
M A N N I N G

Manuel Bernhardt
FOREWORD BY James Roper

Covers Play, Akka, and Reactive Streams

www.allitebooks.com

http://www.allitebooks.org

Reactive Web Applications

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Reactive Web Applications
COVERS PLAY, AKKA, AND REACTIVE STREAMS

MANUEL BERNHARDT

M A N N I N G
Shelter Island

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical development editor: Kostas Passadis
PO Box 761 Copyeditors: Andy Carroll
Shelter Island, NY 11964 and Benjamin Berg

Proofreader: Katie Tennant
Technical proofreader: Vladimir Kuptsov

Typesetter: Gordan Salinovic
Illustrator: April Milne

Cover designer: Marija Tudor

ISBN 9781633430099
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.allitebooks.com

http://www.allitebooks.org

v

brief contents
PART 1 GETTING STARTED WITH REACTIVE WEB APPLICATIONS1

1 ■ Did you say reactive? 3

2 ■ Your first reactive web application 26

3 ■ Functional programming primer 50

4 ■ Quick introduction to Play 71

PART 2 CORE CONCEPTS. ..101

5 ■ Futures 103

6 ■ Actors 134

7 ■ Dealing with state 164

8 ■ Responsive user interfaces 201

PART 3 ADVANCED TOPICS225

9 ■ Reactive Streams 227

10 ■ Deploying reactive Play applications 244

11 ■ Testing reactive web applications 263

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxiii

PART 1 GETTING STARTED WITH REACTIVE WEB APPLICATIONS ...1

1 Did you say reactive? 3
1.1 Putting reactive into context 4

Origins of reactive 4 ■ The Reactive Manifesto 5 ■ Reactive
programming 6 ■ The emergence of reactive technologies 7

1.2 Rethinking computational resource utilization 8
Threaded versus evented web application servers 9 ■ Developing
web applications fit for multicore architectures 11 ■ The horizontal
application architecture 14

1.3 Failure-handling as first-class concern 17
Failure is inevitable 17 ■ Building applications with failure in
mind 20 ■ Dealing with load 22

1.4 Summary 25

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

2 Your first reactive web application 26
2.1 Creating and running a new project 26
2.2 Connecting to Twitter’s streaming API 29

Getting the connection credentials to the Twitter API 29 ■ Working
around a bug with OAuth authentication 30 ■ Streaming data from the
Twitter API 30 ■ Asynchronously transforming the Twitter stream 35

2.3 Streaming tweets to clients using a WebSocket 38
Creating an actor 39 ■ Setting up the WebSocket connection and
interacting with it 40 ■ Sending tweets to the WebSocket 42

2.4 Making the application resilient and scaling out 45
Making the client resilient 45 ■ Scaling out 46

2.5 Summary 49

3 Functional programming primer 50
3.1 A few words on functional programming 50
3.2 Immutability 51

The fallacy of mutable state 51 ■ Immutable values as snapshots of
reality 53 ■ Expression-oriented programming 53

3.3 Functions 55
Functions in object-oriented programming languages 56
Functions as first-class values 56 ■ Moving behavior around 57
Composing functions 58 ■ The size of functions 59

3.4 Manipulating immutable collections 61
Transformations instead of loops 61 ■ Higher-order functions for
manipulating collections 62

3.5 Making the switch to a declarative programming style 68
Never use the get method on an Option 69 ■ Only use immutable
values and data structures 69 ■ Aim for small and crisp
functions 69 ■ Iterate and refine your functional style 70

3.6 Summary 70

4 Quick introduction to Play 71
4.1 Play application structure and configuration 72

Introducing the Simple Vocabulary Teacher 72 ■ Creating a
minimal Play application scaffold 73 ■ Building the project 75

4.2 Request handling 77
The request lifecycle 77 ■ Request routing 80 ■ Controllers,
actions, and results 85 ■ WebSockets 91 ■ Altering the default
request-handling pipeline 95

4.3 Summary 99

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

PART 2 CORE CONCEPTS...101

5 Futures 103
5.1 Working with futures 103

Future fundamentals 104 ■ Futures in Play 110 ■ Testing
futures 119

5.2 Designing asynchronous business logic with futures 120
Identifying parallelizable elements 121 ■ Composing the service’s
futures 123 ■ Propagating and handling errors 128

5.3 Summary 132

6 Actors 134
6.1 Actor fundamentals 135

A simple Twitter analytics service 135 ■ Laying out the
foundation: actors and their children 136

6.2 Letting it crash—supervision and recovery 149
Robust storage 150 ■ Letting it crash 152 ■ Watching actors die
and reviving them 154

6.3 Reacting to load patterns for monitoring and preventing service
overload 155

Control-flow messages 155 ■ Prioritizing messages 159
Circuit breakers 161

6.4 Summary 163

7 Dealing with state 164
7.1 Working with state in a stateless Play web application 165

Databases 166 ■ Client-side state using the Play session 177
Server-side state using a distributed cache 179

7.2 Command and Query Responsibility Segregation and Event
Sourcing 181

The Twitter SMS service 182 ■ Setting up the SMS gateway 185
Writing the event stream with persistent actors 188 ■ Configuring
Akka persistence to write to MongoDB 191 ■ Handling an
incoming command: subscribing to user mentions 192
Transforming the event stream into a relational model 194
Querying the relational model 197 ■ A word on eventual
consistency 199

7.3 Summary 200

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

8 Responsive user interfaces 201
8.1 Integrating Scala.js and Play 202

The application structure 203 ■ Setting up the build process 203
Creating a simple Scala.js application 205

8.2 Integrating Scala.js and AngularJS 207
Setting up the AngularJS bindings 207 ■ Creating the AngularJS
application 208 ■ Initializing the AngularJS dashboard module
and its dependencies 210 ■ Initializing the Dashboard
controller 210 ■ Creating the partial view 211 ■ Loading the
AngularJS application in HTML 211

8.3 Integrating existing JavaScript libraries with Scala.js 212
Wrapping an existing JavaScript library as an AngularJS
service 212 ■ Creating a service to fetch data for a graph 214
Displaying metrics using the Chart.js library 216

8.4 Handling client-side failure 218
Preventing bugs with tests 219 ■ Detecting WebSocket connection
failure 220 ■ Notifying users 221 ■ Monitoring client-side
errors 222

8.5 Summary 223

PART 3 ADVANCED TOPICS...225

9 Reactive Streams 227
9.1 Why Reactive Streams 228

Streaming with nonblocking back pressure 228 ■ Manipulating
asynchronous streams 229

9.2 Introducing Akka Streams 230
Core principles 230 ■ Manipulating streaming tweets 231

9.3 Summary 243

10 Deploying reactive Play applications 244
10.1 Preparing a Play application for production 245

Creating a simple application to deploy 246 ■ Writing and
running integration tests with Selenium 248 ■ Preparing the
application for production 249

10.2 Setting up continuous integration 252
Running Jenkins via Docker 253 ■ Configuring Jenkins to build
our application 254

CONTENTS xi

10.3 Deploying the application 256
Deployment on Clever Cloud 256 ■ Deployment on your own
server 258 ■ Which deployment model to use 261

10.4 Summary 262

11 Testing reactive web applications 263
11.1 Testing reactive traits 264

Testing responsiveness 264 ■ Testing resilience 265 ■ Testing
elasticity 265 ■ Where to test? 265

11.2 Testing individual reactive components 266
Testing individual components for responsiveness 266 ■ Testing
individual components for resilience 271

11.3 Testing the entire reactive application 274
Creating a simple application to generate random numbers 274
Testing for resilience with Gatling 277 ■ Testing for scalability
with Bees with Machine Guns 281

11.4 Summary 286

appendix A Installing the Play Framework 287
appendix B Recommended reading 290
appendix C Further reading 291

index 293

xiii

foreword
Until four years ago, every major web application that I had written used the tried-
and-trusted thread-per-request execution model. A few niche applications that I had
been involved with—a chat server and a push notification system—may have used
some form of evented I/O, but I would have laughed at the suggestion that that model
should be used for general web development. At that time in our industry’s history,
the word “reactive” was virtually unheard-of.

 The switch to reactive applications has been the biggest architectural change since
the web itself, and it has swept across our industry at lightning speed. What I consid-
ered far-fetched four years ago, I now use every day, and I am lead developer of Play, a
framework that embraces it. With the concept evolving from relative obscurity to
mainstream best practice in such a short time, it’s no wonder that countless web devel-
opers are asking the question, “What is reactive?” This is where Reactive Web Applica-
tions perfectly fills a gap.

 Beginning with addressing the question of why we need reactive in the first place,
Manuel takes you through the principles of reactive development as it applies to web
applications, in the context of the practical grounding of the Play Framework, Akka,
and Reactive Streams. You‘ll be guided through concrete examples and exercises, and
you’ll come away with a solid understanding of how reactive web applications are
architected, developed, tested, and deployed, so you can try it out yourself.

 The journey to reactive applications is one in which we’re all continually learning.
The Reactive Manifesto itself has undergone several revisions in the short time since
my colleagues first penned it. Manuel and I have attended many conferences

FOREWORDxiv

together, and we’ve chatted often in person and through our dealings in open source
software about how reactive development should be realized in web applications. I’m
glad to see that Manuel has so articulately captured these leading-edge best practices
for web application development in this time of great change in our thinking. The
practical application of this book to web development will put you in a great position
to produce software for the high demands of today’s world.

 JAMES ROPER

 LEAD DEVELOPER OF THE PLAY FRAMEWORK

xv

preface
I first had the idea for this book in April 2014, after I’d spent the better part of four
months assisting a client rebuild their entire application infrastructure using Scala,
the Play Framework, and Akka, three technologies I’d already been using extensively
for a few years.

 The existing application faced two challenges that called for a rebuild: On one
hand, the application data was spread across two separate database systems, a few
caches, and a few external cloud services such as Amazon EC2, YouTube, SoundCloud,
and Mixcloud, making it nearly impossible to keep the data up to date and in sync. On
the other hand, the number of users had been increasing, and the flood of requests
whenever a new campaign was launched had started to overwhelm the system. It was
almost unavailable under load. The new version of the application had to accommo-
date sudden bursts in traffic in its initial design. And to make things more interesting,
the relaunch of the site not only involved migrating, reconsolidating, and updating
the data of millions of users and tens of millions of items, but it had to happen over a
single weekend.

 This project is a perfect example of a new category of web applications—one that
has gained increasing importance over the past few years. Reactive web applications
need to be able to cope with a varying and potentially large numbers of requests, man-
age and provide access to large datasets, and communicate with several cloud services
in real time. To make things more complicated, all of these tasks need to be carried
out while withstanding the inevitable failures that occur in an increasingly complex
networked environment. Gone are the days when all of a web application’s data was

PREFACExvi

hosted on the same computer or in the same data center—a scenario that often hid
the true and messy nature of computer networks. Reactive web applications rely heav-
ily on heterogeneous and distributed services, but paradoxically the margin for user-
facing errors is smaller than ever. The tolerance of today’s typical user is close to zero.
Everyone is used to the service reliability of giants such as Google or Facebook,
unaware of the tremendous technical challenges faced by the engineers building and
operating these platforms.

 Building reactive web applications is no small feat, and it wouldn’t be possible with-
out the advances in technology we’ve witnessed over the past few years. Reactive tech-
nologies enable asynchronous programming coupled with first-class failure handling.
The Play Framework and the Akka concurrency toolkit are two technologies that com-
bine to offer a solid foundation for building reactive web applications. They both
leverage the powerful functional programming concepts provided by the Scala pro-
gramming language, enabling asynchronous and reactive programming.

 This book aims to be a guide to using Scala, the Play Framework, Akka, and a few
more powerful and exciting technologies to build reactive web applications. In one
way, it’s the book I wish I had when starting to work with this stack several years ago. I
hope you’ll find it useful and wish you a fun ride while reading it!

xvii

acknowledgments
You wouldn’t be holding this book in your hands today if it weren’t for the support,
insights, inspiration, encouragement, and feedback from a whole lot of people. To
everyone involved: thank you!

 I’d first like to thank my friend Peter Brachwitz for the many interesting discussions
around the technologies described in this book and for sharing with me his stories from
the battlefield. Those meetings have been a continuous source of inspiration, fueling
the examples in this book. We should keep on having them in the future!

 I would also like to thank Rafael Cordones for kick-starting the Scala community in
Vienna in 2013, as well as all the members of the Vienna Scala User Group for the
entertaining meetups.

 The example applications in this book make use of many technologies and libraries,
and their use and related explanations wouldn’t have been half as good had I not
received help from their developers. Konrad Malawski from the Akka team was instru-
mental in improving the book’s quality by pointing out mistakes and making me aware
of best practices used by the Akka team. Lukas Eder, inventor of the jOOQ library, not
only provided quick answers to my questions, but also provided useful feedback on all
things database-related. Sébastien Doeraene, inventor of Scala.js, was always available to
answer my questions about the technology and provided elegant solutions. I’d also like
to thank Vincent Munier, author of the sbt-play-scalajs library, as well as Johannes Kast-
ner, author of the scalajs-angulate library. Thanks to Marius Soutier, author of the play-
angular-require-seed library, for his feedback and his insights into configuring the
JavaScript optimization process with Play. Lastly, Clément Delafargue answered all my

ACKNOWLEDGMENTSxviii

questions related to Clever Cloud and was kind enough to give me early access to its
then-unreleased API for use in this book. And finally, special thanks to James Roper,
lead developer of the Play Framework, for not only patiently answering all my questions
and helping me anticipate the evolution in the technology that would affect the book,
but also for kindly contributing the foreword and endorsing my book.

 I’d also like to thank all the people at Manning who helped me write this book:
Karen Miller, my development editor who patiently reviewed chapter after chapter, not
minding that they were written in a creative derivation of the English language; Bert
Bates, who taught me how to organize my mind for writing in a way useful to readers;
acquisitions editor Mike Stephens, who suggested broadening the topic of the book to
reactive web applications; and Candace Gillhoolley, for putting the word out there and
continuously promoting the book. Finally, I’d also like to extend my thanks to all the
people involved in getting this book to production: copyeditors Andy Carroll and Ben-
jamin Berg; proofreader Katie Tennant; project editor David Novak; production man-
ager Janet Vail; and all the other people who worked behind the scenes.

 The book wouldn’t have reached its current quality if it weren’t for the reviewers
who took the time to read early versions of the chapters and provide insightful feedback
about what could be improved. I’d like to thank Antonio Magnaghi, Arsen Kudla,
Changgeng Li, Christian Papauschek, Cole Davisson, David Pardo, David Torrubia,
Erim Erturk, Jeff Smith, Jim Amrhein, Kevin Liao, Narayanan Jayaratchagan, Nhu
Nguyen, Pat Wanjau, Ronald Cranston, Sergio Martinez, Sietse de Kaper, Steve Cha-
loner, Thomas Peklak, Unnikrishnan Kumar, Vladimir Kuptsov, Wil Moore III, William
E. Wheeler, and Yuri Kushch. Many thanks as well to all the readers of the Early Access
Program version, who commented on the Manning Author Forum, pointing out errors
in the source code and telling me when something would simply not work: without you,
it would have been much more difficult to get the example applications running.

 Lastly to Veronika, my friend, partner, and wife: thank you for your support,
patience, understanding, and love. This book, as well as so many of my other projects,
would not have been remotely possible without your help.

xix

about this book
This book will introduce you to building reactive web applications using the Scala pro-
gramming language, the Play Framework, and the Akka concurrency toolkit. The Play
Framework is now a very popular web framework on the JVM, but few projects take full
advantage of its strength and take the necessary steps to make a web application reac-
tive. That’s because the steps involved aren’t obvious, nor are the advantages. Simi-
larly, Akka is a technology that many developers know of, but they don’t always know
how to employ it in their projects. This book aims to remedy this situation by showing
how these technologies can be used in practice and in combination. The book intro-
duces the conceptual foundation for asynchronous, reactive programming using
futures and actors, and it demonstrates how you can configure an application and
integrate other technologies to build real-life projects.

Who should read this book

To get the most out of this book, you should be a seasoned programmer and be well
acquainted with at least one modern language such as Java or C#. Furthermore, you
should know enough about the syntax and main concepts of Scala to read the exam-
ples in the book and implement the exercises. Knowledge of functional programming
isn’t required but is of advantage. Appendix B contains a list of references that you
can use to get up to speed with Scala and functional programming.

 Given that this book is mainly about building web applications, it’s assumed that
you know the basics of HTML and JavaScript and are familiar with the Model-View-
Controller (MVC) paradigm that most modern web application frameworks use.

ABOUT THIS BOOKxx

Roadmap

Part 1 of this book will teach you the fundamentals of functional programming, on
top of which you can build asynchronous applications, as well as the basics of the Play
Framework.

 Chapter 1 explains why we need reactive web applications. It discusses how the
architecture of web applications has evolved and how the concept of reactive web
applications came to be.

 Chapter 2 throws you into the deep end of reactive web application development.
You’ll set up the necessary tools to bootstrap your first reactive Play project, and you’ll
build an asynchronous stream-processing pipeline for the Twitter filter API, resulting
in a myriad of tweets being displayed in your browser via a WebSocket connection. By
the end of this chapter, you should have a much better idea of what it means to write a
reactive web application.

 Chapter 3 introduces basic concepts of functional programming that we’ll use
throughout the book. It introduces immutability, functions, and higher-order func-
tions, and shows how you can use these concepts to manipulate immutable collections
much as you’ll manipulate asynchronous values further on.

 Chapter 4 provides a quick but complete and self-contained introduction to the
Play Framework. You’ll build a bare-bones Play application, setting up each of the files
by hand to get familiar with the structure and the configuration. Along the way, we’ll
take a peek under the hood to see how Play’s request handling is truly reactive.

Part 2 of this book explains the concepts at the core of reactive web applications.
 Chapter 5 introduces futures, a key concept used to manipulate and combine

short-lived asynchronous computations. First we’ll look at the theory behind futures,
and then we’ll look at how you can design business logic with futures to make it asyn-
chronous and fault tolerant.

 Chapter 6 introduces actors, a key concept for modeling long-lived asynchronous
computations. You’ll see how Akka implements the actor model to provide supervi-
sion and recovery, and how it can be used to build applications capable of reacting to
failure and to sudden shifts in load.

 Chapter 7 demonstrates how you can apply futures and actors to deal with state in
a stateless application—that is, in an application where each application node may dis-
appear or reappear at any given time. It explores how you can integrate traditional
RDBMSs with a reactive Play application without losing the advantages of the reactive
paradigm. Finally, it introduces the Command and Query Responsibility Segregation
(CQRS) pattern in combination with Event Sourcing, which is an architectural pattern
used for large-scale data handling in reactive applications.

 Chapter 8 takes you on a tour of responsive user interface development using
Scala.js, enabling you to write Scala for the browser. It shows how you can use existing
JavaScript libraries, such as AngularJS, and integrate arbitrary libraries for which there
isn’t yet any integration with Scala.js. This chapter also points out what precautions
need to be taken on the client side to cater to the reactive nature of the application.

ABOUT THIS BOOK xxi

Part 3 introduces advanced topics related to building reactive web applications.
 Chapter 9 introduces Reactive Streams, a new standard for asynchronous and

failure-tolerant stream manipulation on the JVM. You’ll see how you can use the Akka
implementation of this standard, Akka Streams, to access, split, and filter the Twitter
streaming API.

 Chapter 10 covers the deployment of reactive Play applications using different
approaches. You’ll see how you can roll your own deployment using the Jenkins con-
tinuous integration server and Docker, and alternatively how to use the managed
deployment service Clever Cloud to deploy a simple reactive application.

 Chapter 11 explores the aspects of the application that can be tested, and how test-
ing a reactive web application differs from testing a non-reactive one, putting the
focus on concerns such as load handling and failure handling. In this chapter you’ll
see how to make use of the autoscaling capability of Clever Cloud to handle increased
service load reactively.

Code conventions and downloads

The source code for the listings in the book can be found on GitHub at https://
github.com/manuelbernhardt/reactive-web-applications. Most chapters contain an
application that can be executed, and the source code of the final application (includ-
ing the resolution of any exercises in the chapter) can be found in separate directo-
ries, ready to be executed. (You’ll need to configure Twitter API credentials and
database settings on your own.)

 In addition to the full applications, the listings for each chapter can be found in
the listings directory.

Author Online

Purchase of Reactive Web Applications includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
books/reactive-web-applications. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

https://github.com/manuelbernhardt/reactive-web-applications
https://github.com/manuelbernhardt/reactive-web-applications
http://www.manning.com/books/reactive-web-applications
http://www.manning.com/books/reactive-web-applications

ABOUT THIS BOOKxxii

About the author

Manuel Bernhardt is a passionate engineer, author, speaker, and
consultant with a keen interest in the science of building and
operating networked applications. Since 2008, he has guided and
trained enterprise teams on the transition to distributed comput-
ing. In recent years, he has focused primarily on production sys-
tems that embrace the reactive application architecture, using
Scala, the Play Framework, and Akka to this end.

 Manuel likes to travel and is a frequent speaker at international
conferences. He lives in Vienna where he is a co-organizer of the Vienna Scala User
Group. Next to thinking, talking about, and fiddling with computers, he likes to spend
time with his family, run, scuba dive, and read. You can find out more about Manuel’s
recent work at http://manuel.bernhardt.io.

http://manuel.bernhardt.io

xxiii

about the cover illustration
The figure on the cover of Reactive Web Applications is captioned “Chamanne Bratsqui-
enne,” or a shaman from the city of Bratsk in Russia. A shaman is a spiritual healer.
The illustration is taken from a collection of dress costumes from various countries by
Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, pub-
lished in France in 1797. Each illustration is finely drawn and colored by hand. The
rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how cultur-
ally apart the world’s towns and regions were just 200 years ago. Isolated from each
other, people spoke different dialects and languages. In the streets or in the country-
side, it was easy to identify where they lived and what their trade or station in life was
just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Part 1

Getting started with
 reactive web applications

This part of the book will get you started with reactive web applications by
providing you with the foundation you need to understand the concepts dis-
cussed later in the book. You’ll learn how reactive web applications came to be
and why they matter, and then you’ll get your hands dirty by building a simple
reactive web application. You’ll also get a quick introduction to the concepts
behind functional programming as well as to the Play Framework, should you
not be familiar with those topics already.

3

Did you say reactive?

Over the past few years, web applications have started to take an increasingly
important role in our lives. Be it large applications such as social networks,
medium-sized ones such as e-banking sites, or smaller ones such as online account-
ing systems or project management tools for small businesses, our dependency on
these services is clearly growing. This trend is now transitioning to physical devices,
and the information technology research and advisory firm Gartner predicts that
the Internet of Things will grow to an installed base of 26 billion units by 2020.1

 Reactive web applications are an answer to the new requirements of high avail-
ability and resource efficiency brought by this rapid evolution. Cloud computing
and the subsequent emergence of cloud services have shifted web application
development from an activity wherein one application tries to solve all kinds of

This chapter covers
■ Reactive applications and their origin
■ Why reactive applications are necessary
■ How Play helps you build reactive applications

1 Gartner, “Gartner Says the Internet of Things Installed Base Will Grow to 26 Billion Units By 2020”
(December 12, 2013), www.gartner.com/newsroom/id/2636073.

www.gartner.com/newsroom/id/2636073

4 CHAPTER 1 Did you say reactive?

problems to a process of identifying and connecting to adequate cloud services and
only solving those problems that have not been solved beforehand satisfactorily.

 We need a new set of tools to help us efficiently deal with the challenges that come
with this evolution. The Play Framework has been designed from the ground up to
make it possible to build reactive web applications that are capable of providing real-
time behavior to users even under high load and in a decentralized setting. At the
time of this writing, Play is the only full-stack reactive web application framework avail-
able on the Java virtual machine. Embraced by large companies such as Morgan Stan-
ley, LinkedIn, and The Guardian, as well as many smaller players, Play is available as
free, open source software, ready to be downloaded to your computer.

 In this chapter, we’ll look into what reactive web applications are, why you’d want
to build such applications, and why the Play Framework is a good tool for this pur-
pose. We’ll start by disambiguating the meaning of the word “reactive” and look into
how new trends in hardware design and software architecture call for a reconsidera-
tion of how to use computational resources. Finally, we’ll explore why failure handling
plays a crucial role in this context, and how it can be achieved.

1.1 Putting reactive into context
If you’re reading this book, chances are that you’ve heard of concepts such as reac-
tive applications, reactive programming, reactive streams, or the Reactive Manifesto.
Even though we can probably agree that all those terms sound a lot more exciting
when prepended with reactive, you may wonder what reactive means in those differ-
ent contexts. Let’s find out by looking at the origins of the word in relation to com-
puter systems.

1.1.1 Origins of reactive

The concept of reactive systems isn’t new. In their paper “On the Development of Reac-
tive Systems”2 (published in 1985), David Harel and Amir Pnueli round up several
dichotomies to characterize complex computer systems and propose a novel dichot-
omy: transformative versus reactive systems. Transformative systems accept a known set of
inputs, transform those inputs, and produce outputs. For example, a transformative sys-
tem may prompt the user for some input, and then for some more, depending on what
the user provided, to finally provide a result. Think, for example, of a pocket calculator,
which accepts numbers and performs basic operations to finally return a result when
the equals key is pressed. Reactive systems, on the other hand, are continuously stimu-
lated by the external environment, and their role is to continuously respond to these
stimuli. For example, a wifi-enabled camera with motion-detection capabilities may
notice a burglar enter a room and send an alert to the camera owner’s mobile phone,
letting them witness helplessly their room being emptied of its precious belongings, as
well as later on, the police arriving on the scene.

2 A PDF version of the article is available at http://mng.bz/p1n3.

http://mng.bz/p1n3

5Putting reactive into context

 A few years later, Gérard Berry refined this definition by introducing the distinction
between interactive and reactive programs. Whereas interactive programs set the speed
at which they interact with the environment themselves, reactive programs are capable
of interacting with the environment at the speed dictated by the environment.3

 Thus, reactive programs

■ Are available to continuously interact with their environment
■ Run at a speed that is dictated by the environment, not the program itself
■ Work in response to external demand

Coming back to present times, the preceding modus operandi of reactive programs
looks a lot like how web applications operate or should be operating. Though appeal-
ing in theory, it takes quite some effort to fulfill these criteria, and possibly serious
hardware resources, depending on the number of users and the nature of what they
demand. It’s perhaps the lack of widespread high-performance hardware capable of
delivering real-time interaction at scale that explains why we haven’t heard much of
reactive systems until recently, when a set of core aspects that characterize reactive sys-
tems were published under the name Reactive Manifesto.

1.1.2 The Reactive Manifesto

The first version of the Reactive Manifesto was published in June 2013, and it
describes a software architecture with the name Reactive Applications. Reactive applica-
tions are defined by a set of characteristics, or traits as they’re called in the manifesto
(those traits have nothing to do with Scala’s traits), that altogether make up for
applications that behave in the same way as the reactive programs we talked about ear-
lier: continuously available and readily responding to external demand. Although the
Reactive Manifesto may seem like it’s describing an entirely new architectural pattern,
its core principles have long been known in industries that require real-time behavior
from their IT systems, such as financial trading.

 The following four traits make up reactive applications:

■ Responsive—React to users
■ Scalable—React to load
■ Resilient—React to failure
■ Event-driven—React to events

A responsive application will satisfy the user’s expectations in terms of availability and
real-time behavior. Real-time, or near real-time, means that the application will
respond within a short or very short time. The time interval between the request and
response is called latency, and it’s one of the key measurements when it comes to
assessing how well a system performs.

3 Gérard Berry, “Real-Time Programming: General Purpose or Special-Purpose Languages,” Information Process-
ing 89 (Elsevier Science Publishers, 1989): 11-18.

www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 Did you say reactive?

 In order to continuously interact with their environment, reactive applications
must be able to adjust to the load they’re facing. Sudden traffic bursts may affect an
application; for example, a popular tweet with a link to a news article could cause a
rush on a news website. To this end, an application must be scalable: it must be able to
make use of increased computational capacity when necessary. This means it must be
able to make efficient use of the hardware on a single machine (which may have one
or more CPU cores), and also be able to function across several computation nodes at
its disposal, depending on the load.

NOTE We use the term “computation node” or simply “node” to refer to a
resource on which a web application runs. In practice, this may be a physical
computer, a virtual machine, or even a logical node on a Platform-as-a-Service
provider.

Because even the simplest of software systems are prone to failure (whether software-
related or hardware-related), reactive applications need to be resilient to failure to meet
the demand of continuous availability. The capability of an application to get back on
its feet should it encounter a problem is arguably even more important when it comes
to scalable systems, which are more complex in nature and distributed, because the
likeliness of hardware or network failure is increased.

Event-driven applications based on asynchronous communication can help you
achieve the previously listed traits. In this setup, the system (or subsystem) reacts to
discrete events such as HTTP requests without monopolizing computational resources
as it waits for an event to occur. This natural level of concurrency yields better latency
than traditional synchronous method calls. Another consequence of writing event-
driven programs is that components are loosely coupled, making the software much
more maintainable in the longer term.

1.1.3 Reactive programming

Reactive programming is a programming para-
digm based on data flows and the propagation
of changes. Consider, for example, the spread-
sheet represented in table 1.1.

 The cell C1 is defined programmatically in
the following way:

= A1 * B1

If we were to run the preceding example in
spreadsheet software, as soon as either the value
of A1 or B1 was changed, the result in C1 would change accordingly. The program-
ming language behind the spreadsheet thus allows us to define relations between the
data that result in the propagation of changes across the spreadsheet.

Table 1.1 A simple spreadsheet
demonstrating the concept of reactive
programming

A B C

1 6 7 42

2

3

7Putting reactive into context

 In order to implement a real-time spreadsheet application, such as the one in
Google Drive, we’d build on top of lower-level concepts such as events: when the user
changes the value of cell A1, an event is fired. All the cells interested in the content of
A1, such as cell C1 containing our expression, would act on this event by reevaluating
themselves and displaying a new value. This process is entirely hidden from the user,
who is only concerned with describing the high-level relation among cell values.

 In terms of web application development, this technique is increasingly being used
for front-end application development: tools such as KnockoutJS, AngularJS, Meteor,
and React.js all make use of this paradigm. The developers only need to describe how
changes in the data propagate through the user interface; they don’t need to concern
themselves with the nitty-gritty details of declaring listeners on specific DOM elements,
thus greatly simplifying how reactive user interfaces can be implemented. We’ll look
into reactive user interfaces in chapter 8.

 Similar abstractions, wherein events play a central role, can also be found on the
server side. A new initiative called Reactive Streams, which we’ll talk more about in
chapter 9, aims at providing a standard interface for working with asynchronous
stream processing on the JVM.

1.1.4 The emergence of reactive technologies

Over the years, a number of technologies and frameworks have been developed that
share common aspects and can be broadly classified as reactive technologies. Building
reactive applications takes more than simply using reactive technologies, as you’ll see
later, but technologies must satisfy a number of prerequisites to enable reactive behav-
ior, most notably the capacity for asynchronous and event-driven code execution.

 Microsoft’s Reactive Extensions (Rx; https://rx.codeplex.com/) is a library for
composing asynchronous and event-based programs, available on the .NET platform
and other platforms such as JavaScript. Node.js (http://nodejs.org) is a popular plat-
form for building asynchronous, event-driven applications in JavaScript. On the JVM, a
number of libraries enable these capabilities, such as Apache MINA (https://
mina.apache.org) and Netty (http://netty.io).

 Those low-level technologies all offer basic tools for building asynchronous and
event-driven applications, but it takes a bit more work to get to the state of a full-blown
web application that also has to deal with concerns such as code organization, view tem-
plates, inclusion and organization of client-side resources such as stylesheets and
JavaScript files, database connectivity, security, and so on. Many so-called full-stack web
application frameworks exist, but few of them also include reactive technologies, and
very few are built from the ground up using reactive technologies, embracing reactive
principles at their core. Full-stack frameworks concern themselves with all the layers
required to build and deploy an application: client-side UI technology (or a means to
integrate it), server-side business logic, authentication, integration of database access,
and various libraries for the most common tasks (such as remote web service calls). In
a reactive application, all these layers must furthermore cooperate by following the same

http://nodejs.org
https://rx.codeplex.com/
https://mina.apache.org
https://mina.apache.org
http://netty.io

8 CHAPTER 1 Did you say reactive?

Netty
(asynchronous I/O,
HTTP, WebSockets)

Iteratees/Reactive Streams

Play core
(routing, actions, lifecycle)

sb
t b

ui
ld

 s
ys

te
m

Resource
handling (CSS,

JS, etc.)

Database
connectivity

View templates

Libraries (JSON,
web services,

OAuth, SSL, etc.)

Play application

Figure 1.1 High-level architecture of the Play Framework

principles of asynchronous commu-
nication and error recovery.

 On the JVM, the only mature full-
stack reactive web application
framework to this day is the Play
Framework. Other full-stack frame-
works such as Lift (http://liftweb
.net) provide a good alternative for
building web applications, but they
haven’t been designed with
asynchronicity, failure resilience,
and scalability as primary goals.

 Play is built on top of Netty and
leverages its reactive behavior by
using asynchronous stream han-
dling provided by Reactive Streams
(see figure 1.1).

 Play deals with the typical concerns of web application development such as client-
side resource handling, project compilation, and packaging by making use of the sbt
build tool. It comes with a number of useful libraries to address common concerns
such as JSON handling and web service access and offers access to databases though a
range of plugins. Throughout the rest of this book, you’ll learn how to use the Play
Framework as an effective tool to build reactive web applications.

 Let’s now take a closer look at how web applications work and how they make use
of computational resources to understand why the asynchronous, event-driven behav-
ior of reactive web applications is necessary.

1.2 Rethinking computational resource utilization
To understand the why and how of reactive applications, we need to take a quick look
at computers. They have certainly evolved a lot over the past decades, especially in
terms of CPU clock speed (MHz to GHz) and memory (kilobytes to gigabytes). The
most significant change, however, which has happened in the past few years, is that
although the clock speed of CPUs isn’t increasing very much, the number of cores
each CPU has is changing. At the time of writing, most computers have at least 4 CPU
cores, and there are already vendors offering CPUs with 1024 cores. On the other
hand, the overall architecture of computers and the mechanism by which programs
are executed haven’t undergone a significant evolution, so some of the limitations of
this architecture, such as the von Neumann bottleneck,4 become more of a problem now-
adays. To understand how this evolution affects web application development, let’s
take a look at the two most popular web server architectures.

4 John Backus, “Can programming be liberated from the von Neumann style? A functional style and its algebra
of programs,” Communications of the ACM 21 (8) (August 1978): 613-41.

http://liftweb.net
http://liftweb.net

9Rethinking computational resource utilization

1.2.1 Threaded versus evented web application servers

Roughly speaking, there are two categories of programming models in which web serv-
ers can be placed. In the threaded model, large numbers of threads take care of handling
the incoming requests. In an evented model, a small number of request-processing
threads communicate with each other through message passing. Reactive web applica-
tion servers adopt the evented model.

THREADED SERVERS

A threaded server, such as Apache Tomcat, can be imagined as a train station with
multiple platforms.5 The station chief (acceptor thread) decides which trains (HTTP
requests) go on which platform (request processing threads). There can be as many
trains at the same time as there are platforms. Figure 1.2 illustrates how a threaded
web server processes HTTP requests.

As implied by the name, threaded web servers rely on using many threads as well as on
queuing. The analogy between trains and threaded web application servers is
depicted in table 1.2.

5 See Julian Doherty, “How Your Web Server Works,” http://madlep.com/How-your-web-server-works-/.

Table 1.2 Imagining threaded web application servers as train stations

Train station Threaded server

More trains come in than there are platforms;
trains have to queue up and wait.

More HTTP requests reach the server than there are
worker threads; users connecting to the application
have to wait.

Trains hanging around at the platform for too long
may be cancelled.

HTTP requests taking too long to process are can-
celled; the user may see a page with HTTP Error 408
- Request timeout.

Too many trains queuing up in the station can
cause huge delays and passengers to go home.

Too many requests queuing up can cause users to
leave the site.

HTTP
requests

Accepter thread Connection queue Request-processing
threads

Figure 1.2 Threaded web server

http://madlep.com/How-your-web-server-works-/

10 CHAPTER 1 Did you say reactive?

EVENTED SERVERS

To explain how evented servers work, let’s take the example of a waiter in a restaurant.
 A waiter can take orders from several customers and pass them on to multiple

chefs in the kitchen. The waiter will divide their time between the different tasks at
hand and not spend too much time on a single task. They don’t need to deal with the
whole order at once: first come the drinks, then the entrees, later the main course,
and finally dessert and an espresso. As a result, a waiter can effectively and efficiently
serve many tables at once.

 As I write this book, Play is built on top of Netty. When building an application
with Play, developers implement the behavior of the chefs that cook up the response,
rather than the behavior of the waiters, which is already provided by Play.

 The mechanism of an evented web server is shown in figure 1.3.
 In an evented web server, incoming requests are sliced and diced into events that

represent the various smaller pieces of work involved in handling the whole request,
such as parsing the request body, retrieving a file from disk, or making a call to
another web service. The slicing and dicing is done by event handlers, which may trig-
ger I/O actions, resulting in new events later on. Say, for example, that you wanted to
issue a request for the size of a file on the web server. In this case, the event handler
dealing with the request will make an asynchronous call to the disk. When the operat-
ing system is done figuring out the size of the file, it emits an interrupt, which results
in a new event. When it’s the turn of that event to be handled, you’ll get a response
with the size. While the operating system is taking care of figuring out the size of the
file, the event loop can process other events in the queue.

 One important implication of the evented programming model is that the time
spent on tasks needs to be small. If a chef insisted on cooking the whole order when a
waiter simply wanted to place it, there would be many angry unserved customers once
the waiter finally got back from the kitchen. The evented model only works if the
entire pipeline is asynchronous: orders, or HTTP requests, are processed without block-
ing. The term nonblocking I/O is often used to refer to input-output operations that
don’t hold up the current execution thread while doing their work, but instead send a
notification when the work is done.

HTTP requests

Event queue

Event

Event loop

Event
handler

Figure 1.3 Evented web server

11Rethinking computational resource utilization

MEMORY UTILIZATION IN THREADED AND EVENTED WEB SERVERS

Evented web servers make much better use of hardware resources than threaded
ones. Instead of having to spawn thousands or tens of thousands of “train track”
worker threads to deal with large numbers of incoming requests, only a few “waiter”
threads are necessary. There are two advantages to working with a smaller number of
threads: reduced memory footprint and much improved performance due to reduced
context switching, thread management time, and scheduling overhead.

 Each thread created on the JVM has its own stack space, which is by default 1 MB.
The default thread pool size of Apache Tomcat is 200, which means that Apache Tom-
cat needs to be assigned over 200 MB of memory in order to start. In contrast, you can
run a simple Play application with 16 MB of memory. And although 200 MB may not
seem like a lot of memory these days, let’s not forget that this means that 200 MB are
required to process 200 incoming HTTP requests at the same time, without taking into
account the memory necessary to perform additional tasks involved in handling these
requests. If you wanted to cater to 10,000 requests at the same time, you’d need a lot
of memory, which may not always be readily available. The threaded model has diffi-
culty scaling up to a larger number of concurrent users because of its demands on
available memory.

 In addition to utilizing a lot of memory, the threaded approach results in ineffi-
cient use of the CPU.

1.2.2 Developing web applications fit for multicore architectures

Threaded web servers rely on multiple thread pools to distribute the available CPU
resources among incoming requests. This mechanism is mostly hidden from develop-
ers, letting developers work as though there were only one main thread. Arguably,
developing against an abstraction that hides away the increased complexity of dealing
with multiple threads may appear simpler at first. Indeed, programming contracts
such as the Servlet API provide the illusion that there’s only one main thread of execu-
tion answering an incoming HTTP request and all the resources in the world to answer
it. But the reality is somewhat different, and this leaky abstraction brings its own set
of drawbacks.6

SHARED MUTABLE STATE AND ASYNCHRONOUS PROGRAMMING

If you’ve built web applications served by a threaded server, chances are that you’ve
found yourself facing the side effects of a race condition caused by the use of shared
mutable state. Threads on the JVM, while running in parallel, do not run in isolation:
they have access to the same memory space, open file handles, and other shared
resources as other threads. One classic example of the problems caused by this behav-
ior is a Java servlet making use of the DateFormat class:

private static final DateFormat dateFormatter = new SimpleDateFormat();

6 Joel Spolsky, “The Law of Leaky Abstractions,” http://www.joelonsoftware.com/articles/LeakyAbstractions.html.

http://www.joelonsoftware.com/articles/LeakyAbstractions.html

12 CHAPTER 1 Did you say reactive?

The problem with the preceding line is that DateFormat is not thread-safe. When
called by two threads concurrently, it doesn’t act differently depending on what
thread is calling it, and makes use of the same variables to hold its internal state. This
leads to unpredictable behavior and to bugs that are usually hard to understand and
analyze. Even experienced developers spend a lot of time trying to understand race
conditions, deadlocks, and other strange, funny, or despairing side effects brought
about by this unfortunate situation. This isn’t to say that applications written in an
evented way are immune to the phenomenon of shared mutable state—for the most
part, application developers decide whether or not to make use of mutable data struc-
tures and what level of exposition to give them. But the design of frameworks such as
Play and languages such as Scala discourages developers from making use of shared
mutable state.

LANGUAGE DESIGN AND IMMUTABLE STATE

Languages and tools favoring the use of immutable state make it easier to develop web
applications that have to deal with concurrent access. The Scala programming lan-
guage is designed to use immutable values by default, rather than mutable variables.
Although it’s possible to write programs in an immutable fashion in Java, a lot more
boilerplate is involved than in Scala. For example, declaring an immutable value in
Scala is done like this:

val theAnswer = 42

The same result would be achieved in Java by explicitly prepending the final keyword:

final int theAnswer = 42

This may seem like a minor difference, but over the course of writing a large applica-
tion, it means that the final keyword needs to be used many, many times. When it
comes to more-complex data structures, such as lists and maps, Scala provides these
data structures in both their immutable and mutable versions, favoring the immutable
one by default:

val a = List(1, 2, 3)

Java, on the other hand, doesn’t provide immutable data structures in its collection
library. You’d have to use third-party libraries such as Google’s Guava library (https://
github.com/google/guava) to get a useful set of immutable data structures.

LOCKS AND CONTENTION

To avoid the side effects caused by concurrent access to non-thread-safe resources, locks
are used to let other threads know that a resource is currently busy. If all goes well, the
thread holding the lock will release it and thus inform other possibly waiting threads
that they may now access the resource in turn. In some situations, however, threads
may wait for one another to release a lock and be stuck in a deadlock. If a thread holds
on to a resource for too long, this may cause resource starvation from the viewpoint of

https://github.com/google/guava
https://github.com/google/guava

13Rethinking computational resource utilization

other threads. When the load on a web application that relies on locks surges, it isn’t
unusual to observe lock contention, which results in decreased performance for the
whole application.

 The new many-core architecture that CPU vendors have moved toward doesn’t
make locks look any better. If a CPU offers over 1,000 real threads of execution, but
the application relies on locks to synchronize access to a few regions in memory, one
can only imagine how much performance loss this mechanism will entail. There is a
clear need for a programming model that better suits the multithread and multicore
paradigm.

THE APPARENT COMPLEXITY OF ASYNCHRONOUS PROGRAMMING

For a long time, writing asynchronous programs hasn’t been popular among develop-
ers because it can seem more difficult than writing good old synchronous programs.
Instead of the ordered sequence of operations in a synchronous program, a request-
handling procedure may end up being split into several pieces when written in an
asynchronous fashion.

 One of the popular ways of writing asynchronous code is to make use of callbacks.
Because the program’s flow of execution isn’t blocked when waiting for an operation
to complete (such as retrieving data from a remote web service), the developer needs
to implement a callback method that’s executed once the data is available. Propo-
nents of the threaded programming model would argue that when the processing is a
bit more complicated, this leads to a style of code known as “callback hell.”

var fetchPriceList = function() {
$.get('/items', function(items) {

var priceList = [];
items.forEach(function(item, itemIndex) {

$.get('/prices', { itemId: item.id }, function(price) {
priceList.push({ item: item, price: price });
if (priceList.length == items.length) {

Listing 1.1 Example of nested callbacks in JavaScript

The Scala programming language
One of the main design goals of the Scala programming language is to enable devel-
opers to tackle the complexity of programming multicore and distributed systems. It
does so by favoring immutable values and data structures over mutable ones, provid-
ing functions and higher-order functions as first-class citizens of the language, as well
as easing the use of an expression-oriented programming style. For this reason, this
book’s examples are written in Scala rather than Java. (It should, however, be noted
that Play, Akka, and Reactive Streams all have Java APIs.) We’ll review the core con-
cepts of functional programming with Scala in chapter 3.

The main function composes a
list of items and their prices. First callback function

handles the retrieval
of the itemsSecond callback

function is called
for each item

Third callback method
handles the retrieval of

the price of one item

14 CHAPTER 1 Did you say reactive?

return priceList;
}

}).fail(function() {
priceList.push({ item: item });
if (priceList.length == items.length) {

return priceList;
}

});
}

}).fail(function() {
alert("Could not retrieve items");

});
}

It’s easy to imagine that if you had to retrieve data from more sources, the level of call-
back nesting would be further increased and the code harder to understand and
maintain. There are dozens of articles about callback hell and even one domain name
(http://callbackhell.com) dedicated to this issue, and it’s often encountered in larger
Node.js (http://nodejs.org) applications.

 But writing asynchronous applications doesn’t need to be that hard. Callbacks, for
all of their merits, are an abstraction that’s too low-level to write complex asynchro-
nous flows. JavaScript is only slowly catching up on tools and abstractions enabling a
more human approach to asynchronous programming, but languages such as Scala
have been designed with these abstractions in mind, leveraging well-known functional
programming principles that make it possible to approach the problem from a differ-
ent angle.

NOVEL WAYS OF WRITING ASYNCHRONOUS PROGRAMS

Tools inspired by functional programming concepts, such as Java 8 lambdas or Scala’s
first-order functions, greatly simplify the handling of multiple callbacks (as compared
to the rather meager options that the JavaScript language provides). On top of this
tooling built into the programming languages, abstractions such as futures and actors
are powerful means to write and compose asynchronous request-handling pipelines,
largely eliminating the phenomenon of callback hell.

 Switching from an imperative, synchronous style of writing applications to a more
functional and asynchronous style doesn’t happen overnight. We’ll discuss the tools,
techniques, and mental model of asynchronous programming in chapters 3 and 5.

 By adopting an evented request-handling model, Play can make much better use
of a computer’s resources. But what happens if, despite having an extremely perfor-
mant request-processing pipeline, you hit the hardware limits of your server? Let’s
find out how Play can help you scale horizontally to several servers.

1.2.3 The horizontal application architecture

When developing a web application, a few fundamental choices have to be made that
have a profound impact on how the web application can be operated. Unfortunately,
web applications are often developed without considering what happens to the appli-
cation after the code has been shipped and deployed on the production server. This

Fourth callback
method performs

error handling
when a price

can’t be retrieved Fifth callback method
performs error
handling if the items
can’t be retrieved

http://callbackhell.com
http://nodejs.org

15Rethinking computational resource utilization

can lead to profound limitations, such as when it comes to running the application on
more than just one computer. If the application wasn’t designed for this operational
mode from the start, chances are that it won’t be practicable to run it this way without
significant changes to the code. In the following discussion, we’ll explore a few
deployment models and consider their benefits and disadvantages. We’ll also look at
the advantages of the so-called horizontal deployment model enabled and embraced by
reactive applications.

SINGLE-SERVER DEPLOYMENTS

The single-server deployment is a very common deployment
model. Web applications are deployed on a single computer,
and often the database is deployed on that same computer, as
shown in figure 1.4.

 This deployment is widely used because of its relative sim-
plicity, but it comes with a few important limitations. When the
load on the server exceeds the capabilities of the hardware, or
when the hardware fails, or when security or application
upgrades need to be installed, the unavoidable result is that
the application becomes unavailable. The usage load that this
kind of setup can handle depends to a great extent on the
hardware—when there’s a need for more performance, a more powerful computer
with more memory and faster CPUs is necessary. The process of increasing the load a
server can handle by switching to more performant hardware is called vertical scaling.

REPLICATED DEPLOYMENTS

For applications that need better availability or performance, a popular setup involves
replication of the data across two computers, as shown in figure 1.5.

Database Database

Router

Web application Web application

Figure 1.5 Replicated
application deployment
model

Web application

Database

Figure 1.4 Traditional
application deployment
model

16 CHAPTER 1 Did you say reactive?

In this kind of setup, both the database and the server-side state, such as server-side
user sessions or caches, need to be replicated (by making use of Apache Tomcat’s clus-
tering capabilities or similar functionality). On the database level, master-to-master
replication can be employed. This solution makes it possible to update one deploy-
ment after another, thus allowing uptime during upgrades. But the complexity
involved in correctly configuring this kind of setup more often than not limits the
number of replicas to two. From a developer’s perspective, the web application is still
developed as though it were running on a single computer, and the underlying frame-
work or application server takes care of replicating server-side state.

 The complexity inherent in a multi-machine setup isn’t eliminated but instead
pushed to the application server. This makes it more difficult to deal with error states
elegantly (without annoying the user too much), given that the error happens at a dif-
ferent level than the application itself and isn’t a first-class concern of the application.

HORIZONTAL DEPLOYMENTS

In a horizontal architecture, as shown in figure 1.6, the same version of the web appli-
cation is deployed across many nodes.

 Those nodes may be physical computers or virtual machines, and an important
characteristic about them is that they don’t know anything about each other and don’t
share any state. This share-nothing principle is at the core of so-called stateless architec-
tures, wherein each node is self-contained, and its presence or absence doesn’t affect
other nodes in any way (except, perhaps, with increased or decreased load, depend-
ing on the traffic). The advantage of such an architecture is that the application can
be scaled easily by adding new nodes to a front end router, and rolling updates can be
performed by bringing up new nodes with the new version and then switching the

Database node

Web application node

Database node

Web application node

Database node

Web application node

Database node

Web application node

Router

Figure 1.6 Horizontal architecture model

17Failure-handling as first-class concern

routing layer to point to those new nodes. These so-called hot redeploy mechanisms are
popular with Platform-as-a-Service (PaaS) providers such as Heroku.

 On the storage layer, a good counterpart to a share-nothing web application layer is
a storage technology that supports some form of clustering. NoSQL databases such as
MongoDB, Cassandra, Couchbase, and new versions of relational databases (such as
WebScaleSQL; http://webscalesql.org) are a good fit for such scalable front end layers.

 One consequence of using a horizontal architecture is that a user may be con-
nected randomly to one of the front end nodes by the routing layer instead of always
ending up on the same node. Given that there’s no shared state between nodes, a
server-side session (the default in the Servlet Standard and in frameworks built on top
of it) can’t be used. The Play Framework embraces the share-nothing philosophy at its
core and provides a client-side user session based on cookies, which we’ll talk about in
chapter 8.

 Thanks to its low memory footprint, Play is also a good candidate for multi-node
deployments through PaaS or on other cloud-based platforms, where the amount of
memory available to a single node is typically much lower than on a dedicated server.

1.3 Failure-handling as first-class concern
When the New York Stock Exchange (NYSE) opened at 9:30 AM on August 1, 2012, the
automatic trading software of the Knight Capital Group (KCG) started trading stocks
automatically, as it had been built to do and had done for many years. A few days earlier,
a new version of the application had been rolled out on the servers, enabling customers
of the company to participate in the Retail Liquidation Program at the NYSE. But on this
August 1, things would be a little different: in the 45 minutes from when the market
opened until it was shut down, the application generated a loss of 440 million USD. Oops.7

 Building applications that don’t fail is extremely difficult, and if those applications
are meant to be built at a reasonable pace it’s close to impossible. Instead of avoiding
failure, reactive systems are designed and built from the ground up to embrace fail-
ure, leveraging the principle of supervision, which if employed might have prevented
the fate of KCG. Reactive systems detect failure on their own and spring back into
shape automatically, or degrade in such a way as to minimize catastrophic failure.

 To cope with failure up front, it’s important to understand what can go wrong.
Let’s look a bit closer at why failure is inevitable (you may not be convinced just yet
that this is the case) and at what techniques can be used to cope with it.

1.3.1 Failure is inevitable

Unlike the development teams of the onboard shuttle group, which built the software
that ran the space shuttles at a rate of a few lines of code per day,8 most development

7 Doug Seven, “Knightmare: A DevOps Cautionary Tale,” http://dougseven.com/2014/04/17/knightmare-a-
devops-cautionary-tale.

8 Charles Fishman, “They Write the Right Stuff” (December 31, 1996), http://www.fastcompany.com/28121/
they-write-right-stuff.

http://webscalesql.org
http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale
http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale
http://www.fastcompany.com/28121/they-write-right-stuff
http://www.fastcompany.com/28121/they-write-right-stuff

18 CHAPTER 1 Did you say reactive?

teams will produce software that contains errors (and hopefully, at a higher rate of lines
of code per day). Even when employing test-driven development methodologies and
achieving a perfect code coverage score, chances are that the software will not be
entirely error-free. Applications fail because of human mistakes all the time, and
increasing software quality is an iterative process. The difficulty of building failure-
tolerant applications is increased many times when it comes to distributed systems
running on different computers.

 At the ACM Symposium on the Principles of Distributed Computing in July 2000,
Eric Brewer gave a keynote speech 9 in which he presented the CAP theorem. CAP
stands for consistency, availability, and tolerance to network partitions.

 The essence of the theorem is that in the presence of network partitions, depicted
in figure 1.7, you can have either consistency of data across servers or availability of all
servers, but not both at the same time.

 Suppose we wanted to build an online trading platform to deal with a high volume
of orders. To satisfy our expected load, we set up four servers, all connected to the

9 Eric Brewer, “Towards Robust Distributed Systems,” www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-
keynote.pdf.

Database

Web application

A

Database

Web application

B

Database

Web application

C

Database

Web application

D

Database

Web application

A

Database

Web application

B

Database

Web application

C

Database

Web application

D

Figure 1.7 Network partition on a system with four servers. When the partition occurs, server A is
isolated from the other servers, yet the application running on the server is still reachable from the
outside world. Changes occurring on this server will occur in isolation, and once the network partition
is over, there may be data inconsistency between server A and servers B, C, and D.

www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

19Failure-handling as first-class concern

internet, and additionally interconnected on a LAN. (Never mind that in practice
such a setup wouldn’t pass any of the security audits required for online trading. Let’s
just go with it for this example.) Each server is hosting a web application as well as a
database that keeps data changes synchronous via replication on the LAN. When an
order is placed on any of the nodes, this information is automatically propagated to all
other server instances, thus ensuring the consistency of the data in our small cluster.

 Now let’s suppose that through an unfortunate turn of events, a member of the
office cleaning personnel trips over the LAN cable of server A, thus disconnecting it
from the internal network, but not from the internet. If a user now places an order via
server A to buy a number of shares, and the order is successfully executed, nothing
would prevent another user from placing a buy order for the same shares on any of
the other nodes of the system and having it execute correctly. When the network
recovers, we’d wind up with node A being in an inconsistent state, and we’d have quite
a problem as a result of having sold the same shares twice.

 Even if it can be argued that network partitions are rare, they still happen often
enough that they can’t just be overlooked. Technologies such as Amazon’s DynamoDB
were built with network partitions as a key part of their design.10 Using the Command
and Query Responsibility Segregation (CQRS) pattern in combination with Event
Sourcing, which we’ll discuss in chapter 7, is an increasingly popular mix of tech-
niques for achieving eventual consistency—ensuring that even though a system may at
first not be consistent at all times across all nodes, it will eventually converge so that all
nodes see the latest version of an update.

 To make things even more interesting, network partitions are just one of many
things that can go wrong when working with distributed systems. In 1994, Peter
Deutsch drafted out seven fallacies of distributed computing, and an additional one
was added by James Gosling in 1997. The result is known as the eight fallacies of dis-
tributed computing:11

1 The network is reliable
2 Latency is zero
3 Bandwidth is infinite
4 The network is secure
5 Topology doesn’t change
6 There is one administrator
7 Transport cost is zero
8 The network is homogeneous

As you can see from the length of this list, there are many reasons building a highly
available system is difficult. In order for a system to be truly resilient, fault-tolerance
can’t be an afterthought—it must be handled right from the start.

10 Giuseppe DeCandia et al., “Dynamo: Amazon’s Highly Available Key-value Store,” http://mng.bz/YY5A.
11 “The Eight Fallacies of Distributed Computing,” https://blogs.oracle.com/jag/resource/Fallacies.html.

http://mng.bz/YY5A
https://blogs.oracle.com/jag/resource/Fallacies.html

20 CHAPTER 1 Did you say reactive?

1.3.2 Building applications with failure in mind

Though failure is unavoidable, there are ways to influence how a system fails and how
quickly it recovers. Not every kind of failure needs to render an entire application
unavailable.

RESILIENT CLIENTS

Take, for example, the online service Trello, a project-management tool inspired by
the Kanban methodology. Trello allows you to create cards and edit their content,
drag and drop them from one list to another, and perform a lot more actions. When
there’s a problem with the network connection, be it on the client side or the server
side, the Trello application doesn’t simply stop responding but instead exhibits one of
the most important behaviors of a reactive web application: resiliency. A user doesn’t
need to interrupt their work but can continue to use the service, and when the con-
nection is recovered, the actions saved locally are transmitted back to the server. As
shown in figure 1.8, users are constantly kept informed about the status of the applica-
tion and made aware of situations in which their actions can’t be saved properly.

BULKHEADING

Watertight bulkhead partitions, used in shipbuilding for centuries, are an effective way to
prevent a ship from sinking by compartmentalizing different sections. Should the ship

Figure 1.8 Failure handling and user interaction in Trello

21Failure-handling as first-class concern

hit an iceberg, only the damaged compartments would be flooded—the whole ship
would stay afloat if enough compartments remained intact. (It should be noted here
that in the case of the Titanic, the bulkheads were not truly watertight, which explains
why this mechanism did not work as designed.)

 The bulkhead pattern can be used in web applications at different levels. For
example, LinkedIn’s home page features a lot of information kept in different sec-
tions: people you may know, people you recently visited, people who have viewed your
profile, people who have viewed your updates, and so on. Those sections appear to be
loaded at the same time but are in fact retrieved from various back-end services and
composed together asynchronously.12 When one of the back-end services is unavail-
able or takes a long time to load, the other sections aren’t affected and are loaded on
a first-come, first-served basis. Sections that can’t get an answer from their service can
render themselves differently or hide themselves entirely if necessary.

SUPERVISION AND ACTORS

Supervision is one of the fundamental concepts used by reactive applications in order
to be fault-tolerant.

 When considering supervision, you might think of adult supervision of children or
supervision in a work environment. In both cases, a hierarchical relationship exists—
between parent and child or boss and employee. Though different in nature, these
human relationships have a few common aspects:

■ The supervisor (parent or boss) is responsible for the mistakes the supervised
(child or employee) makes.

■ The supervisor gets to know about the mistakes of the supervised (this may not
always be true in reality, but let’s assume it is for the sake of this explanation).

■ The supervisor has to decide how to react to those mistakes.

Building on these three aspects, we can say that the core idea of supervision in the
context of software systems is one of separation of concerns: the responsibility of execut-
ing a task is separated from the responsibility of deciding how failures are dealt with
and ensuring that they are dealt with.

 Joe Armstrong’s thesis, “Making reliable distributed systems in the presence of soft-
ware errors,”13 introduces the Erlang computing language, designed with the idea
that software, no matter how well it may be tested, always has mistakes in it. He goes
on to introduce supervision as a means to counteract those mistakes when possible.

 When implementing a given task, a developer may not always be able to predict all
the errors that may arise. More often than not there’s a degree of uncertainty when
implementing an application. And even when an error condition is expected, the best
reaction to the error may not be clear because it will depend on the current state of the
systems. Software systems—especially distributed systems that combine many moving

12 Yevgeniy Brikman, “Play at LinkedIn: Composable and streamable Play apps,” http://www.slideshare.net/
brikis98/composable-and-streamable-play-apps.

13 A PDF of the article is available at http://mng.bz/uFsr.

http://www.slideshare.net/brikis98/composable-and-streamable-play-apps
http://www.slideshare.net/brikis98/composable-and-streamable-play-apps
http://mng.bz/uFsr

22 CHAPTER 1 Did you say reactive?

parts—gain in robustness and resilience through experience and by seeing the system
behave in reality. By isolating the risky parts of a task into supervised units of code,
developers can acknowledge the sometimes unpredictable nature of these systems and
factor the unpredictability right into their design.

 A popular implementation of supervision can be found in the actor programming
model, which is at the core of Erlang and is also represented on the JVM by Akka. It
revolves around small units of software called actors, which, much like humans, can
communicate with each other by sending and reacting to messages. Just as in human
communication, messages are sent asynchronously, which means that an actor doesn’t
freeze and wait for a response to a message before it resumes its work.

 Actors exist in a supervision hierarchy: each actor has a supervisor and can have
one or several child actors for which it is responsible. Unhandled errors raised by a
child actor are communicated to the parent actor, which decides to react in one way
or another. We’ll discuss actors in detail in chapter 6.

1.3.3 Dealing with load

Reactive web applications are designed to cope with varying loads. When building web
applications, one critical piece of information that should flow into the design is the
expected load in terms of requests per second that the application should be able to
handle. This varies depending on the application: a meeting room–scheduling appli-
cation on a company intranet isn’t likely to generate as much interest (or be available
to as many users) as a social media site for sharing funny video clips. Often, and espe-
cially in the early stages of a project, concerns about performance are dismissed as pre-
mature optimization, the attitude being, “We’ll take care of it when we have enough
users.” In reality though, if a site gets popular, users won’t gently and slowly visit the
site turn by turn, giving developers time to come up with a way to increase capacity.
Instead, the site may be featured on a popular news feed such as Hacker News, and
suddenly tens of thousands of people will rush to it without warning. (Incidentally,
Hacker News regularly features stories about the impact of being featured on Hacker
News, sometimes including the amount of the Amazon Web Services bill.) The prob-
lem with such bursts in the number of visitors is that they are often unpredictable, and
not being able to cope with them may well mean a website will lose one of its few
chances to get noticed by the general public.

 The capability of an application to perform well under load and to scale out to the
necessary number of nodes (hardware servers or virtualized ones) can’t be an after-
thought. Unlike simple features such as the capability to log in using an existing
Google, Facebook, or Twitter account, scalability is a cross-cutting concern and needs to
be factored into the design right from the beginning. Reactive systems often make use
of stateless architectures, which we discussed in the section “Horizontal deployments.”
Let’s look at a few tools available for handling increased load on an application.

23Failure-handling as first-class concern

CAPACITY PLANNING WITH LITTLE’S LAW

Little’s law is a formula from queuing theory often used for dimensioning telecommu-
nication infrastructures (such as traditional telephone installations). When applied to
the domain of web servers, it states that

L = � * W

where

■ L is the average number of requests served at the same time
■ � is the average rate at which requests arrive on the system
■ W is the average time it takes to process a request

In the case of a meeting room–scheduling application for a company intranet, if
there’s an average of one request per minute and each request takes 100 ms to pro-
cess, the average number of concurrent requests will be approximately 0.0017. In
other words, there’s no need to worry about scaling out for this application.

 On the other hand, the site for sharing funny videos may get 10,000 requests per
second (many people like to watch those videos instead of working), and if the pro-
cessing time is 100 ms, the application faces on average 1,000 concurrent requests. In
this case we might want to adopt a number of design and deployment decisions that
allow for handling 1,000 requests at the same time. If, for example, we know that one
node in our system is capable of handling 100 concurrent requests, we’ll need 10 such
nodes to handle the entire load.

DYNAMICALLY SCALING IN AND OUT

As I’ve already pointed out, it’s hard to predict the effective number of users visiting a
website. The time of the day, weather conditions, and mentions via social media ser-
vices may influence how high the load on the funny video clip site will be. Instead of
running at full capacity all the time, it may be worth saving some money by scaling up
and down depending on the load.

 One approach would be to measure the effective load on the site using a monitor-
ing tool, and then shut down or start up nodes accordingly. But as heroic as it may
sound, getting up at 3:00 AM when receiving an SMS alert that the load has increased,
and going online to slide the Heroku slider to the right may not be a very good strat-
egy for the health of the website operator. Instead, using Little’s law in combination
with scripts to automate this process seems more reasonable. We’ll look at an example
of elastically scaling a Play deployment with Clever Cloud in chapter 10.

BACK PRESSURE PROPAGATION

One of the main features of the web application for sharing funny videos is to show
those videos to visitors. If we were to store the videos on a third-party storage service,
such as Amazon S3, and display them using a video player on our site, we’d have to
stream the video to the client through our server. If, however, the client’s bandwidth
was not as good as that of our server (which is often the case, especially for mobile
devices), we’d need to keep the video in memory on the server for the duration of the

24 CHAPTER 1 Did you say reactive?

streaming. With many users watching videos at the same time, we’d certainly run out
of memory very quickly. Back pressure propagation is a means of regulating the speed of
streams by taking into account the effective consumption speed on the consumer side.
Instead of keeping the entire video in memory on our server, a setup involving back
pressure would allow us to modulate the speed at which the data is retrieved from
Amazon S3 so we’d only buffer a small amount in memory on the server, fetching
more of it as the video is played on the user’s phone.

 The Play Framework builds on the concept of back pressure and utilizes it for core
concerns, such as request body parsing and WebSocket handling. The Reactive
Streams initiative that we briefly mentioned in the context of reactive programming
provides this capability, as you’ll see in chapter 9.

CIRCUIT BREAKERS

Sometimes, it may not be possible to scale a service out, such as when communicating
with a legacy application (for example, a mainframe system in a banking environ-
ment). In this case, we may need a different approach for dealing with load bursts to
protect the legacy service from overload and avoid cascading failures.

 In an electric circuit, a circuit breaker is an automatic switch that’s meant to pro-
tect the circuit from overload or short circuits. On an abstract level, it functions as
illustrated in figure 1.9.

 In the context of a web application, a circuit breaker is configured to check
whether the service it protects responds within a certain time frame, and if the service
takes longer to answer than this timeout, the circuit trips into an open state. After a
certain amount of time (which can also be configured), the circuit goes into a half-
open state and a new attempt is made to contact the service. If it responds within the
intended time frame, the circuit is closed again; otherwise, it trips into the open state
again and waits longer for the service to recover.

 Circuit breakers are an effective way to protect legacy services from overloading. Play
can easily leverage the circuit breaker implementation provided by Akka, this combi-
nation having been employed successfully in a project for the Walmart Canada site.14

14 Lightbend, “Walmart Boosts Conversions by 20% with Lightbend Reactive Platform,” www.lightbend.com/
resources/case-studies-and-stories/walmart-boosts-conversions-by-20-with-lightbend-reactive-platform.

Open

Closed

Attempt reset

teseRpirT

Half open

Figure 1.9 Different states of a circuit breaker

www.lightbend.com/resources/case-studies-and-stories/walmart-boosts-conversions-by-20-with-lightbend-reactive-platform
www.lightbend.com/resources/case-studies-and-stories/walmart-boosts-conversions-by-20-with-lightbend-reactive-platform

25Summary

1.4 Summary
In this chapter, you were introduced to reactive applications and why they matter. In
particular, we looked at

■ The meaning and origins of reactive applications and reactive technologies,
including the Play Framework

■ How threads are executed by a CPU and how an asynchronous, event-driven
programming style embraced by evented servers makes better use of resources

■ Different deployment models, including stateless, horizontal architectures that
scale well under load

■ The importance of failure handling and different methods that reactive appli-
cations employ to become resilient

In the next chapter, we’ll get our hands dirty and build a small reactive web applica-
tion with Play.

www.allitebooks.com

http://www.allitebooks.org

26

Your first
 reactive web application

In the previous chapter, we talked about the key benefits of adopting a reactive
approach to web application design and operation, and you saw that the Play
Framework is a good technology for this. Now it’s time to get your hands dirty
and build a reactive web application. We’ll build a simple application that con-
nects to the Twitter API to retrieve a stream of tweets and send them to clients
using WebSockets.

2.1 Creating and running a new project
An easy way to start a new Play project is to use the Lightbend Activator, which is a
thin wrapper around Scala’s sbt build tool that provides templates for creating
new projects. The following instructions assume that you have the Activator

This chapter covers
■ Creating a new Play project
■ Streaming data from a remote server and

broadcasting it to clients
■ Dealing with failure

27Creating and running a new project

installed on your computer. If you don’t, appendix A provides detailed instructions
for installing it.

 Let’s get started by creating a new project called “twitter-stream” in the workspace
directory, using the play-scala-v24 template:

~/workspace » activator new twitter-stream play-scala-2.4

This will start the process of creating a new project with Activator, using the template
as a scaffold:

Fetching the latest list of templates...

OK, application "twitter-stream" is being created using the "play-scala-2.4"

➥ template.

To run "twitter-stream" from the command line, "cd twitter-stream" then:
/Users/mb/workspace/twitter-stream/activator run

To run the test for "twitter-stream" from the command line,

➥ "cd twitter-stream" then:
/Users/mb/workspace/twitter-stream/activator test

To run the Activator UI for "twitter-stream" from the command line,

➥ "cd twitter-stream" then:
/Users/mb/workspace/twitter-stream/activator ui

You can now run this application from the project directory:

~/workspace » cd twitter-stream
~/workspace/twitter-stream » activator run

If you point your browser to http://localhost:9000, you’ll see the standard welcome
page for a Play project. At any time when running a Play project, you can access the
documentation at http://localhost:9000/@documentation.

PLAY RUNTIME MODES Play has a number of runtime modes. In dev mode
(triggered with the run command), the sources are constantly watched for
changes, and the project is reloaded with any new changes for rapid
development. Production mode, as its name indicates, is used for the
production operation of a Play application. Finally, test mode is active when
running tests, and it’s useful for retrieving specific configuration settings for
the test environment.

Besides running the application directly with the activator run command, it’s possible
to use an interactive console. You can stop the running application by hitting Ctrl-C and
start the console simply by running activator:

~/workspace/twitter-stream » activator

28 CHAPTER 2 Your first reactive web application

That will start the console, as follows:

[info] Loading project definition from
/Users/mb/workspace/twitter-stream/project

[info] Set current project to twitter-stream
(in build file:/Users/mb/workspace/twitter-stream/)

[twitter-stream] $

Once you’re in the console, you can run commands such as run, clean, compile, and
so on. Note that this console is not Play-specific, but common to all sbt projects. Play
adds a few commands to it and makes it more suited to web application development.

 Table 2.1 lists some useful commands:

When you start the application in the console with run, you can stop it and return to
the console by pressing Ctrl-D.

AUTO-RELOADING By prepending a command with ~, such as ~ run or ~ compile,
you can instruct sbt to listen to changes in the source files. In this way, every time
a source file is saved, the project is automatically recompiled or reloaded.

Now that you’re all set to go, let’s start building a simple reactive application, which, as
you may have guessed from the name of the empty project we’ve created, has some-
thing to do with Twitter.

 What we’ll build is an application that will connect to one of Twitter’s streaming
APIs, transform the stream asynchronously, and broadcast the transformed stream to
clients using WebSocket, as illustrated in figure 2.1. We’ll start by building a small
Twitter client to stream the data, and then build the transformation pipeline that we’ll
plug into a broadcasting mechanism.

Table 2.1 Useful sbt console commands for working with Play

Command Description

run Runs the Play project in dev mode

start Starts the Play project in production mode

clean Cleans all compiled classes and generated sources

compile Compiles the project

test Runs the tests

dependencies Shows all the library dependencies of the project, including transitive ones

reload Reloads the project settings if they have been changed

29Connecting to Twitter’s streaming API

2.2 Connecting to Twitter’s streaming API
To get started, we’ll connect to the Twitter filter API.1 At this point, we’ll just focus on
getting data from Twitter and displaying it on the console—we’ll deal with sending it
to clients connecting to our application at a later stage.

 Start by opening the project in your favorite IDE. Most modern IDEs have exten-
sions to support Play projects nowadays, and you can find resources on the topic in
the Play documentation (www.playframework.com/documentation), so we won’t look
into setting up various flavors of IDEs here.

2.2.1 Getting the connection credentials to the Twitter API

Twitter uses the OAuth authentication mechanism to secure its API. To use the API, you
need a Twitter account and OAuth consumer key and tokens. Register with Twitter (if
you haven’t already), and then you can go to https://apps.twitter.com where you can
request access to the API for an application. This way, you’ll get an API key and an API
secret, which together represent the consumer key. In addition to these keys, you’ll need
to generate request tokens (in the Details tab of the Twitter Apps web application). At
the end of this process, you should have access to four values:

1 The Twitter API documentation can be found at https://dev.twitter.com/streaming/reference/post/
statuses/filter.

Twitter client

Twitter stream transformer

Tweet broadcaster

WebSocket client #2

n#tneilctekcoSbeW1#tneilctekcoSbeW

Twitter

Figure 2.1 Reactive Twitter broadcaster

https://dev.twitter.com/streaming/reference/post/statuses/filter
https://dev.twitter.com/streaming/reference/post/statuses/filter
https://apps.twitter.com
http://www.playframework.com/documentation

30 CHAPTER 2 Your first reactive web application

■ The API key
■ The API secret
■ An access token
■ An access token secret

Once you have all the necessary keys, you’ll need to add them to the application con-
figuration in conf/application.conf. This way, you’ll be able to retrieve them easily
from the application later on. Add the keys at the end of the file as follows:

Twitter
twitter.apiKey="<your api key>"
twitter.apiSecret="<your api secret>"
twitter.token="<your access token>"
twitter.tokenSecret="<your access token secret>"

2.2.2 Working around a bug with OAuth authentication

As a technical book author, I want my examples to flow and my code to look simple,
beautiful, and elegant. Unfortunately the reality of software development is that bugs
can be anywhere, even in projects with a very high code quality, which the Play
Framework definitely is. One of those bugs has its origins in the async-http-client
library that Play uses, and it plagues the 2.4.x series of the Play Framework. It can’t be
easily addressed without breaking binary compatibility, which is why it will likely not
be fixed within the 2.4.x series.2

 More specifically, this bug breaks the OAuth authentication mechanism when a
request contains characters that need to be encoded (such as the @ or # characters).
As a result, we have to use a workaround in all chapters making use of the Twitter API.
Open the build.sbt file at the root of the project, and add the following line:

libraryDependencies += "com.ning" % "async-http-client" % "1.9.29"

2.2.3 Streaming data from the Twitter API

The first thing we’ll do now is add some functionality to the existing Application con-
troller in app/controllers/Application.scala. When you open the file, it should look
rather empty, like this:

class Application extends Controller {

def index = Action {
Ok(views.html.index("Your new application is ready."))

}

}

The index method defines a means for obtaining a new Action. Actions are the mech-
anism Play uses to deal with incoming HTTP requests, and you’ll learn a lot more
about them in chapter 4.

2 https://github.com/playframework/playframework/pull/4826

https://github.com/playframework/playframework/pull/4826

31Connecting to Twitter’s streaming API

 Start by adding a new tweets action to the controller.

import play.api.mvc._

class Application extends Controller {
def tweets = Action {
Ok

}
}

This action won’t do anything other than return a 200 Ok response when accessed. To
access it, we first need to make it accessible in Play’s routes. Open the conf/routes file
and add a new route to the newly created action, so you get the following result.

Routes
This file defines all application routes
(Higher priority routes first)
~~~~

Home page
GET / controllers.Application.index
GET /tweets controllers.Application.tweets

Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.at(path="/public", file)

Now when you run the application and access the /tweets file, you should get an
empty page in your browser. This is great, but not very useful. Let’s go one step further
by retrieving the credentials from the configuration file.

 Go back to the app/controllers/Application.scala controller and extend the
tweets action as follows.

import play.api.libs.oauth.{ConsumerKey, RequestToken}
import play.api.Play.current
import scala.concurrent.Future
import play.api.libs.concurrent.Execution.Implicits._

def tweets = Action.async {
val credentials: Option[(ConsumerKey, RequestToken)] = for {
apiKey <- Play.configuration.getString("twitter.apiKey")
apiSecret <- Play.configuration.getString("twitter.apiSecret")
token <- Play.configuration.getString("twitter.token")
tokenSecret <- Play.configuration.getString("twitter.tokenSecret")

Listing 2.1 Defining a new tweets action

Listing 2.2 Route to the newly created tweets action

Listing 2.3 Retrieving the configuration

Uses
Action.async

to return a
Future of a

result for
 the next step

Retrieves the Twitter
credentials from
application.conf

32 CHAPTER 2 Your first reactive web application

} yield (
ConsumerKey(apiKey, apiSecret),
RequestToken(token, tokenSecret)

)

credentials.map { case (consumerKey, requestToken) =>
Future.successful {

Ok
}

} getOrElse {
Future.successful {

InternalServerError("Twitter credentials missing")
}

}
}

Now that we have access to our Twitter API credentials, we’ll see whether we can get
anything back from Twitter. Replace the simple Ok result in app/controllers/
Application.scala with the following bit of code to connect to Twitter.

// ...
import play.api.libs.ws._

def tweets = Action.async {
credentials.map { case (consumerKey, requestToken) =>
WS

.url("https://stream.twitter.com/1.1/statuses/filter.json")

.sign(OAuthCalculator(consumerKey, requestToken))

.withQueryString("track" -> "reactive")

.get()

.map { response =>
Ok(response.body)

}
} getOrElse {

Future.successful {
InternalServerError("Twitter credentials missing")

}
}

}

def credentials: Option[(ConsumerKey, RequestToken)] = for {
apiKey <- Play.configuration.getString("twitter.apiKey")
apiSecret <- Play.configuration.getString("twitter.apiSecret")
token <- Play.configuration.getString("twitter.token")
tokenSecret <- Play.configuration.getString("twitter.tokenSecret")

} yield (
ConsumerKey(apiKey, apiSecret),
RequestToken(token, tokenSecret)

)

Listing 2.4 First attempt at connecting to the Twitter API

Wraps the
result in a
successful

Future block
until the

next step

Wraps the
result in a
successful

Future block
 to comply with
the return type

Returns a 500 Internal
Server Error if no

credentials are available

The API URLOAuth
signature of
the request

Specifies a
query string
parameter

Executes an
HTTP GET

request

33Connecting to Twitter’s streaming API

Play’s WS library lets you easily access the API by signing the request appropriately
following the OAuth standard. You’re currently tracking all the tweets that contain
the word “reactive,” and for the moment you only log the status of the response
from Twitter to see if you can connect with these credentials. This may look fine at
first sight, but there’s a catch: if you were to execute the preceding code, you
wouldn’t get any useful results. The streaming API, as its name indicates, returns a
(possibly infinite) stream of tweets, which means that the request would never end.
The WS library would time out after a few seconds, and you’d get an exception in
the console.

 What you need to do, therefore, is consume the stream of data you get. Let’s
rewrite the previous call to WS and use an iteratee (discussed in a moment) to simply
print the results you get back.

// ...
import play.api.libs.iteratee._
import play.api.Logger

def tweets = Action.async {

val loggingIteratee = Iteratee.foreach[Array[Byte]] { array =>
Logger.info(array.map(_.toChar).mkString)

}

credentials.map { case (consumerKey, requestToken) =>
WS
.url("https://stream.twitter.com/1.1/statuses/filter.json")
.sign(OAuthCalculator(consumerKey, requestToken))
.withQueryString("track" -> "reactive")
.get { response =>

Logger.info("Status: " + response.status)
loggingIteratee

}.map { _ =>
Ok("Stream closed")

}
}

def credentials = ...

QUICK INTRODUCTION TO ITERATEES

An iteratee is a construct that allows you to consume streams of data asynchronously;
it’s one of the cornerstones of the Play Framework. Iteratees are typed with input and
output types: an Iteratee[E, A] consumes chunks of E to produce one or more A’s.

 In the case of the loggingIteratee in listing 2.5, the input is an Array[Byte]
(because you retrieve a raw stream of data from Twitter), and the output is of type

Listing 2.5 Printing out the stream of data from Twitter

Defines a logging iteratee that consumes
a stream asynchronously and logs the

contents when data is available

Sends a GET
request to the

server and
retrieves the

response as a
(possibly

infinite) stream

Feeds the stream
directly into the

consuming
loggingIteratee;

the contents aren’t
loaded in memory

first but are
directly passed to

the iteratee

Returns a 200 Ok result
when the stream is entirely
consumed or closed

34 CHAPTER 2 Your first reactive web application

Unit, which means you don’t produce any result other than the data logged out on
the console.

 The counterpart of an iteratee is an enumerator. Just as the iteratee is an asynchro-
nous consumer of data, the enumerator is an asynchro-
nous producer of data: an Enumerator[E] produces
chunks of E.

 Finally, there’s another piece of machinery that lets
you transform streaming data on the fly, called an enu-
meratee. An Enumeratee[From, To] takes chunks of type
From from an enumerator and transforms them into
chunks of type To.

 On a conceptual level, you can think of an enumera-
tor as being a faucet, an enumeratee as being a filter,
and an iteratee as being a glass, as in figure 2.2.

 Let’s go back to our loggingIteratee for a second,
defined as follows:

val loggingIteratee = Iteratee.foreach[Array[Byte]] { array =>
Logger.info(array.map(_.toChar).mkString)

}

The Iteratee.foreach[E] method creates a new iteratee that consumes each input it
receives by performing a side-effecting action (of result type Unit). It’s important to
understand here that foreach isn’t a method of an iteratee, but rather a method of
the Iteratee library used to create a “foreach” iteratee. The Iteratee library offers many
other methods for building iteratees, and we’ll look at some of them later on.

 At this point, you may wonder how this is any different from using other streaming
mechanisms, such as java.io.InputStream and java.io.OutputStream. As men-
tioned earlier, iteratees let you manipulate streams of data asynchronously. In prac-
tice, this means that these streams won’t hold on to a thread in the absence of new
data. Instead, the thread that they use will be freed for use by other tasks, and only
when there’s a signal that new data is arriving will the streaming continue. In contrast,
a java.io.OutputStream blocks the thread it’s using until new data is available.

THE FUTURE OF ITERATEES IN PLAY At the time of writing, Play is largely built
on top of iteratees, enumerators, and enumeratees. Reactive Streams is a new
standard for nonblocking stream manipulation with backward pressure on
the JVM that we’ll talk about in chapter 9. Although we use iteratees in this
chapter and later in the book, the roadmap for the next major release of Play
is to gradually replace iteratees with Akka Streams, which implement the Reac-
tive Streams standard. Chapter 9 will cover this toolset as well as how to con-
vert from iteratees to Akka Streams and vice versa.

Let’s now get back to our application. Our approach to turning the Array[Byte] into
a String is very crude (and, as you’ll see later, problematic), but if someone were to

Enumerator

Enumeratee

Iteratee

Figure 2.2 Enumerators, enu-
meratees, and iteratees

35Connecting to Twitter’s streaming API

tweet about “reactive,” we’d be able to see something. If you want to check that things
are going well, you can write a tweet yourself, as I just did:

[info] application - Status: 200
[info] application - {"created_at":"Fri Sep 19 15:08:07 +0000 2014","id
":512981466662592512,"id_str":"512981466662592512","text":"Writing the
second chapter of my book about #reactive web-applications with #PlayFr
amework. I need a tweet with \"reactive\" for an example.","source":"<a
href=\"http:\/\/itunes.apple.com\/us\/app\/twitter\/id409789998?mt=12\

" rel=\"nofollow\">Twitter for Mac<\/a>","truncated":false,"in_reply_to
_status_id":null,"in_reply_to_status_id_str":null,"in_reply_to_user_id"
:null,"in_reply_to_user_id_str":null,"in_reply_to_screen_name":null,"us
er":{"id":12876952,"id_str":"12876952","name":"Manuel Bernhardt","scree
n_name":"elmanu","location":"Vienna" ...

GETTING MORE TWEETS For all the advantages of reactive applications, the
keyword “reactive” is slightly less popular than more common topics on Twit-
ter, so you may want to use another term to get faster-paced data. (One key-
word that always works well, and not only on Twitter, is “cat.”)

2.2.4 Asynchronously transforming the Twitter stream

Great, you just managed to connect to the Twitter streaming API and display some
results! But to do something a bit more advanced with the data, you’ll need to parse
the JSON representation to manipulate it more easily, as shown in figure 2.3.

Twitter client

Twitter stream transformer

Tweet broadcaster

WebSocket client #2

n#tneilctekcoSbeW1#tneilctekcoSbeW

Twitter

Figure 2.3 Twitter
stream transformation
step

36 CHAPTER 2 Your first reactive web application

Play has a built-in JSON library that can take care of parsing textual JSON files into a
structured representation that can easily be manipulated. But you first need to pay a
little more attention to the data you’re receiving, because there are a few things that
can go wrong:

■ Tweets are encoded in UTF-8, so you need to decode them appropriately, taking
into account variable-length encoding.

■ In some cases, a tweet is split over several chunks of Array[Byte], so you can’t
just assume that each chunk can be parsed right away.

These issues are rather complex to solve, and they may take quite some time to get
right. Instead of doing it ourselves, let’s use the play-extra-iteratees library. Add the
following lines to the build.sbt file.

resolvers += "Typesafe private" at
"https://private-repo.typesafe.com/typesafe/maven-releases"

libraryDependencies +=
"com.typesafe.play.extras" %% "iteratees-extras" % "1.5.0"

To make the changes visible to the project in the console, you need to run the reload
command (or exit and restart, but reload is faster).

 Armed with this library, you now have the necessary tools to handle this stream of
JSON objects properly:

■ play.extras.iteratees.Encoding.decode will decode the stream of bytes as a
UTF-8 string.

■ play.extras.iteratees.JsonIteratees.jsSimpleObject will parse a single
JSON object.

■ play.api.libs.iteratee.Enumeratee.grouped will apply the jsSimpleObject
iteratee over and over again until the stream is finished.

We’ll start with a stream of Array[Byte], decode it into a stream of CharString, and
finally parse it into JSON objects of kind play.api.libs.JsObject by continuously
parsing one JSON object out of the incoming stream of CharString. Enumeratee
.grouped continuously applies the same iteratee over and over to the stream until
it’s finished.

 You can set up the necessary plumbing by evolving your code in app/controllers/
Application.conf as follows.

// ...
import play.api.libs.json._
import play.extras.iteratees._

Listing 2.6 Including the play-extra-iteratees library in the project

Listing 2.7 Reactive plumbing for the data from Twitter

37Connecting to Twitter’s streaming API

def tweets = Action.async {
credentials.map { case (consumerKey, requestToken) =>
val (iteratee, enumerator) = Concurrent.joined[Array[Byte]]

val jsonStream: Enumerator[JsObject] =
enumerator &>
Encoding.decode() &>
Enumeratee.grouped(JsonIteratees.jsSimpleObject)

val loggingIteratee = Iteratee.foreach[JsObject] { value =>
Logger.info(value.toString)

}

jsonStream run loggingIteratee

WS
.url("https://stream.twitter.com/1.1/statuses/filter.json")
.sign(OAuthCalculator(consumerKey, requestToken))
.withQueryString("track" -> "reactive")
.get { response =>

Logger.info("Status: " + response.status)
iteratee

}.map { _ =>
Ok("Stream closed")

}
}

}

def credentials = ...

The first thing you have to do in this setup is get an enumerator to work with. Iteratees
are used to consume streams, whereas enumeratees produce them, and you need a
producing pipe so you can add adapters to it. The Concurrent.joined method pro-
vides you with a connected pair of iteratee and enumerator: whatever data is con-
sumed by the iteratee will be immediately available to the enumerator.

 Next, you want to turn the raw Array[Byte] into a proper stream of parsed JsObject
objects. To this end, start off with your enumerator and pipe the results to two trans-
forming enumeratees:

■ Encoding.decode() to turn the Array[Byte] into a UTF-8 representation of
type CharString (an optimized version of a String proper for stream manipula-
tion, and part of the play-extra-iteratees library)

■ Enumeratee.grouped(JsonIteratees.jsSimpleObject) to have the stream
consumed over and over again by the JsonIteratees.jsSimpleObject iteratee

The jsSimpleObject iteratee ignores whitespace and line breaks, which is convenient
in this case because the tweets coming from Twitter are separated by a line break.

 Set up a logging iteratee to print out the parsed JSON object stream, and connect it
to the transformation pipeline you just set up using the run method of the enumerator.

Sets up a joined
iteratee and
enumerator

Defines the
stream

transformation
pipeline; each

stage of the pipe
is connected using
the &> operation Plugs the transformed

JSON stream into the
logging iteratee to
print out its results
to the console

Provides the iteratee as the entry point of
the data streamed through the HTTP
connection. The stream consumed by the
iteratee will be passed on to the
enumerator, which itself is the data source
of the jsonStream. All the data streaming
takes place in a nonblocking fashion.

38 CHAPTER 2 Your first reactive web application

This method tells the enumerator to start feeding data to the iteratee as soon as some
is available.

 Finally, by providing the iteratee reference to the get() method of the WS
library, you effectively put the whole mechanism into motion.

 If you run this example, you’ll now get a stream of tweets printed out, ready to be
manipulated for further use.

FASTER JSON PARSING Although the play-extra-iteratees library is very conve-
nient, the JSON tooling it offers isn’t optimized for speed; it serves as more of
a showcase of what can be done with iteratees. If I wanted to build a pipeline
for production use, or where performance matters a lot more than low mem-
ory consumption, I’d probably create my own enumeratee and make use of a
fast JSON parsing library such as Jackson.

2.3 Streaming tweets to clients using a WebSocket
Now that we have streaming data being sent by Twitter, let’s make it available to users
of our web application using WebSockets. Figure 2.4 provides an overview of what we
want to achieve.

Transforming enumerator

WebSocket client #1

WebSocket client #2

WebSocket client #n

Iteratee

Actor

Actor

Actor

Broadcast enumerator

IterateeIteratee

Twitter

WS.get()

Figure 2.4 Reactive pipeline from Twitter to the client’s browser

39Streaming tweets to clients using a WebSocket

We want to connect once to Twitter and broadcast the stream we receive to the user’s
browser using the WebSocket protocol. We’ll use an actor to establish the WebSocket
connection for each client and connect it to the same broadcasted stream.

 We’ll proceed in two steps: first, we’ll move the logic responsible for retrieving the
stream from Twitter to an Akka actor, and then we’ll set up a WebSocket connection
that makes use of this actor.

2.3.1 Creating an actor

An actor is a lightweight object that’s capable of sending and receiving messages. Each
actor has a mailbox that keeps messages until they can be dealt with, in the order of
reception. Actors can communicate with each other by sending messages. In most
cases, messages are sent asynchronously, which means that an actor doesn’t wait for a
reply to its message, but will instead eventually receive a message with the answer to its
question or request. This is all you need to know about actors for now—we’ll talk
about them more thoroughly in chapter 6.

 To see an actor in action, start by creating a new file in the actors package, app/
actors/TwitterStreamer.scala, with the following content.

package actors

import akka.actor.{Actor, ActorRef, Props}
import play.api.Logger
import play.api.libs.json.Json

class TwitterStreamer(out: ActorRef) extends Actor {
def receive = {

case "subscribe" =>
Logger.info("Received subscription from a client")
out ! Json.obj("text" -> "Hello, world!")

}
}

object TwitterStreamer {
def props(out: ActorRef) = Props(new TwitterStreamer(out))

}

You want to use your actor to represent a WebSocket connection with a client, man-
aged by Play. You need to be able to receive messages, but also to send them, so you
pass the out actor reference in the constructor of the actor. Play will take care of initializ-
ing the actor using the akka.actor.Props object, which you provide in the props
method of the companion object TwitterStreamer. It will do so every time a new
WebSocket connection is requested by a client.

 An actor can send and receive messages of any kind using the receive method,
which is a so-called partial function that uses Scala’s pattern matching to figure out

Listing 2.8 Setting up a new actor

The receive
method handles

messages sent
to this actor.

Handles the
case of receiving
a “subscribe”
message

Sends out a
simple Hello

World message
as a JSON object

Helper method that initializes
a new Props object

40 CHAPTER 2 Your first reactive web application

which case statement will deal with the incoming message. In this example, you’re
only concerned with messages of type String that have the value “subscribe” (other
messages will be ignored).

 When you receive a subscription, you first log it on the console, and then (for the
moment) send back the JSON object { “message”: “Hello, world!” }. The exclama-
tion mark (!) is an alias for the tell method, which means that you “fire and forget” a
message without waiting for a reply or a delivery confirmation.

SCALA TIP: PARTIAL FUNCTIONS In Scala, a partial function p(x) is a function
that’s defined only for some values of x. An actor’s receive method won’t be
able to handle every type of message, which is why this kind of function is a
good fit for this method. Partial functions are often implemented using pat-
tern matching with case statements, wherein the value is matched against sev-
eral case definitions (like a switch expression in Java).

2.3.2 Setting up the WebSocket connection and interacting with it

To make use of your freshly baked actor, you need to create a WebSocket endpoint on
the server side and a view on the client side that will initialize a WebSocket connection.

SERVER-SIDE ENDPOINT

We’ll start by rewriting the tweets method of the Application controller (you may
want to keep the existing method as a backup somewhere, because we’ll reuse most of
its parts later on). You’ll notice that we’re not creating a Play Action this time,
because actions only deal with the HTTP protocol, and WebSockets are a different
kind of protocol. Play makes initializing WebSockets really easy.

// ...
import actors.TwitterStreamer

// ...

def tweets = WebSocket.acceptWithActor[String, JsValue] {
request => out => TwitterStreamer.props(out)

}

That’s it! You don’t need to adjust the route in the routes file either, because you’re
essentially reusing the existing mapping to the /tweets route.

 The acceptWithActor[In, Out] method lets you create a WebSocket endpoint
using an actor. You specify the type of the input and output data (in this case, you
want to send strings from the client and receive JSON objects) and provide the Props
of the actor, given the out actor reference that you’re using to communicate with
the client.

Listing 2.9 Setting up the WebSocket endpoint in app/controllers/Application.scala

41Streaming tweets to clients using a WebSocket

SIGNATURE OF THE ACCEPTWITHACTOR METHOD The acceptWithActor method
has a slightly uncommon signature of type f: RequestHeader => ActorRef =>
Props. This is a function that, given a RequestHeader, returns another function
that, given an ActorRef, returns a Props object. This construct allows you to
access the HTTP request header information for purposes such as performing
security checks before establishing the WebSocket connection.

CLIENT-SIDE VIEW

We’ll now create a client-side view that will establish the WebSocket connection using
JavaScript. Instead of creating a new view template, we’ll simply reuse the existing view
template, app/views/index.scala.html, as follows.

@(message: String)(implicit request: RequestHeader)

@main(message) {
<div id="tweets"></div>
<script type="text/javascript">

var url = "@routes.Application.tweets().webSocketURL()";
var tweetSocket = new WebSocket(url);

tweetSocket.onmessage = function (event) {
console.log(event);
var data = JSON.parse(event.data);
var tweet = document.createElement("p");
var text = document.createTextNode(data.text);
tweet.appendChild(text);
document.getElementById("tweets").appendChild(tweet);

};

tweetSocket.onopen = function() {
tweetSocket.send("subscribe");

};
</script>

}

You start by opening a WebSocket connection to the tweets handler. The URL is
obtained using Play’s built-in reverse routing and resolves to ws://localhost:9000/
tweets. Then you add two handlers: one for handling new messages that you receive,
and one for handling the new WebSocket connection once a connection with the
server is established.

USING URLS IN VIEWS It’s also possible to make use of reverse routing natively
in JavaScript. We’ll look into that in chapter 10.

When a new connection is established, you immediately send a subscribe message
using the send method, which is matched in the receive method of the Twitter-
Streamer on the server side.

Listing 2.10 Client-side connection to the WebSocket using JavaScript

The container in which the
tweets will be displayed

Initializes the
WebSocket

connection using
a URL generated

by Play

The handler called
when a message is
received

The handler
called when the

connection is
opened Sends a subscription

request to the server

42 CHAPTER 2 Your first reactive web application

 Upon receiving a message on the client side, you append it to the page as a new
paragraph tag. To do this, you need to parse the event.data field, as it’s the string
representation of the JSON object. You can then access the text field, in which the
tweet’s text is stored.

 There’s one change you need to make for your project to compile, which is to pass
the RequestHeader to the view from the controller. In app/controllers/Application
.scala, replace the index method with the following code.

def index = Action { implicit request =>
Ok(views.html.index("Tweets"))

}

You need to take this step because in the index.scala.html view you’ve declared two
parameter lists: a first one taking a message, and a second implicit one that expects a
RequestHeader. In order for the RequestHeader to be available in the implicit scope,
you need to prepend it with the implicit keyword.

 Upon running this page, you should see “Hello, world!” displayed. If you look at
the developer console of your browser, you should also see the details of the event that
was received.

2.3.3 Sending tweets to the WebSocket

Play will create one new TwitterStreamer actor for each WebSocket connection, so it
makes sense to only connect to Twitter once, and to broadcast our stream to all con-
nections. To this end, we’ll set up a special kind of broadcasting enumerator and pro-
vide a method to the actor to make use of this broadcast channel.

Listing 2.11 Declaring the implicit RequestHeader to make it available in the view

Scala tip: implicit parameters
Implicit parameters are a language feature of Scala that allows you to omit one or
more arguments when calling a method. Implicit parameters are declared in the last
parameter list of a function. For example, the index.scala.html template will be com-
piled to a Scala function that has a signature close to the following:

def indexTemplate(message: String)(implicit request: RequestHeader)

When the Scala compiler tries to compile this method, it will look for a value of the
correct type in the implicit scope. This scope is defined by prepending the implicit
keyword when declaring anonymous functions, as here with Action:

def index = Action { implicit request: RequestHeader =>
// request is now available in the implicit scope

}

You don’t need to explicitly declare the type of request; the Scala compiler is smart
enough to do so on its own and to infer the type.

43Streaming tweets to clients using a WebSocket

 We first need an initialization mechanism to establish the connection to Twitter.
To keep things simple, let’s set up a new method in the companion object of the
TwitterStreamer actor in app/actors/TwitterStreamer.scala.

object TwitterStreamer {
def props(out: ActorRef) = Props(new TwitterStreamer(out))

private var broadcastEnumerator: Option[Enumerator[JsObject]] = None

def connect(): Unit = {
credentials.map { case (consumerKey, requestToken) =>
val (iteratee, enumerator) = Concurrent.joined[Array[Byte]]

val jsonStream: Enumerator[JsObject] = enumerator &>
Encoding.decode() &>
Enumeratee.grouped(JsonIteratees.jsSimpleObject)

val (be, _) = Concurrent.broadcast(jsonStream)
broadcastEnumerator = Some(be)

val url = "https://stream.twitter.com/1.1/statuses/filter.json"
WS

.url(url)

.sign(OAuthCalculator(consumerKey, requestToken))

.withQueryString("track" -> "reactive")

.get { response =>
Logger.info("Status: " + response.status)
iteratee

}.map { _ =>
Logger.info("Twitter stream closed")

}

} getOrElse {
Logger.error("Twitter credentials missing")

}
}

}

With the help of the broadcasting enumerator, the stream is now available to more
than just one client.

A WORD ON THE CONNECT METHOD Instead of encapsulating the connect()
method in the TwitterStreamer companion object, it would be better prac-
tice to establish the connection in a related actor. The methods exposed in
the TwitterStreamer connection are publicly available, and misuse of them
may seriously impact your ability to correctly display streams. To keep this
example short, we’ll use the companion object; we’ll look at a better way of
handling this case in chapter 6.

Listing 2.12 Initializing the Twitter feed

Initializes an
empty variable

to hold the
broadcast

enumerator

Sets up a joined
set of iteratee

and enumerator

Sets up the
stream

transformation
pipeline, taking

data from the
joined enumerator

Initializes the
broadcast enumerator
using the transformed

stream as a source
Consumes the

stream from
Twitter with the
joined iteratee,

which will pass it
on to the joined

enumerator

44 CHAPTER 2 Your first reactive web application

You can now create a subscribe method that lets your actors subscribe their Web-
Socket clients to the stream. Append it to the TwitterStreamer object as follows.

object TwitterStreamer {

// ...

def subscribe(out: ActorRef): Unit = {
if (broadcastEnumerator.isEmpty) {

connect()
}
val twitterClient = Iteratee.foreach[JsObject] { t => out ! t }
broadcastEnumerator.foreach { enumerator =>

enumerator run twitterClient
}

}

In the subscribe method, you first check if you have an initialized broadcast-
Enumerator at your disposal, and if not, establish a connection. Then you create a
twitterClient iteratee, which sends each JSON object to the browser using the
actor reference.

 Finally, you can make use of this method in your actor when a client subscribes.

class TwitterStreamer(out: ActorRef) extends Actor {
def receive = {
case "subscribe" =>

Logger.info("Received subscription from a client")
TwitterStreamer.subscribe(out)

}
}

When running the chain, you should now see tweets appearing on the screen, one
after another. You can open multiple browsers or tabs to see more client connections
being established.

 This setup is very resource-friendly given that you only make use of asynchronous
and lightweight components that don’t block threads: when no data is sent from
Twitter, you don’t unnecessarily block threads waiting or polling. Instead, each time
new data comes in, the parsing and subsequent communication with clients happen
asynchronously.

PROPER DISCONNECTION HANDLING One thing we haven’t done here is
properly handle client disconnections. When you close the browser tab or
otherwise disconnect the client, your twitterClient iteratee will continue
trying to send new messages to the out actor reference, but Play will have

Listing 2.13 Subscribing actors to the Twitter feed

Listing 2.14 TwitterStreamer actor subscribing to the Twitter stream

45Making the application resilient and scaling out

closed the WebSocket connection and stopped the actor, which means that
messages will be sent to the void. You can observe this behavior by seeing
Akka complain in the log about “dead letters” (actors sending messages to
no-longer-existing endpoints). To properly handle this situation, you’d need
to keep track of subscribers and check if each actor is still in the list of
subscribers prior to sending each message. You can find an example of how
this is done in the source code for this chapter, available on GitHub.

2.4 Making the application resilient and scaling out
We’ve built a pretty slick and resource-efficient application to stream tweets from our
server to many clients. But to meet the failure-resilience criterion of a reactive web appli-
cation, we need to do a bit more work: we need a good mechanism to detect and deal
with failure, and we need to be able to scale out to respond to higher demand.

2.4.1 Making the client resilient

To be completely resilient, our application would need to be able to deal with a multi-
tude of failure scenarios, ranging from Twitter becoming unavailable to our server
crashing. We’ll look into a first level of failure handling on the client side here, in
order to alleviate the pain inflicted on our users if the stream of tweets were to be
interrupted. We’ll cover the topic of responsive clients in depth in chapter 8.

 If the connection with the server is lost, we should alert the user and attempt to
reconnect. This can be achieved by rewriting the <script> section of our index.scala
.html view, as follows.

function appendTweet(text) {
var tweet = document.createElement("p");
var message = document.createTextNode(text);
tweet.appendChild(message);
document.getElementById("tweets").appendChild(tweet);

}

function connect(attempt) {
var connectionAttempt = attempt;
var url = "@routes.Application.tweets().webSocketURL()";
var tweetSocket = new WebSocket(url);
tweetSocket.onmessage = function (event) {

console.log(event);
var data = JSON.parse(event.data);
appendTweet(data.text);

};
tweetSocket.onopen = function() {

connectionAttempt = 1;
tweetSocket.send("subscribe");

};
tweetSocket.onclose = function() {

if (connectionAttempt <= 3) {

Listing 2.15 Resilient version of the JavaScript

Encapsulates
the WebSocket

connection logic
in a reusable

function

The onclose handler, called
when the WebSocket
connection is closed

Attempts
up to three
connection

retries

46 CHAPTER 2 Your first reactive web application

appendTweet("WARNING: Lost server connection,
attempting to reconnect. Attempt number " + connectionAttempt);

setTimeout(function() {
connect(connectionAttempt + 1);

}, 5000);
} else {

alert("The connection with the server was lost.");
}

};
}

connect(1);

To avoid repeating the same code twice, you start by moving the logic for displaying a
new message into the appendTweet method and the logic for establishing a new Web-
Socket connection into the connect method. The latter now takes as its argument the
connection attempt count, so you know when to give up trying and can then inform
the user about the progress.

 The onclose handler of the WebSocket API is invoked whenever the connection
with the server is lost (or can’t be established). This is where you plug in your failure-
handling mechanism: when the connection is lost, you inform the user in an unobtru-
sive manner (by appending a warning message to the existing tweet stream) and then
attempt to reconnect after a waiting period of five seconds. If you haven’t succeeded
after three reconnection attempts, you alert the user in a more direct fashion (in this
example, by using a native browser alert). If you succeed at reconnecting, you reset
the connection attempt count to 1.

FURTHER COPING MECHANISMS It’s not uncommon for a web application to
lose connection with the server. One popular mechanism implemented in
many clients, such as Gmail, is to wait for increasing amounts of time between
two reconnection attempts (first a few seconds, then a minute, and so on),
while still informing the user and also giving them a means to reestablish the
connection manually by clicking a link or button. This disconnection sce-
nario is quite frequent with mobile devices and laptops, so it’s good for an
application to have an automated reconnection mechanism in place to opti-
mize the user experience.

SERVER-SIDE FAILURE HANDLING So far we’ve only handled failures on the cli-
ent side; we haven’t looked into mechanisms to deal with failure handling on
the server side. This is not, unfortunately, because there are no failures on the
server side, but rather because this topic is too big to cover in this chapter’s
example application. Don’t worry, though. We’ll revisit this aspect of the
application in detail in chapters 5 and 6.

2.4.2 Scaling out

We now have a pretty slick and resource-efficient application that can stream tweets to
many clients. But what if we were to build a fairly popular application, and we wanted

Executes the
wrapped function
call after a delay

of 5000
milliseconds

Attempts reconnection
and increments the
number of retries

In case of
failure, alerts

the user with a
more prominent

alert
Initiates the first
connection attempt

47Making the application resilient and scaling out

to handle more connections than a single node could manage? One mechanism we’ll
consider is replica nodes that could replicate our initial connection, as shown in figure 2.5.

 Let’s say we wanted to reuse the same connection to Twitter (because Twitter doesn’t
let us reuse the same credentials many times, and we don’t want to create a new user and
get new API credentials for each node). We already have a mechanism in place that lets
clients view the stream using WebSockets, and we also have a mechanism to broadcast
an incoming Twitter stream to WebSocket clients. The only thing we need in order to
have working replica nodes that connect to a master node is a means to configure them
and get them to connect to our master node instead of Twitter.

 To achieve this, we’ll set up a new subscription mechanism that allows other nodes
to consume data from the initial stream (the one coming from Twitter). We’ll set up a
new controller action to stream out the content and make the necessary modifications
to run the application in replica mode.

 First, you need to set up a means for the controller method to subscribe to the stream.

def subscribeNode: Enumerator[JsObject] = {
if (broadcastEnumerator.isEmpty) {
connect()

}
broadcastEnumerator.getOrElse {
Enumerator.empty[JsObject]

}
}

Listing 2.16 Subscribing other nodes to the broadcast Twitter feed

Master node

Replica 1 Replica 2

Client Client Client Client Client Client

Twitter

Figure 2.5 Scaling out using replica nodes

48 CHAPTER 2 Your first reactive web application

This method, like the existing subscribe method, first makes sure that the connection
to Twitter is initialized, and then simply returns the broadcasting enumeratee. You can
now use the enumeratee in a controller method in your Application controller.

class Application extends Controller {

// ...

def replicateFeed = Action { implicit request =>
Ok.feed(TwitterStreamer.subscribeNode)

}
}

The feed method simply feeds the stream provided by the enumerator as an HTTP
request.

 You now need to provide a new route for this action in conf/routes:

GET /replicatedFeed controllers.Application.replicateFeed

If you now visit http://localhost:9000/replicatedFeed, you’ll see the stream of JSON
documents displayed with continuous additions to the page.

 You now have almost everything in place to set up a replica node. The last thing
you need to do is connect to the master node instead of the original Twitter API. You
can do this very easily by replacing the URL used in a replica node with the master
node’s URL. In a production setup, you’d use the application configuration for this.
To keep things simple for this example, we’ll use a JVM property that can easily be
passed along. Add the following logic in the connect() method of the Twitter-
Streamer companion object, replacing the existing URL declaration:

val maybeMasterNodeUrl = Option(System.getProperty("masterNodeUrl"))
val url = maybeMasterNodeUrl.getOrElse {

"https://stream.twitter.com/1.1/statuses/filter.json"
}

Now, start a new terminal window and start another Activator console (don’t close the
existing running application):

activator -DmasterNodeUrl=http://localhost:9000/replicatedFeed

Then run the application on another port:

[twitter-stream] $ run 9001

Upon visiting http://localhost:9001, you’ll see the stream from the other node. You
can start more of those nodes on different ports to check if the replication works as
expected. Given how the setup works, you can also chain more replicating nodes by
passing the URL of a replicating node as masterNodeUrl to another node.

Listing 2.17 Streaming the replicated Twitter feed in the controller

49Summary

FAILURE HANDLING IN A REPLICATED SETUP Although scaling out makes your
application capable of handling a higher demand in terms of connections, it
also makes failure handling quite a bit more complicated. Given the limita-
tion of only one node being able to connect to Twitter, you’re in a situation
where there is a single point of failure—if this node were to go down, you’d
be in trouble. In a real system, you’d seek to avoid having a single point of fail-
ure, and instead have a number of master nodes. You’d also need to devise a
mechanism to cope with the loss of a master server.

2.5 Summary
In this chapter, we built a reactive web application using Play and Akka. We used a few
key techniques for reactive applications:

■ Using asynchronous actions for handling incoming HTTP requests
■ Streaming and transforming tweets asynchronously using iteratees, enumera-

tees, and enumerators
■ Establishing WebSocket connections using an Akka actor and connecting it to

the stream
■ Dealing with failure on the client side
■ Scaling out using a simple replication model

Throughout the remainder of the book, we’ll explore these topics in more depth. In
the next chapter, we’ll visit one building block of reactive web applications by looking
into functional programming concepts.

50

Functional
 programming primer

Before going further into the realm of Play, let’s take a detour and talk about a few
functional programming fundamentals at the core of asynchronous programming
in Scala. If you’re already familiar with functional programming concepts and their
application in Scala, you may want to skip over this chapter or skim through it
quickly. If you’re a newcomer to functional programming, this chapter will help
you get up to speed with the most important principles and tools that you’ll need to
understand and write asynchronous code in Scala.

3.1 A few words on functional programming
Functional programming is a vast topic, and there are entire books dedicated to
the topic.1 I won’t try to present all aspects of functional programming in just one

This chapter covers
■ Core functional programming principles
■ Practical tools for working with immutable state

and data structures

1 See, for example, Functional Programming in Scala by Paul Chiusano and Rúnar Bjarnason (Manning, 2014)
or Scala in Action by Nilanjan Raychaudhuri (Manning, 2013).

51Immutability

chapter, nor will we get to the core of it. In this chapter we’ll only look at the most
important concepts that you’ll need to get started with asynchronous programming:
immutability, functions, and manipulating immutable collections.

 When thinking about functional programming, the first definition that may come
to mind is “to program with functions.” This definition is a bit vague, however, and
doesn’t point out the difference between functional and imperative programming.
For what follows, let’s use the following definition from “Uncle Bob” Martin:2

Functional programming is programming without assignment statements.
If you’ve been working mostly in an imperative programming style (such as Java), the
preceding statement may be quite bewildering because it’s hard to imagine how pro-
gramming would look without assignment statements. If you’re a functional program-
ming aficionado, you may find the definition somewhat too shallow—I hear you say
“there’s so much more to functional programming than this!” And you are right—but
for the purpose of this chapter, this definition will suit our needs as it brings us right
to the one concept that’s perhaps the hardest to understand when transitioning from
an imperative programming style: immutability. Saying that there are no assignment
statements is equivalent to saying that you can’t change the value of a variable once it
has been declared. In Java, this would be similar to using the final keyword every-
where, and only working with collections that can’t be changed after they’ve been ini-
tialized with a given set of elements.

3.2 Immutability
Immutability in terms of programming languages means that a “thing” that can be ref-
erenced—be it a simple value such as a number, or a more complex one such as a col-
lection or an object—can’t be changed once it has been declared. To understand how
this rather interesting restriction can be of benefit, we first need to take a look at the
standard state representation of imperative languages: mutable state.

3.2.1 The fallacy of mutable state

The conceptual model of the world that object-oriented languages have been using
for the longest time is flawed. What we do in object-oriented languages such as Java is
mix up two things: we try to represent processes that occur in real life by describing
entities, and then also try to represent how these entities evolve over time by mutating
them. I say “try,” because in reality what we do is create the illusion that we have some-
how encoded the passing of time into a mutable object, but this illusion falls apart as
soon as someone else looks at our object from a different reference point. Let’s take
the example of a car moving on a road, as shown in figure 3.1.

 We may want to represent the movement of the car by changing its position, like so:

car.setPosition(0);
car.setPosition(10);

2 Robert C. Martin, Functional Programming Basics, https://pragprog.com/magazines/2013-01/functional-
programming-basics.

https://pragprog.com/magazines/2013-01/functional-programming-basics
https://pragprog.com/magazines/2013-01/functional-programming-basics

52 CHAPTER 3 Functional programming primer

After running these two statements, we’d expect the position of the car to be 10, and
car.getPosition() should return 10. If we are making those changes in a controlled
environment where nobody else can see the car (and provided we’re not subject to a
space-time anomaly wherein time runs
backwards), we may even be right. But
as soon as this is not true anymore, as in
figure 3.2, we run into problems.

 At what position will the car be for
thread B? Is it at 0? Or is it already at 10?
We can’t tell because we don’t know for
sure when thread B is going to be called—
it may be before or after thread A has
changed the value. So we have a rather
big problem: at the root of this conceptual model, we find ourselves confronted with
uncertainty about the value of the object we’re working with. This uncertainty brought
about by mutable state doesn’t need to involve multiple threads. Even if we were working
with one thread and we built a sufficiently complex program, in which we passed muta-
ble objects around, it would become increasingly difficult to know what the value of an
object was going to be at any given point in time. Debuggers have helped us walk
through the jungle of mutable state for a long time, but there are better ways to spend
our time than debugging programs, trying to figure out what value a variable has at a
certain point.

 To get back to the multithreaded scenario, you may object and point out that it’s
possible to bring order to chaos by having threads A and B talk to each other about
when it would be appropriate for B to retrieve the position of the car, rather than
looking at it without considering A’s efforts to change the position of the car. In this
civilized world, with a bit of dialogue, there would be no indeterminism. This work-
around might even succeed, but it comes at a high cost: threads A and B now need to
know about each other, talk, and wait on one another before going about their usual
business with the car. This has two direct consequences on our program:

■ Performance suffers (because B needs to wait until A tells it that it is done mov-
ing the car).

■ We (the developers) have to suddenly deal with an additional layer of complex-
ity caused by the communication between A and B.

Figure 3.1 Car moving on a road, at one instant and the next

car.setPosition(10); car.getPosition();

BdaerhTAdaerhT

Figure 3.2 Two threads accessing the same mu-
table car at the same time

53Immutability

And as if things weren’t bad enough with two threads, CPU vendors look at us with a
smile on their face and a new processor model featuring 1,000 cores in their hand. To
increase the performance of our programs, they say, we have no choice but to let
many more threads work on the data at the same time. Just imagine 1,000 threads
arguing about whose turn it is to have a look at the car—no, this is not going to turn
out well either for us developers or for the car.

 If we want to build applications that are future-proof, we need to utilize a concep-
tual model that doesn’t lie about the value of an object. Let’s have a look at the rea-
soning behind programming with immutable state.

3.2.2 Immutable values as snapshots of reality

An immutable value, as its name indicates, doesn’t change. In a program, immutable
values are declared once and their values are always the same throughout the execu-
tion of the program, or until they are no longer needed and are discarded.

 This doesn’t mean that we can’t change our view of the world if we’re using immu-
table state. To take the example of the car we talked about previously, this is how we
would move the car:

case class Car(brand: String, position: Int)

val car = Car(brand = "DeLorean", position = 0)
val movedCar = car.copy(position = 10)

Instead of pretending that car is still the same, we now have two values: the original
car at position 0, and a movedCar at position 10. movedCar is still the same DeLorean
as the one at position 0, with the difference that it’s now at a new position.

car and movedCar are snapshots of the car at two instants in time. You don’t need
to know when the snapshot was taken, because if an external observer were to read
either of the values, they would be sure of the meaning: once defined, the values
never change, and the car value will always represent the car before it went on its way.
We could have 1,000 threads read the car’s position and not need to be worried about
causing any harm when creating a new moved version of it.

 By embracing immutable values as a way to represent an object (or a data structure
in general), we entirely eliminate the problem of not being quite sure about what
value an observer will see. What it also means for us as developers is that we have to be
explicit about passing values around, instead of passing references to variables that
may change behind the scenes. Functions are a great way to manipulate immutable
values and data structures. But before we talk about functions, there’s another con-
cept that goes hand in hand with immutable state and that is a cornerstone of func-
tional programming languages: expression-oriented programming.

3.2.3 Expression-oriented programming

In expression-oriented programming languages, programs are written using expres-
sions that return a value, rather than by writing statements that execute code but don’t

54 CHAPTER 3 Functional programming primer

return anything. To perform a computation, statements will typically mutate the state
of one or more variables outside the scope of the statement itself, whereas expressions
return a value containing the result of the computation and don’t change any state
outside the expression while doing so.

 For example, the following method is a statement.

public void removeElement(List<String> list, String toRemove) {
for(Iterator<String> it = list.iterator(); it.hasNext();) {

String s = it.next();
if (s.equals(toRemove)) {

it.remove();
}

}
}

In this statement, you pass in a list of strings and the value of the element you want to
remove. The method then proceeds to remove this element from the list you have
given it.

 In contrast, the following expression achieves the same result, but without altering
the initial list.

public List<String> filterNot(List<String> list, String toRemove) {
List<String> filtered = new LinkedList<>();
for(String s : list) {

if (!s.equals(toRemove)) {
filtered.add(s);

}
}
return filtered;

}

In this example, the data still gets mutated, but the mutation takes place inside the
filterNot method, and it’s visible only to that method. You can think of building a
program as working with Lego blocks, putting together small expressions to build
code of increasing complexity and size. All purely functional programming languages
are expression-oriented.

EXPRESSION-ORIENTED PROGRAMMING AT THE CORE OF SCALA

Writing in an expression-oriented style in Java is not very comfortable. But Scala is
designed around the concept of expressions, and besides featuring first-class func-
tions, which we’ll talk about soon, many of the language constructs such as control
structures and pattern matching are expressions.

Listing 3.1 A statement that removes an element from a list

Listing 3.2 An expression that filters a list and removes a specific element

Iterates over
the original
list

Removes
values from
the original list

Creates a new
list to contain

the filtered
results

Iterates over
the original list

Adds any results that
match the filter text to
the new filter listReturns the

new filter list

55Functions

 For example, a more generic version of the filterNot method example in listing 3.2
is available by default on all standard Scala collections:

val list = List("a", "b", "c")
val filtered = list.filterNot(letter => letter == "b")

Control structures such as conditional if-else statements are also expressions in
Scala:

scala> val greeting: String = if(true) "Hello" else "Goodbye"
greeting: String = Hello

The preceding construct may look familiar if you’ve been working with Java, as there’s
an equivalent notation:

String greeting = true ? "Hello" : "Goodbye";

Scala’s match expressions also allow you to manipulate data in a concise manner with-
out having to make use of mutable state. The following example transforms a number
given as input into its string representation.

def spellOut(number: Int): String = number match {
case 1 => "one"
case 2 => "two"
case 42 => "forty-two"
case _ => "unknown number"

}

val fortyTwo = spellOut(42)

In imperative programming languages, it’s not uncommon to see large blocks of logic,
such as large if-else statements, reasoning about data and modifying variables and
mutable data structures declared outside of their scope. The idea of expression-oriented
programming is to keep the different flows of logic small and to combine small
“reasoning machines” together to build a complex mechanism. An essential ingredient
for achieving this is functions, which we’re finally going to take a closer look at now.

3.3 Functions
Just like in mathematics, functions in programs take
a number of inputs and return an output, as shown
in figure 3.3.

 In this section we’ll see that functions haven’t
been used at their full potential in object-oriented
languages, and we’ll look at how they can be useful
in working with immutable state.

Listing 3.3 Simple match expression spelling out a few numbers

The match statement
is applied against the
number integer.Each branch is

represented by a
case expression.

The wildcard pattern represented by
the underscore matches all cases.

def f(x: Int): Int = 2 * x

Input Input type Output type

Figure 3.3 Example of a function in
Scala

56 CHAPTER 3 Functional programming primer

3.3.1 Functions in object-oriented programming languages

One of the main principles of object-oriented programming languages as we know them
is encapsulation: data and methods for manipulating this data are encapsulated together
in one object. The original idea behind encapsulation was to reduce the visibility of data
as much as possible, as this would yield more reliable and maintainable code, especially
in large codebases. Prior to languages that supported encapsulation, large codebases
had problems related to identically named variables and to code organization in general
(encapsulation made it possible to group related methods together).

 In practice, encapsulation is often misunderstood: Java objects are often cluttered
with getters and setters, effectively exposing to the whole world the inner state of an
object, which was supposed to be protected by encapsulation. But even if encapsula-
tion were strictly applied, it wouldn’t solve the problems of mutable state that we’ve
already discussed. Mutable state (encapsulated or not) means that it’s very difficult to
reason about data when working in a multithreaded setting, and to reason about what
the state of an object is in general.

 The perhaps larger implication of encapsulation in a language such as Java is that
functions have been degraded to a means of mutating data inside a specific type of
object. The methods encapsulated in an object are effectively tied to that specific fam-
ily of objects, which greatly limits the reuse of similar behavior across a broader variety
of objects. Inheritance can only partially undo this hard link—entities that share a set
of characteristics and are otherwise entirely unrelated aren’t likely to be found in the
same inheritance hierarchy. As a side effect of this limitation, it’s not uncommon to
see several utility classes consisting of public static methods in larger Java projects.
In Java projects, the utils package is a niche in which most of the functions used in
those projects are to be found.

 And yet, functions can do much more! In essence, functions encode behavior.
They define to a large degree what happens with data and, if used at their full poten-
tial, can tremendously simplify the maintenance of a program. Let’s see what full-
fledged functions can do for us, and how we can get the most out of them.

3.3.2 Functions as first-class values

In functional programming languages in general, and in Scala in particular, functions
are treated as first-class citizens of the language, and are not restricted to living as a
method tied to a particular type. Just like any other object, functions can be passed
around as parameters to other methods or functions. Functions, unlike methods
encapsulated in objects, don’t need to be executed right away. Instead, the behavior
they hold can be moved around and applied when it’s needed.

DECLARING FUNCTIONS IN SCALA

In Scala, functions can be defined in multiple ways. The most common way is to use the
def keyword, which is the equivalent of traditional methods in object-oriented languages:

def square(x: Int): Int = x * x

57Functions

Another way of defining a function in Scala is to use a function literal:

val square = (x: Int) => x * x

Function literals are objects of type Function1, Function2, and so on (depending on
the number of parameters), that can be passed around just like any other object
instance.

 The full type of the square function literal is written as follows:

val square: Function1[Int, Int] = (x: Int) => x * x

PURE FUNCTIONS Functions that take inputs and produce outputs without
producing any side effects (such as printing a statement on the console or
causing input/output operations such as filesystem access or network access)
are said to be pure. Whenever possible, you should favor working with pure
functions, as there are no surprises related to side effects.

3.3.3 Moving behavior around

Usually, I favor using method definitions rather than function literals, given that their
syntax looks more natural, especially when it comes to more-complex parameter dec-
larations. It’s possible to turn a method into a function literal by telling the compiler
that you don’t want to call the method but rather treat it as a value.

 For example, let’s turn the square method into a function literal:

scala> def square(x: Int): Int = x * x
square: (x: Int)Int

scala> val squareLiteral = square _
squareLiteral: Int => Int = <function1>

The underscore in the preceding example tells the compiler that you don’t wish to
execute the method, but rather to partially apply it: instead of providing a concrete
value for the parameter x, you use the underscore as a placeholder, resulting in a
function literal that can be passed around and executed only once a parameter is pro-
vided (as opposed to the default behavior of expecting an argument to be provided
when referencing it).

 Being able to defer the execution of a function is key to some applications, such as
callbacks in asynchronous programming. Before the introduction of lambdas in Java 8,
the means to emulate the behavior of functions was to define an interface with the func-
tion signature. For example, this is how you would implement a Runnable:

public class AsynchronousTask implements Runnable {
public void run() {

System.out.println("This task is running asynchronously");
}

}

58 CHAPTER 3 Functional programming primer

AsynchronousTask acts as a container for the behavior executed when calling the
run() method. The first-class equivalent of that would be a simple function literal in
Scala:

val asynchronousTask =
() => println("This task is running asynchronously")

Just like a new instance of the AsynchronousTask in Java, the asynchronousTask func-
tion literal in Scala can be moved around. For example, it can be used as a parameter
to another function.

3.3.4 Composing functions

Let’s come back to the square function literal we defined earlier on:

val square: Function1[Int, Int] = (x: Int) => x * x

You can use this literal as a parameter to another function, such as to calculate the
fourth power of a number by building on the square function:

def fourth(x: Int, squarer: Function1[Int, Int]): Int =
squarer(squarer(x))

See what I did there? squarer is a regular parameter of the new fourth function that
expects a function from Int to Int that will square its input.

 There is a nicer syntax for the type of the squarer parameter that’s used com-
monly in Scala programs (in fact, it’s fairly unusual to see the Function1 notation in
programs):

def fourth(x: Int, squarer: Int => Int): Int = squarer(squarer(x))

The type Int => Int with the arrow notation is pronounced “from Int to Int.”
 You can call the fourth function by passing in a number and the square function

literal we just defined, as follows:

val twoToThePowerOfFour = fourth(2, square)

Having a function as one of its parameters makes fourth a so-called higher-order function.
Higher-order functions are a powerful way to abstract similar operations. For example,
let’s say we also wanted a function to calculate the double of a number:

def double(x: Int): Int = 2 * x

If we wanted to calculate the quadruple, we could call double twice by passing it in as
a parameter:

def quadruple(x: Int, doubler: Int => Int): Int = doubler(doubler(x))

59Functions

This last definition is very similar to the fourth function defined earlier. In fact,
except for the name, these functions are identical and perform the same operation.
We can therefore infer an abstraction:

def applyTwice(x: Int, f: Int => Int): Int = f(f(x))

We can now rewrite our fourth and quadruple functions:

def fourth(x: Int) = applyTwice(x, y => y * y)
def quadruple(x: Int) = applyTwice(x, y => 2 * y)

ANONYMOUS FUNCTION DECLARATIONS In the two rewritten function defini-
tions fourth and quadruple, instead of passing in references to the square or
double functions that we had already defined, we directly pass in their defini-
tions. Functions that are declared like this on the spot, without being given a
name, are called anonymous functions.

3.3.5 The size of functions

One characteristic of functions that’s important concerning readability and code
maintainability is their size. The more complex the behavior you’re encoding, the lon-
ger the function may become. It’s easy to get carried away while programming and
end up with a function that spans many lines of code, declaring a group of values on
the way, but not necessarily making it very clear what happens.

 Finding the right size for a function is harder than it may sound. In terms of execu-
tion or performance, it doesn’t hurt a program to have long functions, but it does
makes it harder to maintain and understand the program. Let’s consider the follow-
ing example, in which we want to compute simple statistics about advertisement clicks.

case class Click(timestamp: DateTime, advertisementId: Long)
case class Month(year: Int, month: Int)

def computeYearlyAggregates(clickRepository: ClickRepository):
Map[Long, Map[Month, Int]] = {
val pastClicks =

clickRepository.getClicksSince(DateTime.now.minusYears(1))
pastClicks.groupBy(_.advertisementId).mapValues {

case clicks =>
val monthlyClicks = clicks

.groupBy(click =>
Month(

click.timestamp.getYear,
click.timestamp.getMonthOfYear

)
).map { case (month, groupedClicks) =>

month -> groupedClicks.length
}.toSeq

monthlyClicks
}

}

Listing 3.4 Function to compute advertisement clicks on a per-month basis

Retrieves
clicks over
the past year

Groups the clicks by
advertisementId

Groups the
clicks by month

Computes the click
count for a month

60 CHAPTER 3 Functional programming primer

You may be able to read this example, and perhaps with a bit of practice it may
become easier to understand this kind of code quickly. But even though this code may
be easy to write, after some time it may not be very easy to put yourself back into con-
text and make sense out of all the imbricated groupBy and map blocks.

 This is a situation where it makes sense to reduce the overall complexity of the
computeYearlyAggregates function by cutting it into several small functions. Scala
lets us declare functions pretty much anywhere, even inside of other functions. Let’s
make use of this feature to rewrite the code with smaller functions that we can then
tie together.

def computeYearlyAggregates(clickRepository: ClickRepository):
Map[Long, Seq[(Month, Int)]] = {

def monthOfClick(click: Click) =
Month(click.timestamp.year, click.timestamp.month)

def countMonthlyClicks(monthlyClicks: (Month, Seq[Click])) =
monthlyClicks match { case (month, clicks) =>
month -> clicks.length

}

def computeMonthlyAggregates(clicks: Seq[Click]) =
clicks.groupBy(monthOfClick).map(countMonthlyClicks).toSeq

val pastClicks =
clickRepository.getClicksSince(DateTime.now.minusYear(1))

pastClicks
.groupBy(_.advertisementId)
.mapValues(computeMonthlyAggregates)

}

Notice how this code is a lot easier to read. Problems are broken into small func-
tions, and their purpose can easily be identified through their names. What’s more,
those small functions are only visible in the scope of the computeYearlyAggregates
function, which makes sense because their utility might be limited outside of that
scope. Notice how the functions are combined to build up increasingly complex
behavior; for example, the computeMonthlyAggregates function combines both the
monthOfClick and countMonthlyClicks functions.

OMITTING FUNCTION ARGUMENTS It’s possible to omit parameters when work-
ing with functions. In the computeMonthlyAggregates function, the
monthOfClick function is passed as an argument to groupBy directly, without
explicitly wiring in the arguments of groupBy. groupBy is a higher-order func-
tion that, in this case, expects a function of the kind Click => T where T is the
type of the element to group the collection by. Because the monthOfClick
function has the expected type, it’s suitable as an argument to groupBy.

Listing 3.5 Refactored function to compute advertisement clicks on a per-month basis

Function that
extracts the

month of a click

Function that
counts all the

clicks in a month
Function to compute
monthly aggregates

of a set of clicks

Function that ties all the
computations together

61Manipulating immutable collections

As you can see, writing small, focused functions makes the code easier to understand
and maintain. The fact that Scala lets you omit the function parameters (in some
cases, at least) helps you further focus on the functions alone—on the behavior you
want to apply to the data rather than on the somewhat secondary task of passing data
from one function to another.

 One rule of thumb that can be useful when trying to identify what granularity the
functions should have is to clearly identify the responsibility of the function. It should
be possible to infer the one thing a function does from its name—if you can’t find a good
name for a function, that may be an indication that the function does too many things.

3.4 Manipulating immutable collections
One of the first issues that arises when trying to make the switch from mutable to immu-
table data structures is working with collections. In a mutable world, loops are the tool
of choice for rearranging collections. In the following pages you’ll see how you can go
about manipulating immutable collections with higher-order functions instead.

3.4.1 Transformations instead of loops

Let’s say we wanted to split a list of users by age into minors and majors. In a mutable
world, we’d most likely go about it using the following loop.

List<User> minors = new ArrayList<User>();
List<User> majors = new ArrayList<User>();

for(int i = 0; i < users.size(), i++) {
User u = users.get(i);
if(u.getAge() < 18) {

minors.add(u);
} else {

majors.add(u);
}

}

In this example, two mutable lists are populated from within the loop. The iteration
over the list relies on an index and retrieving each element by index, as opposed to
the behavior of an iterable.

 In contrast, let’s see how you could go about achieving the same result in a func-
tional fashion.

val (minors, majors) = users.partition(_.age < 18)

In this example, you use the partition function, which expects as its argument a pred-
icate function (returning a Boolean value). This function is executed for each value of

Listing 3.6 Splitting users into minors and majors using a loop and two mutable collections

Listing 3.7 Splitting users into minors and majors using a higher-order function

62 CHAPTER 3 Functional programming primer

the source collection, the result being a tuple of two immutable lists containing the
values partitioned according to the predicate.

 There are several things we can observe when comparing the second approach to
the first:

■ The loop is not explicit.
■ Functions, oftentimes predicate functions, play a central role in this kind of

manipulation.
■ There’s no need for mutable state because the result is provided right away, as

an immutable data structure.

The second approach is said to be declarative: we describe the result we want, rather than
how to get it. In the first approach, said to be imperative, we explicitly specify how we
want to get the result. By operating at a different level of abstraction, the declarative
approach, supported by the powerful higher-order functions, lets us focus on describ-
ing the results of our program rather than worrying too much about the implementa-
tion details. Eventually, a loop will be executed, but it’s not necessary to concern
ourselves with it—especially since loops are a well-understood mechanism.

 Another advantage of declaring operations on a higher level of abstraction is that
the implementation can be switched out rather easily. Scala’s collection library is
built around the two traits scala.collection.Traverseable and scala.collection
.Iterable, which contain many methods useful for working with traversable or
iterable data structures. The standard library offers a few flavors of collections,
mainly immutable and mutable collections, but also a parallel flavor that executes
the computations on the collection across several threads.

 Before looking further at a few ways of programming in a declarative fashion, let’s
first look at the tools we’ll use for this purpose.

3.4.2 Higher-order functions for manipulating collections

As you’ve seen, higher-order functions are very helpful when it comes to declaratively
specifying how you want a collection to be transformed. By expecting functions as
arguments (expecting behavior as arguments to be applied to the data), the devel-
oper can focus on describing behavior rather than fiddling with the state itself.

 In this section we’ll talk about some of the most powerful transformation functions
available for manipulating Scala collections and for transforming data structures
through expressions in general.

MAP AND FLATMAP

map is a function that walks through all the elements of a collection and applies a func-
tion to them, returning a new mapped collection as a result (the original collection
doesn’t change). Here’s an example:

scala> val list1 = List(1, 2, 3)
list1: List[Int] = List(1, 2, 3)

scala> val doubles = list1.map(_ * 2)
doubles: List[Int] = List(2, 4, 6)

63Manipulating immutable collections

map operates as depicted in fig-
ure 3.4.

 That’s simple, isn’t it? map
just takes each element of the
collection, applies the func-
tion it has been called with,
and returns a new collection.
Note that you’re not limited
to returning integers: if your function were to return another type, you’d end up with
the same kind of collection, but with a different type of elements.

 Let’s move on to something more complicated: flatMap. flatMap is a function that
expects a function that returns a collection of elements. Like map, it then applies that
function to all elements of the collection it has been called from. But unlike map, it
takes one more step and flattens the resulting groups of collections into the original
collection. This all sounds somewhat complicated, so let’s look at an example:

scala> def f(i: Int) = List(i * 2, i * i)
f: (i: Int)List[Int]

scala> val flatMapped = list1.flatMap(f)
flatMapped: List[Int] = List(2, 1, 4, 4, 6, 9)

You define a function that takes an integer and turns it into a list, and then apply this
function to your existing list1 with flatMap, as shown in figure 3.5.

 You can reproduce this process of cutting the flatMap operation into two parts by
first mapping the values and then flattening them:

scala> val mapped = list1.map(f)
mapped: List[List[Int]] = List(List(2, 1), List(4, 4), List(6, 9))

scala> val flatMapped = mapped.flatten
flatMapped: List[Int] = List(2, 1, 4, 4, 6, 9)

FOREACH One other method worth mentioning here is foreach. Like map, it
iterates over each element of a collection, but it doesn’t return any value—
instead, it creates a side effect, for example by printing out a line on the con-
sole. Under the hood, map and flatMap are implemented using foreach.

1 2 3

2 1 4

list 1

flatMapped 4 6 9

2 1 4 4

"map"

"flat"

6 9

Figure 3.5 Applying
flatMap to a list of
integers

1 2 3list 1

map

2 4 6doubles

1 *2 2 *2 3 *2

Figure 3.4 Applying map to a list of integers

64 CHAPTER 3 Functional programming primer

FOR COMPREHENSIONS

A for comprehension is the Swiss army knife for working with collections. It allows
you to combine your work on several collections and to filter the results in a very ver-
satile manner. Consider the following example.

val aList = List(1, 2, 3)
val bList = List(4, 5, 6)

val result = for {
a <- aList
if a > 1
b <- bList
if b < 6

} yield a + b

A for comprehension is made out of generators such as a <- aList, and guards such as
if a > 1. Generators produce values at each iteration, and guards can be used to filter
the values. You can picture multiple generators as behaving like imbricated lists, the
first generator wrapping the second one, and so on.

 Internally, Scala will turn for comprehensions into a sequence of flatMap, map,
and withFilter calls. For example, the preceding for comprehension would be
turned into the following:

val result = aList
.withFilter(_ > 1)
.flatMap { a =>
bList

.withFilter(_ < 6)

.map { b =>
a + b

}
 }

USING MAP, FLATMAP, AND FOR COMPREHENSIONS WITH THE OPTION TYPE

To gain a wider appreciation for the tools we’ve just talked about, let’s look at how
they can be used in combination with one of Scala’s more popular data structures: the
Option type.

 An Option is Scala’s solution to the NullPointerException that haunts Java devel-
opers (and developers of other similar languages) to this day. It represents a value that
may or may not be available. Saying that Options are widely used in Scala would be an
understatement: they’re the de facto standard notation in libraries for passing around
values that may be undefined.

Listing 3.8 Example of a simple for comprehension

First generator
takes all elements

of aList First guard restricts
the scope of the first
generator

Second generator
takes all elements

of bList Second guard restricts
the scope of the
second generator

Yields the sum of a and
b at each iteration

65Manipulating immutable collections

 There are two ways to look at an
Option, as depicted in figure 3.6: either as
a box that contains something or not, or as
a list that has at most one element.

Option[T] has two subtypes, Some[T]
and None, representing the two possible
states an Option can take. The main impli-
cations of working with Options instead of
nullable values is that you have to ask
yourself every time you want to access the
value of the Option what you’ll do if it’s
not there. It’s easy to forget to deal with
this possibility when manipulating nul-
lable values, but it certainly isn’t a very
good idea, as the resulting NullPointer-
Exceptions are very annoying and time-consuming (Tony Hoare, who introduced null
references back in the day, called them his “billion dollar mistake”).3 Options make it
more difficult for the programmer to forget a nullable value check, given that a value
has to be explicitly retrieved rather than just passed around by reference.

OPTION AS A BOX—IMPERATIVE ACCESS TO AN OPTION’S CONTENT

There are several ways to check whether an Option contains anything:

scala> val box = Option("Cat")
box: Option[String] = Some(Cat)

scala> box.isEmpty
res0: Boolean = false

scala> box.isDefined
res1: Boolean = true

scala> box == None
res2: Boolean = false

One way of working with Options in this paradigm is to write code as follows:

if (box != None) {
val contents = box.get
process(contents)

} else {
reportError()

}

3 See the “Apologies and retractions” section of the Wikipedia article on Tony Hoare: http://en.wikipedia.org/
wiki/Tony_Hoare#Apologies_and_retractions.

42

Some(42)

42

Some(42)

None

None

tsil asanoitpOxobasanoitpO

Figure 3.6 An Option represented as a box or
a list

http://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
http://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions

66 CHAPTER 3 Functional programming primer

If you remember what we talked about in section 3.4, you may already recognize that
this code isn’t at all expression-oriented. If you adopt a functional programming style
and work with it for a while, this kind of code may make you itch (it does so for me at
least). The advantage of using Options over nullable values also becomes less obvi-
ous—the box != None check is quite similar to checks like value != null. Finally, if
you forget to check whether an Option is defined and call the get method on a None,
Scala will throw a java.util.NoSuchElementException (which isn’t much more use-
ful than a NullPointerException).

 An interesting alternative—from the point of view of functional programming—is
to use the tools we talked about previously to manipulate collections, and consider an
Option to be a list that can have at most one element.

OPTION AS A LIST—FUNCTIONAL ACCESS TO AN OPTION’S CONTENT

If you picture an Option as a list, you can use map to access and transform each of its
elements:

val user: Option[User] = User.findById(42)
val fullName: Option[String] = user.map { u =>

u.fullName
}

With map you can access the contents of an Option without “unboxing” it. If the
Option isn’t defined, your operation won’t be applied. After the transformation, how-
ever, you’re still left with another Option and no concrete value. Depending on the sit-
uation, you may want to provide a default value if none can be retrieved. You can do
this using the getOrElse method:

val user: Option[User] = User.findById(42)
val fullName: String = user.map { u =>

u.fullName
} getOrElse {

"Unknown user"
}

map is a powerful tool for working with Options, but it sometimes has limits. For exam-
ple, let’s say we wanted to retrieve a user’s address, instead of just their name, by call-
ing the findById method of Address, which returns an Option of an Address:

val user: Option[User] = User.findById(42)
val address: Option[Option[Address]] = user.map { u =>

Address.findById(u.addressId)
}

We’ve now created an Option of an Option of an Address, and that’s not a very good
place to be. Luckily, we have another tool at our disposal for dealing with this kind of
situation: flatMap lets us inline the result of a mapped list into one flat list. We can do
the exact same thing with imbricated Options:

67Manipulating immutable collections

val user: Option[User] = User.findById(42)
val address: Option[Address] = user.flatMap { u =>

Address.findById(u.addressId)
}

Sometimes, even flatMap isn’t a good enough solution for composing operations on
Options, in the sense that we may need to compose many values as part of one opera-
tion. Consider the following example, in which we want to update a user’s first name.

def updateFirstName(userId: Long) = Action {
implicit request =>

val update: Option[Result] = for {
json <- request.body.asJson
user <- User.findOneById(userId)
newFirstName <- (json \ "firstName").asOpt[String]
if !newFirstName.trim.isEmpty

} yield {
User.updateFirstName(user.id, newFirstName)
Ok

}

update.getOrElse {
BadRequest(Json.obj("error" -> "Could not update your " +
"first name, please make sure that it is not empty"))

}
}

Using a for comprehension makes your code more readable, as it becomes very clear
which values need to be available to perform an operation. The alternative of writing
out the imbricated flatMap and map statements makes for less-readable code. If you’re
just starting to work with for comprehensions, you may find that they’re somewhat
less intuitive than map and flatMap: when manipulating Options (or other types of
data that support this kind of operation), you may find that you use map on the
optional value, then use the result to retrieve a second optional value, and then come
back to change the outer map into a flatMap to get rid of the nesting. Only after hav-
ing implemented the whole chain by hand may it become clear that a for comprehen-
sion is a better way to compose various Options. Don’t worry about this, though. You’ll
get used to it as you go.

 One disadvantage of using for comprehensions in combination with Options is that
they hide the origin of the resulting nondeterminism: in the previous example, if you
don’t get a result, it may be due to the request body not containing a valid JSON encod-
ing, the user with this identifier not being available, the JSON object not containing a
firstName string field, or the first name being empty. In my experience, however, what
matters most is writing code that’s resilient to all of those mishaps and that handles the
most probable error causes (in this case, that the user hasn’t provided a value for the

Listing 3.9 Using a for comprehension to compose multiple Options

Attempts to retrieve the
request’s body as JSON
object

Attempts to
find the user

given its
identifier

Attempts to extract
the first name from

the JSON object

Makes sure that
the first name

isn’t empty

Returns an error
if it can’t retrieve

all the data
necessary to do

the update

68 CHAPTER 3 Functional programming primer

first name). If any of the other steps were invalid along the path, there isn’t much you
could do to help your user anyway, so giving them the exact reason why the system
couldn’t update their first name likely wouldn’t make them a lot happier.

CARRYING ON UNDEFINED VALUES Using map, flatMap, and for comprehen-
sions lets you write code in which you carry on the undefined state of an
Option or several Options until you’ve finished dealing with the “normal”
case in which all values are defined. You can then deal with undefined values,
error conditions, and so on in one place instead of having to constantly check
if a value is defined or not.

MONADIC OPERATIONS Scala’s Option is a so-called monad, and map, flatMap,
and withFilter are called monadic operations. In category theory, a monad is
a construct that obeys a certain set of laws and exhibits interesting properties,
such as the composability we’ve just worked with. A few of the other most pop-
ular types in Scala are also monads and provide monadic operations, such as
Try, Either, and Future. As you’ll see, this means that these types can also be
combined and generally be manipulated with ease.

3.5 Making the switch to a declarative programming style
It would be very convenient if reading a few pages on the principles of immutability,
higher-order functions, and tools for manipulating collections were sufficient for you
to drop your perhaps years-old habit of imperative programming and immediately
replace it with functional programming. I’m afraid this won’t be the case, as it takes
time for our brains to unlearn the habits ingrained by imperative programming prac-
tice and to apply novel ways of thinking to our daily programming.

 I’ve found that what most helps people make the switch to functional programming
is to practice it—to work on a project with a functional programming language such as
Scala. If you’re reading this book, chances are that you’re interested in learning the
tools of the trade precisely in order to work with these technologies, and I can only
encourage you to try applying functional programming principles as soon as possible.
In this section, I’ll give you a few pointers that may help you accelerate the switch.

 Most APIs that you’ll encounter when working with Scala, Play, and Akka are
designed to be used in a functional manner. As such, you’ll often encounter the
Option type, as well as other types that are composable in nature.

 There are four practical pieces of advice that I’ve used myself to embrace a more
functional approach to programming:

■ Never use the get method on an Option.
■ Only use immutable values and data structures.
■ Aim for small and crisp functions.
■ Iterate and refine your functional style.

69Making the switch to a declarative programming style

3.5.1 Never use the get method on an Option

By applying this rule, your preferred means of manipulating Options will be one of
the functional approaches we’ve talked about earlier: using map, flatMap, or for com-
prehensions every time you want to manipulate a value inside an Option. One of the
first things you’ll notice when adopting this rule is that much of your logic will be
wrapped inside of a callback (or inside of a specialized function that you’ll provide as
input to map or to any other collection method).

 If you’re connecting to Java APIs, one trick you can use to shield yourself against
NullPointerExceptions is to wrap unsafe input (input that can be nullable according
to the API you’re using) inside of an Option, like so:

val unsafeInput = Option(myJavaAPI.getValue)

If the value provided by the API is null, the resulting Option will be None.

3.5.2 Only use immutable values and data structures

This rule is likely going to be one of the harder ones to follow, especially if you’re still
reaching out for a loop instead of one of the collection methods to work with data,
and you’ll often be tempted to use a var instead of a val when declaring variables.
Your IDE may be able to point out when var is used needlessly.

 Note that there are a few cases where mutable state is “allowed,” or where its use is
of benefit. For example, when integrating with an existing Java API, it may not make
much sense to go against the imperative design of the API. If you can’t get your code var-
free from the beginning, don’t despair. Asking a colleague or friend who is more versed
in functional programming to take a look may also be a good way to get a faster start.

3.5.3 Aim for small and crisp functions

Once you start getting the hang of writing your code in a functional structure (build-
ing one transformation after another, rather than loops and imperative code that
changes existing state), it’s a good exercise to revisit your code and factor out small
bits and pieces into functions, as you saw in listing 3.5. During this process, finding
meaningful names for each function is of high importance; after all, you want to be
able to understand what you’ve done when you revisit the code later on.

 One suggestion for naming functions: if possible, always aim at describing the
semantics of what a function is doing, rather than the way it works. In other words,
including technical details such as type names in a function name may not be very
helpful; the type annotations of a function should already encode which types are to
be expected as input and output. Say you’re retrieving a database cursor that you want
to use in multiple other functions (before effectively executing the call that will fetch
the data from the database):

def findAllUsersCursor: DBCursor[DBObject] =
find(DBQuery("{}"))

70 CHAPTER 3 Functional programming primer

This method signature repeats the Cursor type both in its name and signature. A bet-
ter alternative would be to describe what the functions does, which is to provide a
means to iterate over a result set:

def iterateOverAllUsers: DBCursor[DBObject] =
find(DBQuery("{}"))

3.5.4 Iterate and refine your functional style

If you sit down in front of your computer with the aim of applying the preceding
advice all at once, chances are that you won’t get very far. Instead of trying to get
everything right from the very first step, it may be helpful to start by writing your code
the way you’re used to, with mutable vars instead of vals, mutable collections, and
using loops. Once you’ve fleshed out what your code should do, start thinking about
how you want to achieve the behavior. Take the time to revisit the code bit by bit, mak-
ing it immutable one piece at the time, replacing loops with collection methods, and
slowly fleshing out incrementally smaller functions.

3.6 Summary
In this chapter we looked at some of the most important functional programming
concepts used in the remainder of the book. These concepts are very useful for writ-
ing asynchronous code with Scala’s Futures API. In particular, we talked about

■ Functional programming, functions, and higher-order functions
■ Immutable state and expression-oriented programming
■ Scala’s immutable collections and how to work with them

Now that you have the necessary tooling, let’s go one level deeper and look at how to
use the Play Framework in combination with these tools and build reactive applications.

71

Quick
 introduction to Play

The Play Framework is a web application framework inspired in its design by Model-
View-Controller (MVC) frameworks such as Ruby on Rails and Django. Unlike most
JVM-based web application frameworks, Play doesn’t build on top of the Servlet stan-
dard, but instead has its own lightweight abstraction of the HTTP and WebSocket
protocols. It’s stateless at its core (it doesn’t hold server-side state) and it’s built
around the concept of asynchronous request handling. Along with providing a
high-performance framework, Play is also guided by the idea of rapid development
and prototyping, allowing you to see changes almost instantly after having made
them in code.

This chapter covers
■ The structure of a Play application
■ The core concepts of Play, including HTTP

actions and WebSocket handlers
■ A few advanced features, such as customization

mechanisms for error handling and custom
request filters

72 CHAPTER 4 Quick introduction to Play

 You saw some of the elements of Play in chapter 2, but we didn’t take any time to
discuss how they work or why they matter. In this chapter you’ll learn the ropes of cre-
ating a new Play application and finding your way around existing Play applications.
This chapter won’t make you an expert in all things Play, but you will get an overview
of what you can do with Play and how the main mechanisms work under the hood so
that we have some common ground to explore reactive web application design and
development with Play in the remainder of this book. If at any time you’d like to take
a deep dive into the Play Framework and explore all of the features it has to offer in
detail, I recommend taking a look at the official framework documentation at http://
playframework.com/documentation.

4.1 Play application structure and configuration
In chapter 2 we set up Play using a template from the Lightbend Activator as a quick
way to get started. To better understand how a Play application is structured and what
the different files do, we’ll now set up a minimal project and create the required
files by hand. Don’t worry, the files aren’t too big, so there won’t be that much typ-
ing involved.

 To illustrate the main concepts of the Play Framework, we’ll use a simple REST-
based application as an example.

4.1.1 Introducing the Simple Vocabulary Teacher

In this chapter we’ll build an application that can quiz users on the vocabulary of a cer-
tain language. It’s up to the user to tell the application about the vocabulary in the first
place. Once the application knows some vocabulary, it will pick a random word in one
language and ask the user to translate it. Figure 4.1 gives an overview of the intended
functionality and workflow.

 In this first version of the Simple Vocabulary Teacher, we won’t create a user inter-
face but instead set up a REST interface and communicate with the application using
curl. This will give us direct insight into what kind of responses Play is sending us.

 The source and target languages need to be specified by the user with each request.

Vocabulary importer

Vocabulary quiz

Vocabulary storage

Input vocabulary

Ask to be quizzed

Get a word

Enter translation

Get result (correct or wrong)

Get confirmation

Figure 4.1 Functional overview of the Simple Vocabulary Teacher application

http://playframework.com/documentation
http://playframework.com/documentation

73Play application structure and configuration

4.1.2 Creating a minimal Play application scaffold

This is the minimal set of files and directories we’ll use for the project:

 app
 controllers

 Import.scala
 Quiz.scala

 models
 Vocabulary.scala

 services
 VocabularyService.scala

 build.sbt
 conf
 application.conf
 logback.xml
 project

 build.properties
 plugins.sbt

If you compare this to the directory listing you obtained when working through chap-
ter 2, you’ll notice that some elements are missing here, especially anything related to
views and public assets. This is in line with making a REST back end without a user inter-
face. Play will create the directories it’s missing when the application is first started.

APPLICATION CONFIGURATION

Let’s start by creating the conf/application.conf file, which holds the configuration of
our application.

play {
crypto.secret="changeme"
i18n.langs="en"

}

The application.conf file employs the HOCON notation, which stands for “Human-
Optimized Config Object Notation.” The idea is to keep the semantics of JSON for
tree structure, types, and encoding, but to make it more friendly for humans to read
and edit. Play uses the Lightbend Config library (https://github.com/typesafehub/
config) to read its configuration files. A nice feature of HOCON is that it makes it pos-
sible to include configuration files, so you can, for example, separate the technical
configuration in application.conf from more business-related configuration.

 Lightbend Config also supports a flat format, wherein the trees are flattened into
keys. In the remainder of this book, we’ll use both of those notations in combination,
because sometimes the flat notation makes more sense (such as when there’s only one
or very few values in the same branch).

Listing 4.1 Minimal application configuration in conf/application.conf

The application secret
used for encryption
and signing

Comma-separated list of languages
supported by the application

https://github.com/typesafehub/config
https://github.com/typesafehub/config

74 CHAPTER 4 Quick introduction to Play

 As you can see in listing 4.1, the minimal set of values required in the configura-
tion is rather small. There are several other concerns that are usually covered in the
application configuration:

■ Database access configuration
■ Automatic database evolution configuration
■ Mail server configuration
■ Akka actor system configuration
■ Thread pool configuration

THE APPLICATION SECRET Play uses an application secret to sign session cook-
ies and CSRF tokens, and to provide built-in encryption tools. It’s very impor-
tant not to make this secret publicly available, as this makes it possible for
attackers to forge their own sessions, among other things. We’ll generate a
fresh application secret later using one of Play’s built-in utilities.

DEVELOPMENT CONFIGURATION You can leverage the configuration’s inclusion
mechanism to set up the development configuration for various members of
your team. For example, each developer may have a different setup (such as
database configuration) or focus on the project for which they’d like to enable
or disable specific services in the application. By including a development.conf
file in the main application.conf, and also adding this file to the exclusion
mechanism of your version control system (for example, .gitignore), you
make it possible for each member of your team to override specific configura-
tion settings. (Be careful that you only ever override values in this file, and don’t
specify new ones, which would become problematic in production.) The fol-
lowing syntax is used to include this file:

include "development.conf"

LOGGING CONFIGURATION

Play uses the logback library (http://logback.qos.ch) for logging, expecting to find a
logback.xml file on the classpath (in the conf directory). Logback lets you fine-tune
the logging configuration, such as by configuring rotating log files, which is recom-
mended for production deployment.

 The following listing shows a minimal logback configuration for our project.

<configuration>
<conversionRule
conversionWord="coloredLevel"
converterClass="play.api.Logger$ColoredLevel" />

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>

<pattern>

Listing 4.2 Defining a minimal logback configuration in conf/logback.xml

Specifies a conversion rule
provided by Play that adds
color to the console output

Configures the logging
to standard output by
creating an appender

http://logback.qos.ch

75Play application structure and configuration

%coloredLevel - %logger - %message%n%xException
</pattern>

</encoder>
</appender>

<logger name="play" level="INFO" />
<logger name="application" level="DEBUG" />

<root level="ERROR">
<appender-ref ref="STDOUT" />

</root>

</configuration>

You can check the source code for this chapter to see a more advanced logback con-
figuration example that features rotating log files.

4.1.3 Building the project

To build, run, and package a Play project, you’ll need the sbt build tool (www.scala-
sbt.org). Follow the instructions provided on the sbt website to install it on your com-
puter if you haven’t done so already.

SBT VERSUS ACTIVATOR The Activator is a small wrapper on top of sbt that
extends sbt’s capabilities, allowing you to create new projects based on tem-
plates as well as to run an interactive user interface by issuing the activator
ui command. It’s intended for first-time users of the technology platform pro-
vided by Lightbend. In this chapter we want to get to the core of things, so
we’ll use sbt directly without additional features. Feel free to use either one of
the tools for the remainder of the book—I personally like to use sbt directly,
but Activator makes it easy to bootstrap a new project from a template, as you
saw in chapter 2.

A minimal sbt project only requires a single build.sbt file at the root of the project. To
use Play, however, you’ll need the Play sbt plugin, and we’ll specify which version of sbt
to use.

 Start by creating the project/build.properties file:

sbt.version = 0.13.9

It’s possible to do without this file, but if you were to install a new version of sbt, run-
ning the build tool against your project would then use the new version by default,
even if it weren’t compatible with your project for one reason or another. It’s best to
always indicate which version of sbt the project expects to be built with.

 Next, you need to specify which plugins you want to use for your project by creat-
ing the project/plugins.sbt file.

Defines the pattern in which
messages are logged (see

the logback documentation
for customizing options)

Configures the level for each
logger; you can add more
loggers here to customize the
log level of third-party libraries

Defines which
appenders should

be used for logging

www.allitebooks.com

www.scala-sbt.org
www.scala-sbt.org
http://www.allitebooks.org

76 CHAPTER 4 Quick introduction to Play

addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.4.3")

addSbtPlugin("com.typesafe.sbt" % "sbt-scalariform" % "1.3.0")

There are many plugins that can augment the capabilities of a standard sbt project.
For example, there are plugins for diverse tasks such as code coverage, static analysis,
and specific release mechanisms, all available as community plugins.1 In combination
with the sbt web plugin (https://github.com/sbt/sbt-web), Play leverages the plugin
mechanism to make the assets pipeline extensible and integrate various front-end
technologies such as CoffeeScript, LESS, React, and JSHint, to name but a few.

 The final piece that you need to start the build is the build.sbt file at the root of the
project. This is the file that describes how the project is built.

name := "simple-vocabulary-teacher"

version := "1.0"

scalaVersion := "2.11.7"

lazy val `simple-vocabulary-teacher` =
(project in file(".")).enablePlugins(PlayScala)

routesGenerator := InjectedRoutesGenerator

com.typesafe.sbt.SbtScalariform.scalariformSettings

sbt uses a declarative domain-specific language (DSL) for its configuration, imple-
mented in Scala. It’s through the build.sbt file that library dependencies are declared,
repositories for publishing are specified, multi-module configurations are set up, and
many aspects of the build can be customized. This example application is quite
straightforward, so we won’t see any of these features in action here, but there will be
plenty of opportunities to see them in the remainder of the book.

 At this point, you can start sbt! Fire up a console, navigate to your project’s direc-
tory, and start sbt simply by typing sbt:

~/book/CH04 ±master » sbt
Picked up JAVA_TOOL_OPTIONS: -Dfile.encoding=UTF8 -Xmx2048m
[...]
[simple-vocabulary-teacher] $

Listing 4.3 The plugins.sbt file declaring which plugins to use for this build

1 See the sbt Community Plugins page: www.scala-sbt.org/release/docs/Community-Plugins.html.

Listing 4.4 The build.sbt file declaring the configuration of the project

The Play plugin

The scalariform plugin
used for code formatting

The name of the project

The version of the project

The Scala version to useThe
configuration

of the main
project Uses dependency

injection in the
Play router

The default settings for the
scalariform code formatting tool

https://github.com/sbt/sbt-web
www.scala-sbt.org/release/docs/Community-Plugins.html

77Request handling

Now that sbt is running, you can get a new application secret by running the play-
UpdateSecret command. This will generate a new secret and automatically update
the conf/application.conf file.

 At this point, you’re all set to run the Play application using the run command. If
you check the application at http://localhost:9000, you’ll get a result from Play. But
the page you’ll be greeted with will start with the welcoming words “Action not found”
and the explanation “No router defined.” This is because you haven’t defined any
routes yet. Worse, you haven’t even created the conf/routes file, which is the default
location of the application routes.

 Don’t worry, we’ll get around to this shortly. Before talking about routes, though,
we’ll take a more detailed look at the request lifecycle in Play.

4.2 Request handling
Play is a web framework, so it’s going to primarily deal with HTTP requests, as well as,
increasingly, WebSocket connections, and in the future HTTP/2 connections. In this
section we’ll look at how Play deals with these protocols (except for HTTP/2, which
has just been released) and at how Play structures the different elements of the pro-
cessing pipeline.

4.2.1 The request lifecycle

A typical HTTP request-response lifecycle in a Play application is represented in fig-
ure 4.2.

There are three steps in the process:

1 The HTTP request is passed from the Netty back end to Play and transformed
appropriately.

2 Depending on the parameters in the request, it’s routed to the appropriate
Action by the router.

3 The core of the work is carried out by an Action, which turns a request into a
response, which is then sent back to the client.

Play is built on top of Netty, an asynchronous event-driven framework that supports a
wide range of protocols and standards and is highly performant. Netty allows for a
very fine-grained level of detail when it comes to deciding exactly how requests are
being handled and responses are generated, in order to tune for performance. But
when developing a web application, we’re not interested in fine-tuning each and every
request—it would be much nicer to have this done for us. This is where Play comes in:

HTTP request Routing Controller action HTTP response

Figure 4.2 High-level stages of a typical request-response lifecycle in Play

78 CHAPTER 4 Quick introduction to Play

it uses a subset of the large array of capabilities and protocols that Netty supports
(mainly HTTP and WebSocket) and deals with all the low-level nitty-gritty details
involved in handling requests “the right way.”

 To get started with request handling in Play, let’s look a bit closer at an HTTP
request. I’m sure you already know what a request is, but let’s walk through the theory
once again to make sure we’re talking about the same thing.

 At its core, an HTTP request is composed of a header and an optional body for cer-
tain kinds of requests. For example, a request may look like this:

GET /welcome HTTP/1.1
Host: localhost
Connection: keep-alive
Cache-Control: max-age=0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.125
Safari/537.36

DNT: 1
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8,de;q=0.6,fr;q=0.4,nl;q=0.2

The first line is particularly interesting. It consists of the method (GET), the path (/welcome),
and the protocol (HTTP/1.1). The rest of the header is a collection of header fields that can
be used for various purposes, such as content negotiation, compression, internationaliza-
tion, and so on.

 In the Scala Play API, all of this core information is represented by the play.api
.mvc.RequestHeader trait. The RequestHeader is one of the cornerstones of Play, and
it’s both used by Play internally and available to us for interpreting and responding to
requests. It also plays a central role when it comes to deciding which piece of code will
handle a request at routing time.

 The RequestHeader exposes all the information in a developer-friendly fashion,
and it mainly consists of the following:

■ The request path
■ The method
■ The query string
■ The request headers
■ The cookies, including the client-side session cookie and a special “flash”

cookie that we’ll talk about later
■ A number of convenience methods that help make sense of some of the head-

ers for content negotiation

Let’s do a quick experiment to get a closer look at a RequestHeader. We’ll hook into
the method of Play that decides what to do when a request handler isn’t found, which is
the current case (given that we have no routes, controller, or actions defined yet).

79Request handling

 Create the file app/ErrorHandler.scala with the following content.

import javax.inject._
import play.api.http.DefaultHttpErrorHandler
import play.api._
import play.api.mvc._
import play.api.mvc.Results._
import play.api.routing.Router
import scala.concurrent._

class ErrorHandler @Inject() (
env: Environment,
config: Configuration,
sourceMapper: OptionalSourceMapper,
router: Provider[Router])

extends DefaultHttpErrorHandler(env, config, sourceMapper, router) {

override protected def onNotFound(
request: RequestHeader, message: String

): Future[Result] = {
Future.successful {

NotFound("Could not find " + request)
}

}
}

If a handler isn’t found, Play’s standard behavior is to display a developer-friendly
error message in development mode (as you may have seen) or a simple 404 error
message in production mode. In listing 4.5 you override this default mechanism by
overriding Play’s DefaultHttpErrorHandler, which is an entry point for customizing
the default error-handling concerns. As you’ll see further on, there are a few more of
these kind of traits that you can use to customize Play’s request-handling lifecycle.

 In the example in listing 4.5, you just return the String representation of the
RequestHeader.

 Let’s look at the result using the curl command in a terminal window (curl is avail-
able by default on Unix-based operating systems; if you use Windows, you can down-
load it at http://curl.haxx.se).

~ » curl -v http://localhost:9000
* Rebuilt URL to: http://localhost:9000/
* Hostname was NOT found in DNS cache
* Trying ::1...
* Connected to localhost (::1) port 9000 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:9000
> Accept: */*
>

Listing 4.5 Customizing Play’s behavior when request handlers aren’t found

Defines an ErrorHandler
discoverable via
dependency injection

Extends the
DefaultHttpErrorHandler trait,

which is the hook to error-
handling customization in Play

Overrides the onNotFound
method to intercept Play’s
default behavior when an error
occurs during communication
with the client

Returns a 404 Not Found result
with a message containing the

String representation of the result

http://curl.haxx.se

80 CHAPTER 4 Quick introduction to Play

< HTTP/1.1 404 Not Found
< Content-Type: text/plain; charset=utf-8
< Content-Length: 20
<
* Connection #0 to host localhost left intact
Could not find GET /

According to this result, the String representation of the RequestHeader is GET /.
That’s a good start, but as mentioned earlier, there’s a lot more data in the Request-
Header. To appreciate all of its richness, let’s debug this method at the line where we
return the result.

 To do this, you need to run sbt with the JVM debug agent enabled. Quit the cur-
rently running sbt process and relaunch it like this:

sbt -jvm-debug 5005

5005 is the port on which the debug agent listens for connections from a debugging
tool, provided in most IDEs. Once you’ve started sbt in this way, launch the application
again with run, and debug the application with your favorite IDE to explore the struc-
ture in depth.

EXERCISE 4.1

Use curl to explore what effect different types of request methods and request headers
have on the RequestHeader. Add a cookie to see how it’s represented.

Now that you know a bit more about incoming requests, let’s take a look at how
requests are distributed to the various processing components of a Play application.

4.2.2 Request routing

HTTP requests are analyzed and forwarded by the router to the appropriate action, as
shown in figure 4.3.

 The router looks at the RequestHeader and analyzes the method, URI, and query
string to decide which action to pass the request to. A router is composed of many

Quick curl reference
curl supports the following flags:

■ -v or --verbose—Prints verbose output, recommended for the examples in this
chapter.

■ -b or --cookie—Adds a cookie to the request. Specify a cookie as key=value
pairs; for example, -b user=123.

■ -H or --header—Adds a custom header to the request; for example, -H "X-
My-Header:Hi".

81Request handling

different routes, which can be thought of as individual request matchers. Play has its
own textual format for defining routes, located in the conf/routes file.

 To define the routes for your project, create the conf/routes file with the following
content:

GET /test controllers.Test.testAction

Save the file and refresh the application. You should now get a compilation error. Play
compiles the routes file, which means that each route (and, as you’ll see later, each
route parameter) is checked against the targeted action generation method to see if
they’re indeed compatible. The action generation method is responsible for creating
a Play action, which is in charge of handling an HTTP request.

ACTIONS VERSUS ACTION GENERATION METHODS Methods that result in the cre-
ation of a Play action are called action generation methods, as they’re meth-
ods whose result is a Play action. In practice, they’re commonly referred to as
“actions” instead of “action generation methods.”

If you’d like to fix the preceding route, you could point it to the controllers.Default
.todo method, which will simply return a 501 Not Implemented page. But rather than
continuing to work with a dummy route, let’s go ahead and create the routes for the
vocabulary import controller.

HTTP request

Router

Controller C

Action

Action

Action

Action

Controller B

Action

Action

Action

Action

Controller A

Action

Action

Action

Action

Figure 4.3 The router directs requests to the appropriate controller and action.

82 CHAPTER 4 Quick introduction to Play

 Create the controller at app/controllers/Import.scala with the following contents.

package controllers

import play.api.mvc._

class Import extends Controller {
def importWord(
sourceLanguage: String,
targetLanguage: String,
word: String,
translation: String

) = TODO
}

We’ll revisit the semantics and the structure of controllers a bit later. For the moment,
what matters is that you’ve created two methods and implemented them using the
TODO shortcut (which points at the controllers.Default.todo action).

 Let’s now wire these methods in the router. Replace the existing test route with the
one defined in the following listing, making sure you write it in one line.

PUT /import/word/:sourceLang/:word/:targetLang/:translation
controllers.Import.importWord(sourceLang, word,
targetLang, translation)

Great! You’re now all set to send requests that will be routed to the appropriate loca-
tion. You may notice that you’re also passing data from the request URI to the import-
Word method. It’s possible to mark each path fragment as a value to be passed as an
argument to the action generation method. Those named URI fragments are called
path parameters.

 There’s just one problem with the preceding example: it contains a mistake. You
may have noticed that I inverted the order of parameters between the method defini-
tion and its invocation, mixing up words and languages. By default, each path param-
eter is assumed to be of type String and there’s no need to type it out. For longer
method definitions like this one, it’s easy to mix up arguments if you’re not careful.
Thankfully, it’s possible to type the path parameters and have Play automatically con-
vert them to the right type, which can help you avoid such mistakes during develop-
ment, but it also ensures the validity of a path parameter at runtime.

 Let’s fix the mistake and use the built-in Lang class to represent languages. Update
the controller method to match the following definition.

Listing 4.6 The scaffold of the vocabulary import controller

Listing 4.7 Route definition for importing vocabularies

83Request handling

import play.api.i18n.Lang
def importWord(

sourceLanguage: Lang,
word: String,
targetLanguage: Lang,
translation: String

) = TODO

Now you need to tell the router that you are indeed expecting the Lang type for the
two language path parameters, as follows, again all typed on one line.

PUT /import/word/:sourceLang/:word/:targetLang/:translation
controllers.Import.importWord(
sourceLang: play.api.i18n.Lang,
word,
targetLang: play.api.i18n.Lang,
translation

)

Finally, you need to tell Play how to read a path parameter of type play.api.i18n
.Lang. To do so, you need to create a PathBindable. Create the file app/binders/
PathBinders.scala with the following contents.

package binders

import play.api.i18n.Lang
import play.api.mvc.PathBindable

object PathBinders {

implicit object LangPathBindable extends PathBindable[Lang] {
override def bind(key: String, value: String):

Either[String, Lang] =
Lang.get(value).toRight(s"Language $value is not recognized")

override def unbind(key: String, value: Lang): String = value.code
}

}

Listing 4.8 Controller method using a type-safe representation for languages

Listing 4.9 Route using type-safe path parameters for languages

Listing 4.10 A LangPathBindable to read the Lang type as part of a path

Places all binders in one object to simplify
importing them into the router

Declares the PathBindable as an
implicit object so it’s resolved

implicitly by the router

Implements
the bind

method to
read a query
fragment as

a type

Encodes the result
of a binding as
Either[String,
Lang], which

means the result
of a binding is

either an error
message, or the

successfully read
Lang value

Checks if there’s a language for
the input value; otherwise
returns an error message

Implements the unbind method to
write a type as a path fragment

84 CHAPTER 4 Quick introduction to Play

Now you need to do one more thing to use the type-safe binding mechanism: let the
router know about the binding by adding routesImport += “binders.PathBinders._”
to the build.sbt file. This will add an import statement to the generated router file.

 Play’s route file is turned into a Scala source file and then compiled alongside the
sources of the application. When the Scala compiler finds a route that specifies a
given type, it will try to find the appropriate PathBindable for that type and will com-
plain if it can’t find one. If the application compiles, you can be sure that the appro-
priate bindings can be performed.

RELOADING THE BUILD SYSTEM AFTER CHANGES TO BUILD.SBT When making
changes to build.sbt, like adding the routesImport statement in the previous
example, don’t forget to reload the sbt console by running the reload com-
mand. Otherwise the changes won’t be visible, and the compilation will con-
tinue to fail.

QUERY STRING PARAMETERS The request path isn’t the only way to convey
parameters to an action—query parameters are also supported and there are
also QueryStringBindables that allow you to bind a specific type. We’ll look
at query parameter handling later on.

THE EITHER TYPE Scala’s Either[A, B] type makes it possible to encode results
that can have either of two results. The left type (A) is often used to encode the
error case, while the right type (B) is the type of the expected result.

You can now test if things work as expected with curl. First, check if you get routed
appropriately using valid languages:

curl -v -X PUT http://localhost:9000/import/word/en/hello/fr/bonjour

This should produce a 501 Not Implemented result (because you have a TODO action
and no real implementation). Then check out an invalid language:

curl -v -X PUT http://localhost:9000/import/word/en/hello/foo/bonjour

This should produce a 400 Bad Request because foo is not a valid language.

REVERSE ROUTING Any route defined in the routes file also has a reverse
equivalent that yields a URI and is very useful when used in view templates
or emails. For example, you could create a link for importing a certain
word using the routes.Import.importWord(Lang("en"), "hello", Lang
("fr"), "salut").url() method. The advantage of reverse routing over
using handwritten URLs is that there’s no danger of getting a wrong link
because it’s always generated by Play from the single source of truth that the
router represents.

Alright! Now that you have the first routes set up and working, we’ll move on and
implement some of the actions.

85Request handling

4.2.3 Controllers, actions, and results

A Play application can be seen as a collection of request-processing functions, the
actions. As in any MVC framework, those actions are organized in various controllers
that group related actions. In our example, we have two controllers: the Import
controller dealing with adding new vocabulary, and the Quiz controller that will quiz
us for it.

CREATING ACTIONS AND RETURNING RESULTS

Let’s continue where we left off and implement the functionality for importing a sin-
gle word. First we’ll need a way to store and query words. Normally you’d do this with
a specialized database of some kind, but for this example application we’ll simply
store things in memory.

 Create the models/Vocabulary.scala file with the following contents.

package models

import play.api.i18n.Lang

case class Vocabulary(
sourceLanguage: Lang,
targetLanguage: Lang,
word: String,
translation: String)

That was easy enough, but we can’t get anything done with the model alone. Let’s
build a simple service to store the vocabulary.

package services

import javax.inject.Singleton
import play.api.i18n.Lang

@Singleton
class VocabularyService {

private var allVocabulary = List(
Vocabulary(Lang("en"), Lang("fr"), "hello", "bonjour"),
Vocabulary(Lang("en"), Lang("fr"), "play", "jouer")

)

def addVocabulary(v: Vocabulary): Boolean = {
if (!allVocabulary.contains(v)) {

allVocabulary = v :: allVocabulary
true

} else {
false

Listing 4.11 Simple model for defining vocabulary entries

Listing 4.12 Simple in-memory vocabulary storage

Specifies that the VocabularyService
class has singleton scope, which
means the same instance will be
injected in all classes having a
dependency on it

Bootstraps the list
with a minimal
vocabulary because
the list will be lost
with each application
reload

Only adds vocabulary
that doesn’t exist yet,
and returns a Boolean

86 CHAPTER 4 Quick introduction to Play

}
}

}

You now have a simple in-memory storage system, which will do just fine for the
moment. The addVocabulary method is extremely rudimentary and returns a simple
Boolean, which is enough for this example, but it wouldn’t be sufficient for a real-life
application because it doesn’t give any details about why an item couldn’t be stored.
We’ll use this system to implement the importWord action of the Import controller.

NOTE This storage implementation is so simple that it’s not even thread-safe!
Several clients could potentially access this service simultaneously, which
could cause the same entry to be added twice or new entries to be lost. A
more elaborate implementation of this service would make use of a thread-
safe collection or leverage some of the concurrency mechanisms that we’ll be
exploring in chapters 5 and 6.

Before you implement the importWord action of the Import controller, you must tell
the controller how to get to a VocabularyService. Play uses the annotations defined
in JSR 330 (https://www.jcp.org/en/jsr/detail?id=330) for dependency injection, and
we’ll use this to inject the VocabularyService in all the controllers that need it. Mod-
ify the constructor of the Import controller as follows:

import javax.inject.Inject

class Import @Inject() (vocabulary: VocabularyService)
extends Controller {
// ...

}

All you’ve done here is declare that the Import class requires a VocabularyService to
be constructed, and that its constructor is dependency-injected by using the
@Inject() annotation. You’re now ready to implement the importWord action.

def importWord(
sourceLanguage: Lang,
word: String,
targetLanguage: Lang,
translation: String

) = Action { request =>
val added = vocabulary.addVocabulary(

Vocabulary(sourceLanguage, targetLanguage, word, translation)
)
if (added)

Ok
else

Conflict
}

Listing 4.13 Implementing the action to add a single word

Uses the Action
constructor to build
a simple Action

If adding was
successful,

returns a 200
Ok response If adding didn’t work (because

you already added this word),
returns a 409 Conflict response

https://www.jcp.org/en/jsr/detail?id=330

87Request handling

You can now test if things work according to plan by using curl:

~ » curl -v -X PUT http://localhost:9000/import/word/en/hello/fr/ \
\ bonjour
* Hostname was NOT found in DNS cache
* Trying ::1...
* Connected to localhost (::1) port 9000 (#0)
> PUT /import/word/en/hello/fr/bonjour HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:9000
> Accept: */*
>
< HTTP/1.1 409 Conflict
< Content-Length: 0

Because “hello” was already part of the initial vocabulary set, this result is as expected.

DEPENDENCY INJECTION IN PLAY Play aims at providing dependency injection
without limiting the approaches to it. All native Play components can be
instantiated using plain constructors or factory methods, and Play employs an
abstraction that allows any kind of JSR 303 implementation to be plugged in.
By default, Play uses and provides Guice (https://github.com/google/guice)
out of the box.

Now all you have to do is implement the quiz controller. Let’s start by adding a bit
more functionality to the VocabularyService.

def findRandomVocabulary(sourceLanguage: Lang, targetLanguage: Lang):
Option[Vocabulary] = {
Random.shuffle(allVocabulary.filter { v =>

v.sourceLanguage == sourceLanguage &&
v.targetLanguage == targetLanguage

}).headOption
}

def verify(
sourceLanguage: Lang,
word: String,
targetLanguage: Lang,
translation: String): Boolean = {
allVocabulary.contains(

Vocabulary(sourceLanguage, targetLanguage, word, translation)
)

}

Next, you’ll need to implement the Quiz controller, which will provide a word and
check if a proposed translation is appropriate. Create the quiz controller in the app/
controllers/Quiz.scala file and implement two methods:

Listing 4.14 Extending the Vocabulary model to retrieve and check random vocabulary

Randomly shuffles the subset of
the vocabulary that matches
the desired languages

Verifies if a proposed
translation is correct by
looking for a Vocabulary
that matches

https://github.com/google/guice

88 CHAPTER 4 Quick introduction to Play

■ def quiz(sourceLanguage: Lang, targetLanguage: Lang)—An action that will
use findRandomVocabulary and return a 200 Ok result that wraps a random
word if there is one, and a 404 Not Found result otherwise.

■ def check(sourceLanguage: Lang, word: String, targetLanguage: Lang,
translation: String)—An action that verifies the word and returns a 200 Ok
result if the translation is correct, and a 406 Not Acceptable result otherwise.
(406 Not Acceptable is the closest to what we want to express, and even though
it may not have exactly the same semantic meaning as in the HTTP specifica-
tion, it will do fine for this example.)

If you encounter difficulties implementing these methods, you can always check the
source code for the chapter, but this shouldn’t be too difficult.

 The only thing you need now are the appropriate routes. Open the conf/routes
file and add the following routes. Again, make sure you write these routes on one line
each.

GET /quiz/:sourceLang
controllers.Quiz.quiz(sourceLang: play.api.i18n.Lang,
targetLang: play.api.i18n.Lang)

POST /quiz/:sourceLang/check/:word
controllers.Quiz.check(sourceLang: play.api.i18n.Lang, word,
targetLang: play.api.i18n.Lang, translation)

Just as when you implemented the routes for the Import controller, here you use path
parameters to provide some of the data to your actions. But unlike previously, there
are some parameters in the action method invocation that don’t have an obvious ori-
gin. If you compile the project now, you’ll get a hint as to where Play tries to fetch
them from through the compilation error:

No QueryString binder found for type play.api.i18n.Lang.
Try to implement an implicit QueryStringBindable for this type.

Any parameter that’s passed to the action generation method and isn’t specified as a
path parameter is inferred to be part of the request’s query string. Just as with path
parameters, query string parameters can be typed, and unknown types need to have a
QueryStringBindable that’s available to the router.

 Go ahead and implement a QueryStringBindable for Lang. Don’t forget to add
the necessary import to build.sbt and to reload the build system afterwards.

 You can now check if things work as intended:

~ » curl -v http://localhost:9000/quiz/en\?targetLang\=fr
* Hostname was NOT found in DNS cache
* Trying ::1...
* Connected to localhost (::1) port 9000 (#0)

Listing 4.15 Additional routes for the quiz

89Request handling

> GET /quiz/en?targetLang=fr HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:9000
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: text/plain; charset=utf-8
< Content-Length: 4
<
* Connection #0 to host localhost left intact
play%

~ » curl -v -X POST
http://localhost:9000/quiz/en/check/play
\?targetLang\=fr\&translation\=jouer

* Hostname was NOT found in DNS cache
* Trying ::1...
* Connected to localhost (::1) port 9000 (#0)
> POST /quiz/en/check/play?targetLang=fr&translation=jouer HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:9000
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Length: 0
<
* Connection #0 to host localhost left intact

As you can see, you can specify french as a target language when retrieving a word to
be quizzed with while submitting your answer.

THE DEFAULT ACTIONBUILDER So far you’ve implemented actions using the
Action notation, such as by writing Action { request => … }. Behind the
scenes, Action is an ActionBuilder, which is a helper mechanism provided
by Play to implement more-advanced Action blocks.

REQUEST VERSUS IMPLICIT REQUEST Often you’ll see actions written out as
Action { implicit request => … }. This is because many libraries and conve-
nience methods that Play offers need to know about the request, so they
expect it as an implicit parameter. Scala’s implicit parameters are a means to
pass along parameters based on their types without having to write them out
in the method invocation. Scala will try to find an implicit value in different
scopes (local definition, inherited members, imported objects, package
objects, and so on) to pass it on to the method that requires it.

EXERCISE 4.2

So far we’ve extracted the target language for the quiz-related actions from the query string.
As an exercise, try reading them from the custom X-Target-Language header instead.

90 CHAPTER 4 Quick introduction to Play

A LOOK UNDER THE HOOD OF ACTIONS

We’ve used actions but we haven’t yet looked at how they work internally. For most
of the things you’ll do with Play, you won’t need to work at this low level, but it’s
worth taking a look at things in more detail to appreciate what happens when a
request is received by Play. This section will be a bit more theoretical and compli-
cated than what we’ve done so far, so I invite you to grab a cup of coffee (or tea)
before reading further.

 Ready? Let’s dive into it by looking at the definitions of an Action and a Request:

trait Action[A] extends EssentialAction {
def parser: BodyParser[A]
def apply(request: Request[A]): Future[Result]

}

trait Request[+A] extends RequestHeader {
def body: A

}

At its core, an HTTP request’s body is just a bunch of raw bytes. In Play, Actions and
Requests are typed with the type of the body of the request (A in the preceding code).
Play has a mechanism that transforms the raw bytes of an HTTP request body into a
type that’s easy to manipulate, such as String, JsValue, java.io.File, or any other
type for which there is a body parser.

 At this point, you may wonder where the raw bytes that characterize the body of an
HTTP request are stored. The request parameter of the apply method of an Action is
already a Request[A], which means that it already has been parsed and the body
turned into a nicer Scala type. To see where the raw data is hidden, we need to take a
closer look at the EssentialAction trait:

trait EssentialAction
extends (RequestHeader => Iteratee[Array[Byte], Result])
with Handler

This signature may seem a bit bewildering at first sight, but there’s no dark magic at
work. Let’s decipher it piece by piece:

■ with Handler—This code snippet at the end simply means that the Essential-
Action is a Handler, which is a type used in Play to indicate that an object is
capable of handling a request (be it an HTTP or a WebSocket request).

■ (RequestHeader => Iteratee[Array[Byte], Result])—This notation defines
a function that takes a RequestHeader parameter and produces an Iteratee
[Array[Byte], Result].

You already know what a RequestHeader is: the expected input of the function is just
the essential information about a request (method, path, request headers). But
what about the strange-looking Iteratee[Array[Byte], Result]? In chapter 2 we
quickly looked into iteratees, but let’s revisit them. An Iteratee[E, A] is a tool for

91Request handling

working with streams of data; it consumes chunks of E to produce one or more As. In
this case, the input is an Array[Byte] (the raw body of the HTTP request—that’s
where it was hiding) and the output is a single Play Result. So an Iteratee con-
sumes many chunks of the HTTP request body and eventually produces a Result as
an output.

 Still here? Great! Let’s summarize what an EssentialAction is. It’s a function that
takes as input a RequestHeader and produces an Iteratee, which, when fed the bytes
of a request body, will produce a Result. You can think of an action as a mechanism
that works in multiple steps:

1 The Action is given the RequestHeader, from which it infers which BodyParser
to use to handle the body.

2 Once everything is in place, the body is passed in as a stream of bytes, produc-
ing a Request[A].

3 You can easily work with the Request to produce a Result.

This looks quite complicated, so why does Play go to such lengths for a task seemingly
as trivial as parsing a request body? The answer is that Play does everything in an asyn-
chronous, nonblocking fashion. The purpose of iteratees is precisely to enable asyn-
chronous stream manipulation: they consume data sent by the browser without
blocking threads, so that when there’s a pause in the transfer, no resources are wasted
waiting for the transfer to continue. At the same time, using iteratees for body parsing
means that the parsing can begin as soon as data is received. This is especially impor-
tant for large files, because loading everything in memory before starting to parse isn’t
really an option.

4.2.4 WebSockets

By maintaining two-way communication with the server, WebSockets are a great tool
for building interactive web applications. As depicted in figure 4.4, Play deals with
WebSockets in a special way. A WebSocket connection is established in two steps: First,
the client sends a normal GET request that contains a special Upgrade header. Then, if
the server supports the WebSocket protocol, it replies with the details of the
WebSocket connection, and the client can switch to that protocol. To this end, Play
doesn’t make use of actions but instead uses a special type of Handler that will initiate
the WebSocket connection. There is support for using WebSockets in combination
with actors and in combination with iteratees. When it comes to maintaining an
interactive dialogue between clients and the server, actors offer a much more
compelling alternative to iteratees because they’re built on the idea of asynchronous
message-passing.

 You already set up a WebSocket connection in chapter 2 for streaming tweets, but
at that time you weren’t communicating in both directions. Let’s step through this
process once more and build the interactive quiz endpoint represented in figure 4.4.

92 CHAPTER 4 Quick introduction to Play

You first need to build a QuizActor that will chat with the client about words and
translations.

class QuizActor(out: ActorRef,
sourceLang: Lang,
targetLang: Lang,
vocabulary: VocabularyService)

extends Actor {

private var word = ""

override def preStart(): Unit = sendWord()

def receive = {
case translation: String
if vocabulary.verify(

sourceLang, word, targetLang, translation
) =>

out ! "Correct!"
sendWord()

case _ =>
out ! "Incorrect, try again!"

}

def sendWord() = {
vocabulary
.findRandomVocabulary(sourceLang, targetLang).map { v =>
out ! s"Please translate '${v.word}'"
word = v.word

} getOrElse {
out ! s"I don't know any word for ${sourceLang.code} " +

Listing 4.16 The QuizActor interacts with a WebSocket client

Client

GET /quiz/interactive/en/fr HTTP/1.1

QuizActor

HTTP/1.1 101 switching protocols
Upgrade: websocket

Please translate 'hello'

bonjour

Correct!

quizEndPoint
WebSocket

handler

HTTP/1.1 protocol

WebSocket protocol

Quiz controller

Figure 4.4 A WebSocket connection for an interactive vocabulary quiz. Play takes care of creating
the quiz actor when a WebSocket connection is requested by the client.

Creates the actor
based on the desired
languages as well as
the reference to the

outgoing channel, out

Keeps track of
which word

you’re currently
asking for a

translation of

When starting up,
sends a new word
to translate

If a correct translation
was provided, asks for
a new word

Sets the
requested

word so you
know what to
check against

93Request handling

" and ${targetLang.code}"
}

}
}

When a new WebSocket connection is established, Play will automatically create a new
instance of your actor and provide it with an actor reference that represents the out-
going channel. Incoming messages are sent by the client, and you can react to them in
the actor’s receive method. Don’t worry too much about the details of how an actor
works yet; we’ll visit them in depth in chapter 6.

 The most important part of the plumbing when setting up a WebSocket endpoint
is telling Play how it can create a new instance of the actor. For this purpose, we’ll first
create a small utility method that returns the Props of an actor, which are essentially a
means of explaining how an actor can be built.

object QuizActor {
def props(out: ActorRef,

sourceLang: Lang,
targetLang: Lang,
vocabulary: VocabularyService): Props =

Props(classOf[QuizActor], out, sourceLang, targetLang, vocabulary)
}

Now the only thing you need is to create the handler method that will upgrade the
incoming GET request from the client to a WebSocket connection. Add the following
code to the Quiz controller.

def quizEndpoint(sourceLang: Lang, targetLang: Lang) =
WebSocket.acceptWithActor[String, String] {

request =>
out =>

QuizActor.props(out, sourceLang, targetLang, vocabulary)
}

To correctly set up the WebSocket connection, Play needs to know what the encoding
of the messages is going to be, which is why you need to provide it with the type of the
incoming and outgoing messages. This is also the type of messages that you can expect
to receive (or send) in the actor. In chapter 2 we used JSON for communicating

Listing 4.17 Utility method for creating the Props of a QuizActor

Listing 4.18 The WebSocket handler method

Languages are provided as
parameters to the handler method.

Incoming and
outgoing

messages are
both Strings.

RequestHeaders
 of the incoming

request can be
used to check

whether the
connection should

be established.
The actor reference out
represents the outgoing
channel to the client.

The call to the helper method that
returns the Props of the QuizActor

to be created

94 CHAPTER 4 Quick introduction to Play

between client and server (using the JsValue type), but in this example we’ll settle for
simple Strings.

 If needed, there are other handler methods available for establishing a connec-
tion, such as WebSocket.tryAcceptWithActor, which are useful when dealing with
connection-time concerns such as authentication.

 Last but not least, you need a route in order to accept the initial GET request from
the client. Add the following code to the conf/routes file.

GET /quiz/interactive/:sourceLang/:targetLang
controllers.Quiz.quizEndpoint(
sourceLang: play.api.i18n.Lang,
targetLang: play.api.i18n.Lang)

You’re now all set to try out your brand new WebSocket endpoint. curl isn’t going to tell
you much more than whether or not a connection could be established, so you can make
use of a browser extension to test the connection, such as the Simple WebSocket Client
extension for Chrome (https://github.com/hakobera/Simple-WebSocket-Client), the
result being shown in figure 4.5.

Listing 4.19 The GET route to establish a WebSocket connection

Figure 4.5 Testing the WebSocket endpoint with a browser extension

https://github.com/hakobera/Simple-WebSocket-Client

95Request handling

And that’s it! Play takes care of all the internal details of figuring out how to format the
data sent across the WebSocket wire and lets you focus on providing the functionality.

4.2.5 Altering the default request-handling pipeline

Play allows you to alter the default behavior of an application in different ways. More
often than not, you’ll want to add custom error handling and handle cross-cutting
concerns (especially security-related ones). In the following subsections, we’ll look at
how to implement those scenarios with Play.

CUSTOM ERROR HANDLING

Overriding Play’s DefaultErrorHandler makes it possible to customize how errors are
dealt with and displayed to the user. You already saw how to customize handlers for
the 404 Not Found response in listing 4.5. But there’s more! The DefaultError-
Handler provides default behavior through these methods:

■ onBadRequest—Handles 400 Bad Request client errors
■ onForbidden—Handles 403 Forbidden client errors
■ onNotFound—Handles 404 Not Found client errors
■ onOtherClientError—Handles any other type of client errors
■ logServerError—Specifies how to log server errors
■ onDevServerError—Specifies how to display server errors during development
■ onProdServerError—Specifies how to display server errors in production mode

You can (and should) use these hooks to adapt the error handling to the needs of
your application. For example, if you’re interested in errors happening in a certain
part of your application, you could choose to send an email or trigger a monitoring
service of some kind. All the preceding methods give you access to the Request-
Header, which gives you fine-grained control over how your app reacts.

400 BAD REQUEST A 400 Bad Request result can be triggered either by return-
ing it explicitly from a controller, or if an appropriate handler has been
found but the parsing of the path parameters, the query string, or the request
body has failed. You saw such a case earlier when trying to submit a new word
using foo as a language.

FILTERS

Play offers you the option to set up one or more filters to be applied on requests and
results, as shown in figure 4.6.

gzip filter Security filter Score filter Quiz controller
Response

Request

Figure 4.6 Filter chain that alters the default behavior on requests or results

96 CHAPTER 4 Quick introduction to Play

A filter is nothing more than a small component that gets access to the request head-
ers and, if necessary, to the result of the filter that follows it in the filter chain. The
most convenient way of setting up a filter chain is to define an implementation of the
HttpFilters trait and let it be injected by Play.

 Before you can use the filters that ship with Play, you’ll need to add the following
dependency in build.sbt:

libraryDependencies += filters

Then you can set up a filter chain as shown in the following listing by creating a Fil-
ters class in the root package.

import javax.inject.Inject
import play.api.http.HttpFilters
import play.filters.gzip.GzipFilter
import play.filters.headers.SecurityHeadersFilter

class Filters @Inject() (
gzip: GzipFilter

) extends HttpFilters {
val filters = Seq(gzip, SecurityHeadersFilter())

}

Filters are useful when it comes to dealing with cross-cutting concerns, which are
more easily handled by hooking them into the request-processing pipeline than deal-
ing with them for each action.

 Let’s build our own filter! Because this is a vocabulary-teaching application, let’s
encourage users by reminding them of their score at every request, such as when they
submit a new word or answer to the quiz. Create the file app/filters/ScoreFilter.scala
with the following contents.

class ScoreFilter extends Filter {
override def apply(

nextFilter: (RequestHeader) => Future[Result]
)(rh: RequestHeader):
Future[Result] = {

val result = nextFilter(rh)
import play.api.libs.concurrent.Execution.Implicits._

Listing 4.20 Setting up a few filters to make our application faster and more robust

Listing 4.21 A simple filter that prints the current score at each request

Injects the
GzipFilter, which
gzips responses

sent to the client
to speed things

up a little

The HttpFilters trait sets
up a filter chain with the
filters you specify.

Specifies the filters you’d like to apply in the
order they should be applied. Play’s

SecurityHeadersFilter adds a number of header-
based security checks and policies.

The nextFilter function
represents the next request

handler in the chain, which is
usually a filter.Provides the

request header
of the current

request as well
Applies the request header
to the next filter to get the
result of the operation

Imports an
ExecutionContext
to run the Future

request

97Request handling

result.map { res =>
if (res.header.status == 200 || res.header.status == 406) {

val correct = res.session(rh).get("correct").getOrElse(0)
val wrong = res.session(rh).get("wrong").getOrElse(0)
val score = s"\nYour current score is: $correct correct " +

s"answers and $wrong wrong answers"
val newBody =

res.body andThen Enumerator(score.getBytes("UTF-8"))
res.copy(body = newBody)

} else {
res

}
}

}
}

Since filters are usually chained one after another, the apply method of a Filter pro-
vides a function that represents the next filter in the filter chain, or if there is no filter,
the next request handler that will take care of turning the request into a result.

 This filter reads out the current score from Play’s session and then prints it by
appending it to the existing body. Because the body is an asynchronous stream of bytes,
you use the andThen method to compose the two streams handled by enumerators.

PLAY’S CLIENT-SIDE SESSION Unlike many traditional web application servers,
Play’s session is a client-side session, which means that it’s represented as a
cookie. This means the client can switch from one node to another without
problem, which makes it much easier to scale Play applications horizontally.
Play session cookies are signed with the application’s secret key. We’ll talk
about them in chapter 7 when we deal with state in Play.

Now the only thing you need is to keep score. Bring up app/controllers/Quiz.scala
and make the adjustments shown in the following listing.

def check(
sourceLanguage: Lang,
word: String,
targetLanguage: Lang,
translation: String) = Action { request =>
val isCorrect =

vocabulary
.verify(sourceLanguage, word, targetLanguage, translation)

val correctScore =
request.session.get("correct").map(_.toInt).getOrElse(0)

val wrongScore =
request.session.get("wrong").map(_.toInt).getOrElse(0)
if (isCorrect) {

Ok.withSession(
"correct" -> (correctScore + 1).toString,

"wrong" -> wrongScore.toString

Listing 4.22 Adjustments to the Quiz controller check action to keep the score

Only deals
with Ok or Not

Acceptable
requests

Concatenates the
existing response

body and your
score result

Returns a copy of the
result containing the
modified body

Reads the previous score
from the session and converts
the counts from String to Int

Sets a new session
with an adjusted score

98 CHAPTER 4 Quick introduction to Play

)
} else {

NotAcceptable.withSession(
"correct" -> correctScore.toString,
"wrong" -> (wrongScore + 1).toString

)
}

}

Finally, don’t forget to add the brand-new filter to the filter chain in the Filters class.
 Let’s see if this works! First off, let’s make one request:

~ » curl -v -X POST http://localhost:9000/quiz/en/check/play
\?targetLang\=fr\&translation\=jouer

* Hostname was NOT found in DNS cache
* Trying ::1...
* Connected to localhost (::1) port 9000 (#0)
> POST /quiz/en/check/play?targetLang=fr&translation=jouer HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:9000
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Security-Policy: default-src 'self'
< Set-Cookie: PLAY_SESSION="c...f-correct=1&wrong=0"; Path=/; HTTPOnly
< X-Content-Type-Options: nosniff
< X-Frame-Options: DENY
< X-Permitted-Cross-Domain-Policies: master-only
< X-XSS-Protection: 1; mode=block
< Content-Length: 62
<

* Connection #0 to host localhost left intact
Your current score is: 1 correct answers and 0 wrong answers%

There are a few interesting things to observe here:

■ Given that the response contains the indication of the current score, the cus-
tom ScoreFilter works.

■ Given the response headers (X-Content-Type-Options, X-Frame-Options, and
so on), the security filter works as well.

■ You get a cookie back (in the Set-Cookie header, which contains the Play
session).

For the session-cookie-based scoring mechanism to work, you need to send back the
cookie on subsequent requests. You can do this with curl by using the --cookie param-
eter and copying and pasting the content of the cookie that you received:

~ » curl -v --cookie "PLAY_SESSION=\"c...f-correct=1&wrong=0\""
-X POST http://localhost:9000/quiz/en/check/play\?targetLang\=fr
\&translation\=jouer

99Summary

By passing in the updated cookie at each request (which a browser would do automat-
ically), you can see the score-appending mechanism at work.

4.3 Summary
In this chapter we explored some of the basic mechanisms and concepts that Play is
built on and that it uses to enable the creation of web applications:

■ Routes, path bindables, and query string bindables are used to route and parse
some elements of the request and pass them on to a controller action.

■ Controllers and actions are Play’s main mechanisms for handling requests.
■ WebSockets provide an interactive dialogue between client and server.
■ Mechanisms for customizing the default request pipeline, such as custom error

handling and filters.

You now have the tools in hand to use the basics of Play. It’s time to move ahead and
explore how you can use those tools in a reactive manner. To this end, let’s take a
closer look at futures.

Part 2

Core concepts

This part of the book explains the concepts at the core of reactive web appli-
cations. You’ll start by learning about futures and actors, two concepts used for
modelling and manipulating asynchronous computations with failure tolerance
in mind. Next you’ll learn how to apply those tools to handle state in reactive appli-
cations. Finally you’ll learn how to apply the reactive mindset to user interfaces.

103

Futures

Futures are at the foundation of asynchronous and reactive programming in Scala:
they allow you to manipulate the results of a computation that hasn’t happened yet
and to effectively deal with the failure of such computations, enabling more effi-
cient use of computational resources. You’ll encounter futures in many of the
libraries you’ll work with in Play and other tools.

 This chapter has two parts. First we’ll look at how to work with futures both on a
standalone basis and within the context of Play. Second, we’ll take an example of
business logic and turn it into multiple futures that can be combined to parallelize
their execution. Let’s go!

5.1 Working with futures
Just like an Option, which we briefly discussed in chapter 3, a Future is a monadic
data structure, which means, amongst other things, that it can easily be composed
with other futures. Futures are a layer of abstraction on top of the familiar concept

This chapter covers
■ Manipulating futures and handling their failure
■ Using futures correctly in the context of Play
■ Splitting business logic into small pieces

suitable for implementing with futures

104 CHAPTER 5 Futures

of callbacks. In chapter 1 we briefly looked at the problem of “callback hell,” which
plagues languages like JavaScript (such as when working with the server-side asynchro-
nous Node.js platform) and stems from the fact that there hasn’t been a proper
abstraction over the low-level work of manipulating results of asynchronous tasks,
invoking complex callback chains, and properly dealing with errors along that chain.

 Futures help address the problem of programming in an asynchronous fashion in
several ways:

■ They encapsulate the result of asynchronous computations in a composable
data structure.

■ They transparently handle failure cases, propagating them along chained futures.
■ They provide a mechanism for scheduling the execution of asynchronous tasks

on a thread pool.

In this first part of the chapter, we’ll make use of Play’s WS library (which we used a bit
in chapter 2) to make calls to a few websites related to the Play Framework. The WS
library is asynchronous and returns future results, which is just what we need to get
our hands dirty.

5.1.1 Future fundamentals

A scala.concurrent.Future[T] can be thought of as a box that will eventually contain
a value of type T if it succeeds, as shown in figure 5.1. If it fails, the Throwable at the ori-
gin of the failure will be kept. A Future is said to have succeeded once the computation
it’s waiting for has yielded a result or failed if there was an error during the computation.
In either case, once the Future is done computing, it’s said to be completed.

 As soon as a Future is declared, it will start running, which means that the compu-
tation it tries to achieve will be executed asynchronously. For example, you can use
Play’s WS library to execute a GET request against the Play Framework website:

val response: Future[WSResponse] =
WS.url("http://www.playframework.com").get()

This call will return immediately and let you continue to do other things. At some
point in the future, the call will have been executed, at which point you can access the
result to do something with it. Unlike Java’s java.util.concurrent.Future<V>,
which lets you check whether a Future is done or block the calling thread while
retrieving it, the get() method for Scala’s Future makes it possible to specify what you
want to do with the result of an execution.

 To register a callback with a Future, you can use the onComplete handler, which
exposes success or failure:

import scala.util.{Success, Failure}

response onComplete {
case Success(response) => println(s"Success: response.body")
case Failure(t) => t.printStackTrace()

}

105Working with futures

The onComplete handler takes a callback of type Try[T] => U. The success and failure
of the Future are encoded using the Success and Failure case classes, which are the
two possible implementations of Try.

TRANSFORMING FUTURES

A frequent use case that arises when working with a library is transforming the
library’s result into a type that’s more appropriate to the task at hand. Whether it’s
one call producing a future, or several calls producing futures holding different types
of results, being able to transform the content of a future without having to wait for it
to complete is key to building more complex asynchronous computation pipelines.

 Let’s take a look at how a future can be transformed.

val response: Future[WSResponse] =
WS.url("http://www.playframework.com").get()

Listing 5.1 Successful execution and transformation of a future

WS.url("http://www.playframework.com").get()

Future[WSResponse]

(No value)

Exception

WSResponse

]esnopseRSW[eruliaF]esnopseRSW[sseccuS

Success Failure

A future is a placeholder
for a value that will be set
sometime after its creation.

While waiting for its
completion, a future
does not block a thread.

A failed future does not have
a value set but instead keeps
track of the exception that
caused its failure.

A successful future holds
the value of the type that

it is expecting.

Futures in a successful
or failed state are said

to be completed.

Figure 5.1 Lifecycle of a Future: it can either succeed or fail

Declares the initial
future by making a GET
call to the Play site

106 CHAPTER 5 Futures

val siteOnline: Future[Boolean] = response.map { r =>
r.status == 200

}

siteOnline.foreach { isOnline =>
if(isOnline) {
println("The Play site is up")

} else {
println("The Play site is down")

}
}

In this example, you check the status of the response to see if the GET request suc-
ceeded. It’s important to understand that although you’re declaring what to do with the
WSResponse result inside the map operation, this doesn’t mean it must be completed.
The function attached to the initial response future only gets executed once and only
if the future succeeds. If the future were to fail, the function wouldn’t be executed.

 In the spirit of expression-oriented programming, futures are primarily meant to
be transformed and combined in one or more small steps. The example in listing 5.1
shows that it’s also possible to use the side-effecting foreach operation (which returns
a result of type Unit), but you’ll see that it’s much more useful to transform futures
than to perform side-effecting operations on them.

RECOVERING A FAILED FUTURE

Futures don’t always succeed. If it fails, a future will remember the cause of its failure
rather than throw an exception right away. Instead of wrapping your code in
try…catch blocks, you have full control over when you want to deal with failures.

val response: Future[WSResponse] =
WS.url("http://www.playframework.com").get()

val siteAvailable: Future[Option[Boolean]] = response.map { r =>
Some(r.status == 200)
} recover {

case ce: java.net.ConnectException => None
}

The recover function takes a partial function as a parameter, allowing you to match
against different kinds of exceptions and handle them accordingly. In this example,
you return an Option[Boolean] instead of a Boolean to express that you can’t always
say whether a site is available or not, especially if you’re not online.

ENCODING FAILURE It may not always be adequate to encode the semantics of
a failure in an Option[Boolean] type. When more than one type of failure
can happen, it may be better to work as if the future will succeed and then
plug in a failure-handling strategy at the end of the computation pipeline.
We’ll look at how to do this in section 5.2.

Listing 5.2 Recovering the failure of a future

Transforms the
Future[WSReponse]
with the map function
into a Future[Boolean]

Acts upon the successful completion
of the siteOnline future

Return a
Future[Option[Boolean]]

because you can’t always say
whether the site is available

Handle
recovery with

the recover
function Return None if you don’t

have internet access

107Working with futures

COMPOSING FUTURES

One of the nicest features of Scala’s futures is that you can compose them.
 Say, for example, that you wanted to check not one but several sites related to Play

for their availability. Instead of waiting for the check on one call to finish and then check
another one, you could execute both requests concurrently as shown in figure 5.2.

As you saw in listing 5.1, futures have access to the same type of monadic operations as
options. You could use the map and flatMap operations we talked about in chapter 3,
but it’s even more convenient to employ a for comprehension, because this produces
more readable source code, as follows.

def siteAvailable(url: String): Future[Boolean] =
WS.url(url).get().map { r =>

r.status == 200
}

val playSiteAvailable =
siteAvailable("http://www.playframework.com")

val playGithubAvailable =
siteAvailable("https://github.com/playframework")

val allSitesAvailable: Future[Boolean] = for {
siteAvailable <- playSiteAvailable
githubAvailable <- playGithubAvailable

} yield (siteAvailable && githubAvailable)

Here you start by declaring two futures, one for each site you want to check. You then
compose these two futures with a for comprehension and return true only if both sites

Listing 5.3 Composing multiple futures with a for comprehension

Both futures are combined
by using a for comprehension.

Declaring the future to
check the Play website

Declaring the future to
check the Play GitHub page

Failure recovery
is applied.

val playSiteAvailable:
Future[WSResponse] = ...

val playGitHubAvailable:
Future[WSResponse] = ...

githubAvailable <-
playGitHubAvailable

siteAvailable <-
playSiteAvailable

siteAvailable &
gitHubAvailable

recover { ... }

Figure 5.2 Two futures composed together so results and failure handling can be combined

Helper method checks the
availability of one site

Future holds the
availability of the
Play website

Future holds
the availability

of the Play
GitHub page

Composes the
futures in a for
comprehension

so they run
concurrently

When both futures
have completed,
checks if all sites
are available

108 CHAPTER 5 Futures

are available. What’s important in this example is that you declare the futures outside of
the for comprehension. This is because futures start to run as soon as they’re declared.
If you were to declare them inside the for comprehension, the second future would
only execute after the first one had completed, which would defeat the purpose.

 At this point, you could also add a recovery mechanism on the composed all-
SitesAvailable future:

val overallAvailability: Future[Option[Boolean]] =
allSitesAvailable.map { a =>

Option(a)
} recover {
case ce: java.net.ConnectException => None

}

Rather than having to handle failure individually on each call, you can add the failure
handling at the end of the computation chain. In this way, the failure-handling logic is
at one place in the code, which makes it easier to read and maintain. The advantages
of this approach may not be obvious now, but we’ll take a closer look at this kind of
failure handling in section 5.2.

RUNNING FUTURES

There’s one last thing we need to look into before we go on to make use of futures in
Play. In order to run, a future needs to have access to an ExecutionContext, which
takes care of running the asynchronous tasks. An ExecutionContext is typically
backed by a plain old ThreadPool.

 If you tried to run the code from the previous examples in this chapter, you’ll have
encountered a compilation error prompting you to provide an execution context.
Scala’s concurrent library provides a default global execution context, and Play also
has a default execution context that can be imported as follows:

import play.api.libs.concurrent.Execution.Implicits._

In fact, it’s pretty easy to create your own execution context if you want to explore how
it works.

import scala.concurrent._
import java.util.concurrent.Executors

implicit val ec = ExecutionContext.fromExecutor(
Executors.newFixedThreadPool(2)

)

val sum: Future[Int] = Future { 1 + 1 }
sum.foreach { s => println(s) }

Listing 5.4 Declaring a custom execution context and running a simple future block on it

Creates an ExecutionContext
based on Java’s Executor API

Declares a fixed ThreadPool
with 2 threads

Creates a simple future that
sums two numbers

109Working with futures

In this example, the ec execution context is declared as an implicit value. One advan-
tage of this API is that you don’t need to tell each future individually which execution
context it should be using. But there’s one caveat: it’s pretty tempting to import one
default execution context and then forget about it until, for one reason or another,
you need to adjust and fine-tune the execution contexts in use. For example, if you
were to use your custom execution context in a real application by importing it in
each compilation unit, chances are that at some point it would be exhausted. You’d
then need to revisit the whole codebase and check whether or not it makes sense to
use this execution context in each situation.

 Although it may be handy to use a default execution context for running futures
when you’re getting started with a project, a better strategy for avoiding trouble later
on is to design your service APIs in such a way that an execution context can be passed
to them. We’ll talk further about this in a moment.

WHEN TO CREATE FUTURES?

In most cases, you’ll use futures provided by some library (such as Play’s WS library).
Unfortunately, asynchronous libraries or wrappers aren’t always available for all the
tools you might be using.

 Futures should primarily be used when there’s a blocking operation happening.
Blocking operations are mainly I/O bound, such as network calls or disk access. As
you’ve already briefly seen in listing 5.4, Scala provides a simple way to create futures.

import scala.concurrent._
import scala.concurrent.ExecutionContext.Implicits.global
import java.io.File

def fileExists(path: String): Future[Boolean] = Future {
new java.io.File(path).exists

}

Note that this won’t magically turn the blocking code into something asynchronous!
The java.io.File API call will still be blocking. But now you can run this code on a
different execution context, which means that it won’t use the threads of your default
application’s execution context, which is important to keep in mind, especially when
working with Play.

FUTURE BLOCK A future block doesn’t just create a new future; it schedules its
execution against an execution context.

You shouldn’t create futures to wrap purely CPU-bound operations. This doesn’t help
anyone—CPU-bound operations aren’t blocking (with one exception: long-lasting
CPU operations that take a long time to do complicated calculations can be consid-
ered blocking). Unless you’re writing code that should run several calculations in par-
allel (and where you need these calculations to run simultaneously), creating a future

Listing 5.5 Creating a future over a blocking operation

110 CHAPTER 5 Futures

is a costly operation because it involves switching the computation to another execu-
tion context and paying the cost of context switching.

Now that we’ve talked at length about futures in general, let’s take a look at how to use
them efficiently in Play.1

5.1.2 Futures in Play

Play follows the event-driven web-server architecture, so its default configuration is
optimized to work with a small number of threads. This means that to get good per-
formance from a Play application, you need to write asynchronous controller actions.
Alternatively, if you really can’t write the application by adhering to asynchronous pro-
gramming principles, you’ll need to adjust Play’s configuration to another paradigm.

 In the following sections we’ll look at how to write asynchronous actions and how
to adjust Play’s thread pool configuration to meet our needs.

1 James Roper at the Ping Conference 2014: www.ustream.tv/recorded/42801712.

Asynchronous code doesn’t equal faster code
A dangerous preconception about asynchronous code is that it’s fast. That’s far from
the truth. Asynchronous code is nonblocking, which means that it won’t monopolize
threads while waiting for a result. There are costs associated with asynchronicity due
to the overhead introduced by context switching. Depending on how often the context
is switched, this overhead can be more or less important, but it’s always there. A very
good explanation of this phenomenon can be found in James Roper’s talk on the top-
ic of performance.1

Telling the execution context about blocking code
There’s a blocking marker that allows you to tell the execution context that a certain
portion of code is blocking. This is useful because the execution context will then be
able to respond appropriately, such as by creating more threads (in the case of a fork-
join ThreadPool). The other advantage to using this marker is that it becomes clear
to other developers (as well as to your future self) that a given portion of code is
blocking. The example of listing 5.5 would be rewritten as follows:

import scala.concurrent._
import scala.concurrent.ExecutionContext.Implicits.global
import java.io.File

def fileExists(path: String): Future[Boolean] = Future {
blocking {
new java.io.File(path).exists

}
}

www.ustream.tv/recorded/42801712

111Working with futures

BUILDING ASYNCHRONOUS ACTIONS

Play has a dedicated mechanism for producing asynchronous controller actions that
expect a Future as a result. Let’s put our previous example in an asynchronous action.

import play.api.libs.ws._
import scala.concurrent._
import play.api.libs.concurrent.Execution.Implicits._
import play.api.Play.current

def availability = Action.async {
val response: Future[WSResponse] =
WS.url("http://www.playframework.com").get()

val siteAvailable: Future[Boolean] = response.map { r =>
r.status == 200

}
siteAvailable.map { isAvailable =>
if(isAvailable) {

Ok("The Play site is up.")
} else {

Ok("The Play site is down!")
}

}
}

Upon invocation, this action will check the status of the Play website and return a
short message indicating whether the site is up or down, based on whether the status
code is 200 Ok or not. The Action.async builder expects to be given a function of
type Request => Future[Result]. Actions declared in this fashion are not much dif-
ferent from plain Action { request => … } calls, as we discussed in chapter 4—the
only difference is that Play knows that Action.async actions are already asynchro-
nous, so it doesn’t wrap their contents in a future block. That’s right—Play will by
default schedule any Action body to be executed asynchronously against its default
web worker pool by wrapping the execution in a future. The only difference between
Action and Action.async is that in the second case, we’re taking care of providing an
asynchronous computation.

 This Play behavior means that you have to be careful when it comes to using block-
ing code inside of an Action.

Blocking and nonblocking controller actions
As you’ve just seen, the Action.async builder is useful when implementing actions
that perform blocking I/O or CPU-intensive operations that take a long time to exe-
cute. By contrast, the normal Action builder doesn’t expect an underlying future, but
Play will run the body of a normal action against the default web worker pool, assum-
ing that it’s nonblocking. The following action does nothing but produce a Result.
It’s therefore purely CPU-bound.

Listing 5.6 Asynchronous action to check if the Play site is online

Uses the Action.async
builder to create an
asynchronous action

Maps the resulting Future
to produce a Result

112 CHAPTER 5 Futures

def echoPath = Action { implicit request =>
Ok(s"This action has the URI ${request.path}")

}

The next action, however, is problematic, given its use of the blocking java.io.File
API:

def listFiles = Action { implicit request =>
val files = new java.io.File(".").listFiles
Ok(files.map(_.getName).mkString(", "))

}

Here the java.io.File API is performing a blocking I/O operation, which means that
one of the few threads of Play’s web worker pool will be hijacked while the OS figures
out the list of files in the execution directory. This is the kind of situation you should
avoid at all costs, because it means that the worker pool may run out of threads.

 Realizing when code is blocking is one of the more important aspects of writing
reactive web applications. Many database drivers, for example, are still blocking, and
you’ll see in chapter 7 how to deal with this.

REACTIVE AUDIT TOOL The reactive audit tool, available at https://github.com/
octo-online/reactive-audit, aims to point out blocking calls in a project.

RESILIENT ASYNCHRONOUS ACTIONS

Because futures have a built-in mechanism for failure recovery, it’s only natural to
apply it to asynchronous actions.

Custom error handlers
As you saw in chapter 4, Play has a default error-handling mechanism that can be cus-
tomized, such as by extending the DefaultHttpErrorHandler. In some cases, however,
it may be useful to configure custom handlers, such as when you’re building a REST
API. In this situation it’s useful to centralize the error handling in one method.

def authenticationErrorHandler: PartialFunction[Throwable, Result] = {
case UserNotFoundException(userId) =>
NotFound(

Json.obj("error" -> s"User with ID $userId was not found")
)

case UserDisabledException(userId) =>
Unauthorized(

Json.obj("error" -> s"User with ID $userId is disabled")
)

case ce: ConnectionException =>
ServiceUnavailable(

Listing 5.7 Custom error handler attached to a set of futures

Defines an error handler as a partial
function taking as input a Throwable

and producing a recovered Result

Addresses the
UserNotFound-

Exception, which
will yield a 404

Not Found result

Addresses the
UserDisabledException, which will

yield a 401 Unauthorized result

Addresses the
ConnectionException,
which will yield a 503

Service Unavailable
result

https://github.com/octo-online/reactive-audit
https://github.com/octo-online/reactive-audit

113Working with futures

Json.obj("error" -> "Authentication backend broken")
)

}

val authentication: Future[Result] = ???

val recoveredAuthentication: Future[Result] =
authentication.recover(authenticationErrorHandler)

In this example, you define one common recovery handler that knows how to deal
with different types of exceptions that may arise when invoking an authentication ser-
vice. Encapsulating this recovery mechanism in a partial function allows it to be
reused. For example, if you were to allow different authentication possibilities using
an email-password combination or a social network authentication mechanism, you
could use the same recovery handler in all cases.

CHAINING RECOVERY HANDLERS It’s possible to chain multiple recovery han-
dlers by calling recover multiple times. This way, you can define “last resort”
handlers and apply them after your existing handlers in case a more severe
error occurs.

Properly handling timeouts
When working with third-party services, it’s a good idea to cap the maximum time a
request can take, and to fall back to another behavior instead of keeping the user wait-
ing for a long time (2 minutes by default in Play). In an ideal world, everything would
run quickly and smoothly, but as we discussed at length in chapter 1, we don’t live in
an ideal world. The internet is a dangerous place, and calls to remote services may
time out.

 Listing 5.8 explicitly declares how long we’re willing to wait for a service to answer
and defines an alternative response in case of timeouts, allowing the client to respond
appropriately (perhaps by retrying the authentication call after some delay).

import play.api.libs.concurrent.Promise
import scala.concurrent.duration._

case class AuthenticationResult(success: Boolean, error: String)

def authenticate(username: String, password: String) = Action.async {
implicit request =>
val authentication: Future[AuthenticationResult] =

authenticationService.authenticate(username, password)
val timeoutFuture = Promise.timeout(

"Authentication service unresponsive", 2.seconds
)
Future.firstCompletedOf(

Seq(authentication, timeoutFuture)
).map {

Listing 5.8 Handling timeouts

Executes a method that should yield
an authentication Result (the ???
marker is valid Scala syntax and will
throw a scala.NotImplementedError
if executed)

Plugs the
recovery

handler into
the future
using the

recover
method

Creates a
Promise

that times
out after

2 seconds
Calls whichever of the two
futures completes first

114 CHAPTER 5 Futures

case AuthenticationResult(success, _) if success =>
Ok("You can pass")

case AuthenticationResult(success, error) if !success =>
Unauthorized(s"You shall not pass: $error")

case timeoutReason: String =>
ServiceUnavailable(timeoutReason)

}
}

PROMISES The Promise used in the previous example is a utility provided by
Play and shouldn’t be confused with a Scala Promise, which would be of type
scala.concurrent.Promise.

CORRECTLY CONFIGURING AND USING EXECUTION CONTEXTS

As I briefly mentioned earlier, Play has a default execution context for the application that
can be imported using the import play.api.libs.concurrent.Execution.Implicits._
statement. This is not to be confused with Scala’s global execution context defined in
scala.concurrent.ExecutionContext.Implicits.global. Play’s default execution con-
text is backed by an Akka dispatcher and is configured by Play itself.

AKKA DISPATCHERS Akka is a toolkit for concurrent programming. We
already used Akka actors in chapter 2 and we’ll talk about them in chapter 6.
But Akka is not limited simply to actors. One of the other tools it provides is
dispatchers, which provide a way to configure diverse thread execution strate-
gies in detail. Play uses this configuration facility to configure its own web
worker pool.

Because Play follows the evented server model, the number of hot threads available
on the default execution context is relatively limited. By default, the dispatcher is set
up to create one thread per CPU core, with a maximum of 24 hot threads in the pool,
as shown in the following extract from Play’s reference configuration:

akka {
actor {
default-dispatcher {

fork-join-executor {
parallelism-factor = 1.0
parallelism-max = 24
task-peeking-mode = LIFO

}
}

}
}

This configuration is well suited if the application is built in a truly asynchronous man-
ner, without blocking I/O or CPU operations (long computations are blocking in the
sense that they keep the CPU busy for a long time, compared to traditional opera-
tions). Given that a maximum of 24 hot threads is allowed in the pool, it’s easy to
imagine what happens if just one action misbehaves under load.

115Working with futures

 For your reactive application to perform well under load, it’s important to ensure
that your application is entirely asynchronous, or, if that isn’t possible, to adopt a dif-
ferent strategy for dealing with blocking operations. Let’s look at a few scenarios.

Falling back to a threaded model
If you’re in a situation where much of your code is synchronous, and you can’t do
much about it or don’t have the resources to do so, the easiest solution might be to
give up and fall back to a model with many threads. Although this is likely not the
most appealing of solutions because of the performance loss incurred by context
switching, this approach may come in handy for existing projects that haven’t been
built with asynchronous behavior in mind. In practice, configuring your application
for this approach can provide it with the necessary performance boost while giving
the team time to change to another approach.

 To configure Play for a highly synchronous application, all you need to do is
increase the number of threads:

akka {
akka.loggers = ["akka.event.slf4j.Slf4jLogger"]
loglevel = WARNING
actor {
default-dispatcher = {

fork-join-executor {
parallelism-min = 300
parallelism-max = 300

}
}

}
}

This configuration creates a pool of 300 threads, which should be enough for most
synchronous operations. By comparison, Tomcat has 200 threads in its worker pool by
default. Chances are high that the performance of such an application won’t be as
good as a purely asynchronous application with a much smaller pool, but this
approach might be helpful if there’s no other option or you don’t have high perfor-
mance requirements.

MEMORY USAGE Increasing the number of threads available also increases
the amount of memory the application needs.

Specialized execution contexts
It’s common to have an application that’s mostly asynchronous, except for a few
expensive CPU operations or calls to synchronous libraries. If you can identify the spe-
cial cases that require blocking access, a good approach is to configure a few capped
execution contexts, and use them in those places.

BLOCKING DATABASE DRIVERS Accessing databases with blocking drivers
(which still includes most JDBC drivers) is another case, and we’ll talk about
that in chapter 7.

116 CHAPTER 5 Futures

Deciding what execution contexts to create and how to cap them isn’t the easiest task,
and there’s little sense in trying to go about it until the application reaches a certain
size and complexity and reveals potential bottlenecks. After all, it’s hard at design time
to predict exactly which libraries will cause trouble, because there’s often no strict
plan as to which libraries will be used to build an application. Note that this kind of
fine-grained execution context configuration affects only small portions of an entire
application, as opposed to upfront infrastructure decisions such as which database to
use. Those important decisions need to be taken up front and should have an overall
impact on the execution context configuration.

 For example, let’s say your application makes use of a graph database to gener-
ate a specialized kind of report, and it uses a third-party service for resizing images.
Those libraries might be performing blocking I/O operations, so it may be a good
idea to isolate their impact on the default pool so they don’t affect the performance
of the application.

 The first thing you need to do is configure those contexts accordingly in conf/
application.conf.

contexts {
graph-db {

thread-pool-executor {
fixed-pool-size = 2

}
}
image-resizer {

thread-pool-executor {
core-pool-size-factor = 10.0
max-pool-size-max = 50

}
}

}

Next, you need to materialize those execution contexts in your application, such as in
a Contexts object.

object Contexts {
val graphDb: ExecutionContext =
Akka.system.dispatchers.lookup("contexts.graph-db")

val imageResizer: ExecutionContext =
Akka.system.dispatchers.lookup("contexts.image-resizer")

}

Finally, you can use the context in the places where they were designed to be used. We
were talking about querying a graph database and resizing images using a specialized
service—let’s look at how you would use your custom context in the reporting service.

Listing 5.9 Custom execution context configuration in conf/application.conf

Listing 5.10 Declaring custom execution contexts

Uses the thread-pool-
executor for the pool

Defines the number
of threads

Defines the core pool size factor; the
number of threads will be a multiple of
the number of cores and this factormax-pool-size-max = 50

117Working with futures

def complexReport: Future[Report] = Future {
val reportData = queryGraphDb()
makeReport(reportData)

}(Contexts.graphDb)

To cap the size of a custom execution context, it’s useful to consider the use case and
the hardware the application will be running on.

 First, it’s always good to keep the number of threads as low as possible to reduce
the amount of context switching and to save some memory. It’s also good to consider
what happens when the pool is exhausted. In the case of a report that’s only used by a
few power users a few times a month, waiting a little while for a report may not be too
dramatic. On the other hand, a function that allows new users to resize their profile
pictures needs to be available and quick.

 If we assume that our hypothetical application will be deployed on a machine with
a quad-core CPU, we’ll start with 40 threads available for the image-resizing process dur-
ing signup (given that the preceding code sets up a factor of 10.0, which is the number
of threads per core used by the thread pool). If the image-resizing process takes 1 sec-
ond, we can perform 40 resizes per second, with a limit of 50 resizes per second in total
(given the max-pool-size-max value) for one machine.

 If we were to launch our new application with four machines, we’d have a band-
width of 200 concurrent resizes at the start. Even if more than 200 users signed up at
the same time, they probably wouldn’t upload their profile pictures at the same time,
so the number of effective users that can sign up at once is likely more than 200,
which might be sufficient.

 If the application were to go viral and we had many more users signing up at the
same time, we’d need to be prepared to scale out elastically onto more nodes. We’ll
discuss this topic in chapter 9.

Listing 5.11 Using a custom execution context

Wraps the otherwise synchronous
code in a future so it will be run
on a different execution context

Runs the long and
expensive query

Explicitly uses the
appropriate execution
context to run the future

Execution contexts and virtualized environments
If your application is going to be deployed on a cloud infrastructure platform, it will be
trickier estimating a good thread pool size, because you can no longer be sure wheth-
er the cores on the machine are real or virtual. Capping a thread pool under the as-
sumption that you have a quad-core CPU might have nasty side effects on the
performance of your application if in reality there are only two cores on the machine.
It’s a good idea to start by experimenting with the deployment before running a pro-
duction application on virtual-ized infrastructure.

118 CHAPTER 5 Futures

Bulkheading based on business functions
Depending on the nature of your application, you may take a different approach to
organizing your execution contexts and use the bulkhead pattern we briefly men-
tioned in chapter 1. In this approach, instead of dedicating specialized contexts to
technical aspects (database, special third-party services, and so on), you set up con-
texts based on the functionality of your application.

 In figure 5.3, you can see the different business concerns of an e-commerce site.
It’s these concerns that the application’s context configuration will be based on. In
such a setup, each module uses its own dedicated context across all the technical
stack, including blocking database calls or blocking third-party calls.

 Setting up such a configuration and using it consistently across the application
takes more effort up front, but the advantage is that critical services can’t be affected
by resource exhaustion caused by other services. For example, a bug in the reporting
module that eats up many threads won’t be able to affect the payment service.

Capping execution context sizes
To figure out how to cap a custom execution context, you can use the following guidelines:

■ Keep in mind that your aim is to protect the overall application from resource
exhaustion.

■ Consider the consequences of exhaustion for that specific context.
■ Know the hardware you’re running on, and specifically how many cores you have

at your disposal.
■ Be aware of the maximum time that tasks running on this context may require.

Website

Order
placement

Payment
service

Invoicing
service

Order
fulfillment

User
registration

service

Product
management

Back-office
interface Reporting

Figure 5.3 Organizing contexts with bulkheads based on the functionality of an e-commerce site

119Working with futures

5.1.3 Testing futures

Services that return future results are a bit more tricky to test than plain old synchro-
nous results. Luckily most testing libraries have accepted that futures are here to stay
and have included a few useful helpers. In the following examples we’ll look at how
you can test futures with the specs2 library (http://etorreborre.github.io/specs2/),
which is bundled by default with Play.

WHICH BEHAVIOR TO TEST

Before looking into implementing tests with specs2, let’s take a moment to consider
what behavior we’d like to test. After all, a future is a special abstraction that’s directly
related to the passage of time. In this respect, we may want to test more than just the
usual cases we’d test for synchronous code (more than whether a service responds to a
certain set of timing constraints, for example). Figure 5.4 shows the different proper-
ties of an asynchronous service implemented with futures that we may want to test.

 Synchronous services are mainly tested for the correctness of their behavior B—
whether they behave as expected for a certain set of inputs. In contrast, asynchronous
services also need to be tested for timeliness C. This behavior can, in turn, be influ-
enced by the timeliness of external dependencies, so a third behavior to test is how
services respond to delays in those dependencies D.

HOW TO USE SPECS2 TO TEST FUTURES

To make it easy to test futures, you should make the execution context configurable.
This is good practice for working with futures in general.

trait AuthenticationService {
def authenticateUser(email: String, password: String)
(implicit ec: ExecutionContext): Future[AuthenticationResult]

}

When using specs2’s support for futures, a single-threaded executor is used for the
tests, available by default in the tests. It’s possible to override this configuration or to
pass in a specialized executor depending on the test case.

Asynchronous service

Input

Failure

Asynchronous service

Input

Failure to
respond in time

Failure to take
into account untimely

response of a
dependency

Asynchronous service Dependency

Input

Figure 5.4 Asynchronous services require testing for more types of behavior than whether they do
the right thing. You also need to make sure they do the right thing at the right time.

http://etorreborre.github.io/specs2/

120 CHAPTER 5 Futures

Let’s write a few tests for the authentication service.

import scala.concurrent.duration._

class AuthenticationServiceSpec extends Specification {

"The AuthenticationService" should {
val service = new DefaultAuthenticationService

"correctly authenticate Bob Marley" in {
implicit ee: ExecutionEnv =>

service.authenticateUser("bob@marley.org", "secret")
must beEqualTo (AuthenticationSuccessful).await(1, 200.millis)

}

"not authenticate Ziggy Marley" in { implicit ee: ExecutionEnv =>
service.authenticateUser("ziggy@marley.org", "secret")
must beEqualTo (AuthenticationUnsuccessful).await(1, 200.millis)

}

"fail if it takes too long" in { implicit ee: ExecutionEnv =>
service.authenticateUser("jimmy@hendrix.com", "secret")
must throwA[RuntimeException].await(1, 600.millis)

}

}
}

A nice feature of specs2 is that all the usual matchers (beEqualTo, throwA, and so on)
are available when working with futures. The only change compared to the usual use
of specs2 matchers is that the last part of the assertion statement that uses a matcher
needs to be suffixed with await, optionally indicating the number of retries and the
timeout duration.

 Testing individual futures is useful when writing unit tests. We’ll talk in depth
about testing an entire reactive web application in chapter 11.

5.2 Designing asynchronous business logic with futures
Futures are a great tool, but using them efficiently requires a bit of planning and
thinking ahead. In the following sections we’ll build the functionality for a service that
provides statistics to Twitter users regarding their follower and friend counts. The sim-
ple service that we’ll build is shown in figure 5.5.

 When asked to do so by a user, the service will look up the latest follower and
friend counts using the Twitter API, compare that result to previous counts stored in a
database, and finally publish a message telling the user how their statistics changed
compared to last time. It will also save the new counts in the database to respond to
future requests.

Listing 5.12 Testing futures with specs2

spec2’s
ExecutionEnv

provides an
execution

context for
executing

futures.

The await method
turns any normal

matcher for type T
into a matcher for

Future[T].

The throwA matcher
tests if a future fails.

121Designing asynchronous business logic with futures

5.2.1 Identifying parallelizable elements

If we were to implement the steps required for the service to function in a naive,
straightforward way, we might end up with something like figure 5.6.

 The time that the entire process takes to execute is called latency, and it’s deter-
mined by adding the duration of each of the sequential steps. Our goal is to reduce
the latency to make for happier users, as they’ll get a faster answer.

FINDING THE RIGHT LEVEL OF GRANULARITY Notice how each step of figure 5.6
does one thing only. I didn’t group seemingly related items into one step,
such as “Fetch the previous counts from the database and save the new ones.”
What we really want to achieve at this stage is to cut the entire process into
steps that are as small as possible and that have the same level of granularity.
Once we understand the nature of each step and how they can be rearranged,
we may be able to optimize the process by combining closely related steps.

Once the process is divided into separate pieces, we can put on our asynchronous
glasses and identify those elements that perform I/O or network operations. We want
to identify those steps first because they’ll give us a good indication of what elements
need to run asynchronously. Remember, we don’t want those operations to block a
thread while it waits for them to complete. Looking at figure 5.6, it’s easy to see that

Fetch latest
counts

from Twitter

Fetch
previous

counts from
database

Answer
the user

Store new
counts in
database

Statistics service

Calculate
change

User asks
for stats

+/–

Twitter

Figure 5.5 A Twitter statistics service that
informs users of changes in their follower
and friend counts

Get latest user
counts from

the database

Get the latest
followers and
friends counts

through the
Twitter API

Calculate
the change

Store the new
counts to

the database

Send the user a
message using
the Twitter API

Latency

Figure 5.6 The steps involved in the basic Twitter statistics reporting service, executed sequentially.
The total time all steps take to run is the latency.

122 CHAPTER 5 Futures

almost all the steps perform an I/O operation of some kind, except for the “calculate
the change” step, which is purely CPU-bound.

 To reduce the latency of the overall process, we want to execute as many of the
steps in parallel as possible. Ideally, all of our steps would run in parallel, because in
that case the latency of the entire process would be reduced to the execution duration
of the longest step. Amdahl’s law (http://en.wikipedia.org/wiki/Amdahl’s_law)
shows in detail how the speed of a process is affected by the degree of parallelization
of its individual steps (see figure 5.7).

 Let’s get back to our Twitter statistics service and take a critical look at the steps to
see what we could possibly parallelize. For our rather simple use case, you probably
can already see some of the dependencies between the steps. For example, we can’t
calculate the changes before having retrieved both the previous counts from the data-
base and the current counts from Twitter. This example is simple enough that you can
do this kind of dependency analysis, but it won’t always be this obvious for more com-
plex processes. Luckily, there’s a method to trying to parallelize as much as possible.

 Let’s write down all of our steps as pseudocode to clarify the inputs and outputs of
each step. Figure 5.8 shows the result.

Amdahl’s law

Number of processors

20.00

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
pe

ed
up

Parallel portion

50%
75%
90%
95%

Figure 5.7 Amdahl’s law shows that to obtain a high level of speedup, the individual steps of a process
need to have as high a degree of parallelism as possible.
By Daniels220 at English Wikipedia (Own work based on File:AmdahlsLaw.png) [CC BY-SA 3.0 (http://creativecom-
mons.org/licenses/by-sa/3.0)], via Wikimedia Commons.

http://creativecommons.org/licenses/by-sa/3.0
http://en.wikipedia.org/wiki/Amdahl’s_law

123Designing asynchronous business logic with futures

Once expressed in terms of inputs and outputs, the dependencies between the differ-
ent steps (which really are just functions) become much more obvious. By “unwind-
ing” these dependencies, we now can
represent a parallelized version of the
execution flow, as in figure 5.9.

GROUPING STEPS I’ve grouped the
two steps related to calculating the
changes and sending a message to
the user. This was possible for two
reasons: no other step was con-
suming the output of the “calculate
the change” step, and this step itself
is not asynchronous (as it is only
CPU-bound).

5.2.2 Composing the service’s futures

As you saw briefly in section 5.1.1, one of the most important features that the future
abstraction offers over the use of simple callbacks is the possibility to compose them.
In the following sections you’ll see how to make use of this property.

DEFINING SERVICE INTERFACES

To implement our service, we’ll use a few traits to describe the behavior of various
components. First, we need a way to store and to retrieve previously stored statistics.

trait StatisticsRepository {

def storeCounts(counts: StoredCounts)
(implicit ec: ExecutionContext): Future[Unit]

Listing 5.13 Interface of the repository used to store and retrieve statistics locally

def retrievePreviousCountsFromDatabase(userName):
 (previousFollowersCount, previousFriendsCounts)

def fetchRelationshipCountFromTwitter(userName):
 (currentFollowersCount, currentFriendsCount)

def storeCounts(
 userName, currentFollowersCount, currentFriendsCount

)
def calculateChange(
 previousFollowersCount, previousFriendsCounts,
 currentFollowersCount, currentFriendsCount):
 (followersDifference, friendsDifference)

def sendMessageToUser(
 userName, followersDifference, friendsDifference

)

Figure 5.8 Pseudocode that clarifies dependencies among the steps

Method to store newly
retrieved counts

Get latest user counts
from the database

Calculate the change
and send the user a
message through

the Twitter API

Store the new counts
to the database

Get the latest
followers and friends

counts through
the Twitter API

Figure 5.9 Parallelized version of the Twitter statis-
tics service process

124 CHAPTER 5 Futures

def retrieveLatestCounts(userName: String)
(implicit ec: ExecutionContext): Future[StoredCounts]

}

case class StoredCounts(
when: DateTime,
userName: String,
followersCount: Long,
friendsCount: Long

)

Next, we need a means of communicating with Twitter to retrieve the current status of
followers and friends, and to send messages to our users.

trait TwitterService {

def fetchRelationshipCounts(userName: String)
(implicit ec: ExecutionContext): Future[TwitterCounts]

def postTweet(message: String)
(implicit ec: ExecutionContext): Future[Unit]

}

case class TwitterCounts(followersCount: Long, friendsCount: Long)

Last but not least, let’s create a simple interface for our core statistics service.

trait StatisticsService {
def createUserStatistics(userName: String)
(implicit ec: ExecutionContext): Future[Unit]

}

In this last interface method, the return type is a rather awkward Future[Unit]. The
truth is, however, that this service method won’t return any useful value. It will per-
form a (rather useful) side effect by retrieving data and sending it off again, but it
won’t provide any useful data as result of the execution, so there’s no reason to define
a return type. If anything, defining a return type might be more confusing than help-
ful: at least when a method returns a Unit or Future[Unit], it’s clearly stating “I am a
side-effecting method.” You might say that it could be useful to indicate whether the
execution succeeded or not, which is a valid point; we’ll talk about how to deal with
failure shortly.

Listing 5.14 Interface for communicating with the Twitter API

Listing 5.15 Simple interface for our statistics service

Method to retrieve
the most recent
entry

Case class holding follower
and friend counts at a given
time for a given user

Method to fetch latest follower and
friend counts from Twitter

Method to
post a tweet

Case class holding
the latest counts

125Designing asynchronous business logic with futures

 As you may have noticed, all of our defined methods expect an implicit Execution-
Context parameter to be available when they’re called. This is in line with what we dis-
cussed in section 5.1.1: we shouldn’t tightly couple the execution of asynchronous
methods to a fixed execution context. We want to be able to easily switch out which con-
figuration we’ll use in practice.

 Now that we have our most important interfaces ready, let’s move on and use
them! We won’t look at the detailed implementations of the interfaces in this chapter,
but you can check the book’s source code if you’re interested.

RETRIEVING THE COUNTS

The first thing we need to do to calculate the statistics for a user is retrieve the previ-
ous and current counts of followers and friends. We’ll do this by using the statistics
repository and the Twitter service we previously defined, as shown in figure 5.10.

class DefaultStatisticsService(
statisticsRepository: StatisticsRepository,
twitterService: TwitterService) extends StatisticsService {

override def createUserStatistics(userName: String)
(implicit ec: ExecutionContext): Future[Unit] = {

val previousCounts: Future[StoredCounts] =
statisticsRepository.retrieveLatestCounts(userName)

val currentCounts: Future[TwitterCounts] =
twitterService.fetchRelationshipCounts(userName)

val counts: Future[(StoredCounts, TwitterCounts)] = for {
previous <- previousCounts
current <- currentCounts

} yield {

Listing 5.16 Retrieving the previous and current counts in parallel

Get latest user counts
from the database

Calculate the change
and send the user a
message through

the Twitter API

Get the latest
followers and friends

counts through
the Twitter API

Store the new counts
to the database

Figure 5.10 First step: retrieving the counts
from Twitter and the local database

Calls the methods to
retrieve previous
and current counts
so that they start
their execution

Uses a for comprehension to run
the futures concurrently

126 CHAPTER 5 Futures

(previous, current)
}

Future.successful({})
}

This first step isn’t too complicated. All you need to do is call the respective services to
retrieve past and current counts. What’s important here is to declare the futures up
front, before the for comprehension. As I mentioned at the start of this chapter in
section 5.1.1, a future starts executing as soon as it’s declared.

 It would be tempting to shorten the code and write the following:

val counts: Future[(StoredCounts, TwitterCounts)] = for {
previous <- statisticsRepository.retrieveLatestCounts(userName)
current <- twitterService.fetchRelationshipCounts(userName)

} yield {
(previous, current)

}

What would happen in this case, however, is quite the opposite of what you want to
achieve: the first generator of the for comprehension would wait until the future is
completed before it moves on to the second one, ruining your attempt to run the two
methods in parallel.

USING THE COUNTS

The second part of our service method will deal with storing the newly acquired counts
in the database for later reuse, as well as informing the user about their statistics (see fig-
ure 5.11). Just as in the first step, we’d like these operations to be run in parallel. What
makes the second step more interesting than the first is that our input is already a
future, and the operations we’ll run are also going to be generating future results. If

Groups the results in a tuple

For now, returns a
successful Unit result so
the method will compile

Get latest user counts
from the database

Calculate the change
and send the user a
message through

the Twitter API

Get the latest
followers and friends

counts through
the Twitter API

Store the new counts
to the database

Figure 5.11 Second step: saving the new
counts and sending a message to the user

127Designing asynchronous business logic with futures

we’re not careful, we’ll end up having imbricated futures, which is not a nice situation
to be in.

 Instead of concerning ourselves with this issue, let’s move on for the moment and
implement the two remaining steps—we’ll come back and fix this composition issue
later on.

def storeCounts(counts: (StoredCounts, TwitterCounts)): Future[Unit] =
counts match { case (previous, current) =>
statisticsRepository.storeCounts(StoredCounts(

DateTime.now,
userName,
current.followersCount,
current.friendsCount

))
}

def publishMessage(counts: (StoredCounts, TwitterCounts)):
Future[Unit] =
counts match { case (previous, current) =>

val followersDifference =
current.followersCount - previous.followersCount

val friendsDifference =
current.friendsCount - previous.friendsCount

def phrasing(difference: Long) =
if (difference > 0) "gained" else "lost"

val durationInDays =
new Period(previous.when, DateTime.now).getDays

twitterService.postTweet(
s"@$userName in the past $durationInDays you have " +
s"${phrasing(followersDifference)} $followersDifference " +
s"followers and ${phrasing(followersDifference)} " +
s"$friendsDifference friends"

)
}

You now have two methods, each one dealing with one step. As I mentioned before,
these two methods are themselves asynchronous and consume the output of asynchro-
nous methods, so their result is in the future of the future, as illustrated in figure 5.12.

Listing 5.17 Methods to store the fresh counts and publish a statistics message

Takes the tuple of counts as input
and matches against it to easily
extract and work with them

Computes the
differences of followers,
friends, and elapsed
time as part of the
message publishing

Mentions the user
on Twitter to attract
their attention

def counts: Future[(StoredCounts, TwitterCounts)]

def storeCounts:
Future[Unit]

def publishMessage:
Future[Unit] Figure 5.12 Results of

the storeCounts and
publishMessage futures
are dependent on future re-
sults themselves and are
therefore nested.

128 CHAPTER 5 Futures

Luckily for us, we have a tool that lets us flatten out this imbrication: flatMap. As you
may remember from chapter 3, flatMap does the same thing as map in that it applies a
function to each element of a structure (in our case, the result of the first future) and
then flattens out the chain. Let’s use this to combine our two steps.

// first group of steps: retrieving previous and current counts
val previousCounts: Future[StoredCounts] =

statisticsRepository.retrieveLatestCounts(userName)
val currentCounts: Future[TwitterCounts] =

twitterService.fetchRelationshipCounts(userName)

val counts: Future[(StoredCounts, TwitterCounts)] = for {
previous <- previousCounts
current <- currentCounts

} yield {
(previous, current)

}

// second group of steps: using the counts in order to store them
// and publish a message on Twitter
val storedCounts: Future[Unit] = counts.flatMap(storeCounts)
val publishedMessage: Future[Unit] = counts.flatMap(publishMessage)

for {
_ <- storedCounts
_ <- publishedMessage

} yield {}

Here you use flatMap in combination with the result of the first for comprehension
to get rid of nesting. You then combine both resulting futures (storedCounts and
publishedMessage) into one using another for comprehension. This way you can
return a single Future[Unit] from your method, which will be useful when it comes
to error handling.

5.2.3 Propagating and handling errors

Our service is now ready to be released in the wild and used. Or is it? One thing we
haven’t dealt with yet are all the different things that could go wrong:

■ The database might not be reachable.
■ The Twitter API might not be reachable (because of a network problem or

because the credentials don’t work or aren’t defined).
■ The user might not exist on Twitter.

These are but a few of the issues a user could encounter while using our service. In
fact, more often than not, we’re oblivious to how exactly our program may fail.
Instead of trying to catch exceptions early on and handle them on the spot, another

Listing 5.18 Combining both steps

Combines the results of the first
step into one as soon as both

futures are availableUses flatMap
to consume

the result of
the first step

and avoid
nesting

Combines the
execution of
both futures

into one

The underscore notation means
that you don’t care about the
result of this generator statement,
but you want it to be executed.Returns a Unit result

129Designing asynchronous business logic with futures

approach enabled by the use of futures is to let them propagate along the asynchro-
nous execution chain, as illustrated in figure 5.13.

 What we’ve done so far combines futures through various means (for comprehen-
sions and flatMap), which means that the final result we get from our service will
carry any exception that may occur along the path. Rather than starting the recovery
early in the chain, we can deal with it at the very end.

IDENTIFYING DIFFERENT TYPES OF ERRORS

For our recovery mechanism to take the appropriate actions or to at least provide the
user with an accurate error message, it must be able to identify errors correctly. Even if
we don’t deal with the errors right away, we need to make sure they’re encoded appro-
priately. Let’s look at an example in an implementation of the StatisticsRepository
that uses the ReactiveMongo driver (http://reactivemongo.org), as shown in the fol-
lowing listing (the full example is in the source code for this chapter).

WHY MONGODB? You might wonder why I’m using MongoDB here. The pri-
mary reason is simply that its asynchronous driver (ReactiveMongo) is mature
and a good fit for the subject matter of this chapter. Furthermore, it has a
simple query API and it’s easily available on various platforms, which should
make it easy to use.

class MongoStatisticsRepository @Inject()
(reactiveMongo: ReactiveMongoApi) extends StatisticsRepository {
private val StatisticsCollection = "UserStatistics"

private lazy val collection =
reactiveMongo.db.collection[BSONCollection](StatisticsCollection)

override def storeCounts(counts: StoredCounts)
(implicit ec: ExecutionContext): Future[Unit] = {
collection.insert(counts).map { lastError =>

Listing 5.19 Implementation of StatisticsRepository

Get latest user
counts from

the database

Database
unreachable

Failure

for
comprehension

for
comprehension

Resulting
future

flatMap

flatMap

Get the latest
followers and friends

counts through
the Twitter API

Store the new
counts to

the database

Calculate the change
and send the user
a message through

the Twitter API

Figure 5.13 If an exception should happen, it will be propagated along the chain of composed futures.

The insert method returns a
future containing the error
status returned by MongoDB.

http://reactivemongo.org

130 CHAPTER 5 Futures

if(lastError.inError) {
throw CountStorageException(counts)

}
}

}

override def retrieveLatestCounts(userName: String)
(implicit ec: ExecutionContext): Future[StoredCounts] = {
val query = BSONDocument("userName" -> userName)
val order = BSONDocument("_id" -> -1)
collection

.find(query)

.sort(order)

.one[StoredCounts]

.map { counts =>
counts getOrElse StoredCounts(DateTime.now, userName, 0, 0)

} recover {
case NonFatal(t) =>

throw CountRetrievalException(userName, t)
}

}
}

case class CountRetrievalException(userName: String)
extends RuntimeException("Could not read counts for " + userName)

case class CountStorageException(counts: StoredCounts)
extends RuntimeException

In the preceding example, there are three different cases of dealing with errors.
 The first case can occur when you’re trying to store new counts. The ReactiveMongo

API won’t throw an exception if an error occurs in that case. Instead, you proactively
check whether the returned error state is an error. If you’re not familiar with MongoDB,
this last statement may sound somewhat odd, but I assure you that I’m not making things
up. This is how the MongoDB error-reporting mechanism is designed. If you face an
error, you throw your custom CountStorageException containing the counts you
wanted to save, giving the client code that uses the service a chance to decide what to do.

 In the second case, the error is that you can’t find any counts for user. This will
happen the first time a user uses the service. Instead of treating this as an error case
and returning an exception, you simply pretend that all counts are at 0.

 Finally, in the third case, you explicitly recover any exception that may occur while
trying to query the database, and wrap it in a custom CountRetrievalException.

USING NONFATAL TO CATCH EXCEPTIONS You may have noticed that instead of
catching the exception directly in listing 5.19, you’re catching it while it’s
wrapped in scala.control.NonFatal. As a result, this won’t match errors like
VirtualMachineError, OutOfMemoryError, and StackOverflowError, as well
as special types of exceptions used for Scala’s control structures. These kinds
of errors and throwables should be escalated as far as possible, because
they’re pretty much impossible to recover from anyway.

If there’s an error, throw a
customized CountStorageException,
giving client code the chance to
decide what to do.

If no counts are found, don’t
treat this as an error. Instead

return an empty statistic.

Recovers any
exception
that may

occur from
attempting

to query
counts

The NonFatal matcher matches
any exceptions that aren’t fatal,
such as OutOfMemoryError and
other system-level exceptions.

131Designing asynchronous business logic with futures

RECOVERING IT ALL IN ONE PLACE

To shield the client code from everything that could go wrong in our Statistics-
Service, we should try to recover from exceptions. If there isn’t anything we can do,
we should fail with a message that’s easily usable outside.

 Let’s start by intercepting all the things that could go wrong and revisit the end of
our example from listing 5.18 using the mechanism outlined in the following listing.

class DefaultStatisticsService(
statisticsRepository: StatisticsRepository,
twitterService: TwitterService) extends StatisticsService {

// ...

val result = for {
_ <- storedCounts
_ <- publishedMessage

} yield {}

result recoverWith {
case CountStorageException(countsToStore) =>
retryStoring(countsToStore, attemptNumber = 0)

} recover {
case CountStorageException(countsToStore) =>
throw StatisticsServiceFailed(

"We couldn't save the statistics to our database. "
+ "Next time it will work!"

)
case CountRetrievalException(user, cause) =>
throw StatisticsServiceFailed(

"We have a problem with our database. Sorry!", cause
)

case TwitterServiceException(message) =>
throw StatisticsServiceFailed(

s"We have a problem contacting Twitter: $message
)

case NonFatal(t) =>
throw StatisticsServiceFailed(

"We have an unknown problem. Sorry!"
)

}

}

class StatisticsServiceFailed(cause: Throwable)
extends RuntimeException(cause) {

def this(message: String) = this(new RuntimeException(message))
def this(message: String, cause: Throwable) =
this(new RuntimeException(message, cause))

}
object StatisticsServiceFailed {

def apply(message: String): StatisticsServiceFailed =

Listing 5.20 Recovering failures before handing the result over to the service’s clients

Uses
recoverWith
to provide a

Future result
that can

handle an
exception

If you can’t store the
retrieved counts, retries

by calling a function

Recovers all
exceptions that
you don’t want
to handle and

returns a unified
exception

If you
 couldn’t recover the

CountStorageException,
apologizes here

Declares a custom
exception type that

provides a uniform view
on all known failures of

the statistics service

132 CHAPTER 5 Futures

new StatisticsServiceFailed(message)
def apply(message: String, cause: Throwable):

StatisticsServiceFailed =
new StatisticsServiceFailed(message, cause)

}

There are two things you can do with an exception that occurs. You can try to recover
from the failure and take measures to do so, or you can give up and pass the failure on
to your clients in a more presentable way. In the preceding example, you only try to
recover storage exceptions; for all other errors, you simply wrap them in a special kind
of exception and provide a human-readable message. This way, anyone using the ser-
vice doesn’t need to concern themselves with the underlying technical cause of the
failure, which isn’t likely to be very relevant for the user anyway.

 To recover from storage exceptions, you retry storing a few times, using the
retryStoring function.

private def retryStoring(counts: StoredCounts, attemptNumber: Int)
(implicit ec: ExecutionContext): Future[Unit] = {
if (attemptNumber < 3) {

statisticsRepository.storeCounts(counts).recoverWith {
case NonFatal(t) => retryStoring(counts, attemptNumber + 1)

}
} else {

Future.failed(CountStorageException(counts))
}

}

This function tries to store the counts again, and calls itself in case of failure. After
three attempts it gives up and fails with the same type of exception that the storage
repository returned. This is why you also check for this kind of exception in the
recover part of listing 5.20.

5.3 Summary
Throughout this chapter, you’ve seen how futures work in theory and in practice.
Most importantly, you’ve seen that

■ Futures can either succeed or fail, and failures are propagated up a chain of
futures.

■ Futures can be composed, which is essential for building more-complex asyn-
chronous tasks.

■ Working with futures requires you to handle timeouts, and that should be
tested for, to ensure that an asynchronous service is resilient.

Listing 5.21 Recursive function that attempts to store counts three times before giving up

Attempts to store
the counts 3 timesCalls the

storage
function

again and
recovers
the call

Recurses by calling the
retryStorage method

itself and increases
the retry count

If things don’t
work, fails with
the initial kind

of exception

133Summary

In addition to learning about the fundamentals of futures, we discussed how to best
use them in the context of Play and how to configure the execution contexts of the
framework to ensure the smooth execution of the application. In particular, it is essen-
tial to

■ Be aware that blocking operations have an impact on Play’s default minimal
thread pool. They should be executed on specialized thread pools or the con-
figuration should be adapted to cater to a mostly synchronous application.

■ Avoid hardcoding the execution context used in the application by importing
execution contexts; instead, define them as implicit parameters on service
interface functions.

■ Think ahead about which strategy you want to employ when it comes to the
configuration and layout of an application’s execution contexts.

In the next chapter, we’ll look at another essential tool for building complex asyn-
chronous applications: actors.

134

Actors

The actor-based concurrency model1 was popularized by the Erlang programming
language and is implemented on the JVM by the Akka concurrency toolkit (http://
akka.io). This chapter provides an introduction to the wonderful world of actors.
As you’ll see, actors are a very effective tool for building scalable and resilient appli-
cations. As Akka is available out of the box in Play, we can use it to implement
more-advanced asynchronous logic.

 Actors are a vast topic, and we’ll only look at the most important aspects to get
started using them. If you want to get a deeper understanding of actors, I recom-
mend looking at Akka’s excellent documentation (http://akka.io/docs) as well as at

This chapter covers
■ Creating actors and actor hierarchies
■ Sending messages and handling failure the

Akka way
■ Reacting to load with control messages and

circuit breakers

1 Carl Hewitt, Peter Bishop, and Richard Steiger, “A universal modular ACTOR formalism for artificial intel-
ligence,” in Proceedings of the 3rd international joint conference on artificial intelligence IJCAI’73 (Morgan Kauf-
mann Publishers, 1973), 235-245.

http://akka.io
http://akka.io
http://akka.io/docs

135Actor fundamentals

a book dedicated to the topic, such as Kuhn and Allen’s Reactive Design Patterns (Man-
ning, 2016) or Akka in Action by Roestenburg, Bakker, and Williams (Manning, 2016).

 In one way, the actor model is object orientation done right: the state of an actor
can be mutable but never exposed directly to the outside world. Instead, actors com-
municate with each other via asynchronous message passing, in which the messages
themselves are immutable. An actor can only do one of three things:

■ Send and receive any number of messages
■ Change its behavior or state in response to a message
■ Start new child actors

The actor decides what state it’s ready to share and when to mutate it. This model
makes it easier to write concurrent programs that aren’t riddled with race conditions
or deadlocks that are introduced by accidentally reading or writing outdated state or
using locks to avoid the latter.

6.1 Actor fundamentals
You’ve already worked with actors in chapters 2 and 4, using them to deal with Web-
Socket connections. So far the actors you’ve set up have been very simple, and we
haven’t spent much time explaining their different parts.

 In chapter 5 we built a workflow based on futures to calculate statistics about Twit-
ter followers. In this chapter we’ll expand on the idea of a Twitter analytics service.
This chapter’s version will use a combination of futures and actors, letting us take an
in-depth look at different ways actors can be used.

6.1.1 A simple Twitter analytics service

In this chapter we’ll build a simple service that provides users with basic analytics
about their activity on Twitter, as illustrated in figure 6.1. The first use case we’ll
explore is computing the “reach” of a tweet by looking at how many times it was
retweeted and how many people potentially saw it.

Is supervised by
Communicates with

Legend

StatisticsProvider

Storage

TweetReachComputer

UserFollowersCounter

StatisticsClient 1

StatisticsClient 2

StatisticsClient N

Figure 6.1 Overview of the Twitter analytics service workflow

136 CHAPTER 6 Actors

To provide a robust service, we’ll have to be able to deal with storage service problems
and take into account Twitter’s API rate limits.

 Actors should have a single responsibility, which makes them easy to implement
and understand. They should cooperate in groups to fulfill their mission, whatever
that may be. Table 6.1 lists the actors we’ll build.

In what follows, we’ll walk through each of the steps of building this service, first set-
ting up something barely functional and then improving on our implementation as
we go.

6.1.2 Laying out the foundation: actors and their children

At the core of our service will be the StatisticsProvider, which will receive the
requests from clients and see to it that those requests get fulfilled.

 Start by creating a new Play project with the Activator: run the activator new
twitter-service play-scala-2.4 command and the Play Scala template. Alterna-
tively, you could copy the structure of the example we created in chapter 4. In either
case, don’t forget to include the workaround for the OAuth bug mentioned in chap-
ter 2 by adding the following line to build.sbt:

libraryDependencies += "com.ning" % "async-http-client" % "1.9.29"

You’ll also need to declare the latest version of Akka as a dependency in build.sbt
because we’ll use a few of its features, along with the library for logging:

Table 6.1 Overview of the actors and their responsibilities

Actor Responsibilities Supervisor Talks with

StatisticsClient Represents a Web-
Socket client con-
nection, forwards
messages and
results

Actor
provided by Play
itself

StatisticsProvider

StatisticsProvider Supervises all sta-
tistics services and
forwards mes-
sages from clients

Akka User
Guardian

StatisticsClient,
TweetReachComputer

TweetReachComputer Computes the
reach of one tweet

Statistics-
Provider

StatisticsProvider,
StatisticsClient,
UserFollowersCounter,
Storage

UserFollowersCounter Provides the num-
ber of followers of
one user

Statistics-
Provider

TweetReachComputer

Storage Stores data Statistics-
Provider

TweetReachComputer

137Actor fundamentals

libraryDependencies +=
"com.typesafe.akka" %% "akka-actor" % "2.4.0",
"com.typesafe.akka" %% "akka-slf4j" % "2.4.0"

Once you’re set up, go ahead and create the scaffold of the StatistcsProvider.

package actors

import akka.actor.{Actor, ActorLogging, Props}

class StatisticsProvider extends Actor with ActorLogging {
def receive = {

case message => // do nothing
}

}
object StatisticsProvider {

def props = Props[StatisticsProvider]
}

Finally, for logging to work correctly, it requires a bit of configuration. First you need
to tell Akka where to log by adding the following configuration in conf/
application.conf.

akka {
loggers = ["akka.event.slf4j.Slf4jLogger"]
loglevel = "DEBUG"
logging-filter = "akka.event.slf4j.Slf4jLoggingFilter"

}

We’re using the SLF4J logger (http://slf4j.org) provided by Akka. Because Play already
includes logback (http://logback.qos.ch), we’ll use it as the SLF4J back end, which
means we need to configure it appropriately. Adjust the conf/logback.xml file that’s
generated when using the Activator, as follows.

<configuration>

<!-- ... -->

<logger name="play" level="INFO" />
<logger name="akka" level="INFO" />

Listing 6.1 Scaffold of the StatisticsProvider actor

Listing 6.2 Configuring logging bindings

Listing 6.3 Adjusting the logback configuration to display actor logs

Implements the Actor
 trait and mixes in the

ActorLogging trait, which
provides nonblocking

logging capabilities

Implements the
receive method,

which is the
only method an
actor needs to

implement

Handles any kind of
incoming message by
literally doing nothingDefines how the

actor can be
instantiated by

providing the
Actor’s Props

Logs the Play logs
at INFO level

Logs the Akka logs
at INFO level

http://slf4j.org
http://logback.qos.ch

138 CHAPTER 6 Actors

<logger name="application" level="DEBUG" />
<logger name="actors" level="DEBUG" />

<root level="ERROR">
<appender-ref ref="STDOUT" />

</root>

</configuration>

This configuration makes sure that log messages will be recorded for all the actors
we’re going to build in the actors package.

MAIN ACTOR CONCEPTS

Actors, just like cinematographic celebrities with their mobile phones, have the capa-
bility to send and receive messages. By default, messages are handled in the order
they’re received, and until they’re processed they queue up in the actor’s mailbox.
There are different types of mailboxes, with the default actor mailbox being
unbounded, which means that if messages aren’t dealt with fast enough and keep accu-
mulating, the application will eventually run out of memory. An example of two actors
communicating with each other is shown in figure 6.2.

 When you implement an actor, you don’t get direct access to the mailbox. The key
to communicating with the outside world is the partial function receive. As its name
indicates, this function receives incoming messages and the actor context (which can be
accessed through the context reference, as you’ll see later on). This context provides
the necessary means for communicating with the outside world. Actors are part of an
ActorSystem, which takes care of handling the resource management, allowing actors
to do their work.

 After it’s created, an actor will just wait for a message to come in, process it, and
then move on to the next message (or do nothing if the mailbox is empty). For actors
to process their messages, they need to have a dispatcher that will allow them to execute
the processing logic. A dispatcher is also an ExecutionContext, which means you can
use it to execute futures inside an actor (we’ll get to this later on). By default, the
same dispatcher will be used for the entire ActorSystem, and it will be backed by a
fork-join executor (the one we used in chapter 5).

Logs the application
logs at DEBUG level

Logs the actors
package logs at
DEBUG level

Actor A Actor B

Mailbox Mailbox

akka://application/user/actorA akka://application/user/actorB

ActorSystem “application”

Figure 6.2 Two actors com-
municating with each other,
each having its own mailbox
and actor reference

139Actor fundamentals

Actors aren’t threads, but they need threads to do their work. An actor is usually a
long-lived and very lightweight component that reacts to various events (represented
by incoming messages), and it will execute the work associated with those events using
threads. The default dispatcher uses a shared thread pool, and an actor will execute
its work using whatever thread the pool gives it. This separation between actor and
thread makes for good resource utilization: an actor that has no work to do won’t hold
on to any threads. There are also different types of dispatchers, such as the Pinned-
Dispatcher, which provides each actor with its own thread pool with a single thread in
it, ensuring that each actor will always have a thread ready and waiting when needed.
Which kind of dispatcher you use depends largely on the kind of work the actor sys-
tem does.

 Instead of an actor being exposed directly, it’s reached through its actor reference.
Like a phone number, the actor reference is a pointer to an actor. If the actor is
restarted (such as because of a crash) and replaced by a new incarnation, the reference
remains valid; it isn’t dependent on the identity of one particular incarnation. This is
just like when your expensive smartphone stops working after two years (shortly after
the warranty expires) and you replace it—none of the people trying to call you will be
affected by this change.

ADVANTAGES OF THE ACTOR REFERENCE It may not be entirely obvious why an
actor reference is used instead of talking to the actor directly. There are two
important advantages to this indirection. First, changes in the lifecycle of the
actor (such as an actor crashing) are hidden from anyone wanting to talk to
the actor. Second, because the only means of communicating with an actor is
via the actor reference, its methods can’t be called directly. This eliminates a
lot of non-thread-safe calls—the actor has full control over how its state is
affected when a message is received. It’s almost as if the inner workings of an
actor are taking place in a single-threaded environment.

At this point, our actor from listing 6.1 is just an actor class—we can’t yet talk to it.
Only once we start it will we be able to obtain an actor reference that will allow us to
communicate with it.

CREATING ACTORS

So far our actor doesn’t do anything. In fact, it doesn’t exist yet! We’ll let Play’s depen-
dency injection mechanism create it when the application is initialized by setting up a
module in app/modules/Actors.scala.

package modules

import javax.inject._
import actors.StatisticsProvider
import akka.actor.ActorSystem
import com.google.inject.AbstractModule

Listing 6.4 Creating the StatisticsProvider straight from the ActorSystem

140 CHAPTER 6 Actors

class Actors @Inject()(system: ActorSystem)
extends ApplicationActors {
system.actorOf(

props = StatisticsProvider.props,
name = "statisticsProvider"

)
}

trait ApplicationActors

class ActorsModule extends AbstractModule {
override def configure(): Unit = {

bind(classOf[ApplicationActors])
.to(classOf[Actors]).asEagerSingleton

}
}

You also need to enable the module in application.conf for Play to know about it:

play.modules.enabled += "modules.ActorsModule"

LETTING PLAY CREATE AND INJECT ACTORS Play’s dependency injection mecha-
nism allows it to create actors and inject actor references wherever needed.
You’ll see how to do this in chapter 7. Here we use the approach that you’d
take when working solely with Akka.

There are essentially two ways of creating an actor: either by asking the actor system to
create an instance, or by creating a child actor using an existing actor’s context.

 Actors don’t merely exist in the wild but instead are part of an actor hierarchy, and
each actor has a parent. Actors that you create are supervised by the user guardian of
the application’s ActorSystem, which is a special actor provided by Akka that’s respon-
sible for supervising all actors in user space. The role of a supervising actor is to
decide how to deal with the failure of a child actor and to act accordingly.

 The user guardian is supervised by the root guardian (which also supervises
another special actor internal to Akka), and the root guardian is itself supervised by a
special actor reference. Legend says that this reference was there before all other
actor references came into existence and that it’s called “the one who walks the bub-
bles of space-time” (if you don’t believe me, check the official Akka documentation).

ALWAYS AIM FOR A HIERARCHY You should be careful not to create too many
top-level actors in your application; otherwise, you lose the ability to control
supervision. Additionally, top-level actors are expensive to create because doing
so involves some synchronization on the user guardian’s end. Always aim at
designing an actor system with few top-level actors, and build up a hierarchy
inside one of your own actors so you are in full control of handling any failures.

Injects the
ActorSystem in the
module implementation
so it can create actors

Creates the
root actor

Defines a marker
trait for the
actor’s moduleImplements

the actor’s
Guice module

Defines the binding as eager, so it’s initialized
when the application is wired up and is
available to any component in the app

without explicitly depending on it

141Actor fundamentals

ACTORS ACROSS ACTOR SYSTEMS Actors inside of the same ActorSystem can
communicate with each other, and it’s possible to allow actors running on
separate JVMs to communicate with each other via remoting or clustering. In
those configurations, all the concepts that we’ve talked about are still valid,
and message passing happens using actor references regardless of where the
actors are running.

As you may have seen in listing 6.4, we’re not directly instantiating the Actor class;
instead we instruct Akka’s ActorSystem to do so using Props. Props are a way to tell Akka
how to initialize an Actor class, and they’re serializable. If your StatisticsProvider
class had any constructor parameters, the Props would look like this:

val extendedProps = Props(classOf[StatisticsProvider], arg1, arg2)

ACTOR LIFECYCLE

We’ve created a new actor and it happily hums along once Play is started. Don’t
believe me? Let’s make it talk!

 Override the preStart lifecycle method of the StatisticsProvider actor in app/
actors/StatisticsProvider.scala by adding the following snippet:

override def preStart(): Unit =
log.info("Hello, world.")

Now if you restart the application, you’ll see something along these lines on your console:

[INFO] [04/03/2015 07:44:47.026]
[application-akka.actor.default-dispatcher-2]
[akka://application/user/$a] Hello, world.

The actor emitting this message is running on default-dispatcher-2 and the abso-
lute actor path of the actor is akka://application/user/$a. The $a portion of the
name has been generated by Akka because we didn’t specify a name ourselves. Let’s
correct that by slightly altering listing 6.4:

val providerReference: ActorRef =
Akka.system.actorOf(
Props[StatisticsProvider], name = "statisticsProvider"

)

Where to put the props
When they get a bit more elaborate, it’s good practice to define the props in a com-
panion object alongside an actor class. Here’s an example:

object StatisticsProvider {
def props(arg1: String, arg2: Int) =
Props(classOf[StatisticsProvider], arg1, arg2)

}

142 CHAPTER 6 Actors

Upon restarting, the new path will be akka://application/user/statisticsProvider.
 The preStart method is just one of many lifecycle methods. The full list is shown

in table 6.2.

An actor is said to fail (or to crash) if it throws an exception. In this case, its supervisor
needs to decide what happens next, as you’ll see a bit later when we talk about actor
supervision.

CHILDREN OF AN ACTOR

Let’s lay out the foundation of our service by creating a few child actors. Just as you
created the StatisticsProvider, create the actor classes UserFollowersCounter,
TweetReachComputer, and Storage.

 To create the child actors, we’ll use the StatisticsProvider actor context.
Replace the existing preStart method with the following implementation.

var reachComputer: ActorRef = _
var storage: ActorRef = _
var followersCounter: ActorRef = _

override def preStart(): Unit = {
log.info("Starting StatisticsProvider")
followersCounter = context.actorOf(
Props[UserFollowersCounter], name = "userFollowersCounter"

)

Table 6.2 Actor lifecycle and methods involved

Phase Triggered by
Lifecycle methods

involved
Description

Start Call to actorOf preStart The actor’s path is reserved, the actor instance is cre-
ated, and the preStart hook is called.

Resume A supervisor, if it
decides to do so

If an actor crashes (by throwing an exception), the super-
vision process kicks in and the actor is suspended. The
supervisor may decide to resume an actor’s execution.

Restart A supervisor, if it
decides to do so

preRestart and
postRestart

The default behavior of a supervisor is to restart an actor
that fails. In this case, the actor path remains the same
and a new instance is created to replace the old one
(these are called incarnations of an actor). Messages in
the actor’s inbox are still there, but any state of the actor
instance is flushed out (because an entirely new instance
takes its place).

Stop Call to
context.stop()
or reception of a
PoisonPill

postStop When an actor is stopped, actors who watch the now-
stopped actor will receive a Terminated message.

Listing 6.5 Creating children during the startup of StatisticsProvider

143Actor fundamentals

storage = context.actorOf(Props[Storage], name = "storage")
reachComputer = context.actorOf(
TweetReachComputer.props(followersCounter, storage),
name = "tweetReachComputer")

)

}

Actors created using the context.actorOf method become children of that actor.
Inside a supervising actor, all children are accessible through the context.children
collection or by their name with the context.child(childName) method.

 The child actors need to be created in the preStart method of the parent actor to
ensure that they’ll be re-created if the parent actor crashes (when a parent crashes, all
children are terminated as well).

MESSAGE PASSING

The purpose of actors is to model asynchronous processes by passing messages. Like
humans in an organizational structure, actors pass each other information and react
to certain types of messages. Unlike humans, actors will only reply to the set of mes-
sages that are handled in their receive method. If no wildcard case has been defined,
they’ll boldly ignore a message for which no reaction has been defined, without so
much as a log message. (This behavior can be quite distressing when you’re getting
started with actors, so it’s a good idea to log any unhandled messages.) As you can see,
one of the most important tasks of building an actor system is getting the message pro-
tocol right.

We’ll start with a minimal protocol to model the most important interactions:

■ Between client and StatisticsProvider regarding the request to compute the
reach of a tweet

■ Between StatisticsProvider and UserFollowersCounter
■ Between StatisticsProvider and Storage

Dealing with unhandled messages
You can log any unhandled messages in an actor by overriding the unhandled meth-
od, like so:

class SomeActor extends Actor with ActorLogging {
override def unhandled(message: Any): Unit = {
log.warn(

"Unhandled message {} message from {}", message, sender()
)
super.unhandled(message)

}
}

144 CHAPTER 6 Actors

Create the app/messages/Messages.scala file with the following content.

package messages

case class ComputeReach(tweetId: BigInt)
case class TweetReach(tweetId: BigInt, score: Int)

case class FetchFollowerCount(user: String)
case class FollowerCount(user: String, followersCount: Int)

case class StoreReach(tweetId: BigInt, score: Int)
case class ReachStored(tweetId: BigInt)

As you can see, this minimal protocol consists of a set of request-response pairs, and
it’s very optimistic—there’s no message dealing with failure here (rest assured that
we’ll have to create a few of those cases as well).

IMMUTABILITY OF MESSAGES Messages sent from one actor to another should
be immutable; indeed, there’d be nothing more annoying than having the
contents of one message change “under the hood” when it has already been
sent to another actor. This would break the principle of encapsulation of
actor state, wherein only an actor can change its own state.

There are several ways to send messages from one actor to another:

■ tell (also known as !) sends messages in a fire-and-forget fashion, returning
right after the message has been sent. It’s by far the most popular means of
sending messages and it promotes loose coupling.

■ ask (also known as ?) returns a Future and expects an answer within a given
timeout (which must be provided). One popular use case is for communication
at the boundaries of the actor system, when a request sent by a non-actor can’t
be received through a receive method.

■ forward is like tell, but it will maintain the original sender of the message so
that the recipient can reply directly to it.

■ pipeTo is a special message-sending pattern that allows the result of a Future to
be sent to an actor upon completion. For this pattern to be available, you need
to import akka.pattern.pipe.

Let’s start sending messages around by implementing the core of our machinery, the
TweetReachComputer, illustrated in figure 6.3. Upon receiving a request to compute
the reach of a tweet from the StatisticsProvider C, we contact Twitter and fetch
the retweets D, and for each retweet, we fetch the followers count for each user F,
respond to the client J, and store the count 1).

Listing 6.6 Initial message protocol

145Actor fundamentals

Those actions are largely asynchronous, so in addition to dealing with asynchronous
message passing, we’ll also have to deal with futures inside of our actor. Let’s look at a
possible implementation of the TweetReachComputer.

class TweetReachComputer(
userFollowersCounter: ActorRef, storage: ActorRef

) extends Actor with ActorLogging {
implicit val executionContext = context.dispatcher

var followerCountsByRetweet =
Map.empty[FetchedRetweet, List[FollowerCount]]

def receive = {
case ComputeReach(tweetId) =>
fetchRetweets(tweetId, sender()).map { fetchedRetweets =>

followerCountsByRetweet =
followerCountsByRetweet + (fetchedRetweets -> List.empty)

fetchedRetweets.retweeters.foreach { rt =>
userFollowersCounter ! FetchFollowerCount(tweetId, rt)

}
}

case count @ FollowerCount(tweetId, _, _) =>
log.info("Received followers count for tweet {}", tweetId)
fetchedRetweetsFor(tweetId).foreach { fetchedRetweets =>

updateFollowersCount(tweetId, fetchedRetweets, count)
}

case ReachStored(tweetId) =>
followerCountsByRetweet.keys

.find(_.tweetId == tweetId)

Listing 6.7 Implementation of the TweetReachComputer’s core flow

Get reach

Get retweets

Retweets

TweetReachComputer UserFollowersCounter

StatisticsProviderStatisticsClient

Get reach

Get followers count

Followers count

Get
followers

count
Followers

count

Reach

Storage

Store reach

Reach stored

Twitter

Figure 6.3 The flow of actions required to compute the reach of a tweet

Passes the reference to other
actors as a constructor parameterUses the actor’s

dispatcher as an
ExecutionContext
against which to
execute futures

Sets up a cache to
store the currently
computed follower
counts for a
retweet

Fetches the retweets
from Twitter and acts
upon the completion
of this future result

Asks for the
followers count of

each user that
retweeted the tweet

146 CHAPTER 6 Actors

.foreach { key =>
followerCountsByRetweet =

followerCountsByRetweet.filterNot(_._1 == key)
}

}

case class FetchedRetweets(
tweetId: BigInt, retweeters: List[String], client: ActorRef

)

def fetchedRetweetsFor(tweetId: BigInt) =
followerCountsByRetweet.keys.find(_.tweetId == tweetId)

def updateFollowersCount(
tweetId: BigInt,
fetchedRetweets: FetchedRetweet,
count: FollowerCount) = {

val existingCounts = followerCountsByRetweet(fetchedRetweets)
followerCountsByRetweet =

followerCountsByRetweet.updated(
fetchedRetweets, count :: existingCounts

)
val newCounts = followerCountsByRetweet(fetchedRetweets)
if (newCounts.length == fetchedRetweets.retweeters.length) {

log.info(
"Received all retweeters followers count for tweet {}" +
", computing sum", tweetId

)
val score = newCounts.map(_.followersCount).sum
fetchedRetweets.client ! TweetReach(tweetId, score)
storage ! StoreReach(tweetId, score)

}
}

def fetchRetweets(tweetId: BigInt, client: ActorRef):
Future[FetchedRetweets] = ???

}

Upon receiving the ComputeReach message, you contact Twitter to fetch the retweets
for a given tweet (the implementation of the fetchRetweets method is left as an exer-
cise—by now you should be pretty familiar with making WS calls to the Twitter API).
Based on the retweets, you then ask the UserFollowersCounter to tell you how many
followers the author of a retweet has. Once you’ve received that piece of information
for all users, you then reply to the client and store the retweets.

 This is all well and good, but the preceding example contains a potential race
condition. In the ComputeReach case, you wait for the fetchRetweets future to com-
plete, and then you close over the mutable followerCountsByRetweet state, which
you update to contain a new empty List of FollowerCount at the beginning of your
computation. The problem is that because this all happens asynchronously, your
actor is free to receive more messages in the meantime, including another Compute-
Reach message. This, in turn, may cause the execution of another fetchRetweets

Removes the state once the
score has been persisted

Updates the state
of retrieved

follower counts

Checks if all
follower counts
were retrieved

Replies to the
client with the

final score

Asks for the score
to be persistedFetches

 retweets—this
implementation is
left as an exercise

147Actor fundamentals

future that could potentially mutate the followersCountByRetweet at the same time
as the first future.

 So how do you go about this? As you may have guessed, blocking the future and
waiting for a result isn’t a good idea—you really shouldn’t block inside of an actor.
Remember the pipe pattern I mentioned previously? Let’s make use of that pattern to
fix the race condition!

ACTOR STATE—VARS VERSUS VALS When choosing how to encode the state of
your actor, always prefer an immutable data structure held by a var rather
than a mutable data structure held by a val. If you (or a teammate) mistak-
enly decides to send a var state around, at least it will be immutable, and the
risk of mutating the state of the actor from outside will be considerably
reduced. Passing mutable state to the outside world, on the other hand,
would risk having that piece of internal state mutated by someone else, with
unknown consequences.

PIPING FUTURES AND ACTORS

The pipe pattern lets you automatically send the result of a future to an arbitrary actor
when it has completed. This allows you to turn potentially concurrent operations
affecting the actor’s state into well-ordered operations, eliminating race conditions.

 Let’s rewrite the first part of the receive method.

import akka.pattern.pipe

def receive = {
case ComputeReach(tweetId) =>
fetchRetweets(tweetId, sender()) pipeTo self

case fetchedRetweets: FetchedRetweets =>
followerCountsByRetweet += fetchedRetweets -> List.empty
fetchedRetweets.retweets.foreach { rt =>
userFollowersCounter ! FetchFollowerCount(

fetchedRetweets.tweetId, rt.user
)

}
...

}

Upon successful completion of the future, the result (an instance of Fetched-
Retweets) will be sent to the actor, and you can treat it as yet another message.

 The one thing to look out for with this approach is the case in which the future
fails. If you don’t change anything in the way you deal with the failure, a message of
type akka.actor.Status.Failure will be sent to the actor, containing the Throwable
responsible for the failure, but not providing any useful context. When you’re work-
ing with the pipe pattern, it’s a good idea to define appropriate messages for handling
success and failure, or at least failure, as in the following listing.

Listing 6.8 Piping fetchRetweets to TweetReachComputer

Imports the pipe pattern

Pipes the fetchRetweets
future to the actor

Receives the result
of the future

148 CHAPTER 6 Actors

case class RetweetFetchingFailed(
tweetId: BigInt, cause: Throwable, client: ActorRef

)

def receive = {
val originalSender = sender()
case ComputeReach(tweetId) =>
fetchRetweets(tweetId, sender()).recover {

case NonFatal(t) =>
RetweetFetchingFailed(tweetId, t, originalSender)

} pipeTo self
...

}

In this way, if the future fails, you’ll receive a RetweetFetchingFailed message con-
taining the context necessary for correctly handling the failure. You’ll be able to, for
example, inform the client that its request couldn’t be fulfilled.

CAPTURING THE ORIGINAL SENDER You may have noticed that because we now
want to capture the sender in the RetweetFetchingFailed message, we cap-
ture it outside of the future. As described earlier, this is because we need to
make sure we use the correct sender, which might have changed by the time
the future has failed.

COMMON BEGINNER MISTAKES

There are a few mistakes that are very common when people start to use actors in
combination with futures. These can really make you want to throw your computer
out the nearest window.

Don’t close over mutable state!
Even though working with actors may provide the illusion that everything happens in
an orderly fashion, one message being handled after another, there are cases where
race conditions can occur. As you’ve seen, mixing futures and actors is such a case—
closing over the state of an actor inside a future is to be avoided at all costs.

Don’t close over the sender!
Another common mistake when working with futures in actors is to close over the
sender of a message. It’s always possible to retrieve the sender of the message that’s cur-
rently being processed by using the sender() method. The problem that arises when
working with futures is that the future may not complete fast enough to still be part of
the handling of that message, and calling sender() in the completion callback of the
future may retrieve the wrong sender. In one way, this is a special case of closing over
mutable state, but it can be overlooked because the sender is provided by Akka itself.

 Suppose in listing 6.7 that we were to retrieve the sender inside the closure in which
we’re making calls to UserFollowersCounter. If another client had requested a tweet’s
reach to be computed in the meantime, we’d end up answering the wrong client.

Listing 6.9 Transforming the failure of the future before piping it

Defines a case class
to hold the context
of the failure

Handles the recovery of
the failure of the future

Wraps the cause of the failure together
with some context in the case class

designed for this purpose
Pipes the

“safe” future

149Letting it crash—supervision and recovery

Don’t close over the context!
The actor context is only valid inside the actor; it can’t be used in other threads. Clos-
ing over the context when using a future, for example, is a very bad idea:

class Nitrogliceryn(service: ExplosionService) extends Actor {
def receive = {
case Explode =>

import Contexts.customExecutionContext
val f: Future[Boom] = service.fetchExplosion
// closing over the actor context is dangerous
// since the context relies on running on the same thread
// than its actor - DO NOT TRY THIS AT HOME
f.map { boom =>

context.actorSelection("surroundings") ! boom
}

}
}

This example won’t work as intended because the future is very likely to be executed in
another thread provided by customExecutionContext. As a result, the actor’s context,
which expects to always run in the context of its actor, won’t be able to function correctly.

WHEN TO USE FUTURES AND WHEN TO USE ACTORS Futures are a one-off tool for
computing single results. You should use futures when you have a specific task
in mind, like getting a result from a database or a web service.

Actors are meant to be used for more-advanced processes. They can hold
state, and the messages sent between actors cause state changes to happen in
a distributed and potentially more elaborate network of objects. The logic
encapsulated in an actor hierarchy is meant to be called on many times within
the lifespan of that actor, and actors can make decisions based on past state.
Once completed, a future is done, whereas an actor continues to hum along
as long as it’s needed.

6.2 Letting it crash—supervision and recovery
Before going any further, let’s quickly summarize what we’ve done so far:

■ We’ve created the StatisticsProvider actor and are bootstrapping it in Play’s
Global object when the application starts.

■ We’ve created the TweetReachComputer, UserFollowersCounter, and Statistics-
Provider actors as children of StatisticsProvider.

■ We’re reacting to and sending a few different messages in TweetReachComputer,
in some cases as a result of the completion of a future.

What’s sorely lacking in our current implementation is any kind of failure-handling
mechanism. In chapter 5 we took a closer look at error-handling strategies when
futures were involved, using the recover and recoverWith handlers. In the case of
actors, the approach to failure handling is a little different.

150 CHAPTER 6 Actors

 The idea of letting a system, or components thereof, crash and then recover is one
of the cornerstones of the Erlang programming language. It’s designed for systems
that need to be able to run for a very long time without human intervention.

 The Akka community blog is appropriately titled “Let it crash” (http://
letitcrash.com). Indeed, the core idea of the actor model is to divide the problem to
be solved into layers of actors, ideally reaching a level of granularity wherein each leaf
actor has the best possible focus (a very well-defined scope of work)—and then to rely
on the supervision mechanism to deal with any unforeseen issues. Therefore, besides
being a nice title for a blog, “Let it crash” sums up the design philosophy of actor-
based systems—design around the ideas that individual components will crash, and
that the system will know how to heal itself.

 As I mentioned in chapter 1, it’s almost impossible to predict all the ways in which
a software system can fail. Instead of focusing on avoiding failure, the focus in actor sys-
tems is on recovering from failure in the most effective way. In practice, this means not
trying to catch exceptions, but instead letting them flow and letting the supervisor of a
crashed actor decide what to do next. It may be a bit bewildering to let go of a defen-
sive programming style (like the style promoted by checked exceptions), but once
you’re used to it, it can feel very liberating.

6.2.1 Robust storage

To get a better understanding of Akka’s failure and recovery mechanism and philoso-
phy, let’s build the Storage actor. Just as in chapter 5, we’ll use the ReactiveMongo
driver to store the computed tweet reach in MongoDB. Unlike chapter 5, we’ll handle
the connection initialization ourselves.

 Let’s start by setting up the actor and initializing the connection. Create the actor
as in the following listing.

class Storage extends Actor with ActorLogging {

val Database = "twitterService"
val ReachCollection = "ComputedReach"

implicit val executionContext = context.dispatcher

val driver: MongoDriver = new MongoDriver())
var connection: MongoConnection = _
var db: DefaultDB = _
var collection: BSONCollection = _
obtainConnection()

override def postRestart(reason: Throwable): Unit = {
reason match {

case ce: ConnectionException =>
// try to obtain a brand new connection
obtainConnection()

Listing 6.10 Initializing the Storage actor and a connection to MongoDB

Overrides the
postRestart handler
to reinitialize the
connection after
restart if necessary

Handles the case where
you’ve restarted because
of a ConnectionException

http://letitcrash.com

151Letting it crash—supervision and recovery

}
super.postRestart(reason)

}

override def postStop(): Unit = {
connection.close()
driver.close()

}

def receive = {
case StoreReach(tweetId, score) => // TODO

}

private def obtainConnection(): Unit = {
connection = driver.connection(List("localhost"))
db = connection.db(Database)
collection = db.collection[BSONCollection](ReachCollection)

}
}

case class StoredReach(when: DateTime, tweetId: BigInt, score: Int)

To be able to function, ReactiveMongo requires a driver that’s based on an Akka
ActorSystem itself, as well as a MongoConnection, which represents a connection pool
to MongoDB. (Depending on the MongoDB configuration, several logical connections
may be handled over a single physical connection to the MongoDB server.) Upon
starting the Storage actor, you initialize those components, and you clean up after
yourself when the actor is stopped.

USING MUTABLE STATE IN ACTORS It’s perfectly legitimate to use mutable state
(such as the connection var in listing 6.10) inside of actors as long as it’s not
shared with the outside world. If only the actor has access to its state, it
doesn’t run the risk of concurrent access. You should, however, be careful not
to directly expose this mutable state to the outside world by doing something
like referencing it directly in a message to another actor, which would break
this safe-harbor paradigm. Be especially careful when using mutable state in
combination with asynchronous operations through futures, because race
conditions can occur at this point.

When you receive a message, you should ask the driver to store it, and reply with a
ReachStored message. Implement this optimistic scenario using the collection
.insert method. Take a look at the ReactiveMongo documentation (http://reactive-
mongo.org), or look at how this was done in chapter 5 if you get stuck.

 Once this optimistic scenario is dealt with, it’s time to focus on the harsh reality of
things. Roughly speaking, there are two types of failures that can happen: the ones
you kind of expect, and the ones you didn’t know could happen. In any case, failures
arising in an actor result in the crash of that actor. It’s up to the supervisor to decide
what to do next. An example of a supervision hierarchy is shown in figure 6.4.

Tears down connection and
driver instances when the
actor is stopped

Declares
MongoConnection as
the state of the actor

http://reactivemongo.org
http://reactivemongo.org

152 CHAPTER 6 Actors

When it comes to expected errors (not failures!), you can leverage the error-handling
mechanism of the ReactiveMongo driver: MongoDB returns the state of the last opera-
tion that was executed, and this is encoded in the driver as a result of the insert oper-
ation. Based on this state, you could, for example, retry saving it a few times until the
insertion is confirmed, just as we did in chapter 5. It’s important to understand that
this is a form of error handling: you explicitly have to check the state returned by
ReactiveMongo’s insert operation to see if all went well. Doing so is part of the nor-
mal business logic pertaining to storing something in a database.

 Failures, on the other hand, are a different concept entirely—they actively disrupt
the normal flow of operations of a component. In what follows, we’ll tackle an
expected failure in which the connection dies on you. This could happen at any time,
and checking if the connection is alive before each call to insert makes little sense.
ReactiveMongo throws a ConnectionException when the driver encounters this prob-
lem, so let’s leverage that bit of knowledge.

6.2.2 Letting it crash

Rather than trying to catch the ConnectionException in action, we’ll let it destroy the
incarnation of our Storage actor. When that happens, the StatisticsProvider
supervisor will need to decide on the fate of the actor.

 Akka defines the supervisor strategy for this kind of decision making. There are two
families of supervision strategies:

■ AllForOneStrategy means that all children of an actor will be given the same
treatment if one child fails.

■ OneForOneStrategy will just affect the one child that misbehaved.

StatisticsProvider

TweetReachComputer Storage

StoreReach

ReachStored

ReachNotStored

Crash Restart

Escalate

Figure 6.4 Supervision
and recovery

153Letting it crash—supervision and recovery

Which strategy you choose to use largely depends on the kind of work that’s done by
the child actors. For example, if your child actors are working together to compute an
elaborate result and communicate with each other for this purpose, with their states
being intricately linked, you might choose OneForAll. If one of them crashes, it would
be quite tiresome to have all the siblings try to figure out exactly which pieces of infor-
mation are missing after restart. Simply stopping and re-creating all children using the
OneForAll strategy would be easier. In other cases, when siblings work mainly on their
own, re-creating just the one that failed might make more sense.

 In our case, the siblings are cooperating but are mostly stateless, so let’s go ahead
and define a OneForOne supervisor strategy in the StatisticsProvider.

override def supervisorStrategy: SupervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 3, withinTimeRange = 2.minutes) {
case _: ConnectionException =>

Restart
case t: Throwable =>

super.supervisorStrategy.decider.applyOrElse(t, _ => Escalate)
}

Using the OneForOneStrategy means that we’ll restart only the child actor that
crashed (as opposed to restarting all child actors, as with the AllForOneStrategy). We
only do this in the case of a ConnectionException that we hope to be able to recover
from, and we’ll escalate any other kind of failure.

 The default supervisor strategy provides sensible defaults for dealing with an
actor’s demise, taking special care of cases where the child actor can’t be initialized,
and restarting the child actor when an Exception is thrown. Any other kind of Throw-
able that can’t be dealt with is escalated further up the actor hierarchy. In our exam-
ple, “further up” means escalating to the user guardian, because we created the
StatisticsProvider using the ActorSystem itself. Escalation is the strategy of choice
when dealing with unimagined failures of an actor—when you don’t know that an
actor can fail with an unhandled type of exception, you ask your own supervisor to
decide what to do next.

USER GUARDIAN SUPERVISION STRATEGY The user guardian’s default strategy is
to restart its children in the case of an exception, except for a few special
cases in which the actor was meant to shut down (when an actor can’t be ini-
tialized or was killed deliberately).

Listing 6.11 Defining a custom supervisor strategy to deal with different exceptions

Uses a OneForOneStrategy,
retrying up to 3 times within

2 minutes before stopping
the actor

Restarts the actor if faced
with a ConnectionException

Applies the default supervisor strategy for
any other kind of failure, escalating it if
that strategy doesn’t handle the failure

154 CHAPTER 6 Actors

6.2.3 Watching actors die and reviving them

Despite this section’s heading, we’re not going to look at the basics of necromancy but
rather at a different supervision model. Akka’s SupervisorStrategy provides a sensi-
ble mechanism for intercepting and dealing with all kinds of child actor failures, but
in some cases this supervision mechanism may not be the most useful. In our exam-
ple, any unforeseen problem with the storage will result in the Storage child actor
being stopped once the maximum number of retries has failed within the configured
time range. If there is no storage, the service won’t function as intended, so we may
want to explicitly tell any clients that it’s currently unavailable.

 To do this, we’ll use another type of supervision that involves watching the death of
an actor and then taking the necessary steps for recovery. In this process, we’ll also
make use of a very interesting feature of actors: we’ll alter their default reaction to
messages, effectively overriding their behavior temporarily until things (hopefully)
get better.

 Akka lets you monitor the lifecycle of an actor so you’re notified of its termination.
This is usually referred to as “DeathWatch” in Akka, because it’s implemented in the
DeathWatch component.

 Let’s look at how we can make use of these features.

class StatisticsProvider extends Actor with ActorLogging {
// ...

override def preStart(): Unit = {
// ... initialization of the children actors
storage = context.actorOf(Props[Storage], name = "storage")
context.watch(storage)

}

def receive = {
case reach: ComputeReach =>
reachComputer forward reach

case Terminated(terminatedStorageRef) =>
context.system.scheduler

.scheduleOnce(1.minute, self, ReviveStorage)
context.become(storageUnavailable)

}

def storageUnavailable: Receive = {
case ComputeReach(_) =>
sender() ! ServiceUnavailable

case ReviveStorage =>
storage = context.actorOf(Props[Storage], name = "storage")
context.unbecome()

}

}

Listing 6.12 Specialized supervision of the Storage child actor

Registers to
the lifecycle
monitoring

of the
Storage child

actor
Reacts to the termination.
Because you only
subscribed to the Storage
actor notifications, it
must be that actor that
terminated.

Schedules to
send itself a

ReviveStorage
message after

a minute

Switches to a newly
defined behaviorResponds to

ComputeReach
requests by

telling the
client the
service is

unavailable
Revives the

Storage
child actor

Switches back
to the original
behavior

155Reacting to load patterns for monitoring and preventing service overload

object StatisticsProvider {
case object ServiceUnavailable
case object ReviveStorage

}

Right after creating the Storage child actor, you subscribe to notifications as to its
death using the context.watch() method, which takes an ActorRef. If that Storage
child actor were to be terminated permanently (most likely because the supervision
strategy prompted it to do so after trying to restart it unsuccessfully), you’d be noti-
fied, giving you the chance to set up an alternative means to react to incoming mes-
sages. If the actor simply crashed and restarted, you wouldn’t be notified and you’d
continue to watch the lifecycle of the actor.

 In this example, you wait for a minute, hoping that things will fix themselves. If
they don’t, you re-create a new Storage child actor. In real life, you might want to try a
more elaborate strategy. For example, you could temporarily switch to a different type
of storage entirely, using an alternative database host, or write your data to the local
filesystem as a last resort, and synchronize it with the database once it’s available
again. It all depends on what the failure of the service means and how badly you want
to keep it available under the most complicated situations.

EXPONENTIAL BACKOFF In this example we use a very simple back-off strategy
that waits one minute prior to attempting the re-creation of a Storage actor.
A more elaborate strategy is often used in networked systems: the supervisor
will wait exponentially increasing amounts of time before trying to contact
the child again. Akka persistence offers a BackoffSupervisor that imple-
ments such behavior.2

6.3 Reacting to load patterns for monitoring and
preventing service overload
A truly reactive application isn’t only capable of reacting appropriately to software or
hardware issues through supervision, but is also capable of degrading gracefully if the
system is overloaded. In the following sections we’ll look into a few mechanisms that
can prevent our service from becoming entirely unresponsive.

6.3.1 Control-flow messages

At the core of the internet as we know it, the TCP/IP protocol guarantees safe delivery
of messages across heterogeneous, wild, and scary network topologies around the
globe. One of the main mechanisms TCP/IP uses is acknowledging the receipt of mes-
sages. Unless the sender receives an acknowledgment of a message from a client
within a certain time frame, the packet is retransmitted.

2 See “Delayed restarts with the BackoffSupervisor pattern” in the “Supervision and Monitoring” chapter of the
Akka documentation: http://doc.akka.io/docs/akka/2.4.4/general/supervision.html#backoff-supervisor.

http://doc.akka.io/docs/akka/2.4.4/general/supervision.html#backoff-supervisor

156 CHAPTER 6 Actors

 Let’s imagine that, for one reason or another, our database became overloaded or
temporarily unavailable, and some of the computed scores weren’t inserted. It would be
useful to have a mechanism that confirmed that a score had been inserted, using a mech-
anism similar to (but less elaborate than) TCP/IP. In listing 6.7 I hinted at this mecha-
nism. The ReachStored message is in itself an acknowledgement that the computed
reach has been received and stored by Storage. That being said, we haven’t done any-
thing to deal with the unfortunate case in which we don’t receive an acknowledgment.

 Let’s build a simple mechanism for dealing with unacknowledged storage requests.
This is what we need to do:

■ Resend messages that haven’t been acknowledged in a given window of time
■ Not store the same reach twice if we send a few retries
■ Become aware of the larger issue with storage and react accordingly

Let’s take these one by one.

CHECKING FOR UNACKNOWLEDGED MESSAGES

The first step is to check regularly whether there are unacknowledged messages. We’ll
start by adding a scheduler mechanism.

class TweetReachComputer(
userFollowersCounter: ActorRef, storage: ActorRef

) extends Actor with ActorLogging with TwitterCredentials {
// ...
val retryScheduler: Cancellable = context.system.scheduler.schedule(
1.second, 20.seconds, self, ResendUnacknowledged

)
override def postStop(): Unit = {
retryScheduler.cancel()

}
def receive = {
// ...
case ResendUnacknowledged =>

val unacknowledged = followerCountsByRetweet.filterNot {
case (retweet, counts) =>

retweet.retweeters.size != counts.size
}
unacknowledged.foreach { case (retweet, counts) =>

val score = counts.map(_.followersCount).sum
storage ! StoreReach(retweet.tweetId, score)

}
}

case object ResendUnacknowledged
}

Listing 6.13 Setting up a scheduler for unacknowledged messages

Initializes the scheduler for
resending unacknowledged
messages every 20 seconds

Cancels the scheduler
when the actor is stopped

Filters out the cases for which
all counts have been received

Sends a new
StoreReach
message to
the storage

157Reacting to load patterns for monitoring and preventing service overload

IMPROVING ON TIME-BASED SCHEDULING In this simple example, we assume that
the database will be the component in trouble. But what if the service was
under heavy load at the same time (or the database was under heavy load as a
result of the service being heavily used)? In this case, it may make sense to
check for unacknowledged messages for a given number of received Compute-
Reach messages—indeed, our ResendUnacknowledged messages may be lost
somewhere among a lot of incoming requests. This is the perfect case for using
the exponential back-off strategy I mentioned earlier.

AT-LEAST-ONCE DELIVERY SEMANTICS Guaranteeing that a message will be
received at least once is hard, and chances are that the naive implementation
we’ve used in this example won’t do very well in a real system if, for example,
the JVM were to crash. Akka persistence offers at-least-once delivery seman-
tics,3 so if you need this kind of guarantee in your system, you may be better
off using that implementation rather than rolling your own.

AVOIDING STORING DUPLICATES

If we resend a command for storing a computed score but had in fact already stored it,
we shouldn’t store that same element twice.

 Let’s use a simple mechanism for detecting such duplicates in the Storage actor.

class Storage extends Actor with ActorLogging {
// ...
var currentWrites = Set.empty[BigInt]

def receive = {
case StoreReach(tweetId, score) =>
log.info("Storing reach for tweet {}", tweetId)
if (!currentWrites.contains(tweetId)) {
currentWrites = currentWrites + tweetId
val originalSender = sender()
collection

.insert(StoredReach(DateTime.now, tweetId, score))

.map { lastError =>
LastStorageError(lastError, tweetId, originalSender)

}.recover {
case _ =>

currentWrites = currentWrites - tweetId
} pipeTo self

}
case LastStorageError(error, tweetId, client) =>

if(error.inError) {
currentWrites = currentWrites - tweetId

} else {
client ! ReachStored(tweetId)

}

3 See the “At-Least-Once Delivery” section of the “Persistence” chapter in the Akka documentation: http://
doc.akka.io/docs/akka/2.4.4/scala/persistence.html#At-Least-Once_Delivery.

Listing 6.14 Avoiding storing duplicate messages

Keeps track of the
identifiers you’re
currently trying to
write

Checks whether
you’re already

trying to write the
score for this

tweet, and only
goes ahead if

you’re not Adds the tweet
identifier to the set
of current writes
prior to saving it

Removes the
tweet identifier
from the set of

current writes in
the case of failure

Removes the tweet
identifier from the

set of current
writes in the case

of write error

http://doc.akka.io/docs/akka/2.4.4/scala/persistence.html#At-Least-Once_Delivery
http://doc.akka.io/docs/akka/2.4.4/scala/persistence.html#At-Least-Once_Delivery

158 CHAPTER 6 Actors

}
}

object Storage {
case class LastStorageError(

error: LastError, tweetId: BigInt, client: ActorRef
)

}

Using this mechanism, you can keep track of the messages you’re currently trying to
write, avoiding attempts to save the score for the same tweet twice. You also gather a his-
tory of all the previous writes. This is useful, because your ReachStored message might
only be processed after a call to ResendUnacknowledged, so it makes sense to keep those
messages around for a bit. This being said, in a real-world application you’d need to
make sure you clean the history periodically to avoid running out of memory.

EXERCISE 6.1

Implement the cleanup of past currentWrites. One way to achieve this would be to flag
those identifiers that have been saved, and to periodically remove them from the set.

LIMITS OF THIS “WRITE ONCE” IMPLEMENTATION With this implementation, you
won’t always be able to guarantee that the computed reach will be saved
exactly once. If the Storage actor crashes, the state kept in currentWrites
will be lost, allowing some messages to be stored twice after restarting. This
method also has another drawback—it effectively means that a score can only
be saved once, regardless of whether the tweet is retweeted in the future.
Another approach would be to save the computation time along with the
score, allowing for more values to be available.

REACTING TO AN INCREASE OF UNACKNOWLEDGED MESSAGES

If too many storage requests go unacknowledged, resending them again will make
things even worse. In this situation, it would make sense to alter the default behavior
and stop processing incoming requests, or at least to slow down.

 One drastic way to do so would be to throw a special kind of exception, informing
the supervisor that something is wrong and switching into a Service Unavailable
mode. In this case, we’d do better to propagate the unacknowledged storage requests
as part of the exception, so we’d have a chance to store them when things recover.

 This “red flag” approach may be effective, but it isn’t very subtle. The database
might be fine processing more messages, only at a slower pace. This is where the
concept of reactive back pressure comes in. In this context, back pressure means that
we’re signaling the producer (StatisticsProvider in this example) that we’re not
able to process the messages at such a high speed and we need to slow down. The
StatisticsProvider would then have the opportunity to force a slowdown by
rejecting requests at an appropriate rate, effectively reducing the load on the service
but not entirely suspending it.

159Reacting to load patterns for monitoring and preventing service overload

 Implementing truly reactive back pressure by means of controlling the flow of mes-
sages is quite a complicated topic, and it’s too much to look at in this chapter. We’ll
look at a technology that embodies this mechanism in chapter 9 when we talk about
Reactive Streams.

 As an alternative to reactive back pressure, we can use message priorities to alert
upstream actors when the system becomes overloaded. Let’s take a look at this
approach.

6.3.2 Prioritizing messages

At the beginning of this chapter, I mentioned that each actor has a mailbox. By
default, the UnboundedMailbox is used, which is a mailbox backed by a java.util
.concurrent.ConcurrentLinkedQueue and which queues messages in the order of
their arrival. As its name indicates, it isn’t bounded, meaning that it will keep growing.
This means that the JVM could run out of memory if messages aren’t processed fast
enough. That’s why it’s a good idea to get a sense of when this is the case.

 Akka provides quite a few types of mailboxes, one of which is the ControlAware-
Mailbox, which we’ll look at now to deal with something we’ve thus far completely
ignored: Twitter’s API rate limits. Twitter’s API tracks how many times it has been
called within a given time window and disallows further calls against the API if a
threshold has been reached. If our service were to receive more requests than the
allowed threshold, the rate limits would prevent us from responding to all of those
requests. As such, Twitter’s rate limits might be a lot more troublesome for our service
than the storage layer being overloaded—in fact, it’s safe to say that with Twitter’s stan-
dard rate limits, the chance of our storage layer being overwhelmed is pretty close to
zero, because Twitter will stop providing us with data first.

DETECTING WHEN YOU’RE ABOUT TO HIT THE RATE LIMIT

Twitter communicates the rate limit for a particular kind of request using response
headers. In our case, two of those headers are particularly interesting: X-Rate-Limit-
Remaining describes how many requests are left in the current window, and X-Rate-
Limit-Reset indicates the UTC timestamp at which the window will be reset.

EXERCISE 6.2

In the UserFollowersCounter, check the value of the X-Rate-Limit-Remaining header
in the response of calls to Twitter. If the value is lower than 10, send a Twitter-
RateLimitReached message to the supervisor.

This message is defined as follows:

import akka.dispatch.ControlMessage
 case class TwitterRateLimitReached(reset: DateTime)
 extends ControlMessage

You can use the context.parent reference to send a message to an actor’s parent.

160 CHAPTER 6 Actors

SETTING UP A CONTROLAWAREMAILBOX

A ControlAwareMailbox is a special type of mailbox that passes on messages of type
ControlMessage immediately. The first thing you need to do to use a Control-
AwareMailbox is to configure a dispatcher to use one. Add the following bit of config-
uration to conf/application.conf:

control-aware-dispatcher {
mailbox-type = "akka.dispatch.UnboundedControlAwareMailbox"

}

Next you need to tell Akka that you want to use this dispatcher for your Statistics-
Provider actor. Adjust the Actors component so as to bootstrap your actor hierarchy
with a custom dispatcher, as shown in the following listing.

class Actors @Inject()(system: ActorSystem)
extends ApplicationActors {
Akka.system.actorOf(
props = StatisticsProvider.props

.withDispatcher("control-aware-dispatcher"),
name = "statisticsProvider"

)
}

Finally, you need to indicate that you’re unavailable until Twitter lets you resume work
by handling the TwitterRateLimitReached message in the StorageProvider.

def receive = {
// ...
case TwitterRateLimitReached(reset) =>
context.system.scheduler.scheduleOnce(

new Interval(DateTime.now, reset).toDurationMillis.millis,
self,
ResumeService

)
context.become({

case reach @ ComputeReach(_) =>
sender() ! ServiceUnavailable

case ResumeService =>
context.unbecome()

})

case object ResumeService

With this mechanism you can effectively avoid overloading Twitter with requests,
which will keep you from being rate-limited for longer than necessary.

Listing 6.15 Using a custom dispatcher

Listing 6.16 Handling the unfortunate case of being rate-limited by Twitter

Specifies the
custom dispatcher
you set up in the
configuration

Schedules a message to remind
you when you’ve reached the

window reset

Rejects all
incoming requests

Resumes the service by cancelling
the temporary behavior

161Reacting to load patterns for monitoring and preventing service overload

6.3.3 Circuit breakers

Unfortunately, not all services are as good as Twitter at preventing user overloads by
means of a rate-limiting service. As a result, those services slow down considerably as
load increases. Chances are that you’ve had to use such a system in the past. For some
reason, these systems tend to be the ones responsible for performing tedious tasks,
such as entering travel expenses, uploading a meeting report, or reporting the time
spent on a project.

 When it comes to interacting with slow systems, one of the dangers is that the slow-
ness and unresponsiveness of the system may propagate to the otherwise snappy, mod-
ern, responsive application you’re happily building. This is where the circuit breaker
pattern comes in to save the day. It’s illustrated in figure 6.5.

 A circuit breaker is typically included in electric circuits to protect from overload or
short circuits. You can usually hear them
clicking when you’re running the dish-
washer, washing machine, kettle, and
toaster at the same time. But unlike the
simple circuit breakers you have at
home, the ones we’ll talk about here are
a little more sophisticated in that they
attempt to reset themselves.

 A circuit breaker functions as follows:

1 When everything is fine, it’s in a closed state, letting electricity (or data) flow.
2 When an overload or a short circuit is detected, the breaker trips and is in an open

state, not letting anything pass. That’s when the lights go out and you realize it
wasn’t a good idea to run all those machines (or pass all that data) at the same time.

3 After a bit, the breaker will put itself in half-open state, probing to see if things
are back to normal. If the current (or data) flows, the breaker puts itself back
into open state.

Akka provides an implementation of the circuit breaker pattern in the akka.pattern
.CircuitBreaker class. This kind of circuit breaker is designed to work with opera-
tions that time out, such as a call to a remote web service or the completion of a
Future. It works much like the abstract circuit breaker just described, with the follow-
ing rules regarding its state changes:

■ In closed state, the breaker counts the number of exceptions or calls that
exceed a configured callTimeout. If the number of failures reaches a config-
ured value (maxFailures), it trips. Any successful call that happens before the
maximum is reached resets the counter to 0.

■ In open state, the breaker idles until the configured resetTimeout is reached,
and then it enters half-open state.

■ In half-open state, if the first attempt to make a call fails, it again waits until the
resetTimeout is reached to retry.

Open

Closed

Attempt reset

Trip Reset

Half open

Figure 6.5 Diagram of a circuit breaker

162 CHAPTER 6 Actors

That’s enough theory for now. Let’s see how to use one of these things in practice.
Because Twitter likely won’t time out, let’s build a dumb future that will sleep for a
while every time the number of requests allowed by Twitter’s rate-limit mechanism
gets lower than 170. The rate-limit mechanism starts with allowing 180 requests, so by
starting to throttle our own service once only 170 requests are allowed, you’ll quickly
be able to see the mechanism in action.

 In UserFollowersCounter, declare a circuit breaker as shown in the following listing.

val breaker =
new CircuitBreaker(context.system.scheduler,

maxFailures = 5,
callTimeout = 2.seconds,
resetTimeout = 1.minute

).onOpen(
log.info("Circuit breaker open")

).onHalfOpen(
log.info("Circuit breaker half-open")

).onClose(
log.info("Circuit breaker closed")

)

Next, alter the code you wrote previously so that it sleeps for 10 seconds if the number
of available requests (the one provided by the X-Rate-Limit-Remaining header) gets
lower than 170. You can use a Thread.sleep statement here, although this kind of
deliberate blocking should be avoided at all costs in a real application.

 Finally, you need to plug the brand-new circuit breaker into the circuit. You could
put it in the receive method of UserFollowersCounter as shown here.

class UserFollowersCounter extends Actor with ActorLogging {
implicit val ec = context.dispatcher
val breaker = ...
private def fetchFollowerCount(tweetId: BigInt, userId: BigInt):

Future[FollowerCount] = ...
def receive = {

case FetchFollowerCount(tweetId, user) =>
breaker

.withCircuitBreaker(fetchFollowerCount(tweetId, user))
pipeTo sender()

}
}

Listing 6.17 Declaring a circuit breaker that logs state changes

Listing 6.18 Plugging in a circuit breaker

Configures the maximum number of
consecutive failures or timeouts
allowed before the breaker trips

Configures the timeout
for a call before it’s
counted as a failure

Configures
the time

before a reset
is attempted

Reuses the actor’s dispatcher as
ExecutionContext for the pipe

Defines the
fetchFollowerCount
method that makes

the call to Twitter
Plugs in the circuit breaker,

which wraps the Future
result of the call to Twitter

Pipes the result to send it back
to the TweetReachComputer

163Summary

Alright, you’re all set to go! If you now make a request with a tweet that contains,
say, 15 retweets with a fresh quota, the following will happen:

1 The first 10 calls to fetchFollowerCount will work without problem.
2 Starting from the 11th call, the thread will sleep for 10 seconds, producing a

failure due to timeout.
3 After 5 such failed requests, the breaker will trip.
4 After 1 minute of waiting, the process will continue. Because you’ve “recovered”

one request every 5 seconds (you’re allowed 180 requests in a 15-minute win-
dow), you’ll have enough quota to get started again.

EXERCISE 6.3

There are some finishing touches that you can add to make this mechanism fully functional:

■ When the breaker trips, the TweetReachComputer should be informed and directly
reply to the client instead of just sitting there until its client times out.

■ When the breaker goes into open state, the supervisor should be informed to not
accept any more incoming requests.

■ When the breaker goes into closed state again, the supervisor should be informed
to accept incoming requests again.

6.4 Summary
In this chapter you had a crash course in All Things Actors, ranging from their initial-
ization and lifecycle to supervision and special cases related to system overload:

■ We looked at the main parts required for an actor to work (mailbox, actor refer-
ence, actor context).

■ We explored the actor lifecycle and how it’s influenced by supervision.
■ We made use of Akka’s supervision strategy and of the Erlang-inspired lifecycle-

monitoring mechanism.
■ We saw how system overload can be mitigated by using flow-control messages

and circuit breakers.

I personally find actors and actor systems to be a fascinating topic. As you’ve seen
throughout this chapter, there are many ways in which a system can be built, and
many cases to think of. We’ve only scratched the surface (although I hope I’ve
sparked your curiosity enough that you’ll want to learn more about this topic). In
combination with futures, actors are a very powerful tool for building reactive applica-
tions, and we’ll make use of them in the rest of this book.

164

Dealing with state

One of the biggest practical hurdles of switching from a traditional application-
server development model to a scalable model such as Play is solving the problem
of working with state in a stateless architecture. The server-side deployment of a Play
application is meant to be stateless—it doesn’t keep any state in memory other than
that for the requests currently being processed. This is in keeping with the philoso-
phy of reactive web applications:

■ Stateless server nodes can be interchanged at will without having to worry
about keeping client state or other state alive, making it much easier to
switch out faulty nodes.

■ The overall memory consumption—and, as a result, throughput—of state-
less server nodes is much better than that of stateful counterparts.

This chapter covers
■ Configuring Play for an optimal connection to a

relational database, and accessing the
database with jOOQ

■ Creating custom requests and actions and
using them with the client-side session

■ Command and Query Responsibility
Segregation and Event Sourcing (CQRS/ES)

165Working with state in a stateless Play web application

But where is the state kept, then? Client-side state in Play is pushed to the client (using
cookies and possibly other storage local to the client, such as HTML5 storage). Server-
side state is typically stored in a database of some kind, and server-side caches are dealt
with using dedicated, networked caching technologies.

 On the database end of things, object-relational mapping (ORM) tools have long
been popular and widely accepted tools for accessing databases. ORMs aim at hiding
away SQL as a means of interacting with databases and instead offer an abstracted
object-oriented representation of the relational database model. Unfortunately, the
use of this abstraction, which brings with it the object-relational impedance mismatch,
often leads to serious performance issues that can only be addressed by an expert in
the particular ORM technology and a time-consuming optimization process.1

 Throughout this chapter we’ll look at where state is kept in a reactive Play applica-
tion that may scale in or out at any moment, and we’ll see how to attend to the practi-
cal details of working with relational databases. We’ll further explore a paradigm
that’s increasingly popular for its capacity to handle larger loads and because it intro-
duces immutability to data storage: Command and Query Responsibility Segregation
and Event Sourcing (CQRS/ES).

7.1 Working with state in a stateless Play web application
A stateless web application can keep its state in several places, as shown in figure 7.1.

1 For a discussion of the object-relational impedance mismatch, see “The Vietnam of Computer Science” on
Ted Neward’s blog (26 June 2006), http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+
Computer+Science.aspx.

Play node

CacheCache

Client

Play node

Client

Cache

Play node

Client

Cache

Play node

Client

Database Database

Figure 7.1 Location of state in a stateless web application

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

166 CHAPTER 7 Dealing with state

Traditionally, most data is kept in a (relational) database B, which may or may not be
replicated. Many applications also make use of a memory-based caching layer C using
technologies such as memcached (http://memcached.org) or Redis (http://
redis.io). In a stateless application, traditional server-side state D should be avoided
because a node may go up or down at any time. But you’ll see that there are some
exceptions to this if the state is managed in such a way that it can be recovered after a
crash or when a node comes up.

 Client-side state plays an important role in modern web applications. HTML5 intro-
duced local storage E, which can be very useful in making an application resilient
during temporary network outages, and a cookie-based client-side session F acts as a
substitute for the server-side session typically found in a Java HttpSession.

 Let’s look at how we can make use of these different mechanisms by exploring a
very simple and yet extremely common use case: user authentication.

7.1.1 Databases

As I’ve already hinted at in previous chapters, we need to take certain precautions
when communicating with databases. Some may have asynchronous drivers that will
fit nicely into our asynchronous application model, but others may not—in which case
we have to configure things properly.

A WORD ON ASYNCHRONOUS DATABASE ACCESS

Asynchronous database access helps improve the thread and memory usage of the cli-
ent application wanting to access the database. It further allows you to take advantage
of the asynchronous data manipulation techniques we talked about in chapter 5.

 The availability of asynchronous drivers for a database largely depends on the data-
base itself. Younger DBMSs, such as MongoDB and CouchBase (http://couchbase.com),
have asynchronous drivers, such as ReactiveMongo (http://reactivemongo.org) and
ReactiveCouchbase (http://reactivecouchbase.org). If such drivers are available, their
use is pretty simple, as you saw in chapters 5 and 6. They offer APIs that rely on futures
to provide asynchronous query and statement interfaces.

 For some of the more traditional RDBMSs, such as MySQL and PostgreSQL, the
mysql-async and posgresql-async community drivers (both found at https://
github.com/mauricio/postgresql-async) offer asynchronous alternatives to the block-
ing JDBC counterparts. These two drivers don’t influence how DBMSs work (the
communication isn’t truly asynchronous on the server side), but they make use of
Netty to offer asynchronous communication between the client and the server, which
has the advantage of not hogging threads while the database executes a query or state-
ment. Other RDBMSs, such as Microsoft’s SQL Server, support asynchronous opera-
tions natively and offer asynchronous drivers (https://msdn.microsoft.com/en-us/
library/ms131395.aspx).

 Finally, another alternative for asynchronous access is offered by Slick 3 (http://
slick.typesafe.com), which leverages the Reactive Streams API to stream data from the
database while building on top of existing (blocking) JDBC drivers.

http://memcached.org
http://redis.io
http://redis.io
http://couchbase.com
http://reactivemongo.org
http://reactivecouchbase.org
https://github.com/mauricio/postgresql-async
https://github.com/mauricio/postgresql-async
https://msdn.microsoft.com/en-us/library/ms131395.aspx
https://msdn.microsoft.com/en-us/library/ms131395.aspx
http://slick.typesafe.com
http://slick.typesafe.com

167Working with state in a stateless Play web application

 As I write this book, asynchronous database drivers for the most popular RDBMSs
are still in development and aren’t feature-full. They may not provide the richness of
features that these systems have to offer. Instead of exploring these technologies,
which are prone to rapid change, let’s instead focus on a more common use case:
accessing relational databases optimally with a solid toolset.

CONFIGURING PLAY FOR SYNCHRONOUS DATABASE ACCESS

As of version 2.4, Play uses HikariCP (http://brettwooldridge.github.io/HikariCP) as a
connection pool to manage database connections. A connection pool is used to opti-
mize the costs associated with establishing and maintaining connections with a data-
base. Most relational databases (or their drivers) are synchronous in their
communication via a connection—you send a query and get back a result on that same
connection. This means that a thread on the JVM, executing one statement, is coupled
to one database connection. It’s not possible to have more than one thread talk to a
database connection at the same time; the database would be confused about what the
client wants if it were to send a new statement before the previous query had been
answered, and you wouldn’t be able to figure out which query a result set belonged to.

 Threads that issue statements to a database are short-lived in comparison to the
lifespan of a database connection. Because those connections are expensive to create,
it makes sense to reuse them across threads (one after another), which is exactly what
a pool like HikariCP does.

 When it comes to figuring out how many threads you should provide to a context
that will interact with a database, you first have to consider how large the database
connection pool itself should be—after all, there’s likely going to be a relation
between those two figures. There is an excellent article in HikariCP’s documentation
that discusses connection pool sizing.2 The findings have many parallels in our discus-
sion of thread pool sizes in chapter 1, and the article comes to a similar conclusion:
although seemingly counterintuitive, it’s more performant to have a small connection
pool than a large one because the real number of parallelizable operations across
these connections depends on the real number of CPU cores.

 Until many-core architectures become mainstream, the connection pool size is
going to remain rather small. The PostgreSQL project discusses this subject and pro-
poses a formula that provides a starting point for establishing a connection pool size:3

connections = ((core_count * 2) + effective_spindle_count)

where

■ connections is the size of the pool
■ core_count is the real number of cores, without taking hyperthreading into

account
■ effective_spindle_count is the number of hard drives (spindles)

2 Brett Wooldridge, “About Pool Sizing,” https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing.
3 “How to Find the Optimal Database Connection Pool Size” in the PostgreSQL wiki, https://wiki.postgresql.org/

wiki/Number_Of_Database_Connections#How_to_Find_the_Optimal_Database_Connection_Pool_Size.

http://brettwooldridge.github.io/HikariCP
https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing
https://wiki.postgresql.org/wiki/Number_Of_Database_Connections#How_to_Find_the_Optimal_Database_Connection_Pool_Size
https://wiki.postgresql.org/wiki/Number_Of_Database_Connections#How_to_Find_the_Optimal_Database_Connection_Pool_Size

168 CHAPTER 7 Dealing with state

According to that formula, if you have a server with a quad-core CPU and one hard drive
(or a RAID 1 setup), a good starting point for the connection pool is (4 x 2) + 1 = 9
connections.

 To quote the PostgreSQL documentation,

A formula which has held up pretty well across a lot of benchmarks for years is that for
optimal throughput the number of active connections should be somewhere near
((core_count * 2) + effective_spindle_count). Core count should not include HT
[hyperthreaded] threads, even if hyperthreading is enabled. Effective spindle count is
zero if the active data set is fully cached, and approaches the actual number of spindles
as the cache hit rate falls. … There hasn’t been any analysis so far regarding how well
the formula works with SSDs.

The consequence this has for our thread pool configuration, or for the Execution-
Context we’re going to use in Play, is that we’ll configure a dedicated thread pool
sized for the maximum available number of connections. The reason is simple: if you
have fewer threads than available connections, fewer of them could be used, and if
you had more, threads would potentially be contending for the same connection
(which would also negatively impact performance).

ON REAL-WORLD CONNECTION POOL SIZING Although this formula should help
you get started quickly, it doesn’t replace tuning connection pool size for
your specific application and deployment. In this regard, the FlexyPool tool
(https://github.com/vladmihalcea/flexy-pool) can be quite useful, as it
offers the ability to monitor pools and resize them dynamically.

Let’s get started by creating a new Play project. Once you’ve got it set up, edit the
conf/application.conf file as shown in the following listing.

db.default.driver=”org.postgresql.Driver”
db.default.url=”jdbc:postgresql://localhost/chapter7”
db.default.user=user
db.default.password=secret
db.default.maximumPoolSize=9

contexts {
database {

fork-join-executor {
parallelism-max=9

}
}

}

To use the configured context, create an app/helpers/Contexts.scala file with the fol-
lowing contents.

Listing 7.1 Database configuration example

The JDBC connection string

The maximum connection pool size

The maximum amount of hot threads in the pool

https://github.com/vladmihalcea/flexy-pool

169Working with state in a stateless Play web application

package helpers

import play.api.libs.concurrent.Akka
import scala.concurrent.ExecutionContext

object Contexts {
val database: ExecutionContext =
Akka.system.dispatchers.lookup("contexts.database")

}

Using this context, you can run database statements on an optimally sized pool.

A WORD ON VIRTUALIZED ENVIRONMENTS If you’re running your application in
a virtualized environment, it’s important to know how many real CPU cores a
node has access to. If there are 4 virtual cores but only 1 real core, it isn’t
going to be very helpful if you use a connection and thread pool of size 10.

A WORD ON MULTI-NODE ENVIRONMENTS If you’re planning on deploying your
application on several front-end nodes, possibly in an elastic fashion, wherein
you’ll be adding or removing nodes to allow for increased load, it’s important
to keep in mind that the database server should be able to cope with the total
number of connections.

Now that you’ve set up the infrastructure for connecting to a relational database, let’s
go ahead and use it!

CREATING AND EVOLVING THE SCHEMA OF A DATABASE

Let’s now use our setup to track users of the service we started building in previous
chapters. I’ll use a PostgreSQL database in these examples and let Play handle the evo-
lution of the schema; you’re welcome to use another database, but make sure you
adjust the connection string accordingly, as well as the required connection drivers.
I’m using PostgreSQL because it’s the most advanced open source database.

 As a first step, you need to make sure that you have the right dependencies in your
build.sbt file: Play’s jdbc support and the PostgreSQL connector (adjust the version of
the connector to the version of the database you’re running):

libraryDependencies ++= Seq(
jdbc,
"org.postgresql" % "postgresql" % "9.4-1201-jdbc41"

)

Next, make sure that you create the chapter7 database. Using the PostgreSQL
command-line client, you can do so with this command:

create database chapter7;

Listing 7.2 Database ExecutionContext configuration

170 CHAPTER 7 Dealing with state

Now all you need to do is create the database schema. Play offers support for manag-
ing schema evolutions, which is very useful when working in a team (or even when
working alone and switching back and forth between branches). Create the file conf/
evolutions/default/1.sql with the following contents.

--- !Ups
CREATE TABLE "user" (

id bigserial PRIMARY KEY,
email varchar NOT NULL,
password varchar NOT NULL,
firstname varchar NOT NULL,
lastname varchar NOT NULL

);

--- !Downs
DROP TABLE "user";

If you now run the application and try to access it in a browser, you’ll be prompted by
Play as to whether or not you want to apply those evolutions.

 All subsequent files should be named in sequence (2.sql, 3.sql, 4.sql, and so on).
Play will use the file number to apply non-applied evolutions or to downgrade to a
previous version of the schema. If you intend to use test data, it’s a good idea to also
handle insertion or deletion of the data through the evolutions file, as this data is
likely to be dependent on the current shape of the schema.

SETTING UP JOOQ CODE GENERATION

To execute statements against the database, we’ll use the jOOQ library (http://
jooq.org). There are plenty of database access libraries available, but the single most
important criterion for database access performance in a multi-tier application
remains the same: the number and quality of SQL queries sent to the server. Even if
the entire communication chain is fully asynchronous, it’s the aggregated query exe-
cution time that matters most, and this directly depends on how many queries are exe-
cuted and how well they perform.

 Many libraries provide abstractions on top of the SQL dialect, missing the fact that
databases are different from each other and offer plenty of features for data manipu-
lation and retrieval that often outperform application-level transformation of the
data. Worse yet, the automatically generated queries resulting from those abstractions
may be of such poor quality that their execution time may be orders of magnitude off
compared to a non-generated, carefully crafted query.

 Here are a few more reasons why it isn’t a very good idea to use generic queries
and then to transform the resulting data outside of the database:

■ Having to transfer data from the database to the application has a negative
impact on latency, which is directly proportional to the size of the data at hand.

Listing 7.3 Evolution file to create the initial database schema with the user table

Statements to run when
updating to this version
of the schema

Statements to run when
downgrading from this
version of the schema

http://jooq.org
http://jooq.org

171Working with state in a stateless Play web application

■ Blindly retrieving data (for example, by performing a SELECT * statement or by
retrieving all the columns of a table because they’ve been mapped this way auto-
matically) prevents the database from performing a number of optimizations,
such as the ones enabled by a cost-based optimizer.4

■ Metadata that could have been used to improve the speed of certain manipula-
tions in the database memory isn’t available.

■ The opportunity for capturing statistics regarding data manipulation perfor-
mance is no longer available—databases can use these statistics to automatically
optimize the execution of statements.

We’re very much concerned about our system performing well under load, so we’ll
pay attention to this oft-overlooked aspect of the application stack.

 jOOQ offers a type-safe means of writing SQL for any kind of database dialects.
Instead of abstracting over SQL, it offers a fluent API that mimics SQL as closely as pos-
sible and has specialized versions of the DSL depending on the database at hand, to
cater to vendor-specific statements. To use the API, we must first set up the jOOQ code
generation, which will generate the necessary code for describing tables and fields in
the DSL.

 As a first step, add jOOQ to your project by adding the following dependencies to
build.sbt:

libraryDependencies ++= Seq(
// ...
"org.jooq" % "jooq" % "3.7.0",
"org.jooq" % "jooq-codegen-maven" % "3.7.0",
"org.jooq" % "jooq-meta" % "3.7.0")

Next, set up the configuration for the code generator. Create the file conf/
chapter7.xml with the following contents.

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<configuration xmlns=”http://www.jooq.org/xsd/jooq-codegen-3.7.0.xsd”>

<jdbc>
<driver>org.postgresql.Driver</driver>
<url>jdbc:postgresql://localhost/chapter7</url>
<user>user</user>
<password>secret</password>

</jdbc>
<generator>
<name>org.jooq.util.ScalaGenerator</name>
<database>

<name>org.jooq.util.postgres.PostgresDatabase</name>
<inputSchema>public</inputSchema>

4 See the “Introduction to the Optimizer” in the Oracle9i Database Performance Tuning Guide and Reference, http:
//mng.bz/4nCV.

Listing 7.4 Code generator configuration

http://mng.bz/4nCV
http://mng.bz/4nCV

172 CHAPTER 7 Dealing with state

<includes>.*</includes>
<excludes></excludes>

</database>
<target>

<packageName>generated</packageName>
<directory>app</directory>

</target>
</generator>

</configuration>

Finally, to generate code, set up build.sbt by creating your own generation task as
shown in the following listing.

val generateJOOQ = taskKey[Seq[File]]("Generate JooQ classes")

val generateJOOQTask = (baseDirectory, dependencyClasspath in Compile,
runner in Compile, streams) map { (base, cp, r, s) =>
toError(r.run(

"org.jooq.util.GenerationTool",
cp.files,
Array("conf/chapter7.xml"),
s.log))

((base / "app" / "generated") ** "*.scala").get
}

generateJOOQ <<= generateJOOQTask

Now that you’re all set, run the freshly created generateJOOQ task on the sbt com-
mand line. You should see something like this:

[CH07] $ generateJOOQ
[info] Updating {file:/Users/manu/Book/public-code/CH07/}ch07...
[info] Resolving jline#jline;2.11 ...
[info] Done updating.
[info] Running org.jooq.util.GenerationTool conf/chapter7.xml
[success] Total time: 2 s, completed May 4, 2015 10:30:54 AM

Additionally, you’ll now see a number of source files generated in app/generated.
 This isn’t very verbose though. To get a better insight into what’s going on, you can

add the jOOQ logger to the logging configuration in conf/logback.xml like so:

<logger name="org.jooq" level="INFO" />

This will give you more details as to what the code generation is doing.

Listing 7.5 Configuring an sbt task for code generation

Declares the
generateJOOQ sbt task

Defines the implementation of the task,
with dependencies on the context (base
directory, classpath, and so on)

Runs the GenerationTool and
provides the configuration
file as an argument

Returns the
generated files
so that you can
use this task as

an sbt source
generator

Wires the implementation
of the task to the task key

173Working with state in a stateless Play web application

INSERTING SOME DATA WITH JOOQ

We now have a database and a jOOQ DSL ready to be used—the only ingredient lack-
ing is data! Let’s remedy this by inserting a default user record into the database at
startup time if none are available.

 Create the file app/modules/Fixtures.scala with the following contents.

package modules

import javax.inject.Inject
import com.google.inject.AbstractModule
import org.jooq.SQLDialect
import org.jooq.impl.DSL
import play.api.db.Database
import play.api.libs.Crypto
import generated.Tables._

class Fixtures @Inject() (val crypto: Crypto, val db: Database)
extends DatabaseFixtures{
db.withTransaction { connection =>

val sql = DSL.using(connection, SQLDialect.POSTGRES_9_4)
if (sql.fetchCount(USER) == 0) {
val hashedPassword = crypto.sign("secret")
sql
.insertInto(USER)
.columns(

USER.EMAIL, USER.FIRSTNAME, USER.LASTNAME, USER.PASSWORD
).values(

"bob@marley.org", "Bob", "Marley", hashedPassword
)
.execute()

}
}

}

trait DatabaseFixtures

class FixturesModule extends AbstractModule {
override def configure(): Unit = {

bind(classOf[DatabaseFixtures])
.to(classOf[Fixtures]).asEagerSingleton

}
}

Now add the module to application.conf by adding the following line:

play.modules.enabled += "modules.FixturesModule"

And voilà! After restarting the application, you’ll have a user inserted in the database!
Note how we used Play’s built-in Crypto library to hash the password—the application

Listing 7.6 Inserting a sample user with jOOQ at startup

Imports the generated
Table classes in order
to use them in the DSL

Obtains a
transaction
from Play’s

DB helper

Creates a jOOQ
DSLContext using

the JDBC connection

Checks the
number of

existing users
with jOOQ

Builds the INSERT
statement using

jOOQ’s fluent DSL

Executes the
statement

174 CHAPTER 7 Dealing with state

secret defined in application.conf is used for this purpose, so don’t lose it if you want
to use this library. (You may want to use a more robust approach for storing the pass-
word, such as the blowfish cipher.)

WRITING YOUR FIRST JOOQ QUERY

The purpose of setting up a user database is, of course, to be able to authenticate users.
Let’s write an action capable of checking whether a user exists, based on their creden-
tials. Add the following login action to the controllers/Application.scala controller as
follows.

import play.api.db._
import play.api.i18n.{MessagesApi, I18nSupport}
import org.jooq.SQLDialect
import org.jooq.impl.DSL
import generated.Tables._
import generated.tables.records._

class Application(val db: Database, val messagesApi: MessagesApi)
extends Controller with I18nSupport {

def login = Action { request =>
db.withConnection { connection =>

val sql: DSLContext =
DSL.using(connection, SQLDialect.POSTGRES_9_4)

val users = context.selectFrom[UserRecord](USER).fetch()
Ok(users.toString)

}
}

}

The first query you place isn’t very elaborate. You simply list all users to get a sense of
what jOOQ is returning. Add the corresponding route to your conf/routes file:

GET /login controllers.Application.login(email, password)

Now access the action in the browser. You should get a nicely formatted result from
the query:

+----+--------------+----------------------------+---------+--------+
| id|email |password |firstname|lastname|
+----+--------------+----------------------------+---------+--------+
| 1|bob@marley.org|14E65567ABDB5D0CFD9A76...EE7|Bob |Marley |
+----+--------------+----------------------------+---------+--------+

SETTING UP A LOGIN FORM AND PERFORMING AUTHENTICATION

Now that we’re out of the starting gate, let’s build a simple login form. Start by creat-
ing the app/views/login.scala.html file as shown in the following listing.

Listing 7.7 Querying for users in the login method

Initializes
 a database

connection using
Play’s built-in
Database API

Creates a jOOQ
DSLContext using

the transaction

Fetches all users
into classes of the
type UserRecord,

generated by jOOQ
Displays the result
as a response

175Working with state in a stateless Play web application

@(form: Form[(String, String)])(implicit messages: Messages)

@form.globalError.map { error =>
<p>@error.message</p>

}

@helper.form(controllers.routes.Application.authenticate()) {
@helper.inputText(form("email"))
@helper.inputPassword(form("password"))
<button type="submit">Login</button>

}

Next, define the login action and the loginForm in the Application controller as
follows.

import play.api.data._
import play.api.data.Forms._

class Application(val db: Database, val messagesApi: MessagesApi)
extends Controller with I18nSupport {
// ...

def login = Action { implicit request =>
Ok(views.html.login(loginForm))

}

val loginForm = Form(
tuple(

"email" -> email,
"password" -> text

)
)

}

Next, add the login action to the routes file, and change the method of the authen-
ticate method from GET to POST. At this point, you should be able to display and sub-
mit the form, but without any real functionality yet.

 All that’s left is to evaluate the submission to the form and to issue a query against
the database with the provided email and password. Adjust the Application control-
ler to check the form submission, as in the following listing.

def authenticate = Action { implicit request =>
loginForm.bindFromRequest.fold(

formWithErrors =>
BadRequest(views.html.login(formWithErrors)),

Listing 7.8 Implementation of the login form page

Listing 7.9 Defining the login action and form

Listing 7.10 Authenticating against the database using the provided credentials

Passes the form as
an input parameter
and the Messages
API as an implicit
parameter

Displays global
form errors

Defines a form that will call
the authenticate action

Defines the login
form with email and
password fields

Binds the submitted
form based on the
request’s body

Displays the
login form
again with
validation

errors

176 CHAPTER 7 Dealing with state

login =>
db.withConnection { connection =>

val sql = DSL.using(connection, SQLDialect.POSTGRES_9_4)
val user = Option(sql

.selectFrom[UserRecord](USER)

.where(USER.EMAIL.equal(login._1))

.and(USER.PASSWORD.equal(crypto.sign(login._2)))

.fetchOne())

user.map { u =>
Ok(s"Hello ${u.getFirstname}")

} getOrElse {
BadRequest(

views.html.login(
loginForm.withGlobalError("Wrong username or password")

)
)

}
}

)
}

That’s it! You simply query the database to check for a matching record, and if one is
found, display the user’s first name.

 As you can see, writing SQL queries with jOOQ is pretty straightforward—the API
follows SQL itself. If you need database-specific functions, you can support the corre-
sponding DSL (such as org.jooq.util.postgres.PostgresDSL)—or you can always
fall back on plain SQL.5

USING THE CORRECT EXECUTIONCONTEXT

You may already have noticed that in the previous code listings I haven’t made use of
the ExecutionContext that we set up in listing 7.2. This is, of course, suboptimal
because the database query is now running on Play’s default context, which we’d like
to avoid because we know that this type of call is blocking.

 To make use of our carefully devised configuration, we need to switch the code
block that accesses the database to the specialized database execution context. Let’s
create a helper method to do so—and because we’re using jOOQ’s DSLContext for
querying the database, we can also choose to only expose that one to the client code.

package helpers

import java.sql.Connection
import play.api.Play.current
import scala.concurrent.Future

class Database @Inject() (db: play.api.db.Database) {
def query[A](block: DSLContext => A): Future[A] = Future {

5 See the “Plain SQL” page in the The jOOQ User Manual: http://mng.bz/IP42.

Listing 7.11 Defining a helper query method

Executes the
query that looks
for the first user

with the provided
credentials

Sets a global error if
there are no users with

the provided credentials

Defines higher-order function
parameterized in A that takes a

function from Connection to A as
argument and returns a Future[A]

http://mng.bz/IP42

177Working with state in a stateless Play web application

db.withConnection { connection =>
val sql = DSL.using(connection, SQLDialect.POSTGRES_9_4)
block(sql)

}
}(Contexts.database)

}

This helper will cause the wrapped code to be executed against the database execu-
tion context rather than any other ExecutionContext in scope. The advantage of this
is twofold: the database operations will execute in a context that has the appropriate
size, and using a separate execution context dedicated to database operations ensures
that the rest of the operations in the application won’t be affected should all connec-
tions, for one reason or another, block indefinitely.

 Use this helper as a replacement for the direct call to DB.withConnection in the
authenticate method of the Application controller. Make sure you remove the
import play.api.db.Database statement to inject the new Database helper instead,
and adjust the authenticate action to use Action.async, because the brand-new
Database.query helper now returns a Future.

7.1.2 Client-side state using the Play session

To keep our users logged in once they’ve correctly filled out the form, we need to
store somewhere the fact that they’ve logged in. Play has a client-side session that’s

Creates
the jOOQ
DSLContextInvokes the function

in the context of a
database connection

Explicitly passes the custom database
ExecutionContext so that the future
will be executed against it

A word of warning on JDBC connections and asynchronous operations
As we discussed at the beginning of this chapter, a JDBC connection isn’t thread-safe
in the sense that the database will likely not know what to do if several threads hap-
pened to talk to the same connection concurrently. If you want to use a JDBC connec-
tion in combination with futures, make sure you access the connection inside of the
future and not the other way around, like so:

val futureResult = Future {
db.withConnection { connection =>
// do something with the connection

}
}

Don’t do this:

val futureResult = db.withConnection { connection =>
Future { connection =>
// do something with the connection

}
}

178 CHAPTER 7 Dealing with state

signed with the application’s secret (defined in the conf/application.conf file), which
we’ll use for this purpose.

 In chapter 4, we talked about a way to customize Play’s standard request-handling
pipeline using filters. Another very popular approach is to create custom requests and
actions as we’ll do now. Append the code in the following listing to the end of the
app/controllers/Application.scala file.

case class AuthenticatedRequest[A](
userId: Long, firstName: String, lastName: String

)

object Authenticated extends ActionBuilder[AuthenticatedRequest]
with Results {

override def invokeBlock[A]
(request: Request[A],
block: (AuthenticatedRequest[A]) => Future[Result]
): Future[Result] = {
val authenticated = for {
id <- request.session.get(USER.ID.getName)
firstName <- request.session.get(USER.FIRSTNAME.getName)
lastName <- request.session.get(USER.LASTNAME.getName)

} yield {
AuthenticatedRequest[A](id.toLong, firstName, lastName)

}

authenticated.map { authenticatedRequest =>
block(authenticatedRequest)

} getOrElse {
Future.successful {

Redirect(routes.Application.login()).withNewSession
}

}
}

}

The custom request is parameterized to allow for the different types of request bod-
ies—in chapter 4 you saw that Play encodes the content type of a request using the
type system. The ActionBuilder mechanism lets you define custom actions, option-
ally using custom requests, which can be useful for storing per-request state that needs
to be readily available.

 Now that we have a means to explicitly require a user to be authenticated, let’s use
it to build the index action. Start by writing a simple index view template in app/
views/index.scala.html:

Listing 7.12 Defining a custom request and action for requiring authentication

Defines the custom request, which
has to be parameterized to account
for different types of request bodies

Defines a new
action using the

ActionBuilder
defined by Play

Mixes in the Results trait in order
to use the Redirect result later onImplements the

invokeBlock,
which is called

by Play when an
action is called

Uses the code
generated by
jOOQ to fetch

field names

Builds an
AuthenticatedRequest
based on the contents

found in the sessionInvokes the body of the
AuthenticatedAction by

passing in an
AuthenticatedRequest

Redirects to the login page if the session
doesn’t contain the required parameters,
with an entirely new session, invalidating

any erroneous session that may have existed

179Working with state in a stateless Play web application

@(firstName: String)

Hello @firstName !

Then add the index action to the Application controller:

def index = Authenticated { request =>
Ok(views.html.index(request.firstName))

}

Don’t forget to add the appropriate route to / in the conf/routes file.
 The last thing you need to do for this mechanism to work properly is initialize the

session on login. In the existing authenticate method, swap out the result of a suc-
cessful login with the following result:

Redirect(routes.Application.index()).withSession(
USER.ID.getName -> u.getId.toString,
USER.FIRST_NAME.getName -> u.getFirstname,
USER.LAST_NAME.getName -> u.getLastname

)

The withSession method allocates a new session with a set of key-value pairs that can
be retrieved.

 That’s it! If you now access the application’s root, you should be redirected to the
login page. Once logged in, you’ll be redirected to the index page and Play’s session
cookie will be set.

CORRECTLY USING SESSIONS

Play’s session expiration can be controlled in the configuration. For example, if you
want the session to expire after two hours, add session.maxAge=2h to application.conf.

 The size of Play’s client-side session is limited by the size of a cookie, which is to
say 4 KB. Hence, the session isn’t suited to act as a cache, as is sometimes the case for
server-side sessions. In general, you should aim to keep the client-side session as thin
as possible—you’ll see in a minute how to use a server-side cache.

SESSION SECURITY Play uses the application secret defined in application.conf
to sign the session cookie. This protection mechanism makes it impossible to
tamper with the contents of the cookie, or worse, to forge a cookie. Make sure
you never disclose the application secret publicly, such as by checking it into a
public source code repository!

7.1.3 Server-side state using a distributed cache

So far we’ve stored a few key facts about the user in the client-side session. But what if
we needed to access more data, and the user model grew in complexity over time? We
could, of course, query the database to fetch this data, but chances are that our appli-
cation performance would suffer as a result—having one database query tied to every
kind of request a user makes doesn’t sound optimal.

180 CHAPTER 7 Dealing with state

 To cache data within a Play application, it’s important to remember the share-
nothing philosophy of reactive web applications. A node may disappear at any time
and for various reasons (scaling, crashing, and so on), so any kind of data stored on
the server side needs to be visible to all nodes, not only this node.

 Play provides a cache plugin that can have several different implementations. The
default implementation is based on EHcache, but we’re going to use memcached
(http://memcached.org), a high-performance in-memory cache. It may not sound as
hip as some younger in-memory caches or key-value stores, but it has the advantage of
being readily available and very easy to install. Luckily for us, there’s a play2-memcached
plugin available to easily integrate memcached (https://github.com/mumoshu/
play2-memcached).

 Start by adding the following dependencies in build.sbt:

resolvers += "Spy Repository" at "http://files.couchbase.com/maven2"

libraryDependencies += Seq(
// ...
cache,
"com.github.mumoshu" %% "play2-memcached-play24" % "0.7.0"

)

Next, adjust Play’s configuration to disable the default plugin and set up the connec-
tion to memcached:

play.modules.enabled+=
"com.github.mumoshu.play2.memcached.MemcachedModule"

To avoid conflict with Play's built-in cache module
play.modules.disabled+="play.api.cache.EhCacheModule"

Well-known configuration provided by Play
play.modules.cache.defaultCache=default
play.modules.cache.bindCaches=

["db-cache", "user-cache", "session-cache"]

Tell play2-memcached where your memcached host is located at
memcached.host="127.0.0.1:11211"

Now that the configuration is in place, you can use the cache to store the whole user.
 In the Authenticated object that you created in listing 7.12, add a fetchUser

method.

import play.api.cache.Cache

def fetchUser(id: Long) =
Cache.getAs[UserRecord](id.toString).map { user =>
Some(user)

Listing 7.13 Method to fetch the user from the cache, or the database if there’s a cache miss

Retrieves the user
from the cache using
the identifier as a key

http://memcached.org
https://github.com/mumoshu/play2-memcached
https://github.com/mumoshu/play2-memcached

181Command and Query Responsibility Segregation and Event Sourcing

} getOrElse {
DB.withConnection { connection =>

val sql = DSL.using(connection, SQLDialect.POSTGRES_9_4)
val user = Option(

sql
.selectFrom[UserRecord](USER)
.where(USER.ID.equal(id))
.fetchOne()

)
user.foreach { u =>

Cache.set(u.getId.toString, u)
}
user

}
}

You first try to fetch the user record from the cache, and in case of a cache miss, you
query it in the database and set its value in the cache (to avoid querying the next
time).

EXERCISE 7.1

Adjust the AuthenticatedRequest to contain the UserRecord instead of just the first and
last name, and use the fetchUser method to retrieve the user in the implementation of
the Authenticated action.

CACHE NAMESPACING In a flat key-value cache, it’s a good idea to namespace
the keys. For example, if you plan on caching other types of elements than
users in the cache, it would be good to prefix user entries with user., such as
user.42. This is especially true for incremental identifiers, which are likely to
collide across different record types.

7.2 Command and Query Responsibility Segregation and
Event Sourcing
In this second part of the chapter, we’ll explore an architectural pattern that has
been gaining in popularity for building high-throughput applications. The Com-
mand and Query Responsibility Segregation and Event Sourcing (CQRS/ES) model
makes it easier to scale out by separating writing and reading data into separate pro-
cesses and storage systems.6 The effect of this reduced contention on data storage sys-
tems makes for much better performance but sacrifices consistency of reads, which
are not instantly up to date with the data that has been written, leading to a state of
eventual consistency.

 This model is therefore not suitable for all kinds of applications—for example, you
wouldn’t want to run an online banking system without credit limits using eventual

6 Martin Fowler explains CQRS, and how ES can be used with it, on his blog in the “CQRS” entry (14 July 2011),
http://martinfowler.com/bliki/CQRS.html.

Queries for a user in
the database in the
case of a cache miss

Sets the retrieved
user in the cache

http://martinfowler.com/bliki/CQRS.html

182 CHAPTER 7 Dealing with state

consistency—but it’s suitable in a fair number of cases. As you’ll see, another case for
using CQRS—next to the one of scaling out to a large number of concurrent reads
and writes—is getting an audit trail of all changes made to the data, thanks to the use
of an immutable, insert-only event store.

7.2.1 The Twitter SMS service

In chapters 5 and 6 we started to build a Twitter analytics service capable of computing
simple statistics and providing insights into how a user’s follower numbers evolve over
time and how much reach a tweet has. To monetize our service, let’s extend it to provide
a solution for professional Twitter addicts who can’t stay completely out of touch with
the Twitterverse, even when on vacation trekking the Sahara desert (or something
along those lines). In those situations, internet connectivity may be sparse, and the only
connection to the outside world may be a satellite phone with SMS. It wouldn’t be very
useful to have each and every tweet forwarded to said satellite phone—instead, the ser-
vice needs to be able to perform certain types of aggregations on the power-user’s time-
line and let the user specify the notifications they’d like to receive.

 An extensive market study has shown that there’d be potentially millions of users
wanting to use our service, so we’d like to be able to scale it out by using the CQRS/ES
architecture, as shown in figure 7.2.

 For this purpose, we’ll use

■ MongoDB to store incoming events (because we already used it in previous
chapters)

■ PostgreSQL to act as a read store
■ Akka persistence to implement Event Sourcing
■ Akka IO to simulate an SMS interface with Telnet (it’s not the real deal, but it

has the same kind of retro feel to it)

Twitter

Event store Read store

SMS interface

Twitter interface

Figure 7.2 Twitter SMS service for highly addicted users

183Command and Query Responsibility Segregation and Event Sourcing

The resulting actor hierarchy is shown in figure 7.3.

APPLICATION SETUP AND SUPERVISION

The SMSService is the supervising actor and will be a parent to most components of
the system. It deals with their failure if necessary.

INCOMING CLIENT CALLS

The SMS exchange is simulated by simple socket connections. The SMSServer will lis-
ten to incoming connections. For each new client connection (which we’ll establish
using Telnet), it creates a new SMSHandler child actor that will handle the communi-
cation for one particular connection (meaning there can be several instances of
SMSHandler in the system—this isn’t shown in figure 7.3 because the figure would get
too crowded). This part will be implemented using the Akka IO library, which takes
care of the low-level connection details.

COMMAND HANDLING

A Telnet client can send commands to our service, such as a request to subscribe to
Twitter mentions notifications. When they do, they’ll receive one SMS for each men-
tion of their username.

SMSService

MongoDB

PostgreSQL
Is supervised by

Event bus
Communicates with

Legend

SMSServer

SMSHandler

CQRSEventHandlerQueryHandler

CQRSCommandHandler

ClientCommandHandler

Twitter

Figure 7.3 Actor hierarchy of our CQRS system

184 CHAPTER 7 Dealing with state

 The Twitter state of a particular client (identified through their phone number) is
longer-lived than that of a particular Telnet connection for that client (they may dis-
connect and reconnect later on and expect to be able to use the service), so it needs
to be kept in a longer-lived actor. The ClientCommandHandler keeps the state and
handles all commands for one particular client.

ClientCommandHandler instances are created by the CQRSCommandHandler parent,
which also forwards all the commands received from the SMSHandler. Both Client-
CommandHandler and CQRSCommandHandler are persistent actors, which means that
they’ll keep their state when the JVM is restarted. In our application, the state will be
persisted to MongoDB.

QUERY HANDLING

A Telnet client can also issue queries to the service, asking for information such as
how many times their Twitter username has been mentioned in one day. These que-
ries are forwarded by the SMSHandler to the QueryHandler, which will query the data
in PostgreSQL.

EVENT SOURCING

To be able to answer client queries, our PostgreSQL database needs to be provided
with data. Each ClientCommandHandler will emit events for each valid command
related to a client, such as when a client subscribes to mentions or when a new tweet
mentions the username. Those discrete events are broadcast over the Akka event bus.
The CQRSEventHandler listens to the bus and decides to act on some of those events,
which it transforms and writes to PostgreSQL, hence making them available to be que-
ried through a relational database model suited to advanced reporting, as shown in
figure 7.4.

 The CQRSEventHandler plays a central role in the CQRS/ES architecture: it trans-
lates discrete events from the event model into data that may spread over several
tables in a relational model. Querying the event store directly would be impractical

Users

Mentions

Mention
subscriptions

UserRegistered

MentionsSubscribed

UserRegistered

MentionReceived

MentionReceived

MentionReceived

MentionReceived

Relational modelEvent stream

Figure 7.4 Mapping the Event Stream to the relational model with the CQRSEventHandler

185Command and Query Responsibility Segregation and Event Sourcing

because the data model would likely not be appropriate for advanced reporting. More
importantly, it would impact the performance of the system by creating read/write
contention in the event store.

 We’ll start by building our “fake” SMS gateway, and then move on to create persis-
tent actors backed by MongoDB for handling incoming events. Finally we’ll write
those events into PostgreSQL.

7.2.2 Setting up the SMS gateway

To interact with users by Telnet SMS, you’ll to need to listen to incoming connections
and handle them. Start by adding the necessary libraries to your application in
build.sbt:

libraryDependencies ++= Seq(
// ...
"com.ning" % "async-http-client" % "1.9.29",
"joda-time" % "joda-time" % "2.7",
"com.typesafe.akka" %% "akka-persistence" % "2.4.0",
"com.typesafe.akka" %% "akka-slf4j" % "2.4.0"

)

As in chapter 6, you now need to make sure logging works correctly. Adjust the logging
configuration by adding the following bit of configuration in conf/application.conf.

akka {
loggers = ["akka.event.slf4j.Slf4jLogger"]
loglevel = "DEBUG"
logging-filter = "akka.event.slf4j.Slf4jLoggingFilter"

}

Next, you need to add the required configuration in conf/logback.xml to enable the
DEBUG log level for the actors package. Add the following logger element:

<logger name="actors" level="DEBUG" />

Next, you need an actor for listening to incoming connections. Create the file app/
actors/SMSServer.scala with the following contents.

package actors

import java.net.InetSocketAddress
import akka.actor.{Props, ActorLogging, Actor}
import akka.io.Tcp._
import akka.io.{Tcp, IO}

class SMSServer extends Actor with ActorLogging {

Listing 7.14 Configuring logging bindings

Listing 7.15 Implementation of a server actor listening to incoming connections

186 CHAPTER 7 Dealing with state

import context.system

IO(Tcp) ! Bind(self, new InetSocketAddress("localhost", 6666))

def receive = {
case Bound(localAddress) =>

log.info("SMS server listening on {}", localAddress)

case CommandFailed(_: Bind) =>
context stop self

case Connected(remote, local) =>
val connection = sender()
val handler =

context.actorOf(Props(classOf[SMSHandler], connection))
connection ! Register(handler)

}
}

Akka IO abstracts over low-level components such as channels and selectors to provide
lock-free IO connectivity, in our case over TCP/IP. We’re just setting up a server here
that listens on port 6666 on localhost so we can connect to it later on.

 Now that you can accept connections, you need an SMSHandler to deal with incom-
ing client messages (the handler deals with all the messages of one connection). Cre-
ate the file app/actors/SMSHandler.scala as follows.

package actors

import akka.actor.{ActorLogging, Actor}
import akka.io.Tcp._

class SMSHandler(connection: ActorRef)
extends Actor with ActorLogging {

def receive = {
case Received(data) =>
log.info("Received message: {}", data.utf8String)
connection ! Write(data)

case PeerClosed =>
context stop self

}
}

Listing 7.16 Actor to handle incoming SMS messages

Imports the ActorSystem
required by Akka IO Instructs Akka IO to

bind to the socket on
localhost at port 6666

Handles the case
when the socket was
successfully bound

Handles the case when
the socket couldn’t be
bound by giving up

Sets up a new handler for the
client connection by creating

a child SMSHandler and
passing it the client

connection

Registers the handler with
the Akka IO subsystem

Handles the
reception of

data

Prints out the received
data (encoded as

ByteString), assuming
it’s a UTF-8 String

Echoes the
incoming
message

back to the
connection

Handles the
disconnection
of the client

187Command and Query Responsibility Segregation and Event Sourcing

This first version of the handler doesn’t do anything interesting other than print the
incoming message and send it back to the sender. Data is encoded as ByteString,
which is an immutable data structure aimed at reducing the copying of arrays when
slicing and dicing the incoming data.

 You can now test this out—create an SMSService actor that initializes the SMSServer
on prestart and doesn’t do anything with any incoming messages it may get for the time
being.

 To use the SMSService, we’ll let Play inject it with dependency injection. Alongside
your SMSService in app/actors/SMSService.scala, create the module shown in the fol-
lowing listing.

package actors

import javax.inject.Inject

import akka.actor.{ActorLogging, Actor, Props}
import com.google.inject.AbstractModule
import helpers.Database
import play.api.libs.concurrent.AkkaGuiceSupport

class SMSService @Inject() (database: Database)
extends Actor with ActorLogging {
// the implementation is left to the reader

}

class SMSServiceModule extends AbstractModule with AkkaGuiceSupport {
def configure(): Unit =
bindActor[SMSService]("sms")

}

Don’t forget to declare this module in application.conf, as you did in chapter 6, by
adding the following line:

play.modules.enabled += "actors.SMSServiceModule"

Because the actor system we use in this example is standalone, we don’t need to inject
this actor anywhere—it will be eagerly instantiated by Play as a singleton when the
application starts up. But if you ever needed to get a reference to the SMSService, you
could do so by using the @Named annotation:

import javax.inject._

class SomeService @Inject() (@Named("sms") sms: ActorRef)

Listing 7.17 Letting Play instantiate the SMSService actor with dependency injection

Uses dependency
injection to wire
dependencies in the
actor’s constructor

Mixes in the AkkaGuiceSupport
trait to provide the dependency

injection tooling for actorsDeclares the binding for the SMSService actor
with the name “sms”. The name will be used

for naming the binding as well as the actor.

188 CHAPTER 7 Dealing with state

Once the application is running (don’t forget to open it in the browser, or it won’t
start!), you can connect to the server using Telnet and send a message like so:

» telnet localhost 6666
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello from the desert
Hello from the desert

Alright! It’s time to move on to the next step and persist some data!

7.2.3 Writing the event stream with persistent actors

The underlying idea of the CQRS model is to turn commands into events once they’ve
been validated. Only when an event has been written should the state of the in-memory
representation of the domain be changed. This way, by replaying all the events in order,
the same state can be restored.

 Akka persistence offers an extension to the actor model that implements this prin-
ciple. The two modes of operation of a persistent actor are shown in figure 7.5.

 A persistent actor functions like a normal actor in that it sends and receives mes-
sages and has a few extensions to handle persistence. It has a persistenceId that
must be unique for the entire application, and that’s used to store and retrieve per-
sisted events.

Command

receiveCommand

Validate
command

persist(Event)

EventN
…

Event4
Event3
Event2
Event1

Journal

callback(Event)

Mutate actor state

Persistent actor during normal operation Persistent actor during recovery

persistenceId

EventN
…

Event4
Event3
Event2
Event1

Journal

callback(Event)

Mutate actor state

persistenceId

Figure 7.5 Persistent actor in action

189Command and Query Responsibility Segregation and Event Sourcing

During normal operation, a persistent actor receives commands through its receive-
Command method, validates them, and then calls the persist method with the follow-
ing signature:

final def persist[A](event : A) (handler : A => Unit): Unit

When an event is persisted successfully to the event journal, a callback handler is
called for the event and then reacts, such as by changing the state of the persistent
actor. This way you’re ensured that only events that have been written to the journal
have any impact on the state of an actor.

 This mechanism makes it possible for the persistent actor to recover its state if it
crashes. After having been restarted, a persistent actor goes into recovery. During
recovery, all the events from the journal are replayed in order, enabling the actor to
re-create its internal state.

 In terms of supervision, these persistent actors themselves need to be supervised by
an actor capable of re-creating them in case of failure or system restart.

STATE SNAPSHOTS To speed up recovery for actors that have already received
many events, you can take snapshots of the persistent actor’s state. The most
recent snapshot is replayed during recovery, followed by any events that took
place after the snapshot was taken. We won’t use snapshots in this book, but
it’s useful to know of their existence.

In our example, CQRSCommandHandler and ClientCommandHandler are two persistent
actors. We’ll first define the commands and events that model our domain and then
move on to implementing the persistent actors.

 Start by defining the Command and Event traits in the app/actors/Messages.scala
file, as well as a first command-event pair, as shown in the following listing

package actors

import org.joda.time.DateTime

trait Command {
val phoneNumber: String

}
trait Event {

val timestamp: DateTime
}

case class RegisterUser(phoneNumber: String, userName: String)
extends Command

case class UserRegistered(
phoneNumber: String,
userName: String,
timestamp: DateTime = DateTime.now) extends Event

case class InvalidCommand(reason: String)

Listing 7.18 Command and event definition

190 CHAPTER 7 Dealing with state

Next, set up the CQRSCommandHandler supervisor as a persistent actor. This actor is in
charge of forwarding messages to the ClientCommandHandler responsible for a given
phone number, or for creating it if it doesn’t exist.

package actors

import akka.actor._
import akka.persistence._
import scala.concurrent.duration._

class CQRSCommandHandler extends PersistentActor with ActorLogging {

override def persistenceId: String = "CQRSCommandHandler"

override def receiveRecover: Receive = {
case RecoveryFailure(cause) =>

log.error(cause, "Failed to recover!")
case RecoveryCompleted =>

log.info("Recovery completed")
case evt: Event =>

handleEvent(evt)
}

override def receiveCommand: Receive = {
case RegisterUser(phoneNumber, username) =>

persist(completed(phoneNumber, username))(handleEvent)
case command: Command =>

context.child(command.phoneNumber).map { reference =>
reference forward command

} getOrElse {
sender() ! "User unknown"

}
}

def handleEvent(event: Event, recovery: Boolean): Unit =
event match {

case registered @ UserRegistered(phoneNumber, userName, _) =>
context.actorOf(

props = Props(
classOf[ClientCommandHandler], phoneNumber, userName

),
name = phoneNumber

)
if (recoveryFinished) {

sender() ! registered
}

}

During recovery (in the receiveRecover method) you receive a few different types of
messages, such as recovery failure notifications, a notification that the recovery is

Listing 7.19 Implementing the CQRSCommandHandler

Handles
the failure

of recovery
by logging

it out
Handles the end
of recovery

Handles
events that

are replayed
during

recovery

Persists the registration of a
user as a UserRegistered event,

and calls the handleEvent
function in the callback

Forwards
 the message

 to an existing
ClientCommand

Handler

Returns an error if the phone number
is unknown, which is when there’s no
child actor with that identifier

Creates the
ClientCommand

Handler as a
child actor

Passes the phone number
and username as

constructor parameters to
the ClientCommandHandler

Informs the client that registration
worked if you’re not in recovery

191Command and Query Responsibility Segregation and Event Sourcing

completed, and most importantly, the events that are being replayed. Chances are
you’ll react to these events much like you reacted to them when they were created in
the first place, which is why you define the handleEvent method to do event handling
in one place.

 You only proceed to creating the child ClientCommandHandler actor in the call-
back of the persist method by calling the handleEvent callback, thus making sure
that this event has been saved to the journal. In case of a crash, this event will be
replayed, causing the child actors to be created again, and they can in turn run
through their own journal to recover their state.

MESSAGE RECEPTION GUARANTEES Akka persistence will ensure that no other
external messages will reach your actor while the persist call is made. This
means it’s safe to call sender() in the callback of the persist function if
needed.

Don’t forget to instantiate CQRSCommandHandler as a child of the SMSService actor,
giving it the name commandHandler.

7.2.4 Configuring Akka persistence to write to MongoDB

Our events are written into a journal managed by Akka persistence, which provides
a plugin interface for supporting different kind of stores. Let’s use the akka-
persistence-mongo plugin (https://github.com/ironfish/akka-persistence-mongo) to
write events to MongoDB.

 Start by doing the following:

■ Add the plugin to build.sbt by adding the dependency to "com.github.iron-
fish" %% "akka-persistence-mongo-casbah" % "0.7.6"

■ Remove the previous dependency on akka-persistence (the correct version
will be selected as a transitive dependency).

■ Remove the previous dependency on akka-slf4j (the akka-persistence-
mongo-casbah plugin doesn’t yet use Akka 2.4.0, which means the logging con-
figuration doesn’t require this library).

Now that you have the library in place (don’t forget to reload the project), all that’s
left is to configure it in conf/application.conf:

akka.persistence.journal.plugin = "casbah-journal"
casbah-journal.mongo-journal-url =

"mongodb://localhost:27017/sms-event-store.journal"
casbah-journal.mongo-journal-write-concern = "journaled"

That’s about it! With this setup, the events will be written in MongoDB’s sms-event-
store database, into the journal collection. The journaled write-concern means
that MongoDB will consider an insertion successful once it has been written into Mon-
goDB’s journal without replication (you may want to increase this level depending on
the system you’re building).

https://github.com/ironfish/akka-persistence-mongo

192 CHAPTER 7 Dealing with state

7.2.5 Handling an incoming command: subscribing to user mentions

We’re now ready to get to the core of our service. One of the basic functions we’d like
to offer the user is the option to turn on SMS notifications for mentions on the time-
line. Add the following command to app/actors/Messages.scala:

case class SubscribeMentions(phoneNumber: String) extends Command

Next, let’s upgrade the SMSHandler to be a bit more useful.

class SMSHandler(connection: ActorRef)
extends Actor with ActorLogging {

implicit val timeout = Timeout(2.seconds)
implicit val ec = context.dispatcher

lazy val commandHandler = context.actorSelection(
"akka://application/user/sms/commandHandler"

)

val MessagePattern = """[\+]([0-9]*) (.*)""".r
val RegistrationPattern = """register (.*)""".r

def receive = {
case Received(data) =>

log.info("Received message: {}", data.utf8String)
data.utf8String.trim match {

case MessagePattern(number, message) =>
message match {

case RegistrationPattern(userName) =>
commandHandler ! RegisterUser(number, userName)

case other =>
log.warning("Invalid message {}", other)
sender() ! Write(ByteString("Invalid message format\n"))

}
case registered: UserRegistered =>

connection !
Write(ByteString("Registration successful\n"))

case InvalidCommand(reason) =>
connection ! Write(ByteString(reason + "\n"))

case PeerClosed =>
context stop self

}
}

From now on you’re only going to accept messages that have a valid format and reject
all others. A valid registration attempt will be sent to the command handler, which will
then act on it by subscribing the client to mentions from Twitter.

Listing 7.20 Enhancing the SMS handler to parse and relay messages

Declares the pattern
for matching
incoming messages

Declares the pattern for matching
a valid registration command

Sends a RegisterUser
command to the

command handler

Answers with success
if the registration
succeeded

Relays results of
invalid commands

193Command and Query Responsibility Segregation and Event Sourcing

EXERCISE 7.2

It’s now your turn to implement the ClientConnectionHandler, and especially its capa-
bility to properly deal with a mention subscription request. Here’s a possible plan for
achieving this:

1 Handle the SubscribeMentions command in the SMSHandler as you did user regis-
tration. It will be forwarded to the corresponding ClientConnectionHandler by the
ConnectionHandler as a result.

2 Implement the ClientConnectionHandler as a persistent actor, passing the phone
number as a constructor argument and using it as persistentIdentifier.

3 Persist the MentionsSubscribed event (after verifying that the client isn’t already
subscribed—if it is, the received SubscribeMentions command is invalid) and pro-
ceed to the next steps only once the event has been persisted.

4 Because it isn’t possible to get push notifications from Twitter, you’ll need to query
Twitter at regular intervals for the mentions by using a scheduler that sends a specific
message to the ClientConnectionHandler at regular intervals, such as every 10
seconds (you saw how to use a scheduler in chapter 6).

5 Use Twitter’s search feature (https://api.twitter.com/1.1/search/tweets.json) to
retrieve Tweets in which the user has been mentioned (don’t forget to add the WS library
to the project build and to use the Twitter authentication credentials as you’ve done pre-
viously). You’re only interested in new mentions, so you need to keep track of when you
first subscribed or last fetched mentions in a dedicated field, and compare it against the
creation date of a mention tweet. To parse the time format returned in a tweet’s
created_on field, you can use Joda-Time’s DateTimeFormat like so: DateTime-
Format.forPattern("EEE MMM dd HH:mm:ss Z yyyy").withLocale(Locale.ENGLISH).

6 Persist each new mention as a new event, and only once it’s persisted, inform the
SMSHandler about the new mention. The SMSHandler in turn has to forward it to the
client connection.

7 If you want to go even further, simulate SMS delivery acknowledgment by having the
SMSHandler respond to each new mention with an AcknowledgeMention message,
and persist a MentionAcknowledged event reflecting the acknowledgment. Introduce
the ConnectUser command, reflecting the fact that the mobile phone has connected
to the network, and send all unacknowledged mentions upon connection. You’ll need
to keep a list of unacknowledged mentions as state to get this to work.

Grab a nice cup of coffee (or tea), and go ahead! This exercise is a bit longer and harder
than others, but by the end of it you’ll have a good appreciation for what it means to work
with persistent actors and their environment. If you’re feeling completely stuck, you can
always check this chapter’s source code on GitHub.

At the end of this exercise, you should be able to register to the service and be notified of
new mentions, like so:

» telnet localhost 6666
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
+43676123456 register elmanu
Registration successful
mentioned by @elmanu: @elmanu Testing Twitter mentions

https://api.twitter.com/1.1/search/tweets.json

194 CHAPTER 7 Dealing with state

7.2.6 Transforming the event stream into a relational model

The Q in CQRS stands for query, and we’re going to look next at how to set up everything
we need to perform queries against our data without impacting the write side of things.
Separating the write model from the read model has a few interesting advantages.

 First, should our service become extremely successful (and why wouldn’t it, with
such a bulletproof business case?), the queries against the read side won’t impact our
system’s ability to write data—the read-write contention is significantly reduced by this
architecture.

 If necessary, we can change our minds as to how the read model looks, without
endangering the running system. All we need to do is set up a means to replay the
event logs we’re interested in and write it into our new read model. Only once it’s set
up will we switch to it, which gives us a graceful upgrade path. In fact, several different
read models can coexist side by side, specializing on various aspects of the domain.

 Note that the trade-off of this approach is that the read side is delayed. As already
mentioned, queries that require real-time data will need to be performed directly
against the in-memory persistent actors that hold the latest state. But many types of
queries, especially ones related to reporting and analytics, will be just fine if the data is
not 100% up to date.

 In what follows, we’ll use Akka’s built-in EventStream to transfer the events into our
relational database. Depending on your requirements, this approach can be supple-
mented with another message queue, such as RabbitMQ (www.rabbitmq.com).

 We’ll track three types of events: registrations of new users, subscriptions to our
mentions delivery service, and the mentions themselves. For the latter two events, we
need to provide some metadata before publishing them to the bus, namely the phone
number and user handle, which are not part of these events.

 Start by adding the following new event type to Messages.scala:

case class ClientEvent(
phoneNumber: String,
userName: String,
event: Event,
timestamp: DateTime = DateTime.now

) extends Event

Next, we want to publish those events on the global event bus. This is easy, so I’ll show
you just one example—the RegisterUser event. In the CQRSCommandHandler, adjust the
handleEvent method as follows.

def handleEvent(event: Event): Unit = event match {
case registered @ UserRegistered(phoneNumber, userName, _) =>
// ...
if (recoveryFinished) {

sender() ! registered

Listing 7.21 Publishing an event on Akka’s built-in event stream

www.rabbitmq.com

195Command and Query Responsibility Segregation and Event Sourcing

context.system.eventStream.publish(registered)
}

}

Go ahead and do the same for the MentionsSubscribed and MentionReceived mes-
sages, after wrapping them in a ClientEvent wrapper (you didn’t need this wrapper
for Registered because that message already contains the phone number and Twitter
username).

 Next, we need to build the relational schema in which we want to represent our
data. Create the file conf/evolutions/default/2.sql as shown in the following listing,
and then restart and access the application to apply it.

--- !Ups

CREATE TABLE "twitter_user" (
id bigserial PRIMARY KEY,
created_on timestamp with time zone NOT NULL,
phone_number varchar NOT NULL,
twitter_user_name varchar NOT NULL

);

CREATE TABLE "mentions" (
id bigserial PRIMARY KEY,
tweet_id varchar NOT NULL,
user_id bigint NOT NULL,
created_on timestamp with time zone NOT NULL,
author_user_name varchar NOT NULL,
text varchar NOT NULL

);

CREATE TABLE "mention_subscriptions" (
id bigserial PRIMARY KEY,
created_on timestamp with time zone NOT NULL,
user_id bigint NOT NULL

)

--- !Downs

DROP TABLE "twitter_user";
DROP TABLE "mentions";
DROP TABLE "mention_subscriptions";

Last but not least, we need to write the values coming down the event stream into the
database. Start by creating a new withTransaction helper method in app/helpers/
Database.scala, which does the same thing as the existing Database.query method
that we defined in listing 7.11 but calls the underlying DB.withTransaction method
instead, and which has the advantage of automatically committing the transaction
before closing it.

Listing 7.22 Evolution script for creating the read model

Publishing the event as is
on the event stream

196 CHAPTER 7 Dealing with state

 Once you have this helper method ready, you need to build the CQRSEventHandler
that will write the relevant events to the database. Create the file app/actors/CQRS-
EventHandler.scala with the following contents.

package actors

import java.sql.Timestamp
import akka.actor.{Actor, ActorLogging}
import helpers.Database
import generated.Tables._
import org.jooq.impl.DSL._

class CQRSEventHandler(database: Database)
extends Actor with ActorLogging {

override def preStart(): Unit = {
context.system.eventStream.subscribe(self, classOf[Event])

}

def receive = {
case UserRegistered(phoneNumber, userName, timestamp) => // TODO
case ClientEvent(phoneNumber, userName,

MentionsSubscribed(timestamp), _) =>
database.withTransaction { sql =>

sql.insertInto(MENTION_SUBSCRIPTIONS)
.columns(

MENTION_SUBSCRIPTIONS.USER_ID,
MENTION_SUBSCRIPTIONS.CREATED_ON

)
.select(

select(
TWITTER_USER.ID,
value(new Timestamp(timestamp.getMillis))

)
.from(TWITTER_USER)
.where(
TWITTER_USER.PHONE_NUMBER.equal(phoneNumber)
.and(

TWITTER_USER.TWITTER_USER_NAME.equal(userName)
)

)
).execute()

}
case ClientEvent(phoneNumber, userName,

MentionReceived(id, created_on, from, text, timestamp), _) =>
// TODO

}
}

Listing 7.23 Writing the events to a relational model in the CQRSEventHandler

Subscribes to all
messages that match the

Event trait and delivers
them to this actor

Creates an INSERT INTO
… SELECT statement

Creates the
SELECT

statement (the
select method
is provided by

the wildcard
import of the

DSL class) Inserts the
timestamp as a
constant value using
the value method

197Command and Query Responsibility Segregation and Event Sourcing

This code writes each received event directly into the appropriate table. In this exam-
ple, we have a rather simple domain, but you could have a more complex one involv-
ing writing into several tables. In any case, jOOQ does a great job at helping you write
valid SQL along the way.

 To get the CQRSEventHandler to work, you’ll need to pass an instance of the Data-
base helper down the actor hierarchy and inject it in the Actors module.

JOOQ DATA CONVERTERS jOOQ allows you to define custom converters for
data types, such as for the timestamp. See the “Data type conversion” page in
the jOOQ documentation: http://mng.bz/URIA.

SQL ADVANTAGE IN ACTION By using an INSERT…SELECT statement, we’ve just
saved ourselves a round trip from the database to the application. The entire
process of copying data takes place inside the database, avoiding the latency
cost of a round trip between application and database. This decreases thread
utilization and overall load.

EXERCISE 7.3

Write the missing insertion statements for the UserRegistered and MentionReceived
events.

7.2.7 Querying the relational model

Using our brand-new relational database model, we’re now able to get more informa-
tion out of our service:

■ Count of mentions today or in the past week
■ Ranking of most-mentioned user among users of the service
■ Interconnectedness of two individual users
■ Busiest mention time of the day, week, or month
■ Subscriptions to the mentions service over time
■ Frequency of connections to the service

Let’s go ahead and provide users with the ability to find out how many mentions they
got recently. Start by adding the following Query messages to the app/actors/
Messages.scala file:

trait Query
trait QueryResult
case class MentionsToday(phoneNumber: String) extends Query
case class DailyMentionsCount(count: Int) extends QueryResult
case object QueryFailed extends QueryResult

Next, create the app/actors/CQRSQueryHandler.scala actor.

http://mng.bz/URIA

198 CHAPTER 7 Dealing with state

package actors

import akka.actor.Actor
import helpers.Database
import generated.Tables._
import org.jooq.impl.DSL._
import org.jooq.util.postgres.PostgresDataType
import akka.pattern.pipe
import scala.concurrent.Future
import scala.util.control.NonFatal

class CQRSQueryHandler(database: Database) extends Actor {

implicit val ec = context.dispatcher

override def receive = {
case MentionsToday(phoneNumber) =>

countMentions(phoneNumber).map { count =>
DailyMentionsCount(count)

} recover { case NonFatal(t) =>
QueryFailed

} pipeTo sender()
}

def countMentions(phoneNumber: String): Future[Int] =
database.query { sql =>

sql.selectCount().from(MENTIONS).where(
MENTIONS.CREATED_ON.greaterOrEqual(currentDate()

.cast(PostgresDataType.TIMESTAMP)
)
.and(MENTIONS.USER_ID.equal(

sql.select(TWITTER_USER.ID)
.from(TWITTER_USER)
.where(TWITTER_USER.PHONE_NUMBER.equal(phoneNumber)))

)
).fetchOne().value1()

}
}

The resulting query will have the same semantics as the following native PostgreSQL
query:

select count(*)
from mentions
where created_on >= now()::date
and user_id = (select id from twitter_user where phone_number = '1')

As you can see, creating subqueries and using the native cast functionality is not a
problem with jOOQ’s DSL.

Listing 7.24 The CQRSQueryHandler interacting with Postgres

Pipes the result to the
requesting SMS handler

Recovers from any query
failure by emitting a
QueryFailed message

Fetches all of
today’s mentions

Casts the variable type

Uses a subquery to retrieve the user’s
database identifier, given their phone number

199Command and Query Responsibility Segregation and Event Sourcing

EXERCISE 7.4

Plug the CQRSQueryHandler into the communication chain through the SMSHandler:

1 Initialize the actor in SMSService and give it the name queryHandler.
2 Handle the reception of the MentionsToday query in the handleMessage method of

the SMSHandler, such as by reacting to the message “mentions today.”
3 Handle the reception of DailyMentionsCount in the receive method by relaying the

answer to the connection.

That’s it! When you’re done, you should be able to SMS the service and retrieve the
number of mentions you’ve gotten during the day:

~ » telnet localhost 6666
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
+43650123456 mentions today
2 mentions today

What we have now is an application that separates the write (command) side from the
read (query) side, effectively removing one of the most important contention points
in high-throughput applications. As we’ve discussed, one of the side effects of this
approach is eventual consistency, but in the case of this service, we should be fine with
a small delay between those two sides.

7.2.8 A word on eventual consistency

Eventual consistency has gained popularity and is used in many social network appli-
cations that have massive numbers of users. For this domain, the side effects of even-
tual consistency are acceptable because temporarily missing posts or comments may
not have a very profound impact. (That being said, the alternative model of causal
consistency7 depicts some examples of unfortunate side effects thereof.) For domains
wherein strong consistency needs to take place at the core (bank accounts, order
placement, execution systems, and so on), eventual consistency is a suboptimal solu-
tion. But it’s important to have a good definition of what parts of a system require
strong consistency—in the banking world, ATMs are an example of eventual consis-
tency coupled with policies that make it acceptable (the withdrawal limit).

 With increasingly cheaper RAM available, it has also become realistic to hold most
of an application’s state in main memory and to query live application state when nec-
essary, overcoming the limitations of eventual consistency for those cases that require
access to the latest state. Generally speaking, eventual consistency is a good fit for per-
forming near-real-time analytics on highly available systems.

7 “Don’t Settle for Eventual Consistency,” acmqueue, vol 12, 3 (April 21, 2014), https://queue.acm.org/
detail.cfm?id=2610533.

https://queue.acm.org/detail.cfm?id=2610533
https://queue.acm.org/detail.cfm?id=2610533

200 CHAPTER 7 Dealing with state

7.3 Summary
In this chapter, we’ve looked at working with state in a stateless Play application. In
particular, we have talked about

■ Configuring Play for relational database access
■ Handling client-side state with the Play session
■ Using memcached for server-side replicated caching
■ Using jOOQ to interact with the database using type-safe SQL

Furthermore, we built a small application using the CQRS/ES architecture:

■ We built a command-handling mechanism using Akka IO
■ We persisted events into MongoDB using Akka persistence
■ We streamed those events into a relational database using Akka’s event bus
■ We built the query side and implemented a simple query with jOOQ

In the next chapter we’ll add a user interface to this application, allowing us to visual-
ize its usage in real time.

201

Responsive
 user interfaces

To monitor the Twitter SMS service from chapter 7, we now need an administrative
dashboard that will allow us to visualize a few key performance indicators of the
service.

 To increase our developer happiness, we’ll employ Scala.js (http://scala-js.org),
which will allow us to work in a type-safe fashion. Scala.js allows us to write Scala
code that compiles down to JavaScript and to leverage existing JavaScript libraries.
We’ll also use the AngularJS framework (http://angularjs.org). Figure 8.1 shows
how all these parts fit together.

This chapter covers
■ Setting up a Play project to work with Scala.js
■ Integrating the AngularJS framework with

Scala.js
■ Writing your own integration of JavaScript

libraries with Scala.js
■ Best practices for building responsive user

interfaces

http://scala-js.org
http://angularjs.org

202 CHAPTER 8 Responsive user interfaces

Why go through the trouble of using Scala.js and AngularJS, and not simply write the
application directly in JavaScript without any library? Indeed, for a simple dashboard
application, this approach might look like overkill, but the aim of this chapter is to
show you how to use Scala.js together with an existing JavaScript framework, as it helps
to increase productivity considerably in the long run. Scala.js enables you to write the
entire application in one language (Scala), and it results in more-robust client-side
code because the Scala compiler will check it at compile time. Type-safety helps to get
rid of many issues that would go unnoticed when writing plain dynamic JavaScript
code and makes it possible to refactor the application code with an IDE such as IntelliJ
IDEA or Eclipse.

 Additionally, a framework such as AngularJS helps you build a single-page web
application and organize the client-side code as well as reuse many existing compo-
nents of the framework. We could use any other JavaScript framework for building
this dashboard (there are plenty available), but the relatively more complex MVC
architecture of AngularJS lets us look into more-advanced use cases.

LEARNING JAVASCRIPT I’ll guide you through this chapter on how to use
Scala.js as an alternative to writing JavaScript, but if you plan on writing appli-
cations in this fashion on your own, I recommend that you get your hands
dirty with plain old JavaScript first, to get a deeper understanding of what’s
going on. For learning JavaScript, I recommend taking a look at Douglas
Crockford’s JavaScript: The Good Parts (O’Reilly, 2008).

8.1 Integrating Scala.js and Play
The first thing we need to do to get our application going is integrate Scala.js source
code generation into the flow of our Play application. We’ll also need to configure
Play to serve the correct assets depending on whether we run the application in

Scala.js application

scalajs-
angulate

binding

Compiled JavaScript application AngularJS angular-
chart.js

angular-
websocket.js

Custom
angular-
websocket

binding

Scala layer

Scala.js
bindings

layer
(written in

Scala)

JavaScript
layer

Figure 8.1 The Scala.js application is written in Scala, leverages existing JavaScript libraries through
bindings, and compiles down to JavaScript.

203Integrating Scala.js and Play

development or production mode, as the assets will be different in those modes
(unoptimized during development, and optimized for production use).

8.1.1 The application structure

Our application will be divided into two logical parts: the server-side Play application
and the client-side Scala.js application. A Scala.js application needs to be in its own sbt
project for the compilation lifecycle to function properly, so we’ll set up the applica-
tion so that the client module is a subproject of the main Play application.

 Furthermore, because the AngularJS framework follows the MVC pattern, the cli-
ent side will be split into three parts, as shown in figure 8.2. The client-side application
will be loaded through a regular template of the main Play application, including all
JavaScript dependencies it needs.

Let’s get started by setting up the build pipeline for this structure.

8.1.2 Setting up the build process

The primary task of Scala.js is to compile Scala into JavaScript code and to provide for
good interoperability with existing JavaScript libraries. In addition, it provides a few very
useful features, such as generating source maps that help with debugging in the browser,
and making it possible to configure dependencies on JavaScript libraries in the sbt build
file. JavaScript libraries that are published through npm and Bower can be included in
the build as JAR files by using James Ward’s WebJars (www.webjars.org).

 To set up the Play project, create it using the simple Activator template, as you did
in chapter 2. This will create the scaffold of view templates that you’ll use. Then create
the necessary directories for the following project structure:

 app
 controllers
 views

Views Controllers

WebSocket

Play application

Services

Server side

(Controller, database
access, etc.)

Client side

Figure 8.2 Structure of the Play Scala.js application

www.webjars.org

204 CHAPTER 8 Responsive user interfaces

 conf
 modules
 client

 src
 main

 scala
 project
 public

To integrate Scala.js and Play, we’ll use the sbt-play-scalajs plugin (https://
github.com/vmunier/sbt-play-scalajs), which leverages sbt-web to provide all the con-
figuration needed to neatly combine both technologies. Start by adding this plugin to
the project/plugins.sbt file.

resolvers += "Typesafe repository"
at "https://repo.typesafe.com/typesafe/releases/"

addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.4.3")

addSbtPlugin("com.vmunier" % "sbt-play-scalajs" % "0.2.6")

addSbtPlugin("org.scala-js" % "sbt-scalajs" % "0.6.3")

Next, go ahead and set up the build.sbt file.

lazy val scalaV = "2.11.6"

lazy val `ch08` = (project in file(".")).settings(
scalaVersion := scalaV,
scalajsProjects := Seq(client),
pipelineStages := Seq(scalaJSProd),
libraryDependencies ++= Seq(

"com.vmunier" %% "play-scalajs-scripts" % "0.2.2"
),
WebKeys.importDirectly := true

).enablePlugins(PlayScala).dependsOn(client).aggregate(client)

lazy val client = (project in file("modules/client")).settings(
scalaVersion := scalaV,
persistLauncher := true,
persistLauncher in Test := false,
libraryDependencies ++= Seq(

Listing 8.1 Adding the sbt-play-scalajs plugin to the project

Listing 8.2 Defining the build for a Play-Scala.js client-server application

The standard
Play sbt plugin

The sbt-play-scalajs
sbt plugin that
combines Play
and Scala.jsThe Scala.js sbt plugin

Defines the root
Play project

Indicates which projects
are Scala.js projects

Defines the
 sbt-web pipeline

stages: in this
case, the

generation of
optimized

Scala.js artifacts
for production

Includes a library
that helps with

referencing
Scala.js artifacts

in Twirl templates

Directly imports the
artifacts of the client

module without wrapping it
in an intermediary WebJar

Defines the
client Scala.js

project

https://github.com/vmunier/sbt-play-scalajs
https://github.com/vmunier/sbt-play-scalajs

205Integrating Scala.js and Play

"org.scala-js" %%% "scalajs-dom" % "0.8.0"
),
skip in packageJSDependencies := false

).enablePlugins(ScalaJSPlugin, ScalaJSPlay, SbtWeb)

Scala.js compiles the application code written in Scala into JavaScript code and also
generates an optimized version of the generated JavaScript code for production
deployments. The sbt-play-scalajs plugin takes care of handling the asset pipeline for
these special Scala.js assets so that the correct assets are available when Play runs in
development or production mode.

INCLUDING ARTIFACTS FROM THE CLIENT MODULE You’ll later want to access
some of the artifacts in the client module from the root module (such as par-
tial HTML views for AngularJS), so you explicitly instruct sbt-web to import the
entire client module directly, using the WebJars.importDirectly module.
This module can leverage the classpath dependency established through the
dependsOn(client) instruction to directly include artifacts that are part of
the client project, and not just generated ones.

8.1.3 Creating a simple Scala.js application

Now that we have the application structure in place, let’s do something with it, such as
displaying some text. In the app/views/main.scala.html file that’s generated in the
default application scaffold, add the following line before the closing </body> tag:

@playscalajs.html.scripts("client")

This will include the correct JavaScript artifacts that result from the Scala.js compila-
tion, and it will switch to the optimized version of those artifacts if you run the applica-
tion in production mode. More specifically, there are three files generated in the
modules/client/target/scala-2.11/ folder for use in development mode:

Includes the
scalajs-dom

library for DOM
manipulation

Loads the scalajs, scalajs-
play, and sbt-web plugins

Using Node.js
To reduce JavaScript compilation time, it’s recommended that you install Node.js
(http://nodejs.org). Otherwise, the Rhino JavaScript interpreter is used, and it has
rather poor performance.

Once you’ve installed Node.js, add the following setting to the root project definition
in build.sbt:

scalaJSStage in Global := FastOptStage,

This will cause Scala.js to use Node.js for JavaScript compilation, which should sig-
nificantly speed things up.

http://nodejs.org

206 CHAPTER 8 Responsive user interfaces

■ client-fastopt.js—The optimized version of the application created rapidly
during development (a smaller version can be produced but takes longer)

■ client-jsdeps.js—The JavaScript dependencies (libraries)
■ client-launcher.js—A snippet of JavaScript that runs the main method in

JSApp (as you’ll see later)

As a next step, let’s display some simple HTML to test Scala.js. Create (or replace) the
index action in the Application controller so as to display the app/views/
index.scala.html file with the following content:

@main("Twitter SMS service dashboard") {
<div>Hello from Twirl!</div>
<div id="scalajs"></div>

}

The second div is left empty on purpose—we’ll populate it using Scala.js. Create the
file modules/client/src/main/scala/dashboard/DashboardApp.scala with the follow-
ing contents.

package dashboard

import scala.scalajs.js.JSApp
import org.scalajs.dom._

object DashboardApp extends JSApp {
def main(): Unit = {

document.getElementById("scalajs").innerHTML =
"Hello form Scala.js!"

}
}

If you now reload the application, you should see both divs populated—one directly
through the Twirl template, and one through JavaScript. The DashboardApp is the entry
point to the application, and its main method will be invoked when the page is loaded.

 The Scala.js DOM wrapper is a type-safe facade around the native DOM. It provides a
statically typed interface for manipulating the DOM from Scala.1 Feel free to play
around with it to get a feel for developing JavaScript with Scala—in my opinion this is
a quite refreshing experience.

IMPROVING THE USER INTERFACE To make the application look a little bit nicer,
you can use Bootstrap. The starter template (http://getbootstrap.com/
examples/starter-template) is simple but powerful, and it gives a nicer look.

Listing 8.3 Bootstrapping the Scala.js application

1 See the scala-js-dom page at http://scala-js.github.io/scala-js-dom.

Imports the Scala.js wrapper
that allows JavaScript DOM
manipulation

Defines the
application that

extends the
JSApp trait as

entry point

Implements the
main method,
which is called

by default
Redefines the content

of the scalajs div

http://scala-js.github.io/scala-js-dom
http://getbootstrap.com/examples/starter-template
http://getbootstrap.com/examples/starter-template

207Integrating Scala.js and AngularJS

DEBUGGING SCALA.JS APPLICATIONS IN THE BROWSER Scala.js creates source maps
that allow for easy debugging of Scala.js applications in the browser’s developer
console. You can test this in the example from listing 8.3 by throwing an excep-
tion in the main method (simply writing throw new Exception("boom") will do).
If you load your browser’s development console, you should now see a reference
to DashboardApp with the line at which the exception was thrown. Some IDEs,
such as IntelliJ IDEA, also offer support for debugging on the client side in the
IDE using plugins, which further eases the development of client-side applica-
tions written this way.

8.2 Integrating Scala.js and AngularJS
The next step in building the dashboard application is to integrate the AngularJS
framework with appropriate Scala.js bindings.

8.2.1 Setting up the AngularJS bindings

The scalajs-angulate project (https://github.com/jokade/scalajs-angulate) provides
bindings that simplify the development of AngularJS applications with Scala.js. More
specifically, it provides facade traits for type-safe access to the library (we’ll talk about
these traits in depth later) as well as a few macros for declaring AngularJS controllers,
services, and other components in a Scala-like style. This is the glue code we need to
easily use AngularJS in combination with Scala.js. We could also opt to not use bind-
ings, but that would make the whole experience awkward at best.

 To integrate scalajs-angulate, you need both the scalajs-angulate library and the
original AngularJS JavaScript library. Edit the build.sbt file and add the following
library dependency to the client project:

libraryDependencies ++= Seq(
// ...
"biz.enef" %%% "scalajs-angulate" % "0.2"

)

Then add the following jsDependencies setting to the client project:

jsDependencies ++= Seq(
"org.webjars.bower" % "angular" % "1.4.0" / "angular.min.js",
"org.webjars.bower" % "angular-route" % "1.4.0" /

"angular-route.min.js" dependsOn "angular.min.js"
)

The jsDependencies setting allows you to define dependencies on JavaScript
libraries. Libraries published through npm and Bower are automatically available as
WebJars. The last parameter allows you to define a file that’s part of the WebJar to be
loaded in the project when it’s run. (The WebJars website lists which files the WebJars
contain so you can figure out the name of the JavaScript artifact to load.) The
dependsOn notation helps you indicate dependencies between JavaScript libraries so
that the load order is correct.

https://github.com/jokade/scalajs-angulate

208 CHAPTER 8 Responsive user interfaces

THE %%% NOTATION The %%% notation in the libraryDependency on scalajs-
angulate allows you to encode the current Scala.js version into the
dependency, enabling you to cross-compile Scala.js libraries across several
Scala.js versions. It also distinguishes these special libraries (which essentially
contain code meant to be compiled down to JavaScript) from other kinds of
JVM libraries.

8.2.2 Creating the AngularJS application

Let’s create a simple AngularJS appli-
cation that will, for now, just display
some text that comes from a control-
ler. An AngularJS application is struc-
tured as shown in figure 8.3.

 An AngularJS application consists
of several parts:

■ One or more modules that tie
together controllers, views, ser-
vices, and more

■ Controllers that encapsulate the
logic underlying the manipula-
tion of the view

■ Views or partial views that dis-
play data and allow user input

■ Services to take care of specialized
tasks, encapsulating advanced
business logic

Scopes enable two-way binding between views and controllers and ensure a good sepa-
ration of concerns between those two elements.

ANGULARJS SCOPES AND TWO-WAY BINDINGS Scopes allow you to bind views and
controllers by having a view-controller pair share the same scope. In itself, this
mechanism is fairly popular in MVC frameworks. Typically these bindings are
one-way bindings, which means that the controller sets the properties of the
scope and the view only reads from them. In the case of AngularJS, the view can
also set properties and influence their values, which is why the binding is called
a two-way binding. Changes in the view are propagated to the controller, which
can then react to those changes and trigger the appropriate logic without
you having to do any additional programming. AngularJS takes care of propa-
gating those scope changes in two directions, keeping the data in controllers
and views synchronized.

The data flow of our simple AngularJS application is shown in figure 8.4. We’ll start by
defining a hello variable in the controller, which gets bound to the scope B, and

Module

Views Controllers

Services

AngularJS application

Figure 8.3 Structure of an AngularJS application

209Integrating Scala.js and AngularJS

we’ll display it in the view C. In the view, when you click on the Hello Back button D,
the scope’s helloBack() method is invoked, leading to its execution inside the con-
troller E, which in turn will log the message “Hi” on the browser’s JavaScript console.

 Let’s start by defining the application module. Adjust the DashboardApp as follows.

package dashboard

import biz.enef.angulate.ext.{Route, RouteProvider}
import biz.enef.angulate._
import scala.scalajs.js.JSApp

object DashboardApp extends JSApp {
def main(): Unit = {
val module = angular.createModule("dashboard", Seq("ngRoute"))
module.controllerOf[DashboardCtrl]
module.config { ($routeProvider: RouteProvider) =>

$routeProvider
.when("/dashboard", Route(

templateUrl = "/assets/partials/dashboard.html",
controller = "dashboard.DashboardCtrl")

).otherwise(Route(redirectTo = "/dashboard"))
}

}
}

This example illustrates a few of the core mechanisms of AngularJS. Now let’s look at
it in detail.

Listing 8.4 Initializing the AngularJS application module

class DashboardCtrl($scope: Dynamic)
 extends ScopeController {
 $scope.hello = "Hello, world"
 $scope.helloBack = () =>
 console.log("Hi")
}

hello = "Hello, world"
helloBack = () =>
 console.log("Hi")

<div>
 <h1>{{ hello }}</h1>
 <button type="button"
 ng-click="helloBack()">
 Hello back
 </button>

SMSService

Scope

View

Figure 8.4 Data flow in the two-way binding of the AngularJS scope

Defines the dashboard AngularJS module,
depending on the ngRoute service

Declares the
DashboardCtrl
controllerConfigures

the routes
service

210 CHAPTER 8 Responsive user interfaces

8.2.3 Initializing the AngularJS dashboard module and its dependencies

The entry point of an AngularJS application is a module. In listing 8.4 you start by
declaring the dashboard module with a dependency on the ngRoute service, which
you need to configure routes.

 AngularJS routes bind a client-side URL to a view and a controller, so that when the
URL is accessed, the controller is loaded and the view displayed with the data provided
by the controller. This mechanism is very similar to normal routes that you’d use in
Play (through the conf/routes file), with the difference that client-side routes employ
“hashbang” URLs such as http://localhost:9000/#/dashboard to perform routing on
the client side. This is an essential part of applications that rely on a single page of
server-side HTML to be deployed (the browser only loads a page once, and everything
else happens through JavaScript).

8.2.4 Initializing the Dashboard controller

In the second part of listing 8.4, you use the module.controllerOf macro provided by
scalajs-angulate to initialize the DashboardController. This macro expands into a
slightly more complex definition and takes care of naming the controller for you.

 You then use the $routesProvider (provided by your dependency on the ngRoute
service) to declare that dashboard.DashboardCtrl will be responsible for rendering
the dashboard.htmlpartial view.

 Implement this controller in the file modules/client/src/main/scala/dashboard/
DashboardCtrl.scala.

package dashboard

import biz.enef.angulate._
import org.scalajs.dom._
import scalajs.js.Dynamic

class DashboardCtrl($scope: Dynamic)
extends ScopeController {

$scope.hello = "Hello, world"
$scope.helloBack = () => console.log("Hi")

}

In this example we declare the scope explicitly. As I already mentioned, AngularJS
relies on mutable scopes to provide two-way bindings between views and controllers.
The $scope is injected by AngularJS, and we represent it as a Dynamic value. The
Dynamic type, as its name indicates, lets you dynamically read and write values, which
is very close to writing JavaScript. We could have defined the scope explicitly, as you’ll
see later, but we’ll use a dynamic type here.

Listing 8.5 Implementation of the DashboardCtrl

Declares the controller,
taking as a constructor
parameter the $scope

Extends the
ScopeController

trait, which
represents

controllers with
explicit scope

Defines the
hello variable
on the scope

Defines the
helloBack function
on the scope

211Integrating Scala.js and AngularJS

8.2.5 Creating the partial view

The next piece we need for our example to work is the view. Create the file modules/
client/src/main/public/partials/dashboard.html with the following content.

<div>
<h1>{{ hello }}</h1>
<button type="button" ng-click="helloBack()">Hello back</button>

</div>

The syntax with double-curly brackets makes it possible to access any value on the
scope and to execute simple JavaScript expressions (although these should be encap-
sulated inside methods defined in the scope, for better readability). Any variable or
method declared in the controller’s scope can be accessed this way, and when its value
changes, those changes are reflected in the view automatically.

8.2.6 Loading the AngularJS application in HTML

The last thing we must do for our AngularJS application to function properly is tell it
in which part of the DOM tree it should be running. Adjust the <body> tag in the
main.scala.html Twirl template as follows:

<body ng-app="dashboard">

This will tell AngularJS which application to look for when loading the page.
 Finally, edit the app/views/index.scala.html template to instruct it to display par-

tial views in a special part of the page by appending the ng-view attribute to a con-
tainer, as in the following listing.

@main("Twitter SMS service dashboard") {
<div class="container" ng-view>
</div>

}

If you run the application now, you should see the contents of the hello variable that
you just defined in the controller printed on the screen. Clicking the Hello Back but-
ton will print a message in the browser console.

Listing 8.6 Creating a partial view with AngularJS

Listing 8.7 Declaring where the partial views will be loaded in the HTML structure

Displays the contents of
the hello scope variable
in the view

Registers the ng-click event handler to
execute the helloBack() scope method

when the button is clicked

212 CHAPTER 8 Responsive user interfaces

8.3 Integrating existing JavaScript libraries with Scala.js
There are two main ways of interacting with JavaScript from Scala.js: dynamically
(using the Dynamic type you just saw) or by providing the facade traits necessary for
wrapping the dynamically typed JavaScript functions with statically typed interfaces.
This latter mechanism isn’t specific to Scala.js; it’s also used in other technologies
that provide a static type system on top of JavaScript, such as TypeScript (http://
typescriptlang.org), which has a curated repository of type definitions for JavaScript
libraries (http://definitelytyped.org).

 In this section we’ll integrate an existing JavaScript library into our Scala.js applica-
tion by writing our own facade, and then make use of it to fetch data from the back
end.

8.3.1 Wrapping an existing JavaScript library as an AngularJS service

To exchange data with our client-side application, we’ll use WebSockets. Rather than
writing the connection-handling part ourselves, we’ll delegate this job to the angular-
websocket library (https://github.com/gdi2290/angular-websocket), which uses
exponential back-off during reconnections.2

 Let’s write our own facade! The first thing we need to do is decide how we’d use
the library from JavaScript. What we’d primarily like to do with this library is establish
a new WebSocket connection, send messages to the server, and handle messages sent
from the server. In JavaScript, that would look like this:

var ws = $websocket('ws://localhost:9000');
ws.send('hello');
ws.onMessage(function(event) {

console.log(event.data);
});

2 See Douglas Thain’s “Exponential Backoff in Distributed Systems” blog entry (Feb. 21, 2009), http://
dthain.blogspot.co.uk/2009/02/exponential-backoff-in-distributed.html.

Custom scope types for Scala.js integration
It’s possible to define custom scope types, which may be useful if you want a more
strongly typed representation of scopes. All you need to do is extend the Scope trait
and use the custom trait in the controller’s constructor:

trait DashboardScope extends Scope {
var hello : String = js.native
var helloBack: js.Function = js.native

}
class DashboardCtrl($scope: DashboardScope)

extends ScopeController {
...

}

http://typescriptlang.org
http://typescriptlang.org
http://definitelytyped.org
http://dthain.blogspot.co.uk/2009/02/exponential-backoff-in-distributed.html
http://dthain.blogspot.co.uk/2009/02/exponential-backoff-in-distributed.html
https://github.com/gdi2290/angular-websocket

213Integrating existing JavaScript libraries with Scala.js

In a first version of our facade, we’d need to wrap three methods:

■ The constructor that gives us back an established WebSocket connection.
■ The send method, which returns an AngularJS promise.
■ The onMessage method, which optionally takes a JavaScript options object to fil-

ter messages. The callback specified in onMessage is given a MessageEvent.3

To build a good facade, we therefore also need to provide facades for related types.
Luckily for us, we can reuse existing facades that have already been created. The
AngularJS promise is wrapped by scalajs-angulate as HttpPromise, and the Message-
Event has been wrapped as part of the Scala.js DOM library. For the options object of
the onMessage method, we’ll simply use a dynamic object now, because we’re not sure
whether we’re going to use the filter feature.

 Add the following JavaScript dependency to the jsDependencies of the client
project:

jsDependencies ++= Seq(
"org.webjars.bower" % "angular-websocket" % "1.0.13" /
"dist/angular-websocket.min.js" dependsOn "angular.min.js"

)

Because we intend to use this library, we also need to tell AngularJS about it. In Dash-
boardApp, add the dependency on ngWebSocket when creating the module, like so:

val module =
angular.createModule("dashboard", Seq("ngRoute", "ngWebSocket"))

Next, create the file modules/client/src/main/scala/dashboard/WebsocketService
.scala with the following contents.

package dashboard

import biz.enef.angulate.core.{HttpPromise, ProvidedService}
import org.scalajs.dom._
import scala.scalajs.js
import scala.scalajs.js.UndefOr

trait WebsocketService extends ProvidedService {
def apply(

url: String,
options: UndefOr[Dynamic] = js.undefined

): WebsocketDataStream = js.native
}

trait WebsocketDataStream extends js.Object {

3 See the MessageEvent page on the MDN site: https://developer.mozilla.org/en-US/docs/Web/API/
MessageEvent.

Listing 8.8 Implementing the Scala.js facade for the WebSocket service

Extends the ProvidedService helper trait provided
by scalajs-angulate so this service will be marked

as automatically provided by AngularJS

Uses the apply
method to mimic

the JavaScript
constructor of

angular-
websocket

Defines a facade for
the underlying object
returned by the
service constructor

https://developer.mozilla.org/en-US/docs/Web/API/MessageEvent
https://developer.mozilla.org/en-US/docs/Web/API/MessageEvent

214 CHAPTER 8 Responsive user interfaces

def send[T](data: js.Any): HttpPromise[T] = js.native
def onMessage(

callback: js.Function1[MessageEvent, Unit],
options: UndefOr[js.Dynamic] = js.undefined): Unit = js.native

}

As you can see, defining the facade itself isn’t very complicated—the most important
part of the job is to identify which types make sense being associated with the methods.
The only thing specific to AngularJS in this facade is the use of the ProvidedService
trait, which eases service discovery—to wrap any JavaScript library it’s sufficient to
extend js.Object.

 It’s also not compulsory to wrap all the methods if you only plan to use a subset of
the functionality of the wrapped library. To get a good idea of the types that Scala.js
uses to represent JavaScript types, have a look at the Scala.js documentation on the
subject.4

8.3.2 Creating a service to fetch data for a graph

In the next step we’ll display data using the Chart.js library (www.chartjs.org) in
combination with its AngularJS wrapper angular-chart.js (http://jtblin.github.io/
angular-chart.js/).

 We’ll also need some data. For this purpose, we’ll create the GraphDataService
AngularJS service, which makes use of our newly created WebsocketService.

 But before we build this service, you’ll need to do a bit of work to get everything
ready. To draw a line chart, angular-chart.js expects a JSON object with the follow-
ing structure:

{
"graph_type": "MonthlySubscriptions",
"labels": ["January", "February", "March", "April", "May", "June"],
"series": ['Series A', 'Series B'],
"data": [
[65, 59, 80, 81, 56, 55],
[28, 48, 40, 19, 86, 27]

]
}

The line graph has a number of labels for the X axis, a number of series (two in this
example), and some data for each of the series. Note that the graph_type field isn’t

4 See the “Type Correspondence” section in the Scala.js documentation: www.scala-js.org/doc/js-interoperability
.html.

Defines a type-safe wrapper to
the send method that returns

an HttpPromise

Specifies
 the callback
parameter of

 the onMessage
method as a

function that
takes a

MessageEvent and
returns nothing

Specifies the optional
options parameter as

a Dynamic value

http://jtblin.github.io/angular-chart.js/
http://jtblin.github.io/angular-chart.js/
www.scala-js.org/doc/js-interoperability.html
www.scala-js.org/doc/js-interoperability.html
www.chartjs.org

215Integrating existing JavaScript libraries with Scala.js

expected by the library, but we’ll need it to know how to display the graph on the cli-
ent side.

 Create a WebSocket endpoint in the Application controller that listens to incom-
ing messages and returns this type of graph when asked for a string message of kind
MonthlySubscriptions.

EXERCISE 8.1

Fetch the monthly subscriptions from chapter 7’s Twitter SMS service using jOOQ. You’ll
need to establish a database connection as in chapter 7, and you’ll need to query the SUB-
SCRIPTIONS table to return daily aggregates for the past month.

Once your WebSocket endpoint is ready and providing data in the right format, you
can go one step further and define a GraphDataService that will leverage the Web-
socketService, as shown in the following listing.

package dashboard

import biz.enef.angulate._
import org.scalajs.dom._
import scala.scalajs.js.{Dynamic, JSON}
import scala.collection._

class GraphDataService($websocket: WebsocketService) extends Service {
val dataStream = $websocket("ws://localhost:9000/graphs")

private val callbacks =
mutable.Map.empty[GraphType.Value, Dynamic => Unit]

def fetchGraph(
graphType: GraphType.Value,
callback: Dynamic => Unit

) = {
callbacks += graphType -> callback
dataStream.send(graphType.toString)

}

dataStream.onMessage { (event: MessageEvent) =>
val json: Dynamic = JSON.parse(event.data.toString)
val graphType = GraphType.withName(json.graph_type.toString)
callbacks.get(graphType).map { callback =>
callback(json)

} getOrElse {
console.log(s"Unknown graph type $graphType")

}
}

}

object GraphType extends Enumeration {
val MonthlySubscriptions = Value

}

Listing 8.9 Implementation of an AngularJS service that retrieves and graphs data

Declares a
dependency on the
WebsocketService

in this service’s
constructor

Obtains a WebSocket
connection using the

service

Creates an
empty map
for keeping
callbacks

Fetches monthly
subscriptions by

remembering
the callback and

sending a
message

Reads the graph type
from the JSON

Attempts to find
the appropriate

callback for a
message and

calls it with the
data Encodes the different

graph types in an
Enumeration

216 CHAPTER 8 Responsive user interfaces

The GraphDataService declares a dependency on the WebsocketService using the
AngularJS notation $websocket (it’s customary in AngularJS to prepend a dollar sign
to provided utility services that aren’t part of the core application logic itself). As
you’re making asynchronous calls, you need to employ a callback mechanism to pass
the resulting graph data to the caller. Furthermore, this mechanism enables you to
continuously push new graph data to the client from the server if necessary, which
could become useful for near-real-time reporting.

 There’s an important thing to take away from listing 8.9. As you may have noticed,
the implementation of this service feels very close to writing a plain Scala class. There
are only a few types that indicate that the code will be running on the client side in the
browser, such as the use of the js.Dynamic type. Other than this, you couldn’t really dis-
tinguish it from a normal server-side Scala service running on the JVM. And even though
the onMessage method of WebsocketService expects a js.Function1[MessageEvent,
Unit] (as you defined it earlier in listing 8.8), you don’t really get to see any of this.
Thanks to the implicit conversions that Scala.js provides, you can write out the function
expected as a parameter of onMessage using Scala’s normal syntactic sugar for defining
anonymous functions.

 You could even go one step further and get rid of js.Dynamic by using the Scala.js
Pickling library (https://github.com/scala-js/scala-js-pickling) and parse the graph
data into a case class shared between client and server, thus enjoying compile-time
type-safety from end to end. If you want to, go ahead and give it a try!

 There are only a few more steps necessary to get the data to the controller.
 First of all, you need to register the GraphDataService with AngularJS in the Dash-

boardApp. Use the module.serviceOf method to do this, like when you registered
DashboardCtrl.

 Next, declare a dependency on the GraphDataService in the DashboardCtrl con-
structor and call the fetchGraph method. At this stage, you can just print the resulting
data out in the JavaScript console.

 Done? Great! Let’s move on to displaying the graph on the screen.

8.3.3 Displaying metrics using the Chart.js library

To display the graph using the Chart.js library, we need to do a few things:

■ Declare the necessary dependencies in build.sbt
■ Declare the dependency on the angular-chart.js service in the AngularJS

application
■ Define the chart HTML markup and load the data
■ Set up the WebJars mechanism for Play so that we can load the CSS stylesheets

associated with the library

In build.sbt, start by adding the following two jsDependencies:

"org.webjars.bower" % "Chart.js" % "1.0.2" / "Chart.min.js"
"org.webjars.bower" % "angular-chart.js" % "0.7.1" /

"dist/angular-chart.js" dependsOn "Chart.min.js"

https://github.com/scala-js/scala-js-pickling

217Integrating existing JavaScript libraries with Scala.js

In the DashboardApp, add a dependency on the angular-chart.js service in the module
declaration:

val module = angular.createModule(
"dashboard", Seq("ngRoute", "ngWebSocket", "chart.js")

)

The name of the service is usually to be found in its documentation. Many services
have names starting with “ng” (shorthand for Angular), but there are exceptions as
you can see here.

 Now, let’s set up a line chart to show the data. Adjust the dashboard.html partial
view as follows.

<div>
<canvas id="line"

class="chart chart-line"
data="monthlySubscriptions.data"
labels="monthlySubscriptions.labels"
series="monthlySubscriptions.series"
legend="true">

</canvas>
</div>

In listing 8.10 you read data out of the monthlySubscriptions variable. Make sure
that you set this variable in the scope when you make the controller call that fetches
data from GraphDataService.

 At this point, you’re almost set to load the graph. There’s just one more thing
needed for it to look nice: you need to load the stylesheet provided by the angular-
chart.js library. Go back to build.sbt and add the following dependencies to the
libraryDependencies of the main project:

libraryDependencies ++= Seq(
// ...
"org.webjars" %% "webjars-play" % "2.4.0",
"org.webjars.bower" % "angular-chart.js" % "0.7.1"

)

There’s again a dependency on the angular-chart.js library, because you want to load
the stylesheet that it provides, so it needs to be available in the root’s project classpath.
Loading artifacts provided by WebJars requires a route to be added to conf/routes:

GET /webjars/*file controllers.WebJarAssets.at(file)

Finally, you can load the stylesheet in app/views/main.scala.html:

<link
rel="stylesheet"
href="@routes.WebJarAssets.at(

Listing 8.10 Markup for a line chart using Chart.js

218 CHAPTER 8 Responsive user interfaces

WebJarAssets.locate("angular-chart.css")
)"

>

The WebJarAssets helper allows you to specify a filename in the classpath, allowing it
to be loaded by the WebJarAssets.at action.

 That’s it! Upon loading the application, you should now see a beautiful graph of
subscriptions to chapter 7’s SMS service. It should look something like figure 8.5.

8.4 Handling client-side failure
Apart from all the technical challenges involved in implementing a responsive web
application, one of the hardest tasks is keeping users happy. This not only entails cre-
ating an intuitive user interface but also keeping the user up to date about what’s going
on with the task at hand, especially if things aren’t going well. Depending on what your
application is doing, some user actions may take a little longer to execute, and rather
than keeping the user waiting for a result, it may be better to let them work on other
things (if the workflow permits) and notify them once their action has been processed.

 Ideally you should keep your users happy by building relatively bug-free client-side
applications. Scala.js can help you do so, as it combines the advantages of a type-safe
language with a powerful type system on the client side.

 Let’s look at the ways you can detect issues and inform users about them with the
Twitter SMS service dashboard.

Figure 8.5 Graph of last month’s subscriptions to the Twitter SMS service

219Handling client-side failure

8.4.1 Preventing bugs with tests

The first line of defense against failures is to create automated tests that will detect
bugs before the application is deployed. The test infrastructure in Scala.js is still devel-
oping, but there are already a number of testing frameworks available. It isn’t possible
to use server-side frameworks such as ScalaTest or Specs2 with Scala.js on the client
side, because those are heavily interleaved with JVM dependencies, so we’ll use the
µTest library (https://github.com/lihaoyi/utest).

 Start by adding the "com.lihaoyi" %%% "utest" % "0.3.1" % "test" library depen-
dency to the client project in build.sbt, and add the framework as a test framework with
the setting testFrameworks += new TestFramework("utest.runner.Framework"). If
you haven’t done so already, you should now switch to using Node.js, because running
the tests on Rhino won’t work too well.

 To run the tests, you’ll also need to install PhantomJS, which enables headless web-
site testing (testing without running an actual browser window). You can find the
installation instructions at http://phantomjs.org.

 Next, create the file modules/client/src/test/scala/services/GraphDataService-
Suite.scala with the following contents.

package services

import biz.enef.angulate.core.HttpPromise
import dashboard._
import org.scalajs.dom._
import utest._
import scala.scalajs.js
import scala.scalajs.js.UndefOr
import scala.scalajs.js.annotation.JSExportAll

object GraphDataServiceSuite extends TestSuite {
val tests = TestSuite {

"GraphDataService should initialize a WebSocket connection" - {
val mockedWebsocketDataStream = new WebsocketDataStreamMock()
val mockedWebsocketService: js.Function = {

(url: String, options: js.UndefOr[js.Dynamic]) =>
mockedWebsocketDataStream.asInstanceOf[WebsocketDataStream]

}

new GraphDataService(
mockedWebsocketService.asInstanceOf[WebsocketService]

)

assert(mockedWebsocketDataStream.isInitialized)
}

}
}

Listing 8.11 Testing the GraphDataService

Extends
 the TestSuite

 trait to be
discovered by

the test runner Declares a test

Mocks the
WebsocketService
constructor using

a native JavaScript
function

Initializes
 the real

GraphDataService
with the mocks

Checks whether the
WebsocketDataStream

has been initialized

http://phantomjs.org
https://github.com/lihaoyi/utest

220 CHAPTER 8 Responsive user interfaces

@JSExportAll
class WebsocketDataStreamMock {

val isInitialized = true
def send[T](data: js.Any): HttpPromise[T] = ???
def onMessage(
callback: js.Function1[MessageEvent, Unit],
options: UndefOr[js.Dynamic] = js.undefined

): Unit = {}
def onClose(callback: js.Function1[CloseEvent, Unit]): Unit = {}
def onOpen(callback: js.Function1[js.Dynamic, Unit]): Unit = {}

}

Because there’s no mocking library that runs with Scala.js yet, you need to mock the
dependencies on your service by hand. Mocking facade traits isn’t a straightforward
process and requires a bit of preparation. You can’t simply extend the existing facade
traits and override the implementation because of the way Scala.js compilation is
designed. Instead, you need to create the mock classes as standalone Scala classes that
you export to JavaScript using the JSExportAll annotation, and cast them back to the
facade trait.

 The WebsocketService itself only defines a constructor (the apply method), so to
mock it you need to implement a constructor mock as a native JavaScript function and
have it return a mock of WebsocketDataStream, which contains all of the interesting
functions.

 This manual approach to testing is certainly not as convenient as the current JVM
tooling, but chances are that a mocking library will be available for Scala.js projects
soon.

 If you now run test in the sbt console, you should see the test running and
succeeding.

8.4.2 Detecting WebSocket connection failure

The internet is a shaky place, and if you build an application using a persistent con-
nection with WebSockets, chances are that you’ll be disconnected from time to time.
The angular-websocket library has a mechanism for reconnecting automatically
should the connection be closed unexpectedly. You just need to enable it first.

 In the GraphDataService, the only thing you need to do is initialize the Web-
Socket connection a little differently:

val dataStream = $websocket(
"ws://localhost:9000/graphs",
Dynamic.literal("reconnectIfNotNormalClose" -> true)

)

Exports all public
members of the mocked
class to JavaScript

221Handling client-side failure

Once you’ve enabled this option, you can watch it in action: open the developer con-
sole of your browser and then kill the Play process. Simply pressing Ctrl-D in the sbt
console won’t be enough, as this will shut down Play gracefully and therefore close the
WebSocket connection—you’ll need to forcefully quit the process, such as by calling
kill -9 <PID> on a Unix-based OS. Once you’ve done so, you’ll be able to observe the
library attempting to reconnect with an increasingly large back-off delay. This mecha-
nism of exponential back-off is particularly useful in networked applications, because
other approaches would flood an already busy server should all clients attempt to
reconnect at the same time.

WEBSOCKET DISCONNECTIONS The CloseEvent specified in the WebSocket API
(https://developer.mozilla.org/de/docs/Web/API/CloseEvent) provides dif-
ferent codes characterizing why the connection was closed. These codes can be
used (and are used by angular-websocket) to decide whether to attempt an
automated reconnection to the server.

8.4.3 Notifying users

If your tests didn’t prevent the application from failing, the next best thing is to tell
the user that something is wrong. To notify users about connection failures, we’ll use
the angular-growl library (https://github.com/JanStevens/angular-growl-2), which
displays notifications of various kinds (information, warning, error, success) at the
upper-right side of the screen.

EXERCISE 8.2

At this point you should have a good sense of how to integrate an existing JavaScript library
with Scala.js and AngularJS, so it’s your turn to visit the library’s site and integrate it:

■ Add the WebJar dependencies to the library in build.sbt, including the repeated
dependency in the main project to fetch the stylesheets.

■ Load the angular-growl stylesheets in main.scala.html using the WebJar assets
loading mechanism.

■ Write a wrapper for the Growl library’s four main methods (info, warning, suc-
cess, error).

■ Add the angular-growl service dependency in the module declaration in Dash-
boardApp.

Once you’re done integrating the library, add the onClose method to the Websocket-
DataStream facade trait. This method takes a callback from org.scalajs.dom
.CloseEvent to Unit and allows you to run code when the server connection is inter-
rupted, like this:

dataStream.onClose { (event: CloseEvent) =>
growl.error(s"Server connection closed, attempting to reconnect")

}

https://developer.mozilla.org/de/docs/Web/API/CloseEvent
https://github.com/JanStevens/angular-growl-2

222 CHAPTER 8 Responsive user interfaces

If the user just went offline because their free 10 minutes of airport wifi expired,
they’ll welcome the kind of notification shown in figure 8.6, rather than having to
wonder why the application starts behaving in mysterious ways.

CONSISTENT NOTIFICATIONS No matter which notification style you adopt, be
consistent in the implementation across the application, and always use the
same channel, or at least the same small set of channels. It’s fine to use several
types of interaction mechanisms—you may, for example, choose to use modal
windows to prompt the user if you can’t reestablish the connection after one
minute—but do keep the number of different types as low as possible. If you
are developing an application in a larger team, it’s a very good idea to agree
on the notification channels up front, so as to avoid presenting users with a
multitude of different notification mechanisms, ranging from elaborate
modal dialogs with shadows to crude JavaScript alert() boxes.

8.4.4 Monitoring client-side errors

You might usually work on the back end of your applications rather than the client
side. If this is the case, you’ll nonetheless be interested in the impact that client-side
failure can have on the overall perception of your applications.

 Error handling on the client side often comes as an afterthought, with a subopti-
mal or simply nonexistent implementation. It doesn’t matter if the whole back end is
scalable, resilient, and self-healing if the client side is broken. If the user doesn’t get
notified that the application is misbehaving, their perception of the entire application
will be negatively impacted.

Figure 8.6 Notification
shown to the user if the
client-side application
can’t interact with the
server

223Summary

 It’s easy to not implement the onFailure handler of a JavaScript call on the client
side, or to implement it with console.log, but this won’t help the user, let alone your-
self when the application is in production, as you won’t get to see client-side logs.
Tools such as JSNLog (http://js.jsnlog.com) enable you to propagate client-side errors
to the server, so you know that something is going wrong on the client side and can act
on it. Specialized services such as TrackJS (https://trackjs.com) and Sentry
(www.getsentry.com) go one step further and provide you with advanced reporting on
your application’s client-side errors.

8.5 Summary
In this chapter we looked at building a client-side application with Scala.js. In particular:

■ We set up a Play project with Scala.js.
■ We integrated an existing JavaScript framework, AngularJS, and Scala.js using

the scalajs-angulate library.
■ We created our own facade traits to draw a graph with data retrieved via a Web-

Socket connection.
■ We looked at ways to reduce failure on the client side and to notify users about

issues.

You now have a good idea of the reactive web application landscape on both the
server and client sides. Let’s next look into the exciting topic of asynchronous streams
with nonblocking back pressure.

http://js.jsnlog.com
https://trackjs.com
www.getsentry.com

Part 3

Advanced topics

This part introduces advanced topics related to building reactive web appli-
cations. You’ll learn how to use Akka Streams, an implementation of the Reactive
Streams standard, to perform asynchronous and fault-tolerant stream processing.
We’ll then talk about what’s necessary to deploy a reactive web application built
with Play. Finally, we’ll discuss how to test a reactive web application to see if it
behaves under load as you’d want it to.

227

Reactive Streams

The Reactive Streams standard (www.reactive-streams.org) defines the interfaces,
methods, and protocols necessary for building interoperable libraries that enable
asynchronous stream processing with nonblocking back pressure. There are already a
few implementations of this standard, and in this chapter we’ll take a look at the
Akka Streams library (http://doc.akka.io/docs/akka-stream-and-http-experimental/
current). We’ll start by asking why Reactive Streams is useful at all, and then we’ll
move on to exploring a few of the basic building blocks of Akka Streams. Finally,
we’ll get our hands dirty revising and extending our application from chapter 2 with
Akka Streams.

This chapter covers
■ Reasons for defining a Reactive Streams

standard
■ The building blocks of the Akka Streams library

that implements Reactive Streams
■ Using Akka Streams in combination with

iteratees and building a simple flow graph
■ Observing reactive back pressure in action

www.reactive-streams.org
http://doc.akka.io/docs/akka-stream-and-http-experimental/current
http://doc.akka.io/docs/akka-stream-and-http-experimental/current

228 CHAPTER 9 Reactive Streams

9.1 Why Reactive Streams
There are two major motivations behind the development of the Reactive Streams
standard, both stemming from the fact that there’s an increased need for transferring
large quantities of data across asynchronous boundaries—boundaries between differ-
ent applications, different CPUs, or different networked systems. These quantities of
data may be so large, in fact, that they can’t always be processed at full speed by the
system on the receiving end.

 The first motivation is technical: there needs to be a means to transport and pro-
cess those streams of data without running the risk of overwhelming the involved par-
ties because of a processing speed mismatch.

 The second motivation is somewhat more human in the sense that the tooling
available for developers to manipulate those streams needs to be interoperable. Dif-
ferent libraries already exist to address the problem of manipulating asynchronous
streams on a higher level of abstraction, and those libraries should be able to work
with one another because it’s otherwise not possible to stream data across systems that
use different tools.

 Let’s take a closer look at those two motivations.

9.1.1 Streaming with nonblocking back pressure

Reactive Streams defines a standard useful for building libraries that provide a high
level of abstraction for manipulating asynchronous streams of data. Back pressure
means that publishers and subscribers of streaming data don’t get overwhelmed when
the subscriber is slower at processing incoming elements than the publisher is at pro-
ducing them. This unfortunate case is shown in figure 9.1.

 In a system without back pressure, if the subscriber is slower than the publisher,
then eventually the stream will stop—either because one of the parties runs out of
memory and one of its buffers overflows or because the implementation can detect this
situation but doesn’t know to stop sending or accepting data until the situation is
resolved (if it can be resolved at all). Although the latter scenario is somewhat more
positive than the former, blocking back pressure (the capability of a system to detect
when it must slow down and to do so by blocking) brings with it all of the disadvantages
of a blocking system, which occupies resources such as thread and memory usage.

 Reactive Streams defines a methodology for allowing nonblocking back pressure:
subscribers communicate with publishers to prevent the system as a whole getting
overwhelmed without holding on to precious resources to do so.

Publisher Subscriber

Send buffer Receive buffer

Figure 9.1 Subscriber being slower
than the publisher of data, resulting in
both send and receive buffers filling up

229Why Reactive Streams

Let’s take a quick look at the core of Reactive Streams—the API for publishers and sub-
scribers, which is defined in Java for interoperability across all kinds of JVM languages.
Don’t worry, you won’t have to implement this API or work directly with it because it’s
aimed at creators of libraries that implement the Reactive Streams standards, not at its
users. But given that it’s rather simple, it won’t hurt to peek under the hood:

public interface Publisher<T> {
public void subscribe(Subscriber<? super T> s);

}
public interface Subscriber<T> {

public void onSubscribe(Subscription s);
public void onNext(T t);
public void onError(Throwable t);
public void onComplete();

}
public interface Subscription {

public void request(long n);
public void cancel();

}

At first, the communication between publisher and subscriber is set up via the pub-
lisher’s subscribe, through which the two parties are introduced to each other. After
successful initialization of the communication, the subscriber gets to know about a
Subscription (which models the established connection) via a call to its onSub-
scribe method.

 At the core of the Reactive Streams mechanism is the request method of the Sub-
scription. Through this method, the subscriber signals to the publisher how many
elements it’s ready to process. The publisher communicates every element one by one
to the subscriber via its onNext method, as well as fatal stream failures through the
onError method. Because the publisher knows exactly how many items it’s expected
to publish at any time (it has been asked for a number of elements in the Subscrip-
tion’s request method), it’s able to produce as many elements as required without
producing too many for the subscriber to consume, eliminating the need to block
while waiting for the subscriber. Additionally, the subscriber is called by the publisher
for each published element through the onNext method, meaning that it does not
explicitly need to block while waiting for new elements to be available.

ENTIRELY ASYNCHRONOUS API As you can see, all methods of the Reactive
Streams API are of type void, so they don’t return any useful information.
Instead, the different callback methods (onSubscribe, onNext, and the like)
are used, ensuring an entirely asynchronous workflow.

9.1.2 Manipulating asynchronous streams

In chapter 6 we quickly looked at a way to implement back pressure in actors by using
control messages that have a higher priority than normal messages. As you saw, even a
rudimentary implementation of a back pressure mechanism turns out to be quite a bit
of work as there are many special cases to be aware of and deal with.

230 CHAPTER 9 Reactive Streams

 Although the actor system does a good job of letting you model and implement
asynchronous processes, implementing stream processing with back pressure can
quickly become a complicated task, because the loss of a message, the overflow of an
actor’s mailbox, and other errors all need to be dealt with.

 This is where libraries built on top of the Reactive Streams standard come in: they
take care of all those low-level concerns and provide the tools necessary for more
advanced stream-processing scenarios, such as grouping, concatenating, merging, and
broadcasting streams. As this may sound a little theoretical, let’s look at a concrete
example of stream processing that we’ve already done in this book.

 In chapter 2, we were retrieving tweets from Twitter for a given topic, and then we
used iteratees, enumeratees, and enumerators to parse and broadcast the stream of
tweets to clients connected via WebSockets, as shown in figure 9.2.

This application may have seemed quite complicated when you were implementing it
in chapter 2, but the flow of the stream itself isn’t really that elaborate. Indeed, this
example is very linear, insofar as the entire transformation takes place on one track of
transformation stages, without any junctions. It’s only at the very end, when we want to
direct the transformed stream toward client browsers, that we used a broadcast opera-
tion to cater to more than one client. In this chapter’s example, we’ll look at a more
advanced type of stream manipulation and build a flow graph.

 First we’ll learn a bit more about the library that we’re going to use to manipulate
our asynchronous stream of tweets with nonblocking back pressure: Akka Streams.

9.2 Introducing Akka Streams
Akka Streams builds on the idea of flows and flow graphs that define how a stream is
being processed. In this section we’ll first look at the core concepts you need to know
to use Akka Streams, and then we’ll use them to build this chapter’s example.

9.2.1 Core principles

There are four major building blocks, or processing stages in Akka terms, that make a
stream-processing pipeline:

Twitter API client
enumerator

Stream adapter:
Joined (enumerator,

iteratee) pair

WebSocket
client 1

WebSocket
client N

JSON
parsing
iteratee

Broadcasting
enumerator

Figure 9.2 Tweet stream processing: parsing the JSON stream and broadcasting it to WebSocket clients

231Introducing Akka Streams

■ A source has exactly one output and is responsible for producing streaming data.
This is the equivalent of an enumerator.

■ A sink has exactly one input and is responsible for consuming streaming data.
This is the equivalent of an iteratee.

■ A flow has exactly one input and exactly one output and usually transforms
streaming data in one way or another. This is the equivalent of an enumeratee.

■ A junction can have multiple inputs and multiple outputs. In the former case, we
talk about fan-in operations, in the latter of fan-out operations. There isn’t an
exact equivalent of this type of element in the iteratee realm, but the library
provides several helper methods to provide a few junction types.

These processing stages are illustrated in figure 9.3.

A flow can involve more than one processing stage—as long as there’s one input and
one output, any concatenation of simple processing stages forms a flow. When a flow
gets more complicated than a simple, linear processing pipeline and has junctions, we
then talk about a flow graph.

 When a flow is both connected to a source and to a sink, it’s called a runnable flow.
This means that it can effectively be started to process data. The process of running a
flow is called materialization: a runnable flow or a runnable flow graph on their own
are just definitions of how the stream will be processed (think of it as a blueprint) but
in themselves don’t actually do anything. When the flow is being materialized, all the
necessary resources (buffers, thread pools, underlying actors, and so on) are
allocated to finally run the construct. This also means that the definitions can be
reused, and it’s possible to build a runnable flow graph in multiple steps or even in
multiple places, sending it around until it’s finished. In that case we talk about partial
flow graphs.

 You now have enough theory to get started building your own runnable flow
graph. Let’s started with a new project to get some hands-on experience with Akka
Streams!

9.2.2 Manipulating streaming tweets

In this section we’ll build a graph that involves splitting the stream by the topic of
each tweet, and then grouping together a specified number of tweets from each topic
stream to simulate a “digest” for each topic, as shown in figure 9.4.

Source Flow Fan-out junction Fan-in junction Sink

Figure 9.3 The four types of processing stages: source, sink, flow, and junction

232 CHAPTER 9 Reactive Streams

As you can see, we’ll start fetching and processing the stream as in chapter 2, but we’ll
then switch over from iteratees to Reactive Streams to continue processing the stream.
We’ll then fan out the stream, demultiplexing it into multiple substreams by using the
topic of each tweet (in other words, a hashtag), group the tweets on each substream
using different rates for each topic to simulate a digest of tweets, merge them again
into one single stream, and then deliver each topic to clients. If the digest rate for a
topic is 1, then each tweet will be delivered instantly to the client, whereas if the digest
rate is 10, tweets with that topic will only be pushed to the client once 10 of them have
appeared on the stream.

 We now have the following tasks to take care of:

1 Set up the project
2 Set up the stream from Twitter using the WS library and transform it, producing

an enumerator
3 Convert the enumerator into an Akka Streams source

JSON parsing iteratee

Adapter

Iteratees to Reactive Streams

Split by #topic

Group elements
using the digest

rate of A

WebSocket client

Merge

#topicA #topicB #topicC

Assemble and
tag JSON

container for
#topicA

Group elements
using the digest

rate of B

Assemble and
tag JSON

container for
#topicB

Group elements
using the digest

rate of C

Assemble and
tag JSON

container for
#topicC

Twitter API client enumerator

Figure 9.4 Splitting the stream by
tweet topic and delivering a digest for
each stream

233Introducing Akka Streams

4 Create a custom fan-out element that will split the stream into topics
5 Set up the graph
6 Wire the different elements of the graph
7 Deliver the stream to the client
8 Run the graph and observe back pressure

Ready? Go!

SETTING UP THE PROJECT

Start by setting up a new project using an Activator template. You’ll need to add the
following dependencies to build.sbt.

libraryDependencies ++= Seq(
ws,
"com.typesafe.play.extras" %% "iteratees-extras" % "1.5.0",
"com.typesafe.play" %% "play-streams-experimental" % "2.4.2",
"com.typesafe.akka" % "akka-stream-experimental_2.11" % "1.0"

)

FETCHING THE STREAM FROM TWITTER

As a first step, you’ll fetch your stream from Twitter. Create the file app/services/
TwitterStreamService.scala as follows.

package services

import javax.inject._
import akka.actor._
import play.api._
import play.api.libs.iteratee._
import play.api.libs.json._
import play.api.libs.oauth._
import play.api.libs.ws._
import play.extras.iteratees._
import scala.concurrent.ExecutionContext

class TwitterStreamService @Inject() (
ws: WSAPI,
system: ActorSystem,
executionContext: ExecutionContext,
configuration: Configuration

) {
private def buildTwitterEnumerator(
consumerKey: ConsumerKey,
requestToken: RequestToken,
topics: Seq[String]

): Enumerator[JsObject] = {
val (iteratee, enumerator) = Concurrent.joined[Array[Byte]]

Listing 9.1 Library dependencies required for using Akka Streams with Play

Listing 9.2 Fetching the Twitter stream using the WS library

Defines the method for
building the enumerator that
streams the parsed tweets

Creates a linked pair of iteratee and
enumerator as a simple adapter in the pipeline

234 CHAPTER 9 Reactive Streams

val url =
"https://stream.twitter.com/1.1/statuses/filter.json"

implicit val ec = executionContext

val formattedTopics = topics
.map(t => "#" + t)
.mkString(",")

ws
.url(url)
.sign(OAuthCalculator(consumerKey, requestToken))
.postAndRetrieveStream(

Map("track" -> Seq(formattedTopics))
) { response =>

Logger.info("Status: " + response.status)
iteratee

}.map { _ =>
Logger.info("Twitter stream closed")

}

val jsonStream: Enumerator[JsObject] = enumerator &>
Encoding.decode() &>
Enumeratee.grouped(JsonIteratees.jsSimpleObject)

jsonStream
}

}

This code may look vaguely familiar to you. Indeed, we wrote something very similar
in chapter 2. Back then, we also included a broadcasting mechanism to allow multiple
clients to connect to the stream, but we won’t do this here because we want to focus
on manipulating the stream with Akka Streams.

 Don’t forget to add the workaround to the OAuth bug in build.sbt:

libraryDependencies += "com.ning" % "async-http-client" % "1.9.29"

CONVERTING THE ENUMERATOR TO A SOURCE

To be able to use your enumerator with Akka Streams, you’ll need to convert it first.
Create a new helper method as part of the TwitterStreamService as follows.

import play.api.libs.streams.Streams
import org.reactivestreams.Publisher

private def enumeratorToSource[Out](
enum: Enumerator[Out]

): Source[Out, Unit] = {
val publisher: Publisher[Out] =

Streams.enumeratorToPublisher(enum)
Source(publisher)

}

Listing 9.3 Defining a helper method to convert from enumerator to source

Formats the topics
you want to track

Sends a POST request and
fetches the stream from
Twitter. This method
expects to be fed a body
as well as a consumer.

Passes in the
iteratee as a

consumer. The
stream will

flow through
this iteratee
to the joined
enumerator.

Transforms the
stream by decoding
and parsing it

Returns the transformed
stream as an enumerator

Turns the enumerator
into a Reactive Streams
publisher

Turns the
publisher

into an
Akka

Streams
source

235Introducing Akka Streams

The Play Streams library provides the tools necessary to interface between iteratees,
enumerators, and their Reactive Streams–equivalent publishers and subscribers. You
can use this to build the plumbing necessary for converting from one realm to another.

PRESERVATION OF NONBLOCKING BACK PRESSURE Iteratees provide non-block-
ing back pressure and the Play Streams library makes sure that this property
is preserved when converting to or from a publisher.

CREATING A CUSTOM FAN-OUT JUNCTION USING FLEXIROUTE

We’ve now reached the point where we need to split the stream into substreams, one
per topic. For this purpose, we’ll use FlexiRoute, which lets us define custom route
junctions. The shape of our splitter will depend on the topics we want to track, so we
have to define it on the fly as part of the function that we’ll call to produce and run
the graph.

 Start to build the stream method of the TwitterStreamService as follows.

def stream(topicsAndDigestRate: Map[String, Int]):
Enumerator[JsValue] = {

import FanOutShape._

class SplitByTopicShape[A <: JsObject](
_init: Init[A] = Name[A]("SplitByTopic")

) extends FanOutShape[A](_init) {
protected override def construct(i: Init[A]) =
new SplitByTopicShape(i)

val topicOutlets = topicsAndDigestRate.keys.map { topic =>
topic -> newOutlet[A]("out-" + topic)

}.toMap
}

class SplitByTopic[A <: JsObject]
extends FlexiRoute[A, SplitByTopicShape[A]](
new SplitByTopicShape, Attributes.name("SplitByTopic")

) {
import FlexiRoute._

override def createRouteLogic(p: PortT) = new RouteLogic[A] {
def extractFirstHashTag(tweet: JsObject) =

(tweet \ "entities" \ "hashtags")
.asOpt[JsArray]
.flatMap { hashtags =>

hashtags.value.headOption.map { hashtag =>
(hashtag \ "text").as[String]

}
}

Listing 9.4 Creating the SplitByTopic junction using FlexiRoute

Defines the stream function that
you’ll feed with the topics and

their associated rates

Specifies that
you want
 to get an

enumerator
as a result to
feed it into a

WebSocket
connection.

Defines the shape of the custom
junction by extending
FanOutShape. Because this is a
fan-out junction, you only describe
the output ports (outlets) because
there is only one input port.

Creates one
output port per
topic and keeps
these ports in a

map so that
you can

retrieve them
by topic later Defines the custom

junction by extending
FlexiRoute

Defines the routing
logic of the junction
where you’ll define
how elements get

routed

Extracts the first
topic out of a tweet.

You’ll split using only
the first topic in this

example.

236 CHAPTER 9 Reactive Streams

override def initialState =
State[Any](DemandFromAny(p.topicOutlets.values.toSeq :_*)) {

(ctx, _, element) =>
extractFirstHashTag(element).foreach { topic =>

p.topicOutlets.get(topic).foreach { port =>
ctx.emit(port)(element)

}
}
SameState

}
override def initialCompletionHandling = eagerClose

}
}

Enumerator.empty[JsValue] // we need to continue implementing here
}

This listing looks somewhat daunting—indeed, there’s quite a bit of boilerplate associ-
ated with creating a custom junction. But the general mechanism by which you define
your custom junction shouldn’t be too complicated to understand. You start by defin-
ing the shape that the junction has. In this case it will have one input port (you don’t
need to specify this, since this is already defined by FlexiRoute), and a specified num-
ber of output ports, depending on how many topics you want to track.

 An interesting aspect of the routing is the specification of a demand condition.
Because Akka Streams have nonblocking back pressure, your element needs to be
aware of upstream demand and specify how it wants to react to that demand. In this
example, you want to continue processing as soon as demand is available on one of
the output ports, so you use the DemandFromAny condition. There are two other
demand conditions you could use: DemandFromAll, which will wait until there is
demand on all ports before triggering the routing, and DemandFrom, which will trigger
when there is demand on the specified port.

 Finally, you may have noticed that you only look at the first hashtag to decide how
to route a tweet. You also discard (don’t emit) any element for which the first hashtag
isn’t one of the expected topics. This could be improved on by emitting the element
on all streams for which there are matching topics.

ALTERNATIVE SPLITTING STRATEGY In this example we used a custom element
to split the stream. Akka Streams also provides a groupBy operation that lets
you group elements of a stream by topic, effectively producing a stream of
streams. The advantage of this approach over ours is that you wouldn’t need
to know beforehand which topics to expect. There’s one catch: at present the
only means to flatten this stream of streams back into one stream is to concat-
enate all streams. This doesn’t work very well when the streams are potentially
infinite (only the first stream would be visible). Future versions of the Akka
Streams library will provide the FlattenStrategy.merge, which will allow you
to interleave elements from multiple substreams.

Specifies the demand
condition that you

want to use. In this
case you trigger
when any of the

outward streams is
ready to receive
more elements.

Uses the first hash of a tweet to
route it to the appropriate port,

ignoring tweets that don’t match.

237Introducing Akka Streams

STARTING TO BUILD THE FLOWGRAPH

Let’s build our graph. The first step is to add all elements to the graph, as follows.

def stream(topicsAndDigestRate: Map[String, Int]):
Enumerator[JsValue] = {

// ...

implicit val fm = ActorMaterializer()(system)

val enumerator = buildTwitterEnumerator(
consumerKey, requestToken, topicsAndDigestRate.keys.toSeq

)
val sink = Sink.publisher[JsValue]
val graph = FlowGraph.closed(sink) { implicit builder => out =>

val in = builder.add(enumeratorToSource(enumerator))
val splitter = builder.add(new SplitByTopic[JsObject])
val groupers = topicsAndDigestRate.map { case (topic, rate) =>
topic -> builder.add(Flow[JsObject].grouped(rate))

}
val taggers = topicsAndDigestRate.map { case (topic, _) =>
topic -> {

val t = Flow[Seq[JsObject]].map { tweets =>
Json.obj("topic" -> topic, "tweets" -> tweets)

}
builder.add(t)

}
}
val merger = builder.add(Merge[JsValue](topicsAndDigestRate.size))

// TODO: here we will need to wire the graph
}
val publisher = graph.run()
Streams.publisherToEnumerator(publisher)

}

You start by creating a Source based on the enumerator you built previously, and you
define a Sink to which all the data will flow. Because the Play Streams library provides
a method to turn a Reactive Streams Publisher into an Enumerator, you create a pub-
lisher Sink and pass it in as an argument to the FlowGraph builder. The result is that
once this graph runs, the Publisher will be materialized, allowing you to turn it back
into an Enumerator that you can use to feed the data to a WebSocket.

 Inside the FlowGraph.closed(sink) block, you add the individual flow elements
to the graph using the following building blocks:

Listing 9.5 Adding all required elements to the graph with the FlowGraph builder

Creates a FlowMaterializer
that you’ll need to be able

to run the graph flow

Builds the
enumerator

source. Building
the OAuth

consumerKey and
requestToken is

left as an exercise.

Defines a sink that the data will flow to. Uses a sink
that will produce a Reactive Streams publisher,
which you’ll later turn back into an enumerator.

Creates the
builder for a

closed
FlowGraph,

passing in
 the sink as an

output value
that will be

materialized
when the

 flow runs
Adds the source to the graph

Adds the
custom

splitter to
the graph

Adds the
groupers to the

graph, one for
each topic. These

will group the
specified number

of elements
together,

depending on the
rate of each topic.

Adds the taggers to the graph, one for each topic.
These will take the grouped tweets and build one

JSON object out of them, tagging it with the topic.

Adds a merger to
the graph to merge

all streams back
together

Runs the graph. The materialized
result will be the publisher, which you

can convert back to an enumerator.

238 CHAPTER 9 Reactive Streams

■ in—A Source that you obtain from converting the enumerator
■ splitter—The SplitByTopic junction
■ groupers—A map of Flow[JSObject].grouped() flows that groups elements

together, producing elements of type Seq[JSObject] as output
■ taggers—A map of Flow[Seq[JSObject]].map() flows that builds one wrap-

per JSON object containing the topic and the grouped tweets
■ merger—A Merge junction that will merge back the streams that you fanned out

in the splitter

As a next step, you need to wire your graph or you won’t be able to run it.

WIRING THE GRAPH

Everything is in place for wiring your graph. Complete the FlowGraph block as follows.

builder.addEdge(in, splitter.in)
splitter

.topicOutlets

.zipWithIndex

.foreach { case ((topic, port), index) =>
val grouper = groupers(topic)
val tagger = taggers(topic)
builder.addEdge(port, grouper.inlet)
builder.addEdge(grouper.outlet, tagger.inlet)
builder.addEdge(tagger.outlet, merger.in(index))

}
builder.addEdge(merger.out, out.inlet)

That’s all! You’ve added all the required wires for your graph. If there’s a problem
with your wiring, you’ll be notified at runtime.

 Indeed, the FlowGraph isn’t capable of knowing at compile time whether the
graph makes sense. In our case, this is easy to understand—if, for example, we didn’t
provide any topics, the resulting graph wouldn’t be complete or connected, but this
piece of information would only be available at runtime.

DSL FOR GRAPH WIRING Akka Streams provides a DSL for drawing a graph
using the ~> and <~ operators. We can’t use this DSL for this example, or
rather, it wouldn’t be very elegant to use it because we don’t have a fixed set
of topics. If we could use it, however, this is what our code would look like:

val f = FlowGraph.closed(publisher) { implicit builder => out =>
import FlowGraph.Implicits._
val in = ...

Listing 9.6 Wiring the graph using the FlowGraph builder

Connects your source
to the splitter’s inlet

Repeats the wiring for
each of the outlets of
the splitter

Connects the
outlet of the
splitter (the

substream) to
the grouper

for this topic
Connects the outlet
of the grouper to the
inlet of the tagger

Connects the
outlet of the

tagger to one
of the ports

of the merger

Connects the outlet of
the merger to the inlet
of the output publisher

239Introducing Akka Streams

val splitter = ...
val grouper1, grouper2, grouper3 = ...
val tagger1, tagger2, tagger3 = ...
val merger = ...

in ~> splitter ~> grouper1 ~> tagger1 ~> merger ~> out
splitter ~> grouper2 ~> tagger2 ~> merger
splitter ~> grouper3 ~> tagger3 ~> merger

}

As you can see, this syntax is much more elegant and should be preferred
when building graphs that have a well-defined set of elements.

DELIVERING THE STREAM TO THE CLIENT

The hardest part is done. Now we just need to send the stream to the client via Web-
Sockets. As a rudimentary user interface, we’ll use the query string to let the user spec-
ify the topics and the desired rate, like so:

http://localhost:9000/
?topic=akka:5
&topic=playframework:1

Each topic query parameter holds a specific topic and the desired rate, separated by a
colon.

 This simple user interface will work as shown in figure 9.5.

This is how it works:

■ The index action of the Application controller will parse the query string into
a Map[String, Int], and then call an index view, passing it the parsed map of
topics and rates as well as the raw query string (you’ll need this one to initiate a
WebSocket connection from the view).

http://localhost:9000/?topic=akka:5&topic=playframework:1

#akka #playframeworkdef index = Action { … }

def stream = WebSocket { … }

Renders view

Calls stream

Request with query string

Application controller index.scala.html view

Figure 9.5 Simple user interface to trigger the stream

240 CHAPTER 9 Reactive Streams

■ The stream action of the Application controller will also parse the query
string into a Map[String, Int], and then use the service you just built to estab-
lish the stream, using it to feed a WebSocket.

■ The view will have one column per topic and append each new digest object to
the right column. It will do so after opening a WebSocket connection to the
server.

Create (or replace) the file app/views/index.scala.html with the following.

@(topicsAndRate: Map[String, Int], queryString: String)
(implicit request: RequestHeader)
<!DOCTYPE html>

<html>
<head>
<title>Reactive Tweets</title>
<script src="//code.jquery.com/jquery-1.11.3.min.js"></script>
<link

rel="stylesheet"
href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/

bootstrap.min.css">
</head>
<body>
@if(topicsAndRate.nonEmpty) {
<div class="row">

@topicsAndRate.keys.map { topic =>
<div

id="@topic"
class="col-md-@{ 12 / (topicsAndRate.size) }">

</div>
}

</div>
<script type="text/javascript">

function appendTweet(topic, text) {
var tweet = document.createElement("p");
var message = document.createTextNode(text);
tweet.appendChild(message);
document.getElementById(topic).appendChild(tweet);

}
function connect(url) {

var tweetSocket = new WebSocket(url);
tweetSocket.onmessage = function (event) {

var data = JSON.parse(event.data);
data.tweets.forEach(function(tweet) {

appendTweet(data.topic, tweet.text);
});

};
}
connect(

'@routes.Application.stream().webSocketURL()?@queryString'

Listing 9.7 Building a view that splits the topics by column

Lays out the columns
using Twitter Bootstrap,
the grid having 12 as the
largest width

Defines a function that appends
a tweet to a given topic column

Appends the tweet
to the right column

241Introducing Akka Streams

);
</script>

} else { No topics selected. }
</body>

</html>

To establish the WebSocket connection based on an enumerator, we’ll use a slightly
different approach than the one we’ve used so far with an actor. It’s possible to create
a WebSocket connection directly using an enumerator-iteratee pair that models the
downstream and upstream components of a two-directional WebSocket connection.
Not only is this more convenient in our case, but it also brings with it automatic back
pressure on the server side (in this example, we won’t make use of this because the
client side is only consuming data and not producing it, but in other cases this could
be useful).

 Create the Application controller as follows.

package controllers

import javax.inject.Inject

import play.api.libs.iteratee._
import play.api.libs.json._
import play.api.mvc._
import services.TwitterStreamService

class Application @Inject() (twitterStream: TwitterStreamService)
extends Controller {
def index = Action { implicit request =>

val parsedTopics = parseTopicsAndDigestRate(request.queryString)
Ok(views.html.index(parsedTopics, request.rawQueryString))

}
def stream = WebSocket.using[JsValue] { request =>

val parsedTopics = parseTopicsAndDigestRate(request.queryString)
val out = twitterStream.stream(parsedTopics)
val in: Iteratee[JsValue, Unit] = Iteratee.ignore[JsValue]
(in, out)

}
private def parseTopicsAndDigestRate(

queryString: Map[String, Seq[String]]
): Map[String, Int] = ??? // TODO

}

With this approach, the WebSocket is modeled as a bidirectional communication
channel, each direction being represented by one stream: an iteratee on the consum-
ing end that receives messages from the client, and an enumerator on the producing
end, sending the stream to the client.

Listing 9.8 Creating a WebSocket using an enumerator as source stream

Creates a WebSocket; the
channels will use JsValue

as the format

Creates
 the output
enumerator

using the
streaming

service
you’ve built

Ignores any messages
coming from the client

Returns the pair
of input and

output channels
required to build

the WebSocket

242 CHAPTER 9 Reactive Streams

EXERCISE 9.1

Implement the parseTopicsAndDigestRate method. Each topic value should be split
using a colon as separator, and the second part should be parsed as Integer.

Finally, don’t forget to define the necessary routes in conf/routes:

GET / controllers.Application.index
GET /stream controllers.Application.stream

RUNNING THE GRAPH AND OBSERVING BACK PRESSURE

Once you’re done implementing the user interface, it’s time to run the stream pipe-
line. To truly see it in action, I recommend you take a look at https://twitter.com/
search-home to see what topics are trending, so you get a lively set of streams. Be care-
ful not to call the stream too frequently, or Twitter will limit your access (you’ll notice
this if you get back a status code of 420, which stands for “Enhance your calm”).

 As you’ll see if you use different rates for each topic (for example, one topic at 1,
one at 5, and one at 20), the different columns fill up at different speeds.

 Let’s check if the flow is indeed capable of back pressure by introducing an ele-
ment that will slow down processing a little. At the very end of the flow, right before
you pass the stream to the sink, introduce a stage that will sleep for a while, as follows.

val sleeper = builder.add(Flow[JsValue].map { element =>
Thread.sleep(5000)
element

})
builder.addEdge(merger.out, sleeper.inlet)
builder.addEdge(sleeper.outlet, out.inlet)

Start the stream again and observe it for a moment. It’s helpful if at least one of the
observed topics has a rate of 1, giving you the chance to see that it indeed takes 5 sec-
onds for the elements to arrive.

 After a moment you should be disconnected by Twitter:

[info] - application - Twitter stream closed

This behavior is new. Before, we could let our stream run for a long time without
disconnection. As stated in the Twitter Streaming API documentation (https://
dev.twitter.com/streaming/overview/connecting), slow clients are disconnected after
a bit, because Twitter doesn’t want to have to buffer for them. You can conclude
from this result that your stream is indeed capable of back pressure, from the very
end up to Twitter where it hits a hard limit.

Listing 9.9 Slowing down the flow

https://dev.twitter.com/streaming/overview/connecting
https://dev.twitter.com/streaming/overview/connecting
https://twitter.com/search-home
https://twitter.com/search-home

243Summary

9.3 Summary
In this chapter we took a crash course in manipulating asynchronous streams with
Akka Streams. In particular:

■ We discussed the benefits of having the Reactive Streams standard describing a
low-level interface for asynchronous flows with nonblocking back pressure.

■ We introduced Akka Streams and the components that make a flow graph.
■ We built a flow graph using the streaming Twitter API, employing a custom rout-

ing junction to split the source stream by topic.

Reactive Streams is a very promising standard, and its implementations, although
fairly young, are already showing how easy stream manipulation can be, given the
right tooling.

 As we’re getting closer to the end of the book, let’s now look at one very important
aspect in the lifecycle of reactive web applications that we haven’t yet talked about at
all: deploying them!

244

Deploying reactive
 Play applications

One of the most critical aspects of building a reactive web application is deploying it
correctly. If, for example, you deploy the application on a traditional application con-
tainer, it may not have the capability to scale in and out automatically, hence losing the
elastic aspect of a reactive application. It’s therefore important to be well aware of what
happens with the application once deployed and whether it is implemented in such a
way that it can meet the requirements necessary for a truly reactive deployment.

 In this chapter we’ll take a simple Play application, make it ready for produc-
tion, and then see how to build and test it using the Jenkins CI (continuous integra-
tion) server (https://jenkins-ci.org) to finally deploy it. We’ll use two deployment

This chapter covers
■ Preparing a Play application for production

deployment
■ Setting up a continuous integration server and

running integration tests with Selenium
■ Deploying a Play application to the Clever Cloud

PaaS and to your own server

https://jenkins-ci.org

245Preparing a Play application for production

methods: the managed Clever Cloud PaaS (Platform-as-a-Service: http://clever-cloud.
com) and your own server, as shown in figure 10.1.

WHY CLEVER CLOUD? We’re using Clever Cloud as a PaaS in this chapter
because it provides autoscalability, which is core to the idea of reactive web
applications. Other PaaS platforms such as Heroku don’t presently offer this
capability, and Infrastructure-as-a-Service providers such as Amazon Web Ser-
vices don’t offer a fully managed deployment flow (you have to set up every-
thing on your own).

In this chapter we’ll explore two models of deployment: one that we take care of
ourselves and that has a continuous integration step versus one that is fully managed
and doesn’t include continuous integration. If you want to use a fully managed flow
including continuous integration, you could look at services such as Travis CI (http://
travis-ci.org) or CloudBees (https://www.cloudbees.com), which provide fully
managed continuous integration solutions.

WHY IS CONTINUOUS INTEGRATION PART OF THIS CHAPTER ON DEPLOYMENT? You
may be wondering why we’re addressing the topic of continuous integration
as part of this chapter on deployment. After all, continuous integration is
often thought of as being part of testing. As it turns out though (and as you’ll
see later in this chapter), continuous integration servers play an increasingly
important role in software projects beyond merely running tests. In fact,
they’re at the core of many deployment strategies, and in some cases the
deployment of entire, complex applications is completely automated through
these tools (this process is then appropriately called continuous deployment). In
the case of reactive applications, you want to make sure that whatever you
deploy works, and hence it’s a good idea to set up a continuous integration
server that performs all the tests and deploys a test environment, and then to
use the same build to deploy the production deployment.

10.1 Preparing a Play application for production
The first step toward deploying an application to production is to fine-tune a number
of settings that will improve its performance in a production environment, and also to

Application code

Your serverClever Cloud

Figure 10.1 The two deploy-
ment models explored in this
chapter: fully managed with
Clever Cloud and self-man-
aged with Jenkins and your
own server

http://clever-cloud.com
http://clever-cloud.com
http://travis-ci.org
http://travis-ci.org
https://www.cloudbees.com

246 CHAPTER 10 Deploying reactive Play applications

configure it in such a manner that it can be easily monitored and errors can be
diagnosed. Let’s start with creating a sample application that we’ll then make ready
for production.

10.1.1 Creating a simple application to deploy

In the previous chapters we built fairly elaborate example applications to explore the
concepts presented in those chapters. For the purpose of deploying an application,
we’ll use a simple example. There’s no need to have a complex application at hand
for its deployment since the principles used for deployment of a Play application
should always be similar.

 Create a new empty application by using the Activator as we’ve done previously.
We’ll create a simple application that, upon the click of a button, will fill a div with
some text, all of this being done by JavaScript.

 As a first step, add the dependency on the jQuery WebJar as well as to the webjars-
play library itself in build.sbt:

libraryDependencies ++= Seq(
"org.webjars" %% "webjars-play" % "2.4.0-1",
"org.webjars" % "jquery" % "2.1.4"

)

Also add the following route to conf/routes to ease the discovery of WebJars in the
application:

GET /webjars/*file controllers.WebJarAssets.at(file)

The WebJarAssets controller is provided by the webjars-play dependency. This in
turn makes it possible to resolve the path to the jQuery dependency in app/views/
main.scala in the following manner:

<script
type='text/javascript'
src='@routes.WebJarAssets.at(WebJarAssets.locate("jquery.min.js"))'>

</script>

Once you’re done setting up WebJars, create the file app/assets/javascripts/
application.js with the contents of listing 10.1.

$(document).ready(function () {
$('#button').on('click', function () {

$('#text').text('Hello');
});

});

Now, adjust the app/views/index.scala.html file to contain what is necessary for this to
work.

Listing 10.1 Simple JavaScript file that populates a div when a button is clicked

247Preparing a Play application for production

@(message: String)
@main(message) {

<button id="button">Click me</button>
<div id="text"></div>

}

Finally, load the application.js file in main.scala.html:

<script
type='text/javascript'
src='@routes.Assets.versioned("javascripts/application.js")'>

</script>

And that’s it for our simple example application!

COMPILING JAVASCRIPT CODE Assets that are placed in the app/assets direc-
tory are automatically managed by a few sbt-web plugins, one of which is
sbt-jshint, which is included in the default activator template and runs
JSHint (http://jshint.com) to check your code.

To see it in action, remove the semicolon on line 4 of listing 10.1 and reload
the application. You’ll be presented with a compilation error, pin-pointing
the missing semicolon in application.js.

EXERCISE 10.1

To make the application a bit more interesting and have a look at configuration manage-
ment, fetch the text to be deployed from the server via an AJAX request and pass in a value
from application.conf.

You’ll need to take the following steps:

■ Create a text action in the Application controller that reads the “text” configura-
tion parameter from application.conf. For this purpose, use dependency injection to
@Inject an instance of play.api.Configuration.

■ Create a reverse JavaScript route to access the route from the JavaScript file.
You can embed the reverse routes in main.scala.html using the helper syntax
@helper.javascriptRouter("jsRoutes")(routes.javascript.Application
.text).

■ Make the AJAX call to retrieve the text parameter. The generated router already
includes a mechanism for this, and you can call the method jsRoutes
.controllers.Application.text().ajax({ success: …, error: … }) for this
purpose.

If you have any trouble with this, you can always peek at the resources that come with this
chapter.

Listing 10.2 Creating the HTML layout for the application

http://jshint.com

248 CHAPTER 10 Deploying reactive Play applications

10.1.2 Writing and running integration tests with Selenium

To see whether our application is behaving correctly, we can write an integration test
that will emulate the behavior of a user and test the entire application using a browser.
If you’re aiming at a continuous delivery lifecycle for your application, then making it
possible to run these tests is part of your deployment (and writing them becomes part
of writing your application). We’ll revisit the topic of testing in chapter 11 where we’ll
focus on testing the reactive properties of an application. In this section you’ll see how
to configure your deployment to enable running Selenium browser tests, which are a
powerful tool but not always straightforward to set up in practice.

 With the help of ScalaTest and the ScalaTest + Play library (http://scalatest.org/
plus/play), it’s easy to integrate the Selenium WebDriver automation library (http://
www.seleniumhq.org). Selenium lets you remotely “drive” a browser and emulate what
a user would do—read text, click on buttons, and so on—in order to check if the appli-
cation behaves as it should from the user perspective. This type of testing is pretty pow-
erful, as it tests the entire (integrated) application as opposed to single components,
and can detect errors that occur when those components interact with each other.

 Start by adding the following dependencies in build.sbt, after removing the auto-
matically generated dependency on specs2:

libraryDependencies ++= Seq(
// ...
"org.seleniumhq.selenium" % "selenium-firefox-driver" % "2.53.0",
"org.scalatest" %% "scalatest" % "2.2.1" % "test",
"org.scalatestplus" %% "play" % "1.4.0-M4" % "test"

)

FIREFOX DRIVER VERSION The version of the Selenium Firefox driver needs to
be compatible with the version of Firefox you’re using. If you run into prob-
lems while trying to run the tests, make sure to use the latest version of the
driver. You can find a list of available versions at http://mvnrepository.com/
artifact/org.seleniumhq.selenium/selenium-firefox-driver.

As a next step, create the file test/ApplicationSpec.scala with the contents of listing 10.3
(if you used the activator template, a few tests were already created—make sure to
remove those).

import org.scalatest._
import play.api.test._
import play.api.test.Helpers._
import org.scalatestplus.play._

class ApplicationSpec
extends PlaySpec
with OneServerPerSuite
with OneBrowserPerSuite

Listing 10.3 Testing the application with a Selenium integration test

Extends the PlaySpec, which
provides Play-specific context
to a ScalaTest spec

Uses the same
test Play server

for the whole
test suite

Uses the same
browser instance for
the whole test suite

http://scalatest.org/plus/play
http://scalatest.org/plus/play
http://www.seleniumhq.org
http://www.seleniumhq.org
http://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-firefox-driver
http://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-firefox-driver

249Preparing a Play application for production

with FirefoxFactory {
"The Application" must {

"display a text when clicking on a button" in {
go to (s"http://localhost:$port")
pageTitle mustBe "Hello"
click on find(id("button")).value
eventually {

val expectedText = app.configuration.getString("text")
find(id("text")).map(_.text) mustBe expectedText

}
}

}
}

For this test to run smoothly, you’ll need to have Firefox installed on your computer.
You then can run the test using the test command in the sbt console; this should
open a Firefox browser window and you should see the button being clicked and the
test displayed.

RUNNING TESTS AGAINST MULTIPLE BROWSERS Play also has built-in support for
running other browsers such as Chrome, Safari, and Internet Explorer (and
HTMLUnit—but HTMLUnit doesn’t really support JavaScript). It’s possible to
have tests run on multiple browsers instead of just one using the AllBrowsers-
PerSuite trait, which lets you specify which browsers should be used.

We now have an application and are checking its functionality using an integration
test—the next step is to make it ready for production!

10.1.3 Preparing the application for production

Before deploying an application to production, several steps need to be taken.

SETTING THE APPLICATION SECRET

The application secret is stored in conf/application.conf; a new one can be generated
using the playGenerateSecret command in the sbt console. Note that this command
won’t replace the value in application.conf, but simply print out a generated value. If
you want to save it as well, you should use the playUpdateSecret command.

 For production deployment, it’s normal to set values such as passwords or keys
using an environment variable. You can pass the configuration value of the Play secret
via environment variables in two ways:

■ By launching the Play script and passing the property with the -Dplay.crypto
.secret flag if you’re running the script on your own

■ By telling application.conf to read the value from an environment variable of
your choice

Since we’re going to deploy the application to a PaaS, the second option fits our pur-
pose best. Edit appliction.conf and extend the play.crypto.secret definition:

Uses Firefox as a web browser

Navigates to
the index page

Clicks on the button

Tells ScalaTest
that this check

isn’t immediate
since

asynchronous
behavior is

involved

Tests if the displayed text corresponds to
the expected one from the configuration file

250 CHAPTER 10 Deploying reactive Play applications

play.crypto.secret="changeme"
play.crypto.secret=${?APPLICATION_SECRET}

If the environment variable APPLICATION_SECRET is set, then play/crypto.secret
will get its value; otherwise, play.crypto.secret will remain as is.

 Previously, you created a configuration setting for specifying the text to be displayed
when a button is clicked. Make sure to also add an optional override as you’ve done for
play.crypto.secret to allow for provisioning the value of your configuration param-
eter through an environment variable.

CUSTOMIZING LOGGING

By default, Play provides an optimized version of the configuration that, for example,
takes care of automatic log rotation (you can check the Play reference documenta-
tion [https://www.playframework.com/documentation/latest/SettingsLogger] for
details). If you have the need to customize it even further, check out the Logback
(http://logback.qos.ch) documentation.

 If you’d like to specify your own Logback configuration for production, you can
use the -Dlogger.resource or -Dlogger.file flags when launching the application.

OPTIMIZING WEB ASSETS

Chances are that a larger web application will have a number of JavaScript and CSS
assets. Loading them quickly is crucial, as this makes a big impact on the speed of the
application, especially on mobile devices. Since we have sbt-web at our disposal to cus-
tomize the pipeline for handling assets, let’s use it.

 One of the first steps is to set up RequireJS optimization (http://requirejs.org).
RequireJS provides dependency management to JavaScript applications and also pro-
vides a pipeline that combines and minimizes all JavaScript assets. The sbt-rjs plugin
(https://github.com/sbt/sbt-rjs) is already loaded in project/plugins.sbt as it’s
part of the activator template; all we need to do is to activate it. In this section we’ll
look at a basic setup of RequireJS for our small application. If you’re interested in a
more advanced example, check out the Play-Angular-Require seed (https://
github.com/mariussoutier/play-angular-require-seed) by Marius Soutier that provides
a template for building a project with Play, RequireJS, WebJars, and AngularJS.

 Point your editor at build.sbt and edit the application.js file to look like the follow-
ing listing.

name := """ch10"""

version := "1.0-SNAPSHOT"

lazy val root = (project in file(".")).enablePlugins(
PlayScala

)

scalaVersion := "2.11.7"

Listing 10.4 Configuring the build pipeline for RequireJS optimization

Enables the PlayScala plugin. It has a
dependency on SbtWeb, so we don’t
need to specify that one explicitly.

http://logback.qos.ch
http://requirejs.org
https://www.playframework.com/documentation/latest/SettingsLogger
https://github.com/sbt/sbt-rjs
https://github.com/mariussoutier/play-angular-require-seed
https://github.com/mariussoutier/play-angular-require-seed

251Preparing a Play application for production

libraryDependencies ++= Seq(
"org.webjars" %% "webjars-play" % "2.4.0-1",
"org.webjars" % "jquery" % "2.1.4",
"org.scalatest" %% "scalatest" % "2.2.1" % "test",
"org.scalatestplus" %% "play" % "1.4.0-M4" % "test"

)

routesGenerator := InjectedRoutesGenerator

pipelineStages := Seq(rjs)

RjsKeys.mainModule := "application"

RjsKeys.mainConfig := "application"

By default, RequireJS expects the entry point to be called main.js; since we’ve used a
different name, we need to declare that. In principle we could’ve just used the
main.js name, but it’s good to know about this convention to avoid pitfalls.

 As a next step, we need to load RequireJS in main.scala.html. Add the following
line to the <head> section before loading any other script:

<script
data-main="@routes.Assets.versioned("javascripts/application.js")"
src="@routes.WebJarAssets.at(WebJarAssets.locate("require.min.js"))">

</script>

Since the play-webjars library has a dependency on the RequireJS WebJar, we can load
RequireJS by using the WebJars mechanism.

 You’ll need to make one more change to main.scala.html: remove the <script>
tag that loads jQuery. Now that RequireJS is in place, it’ll take care of loading the
library, as you’ll see in a bit.

 Finally, we need to configure and use RequireJS. Edit the application.js file to look
like the following listing.

(function (requirejs) {
'use strict';
requirejs.config({

shim: {
'jsRoutes': {

deps: [],
exports: 'jsRoutes'

}
},
paths: {

Listing 10.5 Using RequireJS to tie together JavaScript dependencies

Adds rjs as first
stage of the assets
pipeline

Specifies that the main
RequireJS module is called
“application” (this will resolve
to our application.js file)Specifies that the configuration for RequireJS

is located in the application module

Wraps the entire
configuration in a function
to avoid polluting the global
JavaScript namespace

Configures
RequireJS

Tells RequireJS about jsRoutes,
which is generated on-the-fly in
main.scala.html, by telling it the
name of the var that defines it

252 CHAPTER 10 Deploying reactive Play applications

'jquery': ['../lib/jquery/jquery']
}

});
requirejs.onError = function (err) {

console.log(err);
};
require(['jquery'], function ($) {

$(document).ready(function () {
// ...

});
});

})(requirejs);

The initial configuration of RequireJS is a bit tiresome, but once it’s set up there are
major benefits to it. As you can see, we need to configure aspects related to our appli-
cation, such as the use of the generated jsRoutes variable, as well as the exact loca-
tion of the jQuery library.

 In the sbt console, run the stage command, which is one way of preparing the
application for production deployment. You’ll see that RequireJS is now optimizing all
the output and running all JavaScript files (including jQuery itself) through an optimi-
zation process using the UglifyJS library (https://github.com/mishoo/UglifyJS2) that
minifies and compresses JavaScript code. (Also this makes it entirely unreadable for
humans, which is something you may want when you publish your JavaScript code on
a server, depending on whether you were in a hurry while writing it.)

MORE OPTIMIZATIONS Using RequireJS is just one of the many things you can
do to customize the assets pipeline. For example, the sbt-gzip plugin applies
gzip compression on top of all assets, the sbt-digest plugin computes check-
sums for assets and prepends them to the name (this is useful for assets finger-
printing and ETag values), and so on. Check out the sbt-web documentation1

to get a list of all the possible plugins.

USING A CDN FOR PROVIDING COMMON WEB ASSETS

Content delivery networks (CDNs) are frequently used in web applications to off-load
the provisioning of common libraries such as jQuery. CDNs have servers around the
globe that serve those assets in an optimal fashion depending on the geographical
location of the client. The good news is that WebJars is available via the jsDelivr CDN
(http://www.jsdelivr.com), and the sbt-rjs plugin takes care of mapping WebJar librar-
ies to their CDN URL for deployment. Therefore, to use the CDN URLs for the libraries
in our application in production, we only need to lean back and let the tooling take
care of the rest.

10.2 Setting up continuous integration
If you’re aiming to build an application that serves a real-life purpose, a continuous
integration server is a must. It eliminates all the hassle of running the build by hand,

1 https://github.com/sbt/sbt-web

Configures the path of the
jQuery dependency; this is
the resulting path for
WebJar dependenciesConfigures an

error handler
in order to be

made aware of
problems

Uses RequireJS to depend
on the jQuery dependency,
and executes our initial code

http://www.jsdelivr.com
https://github.com/mishoo/UglifyJS2
https://github.com/sbt/sbt-web

253Setting up continuous integration

and most importantly runs all the tests for you automatically, in a clean environment
created for this purpose and without blocking your computer while running the tests
(which may take increasingly more time as your application and test suite grow).

10.2.1 Running Jenkins via Docker

If you’re familiar with the Jenkins CI and have a server or a virtual machine at your dis-
posal for running it, you may skip this section. If not, then let’s use Docker (https://
www.docker.com) and the Docker Jenkins image (https://registry.hub.docker.com/
_/jenkins/) to get started quickly.

WHY DOCKER? Docker offers a mechanism for provisioning and running con-
tainers with a given application or set of applications. Rather than starting a
virtual machine emulator, creating a new virtual machine, installing an oper-
ating system, and finally installing the application, container platforms such
as Docker make it possible to do all of this using container images. These
images are meant to be simply downloaded and run with a minimal configu-
ration effort. There are plenty of preconfigured images available ready for
use, just as for Jenkins in our case.

You’ll first need to install Docker itself (check the Docker website for instructions). If
you’re developing on OS X, you’ll also need to install boot2docker (http://
boot2docker.io). Detailed installation instructions as well as an installer can be found
on the Docker website at https://docs.docker.com/installation/.

 Then, you’ll need to fetch and clone a modified version of the Jenkins Docker
image that also installs additional components necessary for running the integration
tests. In a command line shell in the directory of your choosing, run the following:

git clone https://github.com/manuelbernhardt/docker.git
docker build -t docker-jenkins docker

This will clone the modified Docker Jenkins build and build it with the tag “docker-
jenkins.” Next, we need to run this new image in such a way that the sources of the
application can be available within the Docker container. For this purpose, create a
directory somewhere on your computer, for example, in the ~/jenkins folder, and
launch the image with the command shown next.

docker run
--name chapter10-jenkins
-p 8080:8080
-v ~/reactive-web-applications/CH10:/var/jenkins_home/ch10
docker-jenkins

Listing 10.6 Running the Jenkins Docker image

Gives a name to the container,
which makes it persistent so the

settings won’t be lost on next start

Maps port 8080
from the host to

port 8080 of
the container,
where Jenkins

 is running

Maps the directory with the
sources of this chapter inside of the

Jenkins home directory so we can
access it from within the container

Indicates that we would
like to run the image
that we just built

http://boot2docker.io
http://boot2docker.io
https://docs.docker.com/installation/.
https://www.docker.com
https://www.docker.com
https://registry.hub.docker.com/_/jenkins/
https://registry.hub.docker.com/_/jenkins/

254 CHAPTER 10 Deploying reactive Play applications

Be patient; it may take some time to start up at first!

FIGURING OUT THE IP ADDRESS OF THE DOCKER CONTAINER Normally, the Docker
port forwarding should make it so that Jenkins is accessible on port 8080 of
your localhost—127.0.0.1. But this may not always work; for example, it
doesn’t readily work on OS X. You can use docker ps to inspect which ports
and IP addresses should be in use, and on OS X with boot2docker, you can use
the command boot2docker ip to figure out which IP address you need to
access the docker container.

At this point, Jenkins should be up and running and you should be able to access it at
http://localhost:8080 (or at a different IP address, depending on your setup), as
shown in figure 10.2.

10.2.2 Configuring Jenkins to build our application

You’ll need to take a few steps to configure Jenkins for building the application.

INSTALLING THE NECESSARY PLUGINS

On the left menu, click on Manage Jenkins, then Manage Plugins, and then select the
Available tab. We’ll need two plugins:

Figure 10.2 Accessing the freshly created Jenkins deployment

255Setting up continuous integration

1 The sbt plugin for running our build.
2 The Xvfb plugin for running Firefox inside of a frame buffer for the integration

tests. Since the server runs in a “headless” mode (without screen attached), we
need a way to emulate a screen that the browser can run in.

Select those plugins and click Download Now and Install After Restart. On the page
that shows the progress of the installation, make sure to tick the check box “Restart
Jenkins when Installation Is Complete and No Jobs Are Running” for Jenkins to
restart right away and activate the new plugin. You may need to refresh the page after
a minute if it doesn’t do so automatically.

 Then, go again to Manage Jenkins, click Script Console, and run the following
command in it:

hudson.model.DownloadService.Downloadable.all().each {
it.updateNow()

}

This workaround enables you to install sbt automatically.
 Next, go again to the Manage Jenkins menu and select the first entry, Configure

System. On this page, scroll down to the SBT section and add a new sbt installation.
Name it, for example, “default” and select the option Install Automatically with the
version 0.13.8. You also need to do the same thing for Xvfb, where you only need to
give the installation a name.

CREATING AND RUNNING THE JENKINS JOB

On the main page, click Create New Jobs and create a new freestyle project, naming it,
for example, “simple-play-application.” Normally, we’d configure the project to be
fetched from a version control system such as Git, but since we’re running this locally,
we’ll copy the sources by hand.

 As a first step, tick the box “Start Xvfb Before the Build, and Shut It Down After”
for the frame buffer to run during the build.

 In the Build section, add a new “Execute shell” build step with the following
command:

rm -rf ${WORKSPACE}/*
cp -R ${JENKINS_HOME}/ch10/* ${WORKSPACE}

Then, add a “Build using sbt” job with the actions compile test dist.
 Finally, in the Post-build Actions section, add the step “Publish JUnit test result

report” with the path target/test-reports/*.xml for Jenkins to know where to look for
test reports.

 Save the configuration and run the build using the menu entry on the left, and be
patient—the first execution will need to download quite a number of libraries includ-
ing sbt itself. You can check the logs during the build and see the test results once it is
done, as shown in figure 10.3.

256 CHAPTER 10 Deploying reactive Play applications

10.3 Deploying the application
We (and our application) are ready to go live! Since we’re likely to deploy it often, this
process should be as simple as possible. Let’s explore two of the many alternatives for
deploying an application: the Clever Cloud PaaS and your own server.

10.3.1 Deployment on Clever Cloud

Clever Cloud is a service that takes care of managing and scaling up the necessary
server infrastructure required for your application to work. Point your browser to
http://clever-cloud.com and create an account. (Clever Cloud will also ask you for
SSH keys to let you deploy via Git in a secure manner.) You’ll get 20€ of credit for free,
which should be sufficient to run our simple application.

 Once you’re logged in, go to your personal space, click Add an Application, and
pick Scala + Play! 2. Give it a name such as “simple-play-application” and create it. At
this point you don’t need to specify any database to deploy with it because our simple
application doesn’t use one.

CONFIGURING THE ENVIRONMENT VARIABLES

Clever Cloud lets you configure the environment variables you’d like to see exposed
to your application. Make three entries:

1 JAVA_VERSION: 8
2 APPLICATION_SECRET: Use playGenerateSecret command on the sbt shell to

get a random value
3 TEXT: “Hello from Clever Cloud”

Figure 10.3 Checking the test results in Jenkins

http://clever-cloud.com

257Deploying the application

PUSHING THE CODE

Once you’re done setting up the application, it’s time to push the code. You should
see the commands required for this purpose, and will need to run the following com-
mand in the directory in which you keep the sources of this chapter:

git init
git add .
git commit -m "Initial application sources"
git remote add clever

https://console.clever-cloud.com/
users/me/applications/<application-name>/information

git push -u clever master

That’s it! On the Clever Cloud console you’ll now see the logs of the deployment as shown
in figure 10.4—although you’ll have to be patient at first, as in the beginning the only
thing you’ll see is a message informing you that your application is currently deploying.

 It may take a while until all dependencies are fetched during the first deployment,
but once it’s done, you should receive an e-mail that the deployment succeeded and
be able to access the application.

Figure 10.4 Watching the application deploy itself on Clever Cloud

258 CHAPTER 10 Deploying reactive Play applications

ENABLING AUTOSCALABILITY

Clever Cloud can take care of automatically handling horizontal scalability, depend-
ing on the current needs of the application. As we discussed at length in chapter 1,
this is one of the core features of a reactive web application, and one of the most chal-
lenging aspects of operating this type of application.

 In the settings of your application on the Clever Cloud console, navigate to the
Scalability menu entry and scroll down to Autoscalability. There you’ll be able to
enable autoscalability and configure both horizontal and vertical scaling. Horizontal
scaling specifies the range of nodes you want your application to run on, and vertical
scaling specifies the range of instance types you want to use, as shown in figure 10.5.
Depending on the load of your application, Clever Cloud will automatically figure out
which is the most cost-effective combination of vertical and horizontal scalability to
use to operate your application.

10.3.2 Deployment on your own server

There are so many options for packaging and deploying Play applications that it isn’t
always easy to figure out which approach to take. In fact, the best approach is highly
specific to the environment to which you’re deploying the application and to the pref-
erences and skills of the operations team taking care of it. Let’s explore together three

Figure 10.5 Configuring autoscalability with Clever Cloud

259Deploying the application

deployment scenarios: a straightforward deployment using a generated script (Play’s
default), deployment using a generated Debian distribution package, and deploy-
ment as a Docker container.

PREPARING THE SERVER

In this step you’re free to set up your own server or virtual machine if you have access
to one; the only thing you should be aware of is that we’ll be using Debian in one of
the deployment examples. If you don’t have a server or virtual machine at your dis-
posal, no need to worry: since you already went through the trouble of setting up
Docker, let’s just use a Docker image for running the examples.

 Fetch the latest version of a Docker image with Java using the command docker
pull java. Then, run the Docker container so that there’s a shared directory between
your host machine and the container through your host’s play-docker-home directory
(you’ll have to create it first):

docker run
9000:9000
-v ~/play-docker-home:/home/play
-i -t java:8 /bin/bash

This will launch the container and connect you to its shell, from where you have root
access. If you use your own server, you’ll have to transfer files in a way that suits you
best (SCP or any other tool).

 Before getting started, let’s create a user for the Play application:

root@41111c604022:~# adduser --gecos "" play
Adding user `play' ...
Adding new group `play' (1000) ...
Adding new user `play' (1000) with group `play' ...
The home directory `/home/play' already exists.

Not copying from `/etc/skel'.
adduser: Warning: The home directory `/home/play' does not belong

to the user you are currently creating.
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Install zip which, we’ll need later:

apt-get install zip

Finally, switch to this user for running our examples:

su - play

DEPLOYING WITH THE STANDARD DISTRIBUTION BUNDLE

This method of deployment is probably the preferred one if you want to be entirely in con-
trol of the lifecycle of the application. The generated script only makes sure to run the
application and provides the necessary context for feeding in environment variables.

260 CHAPTER 10 Deploying reactive Play applications

 On your host computer, in a separate shell window, run the sbt console and run
the dist command. The dist command will generate a ZIP archive containing the
application ready to be deployed. At the end of the output, you should see a line that
looks as follows:

[info] Your package is ready in
/Users/<user>/work/ch10/target/universal/ch10-1.0-SNAPSHOT.zip

Copy this file to your ~/ubuntu-home directory to make it available to the Docker
container that we use to simulate our container.

 Switch back to the Docker container and extract the archive with unzip ch10_1-1.0-
SNAPSHOT.zip. You can now run the application like so:

cd ch10-1.0-SNAPSHOT/bin
./ch10 -DTEXT=Hi

You can access it on the IP address of your Docker container on port 9000.

CREATING AND DEPLOYING A DEBIAN PACKAGE

Play uses the sbt-native-packager (http://www.scala-sbt.org/sbt-native-packager) to
build the distribution package (including the artifact we used previously by running the
dist command). This plugin provides many different formats and is easy to configure.
Let’s create a native Debian package (in essence, a .deb file) from our application.

 Edit the build.sbt file and make the following changes:

■ Add the DebianPlugin and JavaServerAppPackaging plugins to the list of
enabled plugins of the root project. The Debian plugin takes care of native
Debian packaging, whereas the JavaServerAppPackaging takes care of loading
the archetype that, among other things, generates the startup scripts.

■ Configure the minimal Debian package information as shown in the following
listing.

maintainer := "John Doe <john@doe.com>"

packageSummary in Linux := "Chapter 10 of Reactive Web Applications"

packageDescription :=
"This package installs the Play Application used as an example

in Chapter 10 of the book Reactive Web Applications"

serverLoading in Debian := ServerLoader.Systemd

Listing 10.7 Configuring for Debian packaging

Names the maintainer of the packageShort summary
of the package

Long summary
of the package

Sets the service loading
system to SystemD, which is
the default in Debian Jessie

http://www.scala-sbt.org/sbt-native-packager

261Deploying the application

You can now build the package with debian:packageBin and, once copied over to the
shared directory of the Docker container or to your server, install it with dpkg -i
ch10_1.0-SNAPSHOT_all.deb.

INSTALLING REQUIRED BUILD PACKAGES You’ll need to have the packages
fakeroot and dpkg installed to do this build. If you’re running OS X, you can
install them using Homebrew (http://brew.sh).

CREATING AND RUNNING A DOCKER IMAGE

Creating a Docker image out of your application is simple. Given the existing configu-
ration, just add this line to build.sbt:

dockerExposedPorts in Docker := Seq(9000, 9443)

This will open up ports 9000 and 9443 for HTTP and HTTPS.
 Then, in the sbt console, run the command docker:publishLocal. This will build

the image and publish it locally to Docker.
 Finally, run the image with the following command:

docker run -p 9000:9000 ch10:1.0-SNAPSHOT

And there you go, the application is running with Docker. From this point on, you can
use the image on your own container deployment platform or on a cloud service such
as AWS Elastic Beanstalk (http://aws.amazon.com/de/elasticbeanstalk).

DEPLOYING THE APPLICATION AS A WAR PACKAGE Although fairly popular in
traditional Java EE environments, deploying a Play application as a WAR pack-
age (web application archive) is not recommended, since with this deploy-
ment option you lose some of the characteristics of a reactive application.
(Depending on the version of the Servlet Standard supported by the applica-
tion server, this means limited WebSocket support, undependable asynchro-
nous request processing, and so on.) Sometimes, especially in corporate
environments with strict deployment policies, it isn’t possible to do otherwise
though, in which case you can look into using the WAR Plugin (https://
github.com/play2war/play2-war-plugin).

10.3.3 Which deployment model to use

As you’ve seen, there are many different ways in which to deploy a Play application—
from a fully managed environment such as Clever Cloud where everything including
the build is taken care of, to a bare-metal server setup using a packaged ZIP artifact.
What we haven’t discussed in terms of custom server deployment is scaling the appli-
cation. This topic itself is vast and complex enough that it would likely require a book
on its own. If you want to start with a simple setup that has two nodes, I invite you to
read the official Play documentation, which provides a few example configurations for
setting up a load balancer with, for example, Nginx.

http://brew.sh
http://aws.amazon.com/de/elasticbeanstalk
https://github.com/play2war/play2-war-plugin
https://github.com/play2war/play2-war-plugin

262 CHAPTER 10 Deploying reactive Play applications

 Deciding which deployment model to use is more of a business discussion than a
technical one, and is somewhat outside the scope of this book. But before making this
decision, you should be aware that there is more to it than deploying the application:
you also need to monitor it and be able to introspect the logs to analyze error cases.
Again, there are managed and self-hosted solutions for these concerns and you (or
someone in your organization) will have to make a choice as to which approach to use.

 I can’t really help you with this decision, as it depends a lot on the environment and
organization you’re in—I’ve worked with both fully managed and fully self-hosted oper-
ation environments, and both have their upsides and downsides. The only advice I
would give is to make an informed decision and to take into account the entire set of
implications an operational infrastructure has. It’s easy to overlook a part of the work
that needs to be done or to be seduced by a trend, especially in the ever-evolving tech-
nological landscape we live in.

10.4 Summary
In this chapter we’ve looked at a few aspects of deploying a reactive Play application.
In particular, we’ve talked about

■ How to prepare the application and optimize some of the aspects prior to
deployment, such as web assets

■ How to set up the Jenkins CI server to test your application with Selenium
browser tests

■ How to deploy and set up scalability for the application using Clever Cloud, and
how to package and deploy the application on your own server

The topic of operations is vast and complex. The most important message from this
chapter probably is that Play tends to keep up to date with deployment trends and can
cater to all kinds of packaging and deployment technologies. Let’s now get to the last,
and possibly most interesting, part of building reactive web applications: testing them!

263

Testing
 reactive web applications

Testing web applications is hard, and testing reactive web applications is even
harder. Next to all client-side concerns such as browser compatibility and execution
on a plethora of mobile devices under varying connection speeds and connection
quality, we must also concern ourselves with the guarantees that a reactive web
application promises to deliver—being able to react to load by scaling out (and
back in), offering a degraded execution rather than complete outage under fail-
ure, as well as responding to the user as quickly as possible—with the smallest possi-
ble latency.

This chapter covers
■ The various reactive traits you can test
■ How to test asynchronous components of your

application
■ How to test whole applications for resilience,

scalability, and responsiveness

264 CHAPTER 11 Testing reactive web applications

 We’ve already peeked at various techniques for testing specific parts and behav-
iors of a reactive application in previous chapters. In this chapter we’ll start by tak-
ing a high-level look at what exactly needs testing before moving on to how we can
achieve some of those tests. Since testing is such a vast topic, this chapter won’t
attempt to cover the entirety of the topic but will instead focus on giving you a sense
of what it means to test a reactive application as opposed to testing only “nonreac-
tive” properties. In the spirit of the previous chapters, you’ll also get a chance to get
a hands-on experience by, among other things, subjecting an application to copious
amounts of load.

11.1 Testing reactive traits
We often think of tests as a way to find out if a piece of code or a component does
what it’s intended to do, in terms of giving a correct result. When it comes to testing
reactive web applications, there’s more to it than testing for correctness—we need to
additionally ask the following questions about our application or components, in
direct connection with the reactive traits:

■ Responsiveness—Does it produce results in time?
■ Resilience—When it fails, does it do so gracefully and does it degrade as we

intend it to?
■ Elasticity—Does it scale according to load?

Let’s discuss what testing those aspects entails in more detail.

11.1.1 Testing responsiveness

When we want to test responsiveness, what we really want to do is to get a sense of the
latency of a specific portion of our application. You may remember our discussion on
the subject of latency in chapter 5; if not, here’s a quick reminder: Latency is the dura-
tion it takes to provide a result to a client and is calculated by taking the sum of all the
sequential steps that are taking place during a process. More often than not, it’s
expressed in milliseconds. If the latency of a component reaches the scale of seconds,
chances are that you’re in trouble.

 We can test for responsiveness at different scopes: at the scope of an individual
component, at the scope of an API, and at the scope of the application (by executing a
request from the viewpoint of the client). Just as when testing for correctness, testing
at different levels of scope makes it easier to identify which part of the computation
chain fails to comply with the responsiveness constraints of the application.

 Unlike tests that seek to check for correctness, tests that check for responsiveness
need to be executed many more times and with different concurrency levels (for
example, 10 concurrent users versus 10,000 concurrent users). Only then can we get a
good impression (in the form of a histogram) of whether the application responds
with the latency we’d like it to.

265Testing reactive traits

11.1.2 Testing resilience

When testing resilience, we want to make sure that the different strategies that we’ve
defined in our various components do indeed function as intended if things go
wrong.

 At this point it’s important to make the distinction between failure and error (as
defined in the Reactive Manifesto: http://www.reactivemanifesto.org). Our application
should have a number of error-handling processes in place as part of the normal
application logic (for example, a user entering an invalid email address should be
tested for, and the error condition should be displayed to the user in return). In con-
trast, a failure is a rather unexpected condition that may lead to the service becoming
unavailable unless you have a failure recovery mechanism in place, hence giving an
application its resilient behavior.

 Testing if our application is resilient is not the same thing as testing if our applica-
tion deals correctly with erroneous input or data, which would also be done for “non-
reactive” applications. Instead what we want to test for is whether our circuit breakers,
control flow messages, and other failure-handling mechanisms are behaving as we
want them to, which can be more or less difficult depending on what kind of failure
we’d like the application to be able to handle.

11.1.3 Testing elasticity

Elasticity defines the capability of a deployed application to automatically react to
increasing load by scaling out horizontally and/or vertically (depending on the scal-
ing mechanism in place). Testing this property means that we need to first be capable
of generating enough load for the scaling process to be triggered, and then to be able
to check whether there are indeed more nodes running our application.

 If you’re really serious about testing for elasticity, this entails triggering a small Dis-
tributed Denial of Service (DDoS) attack on your own application and seeing if it
indeed scales out and the latency is minimally affected. Since we’re really serious, we’ll
see how to make this happen later on.

11.1.4 Where to test?

Though it’s common to run unit tests on your own laptop during development, it may
not be such a great idea to test for aspects such as responsiveness or elasticity on that
machine—this isn’t the machine you’ll use to run your production environment (I
hope). It arguably may also not be a good idea to run those tests against your continu-
ous integration server, since it may have a different infrastructure than the one place
you really want to know all about: your production environment.

 That being said, testing against your production environment may be somewhat
problematic, and chances are that you may have trouble selling this approach to the
management of your company or organization. Therefore I’m not going to suggest
you run various load and failover tests against your production environment, but
instead against an environment that has an identical infrastructure. Only this way will

http://www.reactivemanifesto.org

266 CHAPTER 11 Testing reactive web applications

you know that the platform you’re running your application on does behave as you’d
like it to.

THE COST OF TESTING The advice in this section regarding the infrastructure
associated with running tests may raise legitimate questions as to the costs
associated with testing. The larger your infrastructure, the larger these costs
will be. The question you or the decision makers need to ask yourselves is this:
how much does it cost not to perform the appropriate tests?

If you plan on saving some time (or money) on tests, it may be worth consid-
ering writing them at a higher level of granularity than unit tests. Even
though proponents of test-driven development (TDD) may disagree at this
point, if your resources are limited, then unit tests themselves don’t necessar-
ily add more value to your application, as all they will do is help you to iden-
tify regressions introduced during development faster (and this only if there
is a unit test covering the affected bit of code).

This has been enough theory for this chapter; let’s move ahead and test things in prac-
tice, starting with testing reactive components.

11.2 Testing individual reactive components
In this section you’ll see how to test individual components for responsiveness and
resilience. We’ll take a close look at how to achieve this when working with two of our
favorite tools for manipulating asynchronous computations: futures and actors.

11.2.1 Testing individual components for responsiveness

When testing for responsiveness, we need to provide the testing framework with a
time-out in terms of how long we expect our asynchronous computation to take. It
would be unwise to wait indefinitely for the computation to complete; after all, it may
just be that we forgot to complete a future or reply to a message! As we’ll see, test
frameworks do provide the necessary tooling for providing fine-grained control over
the expected latency.

TESTING FUTURES FOR RESPONSIVENESS

Let’s use the simple example of a RandomNumberService to illustrate the testing of
futures. As we’ve already used specs2 in chapter 5 to illustrate testing, let’s use ScalaTest
this time.

 Start by creating a new Play application (we’ll continue building it throughout this
chapter) and include the ScalaTest dependencies in build.sbt:

libraryDependencies ++= Seq(
"org.scalatest" %% "scalatest" % "2.2.1" % Test,
"org.scalatestplus" %% "play" % "1.4.0-M3" % Test

)

Let’s define our simple service and an implementation thereof in app/services/Ran-
domNumberService.scala as shown in the following listing.

267Testing individual reactive components

package services

import scala.concurrent.Future

trait RandomNumberService {
def generateRandomNumber: Future[Int]

}

class DiceDrivenRandomNumberService(dice: DiceService)
extends RandomNumberService {
override def generateRandomNumber: Future[Int] = dice.throwDice

}

trait DiceService {
def throwDice: Future[Int]

}
class RollingDiceService extends DiceService {

override def throwDice: Future[Int] =
Future.successful {

4 // chosen by fair dice roll.
// guaranteed to be random.

}
}

You should by now recognize the usual pattern for defining services and their imple-
mentation. Declaring all the contractual obligations of a service in a trait and using
constructor injection in its implementations as a provisioning mechanism for depen-
dencies guarantees that we’ll have no problem testing the component in isolation.

 Let’s now get to the interesting part—the test. Create the file test/services/
DiceDrivenRandomNumberServiceSpec.scala with the contents of the following listing.

package services

import org.scalatest.time.{Millis, Span}
import org.scalatest.{ShouldMatchers, FlatSpec}
import org.scalatest.concurrent.ScalaFutures
import scala.concurrent.Future

class DiceDrivenRandomNumberServiceSpec
extends FlatSpec
with ScalaFutures
with ShouldMatchers {

"The DiceDrivenRandomNumberService" should
"return a number provided by a dice" in {

implicit val patienceConfig =
PatienceConfig(

timeout = scaled(Span(150, Millis)),

Listing 11.1 Definition of a service that provides random numbers

Listing 11.2 Testing a dice service for responsiveness with ScalaTest

Defines our component
as a trait to ease testing

Defines an implementation
of our component depending
on a DiceService

Defines the DiceService
implementation as a trait as well

Defines a simple but
powerful implementation
of a DiceService

Uses the FlatSpec specification
style that allows you to define
one case after another

Mixes in the
ScalaFutures

trait that
provides

support for
futures

Uses the ShouldMatchers
as a flavor for expressing
assertionsProvides

 a custom
PatienceConfig Specifies how much time a

future will be given to
succeed before giving up

268 CHAPTER 11 Testing reactive web applications

interval = scaled(Span(15, Millis))
)

val diceService = new DiceService {
override def throwDice: Future[Int] = Future.successful(4)

}
val randomNumberService =
new DiceDrivenRandomNumberService(diceService)

whenReady(randomNumberService.generateRandomNumber) { result =>
result shouldBe(4)

}
}

}

ScalaTest provides the ScalaFutures trait for testing futures. This trait provides the
whenReady method, which allows you to wrap a future and check the expected result
in the body, and a default PatienceConfig, which allows you to configure the maxi-
mum amount of time a future runs, as well as how long you should wait between subse-
quent attempts to query the future for completion. Though the body of a whenReady
method should check for the correctness of a result, the timeout and interval values
should be tailored to check for the expected responsiveness. In this example we
expect our future to succeed within 150 milliseconds, and we check if it has completed
every 15 milliseconds. Note that we could also pass the timeout and interval values
directly in the whenReady method invocation—the implicit patienceConfig merely
allows us not to repeat ourselves (which makes sense, since we’ll expect that a number
of calls will probably have the same kind of time constraints).

TESTING ACTORS FOR RESPONSIVENESS

Akka provides a TestKit (http://doc.akka.io/docs/akka/2.3.11/scala/testing.html)
for testing actor systems. The TestKit provides the necessary tooling for testing actors
in two ways: either in isolation (when we’d like to peek inside an individual actor and
check its state in response to different events) or when working together with several
actors and where multithreaded scheduling comes into play. Let’s look at how to use
the TestKit for testing time constraints on an individual actor.

 Include the TestKit in your project by adding the following dependency in
build.sbt:

libraryDependencies += Seq(
// ...
"com.typesafe.akka" %% "akka-testkit" % "2.3.11" % Test

)

Specifies how much time to wait
between checks to determine

success when polling Implements a
simple DiceService
to know exactly
what to expect

Instantiaties the
RandomNumber-
Service we want

to test

Invokes the
service method
we want to test
and passes it to

ScalaTest’s
whenReady

function

Verifies the correctness
of the result

http://doc.akka.io/docs/akka/2.3.11/scala/testing.html

269Testing individual reactive components

Let’s create a test actor that will also produce a random number.

package actors

import actors.RandomNumberComputer._
import akka.actor.{Props, Actor}
import scala.util.Random

class RandomNumberComputer extends Actor {
def receive = {
case ComputeRandomNumber(max) =>

sender() ! RandomNumber(Random.nextInt(max))
}

}

object RandomNumberComputer {
def props = Props[RandomNumberComputer]
case class ComputeRandomNumber(max: Int)
case class RandomNumber(n: Int)

}

This actor in itself isn’t spectacular compared to what we’ve done in the previous
chapters. But our test will be more interesting, as shown in the next listing.

Listing 11.3 Implementing an actor that computes a random number

Time constraints and differences in hardware
In listing 11.2 we use the default values of PatienceConfig. You may notice that
they’re wrapped within the scaled function that multiplies all time constraints with a
scaling factor (1.0 by default). This mechanism becomes interesting when you’re run-
ning the tests on different environments, as you’re most likely going to do—the com-
puter used for development, the continuous integration server, or even the replica of
your production environment.

Chances are that the test you’re running will be influenced by the underlying hardware
and network connectivity—after all, you may want to test more-elaborate processes
than this simple dice roll—such as a more realistic dice roll involving a Raspberry PI,
a camera, an image recognition process, a robotic hand, and an actual dice—in which
case, the network would be involved. But even with less-exotic test cases that, for
example, only require disk access, there can be significant differences in execution
times. A the time of writing this book, SSD drives are ubiquitous on laptops but not
yet on servers, so the execution time of tests that involve disk access may vary sig-
nificantly between test environments.

You can configure the scaling factor in build.sbt to be read from an environment vari-
able like so:

testOptions in Test += Tests.Argument(
"-F",
sys.props.getOrElse("SCALING_FACTOR", default = "1.0")

)

Returns a random number
in the range from 0 to max
when asked to

Defines a helper method
for creating the props

270 CHAPTER 11 Testing reactive web applications

package actors

import akka.actor.ActorSystem
import akka.testkit._
import scala.concurrent.duration._
import org.scalatest._
import actors.RandomNumberComputer._

class RandomNumberComputerSpec(_system: ActorSystem)
extends TestKit(_system)
with ImplicitSender
with FlatSpecLike
with ShouldMatchers
with BeforeAndAfterAll {

def this() = this(ActorSystem("RandomNumberComputerSpec"))

override def afterAll {
TestKit.shutdownActorSystem(system)

}

"A RandomNumberComputerSpec" should "send back a random number" in {
val randomNumberComputer =

system.actorOf(RandomNumberComputer.props)
within(100.millis.dilated) {

randomNumberComputer ! ComputeRandomNumber(100)
expectMsgType[RandomNumber]

}
}

}

The TestKit sets up a testActor actor directly available in the test cases, able to receive
messages sent to actors under test. This is how methods such as expectMsgType can
work—they just wait for the testActor to receive a message of a certain kind.

 As you can see, there’s a bit of work to do to set up our testing facility with the Akka
TestKit. We need to extend from it, and also use the ImplicitSender trait (which does
nothing other than declare an implicit actor reference and point it to the test actor
created by the TestKit) to get going.

 The within function allows you to define a time constraint and to run code within
this block, checking for its timely execution. It can also be given a minimum value, if
we’d like to check that an actor doesn’t reply too fast.

Listing 11.4 Testing an actor for responsiveness using the Akka TestKit

Extends the TestKit
class that provides
testing functionality

Mixes in implicit sender behavior
that sets the test actor of the TestKit
to be the target of sent messages

Mixes in the
FlatSpec behavior

using the
FlatSpecLike trait

Tells ScalaTest that
we’d like support

for optionally
executing custom

code before and
after all cases

Defines a default
constructor that

provides an ActorSystem

Shuts down the
ActorSystem after
all cases have run

Initializes the actor
we’d like to test

Uses the TestKit’s
within method to
check whether we
get a result within
100 ms, taking into
account optional
time scaling

Expects a message of type
RandomNumber to be returned (we
don’t know which number it will be)

Time constraints and differences in hardware
Just as for futures, your actors may have a different responsiveness depending on
the underlying hardware. We use the implicit conversion provided by the dilated
method of the akka.testkit package to be able to customize scaling.

271Testing individual reactive components

11.2.2 Testing individual components for resilience

Next to responsiveness, we’d like to be able to check whether the components we’ve
written are resistant to failure—or at least can be resistant to failure when we’d like
them to! Luckily for us, the testing tools that we’ve used for testing for responsiveness
can also help us with this.

TESTING FUTURES FOR RESILIENCE

In chapter 5 you saw how to recover failed futures with the recover and recoverWith
methods. Let’s now adjust the implementation of the DiceDrivenRandomNumber-
Service to be resilient against problems with the implementation of the dice.

 Let’s add a test case to our DiceDrivenNumberServiceSpec, this time using a die
that falls off the table one out of two times.

class DiceDrivenRandomNumberServiceSpec
extends FlatSpec
with ScalaFutures
with ShouldMatchers {

// ...

it should "be able to cope with problematic dice throws" in {
val overzealousDiceThrowingService = new DiceService {

val counter = new AtomicInteger()
override def throwDice: Future[Int] = {

val count = counter.incrementAndGet()
if(count % 2 == 0) {

Future.successful(4)
} else {

Future.failed(new RuntimeException(
"Dice fell of the table and the cat won't give it back"

))
}

Listing 11.5 Implementing a test case for a service, by calling it with a flaky dependency

(continued)
To customize the scaling factor, you have to provide a configuration value for the key
akka.test.timefactor. You could, for example, initialize the ActorSystem in the
test class to reuse the same time span provided through an environment variable,
like so:

def this() = this(
ActorSystem(
"RandomNumberComputerSpec",
ConfigFactory.parseString(

s"akka.test.timefactor=" +
sys.props.getOrElse("SCALING_FACTOR", default = "1.0")

)
)

)

Implements a DiceService that will
fail one time out of two, including

the first time it’s executed

272 CHAPTER 11 Testing reactive web applications

}
}

val randomNumberService =
new DiceDrivenRandomNumberService(

overzealousDiceThrowingService
)

whenReady(randomNumberService.generateRandomNumber) { result =>
result shouldBe(4)

}
}

}

The DiceService that we feed to our DiceDrivenRandomNumberService will fail every
second time, including the first time it’s run. If you run the tests at this point, you’ll be
out of luck and the test will fail, as it should. Let’s now make our service resilient.

import scala.util.control.NonFatal
import scala.concurrent.ExecutionContext.Implicits._

class DiceDrivenRandomNumberService(dice: DiceService)
extends RandomNumberService {
override def generateRandomNumber: Future[Int] =
dice.throwDice.recoverWith {

case NonFatal(t) => generateRandomNumber
}

}

This failure recovery mechanism is naive in that it will infinitely attempt to get a work-
ing dice roll out of the DiceService, but it will suffice in our case.

 As you can see in our test case of listing 11.5, we haven’t really invoked the service
much differently than in the previous example, except that we have fed it with a spe-
cial DiceService. This is in line with our component being resilient—failure isn’t vis-
ible outside of the component and is dealt with internally.

WRITE THE SPEC FIRST AND FIX THE BEHAVIOR AFTERWARD In line with best
practices from test-driven development, you should first create a spec that will
demonstrate that your component isn’t resilient and only then alter it to
make it resilient, not the other way around. You can use this technique to
treat various edge cases; in our example we could check that the service will
eventually use another strategy if there are too many failed attempts with the
dice and, for example, switch to another set of dice.

TESTING ACTORS FOR RESILIENCE

As you saw in chapter 6, resilience in actor systems is typically achieved by using super-
vision. Though we probably don’t need to test that the supervision mechanism offered

Listing 11.6 Making the DiceDrivenRandomNumberService component resilient

Expects to receive a
result nonetheless

Recovers failure using
the recoverWith
handler

Simply invokes the
method again until
it works

273Testing individual reactive components

by Akka itself works as intended (this is likely thoroughly tested by Akka’s test suite
itself) or whether a SupervisorStrategy is defined correctly (it is, after all, a rather
simple partial function), what we may want to test is whether a child actor fails with
the appropriate exception.

 The problem with wanting to test whether the child behaves correctly lies in that
Akka won’t let us peek into the supervision process itself. An actor that’s created
directly through the ActorSystem will be supervised by the user guardian, and we
have no way to know what happens in case of child failure, thus making it rather diffi-
cult to test the behavior of a child. This is where the StepParent pattern (https://
groups.google.com/d/msg/akka-user/HIM2LW0BiiQ/FUraKN5QMFIJ) comes in.
The way this pattern works is simple: instead of directly creating the actor to be tested
in our test case, we use an intermediary “step parent” actor that will instantiate the
actor for us and return the reference to it, hence becoming the parent of the actor we
want to test. We can then customize the supervision strategy of this parent to check if
the child fails as we’d expect it to.

 Let’s add a new test case to our RandomNumberComputerSpec.

it should "fail when the maximum is a negative number" in {

class StepParent(target: ActorRef) extends Actor {
override def supervisorStrategy: SupervisorStrategy =

OneForOneStrategy() {
case t: Throwable =>

target ! t
Restart

}
def receive = {

case props: Props =>
sender ! context.actorOf(props)

}
}

val parent = system.actorOf(
Props(new StepParent(testActor)), name = "stepParent"

)
parent ! RandomNumberComputer.props
val actorUnderTest = expectMsgType[ActorRef]
actorUnderTest ! ComputeRandomNumber(-1)
expectMsgType[IllegalArgumentException]

}

Listing 11.7 Testing the failure of an actor using the StepParent pattern

Defines the StepParent helper
actor that takes an actor to

communicate with as parameterDefines a
custom

supervision
strategy to

intercept
child failures

Communicates failures to the
target actor by sending them

Creates a child actor when
receiving its Props and
sending back its reference

Creates a StepParent actor and passes in
the testActor as target for communication

Sends the
StepParent
 the Props

 of the actor
 we want

 to test (the
RandomNumber

Computer)

Retrieves the reference to
the actor we want to test

by expecting a message of
type ActorRef

Tests the
RandomNumber
Computer with a

message that
should provoke

a failure
Checks whether the actor did
indeed fail by expecting an
IllegalArgumentException

https://groups.google.com/d/msg/akka-user/HIM2LW0BiiQ/FUraKN5QMFIJ
https://groups.google.com/d/msg/akka-user/HIM2LW0BiiQ/FUraKN5QMFIJ

274 CHAPTER 11 Testing reactive web applications

In this example, we first create a StepParent and pass in the testActor provided by
the TestKit as a target for all communication, allowing us to use all the helper meth-
ods. We then ask it to initialize our RandomNumberComputer by sending it the props
and retrieve the reference by expecting a message of type ActorRef to be sent back.

 Now comes the interesting part: provoking the failure of the actor under test. Since the
method Random.nextInt() expects a positive number, passing it a negative one should
make it fail. We can test this by sending a message with a negative number and expecting
the StepParent to forward us a Throwable of kind IllegalArgumentException.

 As you can see, this pattern is powerful. More-advanced implementations of the
StepParent actor could allow it to react differently to different types of failures by, for
example, resuming the child actor instead of restarting it and verifying that it works as
intended.

 Now that we’ve looked at ways of testing smaller asynchronous components, let’s
test the entire application!

11.3 Testing the entire reactive application
In what follows, we’ll test our entire application for resilience and then see if it scales
when the load increases. To do this, we first need to create a simple web application to
be tested. As you may have guessed, it’ll have something to do with generating ran-
dom numbers.

11.3.1 Creating a simple application to generate random numbers

We’ll create a simple application that, upon the click of a button, will generate a ran-
dom number. To make our application a bit more interesting, we’ll fetch the random
number from RANDOM.ORG (http://random.org) and get some real network traffic
going. You’ll need to request an API key at https://api.random.org.

 Start by creating a new actor that will be in charge of talking with RANDOM.ORG, as
shown next.

package actors

import actors.RandomNumberFetcher._
import akka.actor.{Props, Actor}
import play.api.libs.json.{JsArray, Json}
import play.api.libs.ws.WSClient
import scala.concurrent.Future
import akka.pattern.pipe

class RandomNumberFetcher(ws: WSClient) extends Actor {
implicit val ec = context.dispatcher

def receive = {
case FetchRandomNumber(max) =>

Listing 11.8 Creating an actor that fetches a random integer from RANDOM.ORG

http://random.org
https://api.random.org

275Testing the entire reactive application

fetchRandomNumber(max).map(RandomNumber) pipeTo sender()
}

def fetchRandomNumber(max: Int): Future[Int] =
ws

.url("https://api.random.org/json-rpc/1/invoke")

.post(Json.obj(
"jsonrpc" -> "2.0",
"method" -> "generateIntegers",
"params" -> Json.obj(

"apiKey" -> "00000000-0000-0000-0000-000000000000",
"n" -> 1,
"min" -> 0,
"max" -> max,
"replacement" -> true,
"base" -> 10

),
"id" -> 42

)).map { response =>
(response.json \ "result" \ "random" \ "data")

.as[JsArray]

.value

.head

.as[Int]
}

}

object RandomNumberFetcher {
def props(ws: WSClient) = Props(classOf[RandomNumberFetcher], ws)
case class FetchRandomNumber(max: Int)
case class RandomNumber(n: Int)

}

At this point in the book, the preceding actor should look pretty familiar to you. All
we do is to place a remote call against RANDOM.ORG and extract the result. After
being wrapped into a RandomNumber, the future holding this result is piped to the
actor requesting the random number. Note that we don’t take care of handling fail-
ures of this actor—yet.

 Next, we’ll create the controller that we’ll use in app/controllers/Application.scala.

package controllers

import javax.inject.Inject
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext
import play.api.mvc._
import akka.actor._
import akka.util.Timeout
import akka.pattern.ask
import actors._

Listing 11.9 Controller showing the random number computation result

Pipes the result of the
future call to RANDOM.ORG
to the sender, requesting a

random number
Makes a call to
the RANDOM.ORG
API to fetch a
single random
integer

Passes the API key;
make sure to

replace this value
with your key

Extracts the result in an unsafe
manner to trigger a failure of the
future if anything goes wrong

276 CHAPTER 11 Testing reactive web applications

import actors.RandomNumberFetcher._
import play.api.libs.ws.WSClient

class Application @Inject() (ws: WSClient,
ec: ExecutionContext,
system: ActorSystem) extends Controller {

implicit val executionContext = ec
implicit val timeout = Timeout(2000.millis)

val fetcher = system.actorOf(RandomNumberFetcher.props(ws))

def index = Action { implicit request =>
Ok(views.html.index())

}

def compute = Action.async { implicit request =>
(fetcher ? FetchRandomNumber(10)).map {

case RandomNumber(r) =>
Redirect(routes.Application.index())

.flashing("result" -> s"The result is $r")
case other =>

InternalServerError
}

}
}

The compute action will call our actor and request a random number using the ask
pattern. If a random number is returned in time, then it will pass it in the response
using the flash scope; otherwise it will simply fail.

 Finally, let’s create the simple user interface for our test application.

@()(implicit flash: Flash)
@main("Welcome") {

@flash.get("result").map { result =>
<p>@result</p>

}
@helper.form(routes.Application.compute()) {

<button type="submit">Get random number</button>
}

}

That’s it! Or almost: don’t forget to add the adequate routes to conf/routes (for this
example, make it a GET request—this will simplify load testing later on).

Listing 11.10 Simple view with a button to generate a random number

Wires in dependencies
using dependency injection

Sets timeout at 2 seconds

Creates one single
RandomNumberFetcher actor

Fetches a random number
with a maximum value of 10

Passes the result to the
flash scope available in
the responseIf we don’t get a

RandomNumber
back, simply fails

Expects the flash scope
as implicit parameter

Displays the result
if there is any

Gives the user a
button to obtain a
random number

277Testing the entire reactive application

 Now that the application is available, deploy it to Clever Cloud (we did this
together in chapter 10) and test it in your browser. Don’t yet enable any kind of scal-
ing strategy—this example uses an XS instance (1024 MB RAM, 1 CPU). You should
now have access to your application and be able to get random numbers by clicking
the Get Random Number button.

 Now that our application is ready, let’s test it!

11.3.2 Testing for resilience with Gatling

Gatling (http://gatling.io) is a load-testing framework that makes it possible to test
advanced interaction flows to simulate real users, and many of them. It’s built with
Scala, Akka, and Netty, and provides a useful scenario recorder that makes it easy to
create various user interaction scenarios.

 We want to subject our application to load testing to quickly and automatically spot
problems that occur under heavy load. To get a realistic idea of what happens when
many users hit the site at once, it’s not enough to just generate a lot of requests—we
also need to take into account varying load scenarios. Gatling makes it possible to sim-
ulate the behavior of many users in many different ways.

RECORDING A SCENARIO

Start by downloading the Gatling bundle on the homepage and extract it, then run the
recorder with the command <gatlin-directory>/bin/recorder.sh (or recorder
.bat if you use Windows). You’ll be presented with a GUI through which you can con-
figure the recorder, as shown in figure 11.1.

 The Gatling Recorder works by acting as a proxy to a browser, hence being able to
capture all interactions a real user does with a remote system. It also remembers the
time interval at which those actions are performed, which means that it can optimally
mimic the behavior of a real user navigating a website.

 Configure your browser to use the Gatling Recorder as a proxy (by default the
address is localhost and the port 8000) and then click the Start button on the
recorder. Navigate to the application you’ve just deployed on Clever Cloud and click
on the button a few times and then stop the simulation.

 If you’ve used the default parameters, then the simulation will be recorded into
the file <gatlin-directory>/user-files/simulations/RecordedSimulation.scala. You can
run this simulation with <gatlin-directory>/bin/gatling.sh. Follow the instruc-
tions on the screen to run the simulation. An HTML report is generated at the end of
the run, giving you detailed information about the simulation and its performance.

SIMULATING CONCURRENT USERS AND WATCHING THE APPLICATION FAIL

If you edit the file RecordedSimulation.scala, you’ll notice this line at the end of the
file:

setUp(scn.inject(atOnceUsers(1))).protocols(httpProtocol)

http://gatling.io

278 CHAPTER 11 Testing reactive web applications

This is where the simulation run is configured, and as you can see, the default simula-
tion is gentle on the application. Let’s spice things up a little: replace the setup line
with the simulation setup shown in the following listing.

setUp(
scn.inject(

nothingFor(4 seconds),
rampUsers(50) over(10 seconds),
atOnceUsers(10),
constantUsersPerSec(2) during(15 seconds) randomized,
splitUsers(50) into (
rampUsers(10) over(10 seconds)

) separatedBy(5 seconds)
).protocols(httpProtocol)

)

Listing 11.11 Configuring a simulation run with increasing load on the server

Figure 11.1 The Gatling Recorder GUI

Does nothing
for 4 seconds

Ramps up 50 users
over 10 seconds

Injects 10
users at once

Injects 2 users per
second over a

duration of 15 seconds
at randomized

intervals of time

Repeats a ramp-up of 10 users over 10
seconds until reaching 50 additional
users in total, with 5-second intervals

279Testing the entire reactive application

These injection steps are executed sequentially (for a detailed description, check the
Gatling documentation). As you can see, the configuration options for injecting users
are pretty versatile, so it’s possible to configure various load scenarios and see how
your application reacts. Rerun the simulation with these parameters—and make sure
to have a good internet connection.

 This simulation will take some time to get started. Behind the scenes, Gatling prepares
an army of actors ready to be launched against your application. As you may expect, the
simulation, or rather our application, fails miserably and returns an embarrassingly high
number of 500 Internal Server Errors (I got, for example, 71% of requests failed).

 Now it’s time to prepare a cup of coffee, sit down, and take a more detailed look
at the report to figure out what’s going wrong. One graph that is particularly interest-
ing in our case is the one showing the number of responses per second, as shown in
figure 11.2.

 As you can see, once we start ramping up the number of users, the amount of
failed requests increases dramatically. What is interesting to observe is that even
when the number of users goes down, the number of failed requests is still signifi-
cantly higher than the number of successful ones, even more so than at the begin-
ning of our simulation.

 So what’s going on? Well, we made a few choices in the first iteration of our appli-
cation that in hindsight may not be wise:

■ We blatantly ignored any consequence of a timed-out ask future in the Appli-
cation controller.

■ What’s even more shameful, we let the RandomNumberFetcher crash when RAN-
DOM.ORG returned anything other than the expected result. But if you now go
and check out the application logs on Clever Cloud, you’ll see them full of indi-
cations that something isn’t quite right (“The operation requires 1 requests, but
the API key only has 0 left”).

Figure 11.2 Graph showing the number of responses per second

280 CHAPTER 11 Testing reactive web applications

Now it’s your turn, dear reader, to make this application resilient to the increased
load:

■ If the ask call in Application times out, show the user a page in which you state
that you’re sorry but the application is currently overloaded. In a real-world appli-
cation, this is where you can let your creativity shine (http://oatmeal.tumblr
.com/post/2910950328/dear-tumblr).

■ Protect RANDOM.ORG against massive calls on our side by wrapping the call to
fetchRandomNumber in the RandomNumberFetcher by using a circuit breaker.

■ In the RandomNumberFetcher, recover from JSON parsing failures (play.api
.libs.json.JsResultException) and circuit breaker trips (akka.pattern
.CircuitBreakerOpenException) by falling back to calling scala.util.Random
.nextInt().

Once you’ve made those changes, redeploy the application and run the simulation
again. This time, the result should look much better, as shown in figure 11.3.

 As you can see, there are no more failures—all requests are satisfied. In this simu-
lation, the 95th percentile global response time is 474 ms and the 99th percentile is
819 ms. When thinking in terms of performance, it’s important to look at response time
distributions—the more users there are, the more those higher percentiles matter,
since the number of users that will be affected by poor performance will increase.

RUNNING LOAD TESTS WITH JENKINS There’s a Gatling plugin for Jenkins
(https://wiki.jenkins-ci.org/display/JENKINS/Gatling+Plugin) that you can
use to run a number of scenarios along with the rest of your test suite on your
continuous integration server. This lets you know if a change causes the appli-
cation to have worse performance than before.

So far, by taking the appropriate measures, we’ve made our application resilient—100%
of the requests of our simulation have succeeded. But to be honest, there weren’t many
users. The maximum number of concurrent users reported by Gatling is 78, which isn’t

Figure 11.3 Graph showing the response time distribution of all requests

http://oatmeal.tumblr.com/post/2910950328/dear-tumblr
http://oatmeal.tumblr.com/post/2910950328/dear-tumblr
https://wiki.jenkins-ci.org/display/JENKINS/Gatling+Plugin

281Testing the entire reactive application

exactly something we can be proud of yet. To get a deeper understanding of how well
our application responds under high load and how well it can scale, Gatling won’t be
enough, as it runs from one single computer. Let’s take out the big guns!

11.3.3 Testing for scalability with Bees with Machine Guns

Bees with Machine Guns (https://github.com/newsapps/beeswithmachineguns) is “a
utility for arming (creating) many bees (micro EC2 instances) to attack (load test) tar-
gets (web applications).” If you want to run the following load tests yourself, you’ll need
to get an Amazon AWS (Amazon Web Services) account at http://aws.amazon.com as
well as a bit of money (running the EC2 instances will cost a bit).

 Though Gatling does a good job of defining various load testing scenarios and
exerting massive concurrent pressure against our application, it still only operates
from one machine. In contrast, Bees with Machine Guns gives us the opportunity to
attack our application from many networked machines and see how it behaves.

INSTALLING BEESWITHMACHINEGUNS

Beeswithmachineguns is a Python application, so before you can run it you’ll need to
install Python (https://www.python.org).

 Once python is installed, just use pip to install the package:

pip install beeswithmachineguns

Now you need to set up the necessary credentials so that beeswithmachineguns can
fire up nodes at will. This involves the following:

■ Creating an AWS user
■ Creating and downloading an EC2 key pair
■ Creating a security group that makes it possible to open connections via SSH on

port 22
■ Configuring beeswithmachineguns with the user’s key

DEFAULT ZONE AND AVAILABILITY REGION The default region used in Bees with
Machine Guns is us-east-1. If you want to save yourself some headaches
while configuring the EC2 credentials, I strongly suggest you create the EC2
key pair and security group in this region.

First, create a new AWS user to obtain an access key ID and secret access key. You can
do so in AWS Identity and Access Management (IAM) in the AWS Console.

 Now you’ll need a key pair to access EC2. Go to https://console.aws.amazon.com/
ec2 and create a key pair, naming it, for example, beeswithmachineguns. Move the
downloaded key file to ~/.ssh/beeswithmachineguns.pem.

 Next you’ll need to create a new EC2 security group via the EC2 dashboard. Call it
public and create a new rule, selecting SSH in the Inbound tab and using any IP
address to access incoming connections (or specify your current IP address).

https://github.com/newsapps/beeswithmachineguns
http://aws.amazon.com
https://www.python.org
https://console.aws.amazon.com/ec2
https://console.aws.amazon.com/ec2

282 CHAPTER 11 Testing reactive web applications

 Finally, create the file ~/.boto with the contents of listing 11.12 (boto is an AWS
library for Python: https://github.com/boto/boto).

[Credentials]
aws_access_key_id = <your access key id>
aws_secret_access_key = <your secret access key>

DEBUGGING BOTO OUTPUT If you find yourself having trouble connecting to
AWS, enable debug messages by appending the following section to the
~/.boto file:

[Boto]
debug = 2

ATTACKING OUR TARGET

All right, we’re now ready to fire up a few bees. Run the following command in a shell:

bees up -s 20 -g public -k beeswithmachineguns

This command starts up the bees, which is to say the Amazon EC2 micro-instances that
will attack our server. We’ll use these parameters:

■ -s—The size of the swarm of bees: how many micro-instances we want to use
■ -g—The security group to use (we use the public group that we’ve just created

to have SSH access)
■ -k—The name of the key to access EC2

You should see the following output on the screen:

Connecting to the hive.
Attempting to call up 20 bees.
Waiting for bees to load their machine guns...
.
.
Bee i-8a7f812a is ready for the attack.
.
Bee i-577c82f7 is ready for the attack.
...
The swarm has assembled 20 bees.

A WORD ON ATTACKING A TARGET Be aware that this kind of performance test
is very close to a Distributed Denial of Service attack. As long as you’re doing
it against your own application for educational or testing purposes, this is
fine—but do not be tempted to join the dark side and attack other sites
(needless to say, it would be easy to trace the attack back to your AWS
account)! Before running this example, make sure that you’re using the cir-
cuit breaker to protect RANDOM.ORG from getting too many requests.

Listing 11.12 Configuring EC2 access

https://github.com/boto/boto

283Testing the entire reactive application

All right, we’re now ready to attack! Run the following command:

bees attack
-n 10000
-c 1000
-u http://app-<your-app-id>.cleverapps.io/
-k beeswithmachineguns

This will instruct the bees to attack the base URL of our application. We'll use these
parameters:

■ -n—The number of total requests
■ -c—The concurrency of requests
■ -u—The URL to attack
■ -k—The name of the key to access EC2

Bees with Machine Guns uses Apache Bench (http://httpd.apache.org/docs/2.4/
programs/ab.html) to attack a target. Apache Bench is a benchmarking tool that
launches a number of requests against a URL and gives statistics as to how it performs.

 You should now get an output along the following lines:

Read 20 bees from the roster.
Connecting to the hive.
Assembling bees.
Each of 20 bees will fire 500 rounds, 50 at a time.
Stinging URL so it will be cached for the attack.
Organizing the swarm.
Bee 0 is joining the swarm.
...
Bee 13 is firing his machine gun. Bang bang!
...
Bee 7 is out of ammo.
...
Offensive complete.

Complete requests: 10000
Requests per second: 739.540000 [#/sec] (mean)
Time per request: 1352.514700 [ms] (mean)
50% response time: 817.450000 [ms] (mean)
90% response time: 2779.350000 [ms] (mean)

Mission Assessment: Target wounded, but operational.
The swarm is awaiting new orders.

As you can see, the application takes a hit—the mean time per request is above 1 second
and the 90th percentile is nearly 2.8 seconds—but the application is still responding.
That being said, we’ve only directed our bees at the main page, which only displays an
HTML page.

 Rerun the attack and point it to the more sensitive URL that computes a random
number at /compute (or whatever you called the route). This time our server should
be in trouble:

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html

284 CHAPTER 11 Testing reactive web applications

Offensive complete.
Complete requests: 10000
Requests per second: 433.080000 [#/sec] (mean)
Time per request: 2309.822450 [ms] (mean)
50% response time: 2340.950000 [ms] (mean)
90% response time: 2950.200000 [ms] (mean)

Mission Assessment: Swarm annihilated target.

Attacking this URL overwhelmed our deployment. What this means is that the applica-
tion ran out of resources and couldn’t respond to all requests—also, the mean
response time is poor. Let’s see if we can remedy this unfortunate situation by scaling
up and out.

AUTOMATICALLY SCALING UP AND OUT WITH CLEVER CLOUD AUTOSCALABILITY

Go to the Clever Cloud control panel and select the Scalability menu item. There, you
can enable autoscalability and select a range of horizontal and vertical scaling options,
as shown in figure 11.4.

 Once you’re done, rerun the attack and watch the Clever Cloud activity log: you’ll
see that a new deployment is being triggered. You can run more and heavier attacks
(with a higher concurrency level) to see how the new deployment performs and to
force it to scale up and out more.

 If we were to run this kind of performance test automatically, it would be useful to have
a means to check if our deployment does indeed upscale automatically. Luckily Clever
Cloud has an API (https://www.clever-cloud.com/doc/api/) that allows as to do this.

 We’re interested in checking how many instances of our application are deployed
so as to know whether the application scaled up and/or out. If you’re deploying an

Figure 11.4 Configuring Clever Cloud autoscalability

https://www.clever-cloud.com/doc/api/

285Testing the entire reactive application

application yourself (like we’ve done) and not on behalf of an organization, the inter-
esting API endpoint is /self/applications/{appId}/instances. You can check this end-
point directly on the Clever Cloud API documentation site and test it with your
application ID. This should give you a result that looks as follows:

[
{
"id": "d56b8cef-b6df-46c3-0000-6110201a0000",
"appId": "app_9b93e68e-c291-4852-0000-48f6462a1d56",
"ip": "xx.xxx.xx.xxx",
"appPort": 1706,
"state": "UP",
"flavor": {

"name": "M",
"mem": 4096,
"cpus": 4,
"price": 1.7182

},
"commit": "fc4bc0da7382dafaabc4822c52348152d6dd1ded",
"deployNumber": 10

},
{
"id": "09ca5e98-56af-4c71-97be-8be526820000",
"appId": "app_9b93e68e-c291-4852-0000-48f6462a1d56",
"ip": "xx.xxx.xx.xxx",
"appPort": 1710,
"state": "UP",
"flavor": {

"name": "M",
"mem": 4096,
"cpus": 4,
"price": 1.7182

},
"commit": "fc4bc0da7382dafaabc4822c52348152d6dd1ded",
"deployNumber": 11

}
]

As you can see, there are two nodes running, each of them being an “M” node—our
application has indeed scaled up (from XS to M) and out (from one node to two)!

 If you wait some time, you’ll notice in the Clever Cloud activity log an activity with
the title “DOWNSCALE Successful”—when there’s no more need for the increased
resources, the additional nodes will automatically shut down and the instance will
revert to a smaller configuration.

DON’T FORGET TO CALL OFF THE SWARM Once you’re done with the attacks,
don’t forget to shut down the EC2 instances by running bees down—
otherwise, they will keep humming along, slowly but steadily increasing the
amount of your AWS bill.

286 CHAPTER 11 Testing reactive web applications

11.4 Summary
In this chapter we’ve discussed methodologies and practical tools for testing a reactive
web application; we

■ Discussed the various scopes at which an application can be tested and the vari-
ous reactive traits to be tested

■ Created tests for asynchronous components built with futures and actors using
ScalaTest and the Akka TestKit

■ Built a small application and tested it for responsiveness, resilience, and scal-
ability with Gatling and with Bees with Machine Guns

This concludes our common journey through the wonderful world of building reac-
tive web applications using Scala, the Play Framework, Akka, and many other tools
and libraries. I hope you had as much fun reading this book as I had writing it and will
be able to use some of it to build real-world reactive web applications!

287

appendix A
Installing the

 Play Framework

The first thing you need to do to install the Play Framework is download it. There
are several ways of working with Play: downloading a bootstrap utility called Activa-
tor or using it directly as a dependency in a standard sbt project. sbt is the build tool
for Scala projects, and Play runs as an sbt plugin. The Activator utility is a thin wrap-
per around sbt that offers a few convenience features, such as creating new projects
based on templates, or running a user interface to explore the possibilities offered
by the Ligthbend technology stack (hence its name, as it activates the use of the
technology stack).

 To get started quickly, we’ll use the Activator utility.

PREREQUIREMENTS Make sure that you have Java 8 installed on your sys-
tem. Check your version by typing java -version in your terminal.

Downloading and installing Play
Point your browser to https://www.playframework.com/download and download
the latest version. You’ll get a zip file called typesafe-activator-1.3.10-minimal.zip (or
a newer version thereof).

 You’ll need to extract this file somewhere. For the purpose of this example, let’s
assume that you’ve created a workspace directory to work from somewhere on your
computer (for example, in your user’s home directory). Move the downloaded file
to this directory and extract it there. You now should have a directory called work-
space/activator-1.3.10-minimal containing three files: a JAR file (the Activator
launcher) and two scripts, respectively activator and activator.bat (one for Linux/OS X
and the other for Windows).

https://www.playframework.com/download

288 APPENDIX A Installing the Play Framework

 To use the Activator utility from anywhere, and to run it correctly, add it to your
PATH environment variable. Additionally, it’s a good idea to set up the environment so
that there is enough memory assigned to the JVM when the activator command is
being used.

Setting up the environment on Linux or Mac OS X
If you’re using Linux or Mac OS X, edit your shell’s profile file—the ~/.bashrc or
~/.bash_profile file (or ~/.zshrc if you’re using the excellent zsh as shell: http://
www.zsh.org). Assuming that you’re running OS X and that your username is john,
you’d then add the following line at the end of the file:

export PATH=$PATH:/Users/john/workspace/activator-1.3.10-minimal

If you’re running a Linux distribution, the path would look like /home/john/
workspace/activator-1.3.10-minimal.

 At this point, you can verify that the path is correctly configured by opening a new
terminal window and typing activator - help (see figure A.1).

Figure A.1 Checking if the PATH is set up correctly on Linux or OS X

http://www.zsh.org
http://www.zsh.org

289Setting up the environment on Windows

Setting up the environment on Windows
If you’re running Windows, you’ll need to set up the PATH environment variable. Select
Computer from the Start menu, left-click in the window and select Properties, and then
select Advanced System Settings. In the Advanced tab, click Environment Variables and
edit the PATH environment variable to add C:\workspace\activator-1.3.10-minimal
to the path (don’t forget to add a semicolon as a separator), as shown in figure A.2.

You can now verify that the path is set up correctly by running activator help as
shown in figure A.3.

Figure A.2 Editing the PATH
environment variable in Windows

Figure A.3 Checking if the PATH is set up correctly on Windows

290

appendix B
Recommended reading

If you’re not already familiar with some of the tools used in this book, you’ll be
interested in these resources that will boost your experience with Reactive Web
Applications.

Scala
In order to make the most out of this book, you should be comfortable with the
basics of the Scala language, since you’ll be reading a lot of it and writing a bit of it
throughout the book.

■ The e-book Scala By Example by Martin Odersky is available for free at http://
www.scala-lang.org/docu/files/ScalaByExample.pdf. It gives an example-
driven introduction to the Scala programming language.

■ Scala for the Impatient by Cay Horstmann is a compact introduction to Scala, and
you can get the first set of chapters for free at https://www.lightbend.com/
resources/e-book/scala-for-the-impatient.

■ Scala in Action by Nilanjan Raychaudhuri (https://www.manning.com/books/
scala-in-action) offers a more complete resource for learning the language.

Functional programming
Chapter 3 provides an introduction to the functional programming concepts used
in the book. If you want to get a longer and more complete discussion, I recom-
mend you have a look at Grokking Functional Programming by Aslam Khan (https://
www.manning.com/books/grokking-functional-programming), which offers an
introduction to functional programming concepts for object-oriented developers.

https://www.manning.com/books/grokking-functional-programming
https://www.manning.com/books/grokking-functional-programming
http://www.scala-lang.org/docu/files/ScalaByExample.pdf
http://www.scala-lang.org/docu/files/ScalaByExample.pdf
https://www.lightbend.com/resources/e-book/scala-for-the-impatient
https://www.lightbend.com/resources/e-book/scala-for-the-impatient
https://www.manning.com/books/scala-in-action
https://www.manning.com/books/scala-in-action

291

appendix C
Further reading

The following is a list of resources that can help you further your understanding of
the topics covered in the book.

■ The official documentation of the Play Framework (https://www.playframework
.com/documentation) is an invaluable resource when it comes to exploring what
the Play Framework has to offer.

■ The official documentation of Akka (http://akka.io/docs) is a must-read if
you want to stay up to date with what Akka has to offer.

■ Functional Programming in Scala by Paul Chiusano and Rúnar Bjarnason
(https://www.manning.com/books/functional-programming-in-scala) is an
in-depth tutorial on functional programming, from the basics up to
advanced concepts.

■ Reactive Design Patterns by Roland Kuhn with Brian Hanafee and Jamie Allen
(https://manning.com/books/reactive-design-patterns) introduces funda-
mental patterns for building message-driven distributed systems that are resil-
ient, responsive, and elastic.

■ Functional and Reactive Domain Modeling by Debasish Ghosh (https://
www.manning.com/books/functional-and-reactive-domain-modeling) helps
you think in terms of domain models with a focus on reactive modeling, cov-
ering patterns such as event sourcing and CQRS.

■ Angular 2 in Action by David Aden, Jason Aden, and Jeremy Wilken (https://
www.manning.com/books/angular-2-in-action) introduces the second ver-
sion of the AngularJS framework used to illustrate the examples in chapter 8.

■ Docker in Action by Jeff Nickoloff (https://www.manning.com/books/docker-
in-action) covers managing applications using Docker containers, which you
explored in chapter 10.

https://www.playframework.com/documentation
https://www.playframework.com/documentation
http://akka.io/docs
https://www.manning.com/books/functional-programming-in-scala
https://manning.com/books/reactive-design-patterns
https://www.manning.com/books/functional-and-reactive-domain-modeling
https://www.manning.com/books/functional-and-reactive-domain-modeling
https://www.manning.com/books/angular-2-in-action
https://www.manning.com/books/angular-2-in-action
https://www.manning.com/books/docker-in-action
https://www.manning.com/books/docker-in-action

293

index

Symbols

! character 144
? character 144
@ character 30
&> operation 37
character 30
%%% notation 208
<~ operator 238
~ character 28
~> operator 238

Numerics

200 Ok 33, 86, 88
400 Bad Request 84, 95
403 Unauthorized 112
404 Not Found 79, 88, 95, 112
406 Not Acceptable 88
409 Conflict 86
420 Enhance your calm 242
500 Internal Server Error

32, 279
501 Not Implemented 81, 84
503 Service Unavailable 112

A

acceptWithActor method 40–41
action generation method 81
Action.async builder

31, 111, 177
ActionBuilder 178–179
actions 30, 85–91

activator command 27, 75,
136, 288

activator template 247
Actor class 141
Actor trait 137
ActorLogging trait 137
ActorRef 273
actors

children of 142–143
common beginner mistakes

with 148–149
context overuse 149
mutable state overuse 148
sender overuse 148

crash and recovery 149–155
letting it crash 152–153
watching actors die and

reviving them 154–155
creating 139–141
lifecycle of 141–142
message passing 143–147
overview 138–139
piping futures and 147–148
service overload, reacting to

load patterns for monitor-
ing and preventing
155–163
circuit breakers 161–163
control-flow messages

155–159
prioritizing messages

159–160
simple Twitter analytics

service 135–136
testing for resilience 272–274

testing for
responsiveness 268–271

ActorSystem 138, 140–141, 151,
186, 270–271, 273

Akka 34, 114, 136
Akka IO library 182, 184, 186
Akka Streams 230–242

core principles 230–231
manipulating streaming

tweets 231–242
converting enumerator to

source 234–235
creating custom fan-out

junction using
FlexiRoute 235–236

delivering stream to
client 239–242

fetching stream from
Twitter 233–234

running graph and observ-
ing back pressure 242

setting up project 233
starting to build flow

graph 237–238
wiring graph 238–239

akka-persistence-mongo
plugin 191–192

akka.actor.Props object 39
akka.actor.Status.Failure 147
akka.pattern.CircuitBreaker

class 161
akka.pattern.CircuitBreaker-

OpenException 280
akka.pattern.pipe 144
akka.test.timefactor 271
akka.testkit package 270

INDEX294

AkkaGuiceSupport trait 188
AllBrowsersPerSuite trait 249
AllForOneStrategy 152–153
Amazon S3 23–24
Amazon Web Services account.

See AWS
Amdahl’s law 122
andThen method 97
angular-chart.js library 214, 217
angular-growl library 221
angular-websocket library 212
AngularJS framework, integrat-

ing Scala.js with 207–212
creating AngularJS

application 208–209
creating partial view 211
initializing AngularJS dash-

board module and its
dependencies 210

initializing dashboard
controller 210

loading AngularJS applica-
tion in HTML 211–212

setting up AngularJS
bindings 207–208

anonymous functions 59
Apache Mina 7
Apache Tomcat 9, 11
API rate limits, Twitter 136
Application controller 176
application secret 74
APPLICATION_SECRET

variable 250, 256
application.conf file 140, 174
Armstrong, Joe 21
async-http-client library 30
asynchronous actions

building 111–112
resilient 112–114

custom error handlers
112–113

properly handling
timeouts 113–114

asynchronous business logic,
designing with futures
120–132

composing service’s
futures 123–128

identifying parallelizable
elements 121–123

propagating and handling
errors 128–132

asynchronous programming
complexity of 13–14
novel ways of writing 14

shared mutable state and
11–12

asynchronous stream
manipulation 91

autoscalability
automatically scaling up and

out with 284–285
enabling 258

AWS (Amazon Web Services)
account 281

AWS Elastic Beanstalk 261

B

-b flag 80
back pressure propagation

23–24
backoff strategy 155
BackoffSupervisor 155
Bees with Machine Guns, test-

ing for scalability
using 281–285

attacking target 282–284
automatically scaling up and

out with Clever Cloud
autoscalability 284–285

installing
beeswithmachineguns
281–282

Berry, Gérard 5
Bishop, Peter 134
blocking

controller actions 111–112
overview 10

body parser 90–91
boot2docker ip command 254
Bootstrap 206
~/.boto file 282
Brewer, Eric 18
broadcast enumerator 43–44
build.sbt file 30, 76, 84, 169,

191, 204, 219, 250
bulkheading

based on business
functions 118

overview 20–21
business logic,

asynchronous 120–132
composing service’s

futures 123–128
identifying parallelizable

elements 121–123
propagating and handling

errors 128–132
ByteString 187

C

callback hell 13–14
callTimeout 161
CAP theorem 18
capacity planning, with Little's

law 23
capping thread pool 117
case statements 40
Cassandra 17
CDNs (content delivery

networks) 252
chaining recovery handlers 113
CharString 36–37
Chart.js library, displaying met-

rics using 216–218
children, of actors 142–143
Chius, Paul 50
CI (continuous integration), set-

ting up 252–255
configuring Jenkins to build

application 254–255
running Jenkins via

Docker 253–254
circuit breakers 24, 161–163
clean command 28
Clever Cloud

automatically scaling up and
out with
autoscalability 284–285

deploying Play applications
on 256–258
configuring environment

variables 256
enabling

autoscalability 258
pushing code 257

client-fastopt.js 206
client-jsdeps.js 206
client-launcher.js 206
client-side failure,

handling 218–223
detecting WebSocket connec-

tion failure 220–221
monitoring client-side

errors 222–223
notifying users 221–222
preventing bugs with

tests 219–220
client-side state, using Play

session 177–180
closed state 161
CloseEvent 221
CloudBees 245
CoffeeScript 76

INDEX 295

collections 63
Command and Query Responsi-

bility Segregation and Event
Sourcing. See CQRS/ES

Command and Query Responsi-
bility Segregation pattern.
See CQRS

compilation error 81
compile command 28
computation node 6
computational resource

utilization 8–17
evented servers 10–11
horizontal application

architecture 14–17
horizontal

deployments 16–17
replicated deployments

15–16
single-server

deployments 15
threaded servers 9, 11
See also multicore architec-

tures, web applications for
Concurrent.joined method 37
conf/application.conf file

73, 77, 115, 137, 160, 168,
177, 185

conf/logback.xml file 137, 173
conf/routes file 81, 88, 94,

174, 179
containers 253
content delivery networks. See

CDNs
context.actorOf method 143
context.children collection 143
context.parent reference 159
context.stop() method 142
context.watch() method 155
continuous deployment 245
continuous integration. See CI
control-flow messages 155–159

avoiding storing
duplicates 157–158

checking for unacknowl-
edged messages 156–157

reacting to increase of unac-
knowledged messages
158–159

ControlAwareMailbox 159
controller actions, blocking and

nonblocking 111–112
controllers 85–91
controllers.Default.todo

method 81–82

ControlMessage type 160
--cookie flag 80, 98
CouchBase 17
counts

retrieving 125–126
using 126–128

CPU-bound operations 109
CQRS (Command and Query

Responsibility Segregation)
pattern 19

CQRS/ES (Command and
Query Responsibility Segre-
gation and Event
Sourcing) 164–165, 182

crash and recovery 149–155
letting it crash 152–153
robust storage 150–152
watching actors die and

reviving them 154–155
credentials, to Twitter API

29–30
Crypto library 174
CSRF tokens 74
CSS stylesheets 216
curl command 79
custom dispatcher 160
custom error handlers 112–113

D

data replication 15
Data type conversion page 197
database execution

context 176–177
Database helper 177
databases 165–178

asynchronous access to
166–167

configuring Play for synchro-
nous access to 167–169

creating and evolving schema
of 169–170

inserting data with
jOOQ 173–174

setting up jOOQ code
generation 170–173

setting up login form and
performing
authentication 175–176

using correct
ExecutionContext 176–178

writing first jOOQ query 174
DateTimeFormat 194
DB helper 173
DB.withConnection 177

DB.withTransaction 196
DDoS (Distributed Denial of

Service) 265, 282
dead letters 44
deadlock 13
DeathWatch 154
.deb file 260
Debian package, creating and

deploying 260–261
DebianPlugin 260
declarative approach 62
declarative programming style,

switching to 68–70
get method, not using on an

option 69
immutable values and data

structures 69
iterating and refining func-

tional style 70
small and crisp functions

69–70
def keyword 56
DefaultErrorHandler 95
DefaultHttpErrorHandler

trait 79, 112
demand condition 236
DemandFrom condition 236
DemandFromAll condition 236
DemandFromAny

condition 236
dependencies command 28
dependency injection 79
dependsOn notation 205, 207
deploying Play

applications 256–262
on Clever Cloud 256–258
on own server 258–261

Deutsch, Peter 19
dev mode 27
dilated method 270
dispatchers 138
dist command 260
distributed cache 180–181
Distributed Denial of Service. See

DDoS
-Dlogger.file flag 250
-Dlogger.resource flag 250
docker pull java command 259
Docker, running Jenkins

via 253–254
docker:publishLocal

command 261
Doherty, Julian 9
domain-specific language. See

DSL

INDEX296

downloading Play
framework 287–288

-Dplay.crypto.secret flag 249
DSL (domain-specific

language) 76
DSLContext 173–174, 177
Dynamic type 210, 212
dynamically scaling in and

out 23
DynamoDB 19

E

effective_spindle_count 168
EHcache 180
elasticity, testing 265
encapsulation 56
enumeratee 34
enumerator 34
Erlang computing language 21
error handling, custom

95, 112–113
error method 221
EssentialAction trait 90
event handlers 10
Event Sourcing 19, 182
Event trait 190
event-driven code execution 7
event-driven trait 5
evented servers 10–11
EventStream 195
eventual consistency 19, 182
exclamation mark 40
execution contexts, correctly

configuring and using
114–118

bulkheading based on busi-
ness functions 118

falling back to threaded
model 115

specialized execution
contexts 115–117

ExecutionContext 96, 108, 138,
145, 168, 176–178

ExecutionEnv 120
Executor API 108
expectMsgType method 270
expression-oriented

programming 53–55

F

facade traits 206–207
failed futures, recovering 106

failure-handling 17–24
building applications with

failure in mind 20–22
bulkheading 20–21
resilient clients 20
supervision and actors

21–22
inevitability of failure 17–19
load 22–24

back pressure
propagation 23–24

capacity planning with
Little's law 23

circuit breakers 24
dynamically scaling in and

out 23
fakeroot package 261
fan-out junction 235–236
FanOutShape 235
fault-tolerance 19
filterNot method 54–55
filters 95–99
Filters class 96, 98
final keyword 12, 51
first-class values, functions

as 56–57
flatMap function 63

overview 128–129
using with Option type 64–68

functional access to
Option's content
66–68

imperative access to
Option's content
65–66

FlatSpec 267
FlatSpecLike trait 270
FlattenStrategy.merge 236
FlexiRoute 235–236
FlexyPool tool 168
flow graph 230
flow stage 231
FlowGraph 237–238
FlowMaterializer 237
for comprehensions

overview 107, 126
using with Option type 64–68

functional access to
Option's content
66–68

imperative access to
Option's content
65–66

foreach method 63, 106
fork-join executor 116, 138

full-stack frameworks 7–8
function literal 57
Function1 notation 58
functional programming

functions 55–61
as first-class values 56–57
composing 58–59
declaring in Scala 56–57
in object-oriented program-

ming languages 56
moving behavior

around 57–58
size of 59–61

immutability 51–55
expression-oriented

programming 53–55
fallacy of mutable state

51–53
immutable values as snap-

shots of reality 53
manipulating immutable

collections 61–68
higher-order functions

for 62–68
transformations instead of

loops 61–62
overview 50–51
recommended reading

about 290
switching to 68–70

get method, not using on
an option 69

immutable values and data
structures 69

iterating and refining
functional style 70

small and crisp
functions 69–70

functions 55–61
as first-class values 56–57
composing 58–59
declaring in Scala 56–57
in object-oriented program-

ming languages 56
moving behavior around

57–58
size of 59–61
small and crisp 69–70

future block 32, 109
Future class 105
futures

composing 107–108
designing asynchronous busi-

ness logic with 120–132

INDEX 297

futures (continued)
composing service's

futures 123–128
identifying parallelizable

elements 121–123
propagating and handling

errors 128–132
failed, recovering 106
in Play 110–118

asynchronous actions,
building 111–112

asynchronous actions,
resilient 112–114

execution contexts,
correctly configuring
and using 114–118

piping 147–148
running 108–109
testing 119–120

using specs2 for 119–120
which behavior to test 119

testing for resilience 271–272
testing for

responsiveness 266–269
transforming 105–106
when to create 109–110

G

Gatling framework, testing for
resilience using 277–281

recording a scenario 277
simulating concurrent users

and watching application
fail 277–281

GenerationTool 172
generators 64
GET request 32–33, 91, 104, 276
get() method 38, 66, 68, 104
getOrElse 66
.gitignore 74
Global object 149
Gosling, James 19
Growl library 221
Guava library 12
GzipFilter 96

H

-H flag 80
Hacker News 22
half-open state 161
hardware-related failure 6

Harel, David 4
--header flag 80
Heroku 17, 23
Hewitt, Carl 134
higher-order functions, for

immutable collections,
manipulating 62–68

for comprehensions 64
map function 62–63

HikariCP 167
HOCON (human-Optimized

Config Object Notation) 73
horizontal application

architecture 14–17
horizontal deployments

16–17
replicated deployments

15–16
single-server deployments 15

hot redeploy mechanisms 17
HT [hyperthreaded]

threads 168
HTTP GET request 32
HTTP protocol 40
HTTP requests 30
HTTP/2 connections 77
HttpFilters trait 96
HttpPromise 213–214
HttpSession 165
human-Optimized Config

Object Notation. See
HOCON

I

I/O operation 112, 122
IAM (Identity and Access

Management) 281
immutability 51–55

expression-oriented
programming 53–55

fallacy of mutable state 51–53
immutable values as snapshots

of reality 53
immutable collections,

manipulating 61–68
higher-order functions

for 62–68
flatMap function 62–63
for comprehensions 64
map function 62–63

transformations instead of
loops 61–62

immutable state 12–13

implicit keyword 42
implicit parameters 42, 89
ImplicitSender trait 270
incarnation 139
inject actors 140
@Inject annotation 86, 247
injection steps 279
installing Play framework

287–288
integration tests, writing and

running with
Selenium 248–249

integration, continuous
252–255

configuring Jenkins to build
application 254–255

running Jenkins via
Docker 253–254

IntelliJ IDEA 207
interactive programs 5
interval value 268
invokeBlock 178
Iteratee library 33–34
iteratees 33–35
iterating functional style 70

J

Java Object Oriented Querying.
See jOOQ

java.util.concurrent.Concurrent
LinkedQueue 159

java.util.concurrent.Future 104
JDBC drivers 115
JDBC support 169
Jenkins

configuring to build
application 254–255
creating and running

Jenkins job 255
installing plugins 254–255

running via Docker 253–254
jOOQ (Java Object Oriented

Querying)
inserting data with 173–174
setting up jOOQ code

generation 170–173
writing first jOOQ query 174

journaled write-concern 192
js.Dynamic type 216
js.Object 214
JSApp trait 206
jsDependencies setting

207, 213, 216

INDEX298

JSExportAll annotation 220
JSHint 76, 247
JSNLog 223
JsObject object 37
JSON library 36
JSR 303 implementation 87
jsRoutes variable 252
jsSimpleObject 36–37
JsValue format 94, 241
junction stage 231
JVM debug agent 80
JVM property 48

K

Kanban methodology 20
KCG (Knight Capital Group) 17
KnockoutJS 7

L

Lang class 82
last resort handlers 113
latency 5, 121
libraryDependencies 217
Lightbend Config library 73
Linux, setting up Play environ-

ment on 288
Little’s law, capacity planning

with 23
load 22–24

back pressure
propagation 23–24

capacity planning with Little's
law 23

circuit breakers 24
dynamically scaling in and

out 23
lock contention 12–13
Logback library 74
logback.xml file 74
logger element 186
logging configuration, Play

application 74–75
login action 175
logServerError method 95

M

map blocks 60
map function

overview 62–63, 128
using with Option type 64–68

functional access to
Option's content
66–68

imperative access to
Option's content
65–66

Martin, Robert 51
match statement 55
materialization 231
memory utilization, in threaded

and evented web servers 11
memory-based caching

layer 165
merger block 238
message passing 143–147
MessageEvent 213–214
messages

control-flow 155–159
avoiding storing

duplicates 157–158
checking for unacknowl-

edged messages
156–157

reacting to increase of
unacknowledged
messages 158–159

prioritizing 159–160
detecting when about to hit

rate limit 159
setting up

ControlAwareMailbox
160

Meteor 7
Model-View-Controller. See MVC
monadic operation 68
MongoConnection 151
MongoDB 17, 151, 182
multi-node deployment 17
multicore architectures, web

applications for 11–14
asynchronous programming

complexity of 13–14
novel ways of writing 14
shared mutable state

and 11–12
language design and

immutable state 12–13
locks and contention 12–13

mutable state
overusing 148
overview 151

MVC (Model-View-
Controller) 71

mysql-async driver 166

N

@Named annotation 188
near real-time 5
Netty 77–78
nextFilter function 96
ng-view attribute 211
ngRoute service 209–210
ngWebSocket 213
Node.js 7, 14, 205, 219
non-blocking back pressure 227
non-thread-safe calls 139
nonblocking, controller

actions 111–112
None type 65
NonFatal matcher 130
null value 69
NullPointerException 64, 66

O

OAuth authentication, working
around bug with 30

object-oriented programming
languages, functions in 56

object-relational impedance
mismatch 165

object-relational mapping tools.
See ORMs

onBadRequest method 95
onclose handler 46
onClose method 221
onComplete handler 104–105
onDevServerError method 95
OneForOneStrategy 152–153
onError method 229
onFailure handler 223
onForbidden method 95
onMessage method

213–214, 216
onNext method 229
onNotFound method 95
onOtherClientError method 95
onProdServerError method 95
onSubscribe method 229
open state 161
Option type, using map, flat-

Map, and for comprehen-
sions with 64–68

functional access to Option’s
content 66–68

imperative access to Option’s
content 65–66

ORMs (object-relational
mapping) tools 165

INDEX 299

out actor reference 39–40
OutOfMemoryError 130

P

PaaS (Platform-as-a-Service)
17, 245

parallelism-max value 117
parent actor 22
partial flow graphs 231
partial function 39–40
partial view 210
partition function 61
path parameters 82
PATH variable 288–289
PathBindable 83
PatienceConfig 267–268
persist method 189, 191
persistenceId 188
persistentIdentifier 193
PhantomJS 219
PinnedDispatcher 139
pip command 281
pipeTo 144
piping futures 147–148
Platform-as-a-Service. See PaaS
Play Angular Require seed 250
Play framework

deploying 256–262
on Clever Cloud 256–258
on own server 258–261

downloading and
installing 287–288

futures in 110–118
asynchronous actions,

building 111–112
asynchronous actions,

resilient 112–114
execution contexts, cor-

rectly configuring and
using 114–118

integrating Scala.js with
202–207
application structure 203
creating simple Scala.js

application 205–207
setting up build

process 203–205
preparing for

production 245–252
creating simple application

to deploy 246–247
customizing logging 250
optimizing web assets

250–252

setting application
secret 249–250

using CDN for providing
common web
assets 252

writing and running inte-
gration tests with
Selenium 248–249

request handling 77–99
controllers, actions, and

results 85–91
default request handling

pipeline, altering
95–99

request lifecycle 77–80
request routing 80–84
WebSockets 91–95

setting up continuous
integration 252–255
configuring Jenkins to build

application 254–255
running Jenkins via

Docker 253–254
setting up environment

on Linux or Mac OS X 288
on Windows 289

structure and
configuration 72–77
building projects 75–77
creating a minimal applica-

tion scaffold 73–75
logging configuration

74–75
Simple Vocabulary

Teacher 72
working with state in 165–181

client-side state using Play
session 177–180

databases 165–178
server-side state using

distributed cache
180–181

play-scala-v24 template 27
play-webjars library 251
play.api.Configuration 247
play.api.libs.iteratee.Enumeratee

.grouped 36
play.api.libs.JsObject 36
play.api.libs.json.JsResult-

Exception 280
play.api.mvc.RequestHeader 78
play.crypto.secret 249
play.extras.iteratees.Encoding

.decode 36
play.extras.iteratees.JsonIteratee

s.jsSimpleObject 36

play.i18n.Lang 83
play2-memcached plugin 180
playGenerateSecret

command 249, 256
playUpdateSecret command

77, 249
Pnueli, Amir 4
PoisonPill 142
posgresql-async driver 166
POST method 175, 234
PostgreSQL connector 169, 182
PostgreSQL project 167
postRestart 142, 150
predicate function 61
premature optimization 22
preStart method 142–143
prioritizing messages 159–160

detecting when about to hit
rate limit 159

setting up
ControlAwareMailbox 160

processing stages 230
production mode 27
production, preparing Play

applications for 245–252
creating simple application to

deploy 246–247
customizing logging 250
optimizing web assets

250–252
setting application

secret 249–250
using CDN for providing com-

mon web assets 252
writing and running integra-

tion tests with
Selenium 248–249

props method 39
Props object 41, 93, 141
ProvidedService trait 213–214
public group 282
public static methods 56
publishers 228

Q

query parameters 84
QueryStringBindable 84, 88

R

RabbitMQ 195
Random.org 274–275
React.js 7

INDEX300

reactive audit tool 112
reactive back pressure 158
Reactive Manifesto 5–6, 265
Reactive Mongo driver 129–130
reactive programming 6–7
reactive streams

Akka Streams 230–242
core principles 230–231
manipulating streaming

tweets 231–242
manipulating 229–230
reasons for using 228–230

reactive systems 4–8
reactive technologies,

emergence of 7–8
reactive traits, testing 264–266

elasticity 265
resilience 265
responsiveness 264

reactive web applications, testing
entire reactive

applications 274–286
creating simple application

to generate random
numbers 274–277

testing for resilience with
Gatling 277–281

testing for scalability with
Bees with Machine
Guns 281–285

individual reactive
components 266–274
for resilience 271–274
for responsiveness 266–271

reactive traits 264–266
elasticity 265
resilience 265
responsiveness 264
where to test 265–266

ReactiveCouchbase 166
ReactiveMongo 151, 166
real-time 5
receive method 39–41, 93,

137–138, 143, 147, 162
receiveCommand method 189
receiveRecover method 191
recover handler 106, 149, 271
recoverWith handler 271–272
red flag approach 158
refining functional style 70
reload command 28, 36, 84
replica nodes 46
replicated deployments 15–16

request handling, Play
framework 77–99

controllers, actions, and
results 85–91

default request handling
pipeline, altering 95–99

request lifecycle 77–80
request routing 80–84
WebSockets 91–95

RequestHeader 41–42, 78, 90
requestToken 237
RequireJS 250
resetTimeout 161
resilience, testing for 265

testing individual reactive
components for 271–274
actors 272–274
futures 271–272

with Gatling 277–281
recording a scenario 277
simulating concurrent users

and watching applica-
tion fail 277–281

resilient trait 5
resource starvation 13
responsive trait 5
responsive user interfaces

handling client-side
failure 218–223
detecting WebSocket

connection
failure 220–221

monitoring client-side
errors 222–223

notifying users 221–222
preventing bugs with

tests 219–220
integrating existing JavaScript

libraries with Scala.js
212–218
creating service to fetch

data for graph
214–216

displaying metrics using
Chart.js library
216–218

wrapping existing JavaScript
library as AngularJS
service 212–214

integrating Scala.js and
AngularJS 207–212
creating AngularJS

application 208–209
creating partial view 211

initializing AngularJS dash-
board module and its
dependencies 210

initializing dashboard
controller 210

loading AngularJS applica-
tion in HTML 211–212

setting up AngularJS
bindings 207–208

integrating Scala.js and
Play 202–207
application structure 203
creating simple Scala.js

application 205–207
setting up build

process 203–205
responsiveness, testing for

overview 264
testing individual reactive

components for 266–271
actors 268–271
futures 266–269

REST interface 72
Results trait 178
Rhino JavaScript

interpreter 205
Roper, James 110
rotating log files 74
routesImport statement 84
$routesProvider 210
run command 27–28, 77
run() method 37, 58
Runnable 57
runnable flow 231

S

sbt build tool 26
sbt plugin 75, 255
sbt website 75
sbt-digest plugin 252
sbt-gzip plugin 252
sbt-jshint plugin 247
sbt-play-scalajs sbt plugin

204–205
sbt-rjs plugin 250, 252
sbt-web 204
Scala

declaring functions in 56–57
expression-oriented

programming and 54–55
recommended reading

about 290
scala.concurrent.ExecutionCont

ext.Implicits.global 114

INDEX 301

scala.concurrent.Future[T] 104
scala.concurrent.Promise 114
scala.control.NonFatal 130
Scala.js

integrating existing JavaScript
libraries with 212–218
creating service to fetch

data for graph
214–216

displaying metrics using
Chart.js library
216–218

wrapping existing JavaScript
library as AngularJS
service 212–214

integrating with
AngularJS 207–212
creating AngularJS

application 208–209
creating partial view 211
initializing AngularJS dash-

board module and its
dependencies 210

initializing dashboard
controller 210

loading AngularJS applica-
tion in HTML 211–212

setting up AngularJS
bindings 207–208

integrating with Play 202–207
application structure 203
creating simple Scala.js

application 205–207
setting up build

process 203–205
scalability, testing for with Bees

with Machine Guns
281–285

attacking target 282–284
automatically scaling up and

out with Clever Cloud
autoscalability 284–285

installing
beeswithmachineguns
281–282

scalable trait 5–6
ScalaFutures trait 267–268
scalajs-angulate 208, 210
scalariform plugin 76
ScalaTest 248
scale horizontally 14
scaled function 269
scaling in and out,

dynamically 23
scheduler mechanism 156

$scope parameter 210
Scope trait 212
ScopeController trait 210
scopes 208
SecurityHeadersFilter 96
Selenium WebDriver automa-

tion library 248–249
sender() method 148, 191
Sentry 223
separation of concerns 21
server-side state 165
service overload, reacting to

load patterns for monitor-
ing and preventing
155–163

circuit breakers 161–163
control-flow messages

155–159
avoiding storing

duplicates 157–158
checking for unacknowl-

edged messages
156–157

reacting to increase of unac-
knowledged
messages 158–159

prioritizing messages 159–160
detecting when about to hit

rate limit 159
setting up

ControlAwareMailbox
160

session cookies 97
Set-Cookie header 98
share nothing principle 16
shared mutable state, asynchro-

nous programming
and 11–12

ShouldMatchers 267
single-server deployments 15
single-threaded executor 119
sink stage 231
SLF4J logger 137
software-related failure 6
source stage 231
specs2

overview 248
testing futures using 119–120

splitter block 238
stage command 252
start command 28
state

command and query responsi-
bility segregation and event
sourcing 182–200

a word on eventual
consistency 200

configuring Akka persis-
tence to write to
MongoDB 191–192

handling an incoming com-
mand

subscribing to user men-
tions 192–194

querying the relational
model 198–200

setting up the sms
gateway 185–188

transforming the event
stream into a rela-
tional model 194–198

writing the event stream
with persistent
actors 188–191

twitter sms service 182–185
application setup and

supervision 184
command handling 184
event sourcing 184–185
incoming client calls 184
query handling 184

working with in Play
application 165–181
client-side state using Play

session 177–180
databases 165–178
server-side state using dis-

tributed cache
180–181

stateless architectures 16, 164
Steiger, Richard 134
StepParent actor 273
storage, robust 150–152
Streams library 235, 237
String type 40, 82
success method 221
supervision, principle of 17
supervisor strategy 152, 154, 273
switch expression 40
synchronous program 13

T

TCP/IP protocol 155
TDD (test driven

development) 266
tell method 40
Terminated message 142
test command 28, 249

INDEX302

test mode 27
testActor actor 270
testing

futures 119–120
using specs2 for 119–120
which behavior to test 119

preventing bugs with 219–220
resilience 265

testing individual reactive
components for
271–274

with Gatling 277–281
responsiveness

overview 264
testing individual reactive

components for
266–271

testing reactive web applications
entire reactive

applications 274–286
creating simple application

to generate random
numbers 274–277

testing for resilience with
Gatling 277–281

testing for scalability with
Bees with Machine
Guns 281–285

individual reactive
components 266–274
for resilience 271–274
for responsiveness 266–271

reactive traits 264–266
elasticity 265
resilience 265
responsiveness 264
where to test 265–266

TestKit 268–269
TestSuite trait 219
threaded servers

memory utilization in 11
overview 9

ThreadPool 108
threads 115
throwA matcher 120
time-based scheduling 157
timeliness 119
timeout value 268

timeouts, properly
handling 113–114

TODO action 82, 84
TrackJS 223
traits 5
transformations 61–62
transformative systems 4
Travis CI 245
Trello 20
try...catch blocks 106
Twirl templates 204
Twitter API 29–38, 124

asynchronously transforming
stream 35–38

getting connection credentials
to 29–30

streaming data from 30–35
streaming tweets to clients

using websocket 38–45
creating actor 39–40
sending tweets to

websocket 42–45
setting up websocket con-

nection and interacting
with it 40–42

working around bug with
OAuth authentication 30

type definitions 212

U

UglifyJS library 252
unbind method 83
unbounded mailboxes 138
undefined values 68
unhandled errors 22
unhandled method 143
Unit type 33–34, 106
Upgrade header 91
UTC timestamp 159
UTF-8 String 187

V

-v flag 80
val 147
values, immutable 53
var 69, 147
varying loads 22

verbose flag 80
vertical scaling 15
VirtualMachineError 130
von Neumann bottleneck 8

W

WebJarAssets helper 218, 246
WebJARs 203
webjars-play library 246
WebScaleSQL 17
$websocket notation 216
WebSocket.tryAcceptWithActor

94
WebsocketDataStream 219–220
WebSockets 91–95

detecting connection
failure 220–221

streaming tweets to clients
using 38–45
creating actor 39–40
sending tweets to

websocket 42–45
setting up websocket con-

nection and interacting
with it 40–42

WebsocketService 214–216,
219–220

whenReady function 268
wildcard pattern 55
Windows, setting up Play

environment on 289
withFilter 64
within function 270
withSession method 179
withTransaction method 196
workspace directory 287
WS library 33, 104, 193

X

X-Content-Type-Options 98
X-Frame-Options 98
X-Rate-Limit-Remaining

159, 162
X-Rate-Limit-Reset 159
X-Target-Language header 89
Xvfb plugin 255

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Scala in Depth
by Joshua D. Suereth

ISBN: 9781935182702
304 pages
$49.99
May 2012

Functional Programming in Scala
Paul Chiusano and Rúnar Bjarnason

ISBN: 9781617290657
320 pages
$44.99
September 2014

Play for Scala
Covers Play 2
by Peter Hilton, Erik Bakker,

and Francisco Canedo

ISBN: 9781617290794
328 pages
$49.99
October 2013

https://www.manning.com/books/scala-in-depth
https://www.manning.com/books/functional-programming-in-scala
https://www.manning.com/books/play-for-scala

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Reactive Design Patterns
by Roland Kuhn

with Brian Hanafee and Jamie Allen

ISBN: 9781617291807
325 pages
$49.99
October 2016

Akka in Action
by Raymond Roestenburg, Rob Bakker,

and Rob Williams

ISBN: 9781617291012
475 pages
$49.99
October 2016

Functional Programming in JavaScript
by Luis Atencio

ISBN: 9781617292828
272 pages
$44.99
June 2016

https://www.manning.com/books/reactive-design-patterns
https://www.manning.com/books/akka-in-action
https://www.manning.com/books/functional-programming-in-javascript

Manuel Bernhardt

R eactive applications build on top of components that
communicate asynchronously as they react to user and
system events. As a result, they become scalable, respon-

sive, and fault-tolerant. Java and Scala developers can use the
Play Framework and the Akka concurrency toolkit to easily
implement reactive applications without building everything
from scratch.

Reactive Web Applications teaches web developers how to
benefi t from the reactive application architecture and pre-
sents hands-on examples using Play, Akka, Scala, and Reac-
tive Streams. This book starts by laying out the fundamentals
required for writing functional and asynchronous applications
and quickly introduces Play as a framework to handle the
plumbing of your application. The book alternates between
chapters that introduce reactive ideas (asynchronous program-
ming with futures and actors, managing distributed state with
CQRS) and practical examples that show you how to build
these ideas into your applications.

What’s Inside
● Reactive application architecture
● Basics of Play and Akka
● Examples in Scala
● Functional and asynchronous programming

For readers comfortable programming with a higher-level
language such as Java or C#, and who can read Scala code. No
experience with Play or Akka needed.

Manuel Bernhardt is a passionate engineer, author, and speaker.
As a consultant, he guides companies through the technological
and organizational transformation to distributed computing.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/reactive-web-applications

$44.99 / Can $51.99 [INCLUDING eBOOK]

Reactive Web Applications

WEB DEVELOPMENT/SCALA

M A N N I N G

“You‘ll come away with a
solid understanding of how
reactive web applications

are architected, developed,
tested, and deployed.”
—From the Foreword by

James Roper, lead developer
of the Play Framework

“Good theory and
good practice, with

 powerful examples.”
—Steve Chaloner

Objectify

“How to be reactive in your
application development…

Eye-opening.”
—David Torrubia Íñigo

Fon Wireless, Ltd

“A complete and exhaustive
source of best practices

for large-scale, real-world
 reactive platforms.”

—Antonio Magnaghi, PhD
OpenMail

SEE INSERT

	Reactive Web Applications
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	Part 1: Getting started with reactive web applications
	Chapter 1: Did you say reactive?
	1.1 Putting reactive into context
	1.1.1 Origins of reactive
	1.1.2 The Reactive Manifesto
	1.1.3 Reactive programming
	1.1.4 The emergence of reactive technologies

	1.2 Rethinking computational resource utilization
	1.2.1 Threaded versus evented web application servers
	1.2.2 Developing web applications fit for multicore architectures
	1.2.3 The horizontal application architecture

	1.3 Failure-handling as first-class concern
	1.3.1 Failure is inevitable
	1.3.2 Building applications with failure in mind
	1.3.3 Dealing with load

	1.4 Summary

	Chapter 2: Your first reactive web application
	2.1 Creating and running a new project
	2.2 Connecting to Twitter’s streaming API
	2.2.1 Getting the connection credentials to the Twitter API
	2.2.2 Working around a bug with OAuth authentication
	2.2.3 Streaming data from the Twitter API
	2.2.4 Asynchronously transforming the Twitter stream

	2.3 Streaming tweets to clients using a WebSocket
	2.3.1 Creating an actor
	2.3.2 Setting up the WebSocket connection and interacting with it
	2.3.3 Sending tweets to the WebSocket

	2.4 Making the application resilient and scaling out
	2.4.1 Making the client resilient
	2.4.2 Scaling out

	2.5 Summary

	Chapter 3: Functional programming primer
	3.1 A few words on functional programming
	3.2 Immutability
	3.2.1 The fallacy of mutable state
	3.2.2 Immutable values as snapshots of reality
	3.2.3 Expression-oriented programming

	3.3 Functions
	3.3.1 Functions in object-oriented programming languages
	3.3.2 Functions as first-class values
	3.3.3 Moving behavior around
	3.3.4 Composing functions
	3.3.5 The size of functions

	3.4 Manipulating immutable collections
	3.4.1 Transformations instead of loops
	3.4.2 Higher-order functions for manipulating collections

	3.5 Making the switch to a declarative programming style
	3.5.1 Never use the get method on an Option
	3.5.2 Only use immutable values and data structures
	3.5.3 Aim for small and crisp functions
	3.5.4 Iterate and refine your functional style

	3.6 Summary

	Chapter 4: Quick introduction to Play
	4.1 Play application structure and configuration
	4.1.1 Introducing the Simple Vocabulary Teacher
	4.1.2 Creating a minimal Play application scaffold
	4.1.3 Building the project

	4.2 Request handling
	4.2.1 The request lifecycle
	4.2.2 Request routing
	4.2.3 Controllers, actions, and results
	4.2.4 WebSockets
	4.2.5 Altering the default request-handling pipeline

	4.3 Summary

	Part 2: Core concepts
	Chapte 5: Futures
	5.1 Working with futures
	5.1.1 Future fundamentals
	5.1.2 Futures in Play
	5.1.3 Testing futures

	5.2 Designing asynchronous business logic with futures
	5.2.1 Identifying parallelizable elements
	5.2.2 Composing the service’s futures
	5.2.3 Propagating and handling errors

	5.3 Summary

	Chapter 6: Actors
	6.1 Actor fundamentals
	6.1.1 A simple Twitter analytics service
	6.1.2 Laying out the foundation: actors and their children

	6.2 Letting it crash—supervision and recovery
	6.2.1 Robust storage
	6.2.2 Letting it crash
	6.2.3 Watching actors die and reviving them

	6.3 Reacting to load patterns for monitoring and preventing service overload
	6.3.1 Control-flow messages
	6.3.2 Prioritizing messages
	6.3.3 Circuit breakers

	6.4 Summary

	Chapter 7: Dealing with state
	7.1 Working with state in a stateless Play web application
	7.1.1 Databases
	7.1.2 Client-side state using the Play session
	7.1.3 Server-side state using a distributed cache

	7.2 Command and Query Responsibility Segregation and Event Sourcing
	7.2.1 The Twitter SMS service
	7.2.2 Setting up the SMS gateway
	7.2.3 Writing the event stream with persistent actors
	7.2.4 Configuring Akka persistence to write to MongoDB
	7.2.5 Handling an incoming command: subscribing to user mentions
	7.2.6 Transforming the event stream into a relational model
	7.2.7 Querying the relational model
	7.2.8 A word on eventual consistency

	7.3 Summary

	Chapter 8: Responsive user interfaces
	8.1 Integrating Scala.js and Play
	8.1.1 The application structure
	8.1.2 Setting up the build process
	8.1.3 Creating a simple Scala.js application

	8.2 Integrating Scala.js and AngularJS
	8.2.1 Setting up the AngularJS bindings
	8.2.2 Creating the AngularJS application
	8.2.3 Initializing the AngularJS dashboard module and its dependencies
	8.2.4 Initializing the Dashboard controller
	8.2.5 Creating the partial view
	8.2.6 Loading the AngularJS application in HTML

	8.3 Integrating existing JavaScript libraries with Scala.js
	8.3.1 Wrapping an existing JavaScript library as an AngularJS service
	8.3.2 Creating a service to fetch data for a graph
	8.3.3 Displaying metrics using the Chart.js library

	8.4 Handling client-side failure
	8.4.1 Preventing bugs with tests
	8.4.2 Detecting WebSocket connection failure
	8.4.3 Notifying users
	8.4.4 Monitoring client-side errors

	8.5 Summary

	Part 3: Advanced topics
	Chapter 9: Reactive Streams
	9.1 Why Reactive Streams
	9.1.1 Streaming with nonblocking back pressure
	9.1.2 Manipulating asynchronous streams

	9.2 Introducing Akka Streams
	9.2.1 Core principles
	9.2.2 Manipulating streaming tweets

	9.3 Summary

	Chapter 10: Deploying reactive Play applications
	10.1 Preparing a Play application for production
	10.1.1 Creating a simple application to deploy
	10.1.2 Writing and running integration tests with Selenium
	10.1.3 Preparing the application for production

	10.2 Setting up continuous integration
	10.2.1 Running Jenkins via Docker
	10.2.2 Configuring Jenkins to build our application

	10.3 Deploying the application
	10.3.1 Deployment on Clever Cloud
	10.3.2 Deployment on your own server
	10.3.3 Which deployment model to use

	10.4 Summary

	Chapter 11: Testing reactive web applications
	11.1 Testing reactive traits
	11.1.1 Testing responsiveness
	11.1.2 Testing resilience
	11.1.3 Testing elasticity
	11.1.4 Where to test?

	11.2 Testing individual reactive components
	11.2.1 Testing individual components for responsiveness
	11.2.2 Testing individual components for resilience

	11.3 Testing the entire reactive application
	11.3.1 Creating a simple application to generate random numbers
	11.3.2 Testing for resilience with Gatling
	11.3.3 Testing for scalability with Bees with Machine Guns

	11.4 Summary

	appendix A: Installing the Play Framework
	Downloading and installing Play
	Setting up the environment on Linux or Mac OS X
	Setting up the environment on Windows

	appendix B: Recommended reading
	Scala
	Functional programming

	appendix C: Further reading
	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

