advanced React. Now add this
code:

function Routes(config) {
 return <Router history={ browserHistory }>
 <Route path="/" name="Reactagram"
 component={ FBConnect(App, config)} >
 <Route name="Stream" path="stream"
 component={ FBConnect(Stream, config) } />
 <Route name="ItemParent" path="item"
 component={ FBConnect(Item, config) } >
 <Route name="Item" path=":key"
 component={ FBConnect(Item, config) } />
 </Route>
 <Route name="Camera" path="camera"
 component={ FBConnect(Camera, config) } />
 <IndexRoute name="Welcome"
 component={ FBConnect(Welcome, config) } />
 </Route>
 <Route name="404: No Match for route" path="*"
 component={FBConnect(App,config)} />
 </Router>
}
export default Routes;

After you've added this code, Webpack will throw a number of errors and the app
will show a red error screen in the browser. We'll need to add all of the components
we'll use before the app is usable again, and as you add them, you'll see that the error
log will gradually diminish until the app is ready to be displayed properly again.

Chapter 7

[267]

Creating a higher order function
A higher order function is a function that takes one or more functions as arguments
and returns a function as its result. All other functions are first-order functions.

Using higher order functions is a brilliant way to extend your composition-making
skills and an easy way to make complex apps easier. It complements the use of
mixins, which is another way of providing inheritance in your components.

The function we'll create is a higher order component with mixins. It will connect
to Firebase by using the configuration we provide in config.js and make sure the
stateful data we rely on is kept in sync in real time. That's a tall order, but by using
Firebase, we'll unload much of the heavy lifting needed to provide this functionality.

As you've seen earlier, we'll use this function to wrap our routed components and
provide them with a state in the form of props.

Create fbconnect.jsx in the root of your source folder and add this code:

import React, { Component, PropTypes } from 'react';
import ReactFireMixin from 'reactfire';
import Firebase from 'firebase';
import FBFunc from './fbfunc';
import Userinfo from './userinfo';

function FBConnect(Component, config) {
 const FirebaseConnection = React.createClass({
 mixins:[ReactFireMixin, Userinfo],
 getInitialState: function() {
 return {
 data: [],
 imageStream: [],
 fbImageStream: config.fbImageStream
 };
 },
 componentDidMount() {
 const firebaseRef = new Firebase(
 this.state.fbImageStream, 'imageStream');
 this.bindAsArray(firebaseRef.orderByChild("timestamp"),
 "imageStream");

Reactagram

[268]

This will fetch the contents of your image stream and store them in this.state.
imageStream. The state will be available to all wrapped components in this.props.
imageStream. We'll be setting it so that it's ordered by the timestamp value. Refer to
the following code:

 },
 render() {
 return <Component {...this.props}
 {...this.state} {...FBFunc} />;

Here, we return the component passed to this function along with the state from
Firebase and a set of stateful functions in FBFunc, such as follows:

 }
 });
 return FirebaseConnection;
};
export default FBConnect;

Sorting with Firebase
Firebase will always return data in ascending order, which means that
newer pictures will be inserted at the bottom. If you want to sort by
descending order, replace the bindAsArray function with a custom
loop and then reverse the array before you store it with setState().

You will also need to create a file that will hold the functions you'll use to add
content to the image stream. Create a file called fbfunc.js in the root of your project
and enter this code:

import Firebase from 'firebase';

const FbFunc = {
 uploadImage(url: string, user: string) {
 let firebaseRef = new Firebase(this.fbImageStream);
 let object = JSON.stringify(
 {
 url:url,
 user:user,
 timestamp: new Date().getTime(),
 likes:0
 }
);
 firebaseRef.push({

Chapter 7

[269]

 text: object
 });
 },

This function will store new images with an image URL to Cloudinary, the
username, a timestamp, and zero likes. The following is our like functionality:

 like(key) {
 var onComplete = function(error) {
 if (error) {
 console.log('Update failed');
 }
 else {
 console.log('Update succeeded');
 }
 };
 var firebaseRef = new
 Firebase(`${this.props.fbImageStream}/${key}/likes`);
 firebaseRef.transaction(function(likes) {
 return likes+1;
 }, onComplete);
 },

As you can see, every press on like will add a +1 like(s) to the image it's attached to.
You could extend the functionality to prevent the current user from voting on their
own images and also prevent them from voting more than once. Now refer to the
following code:

addComment(e,key) {
 const comment = this.refs.comment.getValue();
 var onComplete = function(error) {
 if (error) {
 console.log('Synchronization failed');
 }
 else {
 console.log('Synchronization succeeded');
 }
 };
 let object = JSON.stringify(
 {
 comment:comment,
 user:this.props.username,
 timestamp: new Date().getTime()
 }
);

Reactagram

[270]

 var firebaseRef = new
 Firebase(this.props.fbImageStream+`/${key}/comments`);
 firebaseRef.push({
 text: object
 }, onComplete);
},

The comment functionality will be visible in item.jsx, which is a page displaying a
single photo. This function will store a new comment, along with the username of the
submitter along with a timestamp. Now we move on to the two helper functions:

removeItem(key) {
 var firebaseRef = new Firebase(this.props.fbImageStream);
 firebaseRef.child(key).remove();
},
resetDatabase() {
 let stringsRef = new Firebase(this.props.fbImageStream);
 stringsRef.set({});
 }
};
export default FbFunc;

These functions will let you either remove a single item or clear the entire database.
The latter one is especially useful for debugging but very dangerous to keep around
if you go live with the app.

Creating a random username
In order to separate the different images coming in, you need to give the users a
name. We'll do this in a very simple manner, so please refer to Chapter 6, Advanced
React, for details on how to implement a more secure login solution.

The way we're going to do this is by simply picking one word from a list of
adjectives and another from a list of nouns and composing a username from both.
We'll store the names in localStorage and generate a new one if we are unable to
find an existing one.

Local storage
All of the major browsers now support localStorage, but if you're
planning on supporting older browsers, especially Internet Explorer,
it might be wise to look into polyfills. A good discussion on polyfilling
localStorage can be found at https://gist.github.com/
juliocesar/926500.

https://gist.github.com/juliocesar/926500
https://gist.github.com/juliocesar/926500

Chapter 7

[271]

Let's create our username function. Create a file called username.js and put it in the
tools folder. Add this code:

export function username() {
 const adjs = ["autumn", "hidden", "bitter", "misty", "silent",
 "empty", "dry", "dark", "summer", "icy",
 "delicate", "quiet", "ancient", "purple",
 "lively", "nameless"];
 const nouns = ["breeze", "moon", "rain", "wind", "sea",
 "morning", "snow", "lake", "sunset", "pine",
 "shadow", "leaf", "dawn", "frog", "smoke",
 "star"];
 const rnd = Math.floor(Math.random() * Math.pow(2, 12));
 return `${adjs[rnd % (adjs.length-1)]}-
 ${nouns[rnd % (nouns.length-1)]}`;
};

The number of adjectives and nouns has been cut for brevity, but go ahead and add
more words to add a touch of variety to your usernames.

The resulting usernames will be a variation of the following: autumn-breeze,
misty-dawn, and empty-smoke.

If you want to explore name and sentence generation in more depth,
I urge you to take a look at https://www.npmjs.com/package/
rantjs.

Next, you need the file that actually implements this functionality and sets the
desired username. This is userinfo.js, which is referenced in fbconnect.js.
Add the file to your root folder and then add the following code:

module.exports = {

 getInitialState() {
 username: ""
 },

 componentDidMount() {
 let username;
 if(localStorage.getItem("username")) {
 username = localStorage.getItem("username");
 }

 if(!username || username === undefined) {
 localStorage.setItem("username",

https://www.npmjs.com/package/rantjs
https://www.npmjs.com/package/rantjs

Reactagram

[272]

 require("./tools/username").username());
 }

 this.setState({username: username})
 }

}

This file is a mixin and will extend getInitialState and componentDidMount in
fbconnect with a username state variable, and it will create a username and store it
in localStorage if none exist.

Creating a welcome screen
Let's create an app header and a welcome screen. We'll do this in two different files,
app.jsx and welcome.jsx, which we'll place in the components folder.

Add components/app.jsx and then add this code:

import React from 'react';
import { Grid, Col, Row, Nav, Navbar } from 'react-bootstrap';
import { Link } from 'react-router';
import Classnames from 'classnames';

module.exports = React.createClass({
 goBack() {
 return this.props.location.pathname.split("/")[1]
 ==="item" ? "/stream" : "/";
 },

The goBack() function will send you back to the correct page depending on your
current location. If you're viewing a single item, you'll be taken back to the stream
if you press Go Back. If you're on the stream, you'll be taken to the front page, let's
take a look at the following code snippet:

 render() {
 const BackStyle = Classnames({
 hidden: this.props.location.pathname==="/",
 "menuButtonLeft": true
 });

 const PhotoStyle = Classnames({
 hidden: this.props.location.pathname==="/camera",
 "menuButtonRight": true
 });

Chapter 7

[273]

These two styles will prevent the links from being displayed when there's no need
for them to be visible. The Back button will only be visible when you're not on the
front page, and the the photo button will be hidden if you're on the photo page. Refer
to the following code:

 return <Grid>
 <Navbar
 componentClass="header""
 fixedTop
 inverse>
 <h1
 center
 style={{ color:"#fff" }}
 className="logo">Reactagram
 </h1>
 <Nav
 role="navigation"
 eventKey={ 0 }
 pullRight>
 <Link
 className={ BackStyle }
 to={this.goBack()}>Back</Link>
 <Link
 className={ PhotoStyle }
 to="/camera">Photo</Link>
 </Nav>
 </Navbar>
 { this.props.children }
 </Grid>
 }
});

In this section, we add a Bootstrap grid with a fixed navigation bar. This makes sure
that the navigation bar is always present. The code block { this.props.children
} makes sure that any React.js components are rendered within the grid.

Next, create components/welcome.jsx and add this code:

import React from 'react';
import { Row, Col, Button } from 'react-bootstrap';

module.exports = React.createClass({
 contextTypes: {
 router: React.PropTypes.object.isRequired
 },

Reactagram

[274]

 historyPush(location) {
 this.context.router.push(location);
 },

We'll use the built-in push functionality in react-router to transition our users
to the desired location. The URL will be http://localhost:8080/stream or
http://localhost:8080/camera.

Notice that the routes are non-hashed.

Let's take a look at the following code snippet:

 renderResetButton() {
 return <Button bsStyle="danger"
 onClick={this.props.resetDatabase.bind(null, this)}>
 Reset database!
 </Button>
 },
 renderPictureButton() {
 return <Button bsStyle="default"
 onClick={this.historyPush.bind(null, '/camera')}>
 Take a picture
 </Button>
 },

We bind the route argument to the historyPush function as a handy way to
transition our users on click. The first argument is the context, but since we don't
need it, we assign it to null. The second is the route we want the user to be
transitioned to. Let's take a look at the following code snippet:

 renderStreamButton() {
 return <Button bsStyle="default"
 onClick={ this.historyPush.bind(null, '/stream') }>
 Stream
 </Button>
 },
 render() {
 return <Row>

Chapter 7

[275]

 <Col md={12}>
 <h1>Welcome { this.props.username }</h1>
 <p>
 Reactagram is social picture app. Take snapshots of
 yourself and share with your friends.
 </p>
 <p>
 { this.renderPictureButton() }
 </p>
 <p>
 { this.renderStreamButton() }
 </p>

 <p>
 PS! The username has been automatically
 generated for you.
 </p>

 </Col>
 <Col md={ 12 }>
 <h3>Reset database</h3>
 <p>
 Click here to reset your database.
 Note: This will completely
 Clear all of your uploaded pictures.
 There's no way to undo this.
 </p>
 <p>
 { this.renderResetButton() }
 </p>
 </Col>
 </Row>
 }
})

Reactagram

[276]

This is how the application will look in the browser after you've added the preceding
code. Note that the links won't work at this point because we haven't made the
components yet. We'll get to them shortly:

Taking a picture
We'll be using the camera API to take pictures for our image app. Through this
interface, it is possible to take pictures with a native camera device as well as select
pictures to upload them through a web page.

The API is set up by adding an input element with type="file" and an accept
attribute to declare to our component that it accepts images.

The ReactJS JSX looks like this:

<Input type="file" label="Camera" onChange={this.takePhoto}
 help="Click to snap a photo" accept="image/*" />

When a user activates the element, they are presented with an option to choose a
file or take a picture with the built-in camera (if available). The user must accept the
picture before it's sent to the <input type="file"> element, and its onchange event
is triggered.

Once you have a reference to the picture, you can render it to an image element
or a canvas element. We'll do the latter, as rendering to canvas opens up a lot of
possibilities for manipulating an image.

Chapter 7

[277]

Create a new file called camera.jsx and put it in the components folder. Add this
code to it:

import React from 'react';
import { Link } from 'react-router';
import classNames from 'classnames';
import { Input, Button } from 'react-bootstrap';
//import Filters from '../tools/filters';

Leave this commented out until we add the code for this function:

import request from 'superagent';
import ImageToCanvas from 'imagetocanvas';

The ImageToCanvas module contains a lot of code that was originally written for this
chapter, but since it consists of a lot of camera- and canvas-specific code, it was a bit
too niche to include. Take a look at the code in the GitHub repository if you want to
delve more into the canvas code:

module.exports = React.createClass({

 getInitialState() {
 return {
 imageLoaded: false
 };
 },

We'll use this state variable to switch between showing the input field or the
captured image. When an image is captured, this state is set to true. Consider the
following code:

 componentDidMount() {
 this.refs.imageCanvas.style.display="none";
 this.refs.spinner.style.display="none";
 },

As illustrated in the code, we'll hide the canvas until we've got some content to
show. The spinner should only be visible while the user is uploading an image.
Refer to the helper functions in the following code:

 toImg(imageData) {
 var imgElement = document.createElement('img');
 imgElement.src = imageData;
 return imgElement;
 },

 toPng(canvas) {

Reactagram

[278]

 var img = document.createElement('img');
 img.src = canvas.toDataURL('image/png');
 return img;
 },

These functions will be useful when rendering the final image to the user. Now check
this out:

 putImage(img, orientation) {
 var canvas = this.refs.imageCanvas;
 var ctx = canvas.getContext("2d");
 let w = img.width;
 let h = img.height;
 const scaleH = h / 400;
 const scaleW = w / 300;
 let tempCanvas = document.createElement('canvas');
 let tempCtx = tempCanvas.getContext('2d');
 canvas.width = w/scaleW < 300 ? w/scaleW : 300;
 canvas.height = h/scaleH < 400 ? h/scaleH : 400;
 tempCanvas.width = canvas.width;
 tempCanvas.height = canvas.height;
 tempCtx.drawImage(img, 0, 0, w/scaleW, h/scaleH);

 ImageToCanvas.drawCanvas(canvas, this.toPng(tempCanvas),
 orientation, scaleW, scaleH);

 this.refs.imageCanvas.style.display="block";
 this.refs.imageCanvas.style.width= w/scaleW + "px";
 this.refs.imageCanvas.style.height= h/scaleH + "px";
 },

This function takes care of all the canvas-handling logic that we'll need to display
an image with proper ratios. Our default is 4:3 (portrait pictures), and we'll scale
the images down to approximately 400 pixels in height and 300 pixels in width.
The reduced image size will result in quality degradation, but it will make image
processing faster and reduce the file size, resulting in a faster upload speed and
better user experience.

This does mean that square pictures or photos in landscape mode will appear
squished. This function could thus be extended to look for horizontally placed
square or rectangular photos so that they could be scaled properly, let's take a look at
the following code snippet:

 takePhoto(event) {
 let camera = this.refs.camera,
 files = event.target.files,

Chapter 7

[279]

 file, w, h, mpImg, orientation;
 let canvas = this.refs.imageCanvas;
 if (files && files.length > 0) {
 file = files[0];
 var fileReader = new FileReader();
 var putImage = this.putImage;
 fileReader.onload = (event)=> {
 var img = new Image();
 img.src=event.target.result;
 try {
 ImageToCanvas.getExifOrientation(
 ImageToCanvas.toBlob(img.src),
 (orientation)=> {
 putImage(img, orientation);
 });

Cameras on native devices will take pictures with different orientations. Unless we
adjust this, we'll end up with images rotated left, right, or upside down, let's take a
look at the following code snippet:

 }
 catch (e) {
 this.putImage(img, 1);

If we can't get the exif information, we'll default the orientation to 1, meaning no
transformation is needed, let's take a look at the following code snippet:

 }
 }
 fileReader.readAsDataURL(file);
 this.setState({imageLoaded:true});
 }
 },

 applyGrayscale() {
 let canvas = this.refs.imageCanvas;
 let ctx=canvas.getContext("2d");
 let pixels = Filters.grayscale(
 ctx.getImageData(0,0,canvas.width,canvas.height), {});
 ctx.putImageData(pixels, 0, 0);
 },

We'll set up three different filters: grayscale, threshold, and brightness.
We'll go more into the filters when we add filters.js:

 applyThreshold(threshold) {
 let canvas = this.refs.imageCanvas;
 let ctx=canvas.getContext("2d");

Reactagram

[280]

 let pixels = Filters.threshold(
 ctx.getImageData(0,0,canvas.width,canvas.height),
 threshold);
 ctx.putImageData(pixels, 0, 0);
 },

 applyBrightness(adjustment) {
 let canvas = this.refs.imageCanvas;
 let ctx=canvas.getContext("2d");
 let pixels = Filters.brightness(
 ctx.getImageData(0,0,canvas.width,canvas.height),
 adjustment);
 ctx.putImageData(pixels, 0, 0);
 },

 saveImage() {
 let canvas = this.refs.imageCanvas;
 document.body.style.opacity=0.4;
 this.refs.spinner.style.display="block";
 this.refs.imageCanvas.style.display="none";

When the user saves an image, we'll turn down the opacity of the entire page and
display the loading spinner, as illustrated in the last part of the preceding code,
let's take a look at the following code snippet:

 var dataURL = canvas.toDataURL();

 new Promise((resolve, reject)=> {
 request
 .post('/upload')
 .send({ image: dataURL, username: this.props.username })
 .set('Accept', 'application/json')
 .end((err, res)=> {
 console.log(err);
 if(err) {
 reject(err)
 }
 if(res.err) {
 reject(res.err);
 }
 resolve(res);
 });
 }).then((res)=> {
 const result = JSON.parse(res.text);

Chapter 7

[281]

 this.props.uploadImage(result.secure_url,this.props.username);
 this.props.history.pushState(null,'stream');
 document.body.style.opacity=1.0;
});

When the image is uploaded to Cloudinary, we'll store the result in Firebase using
the uploadImage function from fbfunc.js. Consider the following code:

 },

 render() {
 const inputClass= classNames({
 hidden: this.state.imageLoaded
 });
 const grayScaleButton= classNames({
 hidden: !this.state.imageLoaded,
 "filterButtonGrayscale": true
 });
 const thresholdButton= classNames({
 hidden: !this.state.imageLoaded,
 "filterButtonThreshold": true
 });
 const brightnessButton= classNames({
 hidden: !this.state.imageLoaded,
 "filterButtonBrightness": true
 });
 const saveButton= classNames({
 hidden: !this.state.imageLoaded,
 "filterButtonSave": true
 });

Here, the classNames function provides an easy interface to toggle classes on our
HTML nodes, let's take a look at the following code snippet:

 return <div>
 <Button className={grayScaleButton}
 onClick={this.applyGrayscale}>Grayscale</Button>

 <Button className={thresholdButton}
 onClick={this.applyThreshold.bind(null,128)}>Threshold
 </Button>

 <Button className={brightnessButton}
 onClick={this.applyBrightness.bind(null,40)}>Brighter
 </Button>

Reactagram

[282]

 <Button className={saveButton} bsStyle="success"
 onClick={this.saveImage}>Save Image</Button>
 <div className={inputClass}>

 <Input type="file" label="Camera" onChange={this.takePhoto}
 help="Click to snap a photo or select an image from your
 photo roll" ref="camera" accept="image/*" />
 </div>

 <div className="spinner" ref="spinner">
 <div className="double-bounce1"></div>
 <div className="double-bounce2"></div>
 </div>

 <div className="canvas">

 <canvas ref="imageCanvas" id="imageCanvas">
 Your browser does not support the HTML5 canvas tag.
 </canvas>
 </div>

 </div>
 }
});

You should now be able to click on the camera button and take a picture with
your camera phone or select an image from your hard drive if you're working on
a desktop computer. The following screenshot shows an image from the desktop
selected with the file browser using the camera button:

Chapter 7

[283]

The filters won't work yet, but we're going to add them now. Once we've done this,
remove the comments from the import function in camera.jsx.

Adding filters
We've set up a few filter buttons for manipulating the image after it's been captured
from the image uploader, but we're yet to set up the actual filter functions.

You apply filters to the images by reading the canvas pixels, modifying them,
and then writing them back to the canvas.

We'll start by fetching the image pixels. This is how you do it:

let canvas = this.refs.imageCanvas;
let ctx= canvas.getContext("2d");
let pixels = ctx.getImageData(0,0,canvas.width,canvas.height)

In camera.jsx, we'll pass the results of getImageData as an argument to the filter
function, like this:

let pixels = Filters.grayscale(
ctx.getImageData(0,0,canvas.width,canvas.height), {});

Reactagram

[284]

Now that you have the pixels, you can loop through them and apply your
modifications.

Let's look at the complete grayscale filter. Add a file called filters.js and put it in
the tools folder. Add this code to it:

let Filters = {};

Filters.grayscale = function(pixels, args) {
 var data = pixels.data;
 for (let i=0; i < data.length; i+=4) {
 let red = data[i];
 let green = data[i+1];
 let blue = data[i+2];
 let variance = 0.2126*red + 0.7152*green + 0.0722*blue;

We fetch the values for red, green, and blue separately and then apply the RGB to
the Luma conversion formula, which is a set of weights that will deemphasize color
information and produce a grayscale image:

 data[i] = data[i+1] = data[i+2] = variance

We then replace the original color value with the new, monochromatic color value,
let's take a look at the following code snippet:

 }
 return pixels;
};

Filters.brightness = function(pixels, adjustment) {
 var data = pixels.data;
 for (let i=0; i<data.length; i+=4) {
 data[i] += adjustment;
 data[i+1] += adjustment;
 data[i+2] += adjustment;

This filter makes the pixels brighter by simply increasing the RGB values. It's similar
to setting the color values of a font in CSS to #eeeeee (R: 238 G: 238 B: 238)
from #999 (R: 153 G: 153 B: 153). Now we move on to threshold:

 }
 return pixels;
};

Filters.threshold = function(pixels, threshold) {
 var data = pixels.data;
 for (let i=0; i<data.length; i+=4) {

Chapter 7

[285]

 let red = data[i];
 let green = data[i+1];
 let blue = data[i+2];
 let variance = (0.2126*red + 0.7152*green + 0.0722*blue >=
 threshold) ? 255 : 0;

As you can see, threshold is applied by comparing the grayscale value of a pixel with
the threshold value. Once this is done, set the color to either black or white, let's take
a look at the following code snippet:

 data[i] = data[i+1] = data[i+2] = variance
 }
 return pixels;
};

module.exports = Filters;

This is a very basic set of filters, and you can easily create more by tuning the values.
You can also check out https://github.com/kig/canvasfilters for a good set of
filters to add, including blur, sobel, blend, luminance, and invert.

The following screenshot shows a picture with brightness and threshold applied:

https://github.com/kig/canvasfilters

Reactagram

[286]

Adding the stream
It's now time to add the stream functionality. It's very simple because the data
stream is already available through fbconnect.js, so all we have to do is map
through the stream data and render the HTML.

Create a file called stream.jsx in your components folder and add this code:

import React from 'react';
import { Grid,Row, Col, Button } from 'react-bootstrap';
import { Link } from 'react-router';

module.exports = React.createClass({
 renderStream(item, index, image, data){
 return (
 <Col
 className="stream"
 sm={ 12 }
 md={ 6 }
 lg={ 4 }
 key={ index } >
 <Link to={`/item/${item['.key']}`}>
 <img style={{ margin:'0 auto',display:'block' }}
 width="300"
 height="400"
 src={ image } />
 </Link>

 <strong style={{ display:'block', fontWeight:600,
 textAlign:'center' }}>
 { data.user }

 <strong style={{ display:'block', fontWeight:600,
 textAlign:'center' }}>
 Likes: { item.likes || 0 }

 <div style={{ padding:0,display:'block', fontWeight:600,
 textAlign:'center' }}>

 <Button bsStyle="success"
 onClick={ this.props.like.bind(this,item['.key']) }>
 Like
 </Button>
 </div>

Chapter 7

[287]

A user can click on like as many times as they want, and the counter will be updated
every time. The like counter is transaction-based, so if two or more users click on the
like button at the same time, the operation will be queued until all likes have been
counted, let's take a look at the following code snippet:

 </Col>
);
 },

 render() {
 let stream = this.props.imageStream.map((item, index) => {
 const data = JSON.parse(item.text);
 let image;
 try {
 image =
 data.url.replace
 ("upload/","upload/c_crop,g_center,h_300/");
 }
 catch(e) {
 console.log(e);
 }

The try…catch block will prevent blank sections from appearing (or the app from
throwing an error), in case a user has unwittingly uploaded a broken image (or due
to some error, the image upload failed). If an error is caught, this will be logged to
the console and the image will simply not be displayed.

One of the many benefits of using a service like Cloudinary is that you can request a
different version of your image file and have it delivered without having to do any
work on our end.

Here, we request a cropped image with a height of 300, weighted at the center. This
makes sure that the images we return on this page are uniform in height, though the
width may vary by a few pixels.

Cloudinary has a wealth of options, and you could conceivably use it for filtering the
images instead of doing it in JavaScript. You can make changes to the app such that
whenever the user captures an image, you could send it to Cloudinary before further
processing. All filters could then be applied by adding filters to the image URL
provided by Cloudinary, let's take a look at the following code snippet:

 return image ?
 this.renderStream(item, index, image, data) : null;

 });
 return <Row>
 {stream}
 </Row>

Reactagram

[288]

 }
});

If images are added, or the like count is updated, the changes will immediately be
visible in the stream. Try opening the app on a device and a browser window or two
browser windows at the same time, and you'll notice that any changes made will be
synchronized in real time.

Creating an item page and adding
comments
If you click on any of the pictures in the stream, you'll be taken to the item page.
We don't need to set up a new query for this because we already have everything
we need to display it. We'll get the item key from the router and apply a filter to the
image stream, and we'll end up with a single item.

In the following screenshot, notice that the comment section has been added and that
two random users have added some comments:

Chapter 7

[289]

Create a new file called item.jsx in the components folder and add this code:

import React from 'react';
import { Grid,Row, Col, Button, Input } from 'react-bootstrap';
import { Link } from 'react-router';
import { pad } from '../tools/pad';

module.exports = React.createClass({
 renderStream(item, index, image, data) {
 return (
 <Col className="stream" sm={12} md={6} lg={4} key={ index }
 >

 <img style={{margin:'0 auto',display:'block'}}
 width="300" height="400" src={ image } />

 <strong style={{display:'block', fontWeight:600,
 textAlign:'center'}}>{data.user}

 <strong style={{display:'block', fontWeight:600,
 textAlign:'center'}}>Likes: {item.likes||0}

 <div style={{padding:0,display:'block', fontWeight:600,
 textAlign:'center'}}>

 <Button bsStyle="success"
 onClick={this.props.like.bind(this,item['.key'])}>
 Like</Button>
 </div>

 {this.renderComments(item.comments)}
 {this.renderCommentField(item['.key'])}

 </Col>
);
 },

The renderStream() function is almost identical to the one we created for stream.
jsx, except that we've removed the link here and added a way to display and add
comments. Refer to the following code:

 renderComments(comments) {
 if(!comments) return;

 let data,text, commentStream=[];

Reactagram

[290]

 const keys = Object.keys(comments);
 keys.forEach((key)=>{
 data = comments[key];
 text = JSON.parse(data.text);
 commentStream.push(text);
 })

 return <Col md={12}><h4>Comments</h4>
 {commentStream.map((item,idx)=>{
 const date = new
 Intl.DateTimeFormat().format(item.timestamp)
 const utcdate = new Intl.DateTimeFormat
 ('en-US').format(date);
 const utcdate = new Intl.DateTimeFormat
 ('en-US').format(date);
 return <div
 key={ ´comment${idx}` }
 style={{ paddingTop:15 }}>
 { utcdate }
 { item.comment }
 - <small>{ item.user }</small>
 </div>
 })}</Col>
 },

First we grab the comment identifiers by using Object.keys(), which returns an
array of keys. Then, we map through this array to find and render each individual
comment to HTML.

We also take the timestamp and convert it to a human-readable date by using the
international date formatter. Further, we used the en-US locale in this example, but
you can easily swap it with any locale. Have a look at the following code:

 renderCommentField(key) {
 return <Col md={12}>
 <hr/>
 <h4>Add your own comment</h4>
 <Input type="textarea" ref="comment"></Input>
 <Button bsStyle="info"
 onClick={this.props.addComment.bind(this,
 this.refs.comment, key)} >Comment</Button>
 </Col>
 },

Chapter 7

[291]

Here, we render an input field and a submit button with an onclick handler to the
addComment() function in fbfunc.js. Finally, we return to the render() function:

 render() {
 let { key } = this.props.params;
 let stream = this.props.imageStream
 .filter((item)=>{return item['.key']==key})
 .map((item, index) => {
 const data = JSON.parse(item.text);
 let image;
 try {
 image = data.url.replace
 ("upload/","upload/c_crop,g_center,h_300/");
 } catch(e){
 console.log(e);
 }
 return image ?
 this.renderStream(item, index, image, data) : null;

 });
 return <Row>
 {stream}
 </Row>
 }
});

As illustrated, we get the key from the router parameters and apply a filter to the
image stream so that we're left with an array containing just the single item we want
from the stream data.

We then apply a map function to the array, fetch the image, and call the
renderStream() function.

You need to add the padding file we imported at the top of item.jsx, so create a file
called pad.js in the tools folder and add this code:

export const pad = (p = '00', s = '') => {
 return p.toString().slice(s.toString().length)+s;
}

It will transform 1 to 01 and so on, but will not do anything with 10, 11, or 12. So it's
safe to use whenever you want to add left padding to a string.

Reactagram

[292]

Wrapping up
Your social-photo-sharing app is now ready for action. It should now compile fully
and work without problems on desktop browsers and native smartphones and
tablets.

Working with images and canvas can be a bit tricky when it comes to native devices.
The file size of a photo often becomes a problem because many smartphones have
very little memory to work with, so you may often run into problems rendering
canvas images.

This is one of the reasons we're working with downscaled images in this app. The
other is of course to make it faster when transmitting photos to the cloud. Both of
these problems are very real but can more or less be classified as corner cases, so I'm
leaving this up to you, should you go ahead and develop the app further.

In the following screenshot, you can see the app deployed on an iPad:

Chapter 7

[293]

This is the final file structure of the app:

├── assets
│ ├── app.css
│ ├── favicon.ico
│ └── index.html
├── package.json
├── server.js
├── source
│ ├── components
│ │ ├── app.jsx
│ │ ├── camera.jsx
│ │ ├── item.jsx
│ │ ├── stream.jsx
│ │ └── welcome.jsx
│ ├── config.js
│ ├── fbconnect.js
│ ├── fbfunc.js
│ ├── index.jsx
│ ├── routes.jsx
│ ├── tools
│ │ ├── filters.js
│ │ ├── pad.js
│ │ └── username.js
│ └── userinfo.js
└── webpack.config.js

It's a very concise file structure for an app that already is quite capable. You could
argue that the config files and the Firebase files could be put in a folder of their
own, and you wouldn't find me disagreeing.

In the end, the way you organize your files is often down to personal preference.
Some may like having all JavaScript files in a single folder, while others prefer to
sort them by functionality.

The finished project can be viewed online at http://
reactjsblueprints-chapter7.herokuapp.com.

http://reactjsblueprints-chapter7.herokuapp.com
http://reactjsblueprints-chapter7.herokuapp.com

Reactagram

[294]

Summary
In this chapter, you learned how to use the camera/filereader API using the HTML5
canvas and how to manipulate images by modifying the pixels. You connected
to Firebase and Cloudinary, both popular cloud-based tools that help you as a
developer to work on your apps rather than your infrastructure.

You also experienced that by using a tool such as Firebase, you can completely avoid
using Flux. It's not a common architecture, but it's worth knowing that it's at least
possible to go down this route.

In the end, you made a real-time social photo app that you can easily extend further
and mark with your brand.

In the next chapter, we'll look at how you could develop isomorphic apps with
ReactJS. An isomorphic app means an app that is pre-rendered on the server, so
we'll look at techniques to serve up your ReactJS apps even to users who don't have
JavaScript enabled in their respective browsers.

[295]

Deploying Your App
to the Cloud

In this chapter, we're going to create a production pipeline for our apps. This
involves splitting your configuration files for development and production as well as
making a production-ready instance of your Node.js server. First we'll look at how
to set up a production-ready deployment of the Browserify scaffold from Chapter 1,
Diving Headfirst Into React, and then we'll look at how to do the same with Webpack.

Using a cloud server is the most cost-efficient way to deploy your code. Before the
cloud became a viable option, you would often have to deploy your code to your
physical server, situated in a single data center. If you want to deploy your code to
several data centers, you'd need to purchase or rent more physical servers, often
at a significant cost.

The cloud changes this because now you can deploy your code to a cloud provider
who has data centers all over the world. The cost of deploying your app in the U.S.
as well as in Europe and Asia is usually the same and relatively inexpensive as well.

These are the topics we'll cover in detail:

•	 Choosing a cloud provider
•	 Preparing a Browserify app for the cloud
•	 Preparing a Webpack app for the cloud

Deploying Your App to the Cloud

[296]

Choosing a cloud provider
There are a vast number of decent cloud providers available to choose from. Among
the most popular and mature providers are Heroku, Microsoft Azure, Amazon,
Google App Engine, and Digital Ocean. All of them come with their own set of
advantages and disadvantages, so it's well worth investigating each one of them
before you decide to choose which one to go for.

In this book, we've used Heroku throughout to deploy our apps, and we'll set up
our deployments to target this platform. Let's take a brief look at the advantages
and disadvantages of using Heroku.

The advantages are as follows:

•	 Easy to use. After the initial sign-up, you usually only need to issue a single
Git push to deploy your code.

•	 Easy to scale when traffic to your app increases.
•	 Provides great plugin support for third-party apps and cloud services.
•	 Free basic tier.
•	 No infrastructure management.

Now, the disadvantages:

•	 Can get pricey. Heroku offers a generous free tier, but the first rung of the
price ladder is pretty steep.

•	 The vendor lock-in issue; it's a lot of work moving from Heroku to another
cloud provider.

•	 The basic tier was sufficient for a while, but recently, Heroku has added a
policy that the free instance must be inactive for 6 hours every 24 hours.

•	 The environment gets wiped irregularly. You can't log in to the instance and
make local changes to the environment because they will be gone the next
time the instance is refreshed.

Because it's relatively easy to get going with Heroku, we'll be using Heroku for
deployment.

Start with signing up for a free account at https://signup.heroku.com/. After
you've done this, download the Heroku toolbelt from https://toolbelt.heroku.
com/. You also need to upload your SSH key. If you need help in generating an SSH
key, visit https://devcenter.heroku.com/articles/keys.

https://signup.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://devcenter.heroku.com/articles/keys

Chapter 8

[297]

When the setup is done, you can create a Heroku app by issuing this command in
your terminal:

heroku create <name>

You can omit the name, in which case Heroku will provide you with a random one.
Note that Heroku requires Git. If you have a Git repository already, Heroku will
automatically add the configuration parameters to your .git/config file. If not,
you will have to do it manually later. The parameters look like this:

[remote "heroku"]
 url = https://git.heroku.com/<name>.git
 fetch = +refs/heads/*:refs/remotes/heroku/*

You can find the configuration file inside the .git folder (note the dot). The file is
called config, so the full path is .git/config.

To deploy your app, add the files to your repository and commit your changes.
Then, issue the following command:

git push heroku master

Your app will then be deployed, based on the master branch. You can deploy other
branches by typing in git push heroku yourbranch:master instead.

Setting up cloud deployment with npm
If we try to publish our scaffold right off the bat, we'll probably end up with an
error because we haven't told Heroku how to serve our app. Heroku will simply try
running the app with npm start.

The npm package is the backbone of Node.js. We've covered it briefly in previous
chapters, but as we're going to depend heavily on it now, it's time to take a closer
look at what it can do for you.

You may have heard of or even used task runners such as Grunt, Gulp, or Broccoli.
They are great at automating tasks so that you can focus on writing code rather than
performing repetitive tasks, such as minifying and bundling your code, copying and
concatenating stylesheets, and so on.

Yet, for most tasks, you're better off letting npm do the job for you. With npm scripts,
you have all the power you need to automate common tasks, with less overhead and
maintenance to boot.

Deploying Your App to the Cloud

[298]

The npm package comes with a few built-in commands, one of which is npm run-
script (npm run for short). This command extracts the scripts object from package.
json. The first argument passed to npm run refers to a property in the scripts
object. For any property you create yourself, you need to run them with npm run.
A few property names have been reserved, such as start, stop, restart, install,
publish, test, and so on. They can be invoked by simply executing npm start
and so on.

An important thing to note is that npm run foo will also run prefoo
and postfoo if defined. You can run each stage separately by executing
npm run prefoo or postfoo.

Execute npm run to see the available scripts; you'll see the following output:

Lifecycle scripts included in webpack-scaffold:

 test

 echo "Error: no test specified" && exit 1

 start

 node server.js

This is interesting. We haven't made a start script, yet npm run tells us that npm
start will run node server.js. This is another default of node. If you haven't
specified a start script and there is a server.js file in your root, then this will be
executed.

Heroku still won't run the scaffold because the express server is configured to start
a develop session with Webpack and hot reloading. You need to create a production
server in addition to your develop server.

You can approach this in one of two ways:

•	 One option is to introduce environment flags in your server code, such as
this:
if(process.env.NODE_ENV !== "development"){
 // production server code
}

•	 The other option is to create an independent production server file

Either way is good, but it's arguably cleaner to use a separate file, so we'll go with
that approach.

Chapter 8

[299]

Preparing your Browserify app for cloud
deployment
In this section, we'll use the shop application we developed in Chapter 2, Creating
a Web Shop. The app uses Browserify to bundle the code and node to run the
development server. We'll keep on using the node in production, but we'll
need to set up a specific server file in order to make a production-ready app.

As a reminder, this is how our shop app looks like before we start:

├── package.json
├── public
│ ├── app.css
│ ├── bundle.js
│ ├── heroku.js
│ ├── index.html
│ └── products.json
├── server.js
└── source
 ├── actions
 │ ├── cart.js
 │ ├── customer.js
 │ └── products.js
 ├── app.jsx
 ├── components
 │ ├── customerdata.jsx
 │ ├── footer.jsx
 │ └── menu.jsx
 ├── layout.jsx
 ├── pages
 │ ├── checkout.jsx
 │ ├── company.jsx
 │ ├── home.jsx
 │ ├── item.jsx
 │ ├── products.jsx
 │ └── receipt.jsx
 ├── routes.jsx
 └── stores
 ├── cart.js
 ├── customer.js
 └── products.js

Deploying Your App to the Cloud

[300]

We'll take these steps to make it cloud-ready:

•	 Create a production server file
•	 Install production dependencies
•	 Modify package.json
•	 Transpile our code base to EcmaScript 5

The actual process
Create a new file called server.prod.js and put it in the root of your project.
Add this code to it:

var express = require("express");
var app = express();
var port = process.env.PORT || 8080;
var host = process.env.HOST || '0.0.0.0';

We're defining an express server and setting up a host and a port variable. The
defaults are port 8080 on 0.0.0.0. This host address is functionally identical to
localhost when running on your local machine, but it can make a difference when
running on your server. If the server host has several IP addresses, specifying
0.0.0.0 as the host will match any request. Using a parameter such as localhost can
result in a situation where the server will be unable to bind your app and fail to start:

var path = require("path");
var compression = require("compression");
app.use(compression());

Since we're going to be serving files to the public, it's worth compressing them with
GZIP before serving them. For text and script files, the savings can be dramatic,
up to 80-90 percent in many cases. For a low-traffic site, this implementation is
good enough. For a high-traffic site, the best way to put compression in place is to
implement it at a reverse proxy level, for instance, by using nginx. We'll route all
requests to our public folder and the desired filename:

app.get("*", function (req, res) {
 var file = path.join(__dirname, "public", req.path);
 res.sendFile(file);
});

Chapter 8

[301]

Finally, the server will start with a debug message telling us the address of the
deployed app:

app.listen(port, host, function (err) {
 console.log('Server started on http://'+host+':'+port)
});

The next thing we need to do is create a build script to bundle our JavaScript code.
When running the development server, the code is bundled automatically. This
bundle is usually rather large. For instance, the development bundle for the shop app
is 1.4 MB. Even with compression enabled, this file is arguably too large to present to
your users. When deploying to production, we need to create a smaller bundle so that
your app will download and be ready to use faster. Fortunately, this is rather easy.

We're going to use a combination of the CLI version of Browserify and UglifyJS. The
latter is a compression tool that strips out newlines, shortens variable names, and
strips out unused code from our bundle. We'll run it by first bundling our source
files with Browserify, then we'll use the pipe operator (|) to send the output to
UglifyJS. The result of this operation is then sent to a bundle file with the greater-
than operator (>).

The first part of the sequence looks like this:

./node_modules/.bin/browserify --extension=.jsx source/app.jsx -t
[babelify]

When you run this, the entire bundle will be returned as a string output. You can
optionally specify -o bundle.js in order to save the result to a bundle file. We
don't want to do this because we have no use for a temporary bundle.

The second part of the sequence looks like this:

./node_modules/.bin/uglifyjs -p 5 -c drop_console=true -m
--max-line-len --inline-script

We have specified a few arguments, so let's look at what they do.

The -p argument skips the prefix for the original filenames that appear in the source
name. The saving here is very small, but it's worth keeping in there nonetheless.
The number after the argument is the number of relative paths dropped.

The -c option is short for compressor. By not specifying any compressor option,
the default compress option will be used. This saves quite a few bytes.

The next is drop_console=true. This tells UglifyJS to remove any console logs.
This is useful if you've used this method for debugging your app and have forgotten
to remove it from your code.

Deploying Your App to the Cloud

[302]

The next one is -m, which is short for mangle. This option changes and shortens your
variable and function names and is a serious byte-saving factor.

The final two arguments won't save any bytes, but they're still useful. The --max-
line-len argument will break up the uglified code if the line length is above a given
value (defaults to 32,000 characters). This is useful when supporting older browsers
that can't cope with very long lines. The ––inline-script argument escapes the
slash in the occurrences of </script in strings.

Running this command on its own won't result in a compressed bundle because we
haven't specified an input. If you store the bundle in a temporary file, you could
send the content to the preceding command by using the less-than operator and
the filename like this: < bundle.js.

Finally, we'll send the result to the output location we desire by using the greater-
than operator.

The full command sequence looks like this:

NODE_ENV=production browserify --extension=.jsx source/app.jsx -t
[babelify] | ./node_modules/.bin/uglifyjs -p 5 -c
drop_console=true -m --max-line-len --inline-script >
public/bundle.js

Running the first part results in a bundle size that's approximately 1.4 MB. Passing
it through UglifyJS results in a bundle size of about 548 KB. If you drop the options
and go with vanilla UglifyJS, you'll end up with a bundle size that's about 871 KB.

After bundling and minifying, we're now ready to deploy our app to the cloud. Since
we're using compression, the final bundle size will be approximately 130 KB. That's a
huge win when compared to the original file size of 1.4 MB.

Before we deploy our code, we need to tell Heroku how to start our app. We'll do
this by adding a single file called Procfile. This is a special file that Heroku will
read and execute if it exists. If it doesn't exist, Heroku will try to execute npm start
instead; if this fails, try to run node server.js.

Add the Procfile file with this content:

web: node server.prod.js

When you've done this, commit your code and push to Heroku by executing
this command:

git push heroku master

Chapter 8

[303]

The end result should look identical to the local app, except that now you're running
it on the cloud. The example app is available on https://reactjsblueprints-
webshop.herokuapp.com/. The following screenshot displays the web page of the
preceding link:

It's very tough to remember the entire command sequence for generating a minified
Browserify bundle. We'll add it to package.json so we can execute it with ease.

Open package.json and replace the contents in the scripts section with this code:

"scripts": {
 "bundle": "browserify --extension=.jsx source/app.jsx -t
 [babelify] | ./node_modules/.bin/uglifyjs -p 5 -c
 drop_console=true -m --max-line-len --inline-script >
 public/bundle.js",
 "start": "node server.js"
},

Now you can run the bundle operation with npm run bundle.

https://reactjsblueprints-webshop.herokuapp.com/
https://reactjsblueprints-webshop.herokuapp.com/

Deploying Your App to the Cloud

[304]

Deploying a Webpack app to the cloud
In this section, we'll use the Webpack scaffold we developed in Chapter 6, Advanced
React. We'll need to add a few packages and make some modifications.

As a reminder, this is the file structure of our scaffold before we start:

├── assets
│ ├── app.css
│ ├── favicon.ico
│ └── index.html
├── package.json
├── server.js
├── source
│ └── index.jsx
└── webpack.config.js

Let's start by renaming our server.js file to server-development.js. Then,
create a new file called server-production.js in the root of the scaffold and
add this code:

'use strict';

var path = require('path');
var express = require('express');
var serveStatic = require('serve-static')
var compression = require('compression')
var port = process.env.PORT || 8080;
var host = process.env.HOST || '0.0.0.0';

Here, we instruct the server to use the preconfigured variables for PORT and HOST
or the default variables if these aren't provided, just as we did with the Browserify
server. Then, we add an error handler so that we are able to respond to errors
gracefully. This could also be added to the Browserify server:

var http = require('http');
var errorHandler = require('express-error-handler');

We add compression as well:

var app = express();
app.use(compression());

Chapter 8

[305]

Now we move on to the assets file:

var cpFile = require('cp-file');
cpFile('assets/index.prod.html', 'public/assets/index.html').
then(function() {
 console.log('Copied index.html');
});
cpFile('assets/app.css', 'public/assets/app.css').then(function()
{
 console.log('Copied app.css');
});

We'll copy the asset files we need manually. We only have two, so it's okay to
do this manually. If we had many files to copy, another approach might be more
beneficial. An option that is cross-compatible across different environments is
ShellJS. With this extension, you can set up ordinary shell commands and have
them executed in a JavaScript environment. We won't do this in this project but it's
worth looking into. Now refer to the following lines of code:

var envs = require('envs');
app.set('environment', envs('NODE_ENV', 'production'));
app.use(serveStatic(path.join(__dirname, 'public', 'assets')));

Here, we set the environment to production, and we let Express know that our
static files are placed in the ./public/assets folder using the serve-static
middleware. This means we can refer to /app.css in our file, and Express will
know to look for it in the correct assets folder. For low-traffic apps, this is a good
implementation, but for a high-traffic app, it's better to use a reverse proxy to serve
static files. The main benefit of using a reverse proxy is to remove load from your
dynamic server to other servers specially designed to handle assets. We route all
requests to index.html. This will not apply to files that exist in the static folder:

var routes = function (app) {
 app.get('*', function(req, res) {
 res.sendFile(path.join(__dirname, 'public',
 'assets','index.html'));
 });
}

We create the server object so that we can pass it to the error handler:

var router = express.Router();
routes(router);
app.use(router);

Var server = http.createServer(app);

Deploying Your App to the Cloud

[306]

Here, we respond to errors and conditionally shut down the server. The server
object is passed as an argument so that the error handler can shut it down gracefully:

app.use(function (err, req, res, next) {
 console.log(err);
 next(err);
});

app.use(errorHandler({server: server}));

Finally, we start the app:

app.listen(port, host, function() {
 console.log('Server started at http://'+host+':'+port);
});

As you've noticed, we've added a few new packages. Install these with this
command:

npm install --save compression@1.6.1 envs@0.1.6 express-error-
handler@1.0.1 serve-static@1.10.2 cp-file@3.1.0 rimraf@2.5.1

All modules that are required in server.prod.js need to be moved to the
dependencies section in package.json. Your dependencies section should
now look like this:

"devDependencies": {
 "react-transform-catch-errors": "^1.0.1",
 "react-transform-hmr": "^1.0.1",
 "redbox-react": "^1.2.0",
 "webpack-dev-middleware": "^1.4.0",
 "webpack-hot-middleware": "^2.6.0",
 "babel-core": "^6.3.26",
 "babel-loader": "^6.2.0",
 "babel-plugin-react-transform": "^2.0.0",
 "babel-preset-es2015": "^6.3.13",
 "babel-preset-react": "^6.3.13",
 "babelify": "^7.3.0",
 "uglifyjs": "^2.4.10",
 "webpack": "^1.12.9",
 "rimraf": "^2.5.1",
 "react": "^15.1.0",
 "react-dom": "^15.1.0"
},
"dependencies": {
 "compression": "^1.6.1",

Chapter 8

[307]

 "cp-file": "^3.1.0",
 "envs": "^0.1.6",
 "express": "^4.13.3",
 "express-error-handler": "^1.0.1",
 "path": "^0.12.7",
 "serve-static": "^1.10.2"
}

All dependencies that Heroku needs must be put in the normal dependencies section
because Heroku will omit all packages in devDependencies.

Dependency strategy for cloud deployment
Since downloading and installing packages from npm is rather slow,
it's a good practice to put packages you only need when developing in
devDependencies and vice-versa. We've been doing this throughout
the entire book, so hopefully you're already following this pattern.

We're almost done, but we need to create a production version of webpack.config.
js, index.html and add the build scripts before we're ready.

Rename your existing webpack.config.js file to Webpack-development.config.
js, and then create a file called Webpack-production.config.js. Note that this
means you need to change the Webpack import in server-development.js to
reflect this change.

Add the following code:

'use strict';

var path = require('path');
var webpack = require('webpack');

module.exports = {
 entry: [
 './source/index'
],
 output: {
 path: path.join(__dirname, 'public', 'assets'),
 filename: 'bundle.js',
 publicPath: '/assets/'
 },
 plugins: [
 new webpack.optimize.OccurenceOrderPlugin(),

Deploying Your App to the Cloud

[308]

This plugin reorders the packages so that the most used one is put at the top. This
should reduce the file size and make the bundle more efficient. We specify that this is
a production build so that Webpack utilizes the most byte-saving algorithm it has:

 new webpack.DefinePlugin({
 'process.env': {
 'NODE_ENV': JSON.stringify('production')
 }
 }),

We'll also tell it to use UglifyJS to compress our code:

 new webpack.optimize.UglifyJsPlugin({
 compressor: {
 warnings: false
 }
 })

From the production configuration of Webpack, we remove the hot loader plugin
since it only makes sense to have it included when developing:

],
 module: {
 loaders: [{
 tests: /\.js?$/,
 loaders: ['babel'],
 include: path.join(__dirname, 'source')
 }]
 },
 resolve: {
 extensions: ['', '.js', '.jsx']
 }
};

Next, add a file called index-production.html to assets and add this code:

<!DOCTYPE html>
<html>
 <head>
 <title>ReactJS + Webpack Scaffold</title>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <link rel="stylesheet" href="/app.css">
 </head>

Chapter 8

[309]

 <body>
 <div id="app"></div>
 <script src="/bundle.js"></script>
 </body>
</html>

Finally, add these scripts to package.json:

"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "prestart": "npm run build",
 "start": "node server-production.js",
 "dev": "node server-development.js",
 "prebuild": "rimraf public",
 "build": "NODE_ENV=production webpack --config Webpack-
 production.config.js",
 "predeploy": "npm run build",
 "deploy": "echo Ready to deploy. Commit your changes and run git
 push heroku master"
},

These scripts let you build and deploy your app. We've stopped short from
actually committing the changes to let you know that the deploy process is
ready to commence.

Note that in the build argument, we add NODE_ENV=production in order to prevent
Babel from trying to use the hot module replacement when building the code. The
configuration that controls this is in .babelrc.

Your Webpack scaffold is now production-ready!

When developing, execute npm run dev and enjoy a slick development environment
with hot reloading.

On npm deploy, the build script is executed and it lets you know when it's ready to
publish your changes. You need to add the changes yourself via git add and git
commit and then run git push heroku master. You can, of course, automate this
in the deploy script.

The build script can also be triggered by issuing npm run build. Before building
the script, we will first execute rimraf public. Rimraf is an environment-safe
command that deletes the public folder and all its contents. It's the same as running
rm -rf public on Mac/Linux. This command doesn't exist on Windows, so
running rm on that platform won't work, but running rimraf will work on either
platform. Finally, the script executes webpack and builds a production bundle that is
put in public/assets/bundle.js.

Deploying Your App to the Cloud

[310]

In general, Webpack is slightly more efficient at removing unused code, so the final
bundle sizes will be smaller than the ones generated by Browserify. The bundle
generated in this example is about 132 KB.

Note that this is not an apples-to-apples comparison because the app we
bundled in the Browserify section was much larger.

The final result is available at https://reactjsblueprints-wpdeploy.herokuapp.
com/.

For reference, our file structure now looks like this:

├── .babelrc
├── assets
│ ├── app.css
│ ├── favicon.ico
│ ├── index.html
│ └── index-production.html
├── package.json
├── server-development.js

https://reactjsblueprints-wpdeploy.herokuapp.com/
https://reactjsblueprints-wpdeploy.herokuapp.com/

Chapter 8

[311]

├── server-production.js
├── source
│ └── index.jsx
├── Webpack-development.config.js
└── Webpack-production.config.js

It's still quite manageable. Admittedly, separating the files in prod and dev requires
a bit more handholding, but it's arguably better than switching the code with if…
else loops inside different files. However, code organization is admittedly a thorny
issue, and there is no general setup that will please everyone. For small modifications
spanning just a few files, if…else statements are probably preferable to break up the
files in production and development versions.

Summary
In this chapter, we added cloud deployment to the two scaffolds we developed
throughout this book. A preview of both examples are available online.

Generating cloud-deployable apps generally means bundling our code as tight as
possible. With the era of HTTP/2 upon us, this strategy may have to be revisited as
it may be more beneficial to generate a set of files that can be downloaded in parallel
instead of a single bundle, however small it may be. It's worth noting that very small
files won't benefit much from gzipping.

It's also possible to split your code bundles with Webpack. For more on code
splitting with Webpack, take a look at https://webpack.github.io/docs/code-
splitting.html.

In the next chapter, we'll develop a streaming server-rendered app based on the
production Webpack setup we just made in this chapter.

https://webpack.github.io/docs/code-splitting.html
https://webpack.github.io/docs/code-splitting.html

[313]

Creating a Shared App
Isomorphic apps are JavaScript applications that can run on both client side and
server side. The idea is that the backend and the frontend should share as much
code as possible. With a server-rendered app, you can also present content up front
without waiting for the JavaScript code to initialize.

This chapter is divided into two parts:

•	 In the first part, we'll extend the setup we created in Chapter 8, Deploying Your
App to the Cloud, so that it supports the pre-rendering of your components

•	 In the second part, we'll add Redux and populate your app with data from
the server environment

In brief, these are the topics we'll cover:

•	 Server rendering versus client rendering
•	 Terminology confusion
•	 Modifying the setup to enable server rendering
•	 Streaming your pre-rendered components
•	 Deploying a server-rendered app to the cloud

Server rendering versus client rendering
Node.js makes it easy to write JavaScript on your backend as well as frontend.
We've been writing server code all along, but until now, all our apps have been
client-rendered.

Rendering your app as a client-rendered app means bundling your JavaScript files
and distributing it with your images, CSS, and HTML files. It can be distributed on
any kind of web server running on any kind of operating system.

Creating a Shared App

[314]

A client-rendered app is generally loaded in two steps:

1.	 The initial request loads index.html and the CSS and JavaScript files either
synchronously or asynchronously.

2.	 Typically, the app then makes another request and generates the appropriate
HTML based on the server response.

With a server-rendered app, the second step is generally omitted. The initial requests
load index.html, the CSS, the JavaScript, and the content in one go. The app is in
memory and ready to serve, with no need to wait for the client to parse and execute
the JavaScript.

You'll sometimes hear the argument that a server-rendered app is a necessity to serve
users who don't have JavaScript on their device or simply have it turned off. This is
not a valid argument, because all surveys and statistics known to me put the number
of users at around 1 percent.

Another argument is to support search bots, who typically struggle with parsing
JavaScript-based content. This argument is slightly more valid, but major players
such as Google and Bing are able to do this, although you may need to add a meta
tag in order for the content to be indexed.

Verifying that bots can read your site
You can use Google's own Fetch as Googlebot to verify that your content
is being indexed properly. The tool is available at https://www.
google.com/webmasters/tools/googlebot-fetch. Alternatively,
you can refer to http://www.browseo.net/.

The benefits of a server-rendered app are as follows:

•	 Users with a slow computer will not have to wait for the JavaScript code to
parse.

•	 It also provides us with predictable performance. You can measure
the time it takes to load your web page when you have control of the
rendering process.

•	 Doesn't require the user to have a JavaScript runtime on their device.
•	 Makes it easier for search bots to crawl your page.

The benefits of a client-rendered app are as follows:

•	 Less setup to deal with
•	 No concurrency issues between the server and the client
•	 Generally easier to develop

https://www.google.com/webmasters/tools/googlebot-fetch
https://www.google.com/webmasters/tools/googlebot-fetch
http://www.browseo.net/

Chapter 9

[315]

Making a server-rendered app is more involving than writing a client-rendered app,
but it comes with tangible benefits. We'll start by making our scaffold ready for the
cloud before moving on to add server rendering. First of all, we need to clear up the
terminology, as in the wild, you'll encounter several different terms to describe apps
that share code between the server and the client.

Terminology confusion
The term isomorphic is made up of the Greek words isos for equal and morph for
shape. The idea is that by using the term isomorphic, it's easy to understand this as
code that's shared between the server and client.

In math, isomorphism is a one-to-one mapping function between two sets that
preserve the relationships between the sets.

For instance, an isomorphic code example would look something like this:

// Module A
function foo(x, y) {
 return x * y;
}

// Module B
function bar(y, x) {
 return y * x;
}

foo(10, 20) // 200
bar(20, 10) // 200

These two functions are not the same, but they produce the same result and are thus
isomorphic for multiplication.

Isomorphism may be a good term in math, but it's clearly not such a good fit for
developing web apps. We've used the term here as the headline for this chapter
because it's currently a recognized term for server-rendered apps in the JavaScript
community. However, it's not a very good term, and the hunt is on for a better one.

In a search for a replacement, the term Universal has cropped up as the choice of
many. Yet, this is not quite ideal either. For one, it's easy to misunderstand. The
closest definition of Universal in relation to web apps is this: used or understood
by all. Remember, the goal is to describe code sharing. But, Universal can also
be understood as a term describing JavaScript apps that can run anywhere. This
includes not only the Web, but also native devices and operating systems. This
confusion is prevalent throughout the web development sphere.

Creating a Shared App

[316]

The third term is Shared, as in Shared JavaScript. This is more appropriate because
it implies there is some meaning to your code. When you're writing Shared
JavaScript, it's implied that the code you write is intended to be used in more
than one environment.

When searching through the code on the Web, you'll find all these terms used
interchangeably to describe the same pattern of developing web apps. Proper
naming is important because it makes your code more understandable to the
outside audience. Buzzwords are nice and sounds good on your resume, but the
more buzzwords you use, the harder it will be for your code base to understand it.

In this chapter, we'll use the term server-rendered for code that renders HTML prior
to serving it to the user. We'll use the term client-rendered for code that defers the
rendering of the HTML to the user's device. And finally, we'll use the term shared
code to describe code that is used interchangeably on both the server and the client.

Developing a server-rendered app
Developing a Shared app in ReactJS requires more work than just building a client-
rendered app. It also necessitates that you think about your data flow requirements.

There are two components that together make it possible to write a server-rendered
app in ReactJS. It can be thought of like an equation:

Pre-rendering components in your server instance + One-way data flow from the server to
your components = good app and happy users

In this section, we'll look at the first part of the equation. We'll tackle the data flow
issue in the final section of this chapter.

Adding packages
We're going to need a few more packages from npm to add them to our dependencies
section. This is the list of dependencies that we need:

"devDependencies": {
 "react-transform-catch-errors": "^1.0.1",
 "react-transform-hmr": "^1.0.1",
 "redbox-react": "^1.2.0",
 "webpack-dev-middleware": "^1.4.0",
 "webpack-hot-middleware": "^2.6.0",
 "babel-cli": "^6.4.5",
 "babel-core": "^6.3.26",
 "babel-loader": "^6.2.0",

Chapter 9

[317]

 "babel-plugin-react-transform": "^2.0.0",
 "babel-preset-es2015": "^6.3.13",
 "babel-preset-react": "^6.3.13",
 "compression": "^1.6.1",
 "cp-file": "^3.1.0",
 "cross-env": "^1.0.7",
 "exenv": "^1.2.0",
 "webpack": "^1.12.9"
},
"dependencies": {
 "express": "^4.13.3",
 "express-error-handler": "^1.0.1",
 "path": "^0.12.7",
 "react": "^15.1.0",
 "react-bootstrap": "^0.29.4",
 "react-breadcrumbs": "^1.3.5",
 "react-dom": "^15.1.0",
 "react-dom-stream": "^0.5.1",
 "react-router": "^2.4.1",
 "rimraf": "^2.5.1",
 "serve-static": "^1.11.0"
}

Add any missing packages to package.json and update it by executing npm install.

Adding CSS
We'll need to style our page, so we'll use a subset of what we used when developing
Reactagram in Chapter 7, Reactagram. Replace the contents of assets/app.css
with this:

body { font-family: 'Bitter', serif; padding: 15px;
 margin-top: 50px; padding-bottom: 50px }

.header { padding: 10px; font-size: 18px; margin: 5px; }

footer{ position:fixed; bottom:0; background: black; width:100%;
 padding:10px; color:white; left:0; text-align:center; }

h1 { font-size: 24px; }

h2 { font-size: 20px; }

Creating a Shared App

[318]

h3 { font-size: 17px; }

ul { padding:0; list-style-type: none; }

.nav a:visited, .nav a:link { color: #999; }

.nav a:hover { color: #fff; text-decoration: none; }

.logo { padding-top: 16px; margin: 0 auto; text-align: center; }

#calculator{ min-width:240px; }

.calc { margin:3px; width:50px; }

.calc.wide { width:163px; }

.calcInput { width: 221px; }

Adding Bootstrap CDN to index.html
Since we're adding react-bootstrap, we need to add the Bootstrap CDN files as
well. Open assets/index.html and replace it with this content:

<!DOCTYPE html>
<html>
 <head>
 <title>Shared App</title>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1, maximum-scale=1, user-scalable=no">
 <link async rel="stylesheet" type="text/css"
 href="//maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/
 font-awesome.min.css">
 <link async rel="stylesheet" type="text/css"
 href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/
 bootstrap.min.css" />
 <link async href=
 'https://fonts.googleapis.com/css?family=Bitter'
 rel='stylesheet' type='text/css'>
 <link async rel="stylesheet" href="/app.css">
 <link rel="stylesheet" href="/app.css">
 </head>
 <body>

Chapter 9

[319]

 <div id="app"></div>
 <script src="/assets/bundle.js"></script>
 </body>
</html>

Creating components
We can't make an app without some content, so let's add a few pages and a
route hierarchy. Start by removing index.jsx from the source folder and
index-production.html from the assets folder. The tree structure will
look like this when we're finished with this part of the chapter:

├── .babelrc
├── assets
│ ├── app.css
│ ├── favicon.ico
│ └── index.html
├── config.js
├── package.json
├── server-development.js
├── server-production.es6
├── server-production.js
├── source
│ ├── client
│ │ └── index.jsx
│ ├── routes
│ │ └── index.jsx
│ ├── server
│ │ └── index.js
│ └── shared
│ ├── components
│ │ ├── back.jsx
│ │ └── fontawesome.jsx
│ ├── settings.js
│ └── views
│ ├── about.jsx
│ ├── app.jsx
│ ├── calculator.jsx
│ ├── error.jsx
│ └── layout.jsx
├── Webpack-development.config.js
└── Webpack-production.config.js

Creating a Shared App

[320]

We need to be diligent in how we structure our app in order to make it easy to
understand and notice how everything fits together with regards to client-side
and server-side rendering.

Let's start by adding the source code for client/index.jsx:

import React from 'react';
import { render } from 'react-dom';
import { Router, browserHistory } from 'react-router';
import { routes } from '../routes';

render(
 <Router routes={routes} history={ browserHistory } />,
 document.getElementById('app')
);

The code structure should be very familiar at this point.

Let's add our routes. Create routes/index.jsx and add this code:

'use strict';

import React from 'react';

import { Router, Route, IndexRoute }
 from 'react-router'
import App from '../shared/views/app';
import Error from '../shared/views/error';
import Layout from '../shared/views/layout';
import About from '../shared/views/about';
import Calculator from '../shared/views/calculator';

const routes= <Route path="/" name="Shared App" component={Layout} >
 <Route name="About" path="about" component={About} />
 <Route name="Calculator" path="calculator"
 component={Calculator} />
 <IndexRoute name="Welcome" component={App} />
 <Route path="*" name="Error" component={Error} />
</Route>

export { routes };

The routes will respond to /, /about, and /calculator, and anything else will be
routed to the error component. The IndexRoute function routes the app to the
Welcome component if you visit the app without specifying a route (for instance,
http://localhost:8080 without the ending slash).

Chapter 9

[321]

The routes are assigned to a few basic views that we're going to create next.

Create shared/views/layout.jsx and add this code:

import React from 'react'
import { Grid, Row, Col, Nav, Navbar } from 'react-bootstrap';
import Breadcrumbs from 'react-breadcrumbs';
import Settings from '../settings';
export default class Layout extends React.Component {
 render() {
 return (
 <Grid>
 <Navbar componentClass="header"
 fixedTop inverse>
 <h1 center style={{color:"#fff"}} className="logo">
 {Settings.title}

We'll fetch the title from the Settings component. The following component will
create a link path that you can use as a navigation element:

 </h1>
 <Nav role="navigation" eventKey={0}
 pullRight>
 </Nav>
 </Navbar>
 <Breadcrumbs {...this.props} setDocumentTitle={true} />

The parameter setDocumentTitle is an argument that will make the component
change the document title of the window tab to the name of the child component
you're on, let's put the following code:

 {this.props.children}
 <footer>
 Server-rendered Shared App
 </footer>
 </Grid>
)
 }
}

Create shared/views/app.jsx and add this code:

'use strict';
import React from 'react'
import { Row, Col } from 'react-bootstrap';

Creating a Shared App

[322]

import { Link } from 'react-router'

export default class Index extends React.Component {
 render() {
 return (
 <Row>
 <Col md={6}>
 <h2>Welcome to my server-rendered app</h2>
 <h3>Check out these links</h3>

 <Link to="/calculator">Calculator</Link>
 <Link to="/about">About</Link>

 </Col>
 </Row>
)
 }
}

This component creates a simple list with two links. The first goes to the About
component and the second to the Calculator component.

Create shared/views/error.jsx and add this code:

'use strict';
import React from 'react'
import { Grid, Row, Col } from 'react-bootstrap';

export default class Error extends React.Component {
 render() {
 return (
 <Grid>
 <Row>
 <Col md={6}>
 <h1>Error!</h1>
 </Col>
 </Row>

 {this.props.children}
 </Grid>
)
 }
}

Chapter 9

[323]

This component will show up if you manually enter a wrong path in the URL locator
of your browser.

Create shared/views/about.jsx and add this code:

'use strict';
import React from 'react'
import { Row, Col } from 'react-bootstrap';

export default class About extends React.Component {
 render() {
 return (
 <Row>
 <Col md={6}>
 <h2>About</h2>
 <p>
 This app is designed to work as either a client- or
 a server-rendered app. It's also designed to be
 deployed to the cloud.
 </p>
 </Col>
 </Row>
)
 }
}

The About component is a simple placeholder component in our app. You can use it
to present some information about your app.

Create shared/views/calculator.jsx and add this code:

'use strict';
import React from 'react'
import { Row, Col, Button, Input, FormGroup, FormControl,
InputGroup } from 'react-bootstrap';

export default class Calculator extends React.Component {
 constructor() {
 super();
 this.state={};
 this.state._input=0;
 this.state.__prev=0;
 this.state._toZero=false;
 this.state._symbol=null;
 }

Creating a Shared App

[324]

The getInitialState element is deprecated when using ES6 classes, so we'll need
to set out the initial state in the constructor. We can do this by first making an empty
state variable attached to this. Then, we add three states: _input is the calculator
input text box, _prev is used to hold the number to calculate, _toZero is a flag
that will be used to zero out the input when doing calculations, and _symbol is the
mathematical operation symbol (plus, minus, division, and multiply), let's take a
look at the following code:

 handlePercentage(){
 this.setState({_input:this.state._input/100, _toZero:true})
 }

 handleClear(){
 this.setState({_input:"0"})
 }

 handlePlusMinus(e){
 this.setState({_input:this.state._input>0 ?
 -this.state._input:Math.abs(this.state._input)});
 }

These three functions alter the input number directly. Let's move on to the next
function:

 handleCalculate(e) {
 const value = this.refs.calcInput.props.value;
 if(this.state._symbol) {
 switch(this.state._symbol) {
 case "+":
 this.setState({_input:(Number(this.state._prev)||0)
 +Number(value),_symbol:null});
 break;
 case "-":
 this.setState({_input:(Number(this.state._prev)||0)
 -Number(value),_symbol:null});
 break;
 case "/":
 this.setState({_input:(Number(this.state._prev)||0)
 /Number(value),_symbol:null});
 break;
 case "*":
 this.setState({_input:(Number(this.state._prev)||0)
 *Number(value),_symbol:null});
 break;
 }
 }
 }

Chapter 9

[325]

This function is invoked when you press the Calculate button (=). It will check
whether the user has activated a mathematical symbol, and if so, it will check which
symbol is active and perform the calculation on the stored number and the current
number, let's take a look at the following code snippet:

 handleClick(e) {
 let input=Number(this.state._input)||"";
 if(this.state._toZero) {
 this.setState({_toZero: false});
 input="";
 }

If the input number needs to be turned into zero, this operation will do that and reset
the _toZero flag. Now we move to isNaN:

 if(isNaN(e.target.value)) {
 this.setState({_toZero:true,
 _prev:this.state._input,
 _symbol:e.target.value
 })

Using isNaN is an efficient way to check whether the variable is a number. If not,
it's a mathematical symbol and we handle this by storing the symbol in the state,
requiring the input number to be made zero (so that we don't calculate the wrong
numbers) and set the current input as the _prev value (to be calculated on), let's
take a look at the following code snippet:

 } else {
 this.setState({_input:input+e.target.value})

If it's a number, we add it to the _input state, let's take a look at the following code
snippet:

 }
 }

 handleChange(e) {
 this.setState({_input:e.target.value})
 }

 calc() {
 return (
 <div id="calculator">
 <Col md={12}>
 <FormGroup>
 <InputGroup className="calcInput" >

Creating a Shared App

[326]

 <FormControl
 ref="calcInput"
 onChange={ this.handleChange.bind(this) }
 value={this.state._input}
 type="text" />
 </InputGroup>
 </FormGroup>
 <Input type="text" className="calcInput"
 ref="calcInput" defaultValue="0"
 onChange={this.handleChange.bind(this)}
 value={this.state._input}/>

When using React.createClass, all functions are automatically bound to the
component. Since we're using ES6 classes, we need to bind our functions manually,
let's take a look at the following code snippet:

 <Button className="calc"
 onClick={this.handleClear.bind(this)}>C</Button>
 <Button className="calc"
 onClick={this.handlePlusMinus.bind(this)}>
 {String.fromCharCode(177)}</Button>
 <Button className="calc"
 onClick={this.handlePercentage.bind(this)}>%</Button>
 <Button className="calc" value="/"
 onClick={this.handleClick.bind(this)}>
 {String.fromCharCode(247)}</Button>

Some characters are difficult to locate on the standard keyboard. Instead, we
can render it using the Unicode character code. A list of character code and their
respective images is readily available on the Internet, let's take a look at the following
code snippet:

 <Button className="calc" value="7"
 onClick={this.handleClick.bind(this)}>7</Button>
 <Button className="calc" value="8"
 onClick={this.handleClick.bind(this)}>8</Button>
 <Button className="calc" value="9"
 onClick={this.handleClick.bind(this)}>9</Button>
 <Button className="calc" value="*"
 onClick={this.handleClick.bind(this)}>
 {String.fromCharCode(215)}</Button>

 <Button className="calc" value="4"
 onClick={this.handleClick.bind(this)}>4</Button>

Chapter 9

[327]

 <Button className="calc" value="5"
 onClick={this.handleClick.bind(this)}>5</Button>
 <Button className="calc" value="6"
 onClick={this.handleClick.bind(this)}>6</Button>
 <Button className="calc" value="-"
 onClick={this.handleClick.bind(this)}>-</Button>

 <Button className="calc" value="1"
 onClick={this.handleClick.bind(this)}>1</Button>
 <Button className="calc" value="2"
 onClick={this.handleClick.bind(this)}>2</Button>
 <Button className="calc" value="3"
 onClick={this.handleClick.bind(this)}>3</Button>
 <Button className="calc" value="+"
 onClick={this.handleClick.bind(this)}>+</Button>

 <Button className="calc wide" value="0"
 onClick={this.handleClick.bind(this)}>0</Button>
 <Button className="calc"
 onClick={this.handleCalculate.bind(this)}>=</Button>
 </Col>
 </div>
)
 }

 render() {
 return (
 <Row>
 <Col md={12}>
 <h2>Calculator</h2>
 {this.calc()}
 </Col>
 </Row>
)
 }
}

Creating a Shared App

[328]

The following screenshot shows the Calculator page we just created:

Next, add two files: config.js to the root folder and settings.js to source/
shared.

Add this code to config.js:

'use strict';
const config = {
 home: __dirname
};
module.exports = config;

Then, add this code to settings.js:

'use strict';
import config from '../../config.js';

const settings = Object.assign({}, config, {
 title: 'Shared App'
});
module.exports = settings;

Chapter 9

[329]

Setting up a server-rendered Express React
server
We have now finished making our shared components, so it's time to set up server
rendering. In the preceding file structure, you've probably noticed that we've added
a file called server-production.es6. We'll keep the ordinary ES5 version, but to
simplify our code, we'll type it up in modern JavaScript and use Babel to convert
it to ES5.

Using Babel is something we have to live with until the node implements full
support for ES6/ECMAScript 2015. We could optionally use babel-node to run
our express server, but it's not advisable to do this in production because it adds
significant overhead to each request.

Let's see how it should look. Create server-production.es6 and add the
following code:

'use strict';

import path from 'path';
import express from 'express';
import compression from 'compression';
import cpFile from 'cp-file';
import errorHandler from 'express-error-handler';
import envs from 'envs';
import React from 'react';
import ReactDOM from 'react-dom';
import { Router, match, RoutingContext } from 'react-router';
import { routes } from './build/routes';

We're going to use client-side routes in our Express server. We'll set up a catch-all
Express route and implement react-router routes within it, let's take a look at the
following code snippet:

import settings from './build/shared/settings';
import ReactDOMStream from 'react-dom-stream/server';

We'll also implement a streaming DOM utility instead of using React's own
renderToString. The renderToString method is synchronous and can become a
performance bottleneck in server-side rendering of React sites. Streams make this
process much faster because you don't need to pre-render the entire string before
sending it. With larger pages, renderToString can introduce a latency of hundreds
of milliseconds as well as require more memory because it needs to allocate memory
to the entire string.

Creating a Shared App

[330]

ReactDOMStream renders asynchronously to a stream and lets the browser render the
page before the entire response is finished. Refer to the following code:

import serveStatic from 'serve-static';

const port = process.env.PORT || 8080;
const host = process.env.HOST || '0.0.0.0';
const app = express();
const http = require('http');
app.set('environment', envs('NODE_ENV', process.env.NODE_ENV ||
'production'));
app.set('port', port);
app.use(compression());

cpFile('assets/app.css', 'public/assets/app.css').then(function() {
 console.log('Copied app.css');
});
app.use(serveStatic(path.join(__dirname, 'public', 'assets')));

const appRoutes = (app) => {
 app.get('*', (req, res) => {
 match({ routes, location: req.url },
 (err, redirectLocation, props) => {
 if (err) {
 res.status(500).send(err.message);
 }
 else if (redirectLocation) {
 res.redirect(302,
 redirectLocation.pathname + redirectLocation.search);

When performing server rendering, we need to send 500 responses for errors and
302 responses for redirects. We can do this by matching and checking the response
status. If there are no errors, we proceed with the rendering, let's take a look at the
following code snippet:

 } else if (props) {
 res.write(`<!DOCTYPE html>
 <html>
 <head>
 <meta charSet="utf-8" />
 <meta httpEquiv="X-UA-Compatible"
 content="IE=edge" />

Chapter 9

[331]

 <meta name="viewport" content="width=
 device-width,
 initial-scale=1, maximum-scale=1,
 user-scalable=no"/>
 <link rel="preload" as="stylesheet"
 type="text/css"
 href="//maxcdn.bootstrapcdn.com/font-
 awesome/4.5.0/css/font-awesome.min.css"/>
 <link rel="preload" as="stylesheet"
 type="text/css"
 href="https://maxcdn.bootstrapcdn.com/
 bootstrap/3.3.5/css/bootstrap.min.css" />
 <link rel="preload" as="stylesheet" href=
 'https://fonts.googleapis.com/css?family=Bitter'
 type='text/css'/>
 <link rel="preload" as="stylesheet"
 href="/app.css" />
 <title>${settings.title}</title>
 </head>
 <body><div id="app">`);
 const stream = ReactDOMStream.renderToString(
 React.createElement(RoutingContext, props));
 stream.pipe(res, {end: false});
 stream.on("end", ()=> {
 res.write(`</div><script
 src="/bundle.js"></script></body></html>`);
 res.end();
 });''
 }
 else {
 res.sendStatus(404);

Finally, we need to send a 404 status if we do not find any properties or routes,
let's take a look at the remaining code:

 }
 });
 });
}

Creating a Shared App

[332]

When the server starts rendering, it will start by writing out our header information.
It will load the initial CSS files asynchronously, set up the title and the body, and
the first div. Then, we switch to ReactDOMStream, which will then start rendering
our app starting from RoutingContext. When the stream is finished, we close the
response by wrapping up our div and HTML page. Server-rendered content now
lives inside <div id="app"></div>. When bundle.js is loaded, it will take
over and replace the content of this div, unless the device it renders on doesn't
support JavaScript.

Note that while the CSS files are asynchronous, they still block the rendering until
they are loaded. It's possible to get around this by inlining the CSS to avoid extra
lookups, let's take a look at the following code snippet:

const router = express.Router();
appRoutes(router);
app.use(router);

const server = http.createServer(app);
app.use((err, req, res, next) => {
 console.log(err);
 next(err);
});
app.use(errorHandler({server: server}));

app.listen(port, host, () => {
 console.log('Server started for '+settings.title+' at
 http://'+host+':'+port);
});

The final part is the same as before, just modified to use the new JavaScript syntax.
One thing you have noticed is that we're importing our source components from a
new folder called build rather than source. We can get away with converting our
source code to ES5, with Babel on runtime when developing; however, this won't
fly in production. Instead, we need to convert our entire source manually.

First, let's change two lines in webpack.config.dev.js and verify that it builds
locally.

Open the file and replace the line in the entry where it says ./source/index with
./source/client/index, and the line path path.join(__dirname, 'public',
'assets') to path.join(__dirname, 'assets'). Then, run the project by
executing npm run dev.

Chapter 9

[333]

The following screenshot shows the main page of the app:

Your app should now run without problems, and http://localhost:8080 should
now present you with the Shared App screen. You should be able to edit the code in
your source folder and see it updated live on the screen. You should also be able to
click on the links and perform math operations with the calculator.

Setting up Webpack for server-rendering
Open Webpack-production.config.js and replace its content with the following:

'use strict';

var path = require('path');
var webpack = require('webpack');

module.exports = {
 entry: [
 './build/client/index'
],
 output: {
 path: path.join(__dirname, 'public', 'assets'),
 filename: 'bundle.js',
 publicPath: '/assets/'

Creating a Shared App

[334]

 },
 plugins: [
 new webpack.optimize.OccurenceOrderPlugin(),
 new webpack.DefinePlugin({
 'process.env': {
 'NODE_ENV': JSON.stringify('production')
 }
 }),
 new webpack.optimize.UglifyJsPlugin({
 compressor: {
 warnings: false
 }
 })
]
};

We're not going to rely on Babel to convert our code on the fly, so we can remove the
module and resolve section.

Setting up npm scripts for server rendering
Open package.json and replace the scripts section with this:

"scripts": {
 "test": "echo \"Error: no test specified\"",
 "convert": "babel server-production.es6 > server-production.js",
 "prestart": "npm run build",
 "start": "npm run convert",
 "poststart": "cross-env NODE_ENV=production node
 server-production.js",
 "dev": "cross-env NODE_ENV=development node
 server-development.js",
 "prebuild": "rimraf public && rimraf build &&
 NODE_ENV=production babel source/ --out-dir build",
 "build": "cross-env NODE_ENV=production webpack --progress
 --config Webpack-production.config.js",
 "predeploy": "npm run build",
 "deploy": "npm run convert",
 "postdeploy": "echo Ready to deploy. Commit your changes and run
 git push heroku master"
},

Chapter 9

[335]

Here's what a running npm start command will do:

1.	 Run the build (before it starts).
2.	 Delete the public and build folder, and convert the ES2015 source to ES5

and put it in the builder folder (the prebuild process).
3.	 Run Webpack and create a bundle in public/assets (the build process).
4.	 Run convert, which is in order to convert server-production.es6 to

server-production.js (when it is started).
5.	 Run the Express server (after it has started).

Phew! That's a huge command chain. After the compilation is over, the server
starts and you can go to http://localhost:8080 to test your pre-rendered server.
You'll probably not even notice the difference at first glance, but try turning off
JavaScript in your browser and perform the refresh action. The page will still load
and you'll still be able to navigate. The calculator will not work, however, because
it requires client-side JavaScript to work. As noted earlier, the goal is not to support
JavaScript-less browsers (as they are rare). The goal is to deliver a pre-rendered page,
and that's what this does.

We change npm deploy as well. Here's what this does:

1.	 Run the build (before it is deployed).
2.	 Run convert, in order to convert server-production.es6 to server-

production.js (once it's deployed).
3.	 It will let you know it's done. This step could be replaced with a push to the

cloud (post its deployment).

The server-rendered app is now complete. You can find a demo at
https://reactjsblueprints-srvdeploy.herokuapp.com/.

Adding Redux to your server-rendered
app
The final piece of the puzzle is the handling of the data flow. In a client-rendered
app, data flow is generally handled in this way: The user initiates an action,
for instance, by visiting the index page of your app. The app then routes to the
view and the render process starts. After the rendering, or during the rendering
(asynchronously), data is fetched and then displayed to the user.

https://reactjsblueprints-srvdeploy.herokuapp.com/

Creating a Shared App

[336]

In a server-rendered app, the data needs to be prefetched before the rendering
process starts. The responsibility of fetching the data shifts from the client to the
server. This necessitates a complete rethink of how we structure our apps. It's
important to make this decision before you start designing your app because
changing your data flow architecture after you've started implementing the app
is a costly operation.

Adding packages
We need to add a number of new packages to our project. The package.json file
should now look like this:

"babel-polyfill": "^6.3.14",
"body-parser": "^1.14.2",
"isomorphic-fetch": "^2.2.1",
"react-redux": "^4.2.1",
"redux": "^3.2.1",
"redux-logger": "^2.5.0",
"redux-thunk": "^1.0.3",

We're going to perform isomorphic fetching like we did in Chapter 6, Advanced React,
so we need to add the isomorphic-fetch library. This library adds fetch as a global
function so that its API is consistent between the client and server.

We'll also add Redux and a console logger instead of the devtools logger we used in
Chapter 6, Advanced React.

Adding files
We'll add a number of new files to our project and change a few of the existing
ones. The functionality we'll implement is the asynchronous fetching of a set of
news items from an offline news API available at http://reactjsblueprints-
newsapi.herokuapp.com/stories. It provides a set of news stories updated at
regular intervals.

We'll start with client/index.jsx. Open this file and replace the content with
this code:

'use strict';

import 'babel-polyfill'
import React from 'react';
import ReactDOM from 'react-dom';
import { Router, browserHistory } from 'react-router';

http://reactjsblueprints-newsapi.herokuapp.com/stories
http://reactjsblueprints-newsapi.herokuapp.com/stories

Chapter 9

[337]

import { Provider } from 'react-redux';
import { routes } from '../routes';
import configureStore from '../shared/store/configureStore';

const initialState = window.__INITIAL_STATE__;
const store = configureStore(initialState);

ReactDOM.render(
 <Provider store={store}>
 <Router routes={routes} history={ browserHistory } />
 </Provider>,
 document.getElementById('app')
)

Here, we add polyfill and the Redux setup like we did in Chapter 6, Advanced React.
We also add a check for window.__INITIAL_STATE__, which is how we'll transfer
the server-rendered content to our app.

Next, open routes/index.jsx and replace the content with this code:

import React from 'react';

import { Router, Route, IndexRoute } from 'react-router'
import App from '../shared/views/app';
import Error from '../shared/views/error';
import Layout from '../shared/views/layout';
import About from '../shared/views/about';
import Calculator from '../shared/views/calculator';
import News from '../shared/views/news';
import { connect } from 'react-redux';
import { fetchPostsIfNeeded } from '../shared/actions';
import { bindActionCreators } from 'redux';

function mapStateToProps(state) {
 return {
 receivePosts: {
 posts: ('posts' in state) ? state.posts : [],
 isFetching: ('isFetching' in state)
 ? state.isFetching : true,
 lastUpdated: ('lastUpdated' in state)
 ? state.lastUpdated : null
 }
 }
}

Creating a Shared App

[338]

function mapFncsToProps(dispatch) {
 return { fetchPostsIfNeeded, dispatch }
}

These functions are responsible for transmitting state and functions to our child
components. We'll use them to pass the news stories to our News component and the
dispatch and fetchPostsIfNeeded functions. Next, add a new folder to shared
and call it actions:

const routes= <Route path="/"
 name="Shared App" component={ Layout } >
 <Route name="About"
 path="about" component={ About } />
 <Route name="Calculator"
 path="calculator" component={ Calculator } />
 <Route name="News" path="news" component={
 connect(mapStateToProps, mapFncsToProps)(News) } />
 <IndexRoute name="Welcome" component={ App } />
 <Route path="*" name="Error" component={ Error } />
</Route>
export { routes };

In this folder, add a file called index.js with this code:

'use strict';

import { fetchPostsAsync } from '../api/fetch-posts';

export const RECEIVE_POSTS = 'RECEIVE_POSTS';

export function fetchPostsIfNeeded() {
 return (dispatch, getState) => {
 if(getState().receivePosts && getState().receivePosts.length {
 let json=(getState().receivePosts.posts);
 return dispatch(receivePosts(json));
 }
 else return dispatch(fetchPosts());
 }
}

Chapter 9

[339]

This function will check whether the stored state exists and has content; if not, it
will dispatch a call to fetchPosts(). This will make sure we will be able to take
advantage of the state rendered by the server and fetch the content on the client
if no such state exists. Refer to the next function in the following code:

export function fetchPosts() {
 return dispatch => {
 return fetchPostsAsync(json => dispatch(receivePosts(json)));
 }
}

This function returns a fetch operation from our API file. It dispatches the
receivePosts() function, which is the Redux function that tells the Redux store
to call the RECEIVE_POSTS reducer function. Let's take a look at the following code
snippet:

export function receivePosts(json) {
 const posts = {
 type: RECEIVE_POSTS,
 posts: json,
 lastUpdated: Date.now()
 };

 return posts;
}

The next file we'll add is fetch-posts.js. Create a folder called api in shared,
then add the file, and then this code:

'use strict';
import fetch from 'isomorphic-fetch'

export function fetchPostsAsync(callback) {
 return fetch(`https://reactjsblueprints-
 newsapi.herokuapp.com/stories`)
 .then(response => response.json())
 .then(data => callback(data))
}

This function simply returns a set of stories using the fetch API.

Creating a Shared App

[340]

Next, add a folder called reducers to shared, then add index.js, and then
this code:

'use strict';
import {
 RECEIVE_POSTS
} from '../actions'

function receivePosts(state = { }, action) {
 switch (action.type) {
 case RECEIVE_POSTS:
 return Object.assign({}, state, {
 isFetching: false,
 posts: action.posts,
 lastUpdated: action.lastUpdated
 })
 default:
 return state
 }
}

export default receivePosts;

Our reducer picks up the new state and returns a new object with the set of posts
that we fetched.

Next, create a folder called store in shared, add a file and call it configure-store.
js, and then add this content:

import { createStore, applyMiddleware } from 'redux'
import thunkMiddleware from 'redux-thunk'
import createLogger from 'redux-logger'
import rootReducer from '../reducers'

export default function configureStore(initialState) {
 const store = createStore(
 rootReducer,
 initialState,
 applyMiddleware(thunkMiddleware, createLogger())
)

 return store
}

Chapter 9

[341]

We create a function that takes initialState and returns a store with our reducer
and adds middleware for asynchronous operation and logging. The logger displays
log data in the console window of the browser.

The final two files we add should be placed in the views folder. The first one is
news.jsx. For this, add the following code:

'use strict';

import React, { Component, PropTypes } from 'react'
import { connect } from 'react-redux'
import Posts from './posts';

class App extends Component {
 constructor(props) {
 super(props)
 this.state={};
 this.state._activePost=-1;
 }

We'll initialize the state by setting _activePost to -1. This will prevent the
component from showing the body of any post before the user has had time
to click on any post. Refer to the following:

 componentDidMount() {
 const { fetchPostsIfNeeded, dispatch } = this.props
 dispatch(fetchPostsIfNeeded())
 }

 handleClickCallback(i) {
 this.setState({_activePost:i});
 }

This is our callback handler in posts.jsx. When the user clicks on a news headline,
a new state will be set with the ID of the news item, let's take a look at the following
code snippet:

 render() {
 const { posts, isFetching, lastUpdated } =
 this.props.receivePosts
 const { _activePost } = this.state;
 return (
 <div>
 <p>
 {lastUpdated &&

Creating a Shared App

[342]

 Last updated at {new Date(lastUpdated)
 .toLocaleTimeString()}.

 }
 </p>
 {posts && isFetching && posts.length === 0 &&
 <h2>Loading...</h2>
 }
 {posts && !isFetching && posts.length === 0 &&
 <h2>Empty.</h2>
 }
 {posts && posts.length > 0 &&
 <div style={{ opacity: isFetching ? 0.5 : 1 }}>
 <Posts posts={posts} activePost={_activePost}
 onClickHandler={this.handleClickCallback.bind(this)}
 />
 </div>
 }

The Posts component will be given a set of posts, an active post, and an onClick
handler. The onClick handler needs to have the App context bound or else it will not
be able to use internal methods, such as setState. If we don't bind it, setState will
apply to the context of the Posts component instead, let's take a look at the following
code snippet:

 </div>
)
 }
}

App.propTypes = {
 receivePosts: React.PropTypes.shape({
 posts: PropTypes.array.isRequired,
 isFetching: PropTypes.bool.isRequired,
 lastUpdated: PropTypes.number
 }),
 dispatch: PropTypes.func.isRequired,
 fetchPostsIfNeeded: PropTypes.func.isRequired
}

We'll use propTypes so that the React devtools can let us know if any of the
incoming props are missing or have the wrong type:

function mapStateToProps(state) {
 return {
 receivePosts: {

Chapter 9

[343]

 posts: ('posts' in state) ? state.posts : [],
 isFetching: ('isFetching' in state) ?
 state.isFetching : true,
 lastUpdated: ('lastUpdated' in state) ?
 state.lastUpdated : null
 }
 }
}

We export the app state so that it's available for components importing the
current one:

export default connect(mapStateToProps)(App)

The second file we add to views is posts.jsx:

'use strict';
import React, { PropTypes, Component } from 'react'

export default class Posts extends Component {
 render() {
 function createmarkup(html) { return {__html: html}; };
 return (

 {this.props.posts.map((post, i) =>
 <li key={i}>

 {post.title}
 {this.props.activePost===i ?
 <div style={{marginBottom: 15}}
 dangerouslySetInnerHTML= {createmarkup(post.body)}
 />:
 <div/>
 }

The RSS bodies come with their own HTML. We must explicitly allow this HTML
to be rendered or else ReactJS will escape the content. When the user clicks on a
headline, the callback executes handleClickCallback in posts.jsx. It will set
a new state in news.jsx, and this state will be passed to posts.jsx as a prop,
signaling that the body of this headline should be displayed, let's take a look at
the following code snippet:

)}

)

Creating a Shared App

[344]

 }
}

Posts.propTypes = {
 posts: PropTypes.array.isRequired,
 activePost: PropTypes.number.isRequired
}

We'll also need to add a link to the news items in our app.jsx file. Open the file and
add this line:

<Link to="/news">News</Link>

With these changes, you're ready to run your app. Start it with npm run dev. You
should be able to go to the front page on http://localhost:8080 and click on the
news link. It should display Loading until the content is fetched from the server.
Here's a screenshot illustrating this:

The screenshot shows that the news data is loaded and displayed even though
JavaScript is blocked in the browser.

Chapter 9

[345]

Adding server rendering
We're very close now, but we still have a little bit of work to do before we're
done. We need to add data fetching to our Express server. Let's open up
server-production.es6 and add the code necessary to prefetch data.

Add these imports somewhere at the top of the file:

import { Provider } from 'react-redux'
import configureStore from './build/shared/store/configure-store'
import { fetchPostsAsync } from './build/shared/api/fetch-posts'

Then, replace const approutes with this code:

const appRoutes = (app) => {
 app.get('*', (req, res) => {
 match({ routes, location: req.url },
 (err, redirectLocation, props) => {
 if (err) {
 res.status(500).send(err.message);
 }
 else if (redirectLocation) {
 res.redirect(302, redirectLocation.pathname +
 redirectLocation.search);
 }
 else if (props) {

 fetchPostsAsync(posts => {
 const isFetching = false;
 const lastUpdated = Date.now()
 const initialState = {
 posts,
 isFetching,
 lastUpdated
 }

 const store = configureStore(initialState)

Here, we start the fetchPostsAsync function. When we receive a result, we create
an initial state with the news items and then create a new Redux store instance with
this state, let's take a look at the following code snippet:

 res.write(`<!DOCTYPE html>
 <html>
 <head>
 <meta charSet="utf-8" />

Creating a Shared App

[346]

 <meta httpEquiv="X-UA-Compatible" content="IE=edge"
 />
 <meta name="viewport" content="width=device-width,
 initial-scale=1, maximum-scale=1,
 user-scalable=no"/>
 <link async rel="stylesheet" type="text/css"
 href="//maxcdn.bootstrapcdn.com/font-awesome/
 4.5.0/css/font-awesome.min.css"/>
 <link async rel="stylesheet" type="text/css"
 href="https://maxcdn.bootstrapcdn.com/bootstrap/
 3.3.5/css/bootstrap.min.css" />
 <link async href=
 'https://fonts.googleapis.com/css?family=Bitter'
 rel='stylesheet' type='text/css'/>
 <link async rel="stylesheet" href="/app.css" />
 <title>${settings.title}</title>
 </head>
 <script>
 window.__INITIAL_STATE__ =
 ${JSON.stringify(initialState)}
 </script>

We add the initial state to the global window so that we can pick it up in client/
index.jsx, let's take a look at the remaining code:

 <body><div id="app">`);
 const stream = ReactDOMStream.renderToString(
 <Provider store={store}>
 <RoutingContext {...props} />
 </Provider>);
 stream.pipe(res, {end: false});
 stream.on("end", ()=> {
 res.write(`</div><script src=
 "/bundle.js"></script></body></html>`);
 res.end();
 });''
 })
 } else {
 res.sendStatus(404);
 }
 });
 });
}

Chapter 9

[347]

That's all you need to prefetch the data. You should now be able to execute npm
start and then open http://localhost:8080. Try turning off JavaScript in your
browser, and you should still be able to navigate and see the items in the news list.

You can also create a new Heroku instance, run npm deploy, and then push it.

You can view a demo online at https://reactjsblueprints-
shared.herokuapp.com.

Performing faster cloud deployment
When you push to Heroku now, what will happen is that Heroku will execute npm
start, kicking off the entire build process. This is problematic because if the build
process is too time consuming or demands too much of resources, it will fail.

You can prevent this by committing the build folder to your repository and then
simply execute node server-production.js on push. You can do this by adding
a special start up file called Procfile to the repository. Create this file in the root of
your project and add this line:

web: NODE_ENV=production node server-production.js

Note that this file is specific to Heroku. Other cloud providers may have a
different system in place to specify the start up procedure.

The final structure
This is how our final app structure looks like (excluding the build folder, which is
essentially the same as the source folder):

├── .babelrc
├── Procfile
├── assets
│ ├── app.css
│ ├── favicon.ico
│ └── index.html
├── config.js
├── package.json
├── server-development.js
├── server-production.es6
├── server-production.js

https://reactjsblueprints-shared.herokuapp.com
https://reactjsblueprints-shared.herokuapp.com

Creating a Shared App

[348]

├── source
│ ├── client
│ │ └── index.jsx
│ ├── routes
│ │ └── index.jsx
│ └── shared
│ ├── actions
│ │ └── index.js
│ ├── api
│ │ └── fetch-posts.js
│ ├── reducers
│ │ └── index.js
│ ├── settings.js
│ ├── store
│ │ └── configure-store.js
│ └── views
│ ├── about.jsx
│ ├── app.jsx
│ ├── calculator.jsx
│ ├── error.jsx
│ ├── layout.jsx
│ ├── news.jsx
│ └── posts.jsx
├── Webpack-development.config.js
└── Webpack-production.config.js

The server structure remains more or less the same, and the source folder is the only
one that is growing. This is how it should be.

It's worth looking at the structure as you develop your apps. It provides a bird's eye
view that can help you spot inconsistencies in naming and other structural issues.
For instance, does the component layout.jsx really belong in views? How about
posts.jsx? It's a view component, but it can be argued that it's a helper to news.jsx
and may possibly belong somewhere else.

Chapter 9

[349]

Summary
In this chapter, we modified our Webpack scaffold to enable cloud deployment. In
the second part of the chapter, we added server rendering, and in the third part, we
added Redux and the prefetching of data asynchronously.

With these three projects, you should be able to produce any kind of app, be they
small or large. However, as you may have noticed, writing an app that supports server
rendering requires a fair amount of thought and organization. As the application
increases in size, it becomes even more difficult to reason out the organization and
data-fetching strategies. You'll be able to make really efficient apps with this strategy,
but I'd advise you to spend time thinking through how you structure your application.

The demos for this chapter are available at https://reactjsblueprints-
srvdeploy.herokuapp.com/ and https://reactjsblueprints-shared.
herokuapp.com. The first link showcases the app as it is when server rendering is
added. The second shows the final app where we fetch data on the server side and
populate a Redux store before rendering the app to the user.

In the next chapter, we'll create a game with ReactJS. We'll use the HTML5 canvas
technology and add Flowtype for static type checking.

https://reactjsblueprints-srvdeploy.herokuapp.com/
https://reactjsblueprints-srvdeploy.herokuapp.com/
https://reactjsblueprints-shared.herokuapp.com
https://reactjsblueprints-shared.herokuapp.com

[351]

Making a Game
In this final chapter, we're going to create the most complex blueprint yet. We're
going to create a game engine and a single screen action game. When you're finished
with this chapter, you'll appreciate why developing with ReactJS is often compared
to developing games. When we make games in HTML5, we use the canvas. Drawing
on canvas is very similar to how we render the browser in ReactJS. We update the
canvas continuously, discarding the previous content and render the new content
immediately.

We'll be making an action game with a playable wizard character facing a horde of
monsters while on a picnic. Armed with a fireball spell, the player must defeat all
the enemies before he's able to relax and enjoy his lunch.

These are the topics we'll cover in this chapter:

•	 The optimal Webpack configuration with dynamic SCSS transpiling
•	 Scripting with ShellJS
•	 Static type checking with Flow
•	 Creating an HTML5 canvas game engine
•	 Responding to keyboard events
•	 Creating and drawing image entities
•	 Moving computer-controlled entities on the screen
•	 Brute force collision detection
•	 Setting up a game title and a game over scenario

So let's get started!

Making a Game

[352]

The optimal Webpack configuration
We're going to implement a few of the newer technologies, and once again, we're
going to modify our Webpack configuration and build process. We're going to add
type checking with Flow, a better solution for copying our assets and creating our
production index.html file. Finally, we'll add support for inline import and instant
transpiling of SCSS.

SCSS is an extension to CSS that allows you to write CSS with features that don't
exist in regular CSS, such as nesting, mixins, inheritance, and variables. It's called a
preprocessor, which is like a transpiler where you write code in one language and
convert it into another language before use. In this case, we will write code in SCSS
and convert it into regular CSS before the browser parses it.

In order to do all of this, we'll need to add a few new packages from npm and
make changes to our Webpack configuration. Note, we're going to start with the
production Webpack scaffold we made in Chapter 8, Deploying Your App to the Cloud.
This scaffold has the following structure:

├── assets
│ ├── app.css
│ ├── favicon.ico
│ ├── index.html
│ └── index.prod.html
├── package.json
├── public
│ └── assets
│ └── bundle.js
├── server-development.js
├── server-production.js
├── source
│ └── index.jsx
├── Webpack-development.config.js
└── Webpack-production.config.js

In both Webpack-development.config.js and Webpack-production.config.js,
add this code inside the loader section (between the square brackets):

{
 test: /\.scss$/,
 loader: 'style!css!sass'
}

Note that we're going to keep the Babel loader and then add another loader beneath,
which will make sure Webpack understands the scss prefix.

Chapter 10

[353]

In both the configuration files, add this import:

var HtmlWebpackPlugin = require('html-webpack-plugin');

And, add this plugin code to the plugins section:

new HtmlWebpackPlugin({
 title: "A Wizard's Picnic",
 template: 'index.ejs',
 hash: true,
 inject: 'body'
})

This plugin will take a template index.ejs file and copy it to the output path
defined earlier in the configuration file as index.html. It will also insert the
generated script files created with Webpack.

For Webpack-development.config.js, the output section should look like this:

output: {
 path: path.join(__dirname, 'assets'),
 filename: 'bundle.js'
},

For Webpack-production.config.js, it should look like this:

output: {
 path: path.join(__dirname, 'public', 'assets'),
 filename: 'bundle.js'
},

We also need to add the index.ejs file and its contents. Add them using this code:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8"/>
 <title><%= htmlWebpackPlugin.options.title %></title>
 </head>
 <body>
 <div id="app"></div>
 </body>
</html>

Making a Game

[354]

Notice that we've skipped both the CSS and the scripts and that we've added the
page title by injecting htmlWebpackPlugin.

With these two changes, we can remove the cpFile plugin and the cpFile code
in our server-production.js file. The cpFile plugin did two things: it copied
assets/index.prod.html to public/assets/index.html and app.css in assets
to public/assets. We'll still need to copy the assets content, but since we'll be
copying a lot of files, we'll need a smarter way to do this than simply copying file
after file.

Scripting with ShellJS
We're going to employ ShellJS to copy our assets instead. This npm package is
an alternative to ordinary bash scripts with the added benefit of support across
environments. This means that the scripts we make will work for Windows users
as well as for Mac/Linux users.

We'll need to add a script to copy our files, so add a new folder called scripts and
add a file called assets.js to it. Then, add this code:

require('shelljs/global');
rm('-rf','public/assets');
mkdir('-p','public/assets');
cp('-R', 'assets/', 'public/assets');

We also need to update our package.json file with a run script so that we can run
ShellJS when packaging our app. Open the file and replace the start command with
the following three lines:

"prestart": "shjs scripts/assets.js",
"start": "cross-env NODE_ENV=production npm run build",
"poststart": "cross-env NODE_ENV=production node server-production.
js",

We also need to update our server file, so open server-production.js and replace
it with this content:

"use strict";
var express = require("express");
var app = express();
var port = process.env.PORT || 8080;
var host = process.env.HOST|| "0.0.0.0";
var path = require("path");
var compression = require("compression");
var http = require("http");

Chapter 10

[355]

var errorHandler = require('express-error-handler');

app.use(compression());
app.get("*", function (req, res) {
 console.log(req.path);
 var file = path.join(__dirname, "public", "assets", req.path);
 res.sendFile(file);
});

server = http.createServer(app);
app.use(function (err, req, res, next) {
 console.log(err);
 next(err);
});
app.use(errorHandler({server: server}));

app.listen(port, host, function() {
 console.log('Server started at http://'+host+':'+port);
});

Next, we need to add all the packages we've been importing. Do this by executing
the following command:

npm i --save-dev shelljs@0.6.0 html-webpack-plugin@2.9.0 cross-env@1.0.8
sass-loader@3.1.2 node-sass@3.4.2 style-loader@0.13.0 css-loader@0.23.1

We can remove the two packages we don't need anymore using this:

npm remove --save-dev cp-file rimraf

You also need a complete set of assets for the game. You can clear out the current
assets folder and use the contents available at http://reactjsblueprints-
chapter10.herokuapp.com/assets.zip. The graphics in our game contain a
selection of tiles from a public domain roguelike tileset called RLTiles. You can
find the original tileset at http://rltiles.sf.net.

Phew! That was a lot of changes, but we're finally ready to start programming the
game. You should be able to run npm run dev to run the development server and
npm start to build and run the production server.

http://reactjsblueprints-chapter10.herokuapp.com/assets.zip
http://reactjsblueprints-chapter10.herokuapp.com/assets.zip
http://rltiles.sf.net

Making a Game

[356]

Static typechecking with Flow
We're going to type check our code with Flow. This is not part of our code base,
but you'll see the syntax everywhere in our engine and game code.

Flow is designed to find type errors in JavaScript programs. It has one major benefit
when compared to a fully typed language, such as TypeScript. You have the
freedom to use it when you feel like. This means that you can mix typed code with
non-typed code and keep on programming generally, as you've always done with
the added benefit of being able to automatically spot type errors.

The downside is that the Flow binary is only available on Mac and Linux. There's an
experimental Windows binary available, but it's not always up to date. The upside is
that if you're on Windows, your code will still execute, but you won't be able to find
any potential errors.

Install Flow by visiting http://flowtype.org/docs/getting-
started.html and following the instructions.

You need a special configuration file in the root of your project called .flowconfig
(no name before the dot). Add the file with this content:

[include]
./source
[ignore]
.*/*.scss*
.*/node_modules/babel.*
.*/node_modules/babylon.*
.*/node_modules/redbox-react.*
.*/node_modules/invariant.*
.*/node_modules/fbjs.*
.*/node_modules/fsevents.*
.*/node_modules/is-my-json-valid.*
.*/node_modules/config-chain.*
.*/node_modules/json5.*
.*/node_modules/ua-parser-js.*
.*/node_modules/spdx.*
.*/node_modules/binary.*
.*/node_modules/resolve.*
.*/node_modules/npmconf.*
.*/node_modules/builtin.*
.*/node_modules/sha.*
[options]
module.name_mapper='.*\(.css\)' -> 'empty/object'
module.name_mapper='.*\(.scss\)' -> 'empty/object'

http://flowtype.org/docs/getting-started.html
http://flowtype.org/docs/getting-started.html

Chapter 10

[357]

This configuration tells Flow to check the contents of the source folder while
ignoring a few selected dependencies in node_modules, which it picks up
through the reference in the source folder files.

When Flow is installed and the configuration file is added, you can start checking
your code by executing flow from your command line. It will initialize a server on
the first run and then report errors for every run after that.

A typical error looks like this:

source/engine/entity/randomMove.js:21
 21: entity.direction = shuffle(direction)[0];
 ^^^^^^^^^^^^^^^^^^ function call
 18: let direction = ["x","y"];
 ^^^ string. This type is incompatible with
 3: array: Array<Object>
 ^^^^^^ object type. See:
source/engine/math/shuffle.js:3

Here, Flow has figured out that the call to shuffle is called with an array, but the
shuffle function is defined to expect an array with objects. The error is easy to fix
because shuffle should expect an array with a collection of values and not an array
with an object.

By using annotations, you code with intent, and Flow makes it easy to spot whether
you're using functions the way you intended, as witnessed by the preceding error.

Creating an HTML5 canvas engine
The game is divided into two parts: the engine and the game. For projects like these,
it's worthwhile to have a plan for how the app is going to look at the final stage. It's
natural to separate the pure game engine parts from the game parts because this
makes it easier to repurpose them later and use them for other games.

Usually, when you make a game, you base it off a premade engine, but we're not
going to do that. We're going to make an engine all by ourselves. We'll implement
just the features that we need, but feel free to extend and add engine pieces of your
own when we're done.

Making a Game

[358]

The engine should be placed as a subfolder inside source. This is the structure:

engine/
├── collision
│ └── bruteForce.js
├── entity
│ ├── createEntity.js
│ ├── drawEntity.js
│ ├── randomMove.js
│ └── targetEntity.js
├── index.js
├── input
│ ├── keyboard.js
├── math
│ ├── shuffle.js
│ ├── sign.js
└── video
 ├── clear.js
 └── loadImage.js

The main file is index.js, which simply acts as a central import/export hub.
Let's start by creating the engine folder and index.js. It should have this content:

const loadImage = require('./video/loadImage');
const clear = require('./video/clear');
const drawEntity = require('./entity/drawEntity');
const createEntity = require('./entity/createEntity');
const targetEntity = require('./entity/targetEntity');
const sign = require('./math/sign');
const bruteForce = require('./collision/bruteForce');
const keyboard = require('./input/keyboard');
const shuffle = require('./math/shuffle');
const randomMove= require('./entity/randomMove');

module.exports = {
 loadImage,
 clear,
 randomMove,
 createEntity,
 drawEntity,
 targetEntity,
 sign,
 shuffle,
 bruteForce,
 keyboard
}

Chapter 10

[359]

We'll be using all of these components in our game. Let's create each one and look at
what they do.

Let's start with the video folder and loadImage.js. Add this code to the folder:

// @flow
const setImage = (ctx: Object, image: Image) => {
 ctx.drawImage(image, 0, 0);
}

const loadImage = (canvas: Object, image: string) => {
 let bgImage = new Image();
 bgImage.src = image;
 bgImage.onload = () => {
 setImage(canvas.getContext("2d"), bgImage)
 };
}
module.exports = loadImage;

Adding a comment line with @flow tells Flow to use its type-checking ability on this
file. The setImage function is then defined with two arguments: ctx and image. The
ctx argument is cast to an object and image to an image. If we had cast the image to
a string, Flow would immediately have told us that the type was incompatible with
the setImage function call.

Enough with Flow; let's examine what this file does. It has two functions, but only
one is exported. The loadImage function takes an image and fetches it to the image
variable, namely bgImage. This is a network call so the module can't return the image
immediately, but we tell the function to execute the setImage function as soon as
the image is loaded. This function will then draw the image on to the canvas that
we passed in.

The next file is clear.js, which needs to be added to the source/engine/video
folder as well. Add this code:

const clear = (canvas: Object) => {
 const ctx = canvas.getContext('2d');
 ctx.clearRect(0, 0, canvas.width, canvas.height);
};
module.exports = clear;

When called, this completely clears the canvas.

Making a Game

[360]

The next file is shuffle.js in the source/engine/math folder. Add it with this code:

// @flow
const shuffle = (
 array: Array<any>
): Array<any> => {
 let count = array.length;
 let rnd, temp;

 while(count) {
 rnd = Math.random() * count-- | 0;

This line fetches a random number between 0 and the number of remaining items
in the counter. The single pipe is a bitwise or operator, which in this case removes
the fraction. It works much in the same way as Math.floor() but is faster because
bitwise operators are primitive. It's arguably more convoluted and harder to
understand, so wrapping the math operation with Math.floor() is a good idea
if you want the code to be more readable. We'll then assign the item to the temp
variable in sequence, and move the current item at the random number to the
current counter in the array:

 temp = array[count];
 array[count] = array[rnd];
 array[rnd] = temp;

Finally, we'll set the array at the random number to the item in sequence.
This ensures that all items are accounted for:

 }
 return array;
}
module.exports = shuffle;

As the name suggests, the shuffle function accepts an array collection and then
shuffles it using a loop over all the items in the input array.

The second file in the math folder is sign.js. Add this code to it:

//@flow
const sign = (n: number): number => {
 return Math.sign(n) || (n = +n) == 0 || n != n ? n : n < 0 ? -1
 : 1
};
module.exports = sign;

Chapter 10

[361]

Sign is a mathematical expression that returns an integer that indicates the sign of a
number. We'll use the built-in sign function if available, or our own if not. We'll use
this when setting up movement for enemy entities targeting the player.

Next is the input folder. Add keyboard.js with this code to it:

// @flow
const keyboard = (keys: Array<bool>) => {
 window.addEventListener("keydown", (e) => {
 keys[e.keyCode] = true;
 }, false);

 window.addEventListener("keyup", (e) => {
 delete keys[e.keyCode];
 }, false);
}
module.exports = keyboard;

This file adds an event listener that registers keys when the player pushes any keys
on the keyboard and deletes them from the key array when the event listener detects
that the key is being released (the user is no longer pressing the key down).

Let's add the entity folder. Here we'll add five files. The first one is targetEntity.
js. Add this code to it:

// @flow
import sign from '../math/sign';

const targetEntity = (
 entityA: Object,
 entityB: Object,
 speed: number = 1
) => {
 let posA = entityA.pos;
 let posB = entityB.pos;
 let velX = sign(posB.x - posA.x) * speed;
 let velY = sign(posB.y - posA.y) * speed;
 entityA.pos.x+=velX;
 entityA.pos.y+=velY;
};
module.exports = targetEntity;

Making a Game

[362]

We'll use this file to set one entity on the path towards the position of another entity.
In the game we're making, we will use this code to direct an enemy entity to the
player or vice versa. The entity is an object that has a certain size, position, and
velocity, and the code works by changing the x and y position of the entityA object.

We'll use the sign method to set the correct sign. If we don't do this, it will most
likely move away from the entity instead of moving towards it.

Next up is randomMove.js. Add the file and this code:

// @flow
import shuffle from '../math/shuffle';
const randomMove = (
 entity: Object,
 speed: number = 1,
 Config: Object = {
 height: 512,
 width: 512,
 tileSize: 32
 }
) => {
 let {pos, vel} = entity;
 let speedX, speedY;

 entity.tick-=1;

When entity.tick reaches zero, a new direction will be calculated. Now check
this out:

 let direction = ["x","y"];

 if(entity.tick<=0) {
 entity.direction = shuffle(direction)[0];
 entity.tick=Math.random()*50;
 }

In order to make the direction recalculation a little more random, the new tick value
is set between a value of 0 and 50. Let's move on to another function:

 if(pos.x + vel.x >Config.width - Config.tileSize *2) {
 vel.x=-speed;
 }
 if(pos.x + vel.x < Config.tileSize/2) {
 vel.x=speed;
 }

Chapter 10

[363]

 if(pos.y + vel.y > Config.height- Config.tileSize * 2) {
 vel.y=-speed;
 }
 if(pos.y + vel.y < Config.tileSize/2) {
 vel.y=speed;
 }

 entity.pos.x+= entity.direction==="x" ? vel.x: 0;
 entity.pos.y+= entity.direction==="y" ? vel.y: 0;
};
module.exports = randomMove;

This function implements a random direction for computer-controlled entities.

The next file we'll create is drawEntity.js. Add this code:

// @flow
import createEntity from './createEntity';

module.exports = (
 canvas: Object,
 entity: Object
) => {
 if(entity._creating && !entity._sprite){
 return 0;
 }
 else if(!entity._sprite) {
 createEntity(canvas, entity);
 }
 else {
 // draw the sprite as soon as the image
 // is ready
 var ctx = canvas.getContext("2d");
 ctx.drawImage(
 entity._sprite,
 entity.pos.x,
 entity.pos.y
);
 }
}

This file is similar to loadImage, except that we'll add a state to the entity by
setting two variables: _creating and _sprite. We'll use this in the game later by
only actually drawing entities that have a proper ImageData object (contained in
_sprite).

Making a Game

[364]

The final file in the entity folder is createEntity.js. Add this code:

// @flow
import drawEntity from './drawEntity';

module.exports = (
 entity: Object
) => {
 entity.id=Math.random()*2;

This provides the entity with an ID, take a look at the following:

 entity._creating=true;

Flag it so we don't try to create the entity twice. Let's take a look at the following
code snippet:

 let entityImage = new Image();
 entityImage.src = entity.image;
 entityImage.onload = () => {
 entity._sprite = entityImage;
 };
}

We're almost done with the engine. We'll need to add one more folder and file,
collision and bruteForce.js, respectively. Add it with this code:

// @flow
module.exports = (
 entityA: Object = {pos: {x:0, y:0}},
 entityB: Object = {pos: {x:0, y:0}},
 size: number = 32
): bool => {
 return (
 entityA.pos.x <=
 (entityB.pos.x + size)
 && entityB.pos.x <=
 (entityA.pos.x + size)
 && entityA.pos.y <=
 (entityB.pos.y + size)
 && entityB.pos.y <=
 (entityA.pos.y + size)
)
}

Chapter 10

[365]

This function will compare the positions of two entities and determine whether
they're occupying the same space. For small canvases and a limited number of
entities on screen, it's the fastest collision detection you can conceivably implement.

You now have a small working game engine. Let's move on and start implementing
the game.

Creating the game
The game itself is going to be larger than the engine. This is not uncommon,
especially for HTML5 games, but brace yourself because we're going to add
a lot of files. Let's take a look at the following screenshot:

Making a Game

[366]

This is the file structure for the game (excluding the engine):

├── components
│ ├── addEntity.js
│ ├── addProjectile.js
│ ├── checkCollision.js
│ ├── debugBoard.js
│ ├── diceroll.js
│ ├── drawEntities.js
│ ├── drawGameOver.js
│ ├── drawGameWon.js
│ ├── drawHud.js
│ ├── clearCanvas.js
│ ├── keyInput.js
│ ├── keypress
│ │ ├── a.js
│ │ ├── d.js
│ │ ├── down.js
│ │ ├── index.js
│ │ ├── left.js
│ │ ├── right.js
│ │ ├── s.js
│ │ ├── space.js
│ │ ├── up.js
│ │ └── w.js
│ ├── outOfBounds.js
│ ├── removeEntity.js
│ └── setupGame.js
├── config
│ ├── beasts.js
│ ├── index.js
│ ├── players.js
│ └── spells.js
├── game.jsx
├── index.jsx
├── polyfills.js
├── style.scss
└── title.jsx

Let's start with the root source files.

Add this to index.jsx:

import './style.scss';
import polyfill from './polyfills';
import Config from './config';

Chapter 10

[367]

The Config file is where we'll provide the game with all of the content, as follows:

import React, { Component, PropTypes } from 'react';
import MyGame from './game';
import Title from './title';
import {render} from 'react-dom';

class Index extends Component {
 constructor() {
 super();
 this.state={};
 this.state.scene="title";
 }

 callback(val: string) {
 this.setState({scene: val})
 }

 render() {
 switch(this.state.scene) {
 case "title":
 return <Title cb={this.callback.bind(this)} />
 break;

 case "game":
 return <MyGame cb={this.callback.bind(this)} />
 break;
 }
 }
}

render(
 <Index />,
 document.getElementById('app')
);

We display either the title or the game screen when the player starts the game.
We implement the switch by providing the components with a setState callback,
which means that anytime we want to switch to a scene, we can use this.props.
cb(scene).

Making a Game

[368]

Next, add polyfills.js with this code:

// polyfill for requestAnimationFrame
var requestAnimFrame = (function() {
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback) {
 window.setTimeout(callback, 1000 / 60);
 };
})();

This is a shim to provide support for requestAnimationFrame for the
browsers that don't support it yet. As you can see in the code, it will implement
setTimeOut if requestAnimationFrame is not supported. We want to use
requestAnimationFrame because it's more efficient than setTimeOut, which is
less accurate and also wastes a lot of cycles by rendering when it's not necessary.

Let's add title.jsx:

import './style.scss';
import polyfill from './polyfills';
import Config from './config';
import React, { Component, PropTypes } from 'react';
import Game from './engine';
import keyboard from './components/keypress/index';

class Title extends Component {
 constructor() {
 super();
 this.last = Date.now();
 this.keys={};
 }

 keyInput(keys) {
 if (keyboard.space(keys)) {
 this.props.cb("game");
 }
 }

Start the game if the player hits space on the keyboard. The next is as follows:

 updateGame(modifier) {
 if(typeof this.refs.canvas ==="undefined")
 return;

Chapter 10

[369]

This avoids updating the game if the canvas has not yet been initialized.
The following code tells the game to listen for keyboard input:

 const { canvas } = this.refs;
 const ctx = canvas.getContext("2d");

 Game.loadImage(
 canvas,
 Config.backgrounds.title
);

 // Keyboard
 this.keyInput(this.keys);
 }

 componentDidMount() {
 Game.keyboard(this.keys);

This is the main game loop:

 const gameLoop = () => {
 var now = Date.now();
 var delta = now - this.last;
 this.updateGame(delta / 1000);
 this.last = now;
 window.requestAnimationFrame(gameLoop);
 }
 gameLoop();

Even though this is a title scene, we treat it as a mini game and update it accordingly.
This enables us to easily animate the title screen using entities and game logic
and use the same input methods as in the game, let's take a look at the following
code snippet:

 }

 render() {
 return <div><canvas
 ref="canvas"
 id={ Config.id || "canvas" }
 height={ Config.height }
 width={ Config.width } >
 Sorry, your browser doesn't
 support canvas
 </canvas>

Making a Game

[370]

 <div className="info">
 You're a wizard. You're on a picnic.

 You hear a noise...
 </div>
 </div>
 }
}
module.exports = Title;

Next, add style.scss with this code:

canvas {
 margin: 0 auto;
 display: block;
}
body {
 background: black;
}
.info {
 color:white;
 text-align:center;
 margin: 0 auto;
 display: block;
 a {
 color:white;
 }
}

And finally, we add the game itself. Add game.jsx with this code:

import './style.scss';
import polyfill from './polyfills';
import Config from './config/index';
import React, { Component, PropTypes } from 'react';
import Game from './engine';
import SetupGame from './components/setupGame';
import KeyInput from './components/keyInput';
import DrawHUD from './components/drawHud';
import DrawGameOver from './components/drawGameOver';
import DrawGameWon from './components/drawGameWon';
import DrawEntities from './components/drawEntities';
import ClearCanvas from './components/clearCanvas';
import CheckCollision from './components/checkCollision';

Chapter 10

[371]

import OutOfBounds from './components/outOfBounds';
import AddProjectile from './components/addProjectile';
import AddEntity from './components/addEntity';
import RemoveEntity from './components/removeEntity';

We'll need to create all of these components in order for the game to work. When
developing a game, it's quite common to inline these components. When iterating the
game, you'll get a feel for how to separate them into distinct components and how
you can shape them for reuse, let's take a look at the following code snippet:

class MyGame extends Component {
 constructor() {
 super();
 this.lastTime = Date.now();
 this.keys={};
 this.gameOver=false;
 this.gameWon=false;
 this.maxMonsters=3;
 this.level=0;
 this.beast=Config.beasts[0],
 this.state={};
 this.returnToTitleScreen=150;

This is a countdown that will be used when the game is over and the player is
returned to the title screen, take a look at the following code snippet:

 this.score = 0;
 this.coolDown=0;

This is another countdown. It's used whenever the player is shooting and prevents
the player from spamming the board with projectiles, let's take a look at the
following code snippet:

 this.entities= Config.entities;
 this.current_player_no = 0;
 this.current_player = this.entities.players[0];
 this.state.player = this.current_player;
 this.current_player.health=100;
 this.current_player.pos= {x:8, y:8};

Making a Game

[372]

The game board is 512 x 512 pixels and each individual entity is 32 x 32 pixels. It's
easier to visualize the placement on the board by dividing the board size by the
entity size. By looking at this value, it's easy to understand that the current player
is placed in the middle of the board. It might be a little harder if we had used the
precise pixel value, which is 256 x 256. Now, let's look at the next step:

 }

 updateGame(modifier) {
 if(typeof this.refs.canvas ==="undefined")
 return;

 const { canvas } = this.refs;
 const ctx = canvas.getContext("2d");

 if(this.gameOver) {
 ClearCanvas(canvas, this.gameOverImage);
 if(this.gameWon)
 DrawGameWon(canvas);
 else
 DrawGameOver(canvas);
 --this.returnToTitleScreen;
 if(this.returnToTitleScreen<=0)
 this.props.cb('title');
 return;
 }

Whenever the gameOver flag has been set to true, we tell the game to pause and start
the counter that will return the player to the title screen when the counter hits zero,
take a look at the following code:

 const player = this.entities.players[
 this.current_player_no
];

This is a single player game, but you could add more players to the game by
extending the players array in config and switch them by iterating the current_
player_no variable. This function is responsible for drawing the player and any
enemies and projectiles:

 DrawEntities(Config, canvas, this.entities);

This function draws the score and the player health at the top of the screen:

 DrawHUD(canvas, this.score, player.health);

Chapter 10

[373]

This is a rather advanced function that handles all the key input in the game:

 this.coolDown-=0.1;

 KeyInput(
 Config,
 this.keys,
 player,
 1,
 AddProjectile.bind(this),
 (item) => this.entities.projectiles.push(item),
 this.coolDown,
 _ => this.coolDown = 1.5
);

It requires the Config object for calculating the position of the projectiles, the keys
for handling the moving and shooting actions, the player object, and a modifier that
can be used to speed up or down the movement. It also requires that you pass the
function that creates a projectile and two callbacks: the first for adding the projectile
to the entities array and the second a setter for the coolDown variable. The higher
this last value is, the fewer projectiles the player can fire. For every iteration, the
projectile moves according to its velocity:

 this.entities.projectiles.forEach((item)=> {
 item.pos.x+= item.direction.xVel;
 item.pos.y+= item.direction.yVel;

The following loop is necessary to check whether any of the projectiles collide with
any of the monsters:

 this.entities.monsters.forEach((monster)=> {

It's a loop within a loop, which is something we generally should be careful with
because it can be a major source of slowdown. Now check out the following code:

 if(Game.bruteForce(
 item, monster, Config.tileSize/2
)) {
 monster.health-=20;

 this.entities.projectiles =
 RemoveEntity(
 this.entities.projectiles,
 item,
 _ => {}
);

Making a Game

[374]

As illustrated, if the projectile collides with an enemy, the enemy loses 20 health
points and we remove the projectile from the entities array. This makes sure it's not
drawn in the next run of the game loop. The next check removes the enemy if its
health is less than zero:

 if(monster.health<=0) {
 this.entities.monsters =
 RemoveEntity(
 this.entities.monsters,
 monster,
 _ => { this.score++}
);
 }
 }
 })

 if(OutOfBounds(
 item,
 {h:Config.height,w:Config.width},
 Config.tileSize
)) {
 this.entities.projectiles =
 RemoveEntity(
 this.entities.projectiles,
 item,
 _ => {}
);
 }

This function takes care of removing projectiles that have escaped the canvas. This
is important because we don't want to keep the list of elements that we calculate as
small as possible. We move on to the next loop:

 })

 this.entities.monsters.forEach((monster)=> {

This loop checks whether the enemies are close to or are colliding with the player.
If they are close, it should head straight for the player. Try increasing the range to
make the game more difficult.

If they collide, the player loses health.

Chapter 10

[375]

If none of these occur, we provide a random direction for the entity:

 if(Game.bruteForce(monster, player, 32)) {
 Game.targetEntity(
 monster,
 player,
 monster.speed
)
 }
 Game.randomMove(
 monster,
 monster.speed,
 Config
)

 CheckCollision(
 canvas, player,
 monster,
 _ => {player.health-=1},
 _ => {}
);
 })

 if(!this.gameOver && this.level<=14) {
 if(this.entities.monsters.length<=0) {
 ++this.level;

Any time a player clears out the current set of enemies, they advance to the
next level:

 this.beast=Config.beasts[this.level-1];
 this.setState({
 level: this.level,
 beast: this.beast
 })
 this.maxMonsters=this.level+3;
 }

 if(this.beast && this.maxMonsters>0) {
 --this.maxMonsters;

Making a Game

[376]

Each level comes with more enemies. This check makes sure that we add as many
enemy entities as the current level dictates:

 AddEntity(
 this.beast,
 {
 x: Game.shuffle([64,256,480])[0],
 y: Game.shuffle([-32,520])[0]
 },
 20+this.score,
 1+Math.random()*this.score/10,
 (item) => this.entities.monsters.push(item)
)
 }
 }

 if(this.level>14) {
 this.gameWon=true;
 this.returnToTitleScreen = 400;
 this.gameOver=true;
 }

 if(player.health<0 || this.gameWon) {

If the player is out of health, we store the current canvas image and use that as the
game over screen. We then clear out the entities and set the gameOver flag:

 this.gameOverImage =
 ctx.getImageData(
 0, 0, canvas.width, canvas.height
);
 this.entities.monsters=[];
 this.entities.projectiles=[];
 this.gameOver = true;
 }

 }

 componentDidMount() {
 const canvas = this.refs.canvas;
 const ctx = canvas.getContext("2d");

 this.level=0;
 this.setState({

Chapter 10

[377]

 score: 0,
 level: 0,
 beast: Config.beasts[0]
 })

When mounting the game, we reset the score, level, and current enemy. This lets us
start fresh when the player has hit game over and presses space to play again:

 SetupGame(
 Config, this.keys, this.refs.canvas,
 this.entities, this.positions
);

 const gameLoop = () => {
 var now = Date.now();
 var delta = (now - this.lastTime) / 1000.0;
 this.updateGame(delta);
 this.last = now;
 window.requestAnimationFrame(gameLoop);
 }

 gameLoop();

 }

 getCurrentplayer() {
 return this.current_player.name
 }

 render() {
 return <div>
 <canvas
 ref="canvas"
 id={ Config.id || "canvas" }
 height={ Config.height }
 width={ Config.width } >
 Sorry, your browser doesn't
 support canvas
 </canvas>

 <div className="info">
 Player: {this.getCurrentplayer()}

 Level: {this.level}
 </div>

Making a Game

[378]

 </div>
 }
}

module.exports = MyGame;

The following screenshot shows the game with the player visible, with enemy
entities swarming the player and a score and a health bar in the title bar. At the
bottom of the screen, you see the player name (randomly picked from the name
array) and the current difficulty level:

That's it for the game file, but as you noticed, we have several more files to add. We'll
need to add two new folders: components and config. Let's start with config. Add
this folder and the index.js file. Then, add this content:

import { players, names } from './players';
import { beasts } from './beasts';
import Shuffle from '../engine/math/shuffle';

let config = {

Chapter 10

[379]

 tileSize: 32,
 height: 512,
 width: 512,
 debug: true,
 beasts: beasts,
 backgrounds: {
 title: '/title.png',
 game: '/board512_grass.png'
 },
 entities: {
 players : [],
 projectiles: [],
 monsters: [],
 pickups: [],
 enemies: []
 }

We haven't added any pickups to the game, but it'd be a good idea to do this and
add various items such as health, different weapons, and so on, let's take a look at
the following code:

}

config.entities.players.push({

We'll add a single player and give them a random name from the list of names and a
random image from the list of players, let's take a look at the following code snippet:

 name: Shuffle(names).pop(),
 image: Shuffle(players).pop(),
 health: 100,
 width: 32,
 height: 32,
 pos:{
 x: 8,
 y: 8
 },
 speed: 5
})

module.exports = config;

Making a Game

[380]

Next, add config/players.js with this content:

let names = [
 "Striliyrin",
 "Xijigast",
 "Omonar",
 "Egeor",
 "Omakojamar",
 "Eblokephior",
 "Tegorim",
 "Ugniforn",
 "Igsior",
 "Imvius",
 "Pobabine",
 "Oecodali",
 "Baro",
 "Trexaryl",
 "Flahevys",
 "Ugyritaris",
 "Afafyne",
 "Stayora",
 "Ojgis",
 "Ikgrith"
];
let players = [
 '/deep_elf_knight.png',
 '/deep_elf_death_mage.png',
 '/deep_elf_demonologist.png',
 '/deep_elf_fighter.png',
 '/deep_elf_high_priest.png',
 '/deep_elf_mage.png',
 '/deep_elf_blademaster.png',
 '/deep_elf_conjurer.png',
 '/deep_elf_annihilator.png'
]
exports.players = players;
exports.names = names;

This file adds variety to the game. It can also be useful if and when we add more
players to the game.

Chapter 10

[381]

Finally, add config/beasts.js with this content:

let beasts = [
 "/beasts/acid_blob",
 "/beasts/rat",
 "/beasts/boring_beetle",
 "/beasts/giant_mite",
 "/beasts/orc_warrior",
 "/beasts/demonspawn",
 "/beasts/hydra",
 "/beasts/ooze",
 "/beasts/hobgoblin",
 "/beasts/dragon",
 "/beasts/harpy",
 "/beasts/golden_dragon",
 "/beasts/griffon",
 "/beasts/hell_knight"
]
exports.beasts = beasts;

We're done with the configuration, so let's add all the game components.

Add components/addEntity.js with this code:

//@flow
import Game from '../engine';
let directions = [1, -1];

const addEntity = (
 item: string,
 pos: Object,
 health: number = 60,
 speed: number = 1,
 callback: Function
) => {
 let entity = {
 name: item,
 image: `${item}.png`,
 width: 32,
 height: 32,
 health: health,
 pos:{
 x: pos.x,
 y: pos.y
 },

Making a Game

[382]

 vel:{
 x: Game.shuffle(directions)[0],
 y: Game.shuffle(directions)[0]
 },
 tick: 50,
 direction: Game.shuffle(["x","y"])[0],
 speed: speed+(Math.random()*1)
 };
 Game.createEntity(entity);
 callback(entity);
}
module.exports = addEntity;

We add variety with shuffle and Math.random. We want their movement to be
erratic, and we want some to move faster than others.

Add components/addProjectile.js with this code:

//@flow
import Game from '../engine';

const addProjectile = (
 item: string,
 player: Object,
 direction: Object,
 pushProjectile: Function
) => {
 let projectile = {
 name: item,
 image: `${item}.png`,
 width: 32,
 height: 32,
 pos:{
 x: player.pos.x,
 y: player.pos.y
 },
 direction: direction,
 speed: 10
 };
 Game.createEntity(projectile);
 pushProjectile(projectile);
}
module.exports = addProjectile;

Chapter 10

[383]

This code is quite similar to the previous one, so it's worth considering whether the
two files can be joined. There's a popular acronym in computer science called DRY,
which stands for Don't Repeat Yourself. The intention is to identify code that is
conceptually repetitive, such as addEntity and addProjectile, and then make
an effort to make one single function.

The next file we're going to add is checkCollision.js. Add it with this code:

import Game from '../engine';

const checkCollision = (
 canvas,
 player,
 monster,
 cb,
 score
) => {
 const collides = Game.bruteForce(
 player, monster, 32
);
 if(collides) {
 score();

 const ctx = canvas.getContext("2d");
 ctx.fillStyle = "rgb(250, 250, 250)";
 ctx.font = "12px Helvetica";
 ctx.textAlign = "left";
 ctx.textBaseline = "top";
 ctx.fillText("Ouch", player.pos.x, player.pos.y-24);

 cb(monster, canvas);
 }
}

module.exports = checkCollision;

We'll reuse the bruteForce collision check and display a little Ouch over the player's
entity whenever it collides with something.

Next, add components/drawEntities.js and add this code:

//@flow
import Game from '../engine';
const drawEntities = (
 Config: Object,

Making a Game

[384]

 canvas: Object,
 entities: Object
) => {
 // Draw all entities
 Game.loadImage(
 canvas,
 Config.backgrounds.game
);

 entities.projectiles.forEach((item)=> {
 Game.drawEntity(canvas, item);
 })

 entities.monsters.forEach((monster)=> {
 Game.drawEntity(canvas, monster);
 })

 entities.players.forEach((player)=> {
 Game.drawEntity(canvas, player);
 })

}
module.exports = drawEntities;

This is used in the game loop to draw all the entities on the screen. The order is
important because the entity that is drawn first will be overlapped by the next entity
that is drawn. If you draw the player first, the projectiles and the enemies will appear
on top of the player in collisions.

Next, add components/drawGameOver.js with this code:

//@flow
import Game from '../engine';

const drawGameOver = (
 canvas: Object
) => {
 const ctx = canvas.getContext("2d");
 ctx.fillStyle = "rgb(255, 255, 255)";
 ctx.font = "24px Helvetica Neue";
 ctx.textAlign = "center";
 ctx.textBaseline = "top";
 ctx.fillText("Game Over", canvas.width/2, canvas.height/2-25);
}

module.exports = drawGameOver;

Chapter 10

[385]

Then add components/drawGameWon.js with this code:

//@flow
import Game from '../engine';

const drawGameWon = (
 canvas: Object
) => {
 const ctx = canvas.getContext("2d");
 ctx.fillStyle = "rgb(255, 255, 255)";
 ctx.font = "24px Helvetica Neue";
 ctx.textAlign = "center";
 ctx.textBaseline = "top";
 ctx.fillText("You won!", canvas.width/2, canvas.height/2-25);
 ctx.font = "20px Helvetica Neue";
 ctx.fillText("You can finally enjoy your picnic!",
 canvas.width/2, canvas.height/2);
}

module.exports = drawGameWon;

They're both similar and will display different text depending on whether it's a
regular game over event or whether the player has completed the game. You can
add colors and use different fonts and font sizes to make the text more appealing.
It works much in the same way as CSS, by cascading downwards. Notice that the
second line of text in the win condition has a smaller font size than the first one and
how it's arranged to make this happen.

Next, add components/drawHud.js and add this code:

//@flow
import Game from '../engine';

const drawHUD= (
 canvas: Object,
 score: number = 0,
 health: number = 100
) => {
 const ctx = canvas.getContext("2d");
 ctx.fillStyle = "rgb(250, 250, 250)";
 ctx.font = "20px Helvetica Neue";
 ctx.textAlign = "left";
 ctx.textBaseline = "top";
 ctx.fillText("SCORE: " + score, 25, 25);
 ctx.textAlign = "right";

Making a Game

[386]

 ctx.fillText("Health: " + health, canvas.width-35, 25);
}

module.exports = drawHUD;

Note that the primary difference between this and the other text functions is the
positioning of the text.

Add components/clearCanvas.js with this code:

//@flow
import Game from '../engine';

const clearCanvas = (
 canvas: Object,
 gameOverImage: ImageData
) => {
 const ctx = canvas.getContext("2d");
 ctx.clearRect(0, 0, canvas.width, canvas.height);
 ctx.putImageData(gameOverImage, 0, 0);
}

module.exports = clearCanvas;

This component will replace the current canvas with the provided image. We'll use a
snapshot from the game just after the gameOver flag is set for the game over screen.

Add components/outOfBunds.js with this code:

//@flow
const outOfBounds = (
 item: Object = {pos: {x: 160, y: 160}},
 bounds: Object = {height: 16, width: 16},
 tileSize: number = 32
): bool => {
 if(item.pos.y< -tileSize ||
 item.pos.x< -tileSize ||
 item.pos.y > bounds.height+tileSize ||
 item.pos.x > bounds.width+tileSize
) {
 return true;
 }
 return false;
}
module.exports = outOfBounds;

Chapter 10

[387]

This will return true if an entity is outside the canvas.

Add components/removeEntity.js with this code:

//@flow
const removeEntity = (
 entities: Array<any>,
 item: Object,
 callback: Function
): Array<any> => {
 callback();
 return entities =
 entities.filter((p)=> {
 return p.id !== item.id
 })
}
module.exports = removeEntity;

This file will execute the callback before returning a filtered entity array. In our
code, the callback either contains an empty function or a function that updates the
score.

Next, add components/setupGame.js with this code:

//@flow
import Config from '../config/index';
import Game from '../engine';

const setupGame = (
 Config: Object,
 keys: Object,
 canvas: Object,
 entities: Object,
 positions: Object
) => {
 // setup keyboard
 Game.keyboard(keys);

 entities.players.forEach((player)=> {

Here we add the player entities. Note that we set the position by multiplying with
the tile size to set the real position on the board:

 const tilePos = player.pos;
 player.pos.x = tilePos.x * Config.tileSize;
 player.pos.y = tilePos.y * Config.tileSize;

Making a Game

[388]

 Game.createEntity(player);
 })
}
module.exports = setupGame;

We're almost done with the components folder. All we need to do now is add one
more file and a subfolder with a few keypress files.

Responding to keyboard events
First, add components/keyInput.js with this code:

//@flow
import keypress from './keypress;

const keyInput = (
 Config: Object,
 keys: Object,
 player: Object,
 modifier: number = 1,
 addProjectile: Function,
 pushProjectile: Function,
 coolDown: number,
 setCoolDown: Function
) => {
 const { pos, speed } = player;
 let direction;

 const Shoot = (coolDown, setCoolDown)=> {
 if(coolDown<=0) {
 addProjectile(
 'fire',
 player,
 direction,
 pushProjectile
)
 setCoolDown();
 }
 }

Chapter 10

[389]

This function will make sure a projectile is added, but it won't do anything until the
coolDown variable is at or below zero:

 if (keypress.up(keys)) {
 direction = {
 xVel: 0,
 yVel: -20
 }
 Shoot(coolDown, setCoolDown);
 }

 if (keypress.down(keys)) {
 direction = {
 xVel: 0,
 yVel: 20
 }
 Shoot(coolDown, setCoolDown);

 }

 if (keypress.left(keys)) {
 direction = {
 xVel: -20,
 yVel: 0
 }
 Shoot(coolDown, setCoolDown);
 }

 if (keypress.right(keys)) {
 direction = {
 xVel: 20,
 yVel: 0
 }
 Shoot(coolDown, setCoolDown);
 }

 if (keypress.w(keys)) {
 if(pos.y>0) pos.y -= speed * modifier;
 }

 if (keypress.s(keys)) {
 if(pos.y < Config.height-32) pos.y += speed * modifier;
 }

Making a Game

[390]

 if (keypress.a(keys)) {
 if(pos.x>8) pos.x -= speed * modifier;
 }

 if (keypress.d(keys)) {
 if(pos.x < Config.width-32)pos.x += speed * modifier;
 }

}

module.exports = keyInput;

Next, add the keypress folder to the components folder.

For each file, add the corresponding code, as illustrated here:

•	 The code for a.js is as follows:
//@flow
const s = (
 keys: Object
): bool => {
 return 65 in keys;
}
module.exports = s;

•	 For d.js, refer to the following:
//@flow
const d = (
 keys: Object
): bool => {
 return 68 in keys;
}
module.exports = d;

•	 Here's the code for s.js:
//@flow
const s = (
 keys: Object
): bool => {
 return 83 in keys;
}
module.exports = s;

Chapter 10

[391]

•	 For w.js, refer to the following:
//@flow
const w = (
 keys: Object
): bool => {
 return 87 in keys;
}
module.exports = w;

•	 The code for down.js:
//@flow
const down = (
 keys: Object
): bool => {
 return 40 in keys;
}
module.exports = down;

•	 For the up.js file:
//@flow
const up = (
 keys: Object
): bool => {
 return 38 in keys;
}
module.exports = up;

•	 We move on to the left.js file:
//@flow
const left = (
 keys: Object
): bool => {
 return 37 in keys;
}
module.exports = left;

•	 Now, the right.js file:
//@flow
const right = (
 keys: Object
): bool => {
 return 39 in keys;
}
module.exports = right;

Making a Game

[392]

•	 For space.js, refer to the following:
//@flow
const s = (
 keys: Object
): bool => {
 return 32 in keys;
}
module.exports = s;

•	 And finally, the index.js file:
import w from './w';
import s from './s';
import a from './a';
import d from './d';
import up from './up';
import down from './down';
import left from './left';
import right from './right';
import space from './space';

module.exports = {
 w,
 s,
 a,
 d,
 up,
 down,
 left,
 right,
 space
}

Our game is now complete and ready to be played. At the current setting, the game
is probably too difficult, but with a little bit of balancing, it should be possible to
make it easier for the player to win. Let's take a look at the following screenshot:

Chapter 10

[393]

Further improvements
You can improve the game in a number of ways. Here's a list of things you can add:

•	 Add sound with WebAudio
•	 Restrict the number of fireballs the player can fire at one time, or add a limit

to how many fireballs the player has and add pickups to increase that limit
•	 Utilize resource caching to preload all assets
•	 Sprite animation
•	 Bonus pickups for increased playability, for instance, hearts for increasing

health or new weapons for wielding more damage
•	 Have the enemies fire at the player
•	 Provide the reader with alternate controls (moving with arrow keys and

shoot with wsad)

Making a Game

[394]

•	 Add more screens and a better progression between levels
•	 Add a transition effect between the levels, rewarding the player with

encouraging text saying that progress has been made, and then introduce
the next enemy entity

•	 Add a possibility to pause the game
•	 Add a fullscreen option

Summary
You've made a game engine and a game in ReactJS. That's quite an achievement.
We started using Flowtype and we optimized the way we create React.js projects
with Webpack.

If you want to check out what we just created, visit https://reactjsblueprints-
chapter10.herokuapp.com/.

I sincerely hope you enjoyed this chapter and the book, and I hope that by
completing all these projects, you now have a solid foundation for creating
your own projects in ReactJS.

https://reactjsblueprints-chapter10.herokuapp.com/
https://reactjsblueprints-chapter10.herokuapp.com/

[395]

Index
A
actions 40, 235
alerts 88
Amazon 296
AngularJS 2
app, setting up with Bootstrap

about 75
dynamic progress bars, creating 98-100
flexible grid, creating 76-80
fluid carousels, creating 100-102
fluid images, working with 103-105
font-awesome icons, using 115-117
footprint, reducing 106, 107
Glyphicons, using 115-117
media and video content, embedding

responsively 90-92
navigation bar, creating 81-83
picture element, working with 103-105
reactified picture element, creating 107-110
responsive alerts, creating 88, 89
responsive buttons, creating 92-97
responsive form fields, creating 110-113
responsive landing page, creating 117-122
responsive menu, creating 81-83
responsive panels, creating 84-87
responsive wells, creating 83

assets folder
reference link 355

B
Babel 2
Babelify 17
Battery Status API 177, 178
Bing Maps 196

Bing Maps Dev Center
reference 196

Bootstrap 25
Broccoli 297
Browserify

about 77, 218
preparing, for cloud deployment 299-303
versus Webpack 224
working 218-220

Browserify app
Browser-sync 18
bundling strategy 218
buttons 92

C
carousel 100
client-rendered app

about 314
benefits 314

client rendering
versus server rendering 313-315

cloud
Webpack app, deploying to 304-311

cloud deployment
Browserify app, preparing for 299-303
setting up, with npm 297, 298

Cloudinary
about 255
reference 258

cloud provider
selecting 296, 297

componentDidMount method 8, 9
componentDidUpdate method 11
components

overview 23, 24

[396]

component specification
about 3
displayName 8
props 3-5
propTypes 8
render 7
states 3, 6, 7
statics 7

componentWillMount method 9
componentWillReceiveProps method 10
componentWillUpdate method 10
composition 16
Content Delivery Network (CDN) 26
cors library 127
Cross-Origin Resource Sharing

(CORS) 237, 250
cURL 129

D
dependency strategy, for cloud

deployment 307
design techniques

adaptive 71
elastic layouts 71
fluid 71
hybrid development 71
liquid 71
mobile development 71

destructing 28
Digital Ocean 296
dispatcher 40
DMOZ

reference link 129
Document Object Model (DOM) 11, 12
Don't Repeat Yourself (DRY) 383

E
Elasticsearch

reference link 134
Elm 234
Ember 2
event handlers

reference link 13

example interface
reference link 144

express 19

F
faster cloud deployment

performing 347
favicon

reference 228
Fetch as Googlebot

about 314
reference 314

FetchProducts 41
Firebase

about 255
reference 264
sorting with 268

flexible layout
fixed width layout 72
frameworks, selecting 73

Flow
reference link 356
used, for static typechecking 356, 357

Flux
about 2, 23, 39
architecture 233

font awesome 116
Foundation 25
frameworks, for responsive web

development
Bootstrap 74
Material Design 74
Pure 74
selecting 73
Zurb Foundation 74

fuzzy matching 134

G
game

creating 365-387
improving, ways 393, 394
keyboard events, responding to 388-392

geolocation
setting up 185-195

[397]

global store 234, 235
Glyphicons 115
Google App Engine 296
grid 76
Grunt 297
Gulp 297
GZIP 300

H
Heroku

about 296
advantages 296
disadvantages 296
reference 296

higher order function
creating 267-270

High Resolution Time API 174, 175
hmr module, for Browserify

reference 224
Homebrew

reference link 127
hot module replacement (hmr) 223
HTML5 APIs

Battery Status API 177, 178
Geolocation API 179, 180
High Resolution Time API 174, 175
Page Visibility API 178, 179
state 173, 174
Vibration API 176

HTML5 canvas engine
creating 357-365

HTTPie 129

I
image 359
input types, forms

checkbox 114
file 113
radio 114
select 113
textarea 115

installer
download link 18

interactive map
creating 211-215

isomorphic
about 315
apps 313
code example 315

isomorphism 315

J
javascript

reference link 171
JavaScript Object Notation (JSON)

 about 39, 126
 reference link 129

jQuery 13

K
key 44
Knockout 2

L
Levenshtein 134
life cycle methods

about 8
componentDidMount 8
componentDidUpdate 11
componentWillMount 9
componentWillReceiveProps 10
componentWillUnmount 11
componentWillUpdate 10
shouldComponentUpdate 9

Login API 248-253
login app

action, creating 237-239
creating 237
devtools, adding 241
files, tying 242-246
reducer, creating 239, 240
refresh, handling 247, 248
store, creating 241

M
map app

creating 180-184
mapQuest

reference 196

[398]

Material UI 74
media queries 76
Meteor 2
Microsoft Azure 296
mixin 47
Model-View-Controller (MVC) 2
modern frontend tools

Browserify 17
React app, running 22
React app, scaffolding 18-21
used, for developing 16

module handling feature 218
MongoDB

about 126
reference link 127

Mongoose 126
Morgan 126

N
name and sentence generation

reference 271
Navbar component

properties, setting 83
Navigation Timing API 175
new scaffold, creating with Webpack

about 225
assets, adding 228, 229
Babel configuration 226, 227
Express server, creating 229-231
ReactJS, adding 231, 232
server, starting 232, 233
Webpack configuration module,

adding 227, 228
node 142
NoSQL document-based approach 37
npm

cloud deployment, setting up with 297, 298
scripts, setting up for server
 rendering 334, 335

O
object 359
offerings 43
optimal Webpack configuration

about 352-354

scripting, with ShellJS 354, 355
static typechecking, with Flow 356, 357

P
Page Visibility API 178, 179
panel 84
Passport module 134
payment providers

BitPay 64
Klarna 64
PayPal 64

Picture components 148, 149
polyfill 27
polyfilling localStorage

reference 270
preprocessor 352
progress bars 98
Promises 237
properties, grid columns

lg 76
md 76
sm 76
xs 76

properties, Navbar component
componentClass 83
defaultExpanded 83
expanded 83
fixedBottom 83
fixedTop 83
fluid 83
inverse 83
onToggle 83
staticTop 83

properties, panel component
bsStyle (string) 86
defaultExpanded (boolean) 86
expanded (boolean) 86
footer (string) 86
header (string) 85

R
React 2
Reactagram 317
react-dom render 232

[399]

ReactJS
about 2
Component specification 3
modern JavaScript development 2

ReactJS search app
creating 136, 137
endless scroll, setting up 169-171
moving, to results page 162
pagination, setting up 165-167
results page, setting up 163-165
search, debouncing 161, 162
searches, performing 151-159
search results, navigating with

arrow keys 159, 160
search service, creating 142-144
search view, creating 147-151
setting up 137-140
store, setting up 146, 147

reducer composition 235, 236
reducers 235, 236
Redux

about 217, 233, 234
actions 235
functional approach, benefits 234
global store 234, 235
installing 236
reducers 235, 236

Redux, adding to server-rendered app
about 335
files, adding 336-344
packages, adding 336
server rendering, adding 345, 346

Reflux 40, 233
Request object 237
Resource Timing API 175
Response object 237
responsive development 71
responsive web development

flexible layout, creating 72
right keyword 32
rimraf 309
RLTiles

reference link 355
root-reducing function 234
router 28

S
sample app

extending, with referenced elements 13-15
search API

creating 126-128
documents, importing 129
querying 129, 130
securing 134-136
starting with 126, 127
wildcard search, creating 130-134

search engine optimization (SEO) 73
search service, ReactJS search app

creating 142-145
testing 145, 146

server-rendered app
benefits 314
reference link, for demo 335

server-rendered app, developing
about 316
Bootstrap CDN, adding to index.html 318
components, adding 319-328
CSS, adding 317
packages, adding 316, 317

server-rendered Express React server
setting up 329-333

server rendering
npm scripts, setting up for 334, 335
versus client rendering 313-315
Webpack, setting up for 333, 334

Shared JavaScript 316
ShellJS

about 305
used, for scripting 354, 355

shouldComponentUpdate method 9
sniffing 106
social-photo-sharing app

comment section, adding 288-264
filters, adding 283-285
higher order function, creating 267-270
implementing 292, 293
item page, creating 288-291
picture, taking 276-283
random username, creating 270, 271
router configuration, setting up 265, 266

[400]

stream functionality, adding 286, 287
welcome screen, creating 272-276

soundex 133
SSH key generation, Heroku

reference 296
static maps

displaying 195-210
store keeping unit (SKU) 39
stores 40
Structured Query Language (SQL) 37
Superagent 40, 237
event 142
synthetic event handlers 13
synthetic events

and virtual DOM 11

T
Tape 145
Traceur 2
TypeScript 356

U
Universal 315
User Timing API 175

V
Vibration API 176
views 40
virtual Document Object Model

(DOM) 12, 13

W
Webpack

about 217
setting up, for server rendering 333, 334
versus Browserify 224
working 221-223

Webpack app
deploying, to cloud 304-311

webpack.config.js file 223
web shop

cart store, creating 50-52
checking out 53-64
CSS code, adding 27
database of products, creating 37-39
data store, creating to fetch products 39-41
footer 30-32
item page, building 42-49
layout, setting up 25-27
menu 30-32
pages, creating 33-36
product's listing, building 42-49
receipt, providing 64-67
route handler, adding 28, 29
settings up 25

WebView 73

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Diving Headfirst into ReactJS
	Introducing ReactJS
	Modern JavaScript development

	Component specification
	Props and states
	Props
	States

	render
	statics
	propTypes
	displayName

	Life cycle methods
	componentDidMount
	componentWillMount
	shouldComponentUpdate
	componentWillReceiveProps
	componentWillUpdate
	componentDidUpdate
	componentWillUnmount

	Synthetic events and the Virtual DOM
	The DOM
	The virtual DOM
	Synthetic event handlers
	Putting it all together

	Composition
	Developing with modern frontend tools
	Browserify
	Scaffolding our React app
	Running the app

	Summary

	Chapter 2: Creating a Web Shop
	An overview of the components
	Setting up a shop
	Creating the layout
	Adding your own CSS code
	Adding a route handler
	The menu and footer
	Creating the pages
	Creating a database of products
	Creating a data store to fetch the products
	Building the product's listing and the item page
	Creating a cart store
	Checking out
	Providing a receipt

	Summary

	Chapter 3: Responsive Web Development with ReactJS
	Creating a flexible layout
	Choosing the right framework
	Setting up your app with Bootstrap

	Summary

	Chapter 4: Building a Real-Time
Search App
	Creating your own search API
	Getting started with your API
	Creating the API
	Importing documents
	Querying the API
	Creating a wildcard search
	Securing your API

	Creating your ReactJS search app
	Setting up your app
	Creating a search service
	Testing the service

	Setting up the store
	Creating the search view
	Performing searches
	Navigating the search results with the arrow keys
	Debouncing the search
	Moving beyond the quick search to the results page
	Setting up the results page
	Setting up pagination
	Setting up endless scroll

	Summary

	Chapter 5: Creating a Map App with HTML5 APIs
	The state of HTML5 APIs
	The High Resolution Time API
	The Vibration API
	The Battery Status API
	The Page Visibility API
	The Geolocation API

	Creating our map app
	Setting up geolocation
	Showing static maps
	Creating an interactive map

	Summary

	Chapter 6: Advanced React
	A new bundling strategy
	How Browserify works
	How Webpack works
	A difficult choice – Browserify or Webpack

	Creating a new scaffold with Webpack
	The Babel configuration
	The Webpack configuration
	Adding assets
	Creating an Express server
	Adding ReactJS to the mix
	Starting the server

	Introducing Redux
	The global store
	Understanding actions
	Understanding reducers
	Installing Redux

	Creating a login app
	Creating an action
	Creating a reducer
	Creating a store
	Adding devtools
	Tying the files together
	Handling refresh

	The Login API
	Summary

	Chapter 7: Reactagram
	Getting started
	Setting up the routes
	Creating a higher order function
	Creating a random username
	Creating a welcome screen
	Taking a picture
	Adding filters
	Adding the stream
	Creating an item page and adding comments
	Wrapping up
	Summary

	Chapter 8: Deploying Your App
to the Cloud
	Choosing a cloud provider
	Setting up cloud deployment with npm
	Preparing your Browserify app for cloud deployment
	The actual process

	Deploying a Webpack app to the cloud
	Summary

	Chapter 9: Creating a Shared App
	Server rendering versus client rendering
	Terminology confusion
	Developing a server-rendered app
	Adding packages
	Adding CSS
	Adding Bootstrap CDN to index.html
	Creating components
	Setting up a server-rendered Express React server
	Setting up Webpack for server-rendering
	Setting up npm scripts for server rendering

	Adding Redux to your server-rendered app
	Adding packages
	Adding files
	Adding server rendering
	Performing faster cloud deployment

	The final structure
	Summary

	Chapter 10: Making a Game
	The optimal Webpack configuration
	Scripting with ShellJS
	Static typechecking with Flow

	Creating an HTML5 canvas engine
	Creating the game
	Responding to keyboard events

	Further improvements
	Summary

	Index

