
M A N N I N G

Doug Turnbull
John Berryman
FORE WORD BY Trey Grainger

With applications for Solr and Elasticsearch

www.allitebooks.com

http://www.allitebooks.org

Relevant Search
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Relevant Search
With applications for

Solr and Elasticsearch

DOUG TURNBULL

JOHN BERRYMAN

M A N N I N G

SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editor: Aaron Colcord
PO Box 761 Copy editor: Sharon Wilkey
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreader: Valentin Crettaz
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617292774
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
1 ■ The search relevance problem 1

2 ■ Search—under the hood 16

3 ■ Debugging your first relevance problem 40

4 ■ Taming tokens 74

5 ■ Basic multifield search 107

6 ■ Term-centric search 137

7 ■ Shaping the relevance function 170

8 ■ Providing relevance feedback 204

9 ■ Designing a relevance-focused search application 232

10 ■ The relevance-centered enterprise 257

11 ■ Semantic and personalized search 279
v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the authors xxiii
about the cover illustration xxiv

1 The search relevance problem 1
1.1 Your goal: gaining the skills of a relevance engineer 2
1.2 Why is search relevance so hard? 3

What’s a “relevant” search result? 4 ■ Search: there’s
no silver bullet! 6

1.3 Gaining insight from relevance research 6
Information retrieval 7 ■ Can we use information retrieval
to solve relevance? 8

1.4 How do you solve relevance? 10
1.5 More than technology: curation, collaboration,

and feedback 12
1.6 Summary 14
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2 Search—under the hood 16
2.1 Search 101 17

What’s a search document? 18 ■ Searching the content 18
Exploring content through search 20 ■ Getting content into
the search engine 20

2.2 Search engine data structures 21
The inverted index 22 ■ Other pieces of the inverted index 23

2.3 Indexing content: extraction, enrichment, analysis,
and indexing 25
Extracting content into documents 26 ■ Enriching documents to
clean, augment, and merge data 27 ■ Performing analysis 28
Indexing 31

2.4 Document search and retrieval 32
Boolean search: AND/OR/NOT 32 ■ Boolean queries in
Lucene-based search (MUST/MUST_NOT/SHOULD) 34
Positional and phrase matching 35 ■ Enabling exploration:
filtering, facets, and aggregations 36 ■ Sorting, ranked results,
and relevance 37

2.5 Summary 39

3 Debugging your first relevance problem 40
3.1 Applications to Solr and Elasticsearch: examples

in Elasticsearch 41
3.2 Our most prominent data set: TMDB 42
3.3 Examples programmed in Python 43
3.4 Your first search application 43

Your first searches of the TMDB Elasticsearch index 46

3.5 Debugging query matching 48
Examining the underlying query strategy 49 ■ Taking apart query
parsing 50 ■ Debugging analysis to solve matching issues 51
Comparing your query to the inverted index 53 ■ Fixing our
matching by changing analyzers 54

3.6 Debugging ranking 56
Decomposing the relevance score with Lucene’s explain feature 57
The vector-space model, the relevance explain, and you 61
Practical caveats to the vector space model 64 ■ Scoring matches
to measure relevance 65 ■ Computing weights with TF × IDF 67
Lies, damned lies, and similarity 68 ■ Factoring in the search
term’s importance 70 ■ Fixing Space Jam vs. alien ranking 70
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
3.7 Solved? Our work is never over! 72
3.8 Summary 73

4 Taming tokens 74
4.1 Tokens as document features 75

The matching process 76 ■ Tokens, more than just words 76

4.2 Controlling precision and recall 77
Precision and recall by example 77 ■ Analysis for precision
or recall 80 ■ Taking recall to extremes 84

4.3 Precision and recall—have your cake and eat it too 86
Scoring strength of a feature in a single field 86 ■ Scoring beyond
TF × IDF: multiple search terms and multiple fields 89

4.4 Analysis strategies 90
Dealing with delimiters 90 ■ Capturing meaning with
synonyms 93 ■ Modeling specificity in search 96
Modeling specificity with synonyms 96 ■ Modeling specificity
with paths 99 ■ Tokenize the world! 100 ■ Tokenizing
integers 101 ■ Tokenizing geographic data 102
Tokenizing melodies 103

4.5 Summary 106

5 Basic multifield search 107
5.1 Signals and signal modeling 109

What is a signal? 109 ■ Starting with the source data model 110
Implementing a signal 112 ■ Signal modeling: data modeling
for relevance 114

5.2 TMDB—search, the final frontier! 114
Violating the prime directive 116 ■ Flattening nested docs 116

5.3 Signal modeling in field-centric search 118
Starting out with best_fields 122 ■ Controlling field preference
in search results 124 ■ Better best_fields with more-precise
signals? 126 ■ Letting losers share the glory: calibrating
best_fields 129 ■ Counting multiple signals using
most_fields 131 ■ Boosting in most_fields 132
When additional matches don’t matter 134 ■ What’s the
verdict on most_fields? 135

5.4 Summary 135
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
6 Term-centric search 137
6.1 What is term-centric search? 138
6.2 Why do you need term-centric search? 140

Hunting for albino elephants 140 ■ Finding an albino
elephant in the Star Trek example 142 ■ Avoiding signal
discordance 144 ■ Understanding the mechanics of
signal discordance 145

6.3 Performing your first term-centric searches 147
Working with the term-centric ranking function 148
Running a term-centric query parser (into the ground) 151
Understanding field synchronicity 152 ■ Field synchronicity
and signal modeling 152 ■ Query parsers and signal
discordance 153 ■ Tuning term-centric search 155

6.4 Solving signal discordance in term-centric search 157
Combining fields into custom all fields 157 ■ Solving signal
discordance with cross_fields 161

6.5 Combining field-centric and term-centric strategies:
having your cake and eating it too 162
Grouping “like fields” together 163 ■ Understanding the limits of
like fields 164 ■ Combining greedy naïve search and conservative
amplifiers 166 ■ Term-centric vs. field-centric, and precision vs.
recall 168 ■ Considering filtering, boosting, and reranking 168

6.6 Summary 169

7 Shaping the relevance function 170
7.1 What do we mean by score shaping? 171
7.2 Boosting: shaping by promoting results 172

Boosting: the final frontier 173 ■ When boosting—add or
multiply? Boolean or function query? 174 ■ You choose door A:
additive boosting with Boolean queries 176 ■ You choose door B:
function queries using math for ranking 179 ■ Hands-on with
function queries: simple multiplicative boosting 180 ■ Boosting
basics: signals, signals everywhere 182

7.3 Filtering: shaping by excluding results 182
7.4 Score-shaping strategies for satisfying business needs 184

Search all the movies! 185 ■ Modeling your boosting signals 186
Building the ranking function: adding high-value tiers 189
High-value tier scored with a function query 193 ■ Ignoring
TF × IDF 194 ■ Capturing general-quality metrics 195

CONTENTS xi
Achieving users’ recency goals 197 ■ Combining the
function queries 200 ■ Putting it all together! 202

7.5 Summary 203

8 Providing relevance feedback 204
8.1 Relevance feedback at the search box 206

Providing immediate results with search-as-you-type 206
Helping users find the best query with search completion 207
Correcting typos and misspellings with search suggestions 215

8.2 Relevance feedback while browsing 218
Building faceted browsing 219 ■ Providing breadcrumb
navigation 221 ■ Selecting alternative results ordering 222

8.3 Relevance feedback in the search results listing 223
What information should be presented in listing items? 224
Relevance feedback through snippets and highlighting 225
Grouping similar documents 228 ■ Helping the user when
there are no results 230

8.4 Summary 231

9 Designing a relevance-focused search application 232
9.1 Yowl! The awesome new start-up! 233
9.2 Gathering information and requirements 234

Understand users and their information needs 234
Understand business needs 236 ■ Identify required and
available information 236

9.3 Designing the search application 238
Visualize the user’s experience 239 ■ Define fields and
model signals 241 ■ Combine and balance signals 242

9.4 Deploying, monitoring, and improving 252
Monitor 253 ■ Identify problems and fix them! 254

9.5 Knowing when good is good enough 255
9.6 Summary 256

10 The relevance-centered enterprise 257
10.1 Feedback: the bedrock of the relevance-centered

enterprise 259
10.2 Why user-focused culture before data-driven

culture? 261

CONTENTSxii
10.3 Flying relevance-blind 263
10.4 Relevance feedback awakenings: domain experts

and expert users 265
10.5 Relevance feedback maturing: content curation 267

The role of the content curator 268 ■ The risk of
miscommunication with the content curator 269

10.6 Relevance streamlined: engineer/curator pairing 270
10.7 Relevance accelerated: test-driven relevance 272

Understanding test-driven relevance 272 ■ Using test-driven
relevance with user behavioral data 275

10.8 Beyond test-driven relevance: learning to rank 276
10.9 Summary 277

11 Semantic and personalized search 279
11.1 Personalizing search based on user profiles 281

Gathering user profile information 282 ■ Tying profile
information back to the search index 282

11.2 Personalizing search based on user behavior 283
Introducing collaborative filtering 283 ■ Basic collaborative
filtering using co-occurrence counting 284 ■ Tying user behavior
information back to the search index 289

11.3 Basic methods for building concept search 293
Building concept signals 294 ■ Augmenting content
with synonyms 295

11.4 Building concept search using machine learning 296
The importance of phrases in concept search 297

11.5 The personalized search—concept search
connection 298

11.6 Recommendation as a generalization of search 299
Replacing search with recommendation 300

11.7 Best wishes on your search relevance journey 301
11.8 Summary 302

appendix A Indexing directly from TMDB 303
appendix B Solr reader’s companion 309

index 323

foreword
Over the last decade, search has become ubiquitous—the keyword search box has
evolved to become the de facto UI for exploring data and for navigating most websites
and applications. At the same time, delivering a truly relevant search experience has
been elusive, if not a critical blind spot for most organizations.

 Powerful open source technologies have arisen to deliver fast, feature-rich search
(Apache Lucene) in a distributed, highly scalable way with little-to-no coding required
(Apache Solr and later Elasticsearch). This has provided the necessary infrastructure
for almost any developer to build a “generally relevant” real-time search engine for
the big data era. As more of the hard search infrastructure problems have been solved
and their solutions commoditized, the competitive differentiators have moved away
from providing fast, scalable search and more toward delivering the most relevant
matches for a user’s information need. In other words, delivering “generally relevant”
results is no longer sufficient—Google and other top search engines have now trained
users to expect search applications to almost read their minds. This book is about how
to move more aggressively in that direction of understanding user intent.

 Doug Turnbull and John Berryman are two highly experienced search and rele-
vancy experts whom I’ve known for years, typically running into each other at search
conferences where we’ve all presented. I fondly recall times spent with them discuss-
ing ideas to solve some of the world’s hardest problems in search relevancy, recom-
mendations, and personalization. No one is more excited than I to see their unique
expertise codified in this book—one of the best and most engaging technical books
I’ve ever read.
xiii

FOREWORDxiv
 Relevancy tuning is a hard problem—it’s usually misunderstood, and it’s often not
immediately obvious when something is wrong. It usually requires seeing many bad
examples to identify problematic patterns, and it’s often challenging to know what
better results would look like without actually seeing them show up. Unfortunately, it’s
often not until well after a search system is deployed into production that organiza-
tions begin to realize the gap between out-of-the-box relevancy defaults and true
domain-driven, personalized matching.

 Not only that, but the skillsets needed to think about relevancy (domain expertise,
feature engineering, machine learning, ontologies, user testing, natural language pro-
cessing) are very different from those needed to build and maintain scalable infra-
structure (distributed systems, data structures, performance and concurrency, hardware
utilization, network calls and communication). The role of a relevance engineer is
almost entirely lacking in many organizations, leaving so much potential untapped for
building a search experience that truly delights users and significantly moves a com-
pany forward.

 The spectrum of personalization between manually entered keyword searches
and completely automated recommendations is also rich with opportunities to
deliver relevant matches crafted for each specific user’s needs. The authors do a
great job of explaining some of the more nuanced ways that search features/signals
can be modeled to take full advantage of this spectrum. With the techniques in this
book, you will be well-equipped to take on the role of a relevance engineer and solve
many of the most challenging problems inherent in creating a truly personalized,
relevant search experience.

TREY GRAINGER

AUTHOR, SOLR IN ACTION

SENIOR VICE PRESIDENT OF ENGINEERING AT LUCIDWORKS

preface
John and I met while working together as consultants for OpenSource Connections
(OSC) solving tough search problems for clients. Sometimes we triaged perfor-
mance (make it go faster!). Other times we helped build out a search application.
All of these projects had simple-to-measure success metrics. Did it go faster? Is the
application complete?

 Search relevance, though, doesn’t play by these rules. And users, raised in the age
of Google, won’t tolerate “good enough” search. They want “damn smart” search. They
want search to prioritize criteria they care about, not what the search engine often
idiotically guesses relevant.

 Like moths attracted to a flame, we both felt drawn to this hard problem. And just
like said moths, we often found ourselves burned. Through these painful lessons, we
persevered and grew, succeeding at tasks we initially considered too difficult.

 During this time, we also found our voices on OSC’s blog. We realized that little
was being written about search relevance problems. We developed ideas such as test-
driven relevancy. We documented our headaches, our problems, and our triumphs.
Together we experimented with machine learning approaches, like latent semantic
analysis. We dove into Lucene’s guts and explored techniques for building custom
search components to solve problems. We began exploring information retrieval
research. As we learned more techniques to solve hard problems, we continued to
write about them.

 Still, blogs have their limits. John and I always hoped to express our ideas more
systematically in book form. Luckily, we experienced one of those funny chains of
xv

PREFACExvi
events that often lead to opportunity knocking. I presented on Python concurrency
at a local tech meet-up along with Andrew Montalenti. Since Andrew was giving this
talk at PyCon, Manning called Andrew to discuss writing a book on Python concur-
rency. Andrew said he wasn’t interested in writing a book, but perhaps his copre-
senter Doug would be.

 It turns out I also wasn’t interested in writing a Python concurrency book, but I did
have an idea for another book. I approached John with the idea, and a couple of con-
versations later, we’d pulled together a pretty motivating book proposal—and the rest
is history!

 That momentous phone call with Manning occurred nearly two years ago. And
what a roller-coaster ride it’s been. As these things go, we bundled the book with other
major life transitions. Both of us added babies to our families. I began a relevance con-
sulting practice. John switched jobs, becoming Eventbrite’s resident search expert.
Still, we couldn’t resist writing about this fascinating topic.

 You’ll find this book unlike others on tech topics. This book won’t be an enu-
meration of one technology’s features. It’s more of a map through our years of
pain, solving the hard problems that had no ready answers. In other words, we’ve
walked through the search relevancy desert, stumbled upon the many oases, and
learned how to avoid the sand people and the Stormtroopers.

 We present to you this map through the desert, so you don’t get quite as lost as we
did. Now excuse us while we hunt for the nearest beach to take a nap on …

DOUG TURNBULL

acknowledgments
Weeks before we began Relevant Search, both of us welcomed new babies into our fam-
ilies. Our deepest thanks and love go to our spouses, Khara Turnbull and Kumiko Ber-
ryman. They suffered through many consecutive weekends of book writing—all while
Khara finished her own book and Kumiko managed a cross-country move and a home
sale. Time for a big vacation!

Relevant Search wouldn’t be possible without OpenSource Connections founder
Eric Pugh. As our “boss,” he pushed us into the limelight to write, speak, and solve the
big problems. As a leader, Eric makes your passion his passion. Without Eric taking
the training wheels off (and sometimes insisting on a unicycle), we wouldn’t have real-
ized how capable we are as writers or problem solvers. Eric has taught us that every-
body can be a thought leader, including us.

 Thanks to TMDB for its data and support. We spent a lot of time trying to find
good data sets. TMDB (http://themoviedb.org) not only provides a rich search data
set, but also supported us and our early readers as we ferreted out bugs and issues,
usually in our own code. Travis Bell, in particular, deserves our thanks for responding
promptly to our issues and emails.

 Writing books is a team sport, and we’d like to thank everyone at Manning on team
Relevant Search: Marina Michaels, our development editor; Aaron Colcord, technical
development editor; Valentin Crettaz, technical proofreader; Frank Pohlmann and
Mike Stephens, acquisitions editors; and Candace Gillhoolley in marketing.

 We would also like to thank the many reviewers who read early drafts of the book
and provided helpful suggestions, including John Guthrie, Martin Beer, Arthur Zubarev,
xvii

http://themoviedb.org

ACKNOWLEDGMENTSxviii
Elman Krinker, Amit Lamba, Marc-Oliver Scheele, Ian Stirk, Joseph Wang, Stuart
Woodward, Ursin Stauss, Russ Cam, Michael Fink, Gregor Zurowski, Dimitrios Kouzis-
Loukas, Jeremy Gailor, and Keith Webster.

 Additional thanks go to Andrew Montalenti, who connected us with Manning.
Thanks to Shay Banon, creator of Elasticsearch for his support, and frankly, for just
being a nice guy. Thanks to colleagues Trey Grainger, Matt Overstreet, Rena Morse,
David Smiley, Grant Ingersoll, Yonik Seeley, Rene Kriegler, Peter Dixon-Moses, Charlie
Hull, and Drew Farris for many great conversations about search and relevance through
the years. And special thanks to Trey for contributing the foreword to our book.

 Thanks to everyone in our families for your support. Especially to our children:
Megume Berryman, Ian Turnbull, and Murray Turnbull. Thanks to our “work fami-
lies” at OpenSource Connections and Eventbrite, for letting us invest significant men-
tal and professional energy into this book.

about this book
Relevant Search teaches you to respond to users’ searches with content that satisfies and
sells. You’ll learn to tightly control search results ranking based on your criteria
instead of the mystical whims of the search engine. We outline an approach for deeply
customizing Solr or Elasticsearch relevance ranking as well as methods to help you dis-
cover what relevant means for your application.

Who should read this book
Relevant Search is for Solr or Elasticsearch developers stuck wondering why the search
engine doesn’t “get” their users’ searches. Readers with at least a basic familiarity of
their search engine can use this book to take their skills to the next level. Although
this book is technical, a great deal of its content frames relevance from an organiza-
tional and product-strategy point of view—for product managers, content strategists,
marketing, or domain experts focused on search.

How this book is organized
We organize Relevant Search by progressing through a technical foundation, and build-
ing up to product strategy and cultural issues you’ll face when defining and solving
search relevance. The book ends with next steps: how to get started with personalized
search, semantic search, and recommendations.
xix

ABOUT THIS BOOKxx
 Chapter 1 starts by discussing the problem of relevance. It reflects on domains
such as web search, e-commerce, and expert search. The chapter discusses the extent
that academia supports our attempts at relevance. Finally, we outline our book’s tech-
nical strategy for solving relevance.

 Chapter 2 provides a quick review of Lucene’s core data structures and algorithms,
as they pertain to relevance. You’ll see how Lucene-based search provides an incredi-
ble framework for finding relevant content.

 Chapter 3 teaches you how to debug your relevance. When the data structures and
algorithms introduced in chapter 2 don’t work, you’ll need to reach for your tool belt
to understand where search broke down.

 Chapter 4 shows you how to decompose content and searches into descriptive fea-
tures by using the search engine’s analysis process. This fundamental skill teaches you
how to use analysis to make anything findable.

 Chapter 5 begins the discussion of query strategies over multiple fields. In this
chapter, we teach you how to construct queries that measure specific, search-time
ranking factors important to your users.

 Chapter 6 continues our discussion on query strategies. Here we focus on term-
centric techniques, search strategies that support users’ naïve understanding of
relevance.

 Chapter 7 demonstrates score-shaping techniques such as boosting and filtering.
You’ll often need to manipulate search by emphasizing recent content, profitable
products, or nearby locations.

 Chapter 8 shows you alternate paths to guide users to relevant content. Sometimes
UI components such as browsable facets, autocomplete, and highlighting can be sim-
pler ways to steer users in the right direction when relevance ranking doesn’t succeed.

 Chapter 9 builds a full, relevance-focused search application that will leave you
Yowling with insights. Now that you’re steeped in the skills of a relevance engineer,
you’ll see the full product development process from start to finish.

 Chapter 10 steps a level higher from product strategy to focus on cultural and
organizational factors. How does the search-focused organization determine what’s
relevant? You’ll see that the organization must implement fast and accurate feedback
loops to steer the relevance engineer’s efforts.

 Chapter 11 points you beyond the search engine. You’ll get an introduction to how
machine learning, personalization, and semantic search can work together to enhance
the search engine’s relevance ranking.

 Appendix A walks you through the step-by-step process we went through to load
the book’s data into Elasticsearch through The Movie Database (TMDB) API.

 Appendix B guides the Solr reader through the book by mapping between Elastic-
search and Solr relevance features.

ABOUT THIS BOOK xxi
About the code
This book contains many examples of source code, both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight what has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from
the listings when the code is described in the text. Code annotations accompany many
of the listings, highlighting important concepts.

 Examples have been tested with Elasticsearch 2.0 and Python 2.7.
 You can find code for chapters 3–9 on the Manning website (www.manning.com/

books/relevant-search) and in our book’s GitHub repository (http://github.com/
o19s/relevant-search-book). Examples are written in iPython Notebook/Jupyter to
allow easy experimentation. The README file details how to set up the code’s pre-
requisites.

Author Online
The purchase of Relevant Search includes free access to a private forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and other users. To access and subscribe to
the forum, point your browser to www.manning.com/books/relevant-search. This
page provides information on how to get on the forum once you’re registered, what
kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remains voluntary (and unpaid).
We suggest you try asking them challenging questions, lest their interests stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

Other online resources
If you’d like to learn more, we recommend several high-quality resources:

■ OpenSource Connection’s blog (http://opensourceconnections.com/blog)
■ John Berryman’s personal blog (http://thoughtbox.solutions)
■ Elastic’s blog (www.elastic.co/blog)
■ Lucidwork’s blog (https://lucidworks.com/blog)
■ Salmon Run, Sujit Pal’s Solr blog (http://sujitpal.blogspot.com/)
■ The Solr Start newsletter (www.solr-start.com)

http://opensourceconnections.com/blog
http://thoughtbox.solutions
https://www.elastic.co/blog
https://lucidworks.com/blog
http://sujitpal.blogspot.com/
http://www.solr-start.com
http://www.manning.com/books/relevant-search
http://www.manning.com/books/relevant-search
http://github.com/o19s/relevant-search-book
http://github.com/o19s/relevant-search-book
http://www.manning.com/books/relevant-search
http://www.manning.com/books/relevant-search

ABOUT THIS BOOKxxii
On the more general topic of search and information retrieval, we recommend this
canonical text:

■ Introduction to Information Retrieval by Christopher Manning et al. (Cambridge
University Press, 2008), http://nlp.stanford.edu/IR-book/.

For questions specific to Solr/Elasticsearch, we recommend the discussion forums for
each technology:

■ Elasticsearch: http://discuss.elastic.co
■ Solr: http://lucene.apache.org/solr/resources.html

http://nlp.stanford.edu/IR-book/
http://discuss.elastic.co
http://lucene.apache.org/solr/resources.html

about the authors
Doug Turnbull leads a search relevance consulting practice at
OpenSource Connections, where he frequently speaks and blogs.
Doug builds relevant, semantically enriched search experiences
for clients across multiple domains using a variety of search and
NLP technology.

John Berryman’s first career was as an aerospace engineer, but
after several years in aerospace, he found that he most loved his
job when programming or when working on a good math prob-
lem. Eventually, John cut out the aircraft and satellites and
started working full-time with software development, infrastruc-
ture architecture, and search technology. These days, John works
at Eventbrite, helping to build out event discovery, search, and
recommendations using Elasticsearch.
xxiii

about the cover illustration
The figure on the cover of Relevant Search is captioned “Homme de l’Isle de Pathmos,”
or a man from the island of Patmos in Greece. The illustration is taken from a collec-
tion of dress costumes from various countries by Jacques Grasset de Saint-Sauveur
(1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustra-
tion is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
collection reminds us vividly of how culturally apart the world’s towns and regions
were just 200 years ago. Isolated from each other, people spoke different dialects and
languages. In the streets or in the countryside, it was easy to identify where they lived
and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxiv

The search
relevance problem
Getting a search engine to behave can be maddening. Whether you’re just getting
started with Solr or Elasticsearch, or you have years of experience, you’ve likely
struggled with low-quality search results. Out-of-the-box settings haven’t met your
needs, and you’ve fought to deliver even marginally relevant search results.

 When it comes to relevance ranking, a search engine can seem like a mystical
black box. It’s tempting to ignore relevance problems—turning the focus away
from search and toward other, less mystical parts of the application such as perfor-
mance or the UI. Unfortunately, the work of search relevance ranking can’t be

This chapter covers
■ The ubiquity of search (search is all around us!)
■ The challenge of building a relevant search

experience
■ Examples of this challenge for prominent

search domains
■ The inability of out-of-the-box solutions to solve

the problem
■ This book’s approach for building relevant

search
1

2 CHAPTER 1 The search relevance problem
avoided. Users increasingly need to work with large amounts of content in today’s
applications. Whether this means products, books, log messages, emails, vacation rent-
als, or medical articles—the search box is the first place your users go to explore and
find answers. Without intuitive search to answer questions in human terms, they’ll be
hopelessly lost. Thus, despite the maddening, seemingly mystical nature of search, you
have to find solutions.

Relevant Search demystifies relevance. What exactly is relevance? It’s at the root of
the search engine’s value proposition. Relevance is the art of ranking content for a
search based on how much that content satisfies the needs of the user and the busi-
ness. The devil is completely in the details. Ranking search results for what content?
(Tweets? Products? Beanie Babies?) For what sorts of users? (Doctors? Tech-savvy
shoppers?) For what types of searches? (Written in Japanese? Full of grocery brands?
Filled with legal jargon?) What do those users expect? (A shopping experience? A
library card catalog?) And what does your employer hope to get out of this interac-
tion? (Money? Page views? Goodwill?) Search has become such a ubiquitous part of
our applications, creeping in inch by inch without much fanfare. Answering these
questions (getting relevance right) means the difference between an engaging user
experience and one that disappoints.

1.1 Your goal: gaining the skills of a relevance engineer
How will you get there? Relevant Search teaches you the skills of a relevance engineer. A
relevance engineer transforms the search engine into a seemingly smart system that
understands the needs of users and the business. To do this, you’ll teach the search
engine your content’s important features: attributes such as a restaurant’s location,
the words in a book’s text, or the color of a dress shirt. With the right features in
place, you can measure what matters to your users when they search: How far is the
restaurant from me? Is this book about the topic I need help with? Will this shirt
match the pants I just bought? These search-time ranking factors that measure what
users care about are called signals. The ever-present challenge, you’ll see, is selecting
features and implementing signals that map to the needs of your users and business.

 But technical wizardry is only part of the job (as shown in figure 1.1). Understand-
ing what to implement can be more important than how to do so. Ironically, the rele-
vance engineer rarely knows what “relevant” means for a given application. Instead,
others—usually nontechnical colleagues—understand the content, business, and users’
goals. You’ll learn to advocate for a relevance-centered enterprise that uses this broader
business expertise as well as user behavioral data to reveal the experience that users
need from search.

 We refine these concepts later in the chapter (and throughout this book). But to
help set the right foundation, the remainder of this chapter defines the relevance
problem. Why is relevance so hard? What attempts have been made to solve it? Then
we’ll switch gears to outline this book’s approach to solving relevance.

3Why is search relevance so hard?
1.2 Why is search relevance so hard?
Search relevance is such a hard problem in part because we take the act of searching
for granted. Search applications take a user’s search queries (the text typed into the
search bar) and attempt to rank content by how likely it will satisfy.

 This act occurs so frequently that it’s barely noticed. Reflect on your own experi-
ences. You probably woke up this morning, made your coffee, and started fiddling
with your smartphone. You looked at the news, scanned Facebook, and checked your
email. Before the coffee was even done brewing, you probably interacted with a dozen
search applications without much thought. Did you send a message to a friend that
you found in your phone’s contact list? Search for a crucial email? Talk to Siri? Did
you satisfy your curiosity with a Google search? Did you shop around for that dream
50-inch flat-screen TV on Amazon?

 In a short time, you experienced the product of many thousands of hours of engi-
neering effort. You engaged with the culmination of an even larger body of academic
research that goes back a century in the field of information retrieval. Standing on the
shoulders of giants, you sifted through millions of pieces of information—the entire
human collection of information on the topic—and found the best reviewed and most
popular TV in mere minutes.

In
d
ex

in
g Query

Respon
se

SEARCH

ENGINE

Users

Stakeholders/
partners

Content
curatorSearch

engineer
Document

store

title: Som
Mothera
date:
2015.8.13
body: Bacon
can't beat
the ti..

title: Som
Mothera
date:
2015.8.13
body: Bacon
can't beat
the ti..

title: Best
Beaches for
Summer
date:
2015.8.13
body: In the
hot summer
months...

sentiment:positive

location:Barcelona

cluster-id:31536

Documents

Figure 1.1 The relevance engineer works with the search engine and back-end
technologies to express business-ranking logic. They collaborate on relevance closely
with a cross-functional team and are informed heavily by user metrics.

4 CHAPTER 1 The search relevance problem
 Or maybe you didn’t have such a great experience. It’s just as likely that you found
at least some of your search experiences frustrating. Maybe you couldn’t find a con-
tact on your phone because of a simple spelling mistake. Maybe the search engine
didn’t understand your idea of a dream TV. In frustration you gave up, uninstalling
the application while thinking, “Why should a reasonable search be so difficult?”

 In reality, a “simple” search that appears “reasonable” to users often requires
extensive engineering work. Users expect a great deal out of search applications. Our
search applications are asked, within the blink of an eye, to understand what informa-
tion users want based on a few hastily entered search terms. To make it worse, users
lack time to comb through dozens of search results. Users try your search a few fleet-
ing times, quickly getting frustrated if it seems the search doesn’t bring back what
they’re looking for. Your window for delivering relevant search results is small and
always shrinking.

 You might be thinking, “Sure the problem seems hard, but why isn’t it easily solved?”
Search has been around for a while; shouldn’t a search engine such as Solr or Elastic-
search always return the right result? Or why not just send users to Google? Why won’t
a canned, commercial solution such as Amazon’s A9 solve your search problems?

1.2.1 What’s a “relevant” search result?

We’re easily tricked into seeing search as a single problem. In reality, search applica-
tions differ greatly from one another. It’s true that a typical search application lets
the user enter text, filter through documents, and interact with a list of ranked
results. But don’t be fooled by superficial appearances. Each application has dramat-
ically different relevance expectations. Let’s look at some common classes of search
applications to appreciate that your application likely has its own unique definition
of relevance.

 First, let’s consider web search. As the web grew, early web search engines were easily
tricked by unsavory sites. Shady site creators stuffed phrases into their pages to mis-
lead the search engine. At best, early search engines returned any old match for a user
query. At worst, they led users to spammy or malicious web pages.

 Google realized that relevance for the web depended on trust, not just text. Users
needed help sifting through the untrustworthy riffraff on the web. So Google developed
its PageRank algorithm1 to measure the trustworthiness of content. PageRank computes
this trustworthiness score by determining how much the rest of the web links to a site.
Using PageRank, Google brings back not only content that matches the user’s search,
but content that’s seen as reliable and trustworthy by the rest of the web. This empha-
sis on returning trustworthy content continues today as Google plays a cat-and-mouse
game with malicious websites that continually attempt to game the system.

1 Read more at “The Anatomy of a Large-Scale Hypertextual Web Search Engine” by Sergey Brin and Lawrence
Page at http://infolab.stanford.edu/~backrub/google.html.

http://infolab.stanford.edu/~backrub/google.html

5Why is search relevance so hard?
 Now let’s contrast web search to e-commerce. A site such as Amazon, which has com-
plete control over the content being searched, lacks the dire trustworthiness concern.
Instead, what’s relevant to e-commerce users is the same thing that matters to any kind
of shopper: affordable, highly rated products that will satisfy them. But it’s not just the
shoppers that matter to a store. E-commerce sites have their own selfish interests.
They must also return search results that generate profit, clear expiring inventory, and
satisfy supplier relationships.

 Search becomes the e-commerce site’s salesperson. The same priorities that matter
to the in-store sales experience must be programmed into the e-commerce search by
the relevance engineer. The relevance engineer hopes to build a search that under-
stands what shoppers want, so that they’ll leave the store with satisfactory purchases.
To e-commerce, relevant means not just leading users to satisfactory purchases, but
also making a buck.

 Still another kind of search, prominent in medicine, law, and research, digs deeper
into text for its definition of relevance. This expert search depends on understanding
jargon entered by specialists such as lawyers or doctors. These solutions must under-
stand the subtle, domain-specific relationships—for instance, that “Heart Attack” is
the same thing as “Myocardial Infarction”. Or that acute “Myocardial Infarction” is a
specific type of “Heart Attack”.

 Just as e-commerce search mirrors a shopper’s interactions with a salesperson,
expert search parallels a searcher’s conversation with a research librarian. These
librarians understand the lingo of specialized researchers. When asked a question,
they guide specialists toward data and related research that specialists couldn’t easily
find on their own.

 The basic definition of relevant to these search applications depends on solutions
originally intended to organize information for libraries. For example, in medicine, the
Medical Subject Headings (MeSH) taxonomy shown in figure 1.2 organizes medical
concepts to help retrieve information on synonymous, more-specific, or less-specific sub-
jects. To expert search, relevant means carefully linking subjects and topics between

• Cardiovascular stroke

• Cardiovascular strokes

• Stroke, cardiovascular

• Strokes, cardiovascular

• Heart attack

• Heart attacks

• Myocardial infarct

• Infarct, myocardial

• Myocardial infarcts

Words closely related

to myocardial infarction

All MeSH categories

Diseases category

Cardiovascular diseases

Heart diseases

Myocardial ischemia

Myocardial infarction

Anterior wall myocardial infarction

Inferior wall myocardial infarction

Shock, cardiogenic

A portion of the MeSH hierarchy

containing myocardial infarction

Figure 1.2 MeSH categorization of “Myocardial Infarction” (left) along with several
MeSH topics closely related to “Myocardial Infarction”
www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 The search relevance problem
search queries and content. A relevant result is something that delivers an “Aha!”
moment to stuck researchers—a sudden insight they couldn’t easily find on their own.

1.2.2 Search: there’s no silver bullet!

The classes of search problems we’ve just discussed only scratch the surface in the
amazing diversity of search. Is real-estate search a kind of e-commerce search? Cer-
tainly there’s a resemblance (satisfying users with a satisfactory purchase), but many
other factors come into play for a house buyer (good schools, neighborhood, number
of bedrooms). What about a local restaurant search application? Or searching for gro-
ceries? Ordering food from a restaurant’s menu? Searching volunteer opportunities?
Or searching for someone to shovel the driveway after a snowstorm? What about intra-
net search? And what about your application? How do you define what’s relevant?

 Given this dramatic diversity of relevance requirements, it’s surprising to find so
many vendors eager to deliver a surefire, silver-bullet solution. Your definition of rele-
vant is likely far more unique than you realize. Your users have expectations they may
not even be aware of. Your content and business carry challenges you haven’t appre-
ciated yet.

 Indeed, be grateful that Solr or Elasticsearch don’t work well for your problem out
of the box. You didn’t choose a programming language because your product is just a
module to import from its standard library. If that were true, there’d be nothing
unique about your product! Rather, think of Solr or Elasticsearch as a search program-
ming framework. An open source search engine lets you program your understanding
of what’s relevant into the search engine. We’ll teach you just that: the art and science of
delivering a relevance solution by using open source search technologies that satisfy
users and meet business goals.

1.3 Gaining insight from relevance research
Okay, so you see that your application has its own definition of what’s relevant. But
why is there no universal, defined practice for delivering relevant search results to
users? Search the web, and you’ll find any number of one-off solutions that solved any
author’s problem particularly well. What you’re not left with is a sense that search rel-
evance has any holistic grounding or common engineering principles but is instead a
bag of tricks that can’t be generally applied.

 In reality, there is a discipline behind relevance: the academic field of information
retrieval. It has generally accepted practices to improve relevance broadly across many
domains. But you’ve seen that what’s relevant depends a great deal on your applica-
tion. Given that, as we introduce information retrieval, think about how its general
findings can be used to solve your narrower relevance problem.2

2 For an introduction to the field of information retrieval, we highly recommend the classic text Introduction to
Information Retrieval by Christopher D. Manning et al. (Cambridge University Press, 2008); see http://nlp.stanford
.edu/IR-book/.

http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/

7Gaining insight from relevance research
1.3.1 Information retrieval

Luckily, experts have been studying search for decades. The academic field of infor-
mation retrieval focuses on the precise recall of information to satisfy a user’s informa-
tion need. What’s an information need? Think of it as a specification of the ideal content
that would satisfy the user’s search. This specification goes beyond the search string
itself. For example, consider a programming problem you’re attempting to solve. You
might be trying to figure out why the Java library function sort throws a NullPointer-
Exception. The information need could be specified as follows:

A solution as to why my particular use of the sort method causes a
NullPointerException. (Though I won’t admit it to myself, it’d be nice to
have some code to copy-paste that solved my problem so I can go to lunch!)

To satisfy this information need, you’re likely to formulate search queries to find solu-
tions to your particular problem—for example, “sort method NullPointerException”
or “<code snippet> NullPointerException.” If you’re fortunate, you’ll find a result
addressing a problem similar to your own. That information will solve your problem,
and you’ll move on.

 In information retrieval, relevance is defined as the practice of returning search
results that most satisfy the user’s information needs. Further, classic information
retrieval focuses on text ranking. Many findings in information retrieval try to mea-
sure how likely a given article is going to be relevant to a user’s text search. You’ll
learn about several of these invaluable methods throughout this book—as many of
these findings are implemented in open source search engines.

 To discover better text-searching methods, information retrieval researchers
benchmark different strategies by using test collections of articles. These test collec-
tions include Amazon reviews, Reuters news articles, Usenet posts, and other similar,
article-length data sets. To help benchmark relevance solutions, these collections
have been heavily annotated in an experimental search setting, grading which
results are most relevant for a given query. For example, when searching for “Mitt
Romney,” news articles about his 2008 or 2012 presidential run would be considered
highly relevant. Perhaps articles about Romney’s early management consulting work
would be considered moderately relevant. Articles that discuss his father, George
Romney, likely would be graded much less relevant. These annotated lists of search
results that are relevant with respect to a set of queries are known as judgment lists
(see figure 1.3).

 Using judgment lists, researchers aim to measure whether changes to text rele-
vance calculations improve the overall relevance of the results across every test collec-
tion. To classic information retrieval, a solution that improves a dozen text-heavy test
collections 1% overall is a success. Rather than focusing on one particular problem in
depth, information retrieval focuses on solving search for a broad set of problems.

8 CHAPTER 1 The search relevance problem
1.3.2 Can we use information retrieval to solve relevance?

You’ve already seen there’s no silver bullet. But information retrieval does seem to sys-
tematically create relevance solutions. So ask yourself: Do these insights apply to your
application? Does your application care about solutions that offer incremental, gen-
eral improvements to searching article-length text? Would it be better to solve the spe-
cific problems faced by your application, here and now?

 To be more precise, classic information retrieval begs several questions when
brought to bear on applied relevance problems. Let’s reflect on these questions to see
where information retrieval research can help and where it might stop being helpful.

■ Do we care only about information needs? For many applications, satisfying users’
information needs isn’t the only goal. Search exists just as much to satisfy the
business behind the search application. You saw this with e-commerce earlier.
Although it’s often said “the customer is always right,” it’s also true that busi-
nesses can’t function without selling ads, making a profit, satisfying suppliers,

Searches to be evaluated

Content expert provides
judgment of relevance

of this result.

Figure 1.3 Example of making a relevance judgment for the query “Rambo” in Quepid, a
judgment list management application

9Gaining insight from relevance research
and moving inventory. Many incentives exist in any search experience that puts
business needs above the user’s information needs. Just like the used-car sales-
men trying to move an overpriced clunker off the lot, relevance engineers must
work with these factors to keep their employer in business.

■ What besides text reflects information needs? Classic information retrieval focuses on
a generic, one-size-fits-all measure of text relevance. These factors may not mat-
ter—at all—to your application. You need to focus with greater care on your
specific problems. We discussed one example: how Google revolutionized web
search by incorporating a numerical website trust measure (PageRank). Google
uses PageRank to get around pure text-based measures easily gamed in its
domain. Even text search doesn’t always neatly fit into information retrieval’s
focus on article-length text. Good results for short text snippets such as tweets
or titles require different thinking. You, not information retrieval researchers,
must decide which factors matter to your application, and implement those. An
approach that does poorly against the Reuters test set may be exactly what you
need to satisfy your users.

■ What does the user experience imply about information needs? Often the promises of
the application itself influence what users consider relevant. We discussed
expert search earlier. Consider two medical search applications. Both serve the
same users (doctors). Both hold the same content (medical articles). But
there’s one important difference: one helps doctors serve sick patients at their
bedsides, and the other allows doctors to explore their research interests casu-
ally in their offices. These dramatically different expectations mean a different
understanding of what’s relevant for the same search queries. A search for
“heart attack” at the patient’s bedside must provide actionable, reliable solu-
tions to a dire, life-and-death problem. The research application allows for
more variety: doctors search for “heart attack” to explore interesting and new
research findings less tied to solving specific problems.

Often the hardest part of being a relevance engineer is understanding the rela-
tionship between context and information needs. User searches arrive at your
search engine with a great deal of baggage attached. This baggage comes in part
as additional data, perhaps geolocation or user session. But other baggage is
entirely implied in the promises made by the search application. Is the applica-
tion built, sold, and marketed for sitting casually at one’s desk and performing
research? Or is it instead billed as almost an expert system, ready, willing, and able
to solve any problem asked of it, including helping a doctor save a life?

Considering these questions, you can see that information retrieval builds a founda-
tion for applying generally useful relevance measures to extremely broad classes of
problems. Your job is to solve relevance for your application. As you’ll see, much of this
exists outside the realm of search technology and speaks to broader product strategy
questions: Who are our users? What do they expect from this application? What implied
and unspecified information needs will search need to address?

10 CHAPTER 1 The search relevance problem
 In fact, before we move on, let’s refine our definition of relevance to what it takes to
solve an applied relevance problem:

Relevance is the practice of improving search results for users by satisfying
their information needs in the context of a particular user experience, while
balancing how ranking impacts our business’s needs.

1.4 How do you solve relevance?
Informed now by information retrieval, let’s focus on how to solve your relevance
problems. Open source search engines recognize that what’s relevant to your applica-
tion depends on a broad range of factors. Many of these are application-specific (how
far the user is from a restaurant, for instance). Others are broader, generic, text-ranking
components from information retrieval.

 Given the capabilities of open source search, how do you solve an applied rele-
vance problem? What framework can we define that incorporates both the narrower,
domain-specific factors alongside broader information-retrieval techniques?

 To solve relevance, the relevance engineer:

1 Identifies salient features describing the content, the user, or the search query
2 Finds a way to tell the search engine about those features through extraction

and enrichment
3 At search time, measures what’s relevant to a user’s search by crafting signals
4 Carefully balances the influence of multiple signals to rank results by manipu-

lating the ranking function

This process is shown in figure 1.4.

In
d
ex

in
g Query

Resp

on
se

SEARCH

ENGINE

The duties of aDocument
store

Maintain
documents

Enrich

documents

Craft signals and
build ranking

functions

Monitor
user

behavior

Extract
features

(analysis)

star trek search

Star Trek

Wish Upon a Star

Star Search

SEARCH APPLICATION

Build an
engaging

applicationtitle: Som
Mothera
date:
2015.8.13
body: Bacon
can't beat
the ti..

title: Som
Mothera
date:
2015.8.13
body: Bacon
can't beat
the ti..

title: Best
Beaches for
Summer
date:
2015.8.13
body: In the
hot summer
months...

sentiment:positive

location:Barcelona

cluster-id:31536

relevance engineer
User

Documents

Figure 1.4 Relevance engineers select, enrich, or create important features from back-end
systems and express ranking signals in terms of those features.

11How do you solve relevance?
That sounds a bit abstract. What exactly do we mean? We discussed an example ear-
lier: how Google susses out the feature of PageRank for websites (step 1). This feature
is encoded in Google’s search engine alongside each web page (thus achieving step 2).
When you issue a search, Google measures many factors that you, with this search,
consider relevant (step 3). For example, Google uses PageRank directly as a trustwor-
thiness ranking signal. Other signals could include how frequently your search string
is mentioned in a page’s title/body or personalization factors using knowledge about
your preferences. Google blends all of these signals (step 4) into a bigger ranking
computation that orders search results in a way that it hopes you’ll find satisfactory.

 We discussed these ideas earlier in the chapter. But let’s lay down some more-precise
definitions. A feature is an attribute of the content or query. Features drive decisions.
Much of the engineering work in search relevance is in feature selection—the act of dis-
covering and generating features that give us the appropriate information when a
user searches.

 Those familiar with machine learning or classification may see something recogniz-
able in these features. When performing classification, you identify new features of your
data to make better classification decisions. Is a fruit a banana or an apple? If you know
the color is yellow, there’s a reasonable chance it’s a banana. If you add data about the
shape—round or long—then you can make an even more definitive decision. As you’ll
see, these features also help search solutions make definitive decisions about data.

 Features describe, but what happens when users search? With signals, you program
the search engine to rank by using your definition of what’s relevant. Signals measure
whether items are relevant for a given search (using features, of course!). For exam-
ple, in our fruit search engine, the user might search for “yellow fruit.” The search
engine must evaluate whether a Golden Delicious apple might be relevant for this
user. We know color matters to fruit shoppers, so one signal might measure how much
this fruit’s color corresponds to a color being searched for.

 It’s rare to have only one signal that measures relevance. More often, multiple sig-
nals combine to rank search results in the search engine’s ranking function. For exam-
ple, in addition to matching on color, perhaps the fruit shopper considers the
freshness of produce. Or the user might recall preferred brands, using that as an addi-
tional signal. We’ll teach you how to control the search engine’s ranking function to
rank results in a way that seems eerily “smart”—factoring in all the considerations (sig-
nals) that your users factor into their definitions of relevant.

 Fear not—we know these ideas are abstract right now. As you get your hands dirty
in future chapters, you’ll begin to have the Aha! moment you need to grok what we
mean. But to get the general idea, let’s consider examples of features, and how they
can be used as ranking-time search signals:

■ Sales data, user ratings—Features used to signal popular results that users will
probably be happier with.

■ Text with positional information—Used to signal when phrases from the user’s
query match the content.

12 CHAPTER 1 The search relevance problem
■ Text with synonyms—Whether synonyms of query terms match the content.
■ Geolocation—Whether something is near or far: Is the searcher close to the con-

tent? Is the sushi restaurant next to the user or in Manhattan?
■ Machine learning/classification features—Is the search more easily classified into

one type of content (a search for movies) and not easily classified into other
types (a search for lawn equipment)?

■ Personalization/recommendation—Has the user shown an affinity for any particu-
lar kind of content over others? Can you identify other users who are similar to
the user making a search? Perhaps the historic preferences of the user issuing a
search could be used as a signal to influence the search results.

As you work through future chapters, you’ll see an approach that systematically
improves search relevance based on selecting features and programming ranking
signals. To form a foundation for this work, we’ll first give you an overview of the
search engine’s internal mechanics and how to debug them in chapters 2 and 3.
Chapters 4–7 get at the meaty problems of building features and signals. In chapter 8,
we point out alternate strategies to guide users to relevant content when search by
itself won’t do.

 Throughout this book, we use Elasticsearch as our example search engine. Elastic-
search is a modern search engine built upon Lucene, a commonly used Java search
library. This book also applies to Solr, another search engine based on Lucene.
Though our examples focus on Elasticsearch, these ideas are generally applicable.
Solr readers in particular should follow along with appendix B, which helps map fea-
tures between the two search engines.

1.5 More than technology: curation, collaboration,
and feedback
Is a technical foundation enough to solve the search relevance problem? Armed with
new skills from this book, you might be hungry to improve your employer’s search.
Targeting what you think are the biggest relevance problems, you deliver to your users
what you consider to be an amazing search experience. You release your updates with-
out much fuss; to the organization, that’s yet another one of those heads-down, back-
end tasks that engineers go off and just figure out. It’s something akin to squeezing
more performance out of the SQL database, right?

 Unfortunately, shortly after the release, your boss is at your door. Things look
pretty grim. Despite your best efforts, something is deeply amiss. Somehow, users
aren’t making purchases. They can’t find the information they need. Instead, they’re
giving up and going to the competition. With revenue headed south, your boss grits
her teeth. In desperation, she looks at you square in the face and pleads for you to
“make it more relevant!” In other words, fix the bug, implement the feature—stay all
weekend if you have to; just make it work!

13More than technology: curation, collaboration, and feedback
 “Make it more relevant”? Let’s recall our definition of relevance. Perhaps if you med-
itate on this definition, you’ll see how the organization in this story misses the mark:

Relevance is the practice of improving search results for users by satisfying
their information needs in the context of a particular user experience, while
balancing how ranking impacts our business’s needs.

When you think about this definition, you quickly see that relevance engineers have no
idea what relevant search should be! To satisfy your users’ information needs, you need to
understand their goals, their domains, and the context of their searches. These could
vary wildly, from a doctor helping a struggling patient to a grandparent shopping for
baby shower presents. Satisfying these users means getting inside their heads. Under-
standing these users goes far beyond search technology, touching nearly every compe-
tence in the organization. This is especially true as you work to understand business
needs such as politics, profit, business goals, and other internal factors.

 Solving the search relevance problem requires shifting the organization’s culture
to emphasize cross-functional collaboration. How can the organization teach rele-
vance engineers to understand the users’ vernacular and what they expect from
search? What happens when the application is built for doctors or lawyers? Who helps
the engineer understand these users’ domains? How does the organization teach a
relevance engineer what makes the company the most money? Which suppliers
should be kept happy? What content has “premium” access in search (and what’s that
even supposed to mean)?

 Even seemingly mundane search applications can be fraught with these complica-
tions. Consider a restaurant search application. Your marketing colleagues worked
hard to bring users “into the doors” of your application. Now the search, acting as the
site’s salesperson (or perhaps concierge?), needs to satisfy them and make them eager
to come back for more.

 Relevance engineers, though, aren’t the sales department. When a user types
“sushi” into the search bar, what restaurants does that user expect? Takeout? High-end
restaurants? Nearby ones? Depends on the user? Others in the organization, not the
relevance engineer, understand what goals users hope to achieve. The relevance engi-
neer is working in isolation to define relevance ranking and might as well be painting
a house blindfolded.

 Further, this collaboration goes beyond simply educating the relevance engineer.
Curation, the manipulation of content to be easily found by user searches, can matter
just as much as teaching a relevance engineer. Recall the expert search examples ear-
lier in this chapter. Here the expertise of the librarian can help you build better
search by organizing content to make it easier to find. Often this organization
requires a close meeting of the minds between those who understand the content
deeply and the relevance engineers who grok how the search engine works.

 Rooted in these forms of collaboration is the notion of feedback. An effective orga-
nization strives to bring relevance engineers accurate and quick feedback to inform

14 CHAPTER 1 The search relevance problem
and guide their efforts. You can visualize several important feedback loops as a series
of increasingly focused circles, as shown in Figure 1.5. Starting on the outermost loop,
the search developers operate within an organization, blissfully unaware of the impact
of search relevance. As the organization evolves, it moves to inner, more mature forms
of feedback: incorporating user behavioral data and expert feedback. Finally, the
organization encodes its wisdom into relevance tests, enabling test-driven relevancy
practice—the most mature organizational form.

This book primarily teaches you about the technical craft of relevance engineers. But
reflecting on what you should be doing hopefully echoes in your mind as you learn
these technical lessons. In many examples, we state unequivocally that a particular
search result is what users want to see. We do this to teach you technical skills to
manipulate the search to get those results. As you work through those examples,
remember the examples in this section before applying lessons directly to your rele-
vance problems. We’ll dive deeper into organizational challenges in chapter 10.

1.6 Summary
■ Relevance problems are pervasive. Even established domains such as web search,

e-commerce, and expert search continue to struggle to improve the relevance
of search results.

■ Bringing users to relevant search results can turn into a multibillion-dollar busi-
ness advantage; failing to do so can mean losing out to the competition.

■ Information retrieval is the academic field of bringing users to content that satis-
fies their information needs, largely as specified in search queries.

Te
st

-driven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Figure 1.5 Forms of search-
relevance feedback

15Summary
■ In practice, relevance is more than satisfying information needs as specified by
searches. It also means satisfying business needs. Further, understanding a
user’s information needs often depends on implicit information, such as the
application’s context, purpose, marketing, and user experience.

■ Relevance can be achieved by identifying the valuable features of your content,
and using those features to compute relevance signals.

■ Technologists can’t do it alone. Based on business needs, the user audience,
and the content domain, the relevance engineer often doesn’t have the skills to
evaluate what content is relevant for user searches.

■ Feedback is vital. From the perspective of the relevance engineer, measuring
the impact of relevance changes helps avoid delivering poor search to users.

Search—under the hood
Search is a conversation between a user and a search engine. The user attempts to
satisfy an information need by providing search with appropriate constraints
describing relevant content. The search engine uses those constraints to collect
matches, providing them to the user. If the user is satisfied with a match, that user
will inspect individual items in further detail. Otherwise, the user will refine the
search criteria and try again. Your work is to facilitate this conversation. You must
ensure that search results are relevant and you must help users understand why
results match, enabling them to refine their searches.

This chapter covers
■ Basic concepts required to understand search

technologies
■ Data structures that make search possible
■ Internal mechanics for searching and retrieving

documents
■ Overview of data extraction, enrichment,

analysis, and indexing
16

17Search 101
 But creating relevant search requires more than you may initially anticipate. New
search developers see search as a black box with just a few modes of interaction: you
add content and allow users to query that content. In this chapter, we reveal the
secrets under this dark mantel. And spoiler alert, there’s no magic involved in search.
Under the hood, a search engine’s data structures perform rather dumb term-matching.
Results are then ranked using simple heuristics. The search engine is mechanical: it
has no understanding of the meaning of the terms, the intentions underlying a user’s
search, or the context of the application.

 The science of relevance engineering is in coercing the mechanical search
engine to fulfill relevance goals. By the end of this chapter, you’ll begin to see how
to do this. You’ll see how to extract descriptive features from queries and content.
You’ll begin to understand how these features can be used to rank documents to
bring back the most relevant content first. Aside from the science of relevance engi-
neering, there’s an art to understanding what constitutes a good, descriptive fea-
ture. There’s skill in how factors should be weighted and balanced to meet the
users’ and business’s relevance expectations. By the end of this book, you’ll have a
good grasp of these skills.

 In this chapter, we first provide an overview of basic search concepts. Then we dive
into deeper details of Lucene-based search, covering the data structures and processes
involved in analyzing, indexing, and retrieving documents. In the next chapter, you’ll
see what to do when search breaks down. Together chapters 2 and 3 give you founda-
tional tools for understanding the search engine. Subsequent chapters go further,
applying search’s data structures to implement real-world solutions.

2.1 Search 101
Your initial understanding of the search engine may be simple. With some basics
under your belt, you might have roughly the mental model shown in figure 2.1. Con-
tent makes its way into the search engine, and users query and explore by interacting
with a search application.

 Before getting under the hood, into the arcane black box, let’s quickly review the
search engine’s capabilities from an outsider’s point of view. As you know, the central

In
d
ex

in
g Query

Respon
se

Black

box

mystery

Documents
pulled from
a data store
and sent to
the search

engine

Users make a
search, and

matching
documents
are returned

Figure 2.1 A simple model of a search engine based on possible interactions

18 CHAPTER 2 Search—under the hood
functions of a search engine are storing, finding, and retrieving content. Although
these are all basic concepts, it’s useful to review them in order to establish a shared set
of definitions and fill in any technical gaps you may have.

2.1.1 What’s a search document?

In search applications, the notion of a document is central, because documents are
items being stored, searched, and returned. Documents are what search is all about!
When you issue a query to a search engine, you’re searching a collection of docu-
ments. These may be literal documents such as text files on a server. Or, more gener-
ally, documents may correspond to content such as:

■ Products in a catalog
■ Songs stored in an MP3 player
■ People in a list of contacts
■ Internal Word documents from your company’s intranet
■ Pages of a book
■ Entire books in a library collection

A document contains a set of fields: the named attributes of the document. In this way,
a document is similar to a row in an SQL table. Whereas an SQL table contains a set of
named columns and their corresponding values, a document contains a set of fields
with their values. Fields are typed, including the standard types you’d expect: string,
integer, float, and Boolean.

 String types are of particular interest for search. Strings are often searched within.
Consider a newspaper article titled “Business Is Booming at the Beautiful Beach of
Barcelona.” You’d probably want a search for “barcelona beaches” to match the text in
the title. Controlling exactly when text matches a search will occupy a great deal of
your time as a relevance engineer. This may seem a bit fuzzy right now, but you’ll learn
more throughout this book, particularly in chapter 4.

 Unlike an SQL table, every document can contain different fields. The fields in
one document can be different from the fields in another. Let’s say that you’re build-
ing a search for items sold at a chain of convenience stores. Convenience stores carry
a range of products. Although all products have some common fields (a name and a
price, for instance), most types of products also require their own unique fields.
Books in the convenience store require fields such as author and page_count. Food
items likely need fields such as calories and ingredients.

2.1.2 Searching the content

With the notion of a document defined, we can talk about the main purpose of the
search engine: searching for relevant content! Let’s say your friend Sharon tells you
about a great article about the beaches of Barcelona. She remembers it’s in the Travel
section of the Relevant Times newspaper from last summer. Eager to share that article

19Search 101
with you, she navigates to the search page at RelevantTimes.com, shown in figure 2.2,
and searches for an article that meets these criteria:

■ Published in the months of June, July, or August (a date-range constraint)
■ Ran in the Travel section (an exact match in a string field)
■ Keywords barcelona and beach appear in the title and body fields (a text match

in two text fields)

Once supplied with these constraints, the search engine returns matching documents.
But even more than this, the search engine orders documents, presenting the user with
the most relevant matches first.

 In Sharon’s “barcelona beaches” search, the search engine’s response will hope-
fully contain the article that she was looking for as the first result. How does the search
engine know to rank this highly? Because the article is about the beaches of Barce-
lona, the article’s title likely contains the phrase “Beaches of Barcelona”. The terms
“Barcelona” and “beach” probably also occur prominently in the article’s text. The
search engine considers these factors and ranks Sharon’s target article more promi-
nently than the competition: articles less relevant to the user’s search but still related.
Perhaps these articles are about beaches or Barcelona, but not the beaches of Barce-
lona per se, making only passing references to the search query.

 You’ll see more on exactly how the search engine makes these relevance calcula-
tions later. You’ll also see how many factors, beyond text, and beyond even the user’s
priorities, can come into play in the relevance calculation. Remember from chapter 1,
relevance is a measure of how well content satisfies the information needs of the user
and business. So, for example, an e-commerce search with good relevance not only returns
the appropriate documents, but also /ensures/might ensure that they’re sorted so
that paid promotional items are closer to the top.

A
n

al
ysis

In
d

e
xi

ng Query

Data
structures

Resp
on

s
e

search

Economy June 23, 2015

TravelJohn Faux Aug 14, 2015

TravelCindy Falshung July 3, 2015

EconomyPhil Lazan June 3, 2015

Business is Booming on the Beautiful Beaches of Barcelona
Ted Nisemono

... this summer season is projected to be the best on the books for

Barcelona’s beach resorts, a trend that is expected to continue ...

Best Beaches to Beat the Summer Heat

... there are several destinations that you must visit ... orbeach

Waikiki which as placed just above as a destination ...Barcelona

Barcelona Festival Season is Upon Us

... whether it’s the giant’s on the march or the 12 story tall human

pyramids you’ll find an enchanting place to spend ...Barcelona

Stinging Jelly Fish Plague Shoreline Industries

... the northside beach was worst hit, but will a little help from a ...

News

Political

Travel

Economy

Lifestyle

Opinion

Your News... Yesterday!

Relevant Times

1

0

12

5

0

1

June 1, 2015 Aug 31, 2015

barcelona beaches

no. results

Figure 2.2 Typical search user interface and response page

20 CHAPTER 2 Search—under the hood
2.1.3 Exploring content through search

Search engines go beyond returning documents based on relevance. Search is of little
use unless it presents the relevant documents back to the user in a manner that
encourages exploration. The UIs of search engines guide users to relevant content by
using many common features you’re probably familiar with.

 Front and center, as illustrated in figure 2.2, the search engine provides users
with a list of matching documents. Typically, the user won’t see the entire document
but a subset of fields deemed important to understanding the match. In the Barce-
lona beaches example, these fields would likely include the title of the article, the
author, the section of the newspaper (in this case, Travel), date, and text from the
article itself.

 Instead of the field values, search engines often return summarized snippets that
highlight the part that matches. These highlighted snippets (highlights, for short) con-
vey exactly why a document is a match for the user’s search. Often when reading
through snippets, the user will discover ways of improving the original search. For
instance, if Barcelona Beach happened to be the name of a local tapas restaurant, the
user may be inclined to modify the search to filter out restaurants.

 Search also encourages further exploration by describing the distribution of
matching documents throughout the corpus. Sharon’s original search for Barcelona
beaches, for example, was constrained to articles only in the Travel section. But a
good search implementation would indicate the number of articles matching “barce-
lona beaches” in all other sections of the newspaper. As illustrated in figure 2.2, this
aggregate information is often presented in a sidebar as a set of filters also known as
facets. Perhaps the article Sharon remembered reading is about the booming tourism
of Barcelona beaches. It’s in the Economy section of the newspaper. Given the data
presented in the facets, she may choose to select that facet, filtering the search to
include only information from that section.

2.1.4 Getting content into the search engine

The preceding section discusses how search enables content exploration, but how do
you provide the search engine with the content to be searched? Data is first extracted
from a location where content is stored. This might be a database, text files, web
pages, or other source. This raw data is converted into the search fields and docu-
ments described previously. These documents may be further enriched by adding in
new fields with external information helpful for matching or ranking.

 After being handed to the search engine, the fields of a document undergo a pro-
cess called analysis, shown in figure 2.3.

 Analysis converts the field values (usually text) into elements called tokens. For text,
tokens usually correspond to words, such as “best”, “barcelona”, “beach”. You’ll notice
that these tokens look a bit different from the original words. In this case, one word
(the) has been dropped, the tokens are lowercased, and the plural suffix of beaches has

21Search engine data structures
been removed. Why? A token extracted from our article and a token extracted from a
future search query typically need to match exactly to be considered a match. Search
often aids in matching by using language-specific heuristics to transform words to sim-
pler forms. English text analysis removes capitalization (RUN -> run), suffixes (running
-> run), and pluralization (runs -> run) and many other patterns. And although
tokens are typically generated text, as you’ll see in chapter 4, analysis can be applied
and tokens generated for nontext values such as floating-point numbers and geo-
graphic locations.

 In chapter 1, we mentioned the notion of features. In machine learning, features
are descriptors for the items being classified. Features used to classify fruit may be
things such as color, flavor, and shape. With full-text search, the tokens produced dur-
ing analysis are the dominant features used to match a user’s query with documents in
the index. Don’t worry if this seems vague right now; the greater portion of this book
is dedicated to making these ideas clear.

 After analysis is complete, the documents are indexed; the tokens from the analysis
step are stored into search engine data structures for document retrieval. In addition,
the original, untokenized text fields are stored so that they can be presented back to
the user in search results. Storing numeric fields also allows numerical attributes to be
used in ranking calculations.

2.2 Search engine data structures
Section 2.1 laid out the basic takeaways of any “intro to search” tutorial. Now the fun
part. Let’s begin to fill in the magical black box so you can understand how the brains
within the search engine work. We’ll start with the data structures, and then we’ll show
how the two processes, indexing and querying, interact with these data structures.

 At its core, a search engine has a handful of highly optimized data structures that
allow documents to be retrieved and scored. Understanding these structures and how
they’re used is requisite to understanding the search engine’s inner workings. With an
appreciation of the mechanics, you can use the search engine to build seemingly
smart, relevant search experiences.

In
d
ex

in
g Query

Inverted

index

Respon
se

A
n
alysis AnalysisBarcelona

Beaches

date:

2015.8.13

body: In the

hot summer ...

[best]
[barcelona]

Tokenized text

title: The Best

[beach]

Original text

Figure 2.3 “Barcelona
Beaches” article indexed
and analyzed (only title-field
analysis shown)

22 CHAPTER 2 Search—under the hood
2.2.1 The inverted index

In the future when some relevancy issue plagues you, we hope that you’ll return to
this book for help. And when you do, where will you go? Most likely you’ll flip straight
to the back of this book and refer to the index (like the one shown in figure 2.4).
There you can look up terms of interest: analysis, tokenization, scoring, and so forth.
From there you’ll be referred to pages in the book that talk about the things you’re
looking for.

At the core of a search engine is a data structure called the inverted index, analogous to
the physical index at the back of this book. An inverted index is composed of two
main pieces: a term dictionary and a postings list. The term dictionary is a sorted list of
all terms that occur in a given field across a set of documents. For each term in the
dictionary, there’s a corresponding list of documents that contain that term. This list
of documents is referred to as the postings for a particular term. To understand this
more clearly, let’s look at an example. Consider the set of documents shown in the fol-
lowing listing.

0. One shoe, two shoe, the red shoe, the blue shoe.
1. The blue dress shoe is the best shoe.
2. The best dress is the one red dress.

The term dictionary and postings list for this simple set of documents are presented in
the following two listings, respectively.

Listing 2.1 Documents

Figure 2.4 The inverted index data structure used by search engines closely resembles the
index that you can find in the back of a textbook.

23Search engine data structures
best  0
blue  1
dress  2
is  3
one  4
red  5
shoe  6
the  7
two  8

0  [1,2]
1  [0,1]
2  [1,2]
3  [1,2]
4  [0,2]
5  [0,2]
6  [0,1]
7  [0,1,2]
8  [0]

Both the term dictionary and the postings list are mappings. The term dictionary
maps terms to ordinal numbers that uniquely identify a term. Just like a book’s index,
this index is ordered lexicographically to make it easier to find terms. Once you have
a term’s ordinal, you use the ordinal’s postings list to retrieve the documents that con-
tain that term—just like the page numbers in a book’s index.

 Let’s walk through an example to make that more concrete. Let’s say you’re looking
for all documents containing the term “red.” First you look up “red” in the term diction-
ary and find that it has a term identifier of 5. Next you go to the postings list and find
the postings associated with term 5—in this case, the list refers to documents 0 and 2.
Referring to the original documents in listing 2.1, you see that documents 0 and 2 do
contain the word “red”, whereas document 1 doesn’t.

 In this example it’s worth noting that we’ve simplified things a bit. These docu-
ments contain a single field that contains the sentences themselves. But in practice,
documents will likely contain several fields: title, description, address, price, and so
forth. In this case, nothing really changes; there’s still one inverted index, but the
terms are sorted by field first and then sorted lexicographically within the fields.

2.2.2 Other pieces of the inverted index

The term dictionary and the postings list are the central pieces of the inverted index
data structure, because they make it possible to quickly match documents against
query terms. But in order for a search engine to provide relevant results and enable
exploration, Lucene adds more data structures and metadata to the index.

Listing 2.2 Term dictionary

Listing 2.3 Postings list

24 CHAPTER 2 Search—under the hood
 Many of these components are optional. Disabling them can sometimes be an opti-
mization. Other times, these data structures can be enabled to provide richer relevance
or search features. Table 2.1 lists some of the most important pieces of information com-
monly associated with the inverted index. Throughout the book, we dig into these items
in more detail and reveal how they can be used to tune search relevance.

Table 2.1 Important pieces of data associated with the inverted index

Name Description

Doc frequency A count of documents that contain a particular term, or the length of the postings
associated with a particular term. In listing 2.3, the doc frequency for the term
“shoe” is 2 because it occurs in documents 0 and 1. Doc frequency is useful in doc-
ument scoring because it establishes a notion of importance for a particular term.
For instance, the term “the” typically has a high document frequency, which indi-
cates that it carries little discriminatory value when determining the relevancy of a
document for a given search.

Term frequency The number of times that a term occurs in a particular document. In listing 2.3, the
term frequency for “shoe” in document 0 is 4, and the term frequency for “shoe” in
document 1 is 2. Term frequency is useful in document scoring because it estab-
lishes a notion of how important a document is for a given term. So, loosely speak-
ing, if someone searches for “shoe”, document 0 can be considered twice as
important as document 1 because “shoe” occurs twice as often in document 0.

Term positions Word position is often important for search. Consider the semantic difference
between a query for “dress AND shoes” and a query for “dress shoes.” Term posi-
tions are a list of numbers indicating where a term occurs within a particular docu-
ment. For instance, the term positions for “shoe” in document 0 from our example
would be 1, 3, 6, 9. Term positions make it possible to find documents based on
phrase matches so that a search for “dress shoes” will give users exactly what
they’re looking for.

Term offsets One of the best ways to provide search users with feedback about why a particular
document matches a query is to present them with highlighted snippets of the
matching text. But reanalyzing the original text to extract highlights is often slow.
The fastest way to highlight snippets is to keep track of the start and end character
offsets of the terms when they’re first analyzed during indexing. Then, at search
“time” all that needs to be done is to insert the appropriate tags at the correspond-
ing offsets.

Payloads Each term in the index can be associated with arbitrary data. One common example
is to tag a token with its part of speech and use this in relevance scoring. Another
common example is to associate an externally generated score with a token (this
mention of “Barcelona” ought to be scored as 100, this other “Barcelona” mention
a 59).

Stored fields Information stored in an inverted index is useful for searching, but this information
is a rather scrambled version of the original document. Any fields are to be pre-
sented back to the user or must be saved separately in stored fields. These stored
fields can take up a lot of disk space. For this reason, many search developers
avoid storing data directly in the search engine, instead retrieving display fields from
the source system.

25Indexing content: extraction, enrichment, analysis, and indexing
Now that you have a clearer understanding of the types of data structures that back
search, it’s time to see how information is placed into these data structures in the
first place.

2.3 Indexing content: extraction, enrichment, analysis,
and indexing
Section 2.1 provided basic information on how documents enter the index. In this
section, we’ll dig into this process. This sections helps you see how documents make
their way into search’s core data structures described in section 2.2.

 When moving data into a data store, people talk about the process of extracting,
transforming, and loading information, often referred to as ETL. Data is extracted
from wherever it’s warehoused, transformed into a format amenable to the destina-
tion data store, and then loaded into that data store. In this section, we use the ETL
terminology to walk through how data makes its way into a search engine.

 Because we know that we’re dealing with a search engine, we can be more specific
about the steps in search’s ETL process. As illustrated in figure 2.5, these steps are
extraction, enrichment, analysis, and indexing. Here, extraction is the process of
retrieving the documents from their sources. The optional step of enrichment adds
information to the documents useful for relevance. Analysis, as you saw earlier in this
chapter, converts document text or data into tokens that enable matching. And finally,
indexing is the process of placing data into those data structures.

 We cover extraction and enrichment rather generically. Many times, the details of
these steps depend entirely on how your source data is stored. Indexing concerns us
only as it pertains to enabling/disabling features for enabling relevance. Analysis,
however, has overriding importance to search relevance and is expounded on here.
It’s also discussed at several points throughout the book. Recall, analysis transforms
raw text and data from the documents into tokens. These tokens represent the docu-
ment’s features. Engineering these to match features from a user’s query is critical to
satisfy the user’s information need.

Doc values It’s common to incorporate auxiliary values into the relevance-scoring heuristic. For
instance, an e-commerce search might boost catalog items that are on clearance or
that have a high profit margin. It’s also common to allow users to sort search
results by a metric such as price or popularity. The doc values data structure allows
for quick access to these auxiliary values and is useful when sorting, scoring, and
grouping documents.

Table 2.1 Important pieces of data associated with the inverted index

Name Description
www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 Search—under the hood
2.3.1 Extracting content into documents

Crafting documents that can be easily retrieved can be just as important to relevance
as manipulating the innards of the search engine. You’ll see in particular later in this
book that content curation (chapter 10) and careful field construction (chapters 4–7)
often dictate whether a relevance solution is easy or hard. The basis for this work lies
in controlling the extraction and enrichment process, which we outline in the follow-
ing two sections.

 Where do your search documents come from? Data has many possible sources. If
you’re fortunate, documents can be easily retrieved from a database or external data
repository. In this case, extraction may be as simple as crafting a simple query to dump
the necessary data. If you’re less fortunate, you might have to look for your docu-
ments—for instance, by crawling web pages or filesystems. And if you’re less fortunate
still, you might find that your data is locked away behind files that require complex

title: Som

Mothera

date:

2015.8.13

body: Bacon

can't beat

the ti..

title: Som

Mothera

date:

2015.8.13

body: Bacon

can't beat

the ti..

title: Best

Beaches for

Summer

date:

2015.8.13

body: In the

hot summer

months...

title: Som

Mothera

date:

2015.8.13

body: Bacon

can't beat

the ti..

title: Som

Mothera

date:

2015.8.13

body: Bacon

can't beat

the ti..

title: Best

Beaches for

Summer

date:

2015.8.13

body: In the

hot summer

months...

sentiment:positive

location:Barcelona

cluster-id:31536

title: best beach

date: 2013.8.13

body: in the hot ...

sentiment: positive

location: Barcelona

cluster-id: 31836

title: best beach

date: 2013.8.13

body: in the hot ...

sentiment: positive

location: Barcelona

cluster-id: 31836

title: best beach

date: 2013.8.13

body: in the hot ...

sentiment: positiv

location: Barcelon

cluster-id: 31836

a

artist

barcelona

beach

best

creati

destinati

0

1

2

3

4

5

6

Postings listTerm dictionary

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15...]

[103,255,312,443,511,619,872,997...]

[112,119,193,293,294,397,498,581...]

[112,190,231,491,498,515,610,991...]

[119,240,261,273,299,419,712,713,...]

[292,311,347,519,680,705,812,900,...]

[112,255,312,453,511,639,872,917]

0

1

2

3

4

5

6

Enrichment

Indexing

Extraction

Analysis

INVERTED INDEX

Figure 2.5 The full search ETL pipeline: extraction, enrichment, analysis,
and indexing

27Indexing content: extraction, enrichment, analysis, and indexing
additional processing (such as MS Word documents, PDFs, or, worst of all, images of
scanned text). But no matter the case, the end result of extraction is a set of docu-
ments to be sent to the search engine. Here, a document may be exactly like the doc-
ument described in section 2.1.1, a collection of typed fields that contain various
values. Or, for search engines such as Elasticsearch, these can be complex hierarchical
documents represented as JSON.

 The main takeaway is to own your extraction process. Extensive strategies, proj-
ects, plugins, and products exist for transforming data from a primary data source to
a search engine. The permutations are so numerous that they’d fill dozens of books.
We don’t cover these options. But you should understand how your extraction pro-
cess works so that you can control the structure of your documents. Simply living with
the structure of data as plopped into the search engine from your source systems can
limit your options. In this book’s examples, we take control of this process by rolling
our own code to extract documents from an external system and build search docu-
ments directly.

2.3.2 Enriching documents to clean, augment, and merge data

During the enrichment step, the documents from the extraction step are augmented
with additional information. This can be an important step in building relevant search,
because often the raw, extracted documents lack features that are sufficiently rich to be
matched against the users’ queries. Document enrichment comprises three main cate-
gories: cleaning data, augmenting existing data, and merging external data.

 First, cleaning. If you want a top-notch search experience, it’s usually well worth the
time to parse through documents, look for silly mistakes such as misspellings and doc-
ument duplications, and correct them. Otherwise, users might not find a document
because it contains a misspelling of the query term. Or they may find 20 duplicates of
the same document, which would have the effect of pushing other relevant docu-
ments off the end of the search results page.

 Second, often the existing data can be post-processed to augment the features
already there. For instance, machine-learning techniques can be used to classify or
cluster documents. Or sentiment analysis can be used to determine whether the text
in a document is more positive or negative in tone. The possibilities are endless. After
this new metadata is attached to the documents, it can serve as a valuable feature for
users to search upon.

 Finally, new information can be merged into the documents from external sources.
For instance, in e-commerce the products being sold often come from external ven-
dors. Product data provided by the vendors can be sparse—for instance, missing
important fields such as the product title. In this case, additional information can be
joined into the documents. The existing product codes can be used to look up prod-
uct titles, or missing descriptions can be written in by hand. The goal is to provide
users with every opportunity possible to find the document they’re looking for, and
that means more search features and richer search features.

28 CHAPTER 2 Search—under the hood
2.3.3 Performing analysis

Section 2.1 briefly described how the search engine transforms text into tokens. This
step is foundational. Choosing how text (and other forms of data) is transformed into
tokens dictates how the search engine performs matching. As a relevance engineer,
you’ll spend a great deal of time fine-tuning analysis to control exactly when matches
occur. Let’s dive deeper into this process.

 After documents have been extracted from wherever they’re warehoused, and
after the optional step of document enrichment, documents are finally sent to the
search engine, where they’re analyzed. During analysis, the search engine processes
the data in the documents and converts the data into tokens that can then be stored
in the search engine’s internal data structures.

 As alluded to previously, tokens are symbols that represent the content of a field in
a document. Often tokens correspond exactly to the words in a text field. Consider
the text “The Brown’s fiftieth wedding anniversary, at Café Olé”. Depending on the
configuration, analysis might split up this text into the tokens in the following listing.

The, Brown’s, fiftieth, wedding, anniversary, at, Café, Olé

But often the tokens aren’t the literal words but a normalized and filtered version of
the words. This same sentence could be tokenized as follows.

brown, fiftieth, wedding, anniversary, cafe, ole

Here we’ve lowercased the words, stripped out accents over the letters, and removed
common words.

 Don’t think that tokens always have to correspond to words; just about any data
type can be tokenized. Geographic locations (for instance, the location of the White
House, 38.8977° N, 77.0366° W) can be tokenized using geohashing. In this case, rea-
sonable tokens might be as follows.

dqcjqcpee, dqcjqcpe, dqcjqcp, dqcjqc, dqcjq, dqcj, dqc, dq, d

These tokens correspond to the geohash representation of that location, with each
token representing a gradually less precise representation of that location (more on
this in chapter 4).

 One of the main functions of a search engine is token matching. Token matching,
after all, is how a search engine finds documents that match a user’s query. On one
side of the equation, text and other data from the documents are analyzed—that is,

Listing 2.4 Text tokenization example

Listing 2.5 Text tokenization example with normalization and filtering

Listing 2.6 Geolocation tokenization using geohashing

29Indexing content: extraction, enrichment, analysis, and indexing
tokenized—and stored into the inverted index. And on the other side, queries are
also analyzed and converted into tokens. Documents with tokens that match the query
tokens are considered a match for the search.

 The point that must be underscored is that you, the relevance engineer, control
analysis. Changes in the way that data is converted into tokens dramatically impact
search relevance. Let’s demonstrate with the preceding example. If the phrase “The
Brown’s fiftieth wedding anniversary, at Café Olé” is tokenized as presented in list-
ing 2.4 and a query, “fiftieth wedding anniversary,” is issued to the search engine, then
in this case the example document would be a match. The document tokens and the
query tokens are identical. But, a query for “brown cafe ole” won’t match, because the
tokens in listing 2.4 contain capital letters, apostrophes, and accents, and the query
tokens contain none of these.

NOTE Search engines are dumb: If the query and document tokens aren’t
exactly—byte-for-byte—identical, the document isn’t considered a match!

This is why analysis is so important. It’s why you spend a great deal of time normaliz-
ing text so that query tokens will match documents even if the original document text
isn’t quite the same as the query text. For instance, looking at the alternative analysis
in listing 2.5, when we normalize the example sentence to remove capitalization, apos-
trophes, and accents, then the same query for “brown cafe ole” is a perfect match to
our example document on all three terms.

TOKENS AS SEARCH FEATURES

All of this ties in closely with our central focus on search features. Just as the color red
and the shape round are features that might describe an apple, the tokens that come
from the analysis process serve as the features that describe the document. Continuing
with this analogy, if you were to look for an apple at a grocery store, you’d look for
fruit that is both red and round. In the realm of search, it’s much the same: a user
looking for a document about the Brown’s wedding anniversary would type this into a
search engine, and the search engine would in turn analyze the query, extract the fea-
tures (tokens), and then attempt to find the documents that have matching features.
So throughout our discussion of search features, know that concretely we’re often
referring to tokens. We use the term feature to indicate that a token functions as a sort
of descriptor for a document or a query.

 As you can imagine, the analysis process affords the relevance engineer a great
deal of expressive power in specifying how text and other values are converted into
tokens. But, as they say, with great power comes great responsibility. Good, descriptive fea-
tures can be useful in matching queries to documents, but irrelevant and even errone-
ous features can render a document un-findable! The only way to ensure that your
analysis is generating good features is to become intimately familiar with analysis. So,
let’s look at the details!

30 CHAPTER 2 Search—under the hood
COMPONENTS OF ANALYSIS

Analysis is composed of three steps: character filtering, tokenization, and token filter-
ing. Let’s walk through each step, following the previous example, and demonstrate
end to end how we analyze the text “The Brown’s fiftieth wedding anniversary, at Café
Olé”. In future chapters, we demonstrate how to control analysis, but for now let’s just
review the process and components.

 During the first step, character filtering, the characters of text fields can be adjusted
or filtered in various ways. A good example is HTMLStripCharFilter, which takes
HTML as input and returns only the text contained within the HTML and not the
HTML tags. In principle, you can do just about anything you want with a character fil-
ter, including using regular expressions or creating your own. During analysis, any
number of character filters can be specified and will be executed in series in the order
that they’re specified. Figure 2.6 illustrates the process of character filtering.

The next step is tokenization. As the name indicates, during this step raw text is con-
verted into a stream of tokens. The most straightforward way to tokenize a text stream
is to split it on whitespace, but this by itself is rarely the right thing to do. Why?
Because you end up with tokens that contain punctuation. In our example, the word
“anniversary” is followed by a comma, so the corresponding token when using white-
space tokenization would be anniversary,. This is clearly an example of a bad search
feature, as it would prevent users from finding this document; no one will think to
search for anniversary with the comma included. Instead, English and most European-
language texts use the standard tokenizer, which splits on word whitespace and punctua-
tion. Unlike the character filter, there can be only one tokenizer in any given analysis
chain. Tokenization is demonstrated in figure 2.7.

 The final step is token filtering. Here the stream of tokens can be adjusted, either
by adding or removing the tokens or by changing them. In order to appropriately

The Brown’s fiftieth wedding anniversary, at Café Olé.

<h1>The Brown’s fiftieth wedding anniversary, at Café Olé.</h1>

The Brown’s fiftieth wedding anniversary, at Cafe Ole.

HTML character filter

ASCII character collapsing filter

Figure 2.6 Analysis—
character filtering

The Brown’s fiftieth wedding anniversary, at Cafe Ole.

Standard tokenizer (splits on punctuation and space)

The Brown’s fiftieth wedding anniversary at Cafe Ole Figure 2.7 Analysis—tokenizing

31Indexing content: extraction, enrichment, analysis, and indexing
normalize the tokens from our sample sentence, a typical choice would be to lower-
case the tokens, remove common words such as the and at (these common words are
called stop words), and remove the possessive after Brown. And like the character filter,
several token filters can be applied in series during analysis in the order prescribed by
the relevance engineer. Token filtering is shown in figure 2.8.

One final note before we move on to indexing. During analysis, it’s common to store
extra metadata with each token that the analysis process generates. The most com-
mon metadata are the term positions and term offsets, which are useful for phrase
queries and highlighting, respectively. You can also create custom token filters that
add arbitrary metadata to the tokens in values called payloads. But beware: all this data
can consume a lot of storage. If you must tinker around with payloads, it’s wise to be
conservative. Please refer to table 2.1 for more details on these items. (We also bring
these up again as needed later in this book.)

2.3.4 Indexing

After analysis is complete, indexing is the process by which the data is saved into the
inverted index data structures described in section 2.2. Although the technical imple-
mentation of the indexing process is an engineering marvel in itself, the focus during
indexing tends to be placed on computation performance and resource management
rather than matters of relevance. But a few indexing decisions can influence rele-
vance—namely, which pieces of data should be indexed and which data structures
should be used.

 Most importantly, you must decide which fields to index and/or store which fields to
index and/or store, and which fields to both index and store. In a general sense, index-
ing refers to the process of storing data in the search engine. But both indexing and stor-
ing have a more specific meaning when placing field data into core data structures.
Here indexing refers to the process of updating the inverted index with the extracted
tokens to enable search on that field. A field is searchable only if it’s indexed.

the brown’s fiftieth wedding anniversary at cafe ole

The Brown’s fiftieth wedding anniversary at Cafe Ole

brown’s fiftieth wedding anniversary cafe ole

brown fiftieth wedding anniversary cafe ole

Lowercase token filter

Stop-word token filter

Possessive token filter

Figure 2.8 Analysis—
token filtering

32 CHAPTER 2 Search—under the hood
Storing refers to retaining the original, unaltered document content in the stored
field’s data structure (see table 2.1) so that it can be retrieved and presented to the
user in search results. The search engine can present data back to the user only if it’s
stored. As an optimization, some engineers store as little information as possible, lim-
iting storage to the bare essentials such as a unique identifier. To retrieve the full doc-
uments, these engineers pull the field’s content from an external store. Others choose
to store data in the search engine out of convenience or to remove a dependency on
an external system. Storing data also allows the search engine to highlight matches. As
we discussed, this highlighting can help explain why a match was made and enable the
user to adjust the query for further exploration.

 Besides storing and indexing the data, you can choose to use or not use many of
the data structures covered in table 2.1. Whether you use these data structures
depends on your search requirements. We cover optional usage of these data struc-
tures in later chapters.

 One final relevance-related consideration during indexing is that documents are
indexed in batches. After analyzing a sufficient number of documents or waiting a suf-
ficiently long period of time, the analyzed documents are committed to the index. Only
after a commit do documents become searchable. Because of this, you’ll see a lag
between sending a document to the search engine and retrieving it via search. Keep
this in mind when doing relevance work. Luckily, on a development box you can
always issue a manual commit. In production, both Solr and Elasticsearch allow you to
tune, update, and commit settings to meet your requirements. We don’t cover those
in this book as they don’t directly pertain to relevance.

2.4 Document search and retrieval
With the documents’ tokens, values, and original content safely squirrelled away in
the search engine’s data structures, you’re finally ready to search! In this section, we
cover all the basic aspects of search, starting with the mechanics of document match-
ing. We finish up with a discussion of how matching documents are scored, sorted,
and returned to the user.

2.4.1 Boolean search: AND/OR/NOT

Section 2.2.1 described how to retrieve a set of documents that contains a single term:
you look up the term in the term dictionary, grab the corresponding postings, and
you’re finished. The postings is the list of matching documents.

 But what if you want to match multiple terms? That’s what Boolean search is for.
Boolean search combines the results of multiple queries to more tightly control results.
For example: (“shoe” AND “blue”). Let’s see how you can implement the typical Bool-
ean operators (AND, OR, NOT) using the contents of the inverted index data structure.

 First the AND operator. Referring to our earlier example from section 2.2.1, con-
sider how you might use the term dictionary and the postings list to find documents

33Document search and retrieval
matching both the term “shoe” and the term “blue”. First you need to retrieve the post-
ings for both “shoe” and “blue” and then find the documents that are present in both
sets. Because the postings are sorted lists of numbers, the algorithm to find this inter-
section is pretty simple and is shown in Python in the following listing.

def AND(term1postings, term2postings):
 term1doc = term1postings.next()
 term2doc = term2postings.next()

 matches = []
 while term1doc != None and term2doc != None :
 if term1doc == term2doc:
 matches.append(term1doc)
 term1doc = term1postings.next()
 term2doc = term2postings.next()
 elif term1doc < term2doc:
 term1doc = term1postings.next()
 else:
 term2doc = term2postings.next()

 return matches

All you’re doing here is iterating through both postings simultaneously, by starting at
the beginning document in both lists and iteratively incrementing whichever list
points to the lowest-value document ID. Whenever the document IDs in both lists are
the same, then that document ID is added to a working list of matches. The algorithm
stops and returns the matches when the end of either list is reached.

 Extending from AND to other Boolean operations is straightforward. For OR
searches, rather than finding the intersection of the postings, you must return the
union of all the documents in both lists. For the NOT operation, you take a list of
matches and compute every document ID between the document IDs in the provided
lists (as the postings lists are conveniently sorted, this computation turns out to be
rather simple).

 Boolean search can be easily extended to perform complex, compound Boolean
queries and queries over several fields. You don’t have to do anything special to get
this functionality. In the case of the compound queries, notice that the input argu-
ments and the output of the AND function of Listing 2.7 are all lists of document IDs,
and the same thing is true for the OR and NOT operators. Because of this, Boolean
functions can be composed together to make arbitrarily complex queries. Extending
to multifield queries is also easy, because no matter which field the term resides in, the
postings refer to the same documents using the same IDs, so postings from any fields
and any term can be used together in the preceding algorithm.

Listing 2.7 Boolean AND search

With two terms’ postings,
primes an iterator for each

Loops until one
iterator is exhausted

If both iterators point
at the same document,
this is a match.

Otherwise, increments
one of the iterators

34 CHAPTER 2 Search—under the hood
2.4.2 Boolean queries in Lucene-based search (MUST/MUST_NOT/SHOULD)

Lucene has a query type named BooleanQuery that’s used to achieve the behavior
described previously. But the name is a bit misleading, and the behavior is not quite
what you’d expect. You’d expect BooleanQuery to use the AND, OR, and NOT opera-
tors—but it doesn’t! Instead, three clauses provide similar functionality, albeit with
slightly different semantics: SHOULD, MUST, and MUST_NOT.

■ A clause of type MUST has to have a match inside a document; otherwise, the
document isn’t considered a match.

■ A clause of type SHOULD might or might not have a match in a given docu-
ment, but documents that do have SHOULD clause matches are ranked higher
than those that don’t.

■ Any document that contains a match for a MUST_NOT clause won’t be con-
sidered a match for the search results even if it does match a MUST or a
SHOULD clause.

A BooleanQuery can have any number of SHOULD, MUST, and MUST_NOT clauses.
But if a query doesn’t have a MUST clause, a document is considered a match only if
one or more of the SHOULD clauses match.

 Before we look at an example let’s talk about the Lucene query syntax and how the
BooleanQuery is represented. Elasticsearch and Solr use this syntax to provide query
debug information, and we refer to this debug information throughout the book. In
Lucene query syntax, the MUST and MUST_NOT queries are preceded by a prefix.
The MUST clause is preceded by a +, and the MUST_NOT clause is preceded by a -.
The SHOULD clause isn’t prefixed. Consider a simple query and a set of documents:

Query:

black +cat –dog

Documents:

(a) my cat ran under the couch
(b) black cats are mysterious
(c) the dog scared the black cat

This query is looking for any documents that MUST contain cat, SHOULD contain
black, and MUST_NOT contain dog. Therefore, both document (a) and (b) are
matches because they contain the required term cat. Of these two documents, (b)
will rank more highly than (a) because it contains the nonrequired term black. Even
though document (c) contains both black and cat, it isn’t considered a match
because it contains the disallowed term dog.

 Lucene clauses may be grouped together using parentheses. Here’s a basic com-
pound query:

+(cat dog) black

35Document search and retrieval
This MUST clause is a compound that contains cat and dog as SHOULD clauses.
Either cat or dog must be present in the document for it to be a match. Because
black is a SHOULD clause (because it has no prefix), a document matching black
will be ranked higher in search results.

 You might still be wondering why Lucene uses these strange clauses rather than
the standard Boolean AND, OR, and NOT operators. The Lucene clauses have more
“fuzzy” semantics that are appropriate for search, whereas the standard Boolean oper-
ators are used to imply strict set inclusion or exclusion. Consider again our first query
example: black +cat –dog. How would you represent this simple query with AND, OR,
and NOT? The answer is this rather convoluted Boolean query:

(cat OR (black AND cat)) AND NOT dog

As you can see, Lucene’s more simple syntax has its advantages! It often helps users to
be more concise. We’ll revisit how Lucene ranks results given these queries in subse-
quent sections.

2.4.3 Positional and phrase matching

The relative positioning of words often carries important semantic value. For instance,
a search for “dress shoes” should return men’s leather shoes in the colors black or
brown. If a search engine doesn’t take term positions into account, then instead of
dress shoes, we might find our search results filled with women’s dresses and tennis
shoes—certainly not what the user is expecting!

 Because of this, Lucene has a phrase query that takes term positions into account. In
Lucene query syntax, phrase queries are represented with quotations; for instance,
“dress shoes”. To find such a phrase, the search engine goes through two phases:

■ Find all documents that match every phrase term (dress and shoes)
■ Remove documents in which the terms aren’t adjacent (remove “this dress looks

good with your shoes” and keep “buy these handsome dress shoes”)

The output of a phrase query is a list of document IDs; therefore, a phrase query is
compatible with Lucene Boolean queries. Phrase queries depend on term positions
(refer to table 2.1). Including positions with the inverted index is the default in both
Elasticsearch and Solr.

 Various settings, such as phrase slop, allow you to relax the strict phrase query posi-
tioning requirements. Further, it’s worth noting that Lucene has a library of queries
known as span queries that allow you to even more tightly control term ordering and
positioning. We don’t cover these advanced positional queries in this book. Never-
theless it’s worth pointing them out should your search needs require this level of
sophistication.

36 CHAPTER 2 Search—under the hood
2.4.4 Enabling exploration: filtering, facets, and aggregations

When searching through tons of documents, it’s often useful to filter the collection
until you arrive at a more manageable working set of documents. If you’re looking
to purchase a Nikon digital camera on Amazon, you don’t need to see products
outside of electronics. Furthermore, you probably have a price range in mind. If you’re
an amateur photographer, you’re probably not interested in the $6,000 Nikon D4S.
Filtering in this manner is made possible by the search engine’s capability to quickly
match documents as presented in the previous sections. But there’s an important dis-
tinction, in that Amazon-style filtering is typically done on low-cardinality fields (such
as the department field) or on ranges of numerical or date fields (for instance,
price field).

 As discussed earlier, facets give users a top-down view of the search results. Facets,
like those shown in figure 2.9, are usually presented as a list of filterable attributes
alongside the number of results with each attribute. An interface that facilitates user
exploration in this manner can help your users to quickly understand the collections
and narrow down to the items most relevant to their needs. Thus facets serve as a sort
of relevance feedback to users.

 Lucene’s data structures are amenable to complex, multilayered filtering, grouping,
and aggregation, but facets expose only a small fraction of this power. Fortunately,

Search
facets

Figure 2.9 Search facets as presented on a Zappos search results page

37Document search and retrieval
Elasticsearch has aggregations, which allow users to perform powerful online analytical
processing (OLAP) by filtering data according to certain field values, grouping on
other fields’ values, and finally aggregating data (sum, mean, count, min, max, and so
forth) across other fields’ values. Although aggregations typically require advanced
users, they provide unprecedented power in search for slicing, dicing, and summariz-
ing a set of documents.

2.4.5 Sorting, ranked results, and relevance

Like many other data stores, search engines allow documents to be retrieved with a
specified sorting. The order can be based on the numerical value of a floating-point
or integer field or on the lexicographical order of a string field. Additionally, sorting
order can be specified by a function in which one or more field values can be used to
calculate a numerical value by which documents should be sorted.

 But in typical usage of search, sorting isn’t specified. Instead, documents matching
a search are returned in the order of most-to-least relevant. Throughout this chapter,
we have made several references to the idea of relevance and how various search fea-
tures can be used to improve it. Recall that in information retrieval, relevance mea-
sures how well search results satisfy a user’s information need. In this book, we adopt a
broader notion. In light of this, relevant search results must not only meet the user’s
information needs but also satisfy the business needs by, for instance, promoting high-
margin products. The needs of the user and the business are sometimes at odds, and
finding the appropriate balance can be challenging.

 Let’s make this abstract concept a bit more concrete. Relevance is specified by a
ranking function. The ranking function takes in information from a query and from
each matching document. And for each document, the ranking function computes a
score representing how well the document matches the query. The ranking function
can be complicated; chapters 5–7 teach you how to modify the ranking function. For
now, let’s consider a movie search example. For the sake of simplicity, our movie doc-
uments have three fields: title, description, (both text fields), and popularity (a
numerical field). Our query is this: “back to the future.”

 Before any documents are ranked, we must first identify documents that match.
This is done by analyzing the query in the same manner that documents are analyzed
(see section 2.3.3), pulling out tokens, and finding matching documents roughly as
described in section 2.4.1. Documents may also be filtered by some user-defined crite-
ria as mentioned earlier.

 With matching documents in hand, we then score them using the ranking func-
tion. As represented in figure 2.10, the ranking function takes on a hierarchical
structure.

 At its deepest layer, the ranking function calculates a score based on how often a
particular query term occurs in a particular field (the term frequency in that field). This
score is then multiplied by a factor based on how common the term is (its doc frequency
in the collection) and how many terms the field contains. This multiplier is larger for

38 CHAPTER 2 Search—under the hood
rare words and small fields. So for our “back to the future” example, any document
that talks about the future in the description field will have a higher score by virtue of
the number of times future is mentioned and also because of the relative rarity of the
term future in the corpus. In contrast, documents containing the term the will get a
small boost because the is such a common term.

 At the next level up in the ranking function, term scores within a field are com-
bined. Typically, the terms are part of a SHOULD clause in a Lucene BooleanQuery.
All the terms don’t have to be present for the document to match, but the more terms
that are present, the higher the document will score. So in our example, a document
that contains the terms back and future will be scored higher than a document con-
taining only one of those terms. The intuitive scoring of the SHOULD clause is
another reason that Lucene uses MUST, SHOULD, and MUST_NOT operators rather
than the more standard AND, OR, NOT Boolean operators.

 A query is typically structured so that several fields are searched at once. As a rele-
vance engineer, you can apply numerical boosts to the fields to indicate how important
you feel each field should be. For instance, you might index the title field twice: once

DESCRIPTIONTITLE

back

to

the

future

× 3 =(weight) 26.7 × 1 =(weight) 29.4

TF × IDF = 2.7 TF × IDF = 0.0

TF × IDF = 0.8 TF × IDF = 7.2

TF × IDF = 0.3 TF × IDF = 7.5

TF × IDF = 5.1 TF × IDF = 14.75.11

0.31

0.81

2.71

4.93

0.215

0.98

2.50

back

to

the

future

+

+

+

+

+

+

= 8.9 = 29.4

= 56.1

× POPULARITY boost (8.0) = 448.8

Figure 2.10 Example document-scoring function (simplified)

39Summary
with a standard analysis, and another time to incorporate common misspellings. In
this case, a match on the non-misspelled fields should be weighted much more highly
than the field with misspellings. The scores across all fields are then combined either
by summing them or taking the value of the highest-scoring field.

 Finally, the relevance engineer may choose to apply an additional multiplicative or
additive boost based on the numerical value of a field or the numerical value of a
function that itself uses values from one or more fields. This is where the “business
logic” of search often comes into play. In our example movie search, it’s probably
advantageous to boost more-popular movies because they tend to sell better than
older movies. Therefore, you can declare the final score to be the score across all
fields (last paragraph) multiplied by whatever value is in the popularity field. Or, if this is
too powerful of a boost, you can craft a function that more subtly boosts the final score
by popularity (for instance, you can take the logarithm of the popularity field).

 As a relevance engineer, you have the freedom to program the ranking function to
accomplish any goal! Throughout this book, we reveal all the details you need to con-
fidently shape the ranking function into whatever it needs to be to best suit your users’
and business’s needs. In chapter 3, we break this scoring down, linking Elasticsearch’s
debug output to the theoretical foundation for relevance scoring. Chapters 5–7 detail
techniques for manipulating the ranking function to achieve relevance goals.

2.5 Summary
■ Search engines allow you to index documents, enabling users to search and

explore content through features such as highlights or facets.
■ The inverted index is the mechanical heart of the search engine.
■ Additional data structures and statistics support the inverted index in enabling

users to match and explore content.
■ The inverted index is dumb and respects only exact byte-for-byte term matches

when searched.
■ Analysis allows you to normalize tokens to common representations, to over-

come the basic matching ability of the inverted index by using character filters,
a tokenizer, and token filters.

■ Analysis enables you to express important features of your search as tokens.
■ Boolean search is a rather basic application of the inverted index data structure.
■ Relevance results are controlled by a ranking function and based on numerous

statistics such as term frequency and document frequency.
■ You have the ultimate power to control matching through analysis (covered in

chapter 4) and to control the ranking function (covered in chapters 5–7)!

Debugging your
first relevance problem
The previous chapter laid out a rather ideal blueprint for Lucene-based search. In
this chapter, the search engine has broken down! You’ll see what it takes to debug a
real, live search engine. What tools are available to gain visibility into the behavior
of search engine internals? Why do certain documents match the query, whereas
other more relevant documents don’t? Why do seemingly irrelevant documents
outrank relevant ones?

 This chapter introduces you to a beginner’s problem. Although the solutions are
straightforward, in order to solve them you’ll need to master relevance debugging.

This chapter covers
■ Basic extracting, indexing, and searching

content in Elasticsearch
■ Troubleshooting searches that don’t return

expected results
■ Debugging the construction of the inverted

index
■ Troubleshooting relevance bugs
■ Solving your first relevance issue
40

41Applications to Solr and Elasticsearch: examples in Elasticsearch
You’ll use these techniques to solve every relevance problem you face. Just as in math,
showing your work can be the most important step.

 You’ll begin to use our search engine, Elasticsearch, to search over a real data set.
As you encounter the common beginner’s problem, your focus will be on debugging
two primary internal layers key to relevance: matching and ranking. Armed with
renewed insights from the debugging capabilities of the search engine, you can begin
to use the search engine to rank and match based on features that you know best
describe your content.

 Through this chapter, you’ll experience a day in the life of the relevance engineer
fighting fires (as shown in figure 3.1). You’ll troubleshoot why queries and ranking
don’t match as your users expect, or why odd documents seem to be considered more
relevant than others.

Before you start exploring what’s possible, let’s introduce the major building blocks:
the search engine, the data set, and the programming environment you’ll be using to
work through relevance examples.

3.1 Applications to Solr and Elasticsearch: examples in
Elasticsearch
The preceding chapter introduced the components of a Lucene-based search engine.
Which one should we use for examples? Solr? Elasticsearch? Both?

 In an effort to “go deep,” we chose to develop our examples with just one search
engine: Elasticsearch. Covering both search engines in equal depth would get you lost
in the weeds as we endlessly compare identical but superficially different configuration

searchbasketball cartoon aliens

Love and Basketball

Get Shorty

The Flintstones

Independence Day

The Simpsons

Bacon: The Movie

Gone with the Wind

User

Relevance
engineer

In
d
ex

in
g Query

Respon
se

SEARCH
ENGINE

debugging tools that every
relevance engineer should

have in their toolbelt.

Relevance
toolbelt

This is just not
what I’m

looking for!

There are several useful

R

Figure 3.1 As a relevance engineer, you have several tools available for
debugging relevance problems.

42 CHAPTER 3 Debugging your first relevance problem
details. This is rather uninteresting (shall we say, “irrelevant”) information you can easily
find with Google.

 Luckily, despite superficial differences, Solr and Elasticsearch are very close in
functionality. The information you’ll learn in this book applies to either. Use this book
as you’d use an algorithms book that happens to use C for its examples. We happen to
use Elasticsearch. You can easily implement algorithms in any programming language.
You can implement the relevance strategies here in either search engine.

 If you’re a Solr developer, fear not: our basic use of Elasticsearch APIs should
feel familiar. We’ll give you just enough of an explanation about what’s happening
with Elasticsearch that even a smidgen of familiarity with either search engine
should help you feel at home. Further, in this chapter, as we lay the foundation for
several basics, we sprinkle hints for the Solr reader. We also provide appendix B to
help map features between the two search engines.

 It’s also important to note that this book isn’t about Elasticsearch. We focus on fea-
tures related to relevance, completely ignoring other features and concerns when
using a search engine: analytics, ingesting your data, scaling, and performance. If you
have absolutely no familiarity with Solr or Elasticsearch, there are excellent books and
tutorials on both that we encourage you to read before diving into this book.

3.2 Our most prominent data set: TMDB
For much of this book, we use The Movie Database (TMDB) as our data set. TMDB is a
popular online movie and TV-show database. We’re grateful to TMDB for giving us
permission to use its data set, and encourage you to support the project at http://
themoviedb.org. We’re excited about TMDB’s data, as its content contains several
attributes that many search applications must work with. When searching movies,
these attributes include:

■ Prose text (including overviews, synopsis, and user reviews)
■ Shorter text (such as director and actor names, and titles)
■ Numerical attributes (user ratings, movie revenue, number of awards)
■ Movie release dates and other attributes important in search

In this book, you’ll primarily use a prepackaged version of TMDB data. Packaged with
the book’s GitHub repository (http://github.com/o19s/relevant-search-book) is a file
containing a snapshot of TMDB movies used at the time of writing this book. This file,
tmdb.json, is a large JSON dictionary. Each entry is a movie with various properties
such as title and overview. We recommend using this data, as the results will be consis-
tent with the book’s content. We welcome you, however, to use TMDB’s data directly.
We cover the steps you can take to index an up-to-date version of TMDB’s data in
appendix A. In this appendix, you’ll see in particular how movies are extracted one by
one from an external API and further enriched with cast and crew information.

http://themoviedb.org
http://themoviedb.org
http://github.com/o19s/relevant-search-book

43Your first search application
3.3 Examples programmed in Python
When examples call for light coding, we use Python, a highly readable, imperative lan-
guage that looks and feels like pseudocode. You don’t need to know Python to follow
along (just pretend we’re writing pseudocode). We’re not doing anything fancy with
the language, so these examples should still be easy to follow. We also limit the depen-
dencies (avoiding, for example, even Elasticsearch’s excellent client libraries). Instead,
it should be assumed that for every piece of Python code, the following imports are
included. This code imports requests (an HTTP client library) and Python’s JSON
standard library:

 import requests # requests HTTP library
 import json # json parsing

Note also that we use Elasticsearch at localhost at its default port, 9200, throughout
the examples for code readability. Change this as needed to point to your Elastic-
search instance as you work through the examples.

 For detailed instructions on how to run the examples or to access the TMDB
data, please refer to the book’s GitHub repository (http://github.com/o19s/relevant-
search-book). This repository contains the full set of examples and data for the book,
along with detailed installation instructions in the README file should you need to
install Python, Elasticsearch, or any of the required libraries.

3.4 Your first search application
To get started, you’re going to index a few pieces of text about popular movies into
Elasticsearch. In this chapter, we’re pretty verbose about what we’re doing, comment-
ing carefully as we move forward. To avoid being verbose in future chapters, we wrap
each component in a Python function. After you index TMDB data and issue your first
search, you’ll quickly hit a snag in your relevance that will force you to debug the
seemingly mystical and odd behavior of the search engine.

 To index movies, first you need to read them in! To access tmdb.json with the
movie dictionary, you’ll use a function called extract. In the following listing, you’ll
pull back each movie by parsing the JSON file into a Python dictionary.

def extract():
 f = open('tmdb.json')
 if f:
 return json.loads(f.read());

What does the returned dictionary look like? It’s a mapping of TMDB movie IDs to
the movies pulled back from TMDB. A movie has plenty of fields you’d expect to be in
a movie. Let’s look at an example. Here’s a snippet of the movie Aquamarine as a
Python dictionary.

Listing 3.1 Extract movies from tmdb.json

Parses JSON file into
Python dictionary;
returns that dictionary

http://github.com/o19s/relevant-search-book
http://github.com/o19s/relevant-search-book

44 CHAPTER 3 Debugging your first relevance problem

th
is

rem
on
{
 ...
 "title": "Aquamarine",
 "tagline": "A Fish-Out-Of-Water Comedy.",
 "release_date": "2006-03-03",
 "popularity": 0.340685029867431,
 "original_title": "Aquamarine",
 "budget": 12000000,
 "cast": [
 {
 "name": "Emma Roberts",
 "character": "Claire",
 ...
 }
],
 "vote_average": 5.6,
 "runtime": 104
}

Now with some interesting data loaded, you’ll index these documents into Elastic-
search. Elasticsearch has several ways to index documents. You’ll predominantly use
the bulk index API that allows you to efficiently index multiple documents in one
HTTP request. Don’t worry too deeply about the ins and outs of the bulk index APIs;
knowing the indexing APIs in any more depth than what’s presented here isn’t key for
this book. What’s crucial for relevance is having an ability to re-create the index with
new analysis and index settings. Once it’s re-created, you’ll need to reprocess docu-
ments against the updated settings.

 That being said, let’s create a function, reindex, that you can refer to. The reindex
function takes settings and the movieDict dictionary returned from extract, re-creates
the Elasticsearch index, and indexes the data into Elasticsearch.

def reindex(analysisSettings={}, mappingSettings={}, movieDict={}):
 settings = {
 "settings": {
 "number_of_shards": 1,
 "index": {
 "analysis" : analysisSettings,
 }}}

 if mappingSettings:
 settings['mappings'] = mappingSettings

 resp = requests.delete("http://localhost:9200/tmdb")
 resp = requests.put("http://localhost:9200/tmdb",
 data=json.dumps(settings))

Listing 3.2 Sample TMDB movie from tmdb.json

Listing 3.3 Indexing with Elasticsearch’s bulk API—reindex

Title of the
movie

The movie’s
tagline

List of cast in
the movie

Settings for the index wi
provided custom analys
and field mappingsDisables

sharding to
ove effects

global term
statistics b

Elasticsearch’s settings
for how fields should
be analyzed (covered in
future chapters)

Deletes/re-creates
TMDB index with
new settingsc

45Your first search application
 bulkMovies = ""
 for id, movie in movieDict.iteritems():
 addCmd = {"index": {"_index": "tmdb",
 "_type": "movie",
 "_id": movie["id"]}}
 bulkMovies += json.dumps(addCmd) + "\n" + json.dumps(movie) + "\n"
 resp = requests.post("http://localhost:9200/_bulk", data=bulkMovies)

In reindex, you first interact with Elasticsearch by re-creating a tmdb index for your
data c with passed-in settings. Creating an index is synonymous with creating a data-
base in a relational database system. The index will contain your documents and other
pieces of search configuration for tmdb content. You’ll work with the /tmdb Elastic-
search HTTP endpoint when working with the tmdb index as a whole.

 You may notice the shards setting passed in B. As you may recall from chapter 2, a
term’s document frequency is an important component of results ranking. Document
frequency counts the number of times a term occurs across the entire index. In dis-
tributed search engines, where the index is physically subdivided into shards, docu-
ment frequency is stored per shard. This can cause results ranking to appear to be
broken for smaller test document sets. For larger document sets, the impacts of shard-
ing usually average out. For the repeatability of our testing, we’ll disable sharding.

 Starting at d, you start to use the bulk index API. You begin to build up a string of
bulk index commands to Elasticsearch. The addCmd here tells Elasticsearch that you’re
indexing the document. You tell Elasticsearch some metadata about each document,
including where it should be stored (_index: tmdb), its type (_type: movie), and its
unique ID (taken from TMDB’s id). On the subsequent line, you append the docu-
ment to be indexed. On the next line, you append the command and document to
the bulkMovies string for indexing. You repeat this process for every movie in mov-
ieDict. Finally, after building the full bulk command, you POST the large bulkMovies
string to Elasticsearch’s /_bulk endpoint.

 With all the pieces, you can finally index the movies. Combining extract and
reindex, you can pull data into Elasticsearch in the following listing.

movieDict = extract()
reindex(movieDict=movieDict)

Congratulations! You’ve built your first ETL (extract, transform, load) pipeline. Here
you’ve done the following:

■ Extracted information from an external system
■ Transformed the data into a form amenable to the search engine
■ Indexed the data into Elasticsearch

Further, by telling Elasticsearch via the commands in reindex about a new index
(_index: tmdb) and about a new type (_type: movie), you’ve created both an index

Listing 3.4 Pulling data from TMDB into Elasticsearch

Bulk-index each
movie in the passed-
in movieDict as is

d

46 CHAPTER 3 Debugging your first relevance problem

(not an SQL database) and a type of document (not an SQL table). In the future,
when you want to search or interact with the tmdb index, you’ll reference tmdb/
movie/ or tmdb/ in the path of the Elasticsearch URL.

3.4.1 Your first searches of the TMDB Elasticsearch index

Now you can search! For this movie application, you need to figure out how to
respond to user searches from your application’s search bar. To do this, you’ll use Elas-
ticsearch’s Query domain-specific language (DSL), or Query DSL.

 The Query DSL tells Elasticsearch how to execute a search using a JSON format.
Here you specify factors such as required clauses, clauses that shouldn’t be included,
boosts, field weights, scoring functions, and other factors that control matching and
ranking. The Query DSL can be thought of as the search engine’s SQL, a query lan-
guage focused on ranked retrieval of flat, denormalized documents.

 Being a fairly new relevance engineer, you’ll start with a basic application of Elastic-
search’s multi_match query. This is Elasticsearch’s Swiss Army knife for constructing
queries across multiple fields. Because most search problems involve searching multi-
ple fields, it’s where many start with a relevance solution. A common initial pass at a
search relevance solution is to attempt to construct a multi_match query that lists the
fields to be searched along with a few boosts (specified with the ^ symbol). Boosting is
the act of adding or multiplying to a relevance score with a constant factor, query, or
function. In this case, boosting is simple; you boost the title score by the constant 10 in
an effort to tell the search engine about the relative importance of the field.

 Let’s implement a search function that lets you search with passed-in Query DSL
queries. search is a fairly straightforward function that passes a query and prints the
search results in order of relevance, as shown in the following listing.

def search(query):
 url = 'http://localhost:9200/tmdb/movie/_search'
 httpResp = requests.get(url, data=json.dumps(query))
 searchHits = json.loads(httpResp.text)['hits']
 print "Num\tRelevance Score\t\tMovie Title"
 for idx, hit in enumerate(searchHits['hits']):
 print "%s\t%s\t\t%s" %
(idx + 1, hit['_score'], hit['_source']['title'])

What do Query DSL queries look like that you pass to search? In listing 3.6, you con-
struct a Query DSL search using multi_match. You attempt to tell Elasticsearch that a
title field is 10 times more important than the overview field when ranking B.
Through this chapter, you’ll assess whether this attempt is working out.

HINT FOR SOLR READERS Instead of multi_match, Solr encourages you to start
with the “dismax” family of query parsers. A starting query for the Solr user

Listing 3.5 The search function

Runs the provided
search using the Query
DSL passed in query

Prints the
search results

47Your first search application
might be: http://localhost:8983/solr/tmdb/select?q=basketball with
cartoon aliens&defType=edismax&qf=title^10 overview. Note that while
this is the common starting point, this query works somewhat differently than
Elasticsearch’s multi_match query parser. See chapter 6 and appendix B for
more details.

Here’s your first “hello world” search using the Query DSL.

usersSearch = 'basketball with cartoon aliens'
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title^10", "overview"],
 }
 }
}
search(query)

Output:

Num Relevance Score Movie Title
1 0.8424165 Aliens
2 0.5603433 The Basketball Diaries
3 0.52651036 Cowboys & Aliens
4 0.42120826 Aliens vs Predator: Requiem
5 0.42120826 Aliens in the Attic
6 0.42120826 Monsters vs Aliens
7 0.262869 Dances with Wolves
8 0.262869 Interview with the Vampire
9 0.262869 From Russia with Love
10 0.262869 Gone with the Wind
11 0.262869 Fire with Fire

Oh, no—these search results aren’t good! You can infer from the query “basketball
with cartoon aliens” that the user is likely searching for Space Jam—a movie about the
Looney Tunes characters facing off against space aliens in a game of basketball with the
help of Michael Jordan. It seems that the user doesn’t know the name of the movie
and is attempting to grope around for it with a descriptive query—a common use case.
Unfortunately, most of the top movies listed seem to be about basketball or aliens, but
not both. Other movies seem to be completely unrelated to basketball or aliens, and
we’re completely missing the mark. Where’s Space Jam? If you request additional results
from Elasticsearch, you finally see your result:

43 0.016977157 Space Jam

Why were seemingly irrelevant movies considered valuable by the search engine? How
can you diagnose the problem and begin to seek solutions? Your day as a relevance

Listing 3.6 Your first search

The user’s
search terms

Boosts “title” to 10
times as important
as “overview”.b

http://localhost:8983/solr/tmdb/select?q=basketball

48 CHAPTER 3 Debugging your first relevance problem
engineer will be spent trying to diagnose the odd results returned by the search engine.
You need to answer two main questions:

■ Why did certain documents match query terms? Why did a movie such as Fire
with Fire even match your query?

■ Why did less relevant documents rank as highly as they did? Why is The Basketball
Diaries ranked higher than our target Space Jam?

You’ll want to be able to understand the problem fast. Time is ticking, and users aren’t
having a good search experience.

3.5 Debugging query matching
What could be happening in this failed search for “basketball with cartoon aliens”?
The first, and most foundational, way to begin looking for answers is by debugging the
query’s term-matching behavior. In your work, you’ll often find cases where a relevant
document that should match doesn’t. Conversely, you might be surprised when low-
value or spurious terms match, adding an irrelevant document to the results. Even
within the documents retrieved, matching or not matching a term might influence rele-
vance ranking—unexpectedly causing poor results to be ranked highly because of spuri-
ous matches or ranked low because of unexpected misses. You need to be able to take
apart this process with Elasticsearch’s analysis and query validation debugging tools.

 First, we’ll remind you of what we mean by matching. Recall from chapter 2 that
declaring a term a match in the inverted index is a strict, exact binary equivalence.
Search engines don’t have the intelligence to know that “Aliens” and “alien” refer to
the same idea. Or that “extraterrestrial” refers to almost the same idea. English-
speaking humans understand that these mentions should be counted as signifiers of
the idea of alien; or, as we’ve discussed, an indicator of the feature of “alien-ness” pres-
ent in the text. But to the unintelligent search engine, these two tokens exist as dis-
tinct UTF-8 binary strings. The two strings, 0x41,0x6c,0x69,0x65,0x6e,0x73 (Aliens)
and 0x61,0x6c,0x69,0x65,0x6e (alien), aren’t at all the same and don’t match.

 This exacting matching behavior points to two areas to take apart:

■ Query parsing—How your Query DSL query translates into a matching strategy
of specific terms to fields

■ Analysis—The process of creating tokens from the query and document text

By understanding query parsing, you can see exactly how your Query DSL query uses
Lucene’s data structures to satisfy searches against different fields. Through analysis,
you can massage, interrogate, pry, and prod text with hope that the text’s true “alien-
ness” can be boiled down to a single term. You can further identify meaningless terms,
such as the that might match but represent no important feature, creating spurious
matches on low-value terms.

 Only after you understand how the underlying data structures are created and
accessed can you hope to take control of the process. Let’s walk through your search

49Debugging query matching
and see whether a matching problem is inadvertently including spurious matches
such as Fire with Fire.

3.5.1 Examining the underlying query strategy

The first thing you’ll do to inspect matching behavior is ask Elasticsearch to explain
how the query was parsed. This will decompose your search query into an alternate
description that more closely describes the underlying interaction with Lucene’s data
structures. To do this, you’ll use Elasticsearch’s query validation endpoint. This end-
point, shown in the next listing, takes as an argument a Query DSL query and returns
a low-level explanation of the strategy used to satisfy the query.

HINT FOR SOLR READERS Set the parameter debugQuery=true on your Solr
query to get equivalent query parsing debug information. See your Solr
response’s parsedquery for what’s equivalent to Elasticsearch’s query valida-
tion endpoint output.

query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title^10", "overview"]
 }
 }
}
httpResp = requests.get('http://localhost:9200' +
 '/tmdb/movie/_validate/query?explain',
 data=json.dumps(query))
print json.loads(httpResp.text)

Response:

{u'_shards': {u'failed': 0, u'successful': 1, u'total': 1},
 u'explanations': [
{u'explanation':
u'filtered((((title:basketball title:with
 title:cartoon title:aliens)^10.0) |
 (overview:basketball overview:with
 overview:cartoon overview:aliens)))->cache(_type:movie)',
 u'index': u'tmdb',
 u'valid': True}],
 u'valid': True}

Here the returned explanation field (in bold) lists what you’re interested in. Your
query is translated into a more precise syntax that gives deeper information about
how Lucene will work with your Elasticsearch query:

((title:basketball title:with title:cartoon title:aliens)^10.0) |
 (overview:basketball overview:with overview:cartoon overview:aliens)

Listing 3.7 Explaining the behavior of your query

Issue validation
request to
validate API

How query is
executed in
Lucene query
syntax

50 CHAPTER 3 Debugging your first relevance problem
3.5.2 Taking apart query parsing

The query validation endpoint has returned an alternative representation of your
Query DSL query to help debug your matching issues. Let’s examine this alternative
syntax; we introduced the basics of this syntax in chapter 2. The query validation output
is reminiscent of Lucene query syntax1—a low-level, precise way of specifying a search.
Because of the additional precision, Lucene query syntax describes the requirements
of a relevant document a bit more closely to how Lucene itself will perform the search
using the inverted index.

 As we discussed in chapter 2, Lucene queries are composed of the Boolean clauses
MUST(+), SHOULD, and MUST_NOT(-). Each one specifies a field to search in the
underlying document, and each takes the form [+/-]<fieldName>:<query>. To debug
matching, the most important part of the clause is the component that specifies the
match itself: <fieldName>:<query>. If you examine one of the preceding clauses,
such as title:basketball, you can see that you’re asking the title field to look for
the specific term basketball. Each clause is a simple term query, a single term lookup
in the inverted index. Besides the term query, the most prominent queries you’ll
encounter are phrase queries. We discussed these also in chapter 2. In Lucene query
syntax, these are specified by using quotes, as in title:"space jam" to indicate that
the terms should be adjacent.

 In our example, as you move one layer out from each match, you can see Lucene’s
query strategy. Although you’re currently focused on matching, this encompasses
more than that. Above the innermost matches, you see four SHOULD clauses scored
together (grouped with parentheses):

(title:basketball title:with title:cartoon title:aliens)

Boosted by a factor of 10 (as we’ve requested when searching), you have the following:

(title:basketball title:with title:cartoon title:aliens)^10

Compared to another query, with a maximum score taken (| symbol), you have this:

((title:basketball title:with title:cartoon title:aliens)^10.0) |
(overview:basketball overview:with overview:cartoon overview:aliens)

We present other pieces of this pseudo-Lucene query syntax as you move through
the book.

 It seems odd that a lot of surprising scoring mumbo-jumbo is already happening.
You’ll debug scoring in greater depth later in this chapter; for now what matters is
using the term query information to answer why spurious matches such as Dances with
Wolves or Fire with Fire are even considered matches.

1 In reality, the representation depends on each Lucene query’s Java toString method, which attempts (but
doesn’t always accurately reflect) strict Lucene query syntax.

51Debugging query matching
3.5.3 Debugging analysis to solve matching issues

Now that you know which terms are being searched for, the next step to debugging
matching is to see how documents are decomposed into terms and placed in the
index. After all, your searches will fail if the terms you’re searching for don’t exist in
the index. We gave an example of this previously. Searches for the term Aliens won’t
match the term alien regardless of our intuition. Further, term searches might result
in spurious matches that don’t signify anything valuable. For example, matching on
the in isolation is spurious for English. It signifies no important feature latent in the
text to our user’s English-language-trained minds.

 Despite our intuitive notion of how a document should be decomposed into terms,
the mechanics of analysis often surprise us. It’s a process you’ll need to debug often.
You already know how these terms are extracted: through index-time analysis. Analyz-
ers are the entities that define the analysis process. They contain the components dis-
cussed in chapter 2: character filters, a tokenizer, and token filters. In Elasticsearch,
the analyzer used can be specified at many levels, including for the index (all of
TMDB), a node (a running instance of Elasticsearch), a type (all movies), a field, or
even at query time for a particular query. You have yet to specify an analyzer, so the
default standard analyzer is used. You can use this knowledge along with Elasticsearch’s
useful analyze endpoint to view how text from your documents was transformed into
the tokens that will form the inverted index.

 Perhaps if you see how the analysis for the title Fire with Fire translates to the
inverted index, you might see the terms that match your query. Then you might see
why this seemingly random, irrelevant movie is included in the results.

HINT FOR SOLR READERS While there’s a similar API in Solr, Solr comes with a
tremendous admin UI that includes a debugging tool for analyzers. In the
Admin UI select your core and “analyzers” to perform similar debugging.

resp = requests.get('http://localhost:9200/tmdb/_analyze' \
 '?analyzer=standard&format=yaml',
 data="Fire with Fire")
print resp.text

The result (in prettier YAML) is as follows:

tokens:
- token: "fire"
 start_offset: 0
 end_offset: 4
 type: "<ALPHANUM>"

Listing 3.8 Debugging analysis

Requests analysis
of the string “Fire
with Fire” using
the standard
analyzer

An entry in the token stream,
showing the extracted
properties of a token.

Start/end offsets indicate
where the token exists in
the source text.

52 CHAPTER 3 Debugging your first relevance problem
 position: 1
- token: "with"
 start_offset: 5
 end_offset: 9
 type: "<ALPHANUM>"
 position: 2
- token: "fire"
 start_offset: 10
 end_offset: 14
 type: "<ALPHANUM>"
 position: 3

This output shows you important properties of each token extracted from the snippet
Fire with Fire by the standard analyzer. This list of tokens resulting from analysis is
known as the token stream. In this token stream, you extract three tokens: fire, with,
and fire. Notice how the text has been tokenized by whitespace and lowercased?
Further notice how more attributes than just the token text are included. Notice the
offset values, indicating the exact character position of each term in the source text,
and position, indicating the position of the token in the stream.

 After analysis, the token stream is indexed and placed into the inverted index.
For debugging and illustration purposes, you can represent the inverted index in a
simple data structure known as SimpleText2—an index storage format created by
Mike McCandless purely for educational purposes. You’ll use this layout to think
through the structure of the inverted index.

 Let’s take a second to reflect on how the preceding token stream is translated to a
SimpleText representation of an index, focused just on the term fire.

field title
 term fire
 doc 0
 freq 2
 position 1
 position 3
 doc 2
 …

The search engine’s goal when indexing is to consume the token stream into the
inverted index, placing documents under their appropriate terms. After counting
the number of occurrences of a particular token (in this case, two instances of fire),
indexing adds entries to the postings list for the term fire. Under fire, you add your
document, doc 0 B. You further store the number of occurrences of fire in doc 0 as
freq and record where it occurred through each position entry. With all the tokens

2 You can read more about SimpleText in Mike McCandless’s blog post: http://blog.mikemccandless.com/
2010/10/lucenes-simpletext-codec.html.

Listing 3.9 SimpleText index representation for the term fire

Position indicates term
ordering, distance, and
adjacency.

Indicates doc
0 contains the
term “fire” b

http://blog.mikemccandless.com/2010/10/lucenes-simpletext-codec.html
http://blog.mikemccandless.com/2010/10/lucenes-simpletext-codec.html

53Debugging query matching
taken together, this document is added to the postings for two terms, fire and with,
as shown in the following listing.

field title
 term fire
 doc 0
 freq 2
 position 1
 position 3
 doc 2
 …
 term with
 doc 0
 freq 1
 position 2

 …

As we’ve discussed, data structures other than the inverted index consume this token
stream. Numerous features can be enabled in Lucene. For our purposes, you should
consider data structures that consume this token stream to provide other forms of
global-term statistics such as the document frequency. In this case, the document fre-
quency of fire will increase by one, reflecting the new document.

 It’s important to note that you can deeply control this process. Typically, analysis is
controlled on a field-by-field basis. You’ll see how to define your own analyzers for
your fields, using the components discussed in chapter 2: character filters, tokenizers,
and token filters. But first, armed with what you know about the query and the terms
in the index, you need to examine why a spurious result like Fire with Fire would even
match in the first place.

3.5.4 Comparing your query to the inverted index

You’re now prepared to compare your parsed query with the context of the inverted
index. If you compare the parsed query

((title:basketball title:with title:cartoon title:aliens)^10.0) |
(overview:basketball overview:with overview:cartoon overview:aliens)

against the inverted index snippet from the token stream for Fire with Fire, you see
exactly where the match occurs:

field title
 term fire
 doc 0
 freq 2
 position 1
 position 3
 doc 2
 … (more docs)

Listing 3.10 View of title index with Fire with Fire terms highlighted

“Fire with Fire” under
“title:fire” posting

“Fire with Fire” under
“title:with” posting

54 CHAPTER 3 Debugging your first relevance problem
 term with
 doc 0.
 freq 1
 position 2
 …

The clause title:with pulls in doc 0, Fire with Fire, from the inverted index. Recalling
how term matches work, you can start to understand the mechanics here. Our docu-
ment is listed under with in the index. Therefore, it’s included in the search results
along with other matches for with. As we discussed in the previous chapter, this is an
entirely mechanical process. Of course, to English speakers, a match on with isn’t
helpful and will leave them scratching their heads about why such a noisy word was
considered important in matching.

 Other spurious movies seem to fall into this category. Movies like Dances with Wolves
or From Russia with Love get slurped up into the search results just as easily as docu-
ments that match more important terms like basketball or aliens. Without help,
the search engine can’t discriminate between meaningful, valid, and important Eng-
lish terms and those that are noise and low value.

3.5.5 Fixing our matching by changing analyzers

This matching problem luckily has a straightforward fix. We’ve teased Elasticsearch
for not knowing much about English. In actuality, Elasticsearch has an analyzer that
handles English text fairly well. It strings together character filters, a tokenizer, and
token filters to normalize English to standard word forms. It can stem English terms
to root forms (running -> run), and remove noise terms such as the, known as stop
words. Lucky for us, with is one such stop word. Removing it from the index could
solve our problem.

 How do you do use this analyzer? Simple: you need to assign a different analyzer to
the fields. Because modifications to index-time analysis alter the structure of the
inverted index, you’ll have to reindex your documents. To customize the analysis,
you’ll re-create your index and rerun the previous indexing code. The main differ-
ence is at B in the following listing; you’ll explicitly configure the field with the Eng-
lish analyzer before creating the index.

HINT FOR SOLR READER Solr’s schema.xml specifies the configuration of Solr’s
fields. The analyzer used by a field is controlled by the analyzer associated with
a field’s fieldType. Out of the box, Solr’s schema.xml defines a number of
field types, including text_en which is appropriate for English text. Changing
analyzers and field settings requires reindexing in Solr just as in Elasticsearch.

mappingSettings = {
 "movie": {
 "properties": {

Listing 3.11 Reindexing with the English analyzer

“with” given equal
prominence to “fire”
in postings list

55Debugging query matching
 "title": {
 "type": "string",
 "analyzer": "english"
 },
 "overview": {
 "type": "string",
 "analyzer": "english"
 }
 }
 }
}
movieDict = extract()
reindex(mappingSettings=mappingSettings, movieDict=movieDict)

Great! Did it work? Let’s reanalyze Fire with Fire to see the results:

resp = requests.get('http://localhost:9200/tmdb/
_analyze?field=title&format=yaml',

 data="Fire with Fire")

Response:

tokens:
- token: "fire"
 start_offset: 0
 end_offset: 4
 type: "<ALPHANUM>"
 position: 1
- token: "fire"
 start_offset: 10
 end_offset: 14
 type: "<ALPHANUM>"
 position: 3

Notice the removal of with in this token stream. Particularly, notice the gap between
positions 1 and 3. Elasticsearch is reflecting the removal of the token by this position
gap to avoid spurious phrase matches. Rerunning the query validation also shows a
removal of with from the query:

{u'_shards': {u'failed': 0, u'successful': 1, u'total': 1},
 u'explanations':
 [{u'explanation':
 u'filtered((((title:basketbal title:cartoon title:alien)^10.0) |
 (overview:basketbal overview:cartoon overview:alien)))
 ->cache(_type:movie)',
 u'index': u'tmdb',
 u'valid': True}],
 u'valid': True}

Modifies fields “title”
and “overview” to
use the English
analyzer

b

Reindexes
with new
field
mappings

“with” token
no longer in the
token stream

Position of second
“fire” term unchanged

The new query strategy. Note
“basketball” is now stemmed to

“basketbal” due to rules for
stemming English.

56 CHAPTER 3 Debugging your first relevance problem
And indeed, the matches become much closer to what you want. At least you’re in the
range of aliens. Further, because of more sophisticated analysis, stemming, and
token normalization, you’re picking up other matches of alien that were missing.

Num Relevance Score Movie Title
1 1.0643067 Alien
2 1.0643067 Aliens
3 1.0643067 Alien³
4 1.0254613 The Basketball Diaries
5 0.66519165 Cowboys & Aliens
6 0.66519165 Aliens in the Attic
7 0.66519165 Alien: Resurrection
8 0.53215337 Aliens vs Predator: Requiem
9 0.53215337 AVP: Alien vs. Predator
10 0.53215337 Monsters vs Aliens
11 0.08334568 Space Jam

Congratulations! By turning on the English analyzer, you’ve made a significant leap
forward. Your target has moved up to #11. You’ve achieved a saner mapping of text
that corresponds to the text’s “alien-ness” feature through simple English-focused
analysis. You’ve also eliminated text that shouldn’t be thought of as corresponding to
any feature of the text: stop words.

 In future chapters, you’ll explore more use cases that shape the representation of
tokens even deeper than what you’ve done here. Because terms are analogues to tex-
tual features, the translation of text into tokens is often deeply customized per
domain. For now, you need to switch gears to debug the next layer in the search equa-
tion: relevance ranking.

3.6 Debugging ranking
After resolving your matching issue, you’re still left wondering why movies like Alien,
Aliens, and Basketball Diaries rank above Space Jam. None of these movies have basket-
ball-playing aliens. Our user is still left disappointed with the search. With results like
these, the user is likely growing increasingly frustrated with the search application.
You have to find a way to take apart the relevance ranking such that it more accurately
aligns to your user’s information needs. You need to ask Elasticsearch to explain itself.
What you’ll see is that debugging ranking means understanding the following:

■ The calculation of individual match scores
■ How these match scores factor into the document’s overall relevance score

You saw in chapter 2 that underlying each of these factors is the idea of a score. The
score is the number assigned by the search engine to a document matching a
search. It indicates how relevant the document is to the search (higher score mean-
ing more relevant). Relevance ranking, then, is typically a sort on this number.
You’ll see through debugging ranking that this score, although informed by a theo-
retical basis, is entirely in your hands to manipulate, to implement your notions of

57Debugging ranking
relevance. In fact, the majority of this book is about the best way to take mastery
over this one number!

 For matches, you must determine whether match scores accurately reflect your
intuitive notion about the strength of the corresponding feature. We discussed that all
mentions of alien or alien-related text (for example, Aliens or extraterrestrial)
add weight to our notion of the “alien-ness” feature latent in the text. Do you feel that
when you match on alien, the score for the term alien reflects your intuition of the
true strength of the text’s “alien-ness”? We’ll decompose the math that goes into term
scoring. Only then can you reflect on whether matches on alien or basketball
really reflect your understanding of the true strength of a movie’s true “alien-ness”
or “basketball-ness.”

 You’ll also see the mechanics of how other queries compose matches into larger
score calculations by boosting, summing, and choosing between component scores. If
term matches represent the strength of individual features in text, then these other
operations relate the features to one another. Our example specifies a multi_match
query with default settings, searching title with a boost of 10 and overview with no
boost. How does this translate into a scoring formula? More important, how do you
know whether the formula resulting from this query was the right thing to do?

 To fix our Space Jam query, you’ll need to get inside the search engine’s head.
You’ll need to align the mechanical scoring process to reflect your business and user’s
notion of relevance—both in terms of how terms relate to features and how these fea-
ture strengths combine into a larger relevance score.

3.6.1 Decomposing the relevance score with Lucene’s explain feature

Lucene’s explain feature lets you decompose the calculation behind the relevance
score. Before diving into the explain, let’s revisit your initial pass at understanding the
query for Space Jam. The query validation output helps reveal the scoring strategy that
will be used:

((title:basketbal title:cartoon title:alien)^10.0) |
 (overview:basketbal overview:cartoon overview:alien)

In this query, you seek out basketbal (the stemmed form of basketball), cartoon,
and alien terms in each field. The title score is boosted by 10. The search engine
then chooses between the two fields, by taking the maximum of the field scores
(the | symbol).

 This is a starting point, but what you need to see isn’t the strategy, but the after-
action report. You need to see the scoring arithmetic for specific documents.

 There are a couple of ways to ask for explain information, but because we often
want to see this information in line with each search result, it’s convenient to set
explain: true when issuing the search query. This will return an _explanation entry
in each search result returned. Let’s reissue our search with an explain set so you can
reflect on the scoring.

58 CHAPTER 3 Debugging your first relevance problem
HINT FOR SOLR READER The Solr parameter &debugQuery=true outputs the
same scoring debug information as setting 'explain': True in Elasticsearch.
Examine the “explain” section in your Solr’s response.

query = {
 "explain": True,
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title^10", "overview"]
 }}}
httpResp = requests.get('http://localhost:9200/tmdb/movie/_search',
 data=json.dumps(query))
jsonResp = json.loads(httpResp.text)
print "Explain for %s" % jsonResp['hits']['hits'][0]['_source']['title']
print json.dumps(jsonResp['hits']['hits'][0]['_explanation'], indent=True)

The full explain is lengthy, so we omit a great deal of the JSON output. It’s here only
to give a taste. We show the full explain in a more concise form farther down. Without
further ado, here’s a snippet of the JSON explain for Alien:

{
 "description": "max of:",
 "value": 1.0643067,
 "details": [
 {
 "description": "product of:",
 "value": 1.0643067,
 "details": [
 {
 "description": "sum of:",
 "value": 3.19292,
 "details": [
 {
 "description": "weight(title:alien in 223)
 [PerFieldSimilarity], result of:",
 "value": 3.19292,
 "details": [
 {
 "description": "score(doc=223,freq=1.0 = termFreq=1.0\n),
 product of:",
 "value": 3.19292,
 "details": [
 {
 "description": "queryWeight, product of:",
 "value": 0.4793294,
 "details": [
 {
 "description": "idf(docFreq=9, maxDocs=2875)",
 "value": 6.661223

Listing 3.12 Requesting a relevancy scoring explanation

Same search
as before Enables Elasticsearch’s

explain feature

User’s
query Fetch _explanation

from first search
result

59Debugging ranking
 }
<omitted>
}

From now on, we’ll summarize this explain format more concisely. We can simplify the
preceding snippet by collapsing it for a shorter summary shown in the following list-
ing. While this begins to take shape, it’s still overwhelming. Don’t focus on under-
standing this now; just scan it. We’ll soon show a way to make sense of the madness.

1.0646985, max of:
 1.0646985, product of:
 3.1940954, sum of:
 3.1940954, weight(title:alien in 223) [PerFieldSimilarity], result of:
 3.1940954, score(doc=223,freq=1.0 = termFreq=1.0
), product of:
 0.4793558, queryWeight, product of:
 6.6633077, idf(docFreq=9, maxDocs=2881)
 0.07193962, queryNorm
 6.6633077, fieldWeight in 223, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 6.6633077, idf(docFreq=9, maxDocs=2881)
 1.0, fieldNorm(doc=223)
 0.33333334, coord(1/3)
 0.053043984, product of:
 0.15913194, sum of:
 0.15913194, weight(overview:alien in 223)
 [PerFieldSimilarity], result of:
 0.15913194, score(doc=223,freq=1.0 = termFreq=1.0
), product of:
 0.033834733, queryWeight, product of:
 4.7032127, idf(docFreq=70, maxDocs=2881)
 0.0071939616, queryNorm
 4.7032127, fieldWeight in 223, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 4.7032127, idf(docFreq=70, maxDocs=2881)
 1.0, fieldNorm(doc=223)
 0.33333334, coord(1/3)

We’ll compare this explanation for Alien to the explain for our target result Space Jam:

0.08334568, max of:
 0.08334568, product of:
 0.12501852, sum of:
 0.08526054, weight(overview:basketbal in 1289)
 [PerFieldSimilarity], result of:
 0.08526054, score(doc=1289,freq=1.0 = termFreq=1.0
), product of:
 0.049538642, queryWeight, product of:
 6.8843665, idf(docFreq=7, maxDocs=2875)
 0.0071958173, queryNorm

Listing 3.13 Simplified explain for Alien

60 CHAPTER 3 Debugging your first relevance problem
 1.7210916, fieldWeight in 1289, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 6.8843665, idf(docFreq=7, maxDocs=2875)
 0.25, fieldNorm(doc=1289)
 0.03975798, weight(overview:alien in 1289)
 [PerFieldSimilarity], result of:
 0.03975798, score(doc=1289,freq=1.0 = termFreq=1.0
), product of:
 0.03382846, queryWeight, product of:
 4.701128, idf(docFreq=70, maxDocs=2875)
 0.0071958173, queryNorm
 1.175282, fieldWeight in 1289, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 4.701128, idf(docFreq=70, maxDocs=2875)
 0.25, fieldNorm(doc=1289)
 0.6666667, coord(2/3)

At first blush, these explains appear terrifying. The first thing to realize is that the
explain is simply a decomposition of the arithmetic behind the relevance score. Each
number on the outside is explained by the details nested within. At the outermost
explain, you have the document’s relevance score. As you move deeper into the
details, you can see how that score is calculated with increased granularity.

 Eventually, you get to the layer listing the scores for specific matches (title:alien).
Under this layer, you describe the components involved in the scoring of a specific
match in a field. This match level is a bit of a dividing line in the explain. Inside, a
match is scored by directly consulting Lucene’s data structures for a term in a field.
Outside, scores for matches are combined into a larger formula. You may wish to com-
pare this output to what’s presented in figure 2.10, near the end of chapter 2.

 If you elide what’s inside the explains for each match (looking only at what’s “out-
side” matches), you have an even more concise explain for Alien:

1.0643067, max of:
 1.0643067, product of:
 3.19292, sum of:
 3.19292, weight(title:alien in 223) [PerFieldSimilarity]
 0.33333334, coord(1/3)
 0.066263296, product of:
 0.19878988, sum of:
 0.19878988, weight(overview:alien in 223) [PerFieldSimilarity

What you’re left with is a set of operations on the matches themselves. Internally,
these operations reflect queries that wrap other queries. These wrapping queries are
known as compound queries. Compound queries allow us to express how different fea-
tures represented by the underlying term-match scores relate to each other mathe-
matically. They reflect the query strategy you’ve already seen:

((title:basketbal title:cartoon title:aliens)^10.0) |
 (overview:basketbal overview:cartoon overview:aliens)

61Debugging ranking
After combining the matches, they in turn can be combined at arbitrary depth by
other compound queries to create even more-complex query scoring and matching. A
great deal of relevance engineering is learning how a Query DSL query maps to a set
of compound queries.

 If you pull back the veil and examine inside a match, you see a different sort of cal-
culation happening. The scoring begins to look more cryptic, filled with deeper
search-engine jargon. At this point, you’re seeing a more fundamental reflection of
the information retrieval intelligence built into the search engine. At this level, you
begin to see information about match statistics for a field. These matches are the basic
building blocks of the scoring calculation—hopefully, accurately reflecting the
strength of a particular latent feature in the text.

0.03975798, weight(overview:alien in 1289) [PerFieldSimilarity], result of:
 0.03975798, score(doc=1289,freq=1.0 = termFreq=1.0
), product of:
 0.03382846, queryWeight, product of:
 4.701128, idf(docFreq=70, maxDocs=2875)
 0.0071958173, queryNorm
 1.175282, fieldWeight in 1289, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 4.701128, idf(docFreq=70, maxDocs=2875)
 0.25, fieldNorm(doc=1289)

Again, you might be terrified! Don’t fret. We cover a theoretical backing for these
numbers next, and after that, you’ll be able to compare matches with ease. You’ll be
able to determine why some field matches seem to convey more strength than others.

3.6.2 The vector-space model, the relevance explain, and you

Much of the Lucene scoring formula derives from information retrieval. But the theo-
retical influence needs to be tempered mightily. Although the theoretical basis gives
you context for solving a problem, in practice, relevance scoring uses theory-inspired
heuristics based on applied experience of what works well. In many ways, aside from
foundational concepts, relevance scoring is just as much an art as a science. Under-
standing the science will help you ensure that the search engine correctly measures
the weight of features latent in the text, represented by terms.

 To information retrieval, a search for multiple terms in a field (such as our over-
view:basketbal overview:alien overview:cartoon against Space Jam) attempts to
approximate a vector comparison between the query and matched document. Vec-
tors? That’s sounds like geometry for what seems like a language arts problem.
Recall that a vector represents a magnitude and a direction in space. A vector is often
represented as an arrow, pointing into space from the origin—say, to the Moon
from Earth. Numerically, a vector is represented as a value for each dimension. Per-
haps the vector <50,20> means “North 50 miles, East 20 miles.” Space for a vector,
however, need not relate to the physical world we move around in. For example, if

62 CHAPTER 3 Debugging your first relevance problem
the x-axis represents a fruit’s juiciness, and the y-axis its size, you can define a vector
space that captures some of the important features of fruitiness. Figure 3.2 shows this
vector space.

Here you see several pieces of fruit represented as vectors in the juiciness/size vector
space. Some have a great deal of strength in the juiciness dimension, others in the size
direction. You can easily see how similar fruit might clump together. For example,
fruits in the upper right are most likely watermelon—very large and very juicy.

 You can infer something about the similarity of two pieces of fruit by computing
the dot product of their two vectors. In the fruit example, this means (1) multiplying
the juiciness of each fruit together, (2) multiplying the size, and (3) summing the
results. It turns out that the more properties fruit share in common, the higher the
dot product.

 dotprod(fruit1, fruit2) = juiciness(fruit1) × juiciness(fruit2) +
 size(fruit1) × size(fruit2)

What does this have to do with text? To information retrieval, text (queries and docu-
ments) can also be represented as vectors. Instead of examining features such as juici-
ness or size, the dimensions in the text vector space represent words that might
appear in the text. What if instead of fruit, you looked at a movie overview’s mention
of basketball, aliens, or cartoons, as in figure 3.3. Some text is definitely about
aliens (for example, the overview for Alien), but not basketball nor cartoons. Other
text (such as the overview of the Japanese anime film Slam Dunk) is about basketball
and cartoons, but not aliens. We suspect that our target, Space Jam, should score highly
in all the required dimensions.

 In the same way that fruit has a “juiciness” feature, you can think of movie text as
having an “alien-ness” feature based on the occurrence of alien words in the text. To
generalize this idea of representing features, you’ll define a feature space to mean a

J
u
ic

in
e
s
s

Size

Figure 3.2 Fruit in a two-dimensional
vector space; the x-axis is size, and
the y-axis is juiciness. Every fruit
measured for size/juiciness can be
represented as a vector, with similar
fruit clumping together.

63Debugging ranking
vector space where dimensions represent features, regardless of whether you’re talk-
ing about features of fruit, text, or anything else worth comparing.

 Of course, movies are about far more than just basketballs, cartoons, and aliens.
For text, the feature space is much larger than three dimensions. In what’s known as
the bag of words model of text, our vectors have a single dimension for each possible
term. It’s possible for there to be a dimension for every word in the English language!
Naturally, any given document or query is unlikely to mention every word in the Eng-
lish language. You’ll be hard pressed to find mention of Rome or history in the over-
view for Space Jam. Similarly, Gladiator is unlikely to mention Michael Jordan. Therefore,
most dimensions in these document vectors are empty or zero. For this reason, they’re
known as sparse vectors.

 After understanding that each vector dimension is a feature, the next step is mea-
suring the strength or magnitude of that feature. In search, this value is known as a
weight—a measure of how important that term is for the snippet of text. If alien is
prominent, it should receive a high weight; otherwise, it should receive a low or zero
weight. If you reexamine the previous explain, you can see Lucene’s own weight mea-
surement for the “alien” dimension in Space Jam:

0.03975798, weight(overview:alien in 1289)

C
a
rt

o
o

n
-n

e
s
s

Alien-ness

Space Jam ranks highly
in the dimensions of

Cartoon-ness,
Alien-ness, and
Basketball-ness.

The Godfather
has nothing to

do with
cartoons, aliens,

or basketball.

The Little
Mermaid is a

cartoon but has
no aliens or
basketball.

Aliens is all
about aliens
but has no

basketball and
is not a cartoon.

Basketb
all

-n
ess

Figure 3.3 Movie overview text in a three-dimensional vector-space examining basketball, cartoon, and
alien. Some movies are very much about cartoons and basketball (Slam Dunk). Space Jam is about all three!

64 CHAPTER 3 Debugging your first relevance problem
Before digging into how Lucene computes this weight, let’s walk through an example
with a simpler definition. Let’s define the weight for a particular term in text as 1 if
the term is at all present, and 0 if not. With this definition, a snippet of text from
Space Jam’s overview, basketball game against alien, would be represented as this bag-
of-words vector VD:

This vector has a dimension for every word in the English language; we’re showing
you only a handful of English words. You can compare this to a similarly constructed
vector, VQ, for your query “basketball with cartoon aliens”:

How many components match? How similar are the query and document? Just as with
the fruit example, you can calculate a dot product to arrive at a score. Recall that a dot
product of two vectors multiplies corresponding components one by one. You then
sum the components. So your score for this query would be calculated as follows:

score = VD['a'] × VQ['a'] + VD['alien'] × VQ['alien'] +
 … + VD['space'] × VQ['space'] …

When compared to the preceding explain breakdown, each multiplication factor rep-
resents a match score. In other words, overview:alien in the explain corresponds to
the factor VD['alien'] × VQ['alien']. The difference is that the explain reflects
Lucene’s own function for calculating a field or query weight, which we dive into next.
The summation in the preceding dot product can be found in the behavior of the
Boolean query that sums up matching clauses. You can see this in sum of from the pre-
vious explain:

3.19292, sum of:
 3.19292, weight(title:alien in 223) [PerFieldSimilarity]

3.6.3 Practical caveats to the vector space model

Although the vector space model provides a general framework for discussing
Lucene’s scoring, it’s far from a complete picture. Numerous fudge factors have been
shown to improve scoring in practice. Perhaps most fundamentally, the ways matches
are combined by compound queries into a larger score isn’t always a summation.

 You’ve seen through the | symbol that the “max” of two fields is often taken. There’s
also often a coord factor that directly punishes compound matches missing some of their

a alien against … basketball Cartoon … game … movie narnia … zoo

0 1 1 1 0 0 1 0 0 0

a alien against … basketball cartoon … game … movie narnia … zoo

0 1 0 1 1 0 0 0 0 0

65Debugging ranking
components (coord multiplies the resulting dot product by <the number of matches> /
<the total query terms>). Many of the compound queries you’ll encounter will perform
various operations on the underlying queries, such as taking a max, summing, or taking
a product. You also have tremendous freedom to arbitrarily calculate or boost scores
with your own function queries that might combine match (or other) scores with other
arbitrary factors. You’ll explore many of these strategies in future chapters.

 Another important note about this dot product is that it’s often normalized by
dividing the magnitude of each vector:

score =
 (VD['a'] × VQ['a'] + VD['alien'] × VQ['alien'] + … + VD['space'] × VQ['space'])

 (||VQ|| × ||VD||)

For dot products, normalization converts the score to a 0–1. This rebalances the equa-
tion to account for features that tend to have high weights, and those that tend to
have smaller weights.3 For search, given all the fudge factors in Lucene scoring and
the peculiarities of field statistics, you should never attempt to compare scores between
queries without a great deal of deep customization to make them comparable.

 As stated previously, the sparse vector representation of text is known as the bag of
words model. It’s considered a “bag” because it reflects a decomposition of text that
ignores the context of these terms. An important part of this context is the position
the term occurs in to enable phrase matching. Luckily, Lucene also stores positions of
each term’s occurrence. Thus, you could view a document as a sparse vector that also
includes every subphrase. This can be quite a large vector indeed! See the table below
as an example. It’s even larger when you open up the library of complex span queries!

3.6.4 Scoring matches to measure relevance

You’re still trying to get to the bottom of why some of your movies are ranked suspi-
ciously higher than the target Space Jam. You’ve explored the explain, and you see
some match scores that concern you. You’re almost there!

 You need to understand how Lucene measures the weight of a term in a piece of
document or query text in its vector calculation. You can then evaluate whether these
weights correspond to your intuition of how strongly those matches should be
weighted. Users, of course, don’t think in terms of the math presented here. But these
metrics have proven to experimentally approximate the user’s broad sense of rele-
vance. Let’s see if it lines up with our expectations for our use case.

3 Astute readers will recognize this as the cosine similarity.

a an alien … Basketball lump … “basketball game” “game against” …

0 0 1 0 0 1 1

66 CHAPTER 3 Debugging your first relevance problem
 Let’s look at Lucene’s weight computation for alien in Space Jam to suss out why a
match on alien is relatively weak:

0.03975798, weight(overview:alien in 1289) [PerFieldSimilarity], result of:
 0.03975798, score(doc=1289,freq=1.0 = termFreq=1.0), product of:
 0.03382846, queryWeight, product of:
 4.701128, idf(docFreq=70, maxDocs=2875)
 0.0071958173, queryNorm
 1.175282, fieldWeight in 1289, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 4.701128, idf(docFreq=70, maxDocs=2875)
 0.25, fieldNorm(doc=1289)

How does Lucene’s weight computation work? Looks like two weight components are
multiplied together. The fieldWeight reflects how Lucene computes the importance
of this term in the field text (in this case, overview). The queryWeight computes the
weight of the term in the user’s query.

 This weight information can be translated from the explains into sparse vectors for
the query and the two documents being scored (VQ and VD from the previous sec-
tion). For example, if you compare the weight of alien in Space Jam with the corre-
sponding entry in Alien:

0.15913194, weight(overview:alien in 223) [PerFieldSimilarity], result of:
 0.15913194, score(doc=223,freq=1.0 = termFreq=1.0), product of:
 0.033834733, queryWeight, product of:
 4.7032127, idf(docFreq=70, maxDocs=2881)
 0.0071939616, queryNorm
 4.7032127, fieldWeight in 223, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 4.7032127, idf(docFreq=70, maxDocs=2881)
 1.0, fieldNorm(doc=223)

You can represent these weights in a sparse vector. Here, you see the weight for alien.

For some reason, the weight of the term alien is much higher in the overview field
for Alien than it is for Space Jam. To us, this means that the feature of "alien-ness" is
graded highly in this overview text.

Query or field … alien …

Query: basketball with cartoon aliens (VQ) 0.033834733

overview field in Space Jam (VD) 1.175282

overview field in Alien (VD) 4.7032127

67Debugging ranking
3.6.5 Computing weights with TF × IDF

The rules for computing a term’s weight in a field is driven by what Lucene calls a sim-
ilarity. A similarity uses statistics recorded in the index for matched terms to assist a
query in computing a numerical weight for the term. Lucene supports several similar-
ity implementations, including letting you define your own.

 Most similarities are based on the formula TF × IDF. This refers to the multiplica-
tion of two important term statistics extracted from the field and recorded in the
inverted index by Lucene—term frequency (TF) and inverse document frequency (IDF).
By default, terms have their importance weighed by multiplying these two statistics.
As you may recall, these statistics were discussed at the end of chapter 2. Let’s recap.

 TF (tf in the preceding scoring) reflects how frequently a term occurs in a field.
You can see it in the SimpleText version of the inverted index in earlier sections as
freq. TF is extremely valuable in scoring a match. If a matched term occurs frequently
in a particular field in a document (if the field mentions alien a lot), we consider that
field’s text much more likely to be about that term. (We consider it very likely to be
about aliens.)

 Conversely, IDF (idf in the preceding scoring) tells us how rare (and therefore
valuable) a matched term is. Because IDF is the inverse of the document frequency,
it’s computed by taking 1 / document frequency, or 1 / DF. As you may recall, DF
records the number of documents the term occurs in. If the term is common, it will
have a high document frequency. Rare terms are considered valuable, and common
ones less so. If the term supercalifragilistic occurs in a single document, it will
receive a high IDF.

 Raw TF × IDF weighs a term’s importance in text by multiplying TF with IDF—or
put another way, TF × (1 / DF), or TF / DF. This measures what proportion the
index’s overall use of that term is concentrated in this specific document.

 Table 3.1 shows how TF × IDF works. In this example, when you weigh the impor-
tance of lego, there are relatively few movies about Legos. As you’d expect, the one
movie that mentions Legos, The Lego Movie, receives a higher TF × IDF weight. Contrast
this lego search with love. Movies that mention the term love are particularly com-
mon (everyone loves romantic comedies!). This causes occurrences of love in one
particular romantic comedy, Sleepless in Seattle, to receive a lower weight than lego in
The Lego Movie, despite having far more occurrences of love in Sleepless.

Table 3.1 Scoring love matches in Sleepless in Seattle versus lego in The Lego Movie. lego is rare
and is mentioned only in The Lego Movie, thus yielding a higher score than the love match.

Movie Matched term DF TF TF × IDF (TF / DF)

Sleepless In Seattle love 100 10 10 / 100 = 0.1

The Lego Movie lego 1 3 3 / 1 = 3.0

68 CHAPTER 3 Debugging your first relevance problem
The idea behind TF × IDF corresponds to most users’ instincts about what matches
should be considered important terms in text. Users perceive rare terms (such as lego)
to be far more specific and targeted than common terms (love). Further, as a snippet of
text mentions a term proportionally more than other text (as its TF increases), it’s more
likely that this text is going to be about the term being searched on.

 Though broadly valuable, you’ll see cases where these intuitions don’t hold. Some-
times increased TF doesn’t correspond to the user’s notion of term importance. High
TF matches on short text snippets like, for example, title fields (Fire with Fire) often
don’t correlate with our notion of increased term weight. Luckily, Elasticsearch gives
us the ability to disable TF as needed.

3.6.6 Lies, damned lies, and similarity

Although you can see that TF × IDF seems to be an intuitive weighting formula, these
raw statistics need additional tweaking to be optimal. Information retrieval research
demonstrates that although a search term might occur 10 times more in a piece of
text, that doesn’t make it 10 times as relevant. More mentions of the term do correlate
with relevance, but the relationship isn’t linear. For this reason, Lucene dampens the
impact of TF and IDF by using a similarity class.

 This book uses Lucene’s classic TF × IDF similarity (the defaults in Solr 5.x and
Elasticsearch 2.0—see callout). Lucene’s classic similarity dampens the impact of tf
and idf when computing a weight:

TF Weight = sqrt(tf)
IDF Weight = log(numDocs / (df + 1)) + 1

You can see how these statistics are dampened in table 3.2.

Further, dampening TF × IDF by itself often isn’t sufficient. Term frequency often
must be considered relative to the number of total terms in a matched field. For
example, does a single mention of alien in a 1,000-page book have the same weight as
a single occurrence of alien in a three-sentence snippet? The shorter snippet with

Table 3.2 Term frequency and document frequencies dampened with default formulas (IDF calculated
for 1,000 documents)

Raw TF TF weight Raw DF IDF weight (for 1,000 docs)

0,001 01 0001 7.215

0,002 01.414 0002 6.809

0,005 02.236 0010 5.510

,0015 03.872 0050 2.976

0,050 07.071 1000 0.999

1,000 31.623

69Debugging ranking
just one match is likely much more relevant for the term than the book that uses the
term once. For this reason, in the preceding fieldWeight calculation, TF × IDF is
multiplied by fieldNorm—a weight-normalization factor based on the length of the
document. This normalization factor is calculated as follows:

fieldNorm = 1 / sqrt(fieldlength)

This normalization regulates the impact of TF and IDF on the term’s weight by biasing
occurrences in shorter fields. Norms are calculated at index time and take up space.
Further, depending on the application and user base, they don’t always correlate to
our user’s notion of term importance in a piece of text. Luckily, Lucene lets us disable
the norms completely.

 Taken together, Lucene’s classic similarity measures a term’s weight in a piece of
text as follows:

TF weighted × IDF weighted × fieldNorm

Revisiting the fieldWeight calculation, you see this formula in play:

0.4414702, fieldWeight in 31, product of:
 1.4142135, tf(freq=2.0), with freq of:
 2.0, termFreq=2.0
 3.9957323, idf(docFreq=1, maxDocs=40)
 0.078125, fieldNorm(doc=31)

Lucene’s next default similarity: BM25
Over the years, an alternate approach to computing a TF × IDF score has become
prevalent in the information retrieval community: Okapi BM25. Because of its proven
high performance on article-length text, Lucene’s BM25 similarity will be rolling out
as the default similarity for Solr/Elasticsearch, even as you read this book.

What is BM25? Instead of “fudge factors” as discussed previously, BM25 bases its
TF × IDF “fudges” on more-robust information retrieval findings. This includes forcing
the impact of TF to reach a saturation point. Instead of the impact of length (field-
Norms) always increasing, its impact is computed relative to the average document
length (above-average docs weighted down, below-average boosted). IDF is computed
similarly to classic TF × IDF similarity.

Will BM25 help your relevance? It’s not that simple. As we discussed in chapter 1,
information retrieval focuses heavily on broad, incremental improvements to article-
length pieces of text. BM25 may not matter for your specific definition of relevance.
For this reason, we intentionally eschew the additional complexity of BM25 in this
book. Lucene won’t be deprecating classic TF × IDF at all; instead, it will become
known as the classic similarity. Don’t be shy about experimenting with both. As for
this book’s examples, you can re-create the scoring in future Elasticsearch versions
by changing the similarity back to the classic similarity. Finally, every lesson you learn
from this book applies, regardless of whether you choose BM25 or classic TF × IDF.

70 CHAPTER 3 Debugging your first relevance problem
3.6.7 Factoring in the search term’s importance

The computation of a query’s weight (queryWeight) doesn’t correspond to the same
formula. More occurrences of a term in the query for nearly all search cases doesn’t
correspond to more importance for that term (users almost always list their query
term once). Further, as queries are short, there’s little need for length normalization.
So this is also omitted. What’s left from our preceding weight calculation is the IDF.

 Additionally, queryWeight adds two factors:

■ Query-time boosting
■ Query normalization (queryNorm)

First we’ll get queryNorm out of the way. The first thing to note is that without boost-
ing, queryNorm doesn’t matter. It’s constant across all matches for our search. query-
Norm attempts to make scores between the different matches outside this single search
comparable, but it does a poor job. You should never attempt to compare scores
across different fields outside a single search. So much variation in statistics like IDF
and TF across fields and text makes relevance scores extremely relative. In fact, drop-
ping this factor commonly comes up in Lucene’s discussion list.4

 What does matter in queryWeight is the boost factor. There’s no boost in our
query in overview, but we do boost on title matches. Unfortunately, at times the
boost can be lost in the queryNorm calculation. Examining the queryNorm for our
title match in Alien shows a different calculation than queryNorm in the correspond-
ing match in the overview field by a factor of 10. You’ll see how Elasticsearch allows
you to boost different factors in future chapters.

3.6.8 Fixing Space Jam vs. alien ranking

Finally armed with mastery of Lucene’s scoring, you can compare the Space Jam and
Alien explains. Alien has two matches: a strong title match, and a much weaker
match in the overview field. Space Jam has two matches in the overview field. If you
zero in on what’s driving the differences in how the matches are computed, you can
see that scores for overview fields are in general always considerably weaker than
scores in the title field.

 You see this with a very high score for Alien’s title match:

 3.1940954, weight(title:alien in 223)

compared with the lower relevancy scores for an alien match in the overview field:

 0.03975798, weight(overview:alien in 1289)

This difference is roughly two orders of magnitude! Wait, didn’t we explicitly tell the
search engine that title is only 10 times as important as overview via boosting? Sure,

4 See “Whither Query Norm” at http://lucene.472066.n3.nabble.com/Whither-Query-Norm-td600443.html
for more details.

http://lucene.472066.n3.nabble.com/Whither-Query-Norm-td600443.html

71Debugging ranking

signif
low
“al
ov

over
also

giv
high
although we did apply a boost, we also learned that scores between fields aren’t at all
comparable. They exist entirely in their own scoring universes. Comparing the title
match for Alien with the overview match for alien, you can see this:

3.1940954, weight(title:alien in 223) [PerFieldSimilarity], result of:
 3.1940954, score(doc=223,freq=1.0 = termFreq=1.0
), product of:
 0.4793558, queryWeight, product of:
 6.6633077, idf(docFreq=9, maxDocs=2881)
 0.07193962, queryNorm
 6.6633077, fieldWeight in 223, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 6.6633077, idf(docFreq=9, maxDocs=2881)
 1.0, fieldNorm(doc=223)

0.03975798, weight(overview:alien in 1289) [PerFieldSimilarity], result of:
 0.03975798, score(doc=1289,freq=1.0 = termFreq=1.0), product of:
 0.03382846, queryWeight, product of:
 4.701128, idf(docFreq=70, maxDocs=2875)
 0.0071958173, queryNorm
 1.175282, fieldWeight in 1289, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 4.701128, idf(docFreq=70, maxDocs=2875)
 0.25, fieldNorm(doc=1289)

Here you see the driver of the difference in the two match’s fieldWeight scores B.
These fields tend to take a different character. An overview is roughly paragraph
length, whereas titles are just a few terms. This tends to drive the fieldNorms to be
quite different. Further, the relative distribution of terms in overview fields doesn’t
mirror the term distribution in title fields.

 These fields are often driven by how the authors of these fields chose to express
themselves. What do movie marketers think when writing an overview? What words do
they choose? How pithy or expansive is the writing? How does a movie studio choose a
movie title? Do they tie it to existing brands (and thus terms) or are they always trying
to be original? Often relevance with text requires both getting in the head of the
author (why did the author choose certain language) and the searcher (why does the
searcher use particular search terms).

 For the math we have to fix, the main implication is that a good overview score may
be significantly smaller than a good title score. A boost of 10 doesn’t imply 10 times the
importance to the search engine. It simply implies a multiple. When you take apart term
matching, you can see this in stark relief, with overview scores always significantly lower
than title scores. The appropriate way to use these field weights is to first dive into the
rough timbre of these scores before deciding how to apply weights. It might be more
appropriate to boost a title by 0.1, and this still may give significantly more weight to a
title match than an overview match simply because of that field’s particular character.

 Let’s rerun our query with a more reasonable title boost to see the impact.

IDF is
icantly
er for

ien” in
erview,
view is
longer,
ing it a
er field
norm.

b

queryNorm is 1/10th the
preceding queryNorm,
reflecting title’s boost.

72 CHAPTER 3 Debugging your first relevance problem
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title^0.1", "overview"],
 }}
}
search(query)

Results:

Num Relevance Score Movie Title
1 1.0016364 Space Jam
2 0.29594672 Grown Ups
3 0.28491083 Speed Racer
4 0.28491083 The Flintstones
5 0.2536686 White Men Can't Jump
6 0.2536686 Coach Carter
7 0.21968345 Semi-Pro
8 0.20324169 The Thing
9 0.1724563 Meet Dave
10 0.16911241 Teen Wolf

Great! Now that looks much better.

3.7 Solved? Our work is never over!
You’ve made progress and pushed the ball forward, but have you really solved any-
thing? You’re left with several points for improvement.

 First, recall how your query works from the preceding validation endpoint:

((title:basketbal title:cartoon title:alien)^10.0) | (overview:basketbal
overview:cartoon overview:alien)

Remember how the | is taking the maximum between the two field scores? You see
this in the following explain too B, when looking only at the compound queries:

1.0643067, max of:
 1.0643067, product of:
 3.19292, sum of:
 3.19292, weight(title:alien in 223) [PerFieldSimilarity], result of:

 0.33333334, coord(1/3)
 0.066263296, product of:
 0.19878988, sum of:
 0.19878988, weight(overview:alien in 223) [PerFieldSimilarity], result of:

By boosting overview and title more conscientiously, you’ve made it possible that
overview might sometimes beat title when the query takes the maximum of the two
fields. Why are you taking a maximum? Why is this strategy used by default? Are there

Listing 3.14 Searching with an adjusted boost

User’s
query

Why is this a maximum of two scores?
What purpose does this serve?b

73Summary
other strategies you could use to combine these scores so that it’s not all or nothing
between strong title and strong overview matches? You may have solved the Space Jam
problem, but what will this max do to other searches? When other searches create dif-
ferent scores, will we be back at square one?

 Finally, you must ask whether your fieldWeight calculation could be improved.
Do we truly care about fieldNorms? Is it important in this use case to bias toward
shorter text or longer text? There’s also the ever present struggle of the relevance
engineer: do the terms themselves represent the right features latent in the text? If
you looked at a snippet from Space Jam, you can ponder a few questions:

Michael Jordan agrees to help the Looney Toons play a basketball game
vs. alien slavers to determine their freedom.

Are all the features truly captured in this explain? We didn’t see any weight for a
match on cartoon in the explain; should toons or looney toons match cartoon? What
about Michael Jordan? We humans associate him with basketball; should we amplify
the weight of the basketball term by his name’s presence?

 Turning latent features into terms, and combining those features is the ever pres-
ent struggle of the relevance engineer. In the next chapter, we cover this topic in great
detail! You’ve begun with great promise here. In later chapters, you’ll continue to
explore these issues in greater depth, to maximize your use of the search engine’s
tools to match and rank in order to satisfy user and business needs.

3.8 Summary
■ Not getting the expected search results requires debugging matching and ranking.
■ To debug matching, examine how your search engine interprets and executes

your query; with Elasticsearch, this corresponds to the query validation endpoint.
■ Search engines require exacting, byte-for-byte term matching to include a docu-

ment in the search results.
■ Search engines need your help to determine which matches to include/omit

(such as stop words) by choosing an appropriate analyzer.
■ Search engines use TF × IDF scoring to rank results. You can see the scoring by

using your search engine’s relevance explain output.
■ TF measures the term’s importance in the document’s text. IDF determines the

rareness/specialness of a term across the whole corpus. Field norms (norms)
bias scoring toward shorter text.

■ Debugging search engine ranking requires understanding fieldWeight (how
important search terms are in the text) and debugging queryWeight (how impor-
tant search terms are in the search query).

■ Relevance scores aren’t easily compared, nor are they normalized. A poor score
for a title field may be 10.0; a good search score for the overview field may be 0.01.

■ Boost factors aren’t field priorities. Instead, they let you rebalance relevance
scoring. When scoring is balanced, you can prioritize one field or another.

Taming tokens
At this point, you have a good understanding of why relevance is critical for the suc-
cess of a search application (chapter 1). You also have a working knowledge of
search engine internals (chapter 2) and can debug relevance to pin down why doc-
uments match and why they’re given a particular score (chapter 3).

 Now, armed with motivation, knowledge, and tools, it’s time to dive into the art
of relevance engineering. In this chapter, we focus on text analysis. Proper analysis
is the foundation of relevant search. As you saw in chapter 3, analysis controls
matching. If analysis is performed correctly, users’ queries will match only the doc-
uments that they seek. But if analysis is performed incorrectly, users’ queries will
match many irrelevant documents or maybe no documents at all!

This chapter covers
■ Tokenization to extract ideas rather than words
■ The concepts of precision and recall in search
■ Making trade-offs between precision and recall
■ Controlling the specificity of matches
■ Encoding non-textual data into the search

engine
74

75Tokens as document features
4.1 Tokens as document features
Several times we’ve pointed out the relationship between relevance and classification.
(Remember our fruit examples?) This relationship is perhaps most obvious when we
talk about tokens, because just as the color, shape, and size of a fruit are features by
which a fruit may be classified, the tokens pulled from a document are features by which
the document can be classified.

 Let’s return to the fruit example. The most obvious features that come to mind are
color, shape, and size. In reality, you could attempt to classify fruit by any number of
features: weight, smell, price, number of freckles, sticker color, and distance from the
Washington Monument. But as you can see in this list, some features are more useful
to classification than others. And some features, like distance from the Washington
Monument, are utterly useless for classification.

 In the same way, we use text analysis to extract features—tokens—that anticipate
the user’s expectations and lead to highly relevant and targeted results. But when
poorly configured, text analysis can lead to garbage features and a search experience
that’s mostly a waste of time. There’s both an art and a science to text analysis. In
chapter 2, we dealt mostly with the mechanics of analysis—the science, if you will. Our
discussion here deals with the softer, more “artistic” side of analysis, which we call fea-
ture modeling.

 With feature modeling, you take into consideration the user’s intent as well the
ideas conveyed in documents. You also ensure that the tokens produced by the analysis
process represent descriptive, meaningful features of both the queries and the (as
shown in figure 4.1).

barselona beach searchAnalysis

date:

2015.8.13

body: In the

hot summer ...

[barselona]
[beach]

document

Tokenized text
User

User’s search

In
d
ex

in
g

Inverted
index

Relevance engineer

Indexed

title: Beaches

of Barcelona

query

Respon
se

A
n
alysis

Good feature modeling must account for
pluralization, parts of speech, and even common

misspellings so that the query tokens and
document tokens match.

Figure 4.1 The relevance engineer makes sure that the tokens generated from
documents match the tokens generated for queries. To accomplish this, the relevance
engineer must understand the information in the documents and the intent of the users.
www.allitebooks.com

http://www.allitebooks.org

76 CHAPTER 4 Taming tokens
4.1.1 The matching process

Again with the fruit example … Let’s say that you’re hungry. And you’re not hungry for
just anything; you’re hungry for a Red Delicious apple. So you head down to the cor-
ner fruit stand to satisfy your apple lust. When you arrive, you see many types of fruits:

■ Long, yellow bananas; some with freckles, and some that are tinted green
■ Small, round grapes; some that are light green, and some that are purple
■ Giant, green and pink wedges of watermelon; some with seeds, and some without

But today you’re searching for an apple. And in your mind, you have a clear template—
a query, if you will—for what a Red Delicious apple should look like. It’s a red, round
fruit, about the size of your fist. Additionally, the really good Red Delicious apples are
always shiny!

 In the twinkling of an eye, you scan the selection of fruit and identify a subset that
most closely matches your query. You approach the apple bin. And there on the top of
the heap is the perfect, shiny, Red Delicious apple. Your search has brought you to the
most relevant result in the available set. You purchase the apple and partake! (You
won’t notice until you’re halfway through that the apple also has a worm. Maybe you
should refine your search criteria next time!)

 This scenario is a good approximation for what happens when a user searches for a
document. When your users come to the search app, they have an information need
and they supply the search engine with a set of search terms or a phrase that they feel
most adequately describes their needs. The search engine, in turn, takes these terms
and converts them into tokens via the analysis process described in chapter 2. Then
the search engine quickly scans through the index and collects the documents that
contain the same tokens as the query, organizes the document according to relevance,
and provides the results back to the user.

4.1.2 Tokens, more than just words

It’s important to notice here that the creation of tokens—and thus the creation of fea-
tures—happens both to the query and to the documents. And a match can be made
only if the features are generated consistently from the query documents. What’s
more, relevant matches can be made only if the features adequately capture the mean-
ing of the documents and the user’s query.

 Those who are new to search typically think of analysis as the process of extracting
an array of words from documents. And although tokens often directly correspond to
words in the text, tokens can be much more than that. The various steps of analysis
(character filtering, tokenization, and token filtering) anticipate the intent of your
users. When properly performed, analysis extracts the meaning of a document beyond
the words. Performing analysis with intent and meaning in mind greatly improves
search relevance.

77Controlling precision and recall
 You’ll see what we mean throughout this chapter. For example, it might come as a
surprise that tokens don’t have to correspond to words at all! As you’ll soon see, mean-
ingful tokens (features) can be extracted from things as diverse as geographic loca-
tions, images, and even whistled melodies.

4.2 Controlling precision and recall
Precision and recall are two fundamental measures of search relevance. Given a par-
ticular query and the set of documents returned by the search engine (the result set),
these measures are defined as:

■ Precision—The percentage of documents in the result set that are relevant.
■ Recall—The percentage of relevant documents that are returned in the result set.

Admittedly, these definitions are a little hard to follow at first. They may even sound
like the same thing. In the discussion that follows, we provide a thorough example
that will help you understand these definitions and their differences. You’ll also begin
to see why it’s so important to keep these concepts in mind when designing any appli-
cation of search.

 Additionally, we demonstrate how precision and recall are often at odds. Gener-
ally, the more you improve recall, the worse your precision becomes, and the more
you improve precision, the worse your recall becomes. This implies a limit on the best
you can achieve in search relevance. Fortunately, you can get around this limit. We
explore the details in the discussion that follows.

4.2.1 Precision and recall by example

Let’s lead with another example. And this time just to be different, let’s use, oh, we
don’t know, fruit. After you recover from the wormy apple incident of the previous sec-
tion, you go back to the fruit stand and consider the situation in more detail.

 When you originally went to the fruit stand, you were looking for apples—but
more specifically, your search criteria were “red, medium-sized fruit.” These criteria
led you to the search results indicated in figure 4.2.

 Let’s consider how this result set can be described in terms of precision and recall.
Looking at the search results, you have three apples and three red, medium-sized
fruits that aren’t apples (a tomato, a bell pepper, and a pomegranate). Restating the
previous definition, precision is the percentage of results that are correct. In this case,
three of the six results are apples, so the precision of this result set is (3 ÷ 6) × 100, or
50%. Furthermore, upon closer inspection of all the produce, you find that there are
five apple choices among the thirteen fruit varieties available at the stand. Recall is the
percentage of the correct items that are returned in the search results. In this case,
there are five apples at the fruit stand, and three were returned in the results. The
recall for your apple search is (3 ÷ 5) × 100, or 60%.

78 CHAPTER 4 Taming tokens
In the ideal case, precision and recall would both always be at 100%. But this is almost
never possible. What’s more, precision and recall are most often at odds with one
another. If you improve recall, precision will suffer and your search response will
include spurious results. On the other hand, if you improve precision, recall will suf-
fer and your search response will omit relevant matches.

 To better understand the warring nature of precision and recall, let’s look at this
phenomenon with our fruit example. If you want to improve recall, you must loosen
the search requirements a bit. What if you do this by including fruit that’s yellow?
(Some apples are yellow, right?) As shown in figure 4.3, you do pick up another apple,
thus improving recall to 80%. But because most apples aren’t yellow, you’ve picked up
two more erroneous results, decreasing precision to 44%.

 Let’s go the other way with our experiment. If you tighten the search criteria—
for example, by narrowing the definition of medium-sized—results look like those in
figure 4.4. Here precision increases to 67% because you’ve removed two slightly
unmedium fruits. But in the process, you’ve also removed a slightly oversized apple,
taking recall down to 40%.

Watermelon

Banana

Apple

Apple

Kiwi
Raisins

Lemon

Bell
pepper

Large
tomato

Apple

Large
apple

Apple

Pomegranate

Initial search results

Figure 4.2 Illustration of documents and results in the search for apples

79Controlling precision and recall
Watermelon

Apple

Kiwi
Raisins

Bell
pepper Banana

Large
tomato

Apple

Large
apple

Apple

Pomegranate

Apple

Lemon

“Loose” search results

Figure 4.3 Example search result set when loosening the color-match requiremnts

Watermelon

Bell
pepper Banana

Large
tomato

Apple

Large
apple

Apple

Apple

Pomegranate

Apple

Kiwi
Raisins

Lemon

“Tight” search results

Figure 4.4 Example search result set when tightening the size requirements

80 CHAPTER 4 Taming tokens
Although precision and recall are typically at odds, there’s one way to overcome the
constraints of this trade-off: more features. If you include another field in your
search, for flavor, then the tomato would be easy to rule out because it’s not sweet at
all. But, unfortunately, it’s not always easy to identify new features to pull into
search. And in this particular case, if you decide to go around flavor sampling the
fruit in order to identify apples, you’ll probably have an upset produce manager to
contend with!

4.2.2 Analysis for precision or recall

But precision, recall, and fruit—what does this all have to do with text, tokens, and
analysis? Plenty! By modifying the analysis chain, you can create tokens that balance
the trade-off between precision and recall in any way you please.

 To start, let’s look at how text is analyzed in Elasticsearch by default. Let’s say you
create an index in Elasticsearch with no settings and then index a new document.
That document’s string fields will be analyzed using the default standard analyzer.
Let’s create our own clone of the standard analyzer to take a closer look at the anal-
ysis process.

POST my_library
{
 "settings": {
 "analysis": {
 "analyzer": {
 "standard_clone": {
 "tokenizer": "standard",
 "filter": [
 "standard",
 "lowercase",
 "stop"]}}}}}

By the way, you’ll notice that in this chapter we’re not using the functions defined in
the previous chapter. We’re stepping away from the TMDB data set. Instead, we’re
interacting with Elasticsearch directly by using HTTP commands to quickly experi-
ment with as many applications of analysis as we can. The corresponding examples in
the repository repeat these lower-level commands but use Python instead.

 Okay, back to the action! As you may recall from chapter 2, analysis has three steps:
character filtering, tokenization, and token filtering. And recall that character filter-
ing has a chance to modify the entire piece of text. Tokenizers chop up text into a
stream of tokens. Finally, token filters modify the token stream by modifying, remov-
ing, or inserting tokens.

Listing 4.1 Re-creating the standard analyzer

81Controlling precision and recall
 In listing 4.1, our standard_clone analyzer makes no use of any character filters,
uses the standard tokenizer, and then is token filtered sequentially by standard,
lowercase, and stop. Here’s what each piece does:

■ standard tokenizer—Splits text on whitespace and punctuation; this tends to
work well for most European languages. Its widespread utility garners the name
standard.

■ standard filter—Does nothing! It currently serves as a placeholder should there
ever be a need to implement token filtering that’s associated with the standard
tokenizer.

■ lowercase filter—Lowercases all characters.
■ stop filter—Removes common words that match a list of stop words. If the list that

Elasticsearch uses by default isn’t to your liking, you can also specify your own.

Now let’s use the _analyze endpoint to examine the tokens produced from a sample
sentence:

GET my_library/_analyze?analyzer=standard_clone&
 text="Dr. Strangelove: Or How I Learned to
 Stop Worrying and Love the Bomb"

In chapter 3, we showed how the analyzer can be used to gather the tokens, start and
end offsets, token types, and positions, but here we’re interested in only the tokens. In
this case, the tokens produced are as follows:

[dr][strangelove][how][i][learned][stop][worrying][love][bomb]

And as expected, the tokens have been stripped of punctuation and lowercased, and
the common words have been removed.

 The standard analyzer is typically a good first draft for the analysis chain; search
results will have high precision, and spurious results will be few. But recall may be
poor, because a user’s query must use exactly the same words that occurred in the doc-
ument, or the document won’t be returned. Consider the plight of a user who’s clearly
looking for this movie but has forgotten the exact title:

GET tmdb/movie/_search
{ "query": {
 "multi_match": {
 "query":
 "mr. weirdlove: don't worry, I'm learning to start loving bombs",
 "fields": ["title"]}}}

The query-time analysis tokenizes this as you’d expect:

[mr][weirdlove][don't][worry][i'm][learning][start][loving][bombs]

82 CHAPTER 4 Taming tokens
But not a single token from the query matches the tokens created from the movie
title. Search engines are for finding things when users don’t have all the information;
otherwise, why would they even look? The fact that this query doesn’t pull back the
obvious document that the user is looking for is a failure of this feature-modeling
approach.

 We can do better! Recall again that a search engine is little more than a sophisti-
cated token-matching system. A search engine knows nothing about the meaning of
tokens; it knows only how to quickly find documents that have a particular set of tokens.
It’s the job of the relevance engineer to tokenize documents in such a way that mean-
ing is captured. In principle, analysis shouldn’t map words to tokens; it should map
meaning and user intent to tokens.

 Let’s demonstrate this concept with a different analysis chain. An English text ana-
lyzer is less strict and helps ensure that tokens carry the English meaning of the words.
Just like last time, Elasticsearch already comes equipped with an English analyzer, but
to be explicit about what’s happening, we’ll clone the English analyzer. We’ll go into
more detail this time by cloning the token filters to teach you to customize the analysis
chain to your choosing.

POST my_library
{
 "settings": {
 "analysis": {
 "filter": {
 "english_stop": {
 "type": "stop",
 "stopwords": "_english_"},
 "english_keywords": {
 "type": "keyword_marker",
 "keywords_path": "/tmp/keywords.txt"},
 "english_stemmer": {
 "type": "stemmer",
 "language": "english"},
 "english_possessive_stemmer": {
 "type": "stemmer",
 "language": "possessive_english"}},
 "analyzer": {
 "english_clone": {
 "tokenizer": "standard",
 "filter": [
 "english_possessive_stemmer",
 "lowercase",
 "english_stop",
 "english_keywords",
 "english_stemmer"]}}}}}

Listing 4.2 Re-creating the English analyzer in detail

83Controlling precision and recall
Let’s take a moment to understand what the English analyzer is doing at each step
of analysis:

■ standard tokenizer—Here again we use the standard tokenizer because it does a
good job of tokenizing European languages.

■ english_possessive_stemmer filter—Removes the trailing s from words.
■ lowercase filter—Lowercases all characters.
■ english_stop filter—Removes common English words.
■ english_keywords filter—“Protects” words from being mangled by the down-

stream stemmer (more on this in a moment).
■ english_stemmer filter—Normalizes word endings so that, for instance, walking

and walked map to the same token.

As you can see, there’s a lot of overlap between what the standard analyzer and the
English analyzer do. The “special sauce” of the English analyzer is in the english_
stemmer token filter. This filter takes the word tokens from the previous analysis steps
and normalizes them by mapping words with the same root to the same token. For
example, this shows that all of these terms map to the token flower:

GET my_library/_analyze?analyzer=english_clone&
 text="flower flowers flowering flowered flower"

And similarly for the following, all of these terms get mapped to the token silli:

GET my_library/_analyze?analyzer=english_clone&
 text="silly silliness sillied sillying"

You might notice that not all the words in the preceding example are real words. But
english_stemmer doesn’t mind. The stemmer isn’t conferring with a dictionary to
determine the word roots; it uses a heuristic for mapping words to root forms. The
heuristic is correct enough to be useful, but sometimes the heuristic makes mistakes.
For example, the word Maine (the state) will get stemmed down to main, confusing
it with the common English word main. If this becomes a problem for you, don’t
sweat it! You can add the problematic term to the keywords file (/tmp/keywords.txt
in listing 4.2), and this will signal any downstream stemmers to leave it unstemmed.

 To bring the discussion back to the main point, stemming is a technique of fea-
ture modeling that sacrifices precision for increased recall. Using the English ana-
lyzer, our forgetful movie searcher will have better luck finding the movie. Let’s
demonstrate this by looking at the tokens produced from both the correct title and
the incorrect query.

84 CHAPTER 4 Taming tokens
GET my_library/_analyze?analyzer=english_clone&
 text="Dr. Strangelove: Or How I Learned to Stop Worrying
 and Love the Bomb"

[dr][strangelov][how][i][learn][stop][worri][love][bomb]

GET my_library/_analyze?analyzer=english_clone&
 text="mr. weirdlove: don't worry, I'm learning to start loving bombs"

[mr][weirdlov][don't][worri][i'm][learn][start][love][bomb]

As indicated by the bold text, you’ve gone from zero matching tokens with the stan-
dard analyzer to four matching tokens when using the English analyzer. The docu-
ment that originally wouldn’t have been retrieved now would rank highly in search
results.

4.2.3 Taking recall to extremes

You’ve seen a clear example of how sacrificing precision for improved recall can be a
great way to improve overall search relevance. But beware that this can be taken to
unhealthy extremes. Let’s demonstrate with yet another analyzer, a phonetic analyzer,
which maps words to tokens based on the way they sound. You’ll use phonetic analysis
to build search that’s robust to misspellings. This is ostensibly a good thing because it
improves recall and makes documents findable even if the document or the query
contains misspellings. But we’ll then demonstrate how this approach is often too
heavy-handed.

 For this demonstration, you do have to build the analyzer from scratch because
Elasticsearch doesn’t come with a prebuilt phonetic analyzer of its own. First you
install the phonetic plugin1 by entering the terminal, changing to the elasticsearch
directory, and typing this at the prompt:

bin/plugin install analysis-phonetic

Once the plugin is installed, you can create a phonetic analyzer by providing Elastic-
search with the configuration in the following listing.

Listing 4.3 Tokenization of query and document text using the English analyzer

1 You can find more information about the phonetic plugin at https://github.com/elastic/elasticsearch/tree/
master/plugins/analysis-phonetic.

https://github.com/elastic/elasticsearch/tree/master/plugins/analysis-phonetic
https://github.com/elastic/elasticsearch/tree/master/plugins/analysis-phonetic

85Controlling precision and recall
POST my_library
{ "settings": {
 "analysis": {
 "analyzer": {
 "phonetic": {
 "tokenizer": "standard",
 "filter": [
 "standard",
 "lowercase",
 "my_doublemetaphone"]}},
 "filter": {
 "my_doublemetaphone": {
 "type": "phonetic",
 "encoder": "doublemetaphone",
 "replace": true}}}}}

You should recognize several familiar components: the standard tokenizer, the
standard filter, and finally the lowercase filter. The new my_doublemetaphone filter
is where all the interesting action takes place this time. This filter takes the lowercased
words apple and banana and turns them into tokens that represent the basic sounds,
in this case APLS and PNNS, respectively. As you can see, the analysis is aggressive—all
but leading vowels are dropped, and certain sounds such as ba and pa are mapped to
the same symbol (in this case, P). But phonetic analysis works as advertised because a
terribly misspelled search for “oopuls” and “banunus” would indeed match on a docu-
ment with apple and banana correctly spelled.

 There’s a problem, though, and it’s best exemplified by looking at a search for
“message from Dalai Lama.” Let’s see how this and another phrase are tokenized:

GET my_library/_analyze?analyzer=phonetic&text=message from Dalai Lama

[MSJ],[MSK],[FRM],[TL],[LM]

GET my_library/_analyze?analyzer=phonetic&text=massage from tall llama

[MSJ],[MSK],[FRM],[TL],[LM]

Oops! It appears that through the eyes of the phonetic analyzer, message from Dalai
Lama is an exact match for massage from tall llama. (Oh, and how many souls have
been led astray by simple mistakes such as this!)

 There’s an important lesson here regarding the analysis process:

To the extent possible, make sure that tokens represent not just words,
but the meaning of the words.

This is why it’s often a good practice to incorporate token stemming into analysis.
Stemming collapses multiple representations into a single form—transforming, as in
our earlier example, flower, flowers, flowering, and flowered all into a single root
form flower. Without stemming, these words would stand completely distinct. The

Listing 4.4 Building a phonetic analyzer

86 CHAPTER 4 Taming tokens
search engine would fail to recognize that they mean the same thing: searches for
flowering wouldn’t match flowers. Thus, without stemming, recall is greatly reduced.
Precision may be improved, but it’s improved to a degree that isn’t useful to the typi-
cal search user.

 At the other end of the spectrum, phonetic tokenization maximizes recall at the
peril of precision. Here again consider how analysis maps tokens to meaning. With
phonetic tokenization, the meaning associated with each token is too broad. Too
many distinct meanings map to the same token. Precision is far too low: a search for
the Dalai Lama finds the tall llama instead of the religious figure!

4.3 Precision and recall—have your cake and eat it too
The situation feels bleak. As a relevance engineer, you’re faced with a hard decision: in
order for documents to be indexed, the text must be analyzed. Yet your choice of analy-
sis pins the relevance behavior to some fixed point on the precision-recall spectrum.

 Fortunately, another aspect of search technology allows the relevance engineer to
build search with good recall and good precision. In chapter 2, you saw the mechanical
nature of the search engine. Another way of describing the search engine is as follows:

A search engine is nothing more than a sophisticated token-matching
system and document-ranking system.

It’s that last part that sidesteps the fundamental precision/recall trade-off. Relevance
ranking is how you cheat the system. Relevance ranking helps you improve precision
for the top N results—the results that likely matter most to you users. The trick, as
you’ll see, is fine-tuning analysis to tightly control when various token representations
map to an identical meaning.

4.3.1 Scoring strength of a feature in a single field

How exactly does relevance ranking sidestep the precision/recall trade-off? Analysis
not only controls matching, but also manipulates TF × IDF relevance ranking to more
accurately reflect the strength of a given feature in text (or any other form of tokeniz-
able data).

 Remember our good friend TF × IDF? A term’s frequency (TF) counts how often
the search term occurs in the document. Document frequency counts how many doc-
uments with the term occur across the whole corpus (IDF being its inverse). Together
these factors work to score search relevance for matched text.

 But can TF and IDF count different representations of the same idea? As an exam-
ple, if you sat an English speaker in front of text and asked them to count the number
of times run occurred, how would he proceed? Likely they’d sum the many forms of
run (running, runs, run, perhaps ran) all together. Even if all forms of run were used,
an English speaker could conclude the text as very much about running. The feature
of running occurs prominently in the text, they might say, and should be scored
highly for searches for “run,” regardless of all the representations used.

87Precision and recall—have your cake and eat it too
 As you’ve seen, the mechanical, dumb search engine doesn’t count these different
forms of run as the same without help. When alternate representations exist in the
text, each representation is counted and scored separately. The search engine doesn’t
see a strong feature of “run-ness” here in its TF × IDF scoring. It sees isolated, weak
mentions of different ideas: run, running, and runs. Luckily, you’ve seen how analysis
helps normalize all these representations into a single term that can be counted and
scored together.

 Let’s demonstrate how relevance ranking and analysis work together to fine-tune
precision and recall. Let’s start with a simple case—a query for a single word in a sin-
gle field using the default standard analyzer over your test index, my_library:

POST my_library
{"settings": {
 "number_of_shards": 1}}

Then you can index some documents:

PUT my_library/example/1
{ "title":"apple apple apple apple apple"}
PUT my_library/example/2
{ "title":"apple apple apple banana banana"}
PUT my_library/example/3
{ "title":"apple banana blueberry coconut"}

And finally issue a simple search for apple in the field title:

GET my_library/example/_search
{ "explain": "true",
 "query": {
 "match": {
 "title": "apple"}}}

Here are the first three documents resulting from this query, along with correspond-
ing explain text:

1. {u'title': u'apple apple apple apple apple'}
 0.3001879, weight(title:apple in 0) [PerFieldSimilarity], result of:
 0.3001879, fieldWeight in 0, product of:
 2.236068, tf(freq=5.0), with freq of:
 5.0, termFreq=5.0
 0.30685282, idf(docFreq=1, maxDocs=1)
 0.4375, fieldNorm(doc=0)

2. {u'title': u'apple apple apple banana banana'}
 0.23252454, weight(title:apple in 0) [PerFieldSimilarity], result of:
 0.23252454, fieldWeight in 0, product of:
 1.7320508, tf(freq=3.0), with freq of:
 3.0, termFreq=3.0
 0.30685282, idf(docFreq=1, maxDocs=1)
 0.4375, fieldNorm(doc=0)

88 CHAPTER 4 Taming tokens
3. {u'title': u'apple banana blueberry coconut'}
 0.15342641, weight(title:apple in 0) [PerFieldSimilarity], result of:
 0.15342641, fieldWeight in 0, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 0.30685282, idf(docFreq=1, maxDocs=1)
 0.5, fieldNorm(doc=0)

The search engine’s TF × IDF scoring heuristics order documents that feature the
search term most prominently. Earlier we talked about shopping for fruit; based on
whether it was shiny or red, you judged the fruit a Red Delicious apple or not. The
examples considered these features binary. Is the fruit red—yes or no? Is it shiny—yes
or no? The reality is that a feature such as “redness” exists on a spectrum from “not at
all red” to “pinkish” to “bright, fire-truck red.”

 With TF × IDF, our apple documents also exist on a spectrum. Some matching doc-
uments are very much about apples. They have high term frequencies for apple.
They’re apple-y documents and mention few other concepts. Others mention other
terms, with “apple” only as a side concept. These documents aren’t apple-y at all. As
such, their TF × IDF scores reflect this weak apple-y feature. Precision, at least for the
top N, is improved by relevance ranking.

 More important, analysis can improve the computation of TF and IDF by normaliz-
ing different representations of one idea! This improves the accuracy of scoring,
aligning it to the user’s intuitive notions of relevance.

 For example, our current search has a prominent relevance-ranking bug! Say you
indexed an additional document:

PUT my_library/example/4
{ "title":"apples apple"}

You might be surprised when the TF × IDF score for this document comes in as relatively
low for a search on apple. Repeating the preceding search, you’d see it as near the end
result of all the documents, despite being 100% composed of apple mentions:

3. {'title': 'apples apple'}
 0.48553526, weight(title:apple in 0) [PerFieldSimilarity], result of:
 0.48553526, fieldWeight in 0, product of:
 1.0, tf(freq=1.0), with freq of:
 1.0, termFreq=1.0
 0.7768564, idf(docFreq=4, maxDocs=4)
 0.625, fieldNorm(doc=0)

Notice in the bolded section, the frequency of apple is 1. Yet two mentions of some-
thing apple-y exist here! Why can’t TF × IDF see that?

 You already know the answer. Because the standard analyzer is used, a query for
apple doesn’t match apples. The search engine won’t understand that these ideas are
the same, regardless of what an English speaker thinks. It’s your job as a relevance
engineer to use analysis techniques to manage equivalent representations of the same

89Precision and recall—have your cake and eat it too
idea, normalizing and discriminating as needed so the search engine can make the
right differentiations when scoring.

 Simply using the English analyzer improves the TF × IDF scoring by normalizing
apple forms to the stemmed appl. After applying the English analyzer and repeating
indexing, the document moves up to position 2, with a term frequency for the
stemmed appl increased to 2:

2. {u'title': u'apples apple'}
 0.6866506, weight(title:appl in 3) [PerFieldSimilarity], result of:
 0.6866506, fieldWeight in 3, product of:
 1.4142135, tf(freq=2.0), with freq of:
 2.0, termFreq=2.0
 0.7768564, idf(docFreq=4, maxDocs=4)
 0.625, fieldNorm(doc=3)

Tokens represent features prominent in text. You saw earlier the seemingly stark trade-
off of precision and recall in these decisions. But as you see, manipulating relevance
ranking can help make this trade-off less stark. You have the power, through analysis, to
control both improved recall and TF × IDF relevance scoring! Analysis gives you the
power to make matching and TF × IDF scoring as discriminating as you need.

4.3.2 Scoring beyond TF × IDF: multiple search terms and
multiple fields

Unlike the previous example, users’ searches rarely have only one search term. They
use many ideas in their searches. You should use this in your favor to improve preci-
sion! Luckily, the coordinating factor (coord) is your ally. We discussed coord previously as
a component of Lucene’s Boolean search, but here we want to point out its role in
biasing scoring toward more mentions of the searched-for ideas.

 If you repeat the preceding search for apple banana, coord punishes the pure
apple matches by multiplying the final score by 1/2. Only one out of two concepts
matches the document, so it’s summarily punished. You can see this in these explain
snippets for the apple banana query (omitting the TF × IDF for brevity):

1. {u'title': u'apple apple apple banana banana'}
 0.9862758, sum of:
 0.30409503, weight(title:appl in 1) [PerFieldSimilarity], result of:
 0.68218076, weight(title:banana in 1) [PerFieldSimilarity], result of:

3. {'title': 'apple apple apple apple apple'}
 0.1962925, product of:
 0.392585, sum of:
 0.392585, weight(title:appl in 0) [PerFieldSimilarity], result of:
 0.5, coord(1/2)

While exploring query strategies in the next several chapters, you’ll see coord’s impor-
tant role in promoting results with multiple matches more prominently.

 Another way you’ll sidestep the precision/recall trade-off is through searching
over multiple fields, each with different forms of analysis. It may seem that forms of

90 CHAPTER 4 Taming tokens
analysis are mutually exclusive: analyze via standard analysis or English stemming anal-
ysis or phonetic analysis. But you can use all of these together if you’d like. It’s com-
mon to treat the same text differently with different analyzers, placing the result in
different fields. In chapter 5 and on, you’ll see how multiple fields can lend their own
signals to improve the overall ranking function and improve the precision/recall
trade-off.

4.4 Analysis strategies
To this point in the chapter, you’ve learned several important principles for using
analysis to control relevance. First and foremost, you have an understanding of the
foundational principles of precision and recall. We’ve discussed the interplay between
these two concepts: an improvement in either precision or recall often causes degra-
dation in the other. But in our discussion of document scoring, you can see that good
recall and good precision are achievable, because search-engine scoring tends to sort
the most relevant documents toward the top of the search results.

 We’ve also established a couple of guiding principles when making analysis deci-
sions. First, to the extent possible, tokens shouldn’t map only to the terms in a docu-
ment but to the meanings of the terms. You saw this in section 4.2.2, which explained
how stemming helps ensure that the token captures the appropriate level of detail
of each word’s meaning. Second, analysis is an opportunity for the relevance engi-
neer to anticipate the behavior and intent of search users. Section 4.2.3 describes
how phonetic tokenization anticipates the possibility that users will occasionally mis-
spell search terms.

 In this section, we present more specific examples of using analysis to modify
and control relevance. The examples aren’t exhaustive; covering the great variety of
search problems that readers might experience would be impossible. Instead, the fol-
lowing sections provide some quick examples to consider. When your own challeng-
ing problems arise, you’ll have a better idea of what’s achievable through proper
analysis. Some of these examples are built around specific principles of relevance.
Others focus on particular analysis features that can be applied to a variety of rele-
vance problems.

4.4.1 Dealing with delimiters

Our previous examples used fields composed of text, with the words delimited on
whitespace and punctuation. This needn’t always be the case, and dealing inappropri-
ately with delimiters can lead to poor search results. Consider the following examples,
which focus on acronyms and phone numbers.

ACRONYMS

Sometimes acronyms use periods and sometimes they don’t—for example, I.B.M. ver-
sus IBM. Analysis must normalize acronyms so that no matter the format, the resulting

91Analysis strategies
token will be the same. This is made easy enough with the word_delimiter filter.
Here’s an analysis chain that will create suitable tokens:

POST example
{
 "settings": {
 "analysis": {
 "filter": {
 "acronyms": {
 "type": "word_delimiter",
 "catenate_all": true,
 "generate_word_parts": false,
 "generate_number_parts": false}},
 "analyzer": {
 "standard_with_acronyms": {
 "tokenizer": "standard",
 "filter": ["standard","lowercase","acronyms"]}}}}}

This creates the acronyms filter of type word_delimiter. This token filter is designed
to split tokens on many boundaries, including punctuation changes (Wi-Fi), change
in case (wiFi), and changes between numeric and non-numeric (2016AD), to name a
few. Rather than emitting the delimited parts as their own tokens, we have further
choices to make. Here we’ve chosen to not generate_word_parts (otherwise, I.B.M.
would become three tokens, i, b, m). We’ve also opted to catenate_all, which means
that whatever parts are generated, we’ll just stick them together and emit that as a
token. Testing this out, you can see that the desired effect is achieved:

GET example/_analyze?analyzer=standard_with_acronyms
 &text=I.B.M. versus IBM versus ibm

[ibm] [versus] [ibm] [versus] [ibm]

So now, a user who searches for “IBM” or “I.B.M.” finds a match. Be aware, though,
that this could occasionally cause problems with acronyms that spell words (such as
N.E.W., which stands for National Engineering Week). In this case, the token produced
would be new, a fairly poor text feature because it carries two meanings: National Engi-
neering Week and something that isn’t old. To help remedy the situation, you’d add
"preserve_original": true to the acronyms filter. Then N.E.W. is tokenized both as
new and n.e.w. In this case, a search for “new” will occasionally match on documents
that contain the acronym N.E.W. That’s OK because this might have been the user’s
intent, despite omitting the periods. And in this case a search for “N.E.W.” will exactly
match on the preserved original token, improving relevance greatly.

PHONE NUMBERS

Phone numbers—for example, 1(800)867-5209 versus 1.800.867.5309—are trickier.
Although it’s rare for delimiters to be removed from a phone number (you won’t
often see this number written as 18008675309), the variety of delimiters used in

92 CHAPTER 4 Taming tokens
phone numbers can be broad. And users might search for a phone number with any
of these formats.

 Here again word_delimiter can help by effectively removing the delimiters, as
shown in the previous example. There’s a twist, though. Our two example numbers
would both create tokens such as 18008675309. But we must anticipate the users’
expected behavior. Will the user always type in the full phone number, including the
area code and the country code? Probably not. So let’s add another filter that takes
into account this behavior and creates two additional tokens: one is the last 7 digits
(the local number), and one is the last 10 digits (the long-distance number):

POST my_library
{
 "settings": {
 "analysis": {
 "filter": {
 "phone_num_filter": {
 "type": "word_delimiter",
 "catenate_all": true,
 "generate_number_parts": false},
 "phone_num_parts": {
 "type": "pattern_capture",
 "patterns":["(\\d{7}$)","(\\d{10}$)"],
 "preserve_original": true}},
 "analyzer": {
 "phone_num": {
 "tokenizer": "keyword",
 "filter": ["phone_num_filter","phone_num_parts"]}}}}}

The important differences are highlighted in the preceding snippet. The first thing to
note is that the tokenizer is now keyword rather than standard. The assumption here
is that you’re dealing with a phone_number field rather than a free-text field that hap-
pens to contain a phone number. The keyword tokenizer doesn’t split the input into
tokens, but creates a single token that contains the entire unaltered text of the field.
“But why?” you ask. “Can’t you just choose to not analyze this field at all?” Good ques-
tion. You use the keyword tokenizer because it allows you to then use downstream fil-
ters to further modify the token.

 In this case, phone_num_parts is the downstream filter. This is a pattern_capture
filter that has two patterns, one to capture the last 7 digits of the input (the local num-
ber) and one to capture and last 10 digits (the long-distance number). The original
token is also preserved. Let’s test it out:

GET example/_analyze?analyzer=phone_num&text=1(800)867-5309

[18008675309][8008675309][8675309]

Based on this analysis scheme, a user’s search for “800.867.5309” would get tokenized
as 8008675309,8675309 and both of these tokens would match on a document con-
taining the number 1(800)867-5309. Perfect!

93Analysis strategies
 In both examples, you’re shaping analysis to capture the most important features of
the fields’ data—the meaning. In this case, the meaning of an acronym and the meaning
of a phone number aren’t in their delimiters, but in the letters and numbers that com-
pose them. Additionally, you’re anticipating the behavior of users to use arbitrary delimit-
ers, or even no delimiters at all. With phone numbers, capturing a meaningful subset of
the numbers is a way of modeling the user intent, effectively acknowledging that the
user will at times search for local numbers or national numbers. You want to provide
the most relevant results possible, no matter which form the user uses.

4.4.2 Capturing meaning with synonyms

Synonyms often come in handy for fixing up corner-case relevance problems. Consider
the plight of an online clothing retailer that’s trying to fix problems with the query
“dress shoes.” To you, dress shoes probably conjures up images of leather men’s footwear.
But a beginner search engineer might be surprised to find that a search for “dress
shoes” leads to a page full of sundresses and tennis shoes! The solution is once again to
make sure that the token captures the meaning rather than just the terms.

 How do you capture the meaning with synonyms? By noticing that, in the English
language, whenever the term dress immediately precedes shoes, we’re talking about a
specific concept: dress shoes. You can use analysis to map this concept to a single
token, like so:

POST retail
{
 "settings": {
 "analysis": {
 "filter": {
 <english filters omitted>
 "retail_syn_filter": {
 "type": "synonym",
 "synonyms": [
 "dress shoe,dress shoes => dress_shoe, shoe"
]}},
 "analyzer": {
 "retail_analyzer": {
 "tokenizer": "standard",
 "filter": [
 "english_possessive_stemmer",
 "lowercase",
 "retail_syn_filter",
 "english_keywords",
 "english_stemmer"
]}}}},
 "mappings": {
 "items": {
 "properties": {
 "desc": {
 "type": "string",
 "analyzer": "retail_analyzer"
 }}}}}

English filters
from listing 4.2

Your new
analyzer

b

Here’s where
the filter is
used.

c

Your desc
field includes
synonyms.

d

94 CHAPTER 4 Taming tokens
In this highlighted listing, you do the following:

■ Create a retail_syn_filter filter B, which sets up the dress shoes synonym line
■ Use that filter c in a new retail_analyzer
■ Make sure that this analyzer is used for desc field text d.

(Note that it’s presumed that the english_* filters are defined similar to listing 4.2.)
 One thing to consider is the placement of the retail_syn_filter. By placing it

after the possessive stemming, plural stemming, and lowercasing, you’ve somewhat
normalized the input to the synonym filter so that the expected synonyms will be cre-
ated. For instance, if retail_syn_filter had been the first filter, then dress shoe’s
and Dress shoes wouldn’t be picked up by the synonym filter. But it’s important to
place the synonyms filter before more drastic forms of normalization such as stem-
ming or phonetic mapping because these filters change the tokens to such an extent
that no synonym matches would be made.

 Next let’s take a look at the synonym line:

"dress shoe,dress shoes => dress_shoe, shoe"

This says, “Whenever you see either dress shoe or dress shoes, map that to two
tokens: dress_shoe and shoe.” It’s important to include shoe here because a dress
shoe is indeed a shoe, and you want them to be included in searches for “shoes.”

 Let’s index some documents and see how it works:

POST retail/items/1 # "dress shoe" document
{ "desc": "bob's brand dress shoes are the bomb diggity"}
POST retail/items/2 # "dress" document
{ "desc": "this little black dress is sure to impress"}
POST retail/items/3 # "shoe" document
{ "desc": "tennis shoes... you know, for tennis"}

And then you make some queries:

 GET retail/items/_search?
{ "query": {
 "match": {
 "desc": "dress"}}}

This produces one result, the dress document. Perfect. Next you make a similar
query for “shoes.” Here, as expected, you receive both the dress shoe document and
the shoe document. This is also what you should expect. One final test to close the
loop: you make a query for “dress shoes” and expect to receive only the dress shoe
document … and … hey! Why do both the dress shoe and the shoe document come
back in the results?

 Using the _analyze endpoint, it’s not too difficult to get to the cause of the prob-
lem. Here’s how the two documents in question are analyzed:

■ dress shoe document: bob, brand, dress_sho, shoe, bomb, diggiti
■ shoe document: tenni, shoe, you, know, tenni

95Analysis strategies

r

And remember, the query gets analyzed as well and produces the tokens to be matched
against the index. In this case, we have the following:

dress shoe search: dress_sho, shoe

As you can see, it’s easy to overlook the implications of the fact that analysis happens
both at index time and search time. Our synonym expansion of dress shoes causes
two tokens to be generated—one of which is shoe, which is also included in both doc-
uments in question. Now the reason for the behavior is obvious.

 Fortunately, there’s an easy fix. Elasticsearch allows for different analyzers to be
used at index time and query time. Here’s how this can be used to remedy the prob-
lem at hand.

POST retail
{ "settings": {
 "analysis": {
 "filter": {
 "retail_syn_filter_index": { # 1. new filter
 "type": "synonym",
 "synonyms": ["dress shoe,dress shoes => dress_shoe, shoe"]},
 "retail_syn_filter_search": {
 "type": "synonym",
 "synonyms": ["dress shoe,dress shoes => dress_shoe"]}},
 "analyzer": {
 "retail_analyzer_index": { # 2. new analysers
 "tokenizer": "standard",
 "filter": [
 "english_possessive_stemmer",
 "lowercase",
 "retail_syn_filter_index",
 "english_stop",
 "english_keywords",
 "english_stemmer"]},
 "retail_analyzer_search": {
 "tokenizer": "standard",
 "filter": [
 "english_possessive_stemmer",
 "lowercase",
 "retail_syn_filter_search",
 "english_stop",
 "english_keywords",
 "english_stemmer"]}}}},
 "mappings": {
 "items": {
 "properties": {
 "desc": {
 "type": "string",
 # 3. two-sided analysis
 "analyzer": "retail_analyzer_index",
 "search_analyzer": "retail_analyzer_search"}}}}}

Listing 4.5 Index configuration for resolving the dress shoes problem

Index time synonym
filter (same as
listing 4.4)

b

query time
synonym filte
forces "dress
shoe" search
to exactly
"dress_shoe"c

Creates different
analyzers for search
and index

Creates analyzers
for search and
index

Sets field to use
different index and
search analyzers

set field to use
different index and
search analyzers

96 CHAPTER 4 Taming tokens
This might look complex, but all that you’ve done is split that analysis into index-time
analysis B (where etail_syn_filter_index creates two tokens for dress shoes:
dress_shoe and shoe) and query-time analysis c (where dress shoes maps to only one
token, dress_shoe). And if you run through the queries again, you see that the results
are as you’d hope they’d be. A query for “dress” returns the dress document, a query
for “shoes” returns both the dress shoe and shoe document, and a query for “dress
shoes” returns only the dress shoe document. The search now works because you’ve
accurately captured the meaning of “dress shoe” and encoded it in such a way that the
pertinent documents can be retrieved.

4.4.3 Modeling specificity in search

Wouldn’t it be nice if you could search for an item like “dog” and pull back docu-
ments that contain terms like poodle, terrier, and beagle, even if those documents
happen to not use the word dog? And go a step further. Wouldn’t it be nice to do a
search for “animal” and pull back results that contain dog, poodle, cat, and so forth,
even if the word animal isn’t included in the document? Well, you can! By using asym-
metric analysis techniques, you can encode a notion of specificity into the search appli-
cation. Asymmetric analysis means that the analysis applied at query time is different
from the analysis applied at index time.

4.4.4 Modeling specificity with synonyms

How can you achieve this? Well, we secretly presented an example of this in the pre-
vious section. Not only did we use synonyms to make sure that dress shoes was
tokenized as a semantic unit (dress_shoe), but we also generated the extra shoe
token so that dress shoes would still match a search for shoe. This analysis was
asymmetric. During index analysis we produce both tokens. At query time only a sin-
gle token, dress_shoe, is produced so that our search matches strictly dress shoes.

 To fully understand how asymmetric analysis may be used to encode specificity,
let’s look at an approachable example. Here we could use the preceding dog exam-
ple, but that’s boring. Let’s use a more interesting example like, I don’t know, fruit!
Consider the fruit hierarchy shown in figure 4.5.

 Based on this hierarchy, you can create the following entries in a synonyms file:

apple => apple, fruit
fuji => fuji, apple, fruit
mcintosh => mcintosh, apple, fruit
gala => gala, apple, fruit
banana => banana, fruit
orange => orange, fruit

Notice that the synonyms file maps terms to words of equal or greater generality. We
call this semantic expansion. fruit and apple, for example, are of equal or greater gen-
erality than apple.

97Analysis strategies
Next, consider the behavior of search if you apply synonym analysis only at index
time, as depicted in table 4.1. As you can see, index-time synonym matching of terms
to equal or more-general values has the desired behavior: queries match documents
of equal or greater specificity. A query for “apple,” for example, matches not only
apple documents but also fuji documents.

Conversely, consider the behavior of search if you use synonym analysis only at query
time. In this case, you’ll be able to make matches that generalize upon the query. In this
case, such behavior is arguably not that useful, but it can come in handy at times.

 As you can see here, index-time synonym matching of terms to equal or more-
general values has the desired behavior: queries match documents of equal or greater
specificity. A query for “apple,” for example, matches not only apple documents but
also fuji documents. And as an exercise for the reader, consider the behavior of
search if you use synonym analysis only at query time. In this case, you’ll be able to

Table 4.1 Semantic expansion at index time

Index Query

Doc contains Tokens produced Fruit apple fuji

Fruit Fruit Match Miss Miss

apple apple, fruit Match Match Miss

Fuji fuji, apple, fruit Match Match Match

orange orange, fruit Match Miss Miss

Bread

Bananas

Fuji

Fruit

Apples

Gala

Vegetables

Oranges

McIntosh
Figure 4.5 Fruit hierarchy
focusing on apples

98 CHAPTER 4 Taming tokens
make matches that generalize upon the query. In this case, such behavior is arguably
not that useful, but it can come in handy at times.

 Although using synonyms to model semantic specificity can have some obvious
benefits, it’s not a pattern that should be used carelessly. Reflecting on the precision
and recall conversation of section 4.2, this approach is guaranteed to improve
recall, because results returned with this approach include all of the documents
that would be returned without synonyms as well as other documents that contain
more-specific concepts. But inevitably, this pattern will cause problems with preci-
sion. For one thing, there’s more opportunity to conflate tokens that have the same
representation but different meanings. For example, does fuji really refer to the
apple? Or is it a city in Japan? And perhaps a user looking for “apples” wants docu-
ments that are near that level of specificity and wouldn’t consider a document
about the specific topic of Fuji apple cultivation in Fujisaki Japan to be all that
relevant to the search.

 The relevance engineer should also consider the implications on TF × IDF.
Because the more general terms are replicated over and over, their doc frequency will
be artificially inflated, and therefore matches on general terms will be penalized. This
could work for or against you, depending on the situation. It might be worth turning
off norms and term frequencies altogether and using a constant score query so that
matches are scored equivalently, no matter the term frequency or doc frequency. This
replication of terms also could increase the size of the index. Finally, using this
method requires the collection and curation of an extra set of information—the syn-
onyms themselves.

 With all of these potential gotchas, is there ever a reason to use this pattern? Yes!
This can be a tremendous tool for using a taxonomy to build semantic search. A great
example is the Medical Subject Headings (MeSH), a rich taxonomy for medical con-
cepts. Consider the task of building a search engine over medical literature. The doc-
uments might be tagged according to their specific MeSH topics. At index time, the
synonyms file can make matches to more-general topics. For example you might
expand the hypothetical MeSH concepts depression, anxiety, schizophrenia to also
include their parent category: mental illnesses. With this done, it becomes possible
to search for a subtopic such as schizophrenia and retrieve documents for any mental
illnesses. If no schizophrenia results exist, the search engine would fall back to the
broader concept in the corpus, in this case other mental illnesses.

 This may seem like a silly fallback. But consider a medical researcher entering
multiple search terms. For example they might hunt for a link between heart disease
and schizophrenia with a query: "heart disease schizophrenia." Unfortunately, let’s
say, they find no direct matches linking heart disease and schizophrenia. Instead
the corpus contains a large number of heart disease documents with a few of those
mentioning some mental illness. Luckily our technique at least falls back on these
pretty-close matches. The returned heart disease mental illness articles might be
a good start for our researcher. They might have that small nugget of insight relating

99Analysis strategies
heart disease and mental illnesses that inspires their own creativity or improves their
own research.

 The takeaway is mapping concepts to varying degrees of specificity is very power-
ful. Keep this technique in mind especially if you need to lead searchers to new and
powerful insights. The next section shows you an alternate method also applicable to
taxonomies.

4.4.5 Modeling specificity with paths

Synonyms aren’t the only way that specificity is modeled in search. And when you
know where to look, specificity modeling pops up throughout common patterns of
search. The underlying theme isn’t synonyms, but the intentional asymmetry between
query-time analysis and index-time analysis.

 Let’s demonstrate by looking at common search patterns involving paths. Let’s say
that you’re building a filesystem search engine. As one of the features, you want the
user to be able to find documents at or below a user-specified directory. For instance,
if a user is searching for a document in /fruit/apples, the search should also include
documents in /fruit/apples/fuji, /fruit/apples/gala, /fruit/apples/mcintosh, and so
forth. (And yes, we’re going with the fruit example again!)

 Implementing this behavior is straightforward:

POST catalog
{ "settings": {
 "analysis": {
 "analyzer": {
 "path_hierarchy": {
 "tokenizer": "path_hierarchy"}}}},
 "mappings": {
 "item": {
 "properties": {
 "inventory_dir": {
 "type": "string",
 "analyzer": "path_hierarchy"}}}}}

First you set up a path_hierarchy analyzer, which expands a path such as /fruit/
apples/fuji into tokens /fruit, /fruit/apples, and /fruit/apples/fuji. Then you
assign this analyzer to the inventory_dir field, which represents the directories that
inventory-related files are stored in:

PUT catalog/item/1
{ "inventory_dir":"/fruit/apples/fuji",
 "description":"crisp, sweet-flavored, long shelf-life"}
PUT catalog/item/2
{ "inventory_dir": "/fruit/apples/gala",
 "description ":"sweet, pleasant apple"}
PUT catalog/item/3
{ "inventory_dir": "/fruit",
 "description ":"edible, seed-bearing portion of plants"}

100 CHAPTER 4 Taming tokens
Now you search for things in /fruit/apples/fuji:

GET catalog/_search
{ "query": {
 "bool": {
 "should":
 [{"match": {"description": "<whatever>"}}],
 "filter": [
 {"term": {"inventory_dir": "/fruit/apples/fuji"}}]}}}

And you get the fuji item back. If you do a similar search for items in /fruit/apples,
you get back both of the more specific apple items, fuji and gala. And finally, if you
search for items under /fruit, then all three documents are returned. (Hopefully,
you’re seeing parallels to last section’s discussion on taxonomies—what we have here
is our own little fruit taxonomy!)

 You might notice that the inventory_dir configuration doesn’t assign a different
analyzer at index time and query time. So at first glance it may seem that somehow
specificity is being modeled without asymmetric analysis. But this isn’t the case. In
Elasticsearch, the term filter doesn’t perform analysis; it looks for tokens that exactly
match the supplied text. Therefore, once again, you can see that specificity is mod-
eled by asynchronous analysis.

 To summarize the message of this section, consider the following rules:

■ If the tokens in the index represent a generalization of the tokens produced
at query time, search will retrieve items that are more specific than the search
term.

■ If the tokens produced at query time represent a generalization of the tokens in
the index, search will retrieve items that are more general than the search term.

In this section, you’ve looked at a couple of ways that specificity can be modeled, first
with synonyms and second with hierarchical paths. But as stated at the beginning of
this conversation, this pattern arises throughout search. Case in point—numbers, and
even geographic search! Read on …

4.4.6 Tokenize the world!

The focus of this chapter has been on analysis techniques used to convert text into
tokens. But analysis is by no means limited to text. Any information containing fea-
tures that can be mapped into discrete semantic units can also be represented as
tokens, stored in an inverted index, and used in search. Here are some examples of
information that can be tokenized, starting with the mundane and moving toward the
more esoteric:

■ Numerical data including integers, floating-point numbers, and dates
■ Geographic information such as latitude/longitude points or geographic areas
■ Images, shapes, sounds, textures … whatever

101Analysis strategies
To apply search, you need to extract meaningful and discrete features from the infor-
mation through analysis. This turns search into a far more general-purpose similarity
system, allowing you to perform tasks such as image search or even classification. Let’s
look at some quick examples so that you can get an idea of the broad types of informa-
tion that can be included in search applications.

4.4.7 Tokenizing integers

Let’s consider numerical data, specifically integers. The best features to extract from
an integer—the most semantically significant symbol for an integer—is the number
itself! But search engines tokenize integers in a way that might initially seem surpris-
ing. Consider a search application that indexes historical events by year. In particular,
consider 1945, the year that World War II ended. Rather than indexing one token for
the year 1945, a search engine will also index tokens that represent lower-precision
versions of the same number, for instance: 194, 19, and 1.

 But why would a search engine do this? Well, consider what would be required to
make a range query across this field. Naïvely, if you indexed only one token for the
year, 1945, then in order to find all documents with years falling in that range, you’d
have to scan through the term dictionary, find every term that falls in this range, and
then do a Boolean SHOULD search for documents containing any of these terms.
This could be millions of terms, which would obviously not scale. But because the
years are indexed at several levels of precision, you don’t have to look for every term;
you can take advantage of the fact that the less-precise tokens cover ranges of terms.

 Let’s use this understanding to perform a range query for all interesting events in
the range of 1776 to 2010. In this case, you wouldn’t have to look for documents con-
taining any of the 235 possible full-precision tokens from 1776 to 2010. As shown in
the table 4.2, you can retrieve the appropriate documents by querying for the appro-
priate mixture of terms at varying levels of precision.

Will a query that ORs these terms together match a document for the year 1945? Yes,
because that document was indexed with the less precise token 19, which is one of
the terms in the query.

 One more thing to notice here: the trick that search engines use for efficiently exe-
cuting numerical-range queries relies on asymmetric tokenization. In particular, it
tokenizes the number more generally during indexing than during query. This is
exactly the pattern previously introduced for encoding specificity in search. We told
you it would pop up again!

Table 4.2 Tokens used to represent numerical values and ranges

Token 1776 1777 1778 1779 18 19 200 2010

Range covered 1776 1777 1778 1779 1800–
1899

1900–
1999

2000–
2009

2010

102 CHAPTER 4 Taming tokens
4.4.8 Tokenizing geographic data

Geo search uses a similar strategy, except that the tokens encode 2D information
rather than linear 1D information. It may seem surprising that a search engine can
encode 2D information. After all, the wheelhouse of search is text, and text is linear in
nature. But besides the process of creating tokens, nothing is changed; the inverted
index and the search algorithms work just the same as always.

 Consider an application indexing funny or strangely named cities in the western
United States. A simple method for encoding geo data across a flat, rectangular map is
to use Z-encoding. What’s Z-encoding? It’s easier to show you via figure 4.6.

This map is divided into four quadrants labeled A, B, C, and D. Each quadrant is
then further divided into subquadrants that are also named A, B, C, and D. This pro-
cess continues until the map is subdivided into small enough areas that the desired
precision is achieved. Notice that the order of quadrants at each level follows a Z
shape, thus the name. With this encoding, every point on the map can be translated

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Booger (ACBCB)

Shooda (AAABC)
Kooda (AAADB)
Wooda (AAADC)

Coconut

(ADCCA)

Oops

(CAABC)

Fo Shizzle

(CDAAC)

Bullfrog

(BCCCD)

Mexican Hat

(DADBC)

Tuxedo

(DCCAD)

Manitscold

(BABBC)

Scott’s Bottom

(BCDBC)

Epic Tantrum

UTAH

WYOMING

One Potato (ABDBC)

A B

DC

A B

C D

A B

C D

A B

C D

A B

C D

(BCDDC)

Figure 4.6 Example of several Z-encoded points on a rectangular map

103Analysis strategies
into a sequence of symbols A, B, C, and D. For instance, direct your attention to
Scott’s Bottom (it’s in Wyoming). The Z-encoding for this point is BCDBC, because
the city is in B quadrant at the top level, the C quadrant at the next level, D at the
following level, and so on.

 When indexing geo points, you first find the Z-encoded representation of the
point. Then, similar to the strategy for indexing numbers, you index the Z-encoded
point at several levels of precision. For instance, the tokens produced from Scott’s Bot-
tom would include the highest-precision encoding of that location, BCDBC, followed by
lower-precision representations BCDB, BCD, BC, and B. And in order to query for all
points included in a specific area, you need to find the terms representing the appro-
priate areas of the map and place them into the same Boolean SHOULD query. For
example, referring again to figure 4.6, a query for all towns with funny names in Utah
can be accomplished by querying for the terms DA, BCCC, and BCCD. Referring to the
map, you can see that both Bullfrog and Mexican Hat will match this query, because
those cities have a token prefix that matches the Utah query terms. What terms would
you use to find cities in Wyoming? And finally, do you notice the specificity pattern at
play again? Geo search is effectively just a two-dimensional analogue to the pattern
used for one-dimensional numerical-range queries.

4.4.9 Tokenizing melodies

Let’s wrap up with an example of something esoteric that can be tokenized and incor-
porated into search: melodies, and in particular, whistled or hummed melodies. Let’s
say that you’re required to create a search engine that allows people to whistle tunes
and search for songs that are matches to the whistles.

 To help in the process, the other side of the application development team has cre-
ated a whistle encoder that can take audio input from a cell phone’s microphone and
for every whistled note determine whether this is higher pitch, lower pitch, or the
same pitch as the previous note. Perfect! This is all you need to encode whistled tunes
as tokens in an inverted index.

 Here’s how. Every note in an indexed tune or a whistled melody gets a symbol:

■ If the note is higher in pitch than the previous note, its symbol is U for up.
■ If the note is lower in pitch than the previous note, its symbol is D for down.
■ If the note is the same pitch as the previous note, its symbol is R for repeat.
■ The first note gets the symbol *, indicating that it’s the start of a tune.

This notation, known as Parsons Code for Melodic Contours, was developed in 1975 for
the explicit purpose of encoding and indexing melodies so that they could be
searched. The beginning of the children’s classic melody “Old MacDonald Had a
Farm” can be encoded as *RRDURDURDRD, as shown in figure 4.7.

104 CHAPTER 4 Taming tokens
But you still have more work to do to turn this into useful, searchable tokens. As
always, you need to identify meaningful features that can help discriminate one song
from another. Certainly the entire melody encoding could be a meaningful feature,
but it’s subject to a couple of potential problems. For one thing, someone humming
an entire tune will likely get a couple of notes wrong. It would be nice if our search
application was resilient to user mistakes. The larger problem with using the entire
encoding as a feature is that, although the index will hold the entire encoding, it’s ter-
ribly unlikely that an individual would whistle the entire song. The user will likely
whistle only the most memorable bits of the song. You still want this to match to songs
in your index.

 N-grams can come in handy here. An n-gram token filter takes each token and
breaks it into smaller tokens that represent a windowed subset of the originals. For exam-
ple, a 5-gram tokenization of the Parsons code for “Old MacDonald” (*RRDURDURDRD) is
as follows:

[*RRDU][RRDUR][RDURD][DURDU][URDUR][RDURD][DURDR][URDRD]

For the previous two sections, Elasticsearch uses specialized Java code for tokenizing
numerical and geographic data. And internal to Lucene, this is done with byte arrays
rather than with character arrays, as presented in the preceding simplified versions.
Building similar functionality would therefore require you to build an Elasticsearch
analysis plugin (remember, open source search can be plugged to the nth degree!). But
for Parsons code, if you stick with the text representation, standard text-analysis tech-
niques can be applied. In this case, an n-gramming analyzer can be set up as follows:

POST music
{ "settings": {
 "analysis": {
 "filter": {
 "parsons-ngram": {
 "type": "nGram",
 "min_gram": 5,
 "max_gram": 5}},
 "analyzer": {
 "parsons": {
 "tokenizer": "keyword",
 "filter": ["parsons-ngram"]}}}}}

“ ♪ ♫ ” Old MacDonald had a farm E-I E-I O “ ♫ ♪ ”

*----R--R U---R U-R
\ / \ / \
D D D-R

\
D

Figure 4.7 Parsons code for “Old MacDonald Had a Farm”

105Analysis strategies
Here all you have to do is create a new analyzer called parsons, which internally uses a
keyword tokenizer to create a single token of the input and then passes the token to
an n-gram token filter. The n-gramming process is configured with the min and max
gram length set to 5. This analyzer can be applied symmetrically. At index time, the
Parsons code for an entire song would be 5-grammed. (Presumably, the Parsons code
for the songs would have to be separately generated beforehand.) Then at query time
a user’s whistles or hums of partial songs can be transcribed into 5-grammed Parsons
code using the same analysis.

 Besides being an interesting example of using exotic information in applications
of search, this is also a great example of choosing the appropriate features to represent
and distinguish items stored in the index. 5-gramming Parsons code enables users to
find songs without humming the entire tune, and even if they sing portions of the song
incorrectly, this technique will still produce at least some tokens that will match to the
song that the user seeks. What’s more, the Parsons code itself encodes only the most
basic notion of relative pitch—up, down, or repeated. Therefore, even if the user can’t
carry a tune, there’s still a reasonable hope of finding the song he’s looking for.

 But we can do even better. It stands to reason that a match on a longer n-gram
should be more meaningful than a match on a shorter n-gram. So you could increase
both the min_gram and max_gram settings to, say, 7. But this isn’t great, because if the
user doesn’t match on a longer n-gram, you still want to at least give him the most rel-
evant songs based on matches with shorter n-grams. So, let’s index n-grams of varying
lengths. You can try this out by using a min_gram of 4 and a max_gram of 7. Then, “Yan-
kee Doodle,” which has a Parsons code of *RUUDUD (go ahead, hum aloud; we did) will
produce the following tokens:

[*RUU][*RUUD][*RUUDU][*RUUDUD][RUUD][RUUDU][RUUDUD][UUDU][UUDUD]

An additional benefit of using various-length n-grams is that TF × IDF as presented in
section 4.3.1 comes clearly into play here. Using the alphabet of *, U, D, and R, there
are only 108 possible 4-gram tokens (4 × 3 × 3 × 3), whereas, by similar calculations,
there are 2,916 possible 7-gram tokens. In all likelihood, the doc frequency will be
much lower for 7-grams. Therefore, because of their rarity, anytime that the 7-gram
tokens match, they’ll be scored significantly higher than the shorter tokens. At this
point, you have a good outline for how the whistle-search app can be implemented to
have a relevant user experience.

 Before moving on, reflect on the past three examples—numerical search, geo
search, and melody search. The goal of these examples isn’t to teach you specifically
how to implement these three search applications. Numerical search and geo search
are already built into Elasticsearch, and it’s unlikely you’ll ever need to index melo-
dies by using Parsons code. The goal of these examples is to generalize your notions
about where search technology can be applied. You’ve seen that search isn’t limited to
words and text. Search can be extended to any domain for which discriminative fea-
tures can be extracted and encoded as tokens.

106 CHAPTER 4 Taming tokens
4.5 Summary
■ Tokens express features latent in text and in any kind of tokenizable data.
■ Analysis controls the formation of tokens, which controls the precision and

recall trade-off across the set of all search results.
■ Analysis transforms text and data into tokens that anticipate how users intui-

tively understand various representations of one idea (runs, running, run
equate to forms of the idea of running).

■ The precision/recall trade-off can be less stark than you might expect. One way
to sidestep the trade-off is through relevance ranking.

■ Manipulating analysis also controls how the search engine counts TF and IDF
scoring statistics.

■ Numerous strategies exist in Lucene to help you normalize many forms of data.
We specifically covered the following:
– Non-whitespace-delimited text
– Synonyms to capture specific meanings
– Path-based and synonym-based methods for capturing specificity: from broad

terms (fruit) to narrow ones (fuji apple)
■ You can tokenize locations, melodies, and many other kinds of data, turning the

search engine into a general-purpose similarity system across many kinds of data.

Basic multifield search
Earlier we compared search to a book’s index. Such an index lets you zero in on
pages that discuss a subject you’re interested in. If you’re interested in the French
Revolution, just browse to the back of your French history book and find the associ-
ated pages.

 Similarly, a search engine can quickly identify documents that mention search
terms by using an inverted index. Search for the term “revolution,” and the search
engine retrieves a list of documents that mention a revolution. In the previous

This chapter covers
■ Satisfying multiple user goals when

searching
■ Searching more than one field in your

documents to satisfy user searches
■ Transforming fields derived from your source

data into a search-friendly form
■ Balancing the influence of different search

fields against one another
■ Understanding the pros and cons of multifield

search strategies
107

108 CHAPTER 5 Basic multifield search
chapter, your goal was to use analysis to optimize the terms in the inverted index and
maximize precision and recall. You expressed features of content as tokens, going
beyond the idea that tokens are always associated with words and instead associating
tokens with the meaning contained in the documents.

 If your boss is breathing down your neck with a tough relevance problem, you
know there’s far more to tuning search than optimizing analysis! You need to under-
stand how search results are ranked using a broad range of criteria important to your
business. Your documents almost certainly are composed of multiple fields. Each field
has its own characteristics and quirks. Each field has its own expected influence on
the search engine’s ranking behavior based on the requirements of your business.

 In this chapter, we begin to take an increasingly top-down view of search. A search
engine is more than just an index in the back of your book; it’s a highly scalable con-
tent-ranking system with tremendous power in expressing business and user priorities.
In this chapter, we focus on layering in multiple fields in the ranking solution, as
shown in figure 5.1. To do this, we peel back the ranking and scoring behavior of mul-
tifield search queries. Every multifield query has a purpose—a specific way of combin-
ing field scores that you can use to balance criteria critical to your business and users.

To master multifield search, you’ll continue to manipulate individual field matching
and scoring. Understanding, for example, something as simple as what a relevance
score on a title or body field means to your users helps you pinpoint exactly how to
combine those fields into a larger ranking function. In this chapter, you’ll work to not
only understand the meaning of fields when they’re searched, but also to build fields
expressly for the purpose of providing the right information to the overall search

in
d
ex

in
g query

inverted
index

Respon
se

a
n
alysis

Query

barcelona beach searchQuery
of Barcelona

body: In the

summer

Barcelona has

beaches that...

title: Beaches

Indexed
document

User

User’s search

Relevance engineer

title x5
body x2

In order to achieve the best results, you must
find the appropriate balance between the search

signals (the fields of the document).

Figure 5.1 Relevance engineer prioritizing ranking criteria through fields when ranking

109Signals and signal modeling
solution. This way, you can effectively program the ranking function to factor in crite-
ria important to your business or users.

5.1 Signals and signal modeling
What does it take to express business ranking rules to a search engine? How can you treat
the results ranking of a search engine as something programmable and not mystical?

 First, let’s reflect on something that feels mystical and intimidating, often to even
experienced search developers. Throughout this book, you’ve had to stare at terrifying-
looking relevancy explains such as this snippet:

 2.555276, product of:
 3.1940954, sum of:
 3.1940954, weight(title:alien in 223)
 0.8, coord (4/5)

We’re here to tell you: you can become the master of this big, ugly thing! Instead of
seeing these scores as divined by the mystical search engine, you can transform your
thinking into associating each number with a signal—an indication that there’s some-
thing specifically meaningful or important about this document.

5.1.1 What is a signal?

What do we mean by signals? A signal is any component of the relevance-scoring calcu-
lation corresponding to meaningful, measurable user or business information. This
could be any information you’d like to use in ranking, from “the movie sells well” or
“the movie’s overview text is about the user’s query” or “the movie director’s name is
mentioned in the user’s query.”

 You may not realize it, but if you’ve ever searched multiple fields, you’ve already
begun to think in terms of signals. In chapter 3, you listed fields in a movie search that
you thought were pertinent, such as the director’s name or the overview text. By
searching a director’s name field, you’re trying to measure the strength of the signal
“the movie director’s name is mentioned in the user’s query” and give a hint to the
search engine to use that fact in ranking. By searching a body’s overview field, you’re
similarly trying to get at whether a movie’s overview is about the user’s search string.
You’re already groping toward the idea of getting the search engine to understand cri-
teria important to your users, domain, or business.

 To get beyond simply listing fields, you’ll learn two techniques from this and future
chapters that will put increasing power in your hands to create signals and control rel-
evance ranking. What are these two ideas?

 First, you’ll master signal modeling. Instead of thinking of the relevance scores as
incomprehensible, you control them! You exercised that power in the preceding
chapter when manipulating features to model how users search. That effort continues
with signal modeling. With signal modeling, you control every aspect of a field’s rele-
vance score to measure what you need. Your goal is to move closer and closer to sig-
nals that more precisely measure the desired information.

110 CHAPTER 5 Basic multifield search
 Second, you’ll manipulate the ranking function. This is a chapter about multifield
search, after all. And multiple field scores—multiple signals—need to be combined
into an overall relevance score to balance all the factors important to your users and
business. This is the purpose of the ranking function. You combine signals into larger
signals that quantify multiple pieces of information. You’ll learn how to manipulate the
ranking function in this and future chapters. The next two chapters focus primarily on
the ranking function associated with specific uses of Elasticsearch’s multi_match query.
Future chapters show you how to manipulate the ranking function even deeper to
boost, filter, and prioritize different pieces of information.

 You can do quite a bit with just a search engine if you know exactly how to trans-
form user and business criteria into meaningful ranking signals. After you understand
how to use fields to put signals first, you can build any number of unique and intelli-
gent search user experiences!

5.1.2 Starting with the source data model

Unfortunately, multifield search is often made complex because no signal modeling
occurs. Instead, fields are directly copied from the source data without thought to
how they’ll be searched or the information they’ll provide when scored. We refer to
the source data model as the structure of the data as it lies in the originating system, be it
a database, an API, or whatever else. Although this is an OK place to start, the source
data model isn’t optimized for search. It’s optimized for concerns specific to the
source system, such as database or application requirements. Instead of fields that give
us specific, targeted signals during ranking, we get fields whose scores provide ambig-
uous information. This tends to create artificially obscure query-time logic, resulting
in brittle and complex multifield search.

 Take your company’s employee database as an example. When placing employees
in Elasticsearch, an obvious place to start is copying employee attributes from the
source database directly into fields in the corresponding Elasticsearch document, as
shown in figure 5.2. If your employee database table has first_name, middle_initial,
and last_name columns, you place those exact first_name, middle_initial, and
last_name fields directly into Elasticsearch without thinking about how you hope to
search them later.

Database

first_name

Adam

PUT /company/employee/1

{

"first_name": "Adam",

"middle_initial": "P",

"last_name": "Smith"

}

Indexed document

last_namemiddle_initial

SmithP

Figure 5.2 Directly indexing the source data model without transformation

111Signals and signal modeling
With this field structure, you’re left with many multifield search problems. How would
you, for example, satisfy full-name searches in which the user enters searches of the
form FirstName MiddleInitial LastName (“Adam P. Smith”) into the search bar? In its
current state, the best you could do is to search for each term in every possible field. If
you applied multi_match, the search engine would need to execute something like
the following listing.

usersSearch = "Adam P. Smith"
search = {
 "query": {
 "multi_match": { 1
 "query": usersSearch,
 "fields": ["first_name", "middle_initial", "last_name"],
 }
 }
}

As explained by the query validation endpoint (recalling Lucene query syntax from
chapter 3), you can see how multi_match is likely to query each field for each
search term:

(first_name:adam first_name:p first_name:smith) |
(middle_initial:adam middle_initial:p middle_initial:smith) |
(last_name:adam last_name:p last_name:smith)

This is a search for Adam in each field, a search for P in each field, and a search for
Smith in each field. How does this turn into an overall relevance score? Each field is
being scored against each of these terms. Recall from previous chapters, a TF × IDF
score is calculated for a given term in a field (first_name:Adam), proportional to how
frequently the term occurs for this document’s field (TF) and how rarely the term
occurs across all documents’ instances of this field (IDF). The scores are combined to
form an overall relevance score, the exact mechanics of which we present in more
depth a bit later.

 The preceding search seems like it might sort-of work. But there’s a big problem.
What happens when this query is scored against a document with an oddball
employee with first name Smith and last name Adam—good ole “Smith P. Adam” in
accounting?

 Just looking at the search of the first_name field in isolation, you’ll see a problem.
Remember, every search term is searched against first_name, even those that aren’t a
first name:

first_name:Adam first_name:P first_name:Smith

Listing 5.1 Brittle multifield name search

The user’s
search terms

Applies the user’s query to
first_name, middle_name, and

last_name fields

112 CHAPTER 5 Basic multifield search
The search for Adam in the first_name field is a fairly weak match; Adam is a common
first name and thus the document frequency for Adam is high. The TF × IDF score for
this match will be correspondingly low. What happens with our search for the term
Smith in first_name? Well, only one employee has a first name of Smith—our friend
“Smith P. Adam”! Smith is a rare first name, so the TF × IDF score for a first name of
Smith will be correspondingly high. Suddenly and unexpectedly, due to a match of
Smith in first_name, and similar match of Adam in last_name, Smith P. Adam far out-
ranks Adam P. Smith in the search results.

 There’s a deep multifield search antipattern at play. There has been no reflection
on what signals these fields provide based on how they’re searched. You can see with
your application of multi_match that each field is queried for each search term. In a
name search, this results in field scores that provide ambiguous information. A
first_name score, for instance, doesn’t provide a signal about the relationship
between a first name in the search string and the first_name in the document (which
might be nice). Instead it provides vague information. It assumes that any search term
might be a first name and scores accordingly. This isn’t helpful when composing a
ranking function.

 Signal modeling builds fields that can be queried with less ambiguity, as you under-
stand the questions to be answered by searched fields. When signal modeling, you
must answer these questions:

1 How do users intend to search these fields to obtain the needed information?
2 What work needs to occur to improve or adjust that information?

Every problem differs. Name search has little resemblance to searches for restaurants
or movie reviews. The fields that satisfy these searches are modeled differently. Instead
of fretting over how hard multiple fields are to search, make fields an asset to your rel-
evance solution. To the relevance engineer, fields exist to return a signal that mea-
sures information in the form of that field’s relevance score. Fields are scorable units
that you’ve constructed to generate a specific similarity score between a query and a
document. In the rest of this chapter, you’ll see numerous examples of multifield
search that drive home this point. Only by understanding and controlling your fields
can you build a relevance solution that accounts for multiple fields.

5.1.3 Implementing a signal

Let’s explore a small signal modeling example. Revisiting the name search, you can
see how this might help our problem. If you want to satisfy the expected FirstName
MiddleInitial LastName search, the solution isn’t just applying multi_match to a set of
fields from your source data model, but instead creating a derived full_name field
that provides the information you need at search time, as shown in figure 5.3.

 If you know that users commonly search with the syntax FirstName MiddleInitial
LastName, it may be valid to construct a derived field that appends names in this for-
mat. A multifield search solution might, in addition to searching each name in isolation,

113Signals and signal modeling
attempt to perform a phrase search against this full_name field. When users search
exactly for “Adam P. Smith,” this full-name phrase match can be used with other fac-
tors in a ranking function to bring users to the right employee. Perhaps the ranking
function could look more like this:

max(first_name:Adam first_name:P first_name:Smith),
 (middle_initial:Adam middle_initial:P middle_initial:Smith),
 (last_name:Adam last_name:P last_name:Smith))
+ full_name:"Adam P. Smith"

You could accomplish this by using Elasticsearch’s phrase query, and combining the
impact with Elasticsearch’s Boolean query. Although this is the first time you’ve seen
Elasticsearch’s Boolean query, you’ve seen Boolean search quite a bit. Recall from ear-
lier chapters that SHOULD adds the scores of the contained queries, which is pre-
cisely what you do to create the needed ranking function.

search = {
 "query": {
 "bool": {
 "should": [
 "multi_match": {
 "query": usersSearch,
 "fields": ["first_name", "middle_initial", "last_name"],
 },
 "match_phrase": {
 "full_name": usersSearch
 }]}}}

When searched with a phrase query, the full_name field adds information to the over-
all relevance score that has a clear meaning. When a phrase query scores highly for

Listing 5.2 Improved multifield name search

Database

first_name

Adam

PUT /company/employee/1
{

"first_name": "Adam",
"middle_initial": "P",
"last_name": "Smith",
"full_name": "Adam P. Smith"

}

Indexed document

last_namemiddle_initial

SmithP
Transform

Figure 5.3 A transformation to a full_name field that creates a better signal when ranking

Combines the two
scores with multiple
SHOULD clauses

The user’s
search terms

Applies the user’s
query to first_name,

middle_initial, and
last_name fieldsQueries full_name with a phrase

query, providing a signal that the
user’s search is a complete

match to the full_name field.

114 CHAPTER 5 Basic multifield search
this query, you know that the user has hit on a full_name field; you have a specific sig-
nal to use at search time. Conversely, no match for a phrase in this field means the
opposite, that a FirstName MiddleInitial LastName search either wasn’t executed or
didn’t match a user’s exact name.

5.1.4 Signal modeling: data modeling for relevance

By querying the full name as in the previous example, you transcended your source
data model to answer questions targeting search users. In other databases, data mod-
eling is a task done to structure data in order to answer questions within the con-
straints of the data-retrieval system. You undergo data modeling to structure data to
use the strengths of that system to answer questions.

 This is no less true for a search engine. Signal modeling is just data modeling for
relevance. A search engine has specific strengths as a data-retrieval system. These
strengths imply that data modeling for relevance takes a different tack than your source
data model. A search engine takes an index-first mentality to data. It allows text to be
subdivided into terms likely to be searched efficiently in an inverted index. Most of the
time, these terms correspond to words. But as you learned in the preceding chapter, this
need not be the case. The terms you use need not correspond to words, or even text.

 You can build terms to answer specific questions. By heeding the advice of signal
modeling and the techniques of the previous chapter, you can construct fields that use
the strengths of the search engine. You can apply fine control to how these fields will
be searched. You can pick apart both the query and the field to engineer the rele-
vance signal you need to answer important questions for your users.

 If you can get past the idea that fields exist simply to store properties of data, and
embrace the idea that you can manipulate data so it can be found as users expect it,
then you can begin to effectively program relevance rules into the search engine.

5.2 TMDB—search, the final frontier!
Now that you’ve tasted a small sample of how signal modeling can improve multifield
search, let’s continue to explore various signal modeling scenarios with the TMDB
(The Movie Database) data set that was introduced in chapter 3.

 We’re going to do something fun with this data set. It turns out you’ve been hired
to build a movie search application for fans of the science-fiction franchise Star Trek!
You’ve worked hard to load data from TMDB into the search engine. There’s a beauti-
fully designed futuristic UI that reminds users of the Starship Enterprise. All that’s left
is to plug in the search engine to get results, and you’ll be finished! Right?

 What you’re about to learn is that users from Star Trek fandom have their own def-
inition of relevant. But you’ll need to undergo a bit of your own trek through the
source data model to arrive at a relevance solution that can give you the right signals
for what the Star Trek fan is looking for. In this and the next chapter, you’ll apply the
lessons of the previous section to create a ranking function and signals to satisfy user
and business needs.

115TMDB—search, the final frontier!
 Your technical work in this and the next few chapters will be focused on technique,
not process. You might feel that this avoids possibly even harder questions. (What should
the search engine be doing? How do we figure out user requirements for search? Who
defines them? How do we keep track and continuously retest to ensure that search
hasn’t deviated from our goals?) We cover these larger topics in depth in chapter 10.
For now, it’s more important to see some of the nitty-gritty of interacting with the
search engine to solve targeted problems: the day-to-day technical work you’ll do all
the time as a relevance engineer.

 Before we have fun, let’s recall the Python functions from chapter 3 that you used
to work with the TMDB data and Elasticsearch. You’ll use these functions, listed in
table 5.1, throughout this chapter and future ones when working with TMDB data and
Elasticsearch.

You’re going to examine elements of the source data model related to the cast and
crew of a movie. You’re expecting that users will search for their favorite cast members
and directors. Each movie in tmdb.json has the entries movie['directors'] and
movie['cast'] that contain a list of records full of details about each cast member
and director. If you’d like to see exactly how we’ve put together this data from
TMDB’s API, check out appendix A.

 Recalling how to use our helper functions, you can easily get back to where you
were in chapter 3. First you use extract to pull in TMDB data. Then you reindex and
search, with English as the default analyzer for your text fields, as shown in the follow-
ing listing.

movieDict = extract()

analysis = {
 "analyzer" : {
 "default" : {
 "type" : "english"
 }}}
reindex(analysisSettings=analysis,
 mappingSettings=None,
 movieDict=movieDict)

Table 5.1 Primitives working with TMDB and Elasticsearch

Function Description

extract Returns a dictionary mapping movie ID to movie details from tmdb.json, reflecting the
TMDB source data model

reindex Reindexes into Elasticsearch with the passed-in TMDB movie dictionary, analysis set-
tings, and field mappings

search Searches the TMDB Elasticsearch index with the provided Elasticsearch Query DSL query

Listing 5.3 Extraction, indexing, and search

Extracts data
from TMDB into
movieDict

Reindexes with the
English analyzer
as default

116 CHAPTER 5 Basic multifield search
usersSearch = 'basketball with cartoon aliens'
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title^0.1", "overview"],
 }}}
search(query)

5.2.1 Violating the prime directive

Star Trek was notorious for having rules that brash starship captains routinely violated.
Well, by indexing TMDB directly, you violated some advice we gave earlier. You
directly placed the source data model into Elasticsearch. Shouldn’t you have done
some signal modeling? If you use this data directly to create a search index, won’t you
end up with relevance problems?

 Well, yes, but that’s for a good reason. Search is a place ripe for premature optimi-
zation. You’re likely to reach the heat death of the universe before achieving a perfect
search solution in every direction. You know there will be relevance problems, but you
don’t quite know what those are until you experiment with user searches. There are
few areas that emphasize “fail fast” as much as search relevance. Load your data, get
something basic working, find where it’s broken, reconfigure, reindex if need be,
requery, rinse, and repeat. Keep going until you’ve reached diminishing returns.

 For the purpose of this chapter, this means solving where exactly the source data
model falls apart, and where to spend careful time with signal modeling. When do you
decide to perform feature modeling to extract specific, useful features into terms? You
can do this work only when you’ve let your search fail for real search queries.

5.2.2 Flattening nested docs

The fact that you could pull the source data model down should seem suspicious from
a pure “how could this work” perspective. You indexed a possibly deeply nested JSON
movie object straight into Elasticsearch. Yet earlier in this book, we remarked that
Lucene documents are a flat collection of fields. How does a hierarchical source data
model get mapped into Elasticsearch? You’ll need to know how Elasticsearch deals
with hierarchical data in order to understand how to search data and iterate on sig-
nals focused on these subobjects.

 Let’s examine our old friend Space Jam to determine exactly how our documents
look in Elasticsearch.

spaceJamId = 2300
httpResp = requests.get("http://localhost:9200/tmdb/movie/%s" % spaceJamId)
spaceJamDoc = json.loads(httpResp.text)
print json.dumps(spaceJamDoc['_source'], indent=True)

Listing 5.4 Snippet of Space Jam Elasticsearch document

Runs your search
from chapter 3

User's
query

117TMDB—search, the final frontier!
{
 …
 "overview": "Michael Jordan agrees to help the Looney Tunes play
 a basketball game against alien slavers to determine their
 freedom.",
 "video": false,
 "id": 2300,
 "genres": [
 {
 "id": 16,
 "name": "Animation"
 }],
 "title": "Space Jam",
 "tagline": "Get ready to jam.",
 "cast": [
 {
 "name": "Michael Jordan",
 "character": "Himself",
 "order": 0,
 "cast_id": 2,
 "credit_id": "52fe434bc3a36847f80496c9",
 "profile_path": "/7y16frD57Ztzk2mY4JeI2pQQhan.jpg",
 "id": 23678
 },
 ...
],
 "directors": [
 {
 "name": "Joe Pytka",
 "credit_id": "52fe434bc3a36847f80496c5",
 "job": "Director",
 "department": "Directing",
 "profile_path": "/c46Ah1KxlfC4W8mHVrGDsJ7dMPJ.jpg",
 "id": 23677
 }]}

Several fields in this document reflect the flat structure native to Lucene. You can also
see that the cast and directors fields are lists of people. You’ll see various use cases
in which users want to find specific people, and we’ll model signals to address this cri-
teria later.

 How does Elasticsearch model these fields? How does Elasticsearch’s behavior with
nested fields inform your signal modeling work? The truth is that Elasticsearch layers
a bit of syntactic sugar on your fields. A list of objects is translated to flattened fields
with multiple values. Each cast member’s name is flattened into a multivalue cast.name
field, with multiple names. For example, this nested object

 "cast": [
 {
 "name": "Michael Jordan",
 "character": "Himself",
 ...
 },

Output

We searched title and
overview fields from
chapter 3.

Cast and
directors
fields

118 CHAPTER 5 Basic multifield search
 {
 "name": " Danny DeVito",
 "character": " Mr. Swackhammer (voice)",
 ...
 },

is effectively translated into multiple flattened, parallel fields:

cast.name: ["Michael Jordan", "Danny DeVito", …]
cast.character: ["Himself", "Mr. Swackhammer (voice)", …]

Or in terms of the inverted index, the terms Michael, Jordan, Danny, and DeVito all
exist in a cast.name field attached to the Lucene document. As Michael and Jordan
exist in one instance, they’ll be indexed as adjacent terms; the same with Danny and
DeVito. It’s as if the name or character field’s text looks like this:

cast.character: Himself BLAH BLAH BLAH Mr. Swackhammer (voice) BLAH BLAH…
cast.name: Michael Jordan BLAH BLAH … BLAH Danny Devito BLAH BLAH BLAH…

This lets you search for names by listing the flattened cast.name in queries.
 Elasticsearch calls this representation inner objects. It maintains some advantageous

properties, but by flattening the fields, it loses the association of which child object
each field belongs to. For example, this structure loses the connection between Danny
DeVito and character Mr. Swackhammer (voice), even though they’re listed together.
Both strings are simply terms in the parent document’s fields.

 Elasticsearch has other ways of modeling these relationships that preserve these
connections. If you’d like to explore further, examine the Elasticsearch documenta-
tion on nested documents and parent-child documents, which provide a much more
specific way of modeling relationships between multiple documents.1 For now, let’s
proceed with the default data model in our signal modeling work.

 Now that the pieces are in place, you can begin to work with TMDB to solve the rel-
evance problems of Star Trek fandom. Exactly what use cases do you need to support?
When do the fields in your source data model stop supporting relevance? What signal
modeling might be required to satisfy the movie search needs of Star Trek fans?

5.3 Signal modeling in field-centric search
Let’s get to work satisfying the movie curiosities of Star Trek fans! As we mentioned,
you’ve already been delivered a slick, futuristic search UI for the Star Trek fan portal
from your fellow developers. You’ve been hired to get the search to work. After all,
what’s a slick-looking search UI without relevant search results to drive the user
experience?

1 For more on this, read “Managing Relations” on Elastic’s blog at www.elastic.co/blog/managing-relations-
inside-elasticsearch.

http://www.elastic.co/blog/managing-relations-inside-elasticsearch
http://www.elastic.co/blog/managing-relations-inside-elasticsearch

119Signal modeling in field-centric search
 To create a search solution that returns what Star Trek fans deem relevant, you
have to think about what criteria are likely to be important to them. These inform
your possible ranking signals. Certainly simple things such as title and overview
matches continue to be important. Star Trek fans are also loyal to their favorite cast
members. Thus matches on cast members are likely to be an important criterion. As
many cast members often are directors of Star Trek films, director search is also an
important ranking criterion.

 All these factors may not be quite right, but that’s OK. They’re a reasonable start-
ing point for crafting signals and a ranking function that answer these questions.
You’re sure to discover more criteria as you test your solution. Starting out, you can
see fields in the source data model that could possibly generate signals that reflect
these criteria when searched:

■ title—A high score equates to a likely direct title match
■ overview—A high score equates to a query that describes a movie
■ cast.name—A high score equates to a likely cast member match
■ directors.name—A high score equates to a likely director match

You haven’t done any signal modeling yet, so it’s likely the resulting signals aren’t
ideal. Yet you need to get started with an initial solution. What sort of ranking func-
tion should you start with that could create a sensible overall score? What’s available to
choose? In this section, you’ll begin to explore the interplay between the ranking
function and the signals. How do you craft a ranking function using the most basic
multifield search capabilities? How do these ranking functions use the signals that are
provided? How do you optimize field scoring in the context of a selected ranking
function to improve the quality of search results?

 Selecting a multifield ranking function dictates what shape your search results will
take. It controls the general shape of your search results. Should your search, for exam-
ple, be driven to one signal deemed most important among the menu of options? Or
should your search take into account multiple factors equally when ranking?

 Let’s examine what options exist for multifield search. Lucene-based search appli-
cations take two general-purpose approaches to ranking multiple fields, as shown in
figure 5.4.

Field-centric search runs the search string against each field, combining scores after
each field is searched in isolation. Term-centric search works just the opposite, by
searching each field on a term-by-term basis. The result is a per-term score that com-
bines each field’s influence for that term. For your first forays at our Star Trek search,
you’ll start with field-centric ranking functions. Field-centric queries are often the
place to start, as they let you focus on each field in isolation and the signal that search-
ing that field provides. We revisit term-centric approaches in the next chapter.

 Elasticsearch bakes field-centric options into the multi_match query. You’ve seen
multi_match a few times, but how exactly does it work? It runs the search against each
field that’s passed in. For each field, multi_match runs query-time analysis on the

120 CHAPTER 5 Basic multifield search
search string, executing a Boolean search on the resulting tokens, each as a SHOULD
clause. In other words, for a given field that uses the English analyzer, the search
string goes through the process shown in figure 5.5.

fn

Term-centricField-centric

title

overview

Basketball

with cartoon

aliens

fn

Basketball

with cartoon

aliens

fn

title

overview

Basketball

Cartoon fn

title

overview

...

Figure 5.4 Field-centric versus term-centric search showing the fields title and
overview. Field-centric searches each field in isolation; term-centric searches each field
term by term.

OVERVIEW

Analysis Query

[basketbal]
[cartoon]
[alien]

Boolean search:

(overview:basketbal
overview:cartoon
overview:alien)

Soverview

score for
searching
overview

TITLE

Analysis Query

[basketbal]
[cartoon]
[alien]

Boolean search:

(title:basketbal
title:cartoon
title:alien)

S title

score for
searching
title

...

Basketball
with cartoon

aliens

Basketball
with cartoon

aliens

Tokens:

Tokens:

Figure 5.5 Match query over multiple fields (multi_match). Each field analyzes the search
string and runs a Boolean OR query.

121Signal modeling in field-centric search
This way, multi_match searches each field in isolation, as a discrete unit, before com-
bining field scores. How multi_match combines the result depends on the type of
field-centric search. Let’s examine the available ranking functions. If you denote the
resulting score for a single-field search (overview:basketbal overview:cartoon…)
as Soverview, you can see two main forms of field-centric search:

■ best_fields—By default, take the highest-scoring field. If the tie_breaker
parameter is specified (a value ranging from 0 to 1), the score of remaining
fields is incorporated into the overall score. If title has the highest score, this
math would look as follows:

score = Stitle + tie_breaker × (Soverview + Scast.name + Sdirectors.name)

■ most_fields—Treat each match score as a clause in a Boolean query. Recall
that a Boolean query is a summation, with a coordinating factor, or coord. Coord
is the number of matching clauses / number of total clauses. Thus coord rewards
Boolean queries with more matches:

score = (Soverview + Stitle + Scast.name + Sdirectors.name) × coord

Figure 5.6 depicts this visually.

Which ranking function might work for Star Trek searches? The two strategies live on
opposite poles. The best_fields strategy works well when documents rarely have
multiple fields that match the search string. This makes a best field easier to choose.

best_fields

max

title

overview

most_fields

sum

title

overview

Basketball
with cartoon

aliens

Basketball
with cartoon

aliens

Basketball
with cartoon

aliens

Basketball
with cartoon

aliens

Figure 5.6 Contrasting best_fields
and most_fields. Here, the title
field wins in best_fields, whereas
most_fields takes a summation
(coordinating factor not shown).

122 CHAPTER 5 Basic multifield search
The most_fields approach works the opposite. It works when you expect multiple
fields from a document to match the search string.

 By picking the highest-scoring field that matches a search, best_fields decides,
“This search must have been for that field.” If your signal modeling is sound, and each
field score is a signal, then best_fields selects the most appropriate signal as the
resulting score. In a sense, best_fields is like a job interview—picking the field with
the most credentials for the search terms. It ends up attempting to create a signal for
each document that says, “This is a title search, and it’s nothing else!” The
best_fields strategy can be referred to as a winner-takes-all search. The winning field
score is taken, and all other “runner-ups” get ignored or minimized—interpreted as
spurious or lower priority.

 In most_fields, fields work together like a team. More signals indicate increased
relevance. This approach is all about synergy! You use most_fields by declaring a list
of fields that all count toward increased relevance. As search terms match more of a
document’s fields, the document’s resulting score increases, whereas fewer field
matches punish the document’s score. most_fields says, “The ideal search string con-
tains a document’s title, parts of the overview, and a cast member’s name.” In this way,
most_fields rewards documents that have multiple field matches. The most_fields
strategy can be referred to as every field gets a vote.

 All that’s the theory, at least! Anyone who’s a fan of Star Trek knows that deep-
space exploration can challenge the best of theories about how the universe is supposed
to work! Let’s get cracking on our TMDB search, and you’ll see how your chosen rank-
ing function and signal modeling work to deliver relevant search results.

5.3.1 Starting out with best_fields

Reflecting on our problem, it seems possible that sometimes Star Trek fans will search
for specific movies by title or description, yet other times they’ll search for actor or
director names. Assuming that the scores for these fields correspond to these signals,
you likely want to push the search toward one field score or another and ignore the
rest. Could this be a use case for best_fields?

 To try out a best_fields query, let’s search for Star Trek actor “Patrick Stewart”
and see if it behaves as we’d expect. You’d hope that best_fields might figure out
we’re searching for a cast member and choose that field as the best.

usersSearch = "patrick stewart"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name", "directors.name"],
 "type": "best_fields"
 }

Listing 5.5 Star Trek query using content from chapter 3

The user’s
search

Fields and boosts from
chapter 3 (adding cast
and director name)

123Signal modeling in field-centric search
 }
}
search(query)

Num Relevance Score Movie Title
1 0.5308861 Legion
2 0.5308861 Halo 4: Forward Unto Dawn
3 0.5308861 Priest
4 0.5308861 Dark Skies
5 0.42397094 Drive Angry

Wow, right off the bat your initial attempt is doing poorly! The results show no Star
Trek or Patrick Stewart movies. If this goes out, hordes of Star Trek fans will be knock-
ing down your door! Better arm the photon torpedoes!

 What’s happening? Remember, best_fields picks a winning field. When you
examine the explanation for your search queries, you see a particularly high score for
a director named Stewart for the film Legion:

1.3460261, max of:
 1.3460261, product of:
 2.6920521, sum of:
 2.6920521, weight(directors.name:stewart in 868)
 0.5, coord(1/2)

Compare this explain for a film that stars actor Patrick Stewart, Star Trek: Generations:

0.38644278, max of:
 0.38644278, sum of:
 0.14300151, weight(cast.name:patrick in 533) [PerFieldSimilarity],

result of:
 0.24344127, weight(cast.name:stewart in 533) [PerFieldSimilarity], result

of:

Director matches on Stewart appear to outscore the corresponding cast.name Stewart
matches. The top results match the director, not the actor. This isn’t intuitive. Why
would the director matches be ranked so highly? Shouldn’t it be clear that you’re search-
ing for the actor, not the director? The search results are lopsided, as in figure 5.7.

The search
results

Max component
of best_fields

Boolean query on
directors.name field
(coord × sum of matches)

Match on
directors.name
field

Max component
of best_fields

Expected matches
on Patrick Stewart

directors.name:

stewart matches

cast.name: patrick

stewart matches

Highest

ranked

Lowest

ranked

Figure 5.7 The director is chosen as the
best field for many of our matches, and the
Patrick Stewart actor matches score lower
and are sorted to the bottom.

124 CHAPTER 5 Basic multifield search
Fundamentally, you’re not working with best_field’s strength. Search strings with
names might match either the directors.name or cast.name fields. Without clear pri-
oritization from you through boosting, best_fields appears to have the effect of
shuffling one field’s matches to the top. Without help from us, the shuffling won’t be
ideal or intuitive. This is for a couple of reasons.

 First, field scores don’t reliably line up. There’s no absolute relevance scale for
every TF × IDF score from, say, 0–100, where 0 means irrelevant and 100 means relevant.
Therefore, you can’t compare the preceding two field scores. You can truly compare
field scores to only like field scores—a cast.name score to other cast.name scores. If
you think about how scores work, you can see why. Term frequencies, document
lengths, and inverse document frequencies all have different distributions among
fields. All these factor into the field score, creating a scenario in which 2.0 might be a
terrible directors.name score, but 0.2 might be a great cast.name score. These two
scores are completely incomparable! In a sense, best_field’s mechanism for choos-
ing the “best” (max) isn’t that great. It’s like choosing the “max” between a person’s
height in feet and height in meters! The two measurement systems are incompatible
unless you manipulate the math to make them comparable.

 Second, and perhaps more important, TF × IDF scoring is biased heavily against
what the searcher is likely searching for. Remember, TF × IDF scores bias heavily
toward rare terms (IDF correlates with rareness). But the user is more likely to be
searching for a mundane, commonplace item. If you go to the grocery store and ask
for coffee, you’re more likely to be happy with being brought to the coffee aisle,
where coffee is plentiful. You wouldn’t be happy if brought to the ice-cream aisle,
where a few tubs of coffee ice cream await you.

 In the same way, the term stewart corresponds to a commonplace actor, but a rare
director. For this reason, it’s far more likely that the user is searching for the actor, not
the director. Yet TF × IDF does the opposite. It rewards rareness. So the diamond-in-
the-rough director scores more highly than the more likely candidate, the well-known
but commonplace actor.

 In other words, you’re likely to get lopsided results—often in the direction you
don’t expect. This can create confusing search results for users as obscure field
matches take precedence over common ones.

5.3.2 Controlling field preference in search results

In the previous section, best_fields created lopsided search results. First a director
match is shown, followed by an actor, and so forth. Seemingly arbitrary lopsidedness
feels unintuitive (why directors over actors?). But intentional lopsidedness might just
be the ticket for your application! What if it’s very important to bring films with our
actors straight to the top of the search results and consider other matches secondary?

 By using boosts, you can push best_fields to be lopsided in a preferred direction.
For example, if you down-boost directors.name, you can deprioritize it with respect
to other matches, as shown in the following listing. This gets more results with movies

125Signal modeling in field-centric search
that star Patrick Stewart and deprioritizes the director field. Now, recall that you can’t
compare field scores, so the 0.1 down boost doesn’t mean “10 times less important.”
The boost is just a multiple, chosen through experimentation, to ensure the desired
lopsidedness.

usersSearch = "patrick stewart"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name", "directors.name^0.1"],
 }
 },
}
search(query)

Num Relevance Score Movie Title
1 0.46373135 Vertigo
2 0.46373135 Star Trek: Insurrection
3 0.46373135 Gnomeo & Juliet
4 0.46373135 Star Trek: First Contact
5 0.46373135 Excalibur

Now your search is lopsided away from directors and toward actors, so your search
results look better. The results appear to match actors named Patrick or Stewart, as
shown in figure 5.8.

You should use best_fields when you’d like to create a lopsided ranking whereby
results from one field dominate, followed by another. When there’s more than one
field match, you need to be assertive through boosting which field should take prior-
ity. In the preceding example, you pushed directors.name lower than cast.name;
this flipped the search results upside down, dragging up results that were at the bot-
tom, and pushing to the bottom results that were at the top.

 Yet there remains a problem. Vertigo, for example, stars Jimmy Stewart, matching
the “Stewart” part of our search. Another cast member has the first name Patrick,

Listing 5.6 Reducing the impact of directors.name

User’s
query directors.name

downboosted
by 0.1

Search
results

Patrick or
Stewart
movies

directors.name:

stewart matches

cast.name: patrick

stewart matches

Highest

ranked

Lowest

ranked
Figure 5.8 Using boosts to pull
down spurious director matches

126 CHAPTER 5 Basic multifield search
which matches “Patrick.” So you’re not exactly measuring what you want. The signal
associated with the field score cast.name doesn’t truly reflect a match on the exact actor
Patrick Stewart. Instead you have matches on the individual search terms “Patrick” and
“Stewart.” So although you’ve modified the ranking function to perhaps fit your needs,
the information being measured isn’t precise. It’s time to improve the signal!

5.3.3 Better best_fields with more-precise signals?

Even though you’ve flipped best_fields to your advantage, the results aren’t quite what
you want. The cast.name field has many spurious matches, because someone named
Stewart and someone named Patrick happened to be in that movie. Recall that multi
_match runs a SHOULD query on the field (cast.name:patrick cast.name:stewart).
There’s no notion that these terms ought to go together as a unit. If you could create
a field that more definitively matched a name or didn’t, you could dramatically
improve the precision of the search. You’d likely remove many spurious results.

 If you want to measure whether a name from the search matches a cast member,
you’ll need to perform some signal modeling on the field. What if instead of allowing
matches on terms in isolation such as Stewart OR Patrick, you performed some sig-
nal modeling to force higher precision matching? What if you could force a field to
score only exact matches on Patrick Stewart? Doing so would generate a precise sig-
nal that numerically conveys, “The search matches the person Patrick Stewart.”

 In the previous chapter, we talked about the degree of a term’s specificity. Or in
other words, how hard will the term be to match? How strict have you engineered the
match? If the field has a pretty high hurdle to overcome (for example, exact matching
Patrick Stewart instead of just Stewart), you know you’ve sharpened the precision
of that field. This exactness misses out on alternate forms of names, which might
reduce recall. Luckily, movie actors are referred to almost exclusively with the First-
Name LastName form (“Patrick Stewart,” never “Stewart Patrick”). So you might not
need to match alternative name forms in this case.

 Let’s add a signal to improve the performance of best_fields queries. The shin-
gle token filter can generate tokens from two-word subphrases. This can help you
build a field to match two-word names. If you build an analyzer largely based on the
English analyzer and add shingling, you’ll generate what’s known as a phrase index. A
phrase index uses two- or three-word phrases as terms. In the phrase Patrick Stewart
Runs, tokens extracted look something like Patrick Stewart and Stewart Runs. Remem-
ber that tokens and indexed terms need not be only single words! In this case, you’ve
mapped terms to two-word pairs, or bigrams. The index will look something like this:

field cast.name.bigrammed
 term patrick stewart
 doc 0
 freq 1
 position 1
 doc 2
 …

127Signal modeling in field-centric search
When Elasticsearch analyzes the search string, an identical analysis occurs, as depicted
in figure 5.9.

 Listing 5.7 modifies the TMDB index’s analysis. The listing configures a shingle fil-
ter, bigram_filter, that generates bigrams. Using this filter, it also creates the
english_ bigrams analyzer that runs the same steps as the English analyzer, but fin-
ishes by generating bigrams instead of individual words. Once configured, the ana-
lyzer will be available for you to use in your field mappings.

analysisSettings = {
 "analyzer" : {
 "default" : {
 "type" : "english"
 },
 "english_bigrams": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": [
 "standard",
 "lowercase",
 "porter_stem",
 "bigram_filter"
]
 }
 },
 "filter": {
 "bigram_filter": {
 "type": "shingle",
 "max_shingle_size":2,
 "min_shingle_size":2,
 "output_unigrams":"false"
 }}}

Next, you need to use this analyzer for indexing and search. You can generate bi-
grammed versions of many of your fields using Elasticsearch’s multifield feature. This
feature lets you run two forms of analysis on a single field. The following listing provides

Listing 5.7 Analysis extracting English bigrams

patrick

stewart

CAST.NAME.BIGRAMMED

Analysis Query

Tokens:
[patrick stewart]

Boolean search:
(cast.name.bigrammed:
(patrick stewart))

Scast.name.bigrammed

score for exact name
matching

Figure 5.9 Searching cast.name.bigrammed, which indexes bigrams. Searching such a field
results in a more discerning signal than direct term matching.

English analyzer
customized to
emit bigrams

Finishes with the
bigram_filter to
generate bigrams

Our bigram_filter
that generates
English bigrams

128 CHAPTER 5 Basic multifield search
your normal English analyzed cast.name field along with a corresponding cast.name
.bigrammed field. (You’ll do the same to directors, not shown here.)

mappingSettings = {
 "movie": {
 "properties": {
 "cast": {
 "properties": {
 "name": {
 "type": "string",
 "analyzer": "english",
 "fields": {
 "bigrammed": {
 "type": "string",
 "analyzer": "english_bigrams"
}}}}}}}}
reindex(analysisSettings, mappingSettings, movieDict)

Now the bigrammed fields should provide better discrimination when best_fields
picks a score. Because of the analysis rules, the field is searched with two-word phrases.
A search for “Patrick Stewart” will try to match the exact term [patrick stewart]. The
documents with exactly Patrick Stewart also contain this term in the *.bigrammed fields.
Let’s repeat our search, now with bigrammed fields, as shown in the next listing.

usersSearch = "patrick stewart"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name.bigrammed", "directors.name.bigrammed"],
 }
 },
}
search(query)

Num Relevance Score Movie Title
1 0.7239306 Star Trek: Insurrection
2 0.7239306 Gnomeo & Juliet
3 0.7239306 Star Trek: First Contact
4 0.7239306 Excalibur
5 0.6334393 Conspiracy Theory

This is a marked improvement! All of these movies star Patrick Stewart. By adding a
specific signal that your ranking function could use, you’ve dramatically improved the
precision of search results. If you use best_fields, it behooves you to provide precise

Listing 5.8 Mapping *.bigrammed fields, reindexing

Listing 5.9 Searching *.bigrammed fields

User’s
query

Searches bigrammed
name fields instead
of non-bigrammed

versions

Search
results

129Signal modeling in field-centric search
signals—signals so precise that it’s unlikely that the search string will match many doc-
uments. There’s still a possibility that multiple fields will match. So you’ll need to
assert boosts that declare which fields you consider best. Even these bigrammed fields
might need to be given boosts to prioritize cast matches over director matches. Actor
Jonathan Frakes, for example, also directed many Star Trek movies. When there’s con-
flict, you, as the relevance engineer, need to assert which is best via boosts. In this case,
you likely still want to assert the cast matches over the director matches.

5.3.4 Letting losers share the glory: calibrating best_fields

A search such as “Patrick Stewart” is clearly a search for an entity that belongs in bucket
A or bucket B. Using best_fields can work for these scenarios, as only a small set of
fields will match this entity, pushing up the actor Patrick Stewart matches. What if the
user searches for multiple entities, such as “Star Trek Patrick Stewart”? In this case, the
searcher is specifying two pieces of criteria: the movie Star Trek and Patrick Stewart.
One piece of criteria, “Star Trek,” is a great match for the title field; and “Patrick Stew-
art” is a great match for cast.name. It’s common for users to want to apply multiple cri-
teria to their searches, expecting the search to account for all when searching.

 To get at multiple user search criteria, you don’t want a pure best_fields
approach. In addition to the signal “this cast member was searched for,” you’d also
like to include other signals such as “this movie was searched for.” Yet best_fields
focuses on one field’s relevance score over all others. If title scores higher, a match
on Patrick Stewart will be completely ignored by best_fields. These searches
begin to work against the strength of best_fields.

 What if you want best_fields behavior, but with an influence from secondary fields
as well? For example, it’s likely that Star Trek searchers will consider movie title matches
to be a primary signal when ranking. Other criteria, including cast names, director
names, or description matches, ought to come second. In this way, you create a kind of
first-second sort—preferring best_field’s chosen signal, but within that best field allow-
ing other signals to have a small role. This is what tie_breaker does. Recall that
tie_breaker lets you add some of the scores from matches that don’t win to the result:

score = Stitle + tie_breaker × (Soverview + Scast.name + Sdirectors.name)

This creates search results that look something like figure 5.10.

Highest
ranked

Lowest
ranked

Non–
Patrick
Stewart
matches

Patrick
Stewart
matches

Star Trek

matches

Non–Star Trek

matches

Figure 5.10 A first-second sort where
best_fields still wins, but within
that winner other criteria matches
allow documents to bubble up.

130 CHAPTER 5 Basic multifield search
Achieving the first-second effect requires you to carefully tweak field boosts and
tie_breaker. Remember, boosts aren’t priorities. For TMDB, it turns out title scores
are extremely high (just as you saw in chapter 3). So you’ll need to boost cast.name
.bigrammed’s much smaller base score to push it into second place. In the following
query, a boost of 5 on cast.name.bigrammed and a tie_breaker of 0.4 gives the
desired best_fields competition: title in first place and cast.name.bigrammed in
second place:

usersSearch = "star trek patrick stewart"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name.bigrammed^5", "directors.name.bigrammed"],
 "type": "best_fields",
 "tie_breaker": 0.4
 }
 }
}
search(query)

Num Relevance Score Movie Title
1 0.35363546 Star Trek: Insurrection
2 0.35363546 Star Trek: First Contact
3 0.34679613 Star Trek: Generations
4 0.34285474 Star Trek: Nemesis
5 0.33423716 Star Trek

Using best_fields prioritizes a title-matching signal and adds a bit of score from our
name-matching signal. You’re left with every Star Trek movie. Within that grouping is
a secondary signal, indicating primarily whether the movie is a Patrick Stewart film.
These results get shifted to the top of your Star Trek group. Notably absent, and lan-
guishing toward the bottom of the results, far out of sight, are non–Star Trek or non–
Patrick Stewart movies.

 The tie_breaker begins to push the best_fields search away from its primary
pole of either-or functionality. It lets you consider other signals in the score. In fact, if
you set tie_breaker to 1.0, you get a summation of all the field scores:

score = Stitle + 1.0 × (Soverview + Scast.name + Sdirectors.name)

This becomes the following:

score = Stitle + Soverview + Scast.name + Sdirectors.name

This begins to look like the summation in most_fields. You can see where such a
form might be enticing. What if you don’t want lopsided results or first-second sort
behavior? What if you’d like to let each field have a contribution to the overall score?

User’s
query cast.name.bigrammed

boosted by 5

tie_breaker of 0.4
used to incorporate
other field scores

Search
results

131Signal modeling in field-centric search
5.3.5 Counting multiple signals using most_fields

best_fields is a fickle beast! We’ve covered how to use it to prioritize one match over
another. With precise signals, best_fields can determine whether your search
matches one field or another. You can use it to decide, “Is this a search for a person?”
or “Is this a search for a movie?” by selecting one of those signals and ignoring all else.
A lot depends on how precise your signals are at measuring these criteria. A great deal
also depends on how assertive you are in establishing priorities among fields via
boosts—keeping in mind the oddities and inconsistencies of field scoring.

 When users specify multiple criteria, such as “Star Trek Patrick Stewart” or “Star
Trek Patrick Stewart William Shatner,” the search becomes more about the aggregate
sum of multiple signals. If you choose one signal to emphasize, such as “this search
mentions the movie title,” you’ll miss other criteria the user tells you about. You saw
one way to begin to fix this, with the best_field parameter tie_breaker. Satisfying
these use cases with best_fields and tie_breaker begins to look more like the
behavior of most_fields. Remember, most_fields runs a Boolean query of each
underlying field. This has the effect of summing the underlying signals:

score = (Stitle + Soverview + Scast.name + Sdirectors.name) × coord

Thinking of most_fields as a set of Boolean SHOULD clauses helps you see how you
ought to use it; these SHOULD clauses list all the criteria of the most relevant doc in
terms of the signals that correspond to each field:

■ The search string SHOULD mention the movie’s title.
■ The search string SHOULD mention text in the movie’s overview.
■ The search string SHOULD mention a movie cast member.
■ The search string SHOULD mention a movie director’s name.

The ideal document hits all four requirements. A search string matching title, over-
view, a cast member, and a director shoots to the top. A search string matching three
signals comes next, and so on, as shown in figure 5.11.

 Gone is the heavy focus on just one field, as in best_fields. Instead you let every
field have a say in the final score. Let’s see what happens when you switch to
best_fields for your “Star Trek Patrick Stewart” search.

Highest

ranked

Lowest

ranked

Matches all of cast,
director, title, and
overview

Matches 2

Matches 3 of cast,
director, title, and
overview

Matches 1
Figure 5.11 most_fields
heavily biases searches toward
more matching fields.

132 CHAPTER 5 Basic multifield search
usersSearch = "star trek patrick stewart"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name.bigrammed", "directors.name.bigrammed"],
 "type": "most_fields"
 }
 }
}
search(query)

Num Relevance Score Movie Title
1 0.57795894 Star Trek: Generations
2 0.37984636 Star Trek: Insurrection
3 0.37984636 Star Trek: First Contact
4 0.37325242 Star Trek: Nemesis
5 0.20443419 Star Trek

Much like best_fields with tie_breaker, this brings up Star Trek movies that star
Patrick Stewart. This is exactly what you want. You’ve used all the signals to drive up
documents that meet your criteria, in this case surfacing the ideal document—one
that stars Patrick Stewart and is a Star Trek film.

 When users specify multiple criteria, ranking by combining the signals that
match tends to better align with their expectations. Whereas best_fields would
have worked hard to create lopsided results, most_fields creates a blend of all the
provided field scores. When users’ expectations don’t prioritize one field or another,
but rather prefer an ad hoc collection of multiple fields, most_fields is a great
option. The ideal document in best_fields is one that matches one field over
another. In the previous example, you pushed title to dominate the scoring. The
most_fields strategy obsesses less about one field score, instead letting every field
score have a say. When users don’t have as clear of a “target” in terms of a specific
kind of field to match, and instead list many criteria of equal importance, most_
fields is the solution.

5.3.6 Boosting in most_fields

Though most_fields attempts to deliver results that match the most criteria, field
scoring doesn’t always cooperate. Remember, one field’s score may naturally be an
order of magnitude higher than another, for no particular reason. Because of wild
scoring differences, you might have search results that look more like best_fields
lopsidedness than the expected most_fields, “everyone contributes to the score”
behavior. If you extend the search results for the preceding search further, you expect
the second-level search results to be a mixed collection of Patrick Stewart and Star
Trek titles. Unfortunately, they’re not:

Listing 5.10 Searching for Star Trek Patrick Stewart

User’s
query

Change to using
most_fields

Search
results

133Signal modeling in field-centric search
6 0.16354734 Star Trek: The Motion Picture
7 0.16354734 Star Trek Into Darkness
8 0.14310393 Star Trek VI: The Undiscovered Country
9 0.14310393 Star Trek V: The Final Frontier
10 0.14310393 Star Trek IV: The Voyage Home
11 0.14310393 Star Trek II: The Wrath of Khan
12 0.14310393 Star Trek III: The Search for Spock
13 0.10484329 Maps to the Stars
14 0.086285345 Star Wars: The Clone Wars
15 0.06411133 Star Wars: Episode VI - Return of the Jedi

These are all Star Trek or Star title matches! Why does this happen? Again, title
scores, for whatever reason, tend to be higher than nontitle scores. A title score for
Star Trek VI is as follows:

0.5196225, weight(title:star in 281)

In contrast, the comparable score for the nearest Patrick Stewart movie is Ted:

0.19781886, weight(cast.name.bigrammed:patrick stewart in 831)

Consider the summation associated with most_fields:

score = (Stitle + Soverview + Scast.name + Sdirectors.name) × coord

Remember, scores for fields aren’t really comparable. Despite the extensive bias
toward multiple matches through coord, you’ll need to boost accordingly to get a for-
mula that gives you balanced behavior. With most_fields, you use boosts to balance
this lopsided formula:

score = (Stitle + Soverview + Scast.name + Sdirectors.name) × coord

Perhaps, for example, if you down-boosted title, or up-boosted cast.name, you
might approach something closer to the target, as shown in the following listing.

usersSearch = "star trek patrick stewart"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title^0.2", "overview",
 "cast.name.bigrammed", "directors.name.bigrammed"],
 "type": "most_fields"
 }
 },
}
search(query)

Listing 5.11 Down-boosting title

User’s
query

Downweight
title to bring
scoring into
balance

134 CHAPTER 5 Basic multifield search
The resulting search results, beyond the Star Trek movies with Patrick Stewart, look
much more like a mix of Star Trek and Patrick Stewart movies:

6 0.04985989 Ted
7 0.047840547 Star Trek
8 0.044039465 The Beaver
9 0.038272437 Star Trek: The Motion Picture
10 0.038272437 Star Trek Into Darkness

The takeaway is that you need to carefully tune boosts to make most_fields live up to
its promise. Otherwise, with an arbitrarily strong field score, you’ll end up with unex-
pectedly lopsided results. Whereas boosting in best_fields declares priority on
which field matches should come first in expected lopsidedness, boosting in most_
fields brings balance to the summed terms to restore a more blended score of
weighted fields.

5.3.7 When additional matches don’t matter

Before we leave most_fields, let’s examine its Achilles’ heel, which you’ll likely run
into. Though we describe the problem here, be forewarned that the solution waits for
you in the next chapter. As in many Star Trek episodes, we’ll leave you with a bit of a
cliffhanger.

 The most_fields strategy brings documents to the top that match all the criteria.
This seems like a sane thing to do. But in many cases, having two strong signals
shouldn’t magnify a document’s relevance. For example, consider this search:

usersSearch = "star trek patrick stewart william shatner"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name.bigrammed", "directors.name.bigrammed"],
 "type": "most_fields"
 }
 }
}
search(query)

Knowing something about Star Trek fans, you could guess that the query “Star Trek
Patrick Stewart William Shatner” is likely seeking a Star Trek movie that stars both Pat-
rick Stewart and William Shatner. Is this what most_fields delivers? Well, mostly:

Num Relevance Score Movie Title
1 0.5415871 Star Trek V: The Final Frontier
2 0.39785004 Star Trek: Generations
3 0.35108924 Star Trek IV: The Voyage Home
4 0.3037074 Star Trek: Nemesis
5 0.19542062 Star Trek: Insurrection

User’s
query

135Summary
Why did a Star Trek movie that stars only William Shatner (Star Trek V) come up
higher than the one that stars both William Shatner and Patrick Stewart (Star Trek:
Generations)? It’s because William Shatner both starred in and directed Star Trek V: The
Final Frontier. Remember, most_fields describes the ideal document as follows:

■ SHOULD match a title in the search string
■ SHOULD match directors in the search string
■ SHOULD mention cast members in the search string

For Star Trek V, a director and a cast member match, which fits the ideal document bet-
ter. Two cast members match in Star Trek: Generations, which increases the strength of
that signal.

 The upshot is you’re not quite describing the ideal document correctly. The sig-
nals listed don’t line up with how users think about relevance ranking. To use
most_fields, you need to think carefully about the “ideal document.” Is the preced-
ing specification correct? Maybe a better specification is as follows:

■ SHOULD match a title in the search string
■ SHOULD match any person associated with the film from the search string

Instead of having signals specific to “director” or “cast member,” a more appropriate
signal is “Is a person from the search string associated with the movie?” Perhaps our
searchers don’t care whether William Shatner is a director or a cast member, just that
he’s associated with the movie.

 Term-centric search, as you’ll see in the next chapter, provides an even more top-
down view on search. Term-centric search helps you answer users’ high-level questions
even further removed from the source data model.

5.3.8 What’s the verdict on most_fields?

most_fields gives you a way to specify what the ideal document looks like. But you
must do so with care. With the right boosting and signals, most_fields can often cre-
ate a better search solution for ad hoc searches. If you’re not sure, for example, which
of several signals ought to take precedence, most_fields is a good place to start. But
you should avoid one antipattern of most_fields: adding signals for signals’ sake.
Many times, multiple field matches don’t correlate with increased relevance.

5.4 Summary
■ Users don’t care about how your database stores data. They need data repre-

sented in a form that lends itself to searching.
■ Signals map relevance scores to meaningful ranking criteria (the restaurant is

close, the title is being searched for, and so forth).
■ With signal modeling, you build fields that better map to criteria that’s mean-

ingful to users.

136 CHAPTER 5 Basic multifield search
■ Using the ranking function, you combine signals to arrive at the overall ranking
of results.

■ Field-centric search takes the entire query string to each field, combining the
scores only at the end.

■ A best_fields search takes a “winner takes all” point of view to search; the field
that scores the highest is taken as the score.

■ A most_fields search takes an “every field gets a vote” point of view to search,
summing all field scores together.

■ The best_fields parameter tie_breaker allows you to add the impact of other
field scores, making best_fields a bit more like most_fields.

Term-centric search
The previous chapter introduced you to signals and multifield search. Signals mea-
sure criteria such as “Is the search an exact title match?” or “Does the search men-
tion a specific actor or director?” These sorts of signals depend on your ability to
control querying and construct fields to model users’ intent. We called this process
signal modeling. Once fields correspond cleanly to signals, only then can you begin
to balance them in a multifield search strategy.

This chapter covers
■ Examining why field-centric search doesn’t

capture naïve expectations
■ Exploring cases in which your source data

model confuses search users
■ Comparing the pros and cons of term-centric

methods
■ Explaining the tension between term-centric

and field-centric methods
■ Combining users’ naïve search expectations

with smarter capabilities
137

138 CHAPTER 6 Term-centric search
 The previous chapters focused heavily on fields as the central unit of relevance.
But users don’t think in terms of fields. Users think of their search terms as the central
component to search. Users aren’t mired in the details of your database or applica-
tion. They’ve given you a few brief moments to satisfy them, and they expect you to
meet them at their simpler understanding of search. Thus, term-centric search differs
from other forms of multifield search by placing the search terms—not the structure
of the content—front and center.

 In this chapter, we introduce term-centric search techniques, depicted in figure 6.1.
These techniques focus on the user’s search terms above other considerations—even
above considerations you might consider sensible! You’ll see that term-centric search
can often leave the carefully crafted fields of previous chapters in the back seat. The
burly signals you crafted in previous chapters by manipulating field construction and
analysis are replaced with a broader notion of relevance that prioritizes a user’s sim-
pler sense of document structure. Yet users are forever a contradiction; when you pin
them down, they still prioritize intelligent matching of locations, ideas, and people in
search. So in truth, the naïve behavior of term-centric search must be balanced and
augmented with many of the smarter signals crafted in previous chapters.

6.1 What is term-centric search?
Recall that field-centric search searches multiple fields by bringing the entire search
string to each field, performing a search, and then combining each field score. Each
field is expected to be its own special snowflake, measuring important business or user

Query

in
d
ex

in
g query

inverted

index

Respon
se

a
n
alysis

Query

barcelona beachtitle: Beaches

of Barcelona

body: In the

summer

Barcelona has

beaches that...

Indexed
document

User

User’s search

Relevance engineer

Sometimes it’s easier to balance the impact
of terms rather than fields. We call this

term-centric search.

search

in title or body

in title or body

barcelona

beach

Figure 6.1 Term-centric search prioritizes the user’s search terms above other
considerations.

139What is term-centric search?
information with high precision—for example, “Is the movie’s director mentioned in
the search query?” or “Is the user searching for this specific movie’s title?”

 Term-centric search comes at search from a different point of view. Figure 6.2 illus-
trates the differences in this approach. Instead of searching every field with the full
search string, term-centric search acts on the search string like a term-by-term match-
maker, finding each search term’s ideal match. As each search term might find its
ideal match in a different field, the final relevance score is the blended result of sev-
eral field matches. A search for “basketball cartoon” might match basketball in a
document’s title field, and cartoon in the document’s body field, yielding a blended
term-by-term score of fields. This way, term-centric search focuses more on criteria
specified by users and less on the specific fields. Users don’t need fields; they just want
their search terms to match something! Anything! After all, if every search term finds
its ideal match, won’t we reach search relevance nirvana?

If only it were that simple! In reality, the promise of term-centric search carries a bit of
a lie. Users think they don’t care about fields, yet they still care about intelligently
matching the various attributes associated with documents—people, locations, tags,
and ideas. Users don’t think about it, but they still need many parts of field-centric

fn

Term-centricField-centric

fn

title

overview

Basketball

with cartoon

aliens

Basketball

with cartoon

aliens

max

max

...

title

overview

Basketball

Cartoon

title

overview

Title match for
entire query

Best field
match for term

basketball

Best field
match for term

cartoon

Figure 6.2 Term-centric search applies each search term to a combination of fields,
ultimately generating a score that picks a blended, term-by-term score of fields in the
document.

140 CHAPTER 6 Term-centric search
search. Term-centric and field-centric methods form an important yin and yang to
search. As you’ll see in this chapter, each has its limits and capabilities. The art of rele-
vance is often applying a bit of both.

6.2 Why do you need term-centric search?
As we’ve stated, when users search, they typically don’t care how documents decom-
pose into individual fields. Many search users expect to work with documents as a sin-
gle unit: the more of their search terms that match, the more relevant the document
ought to be. It may surprise you to know that search engine features that imple-
mented this idea were late to the party. Instead, Lucene-based multifield search
depended on field-centric techniques. Instead of the search terms, field-centric search
makes field scores the center of the ranking function. In this section, we explore
exactly why field-centric approaches can create relevance issues. You’ll see that having
ranking functions centered on fields creates two problems:

■ The albino elephant problem—A failure to give a higher rank to documents that
match more search terms.

■ Signal discordance—Relevance scoring based on unintuitive scoring of the con-
stituent parts (title versus body) instead of scoring of the whole document or
more intuitive larger parts, such as the entire article’s text or the people associ-
ated with this film.

We explore these issues next. After reading this section, you’ll be armed to identify
exactly when field-centric search stops meeting your goals and when term-centric
approaches may make more sense.

6.2.1 Hunting for albino elephants

How would you feel if you searched for “Paul McCartney Concert near San Francisco”
and got a list of San Francisco music stores selling Paul McCartney music? Even worse,
what if you navigated to the second page to find exactly what you wanted: a Paul
McCartney concert near San Francisco! For whatever reason, the search engine
ignored a big part of your search—the concert itself—instead bringing results to the
top that satisfy only a subset of your criteria:

Search: Paul McCartney Concert Near San Francisco

Results:
1. CDs R' Us, San Francisco – Paul McCartney
2. MP3s By The Street Corner, San Francisco – Paul McCartney
...

Page 2:
19: Stubbys Music Emporium, San Francisco – Paul McCartney
20. Concert at Great American Music Hall, San Francisco – Paul McCartney

How disastrous would this sort of behavior be for your search application? A user gives
you search terms, and you seem to ignore them! Unfortunately, field-centric search

141Why do you need term-centric search?
can cause this behavior. In 2004, engineer Chuck Williams saw this problem in his
work with Lucene’s field-centric search utilities. When using field-centric search, he
noted that search results missing search terms counterintuitively outranked results
matching every search term. This problem, known as the albino elephant problem,
wreaks havoc on search solutions. It’s the cause of quite a few relevance problems.
When your boss comes to you concerned that your solution appears to ignore what
users are searching for, albino elephant could be the problem, and term-centric search
might be the solution.

 Okay, what’s with the weird name? The albino elephant reference comes from the
canonical example that Chuck created to demonstrate the problem. Consider the fol-
lowing documents, indexed into Elasticsearch.

PUT albinoelephant/docs/1
{ "title":"albino", "body": "elephant"}

PUT albinoelephant/docs/2
{ "title":"elephant", "body": "elephant"}

Given the two documents, which will be scored higher for a field-centric most_fields
search for “albino elephant” over the fields title and body? You likely expect docu-
ment 1 (title albino, body elephant) to outrank the document that mentions only
elephants. Executing the search, however, paints a different picture, as you can see in
the following listing.

GET albinoelephant/docs/_search? { "query": {
 "multi_match": {
 "query": "albino elephant",
 "type": "most_fields",
 "fields": ["title", "body"]}}}

Score Title Body
0.06365098 elephant elephant
0.06365098 albino elephant

Wow, no extra points for the albino elephant! Why did this happen? Field-centric
search doesn’t let the albino match of one field team up with the elephant match
of another field. most_fields scoring doesn’t account for cases in which one
search term occurs in one field while another occurs in a different field, as shown
in figure 6.3.

Listing 6.1 Indexing “albino elephant” documents

Listing 6.2 Searching for the infamous albino elephant

Document with title “albino”
and body “elephant”

title and body
both “elephant”

Field-centric search
for “albino elephant”

Summarized results

Regular elephants the
same as albino elephants

142 CHAPTER 6 Term-centric search
Each field search occurs in isolation. Remember, field-centric search ships the entire
search string to each field for scoring before combining the result. The title search
(title:albino title:elephant) is computed independently from the body search
(body:albino body:elephant), with no interaction between the two field searches.
There’s no difference between a match in which only elephant matches both fields,
and a match in which albino matches one field and elephant matches another. The
ranking calculation from the two documents could be restated as follows (with bold
font indicating the matching search clause):

(title:albino title:elephant) +
(body:albino body:elephant) == score for two matches

(title:albino title:elephant) +
(body:albino body:elephant) == score for two matches

In other words, field-centric search washes away any bias toward multiple search terms
occurring across these two fields.

 Understanding the albino elephant phenomenon is fundamental to honoring all
of your users’ search terms. Ignoring their search terms can make your search seem
unintelligent to most users. As we dive into term-centric methods, you’ll see how they
can help solve the albino elephant problem, and thus help you avoid the hordes of
angry users likely to knock down your door!

6.2.2 Finding an albino elephant in the Star Trek example

Speaking of angry hordes, it turns out that albino elephant directly impacts the rele-
vance problem you were left with in the previous chapter. Recall that you were busy
satisfying the movie curiosities of Star Trek aficionados with the TMDB data set.
Your user searched TMDB for “Star Trek Patrick Stewart William Shatner,” hoping

sum

body

{
"title":"elephant",
"body": "elephant",

}

Indexed document

title

albino

elephant

Search

sum

body

{
"title":"albino",
"body": "elephant",

}

Indexed document

title

albino

elephant

Search

Score

=2
Score

=2

1 match elephant

1 match elephant

1 match albino

1 match elephant

Figure 6.3 Field-centric search can fail to account for cases in which multiple search terms match.

143Why do you need term-centric search?
to find Star Trek: Generations, a Star Trek movie starring actors William Shatner and
Patrick Stewart.

 Let’s recap where you left off. You used a most_fields field-centric search in the
hope that the movie with the most signals would score highest: a Star Trek movie, star-
ring William Shatner and Patrick Stewart. Yet you were surprised when most_fields
returned Star Trek V: The Final Frontier, a Star Trek movie that features William Shatner
as both actor and director (and has nothing to do with Patrick Stewart!). “Patrick
Stewart” was seemingly ignored. Is that because of the albino elephant problem? Let’s
revisit the field-centric technical details, and you’ll soon see the problem!

 In the preceding chapter, as you may recall, we stated that most_fields is an
appropriate way to account for multiple signals. In combination with most_fields,
you’ve done some intelligent signal and feature modeling. You improved the preci-
sion of cast and director name scoring with these fields:

■ cast.name.bigrammed—When scored, indicates whether a cast member has
been found

■ directors.name.bigrammed—When scored, indicates whether a director has
been found

Recall that the *.bigrammed field stores bigrams (two-word pairs) as tokens instead of
individual words. This helps create a more accurate signal for finding people match-
ing the term patrick stewart instead of the individual terms patrick and stewart.
You also search the movie’s title and overview fields to support finding the movie by
name or description.

 With that in mind, what happens when you reissue the most_fields search you left
off with in the previous chapter? Why doesn’t it work as your users might expect? Is
there an albino elephant lurking?

usersSearch = "star trek patrick stewart william shatner"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name.bigrammed", "directors.name.bigrammed"],
 "type": "most_fields"
 }
 },
 "size": 5,
 "explain": True
}
search(query)

Num Relevance Score Movie Title
1 0.5114776 Star Trek V: The Final Frontier
2 0.38542575 Star Trek: Generations

Listing 6.3 Kirk and Picard visit the planet of albino elephants

User’s
query

most_fields searches
over title, overview,
cast.name.bigrammed,
directors.name.bigrammed

Search
results

Search results
not accounting
for “Patrick
Stewart” match

144 CHAPTER 6 Term-centric search
Yes, indeed, you’re left with the albino elephant problem. When these two documents
are scored, there’s no bias toward documents containing more of the search terms (in
this case, patrick stewart occurring in Star Trek: Generations). Breaking down the
scoring as in the preceding listing (focused on the three matched fields), you have
scores that result from these bold matches:

(title:star title:trek title:william title:shatner...) +
(... directors.name.bigrammed:william shatner ...) +
(... cast.name.bigrammed:william shatner ...)
== total score for four matches

(title:star title:trek title:william title:shatner...) +
(... directors.name.bigrammed...) +
(...cast.name.bigrammed:patrick stewart cast.name.bigrammed:william shatner

...) == total score for four matches

Just as in the albino elephant example, there’s no differentiation between Star Trek V
and Star Trek: Generations that takes into account all search criteria specified by the
user—the occurrence of patrick stewart. Both take a total score from each field
match, with no bias toward the document that matches all the search terms. You have
quite an albino elephant to solve! You’ll revisit this Star Trek search as you begin
experimenting with term-centric methods, evaluating whether term-centric search has
truly resolved your problems. But first we need to discuss the other major problem
with field-centric search.

6.2.3 Avoiding signal discordance

If you searched a catalog of academic articles, would you focus on whether matches
occurred in specific sections of an article? Would you prioritize a match in an article’s
introduction section over a match in its conclusion section, for example? What if instead
of being broken up this way, the documents were subdivided into searchable fields by
page (page 1, page 2, and so forth)? How would you prioritize each page? The point is
that your database could arbitrarily break up article text any number of ways! But are
those subdivisions appropriate for search? Do they map to your users’ mental models of
the content? The search user’s expectations are likely far more general than the fine-
grained subdivisions that originate from the systems feeding into your search engine.

 Building signals that are in harmony with a user’s understanding of the content is
a major component to signal modeling, and a major feature of term-centric search.
Users aren’t mired in the details of your database, parser, or API. Your source data
model, as you learned in the previous chapter, doesn’t have fields built for search.
There is, however, a more specific problem at play with the preceding article exam-
ples: signal discordance, illustrated in figure 6.4. Signal discordance is the disconnect
between the signals generated from fine-grained, specific fields present in a search
engine (as derived from a source data model) and a user’s far more general mental-
model of the content. Signal discordance, therefore, is a specific failure of signal mod-
eling: a failure to express signals that measure the generalized ways users expect search

145Why do you need term-centric search?
to work, because you’re still mired in the details of your database, API, parser or other
source data model.

 Working on a search-term by search-term basis, term-centric search can help solve
signal discordance. Field-centric search, on the other hand, tends to amplify signal
discordance. When derived fields closely reflect what’s in the source data model, field-
centric results don’t match what users expect. By generalizing search scoring across
multiple fields, term-centric search, as you’ll see, helps measure relevance in a way
that’s much closer to our users’ more naïve notions of document structure.

6.2.4 Understanding the mechanics of signal discordance

Let’s take a moment to understand precisely how signal discordance manifests itself in
the field-centric ranking function. Only with that appreciation can you evaluate the
extent to which term-centric search helps your efforts.

 Signal discordance manifests itself with field scores that don’t map to the user’s
general expectations. As fields maintain their own statistics for ranking, such as a
term’s document frequency, having fields that don’t map to our user’s more general
expectations deeply damages ranking.

 If you examine the following explain for the broken “Star Trek Patrick Stewart
William Shatner” search, you can see another major factor that drives movies
directed by William Shatner straight to the top: he has directed only one movie, yet
he has starred in many. The document frequency of william shatner in directors
.name.bigrammed is exactly 1. The match of this term in this field drives that field’s
TF × IDF score way out of whack, which in turn drives the movie he directs straight
to the top.

{

" ":"Doug's Book",title
" ":"an Epic Adventure",sub-title
" ":"After years in...",abstract
" ":"Doug is a Trekki...",intro
" ":"If I knew Doug I..."forward
" ":"In the end ...",conclusion
" ":"Oh yeah, Solr",appendix

}

{

" ":"Doug's Book",title
" ":"An Epictext
Adventure...After

years in...Doug is a

Trekkie...If I knew

Doug I...In the

end...Oh yeah, Solr"

}

Users imagine a simple
document model

But sometimes documents
can be needlessly complex

star trek search

Doug’s Book

Lone Star

When You Wish Upon a Star

Track Star

This can lead to bad user experience

Figure 6.4 Signal discordance: not ranking with the user’s sense of content structure
might create odd results as field-centric search focuses on unfamiliar criteria.

146 CHAPTER 6 Term-centric search
 You can see how out-of-whack scoring gets because of signal discordance in the
next listing.

1.8605413, weight(directors.name.bigrammed:william shatner in 282)
 1.8605413, score(doc=282,freq=1.0), product of:
 0.22335224, queryWeight, product of:
 8.330077, idf(docFreq=1, maxDocs=3051)

0.2568409, weight(cast.name.bigrammed:william shatner in 282)
 0.2568409, score(doc=282,freq=1.0), product of:
 0.1659712, queryWeight, product of:
 6.1900115, idf(docFreq=16, maxDocs=3051)

Field-centric ranking functions amplify these anomalies. The ranking function has
decided that the signal measuring whether the movie’s director matches the search
string is so strong that it should be heavily amplified. Scoring of this document then is
completely dominated by the director’s field, resulting in most_fields that scores as
shown in figure 6.5.

But do users care? Is the score for directors.name.bigrammed—a score that ends up
dominating the overall score—a reflection of how users would prioritize whether Wil-
liam Shatner directed a movie? Almost certainly not. Most Star Trek fans likely don’t
focus on the distinction between whether William Shatner directed or starred in a
movie. Moreover, if they thought about it, they’d probably care more that he starred
in a movie.

 When fields come straight from the source data model, the TF × IDF calculations
that result from searches don’t neatly line up to user expectations. TF × IDF can be a

Listing 6.4 Snippet of directors.name:william shatner vs. cast.name

William Shatner has
directed one movie

William Shatner has
starred in 16 movies
in our collection

sum
william

shatner

cast.name.bigrammed

director.name.bigrammed

Search text

Weak “William
Shatner starred in
this movie” signal

Very strong “William

this movie” signal
Shatner directed

Final score
dominated by
director signal

Figure 6.5 Field-centric methods over granular fields from the source data
model result in scoring that doesn't correspond to user expectations.

147Performing your first term-centric searches
poor metric when the field, and the underlying rough proportion of the underlying
features, don’t map to signals that users care about when ranking. When you search
over dozens of fields, simply because “that’s what’s in the database,” you end up with
many of these scoring anomalies that don’t at all correspond to user expectations.

 Field-centric search amplifies signal discordance. By scoring each field in isolation,
field-centric search is prone to heavily biasing search results in one direction or
another. When you execute field-centric searches over dozens upon dozens of fields,
all possible criteria from your database, you ask for trouble.

 The source data model keeps you stuck in a bottom-up, source-data-model-first
view of the searchable data. To undergo full signal modeling, you need to think top-
down and user first. What do users care about when ranking? How can you craft fields
from the source data model to compute these signals? What should the document fre-
quency of william shatner be to reflect the user’s sense of the term’s rareness?

 As you’ll see, term-centric search can help provide this top-down perspective on
signal modeling, helping solve signal discordance. You need not despair! Just as in
Star Trek, the crew of the Enterprise always finds a way (often through creative and
innovative engineering!). You can too! Let’s embark on our journey to explore this
strange, new universe of term-centric search!

6.3 Performing your first term-centric searches
You’ve seen the various problems that field-centric search can introduce. Now you’ll
get a chance to experience the completely different world of term-centric search, illus-
trated in figure 6.6.

 Term-centric search solves the albino elephant problem and signal discordance
by taking a top-down view of search: breaking up search terms, and querying each
term one by one against a set of fields. You’ll see how this simplifies aspects of signal
modeling by prompting you to take the users’ point of view, focusing on signals
more closely tied to their query terms instead of just the fields. These resulting signals
can answer broader, top-down questions more closely linked to your user’s simpler

Basketball with cartoon aliens

Step 1: Analyze search

text to tokens

Step 2: For each term,

search across all fields

[basketbal] [cartoon] [alien]

title overview

[basketbal]

score

[cartoon]

score

[alien]

score

Step 3: Per term,

combine the scores

(max or weighted)

Step 4: Combine all

term scores into

overall score

overall

score

Figure 6.6 Term-centric
search brings search terms to
each field one by one to arrive
at a score for that term.

148 CHAPTER 6 Term-centric search
understanding of the content rather than your source data model’s structure. Term-
centric search solves many of the problems it was created to solve, but it too has
problems. As you near the end of this section, you’ll begin to realize that a more
hybrid approach is needed.

6.3.1 Working with the term-centric ranking function

To get started with term-centric search methods, you’ll explore one of the original
solutions to the problems of field-centric search: a term-centric query parser. Such a
query parser implements term-centric search by parsing the query string and pulling
out terms before searching each field. It’s a method that’s familiar to Solr users (Solr
depends entirely on query parsers) and that has an Elasticsearch implementation in
the query_string query.

 Through exploring how a query parser works, you’ll see how term-centric search
works generally. What common underlying features do term-centric approaches
have? From where does term-centric search derive its power? How does it bias search
toward results that include more search terms? What’s the cost of this benefit? Once
you’ve explored the generalities of term-centric search, you can move on to its more
modern forms.

 Although often not used this way in modern search, query parsers harken back to
a largely bygone era when everyday users searched frequently with a query syntax such
as "title:(star trek) +overview:shatner". This is the Lucene query syntax that
you’ve seen throughout this book, though largely in a debugging context. In previous
incarnations of Lucene-based search, query parsers let you pass the user’s search on to
the search engine itself, which transformed it into Lucene queries. But these days,
users rarely specify fields or Boolean operators. Instead they issue more ad hoc que-
ries (for instance, “Star Trek Patrick Stewart”) and tend to expect the search engine to
figure everything out. Query parsers have historically turned the ad hoc searches into
a term-by-term Boolean query.

 This emphasis on a search-term by search-term Boolean search is exactly the root of
the query parser’s term-centric strengths. If you have only a single field to be searched
(the field overview, for example), users expect behavior commensurate with turning
“Star Trek Patrick Stewart” into the more precise query overview:star overview:trek
overview:patrick overview:stewart (a query with four SHOULD clauses). Users typi-
cally think that the more terms that match, the higher the score should be—which is
precisely what you get with this Boolean query. These Boolean queries bias the scoring
heavily toward documents that match more search terms. Recall that Boolean queries
take the sum of the underlying scores and multiply that sum by a coordinating factor.
The coordinating factor is a multiplier providing a heavy punishment to documents that
don’t satisfy all the clauses, thus further down-weighting documents that don’t match all
the search terms. Therefore, a Boolean search in which each Boolean clause is a search
term creates powerful term-centric behavior, bringing up documents that match more
search terms, and down-weighting those missing search terms.

149Performing your first term-centric searches
 In the preceding example, only the overview field is searched. What happens
when more than one field is introduced? How does a query parser achieve term-
centric search despite the occurrence of more than one field? The answer is the dis-
max query.

DisjunctionMaximumQuery (dismax, for short) provides the behavior underlying
the best_fields multifield search strategy in the preceding chapter. In Lucene query
syntax, you’ve seen several times by now that the | symbol means “pick the maximum
score.” But whereas best_fields uses the dismax behavior to choose the highest field
score, our query-parser query uses dismax on a term-by-term basis to choose the best
scoring field per search term. Similarly, the Boolean query—the query that biases heavily
toward more clauses that match—remains just as in the preceding single-field exam-
ple. It remains in the outermost, per term calculation in the ranking function, as shown
in figure 6.7.

Contrast this with a best_fields search in which the Boolean query is the innermost
calculation done per field. This boosts only the scores of individual fields for having
more terms, not the whole document.

 Here’s the best_fields search that runs two Boolean queries before evaluating
the dismax:

(overview:star overview:trek overview:patrick overview:stewart) |
(title:star title:trek title:patrick title:stewart)

With the query parser, you instead get this term-by-term dismax search, which then
runs the Boolean query on a term-by-term, not a field-by-field, basis:

(overview:star | title:star) (overview:trek | title:trek)
(overview:patrick | title:patrick) (overview:stewart | title:stewart)

Query parser scoring

(template for other term-centric approaches)

sum

max

max

...

title

overview

star

trek

title

overview

Outer summation
(with coord) heavily
biases toward more

terms matching

Inner field-by-field
dismax gets

per terms score

Figure 6.7 A query parser
implementing term-centric
search: inner field-by-field
dismax with a term-by-term
Boolean query biasing scoring
toward more term matches.

150 CHAPTER 6 Term-centric search
This translates to a ranking function (letting Sterm represent the result of the dismax
operation for a term):

coord × (Sstar + Strek + Spatrick + Sstewart)

Conversely the best_fields method suffers from the albino elephant problem. You
might match star trek in one field, and patrick stewart in another. Yet as best_
fields returns only the best field score, one of those field matches will be ignored.
This causes ranking to ignore cases where documents match more search terms.

(overview:star overview:trek overview:patrick overview:stewart) |
(title:star title:trek title:patrick title:patrick)

Only by placing the Boolean query on a term-by-term basis do you arrive at solid foot-
ing for term-centric behavior that defeats the albino elephant. Each SHOULD clause
adds to the score. Moreover, documents that fail to match all the terms are further
diminished by the coordinating factor. This favors documents with more matches,
regardless of the field matched, and defeats the albino elephant! Thus scenarios like
the preceding albino elephant problem are avoided by each term being guaranteed
an influence on the final search, as in the following listing.

(overview:star | title:star) (overview:trek | title:trek)
(overview:patrick | title:patrick) (overview:stewart | title:stewart)

This pattern, an inner field-by-field dismax with an outer Boolean query over all the
terms, is a central pattern in term-centric search. It builds signals on a term-by-term
basis, not based on the strength of a field as a whole. You’ll see in sections ahead how
this pattern can be both a benefit and curse of term-centric search. But maybe you can
stop here? Does a query parser hold all the pieces to the puzzle? Can it satisfy the
demands of Star Trek fans? Or does it fall short? Let’s use test queries to demonstrate
the issues.

Listing 6.5 best_fields suffering from albino elephant

Listing 6.6 Term-by-term dismax gives every search term influence

best_fields chooses overview field
scores as the resulting score

best_fields drops field
with Star Trek matches

Star and Trek term
have influence …

… as do matches for Patrick and
Stewart terms.

151Performing your first term-centric searches
6.3.2 Running a term-centric query parser (into the ground)

Now that you know something about how a query parser’s ranking function operates,
let’s see if it’s an amazing panacea. Let’s get back to our Star Trek TMDB example.
Perhaps a query parser can satisfy the demands of Star Trek fandom? What happens
when you rerun your troublesome query, but switch from a field-centric multi_match
query to a term-centric query parser? You’re soon to encounter a nasty surprise—one
that can dramatically limit the utility of not just query parsers, but term-centric search
in general.

 Let’s try our troublesome “Star Trek Patrick Stewart William Shatner” search with
the Elasticsearch query_string query. This query is Elasticsearch’s implementation of
a query parser with term-centric behavior. As you see in the next listing, this query has
an interface similar to multi_match.

usersSearch = "star trek patrick stewart william shatner"
query = {
 "query": {
 "query_string": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name.bigrammed",
 "directors.name.bigrammed"],
 }
 },
 "size": 5,
 "explain": True
}
search(query)

Results
Num Relevance Score Movie Title
1 1.5344285 Star Trek IV: The Voyage Home
2 1.0545591 Star Trek: Nemesis
3 0.7853979 Star Trek
4 0.6283183 Star Trek: The Motion Picture
5 0.6283183 Star Trek: Insurrection

Looking at these results, our Star Trek fans complain that something is way off the
mark! Remember that your users are likely hunting for Star Trek: Generations, a movie
that stars both Patrick Stewart and William Shatner. What went wrong? Examining the
query validation endpoint certainly shows a term-centric search. But, shockingly,
you’re missing the expected fields:

(title:star | overview:star) (title:trek | overview:trek)
(title:patrick | overview:patrick) (title:stewart | overview:stewart)
(title:william | overview:william) (title:shatner | overview:shatner)

Listing 6.7 Running a query-parser query

Uses query_string query parser
for term-by-term dismax

User’s
query

152 CHAPTER 6 Term-centric search
You explicitly told the query_string query to search the bigrammed cast.name and
directors.name fields as well. Yet they don’t appear to have been searched. Why?
What failed and where?

6.3.3 Understanding field synchronicity

If you think about it, how could that work? Remember, to the *.bigrammed fields,
search terms take on a completely different character from text fields. To the bi-
grammed fields, the two-word unit william shatner is a search term, not william or
shatner, as would be the case in a text field. So how could the query parser figure out
what to do? Can you keep the bigram nature of the *.bigrammed fields along with the
term-centric solution?

 Let’s think through it. One naïve solution might be that the query parser could try
to search with each individual text term, something like this:

 ... (title:william | overview:william | directors.name.bigrammed:william)

But that doesn’t make sense. Here william is certain to not be a match in the bi-
grammed field. You built *.bigrammed fields explicitly to be searched with bigrams,
to lend a specific signal to search. Yet by hobbling the field by avoiding bigrams,
term-centric search is eliminating the valuable work you did to build this field in the
first place!

 What if you figured out a way to search the bigrammed field on terms it expected?
What if something like the following were possible:

 ... (title:william | overview:william |
 directors.name.bigrammed:william shatner)

But that’s not an apples-to-apples search-term comparison! That’s not term-centric
search! The point of term-centric search is to isolate each search term such as william.
Here, the william search terms are conflated with shatner in the directors.name
bigram query. Influence from the shatner term bleeds over into the score for the
william term.

 So in reality, a term-centric query-parser enforces identical search terms for each
field. We call this property field synchronicity, the capability to query multiple fields with
identical search terms—or put a different way, the restriction that they must be
searched in the same way. In this case, Elasticsearch elided the fields that failed to
share a common query analyzer, choosing to drop the bigrammed fields. This way, it
could ensure that it searched fields in a consistent, term-centric manner. This is a
common, and perhaps the safest, form of solving this problem (though one could
quibble with the lack of helpful error message).

6.3.4 Field synchronicity and signal modeling

What are the implications of requiring field synchronicity? In previous chapters, we
emphasized using analysis to generate fields with ranking signals you could use. You

153Performing your first term-centric searches
worked hard with signal modeling to make the search engine measure important user-
ranking criteria. Every field, we taught, could be its own special snowflake, offering its
own unique signal to the ranking function when searched in its own special way. You
saw several examples of this in chapter 4, as many analysis tricks were shown to create
unique fields that measured the users’ intent. With term-centric search forcing every
field to behave identically, does that cripple your ability to use signal modeling?

 Yes, this can be a problem. You’re told term-centric search is necessary to solve the
problems of field-centric search. Yet you need fields that act intelligently on their own.
How else can you match geographical places? People’s names? Ideas? Taxonomies or
any of the other entities you’re asked to work with as a relevance engineer? Is the
search engine stuck between these two unintelligent polar ends—one that lets you
search in a vanilla, term-by-term way that can kill a field’s power to create signals, and
the other that’s field-centric with its silly albino elephant and signal discordance?

 Is there a way to have your cake and eat it too? Is the choice entirely binary? Or can
you have a little from column A and a little from column B—blending the strengths of
both into a solution tailored to your needs?

 This is the fundamental yin and yang of term-centric versus field-centric search. It’s
both a feature and a bug. For now, we leave this as an open question. Consider this
conflict a bit of a final frontier. Just as on Star Trek, we’ll figure out how to bring
opposing ideologies together to build something more harmonious and useful!

6.3.5 Query parsers and signal discordance

Given your ignorance of field synchronicity, your earlier work was a bit of a false start.
Let’s try again and see how term-centric search operates. Maybe it’s not so terrible to
match directly on the nonbigrammed, regular text name fields, as shown in the fol-
lowing listing.

usersSearch = "star trek patrick stewart william shatner"
query = {
 "query": {
 "query_string": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name", "directors.name"],
 }
 }
}
search(query)

Results:
Num Relevance Score Movie Title
1 3.03831 Star Trek V: The Final Frontier
2 2.282416 Star Trek: Generations
3 1.7969469 Star Trek: Nemesis
4 1.4064612 Star Trek IV: The Voyage Home
5 1.3728689 Star Trek: The Motion Picture

Listing 6.8 Searching fields that work in sync

User’s
query

Search
nonbigrammed
fields

154 CHAPTER 6 Term-centric search

pu
f

4 o
m

This is slightly better but still misses the mark. Our target result, Star Trek: Generations,
is at number 2, but surprisingly a non–Patrick Stewart film is at spot 1. Is this due to an
albino elephant? Are you emphasizing documents that include more search terms?
Examining the query validation endpoint and the explain reveals additional weight
given to the documents with more search terms. You are solving the albino elephant
problem. The query validation endpoint shows this by demonstrating the expected
term-by-term Boolean queries:

(title:star | overview:star | cast.name:star | directors.name:star)
(title:trek | overview:trek | cast.name:trek | directors.name:trek)
(title:patrick | overview:patrick |
 cast.name:patrick | directors.name:patrick) ...

The summarized explain for our desired result, Star Trek: Generations, shows the
expected calculation:

2.282416, sum of:
 0.78420293, max of:
 0.78420293, weight(title:star in 847)
 0.12733683, weight(overview:star in 847)
 0.9435517, max of:
 0.9435517, weight(title:trek in 847)
 0.08256196, max of:
 0.08256196, weight(cast.name:patrick in 847)
 0.14055088, max of:
 0.14055088, weight(cast.name:stewart in 847)
 0.060675804, max of:
 0.060675804, weight(cast.name:william in 847)
 0.2708729, max of:
 0.2708729, weight(cast.name:shatner in 847

Yet despite the higher number of matches, this document still lost in the ranking cal-
culation. What gives? Even when you examine Star Trek V: The Final Frontier, you see a
coord that punishes the score for not matching all the search terms. Something else
must be going on:

3.03831, product of:
 4.557465, sum of:
 0.68617755, max of:
 0.68617755, weight(title:star in 210)
 0.8256078, max of:
 0.8256078, weight(title:trek in 210)
 1.0834916, max of:
 0.07281096, weight(cast.name:william in 210)
 1.0834916, weight(directors.name:william in 210)
 1.9621884, max of:
 0.32504746, weight(cast.name:shatner in 210)
 1.9621884, weight(directors.name:shatner in 210)
 0.6666667, coord(4/6)

Director matches for
"william" and "shatner"
score surprisingly high

Coord
nishes

or only
ut of 6

atching

155Performing your first term-centric searches
It turns out the primary difference here is the match of william shatner in the
directors.name field. Recall our discussion of signal discordance? You saw this exact
problem: users likely don’t care that William Shatner was a director. Yet because he
was a director in only one movie, the resulting TF × IDF score for a director match is
extremely high compared to the other matches. Despite the Boolean query’s heavy
punishment for failing to match all the query terms, the TF × IDF scores for direc-
tors.name cause the overall field score to be high.

 This happens because although a query parser solves the albino elephant problem,
it doesn’t do anything about signal discordance. No consideration is made to adjust
the overall term score based on the document frequency of each field. There’s no
direct adjustment to correct the document frequency of directors.name to more
closely align with what users expect. The signal being used in the ranking function
doesn’t map to users’ more general expectations for those terms. They’re mired in
the specifics of the source data model.

6.3.6 Tuning term-centric search

As you may recall from the previous chapter, one possible solution to inconsistent
field scoring in best_fields search is to assert an explicit field preference through
boosting. Let’s take a moment to visit the topic of tuning. Does term-centric search
have similar knobs and dials that let you modify the ranking function to your needs?
You’ll see that because of similarities between term-centric methods, tuning lessons
from one method can usually be applied to another. With that in mind, how can you
get closer to expressing signals the user wants, perhaps by simply stomping over the
signal discordance problem entirely?

 Looking at the term-centric ranking function, it doesn’t appear that you can have
much impact on any of the parameters:

coord × (Sstar + Strek + Spatrick + Sstewart + Swilliam + Sshatner)

But there must be some opportunity to tune this equation to solve signal discordance.
And there certainly is. Remember that within each term’s signal (Sstar) is a dismax over
every field being searched. Remembering the behavior of best_fields from the pre-
vious chapter, you know that this ranking function allows tuning with tie_breaker
and per-field boosts. Luckily, those knobs and dials are available here as well. Here B
indicates a boost, and S indicates a score:

Sstar = Btitle × Stitle + tie_breaker × (Boverview × Soverview + …)

So for search-term scoring calculations, you can decide whether:

■ To include the score of the nonwinning fields in the dismax equation by setting
tie_breaker (defaults to 0)

■ To weight (or perhaps rebalance) the influence of each field via boosts (Boverview)

156 CHAPTER 6 Term-centric search
Tuning term-centric search focuses on tweaking the dismax calculation inside each
term score. The same tuning decisions you made for field-centric search in the previ-
ous chapter continue to apply here. Do you compute an individual term’s score based
on the “best field” for your terms (forcing a preference with a boost as needed)? Or
do you manipulate the dismax calculation toward most_fields—increasing the score
as multiple fields match the term?

 In our example with signal discordance, you could use boosts to force a preference
for one field’s score over another—just as you did with best_fields in the previous
chapter. In the following listing, you’ll boost cast.name to overwhelm the directors
.name score, enforcing a preference of cast matches over director matches.

usersSearch = 'star trek patrick stewart william shatner'
query = {
 "query": {
 "query_string": {
 "query": usersSearch,
 "fields": ["title", "overview",
 "cast.name^10", "directors.name"],
 }
 },
}
search(query)

Results:
Num Relevance Score Movie Title
1 1.0714334 Star Trek: Generations
2 0.8237567 Star Trek V: The Final Frontier
3 0.5298387 Star Trek II: The Wrath of Khan
4 0.52354753 Star Trek IV: The Voyage Home
5 0.502342 Star Trek: Nemesis

This is exactly what you want! But is this the best way to solve signal discordance?
You’ve hit the score over the head with a hammer, forcing it toward your field prefer-
ence. Is this a sustainable solution?

 Although this is one possible way to solve the problem of signal discordance, it’s an
unsatisfying (and possibly brittle) way. Instead of directly attacking the problem of
document frequencies that don’t truly measure term rareness, boosting forcefully
pushes the score of one field over another. What if the user had searched for a direc-
tor that only once appeared as a cast member? This solution would drive up that
director’s one cast occurrence pushing down that director’s directorial films. Not at
all what users expect.

 Still, these tuning techniques are portable to other forms of term-centric search
when you need to assert a preference. Much like our discussion in the previous chap-
ter, there continues to be a dichotomy (here through tie_breaker) between how

Listing 6.9 Tuning term-centric search

User’s
query

Boosts
cast.name
by 10

157Solving signal discordance in term-centric search
much you’d like to bias search scores toward the best field for that search term, or
toward a behavior closer to most_fields.

 With these signal discordance issues, this is where we’ll get off the query-parser
train. Term-centric query parsers were invented to solve the albino elephant problem.
They can get you far. But because they leave us short of a proper solution to signal dis-
cordance, we’ll begin to focus on two other methods of term-centric search.

6.4 Solving signal discordance in term-centric search
Although dismax-style query parsers demonstrate the fundamental behaviors of term-
centric techniques, often two other solutions are used. These two term-centric meth-
ods, which solve both the albino elephant and signal discordance problems, are custom
all fields and cross_fields. Custom all fields combine other fields together at index
time into one all field, an inflexible arrangement, but one that certainly works. A
cross_fields search, on the other hand, works at query time by attempting to directly
compensate for signal discordance by patching the document frequency of fields
prior to searching them. This, as you’ll see, yields greater flexibility at the cost of intro-
ducing inaccuracy and inscrutability.

6.4.1 Combining fields into custom all fields

Custom all fields solve the problem of term-centric search at index time. The
approach does this by directly combining the fields you’d like to search into a single
field. After all, you can’t have problems with multifield, field-centric search if you
have only one field! The name all fields comes from the idea that you can copy fields
together into a single field referred to as an all field. This has also been called copy
fields in the Solr and Elasticsearch communities. For example, you could combine
our troublesome name fields cast.name and directors.name into a more general
people.name field by using the search engine’s ability to append multiple fields
together at index time.

 Seems a bit odd to do, though; what does this buy you? Well, consider your trou-
blesome actor/director William Shatner, who has directed one movie yet starred in
many. This signal discordance causes directors.name matches to score unexpect-
edly high. This doesn’t jibe well with your users’ more general expectations of how
documents are structured. By combining directors.name and cast.name into a
broader, derived people.name field, the signal becomes far more general, and per-
haps much closer to what your users imagine when they search. This generality man-
ifests itself mechanically in the scoring. Suddenly, by searching people.name, there’s
no particular bias toward whether William Shatner directed a movie or starred in
one. The difference is washed away! The document frequencies for the associated
terms are combined and reflect a more general notion of how common William
Shatner is as a person associated with a movie instead of as a director or cast mem-
ber, as shown in the table 6.1.

158 CHAPTER 6 Term-centric search
This field is searched just as any field would be searched by itself, using a Boolean
query of SHOULD clauses. Remember that this form favors documents that include
more results, thus continuing to defeat the dreaded albino elephant:

people.name:william people.name:shatner

Let’s demonstrate by adding such a custom all field to our documents. You’ll see that
by eliminating the difference between cast and director, search results get closer to
users’ expectations.

 To set up a custom all field, first you need to define the new field in the mapping.
You define the field people just as you do any other. Then, in the mapping entry for
each field that feeds into people, you use the copy_to option to copy the contents of
the source field to a destination field. The mapping gets verbose, so we’ll show you
each one at a time. First there’s the mapping for the people field, which looks just like
the other name field mapping you saw in the previous chapter. We even leave in the
bigram version of this field, as shown in the following listing.

mappingSettings = {
 "movie": {
 "properties": {
 "people": {
 "properties": {
 "name": {
 "type": "string",
 "analyzer": "english",
 "fields": {
 "bigrammed": {
 "type": "string",
 "analyzer": "english_bigrams"
}}}}},

Continuing the mapping, you copy the cast.name field over to the people.name field.
You do the same for directors. The following listing adds copy_to to the cast mapping.

Table 6.1 Relative document frequencies of the phrase william shatner in two source fields and
the combined people custom all field

william shatner document frequency

directors.name 11

cast.name 16

people.name (custom all field) 16

Listing 6.10 Mapping for custom all field— people

Destination people field,
defined like any other

people expects to receive src
fields with a “name” property

people continues to preserve
the “bigrammed” property

159Solving signal discordance in term-centric search
"cast": {
 "properties": {
 "name": {
 "type": "string",
 "analyzer": "english",
 "copy_to": "people.name",
 "fields": {
 "bigrammed": {
 "type": "string",
 "analyzer": "english_bigrams"
 }} }}},

you’ll need to reindex all your data:

reindex(analysisSettings, mappingSettings, movieDict)

Great! Now what happens when you search this new field? With a new field, your
options are exceedingly flexible. You can use it anywhere you’d list a field to be
searched. For now, though, to see the utility of just this field, notice what happens in
the following listing when you directly search only this new people.name field for our
two actors.

usersSearch = 'patrick stewart william shatner'
query = {
 "query": {
 "match": {
 "people.name": usersSearch,
 }
 }
}
search(query)

Num Relevance Score Movie Title
1 1.3773818 Star Trek: Generations
2 0.6629994 Showtime
3 0.65602106 The Wild
4 0.5989805 Bill & Ted's Bogus Journey
5 0.58601415 Star Trek V: The Final Frontier

First you notice that Star Trek: Generations, the movie containing both actors, comes to
the top of the search results. Nothing surprising here; the Boolean query for the two
actors continues to promote results that contain more search terms. The fact that the
search occurs over a single field ensures that you don’t encounter the albino ele-
phant problem.

Listing 6.11 Adding copy_to from cast.name to people.name

Listing 6.12 Simple use of a custom all field

Appending this field
to people.name

match query
(searches a single
field, people.name)

User’s
query

160 CHAPTER 6 Term-centric search
 Signal discordance is solved in this case; the document frequency for a match on
william shatner in Star Trek V for people.name is identical to the document fre-
quency for Star Trek: Generations. So the scores come out closer to what users expect.
The fact that William Shatner directed Star Trek V gets mostly washed away by the
people.name field’s combined document frequency. Also, notice how much higher
the score is for Star Trek: Generations, a movie that satisfies all search criteria. The Bool-
ean search of the combined fields amplifies the document that contains all the user’s
search terms.

 How far should you take this? Should every field be copied into an all field ? Elas-
ticsearch takes the approach far. By default, every field is copied to an overarching
field called _all. Searching the _all field returns good results for our use case.

usersSearch = "star trek patrick stewart william shatner"
query = {
 "query": {
 "match": {
 "_all": usersSearch,
 }
 }
}
search(query)

Num Relevance Score Movie Title
1 0.9441141 Star Trek: Generations
2 0.577018 Star Trek: Insurrection
3 0.577018 Star Trek: First Contact
4 0.56560814 Star Trek V: The Final Frontier
5 0.5166054 Star Trek: Nemesis

Yet, repeat the same search with just patrick stewart, and the top result has nothing
to do with Patrick Stewart:

1 0.4262765 Panic Room
2 0.33741575 Conspiracy Theory
3 0.33741575 The Wolverine
4 0.33741575 Vertigo
5 0.33741575 Star Trek: Insurrection

This happens because somewhere in the combined _all field of panic room, the text
patrick is mentioned, and so is stewart. The signal generated from an _all search is
vague, and doesn’t map to meaningful information your users would recognize. The
signal for the more carefully created people.name is probably closer to the user’s
sense of meaningful criteria; it measures relevance scores for people associated with a
movie. Custom all fields that vacuum up all the text (such as the _all field) tend to be
far too general, and should generally be avoided.

Listing 6.13 Searching _all

User’s
query

161Solving signal discordance in term-centric search
 Again, term-centric search isn’t a panacea. Users likely do care about what is match-
ing. To tightly control what is matching per field, you often focus on field-centric
methods and the lessons in chapters 4 and 5. Later in this chapter, you’ll begin to see
how to have your cake and eat it too.

6.4.2 Solving signal discordance with cross_fields

Custom all fields are static, created as documents are being indexed. In contrast, a
cross_fields search is dynamic, addressing signal discordance at query time. It does
this by becoming a dismax-style query parser on steroids. The ranking function of
cross_fields remains identical to the query parser approach, with one important
modification: the cross_fields query temporarily modifies the search term’s docu-
ment frequency, field by field, before searching. If the term shatner is particularly
common in the fields being searched, except for one troublesome field such as
directors.name, then that troublesome field will be lied to and given a larger docu-
ment frequency. This attempts to solve signal discordance, albeit in a way that could
be less accurate than an all field.

 Say that instead of using a dismal query parser field, you execute a cross_fields
search. So instead of something like this dismax

(cast.name:william | directors.name:william)
(cast.name:shatner | directors.name:shatner)

you get what’s referenced by Elasticsearch with this Blended explain syntax, which
blends the document frequencies of the listed fields before executing the search:

Blended(cast.name:william, directors.name:william)
Blended(cast.name:shatner, directors.name:shatner)

What would a cross_fields search combining all of these fields look like? It’s a
multi_match query that uses the cross_fields query type. cross_fields uses the
field’s common query analyzer. Much like the dismax query parser, cross_fields
continues to suffer from field synchronicity. If fields don’t share the same analyzer,
cross_fields returns an error. With that in mind, you know that most of your fields
have versions analyzed as English text. So you should be able to use cross_fields
search over these English-language-analyzed results.

 Running cross_fields with this in mind gets at our needed search results, as
shown in the following listing.

usersSearch = 'star trek patrick stewart william shatner'
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview", "cast.name", "directors.name"],

Listing 6.14 cross_fields search over useful fields

User’s
query

162 CHAPTER 6 Term-centric search
 "type": "cross_fields",
 }
 }
}
search(query)

Results
Num Relevance Score Movie Title
1 1.9040859 Star Trek: Generations
2 1.6575186 Star Trek V: The Final Frontier
3 1.3508359 Star Trek: Nemesis
4 1.1206487 Star Trek: The Motion Picture
5 1.0781065 Star Trek: Insurrection

The results aren’t identical to the preceding _all field search. It turns out you can’t
exactly calculate the combined document frequency of multiple fields at query time.
The fields have limited information for this approximation. The cross_fields query
can access only each term’s document frequency for a field. It then must attempt to
sensibly combine them, which can’t be guaranteed to be exactly correct. Let’s say
shatner has a document frequency of 16 in cast.name and 1 in directors.name. By
knowing those two facts, you can’t tell whether the single occurrence of the term
shatner in directors.name occurs in a film where William Shatner also stars, or if it
occurs in a movie directed by Shatner but not starring him. In the former case, the
combined document frequency would be 16. But in the latter, the true document fre-
quency should be the result of summing the two fields’ document frequencies: 17.
The cross_fields approach takes the safe route, picking the max of the two fields’
document frequencies: 16.

 A custom all field that physically combines fields would capture the document fre-
quency more accurately. A combined people.name field would have the term shatner
exactly once, regardless of whether or not he directed. But this accuracy comes at a
cost. All fields are built exactly once at index time. You can’t decide at search time to
combine another set of fields. Moreover, the space requirements sometimes aren’t tol-
erable, especially in large-scale systems. Although not as accurate, cross_fields
allows more ad hoc flexibility in blending fields. Moreover, cross_fields is funda-
mentally a term-by-term dismax query—the same as you saw with the previous query
parser. So tuning options, field boosting, and the tie_breaker parameter continue to
be available to you! Unfortunately, the same field synchronicity issues also apply.

6.5 Combining field-centric and term-centric strategies:
having your cake and eating it too
You’ve seen that field-centric search often ignores users’ basic search expectations. Yet
term-centric search, because of field synchronicity, has its own problems. It puts strict
enforcements on the underlying fields. And for this reason, delivers basic, unsophisti-
cated relevance functionality. To put things in context: you spent chapter 4 using
analyzers to build special-snowflake fields, capable of modeling anything that can be

Uses a cross
field search

163Combining field-centric and term-centric strategies: having your cake and eating it too
tokenized. In chapter 5 you learned how to use those with field-centric search. And
here you’ve learned that all that work is incompatible with term-centric search!

 Sadly, there’s no silver bullet. Mastering how to combine both approaches is an
ongoing struggle. In this section, we discuss strategies for trying to balance the strengths
of both techniques to create relevance solutions that satisfy and delight. You’ll see that
the way you use the two strategies together depends entirely on making the right com-
promises for your data and users. The struggle to get the balance right is a huge part
of your ongoing tuning work as a relevance engineer.

6.5.1 Grouping “like fields” together

In this section, we examine one strategy for combining field-centric and term-centric
effects: grouping similar, or like, fields together with a term-centric effect. These
groupings are themselves combined with an outer field-centric search. Artfully group-
ing fields can be a way to sidestep field-centric search problems with just enough of a
term-centric effect to prioritize more matches within the fields prone to albino ele-
phant and signal discordance problems.

 Note that if a user’s search term can match only a single field, then the problems
of field-centric search go away. You can’t have albino elephant or signal discordance
if search terms always find their ideal field. For example, a match for “Star Trek
Patrick Stewart William Shatner” would be fine with field-centric search if you could
guarantee that star trek matched in exactly one field (let’s call it text), while
name-related terms such as patrick stewart and william shatner matched only in
a field about people.

 We call these groupings like fields. As we’ve discussed, your source data model
doesn’t come with these straightforward groupings. It’s your job when signal model-
ing to group fields in such a way that albino elephant and signal discordance have lit-
tle effect on the final solution. Your job too is to map signals to users’ general search
expectations. By grouping like fields, you more closely approximate the higher-level
signals users care about.

 One way that a user is likely to think about ranking Star Trek matches, for exam-
ple, is in groupings of like fields indicating that the ideal document

■ SHOULD match people mentioned in the search string
(inner term-centric people:term1 people term2 ...)

■ SHOULD match text mentioned in the search string
(inner term-centric text:term1 text:term2...)

Given this specification, you can express the ideal document to Elasticsearch for your
Star Trek search. One simple improvement, shown in the following listing, is to group
people to more closely match the preceding specification by using the custom all field
people.name as part of a most_fields search. You’ll note in the listing that we’re
searching the non-bigrammed field to demonstrate the basic idea. Further precision
could also be gained searching the bigrammed field.

164 CHAPTER 6 Term-centric search
usersSearch = "star trek patrick stewart william shatner"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["title", "overview", "people.name"],
 "type": "most_fields",
 }
 }
}
search(query)

Num Relevance Score Movie Title
1 0.7104292 Star Trek: Generations
2 0.5998383 Star Trek IV: The Voyage Home
3 0.50374436 Star Trek: Nemesis
4 0.35599363 Star Trek
5 0.3373023 Star Trek: The Motion Picture

This is an improvement. By grouping people fields with other people fields (directors
.name + cast.name -> people.name), you’ve eliminated a class of likely problems. Now
you can search in a field-centric fashion, but with a term-centric effect on the custom
all field. You carefully combined the various fields about people into a single field that
provides a specific signal.

6.5.2 Understanding the limits of like fields

Is this it, then? Is this the solution to your search problems? Is grouping like fields the
right way to balance the two approaches? The unfortunate reality is that search terms
do spuriously crop up in fields we don’t expect them to. So grouping like fields can’t
always save you. As we said, unfortunately there’s no silver bullet to the yin and yang of
field-centric and term-centric search. Like most programming problems, there are
only carefully honed compromises based on the nature of your data and the demands
of your users.

 You can modify the strategy to account for reality. In our movie search, for exam-
ple, names of actors crop up in movie descriptions. There are probably people named
Star and even Trek that would score rather highly because of how rare they are as
names. In the same way, names such as William could appear in titles or overview text.
Grouping fields into like fields might not always be feasible.

 Let’s demonstrate the problem. Here cross_fields search is used instead of a cus-
tom all field to group text fields with text fields, and people fields with people fields.
This is the strategy we described previously. Recall that most_fields expects a list of
fields to search, not a list of queries. So to use most_fields with an inner cross_fields
query, you need to implement the most_fields scoring behavior on your own. This is
what the outer Boolean query does in the following listing.

Listing 6.15 Search combining term-centric all field (people.name) with other fields

User’s
query

Searches
non-bigrammed
people.name
field

165Combining field-centric and term-centric strategies: having your cake and eating it too
usersSearch = "star trek patrick stewart william shatner"
query = {
 "query": {
 "bool": {
 "should": [
 {
 "multi_match": {
 "query": usersSearch,
 "fields": ["directors.name", "cast.name"],
 "type": "cross_fields"
 }
 },
 {
 "multi_match": {
 "query": usersSearch,
 "fields": ["overview", "title"],
 "type": "cross_fields"
 }
 }
]
 }
 }
}
search(query)

Num Relevance Score Movie Title
1 1.1444862 Star Trek IV: The Voyage Home
2 0.75206727 Star Trek: Nemesis
3 0.7318188 Star Trek V: The Final Frontier
4 0.72360706 Star Trek: Generations
5 0.5002059 Star Trek

This, unfortunately, doesn’t have the impact you want. For some reason, Star Trek IV
shoots to the top of the list. Why? If you examine the explain, you’ll see that surpris-
ingly, william shatner is mentioned in the overview field of Star Trek IV:

 0.18140785, max of:
 0.18140785, weight(overview:william in 474)
 0.34648207, max of:
 0.34648207, weight(overview:shatner in 474)

As we suspected, names often crop up in many fields. You usually can’t cleanly sepa-
rate fields into like fields. The idea that “search terms will always be in bucket A or B”
doesn’t work always with our messy, unstructured data sets. Moreover, as the text-based
cross_fields query gets biased heavily when more search terms match, the fact that
names like William Shatner or Patrick Stewart do match these fields further amplifies
the distortion of unexpected matches.

Listing 6.16 Searching two field groupings—people and text

Boolean SHOULD clauses,
replicating “most_fields”

User’s
query

Grouping of
like people
fields into a
term-centric
search

Grouping of like
text fields into a
term-centric
search

166 CHAPTER 6 Term-centric search
6.5.3 Combining greedy naïve search and conservative amplifiers

We said that term-centric search often satisfies but rarely delights. Another strategy
combining term-centric and field-centric methods is to base relevance on a term-
centric foundation. Using that baseline, smarter and discriminating per-field signals
can be brought in to amplify documents in ways you feel confident will delight the
user. You already know how to craft fields that when matched meet certain criteria
with high confidence—for example, criteria such as “the user is searching for a per-
son” or “the user is searching for a location.” Using this criteria, you can think of the
ideal document for your TMDB example as follows.

 The ideal document

■ SHOULD have all search terms match the superset of fields being searched
■ SHOULD have searched-for names match the people associated with the film

The first SHOULD serves as a basic text score over a superset of the plain-text versions
of fields that occur in all other clauses. It matches rather greedily. The second SHOULD
clause is much less greedy. It’s highly discriminating and searches only a subset of the
fields from the first clause grouped into like fields (such as people, places, or things)
in order to get specific signals.

 Two factors are important with this approach:

■ Any document that matches the second discriminating clause also matched the
first “greedy” clause. This way, every document being considered has a base score.

■ The nongreedy clauses should be high-quality signals erring on the conserva-
tive side to avoid overriding the base score with an unexpected match.

By having one wide-net base score and carefully selected discriminating amplifiers,
you’re more likely to arrive at a place that at the very least satisfies the user. As your
secondary signals improve, you can continue to use those as amplifiers with high con-
fidence—sussing out additional highly discriminating signals. The secondary signals
are conservative for important reasons: If those secondary signals are unintelligent, or
let something “sneak in” such as a non-name match, you may override the user’s base
assumptions of all their search terms matching, resulting in something rather silly. But
if you miss the mark and don’t quite get to the precise match on the person named
William Shatner, at least the basic term-centric search is backing you up so that you
don’t arrive at something utterly terrible.

 Let’s try that out, with a base cross_fields term-centric search over the text ver-
sion of each field, and an additional SHOULD that brings up documents that match
the subset of those fields corresponding to people’s names, modeled using the bigram
analyzers.

167Combining field-centric and term-centric strategies: having your cake and eating it too
usersSearch = "star trek patrick stewart william shatner"
query = {
 "query": {
 "bool": {
 "should": [
 {
 "multi_match": {
 "query": usersSearch,
 "fields": ["directors.name.bigrammed",
 "cast.name.bigrammed"],
 "type": "cross_fields"
 }
 },
 {
 "multi_match": {
 "query": usersSearch,
 "fields": ["overview", "title",
 "directors.name", "cast.name"],
 "type": "cross_fields"
 }
 }
]
 }
 }
}
search(query)
1 1.6669365 Star Trek: Generations
2 1.5123603 Star Trek V: The Final Frontier
3 1.0779369 Star Trek: Nemesis
4 0.9057324 Star Trek: The Motion Picture
5 0.8793935 Star Trek: Insurrection

Now you’re getting somewhere! There are refinements to be made, but this pattern is
a good start. The score for Star Trek V is close to that of Star Trek: Generations. Is it
because the term frequency for the bigram william shatner is 2 (as we know he acts
and directs)? Users don’t care that there are two mentions of William Shatner! You
could keep improving the quality of this signal, enhancing how much it measures the
association of a person with a field. You could disable term frequency and get even
closer to the ideal signal (or as you’ll see in the next chapter, use a constant_score
query to completely eliminate TF × IDF).

 Another question is how much of a foundation should the base term-centric
search create? How much should it impact the score as compared to these more spe-
cialized signals? What is the impact of the less specialized term-centric clause? With
increasing SHOULD field-centric clauses, could you get back into an albino elephant
scenario in which many of the nonfoundational, field-centric, special snowflake fields
match strongly, but not all individual search terms match in the term-centric search?
Yes, you can. And continuing to wrestle with the yin and yang of term-centric and

Listing 6.17 Greedy term-centric paired with highly discriminating like fields

Outer Boolean query biases
toward all matches of both
general text and full people
bigrammed names.

User’s
query

Searches names
by bigrammed,
discriminating
like fields

Computes base
text score over
all searched
fields

168 CHAPTER 6 Term-centric search
field-centric search takes a large portion of the relevance engineer’s time. Luckily,
every query in Elasticsearch can be boosted, tweaking the overall score toward which-
ever end—yin or yang—you need scoring to go.

6.5.4 Term-centric vs. field-centric, and precision vs. recall

The pattern in the previous section should remind you of the ever-present struggle
between precision and recall. As you learned in chapter 4, high recall ensures that all
the right matches are in the search results, and high precision ensures that few false-
positive matches are included. You can modify the definition of precision and recall to
think just about the top N (say, top 10) results that you’ll show on the first page of
search results. Practically speaking, this is what’s important to get right!

 A greedy term-centric search gives you high recall. It casts its net wide, ensuring
that you’ve captured all the right search results. Your first search page contains a list of
possibly relevant results—likely, a reasonable mix of fairly simple matches, though
nothing particularly smart. Left alone, your users are likely to go through pages of
search results every now and then, being forced to scan for what they want. Adding in
highly discriminating field-centric signals improves the precision of the search results.
It promotes increasingly more promising candidates to the first page only when cer-
tain exacting criteria are met.

 What’s great about the pattern from the previous section is that it lets you control
how much term-centric or how much field-centric impact you’d like to have. If precise
matching is more important, you can fine-tune those specific matches with boosts, let-
ting those scores bubble up more easily. If this is less important, boosting field-centric
signals matters much less than focusing on recall.

6.5.5 Considering filtering, boosting, and reranking

Although the pattern mentioned previously is a good starting point, the Query DSL
is always being used in new and interesting ways. In the next chapter, you’ll see how
to carefully and explicitly use signals to manipulate ranking even further. You might,
for example, want to fine-tune the base term-centric pattern discussed previously by
filtering out results that don’t match a minimum number of search criteria. Or fig-
ure out a way to make the number of search terms that match a primary sort, and
call out the field-centric signals to be more of an inner reranking criteria. Often
field-centric approaches can precisely let you filter or boost by using a specific sig-
nal. Perhaps you’d like to give an explicit nudge to restaurants close to the user, or
to filter out restaurants far away. At the core, you may have a general relevance
score. On the fringes, you massage and prod the relevance score with more carefully
modeled signals.

169Summary
6.6 Summary
■ Because of the albino elephant problem, field-centric search doesn’t satisfy users’

relatively naïve sense of relevance, which relies on the premise that documents
matching more of your search terms ought to be considered more relevant.

■ Signal discordance creates unexpected ranking behavior as the search engine
decomposes documents into many fields that are scored independently.

■ Term-centric search pushes scoring toward users’ naïve sense of relevance (pri-
oritizing documents that match more search terms).

■ Term-centric query parsers, such as query_string or Solr’s edismax, solve the
albino elephant problem, but not signal discordance.

■ Creating a custom all field solves both the albino elephant problem and signal
discordance most accurately, but increases the index size.

■ Blended term-centric search methods solve the albino elephant problem and
signal discordance at query time, but not as accurately as a custom all field.

■ Term-centric search requires the search string to be analyzed before fields are
searched. This eliminates the ability to specialize each field to measure differ-
ent, smarter signals.

■ Balancing generic term-centric scoring with smarter field-centric scoring requires
careful work.

■ Several strategies aim to take advantage of the strengths of field-centric and
term-centric search (including like fields and highly discriminating boosts).

■ Another way to look at term-centric versus field-centric search is that term-centric
focuses on high recall, whereas field-centric is a tool to get higher precision.

Shaping the
relevance function
As a relevance engineer, you tailor your users’ search experience to their many
unspoken ranking expectations. Unpacking, understanding, and finally imple-
menting these expectations are key parts of your job. For example, almost everyone
has a sense that a news search should show up-to-date articles about breaking
events. Or that a restaurant search shouldn’t take into account only the user’s
query but also the proximity of that user to the restaurant. Your search will proba-
bly have unique ranking needs that go beyond text matching. For instance, what if
you’re building a local news search? Should it focus on both proximity and freshness?

This chapter covers
■ Bringing up relevant content through boosting
■ Knowing when to use different forms of

boosting
■ Improving the ranking of popular or recent

content
■ Filtering out irrelevant or noisy content from

search results
■ Stoking your own creative uses of the search

engine’s querying features
170

171What do we mean by score shaping?
Or what about a global restaurant search for the jet-setting crowd? Should it focus on
cities with major airports?

 Previous chapters have shown you how to control the general form of results for
common forms of search. In this chapter, you’ll snip, craft, and shape the ranking
function to get at your users’ unique criteria. You’ll see that you can become a master
of your search engine’s Query DSL, truly programming every corner of search rank-
ing, in order to carefully boost, filter, rerank, and sort in exacting ways to implement
unique ranking requirements.

 This chapter is the search relevancy power hour, but our goal isn’t to comprehen-
sively teach you every trick for manipulating search. The number of permutations of
every option of every query is far too large! Instead, we want to show you techniques to
move the gears of your imagination. You’ll see that using your search engine’s Query
DSL is programming. It’s not a handful of knobs and dials to just tune. It’s a language
for customizing search ranking—with new techniques being constantly discovered!
Indeed, if we’re reading your blog post or book and learning a new technique from
you in the years ahead, we’ll have done our job in this chapter.

7.1 What do we mean by score shaping?
With score shaping, depicted in figure 7.1, relevance begins to take on the character of
true programming. You use the tools within the Query DSL to snip the ranking func-
tion closer to your needs. The most important tools in the Query DSL for program-
ming ranking are boosting and filtering. We’ve used these terms loosely in previous
chapters, but they take on special importance in this chapter.

Query

main query
barcelona beach

boost x 1.2
popular titles

boost x 1.1
promoted titles

in
d
ex

in
g query

inverted
index

Respon
se

a
n
alysis

Query

barcelona beachtitle: Beaches

of Barcelona

promote: true

body: In the

summer

Barcelona has

beaches that...

Indexed

document

User

User’s search

Relevance engineer

search

Text-based search may miss key relevance
signals, such as business needs or user

preferences. That’s why we boost!

Figure 7.1 Relevance engineers use score-shaping techniques to carefully craft the
ranking, thus implementing custom, application-specific ranking rules.

172 CHAPTER 7 Shaping the relevance function
So let’s tighten up our definitions:

■ Boosting—Given a base set of search results, boosting increases the relevance
score of a subset of those search results.

■ Filtering—Given the entire corpus of possible search results, filtering removes a
subset of those documents from consideration by specifying a filter query.

Defining the subset of search results for boosting and filtering, and deciding how they
modify relevance ranking, extends the skills you learned in the previous chapter:

■ Signals—Signals measure important ranking criteria at search time. In this
chapter, signals take a more quantitative tone: How recently was an article
published? How close is the restaurant to me? The presence of a signal indi-
cates when to filter or boost; the magnitude of the signal might control a
boosting factor.

■ Ranking function—Filtering and boosting directly adjust the ranking function.
For example, a boost might apply a multiplier proportional to how recently a
movie was released. A filter might limit the subset of search results that the
ranking function is run against.

Although boosting and filtering are the core techniques that we cover in this chap-
ter, quite a few methods are available to shape scores. Other methods of score shap-
ing include:

■ Modifying the sort criteria to not strictly be based on the relevance score, but
based on other values—such as date, popularity, distance, or computed values

■ Negative boosting, which drives down a set of search results (in contrast to stan-
dard, positive boosting)

■ Rescoring or reranking by adding a second stage to ranking to tweak the order of
the top N set of results with additional signals

■ Scripting the score via a custom score query, which allows you to use a script to com-
pletely take control of the scoring for a base set of search results

Honing your expressive ability with the Query DSL will stoke your creative abilities as
a relevance engineer. As you examine these techniques, remember: the goal is not just
to explore all of these ideas, but as all algebra teachers tell their students, you learn
this stuff to “teach you how to think.”

7.2 Boosting: shaping by promoting results
Boosting gives you the power to mathematically prioritize specific documents as more
relevant than others. Carefully selecting the documents you’d like to boost and cali-
brating the impact of those boosts are key skills for programming relevance. How
much you boost can be based on any number of criteria, including secondary text-
relevance scores, simple constants, or content-quality metrics such as popularity,
recency of publication, or user ratings.

173Boosting: shaping by promoting results
 You may recall that we discussed the boosts associated with various fields when
going over multifield search in previous chapters. In those chapters, we spent time cal-
ibrating the relative weight of, say, a title or a body match in a multifield search. To be
clear: those weights (what we refer to as boost weights) aren’t what we mean here. The
boosting work you’ll see in this chapter isn’t (just) tuning weights. Here you’ll use sec-
ondary queries, or boost queries, to modify the overall ranking function.

 For the boost to truly reflect an important, meaningful relevance signal, all the
skills from previous chapters continue to matter a great deal. After all, without good
signals to boost, you won’t be shaping the score so much as polluting it with noisy scor-
ing that promotes unexpected results to the top.

 In this section, we’ll introduce you to your first boost queries. You’ll see the subdi-
visions used to break up forms of boosting. Initially, we’ll teach you the basic forms of
each. Knowing these basic forms is foundational for enhancing your boost-fu. Later
sections demonstrate how to flex your skills to create search results that answer more
real-world ranking questions through boosting.

7.2.1 Boosting: the final frontier

You’re about to go on a wild boosting expedition, but before we tinker, explore, and
prod, you need to pick up a basic example to drive your work.

 What example should we choose? Well, boosting and score shaping is a bit of a
final frontier—always ripe for discovery! So it makes sense to go back to the Star Trek
fan movie search from previous chapters. One use case we haven’t considered is a
user’s omission of “Star Trek” from the search. Fans who search for just “William Shat-
ner” probably won’t be happy with the TV show TJ Hooker as the first search result.
Let’s boost “Star Trek” titles to the top to get a feel for boosting basics.

 First you need a base query. In the preceding chapter, you learned how cross_
fields search forms a reasonable starting point for relevance, so let’s start with it
here. In the following listing, you’re searching for “William Shatner Patrick Stewart,”
hunting for the film that stars both of them.

usersSearch = "william shatner patrick stewart"
query = {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["overview", "title",
 "directors.name", "cast.name"],
 "type": "cross_fields"
 }
 }
}
search(query)

Listing 7.1 Base query to boost

User’s
query

174 CHAPTER 7 Shaping the relevance function
Results
Num Relevance Score Movie Title
1 0.79947156 Star Trek V: The Final Frontier
2 0.67931885 Star Trek: Generations
3 0.4375222 The Wild
4 0.38154808 Dark Skies
5 0.32485005 Showtime

The results aren’t perfect. Star Trek: Generations ought to be number one (recall that in
the last chapter, we tweaked this a bit further). For our purposes, though, we’re
focused on a different problem. For the Star Trek fan, the last three results should be
Star Trek movies. You need to boost Star Trek films! Let’s explore the options.

7.2.2 When boosting—add or multiply? Boolean or function query?

You’ve seen a minor problem that requires boosting. Time to get to work bending
the ranking function to your will! Where do you start? Let’s make sense of the boost-
ing landscape before deciding exactly how you’ll bring (beam?) up those Star Trek
title matches.

 In particular, you’ll see that when boosting, you need to make two key decisions:

■ The math used to boost—Should you add or multiply the boost score to the base
query?

■ The query used to boost—Some queries are explicitly geared toward boosting, but
which should you use?

Let’s discuss the math first. A document matching the boost query (Star Trek films, in
our case) will have its score combined with the base query’s. What are the conse-
quences of choosing addition or multiplication?

■ An additive boost stacks the boost on top of the base query. To be effective, the
boost must layer on just enough oomph to matter in the final calculation. A
0.01 boost added to a base query score of 4 will hardly matter. A 100.0 boost
added to that base query will effectively override the base query.

■ A multiplicative boosts scales the base query. A simple boost multiplier of 1.2
ensures, regardless of how the base query’s score behaves, that boosted docu-
ments will get 20% more oomph than unboosted documents.

Figure 7.2 shows the implications of this choice. With the multiplicative boost, think
of a document as a balloon. A multiplicative boost “inflates” the boosted balloon by
the appropriate amount. Additive boosting forces you to consider how much you layer
on the impact of a boost.

 The second important decision is choosing the query to boost with. This choice
dictates the form of the ranking function and the tools you’ll have available to shape it
to your needs.

175Boosting: shaping by promoting results
With Elasticsearch, two queries are used for boosting:

■ With a Boolean query, you boost via an additional Boolean clause on top of the
base query, using Elasticsearch’s bool query.

■ With a function query, you boost by directly modifying the ranking function by
using Elasticsearch’s function_score query.

By using Boolean queries, much is abstracted away for you. Adding a boost means add-
ing a simple SHOULD clause on top of the base query and tweaking a few weights.
The ranking math is baked in (Boolean queries are always additive boosts), with a few
knobs and dials to manipulate.

 Function queries give you direct control of the ranking function. You combine the
base query and any boost queries in mathematically arbitrary forms. There’s no
baked-in “formula” as in Boolean queries. Therefore, function queries can’t cleanly be
categorized as multiplicative or additive. Function queries are simply math! Given the
lower level of control, there are things only function queries can accomplish.

 Let’s get back to our problem. Where were we? Oh, right! You have an important
search problem to solve with hordes of Trek fans raring to break down your door. Bet-
ter choose a solution fast! Do you go through door A and solve your problem by apply-
ing an additional Boolean clause? Or do you go through door B and begin to get your
hands dirty with function queries? Let’s see the consequences of both decisions.

Base

score

Additive

boost
Total

score

Base

score

Additive

boost= +
Base

score

Base

score

Total

score

Base

score

Multiplicative

boost= ×
With

multiplicative

boost

Without boost

Without boost With boost

With boost

Multiplicative boosting “scales” the base score according to the boost

Adding boosting “stacks” the boost on top of the base score

Figure 7.2 Additive boosting layers on extra criteria; multiplicative boosting inflates/
deflates through multiplication.

176 CHAPTER 7 Shaping the relevance function
7.2.3 You choose door A: additive boosting with Boolean queries

You choose door A: Boolean queries. To satisfy those Star Trek fans, you’ll boost with
an additional Boolean clause on top of the base cross_fields query. This will ask the
search engine to prioritize documents with the phrase star trek in the title. You’ll
begin to see how to treat any boost as a signal to optimize. Further, combining the
boost signal appropriately requires familiarizing yourself with the additive math
underlying the Boolean query.

 Let’s see what a Boolean query boost looks like. A simple match_phrase query on
“Star Trek” in the title is your first attempt to measure a signal that the film is a Star
Trek film. Apply this alongside the base query within a bool query, as shown in the fol-
lowing listing.

usersSearch = "william shatner patrick stewart"
query = {
 "query": {
 "bool": {
 "should": [
 {"multi_match": {
 "query": usersSearch,
 "fields": ["overview", "title",
 "directors.name", "cast.name"],
 "type": "cross_fields"
 }},
 {
 "match_phrase": {
 "title": {
 "query": "star trek",
 }}}
]
 }
 },
}
search(query)

Before we reveal the final search results, let’s walk through what happens when the
search engine scores this query. This will reveal exactly how and where you can modify
the ranking function and boosting to your needs.

OPTIMIZING BOOSTS IN ISOLATION

With a Boolean query, first the boost and base scores are run in isolation (B and c in
listing 7.2). Your boosting can be only as good as the underlying queries. In our case,
your queries attempt to measure two signals:

■ Boost—Is the film a Star Trek film? (B in listing 7.2)
■ Base—Are all the query terms featured in the searched fields? (c in listing 7.2)

Listing 7.2 Boosting with an additional Boolean clause

Combined through
addition

d

Base query—measures
signal that more query
terms match

b

User’s
query

Boost query—
measures signal
that the film is a
Star Trek filmc

177Boosting: shaping by promoting results
Do these queries accurately measure the needed signals? For instance, the boost
query, a phrase query against the title field, relies on TF × IDF scoring of phrases.
Does that score help to measure whether a film is a Star Trek film? Is TF × IDF appro-
priate to answer what seems to be a yes/no question?

 What about the base query? Is this cross_fields search the right strategy? Are all
the fields appropriately weighted? Should other fields be searched? What about other
parameters of cross_fields, such as tie_breaker? The point is that all of these
options are up for tweaking and experimentation. As a relevance engineer, you never
rest when optimizing the signals underlying your queries.

COMBINING BOOST AND BASE QUERY

The next step to consider is how the Boolean query combines these queries’ scores
(d in listing 7.2). Boolean queries do a bit more than add the scores of their compo-
nent clauses. Additive boosting means you need to layer on the boost’s influence care-
fully to not overwhelm or underwhelm the base query score.

 You know by now that Boolean queries do more than add. You also need to con-
cern yourself with the coordinating factor (coord)—that strong bias toward docu-
ments that match all the clauses (here, both the boost and base queries). This can be
disabled with the disable_coord option if you don’t want this bias. You might want to
do this if the boost query is more “extra credit” than “required.”

 Finally, with all these factors, each clause has been scored and combined. Let’s exam-
ine the search results from listing 7.2 to see whether they match our expectations:

Num Relevance Score Movie Title
1 4.363374 Star Trek
2 4.0461645 Star Trek: Generations
3 3.7096446 Star Trek V: The Final Frontier
4 3.6913855 Star Trek: Nemesis
5 3.653065 Star Trek: The Motion Picture

It definitely looks better! But recall that our search is for “William Shatner Patrick
Stewart.” The first result doesn’t star William Shatner or Patrick Stewart. Maybe the
boost didn’t work?

 Examining these results, it appears that the Star Trek boost might be layered on
too thick. You’ll notice that instead of the desired result, Star Trek: Generations, we
seem to be heavily favoring the shorter Star Trek match. This is suspicious, and
leads us to think that perhaps the TF × IDF relevance score of the Star Trek phrase-
matching clause isn’t quite measuring the right signal. Why might we think this?
Recall, TF × IDF has a strong bias toward shorter fields through field normalization,
which scores the short Star Trek title match highly. Figure 7.3 shows the impact of
each layer, with the Star Trek title boost overwhelming relevance scoring.

178 CHAPTER 7 Shaping the relevance function
There’s too much boosting going on, and that boosting is based on factors you don’t
care about! The boost clause doesn’t measure the right signal. You could correct this
in various ways. The simplest option most reach for is to reduce the boost weight, low-
ering the boost from 1 to perhaps 0.25 or 0.1. This dampens the wonky TF × IDF scor-
ing. Let’s examine the result of reweighting our boost to be more carefully applied
(here we simply show the modified match_phrase clause):

{
 "match_phrase": {
 "title": {
 "query": "star trek",
 "boost": 0.1
}}}

This brings the results to a saner place. Notice how our top two results mirror the
cross_fields search from our base search earlier. But what’s improved is that subse-
quent matches bring up the Star Trek titles:

Num Relevance Score Movie Title
1 1.1662666 Star Trek V: The Final Frontier
2 1.0990597 Star Trek: Generations
3 0.6702043 Star Trek: Nemesis
4 0.62388283 Star Trek: The Motion Picture
5 0.6117288 Star Trek II: The Wrath of Khan

Nevertheless, this is a fragile solution. Simply tweaking a boost weight may postpone a
problem for another search. Another, more sound option is to improve the precision
of the signal associated with the Star Trek title matching. One way to do this is to dis-
able field normalization for this field, trying to even out the Star Trek scoring.

 The bigger question, however, is whether TF × IDF even matters here. Users think
of a “Star Trek” movie query as more of a yes/no, 1/0 sort of question. So TF× IDF
might not measure this signal correctly. We won’t solve that problem right now. Later,
when you dive into boosting strategies, you’ll see one way to step away from TF × IDF
to get to yes/no scoring.

Base
score

Trek

boost

Text-based base score
holds little weight.

Boosted
"Star Trek" film

The additive
boost overpowers
the base score.

Figure 7.3 The Star Trek title boost is
layered on too thick, and needs to be tuned
down so the base relevance score can
contribute more appropriately.

179Boosting: shaping by promoting results
7.2.4 You choose door B: function queries using math for ranking

Time to try a different strategy: door B, function queries! In your work, you’ll likely
need numerical attributes, such as a product’s profitability or an article’s popularity,
in relevance ranking. To incorporate these factors, you need to directly control the
ranking function. Function queries give you this power. With function queries, you
directly define the ranking function based on a combination of quantitative factors
(such as popularity, publication date, and profitability) and other search queries.

 Before solving our “star trek” problem, let’s look at a classic example: prioritizing
recently published news articles over old ones. When users search for “bad apple har-
vest” on a news site, a recent bad apple harvest is likely what they’re after. Unfortu-
nately, out of the box, the search engine has no notion that the recency of publication
is an important factor. The apple harvest of 1901 could easily outrank the apple har-
vest of 2011!

 You need to tell the search engine to prioritize news articles published recently.
You need to get inside users’ heads, modeling their expectations by using math.

 To define a relationship between recency and the user’s notion of relevance, let’s
start with a simple, relatively naïve formula, shown in figure 7.4. Let’s define a function,
R(m), as 1 / m, where m is the months into the past this article was published. Let’s use
this function as a multiplicative boost: a single month into the past multiplies relevance
by 1, two months knocks it down 1/2 (half as relevant), three months 1/3, and so forth.

Now, as is often the case, this first pass might not model how news users prioritize this
recency signal. Knocking down news four months old by a multiple of 1/4 might be
far too aggressive. Then again, it might not be aggressive enough!

 Just as when boosting with Boolean queries, the signal you’re building might be
inaccurate. To optimize the signal, you’re tweaking the math itself, not just TF × IDF
and other text-scoring factors (what you might call fudge factors, we call score shaping).

Recency boost function

R(m) = 1/m

R
e
le

v
a
n
c
y
 b

o
o

s
t
m

u
lt
ip

lie
r

1.00

0.50

0.25

0.75

0.00
2 3 5 6 11

Articles 1 month old
boost = 1

Articles 2 months old
boost = 1/2

Articles 4 months old
boost = 1/4

Articles 8 months old
boost = 1/8

Article age in months

121 4 10987 Figure 7.4 Naïve recency
boost for news articles

180 CHAPTER 7 Shaping the relevance function
Yet even with the increased mathematical freedom, the imperatives are the same: you
need to make sure your signals are accurate too. Here the pertinent questions are as
follows: Does the recency effect degrade too fast into the past? Or too aggressively?
Is the boost a large enough multiple? Should it degrade using a different mathemat-
ical formula? All of these questions matter in measuring how users are likely to pri-
oritize recency.

 For example, you may have learned that your users are news analysts. They priori-
tize recency but still need to occasionally research older news stories. The bad apple
harvest last year still matters. Through some tweaking (and fudging!), perhaps a
recency function such as R(m) = 8 / (5 + 3m) works better to make the recency signal
less aggressive, and more attuned to the needs of your news analysts, as shown in fig-
ure 7.5.

Manipulating math to arrive at the correct signal comes with many of the same bur-
dens as manipulating other relevance factors. Does the formula account for how users
and the business prioritize recency? This is the identical discussion as in the Boolean
query boosting, only the possibilities with arbitrary math become far more open, cre-
ating many more decision points.

7.2.5 Hands-on with function queries: simple multiplicative boosting

Let’s switch back to our Star Trek example to get our hands dirty with function que-
ries in the Query DSL. You need to see a function query in the context of something
basic before tackling larger mathematical problems. To ease you in, we’ll give you a
starting point: solving our Star Trek title boost. Later in this chapter, you’ll begin to
tackle a larger, more challenging problem that extends beyond the simple function
presented here.

Revised

recency boost function

R(m) = 8/(5+3m)

R
e

le
v
a

n
c
y
 b

o
o

s
t
m

u
lt
ip

lie
r

1.00

0.50

0.25

0.75

0.00
2 3 5 6 11

Articles 1 month old
boost = 1

Article age in months

In
it ia

l
r ecency boost funct ion

Articles 2 months old
boost ≈ 0.73

Articles 4 months old

boost ≈ 0.47

Articles 8 months old
boost ≈ 0.28

1 124 10987

Figure 7.5 Tuned recency boost:
a less aggressive recency boost
for analysts

181Boosting: shaping by promoting results
 In this case, you want documents with Star Trek titles to be multiplied by a factor
of 2.5. The function you’d like to implement applies a straightforward multiplicative
boost that, expressed mathematically, looks something like this:

B(title) = “star trek” in title? {
no : 1

 yes : 2.5

This straightforward function returns one value when a particular match occurs, and
another when it doesn’t.

 Let’s get to work! Elasticsearch’s function queries are known as function_score
_query, as shown in listing 7.3. At the heart of the function_score_query is the base
query query parameter B—another full-fledged Query DSL query. Being combined
with that query’s relevance score are mathematical functions d. Here the only
function is our simple star trek function c. By specifying a weight and a filter as
shown in listing 7.3, all documents that satisfy the filter (in this case, a phrase query
for star trek in the title) receive a value of weight (here, 2.5) for this function. The
function_score_query lets you specify how to combine the functions, but here we
leave it as the default: multiplication of all functions with the base query score.

 Let’s execute this listing and see what shakes out.

usersSearch = "william shatner patrick stewart"
query = {
 "query": {
 "function_score": {
 "query": {
 "multi_match": {
 "query": usersSearch,
 "fields": ["overview", "title",
 "directors.name", "cast.name"],
 "type": "cross_fields"
 }
 },
 "functions": [
 {
 "weight": 2.5,
 "filter": {
 "query": {
 "match_phrase": {
 "title": "star trek"
 }}}}]
 }}}
search(query)
Results:
Num Relevance Score Movie Title
1 1.9986789 Star Trek V: The Final Frontier 5.4
2 1.6982971 Star Trek: Generations 6.5

Listing 7.3 Applying a multiplier for Star Trek movies

Base
query

b

User’s
query

Functions applied
to the base query

d

Function multiplier:
base score × 2.5 when
the phrase “star trek”
occurs in a titlec

182 CHAPTER 7 Shaping the relevance function
3 0.6236526 Star Trek: Nemesis 6.3
4 0.60909384 Star Trek II: The Wrath of Khan 7.1
5 0.5075782 Star Trek IV: The Voyage Home 6.7

The end result is a reasonable boosting effect: Star Trek movies are brought to the
top. You’ll also notice that whereas in the additive boosting example you had to strug-
gle with whether the TF × IDF score of the boost query made any sense, here that
score isn’t taken into account. In some ways, though more power and responsibility is
in your hands, the end result is much simpler.

7.2.6 Boosting basics: signals, signals everywhere

You’ve seen the basic forms of boosting. One constant remains, regardless of the
query form you choose to work with: the essential power of signals. Your signal model-
ing work is fundamental to relevance. With boosting, this is especially true. Does the
boost for Star Trek layer on enough “oomph” to matter? Does TF × IDF scoring mea-
sure what’s important to users? Is the right query being used? The right mathematical
function? Do these factors map to a user’s intuitive priorities?

 The better you get at shaping the features and signals to measure this informa-
tion, the stronger your ability to solve ranking in terms that humans, not search
engines, understand.

7.3 Filtering: shaping by excluding results
The final basic ingredient when shaping scores is excluding search results. Users often
don’t want to see certain results, and your job is to ensure that they’re excluded. You
carefully craft queries to express what should be excluded, and then use finely honed
signals to control those exclusions. This way, you tune the precision by excluding
known classes of irrelevant results. This section briefly introduces filters and their role
in the overall ranking function.

 You often think of filtering when implementing user-experience features. Filters
remove a set of results from consideration. You can think of them as tools to declutter
search. Allowing users to manually select filters helps guide them to relevant content
through the user interface. Perhaps they self-selected a category, such as deciding to
limit themselves to seeing only the DVDs in a movie search, preferring to ignore the
digital streaming or Blu-ray options. Or they might filter down when shopping for a
TV to a particular set of criteria: 50-inch, plasma, free shipping. Guiding users toward
relevant content with filters is a topic of the next chapter.

 Yet filters aren’t simply a matter of controlling the user experience. Filters act as a
gate. A carefully implemented filter helps more precisely control the precision of
search results, eliminating content you’ve expressly declared as irrelevant.

 A simple example can be taken from our Star Trek search. In the previous sec-
tion, we focused on boosting the Star Trek results to the top. Another way to think
about this is to remove search results that aren’t Star Trek results. What would this
look like?

183Filtering: shaping by excluding results
 In Elasticsearch, filters take the form of a filter clause within a Boolean query.
Within the filter, you can define how you’d like to restrict the document set; in the fol-
lowing listing, we’re doing it by using a phrase query.

usersSearch = "william shatner patrick stewart"
query = {
 "query": {
 "bool": {
 "should": [
 { "multi_match": {
 "query": usersSearch,
 "fields": ["overview", "title",
 "directors.name", "cast.name"],
 "type": "cross_fields"
 }
 }],
 "filter": [{
 "query": {
 "match_phrase": {
 "title": "star trek"
 }
 }
 }]
 }
 }
}
search(query)

When scoring doesn’t matter, and you only want to show or not show a set of search
results, filtering can be a simpler solution. By scoring only a more limited set of search
results, filtering allows your boosting to work with more precision. You eliminate obvi-
ously irrelevant results, letting you avoid corner cases in your relevance.

 You ought to think about how you filter just as you think about boosting: in terms
of signals. The queries you use to filter need to measure user and business criteria
with high confidence. In the previous section, you concerned yourself with whether
that phrase query measures the right criteria. The same is true here. If, for some
reason, this isn’t the right way to measure the signal “this is a star trek film,” then
you need to think through these queries. Filter queries can get as complex as boost-
ing, as they try to include and exclude results.

 As you continue to think through ranking problems in your career, be aware of all
the tools in your toolbox. In some cases, other solutions aside from boosting might
provide more straightforward functionality.

Listing 7.4 Filtering instead of boosting Star Trek results

User’s
query

Include only
“Star Trek”
results

184 CHAPTER 7 Shaping the relevance function
7.4 Score-shaping strategies for satisfying business needs
How should you use score-shaping tools like boosting and filtering to solve your spe-
cific problems? Remember, this chapter is about bending the Query DSL to your will.
But in reality, it’s not your will that you should be concerned about; it’s all those chal-
lenging user and business ranking requirements you need to solve! This section helps
you tackle real business and user needs with the tools you’ve learned thus far.

 Score-shaping problems involve translating human, plain-English ranking priori-
ties into boosts, filters, and queries that control the ranking function. Nontechnical
bosses, content curators, and other colleagues like to ask for things such as “bring
the movies with an exact-title match straight to the top” or “boost movies that came
out in the last five years.” Your job requires translating these plain-English expecta-
tions into “search-engineese” by incorporating the right data and mastering your
search engine’s features.

 In this section, you’ll explore strategies for manipulating the search engine to
answer these questions. We introduce a framework for thinking through score-shaping
problems based on two components.

 First, our framework rests on a bedrock of high-precision boosting signals that
rank based on questions in terms our users are familiar with: “the movie is an exact-
title match” or “the movie came out > 5 years ago.” To build these signals, you incorpo-
rate the right data, carefully control the composition of fields, and govern how they’re
queried and scored.

 Second, our framework considers how you combine expectations into a larger
solution. You might want to override ranking one way based on the strength of a par-
ticular signal, otherwise falling back to a base query. On the other hand, you might
have little nudge or tie-breaker boosts—nice-to-have, lower-priority boosts that nudge
relevance up or down.

 These two phases, shown in figure 7.6, are highly interdependent.
 How much your boost nudges or overrides might depend exactly on the precision of

the signal. Perhaps it’s a text-based relevancy nudge. Or a nudge based on multiplying

Two activities of score shaping

Ranking

function

design

Implementing

ranking rules

Combining and balancing

signals

Translating requirements

into boosts & filters

Signal
modeling

Targeting

needed facts

Building fields to provide

appropriate features

Crafting queries to

match these features

Figure 7.6 Two activities of
score shaping are signal modeling
(measuring pieces of ranking
information) and the ranking
function (combining the influence
of different signals to implement
business logic).

185Score-shaping strategies for satisfying business needs
a carefully crafted function. You’re always traversing both layers, optimizing signals,
thinking how they’ll be used, and modifying the ranking function accordingly. Search
is highly iterative. With boosts, you have deep control over the ranking function—so
this is where the iterations become fun. Let’s see this philosophy in action by solving a
real problem!

7.4.1 Search all the movies!

To flex the full power of this fully functional search engine, you’re going to switch
gears. You’ve done such a good job implementing search for those Star Trek fans that
you’ve been promoted! Your next job is to implement movie search for everyone.
You’ll get a chance to implement some even more sophisticated ranking criteria to
serve this broader audience. Let’s take a second to consider what you’re being told
to implement for your search solution. Then you’ll get your hands dirty with an inter-
esting, nontrivial search solution that will mirror the tricky problems you’re sure to
face at your real job.

 You’ve been told by your boss, “To get this search right, I think you generally need
to implement the following logic in that search engine thing of yours. Here ya go:”

1 If the user’s query is a full, exact-title
match, such as a search for “Star Trek
Generations,” then that exact-title
match should come straight to the top
of the search results.

2 If the user’s query is a full, exact-name
match, such as a search for “William
Shatner,” then order results based on
how recent and well rated the movie is.

3 Prioritize search results that include a
person’s full name, such as the query
“William Shatner Star Trek.”

4 Otherwise, base your scoring on a gen-
eral text-based relevance of the user
and a query.

Figure 7.7 captures these rules as a flowchart.
 There’s quite a bit to unpack. The first

two criteria make it important to measure
exact matches with high precision. You’ll
have to craft fields that can capture this rank-
ing signal. Implementing step 2, the exact-
name match, is interesting. You’ll likely
match many films when searching for a per-
son, so your boss is thinking ahead when they

Yes

No

Yes

Yes

No

Flowchart of movie search ranking rules

(from the vantage point of the business)

No

Boost

slightly

Rank based

on recency

and rating

Select this

result

(2) Exact

name match?

(3) Partial

name match?

(4) Add

base query

(1) Exact title

match?

Figure 7.7 Flowchart representation of
the custom business ranking rules as
understood/specified by the business

186 CHAPTER 7 Shaping the relevance function
come up with how these ought to be ranked. Users, your boss is thinking, may want to
see the latest and best offerings for that actor or director. You’ve been working on step 3
for about two chapters by now. So your boss must continue to have confidence in your
abilities. You’ll see how you can use this to boost relevance for a narrow set of matches,
similar, as you may recall, to what you worked with at the end of the preceding chap-
ter. Finally, step 4, your base relevance score, measures how many search terms match
the overall document. Recall from the previous chapter, term-centric search imple-
ments this functionality.

 Sounds like great marching orders, but hopefully alarm bells are going off in your
head. How does the business know these are the right criteria? Why should these be
the priorities for your ranking solution? These are important issues, but fret not, in
future chapters you’ll get answers to those precise questions. Getting the criteria right
is important! But so is knowing how to translate these plain-English ranking rules to
search-engineese, which you get to focus on in this chapter.

 Let’s get started! Your first step when given this criteria is looking at your fields to
see whether you can implement the required signals. Once you have confidence
that you can support the required signals—that your fields can turn into facts—then
you begin to work on the second piece of boosting: crafting the ranking function to
your needs.

7.4.2 Modeling your boosting signals

As a relevance engineer, when you’re told to boost by something like “when the search
is an exact match for the title,” your next question ought to be, how exactly do I mea-
sure that? That’s what you’ll tackle in this section. You’ll translate the whims of human
language into an implementation of a particular signal that you can work with in a
larger ranking function. You’ve done this a few times already in this book. Yet this
step is fundamental to being able to program relevance ranking rules. Without action-
able information, how do you know whether your ranking function is prioritizing
the right documents?

 To implement your business requirements, you need to make sure that you can
answer these important questions before crafting the overall ranking function:

■ Is the user’s query a full, exact match to the title?
■ Is the user’s query a full, exact match to the full name of an actor or director?
■ Does the user’s query contain the full name of an actor or director?

Your goal is to create highly discriminating signals. You need signals that act like
snobby wine critics—carefully letting the essence of each document waft under their
discerning noses and accepting a document only after careful consideration. You’ve
begun this process: you have reasonable name-matching fields based on bigrams from
previous chapters. These address your third criteria—whether part of the query
matches a person on the film with high precision. We’ll get back to our old name-
matching friend, but first let’s look at how to measure the other ranking criteria.

187Score-shaping strategies for satisfying business needs
 Two of these signals require exact, not partial, matching. To accomplish this, you
can’t simply wrap the user’s query text into a phrase query. A search for the phrase
“Star Trek” will match any document with Star Trek in the title, including Star Trek:
Generations. This isn’t an exact match between query and title. No, you want to boost
only when the terms from the query line up exactly to the text in the title.

 So now it’s time for more signal modeling! You need to build a field that can mea-
sure this information with high precision. Astute readers might be thinking—exact
matches? That’s easy! Disable tokenization or use the keyword tokenizer to search on
the exact-title string. This would generate exact tokens such as star trek or star
trek: insurrection. Yes, that might work, but it rarely returns what you want. You
want some analysis, even when doing so-called exact matching. For example, you’d like
to remove that pesky colon in star trek: insurrection to help the user searching
without the colon. You might also want some amount of stemming or any other form
of per-term normalization.

 Instead of disabling tokenization, you’ll use a technique referred to as sentinel
tokens. Sentinel tokens represent important boundary features in the text (perhaps a
sentence, paragraph, or begin/end point). In this case, you’ll inject the following
begin and end sentinels into the title text:

"SENTINEL_BEGIN Star Trek SENTINEL_END"

These sentinels are tokens representing the beginning and end of the string. Then,
when you search, you include the sentinels in the query, searching for the phrase
query “SENTINEL_BEGIN <user query> SENTINEL_END.” The result is a document
that matches only when the phrase query matches and the correct sentinels are in the
right place (in this case, when the beginning of the text and end of the text coincide).

 You could implement this in a couple of ways. One intelligent way is to write a
plugin for your search engine. As you may recall from chapter 4, token filters inter-
cept and modify the token stream during analysis. You can write your own Lucene
token filters to inject boundary features. Pick up a great Solr, Elasticsearch, or Lucene
book to show you how. For brevity, you’ll take the simpler road, injecting the sentinels
outside the search engine.

 First, you’ll modify your TMDB index function to inject the sentinel characters
before and after the title in a new field you’ll call title_exact_match. To do this,
you’ll modify your TMDB reindex function to call a transform function before
indexing. This will be your little hook to manipulate the document before going off
to Elasticsearch.

 for id, movie in movieDict.iteritems():
 ...
 esDoc = movie
 transform(esDoc)
 ...

188 CHAPTER 7 Shaping the relevance function
Next, you’ll define the transform function to create the field you need to answer our
question with the sentinel tokens included.

SENTINEL_BEGIN = 'SENTINEL_BEGIN'
SENTINEL_END = 'SENTINEL_END'
def transform(esDoc):
 esDoc['title_exact_match'] = SENTINEL_BEGIN + ' ' + \
 esDoc['title'] + ' ' + SENTINEL_END

reindex(analysisSettings, mappingSettings, movieDict)

I hope your head is swimming with all kinds of questions about how well this will work.
Are all these settings, analysis, mappings, and so forth appropriate to measure this sig-
nal? There are many possible optimizations to think about. Remember the default
analyzer? It’s the entity whose job it is to break the string into tokens. We’re set up to
default to the English analyzer. Is that appropriate? The English analyzer will match
“Stary Trek” to star trek because of stemming—do you want this behavior? Or do
you want something as close as possible to character-by-character exact match? Your
job is to sweat many of these details to ensure that you’re measuring the ranking sig-
nal important to your users.

 For now, let’s see what happens when you issue a query for this exact-match signal.
Does searching using the sentinels against this field give you the signal you need?

usersSearch = "star trek"
query = {
 "query": {
 "match_phrase": {
 "title_exact_match": {
 "query": SENTINEL_BEGIN + ' ' + \
 usersSearch + ' ' + SENTINEL_END,
 "boost": 0.1
}}}}
search(query)
Num Relevance Score Movie Title
1 7.172676 Star Trek

Great, this works! You’ve built a field expressly for exact matching. As you grow in
your skills, you’ll keep being nagged by questions. Is TF × IDF scoring important here?
Will I use it as a signal of something? Likely not. As your skill increases, so will your
awareness of all the factors that can impact the signal you’re measuring.

Listing 7.5 Injecting begin/end sentinels for exact matching

Listing 7.6 Isolated testing of your exact-match signal

User’s
query with
sentinels

189Score-shaping strategies for satisfying business needs

h
 Finally, you’ll repeat the same process for your name field. For this field, you’ll cre-
ate a non-bigrammed, regular old text field, just like the preceding one.

SENTINEL_BEGIN = 'SENTINEL_BEGIN'
SENTINEL_END = 'SENTINEL_END'
def transform(esDoc):
 esDoc['title_exact_match'] = SENTINEL_BEGIN + ' ' + \
 esDoc['title'] + ' ' + SENTINEL_END
 esDoc['names_exact_match'] = []
 for person in esDoc['cast'] + esDoc['directors']:
 esDoc['names_exact_match'].append(SENTINEL_BEGIN + ' ' +
 person['name'] + ' ' +
 SENTINEL_END)

Now you have some ingredients to work with in your larger relevance solution. You’ve
built and tested relevance signals in isolation. Next you’ll look at how to incorporate
the name and title exact matching signal into the larger ranking function. You can
always come back to this piece if you need to improve any aspect of your ranking (or
come up with a signal completely anew).

7.4.3 Building the ranking function: adding high-value tiers

With the pieces in place, the next step is to ask precisely how to combine them into a
larger ranking function. The ranking function is where signals collide—hopefully into
a harmonious whole, not a train wreck!

 This section introduces one of our favorite shaping techniques: building scoring
tiers. It’s often useful to express ranking in terms of tiers based on your confidence in
the information provided in the boosting signals. Particular signals that provide
unequivocal information about what’s being searched should not simply be “layered
in” or “balanced against other factors.” If you have truly high-precision, discerning sig-
nals that definitively point at what’s being searched for, then to even consider much
else would be foolish. Instead, in this technique you let these higher-value matches sit
on their own highly scoring tier, pushing their scores into a class all their own. Scoring
at those tiers is dictated by what’s important for those sets of search results, such as the
exact matches of the previous section.

 Figure 7.8 shows two kinds of scores. First there are the base, black scores. These
match the base query. This query pulls in a wide net of possibly relevant results. In our
example, you’ll reuse the term-centric search from earlier in this chapter. Second
there are enhanced, white bars. These results have been heavily boosted.

 You could implement this high-value tier with a variety of boosting techniques.
Listing 7.8 uses a Boolean query; you can see the boost query as the first Boolean

Listing 7.7 Name and title exact-match fields

Adds title exact
match field

with sentinels

Adds name
exact matc
field with
sentinels

190 CHAPTER 7 Shaping the relevance function

clause. Notice how the boost weight d is set astronomically high—all the way to
1,000.

query = {
 "query": {
 "bool": {
 "disable_coord": True,
 "should": [
 {"match_phrase": {
 "title_exact_match": {
 "query": SENTINEL_BEGIN + " " + \
 usersSearch + " " + SENTINEL_END,
 "boost": 1000,
 }
 }},
 {"multi_match": {
 "query": usersSearch,
 "fields": ["overview", "title",
 "directors.name", "cast.name"],
 "type": "cross_fields"
 }},

]
 }
 }
}
search(query)

Listing 7.8 Boolean boost on exact-title matching

Creating a high-value tier of results

Exact-title match boost

Base score
R

e
le

v
a

n
c
e
 s

c
o
re

Documents sorted by overall score

An additive boost can be used
to elevate high-confidence
matches into their own tier...

...even if their base text match
score might be lower than
some of the other documents.

Figure 7.8 High-recall base query
in black augmented with a high-
precision tier of unequivocally
more valuable search results

Boosting query—
exact movie title
match

b

High boost
to create an
overriding effect

d

Base
query

c

User’s
query

191Score-shaping strategies for satisfying business needs
You can see that the results for a search for “Star Trek” are promising, bringing the
target straight to the top:

Num Relevance Score Movie Title
1 7.1752715 Star Trek
2 0.0020790964 Star Trek: The Motion Picture
3 0.0020790964 Star Trek: Nemesis
4 0.0020790964 Star Trek: Insurrection
5 0.0020790964 Star Trek: First Contact

And here’s a search for “Good Will Hunting”:

Num Relevance Score Movie Title
1 7.914943 Good Will Hunting
2 0.0016986724 The Hunt
3 0.0012753583 Good Night, and Good Luck.
4 0.0011116106 As Good as It Gets
5 0.00058992894 Saw V

Here you’ve added a little rule to your ranking function that should work well for a
common use case—exact-title matching. As you move forward with your problem,
we’ll begin to call out specific patterns in the boosting.

ADDING A NEW TIER FOR MEDIUM-CONFIDENCE BOOSTS (THE BIGRAMS STRIKE BACK!)
So far you’ve added one tier to the larger Boolean query: the exact matches. Let’s exam-
ine another precise but less exacting case: a search that contains a full name as part of
the search. This case calls for some prioritization, in its own tier, but not quite as much
as exact-name matches. To incorporate this boost, you’ll work from two directions:

■ You’ll use a smaller boost of 100 to create an intermediate tier.
■ You’ll optimize the signal in the bigram matching, to ensure that you measure

what’s important.

The second point is the most pressing. Let’s start with the bigram name matching from
the previous chapter. You used a cross_fields search over cast.name.bigrammed and
directors.name.bigrammed. In the following listing, we use this query as a boost along-
side the base query. Unfortunately, it turns out that running the combined query
doesn’t always end up with great results, as in this search for “Star Trek Patrick Stewart.”

 'query': {
 'bool': {
 'should': [
 {'multi_match': {
 'query': usersSearch,
 'fields': ['overview', 'title',
 'directors.name', 'cast.name'],
 'type': 'cross_fields'
 }},
 {'multi_match': {
 'query': usersSearch,

Listing 7.9 Adding a clause for bigrammed matches (base query not shown)

Base
query

User’s
query

Mid-tier layer
for name
matching

192 CHAPTER 7 Shaping the relevance function
 'fields': ['directors.name.bigrammed',
 'cast.name.bigrammed'],
 'type': 'cross_fields',
 'boost': 100
 }}]}}

1 0.21988437 Star Trek: Insurrection 6.3 1998-12-10
2 0.21988437 Star Trek: First Contact 6.9 1996-11-21
3 0.19890885 Gnomeo & Juliet 5.9 2011-01-13
4 0.19890885 Excalibur 6.7 1981-04-10
5 0.19462639 Star Trek: Nemesis 6.3 2002-12-12

It’s odd that Gnomeo & Juliet and Excalibur rank higher than Star Trek results. Why do
these non–Star Trek Patrick Stewart results override the Star Trek ones? Turning to the
explain, you see that, oddly, the Excalibur match on “Patrick Stewart” gets scored
higher than Star Trek: Nemesis.

 Here’s Excalibur’s score:

0.5910474, weight(cast.name.bigrammed:patrick stewart in 315)

The Star Trek: Nemesis match receives a lower score:

0.5171665, weight(cast.name.bigrammed:patrick stewart in 631)

So why the difference? The Excalibur match receives a higher score because of the
field norms. Remember this bias toward shorter fields? Excalibur has a smaller crew, so
matches here appear more relevant to the search engine. But our users don’t care
about this; that factor doesn’t matter in answering the question, “Does the movie star
Patrick Stewart?”

 Time to do more signal modeling. Just as with the previous sentinel tokens, you’ll
need to tightly control field matching and scoring. You can revisit the mapping, rein-
dex with norms disabled, and rerun the search query. First, dig back into the deeply
nested mapping to disable norms and reindex the movies:

mappingSettings['movie']['properties'] \
 ['cast']['properties'] \
 ['name']['fields']['bigrammed']['norms'] = {'enabled': False}

reindex(analysisSettings, mappingSettings, movieDict)

Searching again, you see that the intermediate tier makes more sense:

1 0.03920228 Star Trek: Insurrection 6.3 1998-12-10
2 0.03920228 Star Trek: First Contact 6.9 1996-11-21
3 0.03917096 Star Trek: Nemesis 6.3 2002-12-12
4 0.03917096 Star Trek: Generations 6.5 1994-11-17
5 0.03820324 Gnomeo & Juliet 5.9 2011-01-13

All Patrick Stewart movies move to the top. Within that set, the base query for “Star
Trek Patrick Stewart” ranks more precisely.

193Score-shaping strategies for satisfying business needs
BUILDING A TIERED RELEVANCE LAYER CAKE

In the preceding examples, you implemented part of the ranking criteria asked for by
your business. Exact-title matches were so compelling that your boss told you to
ignore all other considerations. Placing exact-title matches in a higher-scoring tier
does this. Similarly, name matches were compelling, but less overwhelmingly so.

 Both of these boosts work well because you optimized their queries to more closely
align to the needed signals. The boost query is assigned a boost weight in these situa-
tions not because the query has that level of priority, but because the signals are so
unbelievably precise and discriminating. Matching each means winning the relevance
lotto. For once, you happen to know exactly what’s being searched for, so take advan-
tage of that! You’ll use another high-value strata in the next section as you think
through exact-name-matching criteria, but the focus will shift to a more mathematical
modeling of users’ goals.

7.4.4 High-value tier scored with a function query

The next major challenge requires you to flex even deeper muscle in programming
the ranking function. As you program relevance, you’ll learn increasingly sophisti-
cated techniques that build on each other. In this section, you’ll take the high-value
tier from the previous section and combine it with a second technique: the careful
incorporation of a finely tuned function query based on features of the film.

 The business has asked for specific ranking criteria when there’s an exact-cast-
name match. In these cases, your boss wants to show a combination of popular and
recently released films. Doing this requires you to flex two sets of ranking muscles
simultaneously, as depicted in figure 7.9.

First, you need to bring those high-confidence, exact-name matches up into their own
scoring tier. You know that these exact-name matches stand above the rest, so they
should be selected aggressively. Second, and new to this section, that scoring tier

Conditionally scoring actor/director

matches by recency of release & user rating

Yes

No

Exact name
match?

Compute
recency boost

Compute
rating boost

Multiply Done

Figure 7.9 Flowchart representing the custom business ranking rules for exact-name
(cast/director) matching

194 CHAPTER 7 Shaping the relevance function
needs its own method of ranking. It needs to be based on two features of the films
associated with those actors: the recency of their release and their user ratings.

 You’ll incorporate three parts in this next component of your query:

■ The exact-name matching itself, used to trigger recency and rating
■ The recency of the film, based on the release date
■ The user rating, the 1–10 average rating from all the users’ individual ratings of

the movie (1 meaning terrible, 10 meaning best ever)

Your job in this section is to combine the influence of the latter two, but only when
the first criteria (the exact-name matching) triggers.

 As you build this part of the query, you’ll become aware of how large these queries
can get! You may be about to build one of the largest Query DSL queries you’ve ever
worked with. Yet you’re learning to cope with these behemoths in the same way you
think through any large piece of code. Each scoring component has a purpose, a sig-
nal that it’s lending to the overall ranking function. If you feel overwhelmed in your
work, never hesitate to bring it down to a simpler level: working with the component
queries in isolation before combining them.

 How will you go about adding this functionality to the larger query? This query will
be built into the Boolean query from the preceding section. You’ll end up with three
clauses: two you’ve already introduced, and a third, your new Boolean query. This
Boolean query will look something like this:

■ SHOULD: Base query (listing 7.8 c)
■ SHOULD: Full query exactly matches a title, boost 1,000 (listing 7.8 B)
■ SHOULD: Query contains full name, boost 100 (listing 7.9)
■ SHOULD: Full query exactly matches a name (new to this section)

7.4.5 Ignoring TF × IDF

You want to rank a film by its user rating and recency of release, but only when the
query is an exact-name match. This ranking doesn’t depend, at all, on the TF × IDF of
the exact-name text query. This isn’t uncommon: frankly, many times you need a sim-
ple yes/no instead of the TF × IDF score. You saw this earlier when working with the
star trek title boost. Let’s begin to dig into the exact-name function query, demon-
strating a technique for omitting TF × IDF.

 As you might guess, because scoring for this query will be dominated by two numeri-
cal factors, recency and user ratings, you’ll use a function_score query. Recall that with
a function query, you specify a base query with the query argument. Your first attempt
could be to insert the exact-name-matching phrase query as the base query:

query = {
 "query": {
 "function_score": {
 "query": {
 "match_phrase": {

195Score-shaping strategies for satisfying business needs
 "names_exact_match": SENTINEL_BEGIN + \
 " william shatner " + \
 SENTINEL_END
 }},
 ...

You need to make one change here; you need to consider the fact that the TF × IDF
score of this query is unlikely to be useful. Remember, by default the function_score
query will take the score for the query and multiply it by the resulting functions. This
means multiplying the TF × IDF score of the exact-name matching by the functions.
In some cases, you need a way to ignore the TF × IDF scoring. To do this, you can wrap
your query in a constant_score query. This lets you hardcode the resulting query’s
score to a constant (the boost value). As you’re focused on bumping this score into a
discriminating higher tier, let’s set this constant to a very high 1,000:

 "function_score": {
 "query": {
 "constant_score": {
 "query": {
 "match_phrase": {
 "names_exact_match": SENTINEL_BEGIN + \
 " william shatner " + \
 SENTINEL_END
 }
 },
 "boost": 1000.0}}

Great! So now your base relevance score will be constant when the user’s query
matches exactly with an actor or director name.

 To complete this query, you need to think through the functions themselves. You
need to balance two considerations: the user rating and the recency. Each provides a
signal to tune in isolation. So for a bit, you’ll work on these in isolation. You’ll see
how each signal takes advantage of its own set of techniques to line up its influence
with user expectations. Getting these signals precise and lined up to user expecta-
tions is crucial.

7.4.6 Capturing general-quality metrics

First, let’s consider a boost on user rating. It’s time to get back to thinking mathemati-
cally. The user rating field (called vote_average) is an example of a document prop-
erty that directly measures the content’s value. You’ll often boost on other similar
direct indications of quality: profitability, popularity, page views, and other factors. In
this section, as you hone this signal, you’ll explore what it means to include these gen-
eral-quality features. Should you take its value directly or modify it somehow? Perhaps
temper it down? Or should it be magnified? What do users think of the importance of
this quality metric?

196 CHAPTER 7 Shaping the relevance function
 Incorporating vote_average depends on Elasticsearch’s field_value_factor
function. This function lets you take a field’s value and use it directly. Optionally, you
can apply a few simple modifiers and functions. In the following listing, for example,
you take the square root of vote_average and multiply by 2.

query = {
 "query": {
 "function_score": {
 "query": {
 "match_all": {}
 },
 "functions": [
 {
 "field_value_factor": {
 "field": "vote_average",
 "modifier": "sqrt",
 "factor": 2
 }}]
 }}}

This can be visualized in the graph shown in figure 7.10.

Listing 7.10 Factoring in user’s ratings of the movies

R
e
le

v
a
n
c
e
 b

o
o
s
t

vote_average

Largest possible
boost: 6.32

6.0

5.0

4.0

3.0

2.0

1.0

0.0
1 2 5 6

Half of the largest possible
boost goes to documents

with a of 2.5.vote_average

Damped movie quality metric

10943 87

Figure 7.10 Boosting user rating, an indication of content quality. The square root
is taken to dampen the effect in line with how users perceive this metric’s value.

197Score-shaping strategies for satisfying business needs
Why take the square root? You’re aiming for a signal that measures how important
the user considers movie ratings. If you took the value directly, a rating-10 movie
would be considered twice as valuable as a rating-5 movie. Users rarely perceive the
influence of quality factors so starkly and directly. Taking the square root, as you can
see by examining the graph, roughly ranks a rating-3 movie as half as important as a
rating-10 movie.

 These quality metrics are tricky, as you rarely want to incorporate them directly as a
signal. Just as you did here, you have to ask how users perceive the value as a function
of these features. For example, what if instead of a 1–10 user rating, this quality metric
had been something like the number of page views of the movie’s TMDB home page?
Most pages have single-digit page views. A fractional amount have several hundred. A
small handful get thousands, and one or two get millions of page views. Is a page that
gets a million views a million times higher quality? No! It might be more reasonable to
your users to measure it as twice as important. How you tone down the influence of
these factors can be crucial. Users’ considerations are more subtle than simply ham-
mering in the quality metric directly.

7.4.7 Achieving users’ recency goals

You’re still working on creating custom ranking rules when users match exactly on
cast or director names. The second signal to consider for this case is the user’s percep-
tion of the importance of a movie’s recency. You’ll see in this section that ranking is
often about modeling how far a result is from an expressed goal. For example, users
want to rank news items close to the present, or restaurants close to their home, or
perhaps televisions near their target price. Elasticsearch’s built-in decay functions rank
based on how far documents are from target goals. You’ll see in this section how to
think through modeling a simple goal-based ranking problem based on a TMDB
film’s recency.

 At the core, though, is how you express goals to the search engine with three pri-
mary variables: origin, decay, and scale. The origin is meant to indicate the user’s goal
(or ideal). At the origin point, scoring is at the highest (a 1.0). The scale is also a point,
off in the distance. At this location, you can imagine the user declaring, “At this point
from my goal, I consider the document this much less valuable.” It’s as if the user were
saying, “If I have to drive 20 minutes from home to pick up food, that food is now half
as interesting to me.” How do you declare how much less valuable? Well, that’s the
decay parameter’s job. It states the value at a certain location, given the scale. Taken
together, you could rephrase the user’s restaurant statement: “If I have to drive
<SCALE> minutes from <ORIGIN> to pick up food, that food is now <DECAY> less
interesting to me.”

 Given our query, you’ll start by stating that movies released 900 days ago (Elastic-
search helps with same-date syntax) will have roughly a score of 0.5, or be considered
half as valuable to users. This is expressed in the following isolated query.

198 CHAPTER 7 Shaping the relevance function
query = {
 "query": {
 "function_score": {
 "query": {
 "match_all": {}
 },
 "functions": [
 {
 "gauss": {
 "release_date": {
 "origin": "now",
 "scale": "900d",
 "decay": 0.5
 }}}]
 }}}

The equation for this Gaussian decay is complex, but to give you an idea of how it
behaves, we’ve included the graph in figure 7.11. This graph demonstrates the user’s
perceived value for an actor’s or director’s film as a function of days into the past, show-
ing that films 900 days into the past are half as valuable. As movies move five to six years
into the past, the influence of this function begins to approach 0—near worthless!

 Here, you might ask whether the decay function is too aggressive. Perhaps scale is
too close in. Why’s that? Consider one possible use case: a user searching for an actor

Listing 7.11 Gaussian decay from the user’s recency goal

Gaussian decay function

R
e
le

v
a
n
c
e
 b

o
o
s
t

0.0

0.2

0.4

0.6

0.8

1.0

100

Days into the past

Documents 900 days old are
considered half as valuable

(scale = "900d", decay = 0.5)

Items are
considered most
valuable if they
occurred 0 days

in the past

0.5

1.6k1.5k1.4k1.3k1.2k1.1k1.0k900800700600500400300200

Figure 7.11 A multiplicative boost controlling the impact of distance from your user’s goal;
here the goal is movies released “now,” with movies released 900 days into the past
considered half as valuable.

199Score-shaping strategies for satisfying business needs
wants not only recent films but also films considered classics for that actor. You need
to apply a careful balancing act between the conflicting goals of users who want the
most recent films and those who want an understanding of what the really great films
are, regardless of the recency.

 Now this is an interesting point, because not all users are the same. As we discuss in a
later chapter, one option could be to suss out which users have which priorities. For the
purposes of this chapter, however, let’s come up with a reasonable, generic solution. The
proposed function considers films from even five to six years ago near worthless,
approaching 0. It’s unlikely, you decide, that the average user considers films from not
this long ago that invaluable. For now, let’s extend how far into the past this function
decays. Instead of a scale of 900 days, let’s use something far more conservative: 15 years.

 The graph in figure 7.12 demonstrates this modified function. The x-axis measures
thousands of days. The decay happens gradually, over the course of decades, instead
of quickly over the course of a few short years.

This function, you decide, is probably a better model of the average user’s recency
goals when matching on cast/director names. Now you’ve modeled the user as think-
ing that films released 15 years into the past are half as valuable. As is true with any sig-
nal, this is a starting point. You can always revisit this signal in isolation to assess whether
it’s still too aggressive. (Plenty of amazing movies came out more than 15 years ago!)
Fine-tuning these knobs to generate the right signal is a matter of readjusting your
understanding of the goals. Luckily you now have all the tools you need to calibrate rel-
evance to users’ goals.

More gradual Gaussian decay function

R
e

le
v
a

n
c
e

 b
o

o
s
t

0.0

0.2

0.4

0.6

0.8

1.0

Days into the past

Now, documents 15
years old (~5500

days) are considered
half as valuable

(scale = "5500d",
decay = 0.5)

Highest value
still goes to 0

days in the past

0.5

2k 3k 4k 5k 6k 7k 8k 9k

p
re

v
io

u
s

d
e

c
a

y
fu

n
c
t io

n

9
0
0
 d

a
y
s

1k

Figure 7.12 A tweaked multiplicative boost for movies; movies released 15 years into the past are
deemed half as valuable.

200 CHAPTER 7 Shaping the relevance function
 These decay functions give you the ability to generate a signal based on how far an
item is from a user’s goal. This is a common pattern, not just something limited to
dates and geography. Consider a real estate search in which ranking is based entirely
on whether a home meets a user’s goals. Factors such as school quality, commuting
distance, price range, and proximity to parks can be ranked by how far an item is from
where a user ideally would like to be. Sometimes these ranking problems aren’t seen
as search, but as more of a kind of machine-learning problem. But here the lines
begin to blur. You’re seeing how search engines are a framework for programming all
kinds of ranking capabilities, based on far more than just text factors.

7.4.8 Combining the function queries

It’s time to start building back up to our main query. Remember, you’ve been going
down a path trying to model two signals that matter to users who search for exact actor/
director names. You’ve been trying to consider how much the movie’s rating and its dis-
tance into the past might matter to users. It’s time to get back to programming the main
ranking function. To do that, let’s consider the impact of combining these two curves.

 You need to visualize how multiplying these two variables will impact the relevance
score to determine whether their influence is appropriate. One way to visualize this is
to draw a cool 3D graph. Yet sometimes overlaying a few 2D graphs, each of which var-
ies one of the variables, can be a more useful way to answer critical questions. The
graph in figure 7.13 represents the multiplication of the movie rating function and
the decay function.

Recency boost at varying
user-rating levels

R
e
le

v
a
n
c
e
 b

o
o
s
t

0.0

Days into the past

3k 4k 5k 6k 7k 8k 9k

1.0

2.0

3.0

4.0

5.0

6.0

vote_average = 1

vote_average = 2

vote_average = 3

vote_average = 4

...

vote_average = 5

...

...

...

vote_average = 10

1k 2k

Figure 7.13 Recency curves based on the user rating (vote_average) field
for a movie, demonstrating how both recency and user rating impact the
relevance score for exact-name matches.

201Score-shaping strategies for satisfying business needs
The bottommost line corresponds to the recency graph of movies with a rating of 1.
The topmost corresponds to movies with a rating of 10. What does this tell us about
the combination of these two factors? One thing to notice is how movies of rating 1
relate to movies of rating 10. At what point into the past does a movie with a rating of
10 become less relevant than a movie with a rating of 1? This happens a little past day
6,000, or roughly 16.5 years from now.

 You can reflect on the combination of these two factors. How do they work together
to signal relevance? This is particularly true here: these functions are the relevance cal-
culation for this case. Isolating how they work together can help you reason through
their impact. Do these two factors have the right priority? What could be improved?
Perhaps the recency should have a floor; users may want a slight nudge toward recent
films, and care little about the difference between 80s and 70s films, for instance.
Reflecting on and evaluating all of these factors is your constant job—and as you’ll see
in chapter 10, the whole organization’s job!

 Finally, with these functions taken together, let’s complete the person exact-matching
query. This in turn will be folded into the larger query.

usersQuery = "patrick stewart"
query = {
 "query": {
 "function_score": {
 "query": {
 "constant_score": {
 "query": {
 "match_phrase": {
 "names_exact_match": SENTINEL_BEGIN + " " + \
 usersSearch + " " + \
 SENTINEL_END
 }},
 "boost": 1000.0
 }},
 "functions": [
 {
 "gauss": {
 "release_date": {
 "origin": "now",
 "scale": "5500d",
 "decay": 0.5
 }}},
 {
 "field_value_factor": {
 "field": "vote_average",
 "modifier": "sqrt"
 }}
}}}
search(query)

Listing 7.12 Clause for exact-name matching, ranking based on recency and user rating

Base query, score simply
taken as the “boost”

Boost for
recency

Boost for
rating

202 CHAPTER 7 Shaping the relevance function
Results:
Num Relevance Score Movie Title vote_average release_date
1 2.762838 X-Men: Days of Future Past 7.7 2014-05-23
2 2.4984634 The Wolverine 6.4 2013-07-25
3 2.4377568 Ted 6.3 2012-06-29
4 2.2800508 Gnomeo & Juliet 5.9 2011-01-13
5 1.9779315 TMNT 6.0 2007-03-22

Interestingly, our search for “Patrick Stewart” results first in a relatively high-rated film
that was released relatively recently. Notice too the difference between the fourth and
fifth results. A 5.9-rated movie released in 2011 outranks a 6.0 released in 2007. These
expectations seem to correspond to the preceding graph that demonstrates the
impact of different ratings.

7.4.9 Putting it all together!

This query is simply a single clause in an even larger query! Yet we’ll spare you from
seeing the full thing (you can view the examples on GitHub to see the full query in all
its glory). Nevertheless, outlined in your overall query is a set of four Boolean clauses,
including these criteria:

■ SHOULD have full query exactly matching the title (listing 7.8, B)
■ SHOULD have full query, exactly matching a director’s or cast member’s full

name, scored by popularity and recency (listing 7.12)
■ SHOULD have part of the query match a director’s or cast member’s full name

(listing 7.9)
■ SHOULD have all the user’s query terms match somewhere in the document

(listing 7.8, c)

Combining these four SHOULD clauses in one bool query, you’ve done it! You’ve
solved a particularly complex ranking problem. You’ve taken thoughts, whims, and
requirements expressed in English and brought them to the search engine—bending
the search engine to your will!

 Now you can begin to ask some of the bigger questions. Just as in real program-
ming, once you realize that you know how to program, you suddenly become con-
scious of the larger question: exactly what should you be programming? In the same
way, as you become increasingly confident with programming relevancy, you’ll
begin to see that this challenge applies to relevance as well. As you move into future
chapters, finding the right ranking requirements will become front and center.
How do you define what requirements/use cases are important to your search? How
do you test to make sure you’re continuing to meet requirements? Here they’ve
been given to you—a technical challenge. As you’ll see in future chapters, real life is
never so simple!

203Summary
7.5 Summary
■ Score shaping, including techniques such as boosting and filtering, is about

programming results ranking to satisfy your business/user needs.
■ Boosting comes in several forms: Boolean and function queries, additive and

multiplicative approaches.
■ Boolean queries abstract ranking for you, providing a simple means to add a

boost. Calibrating them correctly layering on additive boosts.
■ Function queries allow you to take control of ranking math by boosting in arbi-

trary forms. Calibrating them means modeling user priorities mathematically.
■ Filters often provide an alternative to boosting, removing low-priority results

instead of trying to promote high-priority results.
■ Score shaping depends on your ability to implement high-quality signals and

incorporate them in the ranking function based on business rules.
■ High-quality signals can be prioritized by placing them in their own scoring tier.
■ You can implement a broad range of ranking forms, including modeling user

goals, incorporating content quality metrics, and the like.

Providing
relevance feedback
To this point, we’ve discussed how to deeply manipulate relevance ranking. In this
chapter, you’ll see that relevance ranking isn’t the only way to guide users to rele-
vant content. Search enables a multifaceted conversation between the user and the
search engine. Because the relevance portion of this conversation is never perfect,

This chapter covers
■ The ongoing, multifaceted conversation

between user and search
■ Methods, besides relevance ranking, for getting

users to relevant content, including
– Guiding users toward better search queries
– Correcting users’ searches through spell-

checking
– Highlighting why documents are relevant to

user searches
– Explaining to users how their search is

interpreted

– Allowing users to filter out irrelevant content
from the result set
204

205
your users will always thank you for additional guidance toward relevant content. In
this chapter, you’ll steer the many layers of the search conversation beyond relevance
ranking by building features that do the following:

■ Explain to users how their query is being interpreted
■ Correct mistakes such as typos and misspellings
■ Suggest other searches that will provide better results
■ Convey an understanding of how documents are distributed in the corpus
■ Help users understand why a particular document is a match
■ Help users efficiently understand the result set

We term these conversational aids relevance feedback. In this chapter, we provide an over-
view of relevance feedback across three areas of search user experience: the search box,
browsing and filtering, and the search results. Figure 8.1 shows the activities covered in
this chapter; the relevance engineer implements supporting capabilities to guide the
user toward relevant content in the various parts of the search application.

Picard and the crew of the Enterprise-D find

themselves at odds with the renegade scientist ...

Star Trek: First Contact The Borg, a(1996)

relentless race of cyborgs, are on a direct course

for Star Omega. Violating orders to stay away ...

Star Trek (2009) The fate of the galaxy rests in

the hands of bitter rivals. One, James Kirk, is a

delinquent, star-gazing Iowa farm boy. The ...

User

in
d
ex

in
g Query

inverted
index

Respon
se

a
n
alysis

Relevance engineer

William Shatner

Patrick Stewart .

Chris Pine

(5)

(3)

(2)

Actors

Dates
1980s
1990s
2000s
2010s

(1)

(3)

(4)

(2)

star tre search

Search
autocomplete

Facets and
filtering

Narrow Your Choices

Highlighting

Part of relevant search is helping your users
understand the results so that they can further

refine their search. This is called relevance
feedback. Here are a few examples.

Star Trek Generations (1994) Captain Jean-Luc

star trek the next generation

star trek original series

Figure 8.1 Relevance feedback helps users refine their searches and find the
information they seek.

206 CHAPTER 8 Providing relevance feedback
In your work, you’ll see that guiding the user’s search behavior can be an easier prob-
lem to solve than perfect relevance ranking. In this chapter, you’ll find alternate paths
for the user to reach relevant content. We won’t be exhaustive. There are innumera-
ble forms of relevance feedback, and countless methods for implementing them.
Rather, we hope to get you started down a crucial path of the relevance engineer:
enabling the two-way search conversation through any means possible.

8.1 Relevance feedback at the search box
The user and search application first interact at the search box. You may be surprised
by the extent to which search box interactions provide the user with relevance feed-
back. By providing information to users while they type and immediately after they
submit a query, you enable users to refine the query or sometimes even find what they
need before submitting it. This section covers three common forms of relevance feed-
back at the search box:

■ Search-as-you-type
■ Search completion
■ Postsearch suggestion

8.1.1 Providing immediate results with search-as-you-type

Search-as-you-type is just what you’d expect from the name: as the user types in key-
words, the search engine proactively provides documents that match. The goals for
search-as-you-type are twofold.

 The first goal is relevance feedback. The user can glean the likely effectiveness of
the query from search-as-you-type results. If the results are too broad, the user will
continue to add search terms to further qualify the documents he wants to find. If the
results are off the mark, the user can revise the current search.

 Second, you may be able to bring relevant documents back to the user more
quickly. Without search-as-you-type, users have to consciously submit a query before
seeing results. With search-as-you-type, users can choose to quit typing and select a
document that matches their requirements.

 Implementation of search-as-you-type is straightforward. As the name indicates,
the search application issues a series of searches as the user types. But there’s at least
a little nuance here. For example, if a user searches for “Star Trek the Next Genera-
tion” and types halfway through a keyword (for example, “Star Trek the Next Gener”),
then you shouldn’t include the trailing partial keyword in the search without indicat-
ing that it’s a prefix rather than a completed word. Fortunately, Elasticsearch pro-
vides a match_phrase_prefix query that implements this approach. Consider the
following query:

{ "query": {
 "match_phrase_prefix" : {
 "title" : "star trek the next gener"}}}

207Relevance feedback at the search box
If this query is provided to the /_validate/query?explain endpoint, the query expla-
nation shows that, as expected, the query is interpreted as a phrase query with the last
term expanded via a trailing wildcard:

"explanation": "title:\"star trek the next gener*\""

As displayed in figure 8.2, applications typically present search-as-you-type matches
concisely in a drop-down menu. This menu enables the user to easily select match-
ing documents.

But the drop-down menu presents some UI/UX challenges. For one thing, this area
may be needed to provide suggested search terms to the user (search completions,
described in the next section). Having both features share space can confuse users
who must differentiate between two types of feedback. Also, the drop-down menu’s
limited space makes it impossible to give much information on a matching document.
Unless search matches only titles, users won’t always be able to determine why docu-
ments are relevant. Finally, the drop-down lacks application state. For instance, if a
user selects a document from the drop-down menu and then immediately realizes that
this document isn’t relevant, how do they switch back to the previous search-as-you-
type view? Typically this isn’t possible, or is clumsy at best.

 Google’s search application uses an interesting search-as-you-type approach that
avoids these problems. Rather than placing search-as-you-type results in a drop-down
menu, Google presents them in the normal space for search results. This pattern
helps eliminate possible user confusion. Placing results in their normal location
reserves the drop-down menu for search-completion suggestions. Therefore, the user
can focus attention on either the search results or search-completion suggestions.
With search results in their normal location, there’s more room to provide richer
information per result than could be provided in a drop-down menu.

8.1.2 Helping users find the best query with search completion

Search completions usher users to better search queries and keywords. In effect, the
search application brainstorms with the user about what they’re looking for: “User,
you typed robots are, do you want to search for robots are our friends? How about robots
are awesome?” If you finely tune this interaction, it becomes almost subconscious,

star trek search

Star Trek Generations (1994)

Star Trek: First Contact (1996)

Star Trek: Insurrection (1998)

Star Trek: Nemesis (2002)

Star Trek (2009)

Star Trek Into Darkness (2013)

Star Trek Beyond (2016)star trek

Figure 8.2 Search-as-you-type is a means
of providing users with immediate results.
It’s often presented as a drop-down menu
below the search box.

208 CHAPTER 8 Providing relevance feedback
with users iteratively typing, reformulating, and occasionally selecting the resulting
completions.

 As illustrated in figure 8.3, search applications usually present completions in a
drop-down menu below the search box. Selecting any of the drop-down items will add
the selected text to the current query.

Implementing search completion can be challenging. Users expect search completions
to return shortly after they begin typing. If completions are too slow, users won’t recog-
nize that completions are available. The user then misses out on your guidance, search-
ing unaided. Completions must also be highly relevant. Users will learn to ignore
irrelevant suggestions and instead forge ahead unaided. Similarly, if users select a com-
pletion, but it leads to unexpected or 0 results, then the user will feel misguided.

 As with most features discussed in this chapter, you can implement search comple-
tions in many ways. In the following discussion, we present three methods.

BUILDING COMPLETIONS FROM USER INPUT
As you prepare to build search completions, the first question you must ask yourself is
“From what data source should I pull the completion text?” With enough traffic, you
could base completions on past users’ queries. This makes sense: allowing users to
search with past users’ searches should assure the current user that they are not far off
the beaten path, right?

 Maybe—but be careful; you need to consider a few gotchas. First, let’s look at the
assumption that you have enough traffic. Is your application a short-tail search appli-
cation where a handful of queries (hundreds, perhaps) represent the majority of
your search traffic? Or is yours a long-tail application where thousands of queries
represent only a small portion of the search traffic? With too few queries, you may
have insufficient data to build a satisfactory completion experience. Too many que-
ries, and you’ll have to prioritize what’s most important from a large, diverse set of
completion candidates.

Figure 8.3 Search completions are typically presented in a drop-down menu below the search
box. Selecting an item from the drop-down replaces the current query with the selection text.

209Relevance feedback at the search box
 Also consider whether old search traffic becomes obsolete for your application.
Consider search completions for an e-commerce application that frequently changes
inventory. Searches important a month ago may no longer match currently available
products.

 Finally, and perhaps most damagingly, old user queries are a distinct data set from
the corpus. It’s easy to find user queries that return 0 results! Suggesting such a query
as a search completion would befuddle your users. If search completions lead to poor
experiences, the user learns not to trust the search application.

 Search completion based on past user queries can provide a good user experience;
but the search engineer must ensure that the user’s queries provide sufficiently rich
and timely completions. Additionally, the search user should be reasonably assured
that the completion will lead to relevant search results.

BUILDING COMPLETIONS FROM THE DOCUMENTS BEING SEARCHED

A more straightforward approach for building search completions uses the text of the
content being searched. This approach ensures that any completion recommended to
the user corresponds to text in the corpus.

 Let’s look at how search completion might be implemented using the text in the
TMDB data set. In your work, you’ll first need to consider which fields could be used
for completion. For TMDB, let’s consider two: title and overview. Some users look
for movies by their name. For these users, the title field has obvious utility. Other
users, however, search by typing movie details. The richer overview provides better
content for these users’ search completions.

 But with richer text comes complications. With so much text, the overview field
contains quite a bit of variety and noise. The user might be disappointed with seem-
ingly arbitrary completions pulled from overview text. For these verbose fields, you’ll
have to seek strategies for prioritizing which search completions ought to come first,
which in itself is its own ranking and relevance problem. For now, let’s keep things
simple by using only the title field for a source of completion text.

 The next thing to consider is how the text should be analyzed. In chapter 4, you
explored several strategies for analyzing text in order to help users find what they’re
looking for. There, you used stemming or another form of token mutation to collapse
several words, such as happy, happier, happiest into a single token: happi. These
tokens won’t suit as a search-completion data source. A user entering the partial word
“happ” would be presented with the completion happi, which isn’t a word!

 Instead you’ll preserve readability during analysis, as shown in the following listing.

 "settings": {
 "analysis": {
 "filter": {
 "shingle_2": {
 "type":"shingle",
 "output_unigrams":"false"}},

Listing 8.1 Analysis setup for 2-gram completions

Shingle filter
for two-word
bigrams

b

210 CHAPTER 8 Providing relevance feedback
 "analyzer": {
 "completion_analyzer": {
 "tokenizer":
 "standard",
 "filter": [
 "standard",
 "lowercase",
 "shingle_2"]}}}}

You create an analyzer called completion_analyzer. The analyzer splits the text on
punctuation and whitespace (using the standard tokenizer) and then lowercases the
tokens. The lowercasing helps match/suggest regardless of the case of the content or
search string. As an additional step, to support phrase suggestions, you use a shingle
filter B to generate two-word phrases. The analyzer transforms the string star trek:
into darkness into the tokens star trek, trek into, into darkness.

 Now that you have your completion_analyzer, let’s use it on the title text. To do so,
you’ll copy the title field into a completion field that uses the completion_analyzer, as
shown next.

"mappings": {
 "movie": {
 "properties": {
 "title": {
 "type": "string",
 "analyzer": "english",
 "copy_to":["completion"]},
 "completion": {
 "type": "string",
 "analyzer": "completion_analyzer"}}}}}

And finally, after you index the documents, you’re ready to construct your completion
search. This search yields the most common two-word phrases that match the already
typed query.

{ "query": {
 "match_phrase_prefix": {
 "title": {
 "query": user_input}}},
 "aggregations": {
 "completion": {
 "terms": {
 "field": "completion",
 "include": completion_prefix + ".*"}}}}

Listing 8.2 Mappings for title-based completions

Listing 8.3 Query used to generate completions

Completion analyzer
for generating
completion text

Duplicates title field
to completion field

Completion field
for holding
completion text

Limits candidates to
titles that match the
user’s query so far

b

Suggests search completions
from title text

c

Limits suggested completions
to those that begin with
“completion prefix”d

211Relevance feedback at the search box
Let’s walk through how listing 8.3 works to deliver completions. Notice the two vari-
ables, user_input B and completion_prefix d.

 The user_input variable holds the full query string typed by the user. If the user
types “Star Tr,” user_input is then star tr. You place user_input into the same
match_phrase_prefix query B introduced earlier for search-as-you-type. This query
forces completions to use titles that match the user’s query. In our example, this pre-
vents you from using star wa movies to suggest completions to Star Trek fans.

 The completion prefix d is the word currently being typed. For “Star Trek,” this is
tr. This limits completions to phrases the user could be trying to type (phrases that
start with tr). Sometimes, especially when the last word typed is too short, it helps to
include the previous term to limit further (phrases that start with star tr). If there’s
not even enough text for that (if the user just started typing), you may wish to omit
completions altogether. There’s too little context to aid the user.

 Referring again to listing 8.3, you retrieve search completions by using an Elastic-
search terms aggregation c. Given a query (in this case, the match_phrase_prefix
query), a terms aggregation collects a list of all terms that exist in the documents
matching this query. Elasticsearch returns the list of terms, sorted according to the
number of documents that contain the term. At d, you tell Elasticsearch to limit this
to include only those terms that begin with completion_prefix (tr).

 This strategy results in a list of the most common title phrases that match the
already typed query. The response returned after issuing the search in listing 8.3
includes a completion section that looks like the following.

{'completion': {'buckets': [
 {'doc_count': 1, 'key': 'trek 3'},
 {'doc_count': 1, 'key': 'trek axanar'},
 {'doc_count': 1, 'key': 'trek first'},
 {'doc_count': 1, 'key': 'trek generations'},
 {'doc_count': 1, 'key': 'trek horizon'},
 {'doc_count': 1, 'key': 'trek ii'},
 {'doc_count': 1, 'key': 'trek iii'},
 {'doc_count': 1, 'key': 'trek insurrection'},
 {'doc_count': 1, 'key': 'trek into'},
 {'doc_count': 1, 'key': 'trek iv'}
], 'doc_count_error_upper_bound': 0, 'sum_other_doc_count': 4}}

Using aggregations to generate completions guarantees that completions match your
documents within the context of what the user has typed. For instance, if a user sup-
plies the partial query “Star Tre,” the completion prefix in this case will be tre*. Based
on only this prefix, you could return completions such as treasure island and
treading water, but neither has anything to do with star. Because aggregations take
the search context into account, the completions returned for star tre will include
only context-appropriate items such as trek generations and trek insurrection.

Listing 8.4 Example response for aggregation-based search completion

212 CHAPTER 8 Providing relevance feedback
Table 8.1 shows examples of completions that would be made as a user searches for a
Star Trek movie.

Another nice side-benefit of this method is that it can be easily combined with search-
as-you-type because, as you can see in listing 8.3, you’re indeed issuing searches as the
user types via the match_phrase_prefix B.

 You can definitely improve this approach. The current strategy limits completions
to two words. It could be more ideal to complete an entire movie title. This could be
accomplished with a different tokenization strategy that generates longer comple-
tions. For instance, you could tokenize titles by using the path_hierarchy tokenizer
with delimiter set to the space character and with reverse set to true. This splits
movie titles on whitespace and saves the ends of movies as tokens. For example, Star
Trek: The Motion Picture would be tokenized as star trek the motion picture, trek the
motion picture, the motion picture, motion picture, and picture. These sound
like great completions!

 This approach has one sticking point, though: the single-word tokens are going to
be much more prevalent than the longer tokens. But by reversing the terms aggrega-
tion to return completions from least to most prevalent, you can provide the user with
the most specific and often the longest completion available.

 Before you implement aggregation-based search completions, be aware that this
method comes with drawbacks. First, heavy aggregations over large text fields can tax
the search engine, especially in an application that uses distributed search. If you
choose to use this method, ensure that response times are acceptably low; otherwise,
your completions won’t keep up with users’ keystrokes. For this reason, this approach
works best with smaller corpuses and with text fields with a relatively small set of
unique terms.

 Second, by default this method returns completion suggestions ordered from
most commonly occurring to least commonly occurring. This isn’t always an appropri-
ate metric. For instance, referring to listing 8.4, notice that all possible completions

Table 8.1 Completions for a user searching for a Star Trek movie

User input Completion prefix Completions

st (Not used—too little context) (Not applicable)

star star star wars
star trek
starship troopers

star t star t star trek

star tr tr trek 3
trek axanar
trek first
trek generations

213Relevance feedback at the search box
occur exactly once in the index. Therefore, in this case it isn’t possible to establish
an ordering for the completions based on their prevalence in the index. To address
these problems, we introduce our final search-completion strategy: specialized com-
pletion indexes.

BUILDING FAST COMPLETIONS VIA SPECIALIZED SEARCH INDEXES

Because completion is such an important element of relevance feedback, Elastic-
search introduced a specialized component called the completion suggester. This compo-
nent circumvents the performance problem referenced previously and allows for
custom sorting of completion results (rather than sorting by occurrence). Effectively,
the completion suggester is a specialized search index that’s stored in parallel with the
normal search index. It’s backed by a compact data structure (a finite state transducer)
that provides a fast prefix-lookup capability. In many ways, this approach is the ideal
solution for completion, but as you’ll see in a moment, it introduces a couple of prob-
lems of its own.

 Setting up the completion suggester is simple: you just declare one of the fields to
be of type completion.

{ "mappings": {
 "movie": {
 "properties": {
 "title": {
 "type": "string",
 "analyzer": "english"},
 "completion": {
 "type": "completion"}}}}}

In principle, you could copy the title field to the completion field and index the
documents in the same way as demonstrated in the preceding section. But if you do,
you forego one of the main benefits of using the completion suggester: the ability to
directly specify the weight of the completion. This weight affects the order in which
completions are suggested. In the following listing, we enrich the given document
with a new completion field that uses the movie’s title for completion text and the
movie’s popularity as the completion weight.

doc = {
 "title": "Star Trek Into Darkness",
 "popularity": 32.15,
 /*…other fields*/ }

doc["completion"] = {
 "input": [doc["title"]],
 "weight": int(doc["popularity"])}

Listing 8.5 Setting up Elasticsearch’s completion suggester

Listing 8.6 Enriching documents with a completion field using popularity for weight

Field of type “completion”
to use Elasticsearch’s
completion suggester

Original
document

Document
enrichment

Weights must
be integers

214 CHAPTER 8 Providing relevance feedback
After you index these enriched documents, you can query for the completion. In the
following listing, you use Elasticsearch’s _suggest endpoint rather than the _search
endpoint you used before. (Though if you like, you can include a suggest clause
within a normal Elasticsearch search and get suggestions along with search results.)

GET /tmdb/_suggest
{ "title_completion": {
 "text": "star tr",
 "completion" : { "field": "completion"}}}

In this example, you search for a completion to the prefix text star tr. As in the pre-
vious case, the results are a list of Star Trek movies, but this time you sort by popularity
rather than occurrence counts. This provides the user with much more relevant
results. Additionally, the completion suggester can be configured to perform fuzzy
matches so that appropriate completions can be returned despite a certain degree of
user error.

 The benefits of the completion suggester come at a cost. Because the completion
suggester is implemented as a separate index internal to Elasticsearch, it isn’t aware of
the full context of search. For instance, consider a user who wants to find the Star
Trek movie in which Spock dies (sorry, spoiler alert). What if the user searches for
“Spock Dies Star Trek”? Obviously, no title completion will start with spock dies star,
so a good completion implementation attempts to find completions starting with the
second term—dies star—again, no completions. The completion implementation
then moves on to find completions beginning with just star. Here, based on the con-
text of the entire query, it would be unreasonable to return anything but Star Trek
movies. But in the case of the Elasticsearch completion suggester, the top completion
result is Star Wars: Episode IV—A New Hope. This demonstrates that the completion sug-
gester is unaware of the search context.

 Another unfortunate consequence with using a finite state transducer to back
completion is that the data structure is immutable. If a document is deleted from the
index, the completions for that document will still exist. Currently, the only remedy
for this situation is a full-index optimization, which effectively rebuilds the completion
index from scratch.

 Despite the possible pitfalls, the completion suggester is an important tool for rele-
vance feedback. The Elasticsearch completion suggester can occasionally lead users
astray, but, it allows you to specify the criteria by which completions are sorted (in this
case, popularity). And the completion suggester is typically the fastest method for
retrieving completion suggestions. This rapid feedback to users can become an almost
subconscious aid, helping to direct them to more targeted searches and ultimately to
the documents that they’re looking for.

Listing 8.7 Retrieving search completions via the _suggest endpoint

215Relevance feedback at the search box
WHICH SEARCH-COMPLETION METHOD IS BEST

In the preceding sections, we covered three search-completion methods: completions
based on user input, completions based on the text in the index, and completions
based on specialized indexes. Each technique helps bring your users closer to the
information they seek. But as you’ve seen, there’s no silver bullet; each technique has
its share of benefits and drawbacks. Equipped with this knowledge, you’ll at least have
a better starting point for building your own completion solution.

8.1.3 Correcting typos and misspellings with search suggestions

Search completions provide suggestions to users as they type. But another opportunity
to provide relevance feedback arises immediately after the user’s query is submitted.
Users make mistakes—misspellings or typos—while entering their searches. After they
submit a malformed query, the search engine can provide suggestions to modify and
improve the query.

 Here again Google serves as a good example of how post-search suggestion can
provide relevance feedback to users. As displayed in figure 8.4, if Google receives a
query that contains an obvious typo, it replaces the user’s query with the correction
that the user likely intended. Similarly, if the user’s query likely contains a typo, but
the situation is more ambiguous, then Google retrieves results corresponding to the
user’s original search, but also suggests a different query likely more aligned with
the user’s goals. In either case, the presentation of this information is paramount. If
users are unaware that their query has been replaced, they may become disoriented
and begin to mistrust the search application. Conversely, if users are never made
aware of a typo mistake, they may similarly be disappointed, believing that the search
application isn’t able to find the anticipated results.

You can implement post-search suggestions by using Elasticsearch’s phrase sug-
gester. To set up the phrase suggester, the mapping must contain a field specifically
set aside for suggestion. Similar to the completions discussed previously, this field
must be tokenized so that the tokens are still readable, correctly spelled words. For

Figure 8.4 Google uses post-search suggestions to provide users with relevance feedback.

216 CHAPTER 8 Providing relevance feedback
this example, you’ll copy the title field into a suggestion field and use the default
standard analysis chain:

 "mappings": {
 "movie": {
 "properties": {
 "genres": {
 "properties": {
 "name": {
 "type": "string",
 "index": "not_analyzed"}}},
 "title": {
 "type": "string",
 "analyzer": "english",
 "copy_to":["suggestion"]},
 "suggestion": {
 "type": "string"}}}}

To pull back suggestions, you again use the _suggest endpoint:

GET /tmdb/_suggest
{ "title_suggestion": {
 "text": "star trec",
 "phrase": {
 "field": "suggestion"}}}

This returns suggestions that look like this:

{'title_completion': [{'length': 9, 'offset': 0,
 'options': [
 {'score': 0.0020846569, 'text': 'star three'},
 {'score': 0.0019600056, 'text': 'star trek'},
 {'score': 0.0016883487, 'text': 'star trip'},
 {'score': 0.0016621534, 'text': 'star they'},
 {'score': 0.0016162122, 'text': 'star tree'}],
 'text': u'star trec'}]}

Each suggestion is scored, representing how strongly the suggestion matches the user’s
intended query. But as seen here, this doesn’t always work out—star trek isn’t the first
suggestion. Let’s make some improvements.

{ "fields": ["title"],
 "query": {
 "match": {"star trec"}},
 "suggest": {
 "title_suggestion": {
 "text": "star trec",
 "phrase": {
 "field": "suggestion",
 "collate": {
 "query": {

Listing 8.8 Retrieving post-search suggestions in the context of a user’s search

Collation added
to main query

b

217Relevance feedback at the search box
 "inline": {
 "match_phrase": {
 "title" : "{{suggestion}}"}}}}}}}}

In this listing, you include the suggestion in the body of the corresponding search
so that you don’t have to make two separate requests. But you also address the prob-
lem of the poor suggestions by using collation b. With collation, the search engine is
performing a sort of mini-search using each of the suggestions and then removing
the suggestions that don’t have a match. Within the collate section, you specify the
search that determines which suggestions are returned; if documents match a sug-
gestion, that suggestion will be included in the suggestions passed back to the user.
Here Elasticsearch replaces the special {{suggestion}} parameter with the text of
each suggestion.

 Notice that you use a match_phrase query for the collation query. You do this to
more tightly constrain the possible suggestions to phrases that exist in the index. For
instance, if you had used the match query at c for the collation, then the suggestion
star three would have remained in the suggest response, because some documents
contain either star or three, even though none include the phrase star three. By fil-
tering out weaker suggestions, you ensure that the user is presented only with sugges-
tions that lead to meaningful results.

 We present the final result of star trec query suggestions in the following listing.

{ 'title_completion': [{'length': 9, 'offset': 0, 'options': [
 {'score': 0.0019600056, 'text': 'star trek'},
 {'score': 0.0016621534, 'text': 'star they'}]}]}

There are several things to note here. First, notice that several of the previous sugges-
tions have been removed because of the collation match_phrase search. Also notice that
the top-ranking suggestion is now the most appropriate suggestion for this search.

 Another tough question: what should the application do with the suggestions?
Should it outright replace the user’s query with the highest-scoring suggestion? Or
should you present the suggestion as a “did you mean” suggestion? Unfortunately,
the answer is rarely clear-cut. The suggestions provided by the phrase suggester are
scored as a function of the text edit distance and the frequency of the suggested
terms. But just because a suggestion is in some sense “more likely” than the user’s
query, the user’s query isn’t necessarily incorrect; the user might be looking for
something very specific.

 Practically speaking, you can never read the mind of an individual user. Therefore,
a good solution will involve reading up on all of the Elasticsearch phrase suggester
parameters, building a solution, and watching how it performs. But as a rule of
thumb, it’s usually safer to direct users toward a better search with a “did you mean”
suggestion rather than replacing a search without asking them.

Listing 8.9 Search and suggestion results after collations have been applied

Alternate query to issue
for each suggestionc

218 CHAPTER 8 Providing relevance feedback
 There is, however, one big exception to this rule: if the user’s query returns no
results, it’s always better to provide results that might be relevant rather than leaving
the user with no results at all. And in either case (search replacement or post-search
suggestion), make sure that the UI readily conveys what’s happening so that users
won’t become disoriented by an interaction that falls short of their expectations.

8.2 Relevance feedback while browsing
We’ve discussed several aspects of relevance feedback that can occur in or around the
search box. But interaction at the search box is only a small part of the conversation
between the search user and the search application. This section focuses on the
browse experience.

 A user can browse through the results of a search by selectively filtering those
results, narrowing down to a small set that’s most relevant to that user’s information
needs. Sometimes the user may even start by browsing through the documents rather
than with a text query. The browse experience is different from interactions with the
search box. Whereas search-box interactions provide subtle relevance feedback to
users, the browse experience gives users a broad overview of how documents are dis-
tributed in the corpus. This lets users make intentional choices about how to filter
through the documents.

Faceted browsing is the predominant method for facilitating browse behavior. Visit
almost any e-commerce website and you’ll see the same pattern: At the top of the page
is the search box. Below the search box, and typically to the left side of the screen, is a
list of categories. Within each category are items that can be selected to filter the
results. These menu items are called facets (introduced in chapter 2). Often the facets
include a count of the documents that match a particular filter. If a user selects a cer-
tain facet, the results are filtered according to that selection. As shown in figure 8.5,
Zappos provides a great example of a faceted browsing interface.

 Here a search for “leather sandals” returns a mix of sandals—mostly women’s san-
dals, but you can also see a toddler’s sandal. I (John) happen to be a grown man, so
I’m uninterested in these. But looking at the categories on the left side of the screen,
I see that I can filter these results according to product type, gender, and brand. Fur-
thermore, within gender the products are divided into four groups: Women, Men,
Girls, and Boys, and although the great majority of the products matching leather san-
dals are for women (4010 items), there are 530 items that I might be interested in. If
I hadn’t been presented with this information, I might have seen this initial set of
products and assumed that Zappos wasn’t into men’s fashion. If I click the Men facet,
the results will be filtered so that only men’s sandals are displayed. From there, I may
choose to further narrow my results by brand or by shoe size or by any other criteria
that I choose.

 Consider the great amount of relevance feedback that the faceted browsing inter-
face is providing to users. With a quick scan of the information in the sidebar, users

219Relevance feedback while browsing
gain a deep understanding of the products in the catalog and the metadata associated
with these products. By looking at the document counts, users can also get a sense of
how these documents are distributed within the categories. Finally, and most impor-
tant, users can act on this knowledge by clicking a facet and narrowing the search
results. In an e-commerce search, the ability for customers to quickly navigate the data
and find the items they’re looking for increases the likelihood that they’ll make the
purchase. These techniques also help you sidestep and simplify the relevance process.
By giving users more options to guide themselves to what they want, you fret less about
complex ranking and trying to read the user’s mind.

 In the following subsections, we discuss how faceted browsing is implemented in
Elasticsearch. We also cover a couple of related topics. In the breadcrumb navigation
section, we introduce a simple UI feature that helps users remain aware of the current
facets they’ve selected. And in the result ordering section, we discuss how users can
more closely control relevance ranking priorities.

8.2.1 Building faceted browsing

You can implement facets by using Elasticsearch’s aggregation feature. For the pur-
poses of this discussion, aggregations return a count for specific subdivisions of the
current search results. Let’s consider an example from TMDB—movie genre. All mov-
ies in the TMDB set contain a field genres.name that includes tags such as Adventure,

Figure 8.5 Faceted browsing helps Zappos users slice and dice the inventory and narrow the result set to
include only items that most closely match their search goals.

220 CHAPTER 8 Providing relevance feedback
Comedy, and Drama. The following query counts the number of movies in the entire
TMDB data set that fall within each genre:

GET tmdb/_search
{ "aggregations": {
 "genres": {
 "terms": {
 "field": "genres.name"}}}}

This instructs Elasticsearch to return an aggregation called genres. For each term in
genres.name’s global term dictionary, the aggregation returns the number of docu-
ments with that term. In this instance, your terms correspond to movie genres. The
aggregation response, shown in the following listing, can be used to populate a genre
menu in your faceted browse interface.

{ 'aggregations': {'genres': {'buckets': [
 {'doc_count': 7546, 'key': 'Drama'},
 {'doc_count': 5342, 'key': 'Comedy'},
 {'doc_count': 3878, 'key': 'Thriller'},
 {'doc_count': 3753, 'key': 'Action'},
 {'doc_count': 2623, 'key': 'Romance'},
 {'doc_count': 2165, 'key': 'Adventure'},
 {'doc_count': 1981, 'key': 'Horror'},
 {'doc_count': 1861, 'key': 'Crime'},
 {'doc_count': 1640, 'key': 'Family'},
 {'doc_count': 1597, 'key': 'Science Fiction'}],
 'sum_other_doc_count': 7479}

Scanning over this list, you can see that most movies in our set are labeled as dramas,
followed by comedies, thrillers, and so forth. What’s more, you can look at the
sum_other_doc_count and see that 7,479 movies are in genres not listed in the top 10.

 It’s important to again draw attention to the analysis process. As in the previous
sections in this chapter, you tokenize the documents so that the raw tokens can be pre-
sented back to the user. For this particular instance, it’s important to not use the
default standard analysis because it splits the input on whitespace. Splitting on
whitespace would cause science and fiction to be considered as two different genres,
which is clearly incorrect.

 In this query, you don’t constrain the document set, so the counts represent the
distribution of all movies within the genres. This is fine; it’s a great data set to present
to users who haven’t yet specified any other information. Users coming to the movie
search application for the first time can quickly scan the distribution of movies across
genres to decide where to look next.

 But as users continue to interact with the search application, what do they do next?
Presuming that they don’t decide to leave (always a possibility), there are two options:
search via the search box or click a facet item to narrow the focus. In either case, the

Listing 8.10 Facet counts for movie genres

221Relevance feedback while browsing
effective result is the same; they’ve narrowed the relevant documents to a subset of the
corpus. The neat thing about aggregations is that the counts associated with each
facet will be calculated based on this filtered set.

 So let’s say that the user clicks the Science Fiction genre, indicating a desire to see
only movies tagged as science fiction. You can then filter the results set accordingly:

GET tmdb/_search
{"query": {
 "bool": {
 "filter": [{
 "term": {
 "genres.name": "Science Fiction"}}]}},
"aggs": {
 "genres": {
 "terms": {"field": "genres.name"}}}}

With this addition, the new search response contains updated facet counts corre-
sponding to movies tagged as science fiction:

{ 'aggregations': {'genres': {'buckets': [
 {'doc_count': 1597,'key': 'Science Fiction'},
 {'doc_count': 753, 'key': 'Action'},
 {'doc_count': 502, 'key': 'Thriller'},
 {'doc_count': 466, 'key': 'Adventure'},
 {'doc_count': 337, 'key': 'Drama'},
 {'doc_count': 336, 'key': 'Fantasy'},
 {'doc_count': 327, 'key': 'Horror'},
 {'doc_count': 299, 'key': 'Comedy'},
 {'doc_count': 188, 'key': 'Animation'},
 {'doc_count': 164, 'key': 'Family'}],
 'doc_count_error_upper_bound': 0,
 'sum_other_doc_count': 361}}}

And not only do the facet counts change, but the search results update to include only
science fiction movies. Where do users go from here? Anywhere they please. They may
choose to filter again within the same category by selecting another genre. They may fil-
ter based on other criteria, such as release date. Once they get an idea of what they’re
looking for, they may even abandon the browse interaction in favor of using the text
box. No matter the case, the facet counts and the documents presented in the results
will guide users to understand what’s available and where to find it.

8.2.2 Providing breadcrumb navigation

You’ll often want to give users feedback about how they’ve filtered the results. Without
feedback, the user may be unaware that certain filters are still in place and therefore
surprised to find no search results. Breadcrumb navigation is a commonly used tech-
nique for guarding against this problem. As shown in figure 8.6, breadcrumb naviga-
tion is typically presented at the top of the result set as a list of the currently selected

222 CHAPTER 8 Providing relevance feedback
facets. Here we use the previous Zappos “leather sandals” search example. This time
the result set is further filtered by men’s, under $100, and brown.

 As you can see, the breadcrumb navigation not only provides users with an aware-
ness of which filters are in place, but also serves as an intuitive interface enabling users
to remove filters of their choice.

8.2.3 Selecting alternative results ordering

During a browsing style search, what’s the appropriate ordering for the result set?
Throughout the rest of this book, the focus has been on presenting results according
to relevance. But when the user hasn’t yet specified a textual query, relevance has little
meaning. Instead it’s up to the search application to define a default ordering. Depend-
ing on the domain, this may be based on popularity, location proximity, recency, or
any number of things. The choice for the default ordering might even be a good
opportunity for the search application to incorporate business concerns by, for instance,
subtly promoting high-margin items toward the top.

 You can also give the user control over the ordering of results. This is as simple as
placing a drop-down selection box at the top of the result set. This commonly appears
toward the right side of the search results, as again exemplified by Zappos search,
shown in figure 8.7.

 Zappos allows customers to sort results by the newest items, customer rating,
popularity, and price. Allowing users to manipulate sort criteria is an excellent form

Figure 8.6 Zappos uses breadcrumb navigation to remind users of the currently selected facets and allow them
to easily deselect filters.

223Relevance feedback in the search results listing
of relevance feedback. This gives users a better understanding of the results and pro-
vides a means for users to organize the results to match their current search goals.

 You might not always want to directly sort on these factors. A user requesting a sort
on “popularity” may only want popular items prioritized: but not so strong that it over-
rides their search criteria. For example, a user searching for stylish “leather sandals”
likely won’t be pleased if they see very popular flip flops. Refer to the boosting lessons
of chapter 7 should you need to implement sorting this way.

8.3 Relevance feedback in the search results listing
In this chapter, you’ve followed the typical path of a user through a search applica-
tion, starting with interactions at the search box and moving on to browsing and filter-
ing with faceted search. These techniques give users many alternate paths to relevant
content. Finally, let’s discuss relevance feedback and guidance in the search results
themselves. Here users get an overview of the documents that the search application
deems relevant. If users find a particular item interesting, they click through and
investigate, hoping to find what they’ve been looking for. If users glance through the
results listing and don’t find what they need, they’ll either modify their search and try
again, or they’ll abandon it entirely.

 The results listing is therefore an important part of relevance feedback. The items
in this listing must convey the most important aspects of matching documents. This
allows the user to judge whether to investigate further. In the sections that follow,
you’ll consider what questions users ask when looking at results. You’ll examine how
to answer those questions before users click into the search results. You’ll also see

Figure 8.7 Zappos allows users to sort results according to various criteria.

224 CHAPTER 8 Providing relevance feedback
how highlighted snippets can help users understand why a document matches a
search. We cover a couple of approaches to document grouping that help decrease
the cognitive burden for users. And we briefly discuss approaches for dealing with the
case of no search results.

8.3.1 What information should be presented in listing items?

Users will click a listing item if they think that it may meet their information needs.
You must therefore consider what types of questions your users will be asking as they
scan through the search results. The information presented in the result items should
answer these questions as thoroughly and as concisely as possible.

 The most obvious question to answer is “What is this?”; and if you’re lucky, answer-
ing this question may be as simple as placing the title of the document in the search
results. But the title often isn’t a reliable semantic representation of the document it
represents. For instance, in enterprise realms, the search engine may hold official
forms and documents that have arcane titles, such as Form I-130 or 401(k), which don’t
readily convey the purpose of the form. Similarly, in e-commerce, products are often
given titles intended to draw attention and convey a feeling, but not necessarily con-
vey an accurate representation of the item. For instance, Oakley has a prominent line
of women’s sunglasses call Little Black Dress—a funny name for sunglasses.

 If you find yourself in a situation where there’s no meaningful title, you must look
for other ways to convey information to the user. To answer the question “What is
this?” in the realm of e-commerce, photos are often better than a title (or any other
text, for that matter). A user seeking a certain product can glance through a page of
images and quickly narrow the results that require more-focused attention. Even
enterprise document retrieval can benefit by including imagery in the search results.
For instance, including a small scanned image of the document in the search results
could help users pinpoint a document that they’ve seen and used in the past.

 Short descriptions also help the user answer “What is this?” But caution is war-
ranted here. With too much text competing for users’ attention, they might miss
important details, or worse yet, become overwhelmed by the surplus of information
and abandon search altogether. But if the available title doesn’t readily convey an
understanding of the item, a short description might be just the thing you need. If
neither meaningful titles nor short descriptions are available, consider going back to
the content provider and asking for a short description. If the content being searched
is user provided, maybe you can place a required field for a short description. If an
upstream vendor provides the content, perhaps you can work together to generate
this extra bit of information that will make their products more saleable.

 Besides the big question “What is this?” consider other questions that your users
will ask. Are you building an e-commerce application? Then your users will be inter-
ested in knowing the price of a product. Does your search application revolve around
events? Then date, time and location will be important. Place this information promi-
nently in the search results so that users won’t have to bounce in and out of results to

225Relevance feedback in the search results listing
judge whether a result is relevant. And if your search domain includes several subdo-
mains, consider the questions important to users searching in those subdomains as
well. If you know that users are shopping for cameras, place helpful camera-related
details in the search results so that users can compare available choices in the results
page itself.

8.3.2 Relevance feedback through snippets and highlighting

When the search domain involves text-heavy documents, snippets and highlighting pro-
vide an important form of relevance feedback. Snippets and highlighting mean exactly
what you might imagine. If a user submits a keyword search, snippets are fragments of
text from the matching documents that include the search keywords. Highlights are the
keywords matches within the snippets, literally highlighted to the user. This can be done
using bold text or altering the background color on the keyword match. Some search
interfaces go as far as to use a different highlighting style per keyword.

 The relevance feedback goal of snippet highlighting is to tell users why a particular
document matches their query and where the match occurs. Users, especially search
power users, will appreciate the ability to quickly read through matches in the context
that they occurred. Without having to click into a particular search result, users get a
sense of whether a document is a good match for their information needs. Further-
more, users may start to see patterns in the matching text and choose to further refine
their search so that the appropriate documents will match. And occasionally, the
answer to a user’s question might be made immediately available in the snippets,
thereby removing the need to even click through and look at the document where the
match occurred.

 Throughout this book, we’ve discussed considerations regarding text analysis. In
chapter 4 we showed how to craft analysis to capture a semantic understanding of the
words in a document. At various points, this chapter has seemingly reversed that
notion to support human-readable tokens in facets and suggestions. With highlight-
ing, we can safely return to the notion that tokens capture meaning. In other words,
highlighted tokens don’t have to be human readable. This is made possible by the fact
that Elasticsearch—or more accurately, Lucene—tracks starting and ending character
offsets of the original word prior to tokenization. During highlighting, Lucene can
match on the token, look up the original character positions, and place the highlight
appropriately in the original, stored text.

 Elasticsearch provides three modes of highlighting that come with various trade-offs:

■ The basic highlighter (the default mode)
■ The postings highlighter
■ The fast vector highlighter

The basic highlighter (the default mode) requires no special setup; you simply request
with your search that Elasticsearch return highlighted snippets. The highlighted snip-
pets will then be returned along with the search results. Unfortunately, the default

226 CHAPTER 8 Providing relevance feedback
implementation must reanalyze documents in order to find the location of the match-
ing terms within the document. For small documents, the time required to reanalyze
the text is miniscule. But for larger documents (pages of text), this reprocessing
comes with a significant performance hit.

 The postings highlighter and the fast vector highlighter avoid query-time processing by
storing extra information at index time. This comes at the cost of increasing the index
size. But these two methods come with certain advantages. For instance, the postings
highlighter is especially useful with natural language text (sentences and paragraphs
as opposed to titles or single-term fields). It automatically breaks the input text such
that snippets are returned to the user as complete sentences. The fast vector high-
lighter can highlight matching terms independently, allowing each keyword to be
highlighted in its own color or style.

 To demonstrate the utility of snippet highlighting, the following listing shows one
of the highlighters, the fast vector highlighter. This listing showcases some of the
interesting features that make highlighting a great source of relevance feedback.

GET tmdb/_search
{ "fields":["title","overview"],
 "query":{
 "match":{
 "title": "star trek"}},
 "highlight": {
 "fields": {
 "title": {
 "number_of_fragments": 0},
 "overview": {
 "fragment_size": 100,
 "number_of_fragments": 5,
 "no_match_size": 200 }
 },
 "pre_tags": ["<em class=\"hlt1\">","<em class=\"hlt2\">"],
 "post_tags": [""],
 "order": "score"}}

Prior to submitting this query, the documents were indexed with term vectors enabled
for both the title and overview fields. (You do this by placing "term_vector":
"with_positions_offsets" in the field mappings.) Let’s now take a look at some of
the details in this query.

 To enable highlighting, a new highlighting section is included e. In the fields sec-
tion of the highlight body B, you specify the fields you want to highlight along with
any other parameters you need per field. (You’ll look more closely at these momen-
tarily.) The optional pre_tags and post_tags parameters c specify how to annotate
the highlighted keywords in the results. By specifying several tags, you can style each

Listing 8.11 Submitting a query with highlighting enabled

Highlight
request

e

Fields to be
highlightedb

Tags to
mark up
matches

c

Optional ordering
of snippetsd

227Relevance feedback in the search results listing
keyword in different ways. For instance, each keyword can be given its own color. This
will allow users to glance at search results and quickly understand just why a given doc-
ument matches their query. The final order parameter d is particularly useful for
search involving large documents. Ordering the snippets by score causes highlighting
to take the extra step of sorting the snippets so that the best matching snippets are
returned first.

 Now that highlighting has been enabled, let’s take a look at a portion of the result
for the “Star Trek” query in the following listing.

{ '_id': '193', '_index': 'tmdb',
 '_score': 5.0279865, '_type': 'movie',
 'fields': {
 'overview': ['Captain Jean-Luc Picard ...'],
 'title': ['Star Trek: Generations']},
 'highlight': {
 'overview': ['renegade scientist Soran who is destroying entire
 <em class="hlt1">star systems. Only one man
 can help Picard stop Soran\'s'],
 'title': ['<em class="hlt1">Star <em class="hlt2">Trek:
 Generations']}},
{'_id': '201', '_index': 'tmdb',
 '_score': 5.0279865, '_type': 'movie',
'fields': {
 'overview': ['En route to the honeymoon of William Riker ...'],
 'title': ['Star Trek: Nemesis']},
 'highlight': {
 'overview': ['En route to the honeymoon of William Riker to Deanna Troi
 on her home planet of Betazed, Captain Jean-Luc'],
 'title': ['<em class="hlt1">Star <em class="hlt2">Trek:
 Nemesis']}}

In this response, the new highlight sections of each listing item are shown in bold
text. The first thing to notice is that, thanks to the use of the fast vector highlighter with
the specified pre- and post-tags, the keyword star and the keyword trek are encapsu-
lated in different tags.

 Now, referring to listing 8.11, let’s dig into some of those field-level highlighting
specifications. For short fields, such as the title, you don’t want just a snippet to come
back; you want the entire text. By specifying number_of_fragments returned to be 0,
you signal Elasticsearch to highlight and return the entire text of the field. Next, with
the overview field, you see that the length and number of snippets can be specified
via the fragment_size and num_of_fragments parameters, respectively.

 The next parameter, no_match_size, can be particularly useful. Often a document
that’s a perfectly good match for a search may not have a match in the field you’re
using for highlighting. And, typically, this means that no snippets will be returned for
this field. But rather than returning nothing, why not at least return a portion of the

Listing 8.12 Partial response for a search for “Star Trek” with highlighting enabled

228 CHAPTER 8 Providing relevance feedback
leading text in the field so that the user receives some context. This is precisely where
the no_match_size parameter comes in handy. After specifying no_match_size to be
200 here, any document that has no keyword matches in the overview field will return
the first 200 characters rounded down to the nearest whole word. Notice that this is
exactly the case with the second document in listing 8.12. Because neither star nor
trek occur in this field, the first portion is returned instead.

 One final thing to note about listing 8.12: the snippets are broken at arbitrary loca-
tions. If you opted to use the postings highlighter rather than the fast vector highlighter,
the snippets would be broken at sentence boundaries, which arguably provides a bet-
ter user experience by making more-understandable snippets. But the postings high-
lighter can’t differentiate between the keywords so that they can be presented
differently in the search results. Thus, as is so often the case, you must understand and
carefully weigh the trade-offs when choosing one implementation over another.

8.3.3 Grouping similar documents

Within the results listing, another way to provide users with relevance feedback is to
group documents in such a way that the information is easier for users to process. This
comes in two flavors: document grouping and field collapsing.

 First, concerning document grouping, documents often fall into several natural
buckets within the corpus. For example, the movies in the TMDB corpus have a status
field indicating where the movies are in the production pipeline: rumored, planned, in
production, and released. For certain conceivable search applications, it may be helpful
to present search results pregrouped according to the available buckets. If your users
think first in terms of document groupings, then this feature can greatly reduce their
cognitive burden.

 Document grouping can be accomplished with the use of aggregation—in this
case, a combination of terms aggregation and top hits aggregation.

GET /tmdb/_search
{ "query":{
 "match":{
 "title": "star trek"}},
 "aggs": {
 "statuses": {
 "terms": {"field":"status"},
 "aggs": {
 "hits": {
 "top_hits": {}}}}}}

This query instructs Elasticsearch to find all documents matching Star Trek and then
group the documents according to status. The corresponding result set will contain a
buckets section that looks like the following listing.

Listing 8.13 Using a combination of terms and top hits aggregation for doc grouping

229Relevance feedback in the search results listing
{ 'buckets': [
 { 'doc_count': 82,
 'key': 'released',
 'hits': { 'hits': { 'hits': [
 { '_id': '13475',
 '_index': 'tmdb',
 '_score': 6.032624,
 '_source': {
 'name': 'Star Trek: Alternate Reality Collection',
 'popularity': 2.73003887701698, ... },
 /* more documents */ },
 { 'doc_count': 4,
 'key': 'in production',
 'hits': { 'hits': { 'hits': [
 { '_id': '13475',
 '_index': 'tmdb',
 '_score': 6.032624,
 '_source': {
 'name': 'Star Trek: Axanar',
 'popularity': 3.794237016983887, ... },
 /* more documents */ },
 /* more groups */],
 'doc_count_error_upper_bound': 0,
 'sum_other_doc_count': 0}

A note on group ordering: by default, the terms aggregations are sorted according to
the number of matching documents, in descending order. If the default top-level sort-
ing isn’t appropriate for your application, take some time to read through the Elastic-
search documentation and see if you can construct a more appropriate ordering for
the top-level groups. (Listing 8.15 demonstrates an example of implementing a cus-
tom sorting of the top-level groups.)

 The other common form of document grouping is known as field collapsing. Say
you have several documents that are near duplicates of one another. For instance,
what if the TMDB collection contains multiple, separate entries for the Star Trek
movie, one for each language that the movie has been translated into? Rather than
filling a user’s search results with page after page of effectively the same result, you
can use field collapsing to group near-duplicate documents and then present the user
with only an exemplar document from this set.

 To build such a search response, you again use a combination of terms and top hits
aggregation. Getting the details right takes finesse. A bit of setup is required for field
collapsing: you need a field that indicates which documents are near duplicates of one
another. Though the TMDB set doesn’t have a good example, let’s again assume that
the Star Trek movie has multiple, separate entries, one for each language that the
movie has been translated into. Furthermore, presume that no matter the language,
each entry contains a unique identifier for the original English version. This unique
identifier field is a good candidate for field collapsing. By combining all movies with the

Listing 8.14 Documents grouped with a combination of terms and top hits aggregation

230 CHAPTER 8 Providing relevance feedback
same value in this field, you’ll have successfully de-duplicated the movies that have mul-
tiple translations.

 The next finicky bit is modifying top-level group ordering. Recall that the top-level
groups are by default sorted according to the number of documents that they contain.
In this case, the top-level groups correspond to the original version of movies, and you
want the results to still be sorted according to relevance. To achieve this, sort the top-
level groups by the score of each group’s most relevant document. The following
listing is similar to listing 8.13, but it highlights the changes necessary to correctly
implement field collapsing.

GET /tmdb/_search
{
 "query":{
 "match":{
 "title": "star trek"}},
 "aggs": {
 "original_versions": {
 "terms": {
 "field":"original_id",
 "order": {"top_score": "desc"}},
 "aggs": {
 "hits": {
 "top_hits": {"size":1}},
 "top_score": {
 "max": { "script": "_score"}}}}}}

In particular, the top-level terms aggregation now refers to the original_id field; the
terms aggregation is ordered according to top_score; and adjacent to the top hits
aggregation, the top_score B is defined as the maximum scoring document associ-
ated with each top-level bucket.

8.3.4 Helping the user when there are no results

Sometimes your users make a request for which no results can be found. This can
either be because they make a mistake such as a misspelling in the request or because
they have so constrained the request that no documents are available. In this situa-
tion, the worst thing that you can do is to present the user with an empty results page.
This leaves the user with no recourse other than to abandon search and fulfill their
needs elsewhere.

 To guard against this, always consider backup methods to bring users closer to sat-
isfying their search goals. In section 2.1.3 we discussed how to use suggestions to cor-
rect user mistakes. If there are no search results, you can take this a step further by
replacing the user’s query with the best suggestion. Or, if there’s no obvious mistake
on the part of the user, perhaps you can automatically remove the user’s last filter so
that the search will be less constrained. Finally, if you have nothing else to go on, show

Listing 8.15 Sorting groups according to the most relevant document in the group

Collapses on
original_id,
ordered by
top_score

b

231Summary
users popular documents. Whatever the case may be, if the search application modi-
fies the search on behalf of the user, make sure to inform the user about how the
search has been changed so that the user won’t become disoriented with results that
don’t match expectations.

8.4 Summary
■ Relevance feedback facilitates a conversation between the search application

and the user.
■ When designing the search experience, consider the users’ typical workflow.

They often start with a text search and then, as they review the results, they
engage in filtering and refining their criteria. Finally, they find items of interest
and click through to see the details page.

■ Help users find items more quickly by updating search results as they type.
■ Assist users in building successful queries by suggesting search completions.
■ Correct user mistakes with “did you mean” suggestions.
■ Faceted search helps users understand the distribution of items in the index and

allows them to filter and drill down to the subset of the results that they want.
■ The breadcrumb UI component can make users aware of how their results are

being filtered. It also gives them an obvious way to remove existing filters.
■ Highlighted search results and details pages draw the users’ attention to why a

particular item is deemed important.
■ Result grouping and sorting can reduce user cognitive load by allowing users to

focus on the most interesting results.
■ Relevance feedback makes it easier for users to engage with search and find

what they’re looking for.

Designing
a relevance-focused
search application
In the previous chapters, we laid out all the ingredients for good search:

■ Extracting features from the text of the documents through proper
tokenization

■ Defining important signals and creating search fields to represent them
■ Crafting queries that take into account both user needs and business

requirements
■ Providing feedback to users in order to guide them to more-relevant results

This chapter covers
■ Gathering information before building a new

search application
■ Designing and implementing a complete search

application
■ Designing a query as a composite of

subqueries
■ Balancing query parameters
■ Deploying, monitoring, and improving search
■ Knowing when further relevance tuning is no

longer advantageous
232

233Yowl! The awesome new start-up!
Now, this chapter is the rest of the recipe—the set of instruc-
tions that organizes these ingredients and lays out the meth-
odology for building a relevance-focused search application.

 Previously, we looked deep into the details of the search
engine itself and described how to provide users with a rele-
vant search experience. In this chapter (and the chapters
beyond), we shift from low-level details to a higher-level view
of search application development. In this chapter, we pres-
ent a systematic approach for building a search application
based on the simple flowchart in figure 9.1. At a high level,
designing a search application requires three steps: gathering
search requirements, designing the application, and main-
taining a deployed application. In the subsequent sections,
we provide a detailed understanding of each step so that,
upon completing this chapter, you’ll have a solid framework
to build your own search application.

 As with all of our chapters, we motivate the discussion with
a fun example. And having completely wrung all educational
and comedic value from the Star Trek examples, we turn to a
different one. You’re going to build a new and exciting start-
up called Yowl, and search will be its central feature.

9.1 Yowl! The awesome new start-up!
First things first, you need a tough problem to start to solve, as
in figure 9.2.

 Luckily, Doug has come up with a great idea! Just imagine
it: you hop off a plane in a city you’ve never been to before
and, having subsisted on pretzels and ginger ale for the past
five hours, you’re dying for something more substantive—a
big, juicy hamburger. But how do you find a good burger
joint? There’s no product on the market that can help you
find good restaurants nearby.

 Yowl to the rescue! With Yowl’s smartphone application,
you can search for and quickly find nearby restaurants fit for
your cravings. Or maybe you’re not in a new city, but you’re
interested in exploring the foodscape in your hometown.
Yowl will help you discover restaurants that you never knew
existed. Yowl will find restaurants perfectly matched to your tastes. Yowl will even help
you explore new tastes! The possibilities are endless.

 Though you might have to do some legwork up front, you hope that as Yowl
catches on, all the restaurant data will come from restaurant patrons and owners. The
restaurant patrons will write reviews for restaurants they’ve dined at. And restaurant

Gather info &
requirements

Design search
application

Deploy, monitor,
improve

Start

Stop

Figure 9.1 Relevant
search is built in three
phases: information
gathering, design, and
deployment. This chapter
covers all three phases
in detail.

Start

Figure 9.2 At the
start of any good search
application is a problem
that needs to be solved.
Identifying and thinking
through that problem is an
important step in building
the search application.

234 CHAPTER 9 Designing a relevance-focused search application
owners, encouraged by the new traffic created by Yowl, will update their restaurant
data so that their restaurant can easily be found.

 And the best thing is that Yowl has absolutely no competition in this market. Amaz-
ing, right? How has no one thought of this before? Doug said he looked for it on Google,
and nothing came up! Yelp, folks, as soon as we get this new search application built,
we’re all going to be rich. Oh, and a final note on the name; you might think that Yowl
is the sound that a cat makes when you step on its tail. Maybe so. But we think it’s
catchy. Think of Yowl as the sound that your stomach makes when you’re really, really,
really hungry. So when you’re most hungry, you’ll immediately think of our app!

9.2 Gathering information and requirements
Before building a search application, take time to consider the needs and expecta-
tions of all stakeholders. This is the next step in our process, as shown in figure 9.3.
Most obviously, search should be easy to use and helpful for users. But Yowl is a search-
driven business, so it must also meet business needs. In this section, we look at both
user and business needs. We identify the information required to meet these needs
and we describe potential sources for this information.

9.2.1 Understand users and their information needs

A useful exercise is to create personas for the various types of users who are expected to
interact with the application. A persona is a description of a fictional character that epito-
mizes a particular type of user behavior. Here’s our first cut at Yowl user personas:

■ Jet-setter Jenny—Jenny regularly travels and looks to Yowl to find places to eat when
she’s in a new city. Sometimes she’s looking for a quick and convenient bite; other
times she wants to find a fancier restaurant for meals with business associates.

■ Connoisseur Courtney—Courtney is interested in the finer things in life, and
when it comes to food, she has exacting tastes. One night she’ll seek the finest
French cuisine. Another night she’ll look for the restaurant that serves the best
Chirashizushi (a Japanese dish).

Gather info & requirements

Identify questions that

users will ask.

Identify business needs.

Identify required and

available information.

•

•

•
Figure 9.3 Before building search,
consider the needs of all parties
involved, identify the information
required to fulfill those needs, and
determine where this information
can be found.

235Gathering information and requirements
■ Explorer Evan—Evan has a broad palate and is always interested in trying
something new. This includes new types of food, new restaurants, and new
parts of town.

■ Discount Danny—Danny is a price-conscious user. When choosing a restaurant,
he wants to find the best value possible. He’s looking for low prices and high
ratings. If there’s a discount or meal deal available, he’ll use it. He prefers
nearby restaurants—you know, to save on gas.

Building out user personas might seem artificial at first, but they make it possible to
identify with users on a more concrete level. Personas also form a shared vocabulary
that allow you to more easily discuss the entire spectrum of user behaviors. When cre-
ating personas for your project, make sure to cover all of the predominant behaviors
you expect to see, and try to avoid overlapping behaviors.

 Let’s use the preceding personas to get to know your users. You can do this by enu-
merating the questions that these imaginary users might ask of your service. Three of
your consumers are interested in restaurant location, though in different ways. They
might ask the following questions:

■ Jet-setter Jenny: “Where are all the nearby delis?”
■ Discount Danny: “Where are the nearest restaurants that have discounts?”
■ Explorer Evan is still interested in location but rather than “nearby” or “near-

est,” he’s interested in a slightly different question: “What areas of town have
new and highly reviewed restaurants?”

The next most prevalent concern appears to be the users’ tastes for a particular type
of cuisine. Here, the questions are as follows:

■ Jet-setter Jenny may require only a generic representation of cuisine type. She
may ask, “I’m heading out with business colleagues for dinner; what Italian res-
taurants are nearby?”

Or perhaps, being in an unfamiliar city, Jet-setter Jenny might long for famil-
iar chain restaurants where she knows what she can expect: “My tummy has the
grumblies for cheap Mexican. Is there a Taco Belly nearby?”

■ Connoisseur Courtney needs Yowl to understand cuisine with the acumen of a
professional chef. She won’t ask for Chinese food; instead she’ll ask more spe-
cifically: “Where’s the finest Szechuan dining in the city?”

This indicates that you might need to keep track of cuisine types as a hierar-
chy—for instance, with Hunan and Szechuan cuisines being a subtype of Chinese
cuisine. But Courtney, being a true connoisseur, may even go so far as to ask for
specific dishes: “Where can I find the Szechuan dish called bon bon chicken?”

■ Explorer Evan, having a broad palate, won’t constrain search results by a partic-
ular cuisine, but he’s interested in knowing what types of food are available.
He’ll ask exploratory questions, such as “What kinds of restaurants are located
in this part of the city?”

236 CHAPTER 9 Designing a relevance-focused search application
Finally, all of the personas appear to have additional criteria that they might use to fil-
ter their results:

■ Explorer Evan is interested in “What’s new?”
■ Connoisseur Courtney is interested in “What’s highly reviewed?”
■ Discount Danny is interested in “What’s cheap and yummy (low price, high

rating)?”

Danny might also appreciate knowing about any available discounts. Hmm ... you
might even use the discount thing as a business angle.

 Identifying your typical users and their information needs gives you a good start at
identifying the information necessary to satisfy these requirements. Read back through
your users’ questions and consider: What types of information will you need in order
to answer all of your users’ questions? Where will you get this information? Before get-
ting to the bottom of this, let’s look at the other side of the equation: the needs of the
business itself.

9.2.2 Understand business needs

If Yowl is going to help users for very long, you need a sustainable business model;
someone has to pay you for the service you provide. No sweat—you have the perfect
idea: restaurants will pay a subscription fee in order to become one of Yowl’s promoted
restaurants. Whenever a user searches for a type of cuisine or a dish that’s a match for a
promoted restaurant, that restaurant will get an extra boost in its relevance score,
which will ensure that the restaurant is listed higher in the search results. On top of
this, you’ll further boost promoted restaurants that have available discounts.

 There are also nonmonetary aspects to the business. Yowl is a content-driven com-
pany, and by and large you’ll depend on restaurants to provide information. Therefore,
whenever a restaurant provides Yowl with useful information, Yowl will temporarily pro-
vide it with a boost as a thank you for the help.

 Notice that at this point you have several competing concerns to balance. If you boost
too far in favor of the restaurants, you’ll lose users because the search results will be less
relevant. If you boost too far in favor of the users, you offer no benefit to promoted res-
taurants and will soon lose them as customers. Relevance engineering is tricky!

9.2.3 Identify required and available information

Having considered both user needs and business needs, let’s boil all this knowledge
down. You’re looking to answer three main questions right now:

■ What information is required?
■ What will the information be used for?
■ How do you get it?

After answering, you’ll have a clearer understanding of the application. And you can
identify feasibility risks that may arise as a result of hard-to-get information or informa-
tion that doesn’t quite answer your users’ questions.

237Gathering information and requirements
 Let’s first consider the content being searched—restaurants. At a minimum, a res-
taurant is represented as a name and an address. Usually this information is publicly
available. Restaurant names and addresses that are more accurate and machine read-
able can be purchased from a business database provider.

 Restaurant names will be of obvious use, both in search and in the presentation to
the user on the details page. You need to use the address for location information.
You’ll use a geolocation service to convert restaurant addresses into their correspond-
ing latitude-longitude coordinates. At search time, the latitude-longitude location will
be useful for filtering, for finding all restaurants within a given bounding box. And
the latitude-longitude coordinates will also be useful in boosting restaurants that are
located close to the user making the search request.

 Even more than location, Yowl users want to know about the food that restaurants
serve. Often users will search for restaurants by cuisine (Mexican, Italian, Chinese,
and so forth). Some users will come to Yowl looking for a particular dish. And when
users review search results, they’ll appreciate having cuisine and menu information
nearby so that they can be sure their search is on the right track. Gathering this infor-
mation is tricky. You do expect users to provide restaurant reviews; maybe you can also
ask them to provide missing details about the restaurants. And once you bring signifi-
cant users to more restaurants, the restaurant owners will have the incentive to pro-
vide this information. But for now, you’ll probably have to roll up your sleeves and
research and enter this information yourself.

 After location and cuisine, users will filter and sort results according to secondary
criteria: price, review rating, and whether a discount is available. The overall price and
rating will come from the users. And the discounts will be supplied by the restaurants.
Restaurants can also provide descriptions of themselves. This will be nice to present to
users in the details pages, but it might also carry rich, searchable text.

 And finally, don’t forget that Yowl’s success depends on subscribed restaurants.
This is a simple Boolean value that controls whether restaurants will get an extra
nudge toward the top of the search results. Similarly, for a limited time, you’re boost-
ing engaged restaurants—those that are helping you by providing information.

 In review, the information you need, the sources you’ll draw this information from,
and the uses for this information are presented in table 9.1.

Table 9.1 Yowl information requirements, sources, and uses

Information Example Source Uses

Restaurant
name

Taco Belly Public Search, display (listing, details)

Address 1234 Cordon Ave.
Blacksburg TN 23913

Public Source of location, display
(details)

Location (lat/
long)

35° 24′ 30″ N
88° 31′ 20″ W

Geolocated from
address

Filtering, display, source for
distance

238 CHAPTER 9 Designing a relevance-focused search application
9.3 Designing the search application
With all of the ingredients assembled, it’s time to pull together your recipe for restau-
rant search. As indicated in figure 9.4, you’ll first design the user experience based on
expected user needs. Next you’ll rely on knowledge of the available information to
identify the fields that you need to index; these will serve as your base signals. You’ll
determine analysis requirements to ensure that the text is properly tokenized and the
appropriate features are extracted. Once you’re sure that the base signals function
well in isolation, you’ll build a query that balances the signals together.

Distance 12 mi Calculated from user
and restaurant locations

Boosting, sorting, display (listing)

Cuisine Mexican; fast food Restaurant, user Search

Menu items Burrito Ultimate $4.95 Restaurant Search, display (details), source
of price information

Price $, $$, $$$,$$$$ Menu items, user Filter, display (listing)

Review rating ★,★★,★★★,★★★★ User Filter, display (listing)

Discounts (Varies) Restaurant Filter, display (listing, details)

Promoted
restaurants

Boolean Restaurant Boost

Completed
form

Boolean Restaurant Boost

Description “Tasty, Fast, Cheap,
Addictive”

Restaurant Display (listing, details), search

Table 9.1 Yowl information requirements, sources, and uses (continued)

Information Example Source Uses

Design search application

Visualize user’s experience.

Define signals as fields.

Design features through

tokenization.

Tune signals.

Craft queries to combine signals.

Test and tune queries.

•

•

•
•

•

•

Figure 9.4 A systematic approach for
designing a search application involves
creating the appropriate fields and queries
so that the users’ questions are met.

239Designing the search application
9.3.1 Visualize the user’s experience

Leaning on our understanding of user and business needs, let’s think through the
user experience. From a search relevance perspective, you have two goals. The pri-
mary goal is to help users fulfill their information needs as quickly as possible (this is
the goal of the book, after all). The secondary goal is to provide users with relevance
feedback (as in chapter 8) to help them understand why they’re seeing the current
search results and how to adjust their searches accordingly.

 When users come to Yowl, they immediately begin browsing for restaurants
through a user interface similar to the one shown in figure 9.5.

 Some users start with a text search and enter a restaurant name, a cuisine type, or
specific dish. Users with less-specific needs filter nearby restaurants according to
price or rating. Many users search and filter. As users modify their search text or their
filter selections, the map updates with markers for nearby restaurants that meet the
search criteria. The map itself can be used as a location-based filter of restaurants,
and users can pan and zoom to various parts of the map in order to see restaurants in
a different location.

 After you satisfy users’ search criteria, they move on to one of the two search result
displays. The first display, the map view, is part of the browse interface. As shown in
figure 9.6, the browse components can be dismissed to reveal a full-size map.

mexican

$ $$$$$$$$$

Map List

Taco Belly $

Mexican, Fa...

TACO

BELLY 0.3 mi

Figure 9.5 Yowl’s browse interface Figure 9.6 Yowl’s map view, one of the two
search result displays

240 CHAPTER 9 Designing a relevance-focused search application
The visual presentation of a map provides relevance feedback, assuring users that
they’re searching in the correct location. When a user clicks a restaurant marker, a
restaurant card appears, displaying relevant information:

■ Restaurant name
■ Distance from the user to the restaurant
■ Rating (by number of stars)
■ Price (by number of $ characters)
■ Cuisine type
■ An image for the restaurant

The goal of the restaurant cards is to present the most critical information as com-
pactly as possible on the screen. This allows the user to efficiently scan the display and
click through to the details only when the restaurant is a good match.

 As shown in figure 9.7, you also present search results as a tabular listing of match-
ing restaurants. The list view presents each search result as a restaurant card that looks
just like the restaurant cards used in the map view. The list view isn’t as good as the
map view for displaying location information, but it allows users to focus on the other
metadata—cuisine type, rating, price, and distance. The results can be sorted by rele-
vance or distance; and in order to retrieve more results, the user can scroll further
down in the list.

List Map

Taco Belly $
0.3 mi

El Sombrero $$$
1.3 mi

Old Laredo $$

Mexican, TexMex

Old

Laredo
1.7 mi

2.4 mi
Busted Burrito $

Mexican, Fast Food

B

PeidraEnSuSopa $Piedra

S

TACO

BELLY
Mexican, Fast Food

Mexican

Taco Belly $
TACO

BELLY

Details List

If you like Tacos, and you like 'em

served up fast, try Taco Belly,

fastest tacos in the East!

Limited time only: 64oz Big

Chug for the same price as

the 32oz Medium Chug.DE
AL

0.3 mi
Mexican, Fast Food

I saw them use a caulk gun filled with

meat to fill my taco. But it was great!

Took advantage of their Cuatro de

Mayo 4 for $4 deal. Great value.

I didn't know that pizza tacos were a

thing. Went great with the Big Chug.

All I can say is "Tacos, Get in my Belly!"

RatingReview

Figure 9.7 The list view, a tabular view of
the search results

Figure 9.8 Yowl’s restaurant details view

241Designing the search application
Finally, if a user clicks a restaurant listing, you present the restaurant details view, shown
in figure 9.8. This page provides rich information for that restaurant, including:

■ Everything from the restaurant card (restaurant name, distance, rating, price,
and so forth)

■ Restaurant description
■ User reviews
■ Details about available deals
■ A link to the menu
■ Hours that the restaurant is open
■ Address and phone number

9.3.2 Define fields and model signals

You now know what information is available and how it will be used within Yowl. It’s
finally time to start building this search application! This starts with defining your
fields. Table 9.2 uses the information from table 9.1 to describe how each piece of
information will be analyzed and indexed into its own field. Nothing should be too
surprising here; everything is a straightforward application of the ideas discussed in
chapter 4.

 Although we’re brushing over some details, don’t be fooled into thinking that
modeling the signals is an easy task. In practice, defining fields can be iterative. You’ll
often run into unexpected behavior and have to go back and tune the analysis to han-
dle the corner cases as they pop up.

Table 9.2 Given the required information, you form fields and determine how to appropriately analyze
the content.

Field name
Information

(from table 9.1)
Analysis

location Location (lat/long) geo_point (geolocated from address)

name Restaurant name Standard tokenized, possessive and plural
stemmed, lowercased, diacritics removed

cuisine_hifi Cuisine (from restaurants/
curators)

Standard tokenized, synonyms (used to normal-
ize the vocabulary)

cuisine_lofi Cuisine (from user)

menu Menu items Standard tokenized, lowercased, bigram shin-
gled, multivalued (ETL will involve OCR and
curation)

description Restaurant description English tokenization and stemming, lower-
cased

price Price One of {$,$$,$$$,$$$$} as determined from
menu items or user reviews

242 CHAPTER 9 Designing a relevance-focused search application
At this point, it’s good to start thinking about how base signals (the fields in table 9.2)
naturally group together. Later, when it’s time to build your queries, you can think
about these groups as logical chunks rather than having to consider each base signal
as a completely independent entity. A few sections from now, you’re going to build out
Yowl’s main query. You’ll see that thinking of fields in groups greatly simplifies the
process of balancing signals and tuning the overall query.

 As you can see in table 9.2, Yowl’s fields fall into four fairly natural groups: loca-
tion, content, user preferences, and business concerns. These are defined as follows:

■ Location—The location field is just that: a geo_point-encoded set of latitude-
longitude pairs.

■ Content—This includes text fields: name, cuisine_hifi, cuisine_lofi, menu, and
description. Note that you split your cuisine information into two fields: a
high-fidelity field, cuisine_hifi, for cuisine information supplied by Yowl cura-
tors and restaurant owners; and a low-fidelity field, cuisine_lofi, for informa-
tion that comes from users reviewing the restaurants.

■ User preference—User preference is represented in the price and rating fields.
Both fields have similar UI/UX that allows users to filter through the restau-
rants. Both fields are represented similarly in the index. They differ only in
meaning.

■ Business concerns—This includes has_discount, promoted, and engaged fields.
These Boolean fields define groups of restaurants that Yowl wants to boost as
part of your business strategy.

9.3.3 Combine and balance signals

By this point, you’re confident that fields correctly capture the important features
from the data that they encode. You’re now ready for the sometimes-arduous task of
creating queries that combine and balance these signals. In this section, we lay out a
bottom-up approach whereby the base signals (fields) combine according to their log-
ical grouping. Once these higher-level signals are in place, you combine them to cre-
ate the final query used for Yowl search.

rating Review rating One of {★,★★,★★★,★★★★} as determined by
average user reviews

has_discount Discounts Boolean

promoted Promoted restaurants Boolean

engaged Completed form Boolean

Table 9.2 Given the required information, you form fields and determine how to appropriately analyze
the content. (continued)

Field name
Information

(from table 9.1)
Analysis

243Designing the search application
BUILDING QUERIES FOR RELATED SIGNALS

You’ve already seen how the fields naturally group into location, content, user prefer-
ences, and business concerns. Now let’s consider how each of these higher-level sig-
nals might be stated in terms of Elasticsearch queries.

 First, let’s look at the location signal. You need two queries to handle location. One
is a bounding-box filter that will be used on the map screen to geographically limit the
area that needs to be searched, as shown in the following listing.

{ "filter": {
 "geo_bounding_box": {
 "location": {
 "top_left": <northwest corner of user display>,
 "bottom_right": <southeast corner of user display>}}}}

The other location query scores the restaurants according to their geographic dis-
tance from the user’s current location, as shown in the next listing.

{ "query": {
 "function_score": {
 "functions": [{
 "gauss": {
 "location": {
 "origin": {
 "lat": <user-lat>,
 "lon": <user-lon>},
 "offset": "0km",
 "scale": "10km"}}}]}}}

This query ensures that nearby restaurants are boosted above the distant ones in
Yowl’s list view. Determining a score based on distance can be computationally expen-
sive, so every time you use this query, you’ll also apply the geo-filter of listing 9.1. Oth-
erwise, you’ll inadvertently be calculating distance scores for restaurants so far away
that the users wouldn’t be interested in them anyway.

 As you build up the subqueries corresponding to your signals, it’s important to test
each query in isolation, as you did in chapter 7. This simplifies the work required
when combining these pieces into an overarching query, because you’ll be able to
focus on the higher-level signal rather than worrying that the base signals aren’t
appropriately balanced. Test queries by indexing a realistic set of documents and then
running through each query to ensure that it measures the expected information. In
this case, you test the location filter and query by making sure that only restaurants
within the bounding box are returned, and that they’re returned in order of increas-
ing distance.

Listing 9.1 Bounding-box geographic filter

Listing 9.2 Geo-query scoring restaurants near to the user more highly

244 CHAPTER 9 Designing a relevance-focused search application
 Next, you’ll build a query to handle the content signal. This is your main text-
based query.

 { "query": {
 "multi_match": {
 "query": <user query>,
 "fields": [
 "name^10",
 "cuisine_hifi^10",
 "cuisine_lofi^4",
 "menu^2",
 "description^1"],
 "tie_breaker": 0.3}}}

As discussed in detail in the previous chapters, a lot of strategies are available for
searching text fields: the query can be field-centric or term-centric, the scoring can be
a simple summation of subscores or something more complicated such as a disjunc-
tion-maximum score with a tie parameter. Or you can forego all the complexity and
just dump the text into a single content field and have a single score to worry about.
In the preceding case, you use a field-centric approach by applying a multi_match
query across the name, cuisine_hifi, cuisine_lofi, menu, and description fields. By
default multi_match uses a best_fields approach, which is good here because the
users will likely search for a restaurant name or a cuisine type or a menu item—but not
all three at once. But to soften the best_fields behavior a bit, you’ll also introduce a
tie_breaker with a value of 0.3.

 The fields in listing 9.3 are associated with boosts that indicate the level of impor-
tance placed on each field. It’s good to think through these boosts and get a represen-
tative value down for each field. These boosts are subject to change as you fine-tune
your relevance. Because the typical use-case involves users searching for a restaurant
name or a cuisine type, these fields receive the highest boost. Recall that cuisine_lofi
content is contributed directly by the user, so you trust it less than the curated
cuisine_hifi field. Because of this, you give it a lower weight. The menu field is
important for people searching for a particular dish, but you weigh it lower because
you don’t want cuisine types that happen to be in the menu trumping matches in the
cuisine fields. Finally, the description field is given the lowest boost because it’s
intended to merely bolster the search content.

 Test the content query by ensuring that it matches the expected documents. And
test the scoring by making sure that the documents are returned in the appropriate
order. This type of testing tends to be subjective. In a moment, you’ll learn about test-
driven relevance—a technique for making this type of testing as objective as possible.

 Next, the user preference signal is the easiest portion of your search. When your
users select a price point (number of dollar signs) or a rating (number of stars),

Listing 9.3 Query associated with content

User’s
search

245Designing the search application
they’re asking to filter out all other results. Therefore, no scoring is involved; you only
need a filter, as shown in the following listing.

{ "query": {
 "bool": {
 "filter": [
 {"match":{
 price: "D"}},
 {"match":{
 rating: "S"}}]}

Here you’re using D to represent a single dollar sign and S to represent a star. Testing
this filter is easy; just make sure that the search results contain only restaurants that
match both the specified price and rating.

 Finally, you consider the business needs. The goal is to boost restaurants that are
promoted members of your service, restaurants that advertise a discount through your
service, or restaurants that are engaged (they’re providing helpful information).

{ "query": {
 "function_score": {
 "functions": [{
 "filter": {
 "bool": {
 "should": [
 { "term": { has_discount: True }},
 { "term": { promoted: True }},
 { "term": { engaged: True }}]}},
 "script_score" : {
 "script": """
 0.5*doc["promoted"].value +
 0.3*doc["has_discount"].value +
 0.2*doc["engaged"].value
 """}}]}}}

For the sake of simplicity, you encode the scoring logic in a script score to give pro-
moted restaurants the highest boost, followed by restaurants that have available dis-
counts, followed by the nonpaying but highly engaged restaurants. Script scoring can
be computationally expensive, so in order to limit the number of restaurants that have
to be processed, you filter the data to include only restaurants that have at least one of
promoted, has_discount, or engaged. Note that this won’t filter out any results; it
just filters the documents that will be processed by the script_score. Testing this
query is simple: create a set of documents containing every combination of promoted,
has_discount, or engaged and make sure that each gets the expected score.

Listing 9.4 User-preference filter to limit to matches according to price or rating

Listing 9.5 Business concerns query to promote paying and engaged customers

246 CHAPTER 9 Designing a relevance-focused search application
COMBINING SUBQUERIES
At this point, you’ve constructed subqueries corresponding to each of the dominant
signals in your search application. As you built each subquery, you also tested it to
ensure that the correct documents were matched and the results were scored so that
they reflected your relevance goals. In this section, you’ll go up one level of abstrac-
tion by building the overarching query that backs Yowl’s search. Let’s first look at the
composite query and then discuss the choices you’ll make in its construction.

{ "filter": {
 "bool": {
 "filter": [
 {
 "geo_bounding_box": {
 location: { <user’s bounding box> }}},
 {
 "match":{
 "price": <user’s price preference>}},
 {
 "match":{
 "rating": <user’s rating preference>}}]}},
 "query": {
 "function_score": {
 "score_mode": "sum",
 "query": {
 "multi_match": {
 "query": <user’s search terms>,
 "fields": [
 "name^10",
 "cuisine_hifi^10",
 "cuisine_lofi^4",
 "menu^2",
 "description^1"],
 tie_breaker": 0.3}},
 "functions": [
 {
 "weight": 1.2,
 "filter": {
 "bool": {
 "should": [
 { "term": { has_discount: True }},
 { "term": { promoted: True }},
 { "term": { engaged: True }}]}},
 "script_score" : {
 "script": """
 0.3*doc["has_discount"].value +
 0.5*doc["promoted"].value +
 0.2*doc["engaged"].value
 """}},
 {
 "weight": 2.1,
 "gauss": {

Listing 9.6 Composite query that incorporates all of the major signals

Location
filter

User
preference

Sums the
relevance scores

b

Content

Business
concerns

Location

247Designing the search application
 "location": {
 "origin": { <user’s location> },
 "offset": "0km",
 "scale": "4km", }}},
 {
 "weight": 1.0}]}}}

This query has two top-level sections, filters and queries. The filter limits the result set
to include restaurants only near the user’s current location and (if specified) match
the user’s price and rating requirements. The query section is more complex. The
first section is the content query. In the context of the entire query, the content query
serves to further filter the restaurants to only those that contain the user’s search
terms. But more important, this query provides a base relevance score for each docu-
ment. The other signals (location and business concerns) are intended to serve only
as boosts—subtle nudges—on top of the base content score. The remainder of the
query section contains functions (within a function_score query) that provide these
boosts. Each function contains a weight parameter that allows you to balance the sig-
nals. You have three weights in total: a weight for the location, the business concerns,
and the content. The user preferences don’t have a weight because they merely serve
to filter the content.

 At this point, you can clearly see the importance of first creating subqueries for
each high-level signal. The preceding query has only three knobs to turn in order to
control relevance behavior—the three weights. If you hadn’t started by building sub-
queries, you’d have to consider the interactions of all 11 fields simultaneously, and
debugging a relevance problem would be nearly impossible.

UNDERSTANDING THE BEHAVIOR OF SIGNAL WEIGHTS
You might notice something strange about listing 9.6: the content subquery is sepa-
rated from the associated content weight. Let’s take a closer look at the structure of
the query, in order to better understand the behavior of each weight. And at the end
of this section, we take a step back and generalize the lessons learned so that you can
apply the same reasoning to your own search projects.

 In Elasticsearch, a function_score query has a query section and a function sec-
tion. There’s nothing special about the query; it matches and scores documents. The
interesting part is how the score from the query interacts with the numerical values
produced by the functions. By default, the values generated from each function are
multiplied together, and the resulting value is then multiplied with the score of the
main query. In equation form, this looks something like this:

TotalScore = (BusinessScore × LocationScore) × ContentScore

But by including 'score_mode':'sum' (B in listing 9.6), the behavior is modified so
that the function values are summed together before finally being multiplied with the
query score, as shown in the following listing.

Content weight
(mysterious!)

248 CHAPTER 9 Designing a relevance-focused search application
TotalScore = (wB × BusinessScore + wL × LocationScore + wC) × ContentScore

Here you include weights (wB, wL, and wC) corresponding to the weights in listing 9.6.
These correspond to the business, location, and content weights, respectively. At
this level of abstraction, you no longer directly control the values of BusinessScore,
LocationScore, and ContentScore. Those values are determined by the subqueries
you put together earlier. But by adjusting the weights wB, wL, and wC, you can carefully
balance BusinessScore, LocationScore, and ContentScore, and thereby control the
search relevance.

 Notice that the signals aren’t symmetric in this equation. The ContentScore is
multiplied across the BusinessScore and LocationScore. In a sense, this gives the
content score an advantage over the other signals; if content score is low, it will be dif-
ficult for the total score to be high. Say, on the other hand, that you make the equa-
tion more symmetric by adding in the content score:

TotalScore = wB × BusinessScore + wL × LocationScore + wC × ContentScore

Then it would be possible to have a high-scoring document that has a content score of
zero! This would obviously lead to a horrible user experience. A user could search for
“sushi,” and the Yowl app would recommend the burger joint next door! To avoid this
dynamic, multiplying the content score by the other factors works best.

 Now what about that mysterious content weight from listing 9.6? Why is it neces-
sary? To finally answer this, let’s consider how search would behave if the content
weight wasn’t present. In terms of an equation, this would be just like the equation
from listing 9.7, but with wC removed:

TotalScore = (wB × BusinessScore + wL × LocationScore) × ContentScore

With this equation in mind, let’s think about a degenerate case. Consider a restaurant
that’s a perfect match for the user’s query, but is of no business value (not promoted,
engaged, or offering any discounts). Additionally, the restaurant is located at the edge
of the geo-bounding box and its location score is therefore quite low. If you use the
equation without the content weight, then despite being a perfect match for content,
the overall score of this restaurant will be low. Effectively, the business score and the
location score are “teaming up” against the content score. But—if you add the content
weight back in as shown in listing 9.7, you control the extent to which the business
score and location score are allowed to team up against the content score. Therefore,
when wB, wL, and wC are properly tuned, the search results will retain an appropriate
focus on the quality of the content and won’t be overrun by the less important loca-
tion or business signals.

 Let’s step back and generalize this discussion. As you develop your own search appli-
cations, your queries will likely be structured similarly to the Yowl query of listing 9.6.

Listing 9.7 Equation representing the calculation of the overall score

249Designing the search application
They’ll be composed of a function_score query in which the query clause matches
and scores documents based on content and the function takes care of additional
boosting logic. But even if you have more exotic queries, it’s important to understand
their structure in the same way that you now understand the Yowl query. Be able to
write out an equation that explains how the high-level signals are combined to create
the overall score. Consider extreme cases to guard users from poor behavior caused
by unimportant signals overpowering the more important signals.

TUNING AND TESTING THE OVERALL SEARCH

With a well-structured query in hand, you have one final task: tuning the weights so that
content, user, and business signals are properly balanced. But as simple as this task may
sound, it’s often the most frustrating and time-consuming job in all of relevance work.
In this section, we present an organized approach for tuning query parameters.

 You’ll start by focusing on content-based relevance and ignoring other concerns
such as user preferences or business requirements. After you’ve optimized content-
based search, you layer in user preference. Finally, after the user experience has
reached its peak performance, you introduce the business requirements into the
query. As a result of this progression, you arrive at a search experience that priori-
tizes the user without neglecting the practical needs of the business. Again, you’ll
use the Yowl query, but the principles presented here can be applied to your own
search projects.

 Before you start tuning query parameters, you need to index a realistic set of docu-
ments to test against—and the larger the data set, the better. Ideally, you can take a
snapshot of the production index and use that when tuning your query parameters.
You’ll also need a representative set of search requests. For an existing application,
you can scan search logs to get an idea of typical requests.

 Here you’re building out Yowl search for the first time, so you’ll have to be creative
and infer the types of questions that users will ask. The important part is to have a
small set of sample requests that exercise every typical use case. Because you’ve
already created user personas, it might be a good idea to refer to their questions and
make sure that you’re at least covering all the use cases that you anticipate seeing.

 The first thing to tune is the content subsearch. Remember this guy?

 { "query": {
 "multi_match": {
 "query": <user query>,
 "fields": [
 "name^10",
 "cuisine_hifi^10",
 "cuisine_lofi^4",
 "menu^2",
 "description^1"],
 "tie_breaker": 0.3}}}

Here you have six parameters to tune, one for each content field and one for the
tie_breaker parameter. You tune these parameters by running through the exemplary

250 CHAPTER 9 Designing a relevance-focused search application
search requests, looking through the results from each request, and modifying param-
eters to correct any problems you run into. As we’ve mentioned before, this is typically
a subjective process. In the next section, we introduce test-driven relevance, which can
make this process more organized and objective than the typical approach of “just try-
ing a lot of queries and seeing how they look.”

 While tuning text queries like this, you’ll inevitably run across results that are
hard to explain. When this happens, remember to lean heavily on Elasticsearch’s
built-in query explain feature (activated by placing 'explain': true in the query).
As discussed in chapter 3, the explain details are a little difficult to read at first but
they’re useful for understanding why documents match a particular query and how
they’re scored.

 When you’re happy with the content subquery, zoom back out to the full Yowl
query presented in listing 9.6. (Naturally, you’ll update the parameters of the content
subquery to match the values you just arrived at.) From here on out, all you have to do
is find appropriate values for the three weights: the content weight wC, the location
weight wL, and the business weight wB. Let’s begin by setting wC to 1.0 and wL and wB to
0.0. This serves as a baseline in which documents are scored solely on their content,
and neither location nor business concerns affect the overall score. (Referring to the
equation in listing 9.7, can you see why this is true?)

 Because you’re dealing with the overall query, you again have access to location,
price, and rating filters. As a next step, you’ll make this example search more realistic
by including a location filter representative of your typical search requests. Immedi-
ately you’ll see a drop in content-based relevance. Can you think of why this would
be? The drop in relevance is caused by a decreased number of available documents.
When you were looking at the entire index, there were plenty of restaurants to
match. But as you narrow the focus to a particular locale, there might not be as many
relevant results for a given query. Don’t fret. You at least know that you’re getting
more realistic with your search. If the results are terrible at this point, no amount of
query tuning will help; you simply need more restaurants in the index—and that’s a
business problem!

 Next let’s layer in the location. To do this, you gradually increase the location weight
wL while keeping an eye on the quality of the search results. At 0.0, the location query
has no impact on search results. As you increase the value wL, you observe the docu-
ments rearrange so that nearby restaurants are preferred above distant ones. And if you
increase wL too much, you’ll begin to see less-relevant results pulling toward the top.

 After you find an appropriate value for wL, the content and location signals will be
in balance. At this point, you’ve built as close to optimal search app for your users.
Unfortunately, you’re not yet meeting any of your own business needs! Therefore, it’s
time to layer in the business signal. The direct approach would be to slowly increase
the business weight wB from 0.0 until you start to see relevance drop. But you’ve just
increased the location weight so high that any further influence from the business sig-
nal will likely cause the relevance to drop off quickly.

251Designing the search application
 You need a different approach, one that treats the location signal and the busi-
ness signal symmetrically. To achieve this effect, you start by temporarily turning off
the location signal by setting wL to 0.0. And then, using the same technique as before,
you increase wB until just before relevance starts to be noticeably affected. After find-
ing an appropriate value for wB, you restore the location weight wL to the previously
determined value. Because you’ve handled the location signal and the business sig-
nal symmetrically, they should now be reasonably well balanced with one another.
But with influence now coming from both business and location, it’s likely that the
content signal is being overpowered. Fortunately, this isn’t a problem, though you
have one more knob to turn. By gradually increasing the content weight wC until rele-
vance is restored, you can reach an optimal balance between content, location, and
business concerns.

 Unfortunately, in real search applications, parameter tuning can get a lot messier
than this idealized example. But it’s important to at least aim for these ideals in order
to avoid unnecessary complexity (for instance, attempting to tune all fields indepen-
dently). Also, even when tuning gets messy, the preceding thought process still
applies: you have to understand how signals interact so that you change the parame-
ters appropriately.

YEAH … BUT HOW DO YOU TUNE RELEVANCE PARAMETERS?
You’ve probably noticed that in all of these steps you’re doing a lot of fiddling around
with parameter values. And at each step, we talk about making sure the search results
“look good” before moving on to the next step. But we haven’t talked about how to
make sure your parameters are moving in the right direction.

 For starters, our optimality criterion, “looks good,” is vaguely defined. In order for
the search results to be optimal, you have to understand what your users think is rele-
vant. But this is difficult. One user searching for “taco” is looking for a restaurant that
has taco in the title (perhaps the user forgot the name), whereas another user search-
ing for “taco” seeks restaurants that serve tacos. Therefore, our notion of optimal rele-
vance must be aware of the differing information needs of our users. Furthermore,
“taco” is just one query; you have to make sure that relevance is maintained across any
queries that users might make. If every user searched for “taco,” you could simply tune
the parameters until the taco search looked perfect. Instead, there are 100,000 other
searches that need to look good too; and concentrating too heavily on any one of
them will certainly be detrimental to the others.

 So what should you do to nudge those parameters in the right direction? First you
need a good set of typical queries to work with. This set should include popular que-
ries, it should include queries from every imaginable use case, and it should even
include some random queries—ideally, things you’ve plucked from a query log file.

 Now, given a typical set of queries, you need to understand what “looks good”
means for each of these queries. This can be as vague as “I know it when I see it,” but
ideally it should be more concretely defined. At an extreme, the field of information
retrieval uses so-called relevance judgments to define “looks good.” Here, given a fixed

252 CHAPTER 9 Designing a relevance-focused search application
set of queries and a fixed set of documents, each query-document pair is graded on a
1-to-5 scale according to how well the document matches the corresponding query.
Collectively, these graded query-document pairs are called the judgments.

 When you have a set of queries and a reasonably good understanding of what
“good” looks like, you’re finally ready to start tuning the parameters. This process
involves issuing several queries, looking through the results of each query simultane-
ously, and then identifying and diagnosing relevance issues as they arise. If you have a
good understanding of how the query works, you should also have a good idea of how
to modify search parameters. In the preceding Yowl example, if the first page of
search results contains only nearby restaurants that are weak matches for the query,
then the location signal should be given less weight.

 Needless to say, gathering judgments is a labor-intensive process. If you find your-
self revisiting relevance settings often, it may be worth spending time to automate
this process. You could build a relatively simple application that allows a content
curator to issue queries, view results, and mark results as either appropriate or inap-
propriate for the given search. When enough queries and documents have been
annotated (when you have enough relevance judgments), you can automate rele-
vance testing so that each time you modify search parameters, all test queries will be
reissued and the new settings will be scored based on how good the results are
across all test queries.

 We call this automated approach test-driven relevance. With test-driven relevance,
you no longer have to issue searches by hand, and more important, you no longer
have to mentally keep track of the search behavior across all searches. Tools like
Quepid (http://quepid.com) help simplify the process.

 Ultimately, the ideal solution for tuning parameters is to push automation one step
further. Many techniques automatically gather relevance judgments given sufficient
user traffic. Armed with these judgments, a program can automatically adjust query
parameters on your behalf. In the field of information retrieval, this highest level of
automation is known as learning to rank. Learning to rank turns out to be a tricky prob-
lem to solve, but it has become a focus in information retrieval. So be on the lookout
for improvements and breakthroughs in the near future.

 We’ll have more to say on learning to rank and test-driven relevance in the next
chapter.

9.4 Deploying, monitoring, and improving
At long last, with your query parameters finely tuned, you’re ready to go live with the
Yowl restaurant search application! You’ve gone through a lot to get to this point in
terms of planning, designing, and implementing the search application. You can
breathe a sigh of relief as some of the hardest work is behind you. But, in many ways,
deploying the search application means that you’re just at the beginning of your real
work. Now you enter into a cycle of monitoring, updating, and iteratively improving
your search application, as shown in figure 9.9.

http://quepid.com

253Deploying, monitoring, and improving
9.4.1 Monitor

In designing a search application, many of the choices are subjective—from the look-
and-feel of the UI to the parameter values for your query, you rely on intuition to
guide your decisions. But as soon as the application is launched, you have access to a
new stream of information that reflects the quality of your search application. What’s
this new stream of information? User behavior.

 If a user understands, enjoys, and gains value from Yowl, the behavior of your
users will reflect this. And if users encounter problems with the application, you can
analyze user behavior in order to track down and correct these problems. Similarly,
if you make a change that introduces a new problem, you should be able to see a
corresponding shift in user behavior. Therefore, from the moment the application
is deployed, it’s important to gather information from your users. There are many
potential sources of behavioral information, but here we list just a few to get you
thinking about the possibilities:

■ Time on page—If users glance at search results and quickly leave, they aren’t
finding what they’re looking for. Conversely, your relevance feedback may be so
good users find answers instantly and leave.

■ Click-through rate—You can tell that a user has found something interesting
when they click through to find more details.

■ Conversion rate—If a user buys a product (or in the case of Yowl, grabs a restau-
rant discount), search is working. This is the bottom line.

■ Retention—If users come back to the app regularly, they find it useful.
■ Deep paging—If users regularly need to go to the second or third page of search

results, this may be a symptom of a relevance problem. Why aren’t the results
on page 1?

■ Pogo-sticking—Users click a result but then quickly find out it’s not what they
want and return to the results listing. This reveals a problem with relevance

Deploy, monitor, improve

Monitor user behavior.

Identify relevance problems.

Improve search:

General configuration,

Back to the drawing board,

Corner cases

Repeat!

•

•

•

•

•

•

•

Figure 9.9 Deploying the search
application is the start of a cycle
of monitoring and iteratively
improving search.

254 CHAPTER 9 Designing a relevance-focused search application
feedback. Ideally, the user should get a good sense of whether the document is
worth looking at before clicking through to the details page.

■ Thrashing or reformatting—Users change their search several times in a row
because they’re finding nothing that meets their information needs. This may
indicate users have a complex information need and your relevance feedback is
pointing them in the correct direction.

Whatever metrics you choose to track, the absolute value is often less important than
the change in value over time. For instance, deep paging on an e-commerce site may
indicate that a user isn’t finding the item needed; but for legal or patent search, deep
paging might indicate that the user has uncovered a rich vein of useful documents.
Because we’re often looking for telltale changes in behavior, it’s important to gather
and track baseline values for user-behavior metrics. Then, if you notice any sudden
changes or degradations, you can investigate the problem further.

 Search logs are another great source of information worth keeping an eye on. By
reviewing the searches that your users are making, you can start to build a clearer
understanding of users and how they’re using your application.

9.4.2 Identify problems and fix them!

When tracking search history and user behavior, it’s easier to spot search problems as
they creep up. The easiest problem to spot is the zero-results search. You can almost
always do better than “sorry—got nothin’ for ya.” And finding zero-results searches is
as simple as grepping through the appropriate search log.

 More generally, when you see an unexpected degradation in metrics, try to find
the underlying pattern. Usually the search problems that arise from well-tuned search
applications represent some sort of relevance corner-case. Can you find a pattern in
the user strategies? Maybe Yowl users searching by cuisine find their restaurant, but
users searching for a specific dish tend to get lost.

 Maybe the underlying problem has to do with a particular topic or set of query key-
words that are performing poorly. For instance, as users begin using Yowl, you notice
that those seeking French cuisine appear to have a particularly bad experience.
Among users who search for “French food,” “French cooking,” and the like, you see a
good deal of thrashing, low click-through rate, and poor retention. By looking
through the search log and trying some of the problem queries yourself, the reason
for the bad user experience becomes clear: every result for a query containing the key-
word french returns nothing but fast-food restaurants! You dig into the ranking with
explain set to true and soon realize that French fries are the source of the troubles.
Having isolated the root cause of the relevance problem, you can make the appropri-
ate corrections.

 As you isolate relevance problems, you may be required to fix them at any level of
the search application. Here are some examples from each layer:

■ Configuration—Indexes are typically sharded across several servers, so that each
server holds just a portion of the documents. Because the number of documents

255Knowing when good is good enough
will be different for each shard, relevance can sometimes be negatively impacted.
A change to the index configurations can address this.

■ Text analysis—In the preceding example with french fries, you might need to
add an entry in the synonyms file to ensure that french fries aren’t conflated
with French cuisine. Another common fix is to add certain terms to a protected
words file so that they don’t get inappropriately stemmed.

■ Signal modeling—Certain signals may be unnecessary or detrimental to search rel-
evance. For instance, as you watch Yowl users, you might find that the descrip-
tion field is too noisy to be useful. After testing in production, you may choose
to reduce the description field boost or to remove the field altogether. Alter-
natively, important signals are sometimes missing and need to be incorporated
into search.

■ Query—As the needs of users and the business change, you’ll need to add or
remove pieces of the query in order to affect the desired change. If Yowl
decides to have tiered services, you may offer an extra boost to your premier
members. This will involve dropping in a new function_score function and
rebalancing the query.

■ Relevance feedback in the UI—You need to watch your users interact with your
application and make sure that they understand what they’re seeing. They
should be able to easily find what they seek and understand the results that
they’re provided. If they don’t, you should address this by improving the rele-
vance feedback that you provide. For instance, Yowl might provide users with
keyword autocompletion in order to guide them toward fruitful searches.

Whenever you successfully address one tough relevance issue, be aware that many
more are waiting to be found. Search application maintenance is a process of contin-
ual vigilance. Besides the problems yet to be discovered, each new document in the
corpus, each new query, and each new business need holds the potential for introduc-
ing new relevance problems. But don’t fret! A principled approach of monitoring
behavior metrics, finding and fixing problems, and testing solutions will keep your
search application on track and your users satisfied.

9.5 Knowing when good is good enough
Almost as important as building a great search app is to know when to stop building (see
figure 9.10)! When building a search application, you’re effectively building up a model
for natural language. But natural languages are dirty, dirty things. English, for example,
is full of words that can be used in different settings to mean different things. Some

Stop

Figure 9.10 It's important to build a highly
relevant search application, but it's also
important to know when to stop.

256 CHAPTER 9 Designing a relevance-focused search application
words in English even serve as their own antonyms! For example, consider cleave, which
means to split apart and also means to adhere to strongly. See! English is dirty!

 Therefore, be aware of this stark truth:

When building and refining a search application, you’ll eventually be met
by the law of diminishing returns.

In developing the basic Yowl search, you were probably 50% of the way toward “per-
fect” search when you turned on the search engine and dumped in the restaurant
data. By more carefully considering the characteristics of individual fields, and by
building and tuning your queries, you jumped to 85%. After deploying search and
identifying and resolving the obvious relevance issues, you moved to 93%. Anything
beyond this takes considerable work and provides only incremental benefit. And fur-
thermore, the more “perfectly” you configure search at any point in time, then implic-
itly the more brittle and resistant to change search becomes. You’ll eventually arrive at
a point where you’re effectively overfitting the search application according to the
narrow understanding that you have at a particular point in time. Any new documents
or business requirements that contradict this understanding will cause new relevance
problems to pop up.

 Prevent overfitting your search by stepping back and asking yourself, “Is it worth it?”
If you can make a change guaranteed to fix an important corner case, go for it. But if
your search is already good and you wish to eke out just a little more performance, be
cautious—you might be inadvertently making search brittle and resistant to change.

9.6 Summary
■ Typical steps when developing a search application include modeling your

users with personas, identifying users’ typical needs, and designing an applica-
tion that will meet those needs.

■ Integrating new sources of information supports user and business relevance
requirements.

■ Transforming and cleaning data sources through transformation and analysis
allow you to implement low-level user and business matching rules.

■ Low-level signals can be grouped into higher-level signals that balance and com-
bine different user and business ranking concerns.

■ A search application, once deployed, should be monitored based on user inter-
actions to identify new problems and unexpected use cases.

■ Remember the nature of diminishing returns when resolving relevance corner
cases. This should help guard against overfitting search according to the nar-
row understanding of requirements at a given point in time.

The relevance-centered
enterprise
Our conversation up to this point has been about how to implement the technical
requirements of search relevance. We’ve yet to discuss the fundamental why behind
implementing these requirements. If you’re a software developer, you know it’s easy to
toil for months on end on a feature or product. Only finally when you release it do you
discover that the market has little interest in your work. Your careful craftsmanship is
squandered as users’ feedback renders a harsh verdict on what you’ve delivered.

This chapter covers
■ Improving how your organization works on

relevance problems
■ Interpreting user behavioral data to evaluate

search relevance
■ Making the broader culture aware of search

relevance and its value
■ Incorporating domain experts, marketing, and

other colleagues
■ Adding content curators and information

scientists to the search team
■ Measuring correctness with test-driven

relevancy
257

258 CHAPTER 10 The relevance-centered enterprise
 Search relevance is no different. You might waste months of skilled work, carefully
implementing supposedly correct ranking requirements. Only upon release do you
realize that users aren’t using search as you expect. Perhaps shoppers on e-commerce
sites expect to search within product reviews, yet you’ve implemented only regular
product search. Or perhaps a hospital system’s search returns pages about diseases
when users expect to find doctors who treat those diseases. Despite all our hard work,
users surprise us all the time with what they expect from search, not neatly fitting into
how we’d like them to behave.

 Building a robust, cross-functional culture to discover what users want out of search
is the central focus of this chapter. How do you build a business culture with accurate
and fast feedback systems to correct your search application’s requirements? How can
your work be continuously informed or corrected to line up with users’ expectations?

 Much like chess, relevance is easy to get into—delivering a basic untuned solution
is often simple. But discovering subtle user expectations accurately, and quickly
responding to them with technical finesse, turns relevance into a frenetic game of
speed chess. Luckily, unlike speed chess, relevance is a team sport. Skilled, key posi-
tions throughout the enterprise can help you understand what the user needs and
respond appropriately. Figure 10.1 details a cast of characters: the roles (relevance
engineer, content curator, boss, domain expert) and solutions (analytics, tests) that
can deliver feedback to relevance work.

searchrose fertilize

flower fertilizer

pine mulch

rose water

mother’s day bouquet

rosa rubiginosa

potted rose plant

rose pattern curtain

In
d
ex

in
g Query

respon
se

SEARCH

ENGINE

Content
curator Search

Domain

This isn’t
what I’m

looking for.
seem upset.

Yep, roses have
specialized

nutrient needs;
these search
results aren’t

helpful.

Great. I know
the tech. Let’s

solve this
together.

I don’t know the tech;
but I know the content,
the customers, and the

business needs.

User

expert

engineer

Boss Customers

Figure 10.1 Forms of feedback to the relevance engineer, starting from most
removed from the problem (the user, boss/manager types realizing search is bad)
to those involved constantly (the content curator role and relevance testing)

259Feedback: the bedrock of the relevance-centered enterprise
10.1 Feedback: the bedrock of the relevance-centered enterprise
To figure out what users want out of search, you need to admit something that might
feel uncomfortable. Despite holding the title relevance engineer, you likely don’t know
what users deem relevant. You probably have no idea how an eight-year-old will
approach a searchable, kid-friendly database of dinosaurs. You almost certainly don’t
know how a doctor might use a medical search application to diagnose a patient. Or
how mechanics might search for car parts. The reasons that users search are endless.
Your capacity to understand users and their domain is limited. You operate in the
dark, and failing to appreciate this might be your undoing.

 Not knowing what users deem relevant is made worse by the inviting nature of
search to tweak and prod. Most development work falls in the category of small altera-
tions such as boosting, changing the types of queries, or modifying analyzer settings.
Because these little changes alter everything about your search ranking, they have
extremely broad ramifications. In your ignorance of your users’ relevance needs, you
can easily throw search completely out of whack. You might guess right and do some-
thing great! Or you might ruin existing, working use cases with the simplest of
changes. It’s like you’re flying a giant Boeing 787 jet in the dark with a giant dash-
board of easy-to-flip switches in front of you. Flipping one switch might help you, but
when flying without feedback, you’re just as likely to fly into turbulence or worse!

 To account for your lack of understanding of what relevant means, we advocate
strongly for a certain style of work. The best way to improve relevance is to deliver a
solution, observe how it fails to some degree, and adjust accordingly. We refer to this
style of work as iterative and fail fast. It’s iterative in the sense that it focuses on deliver-
ing a real, interactive search solution quickly for evaluation. It’s fail fast because it
anticipates immediate, small failures as the best mechanism to adjust course and avoid
more-catastrophic failures. Figure 10.2 illustrates the ideal iterative cycle: bite-sized

Reflect why/how

search failed to

satisfy users

Make small

relevance

improvements

Solicit feedback

& evaluate

relevance Figure 10.2 Ideal search relevance
iteration: trying simple adjustments,
soliciting feedback, and failing fast
in order to continuously improve

260 CHAPTER 10 The relevance-centered enterprise
changes are delivered for evaluation, feedback is observed, and the course is adjusted
over and over.

 Feedback is the most important ingredient. Obtaining and understanding search
feedback needs to be your obsession. It ought to become your whole team’s obsession.
This chapter advocates a user-focused culture—one that bends over backward to bring
relevance engineers accurate and precise user feedback to guide their work.

 A user-focused culture recognizes several sources of feedback. First, it recognizes
that domain experts in your organization can help you correct the direction of rele-
vance work. Yet corrective feedback goes beyond these experts and becomes a full-
time job for relevance engineers. You’ll see that one role, which we call the content
curator, becomes the high priest of search feedback. The content curator takes com-
mand, examining user behavioral data and the broader business, to understand
search correctness. Ultimately, you’ll see how you can speed up feedback in the form
of test-driven relevancy. As discussed in the previous chapter, this form of feedback
continuously evaluates search changes, highlighting where search is taking a slide for
the worse.

 Figure 10.3 outlines these increasingly more potent forms of user-focused cul-
ture. You’ll move through this progression through the remainder of this chapter.
Each loop in this diagram is a feedback loop—a style of iterative feedback associ-
ated with increasingly user-focused organizations. The organization starts on the
outermost feedback loop: complete ignorance of the users’ search needs. We dis-
cuss this phenomenon in section 10.2. From there, you move inward, evolving to
correct the course of relevance development. As you move to more-evolved forms of
user-focused culture, feedback arrives to the relevance engineer faster and more
accurately.

Te
st

-driven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Figure 10.3 Various key feedback
loops enable the relevance engineer
to refine search relevance.

261Why user-focused culture before data-driven culture?
10.2 Why user-focused culture before data-driven culture?
Before working through the relevance feedback loops, let’s discuss one common mis-
perception you might have at this point. As an engineer, you might be thinking, given
the problem of gathering relevance feedback, why not simply gather tons of data on
what users think of search and just work with that?

 In today’s world of high-end user analytics and machine learning, it’s tempting to
sidestep cultural issues. Many discuss building a data-driven culture that bases user-
experience decisions solely on user behavioral data. As you may recall, we discussed
many such metrics ourselves. In the previous chapter, we introduced click tracking,
deep paging, thrashing, and others. With search metrics like these, why bother con-
sulting marketing, domain experts, and others in the organization? You can discern
search relevance correctness directly from the data—right?

 We believe user-focused culture must come before data-driven culture. For search,
good user data is often unavailable or hard to interpret. When data is available, it
often takes more than a relevance engineer to derive insight about whether a user is
satisfied. Making scientifically valid claims from data, frankly, is hard. Making scientifi-
cally valid claims about how users think and feel can be doubly so. Let’s consider this
difficulty, because it speaks directly to why we place cultural issues so highly.

 First, why would data be unavailable or not useful for search feedback? For most
applications, the majority of individual search queries are special snowflakes. They’re
too rare to derive meaningful insights. Let’s think about why this is. Consider the distri-
bution of all user searches in your application. You probably have a handful of extremely
common searches and an extremely large set of rare, special snowflake searches.

 Let’s think through an example for a garden supply e-commerce search applica-
tion. The most common searches are for things such as hoses, flowers, and pots. These
occur many times each minute. But after this handful of common searches, other
searches become increasingly obscure. For instance, a search for “Rosa rubiginosa”
(the scientific name for a type of rose) might occur twice a year. It’s possible that these
rare searches compose the bulk of the search traffic; each search item is rare, but
there are just so darned many rare searches!

 This search phenomenon has come to be called long-tailed search. As shown in fig-
ure 10.4, long-tail refers to the shape of the distribution of possible search items.

50% 50%

Searches sorted from most to least common

S
e
a
rc

h
 i
te

m

p
o
p
u
la

ri
ty

Hoses
Flowers

Pots

Rosa rubiginosa

Figure 10.4 For long-tailed search, a majority of traffic is associated with rare search items.

262 CHAPTER 10 The relevance-centered enterprise
Notice that a relatively small set of items (on the left side) compose 50% of the search
traffic in this example. The remaining 50% of search traffic is attributed to a vastly
larger number of relatively rare searches (on the right side). These searches form the
long tail of search.

 Search’s long tail can make purely data-driven relevance feedback challenging. If
your application has a long tail, you may need to rely on more indirect qualitative
measures for relevance feedback. In our gardening example, user data for popular
searches such as “Hoses,” “Flowers,” and “Pots” could be useful. But for most other
searches (“Rosa rubiginosa”, “Rosa rubiginosa Fertilizer”), user data may be a vague
rubric. The long-tail data might tell you what use cases are important to users (such
as searching on scientific names), but not much else.

 The second problem you’ll encounter is deriving information about user satisfac-
tion from behavior data. How will you interpret when users are dissatisfied, for
instance? You might assume that visiting page 2 (and beyond) of the search results is
clearly a negative behavior. But your user population may want to exhaustively
research all available results. It’s common in patent or legal search to leave no stone
unturned as every match is carefully examined.

 The same problem exists when trying to identify results that users perceive as rele-
vant. Users might appear to be satisfied by a search result because they purchased the
found product or read through an article. But this conclusion is far from straightfor-
ward. Users may decide to purchase at a mediocre, barely relevant result if more-
promising results never come to the top. If your users search for “Rosa rubiginosa”,
and you show them only daisies, the fact that they sometimes purchase daisies doesn’t
mean a certain kind of daisy is the most relevant result. Less absurdly, they may pur-
chase a mediocre sweet briar rose product and decide that’s all your gardening shop
has to offer. Meanwhile, a stellar product is buried deep in the data and would result
in more purchases if only it surfaced.

 The point is, even with a pile of user behavioral data, the relevance engineer
remains ill prepared to read the tea leaves. Search quality feedback isn’t simply a mat-
ter of digesting use data. You need to understand user context, domain expertise, and
business requirements to assess a random user’s satisfaction with search through data.
Just as with relevance, you don’t hold the answers here. Your colleagues who better
understand the domain, business, and users must help you interpret your applica-
tion’s usage data.

 Good feedback goes beyond data. It’s based on a broader, collaborative organiza-
tion that can interpret both search correctness and user behavioral data together.
Only then can data be a factor in providing you good information on how users per-
ceive search. Instead of a data-driven culture being the starting point, it’s in fact the
most mature form of a collaborative, user-focused culture. By building a user-focused
culture, you’ll end up at a place where data plays its appropriate role.

263Flying relevance-blind
10.3 Flying relevance-blind
You often start with a more mundane problem: your organization isn’t aware of search
relevance. Stakeholders don’t see relevance as foundational to their success. Instead
of iterations that fail fast, the only iteration you undergo is the painful process of
developing a complete search solution, shipping it to users, and then painfully learn-
ing upon delivery how disappointed they are.

 Unfortunately, many of your colleagues may assume that the search engine has
some kind of built-in Google-like intelligence. They may think the search engine
knows best, and isn’t meant to be questioned, configured, or programmed. For many,
the idea that users have specific relevance expectations unique to your application is a
truly novel concept.

 Lacking awareness of relevance, in what we call the relevance-blind enterprise, can be
a dangerous place for your organization to be. Being here exposes you to the most
extreme, outer feedback loop: sales losses and customer complaints, as shown in fig-
ure 10.5. In this phase, users stop performing desirable actions as a result of their
searches (they stop purchasing things, for example). It’s not uncommon in this state,
shortly after releasing or updating the product, for the organization to come upon a
sudden and unpleasant awareness of the importance of search relevance. Unfortu-
nately, this awareness comes only after a sudden downturn in user engagement and
product sales.

How do you know your organization is in such a state? Generally, these relevance-blind
organizations share several characteristics. The predominant pattern you’ll notice is
that search work involves no relevance work. Instead, the focus is on features, perfor-
mance, and scaling. Instead of a relevance engineer, you may be seen as a back-end search

Te
st

-driven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Figure 10.5 The organization lacks
awareness of relevance as an issue. Your
team may perceive poor search only through
the outermost feedback loop: lost sales and
disappointed customers.

264 CHAPTER 10 The relevance-centered enterprise
engineer with no official relevance-tuning role. This is problematic when search is a
core component of the user experience. Instead of helping create the user experi-
ence, you’re seen as another back-end developer divorced from users and their con-
cerns. Additionally, the organization may, to its peril, consciously keep you away from
conversations that discuss user goals. Instead, they hope you’ll make the search 10 mil-
liseconds faster or figure out how to integrate another set of documents.

 It’s easy to see how this happens. Search engines appear to many as another data-
store. Working with search engines shares many characteristics of working with some-
thing like a database: both must consistently store and retrieve data. They must
remain available and high-performing, storing the data needed for our applications.
Starting out, many may not want to question or think too hard about that weird, seem-
ingly mystical ranking component inside the search engine. It doesn’t fit how we think
about other applications, and many would prefer to think of it in terms of the data-
bases they’re already familiar with.

 Because of this ignorance, relevance ranking becomes a blind spot when working
on the application. If you take a screenshot of a typical search application, you’ll find
search results presented smack-dab in the middle of the page. But in a relevance-blind
organization, as shown in figure 10.6, the front-end developers and designers fine-
tune components of the search application other than search relevance ranking. Most
features and bugs revolve around items in the application typical of most develop-
ment: logging in/out, look-and-feel, and other custom features. When focused on
search, your team would rather improve easier-to-understand components of the
application: faceting, filtering, and other browse capabilities. Or perhaps improve the
presentation of the search results themselves—but not how they’re ranked.

searchrose fertilize

flower fertilizer

pine mulch

rose water

mother's day bouquet

rosa rubiginosa

potted rose plant

rose pattern curtain

In
d
ex

in
g Query

Respon
se

SEARCH

ENGINE Search

This isn’t
what I’m

looking for.

Boss
I see some

problems I could
fix. But everyone

seems to care
only about new

Search in a relevance-blind enterprise

Yay! We shipped
search. We’re

done now. Good
job, everybody!

User

features.

engineer

Figure 10.6 In a relevance-blind
organization, nobody seems to
see that searches return poor
results. Instead the team is busy
on other, more comfortable tasks.

265Relevance feedback awakenings: domain experts and expert users
These organizations often have a rude awakening when the app is released. Users type
in their first searches and have a hard time finding what they want. In our consulting
work, we’ve witnessed the aftermath of the relevance-blind enterprise over and over.
The result is never pretty. Customers are disappointed, and users flock to competitors.
Despite the hard work of application developers and designers, the overriding mes-
sage that “search stinks” comes straight from users.

 At this point, with the organization backed into a corner, the team turns to you,
the search engineer, wondering what to do. Suddenly you aren’t simply a back-end
developer. You must take a central role in crafting the user experience! The problem
we discussed earlier, enabling relevance engineers to get more-immediate feedback
for their work, becomes crucial to the success of the application. Now begins your
hunt for ways to fail fast. You’ll need to identify ways to get accurate feedback on rele-
vance before your organization suffers another embarrassing blunder.

10.4 Relevance feedback awakenings: domain experts
and expert users
Being suddenly tasked with determining what users want out of search ranking can
be daunting. As a relevance engineer, you won’t be intimately familiar with what
every group of users expects. New to relevance work, you might feel more comfort-
able in the realm of databases and code than user-experience concerns. Making mat-
ters worse, the users may be from a specialized domain, such as medicine or law.
Searches like “Myocardial Infarction” might make little sense to you. Finally, it may
turn out that the business itself has its own ranking expectations, hoping to steer
users one way or another through search—perhaps toward more-profitable products
or more-informative web pages. You need to seek feedback from the broader organi-
zation to adjust course.

 To discover what relevant means for this application, you must become a cham-
pion for the cause. You’ll need to get organizational buy-in to create the first rele-
vance feedback loop. And you’ll quickly realize that the information you need is
scattered throughout the enterprise. Depending on the kind of organization, the
definition of “what users want” may be spread among marketing, sales, QA, legal or
medical analysts, management, and any number of groups. You must become a cross-
functional champion of collaboration. Instead of gleefully hacking away on fun code,
you must become a highly social mover. To figure out what the user expects from the
search experience, you must break down organizational barriers and find the answers
you seek.

 What you’re doing is constructing the next feedback loop, as highlighted in fig-
ure 10.7. This feedback loop is the organization’s first attempt to validate relevance
and adjust course before bad effects are seen by users.

266 CHAPTER 10 The relevance-centered enterprise
Out of the various groups that study and engage users, you should first look to an
expert user. An expert user was once a member of the user population and now works
at the organization. If you’re building search for a gardening site that caters to profes-
sional horticulturalists, then perhaps marketing, QA, or other groups in your organi-
zation staff horticulturalists. Expert users are a gold mine for search feedback. They
can directly simulate the appropriate negative reaction that users will experience with
irrelevant search. Yet unlike most users, they’re deeply invested in your success.
They’re much more likely to give you detailed, constructive feedback. Figure 10.8
shows an expert user guiding a relevance engineer to better results.

 Your organization might also perform usability testing. With usability testing, groups
of target users are studied as they interact with the application. They may have their

Te
st

-driven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Figure 10.7 First feedback loop
internal to the enterprise: relevance
feedback is acquired ad hoc from QA,
BA, and other specialized siloed teams.

Rely on feedback from expert users

searchrose fertilize

flower fertilizer

pine mulch

rose water

mother's day bouquet

rosa rubiginosa

potted rose plant

rose pattern curtain

In
d
ex

in
g Query

respon
se

SEARCH

ENGINE
Search

engineer
Domain
expert

Any serious
rose gardener

knows you
can’t just put

any old fertilizer
onto your rose

bushes.

We definitely
have rose fertilizer
in the catalog. I’ll
figure out why it’s
not in the search

results!

Figure 10.8 The relevance engineer receives feedback on the correctness of the
relevance solution from domain experts.

267Relevance feedback maturing: content curation
behavior tracked to great depth—including eye tracking and expression monitoring.
These users may also provide qualitative feedback about the application, answering
questions about what they thought of it. You might be able to piggyback on such test-
ing to get feedback about the application’s search relevance. You may even be able to
interact with such users, ascertaining what they found helpful with the relevance rank-
ing and more important, what they didn’t—getting the same rich feedback you
obtained from the expert users.

 Still, at this point, you’re picking up relevance feedback through your own sleuth-
ing work. None of these helpful but siloed groups have search as their central func-
tion. Other groups have other duties to attend to, and have only limited attention to
give you. Thus your testing remains ad hoc, informal, and depends on the availability
of members of other teams.

 So even with persistence, this remains a low-information and slow feedback loop.
The feedback given is sometimes deep and valuable and at other times limited.
Although many problems are solved and avoided, others continue to get through.
Still, the output of this phase can be crucial. By breaking out of the technical silo, you
might be able to build powerful allies on other functional teams. Others begin to see
the importance that search plays for users. Even with their spotty attention, you and
your allies may begin to realize there’s good reason for establishing a full-time role for
managing the search quality.

10.5 Relevance feedback maturing: content curation
In the previous section, we discussed the relevance engineer as a champion for the
cause of relevance feedback: taking down silos, wandering the halls, knocking on
doors to identify how the organization defines relevance. This is a crude attempt
to build an initial feedback loop to guide your work. Unfortunately, you can’t sus-
tain this level of feedback gathering and get your technical work done. Further,
your colleagues don’t always have time to give you sustained or high-quality search
feedback.

 More important, the answers you get from colleagues will grow increasingly incon-
sistent. More and more, finding the “right answer” will require reconciling multiple
points of view on what search should do. The marketing department may push you to
promote results based on advertisers and supplier relationships, while domain experts
may advocate for the needs of high-end experts over lay users. Arriving at the “right
answer” may depend on a subtle understanding of the domain, user expectations,
office politics, and many other factors.

 Instead of driving technical improvements, you may feel increasingly confused and
bewildered. You’re navigating an incoherent, alien world that requires many skills you
may not have: an understanding of business needs, domain expertise, and user famil-
iarity. Value may be gained initially as colleagues help point out what’s obviously
wrong with the search results, but making sense of how search ought to work beyond

268 CHAPTER 10 The relevance-centered enterprise
these obvious fixes becomes a job unto itself—a job that distracts you from the impor-
tant technical work you’re good at.

 The organization solves this problem by adding a role responsible for search feed-
back: the content curator (as shown in figure 10.9).

10.5.1 The role of the content curator

The content curator becomes responsible for accepting all forms of feedback, and
determining the “right answer.” The ideal content curator is someone with enough
business/domain expertise, user familiarity, and seniority to own search correctness.
Content curators think critically about how search ought to behave. They understand
deeply how users will interact with the search application and translate that into
actionable feedback for the relevance engineer to implement.

 In this role, content curators work with the broader business. They also interpret
whatever user behavioral data might be available. They understand what the business
(not just users) need from search. They capture all of this feedback and expertise into
an actionable set of feature enhancements and bugs. They reconcile multiple points
of view with political finesse into a coherent road map for search relevance. In a sense,
they act as product owners for search. In Agile terminology, a product owner represents
the broader business and stakeholders to the team. They act as the engaged stake-
holder, they know how search should work, and they provide the technical team—rele-
vance engineer(s)—the broader direction on where search should go, as shown in
figure 10.10.

 Some content curators might also be somewhat technical, allowing a certain
degree of relevance self-service. They may also help organize and manage informa-
tion. These skills can add a ton of value to search. We discussed how to use synonyms

Te
st

-driven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Figure 10.9 Content curation, the act
of curating feedback from the broader
enterprise for the relevance engineer

269Relevance feedback maturing: content curation
and taxonomies in search in chapter 4. These tools can be used to dramatically improve
the relevance of search results by relating different terms to each other. Because they
have the right domain expertise, content curators can help manage these sorts of con-
ceptual relationships.

 A garden search engine that can understand that a “Reel Mower” is a kind of
“Lawnmower” or that a “Lawnmower” is synonymous with a “Grass Cutter” can help a
great deal in improving the relevance of search results. You don’t likely have the right
skills to relate these concepts in a taxonomy of lawn-care products. But a content cura-
tor may be able to catalog these relationships in a way that anticipates the jargon and
terminology that your users might expect the search to understand.

 Thus an ideal content curator also contributes to the relevance solution. This can
go as far as letting the content curator control boosts and weights for various ranking
factors. Recall in the previous chapter’s Yowl example, you worked to balance the
impact of content, restaurant location, price preference, and other factors. After
the technical foundation is laid, who better to find the optimal balance between these
factors than the content curator?

 Adding a content curator to the team is a powerful multiplier for the effectiveness
of your relevance efforts. Content curators allow the team to work toward their strengths
instead of compensating for their weaknesses. They interface with the broader organiza-
tion and listen carefully to user feedback. They’re available to provide consistent,
informed course correction on search, helping to paint a picture in broad strokes that
you can color in with technical finesse. They let you focus on your technical skills
instead of being mired in politics and interpreting deep domain requirements.

10.5.2 The risk of miscommunication with the content curator

Once a content curator is on the team, you may be tempted to permanently rejoin the
other programmers in the server room. You may think you can get back to fun techni-
cal problems, and solve relevance problems as they arrive in the issue queue. Yet as

Bring content curators onto the team

searchrose fertilize

flower fertilizer

pine mulch

rose water

mother's day bouquet

rosa rubiginosa

potted rose plant

rose pattern curtain

In
d
ex

in
g Query

respon
se

SEARCH

ENGINE
Search

engineerContent

Yep, we have 5
brands of rose
fertilizer. Users
prefer Johnson’s

brand, but we also
need to promote
WizGro because

we’re getting
pressure from the

supplier.

Sounds good.
Create a ticket in
our issue tracker
and I should be
able to work on

this soon.

curator

Figure 10.10 Content curator defines how search should behave based on feedback/
consultation with the broader business and evaluation of user feedback.

270 CHAPTER 10 The relevance-centered enterprise
you work, you’ll quickly see that having a content curator on the team isn’t a panacea.
Instead, the most important communication line becomes the one between yourself
and the content curator. Neglecting that relationship can create confusion and chaos
for tuning efforts.

 An unfortunate workflow can be established as the content curator assigns a new
task to you: You rarely speak in person. Instead, a slow, lossy feedback channel over
email and issue trackers might become ingrained in the team. You might take issues
off the front of the work queue and work them until completion, thinking of the issue
as relatively self-contained and easy to understand. Unfortunately, solving relevance
issues is rarely so simple. Solutions require frequent follow-up communication, and
ongoing evaluation by the content curator.

 For example, if you’re still in the business of building gardening search for horti-
culturalists, maybe you, as the relevance engineer, pick up a ticket that reads some-
thing like this:

Searches for plants by their scientific name (Rosa rubiginosa) should return the
same search results as if the nonscientific name was searched for (sweet briar rose).

Ah, simple enough! The content curator delivers term equivalences, and you add a
few simple synonyms. After you declare the task done, in a few days you get another
email from the content curator:

Hey relevance engineer,

I’m seeing searches for “Rosa Rubiginosa” returning other rose species such as
“Rosa Glauca,” not just for a specific type of rose. Also, I sort of expected searches for
generic “rosas” to show you a cross-section of different species, and instead they seem
to be biased toward one species. Should “Rosa” also return the same results as
“Rosas”? Is this possible? Let’s discuss…

There are important distinctions between these species of roses—and an avid gar-
dener and a content curator will immediately pick up on this. Further, the content
curator and the broader business have unspoken expectations. You may not under-
stand these distinctions, how users will use these “Rose” scientific terms, or the under-
lying motivation in the use case. Even if they think you understand the issues, you
continue to suffer from a limited ability to evaluate the correctness of the search solu-
tion in real time. You may think confidently, “I can do this!” yet learn there are more
subtleties to horticulture than you appreciate!

10.6 Relevance streamlined: engineer/curator pairing
To appropriately tune search relevance, you need to have frequent, in-person conver-
sations with the content curator to know how the search application is expected to
behave. These communication lines need to run even deeper than the occasional
chat. We advocate that you work side-by-side with the content curator when solving rel-
evance problems.

271Relevance streamlined: engineer/curator pairing
 You may have heard of pair programming, whereby two programmers work together
to solve a programming problem. Here, the content curator and relevance engineer
participate in pair tuning, working at the same desk to improve search relevance. This
is our next level of feedback, as shown in figure 10.11.

Through pair tuning, you both sit at the helm of the giant search-relevance jumbo jet!
Your fine-tuning can be evaluated immediately by the content curator. Simple mistakes
can be seen and fixed with simple course corrections, not after trying to exchange con-
fusing and time-consuming emails that waste your time going far off course. Both
sides begin to see tuning as a highly collaborative, iterative cycle requiring the careful
application of two distinct forms of expertise. Figure 10.12 shows the content curator
and relevance engineer working closely on relevance problems.

Te
st

-driven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Figure 10.11 Next feedback
loop: content curator and
relevance engineer coworking

Pairing on relevance

In
d
ex

in
g Query

respon
se

SEARCH

ENGINE

Search
engineer

Content

See this result
for WizGro

fertilizer? That
should be the

first result. What
can we do?

OK, let’s look at
the explain text.

Hmm—it looks like
we can boost the
description field.
Let’s try it now.

curator

Figure 10.12 The relevance
engineer and content curator
can quickly solve problems
when they work side-by-side.

272 CHAPTER 10 The relevance-centered enterprise
Most important, when pairing, the duo can discover what’s possible instead of just
working toward what’s required. The content curator might express problems more
deeply instead of simply assigning tasks. You may be able to think more carefully
about the broader ecosystem of solutions in the search space that can solve broader
classes of problems. The communication can also begin to move the other way: you
can increasingly let the content curator know which search tasks are simple, and
which are more involved projects, quickly identifying the trade-offs and easy wins in
certain enhancements.

 Looking at the big picture, you’ve gone from seeking feedback by pestering others
for help to now advocating for not only a full-time role, but nearly full-time pairing.
Our feedback loops are telescoping down to increasingly tighter and more immediate
forms of feedback. This feedback reflects the iterative nature of relevance work. Often
the relevance engineer can modify behavior of the search engine quickly, but failing
fast and early is important. By providing tighter and more immediate forms of feed-
back, your work is becoming increasingly poked and prodded toward correctness.
Now when flying that jumbo jet, you’re able to at least see out of the fog and stay at a
safe altitude.

10.7 Relevance accelerated: test-driven relevance
Pairing with the content curator solves important communication problems. Yet,
quickly you realize that modifying relevance, even with the best intentions, tends to
create new problems. Search tuning begins to feel like a game of Whac-a-Mole. You
focus on a spate of problems. Solving those problems then causes existing, working
searches to slide backward in quality. In our gardening example, for instance, you
might thoroughly fix searches for scientific names (“Rosa rubiginosa”). Unfortu-
nately, without knowing it, you might cause a popular search to return nonsensical
results. A search for “Rose” might begin returning daisies! (A rose by any other
name indeed!)

10.7.1 Understanding test-driven relevance

While tuning, you need efficient and real-time course correction for both you and
your content curator copilot. What can you do to make feedback broad, instant,
and quantitative?

 The answer comes from the world of test-driven development in traditional soft-
ware development. In these methodologies, you construct a set of automated unit
tests that run your code. These tests evaluate the output of your code based on your
understanding of application correctness. Failed tests then point you to broken func-
tionality. With sufficient test coverage, you can implement new features and fix bugs,
all while ensuring that old functionality continues to work.

Test-driven relevance, as shown in figure 10.13, solves the Whac-a-Mole problem by
evaluating your search solution with automated tests as you tune. You still need the
content curator and other colleagues to help define correctness. Ideally, these colleagues

273Relevance accelerated: test-driven relevance
help you create the automated tests. These tests come in the form of important searches
to programmatically run and evaluate for quality and correctness. This effectively puts
the expert’s brain in a box, letting you evaluate search against their expert feedback
automatically.

 With test-driven relevance, pair tuning takes on a new dimension. Instead of
improving relevance followed by manual testing, you and the content curator become
responsible for the maintenance of relevance testing. If a fix for “Rosa rubiginosa”
breaks the “Rose” query, you’ll see right away, and be able to make informed decisions
based on the use cases that matter to your users and business.

 What form do the relevance tests tend to take? For search relevance, testing tends
to come in two forms:

■ Judgment lists—For each search query, individual results are given a grade, or
judgment. For example, a user search for “Rosa rubiginosa” might have sweet
briar rose graded as an exact match. Other roses returned as matches might
be graded as “OK” and all other results graded as “poor.”

■ Assertion-based testing—Instead of gathering explicit judgments, more ad hoc
assertions are made in traditional unit tests. For example, assert that when a
user searches for “Rosa rubiginosa,” the first result is a sweet briar rose plant.

Figure 10.14 shows gathering relevance judgments using Quepid (disclosure: the
Quepid application is developed by one of the authors). A content curator uses
Quepid to grade a search result based on the relevance to a query. This results in an
overall quality score for the query against the current search solution.

 Maintaining these judgments, although ideal, comes with significant costs. As data
changes, you must constantly make new judgments. The work becomes cumbersome.

Te
st

-driven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Figure 10.13 The most
immediate form of relevance
feedback: test-driven relevance

274 CHAPTER 10 The relevance-centered enterprise
Moreover, it’s not easily outsourced. Judgments require a basic level of domain exper-
tise. Many organizations staff legions of relevance testers for the sole purpose of main-
taining accurate relevance judgments.

 In contrast to judgment lists, assertion-based tests allow more ad hoc and black-
and-white testing. Traditional unit tests don’t require the costly maintenance of accu-
rate judgments. Rather, you simply specify correctness criteria. Many organizations get
by on the simpler and easier-to-maintain unit tests. But simple tests can’t as easily help
you see fine gradations in relevance quality, query to query. There’s no way to 75%
pass a test, whereas with judgments you value knowing that a query is roughly 75% of
the ideal. It could be that 75% is good enough!

 From a political standpoint, tests have another important effect. They give content
curators and other stakeholders a sense that they’re also deeply involved in relevance

Searches to
be evaluated

Content expert provides
judgment of relevance

of this result

Figure 10.14 Quepid (http://quepid.com), a test-driven relevance product for Solr and Elasticsearch, is seen
here using judgments.

http://quepid.com

275Relevance accelerated: test-driven relevance
efforts. By helping define tests, they gain a sense of control and investment in the
relevance process. Further, as they ask for changes, they can instantly witness the
impact of their requests. Instead of being an obscure, mystical component that only
the relevance engineers understand, search tuning becomes increasingly transparent
and collaborative. These stakeholders will feel increasingly empowered and informed
to discuss the behavior of search and the associated trade-offs.

 You can imagine being asked in a meeting to make a disruptive change to the rele-
vance tuning. With a test-driven relevance tool, you could make the requested change
and rerun the required tests right there in the meeting. This gives the team immedi-
ate insight into the impact of the changes without constant conversation, indecision,
and chance for conflict. Thus despite seeming to be about moving away from collabo-
ration, encoding wisdom in tests enables deeper and more thoughtful collaboration.
Search stops feeling like guesswork throughout the organization because it’s far easier
to understand the consequences of decisions.

10.7.2 Using test-driven relevance with user behavioral data

The tests described in the previous section depend heavily on the expertise in your
organization. The content curator must use the expertise of the broader organization
to try to get inside the heads of users, and to then encode this information into the
testing tool via judgment lists or tests. The content curator depends on these col-
leagues being correct, and not having their judgment clouded with misperceptions,
ignorance, or selfish motivations.

 Because your colleagues have their own misperceptions, consulting user behav-
ioral data (for example, what users click or purchase) to derive judgment lists
becomes increasingly attractive. In the previous chapter, we discussed particular user
patterns in search that might indicate frustrated users: pogo sticking, thrashing, and so
forth. Content curators may be able to work with these patterns to identify frustrated
users. They may further be able to identify when users converge, or do something valu-
able (for the user or the business), such as purchase an item or subscribe to a newslet-
ter. These bits of information can then be translated into relevance judgments, either
manually or automatically.

 This seems like an obvious path, but even with large amounts of data about how
users work with your search app, challenges remain. Understanding how behavioral
data translates to indications of search relevance or lack thereof continues to require
expertise about your users. The same colleagues who contribute to judging what’s rel-
evant/not relevant often need to be brought in to determine what indicators are
appropriate to determine when users are frustrated or satisfied.

 So using behavioral data itself has its own catch-22. You need your human, imper-
fect colleagues to help get inside the heads of users through behavioral data. At the
same time, you need the data to help realign your colleagues’ understanding of what
users expect from search.

276 CHAPTER 10 The relevance-centered enterprise
 There’s no silver bullet! Data-driven feedback comes with plenty of human baggage.
Even your well-meaning colleagues sometimes try to find data that fits their personal
biases or beliefs. Deriving meaningful information from data means having a smart
team willing to be humbled by what they find. You need colleagues who can leverage
their expertise to interpret data while simultaneously allowing their expertise to be
informed by surprising user antics.

 With careful and hard work, you can use this data to inform search correctness, up
to automating the collection of relevance judgments. Combining user data with your
organization’s user expertise is the gold standard of relevance feedback. Automated
feedback from behavioral data must be constantly reevaluated by a cross-functional
team. This lets the relevance engineer test with confidence with user data.

10.8 Beyond test-driven relevance: learning to rank
With the team working hard to derive information from data, additional automated
practices to improve relevance become attractive. Advanced organizations can begin
to use machine-learning techniques to predict when a search result will be relevant for
a query. The practice of automating relevance is known as learning to rank.

 With learning to rank, either human or automated relevance judgments are used
to learn which of your content’s features predict relevance globally. This cutting-edge
field is increasingly finding its way out of the halls of information science research and
into advanced search shops.1

 In the feedback loops diagram, shown in figure 10.15, learning to rank becomes
the red-hot center inside test-driven relevancy. It builds on every other external
feedback loop: it depends on a user-focused organization that knows how to inter-
pret user data to evaluate relevance. This is an important note, as learning to rank is
a hot topic these days. It seems to many that you can sidestep the hard work of
creating an organization that intimately knows its users. Unfortunately, there’s no
superhighway that sidesteps the work we discuss in this chapter. You still need an
organization deeply focused on users’ search needs: a team capable of finding mark-
ers in user behavioral data for relevance. Deriving real information from data—
information relevant to your search user experience—remains a hard cultural and
technical problem.

 Finally, you need to combine all the insights from this chapter with cutting-edge
information retrieval and machine learning. Often simpler relevance gains can be
gathered with the straightforward techniques discussed earlier in this book. In our
consulting work, we’re often hired to implement an advanced solution when a far sim-
pler adjustment can provide more immediate and less risky gains for an organization.

1 Solr readers may be interested in this patch, which proposes to add learning-to-rank features to Solr: https://
issues.apache.org/jira/browse/SOLR-8542.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

https://issues.apache.org/jira/browse/SOLR-8542
https://issues.apache.org/jira/browse/SOLR-8542

277Summary
You don’t need data scientists to provide a simple tweak to an analyzer or query strat-
egy that gains you a significant—and with test-driven relevancy—measurable improve-
ment to search’s bottom line.

 Nevertheless, with the right expertise and data in place, learning to rank can be
extremely powerful in helping push beyond the “diminishing returns” of relevance
tuning. It iterates on search instantaneously based on user interactions that signal rel-
evance or lack thereof. When you have the right pieces in place, you can begin to
think about this exciting technique.

10.9 Summary
■ Search relevance work is highly iterative, and works best when you seek feed-

back by failing fast.
■ User behavioral data (such as clicks and purchases) isn’t a panacea, and a user-

focused culture should come before a data-driven culture.
■ Relevance-blind organizations lack awareness of search relevance and are often

surprised when poor relevance leads to lost sales and complaining users.
■ The relevance engineer begins to correct relevance issues by seeking feed-

back from colleagues who understand the user in general: domain experts,
QA, and sales.

■ A content curator can help optimize search by bringing feedback to the relevance
engineer. Ideally, the relevance engineer and content curator work together on
relevance.

Te
st

-driven relevance

Poor feedback/upset users/lost sales

Business and domain awareness

Content curation

Paire
d relevance tuning

Learning

-to-

Rank

Figure 10.15 Learning to rank is a
cutting-edge method for relevance
tuning that holds the promise of one day
being able to automatically converge the
ideal relevance parameters.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

278 CHAPTER 10 The relevance-centered enterprise
■ Test-driven techniques can help automate relevance judgments, but these tech-
niques still depend on content curators and other user-focused professionals.

■ Incorporating search usage data requires careful interpretation, but this data can
inform and correct the organization’s understanding of how users use search.

■ Learning-to-rank techniques automate parts of the feedback process, but con-
tinue to depend on maintaining and interpreting behavioral data.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

Semantic and
personalized search
You’re at the end of a long journey. You’ve learned to use search technology to
build relevant search applications. But you’re still just scratching the surface. In
this final chapter, we look toward the horizon to explore some of the more
novel—and experimental—ways to improve your users’ search experience. In
particular, we cover two related techniques that can provide better relevance:

■ Personalized search provides search results customized to a user’s particular
tastes using knowledge about that user. User information can be gleaned
from users’ previous interactions as well as anything they tell us directly.

■ Concept search ranks documents based on concepts extracted from text, not
just words. Concept search relies on deep knowledge of the search domain,
including jargon and the relations between concepts in that domain.

This chapter covers
■ Making search personalized for individual users
■ Matching documents based on meaning rather

than just words
■ Implementing recommendation as a

generalization of search
279

Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

280 CHAPTER 11 Semantic and personalized search
When used in tandem, the search solution understands users personal needs as well
as the ideas latent in the content.

 Building a good personalized search or concept search requires a considerable
amount of work. You should treat the methods in this chapter as a conceptual start-
ing point. But please realize that these methods bear some technical risks; they can
be difficult to implement, and you often won’t know how these methods will per-
form until after they’ve been implemented. Nevertheless, for established search
applications, these methods are worth careful investigation because of the profound
benefits that they may offer. In the discussion that follows, we present several ideas
for implementing personalized and concept search. In both cases, we start with
relatively simple methods and then outline more sophisticated approaches using
machine learning.

 In the process of laying out personalized search, we introduce recommendations. You
can provide users with personalized content recommendations even before they’ve
made a search. In addition, you’ll see that a search engine can be a powerful platform
for building a recommendation system. Figure 11.1 shows recommendations side-by-
side with search, implemented by a relevance engineer.

query

In
d
ex

in
g Query

inverted

index

respon
se

A
n
alysis

Relevance engineer
Personalized search

Star Trek The fate of the galaxy rests in(2009)

the hands of bitter rivals. One, James Kirk, is a

delinquent, star-gazing Iowa farm boy. The ...

Related items

Star Trek
5 movie set

Authentic
Spock Ears

Star Trek
Red Shirt

STA
R

TR
EK

STAR

TREK

STAR

TREK

S
TA

R

TR
E

K

STAR

TREK

Star Trek the
Lost Episodes

UserRecommendations based
on similar products and

user preferences

Items you might like

Sophisticated search applications
understand the content and the users. This

makes it possible to build personalized search
and even recommendations.

Figure 11.1 By incorporating knowledge about the content and the user, search can
be extended to tasks such as personalized search and recommendations.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

281Personalizing search based on user profiles
11.1 Personalizing search based on user profiles
Until now, we’ve defined relevance in terms of how well a search result matches a user’s
immediate information need. But over time, as you get to know users better, you
should be able to incorporate their tastes and preferences into the search application
itself. This is known as personalized search.

 Throughout this book, we’ve emphasized that, at its core, a search engine is a
sophisticated token-matching and document-ranking system. We discussed techniques
to ensure that search matches and ranks documents to reflect your notion of rele-
vance. As we move on to personalized search, the fundamental nature of a search
engine doesn’t change. No special magic or hidden feature makes personalization
possible. Search is still about crafting useful signals, and modeling them with the
search engine through queries and analysis. The main difference is that instead of
drawing information exclusively from documents, you’ll look to the users themselves
as a new source of information.

 With this in mind, we turn our attention to the first method of building personal-
ized search: profile-based personalization. With this method, you track knowledge of
individual users with profiles. At query time, you refer to the user profile and use its
information to boost documents that correspond to the user’s tastes. Figure 11.2
demonstrates profile-based personalization using our previous Star Trek examples.

User’s search

title: Star Trek

rating:

num_ratings: 4312

descr: Young Capt.

Kirk team up with

good buddy Spock

and fights against

Indexed
document

great_value: true

demographic: 20-30yr old

demographic: male

Enriched
features

query

In
d
ex

in
g Query

Inverted
index

Respon
se

A
n
alysis

user_id: trekkie4real

age: 29

gender: male

User profile

Add boost for:

male,

20-30yr,

great_value

Star Trek Generations (1994)

Star Trek: First Contact (1996)

Star Trek: Insurrection (1998)

Star Trek: Nemesis (2002)

Star Trek (2009)

Adding personalization to search

Personalized results

value_shopper: true

searchstar trek

Figure 11.2 Adding personalization with user profile data, including demographics and preferences
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

282 CHAPTER 11 Semantic and personalized search
11.1.1 Gathering user profile information

But how do you gather information for your user profiles? Well, if you’re fortunate
enough to have an engaged user base, you can create a profile page and wait for users
to tell you about themselves. Be sure to provide incentives for users to fill out their
profiles. For socially oriented sites, make the profiles public so your users can project
their personality through the profile. Allow users to describe themselves in free text.
Let them tag their profiles with categories that interest them. For private profiles, help
users understand how creating a profile can provide a more personalized experience.
For instance, you can directly ask users about their preferences and indicate that this
will influence the behavior of the application. You can incentivize profile building
with functionality; for example, by letting users bookmark items that they like, or
share items with friends.

 If you lack a profile page, you can still gather profile information from user inter-
actions. By observing search behavior, underlying themes will reveal themselves over
time. Perhaps a user has historically preferred certain brands. Maybe a user’s choices
indicate an interest in a particular domain such as photography or video games. By
watching a user’s interactions, you might identify demographics such as age, gender,
and income level. The way that users filter searches often reveals how they make pur-
chasing decisions. For instance, if users narrow search results by product reviews or
price, you’ve learned something about that user’s priorities. All of this information
can be used to tune a user’s search experience.

11.1.2 Tying profile information back to the search index

As you gather user profile information, consider how this can be used in a search solu-
tion. In some cases, the connection is easy to find. For instance, if the user shows an
affinity toward a particular brand, you can subtly boost that brand. And if a user often
looks at reviews, boost items with several positive reviews.

 But be careful how you do this boosting, because you can create an unexpected
feedback loop that can damage search relevance. For instance, if the user buys Acme
Co. products more than once, you should probably boost Acme’s presence in that
user’s search results. But if that boost is overwhelming, the search page might be
flooded with only Acme products—and less relevant Acme products at that. In future
searches, users will show an increased interaction with Acme products, not because
they like them, but because your boost makes Acme products so much more prevalent
than other products. To make the situation worse, these interactions may look like an
increased preference for Acme products and drive further boosting. With Acme prod-
ucts everywhere, you might soon find that customers quit using your search applica-
tion altogether. Therefore, it’s best to alter the boosting for particular product
categories only when you have definitive evidence of a preference for that category—
such as a purchase rather than just a product page view.

 Sometimes you’ll need to add new signals to the index in order to match informa-
tion from the user profile. If you know that a user prefers less expensive, “higher
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

283Personalizing search based on user behavior
value” products, you can’t simply boost all items below $20. A $20 blender is a great
value, whereas a $20 can of beans is quite pricey. Instead, you should associate docu-
ments and users with some sort of general value rating scale (“cheap” to “boutique”).

 Demographic information such as age and gender can be another good set of
information to pull into search. Let’s say a profile indicates that the user is a young
adult and male. If you know which products sell better in this demographic, give them
a boost in the search results. To accomplish this, include a field in the indexed docu-
ments listing demographic groups with a high affinity to this item. The task of anno-
tating this field with demographic information likely falls to the content curator. The
information itself will probably come from marketing research.

 With sufficiently heavy traffic, another source for demographic data is your search
logs. Count the number of sales that occur within various demographics. The next
time you reindex, add this information to the demographics field. Once this data is in
the index, personalizing search is as easy as boosting using the current user’s demo-
graphic data.

11.2 Personalizing search based on user behavior
In the previous section, we showed that you can learn about users by observing their
behavior in the application. In this section, we take this notion to an extreme with
collaborative filtering. This technique uses historical information about user-item
interactions (views, ratings, purchases, and so forth) to find items that naturally
clump together. For instance, collaborative filtering provides an algorithmic way to
state that “users who purchase Barbie dolls will likely also be interested in girls’
dresses.” You can incorporate this information into search for an even more personal-
ized search experience. We call this behavior-based personalization. In this section,
you’ll walk through a basic collaborative filtering example and see how to incorpo-
rate it into search.

11.2.1 Introducing collaborative filtering

For behavior-based personalization, you narrow your focus. Rather than considering
user demographics, search histories, and profiles, you focus solely on user-item inter-
actions. In this section, you’ll look specifically at user-item purchases. In principle,
interactions can be anything: item views, saves, ratings, shares, and so forth. Given the
data set of user-item interactions, you’ll use collaborative filtering to reveal hidden
relationships among users and the items.

 Collaborative filtering comes in many forms, from simple counting-based methods
(which we introduce in a moment) to highly sophisticated matrix decomposition
techniques (which are outside of the scope of this book). But no matter the tech-
nique, the input to collaborative filtering and the output from collaborative filtering
follow the same pattern.

 As shown in figure 11.3, the input is a matrix representing the users’ interactions
with items in the index. Each row corresponds to a user, and each column corresponds
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

284 CHAPTER 11 Semantic and personalized search
to an item. The values in the matrix represent user interactions. For the simplest case,
the values of the matrix represent whether an interaction has taken place. For
instance, the user has viewed or purchased a particular item. In the more general
case, the values of this matrix can represent how positive or negative the user-item
interactions are. The values can represent a user’s ratings of products purchased in
the past, for example.

 Collaborative filtering outputs a model that can find which items are most closely
associated to a given user or item. So, given a source item such as apple, the collabor-
ative filtering model might return a list of items, such as banana, orange, or grape, for
which apple has a high affinity. Additionally, each item includes an affinity score. Con-
sider the output banana:132, orange:32, grape:11. Here banana has a relatively high
affinity for apple, grape a low affinity.

11.2.2 Basic collaborative filtering using co-occurrence counting

To better understand how collaborative filtering works, let’s look at a simple example
using a co-occurrence counting approach. The following algorithm is a bit naïve; we
intend it to be introductory and don’t recommend that you implement it in a produc-
tion system. Nevertheless, it builds up a basic understanding of collaborative filtering,
and it removes the feeling that collaborative filtering is somehow magic. As you’ll see,
many machine-learning algorithms are based on simple ideas, such as counting the
number of times that items are purchased together.

 Jumping into the example, let’s say that you work for an e-commerce website and
you have a log of all items purchased across all users. Table 11.1 shows a sample.

a
p
p
le

b
a
n
a

n
a

c
o
c
o
n
u
t

d
o
n
u
t

z
u
c
c
h
in

i

andy

bill
charlie

dave

zeek

...

... ...

User-item interactions

Item-item affinity

apple banana: 102

oranges: 51

coconut: 19

...

donut pastry: 205

User-item affinity

andy pastry: 103

danish: 89

...

bill banana: 205

orange: 103

Collaborative
filtering

Figure 11.3 No matter the method used, collaborative filtering typically takes a user-to-item matrix
and returns a model to quickly find user-to-item or item-to-item affinity.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

285Personalizing search based on user behavior
The first thing you must do is group all purchases according to user, as shown in
table 11.2.

It’s in this next step where all the “magic” happens. For any given item A, you count
the number of times that the purchase of item A co-occurs with a purchase of any

Table 11.1 Log tabulating users’ purchases

Date User Item

2015-01-24 15:01:29 Allison Tunisia Sadie dress

2015-01-26 05:13:58 Christina Gordon Monk stiletto

2015-02-18 10:28:37 David Ravelli aluminum tripod

2015-03-17 14:29:23 Frank Nikon digital camera

2015-03-26 18:11:01 Christina Georgette blouse

2015-04-06 21:50:18 David Canon 24 mm lens

2015-04-15 10:21:44 Frank Canon 24 mm lens

2015-04-15 21:53:25 Brenda Tunisia Sadie dress

2015-07-26 08:08:25 Elise Nikon digital camera

2015-08-25 20:29:44 Elise Georgette blouse

2015-09-18 06:40:11 Allison Georgette blouse

2015-10-15 17:29:32 Brenda Gordon Monk stiletto

2015-12-15 18:51:19 David Nikon digital camera

2015-12-20 22:07:16 Elise Ravelli aluminum tripod

Table 11.2 The first step for determining item co-occurrence is grouping items by user. A dot (•)
indicates a purchase.

Tunisia
Sadie
dress

Gordon
Monk

stiletto

Georgette
blouse

Nikon
digital
camera

Canon
24 mm

lens

Ravelli
aluminum

tripod

Allison • •

Brenda • •

Christina • •

David • • •

Elise • • •

Frank • •
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

286 CHAPTER 11 Semantic and personalized search
other item B by the same user. (Here, the term co-occurs doesn’t imply that the purchases
were made at the same time, but that they were made by the same user.) You perform
this calculation for every pair of items encountered in the purchase history. After col-
lecting all the co-occurrence counts, you have a measure of the affinity between any
two items A and B.

 As a specific example based on the information in table 11.2, consider the relation-
ship between the Canon 24 mm lens and other items in the index. You can see that
only one individual, David, has purchased both the Canon lens and the Ravelli tripod;
therefore, these items receive a co-occurrence count of 1. But two individuals, David
and Frank, purchased both the Canon lens and the Nikon camera. The co-occurrence
count for this pair of items is 2. And finally, no user has purchased both the Canon
lens and the Tunisia Sadie dress. Therefore, this co-occurrence count is 0. After per-
forming this calculation for every pair of items in the index, you arrive at the matrix of
results displayed in table 11.3.

These values indicate the strength of associations between every pair of items. Notice
that in this example, as expected, fashion items co-occur more highly with other fash-
ion items. Similarly, photography items co-occur more highly with other photography
items. In some instances, fashion items and photography items co-occur. This also is to
be expected, because a few users are interested in both fashion and photography at
the same time.

 Item-to-item affinities can be directly used for item-based recommendations. The
data shown in table 11.3 can be saved to a key-value store. Then, when a user visits the
details page for the Ravelli aluminum tripod, you look up this item in the key-value
store, pull back an ordered set of the corresponding high-affinity items (the Nikon
digital camera and the Canon 24 mm lens) and present these items to the user as rec-
ommendations. As shown in figure 11.4, this is what Amazon does when it shows you
its version of related item recommendations.

Table 11.3 Item co-occurrence counts for every item in the purchase history

Tunisia
Sadie
dress

Gordon
Monk

stiletto

Georgette
blouse

Nikon
digital
camera

Canon 24
mm lens

Ravelli
aluminum

tripod

Tunisia Sadie dress - 1 1 0 0 0

Gordon Monk stiletto 1 - 1 0 0 0

Georgette blouse 1 1 - 1 0 1

Nikon digital camera 0 0 1 - 2 2

Canon 24 mm lens 0 0 0 2 - 1

Ravelli aluminum tripod 0 0 1 2 1 -
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

287Personalizing search based on user behavior
Taking the analysis one step further, you can find the affinity between users and the
products in your catalog. To do this, refer to the user-item purchases in table 11.2 and,
for every purchase made by that user, collect the corresponding item-to-item affinity
rows and add them together. For instance, Allison bought the Tunisia Sadie dress and
the Georgette blouse. Table 11.4 shows the corresponding rows from the co-occurrence
matrix along with the sum of those rows.

After you perform this summation for every user you’re interested in, you end up with
a matrix like that shown in table 11.5. The values represent each user’s affinity to every
item in the catalog.

Table 11.4 User-to-item affinities can be generated by adding together rows of the item-to-item matrix
that correspond to a user’s purchases.

Tunisia
Sadie
dress

Gordon
Monk

stiletto

Georgette
blouse

Nikon
digital
camera

Canon
24 mm

lens

Ravelli
aluminum

tripod

Allison purchases
Tunisia Sadie dress

- 1 1 0 0 0

Allison purchases
Georgette blouse

1 1 - 1 0 1

Summation 1 2 1 1 0 1

Figure 11.4 Item-to-item affinities can be used to make “related item” recommendations. When the
user lands on the page for a Frigidaire microwave, you can display items with high affinity to the
microwave in a panel similar to these recommendations from Amazon.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

288 CHAPTER 11 Semantic and personalized search
Because you started with item purchases, it isn’t usually meaningful to track user affin-
ities toward items that they’ve already purchased. It also isn’t meaningful to keep track
of products that users have 0 affinity toward; why would you recommend users some-
thing that you don’t think they care about? So let’s remove these values and have
another look at the remaining user-item affinity data, shown in table 11.6.

With the clutter removed, it’s easy to see that collaborative filtering works well. Just as
in the previous item-to-item case, this information can be used directly for personal-
ized recommendations. If only there was some way to incorporate this into your search applica-
tion! Don’t worry; you’ll get there soon.

 Looking at the data, you can see that fashion shoppers have highest affinity toward
fashion items, and that photography shoppers have highest affinity toward photogra-
phy items. But because one of the users, Elise, has interests in both photography and
fashion, crossover recommendations exist between fashion and photography. Because
of this, David will probably be confused when he gets a recommendation for the

Table 11.5 Complete user-to-item affinity matrix

Tunisia
Sadie
dress

Gordon
Monk

stiletto

Georgette
blouse

Nikon
digital
camera

Canon
24 mm

lens

Ravelli
aluminum

tripod

Allison 1 2 1 1 0 1

Brenda 1 1 2 0 0 0

Christina 2 1 1 1 0 1

David 0 0 2 4 3 3

Elise 1 1 2 3 3 3

Frank 0 0 1 2 2 3

Table 11.6 User-to-item affinity matrix with purchased items and zero-affinity items removed

Tunisia
Sadie
dress

Gordon
Monk

stiletto

Georgette
blouse

Nikon
digital
camera

Canon
24 mm

lens

Ravelli
aluminum

tripod

Allison - 2 - 1 - 1

Brenda - - 2 - - -

Christina 2 - - 1 - 1

David - - 2 - - -

Elise 1 1 - - 3 -

Frank - - 1 - - 3
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

289Personalizing search based on user behavior
Georgette blouse. Fortunately, as the input data becomes richer (more items and
more purchases per item), crossover recommendations such as this will become less
prominent, and the user-item affinities will be dominated by the statistically signifi-
cant co-occurrences.

 Furthermore, in richer data sets, when unusual crossovers like this do exist, they’re
often fortuitous because they point out a latent relationship among the catalog items.
For instance, about the only thing that Mentos has in common with Diet Coke is that
they’re both food (sort of). But toward the end of 2005, when the Mentos + Diet Coke
experiment became viral on the internet, it became highly likely that these two items
would show a spike in purchasing co-occurrence. This highlights the fact that collab-
orative filtering can identify connections that wouldn’t be obvious by looking only at
the textual content of the documents.

 As alluded to earlier, finding affinities in this way is a fairly naïve approach. For
example, you haven’t normalized products that are extremely popular. Consider
socks. No matter whether you’re interested in fashion, photography, or any other field
you can think of, you still regularly purchase socks. Therefore, the co-occurrence
count between socks and every item in the index will be very large; everybody will be
recommended socks. To resolve this issue, you’d need to divide the co-occurrence val-
ues by a notion of popularity for each pair of items.

 Co-occurrence-based collaborative filtering isn’t the only option for generating
item-to-item or user-to-item affinities. If you’re considering building your own recom-
mendations, make sure to review the various matrix-based collaborative-filtering
methods such as truncated singular-value decomposition, non-negative matrix factor-
ization, and alternating least squares (made famous in the Netflix movie recommen-
dation challenge). These methods are less intuitive than the simple co-occurrence
counting method presented here, and they tend to be more challenging to imple-
ment. But they often provide better results, because they employ a more holistic
understanding of item-user relationships. To dive deeper into recommendation sys-
tems, we recommend Practical Recommender Systems by Kim Falk (Manning, 2016). And
no matter the method you choose, keep in mind that the end result is a model that
lets you quickly find the item-to-item or user-to-item affinities. This understanding is
important as we explain how collaborative filtering results can be used in the context
of search.

11.2.3 Tying user behavior information back to the search index

In the previous section, we demonstrated how to build a simple recommendation sys-
tem. But we’re supposed to be talking about personalized search! In this section, we
return to search and explain how the output of collaborative filtering can be used to
build a more personalized search experience. We also point out some pitfalls to be
aware of.

 You can pull collaborative filtering information into search in several ways. The
three strategies demonstrated here are related in that they take a standard, text-only
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

290 CHAPTER 11 Semantic and personalized search
search and incorporate collaborative filtering as a multiplicative boost. Here’s how it
works: Consider an example base query in which you take the user’s query “Summer
Dress” and search across two fields, title and description, as shown in the follow-
ing listing.

{ "query": {
 "multi_match": {
 "query": "summer dress",
 "fields": ["title^3", "description"]}}}

Given this base query, you incorporate collaborative filtering by applying a multiplica-
tive boost using a function_score query, as shown next.

{ "query": {
 "function_score": {
 "query": {
 "multi_match": {
 "query": "summer dress",
 "fields": ["title^3", "description"]}},
 "functions": [{
 "filter": { COLLAB_FILTER },
 "weight": 1.1}]}}}

In this simple implementation, the documents that get the collaborative filtering
boost are determined by the contents of your COLLAB_FILTER filter (which we discuss
in a moment). Notice that this filter doesn’t filter out any documents from the result
set. Instead, documents matching this filter are given a multiplicative boost of 1.1, as
indicated by the weight parameter. The query of listing 11.2 returns the same docu-
ments as the query of listing 11.1, but any documents also matching the COLLAB_FILTER
get a 10% boost over the score of the base query. This subtly affects the ordering of
the search results so that users making the query will see results that are more aligned
with their previous behavior. This is the goal of personalized search.

QUERY-TIME PERSONALIZATION

With the basic structure in place, we can discuss the three strategies for incorporating
collaborative filtering, each of which corresponds to a different COLLAB_FILTER and
indexing strategy. For now, assume that the output of our collaborative filtering pro-
cess is a set of user-to-item affinities—things like “Elise likes Tunisia Sadie dresses,
Gordon Monk stilettos, and Canon 24 mm lenses.” But because we’re talking to
machines here, Elise is user381634, the Tunisia Sadie dress is item4816, the Gordon
Monk stiletto is item3326, and the Canon 24 mm lens is item9432. Further, assume
that you have similar information for all users and all the products in your catalog.

Listing 11.1 Base query

Listing 11.2 A multiplicative boost can be used to incorporate collaborative filtering
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

291Personalizing search based on user behavior
 Given this data set, the most straightforward approach for incorporating collabora-
tive filtering is as follows: Start by storing collaborative filtering data in a key-value
store (outside the search engine). Let’s say that Elise, user381634, has high-affinity
items: item4816, item3326, and item9432. Now, next time Elise uses the search
engine, the first step is to retrieve her high-affinity items from the data store, and then
referring again to listing 11.2, replace COLLAB_FILTER with a filter to directly boost her
high-affinity items by ID:

COLLAB_FILTER = {
 "terms": {
 "id": ["item4816", "item3326", "item9432"]
 }
}

Then any item matching Elise’s high-affinity items will be driven further toward the
top of the search results.

 Although this is the most obvious approach, it might become computationally
expensive at query time. In the preceding example, Elise has only three high-affinity
items. In a more realistic implementation, a user could have hundreds or poten-
tially thousands of high-affinity items. And at some point, having too many terms
ORed together like this makes for slow queries. But you might be surprised with
the extent to which this approach will scale. For instance, consider that Lucene
does quite well with geo search. But as we discussed in chapter 4, under the hood
geo search is implemented by ORing together many, possibly hundreds, of terms
that represent a geographic area. Besides, in many personalized search applica-
tions, you won’t need thousands of high-affinity items anyway; a user’s searches will
often tend toward a relatively small domain of interest. A few few hundred high-
affinity items in this domain will likely provide users with a noticeably personalized
search experience.

INDEX-TIME PERSONALIZATION

If your application can’t afford the performance hit at query time, the next approach
places the burden on the index size. A benefit of this technique is that there’s no need
for an external key-value store, because you’ll save collaborative filtering information
directly to the index.

 To do this, you add a new field to the documents being indexed named
users_who_might_like. As the name indicates, this field contains a list of all users
who might like a given item. For example, when you index the Gordon Monk stiletto,
you include all the typical information that you need for search: title, description,
price, and so forth. But this time you also include a users_who_might_like field,
which is a list of all users showing a high affinity to this item. Referring to table 11.6,
you can see that both Allison (user121212) and Elise (user989898) have a high
affinity to this item. In this case, the users_who_might_like field will be the list
user121212, user989898.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

292 CHAPTER 11 Semantic and personalized search
 After all documents are indexed with their corresponding users_who_might_like
field, the rest is easy. At query time, when Allison (user121212) makes a search, you
issue her query along with a simple boosting filter:

COLLAB_FILTER = {
 "term": {
 "users_who_might_like": "user121212"
 }
}

Again, this returns the same results as the base query, but any document that includes
Allison as a “user who might like” gets a 10% boost—pushing it toward the top of the
search results. You can see that this query is much easier on the search engine at query
time, because there’s only one extra term. But with this method, you must be watchful
of the index size. As a frame of reference, in a modest Lucene index of 500,000 one-
page English text documents, you might expect something like 1 million unique
terms in the index. With this approach, each unique user ID represents another term
in the index. So you should expect this approach to scale well for hundreds of thou-
sands of users. But if you have millions of users, your index may outgrow its servers.
Fortunately, this method scales well horizontally. You can create shards that represent
a portion of your customers. If you have millions of users, you probably have the
resources for this.

INDEX- AND QUERY-TIME PERSONALIZATION

Our final approach splits the difference between the two preceding approaches. Previ-
ously, you used user-to-item affinities, but for this last approach you’ll assume that the
output of the collaborative filtering is a set of item-to-item affinities like those shown
in table 11.3. In this new approach, the search engine calculates user-to-item affinity
implicitly at the time of the query.

 The setup for this approach is more involved than in the other approaches. You’ll
again require a key-value store to look up user-related information. But this time
rather than storing user-to-item affinities, you store the users’ most recent purchases.
You also add a new field, related_items, to the index. As the name suggests, this
field will contain a list of IDs for high-affinity items. At query time when Frank makes
a search, you first pull his recent purchases—a Nikon digital camera (item1234) and a
Canon 24 mm lens (item9432)—and then you issue his query along with the following
boosting filter:

COLLAB_FILTER = {
 "terms": {
 "related_items": ["item1234", "item9432"]
 }
}

You query using a list of IDs just as in the first method, but it’s a much shorter list. And
as in the second method, you’re required to index an extra field with a list of IDs, but
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

293Basic methods for building concept search
unless you have millions of items, this will also be much less information than in the
previous method.

 As mentioned at the opening of this section, the preceding methods are just a few
of the many ways that collaborative filtering can be incorporated into search. And you
can improve these methods in many ways. For instance, you probably noticed that we
didn’t mention the affinity values in any of these solutions. Instead we lumped items
into two groups: high-affinity items (matching the COLLAB_FILTER filter) and lower-
affinity items. You can modify these methods to take the individual affinity values into
account, but this requires creativity involving payloads and scripting or possibly even a
custom search-engine plugin.

11.3 Basic methods for building concept search
Personalized search is just one of the many possible directions to explore outside the
more standard approaches presented in the previous chapters. Another interesting
extension of search is concept search. Before reading this book, you probably thought of
search as the process of finding documents that match user-supplied keywords and fil-
ters. Hopefully, you’ve come to realize that a good search application works to infer
the user’s intent and provide documents that carry the information that the user seeks.
Concept search takes this notion to an extreme.

 The goal of concept search is to augment a search application so that it in some
sense understands the meaning of the user’s query. And because of this understanding,
the documents returned from a concept search may not match any of the user’s
search keywords, but will nevertheless contain meaningful information that the user is
looking for. To borrow a phrase coined by Google, the goal of concept search is to
allow users to “search for things, not strings.”

 Perhaps an example will help bring home the need for concept search. Consider
a search application for medical journals. Using a typical string-based approach, a
search for “Heart Attack” would fall short of the ideal. Why? Because medical litera-
ture uses various words for heart attack, such as myocardial infarction, cardiac arrest, coro-
nary thrombosis, and many more. Plenty of articles about heart attacks won’t mention
heart attack at all. Concept search provides the user with an augmented search experi-
ence by bringing back documents that talk about heart attack even if they happen to
not contain that specific phrase.

 Still—and we can’t emphasize this enough—a search engine at its core is a sophis-
ticated token-matching and document-scoring system. The crux of concept search
isn’t magic; it involves augmenting queries and documents to take advantage of new
relevance signals that increase search recall. By carefully balancing these new concept
signals, you can ensure that search results retain a high level of precision. In this sec-
tion, we cover several human-driven methods for augmenting your search application
to take on a more conceptual nature.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

294 CHAPTER 11 Semantic and personalized search
11.3.1 Building concept signals

Initially, you may reach toward human-powered document tagging to implement con-
cept search. You can create a field that will serve as a dumping ground for terms and
phrases that answer the question “What is this document about?” This field will be the
home of your new concept signal.

 With this approach, when users of the medical journal application search for
“Heart Attack” but miss an important article, you add the phrase heart attack to your
concept field. Thereafter the document will be a match. This approach also helps
fine-tune a document’s score. For instance, let’s say you have an important article
about heart attacks. It may even contain the phrase heart attack. Unfortunately, it
shows up on the second page of search results. Rather than attempt to solve the prob-
lem globally, add the phrase heart attack to the concept field (maybe even add it
multiple times). This nudges the score for that document just a little bit higher when-
ever the user searches for “Heart Attack.”

 But be forewarned that human curation can be challenging and resource consum-
ing. Accurate tagging requires extensive domain expertise and rigorous consistency.
For example, should the heart attack query also be tagged with heart? In the
domain of your users, does acute heart attack differ from heart attack? Should a
document receive both tags? Only trained, domain-aware content curators can make
these fine-grained distinctions. Tagging also takes a lot of human effort. It may require
deep reading of the content, which may not scale to cover realistic data sets.

 One way to reduce the curation workload is by looking to your users as a possible
way to crowd-source the concept signal. Do you recall the conversation about thrash-
ing behavior in chapter 9? When thrashing, an unsatisfied search user quickly moves
from one search to another, indicating that the search results don’t match their
intent. Imagine that a user searches for “Myocardial Infarction,” spends about 20 sec-
onds on the results page, and then makes a new search for “Cardiac Arrest.” It’s obvi-
ous that this user isn’t finding what they are looking for.

 But often these users do finally find a relevant search result. Once there, it’s as if
the user tells you, “Hey, remember all that other stuff I was searching for? This is what
I meant!” Imagine that in our example, the user still doesn’t find anything interesting
in the cardiac arrest results and submits a third query—this time for “Heart Attack.”
Upon seeing the results, the user clicks the second document in the result set and
then doesn’t return to search. This user implicitly tells us that the phrases heart attack,
cardiac arrest, and myocardial infarction are somehow related. Therefore, why not take
the thrashing search terms and add them to the concept field for the document that
finally satisfies the user’s information need? This way, the next time someone follows
the same path as our thrashing user, they will more likely find what they need in their
first set of search results.

 Again, the main goal of the new concept field is to increase search recall. But you
should be careful to not ignore the impact made upon precision. In the preceding
example, if the user initially searches for “Cardiac Arrest” but then changes to “Gall
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

295Basic methods for building concept search
Bladder,” your concept signal may become noisy. Make sure to properly balance the
concept signal with the existing signals. If the concept field is human curated, it’s
more likely to be high quality than a user-generated field and should be more strongly
represented in the relevance score.

11.3.2 Augmenting content with synonyms

Synonym analysis is another useful way to inject deeper conceptual understanding
into search. The first time you open the synonym file and add an entry such as the fol-
lowing, you’re building out concept search:

TV, T.V., television

When the user asks the search application for a “TV,” the search application answers
back, “I have documents with TV—but I bet you’re also interested in these other docu-
ments that have words like T.V. and television, right?”

 Initially, synonym augmentation of the documents takes place somewhat manually.
Content curators may hand-generate an extensive synonym list customized to the
jargon of a field. In larger domains—medicine is again a good example—it may be
possible to repurpose a publically available taxonomy such as the Medical Subject
Headings (MeSH) for use during synonym analysis.

 One thing to think about when using synonyms is whether to encode hierarchical
structuring with the synonyms. For instance, in the preceding simple case with televi-
sion, all the synonym entries are semantically on the same level; they truly are syn-
onyms. But, as discussed in chapter 4, it’s common to use synonyms to encode a
notion of specificity into the indexed terms. For instance, consider the following syn-
onym entries:

marigold => yellow, bright_color
canary => yellow, bright_color
yellow => bright_color

This encodes a hierarchy for yellow things (and you can imagine what a much larger syn-
onym set for all colors would look like). When used correctly, synonyms like this will serve
to expand a user’s narrow query, for instance “Canary,” to a broader notion: yellow. This
improves recall, allowing the user to find items that use more-general terminology.

 As always, recall and precision must be balanced. Fortunately, the natural TF × IDF
scoring works in this case. Namely, after synonym analysis has been applied, specific
terms such as marigold will occur much less often in the index than terms like yellow
and bright_color. Therefore, when a user searches for a specific term such as “Mari-
gold,” both marigold and yellow documents will be returned, but marigold docu-
ments will be scored above the more general yellow documents.

 As a final note, synonym augmentation and concept fields are complementary
approaches. Synonym analysis usually dumps the synonyms back in the same field as
the source text that was analyzed. But if you’re concerned that your synonyms are
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

296 CHAPTER 11 Semantic and personalized search
noisy, it might be a good idea to stick them into a separate field so that they can be
given a lower weight. Another good combination of concept fields and synonym aug-
mentation occurs in document tagging. In this scenario, you can greatly reduce the
burden placed on the people doing the tagging by having them apply only the most
specific tags. Then hierarchically structured synonyms can be used to automatically
augment the documents with less specific tags.

11.4 Building concept search using machine learning
In the earlier sections, we introduced personalized search using simple methods and
then moved on to more sophisticated, machine-learning approaches. Here we follow
this same route, moving from human-powered concept management to a machine-
learning approach that we call content augmentation.

 Just as before, the goal is to include a new content signal into the documents to
improve search recall. In particular, you’ll use machine learning to automatically gener-
ate pseudo-content to be added back into the indexed document. This content won’t be
new paragraphs of human-readable text. Rather, the pseudo-content will be a dump of
terms that aren’t in the original document but that, in some statistically justifiable sense,
should be present because they pertain to the concepts in that document.

 To generate the new pseudo-content, you algorithmically model the statistical rela-
tionship between words based on the documents that contain them. For instance,
consider a medical journal article that contains the word cardiac. There’s a high
probability that the same article will also contain words like heart, arrest, surgery,
and circulatory; these words are related to the cardiac topic. But it’s unlikely that the
same article will contain the words clown, banana, pajamas, and Spock; these words
have little in common with the cardiac topic. By looking at the co-occurrence of words,
you can begin to understand how they’re interrelated. And once you have a good
model of these relationships, you can take any given document and generate a set of
words that in some sense should be in that document.

 Let’s look at an extremely simplified example. Consider the small set of docu-
ments displayed in listing 11.3. Each document is a sentence ostensibly about dogs or
cats. If you put these documents through analysis, you can split out the tokens, nor-
malize them (by lowercasing and stemming), and filter out the common stop words.
The end result can be represented in matrix form, as shown in table 11.7. Here a dot
(•) indicates that the term (represented in that column) has occurred one or more
times in the document (represented in that row).

doc1: The dog is happy.
doc2: A friendly dog is a happy dog.
doc3: He is a dog.
doc4: Cats are sly.
doc5: Fluffy cats are friendly.
doc6: The sly cat is sly.

Listing 11.3 Simple documents illustrating term co-occurrence
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

297Building concept search using machine learning
You may notice that this term-document matrix resembles table 11.2’s user-items
matrix. This is no coincidence. The problem of identifying related items based on
user interactions is nearly identical to the problem of identifying related terms based
on document co-occurrence. Whereas the earlier personalization example revealed
natural clustering among fashion items and photography items, table 11.7 reveals a
clustering among dog terms and another clustering among cat terms. In principle,
you could even use the same co-occurrence counting method to identify closely
related terms. But in practice, more-sophisticated methods are used such as latent
semantic analysis, latent Dirichlet allocation, or the recently popular Word2vec algo-
rithm. Though these methods are well beyond the scope of this book, the models
generated from these algorithms allow you to “recommend” pseudo-content for docu-
ments in much the same way that section 11.2.2 showed how to recommend products
based on user-to-item and item-to-item affinity.

 After automatically generated pseudo-content is indexed with each document,
queries can match documents that didn’t originally contain the user’s search terms.
Nevertheless, these documents will be strongly associated with the keywords based on
statistical term co-occurrence. In the preceding example, a search for “Cat” may
return a document that talks about a sly fluffy animal even if that document
doesn’t contain the word cat.

11.4.1 The importance of phrases in concept search

We haven’t discussed an important component of concept search: phrases. Often
phrases carry meaning that’s more specific than the terms that compose the phrase.
Case in point: software developer. A software developer isn’t software, but a person who
develops software. Additionally, there are many types of developers, and a land devel-
oper, for example, has nothing to do with software development.

 Therefore, prior to content augmentation, it’s useful to first identify statistically sig-
nificant phrases within the text. These phrases can be added to the columns of the

Table 11.7 Matrix representation of the words and the documents that contain them. (Stop words
have been removed and plural words have been stemmed. Additionally, the columns are arranged to
draw attention to statistically clustered words.)

dog happy friendly cat fluffy sly

doc1 • •

doc2 • • •

doc3 •

doc4 • •

doc5 • • •

doc6 • •
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

298 CHAPTER 11 Semantic and personalized search
term-document matrix so that during content augmentation these conceptually pre-
cise phrases will be included in the newly generated content.

 Collocation extraction is a common technique for identifying statistically significant
phrases. The text of the documents is split into n-grams (commonly bigrams). Then
statistical analysis is used to determine which n-grams occur frequently enough to be
considered statistically significant. As is often the case, this analysis is a glorified
counting algorithm. For instance, if your document set contains 1,000 occurrences
of the term developer, and if 25% of the time the term developer is preceded by
the term software, the bigram software developer should probably be marked as a
significant phrase.

11.5 The personalized search—concept search connection
As we earlier indicated, a strong relationship exists between personalization and con-
cept search. Both rely on crafting new signals to improve precision and recall. Both
use similar machine-learning approaches. But the relationship goes even deeper
because these methods can be used together to improve relevance even further.

 Consider the cold-start problem. Let’s say that you’re trying to build personalized
search based on collaborative filtering. What happens when a new item is introduced
to your catalog? Recall that collaborative filtering methods depend on user interac-
tions. Because no one has ever interacted with the new item, no personalization hap-
pens. You can’t recommend a new item based on behavioral patterns that don’t exist;
this is known as the cold-start problem.

 This begs an important question, though. You do at least have some information for
the item: its textual content. Can this be used to generate personalized recommen-
dations? Yes! To do this, you incorporate aspects of concept search into your person-
alization strategy. With concept search, you augment documents with a broader,
conceptual understanding of the text. When pulling concept search into personaliza-
tion, you must instead augment your user profiles to track the concepts that they’re
interested in. And in this case, just as in the preceding section, concepts are the impor-
tant words and phrases that a user has shown high affinity toward.

 There are plenty of ways to determine content that holds high affinity to your
users. One way is to turn back to machine learning and somehow infer user-to-term
affinities based on the user’s interactions with documents and the text of those docu-
ments. But there’s no need to get overly sophisticated; users are constantly feeding us
high-affinity terminology in the searches that they make. And if you’re fortunate
enough to have highly engaged users, you may even be able to directly ask what types
of content they’re interested in.

 Now, reversing the perspective, consider how the behavioral information used with
collaborative filtering can also be used to augment concept search. In section 11.2, you
saw how collaborative filtering could establish a relationship among camera equip-
ment and a different relationship among fashion items. These relationships were
established based solely on user behavior; the items’ textual content played no role.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

299Recommendation as a generalization of search
Nevertheless, as this example demonstrates, behaviorally related items are often con-
ceptually related as well. Therefore, when the textual content associated with an
item is weak, behavioral information can be employed to help users find what
they’re looking for.

11.6 Recommendation as a generalization of search
Throughout this book, we’ve covered the ins and outs of search. We’ve pulled open
the search engine, explained the inner workings, and built techniques for producing
a highly relevant search application. We discussed business concerns, describing how
to shape a culture that makes search relevance a central issue. In this chapter, we’ve
pointed to ways to imbue search with an almost spooky ability to understand the
user’s intent.

 But here, at the end of this last chapter, we expose a new challenge to everything
we’ve written to this point:

Maybe search is not the application you should be building. Maybe you
should be building recommendations.

Consider what happens if there’s no explicit search in a personalized, concept-based
search application. What if the search box is left empty and filters left unchecked?
Can the application still be put to use? Yes! Even without immediate input from the
user, the application has a significant amount of context that can be used to make rich
recommendations. For instance, if the user looks at an item detail page, then the
application can use methods discussed in this chapter to recommend related items. If
the user interacted with the application in the past, the recommendations can incor-
porate the user’s behavioral and conceptual information so that the recommenda-
tions will be personalized. So you see, recommendation is something that can still exist
without an explicit query from the user. As we’ll show in the following paragraphs, it
may even be useful to think of search as a subset of recommendation.

 Let’s dig farther. Think about the analogues to search and recommendation that
exist in real life. When viewed in its worst possible light, a basic search application can
be like a gum-chewing, disinterested, teenage store clerk. You say, “I need a shirt,” and
the clerk points to a wall of shirts. There are hundreds of shirts—a mixture of all
styles, sizes, and prices imaginable. It’s too much to process, so you attempt to filter
the search: “Yeah, but do you have anything in size M?” The clerk (still smacking gum)
glances up and points to the bottom rack. There are still a lot of shirts to choose
from—a mixture of various styles and prices—but you need a new shirt, so you walk
over and start looking through the shirts in your size.

 Even though we’ve couched this story in terms of a search for a new shirt, the
store clerk is effectively making recommendations to the customer. They’re just not
particularly good recommendations. The clerk ignores the other personalization and
conceptual context clues that could help direct customers to just the item they’re
looking for.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

300 CHAPTER 11 Semantic and personalized search
 Continuing with the analogy, let’s replace the gum-chewing store clerk with your
own personal fashion consultant. This time you walk into the store and say to the fash-
ion consultant, “I need a shirt,” and the fashion consultant takes you directly to the
shelf with shirts that match your size. The fashion consultant is a well-studied expert,
keenly aware of the types of clothing in style and how to pair clothing items to make a
good outfit. She’s also keenly aware of your personal style. The fashion consultant bus-
ies herself looking through the rack, pulling out the shirts that are a good match, and
arranging them for you to look through yourself. Then she looks up and asks, “Oh,
what price range are we looking in today?”—extra context. Upon hearing your
response, she plucks out a couple of the overpriced shirts and hangs them back on the
rack. Finally, she helps you look through the remaining items.

 Now you’re getting somewhere. The attentive and highly educated fashion consul-
tant doesn’t leave you wandering aimlessly to search for a shirt by yourself, but works
with you to provide recommendations that take into account information about both
you and the fashion domain. And you know what? After helping you pick out that
shirt, the fashion consultant takes you over to the hat rack beside the register and says,
“Check out this hat. This is a perfect match for you and would look great when you’re
wearing that new shirt.” And she’s right; it’s a cool hat! This is the epitome of recom-
mendation, because, even without making an explicit search, the fashion consultant is
ready to provide feedback based on whatever information is at hand.

11.6.1 Replacing search with recommendation

As the preceding story illustrates, recommendation could be seen as an overarching
and unifying concept—which happens to include the notion of search. Here’s a for-
mal definition:

Recommendation is the ability to provide users with the best items available
based on the best information at hand.

The most interesting part of this definition is the word information. Here, information
comes in three flavors: information about the users, about the items in the catalog,
and about the current context of recommendation:

■ User information—As users interact with the application, you can identify pat-
terns in their behavior and learn about their interests and tastes. Particularly
engaged users might even be willing to directly tell us about their interests.

■ Item information—To make good recommendations, it’s important to be familiar
with the items in the catalog. At a minimum, the items need to have useful
textual content to match on. Items also need good metadata for boosting and
filtering. In more advanced recommendation systems, you should also take
advantage of the overall user behavior that gives you new information about
how items in the catalog are interrelated.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

301Best wishes on your search relevance journey
■ Recommendation context—To provide users with the best recommendations possi-
ble, you must consider their current context. Are they looking at an item details
page? Then you should make recommendations for related items in case they
aren’t sold on this one. Is the user getting ready to check out? Then let’s recom-
mend popular, low-cost items. Are you sending out an email newsletter? Then
let’s show the users some highly personalized recommendations and see if you
can bring them back on the site.

You might notice that search is barely mentioned in this discussion. What gives? Is it
just … gone? Quite the opposite! Search is still present; it’s just another one of the
possible contexts for recommendation. And as a matter of fact, search is the most
important context, because it represents users telling you exactly what they’re looking
for right now. When a user makes a search, you have access to the richest information
possible and should therefore be able to make better-informed recommendations. To
pick back up with the fashion consultant example, search is the point where you tell
the consultant, “You know what? Today I’m looking for an Hawaiian shirt.” And the
consultant recommends a shirt that not only matches the current search context (it’s
Hawaiian), but also matches your established personal preferences.

11.7 Best wishes on your search relevance journey
We’ve finally come to the close of this book. Before you leave, consider how far
you’ve come:

■ Chapter 1 helped familiarize you with the problem space and the challenges
that you’ll likely encounter as you work to improve your own search rele-
vance issues.

■ Chapter 2 laid the foundation for technical discussions in the book by explain-
ing how search technology works—inside and out.

■ Chapter 3 introduced debugging tools useful for isolating a wide range of rele-
vance problems.

■ Chapter 4 described how text is processed in order to extract the features most
useful in search.

■ Chapters 5 and 6 discussed how textual features are used to build higher-level rel-
evance signals and the various ways that these signals can be combined.

■ Chapter 7 explained how functions and boosting are used to further tune rele-
vance and to shape search results to achieve business goals.

■ Chapter 8 revealed that relevance is more than just tuning parameters; it’s also
about helping users understand and refine the information being made avail-
able to them.

■ Chapter 9 provided an end-to-end relevance case study that combines the lessons
of the previous chapters and outlines a systematic approach to designing rele-
vant search applications.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

302 CHAPTER 11 Semantic and personalized search
■ Chapter 10 described how to shift the organizational culture to focus on
relevance.

■ Chapter 11, this chapter, broadened the horizons of search to include personal-
ized search, concept search, and recommendations.

After covering all these topics, we’re sure that you’ll find—and are probably already
finding—that each search application has its own set of relevance challenges. But
after reading through this book, you should find yourself much better equipped to
meet and overcome these challenges.

11.8 Summary
■ Personalized search provides a customized experience for individual users and

allows high-affinity items to be boosted toward the top of search results.
■ Build basic search personalization by creating user profiles that track prefer-

ence and demographic information. Make sure that this information is repre-
sented in the search index.

■ Use collaborative filtering to create personalized search based on the user behavior.
■ Concept search provides users not only with documents that match their search

terms but also with documents that match the meaning of their search.
■ Concept search requires adding new content to the index or to the users’ que-

ries in order to improve recall. It’s important to carefully balance the new con-
cept signals in order to retain precision.

■ Use personalized search and concept search together to complement and aug-
ment one another.

■ Personalized and concept search without an explicit user query is effectively the
same thing as a recommendation.

■ Consider recommendation as a generalization of search.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

appendix A
Indexing directly

from TMDB

Starting in chapter 3, we used examples from TMDB, The Movie Database. We pre-
packaged a tmdb.json file for ease of use with the examples. But we’re strong
believers in showing your work. In this appendix, we show you how to use the exam-
ples with an up-to-date version of TMDB’s data.

 We warn you that we have no control over TMDB, so TMDB may make changes
to its API or policies that over time make this appendix obsolete. That being said,
we also want to add that we’re grateful to TMDB for permission to use its data for
this book. We encourage you to visit TMDB (http://themoviedb.org) and make a
donation for all their hard work!

 This appendix walks you through the following steps:

1 Obtaining an API key from TMDB
2 Setting up Python code to talk to TMDB
3 Pulling back a list of movies, by crawling TMDB’s top-rated movies
4 Pulling back extended data on each movie

You’re going to set up a process that crawls TMDB for movie IDs and then visits sev-
eral API endpoints such as /movie/<id> and /movie/<id>/cast to extract extended
details for each movie. The code for this can be found in the appendix A IPython
notebook examples in the GitHub repo (http://github.com/o19s/relevant-search).

A.1 Setting the TMDB key and loading the IPython
notebook
The first steps are to obtain an API key from TMDB. This key gives you authoriza-
tion to use the API. You pass the key to TMDB to identify yourself when accessing
303

Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

http://themoviedb.org/
http://github.com/o19s/relevant-search

304 APPENDIX A Indexing directly from TMDB
the API. Follow the instructions at this website to get an API key: www.themoviedb.org/
documentation/api.

 Armed with your API key, open up whatever command prompt you plan to use for
these Python examples. Before accessing TMDB using the Python examples in this
appendix, you’ll need to set the environment variable TMDB_API_KEY.

 In a Mac/Linux system, set this with the following:

export TMDB_API_KEY=<API KEY from above>

In Windows, type this at the command prompt:

set TMDB_API_KEY=<API KEY from above>

A.2 Setting up for the TMDB API
Next, you’ll perform the setup you need to interact with TMDB. You’ll install a
library, import a few system libraries into your Python code, and set up Python to
talk over HTTP.

 The only additional Python library used here is requests. Be sure to install the
requests library using Python’s package installer, pip. If you don’t have Python’s
package installer, you should still have Python’s built-in easy_install utility:

easy_install pip
pip install requests

With an API key and the right libraries, you’re ready to begin pulling movies down
from TMDB. But first, let’s make sure you have all the setup code needed to support
the functions that interact with the API. This code, shown in the following listing,
imports the needed Python modules, fetches the TMDB_API_KEY environment variable,
and creates a dedicated HTTP session for communicating with TMDB’s API.

import requests
import json
import os
import time

tmdb_api_key = os.environ["TMDB_API_KEY"]

tmdb_api = requests.Session()
tmdb_api.params={'api_key': tmdb_api_key}

The most important part of this code is the last two lines. Here you ask the Python
requests library to create a session. The returned session is configured with an api_key
argument, using your tmdb_api_key. Now that you have boilerplate code out of the
way, let’s get cracking on using the TMDB API directly.

Listing A.1 How boilerplate is done

Be sure you installed
the Python “requests”
library Reads the

TMDB_API_KEY
environment variable

An HTTP session
you’ll use to interact
with TMDB
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

http://www.themoviedb.org/documentation/api
http://www.themoviedb.org/documentation/api

305Crawling the TMDB API

Acc
t

end
A.3 Crawling the TMDB API
Next, you’ll get to the fun work of extracting movies from TMDB! As we stated, this
requires two components:

■ Code to pull back a list of movie IDs
■ Code that, for each movie ID, fetches additional details

First, you’ll construct the movieList function used to pull back a list of movie identifi-
ers. The TMDB API is organized around a series of endpoints that list movies, such as
/movies/popular (list of movies by popularity) or /movies/top_rated/ (list of movies
that are top-rated). As you access each endpoint, you’ll have an outer loop for passing
a page URL query parameter. Because each request returns 20 movies at a time, you’ll
need to continue to request additional pages to have enough movies to search.

 To start, you’ll pull down movies you’d like to place in the search engine in the
movieList function. To do this, the function snags the IDs of popular movies by pag-
ing through top_rated, collecting each ID in a movieIds list. Then, after each ID is
collected, movieList returns a list of TMDB movie IDs.

def movieList(maxMovies=10000):
 url = 'https://api.themoviedb.org/3/movie/top_rated'
 movieIds = [];
 numPages = maxMovies / 20
 for page in range(1, numPages + 1):
 httpResp = tmdb_api.get(url, params={'page': page})
 try:
 if int(httpResp.headers['x-ratelimit-remaining']) < 10:
 time.sleep(3)
 except Exception as e:
 print e
 jsonResponse = json.loads(httpResp.text)
 movies = jsonResponse['results']
 for movie in movies:
 movieIds.append(movie['id'])
 return movieIds

In movieList, you issue a GET request to the TMDB API B. Next, you parse the
HTTP text body, loading the JSON body into a Python dictionary c. The entry
results contains the meat of the response, holding each movie for you to work with.
You needn’t concern yourself much about the structure of the response, as you simply
extract the ID of each movie returned, append it to a list, and discard the rest. This
process is repeated as you page through additional responses from TMDB.

 Now to pull back extended information on each movie. In the book we used the
extract function to pull movies out of the tmdb.json file. In this version of extract,

Listing A.2 Crawling movies from TMDB—movieList

For each page
of top_rated
movies …

esses the
op_rated
point for
this page

 b

… throttles the access to
the API (TMDB API throttling

rules subject to change) …

Parses
the JSON
response

 c

… iterates the page
of movies, storing
the movie’s ID …… returns the

accumulated
movie IDs.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

306 APPENDIX A Indexing directly from TMDB

A
r

in listing A.3, you pass in the list of movie IDs returned from movieList. The function
extract pulls back even deeper information about movies, by accessing each movie’s
detailed information individually. This function also accesses additional details needed
in chapter 5 and later regarding the cast and crew. Finally, extract returns the accu-
mulated details in the form of a dictionary that maps a movie ID to movie details.

 We show this code in reverse order for context. First, extract pulls back movies
one at a time, calling a getCastAndCrew function. Farther down, you see getCastAnd-
Crew implemented by accessing each movie’s /credits endpoint.

def extract(movieIds=[], numMovies=10000):
 movieDict = {}
 for idx, movieId in enumerate(movieIds):
 try:
 httpResp = tmdb_api.get("https://api.themoviedb.org/3/movie/%s"
 % movieId, verify=False)
 if int(httpResp.headers['x-ratelimit-remaining']) < 10:
 time.sleep(6)
 movie = json.loads(httpResp.text)
 getCastAndCrew(movieId, movie)
 movieDict[movieId] = movie
 except ConnectionError as e:
 print e
 return movieDict

In the next listing, we show you how cast and crew information is accessed. This func-
tion accesses TMDB’s /movie/<movieId>/credits endpoint and adds information
about directors and cast details to the movie record.

def getCastAndCrew(movieId, movie):
 httpResp = tmdb_api.get("https://api.themoviedb.org/3/movie/%s/credits"
 % movieId)
 credits = json.loads(httpResp.text)
 crew = credits['crew']
 directors = []
 for crewMember in crew:
 if crewMember['job'] == 'Director':
 directors.append(crewMember)
 movie['cast'] = credits['cast']
 movie['directors'] = directors

Listing A.3 Extracting each movie from TMDB—extract

Listing A.4 Get cast and crew

For each movie ID in
the movies …

… accesses the movie/<id>
endpoint for additional details

… throttles
the access
to the API

(Note: TMDB
PI throttling
ules subject
to change)

… parses the JSON
response, adds entry to
movie dictionary

… enriches movie with
additional cast & crew
information

… returns a movie
dictionary.

Accesses
the TMDB

credits
endpoint

Parses the credits
JSON response

For each crew member, pulls
out the directory and adds the
record to the director list

Saves the cast and
directors to the movie
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

307Indexing TMDB movies to Elasticsearch
A.4 Indexing TMDB movies to Elasticsearch
With all the pieces in place, you can use the reindex function from chapter 3 and
index all the movies into Elasticsearch. Recall that reindex presumes you have Elastic-
search running at http://localhost:9200, the default install location of Elasticsearch.
But you can also visit the book’s GitHub repo (http://github.com/o19s/relevant-
search-book) for other options for running Elasticsearch.

 The following listing restates the reindex function for completeness. There’s no
need to get into too many details here. The big point to remember is that this func-
tion deletes and re-creates the index with the provided analyzer and mapping settings.

def reindex(analysisSettings={}, mappingSettings={}, movieDict={}):
 settings = {
 "settings": {
 "number_of_shards": 1,
 "index": {
 "analysis" : analysisSettings,
 }}}

 if mappingSettings:
 settings['mappings'] = mappingSettings

 resp = requests.delete("http://localhost:9200/tmdb")
 resp = requests.put("http://localhost:9200/tmdb",
 data=json.dumps(settings))

 bulkMovies = ""
 for id, movie in movieDict.iteritems():
 addCmd = {"index": {"_index": "tmdb",
 "_type": "movie",
 "_id": movie["id"]}}
 bulkMovies += json.dumps(addCmd) + "\n" + json.dumps(movie) + "\n"
 resp = requests.post("http://localhost:9200/_bulk", data=bulkMovies)

With that function in place, you can pass the MovieDict into reindex, as shown in the
following listing.

movieIds = movieList()
movieDict = extract(movieIds)
reindex(movieDict=movieDict)

Further, should you want to overwrite the tmdb.json file, encode the movieDict as
JSON and save it to a file, as shown in the next listing.

Listing A.5 reindex function

Listing A.6 Index to Elasticsearch

Default settings

Uses the provided
analysis and
mapping settings

Deletes and
re-creates the
tmdb index

Bulk-indexes the
provided movies
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

http://github.com/o19s/relevant-search-book
http://github.com/o19s/relevant-search-book
http://localhost:9200

308 APPENDIX A Indexing directly from TMDB
with open('tmdb.json', 'w') as f:
 f.write(json.dumps(movieDict))
 f.close()

That’s it! tmdb.json is a direct reflection of the source data model from TMDB. It
holds the contents of the /movies/<id> endpoint enriched with content taken
directly from /movies/<id>/credits.

Listing A.7 Create tmdb.json
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

appendix B
Solr reader’s companion

Welcome, Solr reader! The lessons of Relevant Search apply to your work as well. As
we noted earlier, both Solr and Elasticsearch provide a friendly interface on top of
the underlying core Lucene search library. In this appendix, we point out how your
search engine’s features fit into the discussion by highlighting, chapter by chapter,
where you’ll find comparable functionality in Solr. We also point out some of the
pros and cons of both search engines when it comes to relevance.

 To be clear: our goal is to provide scaffolding to your learning efforts. We
don’t reimplement the examples one for one. This book is too general for one
search engine. Instead we want to provide, as much as possible, a mapping of Solr
features into the book’s larger relevance discussion. This discussion assumes that
you have general knowledge of Solr and how it’s configured. If you hit a topic in
this appendix that you’d like to learn more about, we invite you to examine Solr’s
official reference guide (https://cwiki.apache.org/confluence/display/solr/Apache+
Solr+Reference+Guide), the Solr Start online series (www.solr-start.com), or great
books like Trey Grainger’s Solr in Action (Manning, 2014).

 To structure our discussion and help you follow along with the book, we roughly
subdivide this appendix by chapter. Luckily, this tends to correspond to functional
components of the search engine. We cover chapters 4–8, as these chapters focus
on hands-on interaction with the search engine. We omit chapter 3, as we included
some footnotes in that chapter to get you started. We also omit chapter 9, because
it uses Elasticsearch features introduced in previous chapters. If you’d prefer to
avoid the detailed discussion, you can also get a rough mapping from the table
included in each section.

 So let’s get started turning your Solr search engine into a relevant search
powerhouse!
309

Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
http://www.solr-start.com/

310 APPENDIX B Solr reader’s companion
B.1 Chapter 4: taming Solr’s terms
Chapter 4 focuses on analyzers. Let’s see how Solr allows you to configure the analyz-
ers found in this chapter. Analyzers translate text like

"the doctor’s brown fox"

into stemmed tokens without stop words:

[doctor] [brown] [fox]

The big takeaway from chapter 4 is that these tokens model features of your data.
Controlling this process is fundamental for managing your relevance. The same les-
sons hold 100% for Solr; only the implementation nuts-and-bolts differ. In this sec-
tion, first you’ll see how to build a custom analyzer in Solr. Next, you’ll see how to map
an analyzer to a specific field in an incoming Solr document.

B.1.1 Summary of Solr analysis and mapping features

Table B.1 maps general analysis and mapping features to their Solr counterparts.

B.1.2 Building custom analyzers in Solr

In chapter 4, you saw how Elasticsearch creates analyzers by using JSON. These
JSON settings are part of the configuration for a particular index. Typically, when
creating an index, you specify the custom analyzers and mappings to be used in
Elasticsearch:

{
 "settings": {
 "analysis": {
 "analyzer": {
 "standard_clone": {
 "tokenizer": "standard",
 "filter": [
 "standard",
 "lowercase",
 "stop"]}}}}}

Table B.1 Solr analysis features

Chapter Feature Solr analogue

4 Custom analyzers Implemented in schema via custom
fieldTypes

4 Field mappings (mapping each field to
an analyzer)

Done by creating a field of a custom
fieldType
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

311Chapter 4: taming Solr’s terms
Luckily for you, Solr reader, the code in this chapter can be easily translated from
Elasticsearch to Solr. You need to understand just one key difference: instead of JSON
over HTTP, Solr configures analyzers by using XML within Solr’s schema.xml configu-
ration file.

 Solr allows you to define custom fieldTypes that control analysis—for example:

 <fieldType name="text_standard_clone" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory" words="stopwords.txt" />
 </analyzer>
 </fieldType>

Beginning to look familiar? This analyzer block corresponds to the analyzer config-
ured previously in Elasticsearch. Once you see the correspondence, you can easily
implement chapter 4’s examples in Solr. In the preceding snippet, a single <tokenizer
.../> configures this analyzer with a standard tokenizer (class="solr.Standard-
TokenizerFactory"). This corresponds to the "tokenizer": JSON element for the
previous Elasticsearch specification. Similarly the <filter .../> lines specify a
sequence of token filters to run, just as Elasticsearch’s analyzer has a filter element
followed by a JSON list.

 Unlike Elasticsearch, in which you’d configure the stopwords filter elsewhere with
a stop-words list or file, Solr places the configuration options on the filter itself (notice
words="stopwords.txt").

 Elasticsearch provides fine-grained control of analysis, allowing you to specify ana-
lyzers even at query time. Solr works a bit differently, giving you the capability to cus-
tomize only at the fieldType level. The fieldType allows you to define whether the
analyzer applies to index or query time. So to analyze differently when querying,
you’d use the following structure:

 <fieldType name="text_standard_clone" class="solr.TextField">
 <analyzer type="query">
 ...<!-- query-time analysis -->
 </analyzer>
 <analyzer type="index">
 ...<!-- index-time analysis -->

 </analyzer>

 </fieldType>

Great! You have a custom field type with a custom analysis chain. Next you’ll see how
to associate it with a specific field.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

312 APPENDIX B Solr reader’s companion
B.1.3 Using field mappings in Solr

How does Solr associate a field such as title with a custom analyzer? In Elasticsearch,
analyzers are assigned to fields via mappings. Field mappings are created using JSON
syntax such as this:

 "mappings": {
 "movie": {
 "properties": {
 "title": {
 "analyzer": "standard_clone"
 }
 }
 }
 }

Solr differs slightly, not radically. In Solr, you declare a field in your schema, specifying
the fieldType to be used with the type attribute. Here a field title is of type text_
standard_clone:

 <field name="title" type="text_standard_clone/>

The search engine will transform text for documents containing a title field by using
the text_standard_clone index analyzer. A search against the title field will use
text_standard_clone’s query analyzer to break apart the query terms.

 As you see, with some differences, chapter 4’s examples apply straight to Solr. The
hands-on work differs, and you’ll find the various knobs and dials that control settings
in different places. Nevertheless, now you can get to work modeling text as terms with
your tools!

B.2 Chapters 5 and 6: multifield search in Solr
Chapter 5 begins your journey into signals. Solr implementations need signals too. Sig-
nals map query-time relevance scores to factors meaningful to users. Is the query look-
ing for a title? Is it mentioned prominently in text? Fields become a unit for
measuring these factors. In chapter 5, you begin controlling precisely how each field
is constructed to measure signals. Chapter 6 continues this discussion by introducing
the idea of term-centric search, which considers documents more relevant when more
query terms match.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

313Chapters 5 and 6: multifield search in Solr
B.2.1 Summary of query feature mappings

Table B.2 maps the Elasticsearch query strategies to those of Solr.

B.2.2 Understanding query differences between Solr and Elasticsearch

In this overview of query functionality, you’ll notice we’ve combined chapters 5 and 6.
This is because a Solr-centric discussion would be organized quite differently across
these two chapters. Why?

■ The Solr out-of-the-box experience doesn’t start on field-centric search, but
Elasticsearch does.

■ Solr starts you out with term-centric search, using its edismax query parser.
Query parsers are less central to Elasticsearch.

■ Solr doesn’t have cross-field search, but you could easily add it with a query parser.

What accounts for these differences? Solr is a thick server querying system; it does
quite a bit for you. Elasticsearch, more of a thin server, layers on relatively little.
Instead, Elasticsearch exposes an API closer to the raw Lucene query API. Figure B.1
illustrates this difference.

 What do we mean by a thick versus thin query API? When querying, Solr adds a lot
of capabilities in its extensive library of meaty query parsers. A query parser lets you
interact with search by using its own custom query syntax. It then translates this into
underlying Lucene queries such as Boolean queries, term queries, or dismax. These
query parsers abstract many of the Lucene details from you. Elasticsearch’s strategy is
quite the opposite. Elasticsearch works to give you primitives closer to the underlying
Lucene queries for you to construct larger, more complex queries outside the search
engine. Elasticsearch’s query API does relatively little for you. The exceptions to this
don’t add a lot of magic, and translate one or two basic settings to Lucene queries (for
example, multi_match). Only query_string stands out as a true query parser as Solr
would define it.

Table B.2 Solr query features

Chapter Query strategy Solr analogue

5 best_fields edismax with tie=0.0 close, but not identical

5 most_fields edismax with tie=1.0

6 Elasticsearch query_string edismax query parser

6 Custom all fields using copy_to Using copyField in your schema to build a large
all field

6 cross_fields No analogue or close feature, but can be imple-
mented in a custom query parser using Lucene’s
BlendedTermQuery
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

314 APPENDIX B Solr reader’s companion
In many ways, this makes Elasticsearch a better choice for teaching you about Lucene
search: its API is closer to the underlying Lucene queries. Solr, while often giving you
some powerful query parsers, obscures the nuts and bolts. Solr, however, makes it easy
to create your own query parsers by using underlying Lucene code. For a Solr devel-
oper, this would be one of the first plugins you’d implement. There’s also a thriving
ecosystem of query parsers implementing functionality such as graph search or com-
plex phrase search. For Elasticsearch developers, however, a custom query parser
would be one of the last things you’d try to do. The Elasticsearch developer would be
more likely to attempt to implement comparable functionality outside the search
engine itself by using the query API.

 With that context in place, you can begin to see where Solr fits into our discussions
in chapters 5 and 6.

B.2.3 Querying Solr: the ergonomics

As a Solr developer, you know that the ergonomics of querying Solr differ quite a bit
from Elasticsearch. The most common way to interact with Solr is through URL

Simpler,
Lucene

primitives
Richer
query

parsers

Query parsing
customization easier to

bake into Solr

Query parsing
customization in

application

Thin query API

Elasticsearch

application

Custom

Solr-based

application

Custom

plugin

Thick

query API

Enter your search

Solr vs Elasticsearch

query interface

Figure B.1 Query customization in Solr and Elasticsearch. Solr lets developers push more
customization into its thicker query API. Elasticsearch exposes simpler primitives to work with.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

315Chapters 5 and 6: multifield search in Solr
parameters over HTTP. You saw this in chapter 3, when we pointed out how to search
Solr. Solr queries come in this form:

http://solr.quepid.com/solr/tmdb/select?q=sea biscuit likes to fish!

By controlling parameters passed to the URL, many of which depend on knowing the
current query parser, you control how the query string is translated into underlying
Lucene queries. You control the query parser with the defType parameter. Here,
enabling the edismax query parser also lets you pass in the fields to be searched via
the qf parameter:

http://solr.quepid.com/solr/tmdb/select?q=sea biscuit likes to
fish!&defType=edismax&qf=title overview

Solr also has a fairly unique syntax called local params. This syntax lets you scope
parameters to a part of the query string (hence the name local). The preceding edis-
max query could be rewritten in local params syntax as follows:

http://solr.quepid.com/solr/tmdb/select?q={!defType=edismax qf='title
overview'}sea biscuit likes to fish!

With these basic ergonomics out of the way, let’s take a look at this edismax query
parser—the starting point for most Solr query solutions. How does it fit into the dis-
cussion in chapters 5 and 6?

B.2.4 Term-centric and field-centric search with the edismax
query parser

Solr often advocates that developers start with the edismax query parser, Solr’s Swiss
Army knife. As a Solr developer, edismax often sits at the root of your relevance work.
The edismax query parser does the following:

1 It evaluates whether the query string (q = …) corresponds to a Lucene-style
query string or a regular query string.

2 If the query string is a Lucene-style query (q=title:"taco nacho"), that query
is evaluated.

3 If the query string is not a Lucene-style query (q=sea biscuit likes to fish),
edismax runs a dismax-style term-centric search.

4 Then it layers on various boosts.

Here you’ll focus on the precise behavior in step 3 to see how it maps into the discus-
sion of chapters 5 and 6. It’s worth noting that edismax comes with additional param-
eters for additive and multiplicative boosting; we’ll get to these in section B.3.

 In chapter 6, we discussed that query parsers, such as query_string, must choose a
consistent method for tokenizing query text that doesn’t involve an analyzer. What
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

316 APPENDIX B Solr reader’s companion
edismax does (and what Solr does on all query parsers) is break up the search query
on whitespace prior to analysis. So edismax takes the following query

q=sea biscuit likes to fish!&defType=edismax&qf=title overview

and turns it into a term-by-term dismax query:

(title:sea | overview:sea) (title:biscuit | overview:biscuit)
(title:likes | overview:likes) (title:to | overview:to)
(title:fish! | overview:fish!)

Recall that | here corresponds to picking the dismax operation—taking the maxi-
mum query scores. Pure dismax corresponds to a best_fields, “winner takes all”
strategy. The fields that score the highest will always win the competition. One way to
adjust this equation is by adjusting boosts. The edismax query parser lets you adjust
boosts by using the same syntax you saw with Elasticsearch:

qf=title^0.1 overview^10

Also recall that we discussed the tie_breaker parameter, which allows you to layer in
scores from the other “losing” fields. Luckily, edismax comes with a tie parameter
that performs the same functionality:

tie=1.0

In chapter 5, we discussed how setting tie_breaker to 1.0 results in the searched
fields being summed. This moves the search from a best_fields “winner takes all”
multifield search strategy to a most_fields “every field gets a vote” strategy in Elastic-
search parlance. You used this strategy to let every field’s score have a say in the rank-
ing function. To replicate this multifield most_fields search discussed in chapter 5,
you would simply run an edismax query with tie set to 1.0.

B.2.5 All fields and cross_fields search

To round out our discussion from chapters 5 and 6 are two topics: cross_fields
search and all fields. Remember, the goal of these two strategies is to resolve field dis-
cordance. By default, the scoring component IDF isn’t counted across fields. We
pointed out in chapter 6 that query parsers, like edismax or the query_string query
parser, solve part of the term-centric search problem. But they don’t solve field discor-
dance. We presented two strategies commonly used to resolve field discordance:

■ All fields—Combining fields into a single field. This combines the document
frequency of the source fields.

■ cross_fields search—Using Elasticsearch’s cross_fields search to account for
document frequency across fields at query time, albeit somewhat less accurately.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

317Chapter 7: shaping Solr’s ranking function
ALL FIELDS IN SOLR

For all fields, you’re in luck. Just as Elasticsearch has copy_to, Solr’s schema comes
with copyField. Using what Solr calls copy fields, you can implement the same behav-
ior. Copy fields sit alongside field declarations in the schema.xml file:

<copyField source="title" dest="text_all" />

Here Solr copies the title field into the text_all field at index time. Unlike Elastic-
search, there’s no built-in _all field. But default Solr schemas often define a text_all
field with several copy directives. This field often acts just like the default _all field.

CROSS_FIELDS SEARCH IN SOLR

For cross-fields search, there’s no comparable functionality in Solr. But as we dis-
cussed, it’s easy in Solr for you to implement your own query parsers. The underlying
intelligence exists in Lucene, in the Java class BlendedTermQuery. This query per-
forms the hard work of the cross_fields functionality in Elasticsearch. If you’re
interested in having this functionality in Solr, we recommend using Solr resources
linked previously to implement your own query parser.

B.3 Chapter 7: shaping Solr’s ranking function

Chapter 7 encourages you to see relevance as something you can tightly control. The
good news is, Solr brings a ton of power to the table. Recall that chapter 7 focuses
heavily on boosting, both additive and multiplicative. We also discuss two modes of
boosting: using a function query or a Boolean query.

 Solr, largely through the edismax query parser, supports all of these capabilities.
Solr surpasses Elasticsearch in the power of its capabilities, even if ultimately Solr
leaves something to be desired in its ease of use.

B.3.1 Summary of boosting feature mappings

Table B.3 maps general types of boosting to the equivalent Solr features.

Table B.3 Solr boost features

Chapter Feature Solr Analogue

7 Additive boosting, Boolean edismax with bq parameter

7 Additive boosting, function edismax with bf parameter

7 Multiplicative boosting, function edismax with boost parameter
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

318 APPENDIX B Solr reader’s companion
B.3.2 Solr’s Boolean boosting

In chapter 7, we used additive boosting via Boolean queries. This syntax uses the bool
query primitives that map straight to Lucene’s Boolean query, as in this query snippet:

 "query": {
 "bool": {
 "should": [
 {
 "match": {
 "title": "Rambo"
 }
 ...
]}}

Solr’s “Boolean” boosting acts similarly. As with Elasticsearch, you can boost using any
query you like. The syntax, however, looks quite different. With Solr, you apply a query
boost with the bq parameter. Recall that Solr has a local params query syntax that lets
you specify the query parser used. An additive boost would leverage local params syn-
tax with a bq additive boost like so:

bq={!defType=lucene}title:Rambo

Here, you tell Solr to boost additively by running the query string title:Rambo
through the Lucene query parser. The result of that query parser is appended to the
base edismax query as a Boolean SHOULD clause. For Solr, the addition of query
parsers makes this a rich piece of functionality. Solr’s richness here allows you to layer
all kinds of custom functionality into the boosting process.

B.3.3 Solr’s function queries

Just like Elasticsearch, Solr lets you run additive or multiplicative function queries. In
Elasticsearch, this takes the form of a list of functions specified in JSON. Consider, for
example, this simple boost on a TMDB movie’s ratings (vote_average):

 "query": {
 "function_score": {
 "query": {
 ...
 },
 "functions": [
 {
 "field_value_factor": {
 "field": "vote_average",
 "modifier": "sqrt"
 }],
 "boost_mode": "sum"
 }

Additive boost
Boolean clause

Root search
query

Takes the square root
of vote_average

Adds the results of
these functions and
the root query score
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

319Chapter 7: shaping Solr’s ranking function
In Solr, the syntax looks more like a formula from an Excel spreadsheet. Further, Solr
comes with an extremely powerful addition that Elasticsearch sorely lacks: the query
function. That’s right, kids, you can add query functions to your function queries—
say that three times fast! The query function lets you run an arbitrary query and inject
its TF × IDF relevance score into the function query itself (as if specified in the list of
functions in the preceding Elasticsearch snippet).

 So what does a Solr function query look like? As we promised, it looks like something
straight out of a spreadsheet. The edismax bf parameter performs an additive function
boost. Here’s an additive function query boost by a numeric popularity field:

bf=sqrt(popularity)

Or to multiply the sqrt of popularity by the TF × IDF score of rambo in the title, you
might use the query function:

ramboScore={!defType=lucene}title:Rambo
&bf=product(sqrt(popularity),query($ramboScore))

Taken as a full Solr query, with all parameters included, this would be as follows:

http://solr.quepid.com/solr/tmdb/select?q=*:*&defType=edismax
 &qf=titleoverview&ramboScore={!defType=lucene}title:Rambo&
 bf=product(sqrt(vote_average),query($ramboScore))

Here we’ve broken up the boosts into two components: a query and a function. For
the query, you can see that Solr lets you organize components into variables. You see
that with the previous ramboScore variable.1 This query runs a simple search for
Rambo in the title field. The function, bf, takes the square root of the movie’s pop-
ularity and multiplies it by the movie title’s TF × IDF score for Rambo. This value is
then added to the overall relevance score (an additive boost). The end result is popu-
lar Rambo movies are boosted to the top.

 As you can see, Solr’s function queries are far more concise than Elasticsearch’s.
But you may also see that given sufficient complexity, they become hard to work with!
In this realm, Solr can be like Perl; loyalists have learned to do surprisingly amazing
things with its power, but detractors see the result of such a function query and cringe
at the poor readability.

 Elasticsearch lets you go so far as to write custom scripts as a function in function_
score_query. Scripts in Elasticsearch are implemented in several programming

1 To learn more about ways of organizing Solr boosts, we recommend this article, written by one of the authors:
“Parameterizing and Organizing Solr Boosts” on the OpenSource Connections blog, http://opensourcecon-
nections.com/blog/2013/11/22/parameterizing-and-organizing-solr-boosts/. For strategies like those dis-
cussed in chapter 7, but heavily targeted at Solr, we recommend “Improve search relevancy by telling Solr
exactly what you want” on the OpenSource Connections blog, http://opensourceconnections.com/blog/
2013/07/21/improve-search-relevancy-by-telling-solr-exactly-what-you-want/.
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

http://opensourceconnections.com/blog/2013/11/22/parameterizing-and-organizing-solr-boosts/
http://opensourceconnections.com/blog/2013/11/22/parameterizing-and-organizing-solr-boosts/
http://opensourceconnections.com/blog/2013/07/21/improve-search-relevancy-by-telling-solr-exactly-what-you-want/
http://opensourceconnections.com/blog/2013/07/21/improve-search-relevancy-by-telling-solr-exactly-what-you-want/

320 APPENDIX B Solr reader’s companion
languages such as Groovy and JavaScript. A true programming environment has the
advantage of being far more readable.

B.3.4 Multiplicative boosting in Solr

Elasticsearch multiplicative boosting occurs by changing the sum line in the preceding
function_score_query to product. Similarly, applying multiplicative boosting in Solr
requires a simple change to the additive boost.

 Solr multiplicative boosting means using the boost parameter to multiply the base
relevance score by the result of a Solr function query. For instance, to bias results
toward popularity, you might implement the following multiplicative boost:

boost=sqrt(popularity)

B.4 Chapter 8: relevance feedback
Chapter 8 discusses the importance of user experience components such as faceting,
autocomplete, highlighting, and field collapsing. The chapter implements these by
using many relevance features discussed in earlier chapters. But it does discuss some
features not introduced in previous chapters. So we’ll round out our Solr discussion
by mapping the grab bag of features to help you get through the content in chapter 8.

B.4.1 Summary of relevance feedback feature mappings

Table B.4 maps Elasticsearch feedback features to Solr equivalents.

B.4.2 Solr autocomplete: match phrase prefix

One strategy used in Elasticsearch to implement an autocomplete solution depends
on the match_phrase_prefix query. This query runs a phrase query with a prefix on
the last term, such as in this snippet:

{ "query": {
 "match_phrase_prefix" : {
 "title": "star tr"}}}

Table B.4 Relevance feedback features in Solr

Chapter Feature Solr analogue

8 Facets (in Elasticsearch via terms
aggregation)

Solr faceting

8 Phrase prefix querying Solr’s complexphrase query parser

8 Grouping (in Elasticsearch via top hits
aggregation)

Solr’s field-collapsing functionality

8 Suggestions and spell-checking See documentation for Solr’s suggestion
and spell-checking features

8 Highlighting See documentation for Solr’s highlighter
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

321Chapter 8: relevance feedback
Solr delivers comparable functionality in its complexphrase query parser. This query
parser interprets a string with a trailing * identically to the match_phrase_prefix. So
the preceding query becomes title:star tr*, as shown here:

http://solr.quepid.com/solr/tmdb/select?q=title:star
 tr*&defType=complexphrase

This Solr query runs a phrase query identical to match_phrase_prefix, focusing on
the phrase up until the last term. Then the trailing * tells the query parser to perform
a prefix search on the last term.

B.4.3 Faceted browsing in Solr

Facets are a crucial component of most search and browsing applications! These are
the components on the side of the search application that divide search results into
filterable categories. Chapter 8 uses Elasticsearch’s terms aggregation to implement
faceted search and some autocomplete functionality. Consider the following snippet:

"aggregations": {
 "completion": {
 "terms": {
 "field": "title"}}}

You’ll find comparable functionality with Solr’s facets. The preceding aggregation can
be implemented as a simple facet on the field title:

facet=true&facet.field=title

Similarly, Elasticsearch allows you to include/exclude aggregation results by using the
include parameter, as in this snippet:

 "terms": {
 "field": "title",
 "include": "rambo*",
 }

Solr provides this capability via the facet.prefix option:

facet=true&facet.field=title&facet.prefix=rambo

Taken together, the entire facet query then becomes the following:

http://solr.quepid.com/solr/tmdb/select?q=*:*&facet=true&
 facet.field=title&facet.prefix=rambo

Now you can go forth and facet!
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

322 APPENDIX B Solr reader’s companion
B.4.4 Field collapsing

Chapter 8 notes that you often want to group search results in a hierarchy. Elastic-
search supports this with its top_hits aggregation. This groups search results by a
common, shared property. For example, consider this query:

 "aggs": {
 "original_versions": {
 "terms": {
 "field":"original_id",
 "order": {"top_score": "desc"}},
 "aggs": {
 "hits": {
 "top_hits": {"size":1}},
 "top_score": {
 "max": { "script": "_score"}}}}}}

This groups results by the original_id, and then shows scores bucketed by original
_id. Solr can do this too! Solr has a field-collapsing feature for the same functionality
via its group parameters:

&group=true&group.field=original_id&group.limit=3

Results for such a query come back grouped by original_id, with three results per
unique ID in this case. You can explore additional grouping parameters in Solr’s
documentation.

B.4.5 Suggestion and highlighting components

Spell-checking, query suggestions, and highlighting go a long way to support any
search application. Chapter 8 demonstrates Elasticsearch’s suggestion and highlight-
ing features. As these are topics in place to support the relevance discussion, we won’t
dive into a detailed comparison of the two search engines’ spell-checking and high-
lighting components.

 Instead, we’ll just point out that nearly identical functionality exists in Solr. Solr
comes prepackaged with a suggestion component and a spell-checking component.
Solr also comes with an extremely configurable (and pluggable) highlighting compo-
nent. For the most part, with out-of-the-box settings, you can turn on these features
with suggest=true and hl=true. For example, this result of this query contains a
highlighted response:

http://solr.quepid.com/solr/tmdb/select?q=sea biscuit likes to fish!&hl=true

The number of features available on these components is extensive. We invite you to
explore their capabilities in the official documentation.

Group by
original_id

Top hits
subaggregation
per unique
original_id term
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

index
Symbols

- character 34
^ symbol 46
+ character 34
| character 72, 149

Numerics

2-gram completions 209
2D graphs 200
3D graphs 200

A

acronyms 90–91
actionable information 186
ad hoc searches 148
add shingling 126
addCmd 45
additive boosting, with Boolean queries

176–178
combining boost and base query 177–178
function queries vs. 174–175
optimizing boosts in isolation 176–177
Solr 318

adjusted boosts 72
affinity 286
aggregate information 20
aggregations 36–37
albino elephant example 140–144
all fields

combining fields into customized 157–161
overview 164, 169
Solr 317

alternative results ordering 222–223

Amazon-style filtering 36
an _explanation entry 57
analysis 20–21, 25–26, 48

components of 30–31
tokens as search features 29

analysis plugin 104
analyze endpoint 51, 81, 94
analyzers

overview 51
Solr 310–312

analysis and mapping features 310
building custom 310–311
field mappings 312

AND operator 32–33
anticipating

user behavior 93
user intent 76

api_key argument 304
assertion-based testing 273–274
asymmetric analysis 96, 100
asymmetric tokenization 101
autocomplete keyword 255

B

bag of words model 63, 65
base query, boosting 173
base signal 176
basic highlighter 225
begin sentinels 188
behavior-based personalization 283
behavior, anticipating 93
best_fields 244, 313, 316

calibrating 129–130
controlling field preference in results 124–126
more-precise signals 126–129
323

Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX324
bf parameter 317, 319
bigram_filter 127
bigrams 126–127
black scores 189
BlendedTermQuery class 313, 317
BM25 69
bold matches 144
bool query 175–176, 202, 318
Boolean boost 190
Boolean clauses 50, 148
Boolean queries

additive boosting with 176–178
combining boost and base query 177–178
function queries vs. 174–175
optimizing boosts in isolation 176–177
Solr 318

overview 148–149, 154, 175
Boolean search 32–33
boost parameter 320
boosting 46, 57, 171–182

additive, with Boolean queries 176–178
combining boost and base query 177–178
function queries vs. 174–175
optimizing boosts in isolation 176–177

multiplicative, with function queries
179–180

Boolean queries vs. 174–175
simple 180–182

signals 182, 186–189
Solr 317–320

additive, with Boolean queries 318
boosting feature mappings 317
multiplicative, with function queries

318–320
user ratings 196
vs. filtering 183

breadcrumb navigation 221–222
browse experience 218
browse interface, Yowl 239
buckets section 228
building signals 144
bulk index API 44–45
bulkMovies string 45
business and domain awareness 265–267
business concerns group 242
business weight 250
business-ranking logic 3
BusinessScore 248

C

cast.name field 117–119, 124, 126, 128, 158
cast.name scores 124
cast.name.bigrammed field 128, 130, 143, 191
character filtering 30, 51, 53–54

character offsets 24
classic similarity 68–69
classification features 12
cleaning 27
click-through rate 253
co-occurrence counting 284–289
cold-start problem 298
COLLAB_FILTER filter 290, 293
collaboration

filtering, using co-occurrence counting
284–289

search relevance and 12–14
collation 217
collocation extraction 298
combining fields 157
committed documents 32
common words, removing 31
completion field 210, 213
completion suggester 213
completion_analyzer 210
completion_prefix variable 211
complexphrase query parser 320–321
compound queries 60–61, 64–65, 72
concept search 279

basic methods for building 293–296
augmenting content with synonyms

295–296
concept signals 294–295

building using machine learning 296–298
personalized search and 298–299

configurations 254
conflate tokens 98
constant_score query 167, 195
content

augmentation 296–297
curation 267–270

engineer/curator pairing 270–272
risk of miscommunication with content

curator 269–270
role of content curator 268–269

exploring 20
extracting into documents 26–27
providing to search engine 20–21
searching 18–19

content group 242
content weight 247–248, 250–251
ContentScore 248
control analysis 311
controlling field matching 192
converge 275
conversion rate 253
coord (coordinating factor) 64, 89, 121, 133, 150,

154, 177
copyField 157, 313, 317
copy_to option 158–159, 313
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX 325
cosine similarity 65
cross_fields 157, 313, 316

searching 164, 173, 177–178, 191
Solr 317
solving signal discordance with 161–162

cuisine field 244
cuisine_hifi field 241, 244
cuisine_lofi field 241
curation, search relevance and 12–14
custom all field 158–159
custom score query 172

D

data-driven culture 261–262
debugging 40–73

example search application 43–48
Elasticsearch 41–42
first searches with 46–48
The Movie Database 42
Python 43

matching 50
query matching 48–56

analysis to solve matching issues 51–53
comparing query to inverted index 53–54
fixing by changing analyzers 54–56
query parsing 50
underlying strategy 49

ranking 56–71
computing weight 67–68
explain feature 57–61
scoring matches to measure relevance 65–66
search term importance 70
similarity 68–69
vector-space model 61–64

decay functions 197, 200
deep paging 253
default analyzer 188
defType parameter 315
delimiters

acronyms 90–91
modeling specificity 96–100
phone numbers 91–93
synonyms 93–96
tokenizing geographic data 102–103
tokenizing integers 101
tokenizing melodies 103–106

deployment, relevance-focused search
application 252–255

description field 94, 241, 244, 255, 290
descriptive query 47
directors field 117
directors.name field 119, 124, 155, 158
directors.name score 124
directors.name.bigrammed 143, 146, 191

disable_coord option 177
disabling tokenization 187
discriminating fields 167
DisjunctionMaximumQuery 149
dismax 149, 313
doc frequency 24, 37
doc values 25
document search and retrieval 32–39

aggregations 36–37
Boolean search 32–33
facets 36–37
filtering 36–37
Lucene-based search 34–35
positional and phrase matching 35
ranked results 37–39
relevance 37–39
sorting 37–39

document-ranking system 86
documents

analysis 28–31
enhancement 27
enrichment 27
extraction 26–27
flattening nested 116–118
grouping similar 228–230
matching 174
meaning of 76–77
scored 144
search completion from documents being

searched 209–213
tokens as features of 75–77

matching process 76
meaning of documents 76–77

dot character 296
dot product 62, 64–65
down-boosting title 133
DSL (domain-specific language) 46

E

e-commerce search 5, 8
easy_install utility 304
edismax query parser 313, 315–317
Elasticsearch

example search application 41–42
overview 12

end sentinels 188
engaged field 242
engaged restaurants 237
English analyzer

overview 82
reindexing with 54

english_* filters 94
english_bigrams analyzer 127
english_keywords filter 83
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX326
english_possessive_stemmer filter 83
english_stemmer filter 83
english_stop filter 83
enrichment 25, 27
ETL (extract, transform, load) 25, 45
every field gets a vote 122
exact matching 185, 187–188, 190, 193
expert search 5, 9, 13
explanation field 49
external sources 27
extract function 43–45, 115, 305
extracting features 75
extraction 25–27

F

faceted browsing
overview 218–221
Solr 321

facet.prefix option 321
facets 20, 36–37, 218
fail fast 116, 259, 263, 265
fast vector highlighter 225–228
feature modeling 75, 83
feature selection 11
feature space 62
features

creation of 76
overview 11, 21, 29

feedback
at search box 206–218

search completion 207–215
search suggestions 215–218
search-as-you-type 206–207

business and domain awareness 265–267
content curation 267–270

risk of miscommunication with content
curator 269–270

role of content curator 268–269
in search results listing 223–231

grouping similar documents 228–230
information presented 224–225
snippet highlighting 225–228
when there are no results 230–231

search relevance and 12–14
Solr 320–322

faceted browsing 321
field collapsing 322
match phrase prefix 320–321
relevance feedback feature mappings 320
suggestion and highlighting components 322

while browsing 218–223
alternative results ordering 222–223
breadcrumb navigation 221–222
faceted browsing 219–221

field boosts 155
field collapsing

overview 228–230
Solr 322

field discordance 316
field mappings 127
field normalization 177–178
field scores 140, 149
field synchronicity, signal modeling and

152–153
field-by-field dismax 149
field-centric methods 146, 161
field-centric search, combining term-centric

search and 162–169
combining greedy search and conservative

amplifiers 166–168
like fields 163–165
precision vs. recall 168
Solr 315–316

fieldNorms 69, 71, 73
fields 18
fieldType 310–311
field_value_factor function 196
fieldWeight 66, 69, 71, 73
filter clause 183
filter element 311
filter queries 183
filtering 171–172

Amazon-style 36
collaborative

overview 283–284
using co-occurrence counting 284–289

score shaping 182–183
vs. boosting 183

finite state transducer 213
fire token 52
first_name field 110–112
floating-point numbers 100
fragment_size parameter 227
fudge factors 179
full bulk command 45
full search string 139
full-text search 21
full_name field 112–113
function decay 199
function queries, multiplicative boosting

with 179–180
Boolean queries vs. 174–175
combining 200–202
high-value tiers scored with 193–194
simple 180–182
Solr 318–320

function_score query 194–195, 247, 249,
290
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX 327
G

garbage features 75
Gaussian decay 198
generalizing matches 97
generate_word_parts 91
genres aggregation 220
genres.name field 219
geographic data, tokenizing 102–103
geohashing 28
geolocation 12, 28
getCastAndCrew function 306
GitHub repository 42–43
granular fields 146
grouping fields 163–164

H

has_discount field 242
high-quality signals 189
highlighted snippets 24
highlights 20
HTMLStripCharFilter 30
HTTP commands 44, 80

I

ideal document 135
IDF (inverse document frequency)

ignoring when ranking 194–195
overview 67–68, 89–90

inconsistent scoring 155
index-time analysis 96, 99
index-time personalization 291–293
indexing documents 44
information and requirements gathering

234–237
business needs 236
required and available information

236–237
users and information needs 234–236

information retrieval, creating relevance
solutions through 8–10

inner objects 118
innermost calculation 149
integers, tokenizing 101
inventory-related files 99
inventory_dir configuration 99–100
inverse document frequency. See IDF
inverted index data structure 25–32

analysis 28–31
comparing query to 53–54
enrichment 27
extraction 26–27
indexing 31–32

isolated testing 188
item information 300
iterative 259–260, 271–272

J

JSON standard library 43
judgment lists 7–8, 273–275

K

keyword tokenizer 92, 105
keywords.txt file 83

L

last_name field 110
latitude points 100
law of diminishing returns 255–256
leading vowels 85
lexicographical order 23
like fields

grouping together 163–164
limits of 164–165

local params 315, 318
location field 241–242
location weight 250–251
LocationScore 248
long-tail application 208, 261–262
longitude points 100
lowercase filter 81, 83, 85
Lucene-based search

Boolean queries in 34–35
explain feature 57–61

M

machine learning, building concept search
using 296–298

malicious websites 4
map signals 163
mapping fields 158
master signal modeling 109
match phrase prefix, Solr 320–321
matched fields 144
matching

documents 37
multiple terms 32

match_phrase query 176, 178, 206, 211–212,
217

max_gram setting 105
McCandless, Mike 52
melodies, tokenizing 103–106
menu field 241
MeSH (Medical Subject Headings) 5, 98, 295
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX328
metadata, storing 31
metrics, capturing general-quality 195–197
middle_initial field 110
min_gram setting 105
misspellings 84
monitoring relevance-focused search

application 253–254
most_fields

boosting in 132–134
searching 141, 143, 163
when additional matches don’t matter

134–135
movieDict dictionary 44–45
movieList function 305
multifield search 107–135

The Movie Database 114–118
signal modeling 114, 118–135

best_fields 122–130
most_fields 131–135

signals 109–114
defined 109–110
implementing 112–114
source data model 110–112

Solr 312–317
all fields 317
cross_fields search 317
edismax query parser 315–316
ergonomics 314–315
query differences between Solr and

Elasticsearch 313–314
query feature mappings 313

multifield searches 157
multi_match query 46, 57, 110–112, 119, 151,

161, 244
multiple documents 118
multiplicative boosting, with function

queries 179–180
Boolean queries vs. 174–175
combining 200–202
high-value tiers scored with 193–194
simple 180–182
Solr 318–320

multiplying variables 200
MUST clause 34–35, 50
MUST_NOT clause 34–35, 50
my_doublemetaphone filter 85

N

n-gram token filter 104
n-gramming analyzer 104
name field 241
named attributes 18
negative boosting 172
nested documents 118

no_match_size parameter 227
nongreedy clauses 166
nonwinning fields 155
normalize acronyms 90
NOT operator 33
number_of_fragments 227
numerical attributes 42
numerical boosts 38
numerical data 100
num_of_fragments parameter 227

O

OLAP (online analytical processing) 37
optimizing signals 185
OR operator 33
order parameter 227
ordering documents 19
origin variable 197
original_id field 230, 322
overview field 149–150, 226–228

P

PageRank algorithm 4, 9, 11
pair tuning 271, 273
paired relevance tuning 270–272
parent-child documents 118
parentheses 34
parsons analyzer 105
Parsons code 105
path_hierarchy analyzer 99
path_hierarchy tokenizer 212
paths, modeling specificity with 99–100
pattern_capture filter 92
payloads 24, 31
people.name field 157–160, 162
persona 234
personalizing search

based on user behavior 283–293
collaborative filtering 283–289
tying behavior information back to search

index 289–293
based on user profiles 281–283

gathering profile information 282
tying profile information back to search

index 282–283
concept search and 298–299

phone_number field 92
phone_num_parts filter 92
phonetic analyzer 84–85
phonetic plugin 84
phonetic tokenization 84, 86, 90
phrase query 113, 183, 187
phrase-matching clause 177
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX 329
phrases, concept search and 297–298
pogo-sticking 253
popularity field 319
position entry 52
positional and phrase matching 35
postings highlighter 225–226, 228
postings list 22–23, 32
post_tags parameter 226
precision 77–90

analysis for 80–84
by example 77–80
combining field-centric and term-centric

search 168
multiple search terms and multiple

fields 89–90
phonetic tokenization 84–86
scoring strength of feature in single

field 86–89
premature optimization 116
pre_tags parameter 226
price field 241
prioritizing documents 172
product codes 27
product owner 268
profile-based personalization 281
profiles 281
promoted field 242
prose text 42
pseudo-content 296–297
Python example search application 43

Q

quadrants 102
query behavior, explaining 49
Query DSL 46–50, 61, 171
query function 319
query matching, debugging 48–56

analysis to solve matching issues 51–53
comparing query to inverted index 53–54
fixing by changing analyzers 54–56
query parsing 50
underlying strategy 49

query normalization 70
query parameter 181
query parsers 148–152, 155, 161–162
query validation endpoint 49–50, 154
query-time analysis 81, 96, 99
query-time boosting 70
query-time personalization 290–293
queryNorm 70
queryWeight 66, 70
quotes 50

R

ranking
adding high-value tiers 189–193

adding new tier for medium-confidence
boosts 191–192

tiered relevance layers 193
debugging 56–71

computing weight 67–68
explain feature 57–61
scoring matches to measure relevance

65–66
search term importance 70
similarity 68–69
vector-space model 61–64

learning to rank 276–278
term-centric 148–150

real-estate search 6
recall 77–90

analysis for 80–84
by example 77–80
combining field-centric and term-centric

search 168
improving 78
multiple search terms and multiple

fields 89–90
phonetic tokenization 84–86
scoring strength of feature in single

field 86–89
recency

achieving users’ recency goals 197–200
overview 179

reducing boost weight 178
reindex function 44–45, 115, 187, 307
reindexing with English analyzer 54
related_items field 292
relevance engineers

duties of 10
gaining skills of 2
overview 263

relevance. See search relevance
relevance-blind enterprise 263, 265
relevance-centered enterprise 257–278

business and domain awareness 265–267
content curation 267–270

risk of miscommunication with content
curator 269–270

role of content curator 268–269
feedback 259–260
learning to rank 276–278
paired relevance tuning 270–272
test-driven relevance 272–276

using with user behavioral data 275–276
user-focused culture vs. data-driven

culture 261–262
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX330
relevance-focused search application
232–256

deploying 252–255
designing 238–252

combine and balance signals 252
combining and balancing signals

241–242
defining and modeling signals 241–242
user experience 239–241

improving 254–255
information and requirements gathering

234–237
business needs 236
required and available information

236–237
users and information needs 234–236

law of diminishing returns 255–256
monitoring 253–254

requests library 304
reranking 172
rescoring 172
response page 19
retail_analyzer filter 94
retail_syn_filter filter 94
retention 253
reweighting boosts 178

S

salient features 10
scale variable 197
scorable units 112
score boost 38, 56
score shaping

boosting 172–182
additive, with Boolean queries 174–178
multiplicative, with function queries

174–175, 179–182
signals 182

defined 171–172
filtering 182–183
Solr 317–320
strategies for 184–203

achieving users’ recency goals 197–200
capturing general-quality metrics

195–197
combining function queries 200–202
high-value tiers scored with function

queries 193–194
ignoring TF × IDF 194–195
modeling boosting signals 186–189
ranking 189–193

scored documents 144
scoring tiers 189, 193
script scoring 172, 245

search 16–39
content

exploring 20
providing to search engine 20–21
searching 18–19

document search and retrieval 32–39
aggregations 36–37
Boolean search 32–33
facets 36–37
filtering 36–37
Lucene-based search 34–35
positional and phrase matching 35
ranked results 37–39
relevance 37–39
sorting 37–39

documents 18
inverted index data structure 22–32

analysis 28–31
enrichment 27
extraction 26–27
indexing 31–32

search antipattern 112
search completion 207–215

choosing method for 215
from documents being searched 209–213
from user input 208–209
via specialized search indexes 213–214

search engineer 264–265
search relevance 1–14

collaboration and 12–14
curation and 12–14
defined 13
difficulty of 3–6

class of search and 4–5
lack of single solution 6

feedback and 12–14
gaining skills of relevance engineer 2
information retrieval 7–10
research into 6–10
systematic approach for improving 10–12

search-as-you-type 206–207
searchable data 147
semantic expansion 96
sentiment analysis 27
sentinel tokens 187–188, 192
sharding 45
short-tail application 208
SHOULD clause 34–35, 50, 120, 175, 318
signal construction 255
signal discordance 157, 160–163

avoiding 144–145
combining fields into custom all fields 157–161
mechanics of 145–147
solving with cross_fields search 161–162

signal measuring 146
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX 331
signal modeling 118–135
best_fields 122–124

calibrating 129–130
controlling field preference in results

124–126
more-precise signals 126–129

field synchronicity and 152–153
most_fields 131–132, 135

boosting in 132–134
when additional matches don’t matter

134–135
signals 109–114

boosting 182, 186–189
combining and balancing 242–252

behavior of signal weights 247–249
building queries for related signals 243–245
combining subqueries 246–247
tuning and testing overall search 249–251
tuning relevance parameters 251–252

concept 294–295
defined 109–110
defining and modeling 241–242
implementing 112–114
source data model 110–112

silli token 83
similarity 68–69
simple constants 172
SimpleText data structure 52, 67
snippet highlighting 225–228
Solr 309–322

analyzers 310–312
analysis and mapping features 310
building custom 310–311
field mappings 312

boosting 317–320
additive, with Boolean queries 318
boosting feature mappings 317
multiplicative, with function queries

318–320
feedback 320–322

faceted browsing 321
field collapsing 322
match phrase prefix 320–321
relevance feedback feature mappings 320
suggestion and highlighting

components 322
multifield search 312–317

all fields 317
cross_fields search 317
ergonomics 314–315
query differences between Solr and

Elasticsearch 313–314
query feature mappings 313
term-centric and field-centric search with

edismax query parser 315–316

sorting 37–39
source data model 144
span queries 35
specificity, modeling

with paths 99–100
with synonyms 96–99

standard analyzer 51–52, 80–81, 83–84, 87–88
standard filter 81, 85
standard tokenizer 30, 81, 83, 85, 210
standard_clone analyzer 81
stemming 86
stop filter 81
stop words 31, 54, 56
stored fields 24
storing metadata 31
string types 18
subdivided text 114
subobjects 116
subquadrants 102
suggest clause 214
suggest endpoint 214, 216
suggestion field 216
sum_other_doc_count 220
synonyms

augmenting content with 295–296
modeling specificity with 96–99
overview 12, 93–96

T

term dictionary 22–23, 32
term filter 100
term frequency. See TF
term offsets 24
term positions 24
term query 50
term specificity 126
term-centric search 137–169

albino elephant example 140–144
combining field-centric search and 162–169

combining greedy search and conservative
amplifiers 166–168

like fields 163–165
precision vs. recall 168

defined 138–140
field synchronicity 152–153
need for 140–147
overview 119, 135
query parsers 151–155
ranking function 148–150
signal discordance 157–162

avoiding 144–145
combining fields into custom all fields

157–161
mechanics of 145–147
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX332
term-centric search (continued)
query parsers and 153–155
solving with cross_fields search 161–162

Solr 315–316
tuning 155–157

terms aggregation 211–212, 228, 230
term_vector 226
test-driven relevance 244, 250, 252, 272–276
text analysis 21, 255
text field 152
text tokenization 28
text-relevance scores 172
text_all field 317
text_standard_clone 312
TF (term frequency)

ignoring when ranking 194–195
overview 67–68, 89–90

TF × IDF scoring 87, 177–178, 182, 188, 195
thrashing 254
tie_breaker parameter 249, 316
time on page 253
title phrases 211
title score 57
title-based completions 210
title_exact_match 187
title:with clause 54
TMDB (The Movie Database) 303–307

crawling API 305–306
example search application 42
indexing to Elasticsearch 307
multifield search 114–118
setting API key and loading IPython

notebook 303–304
setting up for API 304

tmdb index 45–46
tmdb_api_key 304
TMDB_API_KEY variable 304
tmdb.json file 42–43, 115
tokenization 28, 30
tokenizers 51, 54
tokens 28–29, 74–106

as document features 75–77
matching process 76
meaning of documents 76–77

creation of 76
delimiters 90–93

acronyms 90–91
modeling specificity 96–100
phone numbers 91–93
synonyms 93–96
tokenizing geographic data 102–103
tokenizing integers 101
tokenizing melodies 103–106

filtering 30
matching 28–29

overview 21, 25, 48
precision and recall 77–90

analysis for 80–84
by example 77–80
multiple search terms and multiple

fields 89–90
phonetic tokenization 84–86
scoring strength of feature in single

field 86–89
top_hits aggregation 322
top_score field 230
transform function 187–188
trustworthiness score 4
tuned recency boost 180
tuning term-centric search 156
tweaking weights 175
two field groupings 165
two-word pairs 126
two-word subphrases 126

U

unstemmed 83
usability testing 266
user behavior

anticipating 93
personalizing search based on 283–293

collaborative filtering 283–289
tying behavior information back to search

index 289–293
user experience, designing 239–241
user information 300
user intent

anticipating 76
overview 82

user preference group 242
user profiles, personalizing search based

on 281–283
gathering profile information 282
tying profile information back to search

index 282–283
user rating field 194–195, 200
user-focused culture 260, 262
user’s ratings 196
user_input variable 211
users_who_might_like field 291–292
UTF-8 binary strings 48

V

value rating scale 283
VD vector 64
vector-space model 61–64
vote_average field 195, 200
VQ vector 64
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

INDEX 333
W

web search 4–5, 9
weight

behavior of signal weights 247–249
computing with TF x IDF 67–68

whistle encoder 103
white bars 189
whitespace tokenization 30
Williams, Chuck 141
winner-takes-all search 122
winning field score 122
with token 52, 54
with_positions_offsets 226
word endings 83
word position 24
Word2vec algorithm 297
word_delimiter filter 91–92
wrapping queries 60

X

x-axis 199

Y

Yowl application example 232–256
deploying 252–255
designing 238–252
improving 254–255
information and requirements gathering

234–237
law of diminishing returns 255–256
monitoring 253–254

Z

Z-encoding 102–103
Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Solr in Action
by Trey Grainger and Timothy Potter

ISBN: 9781617291029
644 pages
$49.99
March 2014

Elasticsearch in Action
by Radu Gheorghe, Matthew Lee Hinman,

and Roy Russo

ISBN: 9781617291623
496 pages
$44.99
November 2015

Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

https://www.manning.com/books/solr-in-action
https://www.manning.com/books/elasticsearch-in-action
https://www.manning.com/books/solr-in-action
https://www.manning.com/books/elasticsearch-in-action
http://www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Taming Text
How to Find, Organize, and Manipulate It
by Grant S. Ingersoll, Thomas S. Morton,

and Andrew L. Farris

ISBN: 9781933988382
320 pages
$44.99
December 2012

Practical Data Science with R
by Nina Zumel and John Mount

ISBN: 9781617291562
416 pages
$49.99
March 2014

Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

https://www.manning.com/books/taming-text
https://www.manning.com/books/practical-data-science-with-r
https://www.manning.com/books/taming-text
https://www.manning.com/books/practical-data-science-with-r
http://www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Tika in Action
by Chris A. Mattmann

and Jukka L. Zitting

ISBN: 9781935182856
256 pages
$44.99
December 2011

Streaming Data
Designing the real-time pipeline
by Andrew G. Psaltis

ISBN: 9781617292286
300 pages
$49.99
February 2017

Licensed to Crystal Thompson <nor.d.ickan@gmail.com>

https://www.manning.com/books/tika-in-action
https://www.manning.com/books/streaming-data
https://www.manning.com/books/tika-in-action
https://www.manning.com/books/streaming-data
http://www.manning.com

Turnbull ● Berryman

U sers are accustomed to and expect instant, relevant search
results. To achieve this, you must master the search
engine. Yet for many developers, relevance ranking is

mysterious or confusing.

Relevant Search demystifi es the subject and shows you that a
search engine is a programmable relevance framework. Using
Elasticsearch and Solr, it teaches you to express your busi-
ness’s ranking rules in this framework. You’ll discover how to
program relevance and how to incorporate secondary data
sources, taxonomies, text analytics, and personalization. In
practice, a relevance framework requires softer skills as well,
such as collaborating with stakeholders to discover the right
relevance requirements for your business. By the end, you’ll
be able to achieve a virtuous cycle of provable, measurable
relevance improvements over a search product’s lifetime.

What’s Inside
● Techniques for debugging relevance
● Applying search engine features to real problems
● Using the user interface to guide searchers
● A systematic approach to relevance
● A business culture focused on improving search

For developers trying to build smarter search with
Elasticsearch or Solr.

Doug Turnbull is lead relevance consultant at OpenSource
Connections, where he frequently speaks and blogs.
John Berryman is a data engineer at Eventbrite, where he
specializes in recommendations and search.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/relevant-search

$44.99 / Can $51.99 [INCLUDING eBOOK]

Relevant SEARCH

SEARCH

M A N N I N G

“One of the best and most
engaging technical books

I’ve ever read.”
—From the Foreword

by Trey Grainger
Author of Solr in Action

“Will help you solve
real-world search relevance
problems for Lucene-based

search engines.”
—Dimitrios Kouzis-Loukas

Bloomberg L.P.

“An inspiring book revealing
the essence and mechanics

of relevant search.”
—Ursin Stauss, Swiss Post

“Arms you with invaluable
knowledge to temper the
relevancy of search results
and harness the powerful

features provided by
 modern search engines.”—Russ Cam, Elastic

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	Author Online
	Other online resources

	about the authors
	about the cover illustration
	1 The search relevance problem
	1.1 Your goal: gaining the skills of a relevance engineer
	1.2 Why is search relevance so hard?
	1.2.1 What’s a “relevant” search result?
	1.2.2 Search: there’s no silver bullet!

	1.3 Gaining insight from relevance research
	1.3.1 Information retrieval
	1.3.2 Can we use information retrieval to solve relevance?

	1.4 How do you solve relevance?
	1.5 More than technology: curation, collaboration, and feedback
	1.6 Summary

	2 Search—under the hood
	2.1 Search 101
	2.1.1 What’s a search document?
	2.1.2 Searching the content
	2.1.3 Exploring content through search
	2.1.4 Getting content into the search engine

	2.2 Search engine data structures
	2.2.1 The inverted index
	2.2.2 Other pieces of the inverted index

	2.3 Indexing content: extraction, enrichment, analysis, and indexing
	2.3.1 Extracting content into documents
	2.3.2 Enriching documents to clean, augment, and merge data
	2.3.3 Performing analysis
	2.3.4 Indexing

	2.4 Document search and retrieval
	2.4.1 Boolean search: AND/OR/NOT
	2.4.2 Boolean queries in Lucene-based search (MUST/MUST_NOT/SHOULD)
	2.4.3 Positional and phrase matching
	2.4.4 Enabling exploration: filtering, facets, and aggregations
	2.4.5 Sorting, ranked results, and relevance

	2.5 Summary

	3 Debugging your first relevance problem
	3.1 Applications to Solr and Elasticsearch: examples in Elasticsearch
	3.2 Our most prominent data set: TMDB
	3.3 Examples programmed in Python
	3.4 Your first search application
	3.4.1 Your first searches of the TMDB Elasticsearch index

	3.5 Debugging query matching
	3.5.1 Examining the underlying query strategy
	3.5.2 Taking apart query parsing
	3.5.3 Debugging analysis to solve matching issues
	3.5.4 Comparing your query to the inverted index
	3.5.5 Fixing our matching by changing analyzers

	3.6 Debugging ranking
	3.6.1 Decomposing the relevance score with Lucene’s explain feature
	3.6.2 The vector-space model, the relevance explain, and you
	3.6.3 Practical caveats to the vector space model
	3.6.4 Scoring matches to measure relevance
	3.6.5 Computing weights with TF × IDF
	3.6.6 Lies, damned lies, and similarity
	3.6.7 Factoring in the search term’s importance
	3.6.8 Fixing Space Jam vs. alien ranking

	3.7 Solved? Our work is never over!
	3.8 Summary

	4 Taming tokens
	4.1 Tokens as document features
	4.1.1 The matching process
	4.1.2 Tokens, more than just words

	4.2 Controlling precision and recall
	4.2.1 Precision and recall by example
	4.2.2 Analysis for precision or recall
	4.2.3 Taking recall to extremes

	4.3 Precision and recall—have your cake and eat it too
	4.3.1 Scoring strength of a feature in a single field
	4.3.2 Scoring beyond TF × IDF: multiple search terms and multiple fields

	4.4 Analysis strategies
	4.4.1 Dealing with delimiters
	4.4.2 Capturing meaning with synonyms
	4.4.3 Modeling specificity in search
	4.4.4 Modeling specificity with synonyms
	4.4.5 Modeling specificity with paths
	4.4.6 Tokenize the world!
	4.4.7 Tokenizing integers
	4.4.8 Tokenizing geographic data
	4.4.9 Tokenizing melodies

	4.5 Summary

	5 Basic multifield search
	5.1 Signals and signal modeling
	5.1.1 What is a signal?
	5.1.2 Starting with the source data model
	5.1.3 Implementing a signal
	5.1.4 Signal modeling: data modeling for relevance

	5.2 TMDB—search, the final frontier!
	5.2.1 Violating the prime directive
	5.2.2 Flattening nested docs

	5.3 Signal modeling in field-centric search
	5.3.1 Starting out with best_fields
	5.3.2 Controlling field preference in search results
	5.3.3 Better best_fields with more-precise signals?
	5.3.4 Letting losers share the glory: calibrating best_fields
	5.3.5 Counting multiple signals using most_fields
	5.3.6 Boosting in most_fields
	5.3.7 When additional matches don’t matter
	5.3.8 What’s the verdict on most_fields?

	5.4 Summary

	6 Term-centric search
	6.1 What is term-centric search?
	6.2 Why do you need term-centric search?
	6.2.1 Hunting for albino elephants
	6.2.2 Finding an albino elephant in the Star Trek example
	6.2.3 Avoiding signal discordance
	6.2.4 Understanding the mechanics of signal discordance

	6.3 Performing your first term-centric searches
	6.3.1 Working with the term-centric ranking function
	6.3.2 Running a term-centric query parser (into the ground)
	6.3.3 Understanding field synchronicity
	6.3.4 Field synchronicity and signal modeling
	6.3.5 Query parsers and signal discordance
	6.3.6 Tuning term-centric search

	6.4 Solving signal discordance in term-centric search
	6.4.1 Combining fields into custom all fields
	6.4.2 Solving signal discordance with cross_fields

	6.5 Combining field-centric and term-centric strategies: having your cake and eating it too
	6.5.1 Grouping “like fields” together
	6.5.2 Understanding the limits of like fields
	6.5.3 Combining greedy naïve search and conservative amplifiers
	6.5.4 Term-centric vs. field-centric, and precision vs. recall
	6.5.5 Considering filtering, boosting, and reranking

	6.6 Summary

	7 Shaping the relevance function
	7.1 What do we mean by score shaping?
	7.2 Boosting: shaping by promoting results
	7.2.1 Boosting: the final frontier
	7.2.2 When boosting—add or multiply? Boolean or function query?
	7.2.3 You choose door A: additive boosting with Boolean queries
	7.2.4 You choose door B: function queries using math for ranking
	7.2.5 Hands-on with function queries: simple multiplicative boosting
	7.2.6 Boosting basics: signals, signals everywhere

	7.3 Filtering: shaping by excluding results
	7.4 Score-shaping strategies for satisfying business needs
	7.4.1 Search all the movies!
	7.4.2 Modeling your boosting signals
	7.4.3 Building the ranking function: adding high-value tiers
	7.4.4 High-value tier scored with a function query
	7.4.5 Ignoring TF × IDF
	7.4.6 Capturing general-quality metrics
	7.4.7 Achieving users’ recency goals
	7.4.8 Combining the function queries
	7.4.9 Putting it all together!

	7.5 Summary

	8 Providing relevance feedback
	8.1 Relevance feedback at the search box
	8.1.1 Providing immediate results with search-as-you-type
	8.1.2 Helping users find the best query with search completion
	8.1.3 Correcting typos and misspellings with search suggestions

	8.2 Relevance feedback while browsing
	8.2.1 Building faceted browsing
	8.2.2 Providing breadcrumb navigation
	8.2.3 Selecting alternative results ordering

	8.3 Relevance feedback in the search results listing
	8.3.1 What information should be presented in listing items?
	8.3.2 Relevance feedback through snippets and highlighting
	8.3.3 Grouping similar documents
	8.3.4 Helping the user when there are no results

	8.4 Summary

	9 Designing a relevance-focused search application
	9.1 Yowl! The awesome new start-up!
	9.2 Gathering information and requirements
	9.2.1 Understand users and their information needs
	9.2.2 Understand business needs
	9.2.3 Identify required and available information

	9.3 Designing the search application
	9.3.1 Visualize the user’s experience
	9.3.2 Define fields and model signals
	9.3.3 Combine and balance signals

	9.4 Deploying, monitoring, and improving
	9.4.1 Monitor
	9.4.2 Identify problems and fix them!

	9.5 Knowing when good is good enough
	9.6 Summary

	10 The relevance-centered enterprise
	10.1 Feedback: the bedrock of the relevance-centered enterprise
	10.2 Why user-focused culture before data-driven culture?
	10.3 Flying relevance-blind
	10.4 Relevance feedback awakenings: domain experts and expert users
	10.5 Relevance feedback maturing: content curation
	10.5.1 The role of the content curator
	10.5.2 The risk of miscommunication with the content curator

	10.6 Relevance streamlined: engineer/curator pairing
	10.7 Relevance accelerated: test-driven relevance
	10.7.1 Understanding test-driven relevance
	10.7.2 Using test-driven relevance with user behavioral data

	10.8 Beyond test-driven relevance: learning to rank
	10.9 Summary

	11 Semantic and personalized search
	11.1 Personalizing search based on user profiles
	11.1.1 Gathering user profile information
	11.1.2 Tying profile information back to the search index

	11.2 Personalizing search based on user behavior
	11.2.1 Introducing collaborative filtering
	11.2.2 Basic collaborative filtering using co-occurrence counting
	11.2.3 Tying user behavior information back to the search index

	11.3 Basic methods for building concept search
	11.3.1 Building concept signals
	11.3.2 Augmenting content with synonyms

	11.4 Building concept search using machine learning
	11.4.1 The importance of phrases in concept search

	11.5 The personalized search—concept search connection
	11.6 Recommendation as a generalization of search
	11.6.1 Replacing search with recommendation

	11.7 Best wishes on your search relevance journey
	11.8 Summary

	Appendix A—Indexing directly from TMDB
	A.1 Setting the TMDB key and loading the IPython notebook
	A.2 Setting up for the TMDB API
	A.3 Crawling the TMDB API
	A.4 Indexing TMDB movies to Elasticsearch

	Appendix B—Solr reader’s companion
	B.1 Chapter 4: taming Solr’s terms
	B.1.1 Summary of Solr analysis and mapping features
	B.1.2 Building custom analyzers in Solr
	B.1.3 Using field mappings in Solr

	B.2 Chapters 5 and 6: multifield search in Solr
	B.2.1 Summary of query feature mappings
	B.2.2 Understanding query differences between Solr and Elasticsearch
	B.2.3 Querying Solr: the ergonomics
	B.2.4 Term-centric and field-centric search with the edismax query parser
	B.2.5 All fields and cross_fields search

	B.3 Chapter 7: shaping Solr’s ranking function
	B.3.1 Summary of boosting feature mappings
	B.3.2 Solr’s Boolean boosting
	B.3.3 Solr’s function queries
	B.3.4 Multiplicative boosting in Solr

	B.4 Chapter 8: relevance feedback
	B.4.1 Summary of relevance feedback feature mappings
	B.4.2 Solr autocomplete: match phrase prefix
	B.4.3 Faceted browsing in Solr
	B.4.4 Field collapsing
	B.4.5 Suggestion and highlighting components

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

