
Rod Colledge
FOREWORD BY KEVIN KLINE

M A N N I N G
www.allitebooks.com

http://www.allitebooks.org

SQL Server 2008
Administration in Action

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

SQL Server 2008
Administration in Action

ROD COLLEDGE

M A N N I N G
Greenwich
(74° w. long.)

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

 For Jodster, Lachie, and Bella

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwick, CT 06830 email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Permissions: Figures 2.2, 2.3, 2.4 and 2.5—images provided courtesy of Advanced Computer and
Network Corp., www.raid.com. Figure 3.1—reproduced with permission from Rui Silva, “Disk
Geometry,” MSExchange.org, http://www.msexchange.org/tutorials/Disk-Geometry.html.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Tom Cirtin
Sound View Court 3B Copyeditor: Linda Recktenwald
Greenwich, CT 06830 Typesetter: Marija Tudor

Cover designer: Leslie Haimes

ISBN: 978-1-933988-72-6
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10 09

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.raid.com
http://www.raid.com
http://MSExchange.org
http://MSExchange.org
http://www.msexchange.org/tutorials/Disk-Geometry.html
http://www.allitebooks.org

contents
foreword xiv
preface xvii
acknowledgments xix
about this book xx
about the cover illustration xxiii
about the author xxiv

PART I PLANNING AND INSTALLATION 1

1 The SQL Server landscape 3
1.1 SQL Server 2008: evolution or revolution? 4
1.2 Editions and features 5

Enterprise 5 ■ Standard 7 ■ Workgroup 7 ■ Other editions
of SQL Server 8

1.3 SQL Server tools 8
1.4 DBA responsibilities 10

2 Storage system sizing 12
2.1 Characterizing I/O workload 13
v

OLTP vs. OLAP/DSS 13 ■ I/O metrics 14

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi

2.2 Determining the required number of disks and
controllers 15
Calculating the number of disks required 15 ■ Bus
bandwidth 17 ■ A note on capacity 18

2.3 Selecting the appropriate RAID level 18
RAID 0 19 ■ RAID 1 20 ■ RAID 5 20 ■ RAID 10 21

2.4 Selecting an appropriate storage system 22
Direct-attached storage 22 ■ Fibre Channel SANs 22
iSCSI 23 ■ Recommendations 24

2.5 SQL Server and SANs 25
The SAN administrator 25 ■ LUN configuration 26
Performance tuning 27 ■ Disaster-recovery options 27

2.6 Solid-state disks 28
What is SSD? 28 ■ Current limitations of SSD for enterprise
deployments 29 ■ Potential advantages for SQL Server
deployments 29

2.7 Best practice considerations: storage system sizing 30

3 Physical server design 31
3.1 Disk configuration 31

Creating and aligning partitions 32 ■ Distributing load over
multiple controllers 36 ■ Configuring storage cache 37
Validating disk storage performance and integrity 38

3.2 CPU architecture 42
Hyperthreading and multicore 42 ■ CPU cache and clock
speed 43 ■ CPU platforms 44

3.3 Memory configuration 45
Design for future RAM upgrades 46 ■ NUMA 47

3.4 Networking components 50
Gigabit switches 50 ■ NIC teaming 50 ■ Manually
configuring NIC settings 50

3.5 Server consolidation and virtualization 51
Goals of consolidation and virtualization 51
Consolidation 52 ■ Virtualization 53

3.6 Best practice considerations: physical server design 56
Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii

4 Installing and upgrading SQL Server 2008 58
4.1 Preparing for installation 59

Preinstallation checklist 59 ■ Service accounts 59 ■ Additional
checks and considerations 60

4.2 Installing SQL Server 62
Default and named instances 62 ■ GUI installation 62
Command prompt installations 67

4.3 Upgrading to SQL Server 2008 67
Upgrade Advisor 68 ■ In-place upgrade 70 ■ Side-by-side
upgrade 71

4.4 Developing a service pack upgrade strategy 73
Installation considerations 74 ■ Application
outage 74 ■ Recommended approach 75

4.5 Best practice considerations: installing and upgrading
SQL Server 75

5 Failover clustering 78
5.1 Clustering overview 79

Clustering architecture 79 ■ SQL Server clustering advantages
and limitations 80 ■ Clustering in Windows Server
2008 81 ■ Quorum models 82

5.2 Clustering topologies and failover rules 83
Single-instance clusters 84 ■ Multi-instance
clusters 84 ■ N+1/M clusters 85 ■ Failover rules 85

5.3 Installing a clustered SQL Server instance 86
Integrated vs. advanced installation 86 ■ Integrated installation
steps 87

5.4 Best practice considerations: failover clustering 91

PART II CONFIGURATION ... 93

6 Security 95
6.1 Authentication mode 96

Windows Authentication mode 97 ■ SQL Server and Windows
Authentication mode (Mixed Mode) 98
Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

6.2 Networking 98
Protocol selection and configuration 99 ■ Static and dynamic
TCP ports 100 ■ Windows Firewall 101 ■ Network
encryption 102

6.3 Implementing least privilege 103
Windows and DBA privilege separation 103 ■ SQL Server service
account permissions 104 ■ SQL Server Agent job
permissions 105 ■ Role-based security 107

6.4 Auditing 111
SQL Server Audit 111 ■ DDL triggers 115 ■ Logon
triggers 116 ■ Change Data Capture 117

6.5 Data encryption 119
Transparent Data Encryption 120 ■ Cell-level encryption 123

6.6 SQL injection protection 123
6.7 Best practice considerations: security 124

7 Configuring SQL Server 128
7.1 Memory configuration 129

32-bit memory management 129 ■ 64-bit memory
management 131 ■ Setting minimum and maximum
memory values 132

7.2 CPU configuration 134
Boost SQL Server Priority option 135 ■ Maximum Worker
Threads option 135 ■ Lightweight pooling 136 ■ CPU
affinity 137 ■ Maximum Degree of Parallelism 137 ■ Cost
Threshold for Parallelism 139

7.3 Server configuration 139
Recovery Interval 140 ■ Fill factor 141 ■ Locks 142 ■ Query
Wait 142 ■ User Connections 143 ■ Query Governor Cost
Limit 143

7.4 Operating system configuration 144
Running services 144 ■ Processor scheduling 144 ■ Network
protocols 145 ■ Page file location 145

7.5 Best practice considerations: configuring SQL Server 145

8 Policy-based management 147
8.1 Server management challenges 148

Enterprise environments 148 ■ Enterprise DBA

challenges 149 ■ The risks of mismanagement 150

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

8.2 Policy-based management terms 151
Targets 151 ■ Facets 151 ■ Conditions 152
Policies 153

8.3 Policies in action 153
Importing policies from file 153 ■ Evaluating
policies 155 ■ Creating a database properties
policy 157 ■ Exporting policies 158

8.4 Enterprise policy management 159
Central management servers 159 ■ Policy-based management with
central management servers 161

8.5 Advanced policy-based management 162
ExecuteWql() and ExecuteSql() 162 ■ PowerShell 164

8.6 Best practice considerations: policy-based
management 166

9 Data management 168
9.1 Database file configuration 169

Volume separation 169 ■ Multiple data files 171 ■ Sizing
database files 172 ■ Instant initialization 174

9.2 Filegroups 175
Controlling object placement 175 ■ Backup and restore
flexibility 175

9.3 BLOB storage with FileStream 177
BLOBS in the database 178 ■ BLOBS in the file
system 179 ■ FileStream data 180

9.4 Data compression 183
Data compression overview 183 ■ Row compression 185 ■ Page
compression 185 ■ Data compression considerations 186

9.5 Best practice considerations: data management 190

PART III OPERATIONS .. 193

10 Backup and recovery 195
10.1 Backup types 196

Full backup 196 ■ Differential backup 199 ■ Transaction log

backup 200 ■ COPY_ONLY backups 203

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

10.2 Recovery models and data loss exposure 204
Simple recovery model 204 ■ Full recovery
model 205 ■ Bulk_Logged recovery model 206

10.3 Backup options 207
Backup location and retention policy 207 ■ Backup
checksums 210 ■ Backup mirroring 210 ■ Transaction log
marks 211

10.4 Online piecemeal restores 212
10.5 Database snapshots 217

Creating and restoring snapshots 218 ■ Snapshot usage
scenarios 219

10.6 Backup compression 221
10.7 Best practice considerations: backup and recovery 223

11 High availability with database mirroring 226
11.1 High-availability options 227

Failover clustering 227 ■ Transaction log
shipping 227 ■ Database mirroring 228 ■ Comparing high-
availability options 229

11.2 Transaction log shipping 230
Usage scenarios 231 ■ Setting up and monitoring log
shipping 232 ■ Failover and role reversal 237

11.3 Database mirroring overview 238
Terminology 238 ■ Mirroring restrictions 239

11.4 Mirroring modes 240
High performance (asynchronous) 241 ■ High safety
(synchronous) 242

11.5 Failover options 243
Automatic failover with SNAC 243 ■ Manual
failover 245 ■ Forced service 245 ■ Failure scenarios 246

11.6 Mirroring in action 246
Mirroring setup 247 ■ Monitoring database
mirroring 250 ■ Suspending and resuming
mirroring 253 ■ Initiating failover 254 ■ Considerations for
mirroring multiple databases 255

11.7 Best practice considerations: high availability 256
Licensed to Gayle M. Noll <pedbro@gmail.com>

CONTENTS xi

12 DBCC validation 260
12.1 DBCC validation overview 261

DBCC CHECKDB 262 ■ Granular consistency
checking 265 ■ Additional DBCC CHECK* commands 267

12.2 Preventing and detecting corruption 268
SQLIOSIM 268 ■ Page checksums 269

12.3 Controlling CHECKDB impact 270
Running against backups 270 ■ WITH
PHYSICAL_ONLY 271 ■ Partitioned and granular
checks 272 ■ User-defined snapshots 273

12.4 Removing corruption 273
Interpreting DBCC output 274 ■ Determining the extent of data
loss with DBCC PAGE 275 ■ Recovery options 275 ■ Root
cause analysis 278

12.5 Best practice considerations: DBCC validation 278

13 Index design and maintenance 280
13.1 An introduction to indexes 281

Heaps 281 ■ Clustered indexes 281 ■ Nonclustered
indexes 283 ■ Index structure 284 ■ Key
lookup 286 ■ Statistics 287

13.2 Index design 287
Selecting a clustered index 288 ■ Improving nonclustered index
efficiency 291 ■ Indexed views 299

13.3 Index analysis 303
Identifying indexes to drop/disable 304 ■ Identifying indexes to
add 307 ■ Identifying index fragmentation 314

13.4 Index maintenance 316
Dropping and disabling indexes 316 ■ Removing
fragmentation 317

13.5 Managing statistics 320
Index statistics 320 ■ Column statistics 322 ■ Manually
creating/updating statistics 323 ■ Inspecting statistics 324

13.6 Best practice considerations: index design and
maintenance 325
Licensed to Gayle M. Noll <pedbro@gmail.com>

CONTENTSxii

14 Monitoring and automation 330
14.1 Activity Monitor 331

Processes 332 ■ Resource Waits 332
Data File I/O 332 ■ Recent Expensive Queries 333

14.2 SQL Server Profiler 334
Workload analysis 334 ■ Server-side trace 337 ■ Trace
replay 338 ■ RML utilities 340 ■ Deadlock
diagnosis 343 ■ Blocked process report 345 ■ Correlating traces
with performance logs 346

14.3 Performance Monitor 347
Viewing counters in real time 347 ■ Baseline analysis 348

14.4 Task automation and alerts 350
Maintenance plans 350 ■ SQL Server Agent 353 ■ Event
alerts 354 ■ Error logs 357

14.5 Best practice considerations: monitoring and
automation 358

15 Data Collector and MDW 360
15.1 Component overview 361

Data Collector 361 ■ Data collection sets 361 ■ Management
data warehouse 361

15.2 Setup and configuration 362
MDW selection or creation 362 ■ Data collection setup 364

15.3 Data collection 365
Upload method and frequency 365 ■ Backup
considerations 367 ■ Retention period 368 ■ Logging 368

15.4 Custom collection sets 368
15.5 Reporting 370

Disk Usage Summary 370 ■ Query Statistics History 371
Server Activity History 372 ■ Custom reports 374

15.6 Best practice considerations: Data Collector and MDW 374

16 Resource Governor 375
16.1 Resource Governor overview 376

Resource Governor benefits 376 ■ Resource Governor
limitations 376 ■ Resource Governor components 377
16.2 Classifier function 378

Licensed to Gayle M. Noll <pedbro@gmail.com>

CONTENTS xiii

16.3 Workload groups 380
16.4 Resource pools 382

Effective minimum: memory considerations 383 ■ Effective
minimum: CPU considerations 383

16.5 Resource Governor in action 384
16.6 Monitoring resource usage 387

Performance Monitor 387 ■ Events 387 ■ DMVs 387
Establishing resource boundaries 388

16.7 Best practice considerations: Resource Governor 388

17 Waits and queues: a performance-tuning methodology 390
17.1 SQLOS schedulers 391
17.2 Wait analysis 392

sys.dm_os_wait_stats 393 ■ Track/get
waitstats 394 ■ sqlos.wait_info extended event 395

17.3 Common performance problems 397
Procedure cache bloating 398 ■ CPU pressure 406 ■ Index-
related memory pressure 408 ■ Disk bottlenecks 409
Blocking 412

17.4 Waits, queues, and DMV cross-reference 413
17.5 Best practice considerations: performance tuning 413

appendix A Top 25 DBA worst practices 417
appendix B Suggested DBA work plan 419
appendix C Common Performance Monitor counters 421
appendix D Top 10 Management Studio enhancements 423
appendix E Date/time data types in SQL Server 2008 425

index 427
Licensed to Gayle M. Noll <pedbro@gmail.com>

foreword
One of the concepts that I’ve always been intrigued with is the idea of institutional
knowledge. Institutional knowledge is the accumulated wisdom of many individual
practitioners across many years, even generations, of practice and in a multitude of sit-
uations and scenarios. Those professions that have developed deep wells of institu-
tional knowledge for their practitioners have become our most respected careers.

 There are many examples of how the institutional knowledge of a certain profes-
sion, once it reached critical mass, resulted in enormous breakthroughs in productiv-
ity, creativity, and innovation. When the master merchants of medieval Genoa and
northern Italy developed the concept of double-entry accounting (which they kept as
a trade secret as long as they could), the new skills which enabled them to always know
how many assets and liabilities they had at any given moment transformed their mer-
chant houses into the wealth-generating powerhouses that financed the Renaissance.
Double-entry accounting was a small change from the long-standing practice of single-
entry running tallies (like in check book registers), but as is common with the law of
unintended consequences, it proved to be so valuable that it served as the founding
principle used by chartered and certified accountants today. When the master build-
ers of medieval Europe incorporated the algebraic and geometric formulas of recently
translated Arab-owned Greek manuscripts of Euclid and Pythagoras, they were able to
transform the squat and ponderous churches of Christendom into the soaring and
incredibly beautiful Gothic cathedrals that, for the first time in history, had more win-
dow than wall and stood more than a couple stories in height.
xiv

Licensed to Gayle M. Noll <pedbro@gmail.com>

FOREWORD xv

 There are other more recent examples too. The physicians of England and Italy
first argued in the 1850s that illness was not caused by bad-smelling air (the so-called
miasma theory of disease propagation that had stood for centuries), but was instead
caused by invisible agents too small to see. The medical profession, when comple-
mented by the first anesthesias, soon ushered in a new phase of human health and lon-
gevity that is the basis of modern medicine. Here’s another example many people may
not know. Western civilization’s first scientists where Christian monks who had devoted
their lives to explaining divine creation. In this endeavor, they were called natural phi-
losophers (that is, philosophers who explained the natural world and were exemplified
by individuals such as Francis Bacon). They helped develop the foundational princi-
ples that would become the scientific method that is now so common as to be taken for
granted in the Western world. Yet, in their day and in succeeding generations, these
concepts and the accumulating institutional wisdom transformed the world.

 Today, in the early 21st century, we have a host of new professions centered on
information technology (IT) that didn’t exist for earlier generations. Among the fore-
most of these careers is my own chosen profession, database administration. Database
administration holds its prominent place because of the absolute value of data to the
organization. If an application server experiences a catastrophic failure, manage-
ment’s first question is “How fast can we recover the database?” The hardware is
inconsequential. The application, while not trivial, is not the first order of business.
The database comes first because the hardware and application is the medium that
hosts the part of the application that is valuable–the data. In this sense, database
administrators are vital to organizations because they are the guardians of that most
valuable corporate asset–its data.

 As you read Rod’s book, I hope you come away with two major impressions (in
addition to the vast number of tips and tricks). The first is that, through Rod’s collec-
tion of accumulated wisdom, you can see that our profession is maturing rapidly. Data-
base administrators now must not only know the internals of the SQL Server relational
engine, but must also have a good understanding of the underlying hardware, high
availability, security, monitoring, performance tuning, troubleshooting, as well as the
all important backup and recovery. Secondly, you begin to see, as you read Rod’s book
and its accompanying website at www.SQLCrunch.com, that good processes are often
as valuable as understanding the underlying technology. Individuals that enact worst
processes (or simply fail to implement best practices) run the risk of spending their
time on redundant work and inefficient activities, as well as to put at risk the very
assets (that is, the database) over which they are guardians.

 My work at Quest Software since 2002 and my years on the board of directors for
the Professional Association for SQL Server have enabled me to evangelize the mes-
sage of rigorous processes and high quality standards for all activities undertaken by
Licensed to Gayle M. Noll <pedbro@gmail.com>

http://www.SQLCrunch.com

FOREWORDxvi

database administrators. In the following years, I’ve had the good fortune to meet
many like-minded practitioners like Rod. In a word, we’ve been devoted students of
institutional knowledge for the SQL Server professional.

 While Rod’s book is not an exceptionally big one, its information is highly concen-
trated and contains an exceptional wealth of actionable knowledge. Don’t forget that
many publishers equate the size of the book with its value and, consequently, attempt
to manipulate its perceived value with lots of graphics, wide spacing, and large fonts.
There’s no need for that with this book, since it’s simply loaded with excellent and
immediately useful information. Whether you’re a new and inexperienced database
administrator or an old hand with decades of experience, I know that you’ll find the
collected institutional knowledge in this book to be extremely valuable. By applying
the knowledge offered in the pages of this book, you’ll design, configure, implement,
and maintain databases that are as good as any in the world. This will lead to better
applications and, in turn, better organizations built upon those organizations.

 KEVIN KLINE

 Technical Strategy Manager, Quest Software
 Founding board member of PASS,

the Professional Association for SQL Server
 http://sqlblog.com/kevin_kline/

Licensed to Gayle M. Noll <pedbro@gmail.com>

preface
I love SQL Server. I often find myself defending its various shortcomings as I’d defend
a good friend. In a relatively short period of time, it’s developed from a good small-to-
medium-size departmental database management system into a world class, enter-
prise-ready system capable of handling the most intense transaction workloads. That’s
a staggering achievement, and it’s only getting better. SQL Server 2008 continues to
build on the solid foundation provided by recent versions, and the future for SQL
Server looks very bright indeed.

 While I only began writing this book in January 2008, it’s been a work in progress
for about 15 years. Ever since I started working with SQL Server in the mid 1990s, I’ve
been compiling notes on the best way to execute various DBA tasks. In the early years,
as I fumbled my way around SQL Server 6.0, I made plenty of mistakes. Although frus-
trating, they were excellent learning experiences, and I committed to never repeating
a previous mistake. A colleague of mine recently said, “Experience is realizing when
you’ve just made the same mistake twice!”

 Keen to share in the knowledge I’d collected, my colleagues and clients encour-
aged me to convert my personal file of SQL Server best practices into a format that oth-
ers could access. In late 2007 I started the sqlCrunch.com website for that purpose.
This book takes the concept further, and while all the information contained in these
pages can be found in other locations, I believe SQL Server 2008 Administration in Action
is valuable in that it presents a large collection of best practices in a single book. In
short, it’s the sort of book I wish I had had when I first started as a SQL Server DBA!
xvii

Licensed to Gayle M. Noll <pedbro@gmail.com>

PREFACExviii

 This book has two goals, and which of these applies to you depends on your back-
ground. For experienced DBAs, the goal is to introduce you to the new features of SQL
Server 2008 that will improve your administration routines. For new DBAs, or for those
who administer databases on a part-time basis, the goal is to fast-track your adherence
to best practices by avoiding common mistakes. In either case, the intention is not to
give you step-by-step instructions on how to do a particular task but to provide general
directions on best practices. You’ll need to do the hard yards yourself, but my hope is
that this book will steer you in the right direction and save you a lot of time and
energy by avoiding the mistakes that I’ve made myself—sometimes more than once!

Licensed to Gayle M. Noll <pedbro@gmail.com>

acknowledgments
One of the great things about working with SQL Server is the incredible support com-
munity that has grown alongside the product. From local user groups to conferences
and forum websites, these media offer a breadth and depth of knowledge that’s possi-
ble only because many talented people are willing to share their valuable time in help-
ing others.

 In addition to my own experience, this book draws on the knowledge and experi-
ence of many others; in particular, I’d like to thank SQL Server MVPs Kevin Kline,
Peter Ward, Paul Randal, and Microsoft’s Michael Redman.

 Thanks also to the reviewers who took time out of their busy schedules to read the
manuscript at various stages during its development. Their feedback helped make this
a better book: Andrew Siemer, Bettina Hamboeck, Berndt Hamboeck, Massimo
Perga, Darren Neimke, Dave Corun, Peter Lee, Richard Siddaway, Sanchet Dighe,
Tariq Ahmed, Amos Bannister, and Deepak Vohra. Special thanks to Kevin Kline for
writing the foreword and to Peter Ward who reviewed the manuscript and also proof-
read it shortly before it went to press.

 To the Manning team, in particular Michael Stephens, Tom Cirtin, Steven Hong,
Katie Tennant, Linda Recktenwald, and Mary Piergies: thank you for your support,
encouragement, and ideas. All of you have contributed to a product that I doubted I
was capable of producing and will look back on with fond memories for many years
to come.

 Finally, to my amazing wife and children, Jodee, Lachlan, and Isabella: thanks for
your unwavering support, love, and understanding over the last 18 months. I owe all
of you plenty of one-on-one time!
xix

Licensed to Gayle M. Noll <pedbro@gmail.com>

about this book
It’s getting harder and harder to define the role of a SQL Server DBA. Depending on
the organization, a DBA may be involved in a huge number of tasks from data model-
ing and physical server design through operational tasks such as backup/restore, per-
formance tuning, and security administration. And that’s only scratching the surface;
specialist development DBA roles are increasingly common, as are those that special-
ize in the business intelligence space.

 While this book will appeal to a broad range of SQL Server professionals, it’s pri-
marily targeted at the production OLTP DBA whose role includes tasks such as installa-
tion, configuration, backup/restore, security, and performance tuning. In order to
devote as many pages as possible to these topics, the following areas are not covered:

■ Business intelligence tools: SQL Server Integration Services, Analysis Services,
and Reporting Services

■ Development topics: T-SQL programming, locking, and transaction isolation
levels

■ Replication and full-text search

In the areas that the book does cover, I’ve deliberately avoided using a step-by-step
approach in favor of an emphasis on best practice. As a result, inexperienced readers
may need to supplement their reading with other sources for more detailed coverage.
SQL Server Books Online, included as part of a SQL Server installation, is the best
resource for this purpose. Further, while many new SQL Server 2008 features are cov-
ered, the book’s major themes are applicable to earlier versions of SQL Server.
xx

Licensed to Gayle M. Noll <pedbro@gmail.com>

ABOUT THIS BOOK xxi

How this book is organized
This book is presented in three parts.

■ Part 1 “Planning and Installation” covers best practices for environment plan-
ning, hardware selection and configuration, installation, and clustering.

■ Part 2 “Configuration” includes chapters covering security, SQL Server configu-
ration, policy-based management, and data management.

■ Part 3 “Operations” concentrates on the day-to-day operational tasks such as
backups, DBCC checks, index maintenance, monitoring, and automation, and it
introduces a number of new 2008 features including Resource Governor and
Data Collector.

The final section of each chapter summarizes best practices in a list format. For the
experienced DBA, the best way of reading this book is to start with the best practices,
and if you require more information, you can read the chapter for the appropriate
background.

 In Appendix A, I offer my opinion on DBA worst practices. Sometimes, reading
about inappropriate and/or downright bad practices is the best (and quickest) way to
avoid common mistakes.

Companion website
Best practices of any sort, including those for SQL Server, tend to be controversial at
times. A best practice in one environment may not be appropriate in another, or it
may change over time. Further, internet forums are a great source of false best prac-
tices, and once “out there,” they tend to take on a life of their own. This book is care-
ful not to make definitive and broad-sweeping best-practice statements, particularly
those in which environment-specific circumstances play an important role.

 Like any technical book, this book cannot be all things to all people. Together with
the diversity of the SQL Server product, different types of DBAs necessitate the exclu-
sion of certain topics from its scope. I apologize in advance to those readers looking
for topics that are either not covered or covered in insufficient depth. For this reason,
I encourage you to visit the book’s companion website, www.sqlCrunch.com.

 In order to maximize the value of this book, each chapter has an accompanying
website page (listed at the end of each chapter) providing links to white papers,
scripts, blogs, and technical articles appropriate to the chapter’s content. In order for
you to make the best possible choices for your own environment, I encourage you to
supplement the knowledge gained from this book with information from the pro-
vided website links.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
Licensed to Gayle M. Noll <pedbro@gmail.com>

ABOUT THIS BOOKxxii

important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 The source code for the examples in this book is available online from the pub-
lisher’s website at www.manning.com/SQLServer2008AdministrationinAction.

Author Online
The purchase of SQL Server 2008 Administration in Action includes free access to a pri-
vate web forum run by Manning Publications, where you can make comments about
the book, ask technical questions, and receive help from the author and from other
users. To access the forum and subscribe to it, point your web browser to www.man-
ning.com/SQLServer2008AdministrationinAction

 This page provides information about how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum. Man-
ning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the authors can take place. It’s
not a commitment to any specific amount of participation on the part of the author,
whose contribution to the book’s forum remains voluntary (and unpaid). We suggest
you try asking him some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the title
By combining introductions, overviews, and how-to examples, In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action guide is that it is example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or to solve a problem. They need books that allow
them to jump in and jump out easily and learn just what they want just when they want
it. They need books that aid them in action. The books in this series are designed for
such readers.
Licensed to Gayle M. Noll <pedbro@gmail.com>

http://www.manning.com/SQLServer2008AdministrationinAction
http://www.manning.com/
http://www.manning.com/

about the cover illustration
The illustration on the cover of SQL Server 2008 Administration in Action is taken from a
French book of dress customs, Encyclopédie des Voyages by J. G. St. Saveur, published in
1796. Travel for pleasure was a relatively new phenomenon at the time and illustrated
guides such as this one were popular, introducing both the tourist as well as the arm-
chair traveler to the inhabitants of other far-off regions of the world, as well as to the
more familiar regional costumes of France and Europe.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and peoples just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other, and when members of a
social class or a trade or a tribe could be easily distinguished by what they were wear-
ing. This was also a time when people were fascinated by foreign lands and faraway
places, even though they could not travel to these exotic destinations themselves.

 Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a world of cultural and
visual diversity for a more varied personal life. Or a more varied and interesting intel-
lectual and technical life. We at Manning celebrate the inventiveness, the initiative, and
the fun of the computer business with book covers based on native and tribal costumes
from two centuries ago brought back to life by the pictures from this travel guide.

xxiii

Licensed to Gayle M. Noll <pedbro@gmail.com>

about the author
Rod Colledge was born in Brisbane, Australia, where he currently resides with his wife
and two young children. After graduating with a degree in information technology in
1994, Rod worked in a variety of development and support roles before beginning to
specialize in SQL Server development and administration in 1996. Since then, Rod has
been involved in many large SQL Server development projects in industries including
financial services, real estate, law enforcement, and gaming, as well as for state and
federal government.

 In 1999, Rod was the lead architect of a custom SQL Server replication solution
for a Fijian organization, a challenging project involving bidirectional transactional
replication of financial transactions over poor-quality communications lines linking
Fijian islands.

 Rod is currently the technical team leader of the Education Corporate Reporting
and Business Intelligence project at the department of Education and Training in
Queensland, Australia.

 Through his own SQL Server development and consultancy business, Rod’s
recently completed projects include a SQL Server 2005 data warehouse and reporting
services solution and a web-based license management/asset register system.

 Rod has developed a specialty in both the development and administration of very
large database systems based on SQL Server. He is an active participant in the Queen-
sland SQL Server Users Group, is the founder and editor of www.sqlCrunch.com, and
blogs at www.rodcolledge.com.

xxiv

Licensed to Gayle M. Noll <pedbro@gmail.com>

Part 1

Planning and installation

L aying the correct foundations is crucial for any project. In the context of
SQL Server administration, this involves the correct selection and configuration
of hardware components, and preparation and planning for good installation
choices. Part 1 focuses on these tasks. You’ll learn how attention to detail at this
early stage lays the groundwork for a solid platform and allows you to avoid
many common mistakes.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Licensed to Gayle M. Noll <pedbro@gmail.com>

The SQL Server landscape
If there’s one job where a lack of planning leads to a chaotic and reactive work envi-
ronment, it’s that of the database administrator (DBA). DBAs are often so consumed
by the current crisis that the idea of planning for the future armed with appropri-
ate budget resources seems like an impossible dream.

 The aim of this book is to assist you in achieving that goal by laying out best
practices for database administration with SQL Server. We’ll cover hundreds of best
practices across many categories, including hardware selection and configuration,
installation and upgrades, security, index maintenance, backups, and a lot more.

 Before we launch into the nuts and bolts of database administration, let’s start
with a broad overview of the SQL Server product itself. We begin this chapter with a
brief look at the major new DBA features introduced in SQL Server 2008 before
moving on to the various SQL Server editions and their corresponding features and

In this chapter, we’ll cover
■ An overview of SQL Server 2008
■ SQL Server editions and features
■ SQL Server tools overview
■ DBA responsibilities
3

Licensed to Gayle M. Noll <pedbro@gmail.com>

4 CHAPTER 1 The SQL Server landscape

limitations. We then take a brief look at some of the SQL Server tools that we’ll cover
in more detail throughout the book, before closing the chapter with a summary of the
key areas of DBA responsibility—areas that we’ll spend the rest of the book exploring.

1.1 SQL Server 2008: evolution or revolution?
When Microsoft released SQL Server 2005, the general consensus was that SQL Server
had finally arrived as an enterprise class database management system. With a host of
new features, including Common Language Runtime (CLR) integration, dynamic
management views/functions, and online index rebuilds, it was correctly considered a
revolutionary release of the product, coming some 12 years after the first Microsoft
release of SQL Server, as shown in figure 1.1.

Figure 1.1 From there to here: a brief history of SQL Server from 1993 to today

While SQL Server 2008 improves many of the features first introduced in 2005, it too
has an impressive collection of new features, many of which we’ll cover throughout
this book. From a DBA perspective, the standout new features include the following:

Policy-based management —Arguably the most significant new SQL Server 2008
feature for the DBA, policy-based management dramatically simplifies the pro-
cess of managing a large number of SQL Server instances through the ability to
define and apply configuration policies. As you’ll see in chapter 8, changes that
violate policy can either be prevented or generate alerts, with groups of servers
and instances remotely reconfigurable at the click of a button.
Resource Governor —While SQL Server 2005 included coarse-grained control of
server resource usage via instance memory caps, CPU affinity, and Query Gover-

Released 1993. “SQL Server for Windows NT”
32 bit support, Sybase code base

Released 2005. Code name Yukon
CLR integration, DMVs, online index rebuilds, user/schema separation

Released 1995. Code name SQL95
Enterprise Manager GUI

Released 1996. Code name Hydra
Last version to include significant Sybase code

Released 1998. Code name Sphinx
Ground-up code rewrite. Windows authentication support

Released 2000. Code name Shiloh
Multi-Instance support, SSL encryption

Released 2008. Code name Katmai
Compression, policy-based management, TDE, Resource Governor
nor Cost Limit, SQL Server 2008 permits the definition of resource pools into

Licensed to Gayle M. Noll <pedbro@gmail.com>

5Editions and features

which incoming connections are classified via group membership. As you’ll see
in chapter 16, each pool’s memory and CPU usage can be constrained, there-
fore enabling more predictable performance, particularly for mixed-purpose
SQL Server instances—for example, a data entry environment that’s also used
for reporting purposes.

Data Collector —Covered in chapter 15, the new Data Collector feature enables
the collection of performance and management-related information such as
performance monitor counters, dynamic management view data, and query sta-
tistics. In addition to the automated collection, upload, and archival of such
information, numerous reports are provided to enable the analysis of the col-
lected data over time, making it a powerful and low-maintenance tool for base-
line analysis and various other tasks.

Backup and data compression —In SQL Server 2005 and earlier, third-party utilities
were used to compress backups. SQL Server 2008 includes not only backup
compression, but also the ability to compress data within the database, enabling
significant disk space and cost savings, and in some cases, a significant perfor-
mance boost. We’ll cover data and backup compression in chapters 9 and 10.

Transparent Data Encryption —SQL Server 2005 included the ability to encrypt
individual columns within a table, but no way of encrypting the entire database
and associated backup files. As such, anyone with access to the physical data
files or backup files could potentially take the database offsite and have full
access. SQL Server 2008 introduces the Transparent Data Encryption (TDE) fea-
ture for exactly this purpose; see chapter 6 for more.

In addition to these major new features are a whole range of others, including T-SQL
enhancements, fine-grained auditing, support for geospatial data, NTFS-based
FileStream binary large objects (BLOBs), and IntelliSense support. I believe that the
release of SQL Server 2008 is as significant as the release of 2005.

 A number of the new features introduced in SQL Server 2008 are only available in
the Enterprise edition of the product. As we move through the book, I’ll point out
such features wherever possible, but now is a good time for a broad overview of the
various SQL Server 2008 editions and their features.

1.2 Editions and features
Like earlier versions, the major editions of SQL Server are Enterprise and Standard, with
a number of other specialized editions. Let’s briefly walk through the editions, noting
the significant features and limitations of each.

1.2.1 Enterprise

The edition of choice for mission-critical database systems, the Enterprise edition offers
all the SQL Server features, including a number of features not available in any other

edition, such as data and backup compression, Resource Governor, database snapshots,

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 The SQL Server landscape

Transparent Data Encryption, and online indexing. Table 1.1 summarizes the scalabil-
ity and high availability features available in each edition of SQL Server.

Table 1.1 Scalability and high availability features in SQL Server editions

Enterprise Standard Web Workgroup Express

Capacity and platform support

Max RAM OS Maxa OS Max OS Max OS Maxb 1GB

Max CPUc OS Max 4 4 2 1

X32 support Yes Yes Yes Yes Yes

X64 support Yes Yes Yes Yes Yes

Itanium support Yes No No No No

Partitioning Yes No No No No

Data compression Yes No No No No

Resource Governor Yes No No No No

Max instances 50 16 16 16 16

Log shipping Yes Yes Yes Yes No

DB mirroring Alld Safetye Witnessf Witness Witness

—Auto Page Recovery Yes No No No No

Clustering Yes 2 nodes No No No

Dynamic AWE Yes Yes No No No

DB snapshots Yes No No No No

Online indexing Yes No No No No

Online restore Yes No No No No

Mirrored backups Yes No No No No

Hot Add RAM/CPU Yes No No No No

Backup compression Yes No No No No

a OS Max indicates that SQL Server will support the maximum memory supported by the operating system.
b The 64-bit version of the Workgroup edition is limited to 4GB.
c SQL Server uses socket licensing; for example, a quad-core CPU is considered a single CPU.
d Enterprise edition supports both High Safety and High Performance modes.
e High Performance mode isn’t supported in Standard edition. See chapter 11 for more.
f “Witness” indicates this is the only role allowed with these editions. See chapter 11 for more.
Licensed to Gayle M. Noll <pedbro@gmail.com>

7Editions and features

1.2.2 Standard

Despite lacking some of the high-end features found in the Enterprise edition, the
Standard edition of SQL Server includes support for clustering, AWE memory, 16
instances, and four CPUs, making it a powerful base from which to host high-perfor-
mance database applications. Table 1.2 summarizes the security and manageability
features available in each edition of SQL Server.

1.2.3 Workgroup

Including the core SQL Server features, the Workgroup edition of SQL Server is ideal
for small and medium-sized branch/departmental applications, and can be upgraded
to the Standard and Enterprise edition at any time. Table 1.3 summarizes the manage-

Table 1.2 Security and manageability features in SQL Server editions

Enterprise Standard Web Workgroup Express

Security and auditing features

C2 Trace Yes Yes Yes Yes Yes

Auditing Fine-grained Basic Basic Basic Basic

Change Data Capture Yes No No No No

Transparent Data Encryption Yes No No No No

Extensible key management Yes No No No No

Manageability features

Dedicated admin connection Yes Yes Yes Yes Trace flaga

Policy-based management Yes Yes Yes Yes Yes

—Supplied best practices Yes Yes No No No

—Multiserver management Yes Yes No No No

Data Collector Yes Yes Yes Yes No

—Supplied reports Yes Yes No No No

Plan guides/freezing Yes Yes No No No

Distributed partitioned views Yes No No No No

Parallel index operations Yes No No No No

Auto-indexed view matching Yes No No No No

Parallel backup checksum Yes No No No No

Database Mail Yes Yes Yes Yes No

a Trace flag 7806 is required for this feature in the Express version.
ment tools available in each of the SQL Server editions.

Licensed to Gayle M. Noll <pedbro@gmail.com>

8 CHAPTER 1 The SQL Server landscape

1.2.4 Other editions of SQL Server

In addition to Enterprise, Standard, and Workgroup, a number of specialized SQL
Server editions are available:

Web edition —Designed primarily for hosting environments, the Web edition of
SQL Server 2008 supports up to four CPUs, 16 instances, and unlimited RAM.
Express edition —There are three editions of Express—Express with Advanced Ser-
vices, Express with Tools, and Express —each available as a separate downloadable
package. Express includes the core database engine only; the Advanced Ser-
vices and Tools versions include a basic version of Management Studio. The
Advanced Services version also includes support for full-text search and Report-
ing Services.
Compact edition —As the name suggests, the Compact edition of SQL Server is
designed for compact devices such as smart phones and pocket PCs, but can
also be installed on desktops. It’s primarily used for occasionally connected
applications and, like Express, is free.
Developer edition —The Developer edition of SQL Server contains the same fea-
tures as the Enterprise edition, but it’s available for development purposes
only—that is, not for production use.

Throughout this book, we’ll refer to a number of SQL Server tools. Let’s briefly cover
these now.

1.3 SQL Server tools
SQL Server includes a rich array of graphical user interface (GUI) and command-line
tools. Here are the major ones discussed in this book:

SQL Server Management Studio (SSMS) —The main GUI-based management tool

Table 1.3 Management tools available in each edition of SQL Server

Enterprise Standard Web Workgroup Express

SMO Yes Yes Yes Yes Yes

Configuration Manager Yes Yes Yes Yes Yes

SQL CMD Yes Yes Yes Yes Yes

Management Studio Yes Yes Basica Yes Basica

SQL Profiler Yes Yes Yes Yes No

SQL Server Agent Yes Yes Yes Yes No

Database Engine Tuning Advisor Yes Yes Yes Yes No

MOM Pack Yes Yes Yes Yes No

a Express Tools and Express Advanced only. Basic Express has no Management Studio tool.
used for conducting a broad range of tasks, such as executing T-SQL scripts,

Licensed to Gayle M. Noll <pedbro@gmail.com>

9SQL Server tools

backing up and restoring databases, and checking logs. We’ll use this tool
extensively throughout the book.
SQL Server Configuration Manager —Enables the configuration of network proto-
cols, service accounts and startup status, and various other SQL Server compo-
nents, including FileStream. We’ll cover this tool in chapter 6 when we look at
configuring TCP/IP for secure networking.
SQL Server Profiler —Used for a variety of performance and troubleshooting
tasks, such as detecting blocked/deadlocked processes and generating scripts
for creating a server-side SQL trace. We’ll cover this tool in detail in chapter 14.
Database Engine Tuning Advisor —Covered in chapter 13, this tool can be used to
analyze a captured workload file and recommend various tuning changes such
as the addition of one or more indexes.

One very important tool we haven’t mentioned yet is SQL Server Books Online (BOL),
shown in figure 1.2. BOL is the definitive reference for all aspects of SQL Server and
includes detailed coverage of all SQL Server features, a full command syntax, tutorials,
and a host of other essential resources. Regardless of skill level, BOL is an essential
companion for all SQL Server professionals and is referenced many times throughout
this book.

 Before we launch into the rest of the book, let’s pause for a moment to consider
the breadth and depth of the SQL Server product offering. With features spanning tra-
ditional online transaction processing (OLTP), online analytical processing (OLAP),
data mining, and reporting, there are a wide variety of IT professionals who specialize
in SQL Server. This book targets the DBA, but even that role has a loose definition
depending on who you talk to.
Figure 1.2 SQL Server Books Online is an essential reference companion.

Licensed to Gayle M. Noll <pedbro@gmail.com>

10 CHAPTER 1 The SQL Server landscape

1.4 DBA responsibilities
Most technology-focused IT professionals can be categorized as either developers or
administrators. In contrast, categorizing a DBA is not as straightforward. In addition to
administrative proficiency and product knowledge, successful DBAs must have a good
understanding of both hardware design and application development. Further, given
the number of organizational units that interface with the database group, good com-
munication skills are essential. For these reasons, the role of a DBA is both challenging
and diverse (and occasionally rewarding!).

 Together with database components such as stored procedures, the integration of
the CLR inside the database engine has blurred the lines between the database and the
applications that access it. As such, in addition to what I call the production DBA, the
development DBA is someone who specializes in database design, stored procedure devel-
opment, and data migration using tools such as SQL Server Integration Services (SSIS).
In contrast, the production DBA tends to focus more on day-to-day administration
tasks, such as backups, integrity checks, and index maintenance. In between these two
roles are a large number of common areas, such as index and security design.

 For the most part, this book concentrates on the production DBA role. Broadly
speaking, the typical responsibilities of this role can be categorized into four areas, or
pillars, as shown in figure 1.3. This book will concentrate on best practices that fit into
these categories.

 Let’s briefly cover each one of these equally important areas:

Security —Securing an organization’s systems and data is crucial, and in chapter
6 we’ll cover a number of areas, including implementing least privilege, choos-
ing an authentication mode, TCP port security, and SQL Server 2008’s TDE and
SQL Audit.

S
ec

ur
ity

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty

R
el

ia
bi

lit
y

S
ec

ur
ity

A
va

ila
bi

lit
y

R
el

ia
bi

lit
y

R
ec

ov
er

ab
ili

ty

SQL Server DBA Responsibilities

A
ud

iti
ng

, p
er

m
is

si
on

s,
 S

S
L

/ T
D

E

en
cr

yp
tio

n,
 le

as
t p

riv
ile

ge

S
LA

, s
er

ve
r d

es
ig

n,
 R

A
ID

 &

co
m

po
ne

nt
 re

du
nd

an
cy

, m
on

ito
rin

g
cl

us
te

rin
g,

 lo
g

sh
ip

pi
ng

, m
irr

or
in

g

S
Q

LI
O

/S
IM

, s
er

vi
ce

 p
ac

ks
,

pe
rfo

rm
an

ce
 tu

ni
ng

, l
oa

d
te

st
in

g,

D
B

C
C

, c
ha

ng
e

co
nt

ro
l

B
ac

ku
ps

, r
es

to
re

 v
er

ifi
ca

tio
n,

D

R
 p

la
nn

in
g,

 d
oc

um
en

ta
tio

n

Figure 1.3 This book targets best practices across the four key areas, or pillars, of a DBA's

responsibility: security, availability, reliability, and recoverability.

Licensed to Gayle M. Noll <pedbro@gmail.com>

11DBA responsibilities

Availability —Ensuring a database is available when required is a fundamental
DBA responsibility, and in this regard, SQL Server 2008 includes a number of
high-availability solutions, including failover clustering, database mirroring,
and transaction log shipping, each of which we’ll cover in this book. We’ll also
examine the importance of service level agreements in a high-availability plan,
and learn how to design redundancy into server components.
Reliability —Unexpected performance and corruption problems not only disap-
point users, but they also lead to long, chaotic, and reactive working days for a
DBA. Throughout this book, we’ll cover a number of proactive maintenance
and design practices, such as using the SQLIOSIM utility to validate a storage sys-
tem, and using Database Console Commands (DBCC) to validate the integrity of
a database.
Recoverability —Of course, should disaster strike, a DBA needs to spring into
action with a plan of attack for restoring a database as quickly as possible, and in
chapter 10, we’ll cover this process in detail.

Ensuring databases are secure, available, reliable, and recoverable are core DBA responsi-
bilities. In subsequent chapters, we’ll drill down into each of these responsibilities in
more detail, beginning with the next chapter, in which we focus on the important
topic of sizing a storage system.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Storage system sizing
Performance tuning SQL Server applications involves finding and addressing per-
formance bottlenecks. While there will always be a bottleneck somewhere, the goal
is to reduce the bottlenecks until application performance meets or exceeds the
usage requirements, typically defined in a service level agreement (SLA).

 Although it’s undeniable that the largest performance gains usually come from
good application design, inadequate hardware makes resolving performance prob-
lems much more difficult. Poorly designed storage systems account for arguably the
largest percentage of hardware-based performance problems for SQL Server solu-
tions, and fixing them is usually more complicated than a simple memory or CPU
upgrade. It follows that a well-designed storage system removes the biggest hard-
ware-based performance obstacle, and that storage design should therefore lead

In this chapter, we’ll cover
■ Characterizing I/O load
■ Determining the required number of disks
■ Selecting RAID levels and storage systems
■ Tuning storage area networks
■ Evaluating solid-state disks
12

the way in sizing servers for use in SQL Server environments.

Licensed to Gayle M. Noll <pedbro@gmail.com>

13Characterizing I/O workload

 This chapter begins by covering the various I/O loads generated by the two major
categories of database applications: online transaction processing (OLTP) and online
analytical processing (OLAP). We’ll look at the importance of striping data across mul-
tiple disks, the use of RAID technology to provide resilience against disk failure, and
formulas for estimating the required number of disks to support the expected applica-
tion load.

 We conclude this chapter with a look at the various types of storage systems, includ-
ing direct-attached storage (DAS) and Fibre/iSCSI storage area networks (SANs), and
explore some of the challenges of using SANs with SQL Server. Finally, we cover the
emergence of solid-state disks (SSDs) and the significant ramifications this technology
will have on server sizing and performance tuning.

2.1 Characterizing I/O workload
To determine an application’s ideal storage system and disk quantity, it’s important to
understand the type and volume of I/O the application will generate. This section
focuses on the different types of I/O, the metrics used to classify workload, and meth-
ods used in measuring and estimating values for the I/O metrics.

 In section 2.2, we’ll take the information we’ve learned here and use it to derive
the number of disks required to support an application’s I/O workload.

2.1.1 OLTP vs. OLAP/DSS

When classifying the nature of I/O, two main terms are used: OLTP and OLAP. An
example of an OLTP database is one that stores data for a point-of-sales application,
typically consisting of a high percentage of simple, short transactions from a large
number of users. Such transactions generate what’s referred to as random I/O, where
the physical disks spend a significant percentage of time seeking data from various
parts of the disk for read and/or write purposes.

 In contrast, as shown in figure 2.1, an OLAP, or decision support system (DSS), data-
base is one that stores data for reporting applications that usually have a smaller num-
ber of users generating much larger queries. Such queries typically result in sequential
I/O, where the physical disks spend most of their time scanning a range of data clus-
tered together in the same part of the disk. Unlike OLTP databases, OLAP databases
typically have a much higher percentage of read activity.

Figure 2.1 Characterizing I/O workload is a crucial prerequisite in designing the appropriate storage
system. Unlike OLTP, OLAP systems typically consist of fewer but larger sequential read dominant

OLTP (online transac�on processing)
e.g.: point-of-sales system
Random I/O dominant
Read/write intensive
Key metrics: IOPS, disk latency, transac�ons/sec
Frequent & small transac�ons

OLAP (online analy�cal processing)
e.g.: repor�ng system
Sequen�al I/O dominant
Read intensive
Key metrics: IO throughput, parallel queries
Fewer but larger transac�ons compared to OLTP
transactions.

Licensed to Gayle M. Noll <pedbro@gmail.com>

14 CHAPTER 2 Storage system sizing

Note that even for classic OLTP applications such as point-of-sales systems, actions like
backups and database consistency checks will still generate large amounts of sequen-
tial I/O. For the purposes of I/O workload classification, we’ll consider the main I/O
pattern only.

 As you’ll see a little later, the difference between sequential and random I/O has
an important bearing on the storage system design.

2.1.2 I/O metrics

To design a storage system for a database application, in addition to knowing the type
of workload it produces (OLTP or OLAP), we need to know the volume of workload,
typically measured by the number of disk reads and writes per second.

 The process of obtaining or deriving these figures is determined by the state of the
application. If the application is an existing production system, the figures can be eas-
ily obtained using Windows Performance Monitor. Alternatively, if the system is yet to
be commissioned, estimates are derived using various methods. A common one is to
use a test environment to profile the reads and writes per transaction type, and then
multiply by the expected number of transactions per second per type.
EXISTING SYSTEMS

In chapter 17, we’ll focus on the methods used to collect and analyze system bottle-
necks, including disk I/O bottlenecks. For the purposes of this section, let’s assume that
disk I/O is determined to be a significant bottleneck and we need to redesign the stor-
age system to correct it. The task, then, is to collect I/O metrics to assist in this process.

 We can use the Windows Performance Monitor tool (covered in chapter 14) to col-
lect the disk I/O metrics we need. For each logical disk volume—that is, the drive let-
ter corresponding to a data or log drive—the following counters, among others, can
be collected:

PhysicalDisk —Disk reads per second
PhysicalDisk —Disk writes per second

Note that the averages of these values should be collected during the database’s peak
usage period. Designing a system based on weekly averages that include long periods
of very low usage may result in the system being overwhelmed during the most impor-
tant period of the day.

 In the next section, we’ll use these values to approximate the number of physical
disks required for optimal I/O performance.
NEW SYSTEMS

For a system not yet in production, application I/O is estimated per transaction type in
an isolated test environment. Projections are then made based on the estimated maxi-
mum number of expected transactions per second, with an adjustment made for
future growth.

 Armed with these metrics, let’s proceed to the next section, where we’ll use them
to project the estimated number of disks required to design a high-performance stor-
age system capable of handling the application load.
Licensed to Gayle M. Noll <pedbro@gmail.com>

15Determining the required number of disks and controllers

2.2 Determining the required number of disks and controllers
In the previous section, we covered the process of measuring, or estimating, the num-
ber of database disk reads and writes generated by an application per second. In this
section, we’ll cover the formula used to estimate the number of disks required to
design a storage system capable of handling the expected application I/O load.

 Note that the calculations presented in this section are geared toward direct-
attached storage (DAS) solutions using traditional RAID storage. Configuring SAN-
based Virtualized RAID (V-RAID) storage is a specialist skill, and one that differs among
various SAN solutions and vendors. Therefore, use the calculations presented here as
a rough guideline only.

2.2.1 Calculating the number of disks required

In calculating the number of disks required to support a given workload, we must
know two values: the required disk I/O per second (which is the sum of the reads and
writes that we looked at in the previous section) and the I/O per second capacity
(IOPS) of the individual disks involved.

 The IOPS value of a given disk depends on many factors, such as the type of disk,
spin speed, seek time, and I/O type. While tools such as SQLIO, covered in the next
chapter, can be used to measure a disk’s IOPS capacity, an often-used average is 125
IOPS per disk for random I/O. Despite the fact that commonly used server class 15,000
RPM SCSI disks are capable of higher speeds,1 the 125 IOPS figure is a reasonable aver-
age for the purposes of estimation and enables the calculated disk number to include
a comfortable margin for handling peak, or higher than expected, load.

Here’s a commonly used formula for calculating required disk numbers:

Required # Disks = (Reads/sec + (Writes/sec * RAID adjuster)) / Disk IOPS

Dividing the sum of the disk reads and writes per second by the disk’s IOPS yields the
number of disks required to support the workload. As an example, let’s assume we

Storage virtualization
The process of selecting RAID levels and calculating the required number of disks is
significantly different in a SAN compared to a traditional direct-attached storage (DAS)
solution. Configuring and monitoring virtualized SAN storage is a specialist skill. Un-
less already skilled in building SAN solutions, DBAs should insist on SAN vendor in-
volvement in the setup and configuration of storage for SQL Server deployments. The
big four SAN vendors (EMC, Hitachi, HP, and IBM) are all capable of providing their
own consultants, usually well versed in SQL Server storage requirements, to set up
and configure storage and related backup solutions to maximize SAN investment.
1 Take the manufacturer’s published specifications with a grain of salt.

Licensed to Gayle M. Noll <pedbro@gmail.com>

16 CHAPTER 2 Storage system sizing

need to design a RAID 10 storage system to support 1,200 reads per second and 400
writes per second. Using our formula, the number of required disks (assuming 125
IOPS per disk) can be calculated as follows:

Required # disks = (1200 + (400 * 2)) / 125 = 16 DISKS

Note the doubling of the writes per second figure (400 * 2); in this example, we’re design-
ing a RAID 10 volume, and as you’ll see in a moment, two physical writes are required for
each logical write—hence the adjustment to the writes per second figure. Also note that
this assumes the disk volume will be dedicated to the application’s database. Combining
multiple databases on the one disk will obviously affect the calculations.

 Although this is a simple example, it highlights the important relationship
between the required throughput, the IOPS capacity of the disks, and the number of
disks required to support the workload.

 Finally, a crucial aspect of disk configuration, and one that we’ll cover in more
detail in chapter 9, is the separation of the transaction log and data files. Unlike ran-
dom access within data files, transaction logs are written in a sequential manner, so
storing them on the same disk as data files will result in reduced transaction through-
put, with the disk heads moving between the conflicting requirements of random and
sequential I/O. In contrast, storing the transaction log on a dedicated disk will enable
the disk heads to stay in position, writing sequentially, and therefore increase the
transaction throughput.

 Once we’ve determined the number of disks required, we need to ensure the I/O
bus has adequate bandwidth.

Storage formats
Here are some typical storage formats used by SQL Server systems:

ATA—Using a parallel interface, ATA is one of the original implementations of disk
drive technologies for the personal computer. Also known as IDE or parallel ATA, it
integrates the disk controller on the disk itself and uses ribbon-style cables for con-
nection to the host.

SATA—In widespread use today, SATA, or serial ATA, drives are an evolution of the
older parallel ATA drives. They offer numerous improvements such as faster data
transfer, thinner cables for better air flow, and a feature known as Native Command
Queuing (NCQ) whereby queued disk requests are reordered to maximize the through-
put. Compared to SCSI drives, SATA drives offer much higher capacity per disk, with
terabyte drives (or higher) available today. The downside of very large SATA disk sizes
is the increased latency of disk requests, partially offset with NCQ.

SCSI—Generally offering higher performance than SATA drives, albeit for a higher
cost, SCSI drives are commonly found in server-based RAID implementations and
high-end workstations. Paired with a SCSI controller card, up to 15 disks (depending
on the SCSI version) can be connected to a server for each channel on the controller
card. Dual-channel cards enable 30 disks to be connected per card, and multiple
controller cards can be installed in a server, allowing a large number of disks to be
Licensed to Gayle M. Noll <pedbro@gmail.com>

17Determining the required number of disks and controllers

2.2.2 Bus bandwidth

When designing a storage system with many physical disks to support a large number of
reads and writes, we must consider the ability of the I/O bus to handle the throughput.

 As you learned in the previous section, typical OLTP applications consist of random
I/O with a moderate percentage of disk time seeking data, with disk latency (the time
between disk request and response) an important factor. In contrast, OLAP applica-
tions spend a much higher percentage of time performing sequential I/O—thus the
throughput is greater and bandwidth requirements are higher.

 In a direct-attached SCSI disk enclosure, the typical bus used today is Ultra320,
with a maximum throughput of 320MB/second per channel. Alternatively, a 2 Gigabit
Fibre Channel system offers approximately 400MB/second throughput in full duplex
mode.

 In our example of 2,000 disk transfers per second, assuming these were for an
OLTP application with random I/O and 8K I/O transfers (the SQL Server transfer size
for random I/O), the bandwidth requirements can be calculated as 2,000 times 8K,
which is a total of 16MB/second, well within the capabilities of either Ultra320 SCSI or
2 Gigabit Fibre Channel.

 Should the bandwidth requirements exceed the maximum throughput, addi-

directly attached to a server. It’s increasingly common for organizations to use a mix-
ture of both SCSI drives for performance-sensitive applications and SATA drives for
applications requiring high amounts of storage. An example of this for a database ap-
plication is to use SCSI drives for storing the database and SATA drives for storing
online disk backups.

SAS—Serial Attached SCSI (SAS) disks connect directly to a SAS port, unlike tradi-
tional SCSI disks, which share a common bus. Borrowing from aspects of Fibre Chan-
nel technology, SAS was designed to break past the current performance barrier of
the existing Ultra320 SCSI technology, and offers numerous advantages owing to its
smaller form factor and backward compatibility with SATA disks. As a result, SAS
drives are growing in popularity as an alternative to SCSI.

Fibre Channel —Fibre Channel allows high-speed, serial duplex communications be-
tween storage systems and server hosts. Typically found on SANs, Fibre Channel of-
fers more flexibility than a SCSI bus, with support for more physical disks, more
connected servers, and longer cable lengths.

Solid-state disks—Used today primarily in laptops and consumer devices, solid-state
disks (SSDs) are gaining momentum in the desktop and server space. As the name
suggests, SSDs use solid-state memory to persist data in contrast to rotating platters
in a conventional hard disk. With no moving parts, SSDs are more robust and promise
near-zero seek time, high performance, and low power consumption. We’ll cover SSDs
in more depth later in this chapter.
tional disk controllers and/or channels will be required to support the load. OLAP

Licensed to Gayle M. Noll <pedbro@gmail.com>

18 CHAPTER 2 Storage system sizing

applications typically have much higher throughput requirements, and therefore
have a lower disk to bus ratio, which means more controllers/channels for the same
number of disks.

 You’ll note that we haven’t addressed storage capacity requirements yet. This is a
deliberate decision to ensure the storage system is designed for throughput and per-
formance as the highest priority.

2.2.3 A note on capacity

A common mistake made when designing storage for SQL Server databases is to base
the design on capacity requirements alone. A guiding principle in designing high-per-
formance storage solutions for SQL Server is to stripe data across a large number of
dedicated disks and multiple controllers. The resultant performance is much greater
than what you’d achieve with fewer, higher-capacity disks. Storage solutions designed
in this manner usually exceed the capacity requirements as a consequence of the per-
formance-centric approach.

 In our previous example (where we calculated the need for 16 disks), assuming we
use 73GB disks, we have a total available capacity of 1.1TB. Usable space, after RAID 10
is implemented, would come down to around 500GB.

 If the projected capacity requirements for our database only total 50GB, then so be
it. We end up with 10 percent storage utilization as a consequence of a performance-
centric design. In contrast, a design that was capacity-centric would probably choose a
single 73GB disk, or two disks to provide redundancy. What are the consequences of
this for our example? Assuming 125 IOPS per disk, we’d experience extreme disk bot-
tlenecks with massive disk queues handling close to 2,000 required IOPS!

 While low utilization levels will probably be frowned upon, this is the price of per-
formance, and a much better outcome than constantly dealing with disk bottlenecks.
A quick look at any of the server specifications used in setting performance records
for the Transaction Processing Performance Council (tpc.org) tests will confirm a low-
utilization, high-disk-stripe approach like the one I described.

 Finally, placing capacity as a secondary priority behind performance doesn’t mean
we can ignore it. Sufficient work should be carried out to estimate both the initial and
future storage requirements. Running out of disk space at 3 a.m. isn’t something I rec-
ommend!

 In this section, I’ve made a number of references to various RAID levels used to
provide disk fault tolerance. In the next section, we’ll take a closer look at the various
RAID options and their pros and cons for use in a SQL Server environment.

2.3 Selecting the appropriate RAID level
In the previous section, we looked at a method for determining the number of disks
we need in order to deliver the required I/O performance. This process included
adjustments to take into account redundant disks used to provide protection against
disk failure. Designing disk redundancy with RAID is the focus of this section.
Licensed to Gayle M. Noll <pedbro@gmail.com>

19Selecting the appropriate RAID level

 A good server design is one that has no, or very few, single points of failure.
Among the most common server components that fail are disks. Contributing factors
include heat and vibration. A good data center design recognizes this and takes mea-
sures to reduce failure rates, such as locating servers in temperature-controlled posi-
tions with low vibration levels.

 Despite environmental precautions, disks still fail, and the server design needs to
take this fact into consideration. The commonly used method for providing protec-
tion against disk failure is Redundant Array of Independent/Inexpensive Disks, or RAID.

 In addition to providing tolerance against disk failure, certain RAID levels increase
performance by striping data across multiple disks and therefore distributing I/O load
among the disks in the RAID volume. The stripe size, specified when building the
RAID volume, can make a significant difference in I/O performance; you’ll learn more
about this in chapter 3.

 This section will look at four RAID levels and their advantages and disadvantages
from a cost, fault protection, and performance perspective. Note that there are more
RAID levels than discussed here, but these are the common ones used for SQL Server
implementations. As with the previous section, this section is geared toward RAID in
DAS solutions. SAN-based V-RAID is quite different, although there’s usually some cor-
relation between V-RAID and traditional RAID, so the principles are still important.

2.3.1 RAID 0

Despite the name, RAID 0, as shown in figure 2.2, actually provides no redundancy at
all. It involves striping data across all the disks in the RAID array, which improves per-
formance, but if any of the disks in the array fail, then the whole array fails. In that
sense, RAID 0 actually increases the chance of failure. Consider RAID 0 as the zero redun-
dancy RAID.

 Some have suggested that RAID 0 may be acceptable for the tempdb database,
given that tempdb starts out empty every time SQL Server is restarted and therefore
redundancy of tempdb isn’t really important. Although this is true, it’s also true that a
failure in any of the tempdb disks will cause SQL Server to fail, and you’re then faced
with rebuilding the disks before SQL Server can be restarted. For most sites, this would
lead to an unacceptable outage.

Figure 2.2 Providing zero disk
failure tolerance, a RAID 0
partition is optimized for
performance only, and is therefore
not suitable for use with SQL Server.
(Image provided courtesy of
Advanced Computer and Network

Corp., http://www.raid.com.)

Licensed to Gayle M. Noll <pedbro@gmail.com>

20 CHAPTER 2 Storage system sizing

While RAID 0 increases I/O performance through striping, due to the lack of redun-
dancy it provides, I don’t recommend you use it for any serious SQL Server implemen-
tation.

2.3.2 RAID 1

RAID 1, as shown in figure 2.3, is essentially disk mirroring. Each disk in a RAID 1 array
has a mirror partner, and if one of the disks in a mirrored pair fails, then the other
disk is still available and operations continue without any data loss.

 Useful for a variety of SQL Server components, including backups and transaction
logs, RAID 1 arrays provide good read performance, and write performance suffers lit-
tle or no overhead.

Figure 2.3 A RAID 1 partition mirrors each disk to a mirror pair, therefore allowing continued operation
in the event of a disk failure. (Image provided courtesy of Advanced Computer and Network Corp.)

The downside to RAID 1 is the lower disk utilization. For every usable disk, two disks
are required, resulting in a 50 percent utilization level.

2.3.3 RAID 5

RAID 5, as shown in figure 2.4, requires at least three disks. It addresses the low disk
utilization inherent with RAID 1 by using parity to provide redundancy rather than
storing a duplicate copy of the data on another disk. When a disk failure occurs in a
RAID 5 array, the data stored on that disk is dynamically recovered using the parity
information on the remaining disks.

Figure 2.4 Each write to a RAID 5 partition involves multiple reads to calculate and store parity
information. For SQL Server systems with substantial write activity, RAID 5 is often a poor choice. (Image

provided courtesy of Advanced Computer and Network Corp.)

Licensed to Gayle M. Noll <pedbro@gmail.com>

21Selecting the appropriate RAID level

Disk utilization in RAID 5 is calculated as # of drives-1/# of drives. For three disk vol-
umes, the utilization is 66 percent, for five disk volumes, 80 percent, and so forth.
RAID 5’s main advantage is higher disk utilization than RAID 1, and therefore a lower
overall storage cost; however, the downsides are significant. Each write to a RAID 5
array involves multiple disk operations for parity calculation and storage; therefore,
the write performance is much lower than other RAID solutions. Further, in the event
of a disk failure, read performance is also degraded significantly.

 Such overhead makes RAID 5 unsuitable for a lot of SQL Server implementations.
Exceptions include installations with either predominantly read-only profiles or those
with disk capacity or budgetary constraints that can handle the write overhead.

2.3.4 RAID 10

RAID 10 combines the best features of RAID 1 and 0, without any of the downsides of
RAID 5. Also known as RAID 1+0, RAID 10 is the highest performance RAID option. As
shown in figure 2.5, RAID 10 offers the high-performance striping of RAID 0 with the
fault tolerance of RAID 1’s disk mirroring without any of the write overhead of RAID 5.

The downside of RAID 10 is the cost. Requiring at least four disks, RAID 10 arrays ben-
efit from lots of disks to stripe across, each of which requires a mirror partner. In large
deployments, the cost of RAID 10 may be prohibitive for some organizations, with the
money perhaps better spent on other infrastructure components.

 RAID 10 offers the most advantages to SQL Server and, despite the cost, should be
seriously considered for environments requiring both high performance and fault tol-
erance. Table 2.1 compares RAID 10 with RAID 0, 1, and 5.

Table 2.1 RAID level comparisons

Attribute RAID 0 RAID 1 RAID 5 RAID 10

Disk failure tolerance 0 >=1 1 >=1

Disk utilization % 100% 50% 66%+ 50%

Read performance High High High High

Write performance High Medium Low Medium

SQL Server suitability Bad Good Limited Good

Figure 2.5 RAID 10 combines
the benefits of mirroring and
striping while avoiding the parity
overhead of RAID 5. As such, a
RAID 10 partition provides
excellent performance and
redundancy at the expense of
higher cost. (Image provided
courtesy of Advanced Computer
and Network Corp.)
Licensed to Gayle M. Noll <pedbro@gmail.com>

22 CHAPTER 2 Storage system sizing

 Finally, it’s worth mentioning that RAID can be implemented at either the software
level, via the Windows operating system, or the hardware level, using dedicated RAID
controller cards. Software RAID shouldn’t be used in server class implementations as
doing so consumes operating system resources and doesn’t offer the same feature set
as hardware implementations. Hardware RAID requires no operating system resources
and provides additional benefits, such as more RAID-level options, battery- backed
disk cache (covered in chapter 3), and support for swapping out failed disks without
bringing down the system.

 Let’s move on now and cover the different types of storage systems available today.

2.4 Selecting an appropriate storage system
In addition to DAS, recent years have seen the introduction of a number of other types
of storage solutions. As well as DAS, this section will investigate Fibre Channel and
iSCSI SANs. We’ll explore their advantages and disadvantages for use in SQL Server sys-
tems from various perspectives, including performance, cost, manageability, and disas-
ter recovery.

2.4.1 Direct-attached storage

Of the three storage options presented in this section, DAS is the most established and
is used in a large percentage of SQL Server systems of varying size and usage profiles.
As the name suggests, DAS systems connect disks directly to a server, either internally
within the server itself or in external storage cabinets filled with disks connected to
the server via controller cards.

 Correctly configured DAS systems can rival or even exceed the I/O performance
obtained with SANs. Using multiple external disk enclosures, you can build DAS sys-
tems containing hundreds of disks, and when these systems are connected to multiple
controllers, the I/O performance that can be achieved is capable of servicing the most
demanding workloads.

 Unlike SANs, DAS systems don’t rely on expensive storage infrastructure. As such,
initial DAS costs tend to be much lower than SANs. On the downside, organizations
with lots of DAS-configured servers may find that combined disk utilization levels and
management overhead actually raise the cost above that of a SAN. Further, unlike
SANs, DAS systems have limited disaster recovery options.

2.4.2 Fibre Channel SANs

Fibre Channel SANs are self-contained disk systems containing hundreds or even
thousands of disks. Unlike DAS systems, which are connected to a single server, multi-
ple servers can connect to a SAN, as shown in figure 2.6, via special host bus adapter
(HBA) cards installed in each connected server. Disks within the SAN are grouped
together into logical unit numbers (LUNs) and presented as required to connected serv-
ers. The server sees the LUN as a locally attached disk.
Licensed to Gayle M. Noll <pedbro@gmail.com>

23Selecting an appropriate storage system

Figure 2.6 A typical storage area network. In this example, four servers connect
to the SAN via their own internal HBA cards and a dedicated switch.

While expensive to set up initially, SANs provide increased disk usage efficiency, sim-
plify storage management and allocation, and when configured correctly, can provide
exceptional I/O performance for SQL Server platforms. Furthermore, SAN cache
capacity, often running into hundreds of gigabytes, is far superior to that found in
most DAS systems.

 Depending on the vendor and model, SANs also offer superior disaster-recovery
options. Examples of this include synchronously replicating LUN data to another SAN
at a remote site and leveraging SQL Server’s Virtual Device Interface (VDI) to enable
near-instant database backup and restores by ”snapping” locally mirrored LUNs.

 On the downside, SANs are often configured for disk usage efficiency at the
expense of maximizing performance. When you configure a SQL Server storage sys-
tem for maximum performance, data is spread across as many dedicated physical
disks as possible, often resulting in each disk having a low utilization percentage. One
of the major benefits of a SAN is sharing disks among many servers to maximize usage.
These are conflicting goals and, unless well understood, often lead to poor SQL Server
performance. As a result, some organizations dedicate an entire SAN to a single, mis-
sion-critical database, thereby obtaining the best performance, while also benefiting
from the scale and disaster-recovery options of SAN solutions.

 Performance testing of SAN solutions needs to be conducted taking into account
the impact from other connected servers, particularly if they’re using LUNs sharing
the same disks. As a result, performance testing in a SAN environment tends to be
more complex compared to DAS.

 These issues will be explained in further detail in the next section. For now, suffice
to say that the correct configuration of a SAN is crucial in delivering high storage per-
formance to SQL Server.

2.4.3 iSCSI

Apart from DAS, lower-cost alternatives to Fibre Channel SANs include network-attached
storage (NAS) and iSCSI. NAS systems aren’t recommended for use with SQL Server as
some of them can’t guarantee the write ordering that SQL Server requires in maintain-

U ID 1 2

1 2 3 4 5 6 7 8
H P

D IM M S

P C I
R IS E R
C A G E

F A N S

P O WE R
S U P P LY

P O WE R
S U P P LY

P R O CP R O C

D IM M S

M IRRO R

O VER
TEM P

INTER
LO CK

PP
M

P ro L ia n t
D L 3 8 5 G 2

U ID 1 2

1 2 3 4 5 6 7 8
H P

D IM M S

P C I
R IS E R
C A G E

F A N S

P O WE R
S U P P LY

P O WE R
S U P P LY

P R O CP R O C

D IM M S

M IRRO R

O VER
TEM P

INTER
LO CK

PP
M

P ro L ia n t
D L 3 8 5 G 2

U ID 1 2

1 2 3 4 5 6 7 8
H P

D IM M S

P C I
R IS E R
C A G E

F A N S

P O WE R
S U P P LY

P O WE R
S U P P LY

P R O CP R O C

D IM M S

M IRRO R

O VER
TEM P

INTER
LO CK

PP
M

P ro L ia n t
D L 3 8 5 G 2

Connected servers

U ID 1 2

1 2 3 4 5 6 7 8
H P

D IM M S

P C I
R IS E R
C A G E

F A N S

P O WE R
S U P P LY

P O WE R
S U P P LY

P R O CP R O C

D IM M S

M IRRO R

O VER
TEM P

INTER
LO CK

PP
M

P ro L ia n t
D L 3 8 5 G 2

HBA cards

Switch

SAN
ing data integrity. Internet SCSI (iSCSI) SANs are recommended instead of NAS.

Licensed to Gayle M. Noll <pedbro@gmail.com>

24 CHAPTER 2 Storage system sizing

 iSCSI is the name given to a network protocol that carries SCSI commands over a
TCP/IP network. iSCSI SANs are similar to Fibre Channel SANs in that they’re indepen-
dent of the servers connected to them. Unlike a Fibre Channel SAN, servers connect
to iSCSI systems over a standard TCP/IP infrastructure.

 Best practice dictates connecting servers to the iSCSI SAN over a dedicated 1- or
10GB network physically separate from the main network. This involves dedicated
switches and servers with multiple network cards, or separate iSCSI HBA cards, to con-
nect to both the public network and the dedicated iSCSI network. The physical separa-
tion of networks enables the best I/O performance and reliability. Further, the
connections to the iSCSI SAN should ideally be set up using dual network cards in a
teaming arrangement. We’ll cover NIC teaming in the next chapter.

 Given the TCP/IP-centric nature of iSCSI, the components required to connect serv-
ers to iSCSI SANs are typically less expensive than the components used for Fibre Chan-
nel SANs. Standard network cards can be used to connect to the iSCSI SAN with software
components (such as the Microsoft iSCSI Software Initiator), enabling the iSCSI sup-
port. Alternatively, dedicated iSCSI HBA cards can be used to offload iSCSI processing
from the CPU and improve I/O throughput while reducing system overhead.

 iSCSI SANs are becoming increasingly popular due to the lower cost of entry com-
pared to the Fibre alternative, and the ease with which a storage network can be estab-
lished. You’ll see an example of this in chapter 5 when we take a look at the
installation of a SQL Server failover cluster. The systems used for this installation are
all virtualized, including a virtualized iSCSI host server. Both cluster nodes use the host
for storage purposes via Rocket Division’s StarWind iSCSI software.

 Table 2.2 compares and contrasts the features and attributes of the three storage
systems we’ve just covered. TCO (total cost of ownership) assumes a medium-to-large
data center. DR options refers to the built-in ability of the storage system to offer block
replication, snapshot backups, and other useful disaster-recovery features. Scale refers
to the number of disks that can be stored within the system. DBA control refers to the
ability of a DBA to quickly configure a storage system to precise requirements.

2.4.4 Recommendations

Compared to DAS, commonly used SAN solutions offer superior disaster-recovery
options, and TCO is typically lower with SAN solutions for medium-to-large enterprises.

 In most cases, either DAS or Fibre/iSCSI SANs can be configured to deliver the

Table 2.2 Storage system attributes

System Initial cost TCO DR options Scale DBA control

DAS Low Moderate Poor Moderate High

iSCSI SAN Moderate Low Good Good Low

Fibre SAN High Low Good Good Low
required performance. One advantage DAS systems have over SANs is DBA control. It’s

Licensed to Gayle M. Noll <pedbro@gmail.com>

25SQL Server and SANs

much easier for a DBA to configure DAS to meet precise performance requirements
than it is to request a specific configuration from the SAN administrator who has to
take into account numerous other servers sharing the same SAN.

 Perhaps the deciding factor in choosing a storage system is the required number of
disks they must support. Earlier we focused on determining the number of disks
required to support a specific workload. If the number runs into the hundreds or
thousands, then SAN solutions are the clear choice, particularly considering the disas-
ter-recovery options they provide. For smaller disk numbers, either DAS or SANs are
valid options, but the overall cost, management, and disaster-recovery options should
be considered before making a decision.

 It’s not uncommon for the storage system validation process to be skipped when SQL
Server is installed on a SAN. This is often due to DBAs not having the same degree of
control over the SAN as they would over DAS. The next section explores the importance
of a good working relationship between the DBA and the SAN administrator in ensuring
the required performance of SQL Server deployments involving SAN storage.

2.5 SQL Server and SANs
Don’t make the mistake of thinking that because SANs are big and expensive you’ll be
guaranteed to get good I/O performance. SAN storage design goals are often in con-
flict with those of SQL Server. SANs are effective at maximizing disk utilization by shar-
ing a large central store of disks between many servers. In contrast, SQL Server
benefits from striping over dedicated disks, with an emphasis on disk quantity rather
than utilization.

 This section addresses some of the common issues that DBAs face in SAN-based
environments, including the relationship with the SAN administrator, LUN configura-
tion, performance tuning, and disaster-recovery options.

2.5.1 The SAN administrator

If you’re like me, you like being in control. You like having operating system adminis-
trator privileges to all database servers, despite best practice, and you like having
direct control over disk configuration. In environments with multiple servers and dif-
ferent applications sharing SAN storage, such control is unlikely, particularly when the
DBA and SAN administration roles are separated. In such sites, it’s not uncommon for
the SAN administrator to be dismissive of the DBA’s concerns about SAN configuration;
often with a let the SAN take care of it attitude.

 Like any other storage system, SAN disks that are presented to SQL Server need to
be configured in line with the storage practices we’ve already covered. Given the com-
plex, shared nature of SANs and the difficulty of changing a design after deployment,
it’s critical for you to become involved in the SAN configuration as early as possible
and present storage requirements from a DBA’s perspective.

 I’ve been fortunate to work in environments with highly skilled SAN administra-

tors who were receptive to the unique storage requirements of SQL Server. Through

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 Storage system sizing

our good working relationship, we were able to combine our skill sets to deliver reli-
able, high-performance SAN storage for SQL Server. Unfortunately, such outcomes
aren’t always achieved; the most common problem is LUN configuration, which we’ll
look at next.

2.5.2 LUN configuration

A LUN is a logical unit of SAN disk created by the SAN administrator and presented to
an attached server’s operating system. The server is unaware of the physical makeup
of the disks involved in the LUN, and sees it as a single locally attached disk.

As shown in figure 2.7, each physical disk in
the SAN can be carved up into parts and used
in the creation of separate LUNs. As a result,
LUNs from many servers can all be using dif-
ferent parts of the same physical disk.

Figure 2.7 A sample LUN composition. Physical disks
are broken up into slices, or hypers. A LUN is
constructed by combining hypers from several disks.

When troubleshooting performance problems involving SAN storage, I’ve found it use-
ful to ask the SAN administrator a series of questions involving the makeup of the LUNs:

How many individual physical disks are included in the SQL Server LUNs? Remember-
ing the principle of striping across many physical disks, if a LUN consists of a
small number of physical disks, then performance may be less than ideal.
What other servers are sharing the physical disks in the LUNs, and what is their I/O pro-
file? If many servers’ LUNs share the same physical disks, performance may be
reduced.2 This is particularly important for transaction log LUNs. Transaction
log I/O is sequential in nature, and dedicated physical disks mean the disk
heads are able to stay in position, with writes proceeding in a sequential man-
ner. This is obviously not possible if the transaction log LUNs are created on
disks containing other LUNs. For SQL Server applications with high transaction
log rates, this can have a large impact on transaction response time, leading to
decreased performance and throughput.
What are the RAID levels of the LUNs? Earlier in the chapter, we covered the various
RAID levels, and noted that RAID 5 has a disk write overhead and is therefore
not an ideal choice for SQL Server applications with a high percentage of disk
writes. Given the SAN goal of increased disk utilization, RAID 5 is often chosen
as the default RAID level. The SAN administrator should be able to tell you the
current RAID level and the different levels supported in the SAN.

2 Some SAN solutions use a balancing mechanism whereby hypers are moved between physical disks for better

Disk 1 Disk 2 Disk 3 Disk 4

Disk 5 Disk 6 Disk 7 Disk 8

LUN 1

LUN 2

LUN 3

LUN 4
I/O balancing.

Licensed to Gayle M. Noll <pedbro@gmail.com>

27SQL Server and SANs

Are my LUNs zoned? Zoning is the process of matching disks and LUNs to particu-
lar servers via storage array ports, increasing security and I/O bandwidth as a
result. In SANs with thousands of LUNs and attached servers, this is particularly
important in guaranteeing minimum service levels.

The answers to these questions (or lack thereof in some cases) quickly establish the
SAN administrator’s degree of skill and knowledge of the SAN in regard to SQL
Server’s unique storage requirements. A correctly configured SAN is a vital compo-
nent in any performance-tuning process, our next subject.

2.5.3 Performance tuning

Like any other storage system, performance testing a SAN before operational commis-
sioning is critical in establishing a degree of confidence in the configuration. Unlike
DAS, SANs have a number of specific (often vendor-specific) configuration settings
that require specialist knowledge to derive maximum benefit.

 Storage virtualization and large amounts of cache often obscure disk performance
from tools such as Windows Performance Monitor. Therefore, it’s wise to involve stor-
age administrators and/or SAN vendors with vendor-supplied SAN monitoring tools
and techniques to measure actual performance during any performance monitoring
and baseline exercise.

 Two commonly tuned SAN settings are the storage cache and the HBA queue depth
setting. The SAN cache size is typically much larger than direct-attached cache, with
more options for adjusting the read/write percentage. Take care when performance
testing SANs containing large disk cache: make sure the tests are large enough, and
run for long enough, to exhaust the disk cache and deliver real I/O performance met-
rics, not just those satisfied from cache. Like standard disk controller cache, SAN
cache should be optimized for writes rather than reads. We’ll discuss storage cache in
greater detail in chapter 3.

 HBA cards connecting the server to the SAN have a setting called Queue Depth that
governs the number of I/O requests that can be queued at a given time. The default
HBA queue depth setting is typically between 8 and 32. For SQL Server deployments, a
queue depth value of 32 or greater often results in increased I/O performance,
although changes to this setting should be confirmed with the storage vendor and val-
idated with performance tests that confirm the effect of the change.

2.5.4 Disaster-recovery options

One of the main benefits of SAN storage from a DBA’s perspective is the enhanced
disaster-recovery options provided. SANs such as the EMC Symmetrix provide features
such as block-level disk replication to a remote data center and near-instant, split mir-
ror backup and recovery using SQL Server’s VDI.

 You should investigate such features as part of database disaster-recovery planning.
While they may incur additional costs due to software licensing and increased storage
requirements, they are important features to consider as part of realizing the full

investment in the SAN.

Licensed to Gayle M. Noll <pedbro@gmail.com>

28 CHAPTER 2 Storage system sizing

 SQL Server is capable of working with most modern SAN solutions from vendors
such as EMC, Hitachi, IBM, and HP. Before purchasing, you should ensure the vendor
guarantees the SAN’s compatibility with SQL Server’s specific I/O requirements such as
write ordering. These I/O requirements are well known to SAN vendors and available
for download from the Microsoft website. More information is available at http://sup-
port.microsoft.com/default.aspx/kb/967576.

 In closing the chapter, let’s examine an emerging storage technology that has the
potential, among other benefits, of dramatically increasing I/O performance.

2.6 Solid-state disks
Solid-state disk (SSD) technology has been around for many years. When compared
to traditional spindle-based hard drive storage, SSD storage, also referred to as flash
storage, offers many crucial advantages, including reduced power consumption,
smaller size, and reduced seek latency. It’s used today in a broad range of consumer
electronics devices, from USB memory sticks and MP3 players to recently released lap-
top hard drives.

 In contrast, the implementation of SSDs in the enterprise space has been hampered
by a number of key limitations, primarily the relatively poor random write performance
and the increased cost. There’s no denying that once these limitations are overcome
(there’s credible evidence to suggest we’re almost there), enterprise-based deploy-
ments of flash storage are a real possibility, and 2009 may well be the tipping point.

 Let’s have a closer look at SSD, beginning with an overview of how it works and its
key limitations, followed by the important ramifications it will have on SQL Server
deployments in the not-too-distant future.

2.6.1 What is SSD?

In contrast to spindle-based hard drives where movable disk heads are positioned over
spinning magnetized platters, SSD drives have no moving parts, storing data in an
array of cells. SSD-based storage offers the following benefits over traditional spindle-
based hard drives:

Reduced seek latency
Faster boot times
Lower power consumption
Shock resistance
Reduced weight
Lower heat generation

From a SQL Server perspective, arguably the greatest advantage of flash-based storage
is its very low seek latency. In a traditional hard disk, accessing data requires spinning
platters and moving heads in order to read data from the appropriate section of the
disk. Therefore, seek time becomes the dominant cost of random I/O operations typi-
cal of OLTP applications. In contrast, seek latency in flash storage is constant (and

low), regardless of the physical location of the required data on the flash device.

Licensed to Gayle M. Noll <pedbro@gmail.com>

http://support.microsoft.com/default.aspx/kb/967576
http://support.microsoft.com/default.aspx/kb/967576

29Solid-state disks

 Where traditional hard drive seek latencies are measured in milliseconds and their
IOPS in the hundreds, SSD latencies are measured in microseconds with IOPS in the tens
of thousands. In summary, random read I/O operations are orders of magnitude faster.

 Despite the very good random read performance, SSD-based storage faces a number
of obstacles before it will see widespread use in the enterprise space, as you’ll see next.

2.6.2 Current limitations of SSD for enterprise deployments

One of the key limitations of flash storage is the process used to overwrite existing
data. Unlike spindle-based storage, which can simply overwrite data as required, flash
storage must first erase cells before the new data can be stored. As a result, write per-
formance, particularly random write performance, is (currently) lower than traditional
spindle-based storage.

 In addition to the erase operation slowing write performance, there’s a limitation
to the number of times a given cell can be erased and reused, therefore limiting the
usable life of a given flash drive. Finally, the cost of flash storage makes its implemen-
tation in large database applications very expensive. While a single 320GB laptop
drive may be affordable, the cost of a RAID-based storage array with terabytes of capac-
ity is prohibitively expensive for most organizations.

 Given the massive potential of flash storage for large-scale server use, manufactur-
ers are coming up with various implementations to overcome its current weaknesses,
with internal write balancing across cells to reduce wear and increase usage life, and
several methods to increase write performance. Further, the increased production
rates are seeing a corresponding decrease in cost.

 It’s the expectation of a lot of experts that flash-based storage will soon become a
common server-based storage option, with SQL Server databases a prime beneficiary.

2.6.3 Potential advantages for SQL Server deployments

In almost all cases, the storage system is the slowest component of a server. It follows
that a performance-tuning exercise, particularly for SQL Server deployments, will have
a core goal of reducing the amount of data that needs to be read from and written to
disk, therefore addressing the most likely performance bottleneck. Effective indexing
strategies are front and center in this process, and we’ll cover this topic in detail in
chapter 13.

 With the promise of a potentially massive increase in I/O performance, particu-
larly in large-scale SSD-based arrays, one of the real implications of SSD storage is for
the bottleneck to begin shifting away from disk I/O to the CPU and other server com-
ponents. In turn, this has a number of interesting implications from a DBA perspec-
tive, not the least of which is for poor database design to be masked by improved I/O
performance.

 No one is seriously suggesting that database design will no longer be important,
but there’s no doubt that SSD technology is a potential game changer for the DBA,
opening up new opportunities and forcing a reexamination of server-sizing and per-

formance-tuning strategies in the years to come.

Licensed to Gayle M. Noll <pedbro@gmail.com>

30 CHAPTER 2 Storage system sizing

 SSD disks have already started to appear in top-end SAN storage solutions; it won’t
be long before this technology filters down and becomes available as commodity
server components.

2.7 Best practice considerations: storage system sizing
This chapter addressed server sizing from a storage performance perspective.
Although there are some compute-constrained and network-constrained SQL Server
implementations, they are reasonably rare, with the most common hardware prob-
lems related to poor storage design.

Classify application workload as OLAP or OLTP and be aware of the difference in
I/O patterns and bandwidth requirements between sequential and random I/O.
Measure and implement the required number of disks to support the I/O work-
load. SQL Server performance is increased by striping data across many disks,
thus having multiple spindles in action servicing I/O requests.
SCSI or SAS disks (or Fibre in SAN-based solutions) typically offer higher per-
formance than SATA disks, particularly ones with very high capacity. SATA disks,
however, are a cost-effective option for smaller deployments of SQL Server or as
online backup disks.
Size storage for performance first, and then consider capacity requirements.
Avoid RAID 0, and only use RAID 5 for applications with little write activity, or
where budget is limited and the performance overhead is acceptable.
When comparing and selecting a storage system, consider all aspects, including
initial and total cost, DBA control, disaster-recovery options, scale, and perfor-
mance.
Develop a strong working relationship with the SAN administrator and present
storage requirements from a DBA perspective (early in the design process) in
order to avoid poorly configured SAN storage.
If possible, create transaction log LUNs on dedicated SAN disks, particularly for
databases with high transaction rates.
When performance testing on a SAN, be mindful of how the production system
LUNs will be configured, and take into account the load from other applica-
tions with LUNs on the same disks as the SQL Server LUNs.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/storage.

 In the next chapter, we’ll continue our look at storage, but from a broader, physi-
cal server design perspective.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Physical server design
Chapter 2 addressed the important issue of determining I/O requirements and
building a storage system to match. The selection of server components is directly
related and will be the focus of this chapter.

 In this chapter we look at various server components, including the CPU, mem-
ory, disk, and network. We explore the important properties of these components
and their impact on SQL Server from both performance and fault tolerance per-
spectives. This chapter concludes by focusing on the ever-increasing march toward
server consolidation and virtualization.

3.1 Disk configuration
As hardware components simultaneously increase in speed and capacity while fall-

In this chapter, we’ll cover
■ Disk allocation size and partition offset
■ SQLIO and SQLIOSIM

■ Benefits of a 64-bit platform
■ NUMA architecture
■ Server consolidation and virtualization
31

ing in price, one of the consequences is a tendency to spend less time analyzing the

Licensed to Gayle M. Noll <pedbro@gmail.com>

32 CHAPTER 3 Physical server design

precise performance requirements of a database application. Today’s off-the-shelf/
commodity database servers from the major system vendors are both powerful and
flexible enough for almost all database implementations. Given that, regardless of the
available power, one of the fundamental truths of any computing system is that there
will always be a bottleneck somewhere (and in most cases, particularly for SQL Server
systems, the bottleneck is usually in the disk subsystem), making disk configuration an
important DBA skill.

 Multicore CPUs and higher-capacity (and cheaper) memory chips have made CPU
and memory configuration reasonably straightforward. Disk configuration, on the
other hand, is more involved, and for a disk-intensive server application such as SQL
Server, correctly configuring disk storage components is critical in ensuring ongoing
performance and stability.

 As well as being the most complicated hardware bottleneck to fix once in produc-
tion, incorrectly configured disks and poor data placement are arguably the most
common cause of SQL Server performance problems. Chapter 9 will tackle disk man-
agement from a SQL Server data placement perspective. For now, let’s focus on disk
configuration from a hardware and operating system perspective. In this section, we’ll
take a look at disk drive anatomy, partition offsets, allocation unit size, using multip-
athing software, and configuring storage cache.

3.1.1 Creating and aligning partitions

Preparing disks for use by SQL Server involves configuring RAID arrays, creating parti-
tions, and formatting volumes. We’ll examine each of these tasks shortly, but first let’s
cover some of the terms used when discussing the anatomy of a disk drive:

Each physical disk is made up of multiple magnetized platters, which are
stacked on top of each other, with each platter storing data on both sides (top
and bottom).
A track is a ring of data storage on a disk platter. Tracks are numbered begin-
ning with zero, starting from the outermost to the innermost ring.
Each track consists of multiple sectors, which cut the track into portions similar
to a pie slice. Sectors typically have a fixed size of 512 bytes, and represent the
smallest accessible unit of data on the disk.
Earlier disks had a fixed amount of sectors per track. Considering the smaller
length of tracks toward the center of the disk platters, sectors on the outer
tracks were padded with blank space to keep the sectors per track at a fixed
ratio. Modern disks use various techniques1 to utilize the blank space on the
outer tracks to increase disk capacity.
Disk heads, positioned above and below each platter, move in and out from the
center of the disk. This motion, together with the spinning of the disk platters
1 The most common technique is zoned-bit recording (ZBR), which uses more sectors on the outer track.

Licensed to Gayle M. Noll <pedbro@gmail.com>

33Disk configuration

on their central axes, allows the disk heads to access the entire surface of each
disk platter.
An allocation unit is the smallest file allocation size used by Windows. The
default allocation unit size is 4K, which equates to eight sectors. Smaller alloca-
tion units reduce the amount of wasted space for small files but increase frag-
mentation. Larger allocation units are useful for larger files and reducing
fragmentation.

Figure 3.1 illustrates some of these terms.

Figure 3.1 Anatomy of a hard disk. (Reproduced
with permission: Rui Silva, “Disk Geometry,”
MSExchange.org, http://www.msexchange.org/
tutorials/Disk-Geometry.html.)

RAID ARRAY STRIPE SIZE

In chapter 2 we discussed commonly used RAID levels such as RAID 0 and RAID 10,
both of which stripe data across multiple disks. Striping works by dividing data to be
written to disk into chunks and spreading the chunks over the separate disks in the
RAID array. When the data is read, the RAID controller reads the individual chunks
from the required disks and reconstructs the data into the original format.

 The RAID stripe size, not to be confused with the allocation unit size, determines
the size of each chunk of data. Setting the stripe size too small will create additional
work for the RAID controller in splitting and rejoining requested data. The best RAID
stripe size is a contentious issue, and there’s no single best answer.

 Storage vendors, particularly for their enterprise SAN solutions, typically optimize
the stripe size based on their expert knowledge of their systems. In almost all cases,
the best option is to leave the existing default stripe size in place. Changes should be
verified with the storage vendor and undergo thorough tests to measure the perfor-
mance impact before making the change to a production system.

 Once the RAID array is built, the next task is to create one or more partitions on
the array that prepares the disk for use by Windows. As you’ll see shortly, disk parti-
tions should be built using the diskpart.exe tool, which provides a method to offset, or
align, the partition.

TRACK-ALIGNED PARTITIONS WITH DISKPART

The first part of each disk partition is called the master boot record (MBR). The MBR is 63
sectors in length, meaning the data portion of the partition will start on the 64th sec-
tor. Assuming 64 sectors per track, the first allocation unit on the disk will start on the
first track and complete on the next track. Subsequent allocation units will be split
across tracks in a similar manner.

Sector
Track

Platters
Licensed to Gayle M. Noll <pedbro@gmail.com>

http://www.msexchange.org/tutorials/Disk-Geometry.html
http://www.msexchange.org/tutorials/Disk-Geometry.html

34 CHAPTER 3 Physical server design

 The most efficient disk layout is where allocation units are evenly divisible into the
tracks—for example, eight 4K allocation units per 32K track. When a partition isn’t
track-aligned, allocation units start and finish on different tracks, leading to more disk
activity than would be required in a track-aligned partition. For RAID arrays, similar
alignment problems exist with the stripes, increasing disk activity and reducing cache
efficiency. Some estimates suggest up to a 30 percent performance penalty—a signifi-
cant amount, particularly for disk-bound systems. Figure 3.2 illustrates the before- and
aftereffects of offsetting a partition.

Figure 3.2 Track-aligned partitions. Without specifying an offset during partition creation, partitions
incur I/O overhead. Using DiskPart with an offset allows partition alignment and more efficient I/O.

The task, then, is to offset the partition’s starting position beyond the MBR. Starting in
Windows Server 2008, all partitions are track-aligned by default. In Windows Server
2003 and earlier, partitions are track-aligned on creation using the diskpart.exe tool
or diskpar.exe prior to Windows Server 2003 Service Pack 1. As shown in figure 3.3,
the DiskPart tool can also be used to inspect an existing partition’s offset.

MBR

MBR Offset

Physical disk unit

Physical disk unit Physical disk unit

Requested data

Requested data

Physical disk unit Physical disk unit

Data

Data D

Physical disk unit

D
ef

au
lt

pa
rt

iti
on

O
ffs

et
 p

ar
tit

io
n

Figure 3.3 DiskPart can be
used to track-align partitions
and inspect the offset of

existing partitions.

Licensed to Gayle M. Noll <pedbro@gmail.com>

35Disk configuration

 A common offset used for SQL Server partitions is 64K, or 128 sectors. Using Disk-
Part, you achieve this by using the Create Partition command with an align=64 option.
Windows Server 2008 (and Vista) automatically use a 1024K offset, a value chosen to
work with almost all storage systems. If unaligned partitions are used by these operat-
ing systems—for example, after an upgrade from Windows Server 2003—then the par-
tition overhead remains until the partition is rebuilt.

 As with the RAID stripe size, check the offset value with the storage vendor, and ver-
ify any changes from their recommended value with an appropriate performance test.
ALLOCATION UNIT SIZE

The final task in preparing a disk for use by SQL Server is to format the partition using
the Windows Disk Management tool. By default, partitions are formatted using a 4K
allocation unit size.

 As discussed earlier, the smaller the allocation unit size, the less disk space is
wasted for small files. For example, a 1K file created on a volume with a 4K allocation
unit will waste 3K, as 4K is the minimum allocation unit size.

 In contrast, large files benefit from a larger allocation unit. In fragmented disks
with a small allocation unit size, a single large file will occupy many allocation units,
which are probably spread over many different parts of the disk. If you use a larger
allocation unit, a file will have a better chance of being located in consecutive disk sec-
tors, making the read and writes to this file more efficient.

 SQL Server allocates space within a database using extents, which are collections of
eight 8K pages, making a total extent size of 64K. As you can see in figure 3.4, the rec-
ommended allocation unit size for a SQL Server volume is 64K, matching the extent size.
Allocation unit sizes less than 8K (the default is 4K) aren’t recommended, as this leads
to split I/O, where parts of a single page are stored on separate allocation units—poten-
tially on different parts of the disk—which leads to a reduction in disk performance.

 Note that NTFS partitions created using allocation units of greater than 4K can’t be
compressed using NTFS compression. Such compression isn’t recommended for SQL
Server volumes, so this shouldn’t be a determining factor. In later chapters, we’ll
examine various forms of native compression introduced in SQL Server 2008.

 Let’s turn our attention from the format of disks to the manner in which they’re
connected to the server: disk controller cards.

Figure 3.4 SQL Server volumes
should be formatted with a 64K
allocation unit size using the NTFS
file system, after the underlying

partition has been track-aligned.

Licensed to Gayle M. Noll <pedbro@gmail.com>

36 CHAPTER 3 Physical server design

3.1.2 Distributing load over multiple controllers

Storage controller cards, along with various other components, act as intermediaries
between the physical disks and the software requesting the data on the disks. Like other
storage components, disk controllers have a maximum throughput capacity and are
subject to failure. When you design a storage system for SQL Server, storage controller
cards play a pivotal role from both performance and fault tolerance perspectives.

 A guiding principle in achieving the best possible storage performance for SQL
Server is to stripe data across many disks. With multiple disks, or spindles, in action,
the speed of a read or write operation is faster than what could be achieved with a sin-
gle disk. Striping data across multiple disks also reduces the speed at which disk
queues build. With more disks in action, the likelihood of a queue building for any
single disk is reduced.

 When large numbers of disks are used, the storage bottleneck begins to move from
the disks to the storage controllers that coordinate the disk reads and writes. More
disks require more storage controllers to avoid I/O bottlenecks. The ratio of disks to
controllers is determined by various factors, including the nature of the I/O and the
speed and bandwidth of the individual components. We discussed a technique for esti-
mating disk and controller numbers in the previous chapter.
I/O PERFORMANCE

When choosing a server, pay attention to the server’s I/O capacity, measured by the
amount of supported PCI slots and bus type. Modern servers use the PCI Express (PCI-
E) bus, which is capable of transmitting up to 250MB/second per lane. An x4 PCI
Express slot has four lanes, x8 has eight lanes, and so forth. A good server selection
for SQL Server systems is one that supports multiple PCI-E slots. As an example, the HP
ProLiant DL585 G2 has seven PCI-E slots comprised of 3x8 slots and 4x4 slots for a total
of 40 lanes. Such a server could support up to seven controller cards driving a very
high number of disks.
MULTIPATH FOR PERFORMANCE AND TOLERANCE

Depending on the storage system, a large number of components are involved in the
I/O path between the server and the disks. Disk controllers, cabling, and switches all
play a part in connecting the disks to the server. Without redundancy built into each
of these components, failure in any one component can cause a complete I/O failure.

 Redundancy at the disk level is provided by way of RAID disks, as you learned in the
previous chapter. To ensure redundancy along the path to the disks, multiple control-
ler cards and multipathing software is used.

 Multipathing software intelligently reroutes disk I/O across an alternate path when
a component failure invalidates one of the paths. To do this, multiple disk controllers
or HBA cards must be present and, ideally, connected to the storage system via sepa-
rate switches and cabling.

 Microsoft provides support for multipathing on the Windows Server platform (and
therefore SQL Server) via Microsoft Multipath I/O (MPIO) drivers. Using MPIO, stor-

age vendors provide reliable multipathing solutions for Windows Server platforms.

Licensed to Gayle M. Noll <pedbro@gmail.com>

37Disk configuration

MPIO solutions are available for a variety of storage systems, including Fibre and iSCSI
SANs and parallel SCSI.

 The real value in multipathing software lies in the fact that when all disk paths are
working, the multipathing software increases disk performance by balancing load
across the available paths; thus, the solution services both fault tolerance and perfor-
mance at the same time.
SEPARATE CONTROLLERS

Chapter 9 discusses separating data and transaction logs in more detail, but it’s worth
mentioning at this point that for SQL Server systems with very high transaction rates,
it’s important to ensure there are no bottlenecks while writing to the transaction log.
Transaction log bottlenecks increase transaction duration, which has a flow-on effect
that causes numerous other performance problems. One way of preventing this is to
store the transaction log on dedicated, RAID-protected disks, optionally connected to
a dedicated disk controller channel or separate controller card.

 Using multiple controller cards and multipathing software helps to increase disk per-
formance and therefore reduce the impact of the most common hardware bottleneck.
Another means of improving disk performance is through the usage of storage cache.

3.1.3 Configuring storage cache

In chapter 2 we listed the benefits of hardware-based RAID, one of which was that the
disk controllers usually include some degree of cache, which you can consider the
disk controller’s private RAM. Let’s turn our attention to two important aspects of stor-
age cache: protecting it during power failure and configuring a higher percentage of
its use for disk writes compared to reads.

BATTERY-BACKED CACHE

Disk controller cache improves performance for both reads and writes. When data is
read from the disk, if the requested data is stored in the controller cache, then physi-
cal reads of the disk aren’t required. In a similar fashion, when data is written to disk,
it can be written to cache and applied to disk at a later point, thus increasing write
performance.

 The most critical aspect of disk controller cache is that it must be battery backed. This
will ensure that power failures don’t cause data in the cache to be lost. Even if the server
includes a UPS, which is recommended, disk controller cache must be battery backed.

READ VS. WRITE CACHE

It’s important to make the distinction between read cache and write cache. SQL Server
itself has a large cache stored in the server’s RAM where, among other things, it caches
data read from disk. In most cases, the server’s RAM is likely to be much larger (and
cheaper) than the disk controller cache; therefore, disk read performance increases
attributed to storage cache are likely to be quite small, and in some cases can actually
be worse due to the double caching involved.

 The real value of disk controller cache is the write cache. Write cache is particu-

larly useful for improving disk performance during bursts of write activity such as

Licensed to Gayle M. Noll <pedbro@gmail.com>

38 CHAPTER 3 Physical server design

checkpoints (covered in chapter 7), during which large numbers of writes are sent to
disk. In these circumstances, a large write cache can increase performance. The con-
troller commits the writes to cache, which is much faster than disk, and hardens the
writes to disk at a later point. As long as the controller cache is battery backed, this is a
safe, high-performance technique.

 Depending on the controller card or SAN, you may be able to configure the per-
centage of cache used for reads and writes. For SQL Server systems, reserving a larger
percentage of cache for writes is likely to result in better I/O performance.

 The quantity and read/write ratio of storage cache can make a significant differ-
ence to overall storage performance. One of the common methods of validating dif-
ferent settings prior to deploying SQL Server is to use the SQLIO tool, discussed next.

3.1.4 Validating disk storage performance and integrity

Before a system is production ready, you must conduct a number of performance tests
to ensure the system will perform according to expectations. The primary test is to
load the system with the expected transaction profile and measure the response times
according to the service level agreements. We’ll go into this process in more detail in
chapter 14, when we’ll focus on creating a performance baseline.

 Prior to these tests, you’ll need to carry out several system-level tests. One of the
most important ones involves testing the storage system for capacity and integrity.
This section focuses on two important tools, SQLIO and SQLIOSIM, both of which you
can download for free from the Microsoft website. Links to both of these tools are
available at sqlCrunch.com/storage.

SQLIO
SQLIO is a tool used to measure the I/O performance capacity of a storage system. Run
from the command line, SQLIO takes a number of parameters that are used to gener-
ate I/O of a particular type. At the completion of the test, SQLIO returns various capac-
ity statistics, including I/Os per second (IOPS), throughput MB/second, and latency:
three key characteristics of a storage system, as you’ll recall from chapter 2.

 The real value in SQLIO is using it prior to the installation of SQL Server to mea-
sure the effectiveness of various storage configurations, such as stripe size, RAID lev-
els, and so forth. In addition to identifying the optimal storage configuration, SQLIO
often exposes various hardware and driver/firmware-related issues, which are much
easier to fix before SQL Server is installed and in use. Further, the statistics returned
by SQLIO provide real meaning when describing storage performance; what is per-
ceived as slow can be put into context when comparing results between similar stor-
age systems.

 Despite the name, SQLIO doesn’t simulate SQL Server I/O patterns; that’s the role
of SQLIOSIM, discussed in a moment. SQLIO is used purely to measure a system’s I/O
capacity. As shown in table 3.1, SQLIO takes several parameters used in determining
the type of I/O generated.
Licensed to Gayle M. Noll <pedbro@gmail.com>

39Disk configuration

The configuration file specified with the -F parameter option contains the file paths
to be used by SQLIO for the test. For example, let’s say we wanted to test a LUN
exposed to Windows as T drive. The contents of the configuration file for this test
would look something like this:

T:\sqlio_test_file.dat 8 0x0 1000

The additional parameters specified relate to the number of threads to use against the
file (8 in this example), a mask value, and the file size.

 Before we look at an example, let’s run through some general recommendations:

� The file size and test duration should be sufficient to exhaust the cache of the
storage system. Some systems, particularly SANs, have a very large storage cache,
so a short test duration with small file sizes is likely to be fulfilled from the
cache, obscuring the real I/O performance.

� Tests should be run multiple times, once for each file path. For instance, to test
the capacity of four LUNs, run four tests, once for each LUN specified in the
configuration file (using the -F parameter). Once each file path has been
tested individually, consider additional tests with file path combinations speci-
fied in the configuration file.

� Ensure the tests run for a reasonable length of time (at least 10–15 minutes)
and allow time between test runs to enable the storage system to return to an
idle state.

� Record the SQLIO results with each change made to the storage configuration.
This will enable the effectiveness of each change to be measured.

Table 3.1 Commonly used SQLIO parameters

SQLIO option Description

-t Number of threads

-o Number of outstanding I/O requests
(queue depth)

-LS Records disk latency information

-kR Generates read activity

-kW Generates write activity

-s Duration of test in seconds

-b I/O size in bytes

-frandom Generates random I/O

-ssequential Generates sequential I/O

-F Config file containing test paths
Licensed to Gayle M. Noll <pedbro@gmail.com>

40 CHAPTER 3 Physical server design

Run tests with a variety of I/O types (sequential vs. random) and sizes. For sys-
tems used predominately for OLTP purposes, random I/O should be used for
most tests, but sequential I/O testing is still important for backups, table scans,
and so forth. In contrast, sequential I/O testing should form the main testing
for OLAP systems.
If possible, provide the results of the tests to the storage vendor for validation.
Alternatively, have the vendor present during the tests. As the experts in their
own products, they should be able to validate and interpret the results and offer
guidance on configuration settings and/or driver and firmware versions that
can be used to increase overall performance.

Let’s look at an example of running SQLIO to simulate 8K sequential writes for 5 min-
utes:

sqlio -kW -t1 -s300 -o1 -fsequential -b8 -LS -Fconfig.txt

In this case, the config.txt file contains a path specification to a 1GB file located in
e:\sqlio_test_file.dat. You can see the results of this test in figure 3.5.

 As the results show, we achieved about 2,759 IOPS and 21.55 MB/second through-
put with low average latency (2ms) but a high peak latency (1301ms). On their own,
these results don’t mean a lot. In a real-world case, the tests would be repeated several
times for different I/O types and storage configurations, ideally in the presence of the
storage vendor, who would assist in storage configuration and capacity validation.

 Achieving good I/O capacity, throughput, and latency is all well and good, but
that’s not enough if the storage components don’t honor the I/O requirements of
SQL Server. The SQLIOSIM tool, discussed next, can be used to verify the integrity of
the storage system and its suitability for SQL Server.

Figure 3.5 SQLIO results include IOPS, MB/second, and various latency metrics. Running several tests
using different storage configurations helps to determine optimal storage configuration prior to SQL

Server installation.

Licensed to Gayle M. Noll <pedbro@gmail.com>

41Disk configuration

SQLIOSIM
Unlike SQLIO, SQLIOSIM is a storage verification tool that issues disk reads and writes
using the same I/O patterns as SQL Server. SQLIOSIM uses checksums to verify the
integrity of the written data pages.

 Most SQL Server systems involve a large number of components in the I/O chain.
The operating system, I/O drivers, virus scanners, storage controllers, read cache,
write cache, switches, and various other items all pass data to and from SQL Server.
SQLIOSIM is used to validate that none of these components alters the data in any
adverse or unexpected way.

 As you can see in figure 3.6, SQLIOSIM can be configured with various file locations
and sizes along with test durations. The output and results of the tests are written to
an XML file, which you specify in the Error Log (XML) text box.

 During execution, the test progress is displayed to the screen, as shown in figure
3.7, with the final results captured in the XML log file you specified.

 SQLIOSIM ensures that the SQL Server I/O patterns (covered in later chapters),
such as random and sequential reads and writes, backups, checkpoints, lazy writer,
bulk update, read ahead, and shrink/expand, all conform to SQL Server’s I/O
requirements. Together with SQLIO, this tool provides peace of mind that the storage
system is both valid and will perform to expectations.

 Let’s turn our attention now from disk configuration to another major system com-
ponent: CPU.

Figure 3.6 Use the SQLIOSIM Files and Configuration screen to specify various configuration

options for I/O simulation tests.

Licensed to Gayle M. Noll <pedbro@gmail.com>

42 CHAPTER 3 Physical server design

3.2 CPU architecture
From multicores and hyperthreading, to clock speed, cache, and x86/x64/Itanium
platforms, there are numerous aspects to consider when choosing a CPU platform for
SQL Server. Making the task somewhat easier are vendors such as Dell and HP that pre-
configure systems suitable for SQL Server deployments. Such systems typically support
2 or 4 dual- or quad-core x64 CPUs providing between 4 and 16 CPU cores per server.
This level of processing power is usually plenty for most line-of-business SQL Server
applications. Moreover, the x64 processing platform in such servers provides flexibil-
ity in choosing between 32- and 64-bit Windows and SQL Server.

 Despite the processing power and flexibility provided by such servers, it’s still
important to understand the various CPU attributes and configuration options, partic-
ularly the choice between 32- and 64-bit processing environments.

 In this section we’ll address the various aspects of CPU platforms for SQL Server,
including multicore systems, CPU cache, clock speed, and the advantages of a 64-bit
processing platform. In chapter 7 we’ll drill down into specific CPU configuration
options such as max degree of parallelism and fiber mode.

3.2.1 Hyperthreading and multicore

In recent years, there’s been a clear shift toward CPUs with multiple cores per die.
Dual-core and quad-core chips are now common, and this trend should continue,

Figure 3.7 SQLIOSIM results are displayed to the screen as the simulation is in progress, and the final
results are captured to the XML log file specified in the Files and Configuration screen.
with 8+-core CPUs not too far away.

Licensed to Gayle M. Noll <pedbro@gmail.com>

43CPU architecture

 Intel introduced its CPU hyperthreading technology in 2003. For each physical CPU,
hyperthreading exposes a second virtual CPU to the operating system and is therefore
able to provide support for multithreaded applications. SQL Server performance with
hyperthreading enabled is often unpredictable, with mixed reports of performance
increases, decreases, or no change at all. In contrast, today’s multicore systems deliver
two (or more) real CPU cores per die, and performance improvements are consistent.

 The ability to pack multiple cores onto a single CPU die delivers two significant
advantages: the processing capacity of servers is greatly increased, and perhaps more
importantly, the overall server cost is reduced. Today’s quad-core chips deliver similar
performance to four single-core chips. In the single-core era, supporting eight CPUs
required an expensive eight-way server. With today’s quad-core chips, a much cheaper
two-way server can be used that delivers similar processing performance.

 Servers suitable for SQL Server deployments are typically ones with support for 2 or
4 dual- or quad-core chips. This delivers between 4 and 16 CPU cores in a relatively
cheap two- or four-way server. Such CPU power is usually enough for most database
server requirements, with the exception of compute-constrained or very high
throughput SQL Server applications.

3.2.2 CPU cache and clock speed

With the advent of multicore technology, clock speed has become less important in
determining overall CPU performance, with far more weight assigned to the number
of cores and the amount of accessible cache.

 CPU cache is implemented to speed up access to main system memory. Storing
copies of the most frequently accessed memory, cache is typically implemented in
three levels. As shown in figure 3.8, modern CPUs like those belonging to the Intel
Core i7 family provide three levels of cache, two of which are private to each core, and
one shared area.

 The larger the cache, the better; however, much like a disk drive, larger caches have
longer access latency. Multiple cache levels are implemented to reconcile between the
size and latency goals; level 1 cache is checked before level 2, which in turn is checked
before level 3. Finally, the main system memory is accessed if necessary. Such an
arrangement results in the fastest overall memory access.

Figure 3.8 Intel CPUs
based on the Nehalem
architecture will support
between two and eight
cores, with each core
having 64K of level 1
cache, 256K of level 2
cache, and 8MB of shared

Integrated DDR3 memory controller

Core 0
64K level 1 cache
256K level 2 cache

Core 1
64K level 1 cache
256K level 2 cache

Core 2
64K level 1 cache
256K level 2 cache

Core 3
64K level 1 cache
256K level 2 cache

8MB shared level 3 cache
level 3 cache.

Licensed to Gayle M. Noll <pedbro@gmail.com>

44 CHAPTER 3 Physical server design

We’ll cover memory access speed in more detail when we look at non-uniform mem-
ory access (NUMA) architecture a little later in this chapter. For now, let’s focus on
CPU platforms, and the advantages of 64-bit computing.

3.2.3 CPU platforms

The year 2001 saw the introduction of the first 64-bit CPU for the Microsoft Windows
platform. The Intel Itanium CPU was designed from the ground up as a completely
new architecture compared to the 32-bit x86 architecture that preceded it. Joint
designers HP and Intel intended it for use in enterprise-class servers needing to
expand beyond the constraints of the 32-bit platform, particularly in regard to
addressable memory.

 The original Itanium processor achieved only moderate success, primarily due to
its incompatibility with all existing 32-bit software. In response to this, the x64 proces-
sors emerged, offering 64-bit processing capability, yet retaining backward compatibil-
ity with existing 32-bit software.

 Led by AMD with its Opteron CPUs, x64 platforms became popular in large SQL
Server deployments. Using the x64 versions of Microsoft Windows and SQL Server,
these systems immediately benefited from the advantages of 64-bit computing, while
avoiding the problems with 32-bit platforms.

PROBLEMS WITH 32-BIT PLATFORMS

The primary constraint with 32-bit platforms is addressable memory. Without using
the AWE option (discussed shortly), 32-bit systems are limited to 4GB addressable
memory, 2GB of which is used by the operating system, which leaves only 2GB for user
applications like SQL Server.

 The AWE option allows applications to acquire physical memory above 4GB as non-
paged memory dynamically mapped in the 32-bit address space. Using this technique,
SQL Server 2008 is able to address up to 64GB of memory.

 Although the AWE option allows additional memory to be addressed by SQL Server,
it’s not without its problems. Overhead is involved in mapping memory in this man-
ner, and the memory can only be used for SQL Server data buffers. Plan cache, sort
space, and various other SQL Server resources are unable to use such memory. In con-
trast, 64-bit SQL Server has no such limitations, offering many advantages:

Large and directly addressable memory space —Up to 2TB addressable memory can
be used by all SQL Server resources, including data cache, plan cache, sort
space, indexing, joins, and so forth.

Enhanced parallelism —64-bit SQL Server supports up to 64 CPUs with enhanced
parallelism for much more reliable and linear scalability compared to 32-bit
systems.

Larger cache and improved bus architecture —64-bit CPUs typically offer larger on-
die cache and better internal architecture, allowing enhanced data movement

between cache and processors.

Licensed to Gayle M. Noll <pedbro@gmail.com>

45Memory configuration

 Organizations that make the decision to move from 32- to 64-bit processing plat-
forms are then faced with a further choice: which 64-bit platform?
WHICH 64-BIT PLATFORM?
Itanium CPUs are best used in delivering supercomputer-like performance in systems
requiring the full benefits and scale of the 64-bit platform. An HP Integrity Super-
dome used in a TPC-C test2 in November 2005 was configured with 1TB (1024GB) of
memory and 64 Itanium2 CPUs running at 1.6GHz. Itanium-based systems such as
these have exceptionally large memory and I/O bandwidths far exceeding the capacity
of x64-based systems.

 The vast bulk of 64-bit deployments in use today are based on Xeon or Opteron
x64 CPUs. With the exception of all but the largest systems, the x64 platform repre-
sents the best choice from both a cost and a performance perspective.

 Table 3.2 shows the number of CPUs supported by SQL Server 2008 running on
Windows Server 2008.

With SQL Server’s ability to support increasingly larger databases comes a need for
larger amounts of RAM, an issue we’ll focus on next.

3.3 Memory configuration
Insufficient RAM is a common problem in SQL Server systems experiencing perfor-
mance problems. Fortunately, RAM is both reasonably inexpensive and relatively easy
to upgrade.

Table 3.2 Maximum supported CPU sockets for each SQL Server version

Maximum supported CPUs

SQL Server 2008 version 32-bit 64-bit

Enterprise OS max OS max

Standard 4 4

Web 4 4

Workgroup 2 2

Express 1 1

Windows Server 2008 32-bit 64-bit

Data Center 32 64

Enterprise 8 8

Standard 4 4

Web Server 4 4

Itanium N/A 64
2 http://www.tpc.org/results/individual_results/HP/hp_orca1tb_win64_ex.pdf

Licensed to Gayle M. Noll <pedbro@gmail.com>

46 CHAPTER 3 Physical server design

 There are some important considerations when selecting and configuring server
RAM, such as the module capacity and fault tolerance, and latency issues on large,
multi-CPU systems. In this section, we’ll look at configuring a server’s RAM slots and
take a brief look at the NUMA architecture, which is used to derive maximum perfor-
mance in large, multi-CPU systems.

3.3.1 Design for future RAM upgrades

When selecting and configuring RAM for SQL Server, you must consider the amount,
type, and capacity of the chosen RAM. If the server will be used for future system con-
solidation, or the exact RAM requirements can’t be accurately predicted, then apart
from loading the system up with the maximum possible memory, it’s important to
allow for future memory upgrades.

 Virtualization, covered later in this chapter, addresses this issue nicely by being
able to easily grant and revoke CPU/memory resources as the server’s needs increase
or decrease. On dedicated, nonvirtualized systems, this issue is typically addressed by
using fewer higher-capacity memory chips, therefore leaving a number of free slots for
future upgrades if required. This avoids the common problem of having to remove
and replace lower-capacity RAM chips if the server’s RAM slots are full and more mem-
ory is required. Although initially more expensive, this approach provides flexibility
for future requirements.

Finally, in order to provide a system with a degree of resilience against memory errors,
error-correcting code (ECC) RAM should be installed. Used by all the major system ven-
dors, ECC forms an important part of configuring a fault-tolerant SQL Server system.

 Table 3.3 shows the maximum memory supported by SQL Server 2008 running on
Windows Server 2008.

Hot-add CPU and memory
The Enterprise edition of SQL Server 2008 supports hot-add memory and CPU, meaning
that if the underlying hardware is capable of dynamically adding these resources, SQL
Server can take advantage of them without requiring a restart. In both cases, there
are a number of key restrictions on using this feature, fully described in Books Online.

Table 3.3 Maximum memory for SQL Server 2008 editions

Maximum supported memory

SQL Server 2008 version 32-bit 64-bit

Enterprise OS max OS max

Standard OS max OS max

Web OS max OS max
Licensed to Gayle M. Noll <pedbro@gmail.com>

47Memory configuration

Despite memory being significantly faster than disk, a large multi-CPU system may bot-
tleneck on access to the memory, a situation addressed by the NUMA architecture.

3.3.2 NUMA

As we mentioned earlier, advances in CPU clock speed have given way to a trend
toward multiple cores per CPU die. That’s not to say clock speeds won’t increase in the
future—they most certainly will—but we’re at the point now where it’s become
increasingly difficult to fully utilize CPU clock speed due to the latency involved in
accessing system RAM. On large multiprocessor systems where all CPUs share a com-
mon bus to the RAM, the latency of RAM access becomes more and more of an issue,
effectively throttling CPU speed and limiting system scalability. A simplified example
of this is shown in figure 3.9.

 As we covered earlier, higher amounts of CPU cache will reduce the frequency of
trips out to system RAM, but there are obviously limits on the size of the CPU cache, so
this only partially addresses the RAM latency issue.

 The non-uniform memory access (NUMA) architecture, fully supported by SQL
Server, addresses this issue by grouping CPUs together into NUMA nodes, each of which
accesses its own RAM, and depending on the NUMA implementation, over its own I/O
channel.

Workgroup OS max 4GB

Express 1GB 1GB

Windows Server 2008 32-bit 64-bit

Data Center 64GB 2TB

Enterprise 64GB 2TB

Standard 4GB 32GB

Web Server 4GB 32GB

Itanium N/A 2TB

Table 3.3 Maximum memory for SQL Server 2008 editions

Maximum supported memory

SQL Server 2008 version 32-bit 64-bit

CPU0 CPU1 CPU3 CPU2

System bus

RAM

Figure 3.9 CPUs in a
symmetric multiprocessing
(SMP) system share
access to system RAM via
a single system bus, thus

(continued)
limiting scalability.

Licensed to Gayle M. Noll <pedbro@gmail.com>

48 CHAPTER 3 Physical server design

Figure 3.10 The NUMA
architecture increases
scalability by grouping
CPUs and RAM into nodes.

In contrast, the symmetric multiprocessor architecture has no CPU/RAM segregation,
with all CPUs accessing the same RAM over the same shared memory bus. As the num-
ber of CPUs and clock speeds increase, the symmetric multiprocessor architecture
reaches scalability limits, limits that are overcome by the NUMA architecture; a simpli-
fied example appears in figure 3.10.

 While the NUMA architecture localizes RAM to groups of CPUs (NUMA nodes) over
their own I/O channels, RAM from other nodes is still accessible. Such memory is
referred to as remote memory. In the NUMA architecture, accessing remote memory is
more costly (slower) than local memory, and applications that aren’t NUMA aware often
perform poorly on NUMA systems. Fortunately, SQL Server is fully NUMA aware.3

 On large multi-CPU systems running multiple SQL Server instances, each instance
can be bound to a group of CPUs and configured with a maximum memory value. Both
of these options are covered in chapter 7. In this way, SQL Server instances can be tai-
lored for a particular NUMA node, increasing overall system performance by prevent-
ing remote memory access while benefiting from high-speed local memory access.
HARDWARE NUMA
The NUMA architecture just described is known as hardware NUMA, also referred to as
hard NUMA. As the name suggests, servers using hardware NUMA are configured by the
manufacturer with multiple system buses, each of which is dedicated to a group of
CPUs that use the bus to access their own RAM allocation.

 Some hardware vendors supply NUMA servers in interleaved NUMA mode, in which
case the system will appear to Windows and SQL Server as an SMP box. Interleaved
NUMA is suitable for applications that aren’t NUMA optimized. For SQL Server sys-
tems, pure NUMA mode should be considered to take advantage of NUMA optimiza-
tions if appropriate. The sys.dm_os_memory_clerks Dynamic Management View
(DMV) can be used to determine the NUMA mode:

-- TSQL to return the set of active memory clerks
SELECT DISTINCT memory_node_id
FROM sys.dm_os_memory_clerks

If node 0 is the only memory node returned from this query, the server may be config-
ured in interleaved NUMA mode (or isn’t NUMA hardware). Servers not configured

CPU0 CPU1 CPU3 CPU2

RAM RAM

System bus 1 System bus 2

NUMA node 2 NUMA node 1
3 SQL Server 2000 Service Pack 3 and earlier isn’t NUMA aware and often performs poorly on NUMA systems.

Licensed to Gayle M. Noll <pedbro@gmail.com>

49Memory configuration

for hardware NUMA (SMP servers) that contain lots of CPUs may benefit from software-
based NUMA, or soft NUMA, which we’ll look at next.
SOFT NUMA
Unlike hardware NUMA, soft NUMA isn’t able to isolate, or affinitize, RAM to groups of
CPUs over dedicated buses. However, in some cases system performance may increase
by enabling soft NUMA.

 On SMP systems without soft NUMA, each SQL Server instance has a single I/O
thread and a single LazyWriter thread. Instances experiencing bottlenecks on these
resources may benefit from configuring multiple NUMA nodes using soft NUMA, in
which case each node will receive its own I/O and LazyWriter threads. We’ll cover
threads and the LazyWriter process in more detail in chapter 7.
SOFT NUMA IN SQL SERVER

Configuring a SQL Server instance for soft NUMA is a two-step process. First, the
instance is configured with CPU affinity, as in this example, which configures an
instance to use CPUs 0–3:

-- Configure an Instance to use CPUs 0-3
sp_configure 'show advanced options', 1;
RECONFIGURE;
GO
sp_configure 'affinity mask', 15;
RECONFIGURE;
GO

The next step is to configure the NUMA nodes, which is done at a server level—enabling
all the defined NUMA nodes to be visible to all SQL instances on the server. A NUMA
node is defined in the registry with its corresponding CPUs by adding node keys to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\100\Node-
Configuration.

 Suppose we want to create two NUMA nodes for a given SQL Server instance. In our
previous example, we used the affinity mask option to affinitize CPUs 0, 1, 2, and 3. To
create two NUMA nodes on those four CPUs, we’d add the registry keys, as shown in
table 3.4.

In this case, CPUs 0 and 1 would be used by the first NUMA node (Node 0) and CPUs 2
and 3 would be used by NUMA Node 1. The hexadecimal equivalents of the binary bit
masks are stored in the registry—that is, 0x03 (bit mask 00000011, hex equivalent of
3) for CPUs 0 and 1, and 0x0c (bit mask 00001100, hex equivalent of 12) for CPUs 2
and 3. In this example, the combination of CPU affinity and the registry modifications

Table 3.4 Registry entries used to define NUMA nodes

Key Type Name Value

Node0 DWORD CPUMask 0x03

Node1 DWORD CPUMask 0x0c
have provided a SQL Server instance with two soft NUMA nodes.

Licensed to Gayle M. Noll <pedbro@gmail.com>

50 CHAPTER 3 Physical server design

 NUMA configuration is an advanced performance-tuning technique. It’s beyond
the scope of this book to give it more than a cursory glance, but it’s certainly some-
thing that you should investigate to achieve maximum performance, particularly on
large, multi-CPU systems. Before closing this chapter, let’s take a look at one more sys-
tem component: networking.

3.4 Networking components
Of the four main hardware components, network I/O isn’t likely to contribute to SQL
Server performance bottlenecks. Tuning disk I/O, memory, and CPU resources is far
more likely to yield bigger performance increases. That being said, there are a num-
ber of important network-related settings that we need to take into account, such as
maximizing switch speed, building fault tolerance into network cards, and manually
configuring network card settings.

3.4.1 Gigabit switches

Almost all servers purchased today come preinstalled with one or more gigabit network
connections offering roughly 10 to 100 times the bandwidth of previous generations.

 The speed of the network card is only as good as the switch port it’s connected to.
It’s common for SQL Servers with gigabit network cards to be connected to 100Mbps
switch ports. Gigabit switches should be used where possible, particularly at the server
level between database and application servers.

 In smaller networks, it’s not uncommon for hubs to be used instead of switches.
Hubs broadcast traffic to all network nodes. In contrast, switches intelligently route
traffic as required, and should be used to reduce overall network traffic.

3.4.2 NIC teaming

To increase network bandwidth and provide fault tolerance at the network level, a
technique known as NIC teaming can be used. NIC teaming involves two or more physi-
cal network interface cards (NICs) used as a single logical NIC. Both cards operate at
the same time to increase bandwidth, and if one fails, the other continues operating.
For further fault tolerance, each card is ideally connected to a separate switch. As we
covered in chapter 2, NIC teaming is recommended for connections to an iSCSI SAN.

 Although NIC teaming is a useful technique from both a performance and a fault
tolerance perspective, there are some known limitations and restrictions regarding its
use in a clustered environment, which we’ll discuss in chapter 5.

3.4.3 Manually configuring NIC settings

Finally, most network cards offer an autosense mode that permits self-configuration to
match its speed with the connected switch port speed. It’s not uncommon for
autosense to get it wrong, artificially limiting throughput, so NIC settings (speed and
duplex) should be manually configured.

 Chapter 6 provides a number of other best practices relating to network configura-

tion, including protocol selection, port bindings, firewall configuration, and encryption.

Licensed to Gayle M. Noll <pedbro@gmail.com>

51Server consolidation and virtualization

 Let’s move from individual server components to the server as a whole, focusing
on the trend toward server consolidation and virtualization.

3.5 Server consolidation and virtualization
The arrival of personal computer networks marked a shift away from “big iron” main-
frames and dumb terminals to a decentralized processing model comprised of many
(relatively cheap) servers and lots of personal computers. In many ways, we’ve come
full circle, with a shift back to a centralized model of SANs and virtualized servers run-
ning on fewer, more powerful servers.

 In recent years, the shift toward server consolidation and virtualization has gained
pace, and in the years ahead, the idea of a dedicated, nonvirtualized server may seem
quite odd. From a SQL Server perspective, this has a number of important ramifica-
tions. Before we look at the considerations and differences, let’s begin by taking a look
at the goals of consolidation and virtualization.

3.5.1 Goals of consolidation and virtualization

The plummeting cost and increased power of today’s server components has moved
the real cost of modern computing from hardware to people, processes, power, and
space. As such, in a never-ending quest to minimize operating costs, businesses have
embraced consolidation and virtualization techniques. The major goals are to avoid
server sprawl and minimize costs.
SERVER SPRAWL

The term server sprawl is used to describe the uncontrolled growth of servers through-
out the enterprise, making administration very difficult. SQL Server sprawl is a particu-
larly nasty problem; consider an example of a SQL Server instance running on a PC
sitting under someone’s desk, installed by a DBA who is no longer with the organiza-
tion and who never documented its existence. Does this instance need backing up?
Does it contain sensitive data? Do you even know that it exists?

 Given the ease with which new SQL Server installations can be deployed, and the
power of today’s commodity PCs, SQL Server sprawl is an all-too-common problem.
While there are tools for discovering the presence of SQL Server instances, and new
SQL Server features such as policy-based management (discussed in chapter 8) that
make administration much simpler, the sprawl issue remains a significant problem,
and one of the prime reasons for consolidation and virtualization projects.

Assessment and planning toolkit
The Microsoft Assessment and Planning Toolkit Solution Accelerator is an excellent
(free) tool that can be used in assessing existing infrastructure. From a SQL Server
perspective, one of the great aspects of this tool is its ability to discover installed
SQL Servers on the network, handy for planning upgrades and avoiding out-of-control
sprawl situations.
Licensed to Gayle M. Noll <pedbro@gmail.com>

52 CHAPTER 3 Physical server design

OPERATING COSTS

Each physical server consumes space and power, the natural enemies of a data center.
Once the data center is full, expanding or building a new one is a costly exercise, and
one that makes little sense if the existing servers are running at 50 percent utilization.

 As computing power increases and virtualization software improves, the march
toward fewer, more powerful servers hosting multiple virtual servers and/or more
database instances is an industry trend that shows no sign of slowing down. The real
question for a DBA is often how to consolidate/virtualize rather than whether to consol-
idate/virtualize. In answering that question, let’s look at each technique in turn,
beginning with consolidation.

3.5.2 Consolidation

Although virtualization can be considered a form of consolidation, in this section
we’ll take consolidation to mean installing multiple SQL Server instances on the one
server, or moving multiple databases to the one instance. Figure 3.11 shows an exam-
ple of consolidating a number of database instances onto a failover cluster.

 Support of NUMA hardware, the ability to install multiple instances and cap each
one’s memory and CPU, and the introduction of Resource Governor (covered in
chapter 16) in SQL Server 2008 all contribute to the ability to effectively consolidate a
large number of databases and/or database instances on the one server.

 Just as creating a new virtual server is simple, installing a new SQL Server instance
on an existing server is also easy, as is migrating a database from one instance to
another. But just because these tasks are simple doesn’t mean you should perform
them without thought and planning. Let’s take a look at a number of important con-
solidation considerations for SQL Server.

Figure 3.11 Among other benefits, SQL Server consolidation centralizes administration and combats

SQL Server 2008
Two-node multi-instance failover cluster

Sales instance
SQL Server 7

MS Access events
database

SQL Server 2000
marketing database

Reporting instance
SQL Server 2005
server sprawl.

Licensed to Gayle M. Noll <pedbro@gmail.com>

53Server consolidation and virtualization

BASELINE ANALYSIS

In subsequent chapters we’ll discuss the importance and value of collecting a number
of performance monitor counters during periods of time in which performance is
reported as being normal. From a consolidation perspective, having this data at hand
helps you make sensible decisions on the placement of instances. For example, con-
solidating a number of CPU-starved servers on a single CPU core box doesn’t make any
sense. In contrast, consolidating servers that consume very little resources does make
sense. Accurate baseline data is a crucial component in making the right choice as to
which servers and/or databases should be consolidated.

 When examining typical usage as part of a consolidation process, take care to
ensure batch processes are considered. For example, two SQL Server instances may
coexist on the one server perfectly well until the end of the month, at which point
they both run a large end-of-month batch process, potentially causing each process to
exceed the required execution window.
ADMINISTRATIVE CONSIDERATIONS

Consolidation brings with it an even mix of benefits and challenges. We’ve just covered
the importance of consolidating complementary instances from a performance per-
spective. Equally important is considering a number of other administration aspects:

Maintenance windows —How long is each server’s maintenance window, and will
the combination of their maintenance windows work together on a consoli-
dated server?
Disk growth —Is there enough disk space (and physical disk isolation) to ensure
the database growth and backup requirements can be met?

TEMPDB

Apart from the ability to affinitize CPUs and cap memory usage, choosing to install
multiple instances has one distinct advantage over placing multiple databases in the
one instance: each instance has its own tempdb database. Depending on the databases
being consolidated, installing multiple instances allows more than one tempdb data-
base to be available, enabling the placement of databases with heavy tempdb require-
ments in the appropriate instance.

 Let’s turn our attention now to virtualization, a specialized form of consolidation.

3.5.3 Virtualization

Unlike the SQL Server instance/database consolidation techniques we’ve outlined so
far, virtualization occurs at a lower level by enabling a single server to be logically
carved up into multiple virtual machines (VMs), or guests. Each VM shares the physical
server’s hardware resources but is otherwise separate with its own operating system
and applications.

 Virtualization platforms, also known as hypervisors, are classified as either Type 1 or
Type 2. Type 1 hypervisors, commonly referred to as native or bare-metal hypervisors, run
directly on top of the server’s hardware. VMware’s ESX Server and Microsoft’s Hyper-V

(see figure 3.12) are recent examples of Type 1 hypervisors.

Licensed to Gayle M. Noll <pedbro@gmail.com>

54 CHAPTER 3 Physical server design

Figure 3.12 Hypervisors such as
Microsoft’s Hyper-V are used to
virtualize multiple guest servers.
Guests share the host’s resources
while appearing on the network as
normal servers.

Type 2 hypervisors such as VMWare Workstation and Microsoft’s Virtual Server run
within an existing operating system. For example, a laptop running Windows Vista
could have VMware Workstation installed in order to host one or more guest VMs run-
ning various operating systems, such as Windows Server 2008 or Novell SUSE Linux.

 Type 1 hypervisors are typically used in server environments where maximum per-
formance of guest virtual machines is the prime concern. In contrast, Type 2 hypervi-
sors are typically used in development and testing situations, enabling a laptop, for
example, to host many different guest operating systems for various purposes.

 Let’s take a look at some of the pros and cons of virtualization as compared with
the consolidation techniques covered above.
ADVANTAGES OF VIRTUALIZATION

Virtualization offers many unique advantages:

Resource flexibility—Unlike a dedicated physical server, resources (RAM, CPU, and
so forth) in a VM can be easily increased or decreased, with spare capacity coming
from or returned to the host server. Further, some virtualization solutions enable
VMs to dynamically move to another physical server, thus enabling large numbers
of virtual machines to be balanced across a pool of physical servers.
Guest operating systems —A single physical server can host many different operat-
ing systems and/or different versions of the one operating system.
Ability to convert physical to virtual servers —The major virtualization products
include tools to create a VM based on an existing physical machine. One of the
many advantages of such tools is the ability to preserve the state of an older leg-
acy server that may not be required anymore. If required, the converted virtual
server can be powered on, without having to maintain the physical server and
the associated power, cooling, and space requirements while it’s not being used.
Portability and disaster recovery —A VM can be easily copied from one server to
another, perhaps in a different physical location. Further, various products are

Microsoft Hyper-V ServerMicrosoft Hyper-V Server

Windows Server 2003 guest

Novell SUSE Enterprise Linux guest

Windows Server 2000 guest
Licensed to Gayle M. Noll <pedbro@gmail.com>

55Server consolidation and virtualization

available that specialize in the real-time replication of a VM, including its appli-
cations and data, from one location to another, thus enabling enhanced disas-
ter-recovery options.
Snapshot/rollback capability —A powerful aspect of some virtualization platforms
is the ability to snapshot a VM for later rollback purposes. At the machine level,
this feature can be considered as backup/restore. It enables you to make
changes, safe in the knowledge that you can restore the snapshot if necessary.
An example is performing an in-place upgrade of SQL Server 2005 to 2008.
Should the upgrade fail, the snapshot can be restored, putting the system back
to its pre-upgrade state.

Despite these clear advantages, there are a number of issues for consideration before
you decide to virtualize SQL Server environments.

CONSIDERATIONS FOR VIRTUALIZING SQL SERVER
Arguably the single biggest issue for consideration when virtualizing SQL Server is that
of support, particularly for mission-critical production systems. It’s not uncommon to
hear of organizations with virtualized SQL Server environments having difficulty dur-
ing support incidents due to the presence of a virtualization platform. A common
request during such incidents is to reproduce the problem in a nonvirtualized envi-
ronment. Such a request is usually unrealistic when dealing with a critical 24/7 pro-
duction SQL Server environment.

 The support issue is commonly cited as the prime reason for avoiding virtualiza-
tion in production environments (and associated volume/load test environments).
Those who take this approach often use virtualization in other less critical environ-
ments, such as development and testing.

Other considerations for SQL Server virtualization include the following:

Scalability —The maximum resource limitations per VM (which varies depend-
ing on the virtualization platform and version) may present an issue for high-
volume applications that require maximum scalability. In such cases, using
physical servers, with scalability limited only by the hardware and operating sys-
tem, may present a more flexible solution.
Performance overhead —Depending on the hypervisor, a commonly cited figure in
terms of the performance overhead of the virtualization platform is approxi-

Virtualization support policy
Microsoft recently announced that both SQL Server 2005 and 2008 will be officially
supported in Hyper-V environments, as well as those certified through the Server Virtu-
alization Validation Program (SVVP). More information is available at http://support.
microsoft.com/?id=956893.
mately 10 percent.

Licensed to Gayle M. Noll <pedbro@gmail.com>

http://support.microsoft.com/?id=956893
http://support.microsoft.com/?id=956893

56 CHAPTER 3 Physical server design

Baseline analysis —As with the server consolidation techniques we discussed ear-
lier, consideration should be given to the profiles of the individual virtual serv-
ers running on the same machine—for example, placing many CPU-intensive
VMs together on a single CPU core host machine.
Licensing —Licensing can be a tricky and complex area, so I’m not going to dis-
cuss the pros and cons of licensing virtualization. But I do recommend that
before deciding on a server consolidation technique, understand the licensing
implications fully.
Toolset —One of the things that becomes apparent when troubleshooting a per-
formance problem on a VM is that in order to get the full picture of what’s hap-
pening on the server, you need access to the virtualization toolset in order to
determine the impact from other VMs. Depending on the organization, access
to such tools may or may not be granted to a DBA.

Virtualization and consolidation techniques are here to stay; it’s vitally important that
the pros and cons of each technique are well understood.

3.6 Best practice considerations: physical server design
Today’s off-the-shelf database servers from one of the major system vendors are both
powerful and flexible enough for most SQL Server implementations. However, a
sound understanding of server design and configuration principles remains an impor-
tant skill.

The SQLIO and SQLIOSIM tools should be used to validate both the capacity
and validity of a storage system before SQL Server is installed. Consider these
tools an essential component in the commissioning process of a new produc-
tion system.
Track-align SQL Server partitions before formatting with a 64K allocation size
using the NTFS file system.
Use a switched gigabit network for maximum network performance, and
ensure NIC speed and duplex settings are manually configured.
Consider NIC teaming for performance and redundancy, particularly for con-
nections to an iSCSI SAN, but be aware of the implications for use in a cluster
(discussed in chapter 5).
Component redundancy is a crucial aspect of a reliable database server. Build fault
tolerance into as many server components as possible, including power supplies
and fans, and protect servers from power failures with a UPS.
To minimize costs and maximize performance, purchase servers and compo-
nents within the framework of a server replacement policy. Taking into account
falling prices and rapidly increasing component performance, servers should
be purchased for a two- to three-year production lifecycle.
Minimize support costs and fault correction time by developing standard data-
base server builds, including standardizing hardware, software, bios and firm-

ware versions, and so forth.

Licensed to Gayle M. Noll <pedbro@gmail.com>

57Best practice considerations: physical server design

Before consolidating or virtualizing SQL Servers on one host machine, consider
the load profiles of each, best obtained through a baseline analysis process.
Locating complementary instances together is of crucial importance in avoid-
ing performance problems.
In addition to the load profiles, give consideration to maintenance windows,
disk usage, and tempdb usage when consolidating servers.
Before virtualizing or consolidating SQL Server instances, understand the
licensing impacts of both methods.
To enable thorough performance analysis and tuning of a virtualized SQL
Server, consider the need to access and learn the virtualization toolset. Such
tools are required in order to understand the impact one virtual machine may
be having on another.
When virtualizing SQL Server instances, all of the other best practices we’ll
cover throughout this book hold true, such as using separate disks for data and
logs, scheduling regular backups, preallocating space to avoid autogrowth oper-
ations, and so forth. Virtualization isn’t an invitation to ignore the importance
of these fundamental tasks.
Most importantly, before virtualizing a critical SQL Server environment, ensure
the support implications of doing so are well understood.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/server.

 The last three chapters have been focused on planning and design. In the next
chapter, we’ll roll up our sleeves and install a SQL Server 2008 instance.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Installing and upgrading
SQL Server 2008
With SQL Server 2008’s new and enhanced features, you can install and configure
SQL Server instances that comply with best practices much easier than with earlier
versions. Starting with the installation wizard, there are several new options, such as
the ability to specify separate directories for backups, transaction logs, and the
tempdb database. On the configuration side, policy-based management (which
we’ll discuss in detail in chapter 8) lets you store instance configuration settings in
XML configuration files that can be applied to a server instance after installation.

 The next chapter will focus on clustered installations of SQL Server. This chap-
ter covers the installation and upgrade of nonclustered SQL Server instances. We’ll
start with some important preinstallation tasks, run through the installation pro-

In this chapter, we’ll cover
■ Preparing for installation
■ Installing SQL Server 2008
■ Upgrading to SQL Server 2008
■ Developing a service pack upgrade strategy
58

cess, and finish with upgrade techniques.

Licensed to Gayle M. Noll <pedbro@gmail.com>

59Preparing for installation

4.1 Preparing for installation
Adequate preinstallation planning is a crucial element in ensuring a successful SQL

Server installation. A large percentage of problems with SQL Server environments can
be traced back to poor installation choices, often performed by those with minimal
SQL Server skills.

 In this section, we’ll cover the importance of a preinstallation checklist before
looking at some additional preinstallation tasks, such as the creation of service
accounts and directories.

4.1.1 Preinstallation checklist

Creating a preinstallation checklist is a great way to make sure appropriate attention is
paid to the important elements of an installation. A checklist is particularly useful in
environments where DBAs aren’t involved in the installation of SQL Server. By creating
and providing thorough checklists, you ensure that the chances of a successful deploy-
ment are significantly improved.

 Figure 4.1 shows an example of a preinstallation checklist. The important point
here isn’t necessarily the contents of the checklist, but the fact that you create one and
tailor it to the needs of your environment.

 A lot of the items covered in the checklist shown in figure 4.1 are taken from the
previous two chapters, and others will be covered in subsequent chapters. Let’s move
on now to look at some of these, beginning with the creation of service accounts.

Figure 4.1 Along with other strategies such as policy-based management, a preinstallation checklist
enables a SQL Server installation to have the best chance of meeting best practice.

4.1.2 Service accounts

A SQL Server installation will create several new Windows services, each of which
requires an account under which it will run. As we’ll see shortly, these accounts are

SQL Server Preinstallation Checklist
Storage RAID configuration

Battery backed write optimized cache
Partition offset
64K allocation unit size
Multipathing
SQLIO/SIM checks
LUN configuration & zoning
Backup, tempdb, T-log, DB : volumes & directories
PAE/3GB settings
NUMA configuration
Page file configuration

IP addresses
MSDTC in dedicated resource group
Network priority & bindings
Private LAN: connectivity & ping time
FCCP certification

CPU/Memory

Clustering

BIOS & firmware versions
Physical security
Antivirus configuration
WMI
Pending reboots
Windows service packs and hotfixes
No domain controller role

Separate, non-privileged accounts for each service
Password expiration policy
Lock pages in memory
Perform volume maintenance tasks
Manual configuration
Switched gigabit connections
ISCSI NIC teaming
Windows & perimeter firewall configuration
Disable NETBIOS & SMB

Network

Service Accounts

Misc
specified during installation, so they need to be created in advance.

Licensed to Gayle M. Noll <pedbro@gmail.com>

60 CHAPTER 4 Installing and upgrading SQL Server 2008

 Depending on which features are installed, SQL Server setup creates the following
services for each installed instance:

SQL Server
SQL Server Agent
SQL Server Analysis Services
SQL Server Reporting Services
SQL Server Integration Services

Prior to installation, you should create service accounts for each of these services with
the following attributes:

Domain accounts —While you can use local server accounts, domain accounts are
a better choice as they enable the SQL instance to access other SQL Server
instances and domain resources, as long as you grant the necessary privileges.
Nonprivileged accounts —The service accounts do not, and should not, be mem-
bers of the domain administrators or local administrator groups. The installa-
tion process will grant the service accounts the necessary permissions to the file
system and registry as part of the installation. Additional permissions beyond
those required to run SQL Server, such as access to a directory for data import/
export purposes, should be manually granted for maximum security.
Additional account permissions —Two recommended account permissions that SQL
Server doesn’t grant to the SQL Server service account are Perform Volume
Maintenance Tasks, required for Instant Initialization (covered in chapter 9),
and Lock Pages in Memory, required for 32-bit AWE-enabled systems and recom-
mended for 64-bit systems (this setting is covered in more detail in chapter 7).
Password expiration and complexity —Like any service account, the service
accounts for SQL Server shouldn’t have any password expiration policies in
place, and the passwords should be of adequate complexity and known only to
those responsible for service account administration.
Separate accounts for each service —Each SQL Server service for each installed
instance should be configured with a separate service account. This allows for
the most granular security, a topic we’ll examine further in chapter 6.

4.1.3 Additional checks and considerations

Before we launch into an installation, let’s discuss a number of other important prein-
stallation checks and considerations:

Collation —Like Windows, SQL Server uses collations to determine how charac-
ters are sorted and compared. As we’ll see shortly, a collation is chosen during
installation, and by default, SQL Server setup will select a collation to match the
server’s Windows collation. An inconsistent collation selection is a common
cause of various administration problems, and a well-considered selection is
therefore a crucial installation step. In almost all cases, you should accept the

default collation during installation; if you choose a custom collation, take into

Licensed to Gayle M. Noll <pedbro@gmail.com>

61Preparing for installation

account the potential collation conflicts when dealing with data from another
instance with a different collation. SQL Server Books Online (BOL) covers this
important topic in detail.
Storage configuration —In previous chapters, we covered the importance of stor-
age configuration. Prior to installation, you must ensure partitions are offset1

and formatted with a 64K allocation unit size. Further, run SQLIO and SQLIO-
SIM to validate storage performance/validity and driver/firmware versions are
up to date. Additional checks include ensuring multipathing software is
installed and working, and consider NIC teaming for maximum performance
and redundancy for iSCSI installations.
Directory creation —One of the installation steps is to specify locations for the
database data and log files, backup files, and the tempdb data and log files. For
maximum performance, create each of these directories on partitions that are
physically separate from each other—that is, they don’t share the same underly-
ing disks. Directories for these objects should be created before installation.
Chapter 9 discusses the importance of physical disk separation in more detail.
Network security —SQL Server should be secured behind a firewall, and unneces-
sary network protocols such as NetBIOS and SMB should be disabled. Chapter 6
provides detailed coverage on this process.
Windows version —SQL Server 2008 requires at least Windows Server 2003 Ser-
vice Pack 2 as a prerequisite for installation; Windows Server 2008 is recom-
mended for the best performance and security. Further, SQL Server shouldn’t
be installed on a primary or backup domain controller; the server should be
dedicated to SQL Server.
Server reboot —SQL Server won’t install if there are any pending reboots;2 there-
fore, reboot the server prior to installation if appropriate.
WMI —The Windows Management Instrumentation (WMI) service must be
installed and working properly before SQL Server can be installed. This service
is installed and running by default on both Windows Server 2003 and 2008.

1 Windows Server 2008 does this automatically.
2 Open the registry editor and navigate to HKLM\System\CurrentControlSet\Control\Session Manager. The

Windows Server 2008
The ideal underlying operating system for SQL Server is Windows Server 2008. Why?
For starters, the networking stack in Windows 2008 is substantially faster, so there’s
an immediate boost in network transfer times. Second, the Enterprise and Data Cen-
ter editions of Windows Server 2008 include Hyper-V, which provides virtualization op-
portunities for SQL Server instances. Other improvements over Windows Server 2003
include more clustering options, NUMA optimizations, and leaner installations that
translate to less maintenance and smaller attack surfaces for better security.
existence of PendingFileRenameOperations is an indication of a pending reboot.

Licensed to Gayle M. Noll <pedbro@gmail.com>

62 CHAPTER 4 Installing and upgrading SQL Server 2008

Now that we’ve covered the important preinstallation checks and planning, let’s walk
through an actual installation of SQL Server 2008.

4.2 Installing SQL Server
In this section, we’ll walk through the installation of a SQL Server instance using a
number of different techniques. Before we do that, let’s cover an important installa-
tion selection: the choice between a default and a named instance.

4.2.1 Default and named instances

Since SQL Server 2000, multiple instances (copies) of SQL Server can be installed on
one server, thus providing various benefits, such as the ability to control the amount
of memory and CPU resources granted to each instance, and the option to maintain
different collation and service pack levels per instance. Such benefits are crucial for
server consolidation projects, and we’ll spend more time on some of these benefits
in chapter 7 when we cover the process of configuring memory usage on multi-
instance servers.

 As we’ll see shortly, one of the choices during installation of SQL Server is the selec-
tion between a named instance and a default instance. While there can only be a sin-
gle default instance per server, the Enterprise edition of SQL Server 2008 supports the
installation of up to 50 named instances.3

 When connecting to SQL Server, the instance name is specified in the connection
string; for example, BNE-SQL-PR-01\SALES will connect to the SALES instance on the
BNE-SQL-PR-01 server. In contrast, connecting to the default instance requires the
server name only—that is, BNE-SQL-PR-01.

 In addition to the instance name, SQL Server 2008 uses an instance ID, which by
default has the same value as the instance name. The instance ID is used to identify
registry keys and installation directories, particularly important on servers with multi-
ple installed instances.

 With this background in mind, let’s install an instance of SQL Server using the GUI
installation wizard.

4.2.2 GUI installation

Rather than bore you with every installation step, most of which are self-explanatory,
I’ll summarize the installation and include screen shots for the most important steps.
Start the installation by running setup.exe from the SQL Server DVD. The setup pro-
cess begins with a check on the installed versions of the Windows Installer and the
.NET Framework. If the required versions are missing, the setup process offers the
choice to install them. After these components are verified (or installed), setup begins
with the SQL Server Installation Center, as shown in figure 4.2.

3 Other editions support up to 16 instances.

Licensed to Gayle M. Noll <pedbro@gmail.com>

63Installing SQL Server

1 The Installation Center is the starting point for a wide variety of tasks. For our
example, let’s start by clicking the Installation tab and then selecting the “New
SQL Server stand-alone installation or add features to an existing installation”
option. Setup begins with a check for potential problems that may prevent an
installation from completing successfully. You can view details of the checks by
clicking Show Details. Address any problems preventing installation, or click OK
to continue.

2 Click Install to install the required setup support files.
3 In the Setup Support Rules screen, additional checks are processed before

installation continues; for example, the installer warns of the presence of Win-
dows Firewall with a warning to unblock appropriate ports. Review the warn-
ings/failures (if any) and click Next.

4 The Installation Type screen lets you choose between installing a new instance
or adding features to an existing instance. For our example, let’s choose the
default (Perform a New Installation) and click Next.

5 The Product Key screen asks you to select between a free edition (Enterprise
Evaluation or Express) or the option to enter a product key (supplied with the
purchase of SQL Server). Make the appropriate choice and click Next.

6 At the license terms screen, review the terms, check the “I accept the license
terms” box, and click Next.

7 On the Feature Selection screen shown in figure 4.3, select the appropriate fea-
tures and choose an installation directory (or accept the default). You can dis-
play additional information on each feature by clicking on the feature name.
Click Next.

8 In the Instance Configuration screen, shown in figure 4.4, choose between a
default or a named instance, enter the instance ID and root directory (or accept
the default settings), and click Next.

9 The Disk Space Requirements screen confirms the existence (or absence) of
the necessary disk space for installation to proceed. Review the summary of

Figure 4.2 The
Installation Center
allows you to
perform various
installation-related
tasks.
required and available space and click Next to continue.

Licensed to Gayle M. Noll <pedbro@gmail.com>

64 CHAPTER 4 Installing and upgrading SQL Server 2008

Figure 4.3 The Features screen enables you to select various features for installation.

Figure 4.4 This screen lets you select between a default and a named instance.

10 In the Server Configuration screen, shown in figure 4.5, enter the account
names and passwords for the SQL services, and optionally change the startup
type. As we discussed earlier in the chapter, these accounts should be created as
standard privilege accounts prior to installation. Before clicking Next to con-
tinue, click the Collation tab to review (and optionally modify) the default col-

lation. As we covered earlier, use caution when selecting a custom collation.

Licensed to Gayle M. Noll <pedbro@gmail.com>

65Installing SQL Server

11 On the first tab of the Database Engine Configuration screen, shown in figure
4.6, you select the authentication mode for the instance: Windows or Mixed
Mode. As we’ll discuss in chapter 6, Windows authentication mode is the most
secure option, and is therefore the default (and recommended) option. If you
choose Mixed Mode, be sure to enter a strong system administration (SA)
account password. Regardless of the selected authentication mode, click either

Figure 4.5 On this screen, you select a service account and startup type for each SQL service.

Figure 4.6 The Account Provisioning tab allows you to select the authentication mode and

SQL Server administrators.

Licensed to Gayle M. Noll <pedbro@gmail.com>

66 CHAPTER 4 Installing and upgrading SQL Server 2008

Add Current User or Add to select a user to add to the SQL Server administra-
tion group. Unlike earlier versions, SQL Server 2008 setup enforces this selec-
tion as a secure alternative to adding the BUILTIN\Administrators group to the
SQL Server administration role. We’ll explain this in more detail in chapter 6.
To continue, click the Data Directories tab.

12 The Data Directories tab, as shown in figure 4.7, lets you specify default directo-
ries for data, log, tempdb, and backup directories. As covered earlier, physical
disk separation of these directories is important, and we’ll address this topic in
greater detail in chapter 9. After entering the directory locations, click the
FILESTREAM tab to continue.

13 Use the FILESTREAM tab to configure the instance for FileStream access. As
you’ll see in chapter 9, FileStream is a new option for binary large object
(BLOB) management. Regardless of the selection at this point, FileStream can
be configured as a postinstallation task. After reviewing the options on this tab,
click Next.

14 In the remaining installation steps, you’ll accomplish the following:
Specify whether to send error reports and feature usage data to Microsoft
Review final installation rules checks
View the summary of installation choices, and click Install to execute the
installation based on the previous selections
View the installation progress
On the Completion screen, view the installation log file

When installation is complete, SQL Server saves the choices you made during setup in
ConfigurationFile.ini, which you’ll find in the C:\Program Files\Microsoft SQL
Server\100\Setup Bootstrap\Log\yyyymmdd_hhmmss directory. You can use this file to

Figure 4.7 On the
Data Directories
tab, specify custom
directories for
data, logs, backup,
and tempdb.
confirm the installation proceeded with the required options, as well as use it as a base

Licensed to Gayle M. Noll <pedbro@gmail.com>

67Upgrading to SQL Server 2008

for subsequent unattended installations via the command prompt. We’ll cover these
options shortly.

 After installation, you must perform a number of important configuration activi-
ties, such as sizing the tempdb database, setting minimum and maximum memory val-
ues, and creating SQL Agent alerts. We’ll cover these tasks in subsequent chapters.

4.2.3 Command prompt installations

In addition to using the GUI installation wizard that we’ve just covered, you can install
SQL Server 2008 from the command prompt, as you can see in figure 4.8. You can find
the syntax and options in SQL Server BOL in the “How to: Install SQL Server 2008
from the Command Prompt” topic.

As mentioned earlier, the ConfigurationFile.ini is created at the end4 of a GUI-based
installation. This file should be preserved in its original state for later analysis, but you
can make a copy and use it for subsequent installations at the command prompt via
the /Configurationfile parameter, as shown in figure 4.9.

Command prompt installations with configuration files are ideal in standardizing and
streamlining installation, particularly when installations are performed by those with-
out the appropriate SQL Server knowledge.

 SQL Server 2008 can be installed alongside earlier versions of SQL Server. Doing so
is a common technique in migrating databases, an alternative to an in-place upgrade,
both of which we’ll cover next.

4.3 Upgrading to SQL Server 2008
Depending on the environment, the upgrade to SQL Server 2008 can be complex, par-
ticularly when technologies such as replication and clustering are involved. In this sec-
tion, rather than attempt to cover all of the possible upgrade issues, I’ve aimed for the
more modest task of providing you with an insight into the various upgrade techniques.

4 The INI file can also be created by proceeding through the GUI installation, but cancel it at the very last step,

Figure 4.8 SQL Server
2008 command-line
installation

Figure 4.9 Use the /Configurationfile option at the command line to direct SQL
Server to install based on the contents of a ConfigurationFile.ini file.
on the Ready to Install page.

Licensed to Gayle M. Noll <pedbro@gmail.com>

68 CHAPTER 4 Installing and upgrading SQL Server 2008

Depending on the availability of spare hardware and the allowed downtime, you can
choose one of two upgrade techniques. The first is known as an in-place upgrade, in
which an entire instance of SQL Server 2000 or 2005 along with all of its databases are
upgraded in one action. Alternatively, you can use the side-by-side technique, in which
individual databases can be migrated one at a time for more control. Both of these
techniques have their advantages and disadvantages, as you’ll see shortly.

 Before we look at the details of in-place versus side-by-side, let’s discuss the impor-
tance of analyzing the target database/instance before upgrading by using SQL
Server’s Upgrade Advisor tool.

4.3.1 Upgrade Advisor

Each new version of SQL Server contains behavioral changes, some major, some
minor. In any case, even small, subtle changes can significantly impact application
behavior. Regardless of the upgrade technique, a crucial step in preparing for an
upgrade to SQL Server 2008 is to analyze the upgrade target and determine whether
any issues require attention. Together with the appropriate upgrade technique, such
analysis is essential in minimizing unexpected issues, making the upgrade process as
smooth as possible.

 SQL Server 2008, like 2005, includes an Upgrade Advisor tool, which you can use
to examine existing 2000 and/or 2005 instances to determine whether any issues will
prevent an upgrade from completing (blocking issues) or backward-compatibility
issues that may lead to application failure after the upgrade. The Upgrade Advisor
tool (which you access from the Planning menu of the SQL Server Installation Center
as shown in figure 4.2) can be used to examine all SQL Server components, including
Analysis Services, Reporting Services, Integration Services, and the core database
engine itself.

 The Upgrade Advisor has two main components: an analysis wizard and a report
viewer. Use the wizard to select an upgrade target (SQL Server components, instances,
and databases) and begin the analysis. Once complete, the report viewer can be used
to view the details of the analysis, as shown in figure 4.10.

 Like the 2005 version, the Upgrade Advisor tool can analyze trace files and Trans-
act-SQL (T-SQL) scripts. You perform this analysis as a proactive measure to identify
possible issues with application-generated data access code or T-SQL scripts, such as

SQL Server 2008 Upgrade Technical Reference Guide
As with installation, upgrading to SQL Server 2008 requires considerable planning
and preparation. Microsoft recently released the SQL Server 2008 Upgrade Techni-
cal Reference Guide. Weighing in at 490 pages and available for free download from
the Microsoft website, this guide is essential reading as part of any upgrade project
and contains important information on best practices and specific advice for various
upgrade scenarios.
backup scripts used in scheduled maintenance plans.

Licensed to Gayle M. Noll <pedbro@gmail.com>

69Upgrading to SQL Server 2008

Running the Upgrade Advisor produces a list of tasks that fall into two categories:
those that must be completed before an upgrade can be performed, and those for
attention once the upgrade is complete. Rather than list all of the possible post-
upgrade tasks, here are the recommended ones for the core database engine:

Compatibility level check —Post-upgrade, the compatibility level of the database is left
at the pre-upgrade version. Although this is advantageous in minimizing the
possibility of applications breaking due to the use of older language syntax
that’s no longer compatible with SQL Server 2008, some new functionality and
performance optimizations won’t be available until the new compatibility level
is applied. Leaving an upgraded database at a previous compatibility level
should be seen as an interim migration aid, with application code updated as
soon as possible after installation. You can change the compatibility level of an
upgraded database using the sp_dbcmptlevel stored procedure, or via the data-
base properties in Management Studio, as shown in figure 4.11.
Max Worker Threads —If you’re upgrading from SQL Server 2000, the Max Worker
Threads setting, covered in chapter 7, is kept at the default value of 255. After the
upgrade, change this value to 0, which allows SQL Server to determine the appro-
priate value based on the number and type of CPUs available to the instance.
Statistics update —Although SQL Server 2008 can work with statistics generated
from earlier versions, I recommend you perform a full statistics update to take
advantage of the query optimizer improvements in SQL Server 2008. Chapter
13 will discuss statistics in more detail.

Figure 4.10 The Upgrade
Advisor wizard lets you
inspect a SQL Server 2000
or 2005 instance before
upgrading to detect issues
requiring attention.

Figure 4.11 After you
upgrade, the compatibility
level of a database should
be set to SQL Server
2008, once testing has
confirmed the absence of

any unexpected problems.

Licensed to Gayle M. Noll <pedbro@gmail.com>

70 CHAPTER 4 Installing and upgrading SQL Server 2008

Configuration check —Like 2005, SQL Server 2008 complies with the secure by
default installation mode, whereby certain features are disabled upon installa-
tion. We’ll cover these issues in chapter 6. Depending on the installation, cer-
tain required features may need to be manually enabled postinstallation.
DBCC UPDATEUSAGE —Databases upgraded from SQL Server 2000 may report
incorrect results when using the sp_spaceused procedure. Running the
UPDATEUSAGE command will update the catalog views used by this procedure,
thus fixing this inaccuracy.

Before looking at the upgrade methods, note that regardless of the method you
choose, performing a test upgrade is crucial in identifying possible issues. Test
upgrades provide an opportunity to

Determine the length of the upgrade process, crucial in planning downtime for
the real upgrade.
Determine application behavior after the upgrade. This will allow you to set the
database compatibility level to SQL Server 2008 and ensure applications work as
expected.
Performance-test applications on the upgraded database. If performance is
poor, a test upgrade provides a chance of investigating the reasons prior to the
production upgrade.
Last but not least, complex upgrades involving components such as replication
are certainly not something you want to be doing the first time in production!

So, with these points in mind, let’s take a look at the two upgrade methods, starting
with the in-place method.

4.3.2 In-place upgrade

The in-place upgrade method upgrades an instance, and all of its databases, in a single
irreversible action. For simple, small database instances, it provides the easiest and
quickest upgrade method and has the following additional benefits:

Applications connecting to any of the databases don’t need modification. The
instance name remains the same (if upgrading from a named instance), so no
connection strings need to be changed.
No additional hardware is required. The instance executables and data are
changed in place.

Despite these benefits, there are some significant downsides to this method, making it
unsuitable for a range of scenarios:

All of the instance’s databases have to be upgraded at once. There’s no option
to upgrade only some. If one of the databases (or its applications) needs modi-
fication before upgrading, then all of the other instance databases will have to
wait before the upgrade can proceed.
A failed upgrade, or one that produces unexpected results, can’t be rolled back,
short of running up new hardware and restoring old backup files, or using a vir-

tualization snapshot rollback process.

Licensed to Gayle M. Noll <pedbro@gmail.com>

71Upgrading to SQL Server 2008

Because the rollback options are limited with this method, it’s critical that you com-
plete a full backup and DBCC check on all databases before beginning the upgrade. If
database activity occurs after the full backup, make transaction log backups immedi-
ately prior to the upgrade.

 To begin the in-place upgrade, select Upgrade from SQL Server 2000 or SQL
Server 2005 from the Installation menu of the SQL Server Installation Center.

 For greater control of the upgrade process, you can choose one of several side-by-
side upgrade methods.

4.3.3 Side-by-side upgrade

In contrast to an in-place upgrade, which upgrades all databases for a given instance, a
side-by-side upgrade is a per database method:

1 A SQL Server 2008 instance is installed as a new installation (compared to an
upgrade). The new instance can be installed on either the same server as the
instance to be upgraded (legacy instance), or on a new server.

2 Each database to be upgraded is migrated from the legacy instance to the new
2008 instance, using one of several methods I’ll describe shortly. Databases are
migrated individually on their own schedule, and possibly to different destina-
tion servers.

3 Once the new 2008 instance is up and running, the legacy instance is decom-
missioned, or retained in an offline state for rollback purposes if required.

The side-by-side upgrade method offers several advantages over the in-place method.
The major advantage is that if something goes wrong with the upgrade, or unex-
pected results render the upgrade a failure, the legacy instance is still available and
unchanged for rollback purposes. Further, the upgrade is granular; individual data-
bases can be migrated with others remaining on the original server, migrated to a dif-
ferent server, or migrated at a later point.

 Disadvantages and complexities of this method when compared to the in-place
method are as follows:

Application connection strings will need to be modified to point to the new
instance name.
Security settings, maintenance plans, and SQL Server Agent jobs will need to be
re-created on the new 2008 instance, either manually or from a script.
If the new 2008 instance is on the same server as the legacy instance, the capac-
ity of the server to run both instances in parallel must be taken into account. A
possible workaround for this issue is to limit the resources of one of the
instances, such as the maximum memory and CPU affinity, for the period of
time that both are actively running.
Downtime is typically longer than for an in-place method; there are several
techniques used to limit this, as you’ll learn in a moment.

Side-by-side upgrades are often scheduled for the same time as server replacements—

that is, the new server is purchased, installed, configured, and loaded with a new

Licensed to Gayle M. Noll <pedbro@gmail.com>

72 CHAPTER 4 Installing and upgrading SQL Server 2008

instance of SQL Server 2008, and databases are migrated from the legacy instance. At
the completion of this process, the legacy server is decommissioned, cycled back to
lower environments, or used for other purposes.

 The method used to migrate databases as part of a side-by-side upgrade is an
important consideration in determining the rollback and downtime implications for
the upgrade, particularly for larger databases. Let’s walk through the major methods
used, beginning with backup/restore.
BACKUP/RESTORE

The backup/restore method is straightforward and keeps the original database in
place for rollback purposes. A full database backup is made on the legacy database
and restored to the new SQL Server 2008 instance. As part of the restore process, SQL
Server will upgrade the internal structures of the database as necessary.

 A variation on this approach involves filegroup backups and piecemeal restores.
These topics will be discussed in more detail in chapters 9 and 10, but essentially this
involves backup and restore of the legacy database’s primary filegroup to the new
2008 instance. After this, the database is online and available on the new 2008
instance, after which individual filegroups can be backed up and restored using a
piecemeal approach in priority order.
ATTACH/DETACH

The attach/detach method involves detaching the legacy database and attaching to
the new 2008 instance. Similar to a restore, SQL Server will upgrade the internal struc-
ture as part of the attach process. To keep the original database available for rollback,
you can copy the database files to the new server before attaching them to the new
2008 instance. After the copy is complete, the database can be reattached to the legacy
instance for rollback purposes if required.
TRANSACTION LOG BACKUP/RESTORE

Depending on the size of the database to be migrated, the time involved in copying
either the data files or backup files in the previous two methods may exceed the down-
time targets. For example, if the backup file was hundreds of gigabytes and had to be
copied over a slow network link, the copy could take many hours to complete. To reduce
downtime, a third method can be used involving transaction log backups. This method
is similar to setting up log shipping (covered in chapter 11) and involves these steps:

1 A full database backup of the legacy database is taken and copied to the new
SQL Server 2008 instance. The legacy database remains online and in use
throughout the copy process.

2 The legacy database is restored on the new 2008 instance WITH NORECOVERY
(full details provided in chapter 10).

3 Finally, at the moment of migration, users are disconnected from the legacy
database, and a transaction log backup is made and copied to the 2008 instance.

4 The transaction log backup is restored WITH RECOVERY.
5 At this point, application connection strings are redirected to the 2008 instance
and users are reconnected.

Licensed to Gayle M. Noll <pedbro@gmail.com>

73Developing a service pack upgrade strategy

There are several variations of this method. If the transaction rate is very high, the size
of the transaction log backup in step 3 may be very large; if so, regular transaction log
backups can be made leading up to this step, reducing the size (and therefore copy
time) of the final transaction log backup. If using this method, restore all but the last
of the transaction log backups WITH NORECOVERY.
TRANSACTIONAL REPLICATION

This method is similar to the transaction log backup/restore but involves replication:

1 Transactional replication is set up from the legacy instance to the new 2008
instance.

2 At the moment of migration, replication is stopped and applications are redi-
rected to the new 2008 instance.

3 Optionally, replication can then be set up in the reverse direction to support a
rollback scenario—that is, data entered on the new 2008 instance post-migra-
tion is copied to the legacy database instance to prevent data loss in the event of
a rollback.

OTHER TECHNIQUES

Other migration techniques include using the Copy Database wizard (in Management Stu-
dio, right-click a database and choose Tasks > Copy Database) and manually creating the
database on the new 2008 instance from script and performing bulk copy operations.

 Table 4.1 compares the attributes of the various upgrade techniques.

The side-by-side upgrade method offers much more flexibility and granularity than
the all-or-nothing in-place approach. In all cases, regardless of the upgrade method,
planning is crucial for a successful upgrade. The same is true for the installation of
service packs, our next topic.

4.4 Developing a service pack upgrade strategy
If you were to develop a list of the top ten issues that a group of DBAs will argue about,
one that’s sure to appear is the approach to installing service packs. Let’s take a look

Table 4.1 Upgrade options compared

Upgrade technique Complexity Rollback options App reconfig Downtime

In-place Lowest No No Lowest

Side-by-side

—Backup/restore Medium Yes Yes Highest

—Detach/copy/attach Medium Yes Yes Highest

—Filegroup restore Medium Yes Yes Moderate

—T-Log backup/restore Medium Yes Yes Lowest

—Transaction replication Highest Yes Yes Lowest
at the various considerations involved before looking at a recommended approach.

Licensed to Gayle M. Noll <pedbro@gmail.com>

74 CHAPTER 4 Installing and upgrading SQL Server 2008

4.4.1 Installation considerations

You must consider a number of important factors before making the decision to
install a service pack:

Third-party application vendor support —Most application vendors include sup-
ported SQL Server versions and service pack levels in their support agreements.
In such cases, a service pack upgrade is typically delayed until (at least) it
becomes a supported platform.
Test environments —The ability to measure the performance and functional
impacts of a service pack in a test environment is crucial, and doing so counters
a common argument against their installation—the fear that they’ll break more
things than they fix.
Support timeframes —Microsoft publishes their support lifecycle at http://support.
microsoft.com/lifecycle. While an application may continue to work perfectly
well on SQL Server 6.5, it’s no longer officially supported, and this risk needs to
be considered in the same manner as the risk of an upgrade. It’s not uncommon
to hear of situations in which an emergency upgrade is performed as a result of
a bug in a platform that’s no longer supported. Clearly, a better option is to per-
form an upgrade in a calm and prepared manner.

Complicating the decision to apply a service pack is the inevitable discussion of the
need for application outage.

4.4.2 Application outage

A common planning mistake is to fail to consider the need for scheduled mainte-
nance; therefore, a request to apply a service pack is often met with a negative
response in terms of the impact on users.

 Very few organizations are prepared to invest in the infrastructure required for a
zero outage environment, which is fine as long as they realize the importance of plan-
ning for scheduled outages on a monthly or quarterly basis. Such planning allows for
the installation of service packs and other maintenance actions while enabling the
management of downtime and user expectations.

So with these issues in mind, let’s take a look at a recommended approach for install-
ing SQL Server service packs.

Incremental servicing model
Microsoft has recently moved to an incremental servicing model (http://support.
microsoft.com/default.aspx/kb/935897/en-us) whereby cumulative updates, con-
sisting of all hotfixes since the last service pack, are released every 2 months. In addition
to the bi-monthly release, critical on-demand hotfixes will be delivered as soon as pos-
sible, as agreed between Microsoft and the customer experiencing the critical issue.
Licensed to Gayle M. Noll <pedbro@gmail.com>

http://support.microsoft.com/lifecycle
http://support.microsoft.com/lifecycle

75Best practice considerations: installing and upgrading SQL Server

4.4.3 Recommended approach

Although each environment will have its own special circumstances, the following
approach is generally accepted by most DBAs (see figure 4.12 for a summary):

For a new deployment of SQL Server, use the latest service pack available, sub-
ject to application vendor support policies.
For existing production systems, aim to apply service packs as soon as possible
after their release—for example, at the next available/advertised maintenance
window. This will require preparation and budget to ensure the availability of
test environments for regression testing.
Only apply hotfixes or cumulative updates if there’s a particular need—that is,
you’re suffering from a bug or security vulnerability that’s fixed in the release. If
you’re not in this category, wait for the next general service pack.
If you’re denied the chance to apply a service pack, for example, an objection
to the required downtime or fear of the unknown consequences, ensure man-
agement is kept informed of the Microsoft support lifecycle for previous ver-
sions of SQL Server.

4.5 Best practice considerations: installing and upgrading SQL Server
Despite the ease with which SQL Server can be installed and upgraded, adequate
preparation is essential in ensuring a stable and secure platform for later use:

Review the best practices from the previous chapters to ensure hardware com-
ponents are designed and configured appropriately.
Prior to installation, create nonadministrator domain accounts for each
instance/service combination, and ensure the accounts don’t have any pass-

Figure 4.12 A recommended approach for implementing service packs and hotfixes

Service pack is
 released

New or existing
system?

New

Existing

Use latest service
pack if vendor

warranties permit

Regression test and
apply if testing

successful

Hotfix is
released

Hotfix fixes
existing

problem?

Wait for next general service pack
release

Regression test and apply if testing
successful

Yes

No
word expiration policies in place.

Licensed to Gayle M. Noll <pedbro@gmail.com>
www.allitebooks.com

http://www.allitebooks.org

76 CHAPTER 4 Installing and upgrading SQL Server 2008

Grant the SQL Server service account the Perform Volume Maintenance Tasks
right; and for 32-bit AWE and 64-bit systems, also grant the Lock Pages in Mem-
ory right.
Prior to installation of each SQL Server instance, prepare directories on sepa-
rate physical disk volumes for the following database components:

Data files
Log files
Backup files
tempdb data and log

Prior to installation, use the resources available in the Planning tab of the instal-
lation wizard. Included here (among others) are hardware and software
requirements, security documentation, and online release notes.
Only install the minimum set of SQL Server features required. This will increase
security by reducing the attack surface area, and ensure unnecessary services
aren’t consuming system resources.
Don’t install SQL Server on a primary or secondary domain controller.
Ensure consistency in the selection of collations across SQL Server instances,
and unless compatibility is required with earlier SQL Server versions, select a
Windows collation.
Unless it’s being used for applications that can’t work with Windows authenti-
cation, don’t choose the Mixed Mode option. If you do, make sure you
choose a strong SA password and enforce strong password policies for all SQL
Server logins.
If you need to change any of the SQL Server service accounts after the installa-
tion, make changes using the SQL Server Configuration Manager tool. Chang-
ing in this manner ensures the appropriate permissions are granted to the
new account.
When installing SQL Server using the GUI wizard, take care to click and review
each of the tabs before clicking Next. For example, the Database Engine Con-
figuration screen lets you select the Authentication mode. Once you do this,
clicking Next will skip the Data Directories and FILESTREAM tabs, which will
enforce the default values. One of the ramifications of this is that data and log
files will be created in the same directory, unless you manually change them
after the installation.
For a smoother installation process, particularly when a non-DBA is responsible
for installation, use a tailored checklist. Alternatively (or as well as), copy and
modify a ConfigurationFile.ini created from a successful installation and use
the command-line method with the /Configurationfile option.
Before upgrading, download and read the SQL Server 2008 Upgrade Technical Ref-
erence Guide. It contains important information on best practices and specific

advice for various upgrade scenarios.

Licensed to Gayle M. Noll <pedbro@gmail.com>

77Best practice considerations: installing and upgrading SQL Server

Always run through a trial upgrade in a test environment using a recent copy of
the production database (if possible). Doing so offers many benefits as well as cir-
cumvents potential problems. A trial upgrade will enable you to gather accurate
timings for the actual production upgrade, determine the effect of the new com-
patibility level on application behavior, allow performance testing against a
known baseline to determine the performance impact of the upgrade, and finally,
develop a checklist to ensure the real upgrade runs as smoothly as possible.
Use the Upgrade Advisor to analyze upgrade targets for issues that will prevent an
upgrade or to gather a list of issues that will need to be addressed after the
upgrade. If possible, feed SQL Server Profiler trace files into the Upgrade Advisor
to examine any application code that may need to change before the upgrade.
After the upgrade, attend to any issues identified by the Upgrade Advisor,
including the following: setting the database compatibility level, updating statis-
tics, checking configuration for features that need to be enabled, and if upgrad-
ing from SQL 2000, setting the Max Worker Threads option to 0 and running
DBCC UPDATEUSAGE.
The in-place upgrade method may be simple, but it exposes the possibility of
having no rollback position if required. The various side-by-side upgrade meth-
ods offer more choices for rollbacks while also minimizing downtime.
If using the in-place upgrade method, perform a full backup and DBCC check
of each database prior to the upgrade.
Using the Microsoft Assessment and Planning Toolkit Solution Accelerator tool
is an effective means of discovering SQL Server instances and can be used as the
starting point for consolidation and/or upgrade projects.
Prior to any installation, upgrade, or service pack/hotfix install, always read the
release notes for any late-breaking news and details on how certain components
and features may be affected.
Prepare for service packs. They’re released for a good reason. Have both the
time and environments ready for regression testing before applying in produc-
tion, and consider any software vendor warranties before application.
Only apply hotfixes and cumulative updates if there’s a specific reason for
doing so; otherwise, wait for the next service pack release.
Always read the release notes that accompany service packs, hotfixes, and cumu-
lative updates. Such notes often contain crucial information that may impact
certain configurations.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/install.

 In the next chapter, we’ll discuss installing SQL Server on a failover cluster.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Failover clustering
Although redundant component design, such as dual-power supplies, provides fault
tolerance at a component level, failover clustering operates at the server level,
enabling ongoing operations in the event of a complete server failure. Complemen-
tary to component redundancy, failover clustering is a commonly used high avail-
ability technique for SQL Server implementations and is the focus of this chapter.

 In addition to the requisite SQL Server skills, successfully designing and admin-
istering a clustered SQL Server environment requires skills in a number of areas,
including the configuration of cluster-compatible hardware components. While
Windows Server 2008 has made clustering SQL Server somewhat easier, it’s still a
complex process requiring considerable planning and broad skills.

 Rather than attempt to provide full coverage of the clustering design, creation,

In this chapter, we’ll cover
■ Clustering architecture
■ Advantages and limitations of clustering
■ Quorum models
■ Clustering topologies
■ Installing a clustered SQL Server 2008 instance
78

and administration process (such a goal would require at least an entire book!),

Licensed to Gayle M. Noll <pedbro@gmail.com>

79Clustering overview

this chapter focuses on installing a clustered SQL Server instance. Let’s begin with a
broad overview of clustering, exploring its benefits and limitations from a SQL Server
perspective, and tackling important preinstallation configuration tasks.

5.1 Clustering overview
As a cluster-aware application, a SQL Server instance can be installed into an existing
Windows cluster, creating what’s referred to as a failover clustering instance. Once
installed, the instance is accessed using a network name (aka virtual server name) with-
out needing to know which of the underlying physical cluster servers the instance is
currently running on.

 The abstraction between a physical and a virtual server is a key component in pro-
viding continued database availability after a failure event. In the event of a server fail-
ure, the SQL Server instance automatically moves, or fails over, to another cluster
server, while continuing to be accessed using the same virtual server name.

 In this section, we’ll take a high-level look at clustering architecture, including its
benefits, limitations, and common usage scenarios.

5.1.1 Clustering architecture

Built on top of a Windows Server failover cluster, SQL Server clustering uses the shared
nothing architecture, a term used to distinguish its clustering implementation from
those of other database vendors, such as Oracle’s Real Application Cluster (RAC). Under
the shared nothing architecture, a SQL Server database instance is active on only one
physical clustered server at any given time.

 Unlike a network load-balanced solution, SQL Server failover clustering isn’t a
high-performance solution; in other words, the performance won’t be any better, or
worse, than a nonclustered implementation. SQL Server clustering is purely a high-
availability solution and you should not choose it for any other reason.

 Figure 5.1 illustrates a simple example of a two-node cluster with a single SQL
Server failover clustering instance. Ordinarily, the instance resides on the Sales1
server. In the event of a failure of this server, the SQL Server instance automatically
fails over to the Sales2 server. In either case, the SQL instance will continue to be
accessed using the same virtual server name.

Figure 5.1 A simple failover clustering example in which a SQL Server instance

System disk

Sales1 (active) Sales2 (standby)

Shared storage

SQL instance

System disk
can move from one cluster server to another in the event of failure

Licensed to Gayle M. Noll <pedbro@gmail.com>

80 CHAPTER 5 Failover clustering

Key components of a Windows Server failover cluster solution are shared storage and
resource arbitration. In figure 5.1, we can see both the Sales1 and Sales2 servers have
access to shared storage. The databases contained in the SQL instance reside on the
shared storage to enable either server to access them when required. But in order to
prevent both servers from accessing them at the same time, and therefore causing
data corruption, the Windows clustering service arbitrates ownership of the disk vol-
umes based on the server’s current role in the cluster.

 Clusters consist of one or more resource groups, which are collections of resources
required by a clustered application. In the case of a clustered SQL Server instance, its
resource group would include the disks containing the database instance’s data and
transaction logs, an IP address and network name, and the three application services:
SQL Server, SQL Agent, and full-text service. Failover is a term used to describe the
transfer of ownership of resources from one server to another; it occurs at the
resource group level, ensuring that all resources required for the application are
moved and available on the failover server.

 Given that a database instance can be owned by various servers in the cluster, appli-
cations are configured to connect to the virtual server name rather than the name of a
physical cluster server. To avoid confusion with the Microsoft Virtual Server product,
SQL Server 2005 and above refer to failover clustering instances rather than the virtual
server name known in SQL Server 2000 and earlier.

 As we move through this chapter, the terms and concepts we’ve covered thus far
will become clearer, particularly when we walk through an installation of a clustered
instance. For now, let’s turn our attention to the major advantages and limitations of
SQL Server clustering.

5.1.2 SQL Server clustering advantages and limitations

As a high-availability technology, clustering has a number of advantages and limita-
tions when compared to other SQL Server high-availability options such as database
mirroring and transaction log shipping (covered in chapter 11). Its primary advan-
tage is that in the event of a server failure, the entire instance and all of its databases are
moved to a failover server, a process that usually takes no more than about 90 seconds.
This stands in contrast to mirroring or log shipping solutions, which are established
on an individual database-by-database basis.

 In addition to providing protection from unexpected server failure, the other
major benefit of clustering is the ability to reduce downtime during planned outages.
For example, consider a requirement to upgrade a server’s RAM. Unless we have a
server with hot-add RAM capabilities, we’d need to power off the server, upgrade the
RAM, and power back on again, and during this time the database instance would be
unavailable. In a clustering scenario, we could manually initiate failover, which would
move the instance from one server to the other, enabling the upgrade to occur while
the instance is available on another cluster server. Thus, the downtime is limited to

the failover time, typically about 1 minute.

Licensed to Gayle M. Noll <pedbro@gmail.com>

81Clustering overview

 Unlike database mirroring and transaction log shipping, the major limitation of
clustering, particularly in Windows Server 2003 and earlier, is that other than a RAID
solution, there’s no protection from failure of the disks containing the database files
and/or the cluster quorum resource, discussed shortly. Further, typical clustering
solutions don’t offer protection from geographic disasters—that is, if all clustered
servers exist in a single location, the destruction of that location will result in an out-
age. Although multisite clusters and the new Windows Server 2008 quorum models
(discussed shortly) address these limitations, it’s a common practice to combine multi-
ple high-availability solutions to deliver the advantages of each while minimizing the
individual limitations. For example, important databases within a clustered SQL
Server instance can be mirrored to an offsite location for geographic (and disk) pro-
tection. We’ll cover such combinations in more detail in chapter 11.

5.1.3 Clustering in Windows Server 2008

A SQL Server failover clustering instance is installed on, and in some ways is con-
strained by, the underlying Windows cluster. Although Windows Server 2003 and ear-
lier had a solid and full-featured clustering solution, there were a number of
limitations that constrained the configuration of the installed SQL Server failover clus-
tering instances.

 The SQL Server 2008 release was preceded by the release of Windows Server 2008,
bringing with it a substantial improvement in the clustering options. In comparison to
Windows Server 2003, the clustering improvements in Windows Server 2008 include
the following:

An enhanced validation test, as shown in figure 5.2, which can be used to ensure
the validity of the hardware and software components in forming a cluster
Support for IPv6 and up to 16 cluster servers (increased from 8)

Figure 5.2 Use the Windows Server 2008 Validate a Configuration Wizard to ensure

the validity of the cluster components.

Licensed to Gayle M. Noll <pedbro@gmail.com>

82 CHAPTER 5 Failover clustering

The ability of cluster servers to obtain IP addresses via DHCP

Support for new quorum models, used to determine the number of failures a
cluster can sustain while still operating

Apart from the enhanced validation and management tools, the increase in sup-
ported server nodes and relaxed networking restrictions enables the creation of much
more flexible clustering solutions, making Windows Server 2008 the best server oper-
ating system for a clustered SQL Server 2008 deployment. Further enhancing its
appeal are the improved quorum models.

5.1.4 Quorum models

A fundamental aspect of Windows Server clustering is the process whereby each node
is assigned unambiguous ownership of a resource. For example, consider a two-node
cluster like the one you saw in figure 5.1. If the network link between the two cluster
nodes temporarily drops, what process prevents both servers from assuming that
they’re now the owner of the SQL instance? This process to resolve such an occur-
rence (commonly called the split brain problem) is referred to as the cluster quorum.

 In earlier versions of Windows clustering (prior to Windows Server 2003), cluster
quorum was maintained using a shared disk resource and a quorum database contain-
ing the resources and owners. In our previous example, a link failure between the two
nodes would be resolved by only one of the nodes having ownership of the quorum
disk. When the link is dropped, the node with quorum disk ownership continues its
role and takes on the roles (if any) of the other node.

 Despite the simplicity and effectiveness of this quorum model, the quorum disk
was a single point of failure. Further, given the need for all cluster nodes to have
access to the shared disk resource containing the quorum disk, the constraints of typi-
cal shared storage hardware prevented the creation of geographically dispersed clus-
ters. Windows Server 2003 addressed this with the introduction of the Majority Node
Set (MNS) quorum.

 Nodes in an MNS quorum cluster operate with local copies of the quorum database,
avoiding the limitations of shared storage, but in order to prevent the split brain prob-
lem, a majority of nodes must remain in contact for the cluster to be considered valid.
One of the key attributes of an MNS cluster is the requirement for a minimum of three
nodes to form a valid cluster, and in the case of a five-node cluster, a majority of the

Failover Cluster Configuration Program (FCCP)
Cluster hardware should be certified by both the hardware vendor and Microsoft as
cluster compatible. With the release of Windows Server 2008, Microsoft announced
the Failover Cluster Configuration Program (FCCP). Hardware vendors will certify
complete cluster configurations against this program, making the process of choos-
ing a cluster-compatible hardware solution much simpler than in the past.
nodes (three) would need to remain in contact for the cluster to continue operating.

Licensed to Gayle M. Noll <pedbro@gmail.com>

83Clustering topologies and failover rules

Windows Server 2008 further enhances the quorum model with a voting system. As
you can see in figure 5.3, a number of options are available, with a recommended
option based on the number of cluster nodes.

 In summary, the following general recommendations apply to the selection of a
quorum model in 2008:

Node Majority —Used for clusters with an odd number of nodes
Node and Disk Majority —Used for clusters with shared storage and an even num-
ber of cluster nodes
Node and File Share Majority —Designed for multisite and Microsoft Exchange
clusters
No Majority —Compatible with earlier quorum models; isn’t recommended
given the single point of failure on the quorum disk

Before we look at some of the more important preinstallation configuration tasks, let’s
take a moment to dig a little deeper and review common clustering topologies.

5.2 Clustering topologies and failover rules
There are many aspects to consider when designing and planning high availability
with SQL Server clustering. Chief among them is the number of dedicated passive, or
standby, servers to include in the cluster for failover purposes.

 In simple clusters with a 1:1 working:standby ratio, each working server is matched
with a standby server that, during normal operations, isn’t used for any purpose other
than to simply wait for a failure (or planned failover). Alternatively, both (or all) serv-
ers can be active, but this introduces resource complications during failovers; for

Figure 5.3 Available quorum models in Windows Server 2008
example, will a server be able to handle its own load plus that of the failed server?

Licensed to Gayle M. Noll <pedbro@gmail.com>

84 CHAPTER 5 Failover clustering

 In previous versions of clustering, Active/Passive, or Active/Active terminology was
used to define the usage of two-node server clusters. The current terms are single-
instance or multi-instance and are more appropriate terms considering the ability of
today’s clusters to contain up to 16 servers and many more SQL instances, with one or
more standby servers available for failover from any number of other active servers.

 This section will focus on the various clustering topologies commonly used and the
resource considerations for each.

5.2.1 Single-instance clusters

The example earlier in figure 5.1 contained a single SQL Server instance in a two-node
cluster. Under normal operating conditions, one node is in the standby status, existing
purely to take on the load in the event of failure or a planned outage. When such action
occurs, the instance moves between one server and the next, as shown in figure 5.4.

This clustering topology, known as a single-instance cluster, is the simplest to understand
and administer, and also provides the highest availability while avoiding any perfor-
mance impacts after failover. As such, it’s commonly used to protect mission-critical
SQL Server applications.

 The major downside of this topology is the cost. During normal operation, one
server isn’t used in any capacity, and depending on the cost of the server, this can be an
expensive approach. In addressing this, the multi-instance topology is frequently used.

5.2.2 Multi-instance clusters

As the name suggests, a multi-instance cluster contains multiple SQL Server instances.
In a typical two-node multi-instance cluster, each cluster node runs one or more
instances, and a failover situation causes an instance to assume another node’s work-
load in addition to its own. In the example in figure 5.5, the Sales SQL instance resides
on the Sales1 server, and the Marketing SQL Instance resides on the Sales2 server. In
the event of failure of Sales1, Sales2 will run both the Sales and Marketing instances,
potentially reducing the performance of both instances.

 Because of the increase in server utilization, multi-instance clusters are typically
used in budget-constrained environments, or in those valuing high availability much

Figure 5.4 In the event of failure (or planned failover), single instance clusters such as this one have a
simple failover process, with an instance moving from the active/failed node to the standby.

System disk System disk

SQL instance

Sales1 (failed) Sales2 (active)

Shared storage

Failover ...
higher than reduced performance in a failed state.

Licensed to Gayle M. Noll <pedbro@gmail.com>

85Clustering topologies and failover rules

The multi-instance example in figure 5.5 achieves higher resource utilization than the
single-instance example presented earlier; both servers are utilized in the normal
working status.

 Multi-instance clusters require careful consideration in terms of resource configu-
ration. In our example, if the Sales1 and Sales2 servers each have 32GB of RAM, and
both the Sales and Marketing SQL instances are using 28GB of RAM, a failover situa-
tion would see one (or both) instances with a potentially drastically reduced memory
allocation after failover, a scenario I refer to as a resource crunch.

 To avoid this issue, configure instances so that the sum total of maximum resource
usage across both (or all) instances doesn’t exceed the total resources of a single node
that the instances could end up running on.

 The two topologies we’ve covered so far represent the opposite ends of the scale;
single-instance clusters with a 50 percent node utilization, and multi-instance clusters
with 100 percent resource utilization. In between these two lies the N+1/M cluster.

5.2.3 N+1/M clusters

To avoid the cost of idle servers and limit the effects of a failover-induced resource
crunch, a commonly used cluster configuration is an N+1/M cluster, whereby one or
more standby servers exist for more than one working server. For example, in a three-
node cluster, two nodes may be active, with a third existing as a failover node for both
active nodes. Similarly, a five-node cluster with three active nodes and two failover
nodes is a common cluster configuration.

 As the number of cluster nodes and SQL Server instances increases, so too does the
importance of considering the failover rules governing which node(s) a SQL Server
instance can fail over to.

5.2.4 Failover rules

By regularly polling cluster nodes using a series of mechanisms called LooksAlive and
IsAlive checks, a Windows cluster may conclude that a cluster node has failed. At that

Figure 5.5 A two-node multi-instance cluster. Each node needs to be capable of handling
the load of both instances during failover scenarios.

Sales

Marketing

Sales1 (failed) Sales2 (active)

Shared storage

Failover ...

System disk System disk
point the resources hosted by the node are failed over to another cluster node.

Licensed to Gayle M. Noll <pedbro@gmail.com>

86 CHAPTER 5 Failover clustering

 In a simple two-node cluster, the failover process is straightforward, as demon-
strated in figure 5.4. But consider a five-node cluster containing two passive/standby
nodes. Which (if any) of the standby nodes will be used for failover purposes when
one of the active nodes fails? In large clusters containing many SQL Server instances,
this is a particularly important consideration in maintaining a well-balanced cluster,
ensuring that a single node doesn’t carry a disproportionate burden of load.

 Although beyond the scope of this book, there are several common strategies and
techniques used in controlling failover, and central to them is the use of the Preferred
Owners, Possible Owners, and Failback settings.

 In figure 5.6, the properties of the SQL Server resource shows the Possible Owners
property. This property lets you specify which nodes the instance is permitted to fail
over to. In a similar manner, the Preferred Owner setting (not shown) is used to set
the preferred failover node (this may not be chosen in some situations—for example,
if the node is unavailable).

 Finally, the Failback options (not shown) let you determine whether or not
resources fail back to the original node if the failed node comes back online.

 With this background in mind, let’s continue by walking through the installation
of a clustered SQL Server instance into a two-node Windows Server 2008 cluster.

5.3 Installing a clustered SQL Server instance
The process of installing a clustered SQL Server instance has changed since SQL
Server 2005. There are now two installation options: Integrated and Advanced.

5.3.1 Integrated vs. advanced installation

An integrated installation creates a single-node failover cluster, from which addi-
tional nodes (nodes on which the instance can fail over to) are added via a separate
installation. As shown in figure 5.7, the initial and subsequent node installations are
started by choosing the New SQL Server Failover Cluster Installation and Add Node
to a SQL Server Failover Cluster options on the Installation tab of the SQL Server
Installation Center.

 In contrast to the one-node-at-a-time approach of the integrated installation, the
advanced installation prepares multiple-cluster nodes in one step, before completing
the installation on the node chosen as the initial active node for the instance. As
Figure 5.6 The Possible Owners setting gives you control over the cluster failover process.

Licensed to Gayle M. Noll <pedbro@gmail.com>

87Installing a clustered SQL Server instance

shown in figure 5.8, you specify this installation type by selecting the Advanced Cluster
Preparation and Advanced Cluster Completion options on the Advanced tab of the
SQL Server Installation Center.

In the previous chapter, we discussed the installation of a nonclustered SQL Server
instance. Clustered installations share some of the same installation screens and steps,
so rather than repeat them, let’s walk through the steps unique to a clustered installa-
tion using the integrated method.

5.3.2 Integrated installation steps

As with a nonclustered installation, you begin a failover clustering installation by run-
ning setup.exe from the installation DVD. Next, you go through a series of steps to
install setup support files and check various setup rules. As shown in figure 5.9, the
setup checks for a clustered installation are more detailed than for a nonclustered
installation.

 Installation continues with the usual prompts for a product key, acknowledgment
of license terms, and feature selection, before arriving at the instance configuration
step, as shown in figure 5.10.

 The one difference between this step and the equivalent step in a nonclustered
installation is the SQL Server Network Name field. The name you enter is used to
identify an instance on the network. In our example, we’ll use BNE-SQL-PR-02 as our

Figure 5.7 Choose the New SQL Server Failover Cluster Installation option to create a single-node
failover cluster before adding additional nodes with the Add Node to a SQL Server Failover Cluster option.

Figure 5.8 Choose the Advanced Cluster Preparation and Advanced Cluster Completion options to
streamline the process of installing a clustered SQL Server instance on multiple-cluster nodes.
network name, and together with the instance name (Marketing), we’ll access this

Licensed to Gayle M. Noll <pedbro@gmail.com>

88 CHAPTER 5 Failover clustering

instance as BNE-SQL-PR-02\Marketing without ever needing to know which of the two
cluster nodes the instance is running on.

 Installation continues through the disk space requirements check before prompt-
ing for a cluster resource group, as shown in figure 5.11. The resource group name is
used as a container for holding the resources (disks, IP addresses, and services) for
the installed instance. Later in this chapter, we’ll see the resource group in the Cluster

Figure 5.9 The Setup
Support Rules for a
clustered installation
include cluster-specific
checks such as the
existence of a clustered
Microsoft Distributed
Transaction Coordinator
(MSDTC) service.

Figure 5.10 A clustered SQL Server installation is identified on the network with a unique network name

you specify during installation.

Licensed to Gayle M. Noll <pedbro@gmail.com>

89Installing a clustered SQL Server instance

Management tool, and you’ll see how to move the group to another cluster node to
effect a planned failover.

 In the next step, you’ll identify available cluster disk resources that can be chosen
for inclusion in the instance’s resource group. As shown in figure 5.12, the quorum
disk and cluster disks that have been previously assigned to another clustered instance
are unavailable for selection.

 As shown in figure 5.13, the next step lets you specify either a static or DHCP-based
IP address for the SQL Server instance.

Figure 5.11 The
cluster resource
group name is used
to both identify and
group the instance’s
resources.

Figure 5.12 On this
screen, you identify
available cluster
disks for assignment
to the instance’s
resource group.
Figure 5.13 Unlike earlier versions, SQL Server 2008 permits DHCP-assigned IP addresses.

Licensed to Gayle M. Noll <pedbro@gmail.com>

90 CHAPTER 5 Failover clustering

Figure 5.14 The Cluster Security Policy tab lets you select between the default service SIDs
and custom domain membership.

The only remaining cluster-specific installation step is configuring the Cluster Security
Policy. In previous versions of SQL Server, the service accounts had to be added to
newly created domain groups prior to installation. Permissions for the service
accounts were then managed at the domain group level. This requirement was often
misunderstood, and introduced complexities when the domain groups needed to be
changed. In response to this, SQL Server 2008 introduced an alternative method that
uses service security identifiers (SIDs).

 As you can see in figure 5.14, using SIDs is the recommended configuration,
although support for the old domain group method remains.

 The remaining steps in the installation process are the same as for the nonclus-
tered installation described in the previous chapter. At the end of the installation, the
clustered instance will be created and available, but can’t fail over to other cluster
nodes until you run the Add Node installation on the appropriate nodes. This installa-
tion option is used to enable additional cluster nodes to participate as failover nodes
for an existing SQL Server failover clustering instance. Figure 5.15 shows one of the
screens from this installation option, and in this case, we’ve chosen to allow the
SALES2 server to host the MARKETING instance.

Figure 5.15 In this example, the Sales2 server is installed as a failover participant for the

Sales instance installed on the Sales1 server.

Licensed to Gayle M. Noll <pedbro@gmail.com>

91Best practice considerations: failover clustering

 When installation is complete, you can manage the clustered instance using the Failover
Cluster Management tool in the Administrative Tools folder, or by running Cluad-
min.msc from the Start menu. In the example in figure 5.16, you can manually move,
or fail over, a clustered instance to another cluster node by right-clicking the resource
group and selecting the “Move this service or application to another node” option.

 Failover clustering is a complex area requiring a range of skills for a successful
implementation. I encourage you to visit http://www.sqlCrunch.com/clustering for
links to various clustering-related resources, including how clusters use public and pri-
vate networks and how to use clustering over geographic distances.

5.4 Best practice considerations: failover clustering
Clustering SQL Server allows for the creation of highly available and reliable environ-
ments; however, failing to adequately prepare for a clustered installation can be coun-
terproductive in that regard, with poorly planned and configured clusters actually
reducing the availability of SQL Server.

While multi-instance clusters are more cost-effective than single-instance clus-
ters, give careful consideration to the possibility (and implications) of a resource
crunch in the event of failover.
N+1/M clusters offer both cost benefits and resource flexibility, but take into
account the failover rules, particularly for clusters containing many servers and
SQL Server instances.
Before installing a SQL Server failover clustering instance, ensure the MSDTC
service is created as a clustered resource in its own resource group with its own
disk resource. In Windows Server 2003 and earlier clusters, it was common for
the MSDTC resource to be configured as part of the quorum group. Certain
applications, such as high-throughput BizTalk applications, make heavy use of
the MSDTC resource. Insulating MSDTC from the quorum helps to prevent clus-
ter failures due to quorum disk timeouts.
Windows Server 2008 allows multiple clustered DTC instances to be installed. In
such clusters, consider installing a clustered DTC instance for each SQL Server
instance that requires DTC services. Such a configuration enhances the load
balancing of DTC traffic.
Like nonclustered SQL Servers, a clustered SQL Server node shouldn’t be a domain

Figure 5.16 Use the
Cluster Management
tool to view and
manage a clustered
SQL Server instance’s
resources and state.
controller, or run any other server applications such as Microsoft Exchange.

Licensed to Gayle M. Noll <pedbro@gmail.com>

92 CHAPTER 5 Failover clustering

Before installing a SQL Server failover clustering instance, run the Cluster Vali-
dation Wizard to ensure the validity of the cluster components.
All aspects of cluster nodes should be configured identically, including hard-
ware components and configuration, operating system versions and service
packs, bios and firmware version, network card settings, directory names, and
so forth. Such a configuration provides the best chance of continued smooth
operations in the event of a failover.
Antivirus (AV) software should either not be installed on clusters or configured
to not scan any database or quorum disk files. A frequent cause of cluster fail-
ures is AV software scanning quorum files. If you’re using such software, ensure
it’s cluster aware, and explicitly exclude all quorum files from all scan types,
including on-access and scheduled scans.
When installing a clustered SQL Server instance, set the service startup types to
Manual (which is the default setting) to enable the cluster to stop and start ser-
vices as required on the appropriate cluster node. The Control Panel Services
applet should not be used in clusters for stopping or starting SQL Server ser-
vices. If an instance needs to be taken offline (or moved to another node), use
the Failover Cluster Management tool in the Administrative Tools folder or run
Cluadmin.msc from the Start menu.
When installing a clustered SQL Server instance, ensure the account used for
the installation is a local administrator on all the cluster nodes the instance will
be set up on and ensure any remote desktop connections are disconnected
other than the node the installation is occurring on.
Clustered servers should have at least two network cards, with at least one dedi-
cated to the cluster’s private network. Assign to the networks names like Public
and Private.
In the Control Panel, ensure the public LAN is bound first before the private
LAN, and remove File/Print Sharing and Client for Microsoft Networks from
the private LAN bindings.
The private network should be physically separate from the public network
using a cross-over cable (for two-node clusters), a dedicated hub, or a virtual
LAN (VLAN).
Define the private network at the highest level in the cluster network priority.
The private network must not have any WINS, DNS, or NetBIOS settings enabled,
and should use TCP/IP as the only protocol.
Use NIC teaming in clusters with caution. There are documented cases of
known issues with this approach, and Microsoft doesn’t recommend or support
NIC teaming for the private cluster network.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/clustering.

 The last five chapters have been focused on planning and installation tasks. Let’s
move on now and look at post-installation configuration tasks, beginning with the

next chapter, where we’ll focus on security.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Part 2

Configuration

I n part 1, we focused on preinstallation planning and the installation process
itself. The next four chapters will focus on postinstallation configuration tasks,
including securing an installation, configuring a SQL Server instance, using pol-
icy-based management, and configuring data.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Licensed to Gayle M. Noll <pedbro@gmail.com>

Security
As you learned in chapter 1, successful database administration involves designing
and executing tasks that ensure that a database meets four key criteria: security,
availability, reliability, and recoverability. This chapter is dedicated to the first of
these criteria, security, and we’ll address this topic from a range of perspectives.

 Before we begin, it’s important to note the difference between a secure environ-
ment and a convenient one. A convenient environment, in which developers, users,
and database administrators are free to go about their business unhindered, is usu-
ally an insecure one that often ends in disaster, intentional or otherwise. In con-
trast, a secure environment is one in which complaints about “how long it takes to
get stuff done” aren’t uncommon. The key is striking the balance between security
and productivity.

In this chapter, we’ll cover
■ Authentication modes
■ Secure networking
■ Least privilege
■ Auditing and Change Data Capture
■ Data encryption
95

Licensed to Gayle M. Noll <pedbro@gmail.com>

96 CHAPTER 6 Security

 Designing and implementing a secure database environment is hard work. Trying
to lock down an existing, insecure production environment almost always involves
things breaking as part of the process. As a result, the job is often placed in the “too
hard” basket, with systems left in an insecure state. The key to a good security model is
prioritizing its development and implementation from the very beginning, and rolling
out the model in all environments well before the production environment is installed.

 Fortunately, there are some proven best practices in securing SQL Server, and they
are the focus of this chapter. We begin with coverage of the various authentication
models before looking at locking down network security and implementing least priv-
ilege. We then focus on some of the new security features in SQL Server 2008: Audit-
ing, Change Data Capture, and Transparent Data Encryption. The chapter closes with
a brief look at the dangers of SQL injection attacks.

6.1 Authentication mode
As you saw in chapter 4, installing SQL Server presents us with two options for login
authentication: Windows Authentication Mode or SQL Server and Windows Authenti-
cation Mode (commonly called Mixed Mode). Regardless of the installation choice,
you change this setting at any future point using sp_configure, or as shown in figure
6.1, by right-clicking on a registered server instance in SQL Server Management Stu-
dio, choosing Properties, and then clicking the Security page in the Properties dialog.

Figure 6.1 The Security page of a server’s properties dialog lets you change a variety of security-related

settings, including the authentication mode.

Licensed to Gayle M. Noll <pedbro@gmail.com>

97Authentication mode

In Windows Authentication mode, SQL Server will only accept connections from ses-
sions bearing a security token assigned during a successful Windows login. Not only
does this simplify SQL Server login management (logins are already managed in Win-
dows), Windows logins can be the subject of powerful password complexity and expi-
ration policies, options that weren’t available in SQL Server authentication in versions
prior to 2005.

 In SQL Server 2005, Microsoft significantly strengthened SQL Server authentica-
tion by providing a means to enforce password complexity and expiration policies to
match the host Windows Server, as long as the server is running Windows Server 2003
or above. Despite this addition, Windows authentication remains the best choice.

6.1.1 Windows Authentication mode

Windows Authentication mode offers many advantages:

It’s the most secure. Passwords are never sent across the network, and expira-
tion and complexity policies can be defined at a domain level.
Account creation and management is centralized, and usually handled by spe-
cialist IT groups.
Windows accounts can be placed into groups, with permissions assigned at a
group level.

SQL Server, with its ability to accept Windows authenticated logins, can leverage all of
these benefits, providing both a secure and simplified login and a permissions man-
agement environment.

If Windows Authentication mode is chosen during installation, the setup process still
creates the SA account but disables it by default. Changing to Mixed Mode security,
discussed next, requires this account to be reenabled before it can be used. If the
authentication mode is changed, SQL Server will check for a blank SA password and
prompt for a new one if appropriate. Given that brute-force attacks tend to target the
SA account, having a nonblank, complex SA password is crucial in preventing unau-
thorized access.

 In some cases, connections may originate from clients or applications unable to
connect using Windows Authentication mode. To enable such connections, SQL
Server also supports the SQL Server and Windows Authentication mode.

Application vendors and the SA account
Unfortunately, many application vendors rely on SQL Server authentication, and in the
worst examples, hard-code SA as the username in the connection properties (some
with a blank password!). As DBAs, we should be exerting pressure on such vendors
to ensure there’s at least an option to use something other than the SA account, and
ideally to use Windows Authentication mode.
Licensed to Gayle M. Noll <pedbro@gmail.com>

98 CHAPTER 6 Security

6.1.2 SQL Server and Windows Authentication mode (Mixed Mode)

Unlike Windows authentication, SQL Server authentication works by validating a user-
name and password supplied by the connecting process. For example, in Windows
Authentication mode, a process connecting from the WIDGETINC\JSmith account
would be automatically accepted if the Windows account is defined as a SQL Server
login with access to the appropriate database. No password needs to be supplied
because Windows has already validated the login. In contrast, a SQL Server authentica-
tion session supplies a username and password for validation by SQL Server.

 Despite welcome improvements to SQL Server authentication mode in 2005, some
concerns with this login method remain:

For applications using SQL Server authentication, SQL passwords are commonly
included in connection strings stored in clear text in configuration files or reg-
istry entries. If you’re using this authentication mode, store passwords in an
encrypted form before unencrypting them for use in establishing a connection.
Despite the login credentials being encrypted during the SQL Server login pro-
cess, the encryption is typically performed using a self-signed certificate. While
such encryption is better than nothing at all, it’s susceptible to man-in-the-mid-
dle or identity spoofing attacks. In Windows authentication, passwords are
never transmitted over the network as part of the SQL Server login process.
While password expiration and complexity policies are available in SQL Server
authentication, such policy enforcement isn’t mandatory, and each SQL Server’s
policies could potentially have varying degrees of strength, compared to a policy
defined and enforced at a domain level using Windows authentication.

For these reasons, Windows authentication remains the most secure choice for a SQL
Server installation. If you do choose the SQL Server Authentication mode—for exam-
ple, to support connections from non-Windows authenticated clients—ensure that pass-
words are adequately complex and you have an appropriate expiration policy in place.

A strong login authentication model is a crucial aspect of a secure SQL Server environ-
ment, as is locking down network access, as you’ll see next.

6.2 Networking
Connections to SQL Server are established using a standard network protocol such

Surface area configuration
Unlike SQL Server 2005, there’s no Surface Area Configuration tool in SQL Server
2008; a variety of tools are used in its place, including policy-based management (cov-
ered in chapter 8), sp_configure, and Management Studio. Fortunately, the default
installation and configuration settings are secure, so unless configuration settings
are explicitly changed, the surface area of a SQL Server instance will remain secure.
as TCP/IP. Depending on the installed edition of SQL Server, certain protocols are

Licensed to Gayle M. Noll <pedbro@gmail.com>

99Networking

disabled by default. In this section, we’ll look at the process of enabling and config-
uring network protocols. You’ll learn the importance of only enabling the required
protocols, configuring TCP/IP settings, protecting SQL Server behind a firewall, and
encrypting network communications. Let’s begin with looking at enabling and con-
figuring network protocols.

6.2.1 Protocol selection and configuration

The following network protocols are available for use with SQL Server 2008:

Shared Memory —Enabled by default on all editions of SQL Server 2008, the
Shared Memory protocol is used purely for local connections to an instance
running on the same machine.
Named Pipes —For all editions of SQL Server, Named Pipes is enabled by default
for local connections only, with network connectivity over named pipes disabled.
TCP/IP —The TCP/IP protocol is enabled by default for the Enterprise, Stan-
dard, and Workgroup editions of SQL Server, with the protocol disabled for the
Developer, Express, and all other installations.
VIA —A specialized protocol developed for use with specific hardware, the VIA
protocol is disabled by default for all installations of SQL Server.

Note that an upgraded instance of SQL Server will preserve the pre-upgrade network
configuration settings. Banyan VINES, Multiprotocol, AppleTalk, and NWLink IPX/
SPX are no longer supported in SQL Server 2008. Looking at the protocols in the pre-
vious list, if we set aside VIA as a specialist choice and ignore Shared Memory as a local
protocol only, the only two choices for a networked installation of SQL Server are
TCP/IP and Named Pipes.

 TCP/IP is the most widely used network protocol. Compared to Named Pipes, it
provides better security and performance, particularly when used over a WAN or
slower network.

 From both performance and security perspectives, unused protocols should be dis-
abled and, ideally, a single network protocol chosen for SQL Server communication.
In almost all cases, TCP/IP should be used as the standard protocol for SQL Server
instances, with all other protocols disabled. You enable and disable network protocols
using the SQL Server Configuration Manager, as shown in figure 6.2.

Figure 6.2 The SQL Server
Configuration Manager is
used to enable and disable

network protocols.

Licensed to Gayle M. Noll <pedbro@gmail.com>

100 CHAPTER 6 Security

Once it’s enabled, you need to configure TCP/IP for maximum security by assigning a
static TCP port along with appropriate firewall protection.

6.2.2 Static and dynamic TCP ports

Each SQL Server instance “listens” for client requests on a unique TCP/IP address/
port number combination. In SQL Server 7 and earlier, we were restricted to installing
a single instance per server, with the instance listening on port 1433. To support the
installation of multiple named instances per server, SQL Server 2000 introduced
dynamic ports.

 Dynamic ports ease the configuration requirement for unique ports in a multi-
instance installation. Rather than having to manually assign each named instance a
unique port number, you can use dynamic ports. That way, SQL Server will automati-
cally choose a free port number when an instance starts up.

 By default, each named1 SQL Server instance is configured to use dynamic TCP/IP
ports. This means that each time a named instance of SQL Server is started, the TCP
port used may be different. The SQL Server Browser service responds to client connec-
tion requests with the port number that the requested instance is running on, thus
avoiding the need for client applications to be aware of the port number an instance
is currently using. As we saw in chapter 4, the setup process sets the browser service’s
startup type to automatic.

 Dynamic ports present a problem for firewall configuration. An attempt to secure a
SQL Server instance behind a firewall by only opening a specific port number will obvi-
ously fail if the port number changes, courtesy of the dynamic port option. For this rea-
son, static ports are the best (and most secure) choice when placing SQL Server behind
a firewall. In return for the additional configuration required to assign each SQL
Server instance a static port number, the appropriate ports can be opened on the fire-
wall without running into the connection failures typical with dynamic ports.

 When assigning a static TCP port, avoid using ports currently (and commonly)
used by other services and applications. The IANA registration database, available at
http://www.iana.org/assignments/port-numbers, is an excellent resource for this pur-
pose; it lists registered port numbers for common applications, as well as “safe” ranges
to use for SQL Server instances.

 As you can see in figure 6.3, you can set an instance to use a static TCP port by
using the SQL Server Configuration Manager tool. Simply delete the TCP Dynamic
Ports entry for IPAll2 and enter a port number in TCP Port. In our example, we’ve cho-
sen port 49153.

 The SQL Server Browser service runs on port 1434. If the browser service is
stopped, or port 1434 is closed on the firewall, the port number needs to be included

1 If installed, a default instance, that is, a non-named instance, will use port 1433 unless you change it manually.
2 To configure SQL Server on a multihomed server, set the Active value to false for IP addresses that SQL
should not listen on, and configure the TCP port for individual IP entries rather than the IPAll entry.

Licensed to Gayle M. Noll <pedbro@gmail.com>

101Networking

in the connection request. For example, to connect to a SQL Server instance called
SALES running on port 49153 on the BNE-SQL-PR-01 server, we’d connect using

BNE-SQL-PR-01\Sales,49153

An alternative to including the port number in the connection string is to create an
alias on each connecting client using the SQL Server Configuration Manager tool. Full
details of this process can be found in SQL Server Books Online (BOL) under the
“New Alias (Alias Tab)” article.

 We’ve spoken about firewalls a few times now. In addition to network firewalls, we
also have the option of using the Windows Firewall. Since Windows XP SP2, the Win-
dows Firewall has been enabled by default on client operating systems. For the first
time in a server operating system, the firewall is also enabled by default in Windows
Server 2008.

6.2.3 Windows Firewall

A 2007 survey3 found approximately 368,000 SQL Server instances directly accessible
on the internet. Of those, almost 15,000 were completely insecure and vulnerable to
worms such as the infamous SQL Slammer, a worm that spread rapidly in 2003 by
exploiting a buffer overflow bug in SQL Server (the patch for it was released six
months before the worm struck).

 In light of the proliferation of port scanners and widely accessible network firewall
penetration techniques, having a solid host firewall strategy is crucial. Windows Server

Figure 6.3 SQL Server Configuration Manager lets you configure SQL Server instances
with a static TCP port.
3 The Database Exposure Survey 2007, David Litchfield, Next Generation Security Software.

Licensed to Gayle M. Noll <pedbro@gmail.com>

102 CHAPTER 6 Security

2008 enables the Windows Firewall by default. For the most secure SQL Server installa-
tion, the Windows Firewall should be left enabled, with the appropriate ports
opened—that is, the port used by each installed SQL Server instance.

 As we covered in chapter 4, the SQL Server installation process will detect the pres-
ence of the Windows Firewall and provide a warning to open the appropriate ports.
This can be achieved using the Control Panel, as you can see in figure 6.4. You can
find full details on this process in SQL Server BOL, under the “Configuring the Win-
dows Firewall to Allow SQL Server Access” article.

 In closing our section on network security, let’s examine the process of encrypting
network communications.

6.2.4 Network encryption

SQL Server 2008 introduces a feature called Transparent Data Encryption (TDE), which
we’ll discuss later in this chapter. When enabled, TDE automatically encrypts and
decrypts data as it’s read from and written to the database without the need for any
application changes.

 Even with TDE enabled, other than the initial login credentials, the network trans-
mission of data is unencrypted, meaning packet sniffers could be used to intercept data. For
maximum data security, the network transmission of SQL Server data can be encrypted
using either Internet Protocol Security (IPSec) or Secure Sockets Layer (SSL).

 Requiring no SQL Server configuration, IPSec encryption is configured at the
operating system level on both the SQL Server and the connecting clients. SSL encryp-
tion can be enabled using a combination of an installed certificate and the SQL Server
Configuration Manager tool.

 SQL Server can use either self-signed or public certification authority certificates.

Figure 6.4 The Windows Firewall can be configured to allow communication on specific ports.
As mentioned earlier in this chapter, self-signed certificates offer only limited security

Licensed to Gayle M. Noll <pedbro@gmail.com>

103Implementing least privilege

and are susceptible to man-in–the-middle attacks. For maximum SSL security, certifi-
cates from a public authority such as VeriSign can be used.

 Once you’ve installed a certificate, you can use the SQL Server Configuration Man-
ager tool to configure a SQL Server instance to use the certificate and to specify
whether or not client connections are accepted that can’t support an encrypted con-
nection. In a similar manner, Configuration Manager lets you configure the client end
of the connection, with the option to force encryption, and whether or not to trust a
server with only a self-signed certificate.

 SQL Server BOL contains a full description of the process for enabling SSL encryp-
tion for a SQL Server instance, including coverage of cluster-specific encryption pro-
cesses. In addition to BOL, you’ll find a number of links to articles containing step-by-
step encryption setup instructions at the book’s companion website, available at
http://www.sqlcrunch.com/security.

 As with any encryption, SQL Server network encryption involves processing over-
head and therefore lowers performance to some degree. In environments with sensitive
data, the performance impact of encryption is typically of less concern than protecting
the data from unauthorized access. Before implementing encryption in a production
environment, test and measure the process and overhead in a test environment.

 Even with strong network security and authentication models in place, a SQL
Server instance is far from secure if those with legitimate access to a SQL Server
instance have more access than what they actually need. With a significant percentage
of security breaches performed as inside jobs, the importance of least privilege is not
to be underestimated.

6.3 Implementing least privilege
The ultimate goal of implementing least privilege is reducing the permissions of user
and service accounts to the absolute minimum required. Doing this can be difficult
and requires considerable planning. This section focuses on this goal from four per-
spectives:

Separating Windows and database administrator privileges
Reducing the permissions of the SQL Server service accounts
Using proxies and credentials to limit the effective permissions of SQL Server
Agent jobs
Using role-based security to simplify and tighten permissions management

Let’s begin with a contentious issue: separating and limiting the permissions of DBAs
and Windows administrators.

6.3.1 Windows and DBA privilege separation

Removing the local admin group membership from a DBA is almost always likely to
provoke a strong response. Most DBAs take it as a personal insult, akin to not being
trusted with basic tasks. When questioned about whether Windows administrators
should be SQL Server sysadmins, the response is typically as passionate, with the DBAs

usually unaware of their own contradiction!

Licensed to Gayle M. Noll <pedbro@gmail.com>

104 CHAPTER 6 Security

 In most cases, DBAs don’t need to be local administrators to do their job. Not only
that, they shouldn’t be. Equally true, Windows administrators shouldn’t be SQL Server
sysadmins.

 Separation of powers in this manner is a basic security concept, but probably the
most commonly abused one. The reasons for this are many and varied. First, in previ-
ous versions of SQL Server (2005 and earlier) the BUILTIN\Administrators group is
automatically added to the SQL Server sysadmins server role, making Windows admin-
istrators effectively DBAs by default. Second, DBAs are often tasked (particularly in
smaller environments) with being the Windows administrator as well as the DBA. And
third, to avoid dealing with Windows administrators to get things done, some DBAs
will come up with various reasons why they should be local administrators, often bam-
boozling management into submission.

Why separate permissions? Well, a Windows administrator with very little DBA experi-
ence could accidentally delete critical data or entire databases without realizing it. Or
a DBA, after accessing sensitive data, could cover his or her tracks by deleting audit
files from the operating system.

 There are obviously many more examples, all of which require separation of pow-
ers to protect against both deliberate and accidental destructive actions. As you saw in
chapter 4, SQL Server 2008 helps out in this regard by not including the BUILTIN\
Administrators group in the sysadmin server role.

 Continuing the theme of least privilege, the SQL Server service accounts shouldn’t
be members of the local administrators group.

6.3.2 SQL Server service account permissions

A common SQL Server myth is that the accounts used by the SQL Server services need
to be members of the local administrators group. They don’t, and in fact shouldn’t be.
During installation, SQL Server will assign the necessary file, registry, and system per-
missions to the accounts nominated for the services.

 The need to avoid using local administrator accounts (or the localsystem account)

Sysadmin lock-out
If all of the Windows logins and/or groups that are in the sysadmin server role be
accidentally (or deliberately) removed and the SA password is unknown, system ad-
ministrators can be effectively locked out from performing SQL Server sysadmin
tasks. In such an event, the instance can be started in single-user mode using the –
m or –f options by a user with membership in the local administrators group (rather
than reinstalling SQL Server and reattaching databases). When started in this man-
ner, the user connecting to SQL Server will connect as part of the sysadmin role and
can add the necessary logins and/or groups back to the sysadmin role. Be careful
when using this method to ensure the SQL Agent service is stopped so that it doesn’t
connect first and prevent further connections.
is based on the possibility of the server being compromised and used to run OS-level

Licensed to Gayle M. Noll <pedbro@gmail.com>

105Implementing least privilege

commands using tools such as xp_cmdshell, which is disabled by default. While other
protections should be in place to prevent such attacks, locking down all possible ave-
nues of attack is best practice, and using nonprivileged service accounts is an impor-
tant part of this process.

 As you learned in chapter 4, separate accounts should be used for each SQL Server
service to enable the most granular security permissions. Finally, should the security
account be changed postinstallation, the SQL Server Configuration Manager tool
should be used, rather than a direct assignment using the Control Panel services
applet. When you use the Configuration Manager tool, SQL Server will assign the new
account the necessary permissions as per the initial installation.

 Like all items in this section, configuring nonadministrator accounts for SQL
Server services is about assigning the minimal set of privileges possible. This is an
important security concept not only for service accounts but for all aspects of SQL
Server, including SQL Server Agent jobs.

6.3.3 SQL Server Agent job permissions

A common requirement for SQL Server deployments is for SQL Server Agent jobs
(covered in more detail in chapter 14) to access resources outside of SQL Server.
Among other tasks, such jobs are typically used for executing batch files and Integra-
tion Services packages.

 To enable the minimum set of permissions to be in place, SQL Server Agent
enables job steps to run under the security context of a proxy. One or more proxies are
created as required, each of which uses a stored credential. The combination of creden-
tials and proxies enables job steps to run using a Windows account whose permissions
can be tailored (minimized) for the needs of the Agent job step.

 In highlighting how proxies and credentials are used, let’s walk through a simple
example of setting minimal permissions for a SQL Agent job that executes an Integra-
tion Services package. We’ll begin this process by creating a credential.
CREDENTIALS

When you create a SQL Agent proxy, one of the steps is to specify which credential the
proxy will use. We’ll see that shortly. It follows that before creating the proxy, the cre-
dential should be created. Figure 6.5 shows an example of the creation of a credential
Figure 6.5 Create a credential in order to define the security context of a SQL Agent proxy.

Licensed to Gayle M. Noll <pedbro@gmail.com>

106 CHAPTER 6 Security

in SQL Server Management Studio. You access this dialog by right-clicking Credentials
under Security and choosing New Credential.

 In figure 6.5, we've specified the SQLProxy-SalesSSISIm account, whose permis-
sions4 have been reduced to the minimum required for executing our Integration Ser-
vices package. For example, we’ve granted the account read permissions to a directory
containing files to import into the database. In addition to setting permissions at a
domain/server level, we’d add this credential as a SQL login with the appropriate
database permissions.

 After creating the credential, we can now create the proxy.
PROXIES

You create a SQL Agent proxy in SQL Server Management Studio by right-clicking
Proxies under SQL Server Agent and choosing New Proxy. The resulting screen, as
shown in figure 6.6, allows you to specify the details of the proxy, including the name,
the credential to use, and which subsystems the proxy can access. In our case, we’ll use
the credential we created earlier, and grant the proxy access to the SQL Server Inte-
gration Services (SSIS) Package subsystem.

 Members of the sysadmin group have access to all proxies. The Principals page
enables non-sysadmin logins or server roles to be granted access to the proxy, thereby

Figure 6.6 A proxy is defined with a credential and granted access to one or more subsystems. Once
created, it can be used in SQL Agent jobs to limit permissions.
4 The credential account must also have the “Log on as a batch job” permission on SQL Server.

Licensed to Gayle M. Noll <pedbro@gmail.com>

107Implementing least privilege

enabling such users to create and execute SQL Agent jobs in the context of the proxy’s
credential.

 With the proxy created, we can now create a SQL Agent job that uses it.

SQL AGENT JOB STEPS

When you create a SQL Server Agent job, one of the selections available for each job
step is choosing its execution context, or Run As mode. For job steps that perform
actions at the operating system level, you have two options for the Run As mode: SQL

Agent Service Account or Proxy. As shown in figure 6.7, we’ve created a SQL Agent
job with a job step called Load Sales that uses the Load Sales Data Proxy that we cre-
ated earlier.

 The end result of such a configuration is that the effective permissions of the Load
Sales job step are those of the proxy’s credential, which is restricted to the require-
ments of the SSIS package and nothing more, and therefore meets the least privilege
objective. Additional SQL Agent jobs and their associated steps can use the Load Sales
Data proxy, or have specific proxies created for their unique permission require-
ments, all without needing to alter the permissions of the service account used for
SQL Server Agent.

 It’s important to note that T-SQL job steps continue to run in the context of the
SQL Agent job owner. The proxy/credential process I’ve described is specific to job
steps accessing resources outside of SQL Server.

 The ability to create multiple proxies for specific job types and with individual cre-
dentials and permissions allows you to implement a powerful and flexible permissions
structure—one that conforms to the principles of least privilege.

 In finalizing our coverage of least privilege, let’s turn our attention to how user’s
permissions are secured within a server and database using role-based security.

6.3.4 Role-based security

When discussing security in SQL Server, the terms principal and securable are commonly
used. A principal is an entity requesting access to SQL Server objects (securables). For

Figure 6.7 A SQL Agent job step can be run under the context of a proxy.
Licensed to Gayle M. Noll <pedbro@gmail.com>

108 CHAPTER 6 Security

example, a user (principal) connects to a database and runs a select command against
a table (securable).

 When a principal requests access to a securable, SQL Server checks the permissions
before granting or denying access. Considering a database application with hundreds
or thousands of principals and securables, it’s easy to understand how the manage-
ment of these permissions could become time consuming. Further, the difficulty in
management could lead to elevated permissions in an attempt to reduce the time
required to implement least privilege.

 Fortunately, SQL Server offers several methods for simplifying permissions man-
agement. As a result, you can spend more time designing and deploying granular per-
missions to ensure the least privilege principle is applied all the way down to
individual objects within a database.

 While a full analysis of permissions management is beyond the scope of this book,
it’s important we spend some time looking at the means by which we can simplify and
tighten permissions management using role-based security. Let’s start with a look at
database roles.
DATABASE ROLES

A database role, defined within a database, can be viewed in a similar fashion to an
Active Directory group in a Windows domain: a database role contains users (Win-
dows or SQL Server logins) and is assigned permissions to objects (schema, tables,
views, stored procedures, and so forth) within a database.

 Take our earlier example of the difficulty of managing the database permissions of
thousands of users. Using database roles, we can define the permissions for a database
role once, and grant multiple users access to the database role. As such, the user’s per-
missions are inherited through the role, and we needn’t define permissions on a user-
by-user basis. Should different permissions be required for different users, we can cre-
ate additional database roles with their own permissions.

 Let’s walk through an example of creating and assigning permissions via a data-
base role. To begin, let’s create a role called ViewSales in a database called SalesHis-
tory using T-SQL, as shown in listing 6.1. We’ll assign permissions to the role, select
permissions on a view and table, and execute permissions on a stored procedure.

-- Create the Role
USE [SalesHistory]
GO
CREATE ROLE [ViewSales]
GO

-- Assign permissions to the role
GRANT EXECUTE ON [dbo].[uspViewSalesHistory] TO [ViewSales]
GO
GRANT SELECT ON [dbo].[Store] TO [ViewSales]
GO
GRANT SELECT ON [dbo].[vwSalesRep] TO [ViewSales]

Listing 6.1 Creating a database role
GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

109Implementing least privilege

With the database role in place, we can now assign logins to the role and have those
logins inherit the role’s permission. Consider the T-SQL code in listing 6.2.

-- Create Logins from Windows Users
USE [MASTER]
GO

CREATE LOGIN [WIDGETINC\JSMith]
FROM WINDOWS WITH
 DEFAULT_DATABASE=[SalesHistory]
GO

CREATE LOGIN [WIDGETINC\KBrown]
FROM WINDOWS WITH
 DEFAULT_DATABASE=[SalesHistory]
GO

CREATE LOGIN [WIDGETINC\LTurner]
FROM WINDOWS WITH
 DEFAULT_DATABASE=[SalesHistory]
GO

-- Create Database Users mapped to the Logins
USE [SalesHistory]
GO

CREATE USER JSMith FOR LOGIN [WIDGETINC\JSMith]
GO

CREATE USER KBrown FOR LOGIN [WIDGETINC\KBrown]
GO

CREATE USER LTurner FOR LOGIN [WIDGETINC\LTurner]
GO

-- Assign the Users Role Membership
EXEC sp_addrolemember N'ViewSales', N'WIDGETINC\JSmith'
GO

EXEC sp_addrolemember N'ViewSales', N'WIDGETINC\KBrown'
GO

EXEC sp_addrolemember N'ViewSales', N'WIDGETINC\LTurner'
GO

The code in listing 6.2 has three sections. First, we create SQL Server logins based on
existing Windows user accounts in the WIDGETINC domain. Second, we create users
in the SalesHistory database for each of the three logins we just created. Finally, we
assign the users to the ViewSales database role created earlier. The net effect is that
the three Windows accounts have access to the SalesHistory database with their per-

Listing 6.2 Assigning logins to a database role
missions defined through membership of the database role.

Licensed to Gayle M. Noll <pedbro@gmail.com>

110 CHAPTER 6 Security

 Apart from avoiding the need to define permissions for each user, the real power
of database roles comes with changing permissions. If we need to create a new table
and grant a number of users access to the table, we can grant the permissions against
the database role once, with all members of the role automatically receiving the per-
missions. In a similar manner, reducing permissions is done at a role level.

 Not only do roles simplify permissions management, they also make permissions
consistent for all similar users. In our example, if we have a new class of users that
require specific permissions beyond those of the ViewSales role, we can create a new
database role with the required permissions and add users as appropriate.

In cases where permissions are defined at an application level, application roles can
be used.
APPLICATION ROLES

In some cases, access to database objects is provided and managed as part of an
application rather than direct database permissions granted to users. In such cases,
there’s typically an application management function where users are defined and
managed on an administration screen. In these cases, application roles can be used
to simplify permissions. In effect, the application role is granted the superset of the
permissions required, with the individual user permissions then managed within the
application itself.

 Application roles are invoked on connection to SQL Server by using the
sp_setapprole stored procedure and supplying an application role name and pass-
word. As with a SQL Server login, you must ensure the password is stored in a secure
location. Ideally, the password would be stored in an encrypted form, with the applica-
tion decrypting it before supplying it to SQL Server.

 The side benefit of application roles is that the only means through which users
are able to access the database is via the application itself, meaning that direct user
access using tools such as SQL Server Management Studio is prevented.

 In closing this section, let’s consider two additional types of roles: fixed server and

User/schema separation
Beginning in SQL Server 2005, database schemas are a distinct namespace, without
the tight user coupling that existed in SQL Server 2000 and earlier. Each database
user is created with a default schema (dbo is the default if none is specified) and is
used by SQL Server when no object owner is specified in T-SQL commands, such as
select * from sales. Objects within a schema can be transferred to another sche-
ma, and the ability to grant or deny permissions at a schema level permits both pow-
erful and flexible permissions structures. This means that sensitive tables could be
placed in their own schema with only selected users granted access. Finally, schema
permissions can be granted to database roles; for example, database role users can
be granted select permissions on schema standard but denied select permission on
schema payroll.
database roles.

Licensed to Gayle M. Noll <pedbro@gmail.com>

111Auditing

FIXED SERVER ROLES

In environments with lots of server instances and many DBAs, some sites prefer to
avoid having all DBAs defined as members of the sysadmin role and lean toward a
more granular approach whereby some DBAs are allocated a subset of responsibilities.
In supporting this, SQL Server provides a number of fixed server roles in addition to
the sysadmin role, which grants the highest level of access to the server instance.

 An example of a fixed server role is the processadmin role, used to grant users per-
missions to view and kill running server processes, and the dbcreator role, used to
enable users to create, drop, alter, and restore databases. SQL Server BOL contains a
complete listing of the fixed server roles and their permissions.

 Similar to fixed server roles, fixed database roles come with predefined permis-
sions that enable a subset of database permissions to be allocated to a specific user.
FIXED DATABASE ROLES

In addition to the db_owner role, which is the highest level of permission in a data-
base, SQL Server provides a number of fixed database roles. Again, all of these roles
and descriptions are defined in BOL. Commonly used fixed database roles are the
db_datareader and db_datawriter roles, used to grant read and add/delete/modify
permissions respectively to all tables within a database.

 One of the nice features of permissions management within SQL Server is that
roles can include other roles. For example, the db_datareader role could contain the
custom ViewSales database role that we created earlier, in effect granting select per-
missions on all tables to members of the ViewSales role, in addition to the other per-
missions granted with this role.

 So far in this chapter, we’ve addressed techniques used to prevent unauthorized
access. If such access be gained, it’s important we have auditing in place, a topic we’ll
address next.

6.4 Auditing
Auditing solutions are built to enable retrospective analysis of user activity. SQL Server
2008 introduces a number of enhancements in this regard, which will be the focus of
this section. We’ll begin with coverage of the new SQL Server Audit feature before
looking at DDL and logon triggers. We’ll finish with a brief look at another new fea-
ture in SQL Server 2008, Change Data Capture.

6.4.1 SQL Server Audit

In SQL Server 2005 and earlier, auditing options consisted of simple server-level logon
success/failure logging, custom audits using server-side traces or SQL Profiler, or the
C2 trace option. What was missing was a more granular auditing option whereby a cus-
tom audit trace could be easily created that captured specific events such as executing

DBCC commands.

Licensed to Gayle M. Noll <pedbro@gmail.com>

112 CHAPTER 6 Security

 In addition to all of the auditing options in 2005, SQL Server 2008 introduces a
comprehensive new auditing model that addresses the need to easily create granular
audit specifications. The new Audit feature in SQL Server 2008 consists of three main
components:

An audit, which specifies the location of the audit output (file, application, or
security event log), an option to shut down SQL Server if the audit can’t be writ-
ten, and a queue delay setting that specifies the number of milliseconds that
can pass before audit actions are processed
Server audit specifications, which contain definitions of server-level audit events
such as server logins
Database audit specifications, which contain definitions of database level events
such as schema modifications

Let’s walk through an example of creating an audit solution using SQL Server Man-
agement Studio. The first step is to create an audit. First right-click on Audits under
Security and choose New Audit. As shown in figure 6.8, the Create Audit screen lets
you specify various properties, including the file path if the audit destination is file
based. As with most other parts of Management Studio, use the Script button to save
the creation script for later inspection.

 Both server and database audit specifications are created in the context of a
matching audit. The audit events collected are sent to the Audit object, and written to
either file or the event log, as defined in the Audit object.

 Known as audit action groups, both server- and database-level audit specifications
have a wide variety of audit actions that can be captured. Let’s continue by defining a
server audit specification. SQL Server BOL contains a full list of all possible server-level
audit actions that can be chosen. For this example, let’s create a specification that will
Figure 6.8 Define audits using Management Studio or with T-SQL code.

Licensed to Gayle M. Noll <pedbro@gmail.com>

113Auditing

capture the execution of any DBCC command. We can do this in Management Studio
by right-clicking Server Audit Specifications under Security and choosing New Server
Audit Specification. In the Create Server Audit Specification screen, shown in figure
6.9, select the audit we created earlier, and then choose DBCC_GROUP from the Audit
Action Type drop-down box. If necessary, we can choose multiple audit actions.

 The nice thing about auditing in SQL Server 2008 is that the database-level audit
specifications are defined within the database itself. What this means is that if the data-
base is moved from one server to another, the database-level audit specification will
move to the new server. When attached to the new server, the audit specification will
be orphaned until you use the ALTER DATABASE AUDIT SPECIFICATION command to
reassign it to the new server’s Audit object.

 Let’s expand our audit by including a database-level audit specification. We’ll do
this for the AdventureWorks database by expanding it and right-clicking the Database
Audit Specifications option under Security and choosing New Database Audit Specifi-
cation. The Create Database Audit Specification screen is similar to the one for the
server-level specification, as you can see in figure 6.10. Again, we’ll select the audit cre-
ated earlier and then select from the options in the Audit Action Type drop-down
box. In this example, we’ll select the DATABASE_ROLE_MEMBER_CHANGE_GROUP
option, which will audit events involving logins being added to or removed from a
database role.

 Once our audit action groups are defined, we can start the audit by right-clicking
on it and selecting Enable Audit. The next step is to select the Server and Database
Audit specifications, again by right-clicking on them and choosing Enable. Viewing

Figure 6.9 Once an audit has been defined, you can define audit specifications that use the audit.
The specification can be at a server level (as shown here) or at a database level.
audit data is as simple as right-clicking the audit specification and choosing View

Licensed to Gayle M. Noll <pedbro@gmail.com>

114 CHAPTER 6 Security

Audit Logs. Alternatively, if the audit events are directed to the Windows event logs,
you can read them directly by using the event log viewing tools.

 In our example, after running a DBCC command and adding a login to a database
role, viewing the audit logs will reveal a screen like the one in figure 6.11. Although
our example was a simple one, it reveals the ease with which granular auditing specifi-
cations can be created.

Figure 6.10 An audit specification at the database level

Figure 6.11 Viewing the audit logs is as simple as right-clicking the audit specification

and choosing View Log.

Licensed to Gayle M. Noll <pedbro@gmail.com>

115Auditing

You can use the new Audit feature to create granular audits at both a server and data-
base level as needed to match your organization’s custom auditing requirements. In
comparison to other auditing options such as the C2 audit mode (described in SQL
Server BOL), it offers a much more flexible option, while enabling powerful features
such as portability of database audit specifications when transferred between servers.

 Let’s look at another feature that can be employed as part of a custom auditing
solution: DDL triggers.

6.4.2 DDL triggers

DDL (Data Definition Language) triggers were introduced in SQL Server 2005 as a
means of either auditing or preventing data definition statements. Not to be confused
with DML (Data Manipulation Language) triggers, DDL triggers are defined on events
such as CREATE TABLE. From an auditing perspective, they enable customized data to
be collected for particular events.

 Let’s walk through a simple example to highlight the power and flexibility of DDL
triggers. Suppose we want to capture the details related to the creation of new tables,
including the T-SQL statement used to create the table, the user that executed the
statement, and the date and time of the creation. Consider the T-SQL code in listing
6.3. We’ll first create a table used to store the required details, before creating the
DDL trigger that uses the EVENTDATA function to return the required details.

-- create the table to store the audit details
CREATE TABLE dbo.CREATE_TABLE_LOG (
 eventTime datetime
 , eventOwner nvarchar(100)
 , eventTSQL nvarchar(3000)
)
GO

-- create the DDL trigger
CREATE TRIGGER DDLTrigger_CreateTable ON DATABASE FOR create_table
AS
 DECLARE @data XML
 SET @data = EVENTDATA()

 INSERT INTO CREATE_TABLE_LOG
 VALUES (
 GETDATE()
 , CURRENT_USER
 , @data.value('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]',
 'nvarchar(1000)')
)
GO

Listing 6.3 obtains the T-SQL command from the EVENTDATA function, which returns
information about server or database events. As such, it’s ideal for use in the body of a

Listing 6.3 DDL trigger to capture table creation details
DDL trigger.

Licensed to Gayle M. Noll <pedbro@gmail.com>

116 CHAPTER 6 Security

With the table and trigger in place, a table creation command will fire the trigger and
capture the associated event data. The results appear in figure 6.12.

 Not only can DDL triggers audit actions, they can also actively prevent certain
changes. Consider the example shown in listing 6.4, which rolls back any attempt to
drop or alter a table definition.

CREATE TRIGGER DDLTrigger_PreventTableChanges
ON DATABASE
FOR DROP_TABLE, ALTER_TABLE
AS

 PRINT 'Cannot drop or modify tables in this database'
ROLLBACK

As listing 6.4 shows, the ROLLBACK statement rolls back any attempt to drop or alter
any table in the database in which the trigger is created, along with the error message
“Cannot drop or modify tables in this database.”

 Similar to DDL triggers, logon triggers, discussed next, enable auditing and control
of the logon process.

6.4.3 Logon triggers

In a manner similar to creating DDL triggers, you create a logon trigger to either roll
back (deny) a logon or capture information surrounding the logon using the EVENT-
DATA function.

 Consider the example shown in listing 6.5, which prevents ReportUser from log-
ging on between 11 p.m. and 11:30 p.m.

CREATE TRIGGER validateLogonTrigger
ON ALL SERVER WITH EXECUTE AS 'logonTrigger'
FOR LOGON
AS
BEGIN
 DECLARE @time time(0) = getdate()
 IF ORIGINAL_LOGIN() = 'ReportUser'
 AND @time BETWEEN '23:00:00' and '23:30:00'
 ROLLBACK

Listing 6.4 DDL trigger to prevent table modifications

Listing 6.5 Logon trigger to prevent logon for a period of time

Figure 6.12 Querying
the results of a create
table command that
fired a DDL trigger
END

Licensed to Gayle M. Noll <pedbro@gmail.com>

117Auditing

With the trigger in place, a logon attempt by ReportUser between 11 p.m. and 11:30 p.m.
will be met with an error message similar to the one displayed in figure 6.13.

 In our example, we used the ORIGINAL_LOGON function. There are a number of
other functions that can be used, such as APP_NAME; however, as you’ll see in chapter
16, careful consideration needs to be given to the function used, due to the possibility
of function values being spoofed to circumvent the intention of logon triggers.

 In closing our coverage of auditing features, let’s consider another new feature in
SQL Server 2008: Change Data Capture.

6.4.4 Change Data Capture

The Change Data Capture (CDC) feature, introduced in SQL Server 2008, is used to
capture data modification activity in SQL Server tables and make the details of the
activity available in a format that can be used for various purposes.

 One of the main uses for CDC is for data warehousing solutions. The classic data
warehouse load process involves identifying data that has been modified since the last
load operation. Once identified, the data is the subject of an extract, transform, load
(ETL) process.

 The challenge for ETL processes is identifying which data has changed since the
last load, and typically involves timestamp or GUID values along with a corresponding
query to select all data with a timestamp/GUID value greater than the one used in the
last load operation. CDC is perfect for this scenario, as all changes can be easily con-
sumed, thus avoiding the need for expensive identification queries.

 From an auditing perspective, CDC can be used to identify modifications to one or
more tables. In versions of SQL Server prior to 2008, such auditing was typically per-
formed using triggers or some other mechanism. CDC simplifies this process greatly
while avoiding the expensive overhead of a trigger-based approach.

 As a brief introduction to how CDC can be used from an auditing perspective, let’s
consider an example in which we want to track modifications to the Production.Prod-
uct table in the AdventureWorks2008 database. To do so with CDC, we’ll run the code
shown in listing 6.6.

USE [AdventureWorks2008]

Listing 6.6 Setting up Change Data Capture

Figure 6.13 A logon
failure message that
results from the firing
of a logon trigger
GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

118 CHAPTER 6 Security

-- enable change data capture
EXEC sys.sp_cdc_enable_db
GO

-- enable the Production.Product table for CDC
EXEC sys.sp_cdc_enable_table
 @source_schema = N'Production'
 , @source_name = N'Product'
 , @role_name = N'CDCRole'
GO

At this point the table is defined for CDC. A number of tables and functions are cre-
ated in the AdventureWorks2008 database to support CDC, along with two SQL Server
Agent jobs for capturing and cleaning up captured data. To simulate and view cap-
tured changes, let’s run the script shown in listing 6.7.

DECLARE @begin_time datetime
DECLARE @end_time datetime
DECLARE @from_lsn binary(10)
DECLARE @to_lsn binary(10)

-- Set the start time for the CDC query to 2 minutes ago
SET @begin_time = dateadd(MI, -2, GETDATE())

-- Make a change to the Production.Product table
UPDATE Production.Product
SET Name = 'AWC Logo Cap (XL)'
WHERE ProductID = 712

-- Get the end time for the CDC query
SET @end_time = GETDATE()

-- Wait for 10 seconds to allow the CDC process to record the change
WAITFOR DELAY '00:00:10'

-- Map the time intervals to log sequence numbers for CDC
SELECT @from_lsn = sys.fn_cdc_map_time_to_lsn(
 'smallest greater than or equal', @begin_time
)

SELECT @to_lsn = sys.fn_cdc_map_time_to_lsn(
 'largest less than or equal', @end_time
)

-- Return the Changes from CDC
SELECT *
FROM cdc.fn_cdc_get_all_changes_Production_Product(
 @from_lsn
 , @to_lsn
 , 'all');

Listing 6.7 Modifying data and viewing CDC changes

B

C

D

E

F

F

G

GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

119Data encryption

Let’s walk through the code in listing 6.7 to understand the steps:

B First, after declaring variables, we initialize @begin_time to 2 minutes ago. CDC
queries work by providing a transaction log sequence number (LSN) range in
which to return changes. To derive the LSN numbers, we use date ranges and
the sys.fn_cdc_map_time_to_lsn function discussed shortly.

C Next up, we run a modify statement on the Production.Product table. This is
the change CDC will capture for us.

D We then capture the @end_time using the GETDATE() function.
E CDC captures changes using a SQL Agent job that reads the transaction log. The

10-second pause statement is inserted in order to give the Agent a chance to
capture the change.

F The next two statements capture the starting and ending LSN numbers using
the start and end date time values captured earlier.

G Finally, we select from the cdc.fn_cdc_get_all_changes_Production_Product
function passing in the from/to LSN values as parameters. This function was
automatically created for us when we enabled CDC on the Production.Product
table in listing 6.6.

The output of the final select command in listing 6.7 is shown in figure 6.14.
 After the required database and tables are defined, Change Data Capture enables

a real-time, lightweight method of auditing changes to tables. SQL Server BOL con-
tains a complete description of all of the functions we’ve used in this simple example,
along with a range of other features of Change Data Capture.

 The ability to easily define granular auditing solutions without the need for third-
party tools or custom server-side traces is a powerful weapon in creating and manag-
ing secure SQL Server environments. In the next section, we’ll take a look at another
security feature that has been significantly enhanced in SQL Server 2008: encryption.

6.5 Data encryption
SQL Server 2005 introduced the ability to encrypt data at rest, meaning data stored
within the database itself. Known as cell-level encryption, this was a welcome addition to
the other encryption features in earlier versions that allowed encryption of data in
transit, such as network encryption with SSL.

Figure 6.14 Output from the cdc.fn_cdc_get_all_changes_Production_Product Change

Data Capture function

Licensed to Gayle M. Noll <pedbro@gmail.com>

120 CHAPTER 6 Security

 While cell-level encryption is a valuable enhancement, it requires changes to both
applications and database schema to work. Most notably, the columns chosen for
encryption have to be changed to the varbinary data type, and encrypted data is read
and written with functions, requiring changes to application code, stored procedures,
or both.

 As a result, cell-level encryption in SQL Server 2005 is typically used in limited situ-
ations and for specific data, such as credit card details or passwords. What’s missing is
a way of encrypting everything without requiring any database schema or application
changes. Enter SQL Server 2008 and Transparent Data Encryption.

6.5.1 Transparent Data Encryption

Transparent Data Encryption (TDE) allows us to encrypt the entire database without
requiring any changes to the structure of the database or the applications that access
it. It protects the database in situations where someone breaches physical and login
security and obtains access to the .mdf (data) files or .bak (backup) files. Without TDE
or another third-party encryption solution, the files could be taken offsite and
attached or restored.

 Later in this section we’ll look at some of the restrictions of TDE that may limit its
usefulness in certain situations. For the moment, though, let’s take a look at imple-
menting TDE with T-SQL scripts.
ENCRYPTING A DATABASE

The first step in implementing TDE is in creating a master key. Intended to protect the
private keys of certificates and other keys, the master key is created as a symmetric key
using the Triple DES algorithm along with a password supplied by the user creating it:

-- Create a Master Key
USE MASTER
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'jGKhhg6647##tR';
GO

Next, we create a certificate, used to protect the database encryption key, which we’ll
create shortly:

-- Create a Certificate
USE MASTER
GO
CREATE CERTIFICATE tdeCertificate WITH SUBJECT = 'TDE Certificate';
GO

At this point, it’s crucial that we back up the certificate. When a TDE-encrypted data-
base is backed up, the backup itself is encrypted. If we want to restore an encrypted
database to another server, the certificate used to encrypt the database needs to be
loaded to the other server to enable the database to be restored. Further, should we
suffer a catastrophic server failure, the newly installed server will also require the cer-

tificate in order to restore the database.

Licensed to Gayle M. Noll <pedbro@gmail.com>

121Data encryption

 The certificate backup should be stored in a secure location, and ideally separated
from both the database backups and private key backup. We can back up the certifi-
cate and private key as follows:

-- Backup the certificate
-- Required if restoring encrypted databases to another server
-- Also required for server rebuild scenarios
USE MASTER
GO
BACKUP CERTIFICATE tdeCertificate TO FILE = 'g:\cert\tdeCertificate.backup'
WITH PRIVATE KEY (FILE = 'e:\cert\tdeCertificatePrivateKey.backup',
ENCRYPTION BY PASSWORD = 'jjKiid_%%4-9')
GO

Now, let’s change focus from the master database to the database we want to encrypt
(AdventureWorks in this example) and create the database encryption key (DEK), used
for encrypting the database with Transparent Data Encryption:

-- Create a Database Encryption Key
USE [AdventureWorks2008]
GO
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE tdeCertificate
GO

In this example, we used the AES encryption algorithm with a 128-bit key. In addition,
192- and 256-bit keys are supported, as well as Triple DES. Now that we’ve created our
DEK, we can encrypt the database:

-- Encrypt the database using Transparent Database Encryption (TDE)
-- Encryption will proceed as a background task
-- Use the sys.dm_database_encryption_keys DMV to check progress
ALTER DATABASE [AdventureWorks2008]
SET ENCRYPTION ON
GO

The encryption process will now start as a background task. During this time, some
functions, such as modifying the database files and detaching the database, won’t be
available. The sys.dm_database_encryption_keys Dynamic Management View (DMV),
fully described in BOL, can be used to inspect the progress of the encryption process.

 Finally, earlier we discussed the need to back up the certificate for recovery pur-
poses and to enable encrypted databases to be restored to another server. Attempting
to restore a backup of a TDE-encrypted database to another server that doesn’t have
the appropriate certificate installed will result in failure of the restore process, result-
ing in an error like that shown in figure 6.15.

 Let’s take a quick look at the process of restoring a certificate on another server in
preparation for restoring an encrypted database:

-- Create the Master Key if it doesn't already exist
USE MASTER

GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

122 CHAPTER 6 Security

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'jGK__g6647##tR';
GO

-- Restore the Certificate
CREATE CERTIFICATE tdeCertificate
FROM FILE = ' g:\cert\tdeCertificate.backup'
WITH PRIVATE KEY (FILE = 'e:\cert\tdeCertificatePrivateKey.backup'
, DECRYPTION BY PASSWORD = 'jjKiid_%%4-9');
GO

Now that the certificate is loaded on the new server, we can successfully restore back-
ups of the TDE-encrypted database.

 Despite the clear advantages of Transparent Data Encryption, there are a number
of restrictions to be aware of.

TDE RESTRICTIONS

The key restrictions of TDE are summarized as follows:

While data at rest is encrypted, data transmitted over the network is not, and as
we saw earlier in the chapter, we can use SSL or IPSec to achieve this.
TDE decrypts data as it’s read into memory, meaning that if a person or process
is able to access the memory contents of the server, the data could potentially
be accessed in an unencrypted form.
While the CPU overhead of TDE is moderate (Microsoft estimates a 3- to 5-per-
cent overhead), it’s a consideration nonetheless for systems close to CPU capac-
ity. In large databases with only a small percentage of sensitive data, cell-level
encryption (discussed shortly) may present a better alternative,
The tempdb database will be automatically encrypted on a SQL Server instance
in which any of the databases are encrypted with TDE. This is an important con-
sideration in instances in which there are one or more databases that make
heavy use of the tempdb database.
FileStream data, covered in chapter 9, can’t be encrypted with TDE. For a TDE-
encrypted database containing sensitive FileStream data, consider alternate
means of securing such data.
The new backup compression feature in SQL Server 2008 (covered in chapter
10) has minimal effects on databases encrypted with TDE, with a very low com-
pression yield. For this reason, enabling backup compression on TDE-encrypted

Figure 6.15 Restoring
a TDE-encrypted
database on a server
without the appropriate
certificate will fail.
databases isn’t recommended.

Licensed to Gayle M. Noll <pedbro@gmail.com>

123SQL injection protection

With these restrictions in mind, cell-level encryption may prove to be a better alterna-
tive in particular cases.

6.5.2 Cell-level encryption

Typically, only certain parts of a database are sensitive enough to require encryption.
Cell-level encryption, first introduced in SQL Server 2005, offers a more granular level
of encryption compared to TDE, and for custom-written applications the additional
work required in altering application code and database schema may be quite man-
ageable.

 Although data encrypted with cell-level encryption is still transmitted over the net-
work in an unencrypted form, it avoids some of the restrictions of TDE, such as the
impact on tempdb, and depending on the volume of data encrypted, may yield a
much better backup compression ratio compared to that of a TDE-encrypted data-
base. A further benefit of cell-level encryption is that the encrypted data remains
encrypted until required and explicitly decrypted. As we mentioned earlier, one of the
restrictions of TDE is that data is stored in an unencrypted form in memory, leaving it
susceptible to inspection.

 It’s beyond the scope of this book to look at the process of establishing cell-level
encryption, but the important thing to bear in mind is that depending on the data-
base, it may present a better alternative to Transparent Data Encryption.

 In the final section of this chapter, let’s take a look at protecting the database from
SQL injection attacks.

6.6 SQL injection protection
A SQL injection attack exposes unintended data to an application user by taking
advantage of poor or missing application input parsing. As an example, consider the
following code:

var city;
city = request.form ("shippingCity");
var sql = "select * from orders where ShipCity = '" + city + "'";

The intention of this code is that the city variable will be populated with something
like Prague. However, what would happen if the following value was entered in the
shippingCity form field?

Prague'; select * from creditCards--

The semicolon character marks the end of one command. The rest of the input will
run as a separate query, and by adding the comments (--) characters to the end of the
input, we ensure any code added to the end of the variable will be ignored, thus
increasing the chances of running the injected code.

 In our previous example, the command first selects orders from Prague, and then
selects records from the CreditCards table, and the results of both queries are
returned to the application. It’s easy to imagine adding a range of other code such as

dropping tables, deleting data, or running update commands. In most applications,

Licensed to Gayle M. Noll <pedbro@gmail.com>

124 CHAPTER 6 Security

the code will execute with database owner privileges, so chances are the code will be
able to run anything the hacker injects.

 Although more in the domain of application development, protecting the data-
base from SQL injection attacks is certainly something that a DBA should be well aware
of. Fortunately, there are some well-established practices to prevent injection attacks.
The implementation of these best practices are probably outside the domain of DBA
responsibilities, but DBAs should ensure that development and test staff are aware of
the potential threat and encourage both development and testing strategies to miti-
gate this risk.

All user input should be validated by the application before being submitted to
SQL Server to ensure it doesn’t contain any escape or comment characters. The
application should either reject the input or strip out such characters. In our
example, the following characters should be removed or rejected: ', ;, and --.
Transact SQL statements shouldn’t be dynamically built with user input
appended. Stored procedures should be used that accept input parameters.
Application testing strategies should be developed that test applications with a
variety of input values.
Applications should anticipate not only injection attacks but also attacks that try
to crash the system—for example, a user supplying a large binary file (MPEG,
JPEG, and so forth) to a form field designed to accept a username or city.
Input should be validated at multiple levels. For example, it’s not enough to
only validate input at the application if the user is able to execute a stored pro-
cedure with a malformed parameter.

As the gatekeepers of an organization’s data, DBAs have a crucial role to play in ensur-
ing data is protected from unauthorized access. The next section examines best prac-
tices for doing so.

6.7 Best practice considerations: security
Since 2002, Microsoft’s Trustworthy Computing Initiative has been an integral compo-
nent in the design of each of their products. As a result, the default settings in SQL
Server are designed for maximum security. Together with these defaults, the following
best practices should be considered as part of achieving the most secure SQL Server
environment.

Where possible, use Windows Authentication mode. Where SQL Server login

Injection vulnerability analysis
The Microsoft Source Code Analyzer for SQL Injection tool, described and download-
able from http://support.microsoft.com/kb/954476, can be used to analyze and
identify weaknesses in ASP pages that may be exploited as part of a SQL injection
attack.
authentication is required, ensure the SA password is strong, password policies

Licensed to Gayle M. Noll <pedbro@gmail.com>

125Best practice considerations: security

are in effect, and passwords aren’t stored in plain text in any connection strings
or registry entries.
Install only the features you need. If you think you may need a feature like
Reporting Services in the future, don’t install it until you need it.
Surface Area Configuration (SAC) settings such as xp_cmdshell and Database
Mail are secure by default in SQL Server 2005 and above. Before enabling any
SAC option, make sure you’re aware of the security risks of doing so.
Perhaps the most dangerous SAC option, xp_cmdshell should remain disabled
wherever possible. If you enable it, ensure the Server Proxy account is config-
ured to limit permissions. SQL Server BOL contains a description of both the
dangers of xp_cmdshell and the procedures for limiting the potential adverse
effects if enabled.
If mail functionality is required, use Database Mail in place of the older SQL
Mail. Among other benefits, Database Mail doesn’t require an Outlook client to
be installed on the SQL Server, and it provides more stability by running in its
own process space. Also consider the possibility of someone with access to Data-
base Mail emailing sensitive data to someone not authorized to view it. We’ll
cover Database Mail in chapter 14.
To reduce the need for mail solutions such as Database Mail being enabled on
the database server, consider using tools such as Systems Center Operations
Manager (SCOM/MOM) as part of an integrated monitoring solution. We’ll dis-
cuss this further in chapter 14.
Disable network protocols that aren’t required. In almost all cases, TCP/IP
should be the only enabled network protocol.
Configure SQL Server instances with static TCP ports, and place them behind
firewalls with only the required ports opened.
Ensure SQL Servers are never directly accessible on the internet without an
appropriate perimeter firewall strategy.
Enable the Windows Firewall on all SQL Servers and add the appropriate port
exclusions.
Consider stopping the SQL Server Browser Service. In such a configuration, cli-
ent applications need to include the appropriate TCP port as part of the con-
nection details, either in the connection string or using an alias.
Use IPSec or SSL to encrypt network connections for applications containing
sensitive data. Even if the database is encrypted with TDE or cell-level encryp-
tion, the network transmission of data is not, leaving it exposed to network
packet sniffers.
For maximum security, use certificates from public certification authorities
such as VeriSign in place of self-signed SQL Server certificates.
Separate the permissions of system administrators and DBAs. For almost all
tasks, DBAs don’t need to be local administrators, and system administrators

shouldn’t be members of the SQL Server sysadmin server role.

Licensed to Gayle M. Noll <pedbro@gmail.com>

126 CHAPTER 6 Security

Ensure SQL Server service accounts aren’t localsystem or local administrator
accounts and use separate accounts for each service.
If the SQL Server service accounts are changed, make the changes using the
SQL Server Configuration Manager tool, which ensures the appropriate permis-
sions are assigned to the new account.
For SQL Agent jobs requiring access to operating system resources, run the jobs
using proxies and credentials rather than using the SQL Agent service account.
Utilize schema and server/database roles to simplify management and reduce
permissions.
While a Windows group can be added as a SQL Server login (therefore allowing
simplified management of groups of logins), take into account the limitations
with this technique, including the inability to assign the group a default
schema, and complications with object creation requiring implicit ownership.
Application roles can be effective in cases where user permissions are managed
internally within an application. Similar to database roles, permissions are
assigned to the application role, and have the added benefit of ensuring the
only way users can access the database is via the application.
Consider using the fixed server roles to avoid adding all DBAs to the sysadmin
role. In environments where some DBAs have limited responsibilities, the fixed
server roles provide a means of implementing least privilege. In a similar man-
ner, fixed database roles provide the same function, but at a database level.
Despite the availability of advanced auditing options such as audit action
groups, Change Data Capture, and logon triggers, don’t overlook the need for
basic auditing of login failures, which is enabled by default.
Take care when using the APP_NAME function in logon triggers. This value can
be spoofed by someone with access to a connection string, therefore circum-
venting the intended logic of the trigger. We’ll cover this in more detail when
we look at Resource Governor in chapter 16.
If enabling Change Data Capture, reduce the performance overhead by only cap-
turing the tables and columns required. The sys.sp_cdc_enable_table com-
mand takes an optional parameter for specifying a table’s columns to capture.
Consider the new Transparent Data Encryption feature to prevent databases
from being attached or restored to unauthorized servers, but be aware of its
limitations before implementing it.
Cell-level encryption, also available in SQL Server 2005, is suitable in cases
where only a small amount of data needs to be encrypted and the application
and database schema changes required for cell encryption are manageable.
With cell encryption, the possibility of unauthorized attach or restore should
still be considered.
Back up all encryption certificates in a secure location, ideally separate from
the database backup files. The certificate backup will be required when restor-

ing encrypted databases to another server.

Licensed to Gayle M. Noll <pedbro@gmail.com>

127Best practice considerations: security

For maximum encryption strength, consider using encryption keys stored on
hardware security modules (HSM) via Extensible Key Management (EKM).
Keep in mind that alternate encryption methods such as EFS and BitLocker
aren’t suitable for SQL Server implementations.
To prevent SQL injection attacks, ensure applications validate all user input for
both data type adherence and for the presence of escape characters such as ',
;, and --. Ensure the testing processes are aware of the risks of SQL injection
attacks and test accordingly. Finally, validate user input at multiple levels, not
just at the initial application layer.
Consider using the Microsoft Source Code Analyzer for SQL Injection tool to
assess the vulnerability of code to a SQL injection attack.
When disposing of tape or disk media containing sensitive data (backups, data-
base, extract files, and so forth), destroy the media before disposal by using
magnetic erase tools.
Secure disk backup directories appropriately, particularly backups made from
unencrypted databases.
If virus-scanning software is installed on the SQL Server, exclude database files
(MDF, NDF, LDF, and BAK files) from the scan, and if running on a cluster,
ensure the quorum disk (usually Q:) is completely excluded.
Ensure the stability and performance impact of any virus-scanning software is
measured in a load test environment before introduction into a production
environment, and ensure the software is cluster aware before use in a cluster.
Secure SQL Servers in locations that prevent physical access to the general pub-
lic and unauthorized staff.
Delete FTP utility executables from SQL Servers unless required.
Database ownership chaining should be disabled (which is the default setting)
to prevent cases in which a user can create an object with a specific owner in a
database in which he is the database owner for the explicit purpose of accessing
objects in another database with the same owner. Without the ownership chain
in effect, the user would be denied access to those objects in the other database.
Stay up to date with security notification, service packs, and hotfixes. The
Microsoft website provides links to various resources for this purpose, including
an RSS feed, email, instant messaging, and mobile device notification.
Where possible, create linked servers that preserve the calling user’s security
context. Do so by selecting the “Be made using the logins current security con-
text” option in the Security page of the Linked Server properties dialog. For
servers not supporting this option, consider the security ramifications of a user’s
privileges being potentially elevated when made in another security context.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/security.

 The focus of this chapter was configuration from a security perspective. In the next

chapter, we’ll examine configuration from a performance and stability perspective.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Configuring SQL Server
As with security configuration, you should make server and database configuration
changes with care. Most of the configurable settings in SQL Server work best when
left at their default values. You should measure any changes from the defaults for
performance and stability impacts in a controlled testing environment before
introducing those changes into production.

 Like any change, configuration changes should be accompanied by a detailed
change log. It’s often tempting to flick the switch on a configuration setting on the
assumption that it may improve performance. Without an adequate change log and
a controlled process to measure the effect of the change, uncontrolled configuration
changes make future troubleshooting complex. For example, as part of investigating
a performance problem, you may notice an odd configuration setting. Was this
change made for a reason? Did the change help or hinder performance? Without a

In this chapter, we’ll cover
■ Memory configuration
■ CPU configuration
■ Server configuration
■ Operating system configuration
128

Licensed to Gayle M. Noll <pedbro@gmail.com>

129Memory configuration

change log including the recorded impact, such questions are difficult to answer, par-
ticularly in large environments with many SQL Server instances.

 In this chapter we drill down into some of the configurable settings and look at sit-
uations in which alternate configurations may lead to performance and administrative
advantages. We begin the chapter by looking at memory configuration options, includ-
ing the differences between 32- and 64-bit environments. We then look at other config-
uration categories: CPU, SQL Server settings, and operating system configuration.

7.1 Memory configuration
As we saw in chapter 3, most versions of SQL Server 2008 can address the amount of
memory supported by the underlying operating system. However, like previous ver-
sions, 32-bit editions of SQL Server 2008 are constrained to 2GB of RAM unless config-
ured with special settings. Let’s begin our coverage of memory configuration with a
look at 32-bit memory management.

7.1.1 32-bit memory management

All 32-bit systems can natively address a maximum of 4GB of memory (232 =
4,294,967,296 bytes). Until recent times, this limitation wasn’t an issue; a quick scan of
older documentation reveals terms such as very large when referring to memory
beyond 4GB. In today’s terms, systems with 8 or 16GB of RAM are considered normal,
making correct memory configuration in 32-bit systems very important in order to
derive the maximum performance benefit.

 Apart from installing 64-bit versions of Windows and SQL Server, there are two
ways of providing SQL Server with more than 2GB of memory; using the /3GB option
or using Address Windowing Extensions (AWE) with the /PAE option.

/3GB
Of the 4GB of RAM that a 32-bit system can natively address, 2GB is reserved by Win-
dows, leaving applications such as SQL Server with a maximum of 2GB. In Windows
Server 2003, we used the /3GB option in the boot.ini file to limit Windows to 1GB of
memory, enabling SQL Server to access up to 3GB. In Windows Server 2008, we use the
BCDEdit command with the increaseuserva option with an optional parameter that
determines the size of the available user space, such as 3072 for 3GB.

 For 32-bit systems with 4GB of RAM, these options are a good way of squeezing more
memory out of Windows for use by SQL Server, but limiting Windows to 1GB of RAM
isn’t always trouble free, particularly on systems with a large number of drivers and/or
drivers that use a large amount of memory. Depending on the server configuration,
these options may actually reduce performance and reliability, so use them with care.

 For 32-bit systems with more than 4GB of RAM, we can use the /PAE option.

PAE AND AWE
Intel first introduced 36-bit Physical Address Extensions (PAEs) in the Pentium Pro in the
late 1990s. The extra 4 bits enable applications to acquire physical memory above 4GB

(up to 64GB) as nonpaged memory dynamically mapped in the 32-bit address space.

Licensed to Gayle M. Noll <pedbro@gmail.com>

130 CHAPTER 7 Configuring SQL Server

You enable the /PAE option in Windows Server 2003 in the boot.ini in the same way as
the /3GB option. In Windows Server 2008, use the BCDEdit command with the /PAE
option. After enabling PAE, you configure SQL Server with AWE to enable it to access
the increased memory. You enable AWE either by using the sp_configure command or
via the Server Properties window in SQL Server Management Studio (see figure 7.1).

 Despite the increased memory that can be accessed with PAE/AWE, there are some
limitations when used by SQL Server in 32-bit environments:

Memory above 4GB accessed using PAE/AWE can only be used by the SQL Server
data cache. The procedure cache, used for query compilation plans, isn’t able
to take advantage of this memory. We’ll cover the procedure cache in more
detail in chapter 17, along with a number of related settings, such as forced
parameterization.
Analysis Services and Integration Services components aren’t able to utilize
memory accessed using PAE/AWE.
Unlike a flat 64-bit environment, there’s some overhead in mapping into the
AWE memory space in 32-bit systems.

On 32-bit AWE-enabled systems, the service account running the SQL Server service
must be given the Lock Pages in Memory right. As a consequence, AWE memory isn’t
paged out to disk by the operating system. As you can see in figure 7.2, you assign this
right to an account by using the Windows Group Policy Editor.

 So if the /PAE option allows us to address memory above 4GB and /3GB allows us to
get an extra 1GB from Windows below 4GB, then to obtain the maximum amount of
memory for SQL Server we should use both, right? Well, maybe not…

/3GB AND /PAE
When using PAE, Windows uses memory below 4GB to map to memory above 4GB. The
more memory above 4GB to map to, the more memory below 4GB is required for the
mapping. The magic number is 16GB. As shown in table 7.1, for systems with more

Figure 7.1 The Memory page of a server’s properties window contains the Use AWE to
Allocate Memory option.
than 16GB of memory, you must not use /3GB (or increaseuserva in Windows Server

Licensed to Gayle M. Noll <pedbro@gmail.com>

131Memory configuration

2008) with /PAE. If you do, only 16GB will be addressable, and any additional memory
beyond that is wasted.

As I mentioned earlier, the /3GB option is known to cause stability issues in some cir-
cumstances, so even with systems containing between 5GB and 16GB of RAM, you must
use this setting with caution.

 One of the nice things about 64-bit systems is that all of the configuration issues
we’ve just covered are no longer of concern.

7.1.2 64-bit memory management

Unlike 32-bit systems, 64-bit systems don’t require the memory configuration just
described. The full complement of system RAM can be accessed by all SQL Server com-
ponents without any additional configuration.

 The one optional memory configuration for 64-bit systems is setting the Lock Pages
in Memory right, as covered earlier. While this setting is optional for a 64-bit system,
locking pages in memory is beneficial in order to prevent Windows from paging out
SQL Server’s memory. If you don’t enable this setting, certain actions such as large file
copies can lead to memory pressure with Windows paging, or trimming, SQL Server’s
memory. This sometimes leads to a sudden and dramatic reduction in SQL Server per-

Table 7.1 Recommended memory configuration options

Startup option Use if system RAM is…

Default settings <4GB

/3GB (or increaseuserva) 4GB

/3GB and /PAE 5–16GB

/PAE >16GB

Figure 7.2 The Group Policy Editor can be used to assign the Lock Pages in Memory
right to the SQL Server service account.
formance, usually accompanied by the “A significant part of sql server process memory

Licensed to Gayle M. Noll <pedbro@gmail.com>

132 CHAPTER 7 Configuring SQL Server

has been paged out…” message. Setting the Lock Pages in Memory option prevents
such incidents from occurring, and is therefore a recommended setting. Note that
Windows Server 2008 handles memory trimming a lot better than 2003.

 Regardless of the processor platform (32- or 64-bit), one of the important memory
configuration tasks is to set the minimum and maximum server memory values.

7.1.3 Setting minimum and maximum memory values

When SQL Server starts, it acquires enough memory to initialize, beyond which it
acquires and releases memory as required. The minimum and maximum memory
values control the upper limit to which SQL Server will acquire memory (maximum),
and the point at which it will stop releasing memory back to the operating system
(minimum).

 As you saw earlier in figure 7.1, the minimum and maximum memory values for an
instance can be set in SQL Server Management Studio or by using the sp_configure
command. By default, SQL Server’s minimum and maximum memory values are 0 and
2,147,483,647, respectively. The default min/max settings essentially allow SQL Server
to cooperate with Windows and other applications by acquiring and releasing memory
in conjunction with the memory requirements of other applications.

 On small systems with a single SQL Server instance, the default memory values will
probably work fine in most cases, but on larger systems we need to give this a bit more
thought. Let’s consider a number of cases where setting min/max values is required,
beginning with systems that lock pages in memory.
LOCK PAGES IN MEMORY

As you know, when the Lock Pages in Memory setting is enabled, SQL Server’s mem-
ory will not be paged out to disk. This is clearly good from a SQL Server performance
point of view, but consider a case where the maximum memory value isn’t set, and
SQL Server is placed under significant load. The default memory settings don’t
enforce an upper limit to the memory usage, so SQL Server will continue to consume
as much memory as it can get access to, all of which will be locked and therefore will
potentially starve other applications (including Windows) of memory. In some cases,
this memory starvation effect can lead to system stability issues.

 In SQL Server 2005 and above, even with the Lock Pages in Memory option
enabled, SQL Server will respond to memory pressure by releasing some of its memory
back to the operating system. However, depending on the state of the server, it may not
be able to release memory quickly enough, again leading to possible stability issues.

 For the reasons just outlined, systems that use the Lock Pages in Memory option
should also set a maximum memory value, leaving enough memory for Windows.
We’ll cover how much to leave shortly.
MULTIPLE INSTANCES

A server containing multiple SQL Server instances needs special consideration when
setting min/max memory values. Consider a server with three instances, each of
which is configured with the default memory settings. If one of the instances starts up

and begins receiving a heavy workload, it will potentially consume all of the available

Licensed to Gayle M. Noll <pedbro@gmail.com>

133Memory configuration

memory. When one of the other instances starts, it will find itself with very little physi-
cal memory, and performance will obviously suffer.

 In such cases, I recommend setting the maximum memory value of each instance
to an appropriate level (based on the load profile of each).
SHARED SERVERS

On servers in which SQL Server is sharing resources with other applications, setting
the minimum memory value helps to prevent situations in which SQL Server struggles
to receive adequate memory. Of course, the ideal configuration is one in which the
server is dedicated to SQL Server, but this is not always the case, unfortunately.

 A commonly misunderstood aspect of the minimum memory value is whether or
not SQL Server reserves that amount of memory when the instance starts. It doesn’t.

When started, an instance consumes memory dynamically
up to the level specified in the maximum memory setting.
Depending on the load, the consumed memory may never
reach the minimum value. If it does, memory will be
released back to the operating system if required, but will
never drop below the value specified in the minimum set-
ting. Figure 7.3 shows the relationship between a server’s
memory capacity and SQL Server’s minimum and maxi-
mum memory values.

Figure 7.3 A SQL Server instance will consume memory up to the level
specified by the maximum. Once past the minimum level, it will not
release memory below the minimum level.

CLUSTERS

As you learned in chapter 5, configuring memory maximums in a multi-instance clus-
ter is important in ensuring stability during failover situations. You must ensure that
the total maximum memory values across all instances in the cluster is less than the
total available memory on any one cluster node that the instances may end up run-
ning on during node outage.

 Setting the maximum memory values in such a manner is important to ensure ade-
quate and consistent performance during failover scenarios.
AMOUNT OF MEMORY TO LEAVE WINDOWS

One of the important memory configuration considerations, particularly for 32-bit
AWE systems and 64-bit systems that lock pages in memory, is the amount of memory
to leave Windows. For example, in a dedicated SQL Server system with 32GB of mem-
ory, we’ll obviously want to give SQL Server as much memory as possible, but how
much can be safely allocated? Put another way, what should the maximum memory
value be set to? Let’s consider what other possible components require RAM:

Windows

32 GB
Total server memory

28 GB
Maximum SQL memory

Shrink/expand range

20 GB
Minimum SQL memory
Drivers for host bus adapter (HBA) cards, tape drives, and so forth

Licensed to Gayle M. Noll <pedbro@gmail.com>

134 CHAPTER 7 Configuring SQL Server

Antivirus software
Backup software
Microsoft Operations Manager (MOM) agents, or other monitoring software

As shown in figure 7.4, in addition to the above non–SQL Server components, there
are a number of SQL Server objects that use memory from outside of the buffer
pool—that is, the memory area defined by the maximum memory setting. Memory for

objects such as linked servers, extended stored
procedures, and object linking and embedding
(OLE) automation objects is allocated from an
area commonly called the MemToLeave area.

Figure 7.4 The SQL Server buffer pool, as defined by the
Max Server Memory setting, must share the server’s
physical memory with other memory consumers such as
Windows and MemToLeave.

As you can see, even on a dedicated server, there’s a potentially large number of com-
ponents vying for memory access, all of which comes from outside the buffer pool, so
leaving enough memory is crucial for a smooth-running server. The basic rule of
thumb when allocating maximum memory is that the total of each instance’s maxi-
mum memory values should be at least 2GB less than the total physical memory
installed in the server; however, for some systems, leaving 2GB of memory may not be
enough. For systems with 32GB of memory, a commonly used value for Max Server
Memory (totaled across all installed instances) is 28GB, leaving 4GB for the operating
system and other components that we discussed earlier.

 Given the wide variety of possible system configuration and usage, it’s not possible
to come up a single best figure for the Max Server Memory value. Determining the
best maximum value for an environment is another example of the importance of a
load-testing environment configured identically to production, and an accurate test
plan that loads the system as per the expected production load. Load testing in such
an environment will satisfy expectations of likely production performance, and offers
the opportunity to test various settings and observe the resulting performance.

 One of the great things about SQL Server, particularly the recent releases, is its self-
tuning nature. Its default settings, together with its ability to sense and adjust, make the
job of a DBA somewhat easier. In the next section, we’ll see how these attributes apply
to CPU configuration.

7.2 CPU configuration
When an instance of SQL server starts, it’s created as an operating system process.
Unlike a simple application that performs a series of serial tasks on a single CPU, SQL
Server is a complex application that must support hundreds or even thousands of
simultaneous requests. In order to do this, the SQL Server process creates threads.

 A multithreaded operating system such as Windows allows applications like SQL

SQL Server buffer pool (8K memory allocations)

MemToLeave

Windows

Data cache

Procedure cache

Worker threads, linked servers, OLE, etc.,
Multipage allocator (> 8K memory allocations)

Drivers, backup software, MOM agent, etc.
Server to create multiple threads in order to maximize CPU efficiency and application

Licensed to Gayle M. Noll <pedbro@gmail.com>

135CPU configuration

throughput. Threads are assigned and balanced across the available CPUs in a server.
If a thread is waiting on the completion of a task such as a disk request, SQL Server
can schedule the execution of other threads in the meantime. The combination of a
multithreaded architecture and support for multi-CPU servers allows applications
such as SQL Server to support a large number of simultaneous requests.

 With this background in mind, let’s take a look at some of the configuration options
that can be set to control the manner in which SQL Server threads are executed.

7.2.1 Boost SQL Server Priority option

Threads created in Windows are assigned a priority from 1 to 31, with thread priority
0 reserved for operating system use. Waiting threads are assigned to CPUs in priority
order—that is, higher-priority threads are assigned for execution ahead of lower-prior-
ity threads.

 By default, SQL Server threads are created with a “normal” priority level of 7. This
priority ensures SQL Server threads are assigned and executed in a timely manner
without causing any stability issues for anything else running on the server.

 The Boost SQL Server Priority option runs SQL Server threads at a priority level of
13, higher than most other applications. Although this sounds like a setting that
should always be enabled, much like the “turbo” button on old PCs, it should only be
used in rare circumstances.

 Enabling this option has resulted in problems, such as not being able to shut down
the server and various other stability issues. In almost all cases, on well-configured
dedicated servers, the performance difference is likely to be negligible at best. Unless
you have a very accurate load-testing environment in which you can prove this option
results in a measurable performance boost and doesn’t cause any other stability and
performance issues, use the default setting.

7.2.2 Maximum Worker Threads option

Despite each thread being light in terms of resource consumption, they consume
resources nonetheless. In systems with thousands of concurrent tasks, creating a dedi-
cated thread per task would consume a significant amount of resources. To counter
this, SQL Server implements thread pooling, whereby threads are assigned to tasks
from a pool as required.

 SQL Server will size the thread pool automatically based on the number of CPUs in
the server and whether the system is 32- or 64-bit. As table 7.2 shows, this ranges from
256 to 960. Optionally, you can define the number of threads for greater control.

Table 7.2 Default worker threads created by SQL Server based on the CPU number and type

Number of CPUs 32-bit 64-bit

1–4 256 512

8 288 576

16 352 704
32 480 960

Licensed to Gayle M. Noll <pedbro@gmail.com>

136 CHAPTER 7 Configuring SQL Server

 In situations where the number of running tasks is less than the defined number of
threads, each task will have its own dedicated thread. If the number of concurrent
tasks rises beyond the number of threads, threads are pooled, and pending tasks are
granted threads from the pool when available.

 When system load is very high and all available threads are assigned to running tasks,
the system may become unresponsive until a thread becomes available. In such situa-
tions, the dedicated administrator connection (DAC) can be used to connect to the server
and perform troubleshooting tasks, possibly involving terminating some processes.

One of the common recommendations for systems supporting a large number of con-
nections is to increase the number of worker threads in an attempt to increase
throughput. Although this may improve performance, it can also lead to a perfor-
mance reduction.

 When SQL Server starts up, it reserves a quantity of memory for each configured
thread. The higher the number of threads, the more memory needs to be reserved. Fur-
ther, this memory comes from the MemToLeave area, so the configured worker thread
count is directly linked to the maximum memory value that can be safely configured.

 The recommended maximum value for worker threads is 1024 in a 32-bit environ-
ment and 2048 in a 64-bit environment. As with all other configuration settings, the
best value in almost all cases is the default (0). If you change the value, first verify it for
stability in an accurate load-testing environment.

 Finally, if you’re upgrading from SQL Server 2000, the Maximum Worker Threads
setting is kept at the SQL 2000 default value of 255. After the upgrade, change this
value to 0, which allows SQL Server to determine the appropriate value based on the
number and type of CPUs available to the instance.

7.2.3 Lightweight pooling

On servers with a large number of CPUs close to capacity, performance may benefit
from enabling fiber mode, also known as lightweight pooling. With this setting in place,
SQL Server creates fibers instead of threads. A fiber is a lightweight version of a thread
that’s able to switch context in user mode rather than kernel mode.

 Systems experiencing a very high level of context switches per second (>20,000), a
value measured using the Windows Performance tool, may experience some perfor-

Dedicated administrator connection (DAC)
When a SQL Server instance has become unresponsive, troubleshooting can be dif-
ficult. To assist with these situations, SQL Server reserves resources for a dedicated
administrator connection (DAC), enabling a DBA to connect to the instance and take
appropriate actions, such as terminate a process. A connection to the DAC is made
using either the SQLCMD command prompt utility or SQL Server Management Studio.
Books Online describes how to use these tools to establish a DAC connection.
mance increase with this option enabled. In chapter 17, we’ll cover the measurement

Licensed to Gayle M. Noll <pedbro@gmail.com>

137CPU configuration

and threshold value for this setting in more detail. Like all configuration options, the
Use Windows Fibers (Lightweight Pooling) setting should only be changed from the
default value after careful analysis in a testing environment capable of accurately sim-
ulating production load.

7.2.4 CPU affinity

SQL Server can be configured so that threads will only be assigned to particular CPUs.
This setting is typically used in NUMA-enabled systems, or on systems used for environ-
ments where a certain level of CPU resource needs to be reserved for other purposes,
for example, other SQL Server instances or applications, to prevent one SQL Server
instance from dominating CPU usage.

 On single instance servers dedicated to SQL Server, this setting is best left at the
default, in which case threads will be balanced across all available CPUs.

 The Processor Affinity option, along with the Fiber Mode, Maximum Worker
Threads, and Boost SQL Server Priority settings, can be modified using sp_configure
or via the Processors page of the Server Properties window in SQL Server Management
Studio, as you can see in figure 7.5.

7.2.5 Maximum Degree of Parallelism

A commonly altered setting is Maximum Degree of Parallelism (MAXDOP), which controls
the maximum number of CPUs that can be used in executing a single task. For exam-
ple, a large query may be broken up into different parts, with each part executing
threads on separate CPUs. Such a query is known as a parallel query.

Figure 7.5 The Processors page of the Server Properties window allows changes to CPU
configuration settings: CPU Affinity, Maximum Worker Threads, Boost SQL Server Priority,

and Use Windows Fibers (Lightweight Pooling).

Licensed to Gayle M. Noll <pedbro@gmail.com>

138 CHAPTER 7 Configuring SQL Server

In a typical OLTP system consisting of lots of short, simple transactions, multiple CPUs
are valuable in their ability to service lots of simultaneous threads from multiple users.
In contrast, a typical OLAP (reporting/data warehouse) application consists of a
smaller number of much larger queries. It follows that splitting up a query into multi-
ple chunks, with each chunk running on a separate CPU, is more suited to an OLAP
system whereby large amounts of resources can be used to speed up the execution
time of large queries.

 During query compilation, SQL Server will decide whether to use a parallel query if
the MAXDOP setting allows and if the estimated cost of executing the query in a serial
manner on a single CPU exceeds a cost threshold. By default, MAXDOP is 0, meaning
that SQL Server is left to decide the appropriate number of CPUs to use. You can set
this value to 1, effectively disabling parallel queries, or to a specific number that limits
the number of CPUs that can be used.

In some cases, parallel queries in an OLTP environment are chosen by SQL Server to
circumvent poor design and maintenance practices, most often as a result of missing
indexes or out-of-date statistics. For example, SQL Server may decide to perform an
index scan rather than a lookup, in which case it may parallelize the query. A high
incidence of parallel queries is typically accompanied by a large number of CXPACKET
waits. In chapter 17, we’ll spend more time analyzing wait types, including CXPACKET.

 In typical OLTP environments, MAXDOP is often set to 1 to limit the CPU and mem-
ory impact from parallel queries. In such cases, the question needs to be asked as to why
SQL Server is choosing parallel queries—that is, are the indexes being designed and
maintained appropriately? We’ll cover index design and maintenance in chapter 13.

 One of the downsides from setting MAXDOP to 1 is that certain operations, such as
index rebuilds, benefit greatly from parallelism but are unable to do so with a MAX-
DOP 1 setting. In such cases, you can specify the MAXDOP setting at a statement level.
For example, the CREATE INDEX command, an example of which is shown here,
accepts a MAXDOP parameter:

-- Use a MAXDOP hint to override the default server MAXDOP setting
CREATE NONCLUSTERED INDEX [IX_Address_StateProvinceID]
 ON [Person].[Address] ([StateProvinceID] ASC)
WITH (MAXDOP=0)
GO

In this example, we specify MAXDOP = 0 to override the instance default MAXDOP set-
ting, and thereby permit the index creation to be parallelized if SQL Server decides

Max MAXDOP?
In OLTP systems, use a maximum MAXDOP setting of 8, including systems with ac-
cess to more than 8 CPU cores. The effort to split and rejoin a query across more
than 8 CPUs often outweighs the benefits of parallelism.
that’s the best approach.

Licensed to Gayle M. Noll <pedbro@gmail.com>

139Server configuration

Like all configuration options, Max Degree of Parallelism can be set using
sp_configure, or via the Advanced page of a server’s properties window in SQL Server
Management Studio, as shown in figure 7.6.

7.2.6 Cost Threshold for Parallelism

If MAXDOP is left at the default value, or set to a number higher than 1, the thresh-
old at which SQL Server will consider a parallel plan can be set through the Cost
Threshold for Parallelism option. This value, specified in seconds, represents the esti-
mated time the query would take if executed serially on a single CPU. Queries esti-
mated to take longer than this will be considered for parallelism. The default value for
this setting is 5.

 In some cases, increasing this value is a better alternative to setting MAXDOP to 1
when dealing with a large number of (unwanted) parallel queries.

 With these CPU configuration options covered, let’s turn our attention now to
some other general server settings. Like most of the CPU settings, these settings are
also best left at their default values.

7.3 Server configuration
The name of this section, Server configuration, refers to a range of additional SQL Server
settings that can be tuned for particular behavior. While the list is by no means exhaus-
tive, it covers some common settings that are often changed to alter server operation.

 As with CPU and memory settings, the settings we’ll cover in this section can be

Figure 7.6 The Advanced tab of the Server Properties window allows changes to Server configuration
settings, such as Max Degree of Parallelism and Cost Threshold for Parallelism.
adjusted with either sp_configure or by using SQL Server Management Studio.

Licensed to Gayle M. Noll <pedbro@gmail.com>

140 CHAPTER 7 Configuring SQL Server

7.3.1 Recovery Interval

A page is the fundamental storage unit in SQL Server, with each database divided into
multiple 8K pages. When a database page is required, SQL Server reads the page from
disk into memory (if it’s not already there) and stores it in the data cache. Pages are
modified as required and marked as dirty.

 Pages are modified in the data cache along with a corresponding transaction log
entry. At some point, the modified (dirty) pages need to be written to disk, a task han-
dled by the LazyWriter and Checkpoint processes, both of which are fundamental com-
ponents of SQL Server architecture.

 The LazyWriter process periodically examines the data cache and writes dirty
pages to disk. Once written, the pages are then returned to the free list in order to
maintain a certain level of free buffers required for other threads. The LazyWriter
process selects pages to flush to disk using an algorithm that targets pages that haven’t
been referenced (read) for a period of time. In essence, LazyWriter balances the
needs of maintaining free memory with the need to keep frequently read pages in
memory to avoid disk I/O.

 The Checkpoint process also writes dirty buffer pages to disk, but unlike the Lazy-
Writer process, pages aren’t added to the free list. The primary purpose of the Check-
point process is to reduce the database recovery time. When SQL Server starts, it
examines the transaction log and rolls forward (writes changes to disk) committed
transactions since the last checkpoint, and rolls back uncommitted transactions. The
recovery process ensures that no committed changes are lost or half-written changes
are persisted in the event of an unexpected shutdown, thus maintaining data integrity
and avoiding corruption.

 The Recovery Interval setting determines the frequency of Checkpoint operations.
The default recovery interval is 0, meaning SQL Server aims to run checkpoints fre-
quently enough to recover databases on startup within approximately 1 minute—that
is, complete the roll forward and rollback process from the transaction log when SQL
Server starts up.

 The rate of database change will determine the checkpoint frequency. Databases
with very little write activity will go for long periods without a checkpoint. In contrast,
databases with high write activity will have frequent checkpoints in order to keep the
recovery interval to 1 minute.

 The Recovery Interval value can be changed to a numeric value representing the
target number of minutes for the recovery to complete within. A frequently docu-
mented suggestion is to increase the recovery interval in an attempt to decrease the
impact of the checkpoint operation, but doing so increases the recovery time and the
impact of each checkpoint. Better alternatives include ensuring the write cache of the
storage controller is large enough to withstand bursts of write activity associated with
checkpoint operations, and separating transaction logs onto a dedicated disk, a topic
we’ll cover in more detail in chapter 9.

 Like all other configuration settings, the default value for the recovery interval is

the best value in almost all cases.

Licensed to Gayle M. Noll <pedbro@gmail.com>

141Server configuration

7.3.2 Fill factor

When an index is created or rebuilt, the fill factor, a numeric value between 0 and 100,
determines how full each index page will be. A fill factor of 100 (or 0) will fill each
page completely, with 50 resulting in pages half full. The specified value is interpreted
as the percentage full to make each page.

 The benefits of full pages are that less I/O is required to fulfill an index scan/seek
as each page contains more data. The downside comes when data is inserted, in which
case a full page needs to be split in order to allow the new data to be inserted in index
order. The best fill factor is determined by the rate of data modification.

 A database with a high volume of updates may benefit from a lower fill factor as
each page contains some free space for new records to be inserted and therefore
avoids the page split process. As a consequence, though, the index will be larger,
increasing database size and the amount of I/O required to satisfy query requests.

 Note that the fill factor value is only used when the index is first created or rebuilt;
after that, the page will fill/split as a natural consequence of the data inserts and updates.

 In a similar manner to the MAXDOP setting that we covered earlier, the default
server fill factor of 0 (equivalent to 100) can be overridden on a per command basis.
We’ll cover fill factor in more detail in chapter 13 when we cover indexes.

 Both the Recovery Interval and Default Index Fill Factor values can be set using
sp_configure or the Database Settings page of the Server Properties window in SQL
Server Management Studio, as shown in figure 7.7.

Figure 7.7 The Database Settings page allows configuration of various settings, including

Recovery Interval and Default Index Fill Factor.

Licensed to Gayle M. Noll <pedbro@gmail.com>

142 CHAPTER 7 Configuring SQL Server

7.3.3 Locks

Locks are a fundamental component of any relational database management system
and are used, among other purposes, to prevent access to data that’s in the middle of
being modified. Doing so avoids many different problems caused by inconsistent, or
dirty, reads.

 By default, SQL Server reserves sufficient memory for a lock pool consisting of
2,500 locks. If required, and additional buffer space is available, the lock pool will
grow using additional memory from the buffer pool.

 When the number of used locks reaches 40 percent of the size of the (non-AWE)
buffer pool, SQL Server will consider lock escalation; for example, it will convert a
number of row locks to a single page or table lock, therefore reducing the memory
impact of lots of locks. When 60 percent of the buffer pool is used for locks, new lock
requests will be denied, resulting in an error. SQL Server will also consider lock escala-
tion at a statement level if the number of locks acquired by the statement on a single
object exceeds approximately 5,000.

 A common (frequently misguided) suggestion is to enable trace flags1 to prevent
lock escalation (trace flag 1211 and 1224). Such suggestions are often given in an
attempt at avoiding blocking and deadlock scenarios. Such advice is normally a poor
alternative to investigating and resolving database design and/or maintenance prob-
lems. Further, the large number of resulting locks often leads to significant memory
pressure and overall stability issues.

 Like the Recovery Interval setting, the Locks value can be manually specified, but
again, I don’t recommend that for almost all cases.

7.3.4 Query Wait

When a query is submitted for execution, SQL Server first checks to see if there’s
already a cached query plan it can reuse. If no such plan exists, a new plan needs to be
created. Avoiding this process through query parameterization is a key performance-
tuning goal, and one that we’ll spend more time on in chapter 17.

 Regardless of whether the plan was selected from cache or re-created, it can’t be
executed until enough memory is obtained for the execution process. In systems with
poor plan reuse, or those starved of memory (or both), a common occurrence is for
queries to time out with the “A time out occurred while waiting for memory resources
to execute the query…” error.

 The estimated cost of the plan determines the length of time that SQL Server will
wait for resources before the query times out. By default, SQL Server will wait for 25
times the estimated cost of the query. You can use the Query Wait option to override
this default by specifying the amount of time to wait in seconds. The best value to use?
You guessed it—the default.

1 Through the ALTER TABLE command, SQL Server 2008 enables lock escalation to be disabled for an indi-

vidual table.

Licensed to Gayle M. Noll <pedbro@gmail.com>

143Server configuration

 Both the Locks and Query Wait values can be set using sp_configure or the
Advanced page of the Server Properties window in SQL Server Management Studio, as
shown earlier in figure 7.6.

7.3.5 User Connections

By default, SQL Server will allow an unlimited number of user connections, within the
constraints of its available resources. Setting a non-zero value allows control over the
number of concurrent connections.

 Once the number of connections is exceeded (bearing in mind a user or applica-
tion can have multiple connections), new connections will be denied with the excep-
tion of the dedicated administrator connection.

7.3.6 Query Governor Cost Limit

As part of the query compilation and execution process, SQL Server estimates the cost
of the query. As we saw earlier, this value is used in determining the query timeout
value. The other use for this value is comparing it to the Query Governor Cost Limit.

 If enabled, the Query Governor Cost Limit option is used to prevent queries from
running whose estimated cost exceeds the configured value, specified in seconds. By
default, this option is disabled. Note that the new Resource Governor feature in SQL
Server 2008 is a far more effective way of controlling resource usage, and will be cov-
ered in detail in chapter 16.

 Both the User Connections and Query Governor Cost Limit values can be set
using sp_configure or the Connections page of the Server Properties window in
SQL Server Management Studio. As shown in figure 7.8, User Connections are set

Figure 7.8 The Connections page allows configuration of various settings, including

Maximum Number of Concurrent Connections and Use Query Governor to Prevent

Licensed to Gayle M. Noll <pedbro@gmail.com>

144 CHAPTER 7 Configuring SQL Server

using the Maximum Number of Concurrent Connections option, and the Query
Governor Cost Limit is set using the Use Query Governor to Prevent Long-running
Queries” option.

 In the final section of this chapter, let’s turn our attention to configuration of the
Server operating system.

7.4 Operating system configuration
An often overlooked configuration area for SQL Server is configuration of the operat-
ing system itself. In this section, we’ll take a look at configuration from a Windows per-
spective, focusing on items that can have a measurable impact on SQL Server
performance and stability.

7.4.1 Running services

In chapters 4 and 6 we covered the importance of only installing the required SQL
Server features. It’s very easy during installation to select all features on the off chance
that they may be required in the future. As a result, people often end up with Analysis
Services, Reporting Services, Integration Services, and full-text search, all of which
create Windows Services that run on startup.

 In addition to these SQL Services, there are a host of other Windows Services such
as IIS that may be running that are possibly not required. It’s outside the scope of this
book to list and describe which ones are candidates for disabling, but IIS is worth a
special mention. In SQL Server 2005, IIS was required for Reporting Services. Fortu-
nately, this is no longer the case in SQL Server 2008. If you installed IIS solely for the
purpose of supporting Reporting Services, you won’t need it if you’re running SQL
Server 2008.

 Disabling nonessential services is good from a performance perspective as well as
an effective security practice in reducing the attack surface area.

7.4.2 Processor scheduling

Accessed via the Control Panel, the advanced options of System Properties let you
choose between adjusting processor resources to favor foreground applications or
background services. As a background service, SQL Server obviously benefits from this
option being set to Background Services, as shown in figure 7.9.

Figure 7.9 The options under Processor Scheduling should be adjusted for the best performance

of background services.

Licensed to Gayle M. Noll <pedbro@gmail.com>

145Best practice considerations: configuring SQL Server

7.4.3 Network protocols

As you saw in chapter 6, disabling unnecessary network protocols is important from
both a security and performance optimization perspective.

7.4.4 Page file location

By default, Windows will create a page file that is 1.5 times the size of the physical
memory up to a maximum of 4GB (on 32-bit systems). On a server dedicated to SQL
Server with sufficient memory, particularly those with the Lock Pages in Memory
option, the amount of paging should be negligible. As a result, page file configuration
isn’t a task that most DBAs spend a lot of time considering.

 That being said, for systems with large amounts of memory, one of the benefits of
configuring a larger than normal page file is to assist in advanced troubleshooting sce-
narios. For example, if SQL Server crashes, the memory dump can be inspected for
later diagnosis. Configuring a page file large enough for such a memory dump is
worth considering for such cases.

7.5 Best practice considerations: configuring SQL Server
In almost all cases, the best configuration setting is the default. Any change should be
based on sound advice, and tested for performance and stability in an accurate load-
testing environment before implementation in production.

The reason for a configuration change is sometimes easy to forget. To assist in
future troubleshooting, each configuration change should be recorded in a
change log with at least the following details: date and time of the change, per-
son executing the change, script location (if change was script based), and the
results of the change (observed performance, any errors, etc.).

In a 32-bit platform, the /3GB switch (or BCDEdit/increaseuserva) can be
used to enable an extra 1GB of RAM for SQL Server, but only for systems con-
taining up to 16GB of RAM. Before using this option, ensure the impacts are
fully understood and measured in an accurate load-testing environment.
The Lock Pages in Memory right should be assigned to the SQL Server service
account for both 32-bit AWE systems and 64-bit systems.
The Maximum Server Memory value should be specified, particularly for multi-
instance servers, clustered servers, shared servers, and those using the Lock
Pages in Memory setting.
When setting the value for Maximum Server Memory, consider the other system
components such as drivers, backup software, and the MemToLeave area. Even
on dedicated servers, their memory requirements need to be considered in cre-
ating a stable environment for SQL Server.
In OLTP systems with more than eight CPUs, using a maximum MAXDOP setting
of 8 is recommended in most cases. The effort to split and rejoin a query across

more than eight CPUs often outweighs the benefits of parallelism.

Licensed to Gayle M. Noll <pedbro@gmail.com>

146 CHAPTER 7 Configuring SQL Server

On NUMA systems, the MAXDOP setting shouldn’t exceed the number of CPUs
available to the NUMA node(s) used by the SQL Server instance.
Only the applications, services, and network protocols required should be
installed and running. Performance and security improves as a result of dis-
abling items not required.
Ensure the Windows Server is configured for Background Services in System
Properties.
Although paging shouldn’t be present in any significant volume on a well-con-
figured SQL Server, consider placing the page file on a separate disk from the
operating system and SQL data files.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/config.

 Until SQL Server 2008, one of the challenges with server configuration was main-
taining good configuration settings across a large number of servers, particularly in
enterprise environments with lots of instances and many DBAs of varying skill levels.
Policy-based management, covered in the next chapter, has made this task signifi-
cantly easier.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Policy-based management
The major goal of this book is to list and describe best practices for the administra-
tion of SQL Server systems. Knowing best practices is one thing, but ensuring they’re
implemented, and remain implemented, is an entirely different matter.

 Suppose you’ve accepted a position as the new DBA for a company with thou-
sands of server instances spread across production, test, and development environ-
ments, each of which were installed and configured by various DBAs and developers
with different preferences and knowledge of best practices. If you’re asked to per-
form an audit of all servers for compliance with best practices, how will you go about
it? If you’re handy with scripting technologies such as SQL Server Management Objects
(SMOs) and PowerShell, that will certainly help, but other than that, you’re facing a
significant and time-consuming challenge. When you finally complete the exercise,
how can you be confident that none of the servers have changed configuration

In this chapter, we’ll cover
■ Enterprise DBA challenges
■ Policy-based management
■ Central management servers
■ PowerShell and ExecuteWQL()
147

Licensed to Gayle M. Noll <pedbro@gmail.com>

148 CHAPTER 8 Policy-based management

since you started inspecting them? Like painting a bridge, by the time you finished
you’d be due to start all over again!

 Recent versions of SQL Server ship with good out-of-the-box settings and self-man-
aging features, and together with well-documented and well-managed policies, ensur-
ing enterprise-wide consistency in SQL Server configuration is somewhat easier, but
it’s still a challenge.

 SQL Server 2008 introduces a new feature called policy-based management, and it’s
arguably the single most significant new feature for the DBA. In this chapter, we’ll dis-
cuss some of the challenges facing DBAs in enterprise environments and how policy-
based management can be used in assisting with such challenges. We’ll also take a
look at combining the power of policy-based management with central management
servers and PowerShell.

8.1 Server management challenges
Enterprise DBAs—those who manage complex environments with a mix of database
products and versions—face a number of challenges. In addition to keeping many sys-
tems up and running, they need to provide a smooth path for the implementation of
changes to production databases. Before looking at policy-based management in
depth, let’s spend some time covering the typical enterprise environment and the
tasks faced by an enterprise DBA.

8.1.1 Enterprise environments

In a typical enterprise environment (see figure 8.1 for a simple example), one of the
first things that comes to mind is the number of production server instances requiring
support. A large number of servers are usually accompanied by a mix of product ver-
sions, and possibly even other DBMS products such as Oracle or MySQL. In such envi-
ronments, some degree of specialization usually exists, and DBAs are often grouped
into areas of product expertise.

 In addition to the production server instances, test and development servers, some
or all of which may be provided using virtualization products, exist for the purposes of
developing and testing new databases or making changes to existing production sys-
tems. Accompanying such systems are various development tools and change manage-
ment processes to ensure changes are version controlled and implemented in
accordance with an appropriate deployment process.

 In environments with critical systems, dedicated operations staff are usually on
hand 24/7, with DBAs typically on call on a rotation basis. Products such as Systems
Center Operations Manager (SCOM) are typically used for monitoring disk space and
event logs in an attempt to identify and solve problems before they manifest them-
selves as production outages.

 In complex environments such as these, successful database administration must
overcome a range of challenges, some of which are presented next.
Licensed to Gayle M. Noll <pedbro@gmail.com>

149Server management challenges

Figure 8.1 A typical enterprise environment consists of development, test, and production servers

8.1.2 Enterprise DBA challenges

Let’s take a look at some of the tasks facing DBAs in administering an enterprise envi-
ronment:

Production systems should be secured with the least privilege principle. This is
often in contrast with development environments in which changes originate.
When developed code reaches test and production systems, certain functions
often fail as a result of the security differences between environments. DBAs
must therefore coordinate environment configuration across the enterprise,
particularly settings that may cause certain functions to fail.
Databases in production environments (should) use the full recovery model
along with regular transaction log backups. In development and test environ-
ments that don’t perform transaction log backups, the full recovery model may
cause the transaction log to consume all available disk space. DBAs must match
environments with backup profiles and recovery model settings.
In sites where different DBAs manage different environments—for example,
development, test, and production—systems must be in place to ensure that
both common and environment-specific settings are applied where appropri-
ate. Where many DBAs are involved, each of whom has his or her own prefer-
ences and skills, this becomes a difficult and time-consuming process.

Production

Test

Development

C2 audit trace, full login

auditing, regular

backups, performance

baseline trend analysis,

24/7 support

DBA group

No auditing, minimal

backups, simple

recovery mode, minimal

support

Minimal auditing, 9–5

business day support,

some backups, load

simulation, virtualization

On-call support roster, training,

proactive monitoring, disaster-

recovery testing, performance

tuning, development assistance,

change control, installs/upgrades

Schema changes

Schema changes

Change requests
SCOM serverAlerts

Off-site backups
Licensed to Gayle M. Noll <pedbro@gmail.com>

150 CHAPTER 8 Policy-based management

In sites with a range of DBMS products that require support, it’s often the case
that the requirement for a broad range of skills prevents expertise in any one
area, making correct and consistent configuration even more difficult.
In poorly configured environments, the time taken to troubleshoot highly visi-
ble production problems often prevents important proactive maintenance
required for ongoing environment performance, security, and stability.

Without strong proactive maintenance routines, mismanagement is a real danger, pre-
senting a number of organizational risks.

8.1.3 The risks of mismanagement

Even with the best intentions and a good grasp of best practices, the sheer size of
some deployments creates a challenging environment for even the most experienced
DBA. Poorly configured servers pose a number of risks:

Security weak points
Unexpected performance problems due to different configuration settings
between environments
Scripts working in one environment but failing in another, again due to config-
uration differences

Without the use of third-party or custom-developed tools, ensuring consistent server
configuration across the enterprise is a difficult and time-consuming process. This
process often requires manual inspection or development of PowerShell and/or SMO
scripts, a skill possessed by only a small percentage of DBAs.

 Discovering incorrect configurations is more often than not a result of investigat-
ing script failures, poor performance, or worse, a security breach. Such a process is
commonly known as exception-based management. What’s needed is a way of defining
and applying standard configurations to groups of server instances, and either pre-
venting or alerting on deviations from the standard. This is typically called intent-based
management, and as you’ve probably guessed, that’s exactly what we can now achieve
using the new policy-based management feature in SQL Server 2008.

Figure 8.2 Policy-based
management is found in
SQL Server Management
Studio under the

Management node.

Licensed to Gayle M. Noll <pedbro@gmail.com>

151Policy-based management terms

Figure 8.2 shows the location of policy-based management in SQL Server Management
Studio along with the new Data Collection and Resource Governor features we’ll cover in
later chapters.

 Before looking at the details of policy-based management, let’s cover some of the
terms used.

8.2 Policy-based management terms

You can think of policy-based management as Active Directory for SQL Server. Active
Directory is used in simplifying the process of administering thousands of domain
users and computers. In a similar manner, policy-based management is the tool of
choice in ensuring consistent SQL Server configuration, and like Active Directory, its
value is magnified in environments with large numbers of server instances.

 There are several new terms used when discussing policy-based management: tar-
gets, facets, conditions, and policies. Let’s look at each in turn.

8.2.1 Targets

A target is the entity managed by a policy. Depending on the policy, targets may be SQL
Server instances, databases, tables, and so forth. In the example in figure 8.3, the tar-
get chosen for a table name policy is every table in every database.

Figure 8.3 When creating a policy, you choose a target. In this example, the target for Table
Name Policy is “Every Table in Every Database.”

8.2.2 Facets

A facet is the name given to a group of configurable properties that are appropriate

for a certain number of targets. For example, as shown in figure 8.4, the Surface Area

Licensed to Gayle M. Noll <pedbro@gmail.com>

152 CHAPTER 8 Policy-based management

Configuration facet, applicable to the Server target, contains properties such as Data-
baseMailEnabled, CLRIntegrationEnabled and XPCmdShellEnabled.

8.2.3 Conditions

A condition is created to specify the required state of one or more facet properties.
Continuing our surface area configuration example, the condition shown in figure
8.5 contains the required state of ten properties belonging to the Surface Area Con-
figuration facet.

Figure 8.4 Facets, such as Surface Area Configuration, contain a number of properties that can be used
in defining policy conditions.
Figure 8.5 A condition contains the required value of one or more facet properties.

Licensed to Gayle M. Noll <pedbro@gmail.com>

153Policies in action

8.2.4 Policies

Putting it all together, a policy contains a condition, a target, and an evaluation mode,
which defines how the policy conditions will be enforced. Evaluation modes, some of
which are only available for certain facets, are as follows:

On Change – Prevent —This mode ensures policy violations are prevented through
the use of DDL triggers that roll back changes that violate policy. The mecha-
nism used for the rollback (DDL trigger) limits the situations in which this eval-
uation mode can be used.
On Change – Log Only —This mode logs violations when a change occurs that vio-
lates an enabled policy. Corresponding alerts can then be set up as appropriate.
On Schedule —Using SQL Agent jobs, the On Schedule evaluation mode will
periodically check policy compliance, and log violations if appropriate. This
mode is useful in reducing the performance impact of a large number of
enabled policies.
On Demand —This evaluation mode is used when creating ad hoc checks. The
policies are created as disabled and, as such, have no performance impact on a
running instance.

With these terms in mind, let’s take a look at the process of importing, creating, and
evaluating policies.

8.3 Policies in action
SQL Server 2008 ships with a number of predefined policies that can be imported and
evaluated. These policies encapsulate best practices such as those for securing the sur-
face area of a SQL instance. In addition to importing these policies, new policies can
be created and exported to file for later use on other server instances.

 In this section, we’ll start off by importing an existing policy and looking at the var-
ious evaluation options. We’ll then walk through the process of creating a new policy
from scratch and exporting it to file.

8.3.1 Importing policies from file

In SQL Server 2005 and earlier, tools such as Best Practices Analyzer and Baseline
Security Analyzer were used to periodically check a SQL Server instance for adherence
to various best practices. In SQL Server 2008, policy-based management can be used to
import predefined policies that encapsulate best practice settings.

 Once imported, depending on the evaluation mode, the policies remain in place,
actively checking, preventing, and/or logging violations. As such, they’re a stronger,
more active version of previous-generation tools such as Best Practices Analyzer, and
can be customized to suit a particular environment’s requirements.

 Importing an existing policy is straightforward. In SQL Server Management Studio
simply right-click the Policies menu under Policy Management, choose Import Policy,

and specify the location of the policy definition file. SQL Server 2008 ships with a

Licensed to Gayle M. Noll <pedbro@gmail.com>

154 CHAPTER 8 Policy-based management

number of predefined policies that can be imported. These policies are located in
C:\Program Files\Microsoft SQL Server\100\Tools\Policies.

 In this directory (or the equivalent installation directory) are three subdirectories
containing polices for the Database Engine, together with Reporting Services and
Analysis Services. The policies for Reporting and Analysis Services are limited to sur-
face area configuration checks, and the Database Engine directory contains approxi-
mately 50 policies covering a wide variety of best practices. Here are some examples of
best practices addressed by the supplied policies:

Backup files must be on separate devices from the database files.
Data and log files should be on separate drives.
The default trace should be enabled.
Max Degree of Parallelism should be less than 8.
No unexpected system failures should be detected.
Backups should be performed frequently.
No I/O delay messages should be detected.

One of the nice things about the supplied policies is that some of them can be used
with previous versions of SQL Server. For example, the File Growth for SQL Server
2000 policy can be used to check for the existence of SQL Server 2000 databases larger
than 1GB whose AutoGrowth property is percentage based rather than a fixed size.
Although policies can be defined and executed against versions of SQL Server prior to
2008, there are some restrictions, and we’ll cover these (and some workarounds) later
in this chapter.

 In the example shown in figure 8.6, we’ll import the supplied Surface Area Con-
figuration for Database Engine 2008 Features.

 Once the file is selected, the only other option we need to specify is Policy State. By
default, the policy state is preserved on import—that is, if the policy is enabled in the

Figure 8.6 You can import existing policies to check SQL instances for compliance based on predefined

configuration files.

Licensed to Gayle M. Noll <pedbro@gmail.com>

155Policies in action

definition file, it will be enabled on import. Alternatively, we can explicitly enable or
disable the policy as part of the import process.

 Now that we’ve imported a policy, let’s look at the process of evaluating it.

8.3.2 Evaluating policies

One of the most powerful features of policy-based management is the variety of ways
in which checks and violations can be defined and managed at an individual policy
level.

 In the previous section we covered the four evaluation modes: On Change – Pre-
vent, On Change – Log Only, On Schedule, and On Demand. Let’s take a look at an
example of each of these methods, starting with On Demand.

ON DEMAND

When you create a policy using the On Demand evaluation mode, the policy is created
in a disabled state. You can then use it in an ad hoc manner as required by right-clicking
the policy and choosing Evaluate. Let’s do this for the Surface Area Configuration pol-
icy we imported earlier. Figure 8.7 shows the evaluation results of this policy. In this
example, the evaluation failed because the target server has Database Mail enabled.

 In addition to clicking View to see the details of the evaluation, you can click
Apply, which will reconfigure the server to be compliant with the policy.

ON CHANGE – PREVENT

You may wish to enforce certain policies so that violations are prevented from occur-
ring. Unfortunately, this is only possible for a certain class of conditions, specifically
those able to be rolled back with DDL triggers.

 As an example, figure 8.8 contains the error message returned when a table create
statement violates a table name condition specifying that tables must be created with a
tbl_ prefix.
Figure 8.7 You can manually evaluate a policy by right-clicking it and choosing Evaluate.

Licensed to Gayle M. Noll <pedbro@gmail.com>

156 CHAPTER 8 Policy-based management

ON CHANGE – LOG ONLY

Like On Change – Prevent, On Change – Log Only actively monitors for policy viola-
tions, but rather than roll back the violation, it logs the violation to the SQL Server
log. Regardless of the evaluation mode, all policy failures are logged,1 enabling cus-
tom policy failure alerts to be set up, a process we’ll cover in chapter 14. Figure 8.9
shows such a policy failure error in the SQL Server log.

Figure 8.9 All policy violations are recorded in the SQL Server log.

ON SCHEDULE

The On Schedule evaluation mode lets you enable policies to be checked on a sched-
uled basis. This mode ensures that the overhead of active policy checking doesn’t
impact performance. When you choose this mode, the policy creator selects a sched-
ule, which creates SQL Agent jobs to run the scheduled policy checks.

 Now that we’ve looked at the process of importing policies and covered the evalua-
tion modes, let’s walk through the process of creating a new policy to check database
properties such as AutoClose and AutoShrink.

Figure 8.8 The On
Change – Prevent
evaluation mode will
actively prevent
changes that violate
policy conditions.
1 Error numbers 34050 through 34053 are reserved for policy failures.

Licensed to Gayle M. Noll <pedbro@gmail.com>

157Policies in action

8.3.3 Creating a database properties policy

The first step in creating a new policy is to right-click Policies under Policy Manage-
ment and choose New Policy. You then enter a policy name and either choose an exist-
ing condition or create a new condition.

 In the example shown in figure 8.10, we’ll create a policy called Database Proper-
ties Policy and create a new condition. We’ll use the Database facet and specify that
both AutoClose and AutoShrink should be false.

After clicking OK, we’re returned to the policy definition screen shown in figure 8.11.
Here we select Every Database for the condition’s target. For the evaluation mode,
we’ll choose On Schedule and create a new schedule for Nightly 11PM.

Figure 8.11 When you’re
creating a policy, after choosing
a condition, you select the
condition target and

Figure 8.10 After selecting a condition’s facet, we build the expression.
evaluation mode.

Licensed to Gayle M. Noll <pedbro@gmail.com>

158 CHAPTER 8 Policy-based management

At this point, the policy is created and will run according to the defined schedule. One
of the really useful features of the new SQL Server Management Studio is that it’s aware
of policy failures. As shown in figure 8.12, any server and/or database that has failed a
policy will be marked with a red cross icon. In this example, the AdventureWorks2008
database is set to AutoShrink and AutoClose, contrary to the policy we just created.

 To correct the policy failure, rather than manually setting these two database prop-
erties we can simply right-click the database and choose Polices > Evaluate to view the
policy failure, and then click Apply to force the server’s properties to comply with the
policy conditions.

 Once created, policies can be easily exported, and doing so enables a number of
important management functions.

8.3.4 Exporting policies

Policies can be exported in one of two ways. First, you can simply right-click an exist-
ing policy and choose Export Policy. The resulting dialog box allows you to select a
location in which to save the XML-based policy file.

 The other method is based on an instance facet. By right-clicking on a registered
SQL Server instance, you can choose Facets. The View Facets window allows you to
view the instance properties on a facet-by-facet basis, but more important, you can
choose the option Export Current State as Policy.

 Figure 8.13 shows the Server Performance facet of the BNE-SQL-PR-01\SALES
instance. By clicking the Export Current State as Policy button, we’re able to create a
new policy file based on the Server Performance properties of this server.

 The importance of this function can’t be overstated; essentially, we’re able to con-
figure a single server to be exactly how we want all servers to be configured, and then
create policies based on the individual facets. Doing so makes the configuration of

Figure 8.12 SQL Server Management Studio includes visual aids to make policy violations stand out.
In this case, the AdventureWorks2008 database has failed a policy.
multiple servers very simple, a process we’ll cover next.

Licensed to Gayle M. Noll <pedbro@gmail.com>

159Enterprise policy management

8.4 Enterprise policy management
In opening this chapter, we discussed the challenges faced by a DBA in maintaining
consistent best practice configuration across many SQL Server instances. We’ve looked
at the new policy-based management feature and how it can be used to create, import,
and evaluate policies.

 Although the new feature is unquestionably useful, there still remains a significant
challenge in being able to deal with instances running into the hundreds or thou-
sands, particularly when the instances are spread across a number of categories such
as production, test, and development, each of which may have individual configura-
tion requirements.

 What’s really needed is a way of defining a template server for each environment,
and then applying the configuration of that server to all other servers in that category,
for example, make all those production servers just like this one. Using policy-based man-
agement in conjunction with central management servers allows us to do exactly that.

 Before we look at combining these two features, let’s start with a look at central
management servers.

8.4.1 Central management servers

In SQL Server 2005 we could use the registered servers feature to register and group fre-
quently managed servers. For example, we could create a production group, contain-
ing multiple production servers, and a test group containing multiple test servers. By
exporting the registration information to file, DBAs could import it and quickly see

Figure 8.13 The
Export Current State
as Policy button
allows us to create
 a policy file based
on an instance’s
facet configuration.
the same groups and servers in their copy of SQL Server Management Studio.

Licensed to Gayle M. Noll <pedbro@gmail.com>

160 CHAPTER 8 Policy-based management

 In SQL Server 2008, this facility still exists, and it’s referred to as local server groups.
In addition to this feature, we now have central management servers. Unlike local server
groups, central management servers store the group and server registration details
within the server itself, thereby avoiding the import/export process. This way, DBAs
can simply register an existing central management server and automatically see its
groups and registered servers.

 Unlike local server groups, central management servers only support the registra-
tion of servers using Windows authentication mode. As such, even though multiple
DBAs can register the central management server, they’ll only have access to the regis-
tered servers if permitted via Windows authentication.

 Along with the ability to share a central repository of registration information, con-
figuration servers enable two additional features: the ability to run a query against mul-
tiple servers simultaneously, and the ability to evaluate a policy against multiple servers.

 In the example in figure 8.14, BNE-SQL-PR-01\CONFIG has been registered as a cen-
tral management server with a production servers group containing the BNE-SQL-PR-
01\Marketing and BNE-SQL-PR-01\Sales instances. By clicking Production Servers and
then New Query, we can execute a query against all servers in the group. The result set
includes an extra column to enable us to distinguish results from the different servers.

 One of the things to note about figure 8.14 is the red/pink status bar at the bottom
of the screen denoting that this is a multiserver query. Production Servers is included in
the status bar to help us easily determine which group of servers the query was exe-
cuted against. In fact, when registering a server (including through the central man-
agement servers feature) we can use the Connection Properties page to associate a
custom color with the registration. That way, all subsequent queries against the regis-
tered server will display this color in the status bar. Such a feature comes in handy for
those who accidentally run queries in the wrong environment!

 From a policy perspective, central management servers provide a huge benefit, as
we’ll see next.

Figure 8.14 You can run multiserver queries against central management server groups. The result

set includes an extra column for the server name.

Licensed to Gayle M. Noll <pedbro@gmail.com>

161Enterprise policy management

8.4.2 Policy-based management with central management servers

Earlier in the chapter we covered the process of importing and evaluating a policy
against a single server. Using central management servers, we’re able to do that
against all of the registered servers in one action. Further, each server that fails policy
validation can then be configured at the click of a button.

 To demonstrate, let’s use the central management server from figure 8.14. Under
the Production Servers group, we have two registered servers. In a real-world enter-
prise environment, we’d obviously have more servers and more groups. Let’s right-
click on the Production Servers group and select Evaluate Policies.

 In the window that opens (shown in figure 8.15), we can select the location of a policy
file. This can be either one of the predefined policies or one that we’ve exported from
an existing instance. Let’s select the predefined Surface Area Configuration policy.

By clicking Evaluate, we’re evaluating the policy across all of the servers in the config-
uration group. In our example, as shown in figure 8.16, one of the servers passed vali-
dation and one failed. The great thing about evaluating policies in this manner is that
you can reconfigure servers that fail validation by simply selecting the check box next
to that server name and clicking Apply.

Figure 8.16 Evaluating a
policy against a central
management server group
lets you evaluate and
reconfigure groups of

Figure 8.15 After right-
clicking a central
management server
group and choosing
Evaluate Policies, we can
choose the policy source
and click Evaluate.
servers in a single step.

Licensed to Gayle M. Noll <pedbro@gmail.com>

162 CHAPTER 8 Policy-based management

In the introduction to this chapter we spoke about the problem of coming into a
poorly managed environment and being presented with the task of assessing a large
number of servers for best practice. By grouping the servers with central management
servers, you can validate policies across groups of servers, and you can easily reconfig-
ure those that fail validation by clicking the Apply button.

 Once they’re configured, you can import policies into each of the servers with a
scheduled evaluation mode to ensure their ongoing compliance. To make this even
easier, import the policies against a central management server group, which will per-
form the import against each of the servers in the group.

Let’s wrap up this chapter with a brief look at some advanced policy-based manage-
ment techniques.

8.5 Advanced policy-based management
The policies we’ve looked at so far have all been based on static server properties, such
as checking the value of various surface area configuration properties to determine
whether xp_cmdshell is enabled. In this section, we’ll look at ways of enabling more
advanced, or dynamic, policy checks. We’ll also cover the benefits of combining policy-
based management with PowerShell.

8.5.1 ExecuteWql() and ExecuteSql()

Earlier in the chapter we covered some of the policies included with SQL Server 2008
that can be imported for evaluation. One of these policies is used to detect the pres-
ence of I/O delay messages in the Windows Event Log. Clearly, this is a very different
type of policy from those we’ve covered so far.

 Let’s import the policy file Windows Event Log I_O Delay Warning.xml and have a
look at its condition. As shown in figure 8.17, we can see that rather than use one of the
familiar condition fields such as @AutoClose, it uses what appears to be a function call.

 By clicking the ellipsis button next to the field, we enter the Advanced Edit mode,
as shown in figure 8.18. Here, we can see that this policy uses the ExecuteWql() func-
tion to query the Windows Event Log for a particular error event code.

 The ExecuteWql() function permits you to use Windows Management Instrumen-
tation (WMI), specifically the WMI Query Language (WQL), to query the operating sys-
tem for information. The usage shown here is one example of a nearly limitless

Documentation
At best, documenting server configuration produces an historical snapshot of how a
server looked at a given moment. At worst, it’s a monumental waste of time, partic-
ularly if the configuration changes in an uncontrolled manner. In contrast, policy-
based management provides a much more efficient “living” document of server con-
figuration. Better still, its Apply function enables simple reconfiguration should the
server deviate from the desired state.
number of possible uses.

Licensed to Gayle M. Noll <pedbro@gmail.com>

163Advanced policy-based management

Note in figure 8.18 the other functions available. Directly above ExecuteWql() is Exe-
cuteSql(), which you can use to run a traditional T-SQL query. In a similar manner to
ExecuteWql(), this function can run any T-SQL code, and can therefore be used to
create flexible and powerful policies.

 When using the ExecuteSql() function, you must keep in mind a few things. First,
the value returned needs to be something that can be evaluated in the condition edi-
tor. For example, you can use a case statement to return a single numeric value and
compare that to an expected value in the condition editor.

Figure 8.17 The condition definition of the Windows Event Log I/O Delay Warning Check policy uses the
ExecuteWql function.

Figure 8.18 The Advanced Edit mode lets you use functions such as ExecuteWql()

and ExecuteSql() to create advanced policies.

Licensed to Gayle M. Noll <pedbro@gmail.com>

164 CHAPTER 8 Policy-based management

Second, given the fact that ExecuteSql() accepts and runs any SQL (including delete
statements), take into account the security implications. One of the new fixed database
roles in the MSDB database is called PolicyAdministratorRole. Members of this role are
able to execute policy checks. To prevent such users from executing ExecuteSql()-
based policies that elevate their privileges, the ##MS_PolicyTsqlExecutionLogin## SQL
Server login is used as a proxy account for the execution of this function. As such, not
only does this login have to be enabled, the appropriate permissions need to granted
on the objects referenced in the ExecuteSql() function.

 Despite the wide range of facets and included policies, certain aspects of SQL
Server instances and databases can’t be checked in SQL Server 2008. An example is
checking that all tables use data compression (covered in the next chapter). Data
compression is a partition property, and there’s no facet for partitions in SQL Server
2008. As such, you could use the ExecuteSql() function to query for the existence of
any tables that aren’t compressed, using a function like this:

Executesql('Numeric', 'select count(*)
from sys.partitions p where p.data_compression=0')

If the results of this query return a nonzero value, that means tables are present that
aren’t compressed. You’d use such a function in a condition like the one shown in
figure 8.19.

 Both the ExecuteSql() and ExecuteWql() functions, fully documented in SQL
Server BOL, enable you to create policies with almost limitless flexibility, and could
potentially be used to check policy compliance of items completely unrelated to SQL
Server.

 In closing the chapter, let’s examine how SQL Server’s support of PowerShell can
be used to overcome some of the limitations with using policy-based management
against earlier versions of SQL Server.

8.5.2 PowerShell

Released in 2006 and included in Windows Server 2008, Windows PowerShell is a com-
mand line–based scripting language used to perform administrative tasks using cmd-
lets. SQL Server 2008 is PowerShell aware and exposes its management interface via its

Figure 8.19 Use a custom expression to check for the existence of uncompressed tables.
own cmdlets.

Licensed to Gayle M. Noll <pedbro@gmail.com>

165Advanced policy-based management

 Earlier in the chapter we briefly covered the ability to evaluate policies against ear-
lier versions of SQL Server. For example, by registering a SQL Server 2005 instance
with the 2008 Management Studio tool, you can right-click 2005 objects and manually
evaluate policies. What you can’t do (without using PowerShell) is store policies within
a 2005 instance for scheduled evaluation as you can with a 2008 instance.

 Enter PowerShell. Using the Invoke-PolicyEvaluation cmdlet, you can evaluate pol-
icies against SQL Server instances (2000, 2005, or 2008) as a PowerShell script. SQL
Server 2008 also includes the ability to run PowerShell-based SQL Agent job steps, so
the combination of these two features enables you to schedule policy evaluation
against a variety of SQL Server versions.

 Right-click a SQL Server 2008 instance in Management Studio and click Start Pow-
erShell, to open a PowerShell interface from which you can (among other things)
evaluate a policy. In the example shown in figure 8.20, after using the sl command to
change directory to the location containing the policy files, we’ve used the Invoke-Pol-
icyEvaluation cmdlet to evaluate a policy against a SQL Server 2005 instance using the
PowerShell interface.

 As you can see in the Result column, the server failed evaluation. One of the nice
things about the Invoke-PolicyEvaluation cmdlet is the variety of parameters it takes, a
few of which are as follows:

The -Policy option is used to specify the required policy to execute. An alter-
nate use of this option is to supply a comma-separated list of policies, allowing
multiple policies to be executed as part of the one command.
The gci option allows Invoke-PolicyEvaluation to receive input from a pipe. For
example, gci | Invoke-PolicyEvaluation -TargetServer "BNE-SQL-PR-

01\SQL2005" will evaluate every policy in the current directory against the spec-
ified server.
-OutputXml allows you to direct the output of the evaluation to a file for later
inspection. This option is particularly useful when running scheduled evalua-
tions.
-AdHocPolicyExecutionMode "Configure" implements the policy conditions.
Should the evaluation fail, the server will be reconfigured according to the policy.

Figure 8.20 Using the Invoke-PolicyEvaluation cmdlet to evaluate a policy using the

PowerShell interface

Licensed to Gayle M. Noll <pedbro@gmail.com>

166 CHAPTER 8 Policy-based management

So in order to schedule policy checks against earlier SQL Server versions, we can take
our policy script and create a PowerShell-based SQL Server Agent job step, as shown in
figure 8.21. Note that we formatted the script for visibility by adding extra line breaks.

 We can optionally enhance the job step using the additional parameters described
earlier to reconfigure the server in case it fails evaluation and/or to evaluate multiple
policies at once.

 In summary, the combination of policy-based management, central management
servers, and PowerShell cmdlets enables a whole new level of powerful management
possibilities for the enterprise DBA.

8.6 Best practice considerations: policy-based management
As an enterprise DBA who struggles with best practice implementation on a daily
basis, I’m excited about the potential of policy-based management:

Policies (and their evaluation history) are stored in the MSDB database. You
should back up this database on a regular basis, or at least each time a policy
definition changes.
Implement proactive DBA checks as automated policies where possible. As well
as saving time that can be spent on other tasks such as performance baselining,
creating policies enables you to configure new servers faster and more reliably
than with manual methods.
Create central management servers to maximize the power of policy-based
management. Where classes of servers exist, such as production, test, and devel-
opment, use individual central management server groups to check groups of
servers in a single action.
If using the On Change - Prevent mode, ensure the policies are tested in a load-
testing environment for their potential performance impact. If a measurable

Figure 8.21 Creating a SQL Agent Job step to execute a PowerShell script enables the scheduled
evaluation of policies against a SQL Server 2000/2005 instance.
impact is detected, implement policies as On Schedule.

Licensed to Gayle M. Noll <pedbro@gmail.com>

167Best practice considerations: policy-based management

Consider creating alerts for policy violations. All policy failures are logged to
the SQL Server error log with an error code of 34050 through 34053.
If you use the ExecuteSQL() function to create custom policy conditions,
ensure the permissions of the ##MS_PolicyTsqlExecutionLogin## account are
set to the minimum required, particularly if you’re using the MSDB PolicyAd-
ministratorRole.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/policy.

 Throughout this chapter, we’ve touched on a number of database properties such
as AutoClose and AutoShrink. In the next chapter, we’ll expand on these properties
further when we look at the topic of data management.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Data management
A significant percentage of SQL Server performance and administration problems
stem from poor choices in laying out and sizing database files. By default, a data-
base has a single data and log file, both of which are located in the same directory
and set to automatically grow by small amounts. With the exception of the smallest
databases, such a configuration is almost guaranteed to constrain performance,
increase disk fragmentation, and lead to various other administration challenges,
particularly with large databases and/or those with high usage rates.

 Successful database administration requires a solid understanding of database
file layout, sizing, and management strategies. In this chapter, we’ll begin by
exploring database file configuration, including volume separation and initial size.
We’ll then take a look at using secondary filegroups and their performance and
administration benefits.

 We’ll conclude the chapter with coverage of two significant new data manage-

In this chapter, we’ll cover
■ Database files
■ Filegroups
■ FileStream data
■ Data compression
168

ment features introduced in SQL Server 2008: FileStream and data compression.

Licensed to Gayle M. Noll <pedbro@gmail.com>

169Database file configuration

9.1 Database file configuration
In previous chapters, we’ve seen how default SQL Server installations come with good
out-of-the-box settings that lessen administration requirements, strengthen security,
and maximize performance. When it comes to individual databases, there are a num-
ber of recommended configuration steps that SQL Server doesn’t perform, in large
part due to dependencies on disk configuration and unknown future usage of the
databases.

 Before covering specific file configuration recommendations, let’s address some of
the terms used when discussing database files:

Primary data file —The primary data file, and by default the only data file, con-
tains system tables and information on all files within a database. By default, this
file has an .mdf extension. If there are no other files in the database, the pri-
mary file also contains user objects such as tables and indexes.
Secondary data file —Secondary files, which usually have an .ndf extension, are
optional files that can be added to a database for performance and/or adminis-
trative benefits, both of which we’ll cover shortly. A database can contain one or
more secondary files.
Filegroups —Every database contains a primary filegroup, containing at least the
primary data file, and possibly all secondary data files unless other filegroups
are created and used. Filegroups are logical containers that group together one
or more data files, and as we’ll see later in the chapter, provide several benefits.
Transaction log file —Typically using the .ldf extension, the transaction log file
records details of each database modification and is used for various purposes,
including transaction log shipping, replication, database mirroring, and recov-
ery of a database to a consistent state.

With these terms in mind, let’s cover some of the major file configuration recommen-
dations, starting with separating a database’s different storage objects across separate
physical disk volumes.

9.1.1 Volume separation

By default, a database is created with a single data and transaction log file. Unless
specified during installation or modified during database creation, both of these files
will be created in the same directory, with the default size and growth rates inherited
from the model database.

 As shown in figure 9.1, an important database file configuration task, particularly
for databases with direct-attached storage, is to provide separate physical RAID-pro-
tected disk volumes for data, transaction log, tempdb, and backup files.

 As we covered in chapter 2, designing SAN-based virtualized storage is quite differ-
ent from designing direct-attached storage; that being said, the principles of high per-
formance and fault tolerance remain. In both cases, a good understanding of SQL
Server’s various storage objects is crucial in designing an appropriate storage system.

Let’s walk through these now, beginning with the transaction log file.

Licensed to Gayle M. Noll <pedbro@gmail.com>

170 CHAPTER 9 Data management

TRANSACTION LOG FILE

Unlike random access to data files, transaction logs are written sequentially. If a disk is
dedicated to a single database’s transaction log, the disk heads can stay in position
writing sequentially, thus increasing transaction throughput. In contrast, a disk that
stores a combination of data and transaction logs won’t achieve the same levels of
throughput given that the disk heads will be moving between the conflicting require-
ments of random data access/updates and sequential transaction log entries. For data-
base applications with high transaction rates, separation of data and transaction logs
in this manner is crucial.

BACKUP FILES

A common (and recommended) backup technique, covered in detail in the next chap-
ter, is to back up databases to disk files and archive the disk backup files to tape at a later
point in the day. The most optimal method for doing this is to have dedicated disk(s)
for the purpose of storing backups. Dedicated backup disks provide several benefits:

Disk protection —Consider a case where the database files and the backup files
are on the same disk. Should the disk fail, both the database and the backups
are lost, a disastrous situation! Storing backups on separate disk(s) prevents this
situation from occurring—either the database or the backups will be available.
Increased throughput —Substantial performance gains come from multiple disks
working in unison. During backup, the disks storing the database data files are
dedicated to reading the files, and the backup disks are dedicated to writing
backup file(s). In contrast, having both the data and backup files on the same
disk will substantially slow the backup process.
Cost-effective —The backup disks may be lower-cost, higher-capacity SATA disks,
with the data disks being more expensive, RAID-protected SCSI or SAS disks.
Containing growth —The last thing you want is a situation where a backup con-
sumes all the space on the data disk, effectively stopping the database from being
used. Having dedicated backup disks prevents this problem from occurring.

TEMPDB DATABASE

Depending on the database usage profile, the tempdb database may come in for
intense and sustained usage. By providing dedicated disks for tempdb, the impact on
other databases will be reduced while increasing performance for databases heavily

Figure 9.1 An example physical
disk design with separate RAID
volumes for data, log, tempdb,
and backup files

System Drive (C:)
RAID 1 Sales DB

Data (D:)
RAID 10

T-Log (E:)
RAID 1

TempDB (F:)
RAID 10

Backup (G:)
RAID 1
reliant on it.

Licensed to Gayle M. Noll <pedbro@gmail.com>

171Database file configuration

WINDOWS SYSTEM AND PROGRAM FILES

SQL data files shouldn’t be located on the same disks as Windows system and program
files. The best way of ensuring this is to provide dedicated disks for SQL Server data,
log, backups and tempdb.

For small databases with low usage, storing everything on a single disk may work per-
fectly fine, but as the usage and database size increases, file separation is a crucial con-
figuration step in ensuring the ongoing performance and stability of database servers.

 In addition to increasing throughput, creating physically separate storage volumes
enables I/O bottlenecks to be spotted much more easily, particularly with the intro-
duction of the new Activity Monitor, covered in chapter 14, which breaks down
response time per disk volume.

 As with object separation across physically separate disk volumes, using multiple
data files isn’t a default setting, yet deserves consideration given its various advantages.

9.1.2 Multiple data files

A common discussion point on database file configuration is based on the number of
data files that should be created for a database. For example, should a 100GB database
contain a single file, four 25GB files, or some other combination? In answering this
question, we need to consider both performance and manageability.

PERFORMANCE

A common performance-tuning recommendation is to create one file per CPU core
available to the database instance. For example, a SQL Server instance with access to
two quad-core CPUs should create eight database files. While having multiple data
files is certainly recommended for the tempdb database, it isn’t necessarily required
for user databases.

 The one file per CPU core suggestion is useful in avoiding allocation contention issues.
As we’ll see in chapter 12, each database file holds an allocation bitmap used for allo-
cating space to objects within the file. The tempdb database, by its very nature, is used
for the creation of short-term objects used for various purposes. Given tempdb is used
by all databases within a SQL Server instance, there’s potentially a very large number of
objects being allocated each second; therefore, using multiple files enables contention

Mount points
A frequently cited reason for not creating dedicated disk volumes for the objects
we’ve covered so far is the lack of available drive letters, particularly in clustered serv-
ers used for consolidating a large number of databases and/or database instances.
Mount points address this problem by allowing a physically separate disk volume to
be grafted onto an existing volume, therefore enabling a single drive letter to contain
multiple physically separate volumes. Mount points are fully supported in Windows
Server 2003 and 2008.
on a single allocation bitmap to be reduced, resulting in higher throughput.

Licensed to Gayle M. Noll <pedbro@gmail.com>

172 CHAPTER 9 Data management

 It’s very rare for a user database to have allocation contention. Therefore, splitting
a database into multiple files is primarily done to enable the use of filegroups (cov-
ered later in the chapter) and/or for manageability reasons.
MANAGEABILITY

Consider a database configured with a single file stored on a 1TB disk partition with
the database file currently 900GB. A migration project requires the database to be
moved to a new server that has been allocated three 500GB drives. Obviously the
900GB file won’t fit into any of the three new drives. There are various ways of address-
ing this problem, but avoiding it by using multiple smaller files is arguably the easiest.

 In a similar manner, multiple smaller files enable additional flexibility in overcom-
ing a number of other storage-related issues. For example, if a disk drive is approach-
ing capacity, it’s much easier (and quicker) to detach a database and move one or two
smaller files than it is to move a single large file.
TRANSACTION LOG

As we’ve covered earlier, transaction log files are written to in a sequential manner.
Although it’s possible to create more than one transaction log file per database,
there’s no benefit in doing so.

 Some DBAs create multiple transaction log files in a futile attempt at increasing
performance. Transaction log performance is obtained through other strategies we’ve
already covered, such as using dedicated disk volumes, implementing faster disks,
using a RAID 10 volume, and ensuring the disk controller has sufficient write cache.

 For both transaction logs and data files, sizing the files correctly is crucial in avoid-
ing disk fragmentation and poor performance.

9.1.3 Sizing database files

One of the major benefits of SQL Server is that it offers multiple features that enable
databases to continue running with very little administrative effort, but such features
often come with downsides. One such feature, as shown in figure 9.2, is the Enable
Autogrowth option, which enables a database file to automatically expand when full.

Figure 9.2 Despite the
lower administration
overhead, the Enable
Autogrowth option
should not be used in
place of database
presizing and proactive

maintenance routines.

Licensed to Gayle M. Noll <pedbro@gmail.com>

173Database file configuration

The problem with the autogrowth feature is that every time the file grows, all activity
on the file is suspended until the growth operation is complete. If enabled, instant ini-
tialization (covered shortly) reduces the time required for such actions, but clearly the
better alternative is to initialize the database files with an appropriate size before the
database begins to be used. Doing so not only avoids autogrowth operations but also
reduces disk fragmentation.

 Consider a worst case scenario: a database is created with all of the default settings.
The file size and autogrowth properties will be inherited from the model database,
which by default has a 3MB data file set to autogrow in 1MB increments and a 1MB log
file with 10 percent autogrowth increments. If the database is subjected to a heavy
workload, autogrowth increments will occur every time the file is increased by 1MB,
which could be many times per second. Worse, the transaction log increases by 10 per-
cent per autogrowth; after many autogrowth operations, the transaction log will be
increasing by large amounts for each autogrowth, a problem exacerbated by the fact
that transaction logs can’t use instant initialization.

 In addition to appropriate presizing, part of a proactive database maintenance
routine should be regular inspections of space usage within a database and transac-
tion log. By observing growth patterns, the files can be manually expanded by an
appropriate size ahead of autogrowth operations.

 Despite the negative aspects of autogrowth, it’s useful in handling unexpected
surges in growth that can otherwise result in out-of-space errors and subsequent down-
time. The best use of this feature is for emergencies only, and not as a replacement for
adequate presizing and proactive maintenance. Further, the autogrowth amounts
should be set to appropriate amounts; for example, setting a database to autogrow in
1MB increments isn’t appropriate for a database that grows by 10GB per day.

 Given its unique nature, presizing database files is of particular importance for the
tempdb database.

TEMPDB

The tempdb database, used for the temporary storage of various objects, is unique in
that it’s re-created each time SQL Server starts. Unless tempdb’s file sizes are manually
altered, the database will be re-created with default (very small) file sizes each time
SQL Server is restarted. For databases that make heavy use of tempdb, this often mani-
fests itself as very sluggish performance for quite some time after a SQL Server restart,
with many autogrowth operations required before an appropriate tempdb size is
reached.

 To obtain the ideal starting size of tempdb files, pay attention to the size of tempdb
once the server has been up and running for enough time to cover the full range of
database usage scenarios, such as index rebuilds, DBCC operations, and user activity.
Ideally these observations come from load simulation in volume-testing environments
before a server is commissioned for production. Bear in mind that any given SQL
Server instance has a single tempdb database shared by all user databases, so use

across all databases must be taken into account during any load simulation.

Licensed to Gayle M. Noll <pedbro@gmail.com>

174 CHAPTER 9 Data management

One other aspect you should consider when sizing database files, particularly when
using multiple files, is SQL Server’s proportional fill algorithm.

PROPORTIONAL FILL

When a database filegroup (covered shortly) uses multiple data files, SQL Server fills
each file evenly using a technique called proportional fill, as shown in figure 9.3.

 If one file has significantly more free space than others, SQL Server will use that
file until the free space is roughly the same as the other files. If using multiple data-
base files in order to overcome allocation contention, this is particularly important
and care should be taken to size each database file the same and grow each database
file by the same amount.

 We’ve mentioned instant initialization a number of times in this chapter. In closing
this section, let’s take a closer look at this important feature.

9.1.4 Instant initialization

In versions of SQL Server prior to 2005, files were zero padded on creation and during
manual or autogrowth operations. In SQL Server 2005 and above, the instant initial-
ization feature avoids the need for this process, resulting in faster database initializa-
tion, growth, and restore operations.

 Other than reducing the impact of autogrowth operations, a particularly beneficial
aspect of instant initialization is in disaster-recovery situations. Assuming a database is
being restored as a new database, the files must first be created before the data can be
restored; for recovering very large databases, creating and zero padding files can take
a significant amount of time, therefore increasing downtime. In contrast, instant ini-
tialization avoids the zero pad process and therefore reduces downtime, the benefits
of which increase linearly with the size of the database being restored.

 The instant initialization feature, available only for data files (not transaction log
files), requires the SQL Server service account to have the Perform Volume Mainte-
nance Tasks privilege. Local Admin accounts automatically have this privilege, but as
we discussed in chapter 6, this isn’t recommended from a least privilege perspective;
therefore, you have to manually grant the service account this permission to take
advantage of the instant initialization feature.

 Earlier in the section we explored the various reasons for using multiple data files

Figure 9.3 SQL Server’s
proportional fill algorithm aims
to keep the same amount of free
space in each file in a filegroup.

Free space

Used space

File 1 File 2 File 3 File 4 File 5

Fill target
for a database. A common reason for doing so is to enable us to use filegroups.

Licensed to Gayle M. Noll <pedbro@gmail.com>

175Filegroups

Figure 9.4 The default
filegroup structure consists
of a single filegroup called
primary with a single file
containing all system
and user-created objects.

9.2 Filegroups
As we covered earlier, you can think of filegroups as logical containers for database
disk files. As shown in figure 9.4, the default configuration for a new database is a sin-
gle filegroup called primary, which contains one data file in which all database objects
are stored.

 Before we cover recommended filegroup configurations, let’s look at some of the
ways in which filegroups are used (and abused), beginning with controlling object
placement.

9.2.1 Controlling object placement

A common performance-tuning recommendation is to create tables on one filegroup
and indexes on another (or some other combination), with each filegroup containing
files on dedicated disks. For example, Filegroup 1 (tables) contains files on a RAID vol-
ume containing 10 disks with Filegroup 2 (indexes) containing files on a separate
RAID volume, also containing 10 disks.

 The theory behind such configurations is that groups of disks will operate in paral-
lel to improve throughput. For example, disks 1–10 will be dedicated to table scans
and seeks while index scans and seeks can operate in parallel on another dedicated
group of disks.

 Although it’s true that this can improve performance in some cases, it’s also true
that in most cases it’s a much better option to have simpler filegroup structures con-
taining more disks. In the previous example, the alternative to two filegroups each
containing 10 disks is to have one filegroup containing 20. In simpler configurations
such as this, each database object has more disk spindles to be striped across.

 Generally speaking, unless the data access patterns are very well known, simpler
filegroup structures are almost always a better alternative, unless alternate configura-
tions can be proven in load-testing environments.

 Another common use for filegroups is for backup and restore flexibility.

9.2.2 Backup and restore flexibility

As we’ll cover in the next chapter, filegroups offer a way of bringing a database online
before the full database restore operation is complete. Known as piecemeal restore, this
feature is invaluable in reducing downtime in recovery situations.

 Without going into too much detail (full coverage in the next chapter), piecemeal

Transac�on log (.ldf) Primary filegroup

(default)

1 x primary file (.mdf)

All system tables

All user objects
restores enable the restore process to be prioritized by filegroup. For example, after

Licensed to Gayle M. Noll <pedbro@gmail.com>

176 CHAPTER 9 Data management

you restore a filegroup containing objects required for data entry, you can make a
database available to users, after which you can restore an archive filegroup in the
background. As long as the users don’t require access to any of the data in the archive
filegroup, they won’t be affected. Therefore, the user impact is reduced by bringing
the database online much faster than waiting for the full database to be restored.

 In the next chapter, we’ll see how the first part of a piecemeal restore is to restore
the primary filegroup, after which individual filegroups can be restored in priority
order. To speed up this process, best practice dictates avoiding the use of the primary
filegroup for storing user objects. The best way of enabling this is to create a second-
ary filegroup immediately after creating a database and marking it as the default file-
group. Such a configuration, as shown in figure 9.5, ensures that the only objects
stored in the primary filegroup are system objects, therefore making this very small,
and in turn providing the fastest piecemeal restore path.

 Listing 9.1 contains the T-SQL code to create a Sales database using the filegroup
structure just covered. We’ll create two additional filegroups: one called POS (which
we’ll mark as the default) and the other called Archive. The POS filegroup will contain
two files and the Archive filegroup a single file.

CREATE DATABASE [SALES] ON PRIMARY
(NAME = N'Sales'
 , FILENAME = N'E:\SQL Data\MSSQL10.SALES\MSSQL\DATA\SalesDb.mdf'
 , SIZE = 51200KB
 , FILEGROWTH = 1024KB
)
, FILEGROUP [POS]
(NAME = N'Sales1'
 , FILENAME = N'E:\SQL Data\MSSQL10.SALES\MSSQL\DATA\SalesDb1.mdf'
 , SIZE = 51200KB
 , FILEGROWTH = 1024KB
)
,(NAME = N'Sales2'
 , FILENAME = N'E:\SQL Data\MSSQL10.SALES\MSSQL\DATA\SalesDb2.mdf'
 , SIZE = 51200KB
 , FILEGROWTH = 1024KB
)
, FILEGROUP [ARCHIVE]
(NAME = N'Sales3'

Listing 9.1 Create a multi-filegroup database

Transac�on log (.ldf) Primary filegroup

Primary file (.mdf)

System tables only

Secondary filegroup (default)

Secondary file 1 (.ndf)

Secondary file n (.ndf)

User objects only
Figure 9.5 A recommended
filegroup structure with all
user objects stored in a
(default) secondary filegroup
 , FILENAME = N'E:\SQL Data\MSSQL10.SALES\MSSQL\DATA\SalesDb3.mdf'

Licensed to Gayle M. Noll <pedbro@gmail.com>

177BLOB storage with FileStream

 , SIZE = 51200KB
 , FILEGROWTH = 1024KB
)
LOG ON
(
 NAME = N'SalesLog'
 , FILENAME = N'F:\SQL Log\SalesDbLog.ldf'
 , SIZE = 51200KB
 , FILEGROWTH = 1024KB
)
GO

ALTER DATABASE [SALES]
MODIFY FILEGROUP [POS] DEFAULT
GO

By specifying POS as the default filegroup, we’ll avoid storing user objects in the primary
filegroup and thus enable the fastest piecemeal restore process. Any object creation
statement (such as a CREATE TABLE command) will create the object in the POS filegroup
unless another filegroup is explicitly specified as part of the creation statement.

Next up, you’ll learn about a special type of filegroup in SQL Server 2008 that’s used
for storing FileStream data.

9.3 BLOB storage with FileStream
Prior to 2008, SQL Server–based applications used one of two methods for storing
binary large objects (BLOBs) such as video, images, or documents (PDFs, docs, and so
forth). The first method was to store the object within the database in an image or var-
binary(max) column. Alternatively, BLOBs were stored in file system files, with a link to
the file (hyperlink/path) stored in a table column.

 Both of these methods have their pros and cons. SQL Server 2008 introduces a
third method known as FileStream. This method lets you combine the benefits of both
of the previous methods while avoiding their drawbacks.

 Before we continue, keep in mind that character-based BLOBs are often referred
to as CLOBs, or character large objects. In some texts, BLOBs and CLOBs are referred to
collectively as LOBs, or large objects. For the purposes of this section, we’ll use the term
BLOBs to refer to either binary large objects or character large objects.

 Before we cover the new FileStream option, let’s briefly cover the details of the pre-

Partitioned tables
Filegroups are a fundamental component of partitioned tables. Although beyond the
scope of this book, partitioned tables can be used in the creation of sophisticated
sliding window scenarios whereby large chunks of data can be moved into (and out
of) a table with little or no user impact. As such, they’re ideal in archiving and data
warehouse solutions.
vious methods of BLOB storage, both of which are still supported in SQL Server 2008.

Licensed to Gayle M. Noll <pedbro@gmail.com>

178 CHAPTER 9 Data management

9.3.1 BLOBS in the database

SQL Server’s storage engine is designed and optimized for storage of normal rela-
tional data such as integer and character-based data. A fundamental design compo-
nent of the SQL Server engine is the 8K page size, which limits the maximum size of
each record. All but the smallest BLOBs exceed this size, so SQL Server can’t store
them in row like the rest of the record’s data.

 To get around the 8K limitation, SQL Server breaks the BLOB up into 8K chunks
and stores them in a B-tree structure, as shown in figure 9.6, with a pointer to the root
of the tree stored in the record’s BLOB column.

 Prior to SQL Server 2005, the primary data type for in-database BLOB storage was
the image data type. SQL Server 2005 introduced the varbinary(max) data type to
overcome some of the image limitations, discussed next.
IMAGE AND TEXT DATA TYPES

The primary data type used for binary-based BLOB storage prior to SQL Server 2005 is
the image data type, and the text data type supports character-based BLOBs (CLOBs).
Both data types provide support for BLOBs up to 2GB.1 Still supported in SQL Server
2008, these data types have a number of drawbacks that limit their usefulness, chiefly
the inability to declare image or text variables in T-SQL batches. As such, accessing and
importing BLOB data required a combination of programming techniques, reducing
the appeal of in-database BLOB storage somewhat.
VARBINARY(MAX) AND VARCHAR(MAX)
Introduced in SQL Server 2005, the varbinary(max) data type, and its text equivalents
varchar(max) and nvarchar(max), overcome the limitations of the image and text data
types by providing support for variable declaration and a range of other operations.

BLOB chunk BLOB chunk BLOB chunk

BLOB root pointer

BLOB chunk pointers

Figure 9.6 SQL Server implements support for BLOB storage by using a pointer to a B-tree structure in
which BLOBs are broken up into 8K chunks and linked using pointers.
1 The NTEXT data type, used for Unicode, supports up to 1GB of data.

Licensed to Gayle M. Noll <pedbro@gmail.com>

179BLOB storage with FileStream

 Such support makes BLOB access and importing much simpler than the equivalent
process in SQL Server 2000 with image and text data types. Here’s an example:

-- Insert a jpg file into a table using OPENROWSET
INSERT INTO clients (ID, DOB, Photo)
SELECT 1, '21 Jan 1974', BulkColumn
FROM OPENROWSET (Bulk 'F:\photos\client_1.jpg', SINGLE_BLOB) AS blob

As a BLOB storage strategy, in-database storage allows BLOBS to be tightly coupled
with the related data. The BLOBS are transactionally consistent—that is, updates on
the BLOB are rolled forward or back in line with the rest of the record, and included
in backup and restore operations. All good so far. The downside, however, is signifi-
cant. For databases with large numbers of BLOBs, or even moderate amounts of very
large BLOBs, the database size can become massive and difficult to manage. In turn,
performance can suffer.

 In addressing these concerns, a common design is to store BLOBs in the file system
with an appropriate reference or hyperlink stored in the column.

9.3.2 BLOBS in the file system

The alternative to storing BLOBs in the database is to store them in their native for-
mat as normal files in the file system. Windows NTFS is much better at file storage
than SQL Server, so it makes sense to store them there and include a simple link in
the database. Further, this approach lets you store BLOBs on lower-cost storage, driv-
ing down overall costs.

 An example of this approach is shown in figure 9.7. Here, the table contains a pho-
tolink column storing the path to a file system–based file.

The problem with this approach is twofold; the data in the database is no longer trans-
actionally consistent with the BLOB files, and database backups aren’t guaranteed to
be synchronized with the BLOBs (unless the database is shut down for the period of
the backup, which isn’t an option for any 24/7 system).

 So on one hand we have transactional consistency and strongly coupled data at the
expense of increased database size and possible performance impacts. On the other
hand, we have storage simplicity and good performance at the expense of transac-
tional consistency and backup synchronization issues. Clearly, both options have sig-
nificant advantages and disadvantages; DBAs and developers often passionately argue

Figure 9.7 Rather than store the BLOB in the
database, an alternate approach is to simply
store the link to the file in the database.
in favor of one option over another. Enter FileStream, King of the BLOBs…

Licensed to Gayle M. Noll <pedbro@gmail.com>

180 CHAPTER 9 Data management

9.3.3 FileStream data

Offering the advantages of both file system and in-database storage is the FileStream
data type, introduced in SQL Server 2008.

OVERVIEW

FileStream provides these advantages:

BLOBs can be stored in the file system. The size of each BLOB is limited only by
the NTFS volume size limitations. This overcomes the 2GB limit of previous in-
database BLOB storage techniques, which prevented SQL Server from storing
certain BLOB types such as large video files.
Full transactional consistency exists between the BLOB and the database record
to which it’s attached.
BLOBs are included in backup and restore operations.
BLOB objects are accessible via both T-SQL and NTFS streaming APIs.
Superior streaming performance is provided for large BLOB types such as MPEG
video.
The Windows system cache is used for caching the BLOB data, thus freeing up
the SQL Server buffer cache required for previous in-database BLOB storage
techniques.

FileStream data combines the transactional strength of SQL Server with the file man-
agement and streaming performance strengths of NTFS. Further, the ability to place
FileStream BLOBs on separate, NTFS-compressed volumes provides opportunities to
significantly lower overall storage costs.

 Unfortunately, there are some limitations with FileStream data, which we’ll come to
shortly. In the meantime, let’s run through the process of enabling and using FileStream.
ENABLING FILESTREAM

In chapter 4, we discussed installing SQL Server 2008. One of the steps involved choos-
ing to enable FileStream data. Once it’s installed, you can enable or disable
FileStream using SQL Server Configuration Manager. Just right-click the SQL Server

service for a selected instance
and choose Properties, and
then select the FILESTREAM tab
(as shown in figure 9.8). Here
you can enable FileStream for
T-SQL access and optionally for
file I/O streaming access.

Figure 9.8 You can enable
FileStream using the SQL Server

Configuration Manager tool.

Licensed to Gayle M. Noll <pedbro@gmail.com>

181BLOB storage with FileStream

Once enabled through Configuration Manager (or as part of the initial installation),
the SQL Server instance must then be configured as a secondary step using the
sp_configure command. For example, to configure an instance for both T-SQL and
Windows streaming access:

-- Enable FileStream Access for both T-SQL and Windows Streaming
EXEC sp_configure 'filestream access level', 2
GO
RECONFIGURE
GO

Here, we used 2 as the parameter value. 1 will enable FileStream access for T-SQL only,
and 0 will disable FileStream for the instance. Let’s take a look now at the process of
creating a table containing FileStream data.
USING FILESTREAM

When creating a database containing FileStream data, the first thing we need to do is
ensure there is a FileStream filegroup. In our next example, we’ll create the database
with a SalesFileStreamFG filegroup by specifying CONTAINS FILESTREAM. We also use a
directory name (G:\FSDATA\SALES in this example) to specify the location of the
FileStream data. For optimal performance and minimal fragmentation, disks storing
FileStream data should be formatted with a 64K allocation unit size, and be placed on
disk(s) separate from both data and transaction log files.

-- Create a database with a FILESTREAM filegroup
CREATE DATABASE [SALES] ON PRIMARY
(NAME = Sales1
 , FILENAME = 'M:\MSSQL\Data\salesData.mdf'
)
, FILEGROUP [SalesFileStreamFG] CONTAINS FILESTREAM
(NAME = Sales2
 , FILENAME = 'G:\FSDATA\SALES'
)
LOG ON
(NAME = SalesLog
 , FILENAME = 'L:\MSSQL\Data\salesLog.ldf'
)
GO

Next up, we’ll create a table containing a column that will store FileStream data. In
this example, the Photo column contains the FILESTREAM attribute with the varbi-
nary(max) data type. Note that we’re adding a UNIQUEIDENTIFIER column to the table
with the ROWGUIDCOL attribute and marking it as UNIQUE. Such columns are mandatory
for tables containing FileStream data. Also note the use of the FILESTREAM_ON clause,
which specifies the filegroup to use for FileStream data.

-- Create a table with a FILESTREAM column
CREATE TABLE Sales.dbo.Customer
(
 [CustomerId] INT IDENTITY(1,1) PRIMARY KEY
 , [DOB] DATETIME NULL

 , [Photo] VARBINARY(MAX) FILESTREAM NULL

Licensed to Gayle M. Noll <pedbro@gmail.com>

182 CHAPTER 9 Data management

 , [CGUID] UNIQUEIDENTIFIER NOT NULL ROWGUIDCOL UNIQUE DEFAULT NEWID()
) FILESTREAM_ON [SalesFileStreamFG];
GO

At this point, we’re ready to insert data into the column. For the purposes of this
example, we’ll insert a simple text fragment. A more realistic example (but beyond
the scope of this book) would be an application that allows a user to specify a local
JPEG image that would be streamed into the column:

INSERT INTO Sales.dbo.Customer (DOB, Photo)
VALUES ('21 Jan 1975', CAST ('{Photo}' as varbinary(max)));
GO

After inserting this record, inspection of the file system directory specified for the
FileStream filegroup will reveal something similar to that shown in figure 9.9.

 As you can see in figure 9.9, there is no obvious correlation between database
records and FileStream file or directory names. It’s not the intention of FileStream to
enable direct access to the resulting FileStream data using Windows Explorer. The
important thing is that SQL Server maintains transactional consistency with the data
and includes it in backup and restore commands.

 As mentioned earlier, there are some limitations with the FileStream data type that
you should consider before implementing it.

FILESTREAM LIMITATIONS

Despite the obvious advantages covered earlier, FileStream has some restrictions that
limit its use as a BLOB storage technique:

Database mirroring, which we’ll cover in chapter 11, can’t be enabled on data-
bases containing FileStream data.
Database snapshots, covered in the next chapter, aren’t capable of including
FileStream data. You can create a snapshot of a database containing FileStream
data, but only if you exclude the FileStream filegroup.
FileStream data can’t be encrypted; a database that uses transparent data
encryption won’t encrypt the FileStream data.
Depending on the BLOB size and update pattern, you may achieve better per-
formance by storing the BLOB inside the database, particularly for BLOBs
smaller than 1MB and when partial updates are required (for example, when
you’re updating a small section of a large document).

Figure 9.9 FileStream directories and files. As shown here, there is nothing obvious about FileStream

directory and filenames to enable individual BLOB objects to be identified.

Licensed to Gayle M. Noll <pedbro@gmail.com>

183Data compression

Of these limitations, perhaps the biggest is the inability to use database mirroring on
databases containing FileStream data. In such cases, alternate BLOB storage tech-
niques such as those covered earlier in this section are required. SQL Server Books
Online (BOL) contains a number of other limitations, guidelines, and best practices
for using the FileStream feature.

 Despite its limitations, FileStream is a powerful new feature introduced in SQL
Server 2008. The same can be said for data compression, our next topic.

9.4 Data compression

Predicting the future is a risky business, but if there’s one thing that’s guaranteed in
future databases, it’s an ever-growing volume of data to store, manage, and back up.
Growing regulatory requirements, the plummeting cost of disk storage, and new types
of information such as digitized video are converging to create what some call an infor-
mation storage explosion. Managing this information while making it readily accessible to
a wide variety of client applications is a challenge for all involved, particularly the DBA.
Fortunately, SQL Server 2008 delivers a number of new features and enhancements to
assist DBAs in this regard.

 In the previous section we looked at the FileStream data type, which enhances the
storage options for BLOB data. One of the great things about FileStream is the ability
to have BLOBs stored outside the database on compressed NTFS volumes. Until SQL
Server 2008, compressing data inside the database was limited to basic options such as
variable-length columns, or complex options such as custom-developed compression
routines.

 In this section, we’ll focus on a new feature in SQL Server 2008, data compression,
which enables us to natively compress data inside the database without requiring any
application changes. We’ll begin with an overview of data compression and its advan-
tages before looking at the two main ways in which SQL Server implements it. We’ll
finish with a number of important considerations in designing and implementing a
compressed database.

9.4.1 Data compression overview

Data compression, available only in the Enterprise edition of SQL Server 2008, allows
you to compress individual tables and indexes using either page compression or row
compression, both of which we’ll cover shortly. Due to its potentially adverse impact
on performance, there’s no option to compress the entire database in one action.

 As you can see in figure 9.10, you can manage a table’s compression by right-click-
ing it and choosing Storage > Manage Compression.

 When considering compression in a broad sense, lossy and lossless are terms used to
categorize the compression method used. Lossy compression techniques are used in
situations where a certain level of data loss between the compressed and uncom-

pressed file is accepted as a consequence of gaining higher and faster compression

Licensed to Gayle M. Noll <pedbro@gmail.com>

184 CHAPTER 9 Data management

rates. JPEG images are a good example of lossy compression, where a reduction in
data quality between the original image and the compressed JPEG is acceptable. Video
and audio streaming are other common applications for lossy compression. It goes
without saying that lossy compression is unacceptable in a database environment.

 SQL Server implements its own custom lossless compression algorithm and
attempts to strike a balance between high compression rates and low CPU overhead.
Compression rates and overhead will vary, and are dependent on a number of factors
that we’ll discuss, including fragmentation levels, the compression method chosen,
and the nature of the data being compressed.

 Arguably the most powerful aspect of SQL Server’s implementation of data com-
pression is the fact that the compressed data remains compressed, on disk and in the
buffer cache, until it’s actually required, at which point only the individual columns
that are required are uncompressed. Compared to a file system–based compression
solution, this results in the lowest CPU overhead while maximizing cache efficiency,
and is clearly tailored toward the unique needs of a database management system.

 Let’s consider some of the benefits of data compression:

Lower storage costs —Despite the rapidly decreasing cost of retail storage, storage
found in high-end SANs, typically used by SQL Server implementations, is cer-
tainly not cheap, particularly when considering actual:usable RAID ratios and
duplication of data for various purposes, as figure 9.11 shows.
Lower administration costs —As databases grow in size, disk I/O–bound adminis-
tration tasks such as backups, DBCC checks, and index maintenance take longer
and longer. By compressing certain parts of the database, we’re able to reduce
the administration impact. For example, a database that’s compressed to half its
size will take roughly half the time to back up.2

2 In addition to data compression, SQL Server 2008 introduces backup compression, covered in detail in the

Figure 9.10 Individual tables can be selected for compression using SQL Server Management Studio.
next chapter.

Licensed to Gayle M. Noll <pedbro@gmail.com>

185Data compression

RAM and disk efficiency —As mentioned earlier, compressed data read into the
buffer cache will remain compressed until required, effectively boosting the
buffer size. Further, as the data is compressed on disk, the same quantity of disk
time will effectively read more data, thus boosting disk performance as well.

SQL Server 2008 implements two different methods of data compression: page com-
pression and row compression. The makeup of the data in the table or index deter-
mines which of these two will yield the best outcome. As we’ll see shortly, we can use
supplied tools to estimate the effectiveness of each method before proceeding.

9.4.2 Row compression

Row compression extends the variable-length storage format found in previous ver-
sions of SQL Server to all fixed-length data types. For example, in the same manner
that the varchar data type is used to reduce the storage footprint of variable length
strings, SQL Server 2008 can compress integer, char, and float data in the same man-
ner. Crucially, the compression of fixed-length data doesn’t expose the data type any
differently to applications, so the benefits of compression are gained without requir-
ing any application changes.

 As an example, consider a table with millions of rows containing an integer col-
umn with a maximum value of 19. We could convert the column to tinyint, but not if
we need to support the possibility of much larger values. In this example, significant
disk savings could be derived through row compression, without requiring any appli-
cation changes.

 An alternative to row compression is page compression, our next topic.

9.4.3 Page compression

In contrast to row compression, page compression, as the name suggests, operates at

Figure 9.11 Compared to retail disk,
enterprise SAN storage is expensive, a
cost magnified by RAID protection and
data duplication such as that shown here.

Backup server Reports server

Production DB
server

Load test server Off-site server

Replication

Restore

Backup

DB mirroring
the page level and uses techniques known as page-dictionary and column-prefix to identify

Licensed to Gayle M. Noll <pedbro@gmail.com>

186 CHAPTER 9 Data management

common data patterns in rows on each page of the compressed object. When common
patterns are found, they’re stored once on the page, with references made to the com-
mon storage in place of the original data pattern. In addition to these methods, page
compression includes row compression, therefore delivering the highest compression
rate of the two options.

 Page compression removes redundant storage of data. Consider an example of a
large table containing columns with a default value specification. If a large percentage
of the table’s rows have the default value, there’s obviously a good opportunity to store
this value once on each page and refer all instances of that value to the common store.

 Compressing a table, using either the page or row technique, involves a consider-
able amount of work by the SQL Server engine. To ensure the benefits outweigh the
costs, you must take a number of factors into account.

9.4.4 Data compression considerations

In considering the merits of data compression for a given table or index, the first and
most straightforward consideration is the potential compression rate.

COMPRESSION RATE

The compression rate achieved depends on the underlying data and the compression
method you choose. SQL Server 2008 includes two tools for estimating disk savings: a
Management Studio GUI-based wizard (shown in figure 9.12) and the sp_estimate_
data_compression_savings procedure. Let’s look at the wizard first.

Figure 9.12 Using SQL Server Management Studio, you can estimate the effectiveness of both row and

page compression for a particular table.

Licensed to Gayle M. Noll <pedbro@gmail.com>

187Data compression

You can access the wizard by right-clicking a table and choosing Storage > Manage
Compression. The wizard can be used to estimate, script, and compress the table
using the selected compression technique.

 The second tool, the sp_estimate_data_compression_savings procedure, as
shown in figure 9.13, lists, for a given table and optionally all its indexes, the estimated
size before and after compression. Like the Management Studio wizard, you can pro-
duce estimates for both row and page compression.

 Using the estimate tools as we discussed earlier is an important step in evaluating
the benefits of compression before implementing it. Once you complete the evalua-
tion, you can implement compression using the same Management Studio wizard used
for estimating the savings. Alternatively, use the ALTER TABLE statement as shown here:

-- Compress a table using 4 CPUs Only
ALTER TABLE [Sales].[SalesPerson]
REBUILD WITH (DATA_COMPRESSION = PAGE, MAXDOP=4)

One of the nice things about the ALTER TABLE3 method of implementing compression
is its ability to accept a MAXDOP value for controlling CPU usage during the initial
compression process. Depending on the size of the table and/or indexes being com-
pressed, CPU usage may be very high for an extended length of time, so the MAXDOP
setting allows some degree of control in this regard.

 Finally, you should consider the tables and indexes proposed for compression.
Compressing a table that represents a very small percentage of the overall database
size will not yield much of a space gain. Further, if that same table is used frequently,
then the performance overhead may outweigh the small gain in disk savings. In con-
trast, a very large table representing a significant portion of the total database size may
yield a large percentage gain, and if the table is used infrequently, the gain comes with
little performance overhead.
PERFORMANCE OVERHEAD

As with any compression technique, space savings and increased CPU usage go hand
in hand. On systems close to CPU capacity, the additional overhead may preclude data
compression from being an option. For other systems, measuring the level of over-
head is an important consideration.

Figure 9.13 Use the sp_estimate_data_compression_savings procedure to estimate the disk
savings for a table and optionally all its indexes using both page and row compression.
3 The ALTER INDEX statement also contains the DATA_COMPRESSION option.

Licensed to Gayle M. Noll <pedbro@gmail.com>

188 CHAPTER 9 Data management

 The ideal targets for compression are tables and indexes that are used infrequently
yet represent a significant percentage of the database size. Targeting such tables mini-
mizes the performance impact while maximizing disk space savings.

 Dynamic management functions and views such as sys.dm_db_index_opera-
tional_stats and sys.dm_db_index_usage_stats assist in the process of identifying
the least frequently used objects, and we’ll cover these in detail in chapter 13. For fre-
quently used objects, the performance impact of data compression needs to be care-
fully measured in a volume-testing environment capable of simulating production load.

 Despite the CPU overhead, certain operations such as table scans can actually
receive a performance boost with data compression enabled. Let’s have a look at two
examples of both the positive and negative performance impacts of data compression.
In viewing these examples, keep in mind that the results of any tests such as these are
very much dependent on the makeup of the underlying data. These tests were con-
ducted on modified versions of the tables in the AdventureWorks sample database.
Results from real-world customer databases will obviously vary.

 The first example tests the time taken to insert the contents of a modified version
of the AdventureWorks SalesOrder_Detail table containing 1.6 million records into a
blank table with the same structure. The insert was repeated multiple times to observe
the insert time and resultant table size with both page and row compression enabled.
For comparison purposes, we also ran the test against an uncompressed table.

-- Measure the size and execution time of various compression settings
TRUNCATE TABLE [Sales].[SalesOrder_Detail_Copy];
GO

ALTER TABLE [Sales].[SalesOrder_Detail_Copy]
REBUILD WITH (DATA_COMPRESSION = PAGE) -- repeat for ROW, NONE
GO

INSERT [Sales].[SalesOrder_Detail_Copy]
SELECT *
FROM [Sales].[SalesOrder_Detail];
GO

Rather than execute DBCC DROPCLEANBUFFERS between executions to clear the buffer
cache, each test was run multiple times to ensure the data to insert was cached in
memory for all three tests. This method lets you more accurately compare the relative
performance differences between the compression methods by narrowing the focus
to the time taken to write the new rows to disk.

 The results of the three tests, shown in figure 9.14, clearly indicate higher com-
pression rates for page compression over row compression, but at a correspondingly
higher cost in terms of execution time.

PERFORMANCE INCREASE

Despite the CPU overhead required to compress and uncompress data, in certain
cases compressed data can actually boost performance. This is particularly evident in

disk I/O bound range scans. If the data is compressed on disk, it follows that fewer

Licensed to Gayle M. Noll <pedbro@gmail.com>

189Data compression

pages will need to be read from disk into memory—which translates to a performance
boost. Let’s use another example to demonstrate.

 In this example, we’ll select the average unit price from the Sales.SalesOrder_
Detail_Copy table. Again, this table was modified for the purposes of the test. For this
example, the table was increased in size to 6.7 million rows. Given that the UnitPrice
field isn’t indexed, a full table scan will result, which is ideal for our test. We’ll run this
three times, on an uncompressed table, and with both forms of compression enabled.
For this test, we’ll clear the buffer cache with DBCC DROPCLEANBUFFERS before each
test to ensure the query reads from disk each time. The script used for this test looks
like this:

-- Measure the table scan time of various compression settings
ALTER TABLE [Sales].[SalesOrder_Detail_Copy]
REBUILD WITH (DATA_COMPRESSION = ROW) -- repeat for PAGE, NONE
GO

DBCC DROPCLEANBUFFERS;
GO

SELECT AVG(UnitPrice)
FROM Sales.SalesOrder_Detail_Copy;
GO

The results of the three tests, shown in figure 9.15, clearly indicate that page compres-
sion enables the fastest execution time for this particular example—almost three

Figure 9.14 Inserting 1.6 million rows into a destination table with three different compression
settings. Actual results will differ based on various factors.

Page

Table Insert Time/Size by Compression Type

Row Uncompressed

■ Execution time (sec) ■ Table size (MB)

160

140

120

100

80

60

40

20

0

times quicker than the query against the uncompressed table.

Licensed to Gayle M. Noll <pedbro@gmail.com>

190 CHAPTER 9 Data management

9.5 Best practice considerations: data management
Despite SQL Server 2008’s inclusion of advanced data management features such as
FileStream and data compression, the importance of basic best practices such as pre-
sizing files is not to be overlooked.

To avoid transaction throughput bottlenecks, ensure the transaction log is
stored on a dedicated RAID-protected (ideally RAID 1 or 10) disk volume. Com-
bining data and transaction logs on the same disk won’t achieve the same levels
of throughput given the disk heads will be moving between the conflicting
requirements of random data access/updates and sequential transaction log
entries. For database applications with high transaction rates, separation of data
and transaction logs in this manner is crucial.
Defragging a transaction log disk may improve performance if the transaction
log has had significant growth/shrink activity and/or is shared with other files
undergoing frequent modification. Ensure SQL Server is shut down before
defragging, and make sure frequent growth/shrink operations are addressed
through adequate log file sizing and the absence of manual shrink operations.
For maximum performance, ensure backups and the tempdb database are
stored on physically separate volumes from data, transaction log, and Windows
system files.
To avoid data loss in the event of disk failure, never store backups on the same
disk(s) as the database files, and ensure all volumes are RAID protected.
Designing SAN-based virtualized storage is quite different from that of direct-
attached storage; that being said, the principles of high performance and fault
tolerance remain. For transaction log files in particular, consider creating LUNs

Figure 9.15 Table scan execution time using three different compression levels. Actual results will
differ based on various factors.

Table Scan Time by Compression Type

■ Execution time (sec)

Page compression Row compression Uncompressed

12

10

8

6

4

2

0

on dedicated disks that aren’t shared by any other server or application.

Licensed to Gayle M. Noll <pedbro@gmail.com>

191Best practice considerations: data management

Consider using mount points as a means to maintain physical disk volume sepa-
ration within the confines of the 26-letter drive limitation.
Unless supported by solid load-test evidence and a very good understanding of
data access patterns, creating additional filegroups should be considered for
administrative benefits such as piecemeal backup restores rather than as an
attempt to maximize performance through control over object placement. In
almost all cases, it’s a far better option to create simpler filegroup structures
spread across more physical disk spindles.
To support the fastest piecemeal restore process, avoid using the primary file-
group for any user objects. Create a secondary filegroup and mark it as the default.
Given its unique usage, the tempdb database does benefit from multiple files,
typically 0.25–0.5 times the number of CPU cores available to the SQL Server
instance. For example, an instance with access to four quad-core CPUs (16
cores) would benefit from a tempdb database with between four and eight data
files. Hyperthreaded CPUs should be considered as a single core. There are
some rare examples of user databases with allocation bitmap contention that
may derive a performance benefit from multiple data files, but in almost all
cases, multiple data files are used for filegroup and administrative benefits.
Compared to one large data file, multiple smaller data files provide administra-
tive benefits and should be considered from that perspective rather than as a
performance optimization technique. The benefits of smaller files include the
ability to restore backups to another server with smaller disk drives and to
detach a database and rearrange files to balance drive space usage.
There’s no benefit in multiple transaction log files. Better transaction log per-
formance comes through fast and dedicated RAID-protected disks with an ade-
quate write cache.
For maximum performance and minimum disk fragmentation, database files
should be presized appropriately based on historical usage and growth expecta-
tions. In particular, the tempdb database should be manually sized to prevent it
from returning to its initial small size when SQL Server restarts. The Enable
Autogrowth option should be enabled for emergency situations only, and
shouldn’t be used as a substitute for good capacity planning and proactive data-
base maintenance.
Similarly, disable the AutoShrink and AutoClose options (which they are by
default) to avoid poor performance and disk fragmentation.
In order for SQL Server’s proportional fill algorithm to operate with maximum
efficiency, when multiple files are added to a filegroup, they should be set to the
same size, with the same autogrowth values. Further, manual growth increments
should be the same across all files.
The Perform Volume Maintenance Tasks right should be granted to the SQL
Server service account in order to take full advantage of the Instant Initializa-
tion feature, which reduces the time taken in initializing files during database

creation, restores, and autogrowth events.

Licensed to Gayle M. Noll <pedbro@gmail.com>

192 CHAPTER 9 Data management

Despite the obvious strengths of FileStream, consider database mirroring as a
high-availability option before implementing it in place of other BLOB storage
techniques. SQL Server 2008 is unable to mirror a database containing
FileStream data.
The best FileStream performance is gained with large BLOBs (>1MB) which are
either read only or updated in whole—that is, no partial updates—where the
data is accessed via streaming APIs (as opposed to T-SQL access). A database
containing BLOBs with an average size of less than 1MB may perform better with
the objects stored within the database.
For the best performance and minimal fragmentation, ensure disk volumes stor-
ing FileStream data are formatted with a 64K allocation unit size (the default
NTFS allocation unit size is 4K). Further, the volume should ideally be dedicated
to the FileStream data with no other SQL Server database files or paging files.
Data compression yields the biggest gains at the lowest costs when used to com-
press infrequently used tables and indexes representing a significant portion of
the total database size.
Together with dynamic management views such as sys.dm_db_index_usage_
stats, the provided compression estimate tools can be used to target compres-
sion candidates. For example, a table containing many large indexes that are
used infrequently represents a good opportunity to reduce database size while
minimizing the performance impact.
In most cases, particularly for heavily used OLTP systems, row compression will
usually have a smaller performance impact compared to page compression, but
page compression can result in big performance increases for certain opera-
tions such as large table scans.
As with all other configuration changes, measuring the performance impact of
data compression in a load-testing environment is crucial before production
implementation. This obviously requires an up-to-date copy of the production
database, production-configured hardware, and load-testing tools and strategies.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/data.

 One of the things we covered in this chapter was data compression. SQL Server
2008 also introduces backup compression, and we’ll discuss that in the next chapter.
We’ll also expand on this chapter’s introduction to piecemeal restores.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Part 3

Operations

I n parts 1 and 2, we covered preinstallation planning, installation, and postin-
stallation configuration. The remainder of the book will be dedicated to day-to-
day operational tasks such as backups, index maintenance, and performance tun-
ing. Let’s begin with perhaps the most important of these tasks, backups.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Licensed to Gayle M. Noll <pedbro@gmail.com>

Backup and recovery
The importance of backups can’t be overstated. During normal activity, it’s easy to
view backing up databases as an administrative chore that complicates the day and
offers little benefit. However, when required in an emergency, the presence of valid
backups could make all the difference to an organization’s ongoing survival. As
DBAs, we have a vital role to play in that process.

 Successful backup strategies are those that are designed from a restore perspec-
tive—that is, they begin with service level agreements covering data loss and resto-
ration times, and work backwards to derive the backup design. Second only to not
performing backups, the biggest backup-related mistake a DBA can make is failing
to verify backups. There are countless stories of backup tapes being recalled for
recovery before finding out that the backups have been failing for the past few

In this chapter, we’ll cover
■ Backup types
■ Recovery models
■ Online piecemeal restore
■ Database snapshots
■ Backup compression
195

Licensed to Gayle M. Noll <pedbro@gmail.com>

196 CHAPTER 10 Backup and recovery

months (or years!). While the backup may appear to have succeeded, how can you be
sure until you actually restore it?

 In this chapter, we begin with an overview of the various types of backups that can
be performed with SQL Server before we look at database recovery models. We then
move on to cover online piecemeal restores, expanding on the previous chapter’s cov-
erage of filegroups. We then explore the benefits of database snapshots, and we con-
clude with a new backup feature introduced in SQL Server 2008: backup compression.

10.1 Backup types
Unless you’re a DBA, you’d probably define a database backup as a complete copy of a
database at a given point in time. While that’s one type of database backup, there are
many others. Consider a multi-terabyte database that’s used 24/7:

How long does the backup take, and what impact does it have on users?
Where are the backups stored, and what is the media cost?
How much of the database changes each day?
If the database failed partway through the day, how much data would be lost if
the only recovery point was the previous night’s backup?

In considering these questions, particularly for large databases with high transaction
rates, we soon realize that simplistic backup strategies limited to full nightly backups
are insufficient for a number of reasons, not the least of which is the potential for data
loss. Let’s consider the different types of backups in SQL Server.

10.1.1 Full backup

Full backups are the simplest, most well understood type of database backup. Like
standard file backups (documents, spreadsheets, and so forth), a full backup is a com-
plete copy of the database at a given time. But unlike with a normal file backup, you
can’t back up a database by simply backing up the underlying .mdf and .ldf files.

 One of the classic mistakes made by organizations without appropriate DBA knowl-
edge is using a backup program to back up all files on a database server based on the
assumption that the inclusion of the underlying database files (.mdf and .ldf) in the
backup will be sufficient for a restore scenario. Not only will this backup strategy be
unsuccessful, but those who use such an approach usually fail to realize that fact until

Backup methods
There are many tools and techniques for performing database backups, including var-
ious third-party products and database maintenance plans (covered in chapter 14).
For the purposes of the examples throughout this chapter, we’ll use a T-SQL script
approach.
they try to perform a restore.

Licensed to Gayle M. Noll <pedbro@gmail.com>

197Backup types

 For a database backup to be valid, you must use the BACKUP DATABASE command or
one of its GUI equivalents. Let’s look at a simple example in which we’ll back up the
AdventureWorks database. Check Books Online (BOL) for the full description of the
backup command with all of its various options.

-- Full Backup to Disk
BACKUP DATABASE [AdventureWorks2008]
TO DISK = N'G:\SQL Backup\AdventureWorks.bak'
WITH INIT

You can perform backups in SQL Server while the database is in use and is being mod-
ified by users. Such backups are known as online backups. In order for the resultant
backup to be restored as a transactionally consistent database, SQL Server includes
part of the transaction log in the full database backup. Before we cover the transaction
log in more detail, let’s consider an example of a full backup that’s executed against a
database that’s being actively modified.

 Figure 10.1 shows a hypothetical example of a transaction that starts and com-
pletes during a full backup, and modifies a page after the backup process has read it
from disk. In order for the backup to be transactionally consistent, how will the
backup process ensure this modified page is included in the backup file? In answering
this question, let’s walk through the backup step by step. The step numbers in the fol-
lowing list correspond to the steps in figure 10.1.

1 When the backup commences, a checkpoint is issued that flushes dirty buffer
cache pages to disk.

2 After the checkpoint completes, the backup process begins reading pages from
the database for inclusion in the backup file(s), including page X.

3 Transaction A begins.
4 Transaction A modifies page X. The backup has already included page X in the

backup file, so this page is now out of date in the backup file.
5 Transaction B begins, but won’t complete until after the backup finishes. At the

point of backup completion, this transaction is the oldest active (uncommit-
ted/incomplete) transaction.

Figure 10.1 Timeline of an online full backup. Based on an example used with permission from Paul S.

2. Backup reads
page X

4. Transaction A modifies
page X

1. Backup
begins

3. Transaction A
begins

5. Transaction B
begins

7. Backup completes
reading pages

6. Transaction A
ends

8. Transaction log read
for inclusion

87654321
Randal, managing director of SQLskills.com.

Licensed to Gayle M. Noll <pedbro@gmail.com>

198 CHAPTER 10 Backup and recovery

6 Transaction A completes successfully.
7 The backup completes reading pages from the database.
8 As described shortly, the backup process includes part of the transaction log in

the backup.

If the full backup process didn’t include any of the transaction log, the restore would
produce a backup that wasn’t transactionally consistent. Transaction A’s committed
changes to page X wouldn’t be in the restored database, and because transaction B
hasn’t completed, its changes would have to be rolled back. By including parts of the
transaction log, the restore process is able to roll forward committed changes and roll
back uncommitted changes as appropriate.

 In our example, once SQL Server completes reading database pages at step 7, it will
include all entries in the transaction log since the oldest log sequence number (LSN)
of one of the following:

The checkpoint (step 1 in our example)
The oldest active transaction (step 5)
The LSN of the last replicated transaction (not applicable in our example)

In our example, transaction log entries since step 1 will be included because that’s the
oldest of these items. However, consider a case where a transaction starts before the
backup begins and is still active at the end of the backup. In such a case, the LSN of
that transaction will be used as the start point.

 This example was based on a blog post from Paul Randal of SQLskills.com. The full
post, titled “More on How Much Transaction Log a Full Backup Includes” is available
at http://www.sqlskills.com/BLOGS/PAUL/post/More-on-how-much-transaction-log-
a-full-backup-includes.aspx.

 It’s important to point out here that even though parts of the transaction log are
included in a full backup, this doesn’t constitute a transaction log backup. Another clas-
sic mistake made by inexperienced SQL Server DBAs is never performing transaction
log backups because they think a full backup will take care of it. A database in full
recovery mode (discussed shortly) will maintain entries in the transaction log until it’s
backed up. If explicit transaction log backups are never performed, the transaction
log will continue growing forever (until it fills the disk). It’s not unusual to see a 2GB
database with a 200GB transaction log!

 Finally, when a full backup is restored as shown in our next example, changes since
the full backup are lost. In later examples, we’ll look at combining a full backup with
differential and transaction log backups to restore changes made after the full backup
was taken.

-- Restore from Disk
RESTORE DATABASE [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks.bak'
WITH REPLACE

To reduce the user impact and storage costs of nightly full backups, we can use differ-

ential backups.

Licensed to Gayle M. Noll <pedbro@gmail.com>

199Backup types

10.1.2 Differential backup

While a full backup represents the most complete version of the database, performing
full backups on a nightly basis may not be possible (or desirable) for a variety of rea-
sons. Earlier in this chapter we used an example of a multi-terabyte database. If only a
small percentage of this database changes on a daily basis, the merits of performing a
full nightly backup are questionable, particularly considering the storage costs and
the impact on users during the backup.

 A differential backup, an example of which is shown here, is one that includes all
database changes since the last full backup:

-- Differential Backup to Disk
BACKUP DATABASE [AdventureWorks2008]
TO DISK = N'G:\SQL Backup\AdventureWorks-Diff.bak'
WITH DIFFERENTIAL, INIT

A classic backup design is one
in which a full backup is per-
formed weekly, with nightly dif-
ferential backups. Figure 10.2
illustrates a weekly full/nightly
differential backup design.

Figure 10.2 Differential backups
grow in size and duration the
further they are from their
corresponding full backup (base).

Compared to nightly full backups, a nightly differential with a weekly full backup offers
a number of advantages, primarily the speed and reduced size (and therefore storage
cost) of each nightly differential backup. However, there comes a point at which differ-
ential backups become counterproductive; the further from the full backup, the larger
the differential, and depending on the rate of change, it may be quicker to perform a
full backup. It follows that in a differential backup design, the frequency of the full

Multi-file backups
Backing up a database to multiple files can lead to a significant reduction in backup
time, particularly for large databases. When you use the T-SQL BACKUP DATABASE
command, the DISK = clause can be repeated multiple times (separated by com-
mas), once for each backup file, as per this example:

BACKUP DATABASE [ADVENTUREWORKS2008]
 TO
 DISK = ‘G:\SQL BACKUP\ADVENTUREWORKS_1.BAK’
 , DISK = ‘G:\SQL BACKUP\ADVENTUREWORKS_2.BAK’
 , DISK = ‘G:\SQL BACKUP\ADVENTUREWORKS_3.BAK’
backup needs to be assessed on the basis of the rate of database change.

Licensed to Gayle M. Noll <pedbro@gmail.com>

200 CHAPTER 10 Backup and recovery

 When restoring a differential backup, the corresponding full backup, known as
the base backup, needs to be restored with it. In the previous example, if we needed to
restore the database on Friday morning, the full backup from Sunday, along with the
differential backup from Thursday night, would be restored, as in this example:

-- Restore from Disk. Leave in NORECOVERY state for subsequent restores
RESTORE DATABASE [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks.bak'
WITH NORECOVERY, REPLACE
GO

-- Complete the restore process with a Differential Restore
RESTORE DATABASE [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks-Diff.bak'
GO

Here, we can see the full backup is restored using the WITH NORECOVERY option. This
leaves the database in a recovering state, and thus able to restore additional backups.
We follow the restore of the full backup with the differential restore.

 As you’ll recall from the restore of the full backup shown earlier, without transac-
tion log backups, changes made to the database since the differential backup will be
lost.

10.1.3 Transaction log backup

A fundamental component of database management systems like SQL Server is the
transaction log. Each database has its own transaction log, which SQL Server uses for
several purposes, including the following:

The log records each database transaction, as well as the individual database
modifications made within each transaction.
If a transaction is canceled before it completes, either at the request of an appli-
cation or due to a system error, the transaction log is used to undo, or roll back,
the transaction’s modifications.
A transaction log is used during a database restore to roll forward completed
transactions and roll back incomplete ones. This process also takes place for
each database when SQL Server starts up.
The transaction log plays a key role in log shipping and database mirroring,
both of which will be covered in the next chapter.

Regular transaction log backups, as shown here, are crucial in retaining the ability to
recover a database to a point in time:

-- Transaction Log Backup to Disk
BACKUP LOG [AdventureWorks2008]
TO DISK = N'G:\SQL Backup\AdventureWorks-Trn.bak'
WITH INIT

As you can see in figure 10.3, each transaction log backup forms part of what’s called

a log chain. The head of a log chain is a full database backup, performed after the

Licensed to Gayle M. Noll <pedbro@gmail.com>

201Backup types

database is first created, or when the database’s recovery model, discussed shortly, is
changed. After this, each transaction log backup forms a part of the chain. To
restore a database to a point in time, an unbroken chain of transaction logs is
required, from a full backup to the required point of recovery.

 Consider figure 10.3. Starting at point 1, we perform a full database backup, after
which differential and transaction log backups occur. Each of the backups serves as part
of the chain. When restoring to a point in time, an unbroken sequence of log backups
is required. For example, if we lost backup 4, we wouldn’t be able to restore past the end
of backup 3 at 6 a.m. Tuesday. Attempting to restore the transaction log from log
backup 5 would result in an error message similar to that shown in figure 10.4.

 In addition to protecting against potential data loss, regular log backups limit the
growth of the log file. With each transaction log backup, certain log records, discussed
in more detail shortly, are removed, freeing up space for new log entries. As covered
earlier, the transaction log in a database in full recovery mode will continuing growing
indefinitely until a transaction log backup occurs.

 The frequency of transaction log backups is an important consideration. The two
main determining factors are the rate of database change and the sensitivity to data loss.
TRANSACTION LOG BACKUP FREQUENCY

Frequent transaction log backups reduce the exposure to data loss. If the transaction
log disk is completely destroyed, then all changes since the last log backup will be lost.

Figure 10.3 An unbroken chain of backups is required to recover to the point of failure.

Full Diff

Tran Tran Tran Tail

6am 12pm 6pm 7:15pm

TuesdayMon 12amSun 12am

1 2

3 4 5 6
Failure occurs @ 7:15 pm Tuesday

All 6 backups (unbroken chain)
required for point-of-failure recovery
Figure 10.4 Attempting to restore an out-of-sequence transaction log

Licensed to Gayle M. Noll <pedbro@gmail.com>

202 CHAPTER 10 Backup and recovery

Assuming a transaction log backup was performed 15 minutes before the disk destruc-
tion, the maximum data loss would be 15 minutes (assuming the log backup file isn’t
contained on the backup disk!). In contrast, if transaction log backups are only per-
formed once a day (or longer), the potential for data loss is large, particularly for
databases with a high rate of change.

 The more frequent the log backups, the more restores will be required in a recovery
situation. In order to recover up to a given point, we need to restore each transaction
log backup between the last full (or differential) backup and the required recovery
point. If transaction log backups were taken every minute, and the last full or differen-
tial backup was 24 hours ago, there would be 1,440 transaction log backups to restore!
Clearly, we need to get the balance right between potential data loss and the complexity
of the restore. Again, the determining factors are the rate of database change and the
maximum allowed data loss, usually defined in a service level agreement.

 In a moment we’ll run through a point-in-time restore, which will illustrate the
three backup types working together. Before we do that, we need to cover tail log
backups.
TAIL LOG BACKUPS

When restoring a database that’s currently attached to a server instance, SQL Server
will generate an error1 unless the tail of the transaction log is first backed up. The tail
refers to the section of log that hasn’t been backed up yet—that is, new transactions
since the last log backup.

 A tail log backup is performed using the WITH NORECOVERY option, which immedi-
ately places the database in the restoring mode, guaranteeing that the database won’t
change after the tail log backup and thus ensuring that all changes are captured in
the backup.

When restoring up to the point of failure, the tail log backup represents the very last
transaction log backup, with all restores preceding it performed using the WITH
NORECOVERY option. The tail log is then restored using the WITH RECOVERY option to
recover the database up to the point of failure, or a time before failure using the
STOPAT command.

 So let’s put all this together with an example. In listing 10.1, we first back up the
tail of the log before restoring the database to a point in time. We begin with restoring
the full and differential backups using the WITH NORECOVERY option, and then roll for-
ward the transaction logs to a required point in time.

WITH NO_TRUNCATE

Backing up the tail of a transaction log using the WITH NO_TRUNCATE option should
be limited to situations in which the database is damaged and inaccessible. The
COPY_ONLY option, covered shortly, should be used in its place.
1 Unless the WITH REPLACE option is used.

Licensed to Gayle M. Noll <pedbro@gmail.com>

203Backup types

-- Backup the tail of the transaction log
BACKUP LOG [AdventureWorks2008]
TO DISK = N'G:\SQL Backup\AdventureWorks-Tail.bak'
WITH INIT, NORECOVERY

-- Restore the full backup
RESTORE DATABASE [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks.bak'
WITH NORECOVERY
GO

-- Restore the differential backup
RESTORE DATABASE [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks-Diff.bak'
WITH NORECOVERY
GO

-- Restore the transaction logs
RESTORE LOG [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks-Trn.bak'
WITH NORECOVERY
GO

-- Restore the final tail backup, stopping at 11.05AM
RESTORE LOG [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks-Tail.bak'
WITH RECOVERY, STOPAT = 'June 24, 2008 11:05 AM'
GO

As we covered earlier, the NO_TRUNCATE option of a transaction log backup, used to per-
form a backup without removing log entries, should be limited to situations in which
the database is damaged and inaccessible. Otherwise, use the COPY_ONLY option.

10.1.4 COPY_ONLY backups

Earlier in this chapter we defined a log chain as the sequence of transaction log back-
ups from a given base. The base for a transaction log chain, as with differential back-
ups, is a full backup. In other words, before restoring a transaction log or differential
backup, we first restore a full backup that preceded the log or differential backup.

 Take the example presented earlier in figure 10.3, where we perform a full backup
on Sunday night, nightly differential backups, and six hourly transaction log backups.
In a similar manner to the code in listing 10.1, to recover to 6 p.m. on Tuesday, we’d
recover Sunday’s full backup, followed by Tuesday’s differential and the three transac-
tion log backups leading up to 6 p.m.

 Now let’s assume that a developer, on Monday morning, made an additional full
backup, and moved the backup file to their workstation. The differential restore from
Tuesday would now fail. Why? A differential backup uses a Differential Changed Map
(DCM) to track which extents have changed since the last full backup. The DCM in

Listing 10.1 Recovering a database to a point in time
the differential backup from Tuesday now relates to the full backup made by the

Licensed to Gayle M. Noll <pedbro@gmail.com>

204 CHAPTER 10 Backup and recovery

developer on Monday morning. In our restore code, we’re not using the full backup
from Monday—hence the failure.

 Now, there are a few ways around this problem. First, we have an unbroken transac-
tion log backup sequence, so we can always restore the full backup, followed by all of
the log backups since Sunday. Second, we can track down the developer and ask him
for the full backup and hope that he hasn’t deleted it!

 To address the broken chain problem as outlined here, COPY_ONLY backups were
introduced in SQL Server 2005 and fully supported in 2008.2 A COPY_ONLY backup,
supported for both full and transaction log backups, is used in situations in which the
backup sequence shouldn’t be affected. In our example, if the developer performed
the Monday morning full backup as a COPY_ONLY backup, the DCM for the Tuesday dif-
ferential would still be based on our Sunday full backup. In a similar vein, a COPY_ONLY
transaction log backup, as in this example, will back up the log without truncation,
meaning that the log backup chain will remain intact without needing the additional
log backup file:

-- Perform a COPY ONLY Transaction Log Backup
BACKUP LOG [AdventureWorks2008]
TO DISK = N'G:\SQL Backup\AdventureWorks-Trn_copy.bak'
WITH COPY_ONLY

When discussing the different backup types earlier in the chapter, we made several
references to the database recovery models. The recovery model of a database is an
important setting that determines the usage of the transaction log and the exposure
to data loss during a database restore.

10.2 Recovery models and data loss exposure
When a database is created, the recovery model is inherited from the model database.
You can modify the recovery model in Management Studio or use the ALTER DATA-
BASE statement, as shown here:

-- Set the Recovery Model to BULK_LOGGED
ALTER DATABASE [ADVENTUREWORKS2008]
SET RECOVERY BULK_LOGGED

There are three different recovery models: simple, full, and bulk logged.

10.2.1 Simple recovery model

A database in the simple recovery model will automatically truncate (remove) com-
mitted transactions from the log at each checkpoint operation. As a result, no transac-
tion log backups are required in limiting the growth of the log, so maintenance
operations are simplified.

2 Management Studio in SQL Server 2008 includes enhanced support for COPY_ONLY backups with GUI
options available for this backup type. Such options were absent in SQL Server 2005, which required a T-SQL

script approach.

Licensed to Gayle M. Noll <pedbro@gmail.com>

205Recovery models and data loss exposure

 Despite the reduction in maintenance overhead, the major downside of the simple
recovery model is the inability to recover a database to a point in time. As such, the
only recovery options are to recover to the previous full or differential backup. This
strategy may lead to significant data loss depending on the amount of change since
the last full/differential backup.

 The simple recovery model is typically used in development and test environments
where recovering to the last full or differential backup is acceptable. In such environ-
ments, the potential for some data loss is accepted in return for reduced maintenance
requirements by avoiding the need to execute and store transaction log backups.

Finally, long-running transactions can still cause significant growth in the transaction
log of databases in the simple recovery model. Log records generated by an incom-
plete transaction can’t be removed, nor can any completed transactions that started
after the oldest open transaction. For example, in figure 10.5, even though transaction
D has completed, it can’t be removed as it started after the incomplete transaction C.

Figure 10.5 Log truncation can’t remove log records for active transactions or records from completed
transactions that began after the oldest active transaction.

The simple recovery model has further downsides: features such as transaction log
shipping, covered in the next chapter, can’t be used with this recovery model. For
compatibility with SQL Server’s full feature set and to minimize data loss, we use the
full recovery model.

10.2.2 Full recovery model

A database in the full recovery model will log and retain all transactions in the transac-
tion log until the log is backed up, at which point committed transactions will be

Simple logging vs. no logging
Don’t confuse the simple recovery model for the (nonexistent) no logging model. Re-
gardless of the recovery model, transactions are logged by SQL Server in order to
maintain database integrity in the event of a transaction rollback or sudden server
shutdown.

Transaction A

Truncation Active

Transaction B

Transaction C

Transaction D

C
H
E
C
K
P
O
I
N
T

10:03 am10:02 am10:01 am10:00 am
removed from the log, subject to the same rule that we saw in figure 10.5. Regular

Licensed to Gayle M. Noll <pedbro@gmail.com>

206 CHAPTER 10 Backup and recovery

transaction log backups are crucial in limiting the growth of the transaction log in a
database in the full recovery model.

 As well as recording update, insert, and delete statements, the full recovery model
will record index creation and maintenance operations, Bulk Copy Process (BCP)
commands, and bulk inserts. As a result, the size of transaction logs (and therefore
the backup time) can grow very quickly with the full recovery model, and is therefore
an important consideration when using log shipping and/or mirroring. We’ll cover
this in more detail in later chapters when we address index maintenance techniques.

A common technique used when bulk-loading data into a database in the full recov-
ery model is to switch the database to the Bulk_Logged model, discussed next, prior
to the load.

10.2.3 Bulk_Logged recovery model

When performing large bulk-load operations into a database in the full recovery
model, each data and index record modified by the bulk-load process is logged by
SQL Server. For very large loads, this can have a significant impact on the load perfor-
mance.

 Under the Bulk_Logged model, SQL Server uses a Bulk Changed Map (BCM) to
record which extents3 the load modified. Unlike the full recovery model, the individual
records affected by the bulk load aren’t logged. As a result, bulk loads can be signifi-
cantly quicker than under the full recovery model.

 The trade-offs of the Bulk_Logged model are significant: when a transaction log
backup occurs after a bulk-load operation, SQL Server includes the entire contents of
each extent touched by the bulk-load process, even if only a small portion of the
extent was actually modified. As a result, the transaction log backup size can be mas-
sive, potentially almost as big as the entire database, depending on the amount of
modified extents.

Disaster recovery plan
A good disaster recovery (DR) plan considers a wide variety of potential disasters,
from small events such as corrupted log files and accidentally dropping a table, right
through to large environmental disasters such as fires and earthquakes. A crucial
component of any DR plan is a well-documented and well-understood backup and re-
store plan. Perhaps the best way to validate a DR plan is to simulate various disas-
ters on a random/unannounced basis, similar to a fire drill, with each DBA talking it
in turns to practice the recovery process. Not only will this ensure documentation is
up to date and well understood by all team members, it will liven up the day, and add
some competitive spark to the DBA team!
3 An extent is a collection of eight 8K pages.

Licensed to Gayle M. Noll <pedbro@gmail.com>

207Backup options

 The other downside to this recovery model is the inability to restore a transaction
log containing bulk-load operations to a point in time. Given these limitations, it’s
generally recommended that the Bulk_Logged model be used as a temporary setting
for the period of the bulk load before switching back to the full recovery model. Mak-
ing a transaction log backup before and after entering and leaving the Bulk_Logged
model will ensure maximum data protection for point-in-time restores while also ben-
efiting from increased performance during the bulk-load operation(s).

 Before looking at the backup recovery process in more detail, let’s consider some
additional backup options at our disposal.

10.3 Backup options
SQL Server 2008 includes a rich array of options that can be employed as parts of a
customized backup and recovery strategy. In this section, we’ll consider three such
options: checksums, backup mirroring, and transaction log marks. But before we cover
these options, let’s have a look at an important part of any backup strategy: the
backup location and retention policy.

10.3.1 Backup location and retention policy

A key component of a well-designed backup strategy is the location of the backups:
disk or tape (or both). Let’s consider each of these in turn before looking at a com-
monly used backup retention policy.
TAPE

Historically, organizations have chosen tape media as a backup destination in order to
reduce the cost of online storage while retaining backups for long periods of time.
However, a tape-only approach to backups presents a number of challenges:

Tape systems typically have a higher failure rate when compared to disk.
Typically, tapes are rotated offsite after a predefined period, sometimes as soon
as the morning after the backup. Should the backup be required for restore,
there may be a time delay involved in retrieving the tape for restore.
Depending on the tape system, it may be difficult/cumbersome to restore a
tape backup to a different server for restoration verification, or to use it as a
source for DBCC checks or other purposes.

In addressing these concerns, disk backups are frequently used, although they too
have some challenges to overcome.
DISK

Due to some of the limitations with the tape-only approach, backup verification,
whereby backups are restored on a regular basis to ensure their validity, are often
skipped. As a result, problems are often discovered for the first time when a real
restore is required.

 In contrast to tape, disk-based backups offer the following advantages:

When required for a restore, they are immediately available.

Disk media is typically more reliable than tape, particularly when RAID protected.

Licensed to Gayle M. Noll <pedbro@gmail.com>

208 CHAPTER 10 Backup and recovery

Disk-based backups can be easily copied to other servers when required, making
the verification process much simpler compared with a typical tape-based system.

Despite its advantages, a disk-based backup approach has some drawbacks. The main
one is the extra disk space (and associated cost) required for the backup files. Further,
the cost advantage of tape is fully realized when considering the need to store a his-
tory of backups—for example, daily backups for the last 30 days, monthly backups for
the past 12 months, and yearly backups for the last 7 years. Storing all of these back-
ups on disk is usually more expensive compared to a tape-based system, not to men-
tion the risk of losing all of the disk backups in an environmental disaster.

 With the introduction of third-party backup compression tools and the inclusion
of backup compression as a standard feature of SQL Server 2008 (Enterprise edition),
the cost of disk storage for backups is significantly reduced, but the overall cost is still
typically higher than a tape-based system.

 In addressing the negative aspects of both tape and disk, a common approach is to
combine both methods in what’s known as a disk then tape approach.
DISK THEN TAPE

As shown in figure 10.6, the ideal backup solution is to combine both disk and tape
backups in the following manner:

1 Database backups are performed to disk.
2 Later in the day/night, the disk backup files are archived to tape in the same

manner as other files would be backed up (documents, images and so forth).
3 Typical restore scenarios use the most recent backup files on disk. After a num-

ber of days, the oldest disk-based backup files are removed in order to maintain
a sliding window; for example, the past 5 days of backups are stored on disk.

4 If older backups are required, they can be sourced from tape.

 The advantages of such a system are numerous:

Backups are stored in two locations (disk and tape), thus providing an addi-
tional safety net against media failure.

Figure 10.6 The disk then tape backup methodology provides fast restore, dual backup protection, and

Database Disk File Tape 1 2

3 4

3: If required, recent backups sourced from local disk for fast restore.
4: Older backups retrieved from tape if required.

1: Backups to disk. Files older than “x” days automa�cally deleted.
2: Backup files archived to tape for long-term storage.
long-term archive at a moderate cost.

Licensed to Gayle M. Noll <pedbro@gmail.com>

209Backup options

The most common restore scenario, typically that of the previous night’s
backup, is available on disk for fast restore without requiring tapes to be
requested from offsite.
A full history of backups is available for restore from tape.
The cost of the overall system is reduced, while still providing all of the advan-
tages of disk-based backups for the most common restore scenarios.

A variation on this approach is using SAN-based backup solutions. In chapter 3 we cov-
ered the benefits that SANs provide in disaster recovery scenarios. Most of the enter-
prise-class SANs available today provide several methods of snapping, or cloning, LUNs
in order to provide near instant backup/restore solutions. Once snapped, the cloned
LUN can be archived to tape, thereby providing long-term storage like the disk then
tape approach. If using these backup types, take care to ensure the backup method
used is SQL Server compatible and enables transaction log roll forwards for point-in-
time recovery.

 Regardless of the backup destination, an important consideration is how long to
retain the backups before deleting or overwriting them.
BACKUP RETENTION

Assuming the disk then tape backup method is used, the retention period for each
location needs to be considered separately. For the disk backups, the retention period
is dependent on the backup model. For example, if a weekly full, nightly differential
system is in place, then the weekly backup would need to be retained on disk for the
whole week for use with the previous night’s differential backup. If disk space allows,
then additional backups can be retained on disk as appropriate.

 In considering the tape rotation policy (how long to keep a tape before overwrit-
ing it), the classic rotation policy typically used is the grandfather–father–son (GFS) sys-
tem, whereby 22 tapes are used per year.

 The GFS tape rotation policy, as shown in table 10.1, uses 6 sons, 3 fathers, and 13
grandfathers (52 weeks per year divided by 4-week periods) for a total of 22 tapes per
year. Optionally, one of the grandfather tapes can be retained as a yearly backup tape
for a period of years.

Regardless of the disk location and retention period, ensuring backups are valid is an
important consideration. Short of actually restoring each backup, one of the options

Table 10.1 Grandfather–father–son tape rotation policy

Week Mon Tue Wed Thu Fri Sat Sun

1 Son1 Son2 Son3 Son4 Son5 Son6 Father1

2 Son1 Son2 Son3 Son4 Son5 Son6 Father2

3 Son1 Son2 Son3 Son4 Son5 Son6 Father3

4 Son1 Son2 Son3 Son4 Son5 Son6 Grandfather-x
available for detecting media failure is to use backup checksums.

Licensed to Gayle M. Noll <pedbro@gmail.com>

210 CHAPTER 10 Backup and recovery

10.3.2 Backup checksums

One of the features introduced in SQL Server 2005 was the ability for backups to verify
the validity of pages as part of the backup process, and for the backup itself to include
a checksum.

 When using the optional4 WITH CHECKSUM option of the BACKUP command as
shown here, the backup process verifies the checksum of each page as the backup is
performed, assuming the PAGE_VERIFY database option, covered in more detail in
chapter 12, is set to CHECKSUM (which is the default).

-- Verify Page Validity during backup with CHECKSUM
BACKUP DATABASE [AdventureWorks2008]
TO DISK = N'G:\SQL Backup\AdventureWorks.bak'
WITH CHECKSUM

The PAGE_VERIFY option calculates and stores a checksum value for each database
page written to disk. When read from disk, the checksum is verified against the page
read and used to alert the presence of suspect pages.

 The WITH CHECKSUM option of the BACKUP command calculates and verifies the
checksum value of each page as it’s read by the backup process. If a checksum error
occurs, the backup fails, unless the CONTINUE_AFTER_ERROR option is used. In that
case, the backup is flagged as containing errors and the suspect page(s) are marked in
the suspect_pages table in the msdb database.

 In addition to verifying the checksum of each page, the WITH CHECKSUM option cal-
culates a checksum for the entire backup process. When a database is restored from a
backup created with the checksum option, the restore process verifies the checksums
as part of the restore process, unless the NO_CHECKSUM option is used. If a checksum
error is found as part of the restore, the restore will fail, unless the CONTINUE_AFTER_
ERROR option is used.

 Although backup checksums provide additional confidence in the validity of the
backups, they do introduce additional CPU overhead during the backup process.
Before enabling this option, ensure the overhead is measured on a test system, partic-
ularly in cases where the additional overhead may extend the backup window beyond
the desired time frame. That being said, the additional confidence this option pro-
vides is well worth the typically small CPU overhead.

 Another technique commonly used for backup assurance is the mirroring option.

10.3.3 Backup mirroring

There is no such thing as too many backups. One of the optional backup clauses is
MIRROR TO. Here’s an example:

-- Mirror the backup to a separate backup server using a UNC path
BACKUP DATABASE [AdventureWorks2008]
TO DISK = N'G:\SQL Backup\AdventureWorks-20080701.bak'
MIRROR TO DISK = '\\BACKUP-SERVER\SQL-Backups\AdventureWorks-20080701.bak'
WITH FORMAT
4 Enabled by default on compressed backups.

Licensed to Gayle M. Noll <pedbro@gmail.com>

211Backup options

The MIRROR TO clause allows a backup to be streamed to multiple destinations. The
typical use of this option is for making a duplicate backup on a file server using a Uni-
versal Naming Convention (UNC) path to a file share (in the previous example,
\\BACKUP-SERVER\SQL-Backups). This option provides multiple advantages:

Additional backups for protection against media failure.
Different retention periods for different locations; for example, the file server
backups can be retained for a longer period on disk when compared to the
backup file on the database server.
The tape archive process can archive from the file share rather than the data-
base server. Not only does this reduce the additional load the tape archive pro-
cess places on the database server, it also avoids the need for tape drivers and
associated software to be installed on the database server.

In concluding this section, let’s take a look at the challenge of coordinating backups
across multiple databases.

10.3.4 Transaction log marks

A common backup requirement is for coordinated backups across multiple databases.
This is usually a requirement for the restore process rather than the backup—when a
database is restored, all associated databases must be restored to exactly the same point.

 Synchronized restores are enabled using transaction log marks. Before we take a
look at using them in a restore scenario, let’s see how they’re used in recovering from
an unintended action. Consider the following statement, which increases product
prices by 2 percent:

-- Update all prices by 2%
BEGIN TRANSACTION updatePrices WITH MARK 'Updating Prices Now';
 UPDATE Products
 SET Price = Price * 1.02
COMMIT TRANSACTION updatePrices

Let’s imagine we only intended to update some products, not all of them, as shown in
the previous statement. Short of running additional commands to roll back the price
increase (and other flow-on effects), we’d be looking at a database restore, but if we
can’t remember the time of the update, a transaction log recovery using the STOPAT
option won’t help.

 One of the optional clauses we used in the update price transaction was WITH
MARK, and we can use that in a restore command. After performing a restore of a full
backup in NORECOVERY mode, we can then restore a transaction log backup made
after the transaction to the point immediately before the mark, using the STOPBE-
FOREMARK option:

-- After restoring the full backup, roll forward the transaction log
-- Use the STOPBEFOREMARK option to stop before the marked transaction
RESTORE LOG [AdventureWorks2008]
FROM DISK = N'G:\SQL Backup\AdventureWorks-log.bak'
WITH RECOVERY, STOPBEFOREMARK = 'updatePrices'

GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

212 CHAPTER 10 Backup and recovery

Now that’s all well and good (and very handy), but how does that help us with coordi-
nating backups and restores across multiple databases? Well, by encapsulating state-
ments that update multiple databases within a single marked transaction, we can
achieve the desired result (see listing 10.2).

-- Use a dummy transaction to mark multiple databases
-- If required, each database can be restored to the same point in time
BEGIN TRANSACTION backupMark WITH MARK
 UPDATE db1.dbo.dummytable set col1 = 1
 UPDATE db2.dbo.dummytable set col1 = 1
 -- other databases here ...
COMMIT TRANSACTION backupMark

By executing a simple update statement in multiple databases within one transaction,
we’re marking the transaction log of each database at the same time. Such an update
statement could be executed immediately before transaction log backups are per-
formed, thus enabling the backups to be restored to the same point in time using the
STOPBEFOREMARK that we saw earlier. Bear in mind, however, that data entered in the
databases after this transaction will be lost, and this is an important consideration in a
coordinated restore scenario.

 Using transaction marks to enable synchronized restores across multiple databases
is one example of using backup/restore features beyond the basics. While a basic
backup/restore approach may suffice for small databases, it’s insufficient for very large
databases (VLDBs). In the previous chapter, we covered the use of filegroups as a mech-
anism for enabling enhanced administration options. We also explored a best practice
whereby user objects are placed on secondary filegroups so that the only objects in the
primary filegroup are system objects. Let’s take a look at that process in more detail,
and see how it can be used to minimize the user impact of a restoration process.

10.4 Online piecemeal restores
Consider a very large, multi-terabyte database in use 24/7. One of the challenges with
databases of this size is the length of time taken for various administration tasks such
as backups and the effect such operations have on database users.

 One of the advantages of using multiple filegroups is that we’re able to back up
individual filegroups instead of (or as well as) the entire database. Such an approach
not only minimizes the user impact of the backup operation, but it also enables online
piecemeal restores, whereby parts of the database can be brought online and available for
user access while other parts are still being restored.5 In contrast, a traditional restore
process would require users to wait for the entire database to restore before being
able to access it, which for a VLDB could be quite a long time.

 In this section we’ll walk through the process of an online piecemeal restore using
filegroups. Online restores can also be performed at the individual page level, and
we’ll take a look at that in chapter 12 when we cover the DBCC tool.

Listing 10.2 Marking multiple transaction logs for coordinated restores
5 Online restores are available in the Enterprise version of SQL Server 2005 and 2008 only.

Licensed to Gayle M. Noll <pedbro@gmail.com>

213Online piecemeal restores

 The database used for our examples is structured as shown in listing 10.3. This
code creates a database with three filegroups.

-- Create "Sales" database with 3 secondary filegroups
-- Each filegroup has 2 files and 1 table

CREATE DATABASE [Sales] ON PRIMARY (
 NAME = N'Sales'
 , FILENAME = N'E:\SQL Data\Sales.mdf'
 , SIZE = 51200KB
 , FILEGROWTH = 1024KB
)

, FILEGROUP [FG1] (
 NAME = N'Sales1'
 , FILENAME = N'E:\SQL Data\Sales1.ndf'
 , SIZE = 51200KB
 , FILEGROWTH = 10240KB
), (
 NAME = N'Sales2'
 , FILENAME = N'E:\SQL Data\Sales2.ndf'
 , SIZE = 51200KB
 , FILEGROWTH = 10240KB
)

, FILEGROUP [FG2] (
 NAME = N'Sales3'
 , FILENAME = N'E:\SQL Data\Sales3.ndf'
 , SIZE = 51200KB
 , FILEGROWTH = 10240KB
), (
 NAME = N'Sales4'
 , FILENAME = N'E:\SQL Data\Sales4.ndf'
 , SIZE = 51200KB
 , FILEGROWTH = 10240KB
)

, FILEGROUP [FG3] (
 NAME = N'Sales5'
 , FILENAME = N'E:\SQL Data\Sales5.ndf'
 , SIZE = 51200KB
 , FILEGROWTH = 10240KB
), (
 NAME = N'Sales6'
 , FILENAME = N'E:\SQL Data\Sales6.ndf'
 , SIZE = 51200KB
 , FILEGROWTH = 10240KB
)
LOG ON (
 NAME = N'Sales_log'
 , FILENAME = N'F:\SQL Log\Sales_log.ldf'
 , SIZE = 10240KB
 , FILEGROWTH = 10%
)

Listing 10.3 Creating a database with multiple filegroups for online restore
GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

214 CHAPTER 10 Backup and recovery

-- Set FG1 to be the default filegroup
ALTER DATABASE [Sales]
MODIFY FILEGROUP [FG1] DEFAULT
GO

USE [SALES]
GO

-- Create a table on each filegroup
CREATE TABLE dbo.Table_1 (
 Col1 nchar(10) NULL
) ON FG1
GO

CREATE TABLE dbo.Table_2 (
 Col1 nchar(10) NULL
) ON FG2
GO

CREATE TABLE dbo.Table_3 (
 Col1 nchar(10) NULL
) ON FG3
GO

As you can see in listing 10.3, we’ve created a database with three filegroups and one
table on each. We’ve also ensured that user objects won’t be created in the primary
filegroup by marking the secondary filegroup, FG1, as the default. Listing 10.4 sets up
the basis for our restore by seeding the tables and making a filegroup backup of the
primary and secondary filegroups. For this example, all of the filegroup backups
occur in sequence, but in a real example, we’d perform the filegroup backups over a
number of nights to reduce the nightly backup impact. Once the filegroup backups
are complete, we’ll modify some data for a transaction log backup in a later step.

-- Seed tables
INSERT table_1
VALUES ('one')
GO

INSERT table_2
VALUES ('two')
GO

INSERT table_3
VALUES ('three')
GO

-- Take FileGroup Backups
BACKUP DATABASE [Sales]
FILEGROUP = N'PRIMARY'
TO DISK = N'G:\SQL Backup\Sales_Primary_FG.bak'
WITH INIT
GO

Listing 10.4 Filegroup backups
Licensed to Gayle M. Noll <pedbro@gmail.com>

215Online piecemeal restores

BACKUP DATABASE [Sales]
FILEGROUP = N'FG1'
TO DISK = N'G:\SQL Backup\Sales_FG1_FG.bak'
WITH INIT
GO

BACKUP DATABASE [Sales]
FILEGROUP = N'FG2'
TO DISK = N'G:\SQL Backup\Sales_FG2_FG.bak'
WITH INIT
GO

BACKUP DATABASE [Sales]
FILEGROUP = N'FG3'
TO DISK = N'G:\SQL Backup\Sales_FG3_FG.bak'
WITH INIT
GO

-- Modify data on FG2
INSERT table_2
VALUES ('two - two')
GO

At this point, let’s imagine that the disk(s) containing the filegroups is completely
destroyed, but the transaction log disk is okay. Restoring a multi-terabyte database as a
single unit would take a fair amount of time, during which the entire database would
be unavailable. With filegroup restores, what we can do is prioritize the restores in
order to make the most important data available as soon as possible. So for this exam-
ple, let’s imagine that filegroup 2 was the most important filegroup from a user per-
spective. Let’s get filegroup 2 back up and running first (see listing 10.5).

-- Disaster at this point. Prioritize Restore of Filegroup 2
USE MASTER
GO

-- Start by performing a tail backup
BACKUP LOG [Sales]
TO DISK = N'G:\SQL Backup\Sales_log_tail.bak'
WITH NORECOVERY, NO_TRUNCATE
GO

-- recover Primary and FG2
RESTORE DATABASE [Sales]
FILEGROUP='Primary'
FROM DISK = N'G:\SQL Backup\Sales_Primary_FG.bak'
WITH PARTIAL, NORECOVERY

RESTORE DATABASE [Sales]
FILEGROUP='FG2'
FROM DISK = N'G:\SQL Backup\Sales_FG2_FG.bak'
WITH NORECOVERY

Listing 10.5 Online piecemeal restore: restoring the most important filegroup first
RESTORE LOG [Sales]

Licensed to Gayle M. Noll <pedbro@gmail.com>

216 CHAPTER 10 Backup and recovery

FROM DISK = N'G:\SQL Backup\Sales_log_tail.bak'
WITH RECOVERY
GO

-- At this point the database is up and running for Filegroup 2 only
-- Other filegroups can now be restored in the order required

As shown in listing 10.5, the first step in performing a piecemeal restore is to back up
the tail of the transaction log. This will enable us to restore up to the point of failure.
Once this backup is completed, we can then start the restore process by restoring the
primary filegroup. According to our best practice, this is very small as it contains sys-
tem objects only. As a result, the primary filegroup restore is quick, and as soon as it
completes, the database is online and available for us to prioritize the remainder of
the filegroup restores.

 In line with our priorities, we proceed with a restore of the FG2 filegroup. The last
statement restores the transaction log tail backup, which rolls forward transactions for
FG2. At this point, FG2 is online and available for users to query. Attempting to query
tables 1 and 3 at this moment will fail as these filegroups are offline pending restore.
An error message will appear when you attempt to access these tables:

Msg 8653, Level 16, State 1, Line 1
The query processor is unable to produce a plan for the table or view

'table_3' because the table resides in a filegroup which is not online.

Let’s recover the remaining filegroups now, as shown in listing 10.6.

-- restore FG1
RESTORE DATABASE [Sales]
FILEGROUP='FG1'
FROM DISK = N'G:\SQL Backup\Sales_FG1_FG.bak'
WITH NORECOVERY

RESTORE LOG [Sales]
FROM DISK = N'G:\SQL Backup\Sales_log_tail.bak'
WITH RECOVERY
GO

-- restore FG3
RESTORE DATABASE [Sales]
FILEGROUP='FG3'
FROM DISK = N'G:\SQL Backup\Sales_FG3_FG.bak'
WITH NORECOVERY

RESTORE LOG [Sales]
FROM DISK = N'G:\SQL Backup\Sales_log_tail.bak'
WITH RECOVERY
GO

Listing 10.6 assumed all the filegroups were damaged and needed to be restored.
Should some of the filegroups be undamaged, then a restore for those filegroups is

Listing 10.6 Online piecemeal restore for remaining filegroups
unnecessary. Let’s imagine that filegroups 1 and 3 were undamaged. After FG2 is

Licensed to Gayle M. Noll <pedbro@gmail.com>

217Database snapshots

restored, we can bring the remaining filegroups online with a simple recovery state-
ment such as this:

RESTORE DATABASE [Sales] FILEGROUP='FG1', FILEGROUP='FG3' WITH RECOVERY

While normal full backup/restores on single filegroup databases may be acceptable
for small to medium databases, very large databases require more thought to reduce
the backup impact and minimize user downtime during recovery scenarios. By plac-
ing user objects on secondary filegroups, filegroup backups and the online piecemeal
restore process enable both of these goals to be met.

 As we covered earlier, online restores are available only in the Enterprise edition of
SQL Server 2005 and 2008. Another Enterprise-only feature is the database snapshot,
which we explore next.

10.5 Database snapshots
A common step in deploying changes to a database is to take a backup of the database
prior to the change. The backup can then be used as a rollback point if the change/
release is deemed a failure. On small and medium databases, such an approach is
acceptable; however, consider a multi-terabyte database: how long would the backup
and restore take either side of the change? Rolling back a simple change on such a
large database would take the database out of action for a considerable period of time.

 Database snapshots, not to be confused with snapshot backups,6 can be used to
address this type of problem, as well as provide additional functionality for reporting
purposes.

 First introduced in SQL Server 2005, and only available in the Enterprise editions
of SQL Server, snapshots use a combination of Windows sparse files and a process
known as copy on write to provide a point-in-time copy of a database. After the snapshot
has been created, a process typically taking only a few seconds, modifications to pages
in the database are delayed to allow a copy of the affected page to be posted to the
snapshot. After that, the modification can proceed. Subsequent modifications to the
same page proceed without delay. Initially empty, the snapshot grows with each data-
base modification.

6 Snapshot backups are specialized backup solutions commonly used in SANs to create near-instant backups

Sparse files
Database snapshots are created on the NTFS file system, which provides the neces-
sary sparse file support. Unlike traditional files, sparse files only occupy space on
disk when data is actually written to them, with the size of the file growing as more
data is added. As a result, very large files can be created quickly, even on file sys-
tems with limited free space.
using split-mirror (or similar) technology.

Licensed to Gayle M. Noll <pedbro@gmail.com>

218 CHAPTER 10 Backup and recovery

As figure 10.7 shows, when a page in a database snapshot is read, if the page hasn’t
been modified since the snapshot was taken, the read is redirected to the source data-
base. Conversely, modified pages will be read from the snapshot, thus allowing consis-
tent, point-in-time results to be returned.

 Let’s take a look now at the process of creating a snapshot.

10.5.1 Creating and restoring snapshots

A database snapshot can be created using T-SQL, as shown here:

-- Create a snapshot of the AdventureWorks database
CREATE DATABASE AdventureWorks2008_Snapshot_20080624 ON (
 NAME = AdventureWorks2008_Data
 , FILENAME = 'E:\SQL Data\AdventureWorks_Data.ss'
)
AS SNAPSHOT OF [AdventureWorks2008];
GO

As you can see in figure 10.8, a snapshot is visible after creation in SQL Server Manage-
ment Studio under the Database Snapshots folder. You can select it for querying as
you would any other database.

 Given its read-only nature, a snapshot has no transaction log file, and when cre-
ated, each of the data files in the source database must be specified in the snapshot
creation statement along with a corresponding filename and directory. The only
exceptions are files used for FileStream data, which aren’t supported in snapshots.

Figure 10.8 A database snapshot is visible in SQL Server Management Studio under the Database

Figure 10.7 Pages are copied
to a database snapshot before
modification; unchanged page
requests are fulfilled from the
source database.

Database Database snapshot Reporting application

Unchanged pageOriginal pageModified page
Snapshots folder.

Licensed to Gayle M. Noll <pedbro@gmail.com>

219Database snapshots

You can create multiple snapshots of the same database. The only limitations are the
performance overhead and the potential for the snapshots to fill the available disk
space. The disk space used by a snapshot is directly determined by the amount of
change in the source database. After the snapshot is first created, its footprint, or used
space, is effectively zero, owing to the sparse file technology. With each change, the
snapshot grows. It follows that if half of the database is modified since the snapshot was
created, the snapshot would be roughly half the size of the database it was created from.

 Once created, a database can be reverted to its snapshot through the RESTORE
DATABASE T-SQL command using the FROM DATABASE_SNAPSHOT clause as shown here
(this example will fail if the AdventureWorks database contains FileStream data). Dur-
ing the restore process, both the source and snapshot databases are unavailable and
marked In Restore.

-- Restore the AdventureWorks database from the snapshot
USE master
GO
RESTORE DATABASE AdventureWorks2008
FROM DATABASE_SNAPSHOT = 'AdventureWorks2008_Snapshot_20080624';
GO

There are a number of restrictions with reverting to snapshots, all of which are cov-
ered in Books Online. The major ones are as follows:

A database can’t revert to a snapshot if more than one snapshot exists. In such a
case, all snapshots should be removed except the one to revert to.
Despite the obvious advantages of snapshots, they’re no substitute for a good
backup strategy. Unlike a database restore with point-in-time roll-forward capa-
bilities, a database reverted to a snapshot loses all data modifications made after
the snapshot was taken.
Restoring a snapshot breaks the transaction log backup chain; therefore, after
the restore, a full backup of the database should be taken.
Databases with FileStream data can’t be reverted.

Given the copy-on-write nature of snapshots, there’s a performance overhead in using
them, and their unique nature means update and delete modifications aren’t permit-
ted against them—that is, they’re effectively read-only databases for the duration of
their existence. To reduce the performance overhead, older snapshots that are no lon-
ger required should be dropped using a DROP DATABASE command such as this one:

-- Drop the snapshot
DROP DATABASE AdventureWorks2008_Snapshot_20080624

To fully understand the power of database snapshots, let’s cover some of the many dif-
ferent ways they can be used.

10.5.2 Snapshot usage scenarios

Database snapshots are useful in a variety of situations. Let’s cover the most common

uses, beginning with reporting.

Licensed to Gayle M. Noll <pedbro@gmail.com>

220 CHAPTER 10 Backup and recovery

REPORTING

Given a snapshot is a read-only view of a database at a given moment, it’s ideal for
reporting solutions that require data accurate as at a particular moment, such as at the
end of a financial period.

 The major consideration for using snapshots in this manner is the potential per-
formance impact on the source database. In addition to the copy-on-write impact, the
read impact needs to be taken into account: in the absence of a snapshot, would you
run reports against the source database? If the requested data for reporting hasn’t
changed since the snapshot was taken, data requested from the snapshot will be read
from the source database.

 A common snapshot scenario for reporting solutions is to take scheduled snap-
shots, for example, once a day. Given each snapshot is exposed as a new database with
its own name, reporting applications should ideally be configured so that they are
aware of the name change and be capable of dynamically reconnecting to the new
snapshot. To assist in this process, name new snapshots consistently to enable a pro-
grammatic reconnection solution. Alternatively, synonyms (not covered in this book)
can be created and updated to point to the appropriate snapshot objects.
READING A DATABASE MIRROR

We’ll cover database mirroring in the next chapter, but one of the restrictions with the
mirror copy of a database is that it can’t be read.

 When you take a snapshot of the database mirror, you can use it for reporting pur-
poses, but the performance impact of a snapshot may lead to an unacceptable transac-
tion response time in a synchronous mirroring solution, a topic we’ll cover in the next
chapter.
ROLLING BACK DATABASE CHANGES

A common use for snapshots is protecting against database changes that don’t go
according to plan, such as a schema change as part of an application deployment that
causes unexpected errors. Taking a snapshot before the change allows a quick roll-
back without requiring a full database backup and restore.

 The major issue with rolling back to a snapshot in this manner is that all data
entered after the snapshot was created is lost. If there’s a delay after the change and
the decision to roll back, there may be an unacceptable level of data changes that
can’t be lost.

 For changes made during database downtime, when change can be verified while
users aren’t connected to the database, snapshots can provide an excellent means of
reducing the time to deploy the change while also providing a safe rollback point.
TESTING

Consider a database used in a testing environment where a given set of tests needs to
be performed multiple times against the same data set. Traditionally, a database
backup is restored between each test to provide a repeatable baseline. If the database
is very large, the restore delay may be unacceptably long. Snapshots provide an excel-

lent solution to this type of problem.

Licensed to Gayle M. Noll <pedbro@gmail.com>

221Backup compression

DBCC SOURCE

Finally, as you’ll see in chapter 12, a DBCC check can be performed against a database
snapshot, providing more control over disk space usage during the check.

 In closing the chapter, let’s focus on a very welcome addition to SQL Server 2008:
backup compression.

10.6 Backup compression

To reduce the time and space required for backups, some organizations choose to
purchase third-party backup tools capable of compressing SQL Server backups. While
such products are widely used and proven, other organizations are reluctant to use
them for a variety of reasons, such as the following:

Cost —Despite the decreased disk usage (and therefore cost) enabled by such
products, some organizations are reluctant to provide the up-front expenditure
for new software licenses.
Portability —Depending on the product, compressed backups performed on
one licensed server may not be able to be restored on an unlicensed server.
Non-Microsoft software —Some organizations feel uncomfortable with using non-
Microsoft software to control such a critical operational process.

In avoiding backup compression products for these reasons, many organizations
choose suboptimal backup designs, such as tape only, in order to reduce storage costs.
Such designs are often in conflict with their service level agreements for restoration
times and acceptable data loss, and often the limitations of such designs are realized
for the first time after an actual data loss event.

 Introduced in the Enterprise edition of SQL Server 2008, backup compression
allows native SQL Server backups to be compressed, which for many organizations will
introduce a whole range of benefits and cost savings. No doubt some companies will
upgrade to SQL Server 2008 for this reason alone. Although compressed backups can
only be created using the Enterprise edition of SQL Server 2008, they can be restored to
any edition of SQL Server 2008.

 As with data compression, covered in the previous chapter, there is some CPU over-
head involved in backup compression (about 5 percent is typical). To control whether
a backup is compressed, you have a number of options, beginning with a server-level
default setting called Backup Compression Default, which you can set using
sp_configure or SQL Server Management Studio, as shown in figure 10.9.

 For individual backups, you can override the default compression setting using
options in SQL Server Management Studio, or by using the WITH COMPRESSION/

NO_COMPRESSION T-SQL options as shown here:

-- Backup the AdventureWorks database using compression
BACKUP DATABASE AdventureWorks2008
TO DISK = 'G:\SQL Backup\AdventureWorks-Compressed.bak'

WITH INIT, COMPRESSION

Licensed to Gayle M. Noll <pedbro@gmail.com>

222 CHAPTER 10 Backup and recovery

Figure 10.9 The Compress Backup option enables the default backup compression to be set. Individual
backups can explicitly override this setting.

As with data compression, the actual compression rates achieved depend largely on
the makeup of the data within the database. Similar to data compression, the goal of
backup compression is not to achieve the maximum possible compression, but to
strike a balance between CPU usage and compression rates.

 Given that, the observed compression rates are quite impressive considering the
moderate CPU overhead. For example, as you can see in figure 10.10, the observed
size of a native AdventureWorks2008 database backup was 188MB compared with the
compressed backup size of 45MB. Further, the time taken to back up the database in
uncompressed form was 10 seconds compared to 7 seconds for a compressed backup.

 Although the actual results will differ depending on the scenario, extrapolating
out the compression and duration figures to a very large database scenario promises
significant savings in disk space (and therefore money) as well as time.

 For those organizations with a tape-only backup approach, backup compression
presents an excellent argument to move to a disk then tape approach. For those

Figure 10.10 Backing up the AdventureWorks2008 database with and without compression. For a

Backup size (MB) Duration (sec)

Uncompressed Compressed

Duration (sec)Backup size (MB)

CompressedUncompressed

200

150

100

50

0

12
10

8

6
4

2

0

moderate CPU overhead, compressed backups yield significant space and duration savings.

Licensed to Gayle M. Noll <pedbro@gmail.com>

223Best practice considerations: backup and recovery

already using disk-based backups, the opportunities for storage savings and greater
backup availability are compelling reasons for an upgrade to SQL Server 2008.

 Finally, as you saw in chapter 6, a backup produced from a database that’s pro-
tected with Transparent Data Encryption (TDE) will also be encrypted and can’t be
restored to another server unless that server has the appropriate certificate restored.
From a compression perspective, the space savings of a compressed backup on a TDE-
encrypted database will be minimal. As such, I don’t recommend compressing back-
ups of TDE-encrypted databases.

10.7 Best practice considerations: backup and recovery
Developing a reliable backup strategy is arguably the most fundamental and impor-
tant of all DBA tasks. Fortunately, there are a number of well-established best practices
to assist in this process.

Design a backup strategy for the speed and ease of restoration, not the conve-
nience of the backup. The design should be centered around the service level
agreements for restoration time and acceptable data loss.
Thoroughly document the backup and restore process and include actual code
for various restore scenarios. Anyone with moderate DBA skills should be able
to follow the documentation to ensure the correct restore process is executed
in the shortest possible time.
When developing disaster recovery plans, consider smaller events as potential
disasters in addition to complete site failure. “Small” disasters such as the acci-
dental deletion of a production table can have just as much impact as big ones.
Simulate and practice recovering from disasters on a regular basis to ensure
that documentation is up to date and that all appropriate support staff are com-
fortable with, and trained in, the recovery process. Consider implementing ran-
dom “fire drills” to more accurately simulate disaster.
To minimize the performance impact, schedule full backups for periods of low-
usage times.
Ensure system databases (with the exception of tempdb) are backed up on a
regular basis, and immediately after the installation of any service packs, hot-
fixes, or cumulative updates. System databases store important instance-level
data such as login information, maintenance plans, SQL Agent job definitions,
and execution history. Restoring a master database backup that was taken when
an earlier service pack version was installed is not an experience I recommend!
Use COPY_ONLY backups to avoid breaking backup chains when additional back-
ups are required.
Backing up the tail of a transaction log using the WITH NO_TRUNCATE option
should be limited to situations in which the database is damaged and inaccessi-
ble; otherwise, the COPY_ONLY option should be used in its place.
After first creating a database or changing the recovery model, take a full

backup to initialize the log chain.

Licensed to Gayle M. Noll <pedbro@gmail.com>

224 CHAPTER 10 Backup and recovery

To provide point-in-time restore capabilities and manage transaction log
growth, production databases should be in the full recovery mode with regular
transaction log backups.
Development and test databases that don’t require point-in-time restoration
capabilities should be placed in the simple recovery mode to limit administra-
tion overhead and disk space usage.
Use the Bulk_Logged model on a temporary basis only during bulk-load opera-
tions. Take transaction log backups immediately before and after using the bulk
logged model for maximum point-in-time protection.
Consider the disk then tape backup technique whereby backups are written to
disk before being archived to tape and removed from disk after a number of
days. As well as enabling two copies of recent backups for resilience against
media failure, the local disk copies provide fast restoration if needed, and you
maintain offsite tape copies for long-term archival purposes.
Assuming the CPU overhead is measured and within the available headroom,
consider backup checksums (along with page checksums) as a means of
enabling constant and ongoing I/O verification.
Consider the MIRROR TO DISK option when performing disk backups to create
an off-server disk backup for tape archive. With this approach, you avoid the
need for tape backup software and drivers on the SQL Server, and you create an
additional disk backup with independent retention periods.
If using the MIRROR TO DISK option to back up to a secondary backup file over
the network, consider a private LAN connection to the backup server to maxi-
mize network performance and minimize the effect on the public LAN.
Streaming a backup to multiple backup files can produce a significant perfor-
mance increase compared to single file backups, particularly for very large
databases.
For small databases, full nightly backups with regular transaction log backups
through the day are ideal. For larger databases, consider a weekly full, daily dif-
ferential, and hourly transaction log model. For very large databases running
on the Enterprise edition of SQL Server, consider a filegroup backup/restore
design centered around online piecemeal restores.
Keep in mind the diminishing returns of differential backups. The frequency of
the full backup needs to be assessed on the basis of the rate of database change.
Restore backups on purpose-built backup verification servers or as part of an
infrastructure solution, such as a reporting server with automated restores. Log
shipping (covered in the next chapter) is an excellent way of verifying transac-
tion log backup validity as well as providing a mechanism to enable reporting
databases to be refreshed with current data.
An alternate means of verification is the RESTORE WITH VERIFYONLY operation,
which will read the contents of the backup file to ensure its validity without
actually restoring it. In the absence of an automated restore process, this is a

good method for verifying that backups are valid.

Licensed to Gayle M. Noll <pedbro@gmail.com>

225Best practice considerations: backup and recovery

Consider the use of backup devices (not covered in this book) for more flexibil-
ity when scripting backup jobs. Rather than creating script jobs containing
hard-coded directory paths and filenames, using backup devices enables porta-
bility of backup scripts; each environment’s backup devices can be configured
for the appropriate drive letters, directory paths, and filenames.
If using database snapshots for reporting purposes, ensure they’re consistently
named to assist with programmatically redirecting access to new snapshots, and
make sure old snapshots are removed to reduce disk space requirements and
the performance overhead of copy-on-write.
If using the Enterprise edition of SQL Server, consider backup compression as a
means of reducing backup disk cost. Alternatively, consider keeping more back-
ups on disk for longer periods (or use both strategies).
Compressing backups of databases that use Transparent Data Encryption isn’t
recommended because the compression rate is likely to be low while still incur-
ring CPU overhead.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/backup.

 As we’ve covered in this chapter, transaction logs form a fundamental part of a
backup and recovery plan. In the next chapter, we’ll take a look at log shipping, an
excellent mechanism for ongoing verification of the validity of the transaction log
backups.

Licensed to Gayle M. Noll <pedbro@gmail.com>

High availability with
database mirroring
When the term high availability is used in the context of a SQL Server deployment,
features such as database mirroring and failover clustering are almost always the
focus of attention. While their contribution to a highly available SQL Server envi-
ronment is beyond question, they should be seen as a single, albeit important, com-
ponent of a much broader solution.

 Every topic in this book can be viewed in the context of high availability. Secu-
rity breaches, corrupt backups, and poor maintenance practices can all contribute
to unexpected outages and missed availability targets. In many ways, high availabil-
ity is as much a state of mind as it is a feature or installation option.

In this chapter, we’ll cover
■ High-availability options
■ Transaction log shipping
■ Database mirroring
■ Automatic and manual failover
■ Setup and administration tasks
226

Licensed to Gayle M. Noll <pedbro@gmail.com>

227High-availability options

 This chapter begins with a broad overview of a number of high-availability options
and compares their relative strengths and weaknesses. We then cover transaction log
shipping, which in many ways can be considered an extension of the previous chapter.
Our focus then shifts to database mirroring and how it can be used in contributing to
a highly available SQL Server environment.

11.1 High-availability options
Broadly defined, a high-availability solution refers to any system or mechanism put in
place to ensure the ongoing availability of a SQL Server instance in the event of a
planned or unplanned outage. We’ve already covered the importance of a well-
designed and tested backup and recovery strategy, so the major high-availability
options we’ll examine here are clustering, log shipping, and database mirroring. While
replication can (and is) used by many as part of a high-availability solution, we won’t
consider it here on the basis of its major purpose as a data distribution technology.

11.1.1 Failover clustering

As you learned in chapter 5, failover clustering’s major advantage is that it protects the
entire server and all of its components from failure. From a SQL Server perspective,
the benefits of this are numerous:

■ All databases for a given failover clustering instance are failed over in a single
action.

■ SQL Agent jobs, logins, system configuration, and all other items are automati-
cally moved.

■ No client redirection logic is required; a failover clustering instance is accessed
over the network using a virtual server name which automatically maps to the
new server should failover occur.

The major limitation of failover clustering, particularly in Windows Server 2003 and
earlier, is that other than a RAID solution, there’s no protection from failure of the
disks containing the database files and/or the cluster quorum resource. As we saw in
chapter 5, Windows Server 2008 brings with it a number of enhanced quorum models
that eliminate the problem of a single shared storage quorum resource, but that still
leaves the issue of the potential failure of the disks containing the database files. Both
log shipping and database mirroring address this by maintaining a hot/warm copy of
the database, often in a physically separate location. Let’s consider log shipping first.

11.1.2 Transaction log shipping

In the previous chapter we covered the importance of the transaction log in providing
the ability to recover a database to a point in time. We also highlighted the need to
perform regular restores of backups to ensure their validity, which is a frequently
skipped proactive maintenance task amid the chaos of reactive work environments.
Transaction log shipping takes care of both of these goals while enabling additional

reporting options.

Licensed to Gayle M. Noll <pedbro@gmail.com>

228 CHAPTER 11 High availability with database mirroring

As illustrated in figure 11.1, a log shipped database sends its transaction log backups
to a copy of the database on one or more secondary servers for regular restoration. As
we’ll see shortly, the log shipping configuration screens provided in SQL Server Man-
agement Studio enable the frequency of the transaction log backup, copy, and restore
jobs to be set, along with the option to leave the database copy in a read-only state in
between log restores, thus enabling the database to be used for reporting purposes.

 Unlike clustering, log shipping has no shared storage and therefore no central
point of failure. Each server in the log shipping pair is completely independent: it has
its own storage and could theoretically be located anywhere in the world.

 The major disadvantage of log shipping is that each database must be log shipped
independently. For a SQL Server instance containing multiple databases, all of which
require protection, the administrative effort required to set up and administer log
shipping for each database is substantial when compared to a clustering solution.

 Log shipping has no automatic failover process. If one server fails, manual inter-
vention is required to bring the log ship partner online and redirect clients to the new
server. Database mirroring, discussed next, addresses this issue nicely.

11.1.3 Database mirroring

In a manner similar to log shipping, servers in a database mirroring session use the
transaction log to move transactions between a principal server and a mirror server. The
main advantage of database mirroring is that the movement of transactions can be
performed synchronously, guaranteeing that the mirror is an exact copy of the princi-
pal at any given moment. In contrast, a log shipping destination is typically at least 15
minutes behind the source (which can actually be an advantage in some situations, as
we’ll see shortly).

 Like log shipping, database mirroring needs to be set up on a database-by-database
basis, therefore limiting its appeal for instances containing many critical databases.
Unlike log shipping, however, it can optionally be configured with a witness instance to
initiate automatic failover to the mirror server. Further, with the correct configura-
tion, client connections can be automatically redirected to the mirror server on fail-
ure of the principal.

 A typical database mirroring session is illustrated in figure 11.2. Covered in detail
later in the chapter, database mirroring also overcomes the shared storage limitation
of clustering, therefore enabling mirroring partners to be located large distances

Figure 11.1 Transaction log
shipping automates the process
of backing up, copying, and
restoring transaction logs from a
source database to a destination
database on another server.

Source DB

1) Transaction log backup 2) Logs copied to destination server 3) Logs restored

Destination DB (recovering)
from one another.

Licensed to Gayle M. Noll <pedbro@gmail.com>

229High-availability options

Figure 11.2 Figure A typical database mirroring topology in which the mirror database is receiving
and applying transactions from the principal server over a high-speed network link

When compared with log shipping, the major disadvantages of database mirroring are
the fact that only a single mirror can exist for each principal (log shipping allows mul-
tiple destinations for the one source) and the inability to read the mirror database
(unless using a database snapshot), thus limiting the use of mirroring in providing a
reporting solution.

To more easily highlight the strengths and weaknesses of each solution, let’s compare
them side by side.

11.1.4 Comparing high-availability options

Table 11.1 compares clustering, log shipping, and mirroring from various perspec-
tives. Note that combinations of these solutions are frequently deployed for mission-
critical databases, therefore minimizing the weaknesses of any one option. For exam-
ple, using a failover cluster in combination with database mirroring enables local
failover support for all databases with mission-critical databases mirrored to an off-

Service level agreements
A critical component of any SQL Server solution (but particularly a high-availability so-
lution) is a service level agreement (SLA), which defines a number of system attri-
butes such as the acceptable data loss, disaster-recovery time, and transaction
performance targets. A common SLA entry is the availability target, usually expressed
as a percentage; for example, a 99 percent availability target allows approximately
3.5 days of downtime per year. In contrast, a 99.999 percent target allows 5 min-
utes! Each “9” added to the availability target exponentially increases the cost of
building an appropriate solution. As such, agreeing on an availability target before de-
signing and building a solution is a critical step in both minimizing costs and meeting
customer expectations.

Application servers

Mirror DB

Compressed, encrypted log stream

DB server

New YorkLondon High speed network connection

Principal DBDB server
site location.

Licensed to Gayle M. Noll <pedbro@gmail.com>

230 CHAPTER 11 High availability with database mirroring

Regardless of which of the high-availability solutions you choose (if any), the impor-
tance of a solid backup strategy together with adherence to other best practices cov-
ered throughout this book can’t be overstated; all of them contribute to a highly
available SQL Server environment in their own way.

 Before we get to the main focus of this chapter, database mirroring, let’s delve a lit-
tle deeper into transaction log shipping.

11.2 Transaction log shipping
Log shipping was first introduced in SQL Server 2000, although many DBAs imple-
mented it before then using a series of custom jobs. Put simply, log shipping auto-
mates the backup, copy, and restore of a source database’s transaction logs to one or
more secondary server instances seeded with a full backup of the source database
restored in recovering mode.

 A commonly referenced backup best practice is to restore backups on a regular
basis to ensure they’re valid. Until they’re restored you can’t be 100 percent sure that
they’ll work in an emergency restore scenario. The problem a lot of organizations
have with this recommendation is the time and equipment required to carry it out.
Manually copying and restoring backup files on the off chance that something may be
wrong isn’t the most rewarding of tasks, and as a result, it’s often shelved as a good
idea for implementation at a later point, once everything else is done—which of

Table 11.1 A comparison of SQL Server high-availability solutions

Attribute Clustering Log shipping Database mirroring

Multiple database failover Yes No No

Logins, config, and job failover Yes No No

Automatic failover support Yes No Yesa

Automatic client redirection Yes No Yesb

Provides a reporting solution No Yesc Yesd

Central point of failure Disk No No

Multiple standby destinations No Yes No

Geographical distance support Yese Yes Yes

Data latency Nil 15mins+f Nilg

a Optional
b If using SNAC or custom application logic
c Assuming standby restore mode
d If using database snapshots
e Typically with high-end custom solutions
f Configurable; defaults to 15 minute backup/copy/restore frequency
g If using synchronous (high safety) mode
course never happens.

Licensed to Gayle M. Noll <pedbro@gmail.com>

231Transaction log shipping

 The best way of implementing this recommendation is to automate it as part of an
infrastructure solution. For example, in the next chapter we’ll look at automating a
full backup and restore together with DBCC checks in providing a reporting database
that’s automatically refreshed on a regular basis while also taking care of the recom-
mendation to run backup verification and DBCC checks.

 As we covered earlier, transaction logs are a crucial component in the ability to
recover a database to a point in time, and a broken log chain destroys this ability. Per-
haps the best method for automating the restore of transaction logs, and therefore
validating the log chain, is through the use of transaction log shipping.

 Later in this section we’ll walk through the process of establishing a log shipping
session, which will highlight its various components and advantages. Before we do
that, let’s examine some of the common log shipping usage scenarios.

11.2.1 Usage scenarios

In addition to the major benefit of constant, automatic log chain validation, log ship-
ping provides a number of other benefits, making it a commonly used solution for a
variety of scenarios.
OFFSITE RECOVERY POINT

Log shipping can be used to provide an offsite, up-to-date copy of a mission-critical
database. In the event of total environment destruction, the offsite copy can quickly
restore any remaining logs and be brought online and available for application usage.

 Compared to database mirroring, discussed in detail later in the chapter, log ship-
ping has a much greater transaction latency. The default frequency of the log backup,
copy, and restore jobs is 15 minutes, so the secondary database will typically be
between 30 and 45 minutes behind the primary. While at first this may appear to be a
weakness of log shipping, in some instances it presents a stronger solution than data-
base mirroring.

 Consider a situation in which a table is accidentally (or maliciously) dropped. In
the case of database mirroring, by the time the error was realized, the change would
probably already exist on the mirror. With log shipping, the restore containing the
error can be canceled, or restored just prior to the error. Think of this as a 7-second
broadcast delay.
REPORTING SOLUTION

As we’ll see shortly, when restoring the transaction logs on the secondary database,
the standby option can be invoked. This option enables the secondary database to be
used for read purposes in between log restores. Together with the ability to schedule
the restores, this can enable the database to be used for reporting purposes for certain
periods of the day.

 The major benefit of log shipping when compared to database mirroring is that a
log shipping source can be shipped to multiple destinations. For example, one desti-
nation could be used as a reporting source and another destination set up as a dedi-

cated failover point. Each can have its own copy and restore schedules. Further, each

Licensed to Gayle M. Noll <pedbro@gmail.com>

232 CHAPTER 11 High availability with database mirroring

destination can be in different physical locations from the source for further geo-
graphical failure resilience.

UPGRADE SOLUTION

As we covered in chapter 4, log shipping can be set up between one version of SQL
Server and the next. For example, a SQL Server 2005 source database can log ship to a
2008 destination. Such a configuration could be used to minimize the upgrade time
in the following way:

1 A new server can be installed, configured, and tested as required with SQL
Server 2008 loaded and configured.

2 A full backup of the source 2005 database is made and copied to the new server.
3 The 2005 database is restored to the new 2008 instance on the new server in

recovering mode.
4 Log shipping is set up between the old and new server instances with transac-

tion logs shipping on a regular basis.
5 When the upgrade time arrives, users are disconnected from the 2005 instance,

remaining logs shipped to the 2008 instance, and the database is then recov-
ered with applications reconfigured to point at the new instance.

Until step 5, the original 2005 instance continues to run with no user interruption.
The only downtime comes in step 5, which will typically be very short given the small
number of transactions to ship across. The other benefit of this approach is that the
original 2005 server still exists as a rollback point with its data still accurate as at the
time of the last transaction log ship.

 This solution could also be used when upgrading or decommissioning server hard-
ware, but like database mirroring, log shipping is implemented on a database-by-data-
base basis, so if a given server has many databases, it may not be the best approach.

 To further highlight the options and benefits of log shipping, let’s walk through an
implementation using the SQL Server Management Studio tool.

11.2.2 Setting up and monitoring log shipping

You establish a log shipping session in SQL Server Management Studio by right-click-
ing a database and choosing Tasks > Ship Transaction Logs. Note that the selected
database must be using either the Full or Bulk_Logged recovery model. As shown in
figure 11.3, the resulting screen provides the option “Enable this as a primary data-
base in a log shipping configuration.” If the database is already log shipped, you can
deselect this option to remove log shipping from the database.

 After choosing the option to enable the database for log shipping, click the
Backup Settings button. In the resulting screen, shown in figure 11.4, you can set a
number of properties, such as the transaction log backup destination (including a file
share accessible from the log shipping destination server), the log backup retention
period, the backup frequency, and whether to use backup compression.
Licensed to Gayle M. Noll <pedbro@gmail.com>

233Transaction log shipping

Figure 11.3 The initial log shipping configuration screen permits access to the various
configuration components, including backup settings and secondary servers.

Figure 11.4 The Transaction Log Backup Settings screen enables the configuration

of log backup frequency, destination, and retention period.

Licensed to Gayle M. Noll <pedbro@gmail.com>

234 CHAPTER 11 High availability with database mirroring

Once you complete these settings, click OK to return to the screen shown earlier in
figure 11.3. The next step is repeated for each required log shipping destination. In
our example, we’ll do this once for a simple 1:1 primary:secondary relationship.

 Click Add under Secondary databases to specify a log shipping destination. In the
resulting screen, you can specify a secondary server instance. On the Initialize Second-
ary Database tab, you’re given three options, as you can see in figure 11.5.

 For our example, we’ve chosen the third option, “No, the secondary database is
initialized.” We’ve done this because a full backup of the source database has already
been restored in NORECOVERY mode on the destination server. Alternatively, we
could choose the first option, which will automate the full backup, copy, and restore
process, or the second option, if we want to restore a preexisting backup.

 Next, click the Copy Files tab, where you can specify where the log backup files will
be copied to and how frequently the copy will take place. As shown in figure 11.6, this
tab also contains the option to automatically remove copied log backup files after a
certain time period.

 Finally, click the Restore Transaction Log tab, shown in figure 11.7, and select a
restore mode and frequency. The default restore mode is No Recovery Mode, which
leaves the database in the recovering status, and therefore unable to be used. For our
example, we’ve chosen Standby Mode, along with the option to disconnect users.
These options enable the log shipped database to be used in read-only mode in

Figure 11.5 On the Initialize Secondary Database tab you can specify how the
log shipped database will be created on the destination server.
between log restores for reporting purposes.

Licensed to Gayle M. Noll <pedbro@gmail.com>

235Transaction log shipping

Figure 11.6 The Copy Files tab lets you specify the log backup copy location,
frequency, and retention period.

Figure 11.7 Figure The Restore Transaction Log tab allows you to set the restore

frequency along with the database state between restores.

Licensed to Gayle M. Noll <pedbro@gmail.com>

236 CHAPTER 11 High availability with database mirroring

Note that when using standby mode, you must take into account the restore fre-
quency. The default restore frequency of 15 minutes is inappropriate for a reporting
solution, as users would be disconnected (if the disconnect option is chosen) every 15
minutes to enable the log restore. For our example, we’ve chosen a 12-hour restore
frequency. This will enable 12 hours of uninterrupted reporting before the next
restore, and assuming users are advised on the restore times, such a configuration
may be quite acceptable.

 Regardless of the restore frequency, the backup and copy jobs have their own inde-
pendent schedules. In our example, the backup and copy jobs run every 15 minutes.
If the secondary database is required in an emergency, the restore process—accessible
via a SQL Server Agent job created by the log shipping setup process—can be manu-
ally executed at any time, which will restore any outstanding transaction logs and thus
bring the secondary server up to date.

 Once you complete these steps, click OK to return to the screen shown in figure
11.3. The other log shipping component for consideration is the monitoring instance,
which will actively monitor (via SQL Server Agent jobs) the backup, copy, and restore
progress. If any of these events don’t run within the specified intervals, the monitor-
ing server generates alerts, which can be configured to notify the appropriate DBAs.
We’ll cover alerts in more detail in chapter 14.

 After deciding whether to use a monitoring instance, save the log shipping configura-
tion for later use by clicking the Script Configuration button. SQL Server implements
the backup, copy, restore, and monitoring steps as SQL Server Agent jobs, requiring
this service to be running on all instances (primary, secondary, and monitoring) to
enable log shipping to function.

 Finally, in order to determine the status of the log shipping session, SQL Server
includes a number of options, one of which is the built-in transaction log shipping sta-
tus report, as shown in figure 11.8. Access this report by right-clicking on a server
involved in a log shipping role (primary, secondary, or monitor) and select Reports >
Standard Reports > Transaction Log Shipping Status.

 Note that this report contains additional information not shown in figure 11.8,
including the filename of the last file backed up, copied, and restored.

 If you’re using log shipping to maintain a warm standby server for failover pur-
poses (as opposed to a pure reporting server solution), then one of the important

Monitoring instance
Although the primary or secondary log shipping instance can also be the monitoring
instance, using an independent instance for monitoring is recommended. In such a
configuration, the load on the primary and secondary instances is reduced, and mon-
itoring continues in the event of failure on either the primary or secondary instance.
Further, a monitoring instance can monitor more than one log shipping configuration.
tasks is the failover and role reversal process.

Licensed to Gayle M. Noll <pedbro@gmail.com>

237Transaction log shipping

Figure 11.8 The built-in transaction log shipping status report allows you to view status information
easily.

11.2.3 Failover and role reversal

If the primary instance in a log shipping solution fails (or a manual failover is
required for planned maintenance), the failover process is largely a manual effort,
requiring you to back up, copy, and restore outstanding logs to the secondary instance
before configuring log shipping in the reverse direction. This process can be summa-
rized as follows:

1 Disable the log shipping backup, copy, and restore SQL Server Agent jobs.
2 Manually run the backup, copy, and restore SQL Server Agent jobs to push

across any outstanding transaction log backups.
3 Back up the transaction log on the primary instance using the WITH NORECOV-

ERY option. This will place the database in the recovering mode, enabling it to
receive logs from the secondary server once the roles are swapped.

4 Restore the backup from step 3 on the secondary instance using the WITH
RECOVERY option. This will place the secondary database in read/write mode
and make it available for use. At this point, you will need to manually redirect
client connections to the secondary instance.

5 Set up log shipping in the reverse direction, ensuring that the “No, the second-
ary database is initialized” option is selected, as shown in figure 11.5 earlier. At
this point, there will be a set of SQL Agent jobs for the new configuration as well
as disabled jobs for the old configuration. Leaving the old disabled jobs in place
makes future role changes easier—you simply disable one set, enable another,
and ensure tail log backups are applied in the appropriate direction. At this
point, the log shipping roles are reversed.

One of the real benefits of log shipping is its simplicity. The core components of log
shipping are fundamental SQL Server tasks: transaction log backups and restores.
Other than running out of disk space, there isn’t a lot that can go wrong, unless some-
one makes (and removes) an additional transaction log backup without the
COPY_ONLY option that we covered in the previous chapter. That being said, it’s not
without its limitations; the primary one is the manual effort required to change roles

and reconnect clients. In that regard, database mirroring offers a superior solution.

Licensed to Gayle M. Noll <pedbro@gmail.com>

238 CHAPTER 11 High availability with database mirroring

11.3 Database mirroring overview
Available in the Standard and Enterprise editions of SQL Server, database mirroring is
used to maintain a hot standby copy of a database. Transactions generated on the
source (principal) database are sent to the mirror over an encrypted, compressed log
stream and applied in either a synchronous or asynchronous manner. You can choose
between the two modes to prioritize transaction safety or performance.

 If the principal instance fails, an optional witness server can be used to automati-
cally bring the mirror database online with zero data loss. With the necessary connec-
tion logic, applications can automatically reconnect to the mirrored database. The
combination of synchronous mirroring with automatic failover and application recon-
nection logic delivers a truly hands-free high-availability solution for mission-critical
SQL Server databases.

 Unlike log shipping (which applies transactions to the database copy using sched-
uled transaction log backups and restores), database mirroring streams transactions
directly to the mirror database in real time. If you’re using the synchronous mode,
transactions won’t commit at the principal until they’re received and written to the
transaction log at the mirror. As such, databases in a mirroring solution are either an
exact mirror, or seconds apart, which explains why we use the term hot standby rather
than warm standby.

 Like log shipping, database mirroring is established on an individual database-by-
database basis. This is in contrast to failover clustering, which provides protection for
an entire instance, and all the databases contained within. But unlike clustering, mir-
rored databases are typically located on servers in different geographical locations
connected via high-speed communication links. Such configurations assist in the cre-
ation of disaster-recovery designs for mission-critical databases.

 Before we go too much further, let’s define a number of database mirroring terms
that we’ll be using throughout the remainder of this chapter.

11.3.1 Terminology

Like failover clustering, database mirroring comes with a healthy dose of new termi-
nology:

■ Principal and mirror database —In a database mirroring solution, there’s a single
source database that applications connect to. This is known as the principal data-
base. The mirror database is the copy being maintained for failover purposes. If
failover occurs, the roles of principal and mirror are swapped.

■ Principal and mirror instance —The SQL Server instance containing the principal
database is the principal instance. The mirror instance is the instance containing
the mirror database. These instances are frequently located in different loca-
tions as part of a disaster-recovery design. A SQL Server instance can’t be both a
mirror and a principal instance for the same database, but can have different roles
for different databases—for example, an instance can be a mirror instance for

database A and a principal instance for database B.

Licensed to Gayle M. Noll <pedbro@gmail.com>

239Database mirroring overview

■ Failover —A failover is the process of moving the principal role to the mirror.
This can be an automatic process using a witness, or can be initiated manually.

■ Witness —A witness is an optional role in a mirroring solution that enables an
independent SQL Server instance to observe the mirroring process and provide
automatic failover where required.

■ High-performance mode —In high-performance mode, transactions are sent from the
principal to the mirror database asynchronously; therefore, depending on the
transaction rate and network bandwidth/congestion, the mirror database may
fall behind the principal by longer than expected.

■ High-safety mode —In high-safety mode, transactions are sent from the principal to
the mirror database synchronously. For mission-critical databases connected over
high-speed network interfaces, this is the option used for achieving zero data
loss automatic failover with a witness instance.

■ Forced service —In high-performance mode, or high-safety mode without auto-
matic failover, forced service forces the principal role to move to the mirror data-
base, which may result in data loss.

■ Endpoint —Principal and mirror databases communicate over dedicated mirror-
ing endpoints using the TCP/IP protocol and unique port numbers.

■ Send and redo queues —In some situations, the transaction rate on the principal
database may exceed the rate at which transactions can be sent to the mirror.
Equally so, on the mirror they may be received faster than they can be applied.
In each case, the transaction logs are used at the principal and mirror to catch
up. The section of the transaction log that’s yet to be sent or applied is referred
to as the send queue and redo queue, respectively.

As with all high-availability technologies, database mirroring has a number of impor-
tant restrictions.

11.3.2 Mirroring restrictions

Before we continue, let’s cover some of the restrictions of database mirroring:
■ Unlike transaction log shipping, which supports the Bulk_Logged recovery

model, database mirroring only works for databases using the full recovery
model.

■ The mirror database can’t be read unless you create a database snapshot against
it. We covered database snapshots in the previous chapter. Depending on the
environment and mirroring mode, a snapshot may introduce an unacceptable
performance overhead.

■ Mirroring is set up for individual databases—in other words, you can’t mirror at
an instance level. While you can individually mirror more than one database
within an instance, there are special considerations when mirroring databases
with interdependencies, a topic we’ll cover later in this chapter.

■
 System databases (master, model, msdb, and tempdb) can’t be mirrored.

Licensed to Gayle M. Noll <pedbro@gmail.com>

240 CHAPTER 11 High availability with database mirroring

■ You can have only one mirror database for each principal, unlike log shipping
where logs from a source database can be shipped to multiple destinations.
However, the one database can be both log shipped and mirrored.

■ Databases involved in cross-database or distributed transactions aren’t sup-
ported in database mirroring. We’ll explore this restriction in more detail later
in the chapter.

■ As covered in chapter 9, database mirroring can’t be enabled on databases con-
taining FileStream data.

With that brief introduction in mind, let’s move on and discuss the two major types of
database mirroring modes: asynchronous (high performance) and synchronous (high
safety).

11.4 Mirroring modes
Later in the chapter we’ll go through the process of preparing for and setting up a
mirroring session. For now, let’s concentrate on the process behind the delivery of
transactions from the principal to the mirror during a mirroring session, and how this
process is performed based on the mirroring mode.

 A database mirroring session begins with the mirror instance identifying the log
sequence number (LSN) of the last transaction applied to the mirror database. The
mirror instance then obtains any outstanding transactions from the transaction log of
the principal database. The outstanding transactions received from the principal
instance are written to the transaction log of the mirror database and rolled forward.
The outstanding transactions to roll forward are known as the redo queue, and the
depth of this queue determines the catch-up time and therefore the minimum time to
fail over the principal role to the mirror database.

 The mirroring process for a synchronous mirroring session is summarized in fig-
ure 11.9.

Figure 11.9 Synchronous database mirroring. In asynchronous mirroring, the transaction

1) Transaction written to log 2) Log record streamed to mirror
3) Log record hardened to transaction log 4) Transaction commits on the principal
5) Transaction rolled forward on the mirror DB

Synchronous Database Mirroring (High Safety)

Mirroring DBPrincipal DB
commits on the principal database after step 2.

Licensed to Gayle M. Noll <pedbro@gmail.com>

241Mirroring modes

As updates on the principal database continue, the transactions are streamed from
the principal’s transaction log to the mirror’s transaction log and rolled forward on
the mirror database. The mirroring mode, asynchronous (high performance) or syn-
chronous (high safety), determines how the principal’s transactions are sent and
received.

11.4.1 High performance (asynchronous)

Asynchronous mirroring is only available in the Enterprise edition of SQL Server.
Under asynchronous mode, a transaction is committed on the principal as soon as it’s
sent to the mirror; it doesn’t wait for an acknowledgment from the mirror that the
transaction has been written to the mirror’s transaction log, nor is the principal
affected in any way by a failure at the mirror (other than a loss of failover capabilities).
As such, asynchronous mirroring is used when transaction performance at the princi-
pal is of prime concern.

 The high-performance nature of asynchronous mode comes with a reduction in
high availability. In cases where the transaction load at the principal is very high, or
the mirror server is overloaded (or both), the redo queue on the mirror may become
very deep, increasing failover time. Further, given the transaction delivery method,
there’s no guarantee that the mirror partner receives and applies each transaction.

The only failover option for asynchronous mirroring is forced service, which is only
available if the principal instance is disconnected from the mirror. When this option is
invoked (we’ll cover this feature later in this chapter), the mirroring database assumes
the role of principal.

 Given the possibility of data loss, the forced service failover option should be used
as a last resort. If you’re considering using this option due to failure of the principal,
consider these alternatives:

■ You can wait for the principal server to recover.
■ If the downtime is unacceptable and service needs to be resumed immediately,

attempt to back up the tail of the transaction log on the principal. If this suc-
ceeds, mirroring can be removed and the tail of the log restored to the mirror

Database mirroring in SQL Server 2008
First introduced in SQL Server 2005, database mirroring is improved in 2008 through
automatic recovery from certain types of data corruption (Enterprise edition only) and
log stream compression. Upon detection of a corrupted page, the principal and mirror
databases can request fresh copies of the page from each other and overwrite the
corrupted page with a good copy. Log stream compression improves the performance
of database mirroring by compressing the transaction log stream between the princi-
pal and mirror and therefore reducing the network bandwidth requirements while in-
creasing transaction throughput.
database and brought online.

Licensed to Gayle M. Noll <pedbro@gmail.com>

242 CHAPTER 11 High availability with database mirroring

Asynchronous mode mirroring is typically used in disaster-recovery designs where the
principal and mirror servers are in different physical locations and the network con-
nectivity between them may lead to unacceptably large transaction latency under the
synchronous mode. If the possibility of some data loss is accepted as a consequence of
the highest performance, asynchronous mirroring presents a good disaster-recovery
option, but for situations in which zero data loss is the target, consider high-safety syn-
chronous mirroring.

11.4.2 High safety (synchronous)

Synchronous mirroring is available in both the Standard and Enterprise editions of
SQL Server. In synchronous mode, transactions aren’t committed on the principal
database until written, or hardened, to the transaction log on the mirror database.
While this increases transaction latency, synchronous mirroring ensures each transac-
tion is recoverable on the mirror database, and is therefore an excellent solution for
protecting mission-critical data.

 When running in high-safety mode, special consideration needs to be given to
long-running or intensive operations (or both) such as index rebuilds and bulk loads.
The load from these types of operations often leads to a measurable reduction in the
performance throughput. While the suspend option, discussed later in the chapter,
can assist here, such impact should be carefully measured in a testing environment
before production implementation.

 A crucial consideration when choosing high-safety mirroring is the network
latency between the principal and mirror instances. The excellent Microsoft whitepa-
per1 “Database Mirroring Best Practices and Performance Considerations” highlights
a connection between network latency, transactions per second, and transaction
response time. One of the things that stands out, as shown in figure 11.10, is that once

1 Database Mirroring Best Practices and Performance Considerations, Sanjay Mishra, Microsoft Corporation, Feb-

Figure 11.10 As
network latency
increases, the impact
on transaction
response time and
throughput increases.

Network latency (ms)

Synchronous Database Mirroring - Stats by Network Latency

R
es

po
ns

e
tim

e
(s

ec
)

 2 14 20 50 100 200

300

250

200

150

100

50

0

Tr
an

sa
ct

io
ns

/s
ec

12

10

8

6

4

2

0

Transactions/sec

Response time (sec)
ruary 2006. Links and further details available at http://www.sqlCrunch.com/HA.

Licensed to Gayle M. Noll <pedbro@gmail.com>

243Failover options

the network latency increases beyond 50ms, the effect on transaction throughput and
response time is dramatic.

 The average local area network (LAN) typically has a latency of less than 5ms with
metropolitan area networks (MANs) and wide area networks (WANs) anywhere up to
200ms or more. Before selecting synchronous mirroring, perform thorough testing
with actual or simulated network latencies to measure the performance impact on the
expected workload.

 When the principal and mirror instances are separated over large distances using a
WAN, asynchronous mirroring is typically used as part of a disaster-recovery solution.
In LANs or low-latency MANs, synchronous mirroring is often deployed in preventing/
reducing downtime for both planned and unplanned outages.

 Based on the mirroring mode, and the presence or absence of a witness instance,
there is a variety of failover options.

11.5 Failover options
The three types of failover options are automatic, manual, and forced service. Table 11.2
summarizes the availability of these options based on the mirroring mode and pres-
ence of a witness instance.

Let’s begin this section with a look at automatic failover.

11.5.1 Automatic failover with SNAC

If the principal instance fails, automatic failover brings the mirror database online as the
new principal database. For this to occur, all of the following conditions must be true:

■ Mirroring must be operating in the high-safety (synchronous) mode.
■ A witness instance must be present.
■ The mirror database must be synchronized—that is, all outstanding transac-

tions from the principal should be written to the transaction log on the mir-
ror database.

■ The principal instance must lose communication with the witness and mirror.
■ The witness and mirror instance must remain in contact.
■ The mirror instance must detect the loss of the principal instance.

The last bullet is a crucial item and requires more explanation. There are various

Table 11.2 Supported failover modes by mirroring type

Mirroring mode Witness Supported failover modes

High performance No Forced service

High safety No Manual or forced service

High safety Yes Automatic, manual, or forced service
types of failure conditions that may lead to the loss of the principal and are broadly

Licensed to Gayle M. Noll <pedbro@gmail.com>

244 CHAPTER 11 High availability with database mirroring

categorized into hard and soft errors. An example of a hard error is a power failure; a
TCP/IP timeout is regarded as a soft error.

 Unlike soft errors, hard errors are typically reported immediately. In either case,
database mirroring uses a timeout setting in combination with a heartbeat between the
mirroring partners in order to detect failure. The default timeout value is 10 seconds.
If a mirroring partner doesn’t receive a response within that time, a failure is assumed.
For synchronous mirroring, you can adjust this value, although you shouldn’t use a value
of less than 10 seconds to prevent unwanted failovers due to temporary network issues.

 With these conditions in mind, let’s walk through the process of an automatic
failover, starting from the point of assumed failure:

1 The principal database, if still available, sets its status to disconnected, and drops
any client connections.

2 The witness and mirror instances register the principal instance as unavailable.
3 The mirror database rolls forward any outstanding transactions in its redo queue.
4 The mirror database comes online as the new principal.
5 When the original principal database comes online, it’s registered as the mirror,

and synchronizes missing transactions.

Let’s consider step 1 in more detail. Imagine a case where a private network connec-
tion to the mirror and witness instances breaks but the public network used for client
connections is still available. In this case, the database is still up and running and avail-
able to clients, but a mirroring failure is assumed. By actively disconnecting the client
connections, a situation is prevented whereby both databases may temporarily receive
updates to the database, resulting in a loss of data.

To fully benefit from automatic failover, you should consider how clients can be auto-
matically reconnected to the mirror database. One of the great things about database
mirroring is that client connections using SQL Server Native Client (SNAC) can benefit
from its understanding and awareness of database mirroring. A SNAC connection
string includes the Failover Partner option, as shown in this example:

Mirroring quorum
Enabling a witness role in a mirroring session introduces the concept of quorum. A
mirroring session is said to have quorum when at least two of the three instances
(principal, mirror, and witness) in the mirroring relationship are connected. For a mir-
roring database to be available, quorum must exist. When all three instances are con-
nected, full quorum exists. If the principal instance fails, the mirror instance has
quorum with the witness and coordinates with it to take on the role of principal. If the
new principal then loses the connection to the witness, no quorum exists, and the
database is taken offline.
Data Source=SV1\Sales; Failover Partner=SV2\Sales; Initial Catalog=Sales;

Licensed to Gayle M. Noll <pedbro@gmail.com>

245Failover options

Using the SNAC’s failover partner option automates a lot of the hard work in applica-
tion reconnection logic required for other high-availability options. However, even
with database mirroring in place, client connections originating from non-SNAC
sources won’t be able to take advantage of automatic reconnection, unless the recon-
nection logic is coded into the application. This is an important high-availability con-
sideration; while the database may fail over immediately and without any data loss, if
the clients can’t automatically reconnect to the mirror, it can hardly be considered a
success, thus devaluing part of the appeal of automatic failover.

 High-safety mirroring sessions can also use the manual failover method.

11.5.2 Manual failover

The manual failover method, available only in high-safety (synchronous) mode, is typ-
ically used when preparing for a planned outage such as a hardware or service pack
upgrade. We’ll see an example of a manual failover later in the chapter, but a sum-
mary follows:

1 The DBA enacts the manual failover, which swaps the mirroring roles between
the principal and mirror.

2 Applications are reconnected to the new principal database once it completes
the processing of its redo queue and comes online.

3 Mirroring is suspended and the mirror instance is taken offline for upgrade,
during which time the principal database runs exposed—that is, failover of any
type isn’t possible, so if the new principal instance fails, an outage will result.

4 Once the upgrade is complete, the mirror database rejoins the mirroring ses-
sion and synchronizes outstanding transactions (catches up).

At this point, the mirroring roles can be reversed to return the instances to their original
state, although assuming both servers are configured with the same processing capacity
and load, this step shouldn’t be required, so the current roles could remain in place.

 Of course, if there are multiple databases on the server being taken offline for a
planned outage, and some of them aren’t mirrored, then this approach obviously
needs to be reconsidered.

 The final failover mode is forced service.

11.5.3 Forced service

Typically used in disaster-recovery scenarios with high-performance (asynchronous)
mirroring, this option brings the mirror database online and makes it available for cli-
ent connections only if the link between the principal and mirror instances is lost.

 The critical consideration before enacting this failover mode is the possibility of
data loss. If a network connection drops and the principal database continues process-
ing transactions before failover, these transactions won’t be available for recovery on
the mirror database. As such, forced service is typically only used when service must be

resumed as soon as possible and the possibility of data loss is accepted.

Licensed to Gayle M. Noll <pedbro@gmail.com>

246 CHAPTER 11 High availability with database mirroring

 In closing our section on failover modes, let’s walk through a number of failover
scenarios.

11.5.4 Failure scenarios

To understand how failure is handled based on the mirroring mode and which
instance fails, consider table 11.3. Read the notes that follow the table in conjunction
with each example.

Action Notes:

1 Assuming the mirror and witness are in contact, automatic failover occurs after
the nominated timeout.

2 Mirroring is stopped on the mirror database using ALTER DATABASE <dbname>
SET PARTNER OFF. The mirroring database is then recovered using RESTORE
DATABASE <dbname> WITH RECOVERY. When the principal server becomes avail-
able, mirroring would need to be reestablished, this time in the reverse direction.

3 Service is forced by running this command on the mirror database: ALTER
DATABASE <dbname> SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS.

4 For as long as database mirroring exists, transactions generated on the princi-
pal must remain in the transaction log, so disk space usage would need to be
closely monitored while the mirror instance is unavailable.

Armed with an overview of database mirroring principals and options, let’s roll up our
sleeves and get into the details of the implementation.

11.6 Mirroring in action
In this section we’ll walk through an example of setting up, failing over, and monitor-
ing database mirroring. Before we start the setup process, let’s review a number of
important design considerations and preparatory steps:

■ SQL version —The principal and mirror instances must be running the same ver-
sion and edition of SQL Server. If the database fails over, the same feature set

Table 11.3 Failure scenarios by mirroring topology and transaction safety

Failure Mirroring mode Witness Action

Principal Synchronous Yes Automatic failover (see note 1)

Principal Synchronous No Manual failover (see note 2)

Principal Asynchronous No Force service to make mirror available (see
note 3)

Mirror Both Both Principal runs exposed and transactions
retained (see note 4)

Witness Synchronous Yes Automatic failover not possible
needs to be available to ensure application behavior continues as normal.

Licensed to Gayle M. Noll <pedbro@gmail.com>

247Mirroring in action

■ Collation —Ensure the principal and mirror instances are using the same colla-
tions.

■ Network latency —As covered earlier, this can have a significant impact on trans-
action throughput and response time for high-safety (synchronous) mode.
There are a number of tools and techniques for simulating varying levels of net-
work latency, and the impact on load should be measured with the highest
expected latency before proceeding with the high-safety mode.

■ Network quality —Consider the possibility of small network problems causing
unwanted automatic failovers. If using synchronous mirroring, you can avoid
unwanted failovers by removing the witness server from the mirroring topology.

■ Capacity —The capacity of the mirror server should be at least as great as that of
the principal. In the event of failover, if the mirror server is unable to handle
the load, the benefits of mirroring are obviously reduced. Capacity includes
enough free disk space and processing power. Ideally, both the mirror and prin-
cipal instances are configured identically, with load on the mirroring instance
able to sustain the additional load from the principal in a failover event.

■ Application failover —To fully capitalize on the automatic failure mode, consider
the ability of the application to automatically reconnect to the mirror database
when failover occurs—for example, using SNAC with a failover partner specified
in the connection string.

■ Recovery model —The principal database must be using the full recovery model.
■ SQL logins —To enable applications to continue working after a mirroring

failover, ensure that the same logins are created on both the principal and mir-
ror instance and that they’re created with the same security identifier (SID) val-
ues (using the SID = clause of the CREATE LOGIN statement).

So let’s get started. Like most tasks, the setup of database mirroring can be performed
using either a T-SQL script or SQL Server Management Studio. For our example, we’ll
use Management Studio.

11.6.1 Mirroring setup

The first step in setting up database mirroring is to initialize the mirror database. This
is achieved by restoring a full backup of the principal database and at least one trans-
action log backup using the WITH NORECOVERY option. A transaction log backup must
be restored in order to obtain the latest log sequence number (LSN) to determine the
starting point for the redo queue when mirroring starts.

 If any additional transaction log backups are made on the principal database
before mirroring setup is started, these backups need to be restored using the WITH
NORECOVERY option on the mirror database. If any scheduled transaction log backup
jobs exist, such as maintenance plans or log shipping jobs, disabling them until mir-
roring is initialized will simplify the mirroring setup process.
Licensed to Gayle M. Noll <pedbro@gmail.com>

248 CHAPTER 11 High availability with database mirroring

 In the previous chapter we covered the process of restoring database backups and
transaction logs without recovery; here’s an example of doing this on the mirror server:

-- Restore the Sales DB and roll forward using a transaction log restore
RESTORE DATABASE [Sales]
FROM DISK = N'G:\SQL Backup\Sales.bak'
WITH NORECOVERY
GO

RESTORE LOG [Sales]
FROM DISK = N'G:\SQL Backup\Sales-Trn-1.bak'
WITH NORECOVERY
GO

Once the mirrored database is initialized, begin the mirroring setup process by right-
clicking on the database to be mirrored and choosing Tasks > Mirror. The resulting
screen, shown in figure 11.11, is the starting point for mirroring configuration.

Figure 11.11 The mirroring tab of a database’s properties allows mirroring to be established,
or if already established, paused, resumed, removed, or failed over.

At this point, click the Configure Security button, which will take you to the screen
shown in figure 11.12. You can choose whether or not you’d like to include a witness
server in the mirroring setup. For our example, we’ll choose Yes and click Next.
Figure 11.12 Selection of a witness server is optional.

Licensed to Gayle M. Noll <pedbro@gmail.com>

249Mirroring in action

After choosing to save the security configuration in the witness instance, the next
three steps are to configure the principal (see figure 11.13), mirror, and witness
instances. In each case, we select the instance to use, the TCP port, the endpoint
name, and the encryption choice. Other than the instance name, all other options are
supplied with default values, as shown in figure 11.13.

The next screen, shown in figure 11.14, lets you specify the service account for each
instance in the mirroring configuration. If you leave these fields blank, you’ll have to
manually add each service account to each instance, in addition to granting each
account access to the mirroring endpoint. For example, in our example after adding
the service account as a SQL login, we’d run the following command on each instance:

-- Grant the service account access to the mirroring endpoint
GRANT CONNECT on ENDPOINT::Mirroring TO [BNE-SQL-PR-01\SQL-Sales];

Figure 11.13 The Mirroring
Security Wizard allows
each instance in the
mirroring configuration
to be configured with a
TCP port, endpoint, and
encryption option.

Figure 11.14 For each
instance in the mirroring
configuration, service
accounts are provided.
Licensed to Gayle M. Noll <pedbro@gmail.com>

250 CHAPTER 11 High availability with database mirroring

Once you’ve provided this information, the wizard completes and offers to start the
mirroring session. At this point, the databases will synchronize and then appear in
SQL Server Management Studio, as shown in figure 11.15.

 In our case, the Sales database is now in the Principal, Synchronized state, with the
mirror remaining in the Restoring state. The list of possible statuses for the principal
database appears in table 11.4.

Now that we’ve set up database mirroring, let’s take a look at the monitoring process.

11.6.2 Monitoring database mirroring

There are several tools and techniques for monitoring database mirroring, including
system stored procedures, catalog views, performance counters, and the GUI-based
Database Mirroring Monitor.
DATABASE MIRRORING MONITOR

You can access the Database Mirroring Monitor in SQL Server Management Studio by

Table 11.4 Mirroring session states

Mirroring state Description

Synchronizing The mirror DB is catching up on outstanding transactions.

Synchronized The mirror DB has caught up.

Disconnected The mirror partners have lost contact.

Suspended Caused by pausing (covered shortly) or failover. No logs are
sent to the mirror DB.

Pending failover Temporary state at the principal during failover.

Figure 11.15 SQL Server Management Studio marks the role and status of the mirrored database.
right-clicking a database and choosing Tasks > Launch Database Mirroring Monitor.

Licensed to Gayle M. Noll <pedbro@gmail.com>

251Mirroring in action

This tool, as you can see in figure 11.16, displays the mirroring status and related
information for all mirrored databases on the SQL Server instance.

 Information displayed by the Database Mirroring Monitor includes the following:
■ Mirroring state
■ Role of the server instance (principal or mirror)
■ Status of the witness instance if present
■ Amount of log in the principal’s send queue and the mirror’s redo queue
■ Oldest unsent transaction
■ Current rate of new transactions entering the principal database (kb/sec)
■ Current rate at which transactions are being sent to the mirror (kb/sec)
■ Current rate at which transactions are being processed at the mirror’s redo

queue (kb/sec)
■ Average delay per transaction in waiting for confirmation of transaction hard-

ening on the mirror (this is specific to high-safety [synchronous] mirroring
only, and indicates the overhead of this mode in comparison to high perfor-
mance [asynchronous] mirroring)

Information displayed by the Database Mirroring Monitor is captured on a regular
basis (1 minute by default) by a SQL Server Agent job that updates mirroring informa-
tion stored in msdb tables. If a mirroring session is created using SQL Server Manage-
ment Studio, the SQL Server Agent job is created automatically.
SYSTEM STORED PROCEDURES

In addition to the Database Mirroring Monitor job, several system stored procedures
exist that you can use to view and configure monitoring:

■ sp_dbmmonitorupdate — This procedure is called by both the SQL Agent job

Figure 11.16 Database Mirroring Monitor

and Database Mirroring Monitor to perform the updates on the mirroring sta-

Licensed to Gayle M. Noll <pedbro@gmail.com>

252 CHAPTER 11 High availability with database mirroring

tus table in the msdb database. This database is used by both the Database Mir-
roring Monitor and the sp_dbmmonitorresults procedure (discussed shortly).
When first executed, this procedure will create the msdb table to store database
mirroring status information. Then it will insert new status records and purge
records older than the retention period (default: 7 days).

■ sp_dbmmonitoraddmonitoring — This procedure creates the SQL Server Agent
jobs to periodically update the msdb tables containing the mirroring status.
Running this procedure is required if database mirroring is established using T-
SQL rather than using Management Studio.

■ sp_dbmmonitorchangemonitoring — This procedure is used to change the
update interval for the SQL Agent job that updates mirroring status information.

■ sp_dbmmonitorhelpmonitoring — This procedure returns the current value for
the update interval, set using sp_dbmmonitorchangemonitoring.

■ sp_dbmmonitordropmonitoring — This procedure stops and removes the SQL
Agent job that updates the mirroring status tables in the msdb database.

■ sp_dbmmonitorresults — This procedure can be used as an alternative to the
Database Mirroring Monitor. It returns the same information but in a text-
based format. It takes three parameter values: a value specifying the mirrored
database name to return results for, a value indicating the quantity of rows to
return, and a value indicating whether you want to update mirroring status as
part of the execution.

CATALOG VIEWS

SQL Server exposes database mirroring metadata through a number of catalog views:
■ sys.database_mirroring — This view returns one row for each database on the

instance in which the view is queried. Columns returned include the mirroring
status, role, safety level, and witness status.

■ sys.database_mirroring_endpoints — Returns information about each data-
base mirroring endpoint enabled on the instance.

■ sys.database_mirroring_witnesses — Returns a row for each witness role
played by the instance containing information, such as the safety level, principal,
and mirror server names and synchronization state of the mirroring partners.

PERFORMANCE COUNTERS

On either the principal or mirror server, Windows System Monitor can be used to view
database mirroring information, including redo and send queue depth, and log data
throughput per second. The counters are exposed using the SQLServer:Database Mir-
roring performance object.
WARNING THRESHOLDS

Finally, one important aspect of monitoring of any type is being able to specify thresh-
old values for important metrics and be alerted when such thresholds are exceeded.
For database mirroring, thresholds can be set for the following metrics:

■ Oldest unsent transaction — This metric is used to alert on the existence of old
transactions in the send queue. If transactions exist that exceed the specified

age in minutes, an alert is raised using event ID 32040.

Licensed to Gayle M. Noll <pedbro@gmail.com>

253Mirroring in action

■ Unsent log — This metric is used to set the maximum allowable size (in kb) of
transactions in the send queue. This threshold uses event ID 32042.

■ Unrestored log — Similar to the unsent log, this metric applies to the allowable size
of the redo queue on the mirror database. This threshold uses event ID 32043.

■ Mirror commit overhead — Used for high-safety (synchronous) mirroring, this met-
ric allows an alert to be generated when the average transaction delay to harden
log records to the mirror log exceeds a specified number of milliseconds. This
threshold uses event ID 32044.

You can set threshold values through the Set Warning Thresholds tab, as shown in fig-
ure 11.17, accessible by clicking the Set Thresholds button on the Warnings tab of the
Database Mirroring Monitor tool, or by using the system stored procedures
sp_dbmmonitorchangealert, sp_dbmmonitorhelpalert, or sp_dbmmonitordropalert.

Figure 11.17 Set warning thresholds for various mirroring delay conditions in the Set Warnings
Thresholds tab accessible through the Database Mirroring Monitor.

When a threshold value is exceeded, an informational entry is written to the Win-
dows event log, and as we’ll see in chapter 14, alerts on these messages can be created
very easily.

 At some point in the mirroring session, we may need to suspend mirroring. Let’s
take a look at that process now.

11.6.3 Suspending and resuming mirroring

A running mirroring session can be suspended using either SQL Server Management
Studio or T-SQL as shown here:

-- Suspend Mirroring
ALTER DATABASE Sales
SET PARTNER SUSPEND

When suspended, the mirroring session remains in place for later resumption with
the principal database available for use. While suspended, transactions aren’t copied
to the mirror database. During this time, the principal runs exposed—that is, no
failover to the mirror database is possible. Further, transactions can’t be truncated

from the principal’s transaction log until they’re copied to the mirror’s log, which

Licensed to Gayle M. Noll <pedbro@gmail.com>

254 CHAPTER 11 High availability with database mirroring

means transactions will build up in the principals log for the duration of suspension.
It follows that the longer the suspension, the larger the transaction log will grow. Fur-
ther, when resumed, the redo log on the mirror database may be quite large, increas-
ing the failover time if the principal database fails.

 So why would you choose to suspend mirroring? Let’s imagine we’re running in
high-safety mode (synchronous mirroring) and we’re about to bulk load a very large
data file and/or rebuild a large index. We want to complete this process as soon as
possible to reduce the impact on users, or within a defined maintenance window. As
we explained earlier, transactions won’t commit in synchronous mode until they’re
hardened to the transaction log on the mirror database. For long-running operations
such as large bulk loads or maintenance on large indexes, the performance overhead
of synchronous mode is magnified, potentially extending the completion time of cer-
tain operations to an unacceptable level.

 By suspending mirroring, we’re able to complete maintenance operations in the
time taken in a nonmirrored environment. Once resumed, the transactions will catch
up on the mirror. If we accept the possibility of running exposed for the duration of
the suspension and ensure adequate transaction log space is available, we’re able to
maximize performance and transaction throughput during periods of high activity.

 A mirroring session can be resumed using T-SQL:

-- Resume Mirroring
ALTER DATABASE Sales
SET PARTNER RESUME

Once resumed, the mirroring session will enter the synchronizing state, with the mir-
roring database catching up on transactions that have occurred since mirroring was
suspended.

 In addition to pausing and resuming the mirroring session, we can also initiate
failover.

11.6.4 Initiating failover

Manually initiating failover is possible in either high-safety mode (synchronous mir-
roring) through manual failover, or in high-performance mode (asynchronous mir-
roring) using forced service.

 When the mirroring databases are in the synchronized state, manual failover is
specified by running the ALTER DATABASE SET PARTNER FAILOVER command on the
principal database, as in this example:

-- Initiate Manual Failover
ALTER DATABASE Sales
SET PARTNER FAILOVER

At this point, clients are disconnected, active transactions are rolled back, and the
roles of principal and mirror are swapped. As mentioned earlier, the only failover
mode supported for databases mirrored in high-performance mode is the forced ser-

vice option, which may result in data loss. The forced service option is executed on

Licensed to Gayle M. Noll <pedbro@gmail.com>

255Mirroring in action

the mirror database as shown in the following example, and is only available when the
principal instance is disconnected:

-- Force Failover - run on mirror instance - data loss possible
ALTER DATABASE Sales
SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS

In addition to the T-SQL methods, we can use Management Studio to implement
failover mirroring using the Mirroring page of a database’s properties window, as
shown earlier in figure 11.11.

 Before concluding the chapter, let’s cover some important considerations when
mirroring multiple databases on the same SQL Server instance.

11.6.5 Considerations for mirroring multiple databases

One of the limitations with a database mirroring session is that it’s used to mirror a
single database with other mirrored databases on the server operating on different
mirroring sessions and therefore failing over independently. One of the implications
of this for connected databases is that if there are interdependencies between two or
more mirrored databases, there’s no way of ensuring that they fail over as a group.

 Take, for example, an application that uses two or more databases. If each of the
databases can fail over independently of the other, and the application uses a single
connection string for the server and instance name, problems will result when only
one database fails over.

 In most cases, a failure will occur at an instance level, causing all mirrored data-
bases to fail over at once, but individual disk failures or temporary network problems
may cause single database failovers. To reduce the problems associated with multiple
mirrored databases on the same instance, consider these practices:

■ Configure all principal databases to fail to the same mirror instance. This
ensures shared connection settings can use the one failover instance for multi-
ple databases.

■ Set up alerts, covered in chapter 14, for failover events. Such alerts can be used
to ensure all databases fail together, and potentially can be used to automate
the manual failover of remaining databases.

■ Consider alternate high-availability strategies. Depending on the situation,
failover clustering may present a better alternative to database mirroring.

There’s one final thing to consider for mirroring multiple databases on the same
instance: additional worker threads, memory, and other resources are used for each
mirroring session. The more mirrored databases, the greater the load on the instance,
and the higher the network saturation. It follows that each session won’t perform as
well as the load increases, and in the worst case, may lead to session failovers. There’s
no maximum number of mirrored databases per instance.2 The load characteristics of
each database should be considered in line with the overall server capacity.
2 Books Online suggests a maximum of 10 mirrored databases for a 32-bit server instance.

Licensed to Gayle M. Noll <pedbro@gmail.com>

256 CHAPTER 11 High availability with database mirroring

11.7 Best practice considerations: high availability
As with performance tuning where there will always be a bottleneck somewhere, each
high-availability plan typically has its own weak points. On its own, database mirroring
won’t protect against poor maintenance practices and corrupted backups; it should
therefore be seen as one component of a much broader high-availability plan.

■ Service level agreements should be considered your binding contract. You
wouldn’t pay a builder to build your house without specific instructions and
contract conditions; likewise, you can’t effectively design and administer a
highly available database system without a set of service level agreements in
place. Know what they are and have confidence that they’re achievable through
well-thought-out and simulated disaster-recovery plans.

■ During the process of developing service level agreements, prepare option
papers that clearly list alternate options, costs, and corresponding service levels
that can be achieved. Such papers assist the decision-making and budgeting
process, and set expectations at the appropriate level for both customers and
management.

■ To prevent unexpected problems leading to system outages (therefore impact-
ing availability targets), ensure appropriate development and test systems exist
to assess the impact of database changes before they reach production; by the
time a change makes its way to production, everyone responsible for the change
should have complete confidence that it won’t have any adverse effects.

■ Database object definition and modification scripts should be stored in a source
control tool in order to support reproducing a database at a defined version
with options to roll forward changes as required to achieve a desired state.

■ Aside from resource capacity such as the amount of RAM or CPU power, devel-
opment, test, and production environments should be as identical as possible to
minimize unexpected problems. Items that should be the same include colla-
tion, CPU platform, SQL version/edition, and service pack/hotfix level.

■ For each production environment, a corresponding load-testing environment
should be available and ideally configured identically to production, or at a
scale such that the performance differences are well understood. Such environ-
ments, in combination with a load-testing tool, are critical in ensuring changes
will work under production load.

■ Consider the importance of accurate test data in development/test environ-
ments. If possible, provide complete copies of production data, or obfuscate
where appropriate for security. Consider cloning a database’s histograms and
statistics to enable more accurate query execution plans for development data-
bases if production-sized databases can’t be used.

■ Use a schema comparison tool such as Visual Studio Team System Database Edi-
tion (aka Data Dude) or a third-party tool. These tools are invaluable in trou-

bleshooting schema difference problems.

Licensed to Gayle M. Noll <pedbro@gmail.com>

257Best practice considerations: high availability

■ Document each database change, including details such as the date and time of
the action, the location of the script, who performed the change, change out-
put or log files, and so forth, and where possible, have undo scripts for each
change. Use database backups or snapshots before significant changes if undo
scripts aren’t feasible.

■ Unless the organization has invested in infrastructure capable of achieving five
nines (99.999%) availability, it’s crucial that planned outages be scheduled on
a regular basis in order to manage user (and management) expectations and
plan for critical maintenance operations such as service pack upgrades.

■ Consider combining high-availability solutions to minimize the limitations of
each. For example, use clustering to protect instances and databases as a group
together with mirroring or log shipping critical databases offsite for geographi-
cal protection.

■ Use an independent monitoring instance in a log shipping configuration—that
is, don’t use the primary or secondary instance as the monitor.

■ If using transaction log shipping on a cluster, set up the file share for the trans-
action logs as a clustered resource. This will ensure the file share survives a clus-
ter node failover, enabling log shipping to continue running.

■ The default mirroring configuration is high safety with automatic failover (if a
witness server is included). Prior to production implementation, simulate vari-
ous network latencies in a test lab to measure the impact on transaction perfor-
mance and the chances of unwanted failovers. Starting with high performance
(asynchronous) mirroring is perhaps the best approach until the environment-
specific nuances of mirroring are well understood.

■ Allow plenty of free disk space for transaction logs; in situations where the mir-
ror database is unavailable, transactions can’t be removed from the principal’s
transaction log until delivered to the mirror.

■ Like a clustering implementation, ensure both mirroring partners are config-
ured identically (hardware capacity, SQL Server edition and version, collation,
and so forth), and make sure the additional load from a failover condition can
be handled by the mirror partner.

■ To enable applications to continue working after a mirroring failover, create
the same logins on both the principal and mirror instance and use the same
SID values (via the SID = clause of the create login statement).

■ Avoid using a witness instance for high performance (asynchronous) mirror-
ing. Unlike high-safety (synchronous) mirroring, the witness instance can’t ini-
tiate automatic failure in high-performance mode, which means the major
benefit of using a witness is unavailable. On the downside, a witness can intro-
duce a “false positive,” whereby the database is taken offline if the principal
loses network contact with the mirror and witness. In essence, you get no bene-

fit while keeping the downside.

Licensed to Gayle M. Noll <pedbro@gmail.com>

258 CHAPTER 11 High availability with database mirroring

■ Before commissioning a production database mirroring solution, observe appli-
cation connection behavior with test failovers to ensure logins (and other
aspects of system behavior) continue working on the mirror instance.

■ Avoid reconfiguring mirroring endpoints while in use. Doing so may introduce
an unwanted failover.

■ Consider pausing high-safety (synchronous) mirroring during periods of high
activity such as large bulk loads and index maintenance. Doing so will speed up
the processing time of these actions (at the price of running exposed). Before
doing so, ensure enough transaction log disk space is available on the partner
servers.

■ In a two-site high-safety (synchronous) mirroring solution used for disaster-
recovery purposes, place the witness instance on the side of the principal
instance. This avoids a common situation whereby the link between the sites goes
down, and the principal instance loses quorum (in other words, loses contact
with both the mirror and witness). In this case, the principal instance will take its
database offline. By placing the witness with the principal, losing the network
link will enable the principal to continue running, albeit in an exposed mode.

■ On a server containing multiple mirrored databases, ensuring all of the data-
bases fail to the same mirror server will simplify application connection pro-
cesses. Further, ensuring all mirrored databases on a server are either mirrors
or principals will enable rolling upgrades (manual failovers) to proceed in a
smooth manner.

■ Carefully monitor the CPU usage on servers participating in high safety with
automatic failover mirroring. Servers with very high CPU usage may fail to
respond to ping requests within the nominated timeout period, and may be
subjected to unwanted failover events.

■ The minimum timeout period for a mirroring session should be 10 seconds or
greater. A value less than this may lead to false positive failover conditions dur-
ing temporary network or server conditions.

■ If a mirroring principal is set up as a clustered instance, consider adjusting the
mirroring session timeout value to greater than the default 10 seconds. Doing
so will prevent mirroring failover during a clustering failover. Typical cluster
failovers take up to 90 seconds to complete, so adjusting the mirroring timeout
to at least this value is recommended. Use ALTER DATABASE x SET PARTNER
TIMEOUT 90 or something similar.

■ If combining mirroring and log shipping together in one solution, set up mir-
roring first, and make sure both mirror servers are configured to use the same
share for transaction log backups.

■ Review the index maintenance strategy when using database mirroring. Given the
requirement for a mirrored database to be in full recovery mode, running unnec-
essary full index rebuilds may saturate the network link between the mirroring

partners for little overall performance gain. While log stream compression helps

Licensed to Gayle M. Noll <pedbro@gmail.com>

259Best practice considerations: high availability

alleviate the transaction load, using a lighter index maintenance technique, cov-
ered in chapter 13, will reduce the network usage in a mirrored solution.

■ Use snapshots on the mirror database with caution. The additional load of the
copy on write process may lead to a significant redo queue, lengthening failover
time. If the mirror database needs to be available for queries, consider other
high-availability solutions such as transaction log shipping with standby restore
mode, peer-to-peer transactional replication, or shared scalable databases.

■ Finally, if using synchronous mirroring with automatic failover, consider the
ability of the client connections to reconnect to the mirror. If you’re not using
the SQL Server Native Client (SNAC), custom reconnection logic is required. If
the client can’t detect connection failure and reconnect, the value of mirroring
as a high-availability solution is significantly diminished.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/HA.

 One of the benefits of database mirroring in SQL Server 2008 is the ability of mir-
ror partners to exchange pages to recover from corruption, a topic we’ll focus on in
the next chapter.
Licensed to Gayle M. Noll <pedbro@gmail.com>

DBCC validation
The DBCC group of commands, of which there are more than 20, are grouped into
four categories: informational, validation, maintenance, and miscellaneous. In ver-
sions of SQL Server prior to 2000, DBCC stood for Database Consistency Check and
consisted of a smaller set of commands (which are included in the current valida-
tion category). Over time, the DBCC command set grew to include more and more
functionality, and the acronym was updated to Database Console Commands,
reflecting these commands’ ability to do more than just validation.

 This chapter’s focus will be on the commands found in the validation category,
sometimes referred to as the DBCC CHECK* commands. Used to report on the integ-
rity of objects in a given database, these commands provide peace of mind that the
database is free from corruption, usually caused by faulty disk I/O hardware or soft-
ware. In combination with a good backup/restore design, regular DBCC validation
checks form a crucial part of a database maintenance strategy.

In this chapter, we’ll cover
■ Using the DBCC validation commands
■ Preventing and detecting corruption
■ Controlling CHECKDB impact
■ Repairing corruption with DBCC
260

Licensed to Gayle M. Noll <pedbro@gmail.com>

261DBCC validation overview

 We begin this chapter with an overview of the various DBCC commands before con-
centrating on the validation group. We then move on to look at the causes of database
corruption and techniques for preventing and detecting corruption.

 In closing the chapter, we concentrate on techniques for reducing the impact of
running CHECKDB on production databases and some important considerations (and
alternatives) for repairing corruption with DBCC.

12.1 DBCC validation overview
Table 12.1 shows the full set of DBCC commands by category. Note that there are a
number of undocumented commands not found in this list, such as DBCC PAGE, which
we’ll cover later in the chapter.

Table 12.1 DBCC commands by category

DBCC category DBCC statement

Informational DBCC INPUTBUFFER

DBCC SHOWCONTIG

DBCC OPENTRAN

DBCC SQLPERF

DBCC OUTPUTBUFFER

DBCC TRACESTATUS

DBCC PROCCACHE

DBCC USEROPTIONS

DBCC SHOW_STATISTICS

Validation DBCC CHECKALLOC

DBCC CHECKFILEGROUP

DBCC CHECKCATALOG

DBCC CHECKIDENT

DBCC CHECKDB

Maintenance DBCC CLEANTABLE

DBCC INDEXDEFRAG

DBCC DBREINDEX

DBCC SHRINKDATABASE

DBCC DROPCLEANBUFFERS

DBCC SHRINKFILE

DBCC FREEPROCCACHE
DBCC UPDATEUSAGE

Licensed to Gayle M. Noll <pedbro@gmail.com>

262 CHAPTER 12 DBCC validation

You can find the full description of each of these commands in SQL Server Books
Online (BOL). In the next chapter we’ll cover some of the maintenance and informa-
tional commands along with their preferred replacements. For now, our focus is on
the validation commands.

 The DBCC validation commands are primarily concerned with checking the logical
and physical integrity of database objects. Figure 12.1 highlights the relationships
among these commands.

 We’ll cover what each of these commands do shortly, but for now it’s important to
point out that running DBCC CHECKDB automatically runs CHECKALLOC, CHECKTABLE, and
CHECKCATALOG. Running these commands individually (instead of DBCC CHECKDB) is use-
ful in some situations, such as when you want to reduce the runtime on large databases,
an important technique we’ll cover later in the section “Controlling CHECKDB impact.”

Let’s walk through these commands now, beginning with DBCC CHECKDB.

12.1.1 DBCC CHECKDB

DBCC CHECKDB is the most commonly used validation command for checking the logi-
cal and physical integrity of the entire database. Among other things, DBCC CHECKDB

Runs DBCC CHECKALLOC on the specified database. CHECKALLOC validates the cor-
rect allocation of each page within the database.
Runs DBCC CHECKTABLE on each table and indexed view in the specified data-
base. CHECKTABLE runs a comprehensive series of tests, including checking that

Miscellaneous DBCC DLLNAME

DBCC HELP

DBCC TRACEON

DBCC TRACEOFF

Table 12.1 DBCC commands by category

DBCC category DBCC statement

DBCC CHECK* Commands

DBCC CHECKDB

DBCC CHECKALLOC

DBCC CHECKTABLE

DBCC CHECKCATALOG DBCC CHECKIDENT

DBCC CHECKCONSTRAINTS

DBCC CHECKFILEGROUP

Figure 12.1 The DBCC validation commands.
Running DBCC CHECKDB also executes
CHECKALLOC, CHECKTABLE, and
CHECKCATALOG.

(continued)
each row in the base table has a corresponding row in each nonclustered index.

Licensed to Gayle M. Noll <pedbro@gmail.com>

263DBCC validation overview

Runs DBCC CHECKCATALOG. In SQL Server 2000 and earlier, this command had to
be run in addition to DBCC CHECKDB. Now included as part of CHECKDB, CHECK-
CATALOG checks database metadata consistency.
If you’re using FileStream, CHECKDB validates the links between table metadata
and the appropriate files and directories containing the FileStream data.
Validates indexed views and service broker data.

Looking through these actions, you’ll note that one of the things CHECKDB does is con-
firm that all base table rows have matching nonclustered index rows (covered in more
detail in the next chapter). DBCC CHECKDB is an online operation, so one of the chal-
lenges for CHECKDB is running against a transactionally consistent view of the database.
TRANSACTIONAL CONSISTENCY

In prior versions of SQL Server, a number of techniques were used by DBCC to obtain
a transactionally consistent view of the database—approaches such as including table
locks and using the transaction log to catch up with transactions that occurred during
the check. In some cases, these techniques resulted in substantial blocking, and there-
fore performance reduction, or complex checking logic that sometimes led to false
positives, requiring additional CHECKDB runs to confirm any reported inconsistencies.
Such limitations caused some sites to either exclude CHECKDB from their maintenance
routines, or run it infrequently, a particularly dangerous move for large, mission-criti-
cal databases.

 In SQL Server 2005, a significant breakthrough was made in obtaining a transac-
tionally consistent view of the database without the performance impact of table locks
or false positives. By leveraging the database snapshot technology (covered in chapter
10), CHECKDB runs without requiring table locks or transaction log analysis. The data-
base is read through a special system-generated hidden snapshot ensuring that the
before image of any concurrent activity is made available to CHECKDB.

 One of the downsides of using a system snapshot is the lack of control over its place-
ment. If CHECKDB is run during periods of high activity, the snapshot may grow very
large, and in some cases, potentially consume all available disk space. We’ll cover this
case a little later when we look at running CHECKDB against a user-defined snapshot,
which gives you control over the placement of the snapshot in a specific disk location.

 Despite the significant advances made with snapshots, the performance impact of
running CHECKDB operations may still exceed the desired level, particularly for large,
24/7 databases with a high transaction load. Given the importance of what CHECKDB
delivers, there are a number of techniques that can be used to reduce the impact, and
we’ll cover these later in the chapter. For now, let’s look at the syntax and options of
the CHECKDB command.
SYNTAX AND OPTIONS

The full syntax of the DBCC CHECKDB command is as follows:

DBCC CHECKDB
[
 [(database_name | database_id | 0

 [, NOINDEX

Licensed to Gayle M. Noll <pedbro@gmail.com>

264 CHAPTER 12 DBCC validation

 [, { REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | REPAIR_REBUILD }]
)]
 [WITH
 {
 [ALL_ERRORMSGS]
 [, EXTENDED_LOGICAL_CHECKS]
 [, NO_INFOMSGS]
 [, TABLOCK]
 [, ESTIMATEONLY]
 [, { PHYSICAL_ONLY | DATA_PURITY }]
 }
]
]

Despite the large amount of options, DBCC CHECKDB can be run on its own as well.
Here’s a brief description of these options:

database_name/id —Providing no value for this option runs the check against the
current database; otherwise, the checks are run against the specified database.
NOINDEX —When specified, nonclustered indexes aren’t checked, reducing
overall execution time. We’ll cover clustered and nonclustered indexes in the
next chapter.
REPAIR options —If corruption is found, and no appropriate backups exist (a
worst-case scenario), the repair options can be used as a last resort in removing
database corruption. We’ll cover the implications and details of these options
later in the chapter.
ALL_ERRORMSGS —If this option is excluded, CHECKDB displays only the first 200
errors for each object. Even if this option is included, SQL Server Management
Studio displays the first 1,000 errors only. So for a complete list of errors, run
CHECKDB with this option using either the sqlCmd utility or as a SQL Agent job
with output directed to a file for later analysis.
EXTENDED_LOGICAL_CHECKS —When run against SQL Server 2008 databases
(compatibility level 100), this option will perform logical consistency checks
against spatial and XML indexes as well as indexed views.
NO_INFOMSGS —This option excludes informational messages from the output.
When executed with this option, a successful CHECKDB will simply return Com-
mand(s) completed successfully; otherwise, messages will be returned for each
object such as There are 19118 rows in 187 pages for object "Sales.CreditCard”.
TABLOCK —When executed with this option, CHECKDB will use table locks rather
than an internal snapshot. For databases under heavy transaction load, this
option usually results in a faster execution time at the expense of lower concur-
rency. Note that this option will preclude service broker and CHECKCATALOG
checks from being run.
ESTIMATE_ONLY —This option estimates the amount of tempdb space required
to run the DBCC command (without actually running it) and can be used to
ensure the tempdb database is large enough and/or has access to enough free

disk space for the CHECKDB operation.

Licensed to Gayle M. Noll <pedbro@gmail.com>

265DBCC validation overview

PHYSICAL_ONLY —A full execution of CHECKDB, including all logical checks, may
take a considerable amount of time, given the extensive checks involved. Using
this option reduces the execution time while still checking important aspects of
the database integrity. We’ll cover this option in more detail later in the chapter.
DATA_PURITY —When a database is upgraded from SQL Server 2000 or earlier,
DBCC CHECKDB won’t check column value integrity until CHECKDB is successfully
executed with this option.

So with these options in mind, let’s take a look at running CHECKDB against the Adven-
tureWorks database:

DBCC CHECKDB (AdventureWorks2008)

The abbreviated output of this command is as follows:

DBCC results for 'AdventureWorks'.
Service Broker Msg 9675, State 1: Message Types analyzed: 14.
Service Broker Msg 9676, State 1: Service Contracts analyzed: 6.
DBCC results for 'sys.sysrowsetcolumns'.
There are 1331 rows in 10 pages for object "sys.sysrowsetcolumns".
DBCC results for 'sys.sysrowsets'.
There are 255 rows in 2 pages for object "sys.sysrowsets".
DBCC results for 'Sales.SpecialOfferProduct'.
There are 538 rows in 3 pages for object "Sales.SpecialOfferProduct".
DBCC results for 'Production.ProductModel'.
There are 128 rows in 12 pages for object "Production.ProductModel".
CHECKDB found 0 allocation errors and 0 consistency errors in database
➥ 'AdventureWorks'.
DBCC execution completed. If DBCC printed error messages, contact your
➥ system administrator.

In this example, CHECKDB was executed without the NO_INFOMSGS option; therefore, we
receive messages such as those shown here (the output has been truncated for brev-
ity). The most important part of the output is toward the end: 0 allocation errors
and 0 consistency errors. Later in the chapter we’ll look at an example where
DBCC returns errors and use that to discuss the recovery options.

 Earlier in the chapter we discussed the fact that DBCC CHECKDB is a superset com-
mand that actually runs CHECKALLOC, CHECKTABLE, and CHECKCATALOG. To understand
what CHECKDB is doing under the covers, let’s examine these commands a little further.

12.1.2 Granular consistency checking

As mentioned earlier, CHECKALLOC is included as part of CHECKDB, but can be run sepa-
rately. CHECKALLOC validates that each page in the database has been allocated cor-
rectly. To understand how allocation works (and how it’s verified by CHECKALLOC), we
need to look at the space allocation process used in a database.

SPACE ALLOCATION WITH GAM AND SGAM PAGES

As covered earlier in the book, tables and indexes in a database are stored on one or
more 8K pages. Pages are allocated to objects from extents, which are collections of

eight pages, making each extent 64K. To reduce wasted space for small tables or

Licensed to Gayle M. Noll <pedbro@gmail.com>

266 CHAPTER 12 DBCC validation

indexes, the first eight pages of an object are allocated from mixed extents—that is,
eight tables may be using one page each from a single mixed extent. Once a table or
index reaches eight pages, additional space is allocated one extent (64K) at a time
from uniform extents.

 To keep track of what mixed and uniform extents are available for allocation, SQL
Server uses special allocation maps: the global allocation map (GAM) and the shared
global allocation map (SGAM). Both the GAM and SGAM map to database extents using
one bit to represent each extent. The GAM maps to all extents, and the SGAM maps to
mixed extents only. In both cases, a bit value of 1 represents an available extent, and a
0 value represents an allocated (unavailable) extent.

 As shown in figure 12.2, the first two pages of each database file are reserved for the
file header and page free space pages, which we’ll discuss shortly. The GAM and SGAM
are located on the third and fourth pages (pages 2 and 3), respectively. With each page
containing some 64,000 bits (8,000 bytes) and each bit representing an extent (64K), it
follows that each GAM and SGAM page can therefore map to about 4GB of space. For
database files larger than this size, additional allocation maps are used in the file.

 When SQL Server needs to allocate a uniform extent to an object, it searches the
GAM for a bit value of 1 and sets it to 0. It then has an extent for allocation. To allocate
a mixed extent, SQL Server finds a GAM bit of 0 with the corresponding SGAM bit of 1
(allocated extent with free pages available). Table 12.2 illustrates the bit map used by
GAM and SGAM pages.

As you learned in chapter 9, one of the advantages of creating multiple files for a data-
base is getting multiple allocation maps. This is particularly useful for the tempdb
database, which typically spends a large percentage of time allocating and deallocat-
ing tables. With multiple files, multiple GAMs and SGAMs reduce the contention to

Table 12.2 GAM and SGAM bit settings

Extent status GAM bit setting SGAM bit setting

Free 1

Uniform extent (allocated) 0

Mixed extent with free pages 0 1

Full mixed extent 0 0

File header

Page 0

Page Free Space (PFS)

Page 1

GAM

Page 2

SGAM

Page 3

Bulk Changed Map

Page 7

Differen�al Changed Map

Page 6

…

…

Database boot page

Page 9 Figure 12.2 Pages within

each database file

Licensed to Gayle M. Noll <pedbro@gmail.com>

267DBCC validation overview

these resources, which, for a single file database (less than 4GB) would contain only a
single GAM and SGAM.

 Page Free Space (PFS) pages record information about each page in the database
file, including its allocation status and the amount of free space in the page. After an
object is allocated an extent, PFS pages are used to record which pages within the
extent are available for allocation in the object—for example, when inserting a row
into a table.

 Let’s take a look now at the commands executed by CHECKDB that can also be exe-
cuted individually.
DBCC CHECKALLOC
When CHECKALLOC runs, it checks the validity of page and extent allocation in the
database as recorded by the GAMs and SGAMs. Like CHECKDB, the CHECKALLOC com-
mand takes options for suppressing informational messages, ignoring indexes, and
estimating tempdb usage.

DBCC CHECKTABLE
Like CHECKALLOC, CHECKTABLE is included as part of CHECKDB but can be executed sep-
arately for an individual table. It also contains options for suppressing informational
messages, ignoring indexes, and other options, as documented for CHECKDB earlier.

 CHECKTABLE runs a series of checks for a specified table, including the following:

Page linkage for all pages within the table
Index sorting
Pointer consistency
Correct values for computed columns
Matches between index and base table records
Correct placement of records in a partitioned table
Correct linkage for FileStream data

The command also checks that indexed view contents match the appropriate view
definition.
DBCC CHECKCATALOG
Also run as part of CHECKDB (since SQL Server 2005), CHECKCATALOG checks the consis-
tency of metadata between system tables.

 Unlike inconsistencies reported from CHECKTABLE, there are no repair options for
errors resulting from CHECKCATALOG; a database restore is the only option. If run sepa-
rately from CHECKDB, the only option CHECKCATALOG takes is NO_INFOMSGS.

 Before completing our overview of DBCC validation commands, let’s take a look at
three more we haven’t covered yet.

12.1.3 Additional DBCC CHECK* commands

The following three CHECK* commands round out the DBCC validation category:

CHECKFILEGROUP is similar to CHECKDB but is limited to objects in the specified

filegroup. We’ll cover this option in more detail a little later.

Licensed to Gayle M. Noll <pedbro@gmail.com>

268 CHAPTER 12 DBCC validation

CHECKIDENT is used to validate, correct, or re-seed the identity value for a table
containing an identity column.
CHECKCONSTRAINTS validates the integrity of a given table’s foreign key and
check constraints, and is useful for validating data entered while the con-
straint(s) were disabled.

While DBCC commands are unmistakably valuable in identifying (and in the worst-
case scenario, removing) database corruption, what’s equally important is ensuring
databases remain corruption free. In the next section, we’ll address some of the tech-
niques useful in avoiding corruption.

12.2 Preventing and detecting corruption
Before we go too much further, it’s important to define corruption as it relates to a SQL
Server database. There are essentially two different types of corruption: logical and
physical. Logical corruption refers to situations in which people (or applications)
remove data they shouldn’t—for example, deleting one half of an Order:OrderDetail
relationship. In contrast, physical corruption is almost always caused by faulty I/O sub-
system components; examples include crashed hard drives and faulty RAID controllers.

 Making the distinction between logical and physical corruption is important. A
statement from a DBA to the effect of “The database is corrupt!” usually means some-
thing much more sinister than the same statement made from an application support
person. Throughout the rest of this chapter, our definition of corruption will be of the
physical kind, which is the target of the DBCC CHECK* commands.

 This section will focus on tools and options used to validate an I/O subsystem and
detect the presence of physical corruption. Let’s begin by revisiting a tool we covered
in chapter 3: SQLIOSIM.

12.2.1 SQLIOSIM

While a reliable and well-configured I/O system should rarely cause any database cor-
ruption, it can, and does, happen. As we’ll see later in this chapter, relying on DBCC to
remove corruption is a poor alternative to a good design and maintenance strategy
aimed at preventing corruption and implementing early detection mechanisms.

 In chapter 3, we covered the importance of running SQLIOSIM to validate the I/O
subsystem prior to production implementation. To briefly recap, SQLIOSIM simulates
SQL Server I/O workload, without SQL Server needing to be installed. The primary
benefit of this tool is being able to detect issues in any part of the I/O chain (hard-
ware, software, OS, drivers, firmware, and so forth) that may lead to database corrup-
tion at a later point.

 The most likely cause of database corruption is an issue somewhere in the I/O sub-
system. If and when corruption appears, it’s often difficult to come up with conclusive
proof as to the cause, and as a result, DBAs, hardware vendors, and administrators
often end up in a heated blame game. SQLIOSIM offers a powerful method for vali-

dating each component of the I/O chain. When used as part of the validation and

Licensed to Gayle M. Noll <pedbro@gmail.com>

269Preventing and detecting corruption

commissioning process for new hardware, it offers a tremendously valuable clean bill
of health, offering peace of mind that corruption caused by the I/O subsystem, while
possible, is unlikely.

 In addition to using SQLIOSIM to validate the health of an I/O subsystem, enabling
the page checksums feature offers a nice method of ongoing page validation outside
explicit DBCC checks.

12.2.2 Page checksums

Page checksums, enabled by default as a database property as shown in figure 12.3,
ensure ongoing validation of pages written to and read from the file system. When a
page is written to disk, SQL Server calculates a checksum value based on the page con-
tents and writes the value to the page. When a page containing a checksum value is
read from disk,1 the checksum is recalculated and compared.

 The process of writing a page checksum is performed by SQL Server as the last
action before the page leaves its control (flushed from the buffer pool). In a similar
manner, the checksum is recalculated and compared as the first action when read
from disk. If when recalculated the checksum value is different from the checksum
stored on the page, that’s a fairly solid indication some part of the I/O system has cor-
rupted the page.

 The performance overhead of calculating, writing, and comparing checksums has
been estimated at approximately 2 percent, a small price to pay for ongoing validation
of I/O integrity. In addition to validating pages as they’re read from disk, the DBCC
CHECK* commands will validate each page’s checksum value as part of their operation.
Further, as we saw in chapter 10, the backup and restore process can also validate

Figure 12.3 The default page verification level of CHECKSUM enables ongoing I/O subsystem
verification.
1 Databases upgraded from SQL Server 2000 won’t contain a checksum value until the page is modified.

Licensed to Gayle M. Noll <pedbro@gmail.com>

270 CHAPTER 12 DBCC validation

checksums using the optional WITH CHECKSUM clause. Assuming regular backups are in
place that use this option, page checksums enable constant and ongoing validation of
I/O integrity.

 If a page checksum is detected as being incorrect, messages are written to the SQL
Server log and Windows event logs. Assuming these are being actively monitored, this
presents a mechanism for early detection and investigation.

While SQLIOSIM and page checksums are excellent tools for initial and ongoing I/O
validation, there’s no substitute for regular DBCC checks. In chapter 14, we’ll cover a
number of SQL Server tools used to incorporate DBCC checks into a regular database
maintenance plan. That being said, running regular checks on large, heavily loaded
databases in use 24/7 presents a number of challenges, not the least of which is the
performance impact such checks may have on user access. In the next section, we’ll
investigate a number of techniques that can be used in minimizing the impact of
DBCC checks when running against production databases.

12.3 Controlling CHECKDB impact
Along with index maintenance and backups, executing regular DBCC checks are very
straightforward for small databases, or those with large maintenance windows. In an
ideal world, every night would see a full backup, all indexes completely rebuilt, along
with full CHECKDB operations. The reality, however, is quite different. Large databases,
particularly those in use 24/7, don’t have the luxury of a nightly maintenance plan
like the one just described.

 In chapter 10, we examined differential and filegroup backups, options that
enable large database backups to be staggered throughout the week. In the next chap-
ter, we’ll look at efficient index maintenance techniques. In this section, let’s explore
some of the options for reducing the impact of DBCC checks, beginning with using
backups as the source.

12.3.1 Running against backups

One of the ways of offloading the overhead of a DBCC check is running the check on a
restored copy of a production database in a test environment. If a page is corrupted
on the source database, it will be corrupted on the restored copy. Not only is this a

Auto corruption recovery with database mirroring
Prior to SQL Server 2008, aside from restoring a backup or risking data loss with the
DBCC repair options, there was no way of safely overcoming a corrupted page without
the potential for data loss. In the Enterprise edition of SQL Server 2008, database
mirroring partners can exchange pages to automatically overcome certain types of
page corruption.
valid approach in offloading the impact of the DBCC check operation, automating this

Licensed to Gayle M. Noll <pedbro@gmail.com>

271Controlling CHECKDB impact

process, as shown in figure 12.4,
enables a number of best practices
to be handled in one process; verify-
ing backups, performing DBCC
checks, and maintaining a recent
database copy for disaster recovery
and/or reporting purposes.

Figure 12.4 Adding DBCC checks to
automated backup verification enables
a number of best practices to be
handled at the same time.

The one (minor) downside of this method is when corruption is actually found in the
restored copy. At this point, the DBCC check would need to be performed on the pro-
duction database to confirm that the corruption exists and that it wasn’t introduced
by the copy or restore process.

 Assuming no test environment exists for the purposes of offloading CHECKDB
impact from production, one of the other options is using the WITH PHYSICAL_ONLY
option, discussed next.

12.3.2 WITH PHYSICAL_ONLY

As we covered earlier in the chapter, DBCC CHECKDB performs a number of logical and
physical checks. By specifying the WITH PHYSICAL_ONLY option, you can reduce the
runtime substantially by performing a reduced set of checks that excludes the exten-
sive logical checks.

 As the example in figure 12.5 shows, running DBCC CHECKDB against the
AdventureWorks2008 database with and without the PHYSICAL_ONLY option high-
lights a significant difference in the execution time. Performing the full check takes
roughly double the amount of time compared to running CHECKDB using the WITH
PHYSICAL_ONLY option (SQL Server was restarted before each test). Although this was

a simple test against a small
database, it’s easy to see how
such time savings would be
considerable against a much
larger database.

Figure 12.5 DBCC CHECKDB
execution time against the
AdventureWorks2008 database
with and without the

Automating Backup Verification and DBCC CHECKDB

Backup

Copy backup

Restore

CHECKDB

Production

Volume test

CHECKDB Execution Time

CHECKDB CHECKDB with
PHYSICAL_ONLY

Execution time (sec)

18
16
14
12
10
8
6
4
2
0

PHYSICAL_ONLY option

Licensed to Gayle M. Noll <pedbro@gmail.com>

272 CHAPTER 12 DBCC validation

When executed with the PHYSICAL_ONLY option, CHECKDB reads each database page
and checks the allocation consistency via CHECKALLOC. Further, if page checksums are
present, it will validate those as well. Using page checksums in conjunction with
PHYSICAL_ONLY reduces the production impact of CHECKDB while giving reasonable
assurance that the I/O system is behaving itself and not causing any corruption.

Despite the suitability of this option for production use, I recommended that you run
a full CHECKDB when possible. A common maintenance design is for nightly
PHYSICAL_ONLY checks with a full CHECKDB scheduled weekly, or alternatively, a nightly
PHYSICAL_ONLY check combined with a weekly restore and CHECKDB verification in a
load-testing or backup verification environment.

 Another option for reducing the impact of DBCC is implementing a more granular
verification approach, covered next.

12.3.3 Partitioned and granular checks

Earlier in the chapter we explained that executing CHECKDB also executes CHECKALLOC,
CHECKCATALOG, and CHECKTABLE for each table in the database. As you saw, you can run
each of these commands individually.

 One of the alternatives to running CHECKDB is to run CHECKTABLE for a subset of
tables, spreading the load over a number of nights—for example, running CHECKTA-
BLE on three tables per night over seven nights rather than 21 tables in one night. On
one (or more) of these nights, CHECKALLOC and CHECKCATALOG can also be run. Like
CHECKDB, the CHECKTABLE command also takes the PHYSICAL_ONLY option, so the
impact can be reduced further.

 The DBCC CHECKFILEGROUP command also presents opportunities for granular
checking by enabling checks on large databases to occur one filegroup at a time. In
some cases, particular filegroups may be infrequently modified, or may be read only.
In such cases, excluding these filegroups from the checks, or running them less fre-
quently, may enable the runtime to be cut substantially.

Last successful CHECKDB
Need to know when CHECKDB last completed without finding any corruption? Af-
ter enabling trace flag 3604 with DBCC TRACEON (3604); run DBCC PAGE (db-
name, 1, 9, 3); replacing dbname with the required database name. The date
and time of the last successful corruption-free CHECKDB will be listed in the
dbi_dbccLastKnownGood field.

MAXDOP and DBCC
By default, if multiple CPUs are available to a SQL Server instance and the MAXDOP
setting allows, DBCC CHECKDB, CHECKTABLE, and CHECKFILEGROUP will use parallel
checking. To disable parallel checking, use trace flag 2528, or manually adjust the
MAXDOP setting for the period of the DBCC operation.
Licensed to Gayle M. Noll <pedbro@gmail.com>

273Removing corruption

In closing this section, let’s consider one final technique for controlling DBCC activity:
user-defined snapshots.

12.3.4 User-defined snapshots

As you learned in chapter 10, a database snapshot uses sparse file technology to create
a near-instant, read-only copy of a database. The snapshot is initially empty with all
page reads redirected to the base database. When the original database is modified,
the page to be modified is copied to the snapshot before the modification occurs. The
snapshot therefore represents the database at the time of the snapshot. Over time, as
more and more of the database is modified, the snapshot becomes larger and larger;
the maximum size is the size of the database at the time of the snapshot.

 DBCC CHECK* commands use a special hidden database snapshot2 to ensure the
operation runs against a transactionally consistent copy of the database that is accu-
rate as at the time of the DBCC execution. This process is an improvement over earlier
DBCC checks that used either table locks or complex transaction log operations that
sometimes led to false positives.

 When running a DBCC check against a database that’s receiving updates, each of
the pages to be modified must be copied to the snapshot to ensure DBCC views the
page in its pre-update form. The more updates that occur during the DBCC check, the
larger the snapshot will be. By default, the snapshot files are created in the same disk
location as the database files. If the number of updates causes the snapshot to grow to
the point where there isn’t enough disk space for the snapshot files, the DBCC check
will fail after running out of disk space.

 Apart from running DBCC checks during periods of low activity or using the TABLOCK
option (which will block user activity), running DBCC checks against a user-defined
snapshot allows the snapshot files to be placed in a location with the appropriate
amount of free disk space. This ensures that concurrent updates won’t grow the snap-
shot to consume all the available disk space on the disk(s) storing the database files.
Further, placing the snapshot on a physically separate disk may assist in isolating the
snapshot-related disk overhead, therefore reducing the performance impact to users.

 In the final section of this chapter, let’s look at the options available when DBCC
discovers corruption during its check.

12.4 Removing corruption
Despite the existence of DBCC options for repairing corruption, certain repairs occur
at the expense of data loss; hence, the inclusion of ALLOW_DATA_LOSS as part of the
name of one of the repair options. As such, using this option should be considered a last
resort. In this section, let’s look at an example in which DBCC discovers corruption and
investigate the scope of potential data loss as well as the options available for recovery.

2 Snapshots aren’t used when the DBCC check is run against the master or tempdb database, a read-only data-

base, a database in single-user or emergency mode, or when using the TABLOCK option.

Licensed to Gayle M. Noll <pedbro@gmail.com>

274 CHAPTER 12 DBCC validation

12.4.1 Interpreting DBCC output

Consider the following (abbreviated) output from a CHECKDB operation:

DBCC results for 'AdventureWorks'.
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0
➥ (type Unknown), page ID (1:676) contains an incorrect page ID in its
➥ page header. The PageId in the page header = (0:0).
CHECKDB found 0 allocation errors and 1 consistency errors not associated
➥ with any single object.
DBCC results for 'sys.sysrscols'.
DBCC results for 'Person.Address'.
There are 19614 rows in 280 pages for object "Person.Address".
DBCC results for 'testtable'.
Msg 8928, Level 16, State 1, Line 1
Object ID 87671360, index ID 0, partition ID 72057594058244096, alloc unit
➥ ID 72057594062635008 (type In-row data): Page (1:676) could not be
➥ processed. See other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 87671360, index ID 2, partition ID 72057594058309632, alloc unit
➥ ID 72057594062700544 (type In-row data): Page (1:800) could not be
➥ processed. See other errors for details.
Msg 8939, Level 16, State 98, Line 1
Table error: Object ID 87671360, index ID 2, partition ID 72057594058309632,
➥ alloc unit ID 72057594062700544 (type In-row data), page
➥ (1:800). Test (IS_OFF (BUF_IOERR, pBUF->bstat)) failed. Values are
➥ 12716041 and -4.
There are 2 rows in 2 pages for object "testtable".
CHECKDB found 0 allocation errors and 3 consistency errors in table
➥ 'testtable' (object ID 87671360).
CHECKDB found 0 allocation errors and 4 consistency errors in database
➥ 'AdventureWorks'.
repair_allow_data_loss is the minimum repair level for the errors found by
➥ DBCC CHECKDB (AdventureWorks).
DBCC execution completed. If DBCC printed error messages, contact your
➥ system administrator.

There are a few things to note here. Near the end of the output is the line
repair_allow_data_loss is the minimum repair level… This essentially means
that corruption was found on a clustered index (or a heap). As we’ll see in the next
chapter, these items are the data pages themselves, so removing them will result in
data loss, hence the warning.

 Looking further up in the output, we can see error messages coming from Object
ID 87671360, index ID 0, and index ID 2. Tables without a clustered index are referred
to as a heap. Index ID 0 refers to a base data page from a heap table. Index ID 1 refers
to a clustered index page, and index ID 2 and above refer to pages from nonclustered
indexes. When interpreting the DBCC output, seeing corruptions only from index IDs
2 and above is somewhat good news; it means that the only corruption is on nonclus-
tered index pages. In such cases, recovery is quite straightforward; we can simply

rebuild the index(es), or proceed with the REPAIR_REBUILD option of DBCC, which

Licensed to Gayle M. Noll <pedbro@gmail.com>

275Removing corruption

will reinstate the missing/corrupted rows in the nonclustered index (or rebuild it).
Neither of these options will result in any data loss.

 In our case, we have errors from index IDs less than 2. As a result, DBCC is suggesting
that the repair_allow_data_loss option is the minimum repair level. This doesn’t
mean that we should run with this option. As the name implies, it will result in data loss,
so we need to think through our options. We’ll cover the recovery options shortly.
Before doing so, let’s look at a way of inspecting the extent of potential data loss.

12.4.2 Determining the extent of data loss with DBCC PAGE

One of the DBCC commands that we haven’t spoken of yet is DBCC PAGE, an undocu-
mented (and therefore unsupported) command. If a database page is accessible, DBCC
PAGE can be used to inspect its contents. In certain corruption scenarios, this can be
very useful in determining the extent of damage. Consider a case where a range of
clustered index (data) pages are corrupted—for example, pages 98 through 118. By
inspecting the pages either side of the corruption range, 97 and 119 in this case, we’ll
get a much better idea of the extent of damage.

 Figure 12.6 shows the output of the DBCC PAGE command. Before running the
command, we turn on trace flag 3604 to enable the output to be displayed to screen.

Figure 12.6 Using the undocumented (and unsupported) DBCC PAGE command to inspect
the contents of a database page

As figure 12.6 shows, DBCC PAGE3 will return data from the page that we can use to
determine the contents, and thus the potential data loss—an important factor in
deciding on an appropriate recovery option.

12.4.3 Recovery options

To recap, validating the I/O system with SQLIOSIM before production implementa-
tion and ensuring page checksums are enabled are crucial steps in avoiding a scenario
in which a large amount of data is corrupted before being discovered. SQLIOSIM will

3 The four parameters for DBCC PAGE are database name, file number, page number, and print option. Print

option 3 includes page header information and row details.

Licensed to Gayle M. Noll <pedbro@gmail.com>

276 CHAPTER 12 DBCC validation

ensure the I/O system is valid and reliable for SQL Server use, and using page check-
sums in combination with regular event log monitoring helps you identify corrupted
pages early, hopefully before the corruption becomes widespread.

 Of course, neither of these best practices is a guarantee that we’ll never have to
deal with corrupted data, so knowing the available recovery options is an important
step in preparing for the unexpected. Let’s walk through the major physical corrup-
tion recovery options, beginning with corrupted nonclustered indexes.

REBUILDING NONCLUSTERED INDEXES

As we saw earlier, if the only corruption found was in nonclustered indexes (index ID
2 and above), then we can use the REPAIR_REBUILD option, or we can simply re-create
the index. If the corruption is on a clustered index, we’re not as lucky, and the restora-
tion of a recent backup becomes our best option. Fortunately, we’re able to restore
individual pages.
PAGE RESTORE

The importance of regular, validated backups can’t be overstated, particularly in cor-
ruption situations. In some cases, the only way out of a corruption scenario is to
restore a backup. The only thing worse than discovering corruption is to then discover
the backups are invalid (or don’t exist!). Performing regular backups with the WITH
CHECKSUM clause, together with regular monitoring for page checksum failures, pro-
vides the best chance of detecting corruption early and having reliable backups for
recovery. Depending on the scale of corruption, the availability of recent backups may
enable the use of the page restore technique.

 In chapter 10 we looked at online restores, an option available in the Enterprise
edition of SQL Server, to restore individual filegroups. Online restores are also avail-
able at the page level, enabling us to restore individual corrupted pages.

 Listing 12.1 shows an example script to restore two pages. Like a filegroup restore,
we follow the first restore with one or more transaction log restores, which apply
changes made to the pages since the full backup was taken. After the first two restores,
we take an additional transaction log backup to ensure all changes to the pages are
captured and restored. Finally, we perform all restores with the exception of the last
using the WITH NORECOVERY option to enable subsequent restores to occur.

-- Restore an individual page from a full backup file
-- Restore in NORECOVERY mode to allow subsequent t-log roll forwards

RESTORE DATABASE [AdventureWorks2008]
 PAGE='1:676, 1:800'
 FROM DISK = 'G:\SQL Backup\AdventureWorks.bak'
 WITH NORECOVERY;

RESTORE LOG [AdventureWorks2008]
 FROM DISK = 'G:\SQL Backup\AdventureWorks-Trn.bak'
 WITH NORECOVERY;

Listing 12.1 Page restore
Licensed to Gayle M. Noll <pedbro@gmail.com>

277Removing corruption

BACKUP LOG [AdventureWorks2008]
 TO DISK = 'G:\SQL Backup\AdventureWorks_20080718_0915_log.bak'

RESTORE LOG [AdventureWorks2008]
 FROM DISK = 'G:\SQL Backup\AdventureWorks_20080718_0915_log.bak'
 WITH RECOVERY;
GO

Note that page restore is still possible in the non-Enterprise editions of SQL Server,
but the database can’t be online during the restore process. Further, page restores
aren’t possible for the transaction log and certain pages of the database: the GAM and
SGAM pages, page 0 (the file boot page), and page 1:9 (the database boot page).
Finally, as with other online restores, an unbroken sequence of transaction log back-
ups is required.

 Of course, if the full backup used for the restore also contains corruption on the
page, then that’s obviously of no help. Again, active event log monitoring with page
checksums in place is crucial in avoiding this situation by identifying corruption as
soon as possible.

 If a valid backup isn’t available for recovery, then as a last resort, the
REPAIR_ALLOW_DATA_LOSS option can be used, after acknowledging that data will be
lost as a result.

REPAIR_ALLOW_DATA_LOSS
Before running the REPAIR_ALLOW_DATA_LOSS command, it’s worth either making a
backup of the database or creating a snapshot. If the repair doesn’t yield the required
results, then the database can be restored or reverted to the snapshot. Alternatively
(or as well as), the repair can be performed in a user-defined transaction, with a roll-
back statement undoing the repair if appropriate.

 If the repair operation completes with the desired result, you should run DBCC
CHECKCONSTRAINTS, particularly if the repaired object was a table involved in foreign
key relationships or had other check constraints in place. Additional business logic
checking should be performed where possible to make sure the effects of the repair
won’t cause unexpected problems at a later point.

After any unexpected recovery situation that results from corruption, perform a root
cause analysis, discussed next, as soon as possible.

What CHECKDB can’t repair
The REPAIR_ALLOW_DATA_LOSS option isn’t capable of repairing certain types of cor-
ruptions (or it doesn’t make sense to try), notably the PFS (Page Free Space) page,
critical system tables, and corrupted column range values. In such cases, backups
will be required for recovery purposes.
Licensed to Gayle M. Noll <pedbro@gmail.com>

278 CHAPTER 12 DBCC validation

12.4.4 Root cause analysis

In most cases, corruption will most likely be the result of a faulty I/O component.
We’ve already covered the importance of using SQLIOSIM to validate the I/O system
before a server is implemented in production. If it passes validation, that doesn’t pre-
clude it from future problems; it just means that the I/O system is valid at that moment.

 Following a corruption event, it’s absolutely crucial that you perform a thorough
analysis of the events leading up to the error. The usual suspects come into play here,
such as Windows event logs, SQL Server error logs, and I/O software logs. If you sus-
pect an I/O problem but can’t pinpoint it, consider rerunning SQLIOSIM. If any weak-
ness exists in the I/O, SQLIOSIM will more than likely find it.

 A thorough post-restore root-cause analysis is essential in limiting the likelihood of
further corruption events. Finally, if the required backups weren’t available as part of
the recovery process, now would be a good time to ensure this situation is addressed!

12.5 Best practice considerations: DBCC validation
A well-configured server with reliable I/O components should rarely experience phys-
ical data corruption. That being said, it’s important to prepare for corruption and
have a recovery plan ready to go that minimizes downtime and data loss.

Backups, backups, backups! There are certain corruptions that simply can’t be
repaired, and those that can often result in data loss. Backups, for obvious rea-
sons, are crucial.
Ensure the Page Checksum option is left enabled for databases, and ensure
both the SQL Server logs and the suspect_pages table in the MSDB database are
monitored for any sign of checksum failure.
Use the SQLIOSIM tool to validate the I/O hardware before production imple-
mentation. Once in production, should the I/O be suspected of causing corrup-
tion, consider rerunning SQLIOSIM to assist in pinpointing any weaknesses.
If you’re running CHECKDB during periods of substantial user activity (which
should be avoided if possible), consider the disk space that will be used by the
internal snapshot. DBCC checks can be executed against user-defined snap-
shots, providing you with control over the placement of snapshot files, and
therefore disk usage, during the DBCC check.
To assist in scheduling maintenance activities, be familiar with the average time
taken for CHECKDB operations for each database. If a particular CHECKDB operation
is taking much longer than normal, this may be a sign that it’s found corruption.
To assist in sizing the tempdb database, run the CHECKDB operation with ESTI-
MATEONLY for all databases to ensure there’s enough tempdb space.
Run DBCC checks as frequently as possible based on the criticality of the data. If
the impact of running the check is causing too much production impact, use
the PHYSICAL_ONLY option, or try lower-impact measures such as running
CHECKTABLE or FILEGROUP checks spread across several nights.
Licensed to Gayle M. Noll <pedbro@gmail.com>

279Best practice considerations: DBCC validation

Consider running CHECKDB on restored backups. Automating this process
(restore and CHECKDB) on a backup verification server (or test environment)
will enable regular and ongoing validation of both the backup/restore process
and the data integrity, as well as allowing you to implement an automatic pro-
duction data refresh process for testing purposes.
When a database is upgraded from SQL Server 2000, run CHECKDB with the
DATA_PURITY option to enable checks for invalid data values.
Use REPAIR_ALLOW_DATA_LOSS as a last resort option. Consider all backup
restore options before this is used.
Given the possibility of REPAIR_ALLOW_DATA_LOSS invalidating data constraints,
run DBCC CHECKCONSTRAINTS along with other business logic validation follow-
ing the repair.
Prior to running REPAIR_ALLOW_DATA_LOSS, make a backup or snapshot of the
database for rollback purposes if appropriate. Alternatively, execute the repair
in a user transaction, which enables the effects of the repair to be rolled back if
required.
Follow up all corruption events with a root cause analysis to identify the cause of
the corruption and to prevent it from reoccurring.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/DBCC.

 We’ve made several references in this chapter to clustered and nonclustered
indexes. We’ll cover these in detail in the next chapter.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Index design and maintenance
Well-designed indexes reduce the time needed to access required data, but
designed and used incorrectly, they slow query performance, lengthen mainte-
nance routines, and increase database size and storage costs. The ability to success-
fully design and maintain indexes is an important DBA skill that requires a good
understanding of how SQL Server uses indexes along with a solid grasp of index-
analysis and maintenance techniques.

 In this chapter, we’ll begin with an overview of SQL Server indexes and cover
strategies for successful index design. We’ll then focus on a number of index-analy-
sis techniques aimed at identifying indexes to add, drop, and defragment. We’ll
close the chapter with coverage of the tools and techniques involved in maintaining
indexes and statistics, a crucial component of any database maintenance strategy.

In this chapter, we’ll cover
■ Designing indexes
■ Filtered indexes and indexed views
■ Analyzing index usage
■ Index maintenance
■ Statistics maintenance
280

Licensed to Gayle M. Noll <pedbro@gmail.com>

281An introduction to indexes

13.1 An introduction to indexes
Like the index at the end of this book, indexes within a database enable fast access to
table contents. With each table in a SQL Server 2008 database supporting up to 1000
indexes, fast access can be enabled for a wide variety of lookups. However, as you’ll
soon see, poor index selection and maintenance can have the opposite effect, with
reduced performance a common outcome.

 It’s possible (and common) for tables to be created without any indexes. Such
tables are known as heaps. Before continuing, let’s take a brief look at heaps.

13.1.1 Heaps

Consider the script in listing 13.1, which creates a simple table and inserts five rows.

-- Create a heap table and seed with data
CREATE TABLE dbo.client (
 clientCode int
 , surname nvarchar(100)
 , firstName nvarchar(100)
 , SSN char(12)
 , DOB datetime
)
GO

INSERT INTO dbo.client (
 clientCode
 , surname
 , firstName
 , SSN
 , DOB
)
VALUES (1, 'Smith', 'John', '111-622-3033', '18 Jun 1974')
, (2, 'Jones', 'Harry', '121-221-3933', '01 Mar 1964')
, (3, 'Brown', 'Bill', '113-262-3223', '19 Apr 1949')
, (4, 'Dean', 'Sally', '191-422-3775', '26 Dec 1979')
, (5, 'White', 'Linda', '118-252-2243', '01 Jan 1998')
GO

Heap tables, such as the one created in listing 13.1, store their data in no particular
physical order. For various reasons that will become apparent throughout this chapter,
we recommend that all1 tables be created with a physical order, achieved by creating a
clustered index.

13.1.2 Clustered indexes

A clustered index is added to a table using the create clustered index command, as
per the following example:

CREATE CLUSTERED INDEX cixClientSSN ON dbo.client(SSN)
GO

Listing 13.1 Creating a heap table
1 A possible exception is small, temporary tables or those used for inserts only.

Licensed to Gayle M. Noll <pedbro@gmail.com>

282 CHAPTER 13 Index design and maintenance

After you create the clustered index on the Social Security number (SSN) column, the
data within the client table is physically ordered by SSN. The table can now be consid-
ered a clustered table. In addition to reordering the existing rows in the table, new rows
will be inserted in order, based on the SSN value being inserted. Figure 13.1 illustrates
the difference between inserting a record into the client table as a heap compared to
a version with a clustered index on SSN.

 Unlike nonclustered indexes, which we’ll cover shortly, a table can have only one
clustered index; that is, you can physically order the rows in a table in only one way. In
order to enable fast access to the data within a table based on the value of other col-
umn(s), we can create additional (up to 999) nonclustered indexes.

Take our client table above (and assume it was populated with millions of rows). If we
wanted to access a client, and we had their SSN, we would issue a query similar to this:

SELECT *
FROM dbo.client
WHERE SSN = '111-622-3033'

Given the client table is physically ordered by SSN, SQL Server can very quickly access
the required record(s). Let’s assume now that we wanted to find a client based on
their date of birth and surname, as per the following query:

SELECT *
FROM dbo.client
WHERE
 DOB = '18 Jun 1974'
 AND surname = 'Smith'

In this case, since the table is ordered by SSN and there are no other indexes in place,

More than just an index
Despite the name, a clustered index is more than just an index. It also contains the
table data itself, which is stored at the leaf level of the index. By default, a primary
key constraint will be created as a clustered index, thereby physically ordering the ta-
ble rows based on the value of the primary key column(s).

Figure 13.1 Inserting
a row into a table with
a clustered index will
physically position
the row based on the
value of the column in
the clustered index
key, in this case SSN.

Heap Clustered index (SSN)
Surname SSN Surname SSN
Smith 111-622-3033

Jones 121-221-3933
Brown 113-262-3223
Dean 191-422-3775
White 118-252-2243

... ...

... ...

Smith 111-622-3033
Brown 113-262-3223

White 118-252-2243
Jones 121-221-3933
Dean 191-422-3755

In
se

rt
S

S
N

: 1
15

-4
45

-9
80

7

SQL Server is forced to scan through the table a row at a time, looking for matching

Licensed to Gayle M. Noll <pedbro@gmail.com>

283An introduction to indexes

records. On small tables, the performance overhead involved in such a scan wouldn’t
be noticed. However, as the table grows, so too does the performance hit. To address
this, we can create additional nonclustered indexes.

13.1.3 Nonclustered indexes

A nonclustered index is created using the create nonclustered index command, as
per the following example;

CREATE NONCLUSTERED INDEX ixClientDOBSurname ON dbo.client(DOB, surname)
GO

What we’ve done here is create an index on the combination2 of the DOB and Sur-
name columns. In doing so, a separate physical index structure containing, and
ordered by, DOB and Surname is created and maintained in line with the table. Each
time a row is inserted, updated, or deleted from the client table, the corresponding
updates are made to the nonclustered index. When running a query such as the one
above that selects data based on the DOB/Surname combination, the index is used, or
looked up, with the leaf level of the matching index entries pointing to the appropri-
ate records in the table.

 A good way of understanding the difference between clustered and nonclustered
indexes is thinking about a paper-based phone book, ordered by surname. If you’re
looking for the address of someone whose surname is White, you’d immediately flip
to the back of the book and adjust your search from there. In this sense, the phone
book can be considered to be clustered on Surname.

 On the other hand, if all you had was a phone number and you needed the match-
ing address, your only choice would be to scan every page of the book, an immensely
time-consuming process! If there was a section added to the rear of the book contain-
ing ordered phone numbers with a corresponding name, you could then flip to the
appropriate page to retrieve the address. This extra section of ordered phone num-
bers can be considered a nonclustered index.

 Taking this example further, let’s imagine email addresses were added as addi-
tional contact information. If all we had was someone’s email address, and we wanted
their street address (or phone number), we’d be back to scanning through the book
from start to finish. As we did with phone numbers, we could build another section at
the back of the book containing ordered email addresses with a corresponding name
to enable fast lookup to the section of the book containing the contact details. Figure
13.2 illustrates this concept further.

 As per database tables, each time we add indexes to the rear of our phone book,
two things happen. First, the size of the book increases, and second, we have addi-
tional information to maintain. If anyone changes their name, phone number, or
email address, as well as updating the appropriate page within the book, we’d have to
update one (or both) of the additional indexes. The additional size and maintenance
2 An index created on more than one column is referred to as a composite index.

Licensed to Gayle M. Noll <pedbro@gmail.com>

284 CHAPTER 13 Index design and maintenance

overhead are important considerations when creating nonclustered indexes. Later in
this chapter, we’ll examine ways of measuring the frequency of their use in order to
determine the usefulness of their existence when considered against their size and
maintenance overhead.

 Before we complete our brief overview of clustered and nonclustered indexes, let’s
examine their internal structure a little further.

13.1.4 Index structure

One of the important aspects of nonclustered indexes we’ve yet to cover is how they
link to the records in the base table. The section of the nonclustered index that points
to the record in the base table is known as a row locator. If the base table is a heap (no
clustered index) the row locator is a pointer to the appropriate table row, identified
with a row ID. The row ID consists of the file ID, the page number, and the row number
on the page. If a table contains a clustered index, a nonclustered index’s row locator is
the row’s clustered index key.

 Indexes within SQL Server (both clustered and nonclustered) are implemented as
B-trees. An index seek starts at the top, or root node, of the tree and traverses through
intermediate levels before arriving at the leaf nodes. In a clustered index, the leaf
nodes contain the actual table data. In a nonclustered index, the leaf nodes contain
the row locators. Figure 13.3 illustrates this structure further.

 With SQL Server including the clustered index key value in the row locator of non-

Full-text indexes
In addition to the index types covered in this book, SQL Server includes support for
full-text indexes. Unlike the basic partial-text matching offered by the LIKE command,
full-text indexes enable optimized and comprehensive searching against large vol-
umes of unstructured data, including linguistic searching based on the installed lan-
guage set.

Figure 13.2 A hypothetical enhanced paper-based phone book with additional indexes allowing lookups
based on phone numbers and email addresses
clustered indexes, two important design points emerge. First, the width, or size, of the

Licensed to Gayle M. Noll <pedbro@gmail.com>

285An introduction to indexes

clustered index directly affects the size of each nonclustered index. For example, a
single integer-based column is much narrower or smaller than four char(100)-based
columns. It follows that from both storage efficiency and lookup performance per-
spectives, clustered indexes should be as small and as narrow as possible.

 The other design point to emerge is that the clustered index should be created
before the nonclustered indexes. Think about what would happen if a table was cre-
ated as a heap with nonclustered indexes. As we covered previously, each nonclus-
tered index would use the heap’s row ID as its row locator. If a clustered index was
then created on the table, each of the nonclustered indexes would need to be
updated to include the clustered index key in place of the row ID.

 Finally, an important property of a clustered index is whether it’s created with a
unique constraint. A nonclustered index’s row locator must point to a single row, so if
the clustered index is not unique, which row will the row locator point to? In address-
ing this issue, SQL Server will make nonunique clustered indexes unique by adding a
hidden uniqueifier value, which distinguishes rows with the same clustered index value.

 The use of the row locator to link a nonclustered index row to its corresponding
heap or clustered index row is typically referred to as a bookmark lookup; however, in
SQL Server 2008, a bookmark lookup operation no longer exists and has been
replaced with clustered index seeks, RID lookups, and key lookups.3 Which of these is used is
determined by the presence (or absence) of a clustered index and whether SQL
Server chooses to use an index or scan the table. Let’s explore this a little further with
a look at the key lookup process.

3 Despite this, the term bookmark lookup is still commonly used to represent the process of locating table data

Figure 13.3 A nonclustered index lookup will traverse the B-tree until it reaches the leaf node, at which
point the row locator is used to locate the data page in the clustered index.

Nonclustered index seek

Row locators

Clustered index pages

Index level 0 (leaf)

Index level 1

Index level 2 (root)
based on an index key value.

Licensed to Gayle M. Noll <pedbro@gmail.com>

286 CHAPTER 13 Index design and maintenance

13.1.5 Key lookup

When SQL Server uses a nonclustered index to fulfill a query request, it uses a key
lookup to retrieve the data from the clustered index (and a RID lookup in the case of
a heap). When a nonclustered index returns one (or few) rows, this is an efficient and
fast operation. However, as the number of matching rows increases, the combined
cost of the index seek plus key lookup operations increases to the point where it may
be quicker to simply scan the base table. Consider the following two queries:

-- Query A
SELECT * FROM client WHERE SSN = '191-422-3775'

-- Query B
SELECT * FROM client WHERE surname = 'Smith'

In Query A, an index lookup on SSN will return a single row, assuming each client has
a unique SSN. In Query B, we’re looking for people with a surname of Smith. Assum-
ing the client table has millions of rows, this query could return thousands of match-
ing rows.

 Let’s assume that the client table has two nonclustered indexes to support each of
the above queries—one on SSN and the other on surname—with a clustered index on
clientCode. In the first query, the SSN index seek would return one row, with a single
key lookup required on the clustered index to return the remaining columns. Con-
trast this with the second query, which may return thousands of instances of Smith,
each of which requires a key lookup. Because the base table is clustered on client-
Code, each of the resultant Smith key lookups will be fulfilled from different physical
parts of the table, requiring thousands of random I/O operations.

 Depending on the number of rows to be returned, it may be much faster to ignore
the index and sequentially scan the table’s clustered index. Despite reading more
rows, the overall cost of a single, large, sequential I/O operation may be less than
thousands of individual random I/Os.4

 A couple of interesting points emerge from this. The first is the possibility of includ-
ing additional columns in the nonclustered index to avoid the key lookup. For exam-
ple, rather than select *, we specify a limited number of query columns, each of which
is added to the nonclustered index definition. By doing so, the query request is satisfied
from the contents of the nonclustered index alone, avoiding the need for key lookups
to the clustered index. Such a technique is possible with both covering indexes and
included columns, both of which we’ll cover in more detail later in the chapter.

 Second, how does SQL Server know how many key lookups will be involved in ful-
filling a query request? How does it decide that it’s more efficient to do a table/clus-
tered index scan? Enter statistics.

4 It’s common for nonclustered indexes requiring key lookups to be ignored in favor of clustered index scans
if more than 1 percent or 2 percent (sometimes less) of the table’s rows are estimated to match the query.

Such is the cost placed on random I/O.

Licensed to Gayle M. Noll <pedbro@gmail.com>

287Index design

13.1.6 Statistics

When indexes are first created, SQL Server calculates and stores statistical information
on the column values in the index. When evaluating how a query will be executed,
that is, whether to use an index or not, SQL Server uses the statistics to estimate the
likely cost of using the index compared to other alternatives.

 The selectivity of an index seek is used to define the estimated percentage of
matched rows compared to the total number of rows in the table. Broadly speaking,
the overall selectivity of an index can be defined as follows:

index selectivity = number of distinct index keys / table row count

The selectivity of an index will range from 0 to 1, or the equivalent value expressed as
a percentage. Looking at the extreme ends of the selectivity scale, a unique index rep-
resents the best possible selectivity of 1, or 100 percent; every row has a unique (dis-
tinct) value. Primary key indexes are perfectly selective. In contrast, an index on a
column where every row has the same value (approaching 0 percent selectivity) is
obviously of limited/zero value.

 By keeping statistics on the distribution of column values in the index, the selectiv-
ity of the query can be estimated. As an example, if there are 1020 Smiths and 2 Zator-
skys in a surname index, a search on Zatorsky is far more selective than a search on
Smith and therefore is more likely to use an index lookup. As you’ll see later in the
chapter, you can use the DBCC SHOW_STATISTICS command to inspect the index statis-
tics used by SQL Server.

 An important aspect of statistics is whether they remain up to date. Consider an
example where an index starts out being highly selective. A query that performs an
equals search on such an indexed column would obviously perform very well. But if a
large volume of rows was added to the table with the same indexed column value, the
selectivity would lower, potentially dramatically, depending on the volume of rows
added and the contents of the indexed column. At this point, the same query, using
the same index, may then perform very poorly. To counter situations such as this, SQL
Server has a number of settings for automatically updating statistics. We’ll explore
these settings and other important aspects of statistics later in the chapter.

 With this background in mind, let’s move on to look at the index design process.

13.2 Index design
A good database design is made in conjunction with, and is conscious of, application
data access logic. For example, in order to design indexes for a particular table, the
database designer must know how users will be accessing the table from the applica-
tion(s). If an application allows searching for data on a particular column or set of col-
umns, then this needs to be considered from an indexing point of view. That’s not to
suggest that the application completely dictates index design. The reverse is often
true; sometimes unrealistic application access must be modified in order to prevent

user-generated activity that causes database performance problems.

Licensed to Gayle M. Noll <pedbro@gmail.com>

288 CHAPTER 13 Index design and maintenance

 In this section, we’ll concentrate on generic index design strategies, beginning
with the type of columns suitable for a clustered index. We’ll then look at an area we
touched on in our introduction, covering indexes and included columns, before con-
cluding the section with coverage of a new feature in SQL Server 2008, filtered indexes,
and how they compare with indexed views.

 Let’s begin with an important step in table design: selecting a clustered index.

13.2.1 Selecting a clustered index

When a table is created with a primary key constraint, as per the following example, a
unique clustered index is automatically created on the column(s) in the primary key,
unless specified otherwise.

-- Creates a clustered index by default on the clientCode primary key
CREATE TABLE dbo.client (
 clientCode int PRIMARY KEY
 , surname nvarchar(100)
 , firstName nvarchar(100)
 , SSN char(11)
 , DOB datetime
)
GO

In this example, the clientCode column will be used as the primary key of the table as
well as the unique clustered index. Defining the column as the primary key means an
explicit CREATE CLUSTERED INDEX command is not required. Should we wish to create
the clustered index on a different column, SSN for example, we could create the table
as follows:

-- Create a clustered index on a nonprimary key column
CREATE TABLE dbo.client (
 clientCode int PRIMARY KEY NONCLUSTERED
 , surname nvarchar(100)
 , firstName nvarchar(100)
 , SSN char(11)
 , DOB datetime
)
GO

CREATE UNIQUE CLUSTERED INDEX cixClientSSN ON dbo.client(SSN)
GO

Created in this manner, the client table will contain two indexes: a unique nonclustered
index for the primary key constraint and a unique clustered index for the SSN column.

 So, generally speaking, which types of columns make the best candidates for a clus-
tered index? In answering this, let’s recap some points from earlier in the chapter:

■ The clustered index key is contained in the leaf node of each nonclustered
index as the row locator. If the clustered index changes from one column to
another, each nonclustered index needs to be updated in order to maintain the

linkage from the nonclustered index to the base table. Further, if the column

Licensed to Gayle M. Noll <pedbro@gmail.com>

289Index design

value of the clustered index changes, similar updates are required in each of
the nonclustered indexes.

■ The width of the clustered index directly affects the size of each nonclustered
index. Again, this is a consequence of including the clustered index key in the
leaf node of each nonclustered index.

■ If a clustered index is not unique, SQL Server will make it so by adding a hidden
uniqueifier column to the table for inclusion in the index.

It follows that the best candidates for a clustered index are columns that
■ Change infrequently (ideally not at all) —A stable column value avoids the need to

maintain nonclustered index row locators.
■ Are narrow —They limit the size of each nonclustered index.
■ Are unique —They avoid the need for a uniqueifier.

With these attributes in mind, a common pattern for table design is to create what’s
called a surrogate key, using the IDENTITY property as per this example:

-- Use the IDENTITY property to create a clustered primary key column
CREATE TABLE dbo.client (
 clientKey int IDENTITY (1,1) PRIMARY KEY
 , surname nvarchar(100)
 , firstName nvarchar(100)
 , SSN char(11)
 , DOB datetime
)
GO

By adding the IDENTITY (1,1) property to the clientKey column definition, SQL
Server will populate this column’s value with an automatically incrementing number
for each new row, starting at 1 for the first row and increasing upward by 1 for each
new row.

 Using the IDENTITY property to create a surrogate key in this manner meets the
desired attributes for a clustered index. It’s an arbitrary number used purely to iden-
tify the record, and therefore it has no reason to be modified. It’s narrow: a single
integer-based column will occupy only 4 bytes. Finally, it’s unique; SQL Server will
automatically take care of the uniqueness, courtesy of the IDENTITY property.

 In our client table example, the other candidate for a clustered index, as well as
the primary key, is the Social Security number. It’s reasonably narrow (11 bytes),
unlikely to change, and unique. In fact, if we made SSN the unique clustered primary
key, we’d have no need for the identity-based clientKey column. But there’s one big
problem here. It’s unique for those who have an SSN. What about those who don’t have
one or those who can’t recall it? If the SSN was the primary key value, the lack of an
SSN would prevent a row from being inserted into the table.5 For this reason, the best
primary keys/unique clustered indexes tend to be artificial or surrogate keys that lack
5 As an Australian without a U.S. Social Security number, I’ve witnessed this firsthand.

Licensed to Gayle M. Noll <pedbro@gmail.com>

290 CHAPTER 13 Index design and maintenance

meaning and use system-generated uniqueness features such as the identity column.
Of course, there are exceptions to this rule, and this is a commonly argued point
among database design professionals.

 The other consideration for a clustered index is column(s) involved in frequent
range scans and queries that require sorted data.

RANGE SCANS AND SORT OPERATIONS

Earlier in the chapter we covered the case where nonclustered indexes are sometimes
ignored if the estimated number of rows to be returned exceeds a certain percentage.
The reason for this is the accumulated cost of the individual key/RID lookup and ran-
dom I/O operations for each row.

 For tables that are frequently used in range-scanning operations, clustering on the
column(s) used in the range scan can provide a big performance boost. As an example,
consider a sales table with an orderDate column and frequent queries such as this one:

-- Range Scan - Potential for a clustered index on orderDate?
SELECT *
FROM dbo.sales
WHERE orderDate BETWEEN '1 Jan 2008' AND '1 Feb 2008'

Depending on the statistics, a nonclustered index seek on orderDate will more than
likely be ignored because of the number of key lookups involved. However, a clustered
index on orderDate would be ideal; using the clustered index, SQL Server would
quickly locate the first order and then use sequential I/O to return all remaining
orders for the date range.

 Finally, queries that select large volumes of sorted (ORDER BY) data often benefit from
clustered indexes on the column used in the ORDER BY clause. With the data already
sorted in the clustered index, the sort operation is avoided, boosting performance.

 Often, a number of attributes come together to make a column an ideal clustered
index candidate. Take, for example, the previous query, which selects orders based on
a date range; if that query also required orders to be sorted, then we could avoid both
key lookups and sort operations by clustering on orderDate.

GUIDs and clustered indexes
A common database design practice is to use globally unique identifier (GUID) columns
as primary keys, which by default will also be the table’s clustered index unless spec-
ified otherwise. Not only are GUIDs wide (16 bytes), they’re randomly generated. Given
such tables are clustered on the GUID column, newly inserted rows will be randomly
positioned throughout the table, leading to page splits and subsequent fragmentation.
This is a particular concern for tables with a high volume of data inserts. SQL Server
2005 introduced the NewSequentialID() function, which partially offsets this prob-
lem by generating GUIDs in a sequential manner. Removing the “randomness” from
the GUID values helps in reducing both page splits and fragmentation.
Licensed to Gayle M. Noll <pedbro@gmail.com>

291Index design

As with most recommendations throughout this book, the process for choosing the
best clustered index is obviously dependent on the specifics of each database table
and knowledge of how applications use the table. That being said, the above recom-
mendations hold true in most cases. In a similar manner, there are a number of com-
mon techniques used in designing nonclustered indexes.

13.2.2 Improving nonclustered index efficiency

As we’ve covered throughout this chapter, the accumulated cost of random I/O
involved in key/RID lookups often leads to nonclustered indexes being ignored in
favor of sequential I/O with clustered index scans. To illustrate this and explore
options for avoiding the key lookup process, let’s walk through a number of examples
using the Person.Contact table in the sample AdventureWorks database. In demon-
strating how SQL Server uses different indexes for different queries, we’ll view the
graphical execution plans, which use different icons, as shown in figure 13.4, to repre-
sent different actions (lookups, scans, seeks, and so forth).

Figure 13.4 Common
icons used in graphical

AdventureWorks database
Some of the examples used throughout this chapter are based on the Adventure-
Works database, available for download from codeplex.com, Microsoft’s open source
project-hosting website. CodePlex contains a huge amount of Microsoft and commu-
nity-based code samples and databases, including a 2008 version of the Adventure-
Works database containing FileStream data.

Seek vs. scan
Several important terms are used when discussing index usage. An index seek is
used when the query optimizer chooses to navigate through the levels of a clustered
or nonclustered index B-tree to quickly reach the appropriate leaf level pages. In con-
trast, an index scan, as the name suggests, scans the leaf level, left to right, one
page at a time.

Clustered index scan

Nonclustered index scan

Table scan Bookmark/key lookup

Nonclustered index seek

Clustered index seek
execution plans

Licensed to Gayle M. Noll <pedbro@gmail.com>

292 CHAPTER 13 Index design and maintenance

The Person.Contact table, as defined below (abbreviated table definition), contains
approximately 20,000 rows. For the purposes of this test, we’ll create a nonunique,
nonclustered index on the LastName column:

-- Create a contact table with a nonclustered index on LastName
CREATE TABLE [Person].[Contact](
 [ContactID] [int] IDENTITY(1,1) PRIMARY KEY CLUSTERED
 , [Title] [nvarchar](8) NULL
 , [FirstName] [dbo].[Name] NOT NULL
 , [LastName] [dbo].[Name] NOT NULL
 , [EmailAddress] [nvarchar](50) NULL
)
GO

CREATE NONCLUSTERED INDEX [ixContactLastName] ON [Person].[Contact]
 ([LastName] ASC)
GO

For our first example, let’s run a query to return all contacts with a LastName starting
with C:

-- Statistics indicate too many rows for an index lookup
SELECT *
FROM Person.Contact
WHERE LastName like 'C%'

Despite the presence of a nonclustered index on LastName, which in theory could be
used for this query, SQL Server correctly ignores it in favor of a clustered index scan. If
we execute this query in SQL Server Management Studio using the Include Actual
Execution Plan option (Ctrl+M, or select from the Query menu), we can see the
graphical representation of the query execution, as shown in figure 13.5.

No great surprises here; SQL Server is performing a clustered index scan to retrieve
the results. Using an index hint, let’s rerun this query and force SQL Server to use the
ixContactLastName index:

-- Force the index lookup with an index hint
SELECT *
FROM Person.Contact WITH (index=ixContactLastName)
WHERE LastName like 'C%'

 Looking at the graphical execution plan, we can confirm that the index is being used,

Figure 13.5 A clustered
index scan is favored for
this query in place of a
nonclustered index seek
plus key lookup.
as per figure 13.6.

Licensed to Gayle M. Noll <pedbro@gmail.com>

293Index design

Figure 13.6 Adding an index hint to the previous query results in an index seek plus key lookup.

On a small database such as AdventureWorks, the performance difference between
these two methods is negligible; both complete in under a second. To better under-
stand how much slower the index lookup method is, we can use the SET STATISTICS
IO option, which returns disk usage statistics6 alongside the query results. Consider
the script in listing 13.2.

-- Compare the Disk I/O with and without an index lookup
SET STATISTICS IO ON
GO

DBCC DROPCLEANBUFFERS
GO

SELECT *
FROM Person.Contact
WHERE LastName like 'C%'

DBCC DROPCLEANBUFFERS

SELECT *
FROM Person.Contact with (index=ixContactLastName)
WHERE LastName like 'C%'
GO

This script will run the query with and without the index hint. Before each query, we’ll
clear the buffer cache using DBCC DROPCLEANBUFFERS to eliminate the memory cache
effects. The STATISTICS IO option will produce, for each query, the number of logi-
cal, physical, and read-ahead pages, defined as follows:

■ Logical Reads — Represents the number of pages read from the data cache.
■ Physical Reads — If the required page is not in cache, it will be read from disk.

It follows that this value will be the same or less than the Logical Reads counter.

6 Not to be confused with index statistics, query statistics refer to disk usage, such as the number of pages read

Listing 13.2 Comparing query execution methods
from buffer or physical disk reads.

Licensed to Gayle M. Noll <pedbro@gmail.com>

294 CHAPTER 13 Index design and maintenance

■ Read Ahead Reads — The SQL Server storage engine uses a performance opti-

mization technique called Read Ahead, which anticipates a query’s future page
needs and prefetches those pages from disk into the data cache. In doing so,
the pages are available in cache when required, avoiding the need for the query
to wait on future physical page reads.

So with these definitions in mind, let’s look at the STATISTICS IO output in figure
13.7.

 These statistics make for some very interesting reading. Note the big increase in
logical reads (3326 versus 569) for the second query, which contains the (index=
ixContactLastName) hint. Why such a big increase? A quick check of sys.dm_
db_index_physical_stats, covered in more detail later in the chapter, reveals there
are only 570 pages in the table/clustered index. This is consistent with the statistics
from the query that used the clustered index scan. So how can the query using the
nonclustered index read so many more pages? The answer lies in the key lookup.

 What’s actually occurring here is that a number of clustered index pages are being
read more than once. In addition to reading the nonclustered index pages for match-
ing records, each key lookup reads pages from the clustered index to compete the
query. In this case, a number of the key lookups are rereading the same clustered
index page. Clearly a single clustered index scan is more efficient, and SQL Server was
right to ignore the nonclustered index.

 Let’s move on to look at an example where SQL Server uses the nonclustered
index without any index hints:

SELECT *
FROM Person.Contact
WHERE LastName like 'Carter%'

The graphical execution plan for this query is shown in figure 13.8, and it confirms
the index is being used.

 We can see that of the overall query cost, 98 percent is the key lookup. Eliminating
this step will derive a further performance increase. You’ll note that in our queries so

Figure 13.7 Forcing a nonclustered index seek plus key lookup significantly increases the number of
pages read.
far we’ve been using select *; what if we reduced the required columns for the query

Licensed to Gayle M. Noll <pedbro@gmail.com>

295Index design

to only those actually required and included them in the index? Such an index is
called a covering index.

COVERING INDEXES

Let’s assume we actually need only FirstName, LastName, and EmailAddress. If we cre-
ated a composite index containing these three columns, the key lookup wouldn’t be
required. Let’s modify the index to include the columns and rerun the query:

-- Create a covering index
DROP INDEX [ixContactLastName] ON [Person].[Contact]
GO
CREATE NONCLUSTERED INDEX [ixContactLastName] ON [Person].[Contact]
(
 [LastName] ASC
 , [FirstName] ASC
 , [EmailAddress] ASC
)
GO

SELECT LastName, FirstName, EmailAddress
FROM Person.Contact
WHERE LastName LIKE 'Carter%'

The execution plan from the query with the new index is shown in figure 13.9.
 As you can see, the query is now satisfied from the contents of the nonclustered

index alone. No key lookups are necessary, as all of the required columns are con-
tained in the nonclustered index. In some ways, this index can be considered a mini,
alternatively clustered version of the table.

Figure 13.8 This particular
query uses the nonclustered
index without any hints. Note
the major cost of the query is
the key lookup at 98 percent.
Figure 13.9 Covering the index eliminates the key lookup, significantly improving query performance.

Licensed to Gayle M. Noll <pedbro@gmail.com>

296 CHAPTER 13 Index design and maintenance

Figure 13.10 By listing the required columns in the select clause and including them in the
nonclustered index, the key lookups are eliminated, with logical reads dropping from 279 to 5.

Confirming the improvement from a disk-statistics perspective, the logical reads drop
significantly, from 279 to 5, as shown in figure 13.10.

 Including additional columns in the nonclustered index to avoid the key lookup
process makes it a covering index. While this is an excellent performance-tuning tech-
nique, the one downside is that the additional columns are included at all levels of
the index (root, all intermediate levels, and the leaf level). In our query above, given
that we’re not using the additional columns as predicates, that is, where clause condi-
tions, they’re not required at any level of the index other than the leaf level to avoid
the key lookup. In small indexes, this is not really an issue. However, for very large
indexes, the additional space taken up by the additional columns at each index level
not only increases the index size but makes the index seek process less efficient. The
included columns feature, introduced in SQL Server 2005, enhances covering
indexes in several ways.

INCLUDED COLUMNS

While they’re a relatively simple and very effective performance-tuning mechanism,
covering indexes are not without their limitations; there can be a maximum of 16 col-
umns in a composite index with a maximum combined size of 900 bytes. Further, col-
umns of certain data types, including n/varchar(max), n/varbinary(max), n/text,

XML, and image cannot be specified as index key columns.

Licensed to Gayle M. Noll <pedbro@gmail.com>

297Index design

 Recognizing the value of covering indexes, SQL Server 2005 and above circumvent
the size and data type limitations through indexes with included columns. Such
indexes allow additional columns to be added to the leaf level of nonclustered indexes.
In doing so, the additional columns are not counted in the 16 column and 900 byte
maximum, and additional data types are allowed for these columns (n/varchar(max),
n/varbinary(max), and XML). Consider the following create index statement:

-- Include columns at the leaf level of the index
CREATE NONCLUSTERED INDEX ixContactLastName
ON Person.Contact (LastName)
INCLUDE (FirstName, EmailAddress)

Notice the additional INCLUDE clause at the end of the statement; this index will offer
all the benefits of the previous covering index. Further, if appropriate, we could add
columns with data types not supported in traditional indexes, and we wouldn’t be
restricted by the 16-column maximum.

 When deciding whether to place a column in the index definition as a key column
or as an included column, the determining factor is whether the column will be used
as a predicate, that is, a search condition in the where clause of a query. If a column is
added purely to avoid the key lookup because of inclusion in the select list, then it
makes sense for it to be an included column. Alternatively, a column used for filter-
ing/searching purposes should be included as a key column in the index definition.

 Let’s take our previous example of a surname search. If a common search condi-
tion was on the combination of surname and first name, then it would make sense for
both columns to be included in the index as key columns for more efficient lookups
when seeking through the intermediate index levels. If the email address column is
used purely as return information, that is, in the query’s select list, but not as a pred-
icate (where clause condition), then it makes sense for it to be an included column.
Such an index definition would look like this:

CREATE NONCLUSTERED INDEX ixContactLastName
ON Person.Contact (LastName, FirstName)
INCLUDE (EmailAddress)

In summary, included column indexes retain the power of covering indexes while
minimizing the index size and therefore maximizing lookup efficiency.

 Before closing our section on nonclustered index design, let’s spend some time cov-
ering an important new indexing feature included in SQL Server 2008: filtered indexes.
FILTERED INDEXES

Filtered indexes are one of my favorite new features in SQL Server 2008. Before we
investigate their many advantages, consider the following table used to store customer
details, including a country code:

CREATE TABLE [Person].[Customer](

 [CustomerID] [int] IDENTITY(1,1) PRIMARY KEY CLUSTERED

Licensed to Gayle M. Noll <pedbro@gmail.com>

298 CHAPTER 13 Index design and maintenance

 , [Title] [nvarchar](8) NULL
 , [FirstName] [nvarchar](100) NOT NULL
 , [LastName] [nvarchar](100) NOT NULL
 , [EmailAddress] [nvarchar](100) NULL
 , [CountryCode] char(2) NULL
)
GO

Let’s imagine this table is part of a database used around the globe on a 24/7 basis.
The Customer table is used predominantly by a follow-the-sun call center, where cus-
tomer details are accessed by call center staff from the same country or region as the
calling customers.

 Creating a nonclustered index on this table similar to the one earlier in the chapter
where we included FirstName, LastName, and EmailAddress will enable lookups on cus-
tomer name to return the required details. If this was a very large table, the size of the
corresponding nonclustered indexes would also be large. As we’ll see later in the chap-
ter, maintaining large indexes that are in use 24/7 presents some interesting challenges.

 In our example here, a traditional (full table) index would be created similar to
what we’ve already seen earlier in the chapter; columns would be defined as key or
included index columns, ideally as part of a covering index. All is fine so far, but
wouldn’t it be good if we could have separate versions of the index for specific coun-
tries? That would enable, for example, the Australian version of the index to be
rebuilt when it’s midnight in Australia and few, if any, Australian users are being
accessed. Such an index design would reduce the impact on sections of users that are
unlikely to be accessed at the time of the index maintenance.

 Consider the following two index-creation statements:

-- Create 2 filtered indexes on the Customer table
CREATE NONCLUSTERED INDEX ixCustomerAustralia
ON Person.Customer (LastName, FirstName)
INCLUDE (EmailAddress)
WHERE CountryCode = 'AU'
GO

CREATE NONCLUSTERED INDEX ixCustomerUnitedKingdom
ON Person.Customer (LastName, FirstName)
INCLUDE (EmailAddress)
WHERE CountryCode = 'UK'
GO

The indexes we’ve created here are similar to ones from earlier in the chapter with
one notable exception: they have a predicate (where clause filter) as part of their defi-
nition. When a search is performed using a matching predicate and index keys, the
query optimizer will consider using the index, subject to the usual considerations. For
example, the ixCustomerAustralia index could be used for a query that includes the
CountryCode = 'AU' predicate such as this:

SELECT FirstName, LastName, EmailAddress
FROM Person.Customer

WHERE

Licensed to Gayle M. Noll <pedbro@gmail.com>

299Index design

 LastName = 'Colledge'
 AND FirstName like 'Rod%'
 AND CountryCode = 'AU'

Such indexes, known as filtered indexes, enable a whole range of benefits. Let’s cover
the major ones:

■ Segregated maintenance —As we’ve discussed, creating multiple smaller versions of
a single larger index enables maintenance routines such as index rebuilds to be
scheduled in isolation from other versions of the index that may be receiving
heavy usage.

■ Smaller, faster indexes —Filtering an index makes it smaller and therefore faster.
Best of all, covered filtered indexes support optimized lookups for specialized
purposes. Consider a very large product table with a ProductCategory column;
filtered indexes could be created for product categories, which include the
appropriate columns specific to that category. When combined with applica-
tion logic, such indexes enable fast, optimized lookups for sections of data
within a table.

■ Creating unique indexes on nullable columns —Consider the Social Security number
(SSN) column from earlier in the chapter; to support storing records for non-
U.S. residents, we couldn’t define the column as NOT NULL. This would mean
that a percentage of the records would have a NULL SSN, but those that do have
one should be unique. By creating a filtered unique nonclustered index, we can
achieve both of these goals by defining the index with a WHERE SSN IS NOT
NULL predicate.

■ More accurate statistics —Unless created with the FULLSCAN option (covered later
in the chapter), statistics work by sampling a subset of the index. In a filtered
index, all of the sampled statistics are specific to the filter; therefore they are
more accurate compared to an index that keeps statistics on all table data, some
of which may never be used for index lookups.

■ Lower storage costs —The ability to exclude unwanted data from indexes enables
the size, and therefore storage costs, to be reduced.

Some of the advantages of filtered indexes could be achieved in earlier versions of
SQL Server using indexed views. While similar, there are important differences and
restrictions to be aware of when choosing one method over the other.

13.2.3 Indexed views

A traditional, nonindexed view provides a filter over one or more tables. Used for var-
ious purposes, views are an excellent mechanism for abstracting table join complexity
and securing data. Indexed views, introduced in SQL Server 2000, materialize the
results of the view. Think of an indexed view as another table with its own data, the dif-
ference being the data is sourced from one or more other tables. Indexed views are

sometimes referred to as virtual tables.

Licensed to Gayle M. Noll <pedbro@gmail.com>

300 CHAPTER 13 Index design and maintenance

 To illustrate the power of indexed views, let’s consider a modified example from
SQL Server Books Online, where sales data is summarized by product and date. The
original query, run against the base tables, is shown in listing 13.3.

-- Return orders grouped by date and product name
SELECT
 o.OrderDate
 , p.Name as productName
 , sum(UnitPrice * OrderQty * (1.00-UnitPriceDiscount)) as revenue
 , count_big(*) as salesQty
FROM Sales.SalesOrderDetail as od
 INNER JOIN Sales.SalesOrderHeader as o
 ON od.SalesOrderID = o.SalesOrderID
 INNER JOIN Production.Product as p
 ON od.ProductID = p.ProductID
WHERE o.OrderDate between '1 July 2001' and '31 July 2001'
GROUP BY o.OrderDate, p.Name
ORDER BY o.OrderDate, p.Name

What we’re doing here is selecting the total sales (dollar total and count) for sales from
July 2001, grouped by date and product. The I/O statistics for this query are as follows:

Table Worktable: Scan count 0, logical reads 0, physical reads 0, read-ahead
reads 0

Table SalesOrderDetail: Scan count 184, logical reads 861, physical reads 1,
read-ahead reads 8

Table SalesOrderHeader: Scan count 1, logical reads 703, physical reads 1,
read-ahead reads 699

Table Product: Scan count 1, logical reads 5, physical reads 1, read-ahead
reads 0

The AdventureWorks database is quite small, and as a result, the query completes in
only a few seconds. On a much larger, real-world database, the query would take sub-
stantially longer, with a corresponding user impact. Consider the execution plan for
this query, as shown in figure 13.11.

Listing 13.3 Sorted and grouped sales orders
Figure 13.11 Query execution plan to return grouped, sorted sales data by date and product

Licensed to Gayle M. Noll <pedbro@gmail.com>

301Index design

The join, grouping, and sorting logic in this query are all contributing factors to its
complexity and disk I/O usage. If this query was run once a day and after hours, then
perhaps it wouldn’t be much of a problem, but consider the user impact if this query
was run by many users throughout the day.

 Using indexed views, we can materialize the results of this query, as shown in listing
13.4.

-- Create an indexed view
CREATE VIEW Sales.OrdersView
WITH SCHEMABINDING
AS
 SELECT
 o.OrderDate
 , p.Name as productName
 , sum(UnitPrice * OrderQty * (1.00-UnitPriceDiscount)) as revenue
 , count_big(*) as salesQty
 FROM Sales.SalesOrderDetail as od
 INNER JOIN Sales.SalesOrderHeader as o
 ON od.SalesOrderID = o.SalesOrderID
 INNER JOIN Production.Product as p
 ON od.ProductID = p.ProductID
 GROUP BY o.OrderDate, p.Name
GO

--Create an index on the view
CREATE UNIQUE CLUSTERED INDEX ixv_productSales
 ON Sales.OrdersView (OrderDate, productName);
GO

Notice the WITH SCHEMABINDING used when creating the view. This essentially ties the
view to the table definition, preventing structural table changes while the view exists.
Further, creating the unique clustered index in the second half of the script is what
materializes the results of the view to disk. Once materialized, the same query that we
ran before can be run again, without needing to reference the indexed view.7 The difference
can be seen in the I/O statistics and dramatically simpler query execution plan, as
shown in figure 13.12.

Listing 13.4 Creating an indexed view

7 This assumes the Enterprise edition is being used. Non-Enterprise editions require an explicit reference to

Figure 13.12 Indexed views
result in dramatically simpler
execution plans and reduced
resource usage. Compare this
execution plan with the plan
shown in figure 13.11.
the indexed view with the NOEXPAND hint.

Licensed to Gayle M. Noll <pedbro@gmail.com>

302 CHAPTER 13 Index design and maintenance

Essentially, what we’ve done in creating the indexed view is store, or materialize, the
results such that the base tables no longer need to be queried to return the results,
thereby avoiding the (expensive) aggregation process to calculate revenue and sales
volume. The I/O statistics for the query using the indexed view are as follows:

Table OrdersView: Scan count 1, logical reads 5, physical reads 1, read-ahead
reads 2

That’s a total of 5 logical reads, compared to 1500-plus before the indexed view was
created. You can imagine the accumulated positive performance impact of the
indexed view if the query was run repeatedly throughout the day.

 Once an indexed view is materialized with the unique clustered index, additional
nonclustered indexes can be created on it; however, the same performance impact
and index maintenance considerations apply as per a standard table.

 Used correctly, indexed views are incredibly powerful, but there are several down-
sides and considerations. The primary one is the overhead in maintaining the view;
that is, every time a record in one of the view’s source tables is modified, the corre-
sponding updates are required in the indexed view, including re-aggregating results if
appropriate. The maintenance overhead for updates on the base tables may outweigh
the read performance benefits; thus, indexed views are best used on tables with infre-
quent updates.

 The other major consideration for creating indexed views is their constraints and
base table requirements. Books Online contains a complete description of these con-
straints. The major ones are as follows:

■ Schema binding on the base tables prevents any schema changes to the under-
lying tables while the indexed view exists.

■ The index that materializes the view, that is, the initial clustered index, must be
unique; hence, there must be a unique column, or combination of columns, in
the view.

■ The indexed view cannot include n/text or image columns.

The indexed view that we created in the previous example for sales data grouped by
product and date was one of many possible implementations. A simpler example of an
indexed view follows:

-- Create an indexed view
CREATE VIEW Person.AustralianCustomers
WITH SCHEMABINDING
AS
SELECT CustomerID, LastName, FirstName, EmailAddress
FROM Person.Customer
WHERE CountryCode = 'AU'
go

CREATE UNIQUE CLUSTERED INDEX ixv_AustralianCustomers
 ON Person.AustralianCustomers(CustomerID);

GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

303Index analysis

If you recall our example from earlier in the chapter when we looked at filtered
indexes, this essentially achieves the same thing. So which is the better method to use?

INDEXED VIEWS VS. FILTERED INDEXES

We can use both filtered indexes and indexed views to achieve fast lookups for subsets
of data within a table. The method chosen is based in part on the constraints and lim-
itations of each method. We’ve covered some of the indexed view restrictions (schema
binding, no n/text or image columns, and so forth). When it comes to filtered
indexes, the major restriction is the fact that, like full table indexes, they can be
defined on only a single table. In contrast, as you saw in our example with sales data,
an indexed view can be created across many tables joined together.

 Additional restrictions apply to the predicates for a filtered index. In our earlier
example, we created filtered indexes with simple conditions such as where Country-
Code = 'AU'. More complex predicates such as string comparisons using the LIKE
operator are not permitted in filtered indexes, nor are computed columns.

 Data type conversion is not permitted on the left-hand side of a filtered index
predicate, for example, a table containing a varbinary(4) column named col1, with a
filter predicate such as where col1 = 10. In this case, the filtered index would fail
because col1 requires an implicit binary-to-integer conversion.8

 In summary, filtered indexes are best used against single tables with simple predi-
cates where the row volume of the index is a small percentage of the total table row
count. In contrast, indexed views are a powerful solution for multi-table join scenarios
with aggregate calculations and more complex predicates on tables that are infre-
quently updated. Perhaps the major determining factor is the edition of SQL Server
used. While indexed views can be created in any edition of SQL Server, they’ll be auto-
matically considered for use only in the Enterprise edition. In other editions, they
need to be explicitly referenced with the NOEXPAND query hint.

 With these index design points in mind, let’s now look at processes and tech-
niques for analyzing indexes to determine their usage and subsequent maintenance
requirements.

13.3 Index analysis
An unfortunate, all-too-common indexing approach is to carpet bomb the database
with indexes in the hope that performance will (eventually) improve. Not only will
such an approach fail, but it usually ends in tears with the accumulated performance
and maintenance costs of unnecessary indexes eventually having a paralyzing effect.
Fortunately, there is a much more effective approach, made all the easier using several
index-related Dynamic Management Views (DMVs).

 In this section, we’ll approach index analysis from three angles, identifying
indexes to drop, add, and defragment. Let’s begin with a look at using DMVs to iden-
tify indexes that are candidates for removal.
8 Changing the filtered index predicate to where col1 = convert(varbinary(4), 10) would be valid.

Licensed to Gayle M. Noll <pedbro@gmail.com>

304 CHAPTER 13 Index design and maintenance

13.3.1 Identifying indexes to drop/disable

Indexes that are either not used or used infrequently not only consume additional
space, but they also lengthen maintenance routines and slow performance, given the
need to keep them updated in line with the base table data. As an example, consider
an index on a FirstName column in a very large customer table and a query such as
select * from customers where FirstName = 'John'. A lack of understanding as
to why SQL Server is unlikely to use such an index may cause a junior DBA to create it
in the hope that it may improve performance. Usually, such indexes are left in place
without any follow-up analysis as to whether or not the index is being used.

 Before we look at techniques for removing indexes, let’s cover a very important
DMV, sys.dm_db_index_usage_stats, to help us in this task.

SYS.DM_DB_INDEX_USAGE_STATS

As the name implies, the sys.dm_db_index_usage_stats DMV returns information on
how indexes are being used. For each index, counts are kept on the number of times
the index has been scanned, updated, and used for lookup or seek purposes, since the
SQL instance was last restarted.

 A full description of all of the columns returned by this DMV is available in Books
Online. Let’s cover the important ones:

■ user_seeks —Each time an index is used for seek purposes, that is, navigating
through levels of its B-tree, this counter is incremented. A high value here usu-
ally represents an effective index.

■ user_scans —When a index is scanned at the leaf level (as opposed to seeking
through the B-tree), this counter is incremented.

■ user_lookups —Each time a nonclustered index is used for a lookup into a heap
or clustered index, this counter is incremented.

■ user_updates —Insert, update, and delete operations on a table must maintain
the appropriate indexes. Every insert and delete operation will have a corre-
sponding action for each nonclustered index, with updates effecting certain
indexes, depending on the columns that have changed. Each time an index is

Dynamic Management Views
Dynamic Management Views return server state information useful in diagnosing
server health and tuning performance. The values returned by some DMVs, includ-
ing the ones in this section, are reset when the SQL Server instance restarts. Be-
fore making any decisions that are based on DMV results, consider when the
instance was last restarted to ensure the DMV results are representative of the full
range of database access patterns, for example, daily, weekly, and monthly re-
ports. Taking a database offline, or using the AUTOCLOSE option, will also reset cer-
tain DMV values. Links to various DMV scripts and further details are available at
http://www.sqlCrunch.com/index.
maintained for any of these actions, this counter is incremented.

Licensed to Gayle M. Noll <pedbro@gmail.com>

305Index analysis

In addition to these columns, sys.dm_db_index_usage_stats returns many others,
including the last date and time for each of the actions covered previously. The major
value of this DMV is using it to identify indexes that are rarely used but have a high
maintenance overhead. Such indexes are candidates for removal, and we’ll walk
through a script that uses this DMV shortly.

UNUSED INDEXES

Like many other DMVs, sys.dm_db_index_usage_stats holds index usage stats only
since the SQL instance was last started. One of the implications that can be drawn
from this is that any index that does not appear in this list has not been used since the
instance was started. If the instance has been online for long enough to cover the full
range of access patterns—for example, daily, weekly and monthly reports—and the
database is not using the AUTOCLOSE option (or has been taken offline), then an index
not appearing in this DMV is unlikely to be used at all.

 The script in listing 13.5 uses sys.dm_db_index_usage_stats along with a number of
system tables to return indexes not used since the last instance restart.

-- Identify unused indexes (since last restart)
SELECT
 sc.name + '.' + object_name(i.object_id) as objectName
 , i.name as indexName
 , i.type_desc as indexType
FROM sys.indexes i
 INNER JOIN sys.objects o on o.object_id = i.object_id
 INNER JOIN sys.schemas sc on o.schema_id = sc.schema_id
WHERE
 objectproperty(i.object_id,'IsUserTable') = 1
 AND i.index_id not in (
 SELECT s.index_id
 FROM sys.dm_db_index_usage_stats s
 WHERE
 s.object_id = i.object_id
 AND i.index_id = s.index_id
 AND database_id = db_id()
)
ORDER BY objectName, indexName ASC

This script uses sys.indexes, sys.objects, and sys.schemas to return index information
followed by a simple not in clause to exclude those indexes in the DMV. The end
result includes indexes not used since the SQL instance last started.

 We also need to identify indexes whose maintenance cost outweighs their value.

HIGH-MAINTENANCE/LOW-VALUE INDEXES

In our next script, shown in listing 13.6, let’s use the count values returned from
sys.dm_db_index_usage_stats to compare the update count to the use count, that is,
their maintenance-versus-usage ratio.

Listing 13.5 Indexes not used since last instance restart
Licensed to Gayle M. Noll <pedbro@gmail.com>

306 CHAPTER 13 Index design and maintenance

-- Identify high maintenance indexes with low usage
SELECT
 sc.name + '.' + object_name(i.object_id) as objectName
 , i.name as indexName
 , user_seeks
 , user_scans
 , user_lookups
 , (user_seeks + user_scans + user_lookups) as indexReads
 , user_updates as indexWrites
 , user_updates - (user_seeks + user_scans + user_lookups) as usageDiff
FROM sys.dm_db_index_usage_stats s
 INNER JOIN sys.indexes i on i.index_id = s.index_id
 INNER JOIN sys.objects o on o.object_id = i.object_id
 INNER JOIN sys.schemas sc on o.schema_id = sc.schema_id
WHERE
 database_id = db_id()
 AND objectproperty(s.object_id,'IsUserTable') = 1
 AND i.object_id = s.object_id
 AND i.type_desc = 'NONCLUSTERED'
ORDER BY
 usageDiff DESC

By ordering the results descending on the usageDiff column, this script identifies
indexes with the biggest differential between their read and write counts. In the
extreme cases where indexReads is zero, the index is being maintained for no read
benefits at all. Note that the previous script filters for nonclustered indexes. We can
remove this condition to display information on the base table/clustered index as well,
including the last accessed stats to display when a table was last used in any capacity.

 The result of this script, run against the AdventureWorks database, is shown in fig-
ure 13.13. Note that negative values for usageDiff represent cases where the index has
been used for read purposes more than for updates.

Figure 13.13 Large differences between the update and usage counts are indicative of

Listing 13.6 High-maintenance/low-value indexes
high-maintenance/low-value indexes.

Licensed to Gayle M. Noll <pedbro@gmail.com>

307Index analysis

It’s also possible for some indexes, while valuable and frequently used, to be dupli-
cated or overlapping.

DUPLICATE AND OVERLAPPING INDEXES

A duplicate index, that is, an index with the same columns, defined in the same order,
presents a very easy and clear case for removal. In a similar manner, an index that
shares the same leading columns can also be considered a duplicate of another index.
For example, Index B on lastName, firstName is really a duplicate of Index A on last-
Name, firstName, dateOfBirth. A number of links to scripts for detecting duplicate
and overlapping indexes have been placed on the book’s companion website, avail-
able at www.sqlCrunch.com/index.

 Before dropping duplicate indexes, you should take care to ensure that no existing
T-SQL or stored procedure code uses the index(es) as part of an index hint. Dropping
such indexes without updating referencing code will obviously result in errors when
the (now nonexistent) indexes are referenced.

 In this section, we’ve identified indexes that are candidates for removal. In SQL
Server 2005 and above, indexes can be disabled as well as removed or dropped, an
important consideration and one that we’ll cover when we look at index maintenance
later in the chapter. For now, let’s look at index analysis from a different perspective:
identifying indexes that don’t exist.

13.3.2 Identifying indexes to add

The analysis and potential removal of duplicate, unused, or infrequently used indexes
can be periodically scheduled as a weekly or monthly maintenance task. In contrast, the
addition of indexes is usually the result of a performance-tuning exercise, often started
to investigate the sudden or gradual performance decline in one or more queries.

 When a query is submitted to SQL Server for execution, the query optimizer deter-
mines the ideal index structures for executing the query. If such indexes exist, they’re
used; otherwise, a suboptimal plan is created with the details of the missing/ideal
indexes stored for later reference. Such details can be accessed using one of two meth-
ods: the XML query plan and Dynamic Management Views.

XML QUERY PLANS

In its simplest form, the missing-indexes feature can be used for individual queries

Indexes on foreign keys
A common performance problem is related to the absence of foreign key indexes. In
almost all cases, an index on a foreign key column will improve performance. For ex-
ample, in an orders table, there is typically a foreign key to a customers table, with
a very common query being something like select * from orders where custo-
merId = 623901. In this example, an index on the customerId foreign key would most
likely be beneficial.
by inspecting the <MissingIndexes> element of the XML execution plan of a query

Licensed to Gayle M. Noll <pedbro@gmail.com>

308 CHAPTER 13 Index design and maintenance

executed in SQL Server Management Studio. As an example, let’s imagine an application
change was recently made to support searching AdventureWorks orders by a partial
string match on the PurchaseOrderNumber column. Such a query would look like this:

-- Generate a missing index event
SELECT OrderDate, CustomerID, SubTotal, SalesPersonID
FROM Sales.SalesOrderHeader
WHERE PurchaseOrderNumber like 'PO166%'

With no clustered or nonclustered index on the PurchaseOrderNumber column, this
query is forced to use a clustered index scan. Let’s execute the query after running
SET STATISTICS XML ON. The results are shown in figure 13.14.

Note the XML that’s returned below the result set. Clicking on the XML will open the
graphical query execution plan. Right-click the resultant plan and choose Show Exe-
cution Plan XML. An example of the resultant XML is shown in figure 13.15.

 The part of the XML plan we’re interested in is highlighted. The <MissingIn-
dexes> element contains the details of the ideal index that the query optimizer identi-
fied as being missing. In this particular case, the suggested index contains the
PurchaseOrderNumber column as an index key with the other columns as included

Figure 13.14 Query results with
XML statistics
Figure 13.15 XML statistics with missing indexes highlighted

Licensed to Gayle M. Noll <pedbro@gmail.com>

309Index analysis

columns. Further, the Impact attribute of the <MissingIndexGroup> element esti-
mates a 91.9624 percent improvement in query performance if this index is in place.

 Using this information, the create statement for the suggested index would be
created as follows:

CREATE NONCLUSTERED INDEX ixSalesOrderHeader_PurchaseOrderNumber
ON Sales.SalesOrderHeader(PurchaseOrderNumber)
INCLUDE (OrderDate, CustomerID, SubTotal, SalesPersonID)

 Rerunning the query with the above index in place changes the execution plan
from a clustered index scan to a nonclustered index seek without the need for key
lookups (courtesy of the included columns). Running the query with SET STATISTICS
IO ON confirms the reduction of page reads and the estimated 91 percent improve-
ment suggested in the XML we saw earlier.

 Now, this does not mean we should run out and immediately add this index. The
recommendation for this particular example is made in isolation from the rest of the
workload on the server. If this was a one-off ad hoc query, then adding this index
would likely result in a net decrease in performance, given its maintenance require-
ments and the fact that it would be used infrequently. However, if this is a common
query, then perhaps it’s a candidate for addition.

In essence, XML query plans allow us to access missing index information for a partic-
ular query. While this is valuable, what would be really nice would be the ability to
look back on previous production workload to identify all of the missing indexes. This
is possible using the sys.dm_db_missing_index DMVs.
SYS.DM_DB_MISSING_INDEX DMVS

As we discussed earlier, when the query optimizer uses a suboptimal query plan, it
records the details of the missing indexes that it believes are optimal for the query. In
addition to viewing these details for a particular query using the XML plans, we can
access these details for all queries9 since the SQL instance last restarted through the
sys.dm_db_missing_index DMVs. There are four DMVs in this group:

SET STATISTICS XML ON
In SQL Server versions prior to 2005, query execution plans could be viewed in text
or graphical format. Graphical plans are nice, except when they span more than one
screen and you need to send them to someone for analysis. On the other hand, text
plans are sometimes difficult to read, especially complex plans. XML plans offer the
best of both worlds. They can be saved as XML files for distribution, and when viewed
in SQL Server Management studio, they’re shown graphically with a right-click option
for displaying the XML. Further, the XML can be inspected for details on missing in-
dexes and viewing the compiled-versus-runtime parameter values for assistance in
diagnosing parameter-sniffing problems, which we’ll cover in chapter 17.
9 Up to 500 missing index groups are maintained by these DMVs.

Licensed to Gayle M. Noll <pedbro@gmail.com>

310 CHAPTER 13 Index design and maintenance

■ sys.dm_db_missing_index_details —This DMV returns one record for each missing
index and contains columns for suggested key and included columns. Each
missing index is identified with an index_handle.

■ sys.dm_db_missing_index_groups —This DMV acts as a mapping between
sys.dm_db_missing_index_details and sys.dm_db_missing_index_group_stats.
It contains two columns: index_handle and group_handle.

■ sys.dm_db_missing_index_group_stats —Each time the same index is identified by
the query optimizer as missing, its potential value grows. This DMV stores the
accumulated statistics on the index’s potential value. Identified with
group_handle, the accumulated stats can be traced back to the details of the
missing index via the sys.dm_db_missing_index_groups DMV.

■ sys.dm_db_missing_index_columns —This dynamic management function takes an
index_handle as a parameter and returns the missing index’s columns in a
table format with a column indicating the suggested index column type.

To understand how each of these DMVs operates, let’s use our example query from
earlier:

SELECT OrderDate, CustomerID, SubTotal, SalesPersonID
FROM Sales.SalesOrderHeader
WHERE PurchaseOrderNumber like 'PO166%'

After restarting our SQL instance to clear the contents of the DMVs, we’ll run this
query, along with inspecting the results of the four DMVs. There are a couple of points
to note about what we’ve done here. First, like the sys.dm_db_index_usage_stats DMV,
these DMVs are cleared with each instance restart, so any decision based on their con-
tent should be made after the instance has been up and running for a period of time
that covers the full range of activity. Second, the value of the sys.dm_db_missing_
index_group_stats DMV is that it accumulates statistics on the potential value of a miss-
ing index after repeat misses. In our case, we’ve missed the index only once since the
instance was started, so the figures shown for this DMV are for a single miss. So with
these points in mind, let’s examine the output from the DMVs, shown in figure 13.16.

 First, you’ll note that the equality column for sys.dm_db_missing_index_details is
empty. This is because there are no equality predicates in our query, for example,
where x=10. We used like, so this appears as an inequality column. Second, note that
sys.dm_db_missing_index_columns is a function that takes an index_handle as an
input and returns index columns in a tabular fashion along with the column usage
(equality, inequality, include). In contrast, sys.dm_db_missing_index_details returns
one row per missing index.

 The real value of these DMVs is when the instance has been up and running for a
period of time. This allows us to take advantage of the accumulated statistics from the
sys.dm_db_missing_index_group_stats DMV. Books Online has a complete description
of the columns returned from this DMV, but there are a few that stand out:

■ avg_total_user_cost —This column represents the reduction in query cost if the

suggested index was present.

Licensed to Gayle M. Noll <pedbro@gmail.com>

311Index analysis

■ avg_user_impact —This represents the estimated percentage improvement of the
query with the index present.

■ user_seeks and user_scans —Each time the query is executed without the sug-
gested index, these values increment to represent the number of times the
index could have been used in either a seek or scan capacity.

When selecting from the sys.dm_db_missing_index_group_stats DMV, we can order by
the above columns to show the indexes with the greatest potential for improvement.
To simulate this, we can rerun our SalesOrderHeader query multiple times and then
query the DMV ordering by the above columns. Listing 13.7 shows the code for this.
Note the GO 10 command after the SalesOrderHeader query, used to execute the
query 10 times. In addition to this query, we execute another query on the Data-
baseLog table, which also generates a missing index event. This allows us to view mul-
tiple missing indexes ordered by potential value.

-- Simulate a weighted query workload by using GO 10 for 1 statement
SELECT OrderDate, CustomerID, SubTotal, SalesPersonID
FROM Sales.SalesOrderHeader
WHERE PurchaseOrderNumber like 'PO166%'
GO 10

SELECT DatabaseUser, TSQL
FROM dbo.DatabaseLog
WHERE Event = 'ALTER_TABLE'

Listing 13.7 Simulating activity to view missing indexes by priority

Figure 13.16 Missing index information returned from various DMVs
GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

312 CHAPTER 13 Index design and maintenance

Listing 13.8 shows the code to view the missing index information generated by the
above two queries, weighted by potential value.

-- View missing indexes Weighted by potential value
SELECT
 sc.name + '.' + OBJECT_NAME(details.object_id)
 , details.equality_columns
 , details.inequality_columns
 , details.included_columns
 , stats.avg_total_user_cost
 , stats.user_seeks
 , stats.avg_user_impact
 , stats.avg_total_user_cost * stats.avg_user_impact
 * (stats.user_seeks + stats.user_scans) as potential
FROM sys.dm_db_missing_index_group_stats stats
 INNER JOIN sys.dm_db_missing_index_groups groups
 ON stats.group_handle = groups.index_group_handle
 INNER JOIN sys.dm_db_missing_index_details details
 ON details.index_handle = groups.index_handle
 INNER JOIN sys.objects o
 ON o.object_id = details.object_id
 INNER JOIN sys.schemas sc
 ON o.schema_id = sc.schema_id
ORDER BY potential desc

The calculated potential column takes into account the columns from the
sys.dm_db_missing_index_group_stats that we covered earlier. By executing the query
on the SalesOrderHeader table 10 times (using the GO 10 command), the potential
value of the missing index on this table is increased by virtue of the user_seeks col-
umn, together with the avg_total_user_cost and avg_user_impact columns. The out-
put from the query in listing 13.8 is shown in figure 13.17.

 The potential value for the missing indexes is calculated by multiplying the sum of
seeks/scans against the user cost and impact columns. Because the SalesOrderHeader

Listing 13.8 Missing index DMV query with potential weighting
Figure 13.17 Missing index DMV query with weighting potential

Licensed to Gayle M. Noll <pedbro@gmail.com>

313Index analysis

query was executed 11 times, its potential weighting is greater compared to a single
execution of the query on the DatabaseLog table.

 The full value of the missing index DMVs can be exploited as part of a regular
maintenance routine. For example, weekly checks on index usage to remove dupli-
cate/unused indexes could be combined with checks on the potential for missing
indexes using a query similar to the previous one.

 Despite the power of the missing index DMVs, there are some limitations, all of
which are listed in Books Online. The major ones are as follows:

■ A maximum of 500 missing indexes will be kept.
■ The DMVs will be cleared when the SQL instance is restarted or the table defini-

tion changes.
■ While the missing indexes report the columns to include (key and included col-

umns), they don’t suggest a column order for the index.
■ Certain index types, including filtered indexes, clustered indexes, and indexed

views, are not suggested.

The Database Engine Tuning Advisor, covered next, addresses some of these short-
comings.
DATABASE ENGINE TUNING ADVISOR

The Database Engine Tuning Advisor, accessible in the Performance Tools folder of the
Microsoft SQL Server 2008 program group, analyzes workload from either a T-SQL file
or SQL Trace file/table. T-SQL files are typically used to analyze a limited set of com-
mands, whereas SQL traces, covered in more detail in chapter 14, are used to analyze
workload over a period of time, for example, a 24-hour period covering typical pro-
duction activity.

 Once the workload input has been specified, options can be configured to limit
the scope of recommendations that the tuning advisor will consider. Figure 13.18
shows the broad range of options available for consideration.

Figure 13.18 The Database Engine Tuning Advisor can be used to examine

a workload and suggest various index types to improve performance.

Licensed to Gayle M. Noll <pedbro@gmail.com>

314 CHAPTER 13 Index design and maintenance

As shown in figure 13.18, the analysis options are far greater than what can be
achieved using the missing index DMVs that we covered earlier. Further, the analysis
can be based on a wide range of production activity captured in a trace file (or table)
for future analysis. In the next chapter, we’ll provide more coverage of using SQL
Server Profiler to capture production database activity.

 Once the workload input has been selected and a target database chosen, analysis
can begin. When the analysis is complete, recommendations can be viewed, an exam-
ple of which is shown in figure 13.19.

 One of the clear advantages of using the tuning advisor over other index analysis
methods is the ease with which the recommendations can be turned into actual T-SQL
code for implementation. As shown in figure 13.19, you can click the Definition col-
umn to display the appropriate T-SQL code to effect the recommendation. Further,
the tool can be used for recommendations on indexes to drop as well as those to add.

 As per the recommendations from the missing index DMVs, you should carefully
consider indexes suggested by the tuning advisor before implementing them. Among
others, considerations include these:

■ Is the workload sufficient to cover the full range of production activity?
■ Can the suggested recommendations be load/volume tested before production

implementation?

A common theme throughout this book is ensuring the existence of a volume test envi-
ronment where configuration changes can be verified for performance impact before
implementing them in production. For suggested index changes, this is crucial.

 So far in this section we’ve covered techniques to identify indexes to add and
delete. What’s missing is a technique to identify the fragmentation levels of existing
indexes that are being used.

13.3.3 Identifying index fragmentation

Indexes, like any other storage object, become fragmented over time through the
course of normal insert, delete, and update activity. Identifying the level of fragmenta-
tion is a crucial component of a targeted maintenance plan. Later in the chapter we’ll
look at prioritizing index maintenance based on the level of fragmentation. In this

Figure 13.19 Database Engine Tuning Advisor recommendations are shown after workload analysis

is complete.

Licensed to Gayle M. Noll <pedbro@gmail.com>

315Index analysis

section, our focus is on identifying fragmentation levels, achieved using the
sys.dm_db_index_physical_stats dynamic management function.

 One of the columns returned from this DMF is avg_fragmentation_in_percent. This
indicates the percentage of pages that are out of order, meaning the logical and phys-
ical ordering of index pages no longer match, incurring additional disk activity when
scanning/seeking. As you’ll see later in the chapter, rebuilding or defragmenting an
index repositions physical pages to be adjacent to and in line with the logical order.

 The code displayed in listing 13.9 uses the sys.dm_db_index_physical_stats
function to return index fragmentation levels for all tables and indexes in the Adven-
tureWorks database.

-- View index fragmentation ordered by fragmentation level
SELECT stats.index_id, name, avg_fragmentation_in_percent
FROM sys.dm_db_index_physical_stats(
 DB_ID(N'AdventureWorks'), NULL, NULL, NULL, NULL
) as stats
 INNER JOIN sys.indexes AS b
 ON stats.object_id = b.object_id AND stats.index_id = b.index_id
ORDER BY avg_fragmentation_in_percent DESC

The output of this command, as shown in figure 13.20, is one row for each index in
the database, with the avg_fragmentation_in_percent column ordered descending to
list the most fragmented indexes first. This list will include clustered indexes, which
indicates the level of fragmentation of the table itself.

 In previous versions of SQL Server, we used the DBCC SHOWCONTIG command to
retrieve, among other things, the logical scan fragmentation value for a given index.
While this command is still available, the sys.dm_db_index_physical_stats function
is the preferred method. One of the limitations with DBCC SHOWCONTIG is its lack of
accuracy when analyzing storage spanning multiple files. In contrast, the
sys.dm_db_index_physical_stats function has no such limitations and is therefore
the recommended method for index fragmentation analysis.

Listing 13.9 Displaying index fragmentation
Figure 13.20 Index fragmentation levels for AdventureWorks tables

Licensed to Gayle M. Noll <pedbro@gmail.com>

316 CHAPTER 13 Index design and maintenance

Having covered a number of important index-analysis techniques, let’s move on now to
the actual index-maintenance tasks required to keep our databases performing well.

13.4 Index maintenance
The maintenance actions outlined in this section are directly associated with the cor-
responding analysis activities from the previous section. We’ll begin with dropping
unused or duplicated indexes before looking at removing index fragmentation.

13.4.1 Dropping and disabling indexes

In the previous section, we covered the use of the sys.dm_db_index_usage_stats DMV
along with a number of system tables to identify indexes that are not used, used rarely,
or duplicated. Once identified, the indexes are candidates for removal. The question
is, how should they be removed? An index can be easily dropped using the DROP
INDEX command as per this example:

DROP INDEX tablename.indexname

If the index was dropped as a result of being identified as a duplicate or suspected as
being of low value, then it’s possible that certain unexpected errors or performance
problems eventuate from the index being dropped. For example, a query may still be
referencing the index with an index hint, or a rare (but important) report is executed
that relies on the (now missing) index. In such cases, if the definition of the index was
not saved, that is, the index type, columns, and column order, then it may take some
time to restore the index to its previous state.

 In SQL Server 2005, the ALTER INDEX command was enhanced with a DISABLE
option. Disabling an index has the following effects:

■ If nonclustered, the data is removed from the index but the index metadata
definition remains.

■ User access to the index is not permitted.
■ The query optimizer will not consider the index.
■ If a clustered index is disabled, access to the table is prevented until the index is

re-enabled via either the REBUILD or the CREATE WITH DROP_EXISTING com-
mand, both of which are covered shortly.

When it comes to removing a duplicated or low-value index, disabling the index

Automating index analysis and REBUILD/REORGANIZE
A common database maintenance technique involves an automated script that uses
the sys.dm_db_index_physical_stats function to analyze index fragmentation lev-
els and perform the appropriate action, for example, REORGANIZE if fragmentation be-
tween 5 percent and 30 percent and REBUILD if greater than 30 percent. A script to
perform this is provided in SQL Server Books Online under the
sys.dm_db_index_physical_stats topic.
allows its definition to be retained should the index need to be reinstated, without the

Licensed to Gayle M. Noll <pedbro@gmail.com>

317Index maintenance

maintenance overhead of keeping it. An index can be disabled using the ALTER INDEX
command as follows:
-- Disable an index
ALTER INDEX ixSalesOrderHeader_PurchaseOrderNumber
ON Sales.SalesOrderHeader
DISABLE
GO

The other major use for disabling indexes is during data warehouse loads. The classic
load process is drop indexes, load data, reinstate indexes. The problem with this approach
is that the definition of the indexes needs to be known when adding them back, com-
plicating the process somewhat, particularly when the table or index definition
changes and the change is not added to the drop/re-create process. In such cases, the
index creation may fail or add back an old, poorly performing version of the index. By
disabling an index rather than dropping it, the index definition is not required when
re-enabling it, simplifying the re-creation process.

 To re-enable a disabled index, use the ALTER INDEX REBUILD or CREATE INDEX
WITH DROP EXISTING command, which we’ll cover shortly.

13.4.2 Removing fragmentation

In the section “Identifying index fragmentation,” we discussed index fragmentation
levels and a Books Online script for maintaining indexes based on the fragmentation
percentage. In this section, we’ll cover a number of different techniques for maintain-
ing an index and the implications these have on fragmentation, user access, statistics,
and transaction log usage.
ALTER INDEX REORGANIZE
The ALTER INDEX REORGANIZE option is the replacement for DBCC INDEXDEFRAG used
in earlier SQL Server versions. Reorganizing an index removes fragmentation by reor-
dering the leaf level of clustered and nonclustered indexes by aligning the physical
order with the logical order. An example follows:

-- Reorganize (Defragment) an index
ALTER INDEX IX_SalesOrderHeader_SalesPersonID
ON Sales.SalesOrderHeader

Disk space and disabling indexes
When you use the index REBUILD option (covered shortly), additional temporary disk
space is required for storing the old and new copies of the index. One of the advan-
tages of disabling an index before rebuilding it is the reduction in disk space required
for the rebuild operation. The estimated overhead of rebuilding a disabled index is
approximately 20 percent on top of the index size. The disadvantage of disabling an
index is that it’s unavailable for use until the rebuild is complete. This technique may
be appropriate if disk space is limited and the temporary unavailability of the index
is permitted.
REORGANIZE

Licensed to Gayle M. Noll <pedbro@gmail.com>

318 CHAPTER 13 Index design and maintenance

The REORGANIZE method is ideal as a low-impact, online method for removing light to
medium levels of fragmentation from an index. In most cases, an index with a 5- to30-
percent fragmentation level (as reported by the avg_fragmentation_in_percent col-
umn in the sys.dm_index_physical_stats function) can be defragmented using this
method, without any major user impact.

 On the downside, REORGANIZE will not remove fragmentation from the nonleaf
(intermediate) levels, nor will it update statistics. For that, we need a more thorough
approach, available through ALTER INDEX REBUILD.

ALTER INDEX REBUILD
ALTER INDEX REBUILD is the replacement for DBCC DBREINDEX used in earlier versions
of SQL Server. This command essentially drops and re-creates the index, with a num-
ber of important differences.

 First, the REBUILD method reads and rebuilds every page, and consequently, its sta-
tistics, covered in more detail later in the chapter, are updated in full. Second, all levels
of the index are rebuilt, meaning a greater performance boost and disk space reduc-
tion compared to the REORGANIZE method. An example REBUILD command follows:

-- Rebuild an index (Online mode)
ALTER INDEX ALL
ON Sales.SalesOrderHeader
REBUILD WITH (ONLINE = ON)

You’ll note a few differences (and similarities) between this command and REORGA-
NIZE. First, it uses the same ALTER INDEX command, but in this case ALL is used in
place of a specific index in the earlier example. ALL is supported for both REBUILD and
REORGANIZE as a means to operate on all of the specified table indexes rather than a
specific index.

 The other option specified in the above example is ONLINE = ON. Available in the
Enterprise edition of SQL Server, this option rebuilds the index in a manner that
allows continued user access to the index during the rebuild operation. Thus, it’s
ideal for rebuilding indexes in 24/7 environments.

Drop/re-create vs. REBUILD
While REBUILD will essentially achieve the same thing as dropping and re-creating an
index, it offers a number of important advantages. First, the ONLINE option can be
used, which allows continued user access. Second, dropping and re-creating a clus-
tered index will cause all nonclustered indexes to be rebuilt twice; the clustered index
key is included in the leaf level of each nonclustered index. When the clustered index
is dropped, the table is converted to a heap, with the nonclustered indexes changing
their leaf-level row locators to a row ID containing the file, page, and row number.
When the clustered index is re-created, the row ID changes back to the clustered in-
dex key. When the REBUILD option is used, all of this is avoided, with the clustered
index key remaining unchanged throughout.
Licensed to Gayle M. Noll <pedbro@gmail.com>

319Index maintenance

Table 13.1 summarizes the appropriate index-maintenance technique based on the
fragmentation level. Although indexes of any fragmentation level will benefit from
the REBUILD method, in order to limit the transaction log usage (and subsequent
effects on database mirroring and/or log shipping), it’s recommended that only
indexes with greater than 30 percent fragmentation use REBUILD, with tables having
fragmentation levels lower than this value using REORGANIZE. The 30 percent level is a
general recommendation only and is subject to the local nuances of the database and
its environment. The overall goal is to strike a balance between transaction log size,
user impact, and increased index performance.

An alternative to REBUILD is CREATE WITH DROP_EXISTING.
CREATE WITH DROP_EXISTING
The CREATE WITH DROP_EXISTING command, an example of which follows, allows the
index definition to be modified as part of the re-creation process, for example, adding
additional columns or moving the index to another filegroup.

-- Rebuild an index with an altered definition
CREATE CLUSTERED INDEX cixClientSSN
ON dbo.client(SSN, DOB)
WITH (DROP_EXISTING = ON)

Using CREATE WITH DROP_EXISTING is particularly useful for rebuilding clustered
indexes on tables with one or more nonclustered indexes. Unlike a traditional drop/
re-create, which rebuilds the nonclustered indexes twice, nonclustered indexes are
rebuilt only once using this option—or not at all if the index definition remains the
same. On the downside, CREATE WITH DROP EXISTING operates on a single index at a
time, in contrast to the ALL option of the REBUILD/REORGANIZE commands covered
earlier.

 Each of the index-maintenance techniques we’ve covered thus far can be executed
with a large number of optional parameters, all of which are documented in SQL Server
Books Online. Before we close this section, let’s cover some frequently used ones.
INDEX OPTIONS

In chapter 7 we covered a number of server-level settings including MAXDOP and FILL-
FACTOR, both of which can be specified at a statement level for index creation/modifi-
cation. Let’s recap these options and cover some other commonly used ones

■ FILLFACTOR — When building an index, FILLFACTOR determines how full (as a
percentage) each index page will be for existing data. By default, FILLFACTOR is 0

Table 13.1 Fragmentation levels and options

Index fragmentation Maintenance technique

5%–30% ALTER INDEX REORGANIZE

30% + ALTER INDEX REBUILD
(which is equivalent to 100), which means index pages will fill to capacity. This

Licensed to Gayle M. Noll <pedbro@gmail.com>

320 CHAPTER 13 Index design and maintenance

has two implications: with a higher page fill rate, fewer pages need to be read,
but on the downside, a high update rate will result in more page splits and frag-
mentation. For tables with a high update rate, a lower fill factor may increase
performance and reduce fragmentation, although the trade-off is that the
index (and therefore the database) will occupy more space because each page
is less than 100 percent full.

■ PAD_INDEX — FILLFACTOR applies at the leaf level of index pages only. When the
PAD_INDEX option is set to ON, the FILLFACTOR setting is applied to intermediate
index levels as well.

■ MAXDOP — This option allows the number of CPUs to be limited to (or increased
from) the default server setting; for example, if the default server MAXDOP set-
ting is set to 1 to prevent parallel queries, MAXDOP = 0 can be specified to maxi-
mize the performance of the index operation.

■ SORT_IN_TEMPDB — By default, the temporary disk space used during index
rebuild operations comes from the user database containing the index. This
option directs the operation to use the tempdb database, which may improve
rebuild performance, particularly when tempdb is located on dedicated disks.
When using this option, take care to ensure tempdb has sufficient disk space
available.

■ DATA_COMPRESSION — As covered in chapter 9, individual tables and indexes can
be compressed, using either the ROW or PAGE method.

An example of using these options as part of an index rebuild follows:

-- Rebuild an index with various custom options
ALTER INDEX IX_SalesOrderHeader_CustomerID
ON Sales.SalesOrderHeader
REBUILD WITH (
 FILLFACTOR = 80
 , PAD_INDEX = ON
 , MAXDOP = 0
 , SORT_IN_TEMPDB = ON
 , DATA_COMPRESSION = PAGE

)

In closing the chapter, let’s look at management techniques for statistics.

13.5 Managing statistics
Earlier in the chapter we looked at the important role played by statistics in providing
the query optimizer with information on the selectivity of an index and the likely value
it therefore has for use in a given query. In addition to maintaining statistics on index
selectivity, statistics are created and maintained for nonindexed columns as well. In
this section we’ll take a further look at index statistics and introduce column statistics.

13.5.1 Index statistics

The default statistics configuration enables SQL Server to automatically create and

update statistics on all indexed columns. This setting reduces maintenance

Licensed to Gayle M. Noll <pedbro@gmail.com>

321Managing statistics

requirements and ensures SQL Server makes accurate decisions when creating
query execution plans.

 In cases where the index has multiple columns, statistics are also kept for the com-
bination of column prefixes, for example, an index on LastName, FirstName, DOB will
keep statistics on (LastName), (LastName + FirstName), and (LastName + FirstName +
DOB). This enables the most accurate estimate to be made on the index’s selectivity
when evaluating a query containing predicates on one or more of these columns.

 In a case where LastName and DOB are specified (but not FirstName), the selectiv-
ity would be based on LastName alone. For this reason, if the most selective column is
always supplied as a search predicate, and other index columns are not, then it makes
sense for the most selective column to be placed first in the index column order.

In almost all cases, the default database settings for statistics (Auto Create Statistics
and Auto Update Statistics) should remain in place. These settings, accessible via the
Database Properties page as shown in figure 13.21, ensure that SQL Server automati-
cally manages both the creation and update of statistics information.

 When the query optimizer compiles a query plan requiring statistics, the statistics
are automatically updated if they are detected as being out of date. Statistics are
deemed as being out of date for a variety of reasons, primarily when a certain percent-
age of rows have been modified since the statistics were last updated. In such an event,

Updating statistics after an index rebuild
When an index is rebuilt using one of the various options (REBUILD, CREATE WITH
DROP EXISTING, or DROP/CREATE), the statistics are updated in full. A common mis-
take made when creating maintenance plans is to run the UPDATE STATISTICS com-
mand after an index rebuild. When run with the default parameters, UPDATE
STATISTICS creates statistics based on a sample of rows. When run in this manner,
the full statistics from the index rebuild are replaced with less-accurate statistics.

Figure 13.21 The default setting for Auto Create Statistics and Auto Update Statistics should

remain in place for almost all database implementations.

Licensed to Gayle M. Noll <pedbro@gmail.com>

322 CHAPTER 13 Index design and maintenance

the statistics are updated in line; that is, the query compilation pauses, waiting for the
statistics update to complete. Such events, which can be confirmed using a SQL Pro-
filer trace containing the Auto Stats event, may lead to occasional, unpredictable
query performance, a situation that sometimes leads to DBAs switching off the auto-
matic statistic options in a bid for more predictable query performance.

 While automatic statistic events may result in an occasional query execution delay,
the benefit of automatic statistics maintenance must be considered, particularly its
advantage of avoiding poor query plans based on old statistics. The alternative of
hand-crafting customized statistics is simply far too time consuming and inaccurate
for all but the most specialized of cases.

 Fortunately, a compromise setting was introduced in SQL Server 2005. The Auto
Update Statistics Asynchronously option, set using the database property shown earlier
in figure 13.21, will trigger automatic statistic update events asynchronously; that is, a
query compilation will not wait on the new statistics and will proceed with the old, with
subsequent queries benefiting from the newly updated statistics. Using this setting is a
trade-off between the most accurate query plan and predictable query performance.

 In addition to creating and maintaining indexed column statistics, SQL Server cre-
ates and maintains statistics on nonindexed columns. Such statistics are called column
statistics.

13.5.2 Column statistics

Along with index statistics, you can view column statistics in SQL Server Management
Studio, as shown in figure 13.22. Column statistics are named with a _WA_Sys prefix.

 So why and how are column statistics useful? We know that unless an appropriate
index exists on a query’s predicate column(s), the statistics are not used for evaluating
the usage of an index, because there is no index. The answer lies in the query optimizer
needing an accurate indication of the likely number of rows that will be returned

Figure 13.22 Automatic
ally created column
statistics are prefixed

with _WA_Sys_.

Licensed to Gayle M. Noll <pedbro@gmail.com>

323Managing statistics

from a query in order to select the best query plan, in particular, the appropriate join
logic. For example, consider this query:

-- Statistics on large + red products may help to optimize the join ...
SELECT orders.*
FROM dbo.product
 INNER JOIN dbo.orders on product.productId = orders.productId
WHERE
 product.color = 'red'
 AND product.size = 'large'

Assuming there are no indexes on the color and/or size columns, what good is it to
maintain statistics on them? How many rows SQL Server thinks will be returned after
applying the filter condition on the products table determines the type of join opera-
tion that will be used, that is, hash join, nested loop, or merge. Join logic is beyond the
scope of this book, but suffice to say that nested loop joins perform very well or very
poorly depending on the row count from one side of the join. By having accurate sta-
tistics on the columns, the query optimizer is given the best chance to choose the best
join technique.

 For nonindexed columns, statistics are maintained only for singular column val-
ues. In the previous example, statistics would be automatically created and main-
tained on the color column but not the combination of color and size. Consider a
case where the table contained a million records with red products but only two with
large red products. The quality of the compiled execution plan depends on whether
the query optimizer has the required statistics. Depending on the selectivity of color,
compared to color and size, it may be worthwhile to manually create multicolumn sta-
tistics, as per the following example:

-- Create custom column statistics
CREATE STATISTICS Product_Color_Size
ON dbo.product (color, size)
WITH FULLSCAN

In addition to the CREATE STATISTICS command shown above, SQL Server provides a
number of other commands enabling manual control over statistics.

13.5.3 Manually creating/updating statistics

Assuming the automatic statistics options are in place, there are a few cases that call
for manual intervention. As we’ve just discussed, creating multicolumn statistics on
combinations of certain nonindexed columns is one such case. Another may be where
the default sampling frequency is inadequate and is producing inaccurate plans.10

 SQL Server Books Online provides a full description of the statistics management
commands, summarized briefly as follows:

■ DROP STATISTICS — This command enables a specified statistics set to be
dropped, whether created manually or automatically. Index statistics, however,
cannot be dropped.

10 Indexes on monotonically increasing values such as IDENTITY columns is a common example where high

insert rates cause a large number of rows to fall outside the known statistics range.

Licensed to Gayle M. Noll <pedbro@gmail.com>

324 CHAPTER 13 Index design and maintenance

■ CREATE STATISTICS — This command can be used to create statistics for a sup-
plied column or set of columns. If you’re using the default automatic statistics
settings, this command is typically used only to create multicolumn statistics, an
example of which you saw earlier. New to SQL Server 2008 is the ability to create
filtered statistics, which, similar to filtered indexes, maintain statistics for a sub-
set of data.

■ sp_createstats — This command creates single-column statistics for all eligible
columns in all user tables in the database in which the command in executed.

■ UPDATE STATISTICS — Updates statistics for a given statistics name. Again, if the
automatic statistics settings are in place, this command is typically used only
when statistics are suspected of being out of date. Running this command
enables a more frequent refresh compared to the automatic default.

■ sp_updatestats — This command runs UPDATE STATISTICS against all user
tables using the ALL keyword, therefore updating all statistics maintained for
each user table.

With the exception of DROP STATISTICS, all of the above commands take an optional
parameter for the sampling rate. Without specifying a value, SQL Server estimates the
appropriate number of rows to inspect, with the goal of striking a balance between
useful statistics and low impact. In all cases, the FULLSCAN (or 100 percent) option can
be used to sample every row, thereby achieving maximum accuracy.

 As we covered earlier, rebuilding an index will update the statistics with the equiva-
lent of a manual full scan. A common reason for performing a full index rebuild is to
ensure the statistics are kept at their most accurate. However, as we also discussed,
unnecessary index rebuilds create a lot of transaction log data, in turn causing poten-
tial issues with log shipping and mirroring solutions. If indexes are being rebuilt for
the express purpose of maintaining statistics, that is, fragmentation levels are not of
concern, then manually running UPDATE STATISTICS using the FULLSCAN option is
perhaps a better choice; statistics will be updated in full, without the overhead of the
index rebuild.

 In closing the chapter, let’s see how to inspect the statistics information kept by
SQL Server.

13.5.4 Inspecting statistics

The DBCC SHOW_STATISTICS command can be used to view the statistics information
for a given index, as per the example shown in figure 13.23.

 DBCC SHOW_STATISTICS provides a great deal of information useful in inspecting
the statistics for a given index. The output is grouped into three sections, referred to
as STAT_HEADER, DENSITY_VECTOR, and HISTOGRAM:

■ STAT_HEADER — Contains information including the date and time of the last stats
update, number of rows sampled versus table rows, and any filtering conditions.

■ DENSITY_VECTOR — Contains the length and selectivity of each column prefix.

As discussed previously, stats are kept for all depth levels of the index.

Licensed to Gayle M. Noll <pedbro@gmail.com>

325Best practice considerations: index design and maintenance

Figure 13.23 DBCC SHOW_STATISTICS is used to inspect statistics information,
including the histogram, date and time of the last update, and column information.

■ HISTOGRAM—The histogram is the most descriptive section of output, contain-
ing the actual sampled values and associated statistics such as the number of
records that match the sampled value.

We’ve covered a lot of ground in this chapter but still only scratched the surface of the
inner workings of indexes and statistics. SQL Server Books Online contains a wealth of
information for gaining a deeper and broader understanding of the crucial role
played by indexes and statistics.

13.6 Best practice considerations: index design and maintenance
Poor index design and maintenance strategies are a significant contributor to reduced
database performance. Classic index-related problems include too many indexes, high
fragmentation levels, and missing indexes. Fortunately, SQL Server includes a number
of tools and processes for improving index design and maintenance.

■ With the possible exception of small temporary tables, or those used for insert
activity only, all tables should be created with a physical order, achieved through
the use of a clustered index. Clustered tables enable fragmentation to be con-
trolled without user outage and enable fast lookups when querying on the clus-
tered key(s).

■ Given that the clustered index key is included in each nonclustered index as
the row locator, from a size and performance perspective, wide-clustered index
keys should be avoided in favor of narrower ones. The ideal clustered index key
is narrow, unique, and holds no intrinsic business value, therefore avoiding
updates and the subsequent need to maintain nonclustered index row locators.
For these reasons, identity-based columns are often used for clustered surrogate
primary keys.

■ When creating tables, creating the clustered index before nonclustered indexes

will prevent the need for nonclustered index rebuilds.

Licensed to Gayle M. Noll <pedbro@gmail.com>

326 CHAPTER 13 Index design and maintenance

■ A common database design practice is to use globally unique identifier (GUID)
columns as primary keys, which by default will also be the table’s clustered
index unless specified otherwise. Not only are GUIDs wide (16 bytes), they’re
randomly generated. Given such tables are clustered on the GUID column,
newly inserted rows will be randomly positioned throughout the table, leading
to page splits and subsequent fragmentation. This is a particular concern for
tables with a high volume of data inserts. SQL Server 2005 introduced the
NewSequentialID() function, which partially offsets this problem by generat-
ing GUIDs in a sequential manner. Removing the “randomness” from the GUID
values helps in reducing both page splits and fragmentation.

■ Columns frequently used for range scans and sort operations are good candi-
dates for a clustered index, for example, an order date column used to return
orders within a date range. A clustered index on this column may avoid the
need for both scan and sort operations.

■ Look for opportunities to cover queries using either additional nonclustered
keys or included columns. Covered indexes avoid the need for key/RID lookup
operations, improving performance substantially and increasing the likelihood
of a nonclustered index being used.

■ Filtered indexes are excellent for creating small and fast indexes on tables with
subsets of data accessed using simple predicates commonly supplied during
searches. They also enable segregated index maintenance, more accurate statis-
tics, and the ability to create unique indexes on columns containing null values
(but whose not-null values are unique). However, if most of a table’s rows would
be included in the filtered index, a full table index is most likely a better option.

■ Indexed views achieve similar benefits to filtered indexes but enable more com-
plex predicates and can span more than one table. They are ideal when using
aggregate functions, but because of the cost of maintaining the data in line with
the base tables, they are best used when the base table(s) are infrequently mod-
ified. The maintenance costs of maintaining indexed views on heavily modified
tables may outweigh the benefits and should therefore be carefully considered
and measured before production implementation.

■ Loading up a database with indexes in the hope that performance will eventu-
ally improve is a flawed and dangerous approach. A measured approach using
views and functions such as sys.dm_db_index_usage_stats and the
sys.dm_db_missing_index group offers a much better qualitative approach as
part of an ongoing, proactive maintenance regime.

■ Consider all foreign keys as index candidates. Table lookups based on a foreign
key column are very common, as are performance problems stemming from
the lack of indexes on these columns.

■ For multicolumn indexes, placing the most selective column first usually results
in the best performance, particularly when using like searches. In cases where
doing so makes the index unusable, for example, when the column is rarely

supplied as a search condition, then this is obviously not appropriate.

Licensed to Gayle M. Noll <pedbro@gmail.com>

327Best practice considerations: index design and maintenance

■ For very large join operations in specialist situations—for example, a data con-
version process—consider the possibility of clustering each table on the join
column. Doing so permits a merge join and can result in substantial perfor-
mance gains.

■ Use the sys.dm_db_index_usage_stats DMV to determine the maintenance cost
of an index compared to its usage benefits. This DMV is best used as part of a
regular index-analysis maintenance routine. Bear in mind that the values
reported by this DMV are applicable only since the last instance restart, so deci-
sions based on its output should take this into consideration.

■ Identify and remove duplicate and/or overlapping indexes, but consider the
possibility that they may be referenced in T-SQL code as index hints. Before
dropping such indexes, script their definition or use the DISABLE function.

■ Using the SET STATISTICS XML ON command enables the query execution plan
to be captured in XML format. This enables plan portability for support and
analysis purposes, while also allowing inspection of missing indexes as reported
by the query optimizer.

■ Using the sys.dm_db_missing_index DMVs allows retrospective inspection of all
missing indexes as reported by the query optimizer since the last instance
restart. By using the cumulative statistics in the index_group_stats DMV, missing
indexes can be prioritized in order of potential value and considered as candi-
dates for addition. Like the index usage inspection, this can be part of a regular
maintenance routine.

■ The Database Engine Tuning Advisor overcomes some of the limitations of the
missing index DMVs such as the maximum of 500 stored missing indexes and
their inability to suggest clustered/filtered indexes and indexed views. Further,
its input can be a profiler trace of actual production activity, captured over the
appropriate timeframe.

■ For all index additions/removals, measuring the performance impact in a vol-
ume test environment before production implementation is crucial in avoiding
unexpected problems.

■ The sys.dm_db_index_physical_stats function can be used to identify an
index’s fragmentation level and should be used in place of the older, limited
functionality offered by DBCC SHOWCONTIG.

■ For operations such as large data loads where indexes are dropped and re-cre-
ated around the load, disabling indexes rather than dropping them enables the
index re-creation step to be much simpler by excluding the need to store the
index definition. A disabled index retains its metadata, so a simple rebuild
command is sufficient to restore the index.

■ Use the ALTER INDEX REORGANIZE command in place of the older DBCC INDEXDE-
FRAG command to correct index fragmentation levels of up to 30 percent.

■ Use the ALTER INDEX REBUILD command in place of the older DBCC DBREINDEX

command to correct index fragmentation of greater than 30 percent.

Licensed to Gayle M. Noll <pedbro@gmail.com>

328 CHAPTER 13 Index design and maintenance

■ Avoid unnecessary index rebuilds. Unnecessary index rebuilds deliver limited
benefits while increasing transaction log usage and potential user impact.
Increased transaction log usage is of prime concern with database-mirroring
solutions, particularly when in high-safety (synchronous) mode.

■ If you rebuild indexes only in order to maintain accurate statistics, consider the
statistics maintenance commands with the FULLSCAN or Sample 100 options.

■ The ONLINE = ON option of ALTER INDEX REBUILD is available in the Enterprise
edition of SQL Server, making it the ideal choice for low user impact index main-
tenance in 24/7 environments or those with limited maintenance windows.

■ Using CREATE WITH DROP_EXISTING is an ideal alternative to dropping and re-
creating clustered indexes with a different structure. Dropping and re-creating
a clustered index incurs a double rebuild impact on existing nonclustered
indexes, a process avoided by using the DROP_EXISTING command.

■ Avoid the classic mistake of updating statistics following an index rebuild. An
index rebuild automatically performs a full statistics update, so performing
another one is at best unnecessary, and at worst lowers statistics accuracy by
replacing full statistics with a sampled set.

■ A lower fill factor (80–90 percent) may be appropriate for indexes on tables
with high amounts of update activity. While a lower fill factor reduces fragmen-
tation and page splits, it also increases index size and page reads, so the perfor-
mance improvement (or decrease) should be carefully measured in a volume-
testing environment before production implementation.

■ The SORT_IN_TEMPDB option may improve index rebuild performance if the
tempdb database is located on dedicated disks. If you’re using this option, be
sure to capacity plan the disk space requirements for tempdb to prevent index
rebuilds failing from lack of disk space. Again, the best way to plan this is by
using a volume-test environment configured identically to the production envi-
ronment.

■ Leave the default automatic statistics settings in place. If you’re attempting to
avoid occasional query execution delay due to automatic statistics operations,
consider the asynchronous statistics mode as an alternative to disabling auto-
matic statistic settings.

■ Following a SQL Server upgrade, a full statistics update on all indexes and col-
umns is recommended to enable the enhanced query optimizer in SQL Server
2008 to take full advantage of the most accurate statistics.

■ In cases where combinations of nonindexed columns are frequently supplied as
search predicates, for example, ProductType and Color, creating multicolumn
statistics on the column combination can improve performance by enabling
SQL Server to better estimate the likely row count and therefore choose the
most appropriate join type. Doing so avoids the need to supply join hints in an

attempt at optimizing performance.

Licensed to Gayle M. Noll <pedbro@gmail.com>

329Best practice considerations: index design and maintenance

■ In cases where calculations across multiple nonindexed columns are used as a
predicate, for example, where price + tax > 1000, consider creating this as a
calculated column. This will enable SQL Server to create statistics on the col-
umn for more accurate query plans.

■ In cases where indexes exist on columns with monotonically increasing values,
for example, IDENTITY columns, and the table receives a large volume of
inserts, the most recently inserted rows will fall outside the statistics histogram.
In cases where the lack of statistics on the new rows is causing inaccurate query
plans, consider manually updating statistics on a more frequent basis than that
performed by the automatic statistics process.

Additional information on the best practices covered in this chapter can be found
online at http://www.sqlCrunch.com/index.

 In the next chapter we’ll cover a number of techniques for automating some of the
index maintenance tasks we’ve covered in this chapter.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Monitoring and automation
This chapter is dedicated to the production DBA, whose role, among other things,
includes monitoring SQL Server instances for abnormal activity, managing the
response to failure conditions, and carrying out a number of proactive mainte-
nance tasks. In large organizations, such DBAs are typically located within, or acces-
sible to, a command center, whose role is to perform similar tasks for all supported
infrastructure and applications on a 24/7 basis.

 We’ll begin this chapter with coverage of a range of monitoring tools including
Activity Monitor, SQL Server Profiler, and Performance Monitor. With a vast range
of monitoring tools available, choosing the right tool for the job is an important
skill; in addition to covering how these tools are used, we’ll touch on how they
should not be used.

In this chapter, we’ll cover
■ Activity Monitor
■ SQL Server Profiler
■ Performance Monitor
■ Maintenance plans
■ SQL Server Agent jobs and alerts
330

Licensed to Gayle M. Noll <pedbro@gmail.com>

331Activity Monitor

 Our focus will then shift to the importance of automation and its role in reducing
errors and achieving more within the limited hours of a day. We’ll cover maintenance
plans and SQL Server Agent jobs before looking at setting up alerts for error and per-
formance conditions.

14.1 Activity Monitor

In SQL Server 2005, we accessed Activity Monitor in SQL Server Management Studio by
expanding Management and choosing Activity Monitor. This allowed us to view run-
ning processes as well as locks by process or object.

 While beneficial, there was a limit to the level of detail that could be obtained
using this tool, with typical follow-up investigations involving queries against various
DMVs and/or system tables. In response to this, the new Activity Monitor in SQL
Server 2008, as shown in figure 14.1, has been completely overhauled to help DBAs
quickly see performance hot spots and related information.

 Apart from the obvious visual differences, the way to access Activity Monitor has
also changed. Rather than opening it via the Management section of SQL Server Man-
agement Studio, you either right-click the instance name and choose Activity Monitor
or click the Activity Monitor icon on the standard toolbar.

 Arguably the greatest feature of the new Activity Monitor is the ability to spot
abnormal activity at a glance using the four included graphs. You can change the
default graph refresh rate of 10 seconds by right-clicking any of the four graphs and
selecting the appropriate refresh interval. The menu also allows you to pause or
resume the display.

 Let’s explore this new tool further by examining the four expandable panes that
appear below the graphs: Processes, Resource Waits, Data File I/O, and Recent Expen-
sive Queries.

Figure 14.1 Visually
similar to the
Resource Monitor in
Windows Vista and
Server 2008, the new
Activity Monitor
included in SQL Server
2008 offers a rich view

of system activity.

Licensed to Gayle M. Noll <pedbro@gmail.com>

332 CHAPTER 14 Monitoring and automation

14.1.1 Processes

Expanding the Processes pane, as shown earlier in figure 14.1, provides information on
currently running processes similar to the old Activity Monitor, including the ability to
sort columns in ascending or descending order. Certain new columns are visible, such
as Workload Group, a property of Resource Governor, which we’ll cover in chapter 16.

 Perhaps the most powerful new feature accessible through this pane is the ability
to right-click a process and choose Trace Process in SQL Server Profiler. As the name
suggests, this will open SQL Server Profiler with a filter on the selected session ID
(SPID), allowing an in-depth, live analysis of the process activity. We’ll cover SQL

Server Profiler shortly.
 The next pane in Activity Monitor is Resource Waits.

14.1.2 Resource Waits

As shown in figure 14.2, clicking the Resource Waits pane shows the latest information
from several DMVs, including sys.dm_os_wait_stats, which we’ll cover in detail in chap-
ter 17. Note the Wait Category column. The categories in this column represent a sys-
tem-level grouping of the various wait types a process can encounter.

 During periods of widespread poor response, this view is ideal for spotting resource
bottlenecks that may be contributing to a large number of waits. We’ll cover this further
in chapter 17 when we focus on performance tuning from a waits perspective.

 The next pane in Activity Monitor is Data File I/O.

14.1.3 Data File I/O

Information from the sys.dm_io_virtual_file_stats dynamic management func-
tion is used to populate the results of the Data File I/O pane, as shown in figure 14.3.
Providing a summary of I/O, broken down by database and file, this view includes
MB/sec Read and Written and the average response time in ms for each file.

Figure 14.2 Information from several DMVs including sys.dm_os_wait_stats dmv is used in

displaying the outstanding wait types, grouped by category.

Licensed to Gayle M. Noll <pedbro@gmail.com>

333Activity Monitor

Figure 14.3 The Data File I/O pane displays various statistics for each database file.

In chapter 9 we covered the importance of database object separation, for example,
placing data, logs, and tempdb on dedicated disks. Apart from better performance,
one of the other benefits of doing so is that by using the Data File I/O pane of the new
Activity Monitor, it’s easy to spot high disk usage and response times across all of the
database objects, enabling a more targeted disk I/O performance-tuning exercise.

 The last pane in Activity Monitor is Recent Expensive Queries, which draws its
information from the sys.dm_exec_query_stats DMV.

14.1.4 Recent Expensive Queries

In addition to viewing the text of recently completed expensive queries, we can sort
the results in ascending or descending order by CPU usage, physical/logical reads/
sec, duration, plan count, and executions/min. A powerful feature of this particular
pane is the ability to right-click any of the queries and view the graphical execution
plan, as shown in figure 14.4.

Figure 14.4 Right-clicking any of the queries shown in the Recent Expensive Queries

pane allows the graphical execution plan of the query to be displayed.

Licensed to Gayle M. Noll <pedbro@gmail.com>

334 CHAPTER 14 Monitoring and automation

All of the Activity Monitor views and graphs are based on information from one or
more dynamic management views or functions, so in that sense, there was nothing
stopping us from getting this information in SQL Server 2005. The nice thing is hav-
ing all of the work done for us, in an easy-to-use interface.

Activity Monitor provides an excellent, high-level overview of system activity. For a
more detailed statement-level view, you can use SQL Server Profiler.

14.2 SQL Server Profiler
Prior to SQL Server 2005 (and the introduction of DMVs), SQL Server Profiler was one
of the few tools that could be used to gain visibility of SQL Server activity and was
therefore used for a broad range of performance and debugging purposes. As you’ll
soon see, Profiler remains an extremely versatile tool; however, it’s often used for the
wrong reasons, creating significant performance problems as a result.

 In chapter 17 we’ll introduce a performance-tuning methodology called waits and
queues, which uses a combination of DMVs and Performance Monitor counters to nar-
row the scope of a performance-tuning exercise by focusing on the largest system bot-
tlenecks. Such an approach is far more effective than a Profiler-only approach,
frequently used in years gone by and still used by some.

 In this section, we’ll focus on using Profiler for alternate purposes, namely work-
load replay and deadlocked/blocked process analysis. We’ll also cover the important
difference between a Profiler trace and a server trace. Before we get to that, let’s begin
with perhaps the most common use for Profiler: workload analysis.

14.2.1 Workload analysis

A common task in a performance-tuning exercise is analyzing the cost of the queries
that make up an application’s workload. For example, if CPU is a significant system bot-
tleneck, you need to establish which queries consume the most CPU. Profiler enables
such analysis through its ability to capture, or trace, the execution of queries along with
their associated cost metrics, that is, disk reads and writes, CPU usage, and duration.

 As we’ve just explained, using Profiler as the only performance-tuning tool ignores
much more effective options; however, for the purposes of introducing Profiler, let’s
proceed on that basis with a simple example.

 SQL Server Profiler can be accessed through the Performance Tools folder of the
SQL Server program group. After opening Profiler and choosing File > New Trace,

SQL Server Management Studio startup option
One of the options I suspect many DBAs will use is automatically opening Activity
Monitor on startup of SQL Server Management Studio. You can set this by selecting
Open Object Explorer and Activity Monitor in the General page of the Tools > Options
menu in SQL Server Management Studio.
Licensed to Gayle M. Noll <pedbro@gmail.com>

335SQL Server Profiler

you’re prompted with the Connect to Server dialog box, which enables you to select a
SQL instance to trace. After connecting to an instance, you’re presented with the
Trace Properties window, as shown in figure 14.5.

 After giving the trace a name, you can choose to base the trace on a template,
which is used to define the included columns and events on the Events Selection tab,
which we’ll cover shortly. By default, the output of the trace is displayed to screen only.
For this example, we’ll choose to save the results to a table for reasons that will
become apparent shortly.

 After entering an optional stop time (a trace can also be manually stopped), click
the Events Selection tab, as shown in figure 14.6, to choose the included events and
event columns.

 For the purposes of this example, we’ll limit the included events to the RPC:Com-
pleted and SQL:BatchCompleted events. These events represent the completion of T-
SQL batches and stored procedures and include the associated cost metrics. The Col-
umn Filters button enables us to apply filters, such as limiting the trace to include
events for a particular user or database, or queries exceeding a particular duration or
cost. As mentioned earlier, when we launch SQL Profiler via the Activity Monitor’s Pro-
cessors pane, a filter is automatically applied for the selected SPID.

 Finally, selecting the Show All Events and Show All Columns check boxes enables
the inclusion of additional events and columns from the full list, rather than the lim-
ited set derived from the selected template on the General tab.

 Once you’re ready, click Run, and the trace begins and database activity matching

Figure 14.5 The General Tab of a Profiler Trace Properties window enables us to select the
trace location along with a template and stop time.
the selected events and filters is displayed on screen. For this example, a small number

Licensed to Gayle M. Noll <pedbro@gmail.com>

336 CHAPTER 14 Monitoring and automation

of queries were executed in Management Studio after the trace was started, the result
of which is shown in figure 14.7.

 A quick inspection of the Profiler trace screen reveals that the values of the Dura-
tion, CPU, and Reads columns for the last row are clearly greater than the rest of the
captured values. Clicking on this record displays the query text in the lower section of
the Profiler window.

 For a simple example such as this, you can visually browse the small number of cap-
tured events. However, when a real trace is run and captured over a period of time
representing peak production activity, the number of captured events typically runs
into the thousands (or more). Not only does this prevent a visual analysis of activity,

Figure 14.6 The
Events Selection
tab enables the
selection of events
and columns for
inclusion in the
trace results.

Figure 14.7 The output of a Profiler trace is shown on screen as well as saved to file and

table if these options were chosen.

Licensed to Gayle M. Noll <pedbro@gmail.com>

337SQL Server Profiler

but it can also cause significant performance problems. In addressing this, you can
use a server-side trace.

14.2.2 Server-side trace

Using SQL Server Profiler to trace database activity is frequently referred to as client-
side tracing, that is, events are streamed from the server, over the network, to the Pro-
filer application. Even if the Profiler application is being run on the SQL Server itself,
this is still considered a client-side trace.

 One of the worrisome aspects of client-side tracing with SQL Profiler is that under
certain conditions, events can be dropped, therefore invalidating event sequencing
and performance analysis. Further, depending on the server load, the overhead of
streaming events can impact server performance, in some cases quite dramatically.

 SQL Server Profiler is a GUI-based client interface to SQL Trace, the event-tracing
service within the database engine. As an alternative to using SQL Profiler, we can cre-
ate a server-side trace using a number of SQL Trace system stored procedures and in
doing so avoid both the performance problems and dropped events commonly associ-
ated with client-side traces.

 A good example of a server-side trace is the SQL Server default trace, a lightweight,
always-on trace recording selected events, primarily configuration changes. As shown
in figure 14.8, the Configuration Changes History standard report, accessed by right-
clicking a server instance and choosing Reports, uses this trace to display the date and
time of recent configuration changes. The log files created by this trace (named
log_1.trc, log_2.trc, and so forth) are stored in the default MSSQL\LOG directory and
can be opened in SQL Profiler for inspection if required.

 As we said earlier, one of the nice things about SQL Profiler is the ease with which
a trace can be created and executed, particularly when compared to the alternative of
creating T-SQL scripts using the SQL Trace procedures. Fortunately, one of the options
available within SQL Profiler is the ability to script a trace definition, which can then
be used in creating a server-side trace. Creating a trace in this manner, we get the best
of both worlds: using the Profiler GUI to create our traces, yet running the trace as a
server-side trace, thereby avoiding the performance overhead and dropped events
associated with client-side traces.
Figure 14.8 One of the many available standard reports

Licensed to Gayle M. Noll <pedbro@gmail.com>

338 CHAPTER 14 Monitoring and automation

A Profiler trace can be exported to a file using the File > Export menu item after the
trace has been defined with the required events, columns, and filters. The resultant
T-SQL code, an example of which is shown in figure 14.9, can then be executed
against the required instance, which creates the server-side trace. Once the trace is
created, we can use the sp_trace_setstatus and fn_trace_getinfo commands, as
documented in Books Online, to control and inspect the trace status.

 As per figure 14.9, we specify the trace file location by editing the sp_trace_create
parameters in the script produced by SQL Server Profiler.

 One of the important aspects of a server-side trace is that events cannot be dropped;
that is, system throughput may slow if writing the trace file becomes a bottleneck.
While the overhead in writing a server-side trace file is significantly lower than the Pro-
filer equivalent, it’s an important consideration nonetheless. Therefore the trace file
should be treated in a similar manner to a transaction log file, that is, located on a ded-
icated, high-speed disk that’s local to the server instance—not a network file share.

 With the importance of client-side versus server-side traces in mind, let’s continue
and look at a number of alternate uses for SQL Server Profiler, starting with the ability
to replay a trace.

14.2.3 Trace replay

Trace replay refers to the process whereby a captured trace file is replayed against a
database to regenerate the commands as they occurred when the trace was captured.

Figure 14.9 A Profiler trace can be scripted to file for execution as a server-side trace. Before doing so,
we must specify the trace file location, as per the highlighted text.
Such a process is typically used for both debugging and load generation.

Licensed to Gayle M. Noll <pedbro@gmail.com>

339SQL Server Profiler

Capturing a trace that will be used for replay purposes requires particular events and
columns to be included. The easiest way to do this is by using SQL Profiler’s
TSQL_Replay template when entering the details in the Trace Properties window, as
shown earlier in figure 14.5. Selecting this template will ensure all of the necessary
events and columns are included for replay.

 When the trace has captured the required events, you can invoke replay by open-
ing the trace file or table in SQL Profiler and selecting Start from the Replay menu.
The resultant screen, as shown in figure 14.10, enables various options during replay.

 Understanding the replay options is crucial in understanding some of the limita-
tions of using it:

Replay Server allows the selection of the server instance where the trace file will
be replayed. Notice there is no mention of which database to replay the trace
against. The database with the same name (and database ID) should exist on
the replay instance, which is usually an instance separate from where the trace
was captured. If so, the replay instance should also include the same logins,
passwords, users, and default databases applicable to the captured trace.
Save to File/Table enables the results of the replay to be captured to a file or
table. The captured results include the full output of the replayed commands.
For example, a select command that returns 10 rows will result in 10 rows in the
trace replay output file/table. The resultant output can be potentially huge and
should therefore be chosen with caution; however, used correctly, this option is
invaluable for debugging purposes.
Number of Replay Threads enables the degree of concurrency to be set for replay
purposes. A high number of threads will consume more resources but will
result in a faster replay.
Replay Events in the Order They Were Traced will do exactly that and is the option to
use when reconstructing an event for debugging purposes.

Figure 14.10 Trace replay
options include saving results
to file and/or table and
controlling replay concurrency

with multiple threads.

Licensed to Gayle M. Noll <pedbro@gmail.com>

340 CHAPTER 14 Monitoring and automation

Replay Events Using Multiple Threads is the high-performance replay mode that
disables debugging. Events are replayed using multiple threads, with each
thread ordering events for a given SPID; for example, SPID 55 will have its events
replayed in the correct order, but its events may be replayed before SPID 68,
even though SPID 68’s events occurred first.
Display Replay Results shows the results of the replay on screen. The same warn-
ings apply here as for the Save to File/Table options we covered earlier.

For the purposes of debugging complex application problems, SQL Profiler’s trace
replay is undoubtedly a powerful tool, particularly when debugging in a live produc-
tion environment is not an option. In such cases, a production database backup is typ-
ically restored in a testing environment followed by the replay of a trace captured
while the problem was reproduced in production. Once captured, the trace can be
replayed in a testing environment multiple times, optionally preceded by a database
restore before each replay. Debug options such as Run to Cursor and Toggle Break-
point enable classic debugging by replaying the trace to a certain point, inspecting the
output, and then iteratively moving through the remaining events as required.

 Despite its strengths, there are a number of limitations with trace replay that you
need to understand. SQL Server Books Online documents all of them, but the major
limitation is its lack of support for traces containing certain data types and activity; for
example, a trace containing transactional replication, GUID operations, or Bulk Copy
Process (BCP) actions on n/text or image columns cannot be replayed. Further, the
logins and users referenced in the trace must exist on the target instance with the
same permissions, passwords, default database, and database ID.

 Another common use for replaying trace files is simulating load for change and/or
configuration-testing purposes. Capturing a trace during a peak load period allows
performance to be observed in a test environment under different configuration set-
tings; however, despite the ability to increase the number of threads during playback,
a trace replay cannot exactly reproduce the timing and sequencing of events as they
occurred during the capture of the trace. Using the Replay Events in the Order They
Were Traced option will guarantee event sequencing but will not simulate concurrent
activity. Conversely, using Replay Events Using Multiple Threads will generate simulta-
neous event replay but at the expense of event sequencing across all SPIDs.

 One of the things preventing exact event reproduction is the inability to use multi-
ple replay machines, a limitation addressed in the RML utilities.

14.2.4 RML utilities

For many years, Microsoft Product Support Services (PSS) used a collection of private
tools for assisting in the diagnosis and resolution of customer support issues. Now
known as the replay markup language (RML) utilities, PSS released them to the gen-
eral public in 2004.

 Available as a free download from the Microsoft website, the RML utilities, compris-
ing ReadTrace, Reporter, and OStress, are used both for diagnosing performance prob-

lems and constructing stress-test scenarios.

Licensed to Gayle M. Noll <pedbro@gmail.com>

341SQL Server Profiler

READTRACE AND REPORTER

 When we defined our Profiler trace earlier in figure 14.5, we chose to save the
results to a database table. Doing so allows the results of the trace to be examined in a
variety of ways once the trace is closed. For example, we could run the following query
against the specified table to determine the top 10 expensive queries from a disk-
usage perspective:

-- Top 10 most expensive queries from a disk usage perspective
SELECT TOP 10 TextData, CPU, (Reads + Writes) as DiskTotal, Duration
FROM dbo.[Workload Analysis]
ORDER BY DiskTotal DESC

Queries such as the above are among the many possible ways in which the results can
be analyzed. Further, as we saw in chapter 13, we can use the saved results as input for
the Database Engine Tuning Advisor, which will analyze the trace contents and make
various recommendations.

 One of the limitations of using Profiler for workload analysis such as this is that
query executions that are the same with the exception of the literal values are difficult
to analyze together as a group. Take these two queries, for example:

SELECT * FROM [authors] WHERE [lastName] = 'Smith'

SELECT * FROM "authors" WHERE "lastName" = 'Brown'

These are really different versions of the same query, so grouping them together for
the purpose of obtaining the aggregate cost of the query is beneficial; however, without
a significant amount of string-manipulation logic, this would be difficult to achieve.
ReadTrace performs such grouping analysis automatically.

 Executed at the command line with a number of input parameters including a
trace file name, ReadTrace

Creates a new database, by default named PerfAnalysis, in a specified SQL Server
instance
Analyzes and aggregates information contained within the trace file and stores
the results in the PerfAnalysis database
Produces .RML files, which can be used as input for the OStress utility, which
we’ll discuss shortly
Launches the Reporter utility, which graphically summarizes the results cap-
tured in the PerfAnalysis database

The first step in using ReadTrace is capturing a trace file. In order for ReadTrace to
work and provide the most beneficial analysis, we need to include a number of events
and columns in the trace. The help file that’s supplied with the RML utilities docu-
ments all the required events and columns.

 Once the trace file has been captured, the ReadTrace utility can be executed
against it, an example of which follows:
Readtrace -IG:\Trace\SalesTrace_1.trc –o"c:\temp\rml" -SBNE-SQL-PR-01\SALES

Licensed to Gayle M. Noll <pedbro@gmail.com>

342 CHAPTER 14 Monitoring and automation

Once processing is complete, the Reporter utility automatically opens and displays the
results of the analysis. The example report shown in figure 14.11 demonstrates one of
the clear advantages of using the ReadTrace/Reporter utilities over manual analysis of
SQL Profiler results stored in a table. Note the {STR} value in the Query Template col-
umn at the very bottom of the report for Query 1. The ReadTrace utility analyzes and
aggregates different executions of the same query/stored procedure as a group by
stripping out literal values such as stored procedure parameter values. In the example
shown, {STR} represents RML’s understanding of this as a parameter value. Thus, the
total cost of all executions of this stored procedure will be automatically calculated.

 In addition to viewing the results of ReadTrace analysis via the Reporter utility, you
can directly query the PerfAnalysis database for more advanced analysis.

 Finally, one of the major benefits of ReadTrace is the .RML files it creates once pro-
cessing is complete. The OStress utility can use these files for both replay and stress-
testing purposes.
OSTRESS

When covering the SQL Profiler trace replay option earlier in the chapter, we discussed

Figure 14.11 Figure One of the many reports available in the RML Reporter utility. This one breaks
down resource usage by query.
one of its limitations: the inability to use multiple machines for replay purposes,

Licensed to Gayle M. Noll <pedbro@gmail.com>

343SQL Server Profiler

thereby limiting the scale of the load that can be achieved. In contrast, OStress has no
such limitation.

 Like ReadTrace, OStress is a command-line utility. It’s used to execute a command
or series of commands against a supplied instance and database. Its input can be a sin-
gle inline query, a query file, or an .RML file produced by the ReadTrace utility. Con-
sider the following example:

ostress –o"c:\temp\o" -SBNE-SQL-PR-01\SALES -dOrders -iStress.sql -n10 -r25

The end result of running the above command will be to spawn 10 threads (-n param-
eter), each of which will execute the contents of the Stress.sql file against the Orders
database 25 times (-r parameter), for a total of 250 executions. Further, this could
potentially run on multiple machines simultaneously, each of which is stressing the
same database. You can imagine the scale of stress that could be achieved!

 The -i parameter also accepts RML files as input, and the -Q parameter is used for
a single inline query. If an RML file is used, -m replay can be used to instruct OStress
to use replay mode instead of stress mode. In replay mode, events are replayed in the
sequence in which they were captured. In contrast, stress mode replays events as fast
as possible for maximum stress.

In addition to load generation and debugging, SQL Server Profiler can also be used in
diagnosing deadlocks.

14.2.5 Deadlock diagnosis

Troubleshooting deadlocks isn’t the nicest (or easiest) task for a DBA; however, SQL
Profiler makes it much simpler. In demonstrating this, consider listing 14.1, which
contains a simple T-SQL batch file. When a second instance of this batch file is exe-
cuted within 10 seconds of the first (from a separate connection/query window), a
deadlock will occur, with the second query chosen as the deadlock victim and killed by
SQL Server.

-- T-SQL to simulate a deadlock. Run this from 2 separate query windows
-- The 2nd will deadlock if executed within 10 seconds of the 1st

LoadRunner and Test Load Agent
When used for stress-testing purposes, Profiler’s trace replay and the RML utilities
share a common attribute: they generate load at a database level only. In order to
obtain confidence in the ability of all levels of an application’s infrastructure to with-
stand the expected production load, such utilities are insufficient. In addressing this
deficiency, developers frequently use application load-generation tools such as Load-
Runner and Visual Studio Team System: Test Load Agent.

Listing 14.1 T-SQL code to generate a deadlock
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE -- hold share lock till end

Licensed to Gayle M. Noll <pedbro@gmail.com>

344 CHAPTER 14 Monitoring and automation

BEGIN TRANSACTION
 SELECT * FROM HumanResources.Department

 WAITFOR DELAY '00:00:10.000' -- delay for 2nd transaction to start

 UPDATE HumanResources.Department
 SET Name = 'Production'
 WHERE DepartmentID=7

COMMIT TRANSACTION

What’s happening here is that the shared lock on the HumanResources.Department
table is being held until the end of the transaction, courtesy of the Serializable isola-
tion level chosen at the start of the batch. When the update command runs later in
the transaction, the locks need to be upgraded to an exclusive lock. However, in the
meantime, another instance of this batch has run, which also has a shared lock on the
HumanResources.Department table and also needs to upgrade its locks. Both transac-
tions will wait on each other forever. SQL Server detects this situation as a deadlock
and chooses to kill one of the transactions to enable the other to complete.

 When creating a Profiler trace, one of the events we can capture is the deadlock
graph, found under the Locks category when the Show All Events check box is
checked. We saw this check box earlier in figure 14.6. When we select the deadlock
event, an additional tab becomes available in the Trace Properties window, which
enables the deadlock graph(s) to be saved to a file.

 With this event selected and the trace running, executing the above code from two
separate connections will generate a deadlock graph event and a deadlock results file.
Opening the file in SQL Server Management Studio (by double-clicking it) will reveal
the graph shown in figure 14.12.

 You’ll notice in the above image the blue X through the left-hand query. This was
the chosen deadlock victim. Hovering the mouse over the query will reveal the query
text. The item in the middle of the graph represents the resource that the two queries
deadlocked over.

 The ability to easily capture deadlock information using Profiler makes the pro-
cess of identifying the application or database code causing the deadlocks signifi-
cantly easier.

Figure 14.12 The deadlock graph event can be included in a trace to visually represent the deadlock,

including details such as the deadlock victim and resource.

Licensed to Gayle M. Noll <pedbro@gmail.com>

345SQL Server Profiler

Not only can Profiler detect deadlocks, it can also be used to detect blocked processes.

14.2.6 Blocked process report

When a process attempts to lock a resource that’s currently locked by another process,
it waits for the lock to be released, and it’s known for the duration of the wait as a
blocked process. Unlike deadlocks, blocked processes are perfectly normal; however,
depending on the frequency and duration of the waits, blocked processes can signifi-
cantly contribute to poor application performance. Consider the code in listing 14.2.

-- T-SQL to simulate lengthly locking period
BEGIN TRANSACTION
 SELECT * FROM HumanResources.Department(xlock)
 WAITFOR DELAY '00:00:50.000' -- hold lock for 50 seconds
COMMIT TRANSACTION

What we’re doing here is simulating a long-running transaction that holds locks for the
duration of the transaction, in this case an exclusive lock on the department table for
50 seconds. Similar to our deadlock example earlier, we’ll run this batch from two sep-
arate connections. With the first execution holding an exclusive lock on the depart-
ment table, the second execution will be blocked, waiting for the first to complete.

 In helping to diagnose blocked processes such as the one that we’re simulating
here, we can set the Blocked Process Threshold server configuration setting. As shown
listing 14.3, this setting takes a parameter representing the number of seconds a pro-
cess can be blocked before an alert is raised. Let’s configure this value to 20 seconds.

-- Set the Blocked Process Threshold to 20 seconds
EXEC sp_configure 'show advanced options', 1
GO
RECONFIGURE
GO

EXEC sp_configure 'blocked process threshold', 20
GO
RECONFIGURE

Deadlock trace flags
An alternative to using Profiler to capture deadlock information is using trace flags.
Both 1204 and 1222 will return the resources, commands, and locks involved in a
deadlock. 1222 will return the information in an XML format. In both cases, the trace
flags write the information to the SQL Server error log, enabling alerts to be set up
on the events, a process we’ll cover later in the chapter. As with all trace flags, these
flags can be enabled using either DBCC TRACEON or the –T command-line startup op-
tion. Full details of these methods are contained in SQL Server Books Online.

Listing 14.2 T-SQL code to generate a block

Listing 14.3 Setting the Blocked Process Threshold
GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

346 CHAPTER 14 Monitoring and automation

With this setting in place, we can create a SQL Server Profiler trace that profiles the
Blocked Process Report event (found in the Errors and Warnings category). After run-
ning the T-SQL batch from two separate connections, our Profiler trace will capture
the Blocked Process Report event, as shown in figure 14.13. The XML contained
within the report provides details on both the blocking and blocked processes, includ-
ing the T-SQL, client application, and login name.

 A common characteristic of poorly designed database applications is frequent and
lengthy process blocking, largely due to inappropriate locking levels and transaction
length. In combination with the Blocked Process Threshold setting, SQL Server Pro-
filer’s Blocked Process Report event offers an effective and easily implemented
method of detecting and analyzing such blocking events.

 In closing our coverage of SQL Server Profiler, let’s look at how we can enhance
the collected events with Performance Monitor data.

14.2.7 Correlating traces with performance logs

Correlating different perspectives of the same event almost always leads to a deeper
understanding of any situation. In SQL Server monitoring, one of the opportunities
we have for doing that is importing Performance Monitor data into a Profiler trace, as
shown in figure 14.14.

 After opening a saved Profiler trace file (or table), you can choose the File >
Import Performance Data menu option to select a Performance Monitor log file to
import. You can then select the appropriate counters from the log for inclusion.

Figure 14.13 You can use the Blocked Process Report event in combination with the Blocked Process
Threshold setting to capture blocking events exceeding a certain duration.
Licensed to Gayle M. Noll <pedbro@gmail.com>

347Performance Monitor

Figure 14.14 Profiler allows Performance Monitor logs to be imported, and this permits correlation of
Profiler events with the corresponding Performance Monitor counters of interest.

Once the log file is imported, clicking a particular traced command in the top half of
the window will move the red bar to the appropriate spot in the Performance Monitor
log (and vice versa). In the example shown in figure 14.14, you can see a spike in CPU
usage just over halfway through the displayed time frame. Clicking on the start of the
spike will select the appropriate command in the trace results, with the full command
shown at the bottom of the screen. In this example, you can see the cause of the CPU
spike: a cross join between two tables with a random ordering clause.

 In addition to enhancing our Profiler traces, Performance Monitor data is invalu-
able in gaining a deeper understanding of SQL Server activity, as well as enabling base-
line analysis, both of which we’ll cover next.

14.3 Performance Monitor
Performance Monitor enables the graphical display and logging of counters represent-
ing aspects of system performance, such as CPU Usage % and Memory Paging. SQL
Server exposes its own counters, such as Buffer Cache Hit Ratio, to Performance Mon-
itor through the sys.dm_os_performance_counters DMV.

 In chapter 17, we’ll cover the use of Performance Monitor as part of a targeted
performance-tuning methodology. In this chapter, our focus will be twofold: a broad
overview of viewing and capturing counters and using the collected values for baseline
analysis. Let’s begin with a look at the process of viewing and capturing counters.

14.3.1 Viewing counters in real time

In Windows Vista and Server 2008, Performance Monitor is one component of the
Reliability and Performance Monitor tool. As with versions in older operating systems,

counters can be viewed in real time as well as being captured for later analysis.

Licensed to Gayle M. Noll <pedbro@gmail.com>

348 CHAPTER 14 Monitoring and automation

 After you open Reliability and Performance Monitor, the % Processor Time coun-
ter from the Processor object is automatically tracked in real time with a 1-second
refresh interval. Additional counters can be added to the graph by clicking the green
+ icon on the toolbar.

 Counters are added by first navigating thorough objects, which categorize the coun-
ters into groups. For example, in figure 14.15, the Batch Request/Sec counter is found
within the SQL Statistics object.

 Viewing counters in real time is frequently used for detecting abnormal values at a
glance for a small number of key performance counters on critical SQL Server
instances. Depending on the refresh interval and window width, only approximately
30–90 seconds of the most recent activity will be displayed at any given moment. For
longer-term analysis, we can create data collector sets.

 Data collector sets, like the equivalent counter logs in previous versions of Perfor-
mance Monitor, are created to capture performance counters to a log file. The log
files can then be opened for retrospective performance troubleshooting, for example,
importing into Profiler as we saw earlier, and baseline analysis.

14.3.2 Baseline analysis

A baseline is a record of the average values of a number of key system metrics such as %
CPU Usage over a period of time in which performance is reported as being normal.
Initial baselines are often recorded shortly after a system enters production and serve
as a reference point for future comparison.

 As we’ll discuss shortly, one of the recommended DBA tasks is the ongoing capture
and analysis of performance counters in order to compare current performance char-
acteristics to a known baseline. In doing so, performance trends can be detected and
used for capacity-planning purposes.

Figure 14.15 In addition
to the % Processor Time
counter, which is
displayed automatically,
additional performance
counters can be added by
clicking the green + icon

on the toolbar.

Licensed to Gayle M. Noll <pedbro@gmail.com>

349Performance Monitor

The baseline analysis technique is particularly powerful when combined with a stress-
testing exercise to establish the system breaking point. For example, the RML utilities
allow us to use the OStress tool to load the system with transactions until response
time degrades to an unacceptable level. Once that level is established, a baseline anal-
ysis exercise becomes much more meaningful. Imagine being able to confidently say
to management, “We know the system will break when we reach 500 batches per sec-
ond, and based on my observations of recent usage, we’ll reach that point in 12
weeks.” Figure 14.16 illustrates the combination of baseline analysis and a benchmark-
ing exercise that establishes a system breaking point.

 When capturing performance counters for both the initial baseline and ongoing
analysis, there are a number of important considerations, particularly around the sam-
pling frequency, logging timeframes, and included metrics:

Counter values should be captured during times that include peak usage peri-
ods. Limiting the capture of counters to periods of low usage (sometimes done
to reduce server load) will miss the most important points of the day.
Depending on how the data collector set is created, the default sample interval
ranges from 1 second to 15 seconds. While a 1-second sample interval is likely
to add slightly more server load, the resultant data provides a much better per-
formance resolution. In contrast, a 15-second interval is likely to miss (or
obscure) some important periods of activity.
Finally, in considering which counters to include, there are two schools of
thought. One advocates including lots of counters in order to have a detailed
picture if and when one is required. The other argues for only a few key metrics
in order to reduce the monitoring-induced load on the server. In almost all
cases, the best approach is in between these two, with site-specific conditions
usually having an important bearing.

Figure 14.16 In combination
with a benchmark that
establishes a system’s
breaking point, baseline
analysis enables early
warning of likely performance-

degradation points.

Licensed to Gayle M. Noll <pedbro@gmail.com>

350 CHAPTER 14 Monitoring and automation

Appendix C contains a list of commonly captured Performance Monitor counters,
and in chapter 17, we’ll focus on a performance-tuning methodology that measures
various counters in combination with a number of wait types.

 The focus of the chapter thus far has been on monitoring tools and reports. As any
experienced DBA knows, spending all day manually monitoring a large number of
server instances is both mind numbing and only moderately successful, if at all possi-
ble. Together with good configuration settings and proactive management, an excep-
tion-based management approach is required for large environments, and fortunately
there are a number of automation and alert techniques that we can employ to do most
of the monitoring for us, freeing up time for more important and/or rewarding tasks.

14.4 Task automation and alerts
A common attribute among all successful database-monitoring regimes is a strong
automation and alerting component. A DBA may be able to manually manage and
monitor a handful of instances with moderate success, but as the number of instances
increases, actions become more and more reactive, eventually culminating in com-
plete chaos.

 Automation delivers a crucial advantage to a DBA. It enables more things to be
achieved with fewer mistakes in a given amount of time, therefore enabling a DBA to
pick and choose the things to spend time on, be it research, design, or reading the
newspaper. Either way, having the luxury to choose is a valuable asset.

 Throughout this book, we’ve spoken a lot about the importance of a number of
administration tasks such as backups, integrity checks, and index/statistics mainte-
nance. What we’ve yet to address is a mechanism for the automation of such tasks.
Let’s do that right now, beginning with SQL Server maintenance plans.

14.4.1 Maintenance plans

A SQL Server maintenance plan allows the creation and scheduling of maintenance tasks
through either a wizard-driven interface or using the Maintenance Plan design surface.

 Right-clicking Maintenance Plans under Management in SQL Server Management
Studio allows you to select the Maintenance Plan Wizard option. The purpose of this
wizard is to create and schedule tasks covering the major administration items such as

backups, DBCC checks, and index
maintenance. The steps in this wiz-
ard enable the selection and sched-
uling of common maintenance
tasks, as shown in figure 14.17.

Figure 14.17 The Maintenance Plan
Wizard automates the creation and

scheduling of important maintenance tasks.

Licensed to Gayle M. Noll <pedbro@gmail.com>

351Task automation and alerts

Despite the ease of use of the Maintenance Plan Wizard, it lacks a certain level of flex-
ibility, particularly in executing custom T-SQL tasks and flow control, both of which are
catered to in the Maintenance Plan design surface.

 As with the Maintenance Plan Wizard, the design surface is accessed by right-click-
ing Maintenance Plans under the Management node in SQL Server Management Stu-
dio. Selecting New Maintenance Plan prompts you for a maintenance plan name
before opening the design surface, as shown in figure 14.18.

 Let’s walk through the major components of a maintenance plan design, begin-
ning with connections.
CONNECTIONS

As shown in figure 14.18, the toolbar on top of the design surface includes a Manage
Connections button. By default, each plan is created with a local server connection,
which each task uses as the default connection. Additional connections can be created
to remote server instances as required, with each connection defined with either Win-
dows integrated security or a SQL Server username and password.

SUBPLANS AND SCHEDULES

Each maintenance plan is defined with one or more subplans, with each subplan hav-
ing its own tasks and schedule. For example, we can have a weekday schedule contain-
ing differential backups and index reorganization with a weekly subplan containing
full backups and index rebuilds.

 In our example in figure 14.18, we have two subplans, one called Weekday and the
other Weekend. The design surface shown is for the Weekend subplan, which is set to

Figure 14.18 The Maintenance Plan design surface allows the selection and flow control of

common database maintenance tasks.

Licensed to Gayle M. Noll <pedbro@gmail.com>

352 CHAPTER 14 Monitoring and automation

run at 11:00 p.m. every Sunday. The Weekday subplan operates Monday through Fri-
day at 1:00 a.m. and has its own design surface and task definition. You can create
additional subplans as required by clicking the Add Subplan button on the toolbar.
TASKS AND PRECEDENCE

For each subplan, you can click and drag tasks onto the design surface using the Main-
tenance Plan Tasks toolbox. Tasks available for selection include Back Up Database,
Rebuild Index, Reorganize Index, and Check Database Integrity.

 Once a task has been added, you can access and customize its properties by double-
clicking it. For example, the properties of the Back Up Database Task, as shown in fig-
ure 14.19, permit the selection of which databases to back up, the backup location,
compression settings, and so forth. One of the nice things about the task properties win-
dow is being able to click the View T-SQL button to view how the selected options will
be implemented by SQL Server when the OK button is clicked. An alternative to clicking
OK is to save (and optionally customize) the displayed T-SQL script for later execution.

 When multiple tasks are added, precedence constraints can be added between the
tasks to control the execution flow. For example, in the design surface shown earlier
in figure 14.18, we set the Failure action of the Check Database Integrity Task (DBCC
CHECKDB) to execute the Notify Operator Task, with a successful Integrity check flow-
ing down the left-hand side to execute the Back Up Database and Reorganize Index
Tasks. You can add and modify precedence constraints by clicking a task and dragging
the green arrow to the appropriate destination task. Once it’s connected, you can
change the constraint to Error, Completion, or Success by right-clicking the green
arrow and selecting the appropriate action.

Figure 14.19 Each task added to the design surface can be customized as required.

In this example, the Back Up Database Task is customized to back up all databases.

Licensed to Gayle M. Noll <pedbro@gmail.com>

353Task automation and alerts

In addition to the classic maintenance tasks such as backups, integrity checks, and
index-related maintenance, plans can be highly customized through the use of tasks
such as Execute SQL Server Agent Job and Execute T-SQL Statement. Further, the
Maintenance Cleanup and History Cleanup Tasks can be added to control the dele-
tion of old backup files, SQL Server Agent history, and Maintenance Plan reports.
These tasks allow a retention period to be specified, which is particularly useful in
automatically deleting old disk-based backup files.

 Despite the power and flexibility of maintenance plans, some limitations prevent
or restrict their use in certain environments. For example, despite the existence of
both the Rebuild Index and Reorganize Index Tasks, there’s no option to rebuild only
if fragmentation exceeds a certain level. As explained in the previous chapter, condi-
tional index maintenance of this sort is important both from a maintenance duration
perspective and for controlling the size of the transaction log, particularly when using
synchronous database mirroring.

 For maximum control over job scheduling and automation, we can use SQL Server
Agent jobs.

14.4.2 SQL Server Agent

SQL Server Agent is a component of SQL Server responsible for the scheduled execu-
tion of tasks defined within jobs. Creating a maintenance plan will automatically cre-
ate SQL Server Agent jobs to execute the tasks contained within the subplans. In our
earlier example shown in figure 14.18, two SQL Server Agent jobs will be created to
support the maintenance plan:1 AdventureWorks Maintenance Plan.Weekday and
AdventureWorks Maintenance Plan.Weekend.

 SQL Server Agent jobs can be manually created in SQL Server Management Studio
by right-clicking Jobs under SQL Server Agent and choosing New Job. The resultant
window allows the specification of a job name and schedule, along with a series of
steps, each of which can be defined with success and failure conditions to control the
flow of job execution. Each SQL Server Agent job step is created as a particular type; the
available types include T-SQL, Operating System, and Integration Services Package.

 In chapter 8, we created a SQL Server Agent job with a PowerShell step to auto-
mate the evaluation of a policy against a SQL Server 2005 instance. In terms of more
traditional database maintenance, common uses for SQL Server Agent jobs include
conditional index maintenance, as discussed earlier, and running DBCC checks with
options such as ALL_ERRORMSGS, an option not available for selection when using
the Check Database Integrity Task in Maintenance Plan Tasks.

 In addition to its ability to automate jobs such as backups and index maintenance,
SQL Server Agent can be used to generate alerts, an essential component of a success-
ful monitoring regime.

1 In addition to scheduled execution via SQL Agent, a maintenance plan can be executed manually by right-

clicking it and selecting Execute.

Licensed to Gayle M. Noll <pedbro@gmail.com>

354 CHAPTER 14 Monitoring and automation

14.4.3 Event alerts

Let’s consider some of the undesirable things that may happen to a SQL Server
instance at any point throughout the day:

A SQL Server Agent job fails.
A performance counter, for example, Batches/sec, approaches a critical level
where performance is known to degrade.
A critical error is raised and written to the SQL Server error log.
Disk drives fill to capacity.
Critical error messages appear in the Windows event log.

As you can imagine, the above list is only a very small selection of all of the possible
things that could go wrong, at any time of the day. The problem is magnified when
you consider each of these things could occur on any number of the SQL Server
instances being managed; consider a site with hundreds of SQL Server instances,
which is not uncommon. The point to be made here is that in the absence of an alert-
ing system that automatically detects a variety of events and alerts the appropriate peo-
ple, the administration technique is either entirely reactive or very inefficient (most
likely both).

 Fortunately, there are a number of proven techniques for automated monitoring
and alerting for SQL Server. Without considering third-party products, the frequently
used ones are System Center Operations Manager and SQL Server Agent.
MICROSOFT SYSTEM CENTER OPERATIONS MANAGER

Previously known (and commonly referred to) as Microsoft Operations Manager, or
MOM, this product is frequently deployed in organizations with large amounts of
server infrastructure under management. When deployed with the optional SQL
Server Management Pack, MOM enables the automation of a number of proactive
(and reactive) maintenance tasks, including the following:

Regular connectivity checks to any number of SQL Server instances
Disk and database space monitoring
Monitoring and alerts for SQL Agent job failures (or those taking too long to
complete)
Replication and database-mirroring health checks
Blocked process checks
SQL Service status checks

The strength of the MOM product offering is the ability to use it not only for SQL
Server monitoring but for a wide variety of other Microsoft-based infrastructure fea-
tures such as Exchange, IIS, BizTalk, and the Windows Server operating system. Thus,
it’s a widely used option for large Microsoft-centric enterprise environments.

 The scope of this book does not allow for coverage of SQL Server monitoring with
MOM, so let’s turn our attention to how we can use SQL Server Agent to achieve our

monitoring and alerting goals.

Licensed to Gayle M. Noll <pedbro@gmail.com>

355Task automation and alerts

SQL SERVER AGENT ALERTS

The starting point for enabling alerts in SQL Server Agent is through the creation of
an operator. Operators can be created in SQL Server Management Studio by right-click-
ing Operators under SQL Server Agent and selecting New Operator. Depending on
the required notification method, each operator can be created with a net send, email
or pager address.

 Email alerts are enabled in SQL Server through the use of Database Mail, enabled
in SQL Server Management Studio by right-clicking Database Mail under Management
and selecting Configure Database Mail. The Database Mail Configuration Wizard then
walks you through the required settings, one screen of which is shown in figure 14.20.

Creating operators with the appropriate notification method enables various benefits
such as the ability to produce notifications on job failures. For example, as shown in
figure 14.21, the Notifications page of the Archive Sales Data SQL Server Agent job is
configured to notify Rod Colledge (via email) when the job fails.

Figure 14.21 After creating operators, you can use them for various purposes such

Figure 14.20 The Database
Mail Configuration Wizard
configures the SQL Server
instance for sending email and
therefore enables you to set up
email alerts for job failures and
various other events.
as notification of SQL Server Agent job failures.

Licensed to Gayle M. Noll <pedbro@gmail.com>

356 CHAPTER 14 Monitoring and automation

In addition to being notified of job failures, operators can be notified of alert condi-
tions. An alert can be created in SQL Server Management Studio by right-clicking
Alerts under SQL Server Agent and selecting New Alert. In the example shown in fig-
ure 14.22, we’ve created a SQL Server performance condition alert for when the Batch
Requests/sec performance counter rises above 550.

 In addition to creating alerts for performance conditions, you can also create
alerts for SQL Server events. One of the recommended tasks for each installed
instance of SQL Server is to create alerts for severity 16 and above errors. You can
achieve this using the SQL Server event alert type, as shown in figure 14.23.

 In addition to severity-based errors, you can create alerts for specific error events.
For example, for a deadlock alert, you’d enter 1205 in the Error Number box. Alter-
natively, you can use error numbers 34050 through 34053 for alerts on policy failures,
a topic we covered in chapter 8.

 As shown in figure 14.24, the Response page of the Alert properties enables the
selection of an operator for alert notification via the appropriate method in addition
to providing the option to execute a SQL Server Agent job in response to the alert. In
the above example, in addition to alerting an operator, we may decide to execute a
SQL Server Agent job that stops nonessential services such as ad hoc reports.

Figure 14.22 You
can create alerts for
SQL Server events
such as deadlocks
or for performance
counter thresholds
such as this one
for Batch
Requests/sec.

Figure 14.23 An alert definition for level 17 errors. Error levels 16 thru 25 should

have individual alerts created.

Licensed to Gayle M. Noll <pedbro@gmail.com>

357Task automation and alerts

Figure 14.24 The Response page of an alert enables the selection of operators to notify along with a
notification method. In addition to this, we can choose to execute a SQL Server Agent job.

Finally, the Options page, shown in figure 14.25, enables additional options such as
the delay between alerts and whether to include the error text in the alert condition.

Figure 14.25 The Options page of an alert enables alert delays and error text inclusion.

Setting up alerts is a basic yet crucial administration technique. Despite this, it’s often
overlooked, as is the next task, monitoring error logs.

14.4.4 Error logs

Like Windows, SQL Server maintains logs that you can browse for details on both
informational and error events. Accessed via Management Studio under the Manage-
ment > SQL Server Logs path, the Log File Viewer can be opened by double-clicking
one of the listed logs.

 SQL Server will start a new log each time the instance is started, and by default it
will maintain six2 archived logs before overwriting the oldest. Not only does the log
file viewer permit viewing of SQL Server information, it also allows the Windows event
logs to be viewed through the same interface.

 In addition to error events, the SQL Server logs contain valuable diagnostic infor-
mation, particularly around the startup time. For example, in figure 14.26, you can
see the NUMA node configuration is recorded to the log when the instance starts.
2 This value is configurable up to 99.

Licensed to Gayle M. Noll <pedbro@gmail.com>

358 CHAPTER 14 Monitoring and automation

Figure 14.26 The SQL Server Log File Viewer enables visibility of a number of logs, including
the SQL Server error log and the Windows event logs.

In addition to creating alerts for error conditions, browsing the SQL Server logs for
abnormal entries is a basic administration task and one that should ideally be per-
formed on a daily basis. In appendix B, we’ll walk through a suggested DBA work plan,
which lists recommended daily, weekly, and monthly tasks.

14.5 Best practice considerations: monitoring and automation
A good DBA knows the tools at his or her disposal and selects the right tool for the job,
with mundane and repetitive tasks automated to achieve more and reduce errors,
thereby freeing up time for more rewarding and enjoyable tasks.

Wherever possible, use server-side traces configured to write to local dedicated
disks instead of client-side Profiler traces, particularly for high-volume and/or
long-running traces. Use Profiler’s Export menu to create server-side scripts
once the required events, columns, and filters have been chosen.
Use Profiler for specialized tasks such as deadlock and blocked process moni-
toring, rather than as a primary performance analysis and tuning tool. Dynamic
management views are far more effective in this regard, particularly when used
as part of a waits and queues analysis technique, covered in chapter 17.
The RML utilities (ReadTrace, OStress) are ideal for database load testing and
evaluating the performance impact of proposed changes. Such tools, however,
cannot be used for load testing all aspects of an application infrastructure.
Tools such as Visual Studio Team System: Test Load Agent and LoadRunner are
ideal for this purpose.
Recording a baseline of system performance under typical operating conditions
and performance response times is crucial in understanding normal system
behavior. Such understanding is invaluable when troubleshooting performance
problems as it allows abnormal performance measurements to stand out,
thereby narrowing the scope of a performance troubleshooting exercise.
A performance baseline is typically created using Performance Monitor to

record a number of key metrics over a period of time representing typical sys-

Licensed to Gayle M. Noll <pedbro@gmail.com>

359Best practice considerations: monitoring and automation

tem usage. A one-second sampling interval should be used for this recording
(unless the log size and/or performance impact become too great).
Consider including application metrics in the baseline, for example, number of
users and user response time. Such metrics enhance the value of the baseline by
providing a richer end-to-end performance picture and enable projection of
likely database performance under future application-load scenarios. Depend-
ing on the application, such metrics may be exposed as Performance Monitor
counters in a manner similar to how SQL Server exposes its own internal metrics.
Maintaining a load-test environment, ideally configured identically to produc-
tion, allows the impact of proposed production changes to be measured before
production implementation. It also permits benchmark testing, which is crucial
in understanding a system’s breaking point and essential for capacity-planning
purposes.
Regular performance baseline analysis allows emerging performance trends to
be understood, for example, the growth in batches/sec over a number of
months. When combined with benchmark testing to establish a known break-
ing point, such analysis enables performance projections as part of a capacity-
planning exercise.
Ensure counters such as user connections and logins/logouts per second are kept
in the baseline. Most counter values tend to rise in unison with the number of
connected users, so these are valuable counters for cross-referencing purposes.
While maintenance plans are easy to create and use, beware of their limitations,
for example, the inability to set threshold levels for index rebuild/reorganize.
Although you could use the T-SQL task here, SQL Server Agent jobs provide more
flexibility with the ability to create additional job step types such as Powershell.
Consider the use of backup devices for more flexibility when scripting backup
jobs for implementation as SQL Server Agent jobs. Rather than using script jobs
containing hard-coded directory paths, the use of backup devices enables porta-
bility of backup scripts, with each environment’s backup devices configured for
the appropriate drive letters and directory paths.
Ensure the appropriate alerts are enabled either using SQL Server Agent opera-
tors or through the use of MOM or something similar. At a minimum, alerts
should be established for job failures, severity 16+ errors, deadlocks, and peak
performance conditions.
When using trace flags in a production environment, using the –T startup option
is preferred over the DBCC TRACEON command. Having the trace flag invoked on
startup ensures that all statements run with the same trace flag setting.

Additional links and information on the best practices covered in this chapter can be
found online at http://www.sqlcrunch.com/automation-monitoring.

 In the next chapter, we’ll expand on our coverage of automation by focusing on a
new feature introduced in SQL Server 2008 that automates the collection of perfor-

mance and management data for storage and later analysis.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Data Collector and MDW
Automating and scheduling the collection, storage, and archival of SQL Server per-
formance and management information is a task that most DBAs recognize as
being of value, particularly for baseline analysis purposes. Until SQL Server 2008,
such a task required third-party products or a custom-developed process. As a
result, its implementation was often avoided, delayed, or half-baked. Fortunately,
Microsoft recognized the value of such a process and included an out-of-the-box,
customizable data collection process in SQL Server 2008.

 Commonly referred to as the Data Collector, it comprises a number of key compo-
nents, all of which work together to provide automated data collection and man-
agement services for participating server instances.

 We’ll begin this chapter with a general overview of the data collection plat-
form before looking at the setup and initial configuration process. We’ll then
move on to cover the Data Collector configuration process and look at some

In this chapter, we’ll cover
■ Data collection overview
■ Setup and configuration
■ Data collection
■ Reporting
360

Licensed to Gayle M. Noll <pedbro@gmail.com>

361Component overview

important considerations for using a centralized management data warehouse
(MDW). We’ll conclude the chapter with the major benefit of the data collection
platform, reporting against the collected data.

15.1 Component overview
The data collection platform comprises three key components: the Data Collector, collec-
tion sets, and the management data warehouse. These components work together to
enable information to be automatically collected and stored for later analysis and
reporting. Before we focus on the setup, administration, and benefits of this platform,
let’s walk through an overview of the key components.

15.1.1 Data Collector

The Data Collector component controls the collection and upload of information
from a SQL Server instance to the management data warehouse using a combination
of SQL Server Agent jobs and SQL Server Integration Services (SSIS) packages. The
information collected is defined in the data collection sets.

15.1.2 Data collection sets

A data collection set is comprised of information relating to a particular aspect of a
SQL Server instance. Three system data collection sets are included with SQL Server
2008: Disk Usage, Query Statistics, and Server Activity.
DISK USAGE

This collection set records disk usage statistics for each database on the instance
where the data collection set is located. By collecting this information on a regular
basis, you can report on information such as the average data file growth per day.
QUERY STATISTICS

One of the limitations of DMVs such as sys.dm_exec_query_stats is that the informa-
tion they contain is lost each time SQL Server restarts. The Query Statistics collection
set overcomes this limitation by regularly collecting and storing this information,
enabling retrospective analysis of query information such as Top N queries by CPU from
any period of time in which the collection data is available.
SERVER ACTIVITY

In the previous chapter we spoke about setting up Performance Monitor to record
counters to log files for later analysis. When enabled, this collection set does that for
us automatically, enabling reporting on counter values across periods of the collected
data so that we can easily compare current performance to previous points.

 In addition to these system collection sets, we can define custom collection sets, an
example of which we’ll cover a little later. The data collected by the collection sets is
uploaded by the Data Collector component to the management data warehouse.

15.1.3 Management data warehouse

When created by the setup wizard, the management data warehouse, commonly known

as the MDW, is created with all of the necessary data structures to store uploaded data

Licensed to Gayle M. Noll <pedbro@gmail.com>

362 CHAPTER 15 Data Collector and MDW

from the data collection sets of participating servers. Each server is individually config-
ured for data collection, and one of the steps in this process is choosing the MDW loca-
tion where the collected data will be loaded.

 Once the data collection sets begin loading, the MDW becomes the source for a
number of included (and very powerful) reports, which we’ll cover shortly. Figure
15.1 shows the major components of the data collection platform working together.

 With this overview in mind, let’s proceed by looking at the initial setup and config-
uration steps.

15.2 Setup and configuration
We use SQL Server Management Studio to begin the process of configuring the data
collection platform for a SQL Server 2008 instance,1 with the first step being the selec-
tion (or creation) of the MDW.

15.2.1 MDW selection or creation

Right-clicking Data Collection under the Management node in SQL Server Manage-
ment Studio allows you to select the Configure Management Data Warehouse menu
option, which starts the Configure Management Data Warehouse Wizard. The first
wizard step presents two options, as shown in figure 15.2: Create or Upgrade a Man-
agement Data Warehouse and Set Up Data Collection. According to the provided
option descriptions, if an MDW database does not yet exist, you can select the first
option to create an MDW for subsequent server instances to use. Alternatively, the sec-
ond option allows you to select an existing MDW.

Figure 15.1 An example data collection
architecture that uses a dedicated,
centralized MDW server to which multiple
servers upload their collected data

Server A
Collection sets:
disk usage,
query statistics,
server activity

Server B

Server C

Collection sets:
disk usage,
query statistics,
server activity

Collection sets:
disk usage,
query statistics,
server activity

Data
collector

Data
collector

Data
collector

Hourly on the hour

Hourly on the 3/4 hour

Hourly on the 1/2 hour

MDW

Reports

Central MDW server
1 SQL Server 2005 instances (and earlier) cannot be configured for data collection.

Licensed to Gayle M. Noll <pedbro@gmail.com>

363Setup and configuration

Although it’s possible for each instance to host its own local MDW database, choosing
to create it on a centralized, dedicated server (as per the example shown earlier in fig-
ure 15.1) provides a number of advantages, particularly in large environments con-
taining many server instances that will be configured for data collection. Among
others, the major benefits of a single centralized MDW database include the following:

Centralized administration —A single MDW database enables simpler administra-
tion for actions such as backups and disk space monitoring. Depending on the
configured collection sets and upload frequencies, the volume of uploaded
data can grow very quickly, so having a single administration point is very bene-
ficial in this regard.
Single report source —A centralized MDW enables a custom enterprise reporting
solution to be configured against a single-source MDW database.
Minimal performance impact —Offloading the MDW overhead from each of the
uploading servers minimizes (and centralizes) the performance overhead of
the data collection platform.

For the purposes of this example, let’s imagine our MDW is yet to be created. Thus,
we’ll select the first option shown in figure 15.2. The next screen, as shown in figure
15.3, permits the creation of a new MDW by clicking the New button and entering the
name, location, and size details. As with the creation of any database, we must con-
sider the initial size and growth factors; an MDW can grow very quickly,2 so avoiding
frequent autogrow operations is a vital performance consideration.

Figure 15.2 Right-clicking
Data Collection and choosing
Configure Management Data
Warehouse starts the
Configure Management Data
Warehouse Wizard.
2 ~ 300MB per uploading server per day, depending on collection sets and upload frequency

Licensed to Gayle M. Noll <pedbro@gmail.com>

364 CHAPTER 15 Data Collector and MDW

Figure 15.3 The Configure Management Data Warehouse Wizard permits the creation
of a new MDW database.

The next and final step in the initial setup wizard is configuring the MDW security,
which involves mapping logins to one of three MDW database roles: mdw_admin,
mdw_reader, and mdw_writer. These roles enable control over the two main uses of
the MDW: loading data into it and reporting on the data within. Should a central MDW
database instance be used by multiple uploading instances, each uploading instance’s
SQL Agent account would need to be defined as a member of the mdw_writer role,
unless the account already has sysadmin membership on the MDW instance. The
mdw_reader role is used for accounts requiring reporting access, and the mdw_admin
role is a superset of both the reader and writer roles.

 Once the MDW database has been created, the next step is to set up data collec-
tion. In a central MDW installation, the data collection setup process is repeated on
each SQL Server instance, each of which would be configured to upload to the
recently created MDW database.

15.2.2 Data collection setup

Setting up data collection involves accessing the same wizard we used to create the
MDW database. Right-click Data Collection and choose Configure Management Data
Warehouse; however, this time select Setup Data Collection from the step shown ear-
lier in figure 15.2.

 The next step, as shown in figure 15.4, allows you to select the MDW database
you’ve just created, along with a cache directory. One of the properties of each data

Figure 15.4 After selecting Set
Up Data Collection from the
Configure Management Data
Warehouse Wizard, you can
select an MDW database and
specify a cache directory for
cached collection sets.
Licensed to Gayle M. Noll <pedbro@gmail.com>

365Data collection

collection set is whether its data is cached before being uploaded to the MDW. As we’ll
discuss shortly, caching collected data before upload reduces the cost of the collection
process, particularly for large and/or frequently collected data sets.

 If the cache directory is not specified, cached data collection sets will use the direc-
tory specified in the %TEMP% or %TMP% system variables. For more control over disk
usage, specifying a custom directory is recommended, ideally on a disk separate from
data/transaction log files. Further, the SQL Agent service account will need read/
write permissions to the specified cache directory.

 Once you enter these settings, the wizard completes and creates the necessary
components to begin collecting and uploading to the selected MDW. Without any fur-
ther action, the system data collection sets will remain configured with default settings
determining the upload frequency, cache method, and data retention period.

 To gain a deeper understanding of the data collection platform, let’s look at the
properties of the default data collection sets and how they can be customized.

15.3 Data collection
Once configured for data collection, a SQL Server instance is enabled with three
default system collection sets and the ability to define custom sets if required. In both
cases, there are a number of important considerations about upload frequencies/
methods and retention periods. All of these properties can be accessed and modified
in SQL Server Management Studio under the Management > Data Collection folder
by right-clicking on a collection set and choosing Properties.

15.3.1 Upload method and frequency

Each data collection set has its own data collection and upload method, with the two
options being Non-cached and Cached. As the name suggests, the cached method col-
lects and caches data locally before uploading to the MDW. In contrast, the non-
cached method collects and uploads at the same time, using the same schedule.

 Non-cached mode is typically used for lightweight and/or infrequent collection
sets such as Disk Usage. In contrast, both the Query Statistics and Server Activity sets
should (and do) use cached mode because their collected content is greater and
occurs more frequently.

 Non-cached mode collects and uploads on the same schedule, which can be speci-
fied via the General page of the collection set’s Properties window by clicking the Pick
or New button. In figure 15.5, the Server Activity collection set is defined with the
cached upload method. Earlier in the section (figure 15.4) we covered the initial con-
figuration of the data collection platform, part of which was selecting a cache direc-
tory. This directory is used by each data collection set using cached mode.

 When cached mode is selected, the Uploads page of the collection set’s Properties
window lets you select or create an upload schedule, as per figure 15.6. The collection
schedule is specified using the General page, as shown in figure 15.5, by entering a

value in the Collection Frequency (sec) column.

Licensed to Gayle M. Noll <pedbro@gmail.com>

366 CHAPTER 15 Data Collector and MDW

Figure 15.6 The Uploads page of the collection set’s Properties window is used to set an upload
schedule for a cached collection set.

Once the upload mode and schedules are defined for each collection set, SQL Server
Agent jobs are used to execute the collection and upload to the MDW. For a cached

Staggered upload with cached mode
When a large number of servers are frequently collecting and uploading large collec-
tion sets, the collective data volume may overwhelm the centralized MDW server.
Cached mode allows each uploading server to collect and upload on a staggered
schedule, thereby reducing the impact on the MDW server. For example, one server
may upload hourly on the hour, with the next server uploading at 15 minutes past the
hour, and so forth.

Figure 15.5 The Properties
window of each collection
set lets you configure the
upload mode and schedule
as well as the data
retention period.
mode collection set, two agent jobs will be used: one for the collection and another

Licensed to Gayle M. Noll <pedbro@gmail.com>

367Data collection

for the upload. In contrast, a non-cached collection set will have a single job for both
collection and upload.

 The names given to the SQL Server Agent jobs are based on their collection set
number, as shown in figure 15.7. The jobs can be renamed in order to easily identify
the correlation between a SQL Server Agent job and the collection set it’s servicing.
For example, the collection_set_2_collection/upload jobs can be renamed to Server
Activity Collection and Server Activity Upload.

 Before changing the collection mode and/or collection and upload schedules, make
sure you understand the performance impacts of doing so, particularly in a production
environment with a large number of servers uploading to a central MDW database. The
reporting benefits of scheduling frequent uploads need to be balanced against the per-
formance impact on the MDW server that the data is being loaded to. Staggering the
uploads can certainly help in reducing the load impact on the MDW database.

 In addition to the upload mode and schedule for each instance, another impor-
tant consideration is the backup of the MDW database.

15.3.2 Backup considerations

In a production environment using the data collection platform, there are a number
of additional backup considerations, summarized as follows:

MDW database —Depending on the collection sets and upload frequency, the
MDW database can expect to receive approximately 300MB of uploaded data per
server per day. It’s easy to see how this database can grow very rapidly. Therefore,
you need to carefully consider doing backups and monitoring disk space on the
MDW server as well as archiving, which we’ll cover shortly.
MDW recovery model —By default, the MDW database is created with the simple
recovery model. In a production environment, you need to change this to the
full recovery model, unless you can accept the possibility of losing data col-
lected since the last full backup.
MSDB database —Each uploading instance’s collection sets, upload schedules,
and log histories are defined and stored in the MSDB database of each instance.
Regardless of whether the data collection platform is used, this database should
be backed up; however, with an active collection configuration, the need to

Figure 15.7 SQL Server Agent jobs are used to execute the collection and upload steps of each
collection set. You can rename the jobs for easier identification.
back up this database becomes even more important.

Licensed to Gayle M. Noll <pedbro@gmail.com>

368 CHAPTER 15 Data Collector and MDW

To assist with containing the growth of the MDW database, each collection set is
defined with a retention period, which we’ll discuss next.

15.3.3 Retention period

As we’ve just discussed, the MDW database will grow by approximately 300MB per
server per day. This obviously makes containing the growth of this database very
important, particularly in a large enterprise environment with a central MDW database
and many uploading servers. Fortunately, as we saw in figure 15.5, each collection set
is defined with a retention period, specified as a number of days.

 When the data collection upload job executes, previous data from the collection
set that’s older than the retention period is removed from the database. It follows that
for a given number of uploading servers, the MDW database will grow to a certain size
and then stabilize. The retention period of each collection set should be based on a
number of factors such as the reporting requirements and available disk space.

 Typically, things don’t always run according to plan, with a variety of potential
problems preventing the successful collection and upload of a collection set’s data.
Fortunately, the logging component allows you to inspect the history and detail of
each set’s activity.

15.3.4 Logging

Right-clicking a collection set (or data collection) and selecting View Logs brings up
the Log File Viewer, which, as shown in figure 15.8, presents a detailed history of the
collection and upload process.

 As mentioned earlier, in addition to the default system data collection sets, you can
create custom collection sets.

15.4 Custom collection sets
You can define additional collection sets that draw information from a number of dif-
ferent sources, using one of three collector types: T-SQL Query, SQL Trace, and Perfor-
mance Counter. A fourth collector type, Query Activity, collects the same information
as the Query Statistics system collection set.

 Creating custom collection sets requires the use of a number of stored procedures

Figure 15.8 Selecting View Logs after right-clicking a collection set allows the detailed inspection of
recent collection and upload activities.
including sp_syscollector_create_collection_set and sp_syscollector_create_collection

Licensed to Gayle M. Noll <pedbro@gmail.com>

369Custom collection sets

_item. Unfortunately, you cannot create custom collection sets using the Management
Studio interface. However, once they are created, you can manage their upload con-
figuration and schedule using Management Studio as with the system collection sets.

 You can create custom collection sets for a variety of purposes, including the fol-
lowing:

Longer-term storage of DMVs such as the missing index DMVs. As we covered in
chapter 13, these DMVs are limited to the last 500 missing indexes reported by
the query optimizer, so storing a regular snapshot of these DMVs in the MDW
can overcome this limitation.
Creating a customized compliance solution with policy-based management, for
example, uploading the results of policy checks from multiple servers to the
central MDW for a centralized compliance-reporting solution.
Collecting customized Performance Monitor counters as part of a broader baseline.
Despite the Server Activity system collection set including a number of perfor-
mance counters, additional counters not included in this set may be required.

A full description of the process and procedures for creating a custom collection set is
found in SQL Server Books Online. A brief example in listing 15.1 demonstrates the T-
SQL code for creating a custom set called Performance Baseline, which includes a
number of performance counters.

-- Create a Custom Collection Set containing three Performance Counters
use msdb;

declare @collection_set_id_1 int
declare @collection_set_uid_2 uniqueidentifier

exec [dbo].[sp_syscollector_create_collection_set]
 @name=N'Performance Baseline'
 , @collection_mode=0
 , @description=N'Custom Performance Counters'
 , @target=N''
 , @logging_level=0
 , @days_until_expiration=5
 , @proxy_name=N''
 , @schedule_name=N'CollectorSchedule_Every_5min'
 , @collection_set_id=@collection_set_id_1 OUTPUT
 , @collection_set_uid=@collection_set_uid_2 OUTPUT

declare @collector_type_uid_3 uniqueidentifier
select @collector_type_uid_3 = collector_type_uid
from [dbo].[syscollector_collector_types]
Where name = N'Performance Counters Collector Type'

declare @collection_item_id_4 int
exec [dbo].[sp_syscollector_create_collection_item]
 @name=N'PerfCounters'

Listing 15.1 Creating a custom collection set for performance counters
 , @parameters=

Licensed to Gayle M. Noll <pedbro@gmail.com>

370 CHAPTER 15 Data Collector and MDW

 '<ns:PerformanceCountersCollector xmlns:ns="DataCollectorType">

 <PerformanceCounters Objects="$(INSTANCE):Buffer Manager" Counters="Page
 ➥ life expectancy" />

 <PerformanceCounters Objects="$(INSTANCE):General Statistics"
 ➥ Counters="User Connections" />

 <PerformanceCounters Objects="LogicalDisk" Counters="Avg. Disk sec/Read"
 ➥ Instances="*" />

</ns:PerformanceCountersCollector>'
 , @collection_item_id=@collection_item_id_4 OUTPUT
 , @frequency=5
 , @collection_set_id=@collection_set_id_1
 , @collector_type_uid=@collector_type_uid_3

Once the custom set is created using the code in listing 15.1, it will appear in Manage-
ment Studio as a new collection set, at which point you can configure its upload set-
tings in the same manner as we covered earlier for system data collection sets.

 Finally, the benefit of collecting and uploading data is, of course, to enable report-
ing on it, and in that regard a number of powerful reports are included to work with
the system collection sets.

15.5 Reporting
In closing our coverage of the data collection platform, let’s take a look at the stan-
dard reports. Each of these can be accessed in SQL Server Management Studio by
right-clicking Data Collection and choosing Reports > Management Data Warehouse.
The data shown in the resultant report will be filtered for the server from which the
report was run. Let’s start with the Disk Usage Summary report.

15.5.1 Disk Usage Summary

The initial view of the Disk Usage Summary report, as shown in figure 15.9, presents a
view of each database’s disk usage within the instance.

Figure 15.9 The Disk
Usage report includes
trend lines and average
growth per day for both

data and log files.

Licensed to Gayle M. Noll <pedbro@gmail.com>

371Reporting

The value of this report is enhanced through the ability to click on the blue trend lines
to drill down into more detail. For example, clicking on the AdventureWorks2008
database trend line opens another report, as shown in figure 15.10.

 The clear visibility of historical disk usage enabled by the Disk Usage reports makes
capacity planning in SQL Server 2008 much simpler than in SQL Server 2005 and ear-
lier, which required a custom process and/or a third-party product.

 Next up, let’s examine the Query Statistics History report.

15.5.2 Query Statistics History

The Query Statistics History report permits analysis of the most expensive queries (by
duration, CPU, or disk usage). As with the Server Activity report, you can select a par-
ticular period in which to filter the report using the timeline navigation, as shown in
figure 15.11.

Figure 15.11 The timeline at the top of certain reports allows the report to be filtered for a time period.

A section of the Query Statistics report is shown in figure 15.12.
 The value of this report is enhanced by the ability to drill down into the details of

each query. For example, clicking on one of the queries brings up another report, as
shown in figure 15.13. Among other details, this report shows aggregated query statis-
tics and the full query text.

 Additional drill-through actions from this report provide further detail, all the way
down to viewing the individual graphical execution plans.

Figure 15.10 Drilling
down from the Disk Usage
report provides further
detail on disk usage, in this
case, for the data file of
the AdventureWorks2008
database.

Navigate through the historical snapshots of data using the time line below.
 The final report we’ll examine is the Server Activity History report.

Licensed to Gayle M. Noll <pedbro@gmail.com>

372 CHAPTER 15 Data Collector and MDW

Figure 15.12 The Query Statistics report allows the most expensive queries to be identified for a time
period. Clicking on the query provides further details, such as the full query text and execution plan.

Figure 15.13 Drilling through from the Query Statistics report shows additional query details such as
execution count and average duration per execution.

15.5.3 Server Activity History

As shown in figure 15.14, the Server Activity History report provides a wealth of infor-
mation for a selected time period, including resource usage, wait types, and perfor-
mance counter values.

 Like the other reports we’ve looked at, the Server Activity report enables drill-
through action into more detail, such as clicking on the Disk I/O Usage graph line
and viewing the details of each disk, as shown in figure 15.15.

 Bear in mind that all of the reports shown here are standard, out-of-the-box
reports that work with the standard system collection sets. Thus, the ability to derive a
deeper understanding of system usage not only is very simple but comes with a rela-
tively low administration overhead.
 In addition to these standard reports, you can create custom reports as well.

Licensed to Gayle M. Noll <pedbro@gmail.com>

373Reporting

Figure 15.14 Server activity for a time period

Figure 15.15 Drilling through from the Server Activity report enables a deeper analysis, in this case

viewing each disk’s response time, queue length, and transfer rate.

Licensed to Gayle M. Noll <pedbro@gmail.com>

374 CHAPTER 15 Data Collector and MDW

15.5.4 Custom reports

SQL Server Books Online contains a description of the tables within the MDW data-
base. These tables can be directly queried as part of a custom report for a custom col-
lection set or to enhance the standard reports, for example, to include data from
multiple instances side by side. Further possibilities for customization exist, for exam-
ple, to create Analysis Services cubes off the collected data.

15.6 Best practice considerations: Data Collector and MDW
The data collection platform is a significant leap forward in deriving maximum value
from the vast amount of information contained within a SQL Server instance, opening
up a whole range of new reporting options unavailable in previous versions of SQL
Server without customized solutions or third-party products.

When using the data collection platform, creating a centralized MDW database
(ideally on a dedicated server) is preferable to creating an MDW on each
instance configured with data collection. The benefits of a centralized MDW
include a single administration and reporting point and offloading the impact
of the data collection load process to the dedicated MDW server.
When configuring multiple server instances to upload to a central MDW, the
uploads should ideally be staggered to reduce the impact of multiple servers
uploading data at the same time.
After creating the MDW database, consider setting its recovery model to full, and
ensure the database is adequately sized to avoid frequent autogrow operations.
For large data collection sets, or sets configured with a high collection fre-
quency, use the cached mode to reduce the impact on the network and server.
For maximum performance, the cache directory should ideally be set to a dedi-
cated disk that is separate from the database data and transaction log disks.
Further, the SQL Server Agent service account will need read/write access to
this directory.
Before changing the collection mode and/or collection and upload schedules,
you need to understand the performance impacts of doing so, particularly in a
production environment with a large number of servers uploading to a central
MDW database.
Ensure the MDW database and transaction log are backed up as per any other
production database. Further, since the MSDB database contains the data collec-
tion configuration for each uploading instance, ensure this database is backed
up on each participating instance.

Additional links and information on the best practices covered in this chapter can be
found online at http://www.sqlcrunch.com/datacollector.

 The data collection platform is one of many new features introduced in SQL Server
2008. In the next chapter, we’ll look at another one: Resource Governor.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Resource Governor

Throughout this book, we’ve looked at a number of performance-management
tools used for observation and/or simulation purposes. What’s missing from those
tools is a mechanism to control resource usage based on the connection source,
now possible using Resource Governor, introduced in the Enterprise Edition of SQL
Server 2008.

 In this chapter, we’ll begin with an overview of Resource Governor before con-
centrating on its major components: the classifier function, workload groups, and
resource pools. We’ll conclude the chapter with an example implementation using T-
SQL script and cover some of the monitoring techniques used.

In this chapter, we’ll cover
■ Resource Governor overview
■ Classifier functions
■ Workload groups
■ Resource pools
■ Monitoring resource usage
375

Licensed to Gayle M. Noll <pedbro@gmail.com>

376 CHAPTER 16 Resource Governor

16.1 Resource Governor overview
A common (and unfortunate) situation that DBAs often encounter in production sys-
tems is a single runaway query that flatlines server performance to the detriment of all
users. Unless the offending query can be identified and killed, users are effectively at
the mercy of the query completing. To make matters worse, there’s nothing stopping
the same query from occurring over and over again, with the end result being an
unpredictable experience for end users and a frustrating one for DBAs.

 In previous versions of SQL Server, resources could be constrained at an instance
level with configuration settings such as CPU affinity and maximum memory, but such
settings are coarse grained and don’t apply to individual users or applications. Thus,
instances that host groups of users or applications with varying resource usage pres-
ent a challenge for a DBA whose goal is to provide a stable, predictable environment
for all users.

 A classic example of this is a SQL Server instance used for both reporting and data
entry. In such a case, performance for data entry users may be fine until someone
decides to run a large report, at which time data entry performance grinds to a halt.
Resource Governor is purpose built to address problems of this type.

16.1.1 Resource Governor benefits

Put simply, Resource Governor enables resource sharing and segregation between
groups of users or applications based on their connection source. For example, we
could assign our data entry group minimum CPU and memory resources, effectively
shielding them from the impact of a large report query.

 As you’ll see shortly, Resource Governor is not only relatively easy to set up and
use, but it’s also very effective in limiting the performance impact of one group on
others. That being said, there are a number of considerations before using it, as well
as several limitations.

16.1.2 Resource Governor limitations

As a brand-new feature in SQL Server 2008, Resource Governor comes with a number
of limitations that will presumably be removed in subsequent SQL Server versions as
the feature matures:

Resource constraints are limited to memory and CPU. Network and disk I/O
resources cannot be constrained in SQL Server 2008.
Reporting Services, Analysis Services, and Integration Services resource usage
cannot be constrained. In this version, resource constraints apply to core data-
base engine usage only.
Resource Governor constraints are defined within (and apply within) a SQL
Server instance; resource constraints do not apply across instances on a multi-
instance server.1
1 Resource segregation across instances can be achieved with CPU affinity and min/max memory settings.

Licensed to Gayle M. Noll <pedbro@gmail.com>

377Resource Governor overview

Further, Resource Governor is most effective when resource usage is well defined and
consistent across a number of distinct groups, for example, data entry and reports. In
cases where particular data entry transactions dominate resource usage, Resource
Governor may not be effective, unless there is a method of identifying and classifying
the source of such transactions.

 Before we dive into the details of Resource Governor, let’s briefly define the major
components.

16.1.3 Resource Governor components

Resource Governor tracks and allocates CPU and memory resources using three major
components: resource pools, workload groups, and a classifier function:

A resource pool is created to define the minimum and maximum usage of a
server’s CPU and memory resources. A resource pool can be used by one or
more workload groups.
Connections to a SQL Server instance are classified into a workload group by
the classifier function. The workload group is mapped to a resource pool defin-
ing the minimum and maximum resource consumption available to the con-
nection. The resource group also serves as a monitoring and aggregation point
for resource consumption and as a method of applying a uniform resource
usage policy, for example, a MAXDOP setting specific to each group.
The classifier function, invoked upon connection to a SQL Server instance,
defines which resource group the connection is assigned to. Connections can
be classified based on the username, application name, host name, or role
membership.

Workload groups and resource pools are either user defined or system based. There
are two system groups and pools: internal and default. The internal group and pool
are used for SQL Server processes, whereas the default group and pool are used for
connections that are not otherwise classified into a user-defined group and pool.

 Figure 16.1 illustrates the above components working together to define resource
usage limits for an incoming connection to a SQL Server 2008 instance.

Classifica�on func�on

Default group Reports group Sales group Ad hoc group
(Maxdop 1)

Internal group

Reports pool
20% max CPU

Apps pool
30% min CPU

Default
pool

Internal
pool

Figure 16.1 Incoming
connections are assigned to
a resource pool via workload
 group classification.

Licensed to Gayle M. Noll <pedbro@gmail.com>

378 CHAPTER 16 Resource Governor

With this overview in mind, let’s consider the components in more detail, beginning
with the classifier function.

16.2 Classifier function
When a user or application connects to a SQL Server instance, the logon process
includes two major steps before the session is established: authentication, followed by
the firing of any logon triggers. When Resource Governor is enabled, a third step is
included for classifying the connection using the classifier function. The process is
summarized in figure 16.2.

Figure 16.2 The logon process with Resource Governor enabled consists of authentication,
logon triggers, and workload classification.

Given the integration of the classifier function within the logon process, the efficiency
of the function becomes a crucial consideration. Poorly written functions have the
potential for logins to time out if the execution time of the function exceeds the login
timeout setting of the connecting application. Therefore, the classifier function
should be tested, ideally under load, before production implementation.

 As with workload groups and resource pools, the best classifier functions are those
that are relatively simple in nature. Consider the example in listing 16.1.

-- Create a Classifier Function
CREATE FUNCTION fn_rg_classifier() RETURNS SYSNAME
WITH SCHEMABINDING
AS
BEGIN
 DECLARE @grp_name AS SYSNAME
 IF (IS_SRVROLEMEMBER('sysadmin') = 1)
 SET @grp_name = 'rgDBAGroup'
 IF (APP_NAME() LIKE '%REPORT SERVER%')
 SET @grp_name = 'rgReportGroup'
 RETURN @grp_name
END
GO

The classifier function presented here is an example of a relatively simple function
putting little overhead on the logon process. It uses the SUSR_NAME() and APP_NAME()
functions to classify incoming connections based on the username or application
name. The full list of supported functions for classification purposes is as follows:

HOST_NAME() — Returns values such as MarketingPC4

APP_NAME() — Returns values such as Microsoft SQL Server Management Studio

Listing 16.1 Example classifier function

1. Authen�ca�on 2. Logon triggers 3. Workload classifica�on
- Query

Licensed to Gayle M. Noll <pedbro@gmail.com>

379Classifier function

SUSER_NAME() and SUSER_SNAME() — Returns values such as BNESales\RColledge
IS_SRVROLEMEMBER()— Used to evaluate server role membership, for example,
if IS_SRVROLEMEMBER ('sysadmin') = 1

IS_MEMBER() — Used to evaluate database role membership, for example, if
IS_MEMBER ('db_owner') = 1

When designing a classifier function, you need to consider the following aspects of its
effect on a Resource Governor implementation:

A connection not explicitly classified will be assigned to the default workload
group (and therefore the default resource pool). With this in mind, the func-
tion logic should address only connections that should be targeted for a nonde-
fault workload group.
Connections made using the dedicated administrator connection (DAC) are
not subject to workload group classification. Using the DAC is one method of
fixing a poorly written classifier function that’s denying connections based on
logon timeouts. For this reason, enabling the DAC is recommended when using
Resource Governor.
When Resource Governor is disabled, the classifier function is not executed as
part of the logon process; all connections are automatically set to use the
default workload group, whose settings are returned to their default values
along with the values of the default resource pool.

Finally, you need to consider the security of the functions being used (or misused) for
classification. One example of this, which also applies to logon triggers (covered in
chapter 6), is spoofing the value of the supplied application name in an application’s
connection string. An example of this is shown in figure 16.3.

 The Application Name attribute of the connection string is returned by the SQL
Server APP_NAME() function. It follows that a user with access to the application’s con-
nection string and knowledge of the classification function’s logic can potentially cir-
cumvent the intended result of the classification function (or logon trigger).
Therefore, you must consider the security of the connection string details and the
possible use of a more secure classification function.

Figure 16.3 A developer with access to the connection string can spoof the application name to

circumvent logon triggers and workload classification.

Licensed to Gayle M. Noll <pedbro@gmail.com>

380 CHAPTER 16 Resource Governor

Let’s now focus on the purpose of the classifier function: to assign connections to a
workload group.

16.3 Workload groups
Classifying incoming database connections into a workload group offers a number of
benefits, including the following:

Connections that share a similar property, for example, Application Name, can
be grouped together for purposes of applying resource usage boundaries via a
specific resource pool.
Application of resource usage constraints, such as a custom MAXDOP setting, can
be made at a workload group level, thereby enabling more control over
resources in mixed-purpose environments.
Resource usage can be monitored at a group level, enabling a deeper under-
standing and visibility of current, aggregate, minimum, and maximum resource
usage for a given group.

As covered earlier, there are two preexisting system workload groups, default and
internal. The default group is used for any connections not classified into a user-
defined group or classified into a group that no longer exists. The internal group,
used for internal SQL Server operations, can be monitored, but connections cannot
be classified into this group, nor can the group be modified in any way.

 In addition to these system workload groups, user-defined groups can be created
using the CREATE WORKLOAD GROUP T-SQL command. To gain a deeper understanding
of workload groups, let’s examine the syntax of this command before discussing its
optional arguments:

CREATE WORKLOAD GROUP group_name
[WITH
 ([IMPORTANCE = { LOW | MEDIUM | HIGH }]
 [[,] REQUEST_MAX_MEMORY_GRANT_PERCENT = value]
 [[,] REQUEST_MAX_CPU_TIME_SEC = value]
 [[,] REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value]
 [[,] MAX_DOP = value]
 [[,] GROUP_MAX_REQUESTS = value])
]
[USING { pool_name | "default" }]

IMPORTANCE — When multiple workload groups are set to use the same resource
pool, the IMPORTANCE argument enables tasks from one group to be weighted
ahead of others; for example, if a Miscellaneous Query resource pool is used by
two workload groups called AdHoc and Admin, assigning a high importance to
the Admin group will place its access to resources before that of the AdHoc
group. A high importance should not be confused with priority access to system
resources; that is, importance is a simple weighting mechanism to establish
order among multiple groups in the same resource pool.
REQUEST_MAX_MEMORY_GRANT_PERCENT — This argument enables the specifica-

tion of the largest allowable percentage of resource pool memory that can be

Licensed to Gayle M. Noll <pedbro@gmail.com>

381Workload groups

assigned to a single request from the group; for example, a value of 10 would
permit a maximum of 50MB of memory to be assigned to a query from a pool
with a 500MB memory size. A query that exceeds this value will be met with an
error message similar to that shown in figure 16.4.
REQUEST_MAX_CPU_TIME_SEC — Similar to the MAX_MEMORY_GRANT argument, this
argument applies to the maximum CPU seconds; however, rather than cancel
the query, Resource Governor will allow the query to continue and will generate
an alert. We’ll examine Resource Governor alerts and monitoring in more
detail later in this chapter.
REQUEST_MEMORY_GRANT_TIMEOUT_SEC — This argument represents the maxi-
mum amount of time in seconds that a query from the group will wait for a
memory grant. After the time period expires, rather than the query failing, it
will receive the minimum memory grant, which may result in lower-than-
expected performance.
MAX_DOP — A workload group can be configured with its own default MAXDOP
level. Doing so allows commands from a group to use a MAXDOP setting that may
differ from the server default, without specifying an explicit MAXDOP setting. If a
query from the group is executed that does specify a MAXDOP value, it will be used,
so long as the value does not exceed the group’s MAXDOP setting. This argument
presents some interesting possibilities; for example, Microsoft Report Builder
provides no option to specify a MAXDOP value to assign to the queries it generates.
Thus, the only option is to use a server default MAXDOP setting to control the par-
allelism of its queries; however, changing the server default may introduce
unwanted results in other areas. Using Resource Governor, we can classify
Report Builder queries into a workload group with its own MAXDOP setting.
GROUP_MAX_REQUESTS — This argument allows a limit to be applied to the num-
ber of simultaneous requests that can execute from the workload group. How-
ever, in some cases, the SQL engine may allow this limit to be exceeded if doing
so prevents a blocking or deadlock scenario from occurring.
USING — This argument links a workload group to a resource pool. If this argu-
ment is excluded, the default pool is used.

As with classifier functions, you should be careful when creating workload groups.
The group and pool names are returned in any error messages, potentially exposing
information that could be used maliciously. Figure 16.4 contains an example of an
error message that includes the group/pool names.

Figure 16.4 Carefully consider the names assigned to workload groups and resource pools because the

names are returned in error messages, as shown in this example.

Licensed to Gayle M. Noll <pedbro@gmail.com>

382 CHAPTER 16 Resource Governor

Finally, a user connection classified into a workload group remains in the group for
the life of the connection, regardless of whether the classifier function is changed
while the connection is active.

 As you’ve just seen, one of the major roles for a workload group is to define a con-
nection’s resource pool.

16.4 Resource pools
We come now to the final component of Resource Governor, the resource pool, cre-
ated using the T-SQL command shown below. As you can see, the command is fairly
simple, with arguments for min and max values for CPU and memory, the two
resources under our control in SQL Server 2008.

CREATE RESOURCE POOL pool_name
[WITH
 ([MIN_CPU_PERCENT = value]
 [[,] MAX_CPU_PERCENT = value]
 [[,] MIN_MEMORY_PERCENT = value]
 [[,] MAX_MEMORY_PERCENT = value])
]

There are two system pools, default and internal, and as with workload groups, the
internal pool is for system usage only, and its resource limits cannot be modified.
Given the importance of internal SQL Server system processes, its resource usage is
not constrained, regardless of the resources reserved in other pools. In contrast, the
default pool can be modified, with multiple user-defined workload groups in addition
to the default workload group able to use it.

 Before we look at what min and max actually mean in the context of resource pool
usage (there’s more to it than you may think), let’s first define some important terms:
effective maximum percentage and shared percentage. In doing so, let’s look at an example
of the two resource pools defined in table 16.1. The values in this table can represent
either CPU or memory; the terms apply in both cases.

Have a look at Pool A; its maximum value is specified as 100 percent; however, Pool B is
configured with a minimum of 60 percent. It follows that Pool A could never receive
more than 40 percent, hence the term effective maximum. In a similar vein, Pool B is
configured with a maximum of 75 percent, but given Pool A’s minimum value of 30

Table 16.1 Example pool configuration—internal pool excluded

Pool name Min % Max %

Default 0 100

Pool A 30 100

Pool B 60 75
percent, it will never receive more than 70 percent.

Licensed to Gayle M. Noll <pedbro@gmail.com>

383Resource pools

 The minimums of pools A and B added together total 90 percent; therefore, only
10 percent is left for pools to use over their minimum values. The 10 percent value is
referred to as the total shared percentage and is used in calculating the effective maxi-
mum values. Essentially, effective maximums decrease as minimum values increase.

 A poorly configured pool design with large minimum values may have the
unwanted effect of starving resources from certain pools. The important point to take
from this is that the best resource pool designs are usually the simplest, and like other
configuration settings, they should be changed only for a good reason after a well-con-
sidered analysis. Later in the chapter we’ll look at a plan of attack for deciding how to
size these values. Table 16.2 includes the effective maximum values based on the pool
design from table 16.1.

With these points in mind, let’s look at further ramifications of minimum resource val-
ues on CPU and memory.

16.4.1 Effective minimum: memory considerations

You must take special care when configuring a resource pool with a minimum mem-
ory percentage. When SQL Server starts, the memory minimums for each pool are
reserved up front, regardless of whether the memory is required, or even if there are
no active workload groups using the pool. It follows that in a case where there are a
number of unused pools with configured minimum memory values, there is poten-
tially a large amount of memory that’s unable to be accessed by pools that actually
need it. In contrast, CPU limits are more fluid.

16.4.2 Effective minimum: CPU considerations

Consider figure 16.5, which shows the CPU usage of two resource pools in Perfor-
mance Monitor.

 What we’re looking at here is a running query in the RP_Reporting pool (repre-
sented by the line that starts near 100 percent and drops down to around 15 percent).
This pool is configured with a maximum CPU usage of 15 percent. In the left half of
the screen, it’s clearly using much more than that, in some cases 100 percent. About
halfway across, we see the emergence of a query running in the RP_Sales pool (repre-
sented by the line that starts at 0 percent and increases to around 80 percent). At this
point, the original query’s CPU usage is throttled back dramatically, to around the 15

Table 16.2 Pool configuration with effective maximum values included

Pool name Min % Max % Effective max %

Default 0 100 10

Pool A 30 100 40

Pool B 60 75 70
percent average value.

Licensed to Gayle M. Noll <pedbro@gmail.com>

384 CHAPTER 16 Resource Governor

Figure 16.5 Resource Governor throttles resource usage based on contention from other processes.

What’s actually happening here is that Resource Governor is smart enough to figure
out that there’s no CPU contention, so it lets the first query use as much of the
resource as it needs. As soon as a second query comes along, CPU contention occurs,
at which point resource limits are applied.

 Perhaps the most important point to learn from this is in regard to appropriate
load testing. For example, testing the impact of a 30 percent CPU pool maximum is
pointless unless there is something else running that throttles the pool’s CPU usage
down to 30 percent.

 Finally, note that the resource values are to be interpreted as averages, not hard and
fast limits; that is, monitoring will occasionally show limits being exceeded, while the
average values should be maintained.

 With this background, let’s walk through a script to set up a Resource Governor
scheme from start to finish.

16.5 Resource Governor in action
Now that you have a solid understanding of the components that make up Resource
Governor, let’s walk through an example of its implementation. Let’s imagine we have
a database used for both a production point-of-sales application and as a source for a
reporting system. Our goal is to constrain the CPU and memory resources consumed
by the reporting system in order to reduce the impact on the point-of-sales system

when large reports are executed.

Licensed to Gayle M. Noll <pedbro@gmail.com>

385Resource Governor in action

 Let’s walk through the T-SQL code for creating the necessary components, begin-
ning with the creation of the workload groups, as shown in listing 16.2.

-- Create 2 Workload Groups
USE MASTER
GO

CREATE WORKLOAD GROUP RG_Reporting
GO
CREATE WORKLOAD GROUP RG_Sales
GO

Despite the various options available, we create our workload groups with all of the
default settings. Next up, we’ll create the classifier function used to assign incoming
connections to the appropriate group. After the function is created, we’ll configure
Resource Governor to use it, as shown in listing 16.3.

-- Create a Classifier Function
CREATE FUNCTION ClassifierFn_Basic() RETURNS SYSNAME WITH SCHEMABINDING AS
 BEGIN
 DECLARE @ResGroup AS SYSNAME
 IF (SUSER_NAME() = 'reporting')
 SET @ResGroup = 'RG_Reporting'
 IF (SUSER_NAME() = 'sales')
 SET @ResGroup = 'RG_Sales'
 RETURN @ResGroup
END
GO

-- Configure Resource Governor to use the new function
ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION=dbo.ClassifierFn_Basic)
GO

In this example, our classifier function uses the login name via the SUSER_NAME()
function as the basis for classification. As we explained earlier, this could be based on
the application, host, or role membership using the appropriate function.

 Our final step is to create the resource pools and assign them to the appropriate
workload groups, as per listing 16.4.

-- Create a new Resource Pool
CREATE RESOURCE POOL RP_Sales WITH (
 MIN_CPU_PERCENT = 40
 , MAX_CPU_PERCENT = 60
 , MIN_MEMORY_PERCENT = 40
 , MAX_MEMORY_PERCENT = 60
)

Listing 16.2 Creating workload groups

Listing 16.3 Classifier function

Listing 16.4 Assigning resource pools to workload groups
GO

Licensed to Gayle M. Noll <pedbro@gmail.com>

386 CHAPTER 16 Resource Governor

-- Configure a Workload Group to use the new Resource Pool
ALTER WORKLOAD GROUP RG_Sales USING RP_Sales
GO

-- Create a new Resource Pool
CREATE RESOURCE POOL RP_Reporting WITH (
 MIN_CPU_PERCENT = 5
 , MAX_CPU_PERCENT = 15
 , MIN_MEMORY_PERCENT = 5
 , MAX_MEMORY_PERCENT = 15
)
GO

-- Configure a Workload Group to use the new Resource Pool
ALTER WORKLOAD GROUP RG_Reporting USING RP_Reporting
GO

In the above example, we’ve created resource pools with minimum and maximum
CPU and memory values. At this point, the only step left is to reconfigure the Resource
Governor to enable the new settings. We can do this using the following command:

-- Reconfigure the Resource Governor to enable the new settings
ALTER RESOURCE GOVERNOR RECONFIGURE
GO

Once the above T-SQL has been executed, we can confirm our settings using SQL
Server Management Studio by right-clicking Resource Governor and choosing Prop-
erties. The resultant screen, as shown in figure 16.6, allows us to modify the settings
should we wish to do so.

 Finally, should we wish to disable Resource Governor, we can do so using the fol-
lowing command:

-- Disable the Resource Governor
ALTER RESOURCE GOVERNOR DISABLE
GO

Figure 16.6 You can use the properties window of Resource Governor to select the classifier

function and view or edit the resource pools and workload groups settings.

Licensed to Gayle M. Noll <pedbro@gmail.com>

387Monitoring resource usage

To complete our coverage of Resource Governor, let’s review some of the monitoring
options available.

16.6 Monitoring resource usage
Workload groups and resource pools can be monitored using three methods: Perfor-
mance Monitor, events, and Dynamic Management Views.

16.6.1 Performance Monitor

Performance Monitor is the primary mechanism for monitoring Resource Governor
usage in SQL Server 2008. Two performance objects are available: SQLServer:Work-
load Group Stats and SQLServer:Resource Pool Stats.

 We saw an example of using the CPU Usage % counter from the SQLServer:
Resource Pool Stats earlier in figure 16.5. SQL Server Books Online documents all of
the counters for these objects, but let’s briefly have a look at some of the counters
available for SQLServer:Workload Group Stats:

Queued Requests —If you’re using the GROUP_MAX_REQUESTS argument in the
workload group definition, this value may be non-zero if throttling has
occurred.
Active Requests —This counter represents the number of requests currently exe-
cuting in the group.
CPU Usage % —This shows the total CPU usage percentage used by all executing
requests in the group.
Max Request CPU Time —This is the maximum CPU time used by requests cur-
rently executing in the group.
Active Parallel Threads —This indicates the number of executing parallel threads.

Resource Governor also fires events that can be captured and used for alerting.

16.6.2 Events

In chapter 14, we examined the power of establishing alerts for certain events.
Resource Governor introduces three new events:

CPU Threshold Exceeded —As we discussed earlier, when a query exceeds its CPU
threshold, this event will fire, rather than the query being canceled.
PreConnect:Starting and PreConnect:Completed —When a Resource Governor classi-
fier function or logon trigger starts and finishes, these events will fire.

Finally, we have three DMVs for monitoring purposes.

16.6.3 DMVs

The following DMVs are available for inspecting Resource Governor configurations
and statistics:

sys.dm_resource_governor_configuration —This DMV returns the Resource Gover-
nor configuration state. Figure 16.6, shown earlier, returns similar information

through Management Studio.

Licensed to Gayle M. Noll <pedbro@gmail.com>

388 CHAPTER 16 Resource Governor

sys.dm_resource_governor_workload_groups —This DMV is used to return work-
load group configuration and statistics.
sys.dm_resource_governor_resource_pools —This DMV is used to return resource
pool configuration and statistics.

In closing this section, let’s consider how we can use these monitoring tools to help
establish the ideal resource boundaries for resource pools.

16.6.4 Establishing resource boundaries

Earlier in our coverage, we spoke about the danger of running complex Resource
Governor schemes with numerous configured minimum resource values, particularly
for memory. We also covered the fact that Resource Governor is best used in SQL
instances where there are well-defined groups of usage patterns, for example, reports
versus data entry. If you decide to proceed with Resource Governor, perhaps the best
way of evaluating the most appropriate resource usage limits is by using the supplied
monitoring tools and the following approach:

1 Create the user-defined workload groups as planned, but assign all of them to
the default resource pool configured with min/max values of 0/100.

2 Run the database instance for a period of time long enough to cover the typical
usage cycle.

3 Once the test is complete, use the monitoring tools covered previously to deter-
mine how resources are used by each of the workload groups; that is, determin-
ing the average, minimum, and maximum values of memory and CPU will help
you to shape the appropriate minimum and maximum values to apply, as well as
estimate the impact of such values.

4 In a load-testing environment, establish resource pools for each of the workload
groups, based on information gathered from step 3.

5 Load test the system, ensuring enough load is generated for all resource groups
to enable appropriate contention in order to observe the performance impact
once Resource Governor CPU throttling kicks in.

6 Adjust and refine the pool and/or workload group parameters until the desired
result is achieved.

7 Apply the results to production, ensuring the dedicated administrator connec-
tion is available.

Such an approach enables more realistic starting values to be used, while also produc-
ing a deeper understanding of resource usage for each of the workload groups.

16.7 Best practice considerations: Resource Governor
Prior to SQL Server 2008, the only mechanisms available for controlling resource
usage were coarse-grain settings such as CPU Affinity and Query Governor Cost Limit.
The introduction of Resource Governor in the Enterprise edition of SQL Server 2008
now enables much finer control over resource usage, but like any feature, system per-

formance may suffer if it’s used incorrectly.

Licensed to Gayle M. Noll <pedbro@gmail.com>

389Best practice considerations: Resource Governor

Resource Governor is most effective when resource usage is well defined and
consistent across a number of distinct groups, for example, data entry and
reports. In cases where certain data entry transactions dominate resource
usage, Resource Governor may not be effective, unless there is a method of
identifying and classifying the source of such transactions.
Classifier functions should be small, simple, and execute quickly to ensure log-
ins do not time out waiting for the function to execute. The function should be
tested, ideally under load, before production implementation.
Workload groups and resource pools should be as simple as possible, and you
should take care when assigning minimum values, particularly for memory.
Complex pools and groups run the risk of wasted memory and less-than-
expected resource availability.
When setting minimum resource values, consider the effective maximums that
will apply to other pools as a result.
Minimum memory values are reserved up front, regardless of the usage fre-
quency of the pool. Therefore, take particular care when setting memory mini-
mums.
Before assigning resource pool boundaries, assign groups to the default pool
with 0/100 min/max values and observe the resource usage over time. Under-
standing how groups use resources will lead to more realistic resource settings.
Consider the security of classification functions; for example, APP_NAME() can
be spoofed by someone with access to a connection string to circumvent logon
triggers and workload group classification.
The names of Resource Governor groups and pools should not contain sensi-
tive information, given their inclusion in error messages presented to the user.
The dedicated administrator connection (DAC) should be enabled, which
assists in troubleshooting the classifier function.
When load testing the impact of a max CPU pool setting, ensure there is suffi-
cient CPU contention such that the CPU maximum value is actually applied. If
there is no concurrent activity to cause contention, the maximum limit will not
be applied.

Additional links and information on the best practices covered in this chapter can be
found online at http://www.sqlcrunch.com/resourcegovernor.

 In the next and final chapter, we’ll bring together a number of topics that we’ve
covered throughout the book by introducing a performance-tuning methodology
called waits and queues.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Waits and queues:
a performance-tuning

methodology
Performance tuning, particularly performance troubleshooting, can be tough work.
With entire books (and careers) dedicated to this topic, what can we possibly hope
to achieve in a single chapter? Rather than attempt to provide a root cause analysis
for a wide variety of potential performance problems, the goal of this chapter is to
introduce you to a performance-tuning methodology called waits and queues.

 Tom Davidson’s excellent whitepaper SQL Server 2005 Waits and Queues is a must
read for anyone interested in SQL Server performance tuning. Equally applicable

In this chapter, we’ll cover
■ SQLOS
■ Wait analysis
■ Common performance problems
■ Correlating waits and queues
390

Licensed to Gayle M. Noll <pedbro@gmail.com>

391SQLOS schedulers

to SQL Server 2008, it argues the case for a targeted approach to performance tuning
by determining the resources that processes are spending the most time waiting on.
Knowing this enables the analysis of a smaller subset of queues, therefore eliminating
inconsequential data from the analysis-and-troubleshooting process.

 In this chapter, we’ll begin with an overview of the SQL Operating System (SQLOS)
with a particular focus on its scheduling mechanism, part of which is the use of a
waiter list for processes waiting on resources to become available. We’ll then focus on
the analysis of this waiter list as part of a targeted performance-tuning process using
the waits and queues methodology. We’ll spend the rest of the chapter on common
performance problems and how waits and queues metrics can assist in the diagnosis of
such problems.

17.1 SQLOS schedulers
SQL Server is a large and complex product with many interconnected components
requiring access to common services such as memory allocation and process schedul-
ing. In order to reduce the complexity of each of these components, the SQL Server
architecture includes a layer responsible for providing common services.

 In SQL Server 2000, this layer, known as the User Mode Scheduler (UMS), was quite
thin and had limited responsibilities. Therefore, the ability of the various SQL Server
components to take maximum advantage of emerging hardware architecture such as
NUMA and hot-add memory was limited. In addressing this, Microsoft rewrote this
layer in the SQL Server 2005 release and renamed it the SQL Operating System
(SQLOS). Figure 17.1 illustrates SQLOS in relation to other components.

Query Processor

Storage Engine

Query Op�mizer

Query Executor

Lock Manager

Buffer Manager

Transac�on Services

Parser

Backup/Restore

DBCC Access Manager

SQLOS

Applica�ons

Tabular Data Stream (TDS) Protocol

Deadlock Monitor

Lazy Writer

Scheduling

I/O

Buffer Pool

Memory Manager

Opera�ng System

Hardware

DB & SQL Manager

Figure 17.1 Shown here are some
(but not all) of the SQL Server
components. The SQLOS layer
provides common services to a

number of components.

Licensed to Gayle M. Noll <pedbro@gmail.com>

392 CHAPTER 17 Waits and queues: a performance-tuning methodology

While some of the SQLOS services could be provided by the Windows operating system
directly, SQL Server includes them in SQLOS to maximize performance and scalability.
Scheduling is a good example of such a service; SQL Server knows its scheduling
requirements much better than Windows does. Thus, SQLOS, like the UMS before it,
implements scheduling itself.

 User requests are scheduled for execution by SQLOS using schedulers. SQLOS cre-
ates one scheduler for each CPU core that the SQL Server instance has access to. For
example, an instance with access to two quad core CPUs would have eight active sched-
ulers. Each of these schedulers executes user requests, or SPIDs, as per the example
shown in figure 17.2.

 When a running process requires a resource that isn’t available, for example, a
page that’s not found in cache, it’s moved to the wait list until its resource is available,
at which point it’s moved to the runnable queue until the CPU becomes available to
complete the request. A process moves through the three states until the request is
complete, at which point it enters the sleeping state.

 From a performance-tuning perspective, what’s very beneficial is the ability to mea-
sure the wait list over time, in order to determine which resources are waited on the
most. Once this is established, performance tuning becomes a more targeted process
by concentrating on the resource bottlenecks. Such a process is commonly called the
waits and queues methodology.

 Let’s drill down into the various means of analyzing the wait list as part of a perfor-
mance tuning/troubleshooting process.

17.2 Wait analysis
Prior to SQL Server 2005, the only means of obtaining information on wait statistics
was through the use of the undocumented DBCC SQLPERF(waitstat) command. For-
tunately, SQL Server 2005 (and 2008) provides a number of fully documented DMVs
for this purpose, making them a central component of wait analysis.

Figure 17.2 SQLOS uses one scheduler per CPU core. Each scheduler processes SPIDs, which move

SPID 51 running

SPID 53 runnable
SPID 92 runnable
SPID 65 runnable

SPID 55 suspended wai�ng on CXPACKET
SPID 59 suspended wai�ng on MSSEARCH
SPID 52 suspended wai�ng on IO_COMPLETION
SPID 87 suspended wai�ng on LCK_M_X

Running

Resource wait list

Runnable queue

1

3

2

SPID 51 requires a page that needs to be read into
cache. It’s moved to the wait list and suspended with
an IO_COMPLETION wait type.

SPID 53 enters the running state.

SPID 59’s full-text search completes,
and it moves to the bo�om of the
runnable queue.
among the running, suspended, and runnable states/queues.

Licensed to Gayle M. Noll <pedbro@gmail.com>

393Wait analysis

Let’s look at wait analysis from two perspectives: at a server level using the
sys.dm_os_wait_stats DMV and at an individual process level using extended events.
This section will focus on measuring waits. In the next section, we’ll look at the associ-
ation of particular wait types with common performance problems.

17.2.1 sys.dm_os_wait_stats

As we mentioned earlier, when a session requires a resource that’s not available, it’s
moved to the wait list until the resource becomes available. SQLOS aggregates each
occurrence of such waits by the wait type and exposes the results through the
sys.dm_os_wait_stats DMV. The columns returned by this DMV are as follows:

wait_type —SQL Server Books Online documents over 200 wait types returned by
this DMV. There are three categories of wait types: resource waits, queue waits,
and external waits. Queue waits are used for background tasks such as deadlock
monitoring, whereas external waits are used for (among other things) linked
server queries and extended stored procedures. In this chapter, our focus will
be on resource waits such as disk I/O and locks.
waiting_tasks_count —This column represents the total number of individual
waits recorded for each wait type.
wait_time_ms —This represents the total amount of time spent waiting on each
wait type.
max_wait_time_ms —This is the maximum amount of time spent for a single
occurrence of each wait type.
signal_wait_time_ms —This represents the time difference between the end of
each wait and when the task enters the runnable state, that is, how long tasks
spend in the runnable state. This column is important in a performance-tuning
exercise because a high signal wait time is indicative of CPU bottlenecks.

As with other DMVs, the results returned by sys.dm_os_wait_stats are applicable only
since the last server restart or when the results are manually reset using DBCC SQLPERF
(“sys.dm_os_wait_stats”, CLEAR). Further, the results are aggregated across the
whole server, that is, the wait statistics for individual statements are not available via
this DMV.

 The sys.dm_os_wait_stats DMV makes server-level wait analysis very simple; at any
time this DMV can be inspected and ordered as required. For example, figure 17.3
shows the use of this DMV to return the top 10 wait types in descending order by the
total wait time. As we move throughout this chapter, we’ll examine these wait types
and how they can be correlated with other performance-monitoring data.

 Despite the obvious usefulness of this DMV, the one limitation is that it returns all
wait types, including system background tasks such as LAZYWRITER_SLEEP, which are
not relevant in a performance-analysis/tuning process. Further, we need to manually
analyze and rank the returned values in order to determine the most significant waits.
In addressing these issues, we can use the track_waitstats and get_waitstats

stored procedures.

Licensed to Gayle M. Noll <pedbro@gmail.com>

394 CHAPTER 17 Waits and queues: a performance-tuning methodology

Figure 17.3 You can use the output from the sys.dm_os_wait_stats DMV to determine
the largest resource waits at a server level.

17.2.2 Track/get waitstats

The track_waitstats and get_waitstats stored procedures were written by Micro-
soft’s Tom Davidson for internal use in diagnosing SQL Server performance issues for
customer databases. While not officially supported, the code for these stored proce-
dures is publicly available and widely used as part of performance-tuning/trouble-
shooting exercises.

 Originally written to work with DBCC SQLPERF(waitstats), they’ve since been
rewritten for the sys.dm_os_wait_stats DMV and renamed to track_waitstats_2005
and get_waitstats_2005. Working with both SQL Server 2005 and 2008, these stored
procedures operate as follows:

The track_waitstats_20051 stored procedure is executed with parameters
that specify how many times to sample the sys.dm_os_wait_stats DMV and the
interval between each sample. The results are saved to a table called waitstats for
later analysis by the get_waitstats_2005 procedure.
The get_waitstats_20052 procedure queries the waitstats table and returns
aggregated results that exclude irrelevant wait types. Further, as shown in figure
17.4, the results are broken down by resource waits (wait time minus signal wait
time) and signal waits, enabling a quick assessment of CPU pressure.

One of the (many) nice things about these procedures is that they can be called with
parameter values that automatically clear the wait statistics, which is helpful in situa-
tions in which the monitoring is to be performed while reproducing a known problem.
When you clear the waitstats before the event is reproduced, the waits will more accu-
rately represent the waits causing the problem.

1 See http://www.microsoft.com/technet/scriptcenter/scripts/sql/sql2005/waitstats/sql05vb049.mspx?mfr=true.

2 See http://www.microsoft.com/technet/scriptcenter/scripts/sql/sql2005/perf/sql05vb021.mspx?mfr=true.

Licensed to Gayle M. Noll <pedbro@gmail.com>

395Wait analysis

As mentioned earlier, the wait statistics returned by sys.dm_os_wait_stats are at a
server level and represent the cumulative wait statistics from all sessions. While other
DMVs, such as sys.dm_os_waiting_tasks, include session-level wait information, the
records exist in this DMV only for the period of the wait. Therefore, attempting retrospec-
tive wait analysis on a particular session is not possible, unless the information from
this DMV is sampled (and saved) on a frequent basis when the session is active.
Depending on the length of the session, this may be difficult to do. SQL Server 2008
offers a new alternative in this regard, using the sqlos.wait_info extended event.

17.2.3 sqlos.wait_info extended event

In SQL Server versions prior to 2008, events such as RPC:Completed can be traced
using SQL Server Profiler or a server-side trace. SQL Server 2008 introduces a new
event-handling system called extended events, which enables the ability to trace a whole
new range of events in addition to those previously available. Extended events enable
a complementary troubleshooting technique, which is particularly useful when deal-
ing with difficult-to-diagnose performance problems.

 SQL Server Books Online lists a number of possible examples of how extended
events can be used. In the context of this chapter, let’s look at an example where we’ll
create an extended event to examine wait information for a particular process. Con-
sider the T-SQL code in listing 17.1, which creates an extended event of type
sqlos.wait_info for SPID 53 and logs its wait type information to file.

-- Create an extended event to log SPID 53's wait info to file
CREATE EVENT SESSION sessionWaits ON SERVER
ADD EVENT sqlos.wait_info
 (WHERE sqlserver.session_id = 53 AND duration > 0)

ADD TARGET package0.asynchronous_file_target

Listing 17.1 sqlos.wait_info extended event

Figure 17.4 The results from get_waitstats_2005 indicate the resources with the highest
amount of waits. Irrelevant wait types are excluded.
 (SET FILENAME = 'E:\SQL Data\waitStats.xel'

Licensed to Gayle M. Noll <pedbro@gmail.com>

396 CHAPTER 17 Waits and queues: a performance-tuning methodology

 , METADATAFILE = 'E:\SQL Data\waitStats.xem');

ALTER EVENT SESSION sessionWaits ON SERVER STATE = START

The above code creates an extended event based on waits from SPID 53 with a non-
zero duration. Once the event is created, any waits from this SPID will be logged to the
specified file. We can read the event log file using the sys.fn_xe_file_target_
read_file function, as shown in figure 17.5.

 The wait type information that we’re interested in is buried within the event_data
XML. We can access this more easily using the code shown in listing 17.2.

-- Retrieve logged Extended Event information from file
CREATE TABLE xeResults (
 event_data XML
)
GO

INSERT INTO xeResults (event_data)
SELECT CAST(event_data as xml) AS event_data
FROM sys.fn_xe_file_target_read_file(
 'E:\SQL Data\waitStats*.xel'
 , 'E:\SQL Data\waitStats*.xem'
 , null
 , null
)
GO

SELECT
 event_data.value('(/event/data/text)[1]','nvarchar(50)') as 'wait_type'
 , event_data.value('(/event/data/value)[3]','int') as 'duration'
 , event_data.value('(/event/data/value)[6]','int') as 'signal_duration'
FROM xeResults
GO

Essentially what we’re doing here is loading the XML into a table and reading the
appropriate section to obtain the information we require. The result of this code is

Listing 17.2 Viewing wait type information using sys.fn_xe_file_target_read_file

Figure 17.5 The extended event log file contains XML data (event_data). In our example, the XML would
contain information on the wait types for SPID 53.
shown in figure 17.6.

Licensed to Gayle M. Noll <pedbro@gmail.com>

397Common performance problems

Figure 17.6 We can inspect the event_data column to obtain the wait information
produced by the extended event created on sqlos.wait_info.

In this particular case, the main wait type for the SPID was PAGEIOLATCH_SH, which
we’ll cover shortly. While this is a simple example, it illustrates the ease with which
extended events can be created in obtaining a clearer view of system activity, in this
case, enabling retrospective wait type analysis on a completed session from a particu-
lar SPID. SQL Server Books Online contains a complete description of all extended
events, including further details on sqlos.wait_info.

Let’s turn our attention now to how the information gathered from wait analysis can
be combined with Performance Monitor counters and other sources in diagnosing
common performance problems.

17.3 Common performance problems
The rapid advance of technology together with falling component prices has meant a
lot of database design and administration problems can be buried beneath a pile of
memory and fast multicore CPUs. In some cases, this may be a valid option; however,
throwing hardware at a problem is usually the least effective means of improving per-
formance, with the greatest performance gains usually coming from good design and
maintenance strategies.

 In this section, we’ll address a number of common performance problems and the
wait types and performance counters applicable to each. We’ll start with procedure
cache bloating before moving on to CPU pressure, index-related memory pressure,

system_health extended event
SQL Server includes an “always on” extended event called system_health, which,
among other things, captures the text and session ID of severity 20+ errors, dead-
locks, and sessions with extra-long lock/latch wait times. Links and further details
including a script to reveal the contents of the captured events are available at
http://www.sqlCrunch.com/performance.
disk bottlenecks, and blocking.

Licensed to Gayle M. Noll <pedbro@gmail.com>

398 CHAPTER 17 Waits and queues: a performance-tuning methodology

17.3.1 Procedure cache bloating

In chapter 7 we covered the various SQL Server components that utilize system mem-
ory, with the two largest components being the data cache and the procedure cache. The
data cache is used for storing data read from disk, and the procedure cache is used for
query compilation and execution plans.

 Each time a query is submitted for processing, SQL Server assesses the contents of
the procedure cache for an existing plan that can be reused. If none is found, SQL
Server generates a new plan, storing it in the procedure cache for (possible) later reuse.

 Reusing existing plans is a key performance-tuning goal for two reasons: first, we
reduce the CPU overhead in compiling new plans, and second, the size of the proce-
dure cache is kept as small as possible. A smaller procedure cache enables a larger
data cache, effectively boosting RAM and reducing disk I/O.

 The most effective way of controlling the growth of the procedure cache is reduc-
ing the incidence of unparameterized ad hoc queries.
AD HOC QUERIES

A common attribute among poorly performing SQL Server systems with a large proce-
dure cache is the volume of ad hoc SQL that’s submitted for execution. For example,
consider the following queries:3

 DBCC FREEPROCCACHE
 GO
 SELECT * FROM Production.Product WHERE ProductNumber = 'FW-5160'
 GO
 SELECT * FROM Production.Product WHERE ProductNumber = 'HN-1220'
 GO
 SELECT * FROM Production.Product WHERE ProductNumber = 'BE-2908'
 GO

All three of these queries are exactly the same with the exception of the ProductNum-
ber parameter. Using the sys.dm_exec_cached_plans and sys.dm_exec_sql_text
views and functions, let’s inspect the procedure cache to see how SQL Server has
cached these queries. Figure 17.7 displays the results.

Figure 17.7 Unparameterized SQL results in multiple ad hoc compiled plans.

3 In the following examples, we’ll run DBCC FREEPROCCACHE before each set of queries to clear the contents

of the procedure cache, enabling the cache usage to be easily understood.

Licensed to Gayle M. Noll <pedbro@gmail.com>

399Common performance problems

As per figure 17.7, SQL Server has stored one ad hoc compiled plan for each query, each
of which is 24K in size, totaling ~73K. No real problems there, but let’s imagine these
queries were executed from a point-of-sales system used by a thousand users, each of
which executed a thousand such queries a day. That’s a million executions, each of
which would have a 24K compiled plan totaling about 24GB of procedure cache!

 There are a few things to point out here. First, as we covered in chapter 7, the pro-
cedure cache in a 32-bit system is limited to the 2–3GB address space, with AWE-
mapped memory above 4GB accessible only to the data cache. This places a natural
limit on the amount of space consumed by the procedure cache in a 32-bit system;
however, a 64-bit system has no such limitations (which is both good and bad, and
we’ll come back to this shortly). Further, SQL Server ages plans out of cache to free up
memory when required, based on the number of times the plan is reused and the
compilation cost; that is, frequently used expensive plans will remain in cache longer
than single-use low-cost plans.

 The other point to note about figure 17.7 is the fourth row, which lists a Prepared
plan with three usecounts. This is an example of SQL Server’s simple parameterization, a
topic we’ll come back to shortly.

 Arguably the most effective way to address the problem we just examined is
through the use of stored procedures.
STORED PROCEDURES

Consider the code in listing 17.3, which creates a stored procedure used to search prod-
ucts and then executes it three times for the same product numbers as used earlier.

-- Parameterized Stored Procedure to control cache bloat
CREATE PROCEDURE dbo.uspSearchProducts
 @ProductNumber nvarchar(25)
AS
BEGIN
 SET NOCOUNT ON

 SELECT *
 FROM Production.Product
 WHERE ProductNumber = @ProductNumber
END
GO

DBCC FREEPROCCACHE
GO
EXEC dbo.uspSearchProducts 'FW-5160'
GO
EXEC dbo.uspSearchProducts 'HN-1220'
GO
EXEC dbo.uspSearchProducts 'BE-2908'
GO

Figure 17.8 shows the results of reexamining the procedure cache. We have a single

Listing 17.3 Stored procedure for parameterized product search
plan for the stored procedure with three usecounts and, more importantly, no ad hoc

Licensed to Gayle M. Noll <pedbro@gmail.com>

400 CHAPTER 17 Waits and queues: a performance-tuning methodology

plans. Compare this with the results in figure 17.7, where we ended up with three ad
hoc plans, each of which has a single usecount. Each execution of the stored proce-
dure effectively saves 24K of procedure cache; one can imagine the accumulated
memory saving if this was executed thousands of times each day.

 Depending on the parameter values passed into a stored procedure, caching the
execution plan for subsequent reuse may be undesirable. Consider a stored proce-
dure for a surname search. If the first execution of the procedure received a parame-
ter for SMITH, the compiled plan would more than likely use a table scan. A
subsequent execution using ZATORSKY would therefore also use a table scan, but an
index seek would probably be preferred. Similar issues occur in reverse, and this is fre-
quently called the parameter-sniffing problem.

 In cases where stored procedures receive a wide variety of parameter values, and
therefore plan reuse may not be desirable, one of the options for avoiding this issue is
to create the procedure with the WITH RECOMPILE option, which will ensure the plan is
not cached for reuse. That is, each execution will recompile for the supplied parame-
ter value(s), incurring additional compilation costs in order to derive the best possible
plan for each execution. Alternatively, the procedure can be defined without this
option, but an individual execution can supply it, for example, EXEC dbo.uspSearch-
Products 'AB-123' WITH RECOMPILE.

In dealing with ad hoc/parameterization problems such as we’ve just covered, the
nature of the application usually determines the available options for improvement.
For example, while an in-house-developed application could be modified to use
stored procedures, an off-the-shelf vendor-supplied application cannot. In dealing
with these cases, we have a number of options including Forced Parameterization and

SET STATISTICS XML ON
The SET STATISTICS XML ON command, as covered in chapter 13, is ideal in diag-
nosing undesirable parameter-sniffing problems. For a given stored procedure execu-
tion, the <ParameterList> element includes both the compiled parameter(s) and
the runtime parameter(s). If a given procedure appears to be executing slower than
expected, you can compare the compiled and runtime parameters, which may reveal
significant differences resulting in inappropriate index usage.

Figure 17.8 Parameterized
stored procedure executions
avoid ad hoc plans,
resulting in a smaller
procedure cache.
Optimize for Ad Hoc Workloads.

Licensed to Gayle M. Noll <pedbro@gmail.com>

401Common performance problems

FORCED PARAMETERIZATION

In figure 17.7, shown earlier, we inspected the procedure cache after executing three
SQL statements and found that three ad hoc plans with single usecounts were created
in addition to a single prepared plan with three usecounts. This is an example of SQL
Server’s simple parameterization mechanism. This mechanism has detected that the
three statements are essentially the same, with the only difference being the product
number parameters, and therefore share the prepared plan. The three ad hoc plans
are referred to as shell plans and point to the full prepared plan. The shells are saved
for later executions of exactly the same statement, which reuses the same prepared
plan. The key word here is exactly; a single character difference, for example, an extra
space, is enough to cause a new plan to be created.

 Simple parameterization is exactly that. There are many conditions in which
simple parameterization cannot be used. For example, consider the three queries in
listing 17.4.

DBCC FREEPROCCACHE
GO
SELECT * FROM Production.Product WHERE left(ProductNumber, 3) = 'FW-'
GO
SELECT * FROM Production.Product WHERE left(ProductNumber, 3) = 'HN-'
GO
SELECT * FROM Production.Product WHERE left(ProductNumber, 3) = 'BE-'
GO

The use of the left function means these three commands cannot be parameterized
using simple parameterization. Let’s inspect the procedure cache to see how SQL
Server has cached these queries. Figure 17.9 displays the results. In this case, there is
no prepared plan, with each ad hoc compiled plan containing the full plan; notice
that the size of each plan is larger than the shell plans from the earlier simple param-
eterization example in figure 17.7. If queries such as these were executed many times
per day, we would have an even worse problem than the one described earlier.

 In SQL Server 2005, an option called Forced Parameterization was introduced, which
is more aggressive in its parameterization. Each database contains a Parameterization

Listing 17.4 Queries that cannot be parameterized with simple parameterization
Figure 17.9 Queries of moderate complexity cannot be parameterized using simple parameterization.

Licensed to Gayle M. Noll <pedbro@gmail.com>

402 CHAPTER 17 Waits and queues: a performance-tuning methodology

property, which by default is set to Simple. Setting this value to Forced, through either
Management Studio or using the ALTER DATABASE [dbname] SET PARAMETERIZATION
FORCED command, will parameterize queries more frequently. For example, after
enabling this property, rerunning the three queries from listing 17.4 will reveal a pro-
cedure cache, as shown in figure 17.10.

 In this case, the three ad hoc plans are created as shell plans with a link to the full
prepared plan. Subsequent queries of the same form will also benefit from reusing the
prepared plan, thereby reducing compilation and plan cache size, which in turn
enables more efficient use of both RAM and CPU resources.

 Of course, modifying any configuration setting is not without a possible downside.
SQL Server Books Online documents all of the considerations for using this option, the
primary one being the possibility of reusing an inappropriate plan, with reduced per-
formance a common outcome. However, for applications in which modifying code to
use stored procedures is not an option, forced parameterization presents an opportu-
nity for reducing compilation overhead and procedure cache size. Before enabling this
option on a production system, a full load test with an appropriate workload should be
observed in a testing environment to measure the positive (or negative) impact.

Despite the (possible) plan reuse, both forced and simple parameterization still cache

Optimization hints
In order to derive the best execution plan, SQL Server supports a number of query
hints, fully described in SQL Server Books Online under “Query Hints.” In addition to
Forced Parameterization and WITH RECOMPILE, several other options exist, such as
OPTIMIZE FOR and USE PLAN. OPTIMIZE FOR directs the query optimizer to use a
specified value for a given parameter during query optimization (but uses the real val-
ue during execution). USE PLAN forces the query optimizer to use a specified XML
query plan for a given query, which is useful in situations in which other options are
not successful and complete control is required. Finally, Plan Guides are useful in sit-
uations in which the SQL or stored procedures cannot be modified, which is typical
of third-party applications. Plan Guides direct the optimizer to add specified query
hints to queries it optimizes of a particular format.

Figure 17.10 After we enabled the Forced Parameterization option, the same three queries
are parameterized.
the ad hoc plans, which for systems containing a very large number of single-use ad

Licensed to Gayle M. Noll <pedbro@gmail.com>

403Common performance problems

hoc queries presents a real problem in containing procedure cache size. In addressing
this issue, SQL Server 2008 introduces Optimize for Ad Hoc Workloads.

OPTIMIZE FOR AD HOC WORKLOADS

In the worst examples, single-use unparameterized ad hoc plans can consume a very
significant percentage of memory. For 64-bit instances, this is a particular problem, as
the procedure cache has full access to all of the instance’s memory. As a result, a very
large procedure cache directly impacts the size of the data cache, leading to more and
more disk I/O and significant cache churn.

 Perhaps the most frustrating part of this for a DBA is that the ad hoc plans may
never be used more than once. Forced parameterization may help in this regard but
comes with some downsides, as we just covered.

The Optimize for Ad Hoc Workloads option is designed for exactly these situations.
Enabled at a server level, this option detects ad hoc SQL and stores a simple stub in place
of a plan. Should the same query be run a second time, the stub is upgraded to a full
plan. As a result, the memory footprint of single-use ad hoc SQL is dramatically reduced.

 After executing sp_configure 'Optimize for ad hoc workloads', 1 and put-
ting our database back into the simple parameterization mode, we reran our three
queries from listing 17.4. After executing these queries, we inspected the procedure
cache, the results of which are shown in figure 17.11.

Figure 17.11 After we enabled the Optimize for Ad Hoc Workloads option, ad hoc queries

DBCC FREEPROCCACHE vs. FREESYSTEMCACHE
In order to prevent ad hoc plans from bloating the procedure cache, some DBAs man-
ually execute (or schedule) the DBCC FREEPROCCACHE command, which empties the
procedure cache. Often seen as a hack, not only does this throw out the “bad” plans,
it also throws out the good (and possibly expensive) plans with high reuse from all
databases in the instance. Two alternatives to this method are running DBCC FLUSH-
PROCINDB (which removes plans only for a specified database) and DBCC FREESYS-
TEMCACHE('SQL Plans'), which clears out the ad hoc and prepared plans, leaving
stored procedure plans in place.
are stubbed and have no saved query plan.

Licensed to Gayle M. Noll <pedbro@gmail.com>

404 CHAPTER 17 Waits and queues: a performance-tuning methodology

There are a few things to point out here. First, note the cacheobjtype column for the
three queries. Instead of Compiled Plan, we have Compiled Plan Stub. Second, note the
size_in_bytes value (336 bytes vs. ~ 57,000/82,000 bytes in figure 17.9). Third, the join
to the sys.dm_exec_query_plan function reveals the absence of a stored query plan.

 What’s happening here is that SQL Server detects these queries as ad hoc and not
parameterized and therefore does not store a plan; however, it stores the stub in order
to detect subsequent executions of the queries. For example, let’s reexecute the first
query from listing 17.4 and take another look at the procedure cache. The results are
shown in figure 17.12.

 Note the difference in the size_in_bytes, cacheobjtype, usecounts, and query_plan
columns for the first query that we reexecuted. By saving the stub from the first execu-
tion, SQL Server is able to detect subsequent executions as duplicates of the first.
Thus, it upgrades the plan from a stub to a full plan on the second execution, with the
third (and subsequent) executions able to reuse the saved plan.

 For environments containing large amounts of single-use ad hoc SQL, the Opti-
mize for Ad Hoc Workloads option is a very significant new feature. Not only does it
dramatically reduce the size of the procedure cache, but it still enables plan reuse in
cases where identical ad hoc queries are executed many times, therefore also reduc-
ing CPU-related compilation pressure.

 In closing our section on procedure cache usage, let’s look at a number of tech-
niques for measuring the cache contents and plan reuse.

MEASURING PROCEDURE CACHE USAGE

The T-SQL code in listing 17.5 summarizes the contents of the sys.dm_exec_
cached_plans DMV. It lists the number of plans for each object type (ad hoc, prepared,
proc, and so forth) along with the number of megabytes consumed by such plans and
the average plan reuse count.

-- Summary of Procedure Cache Contents
 SELECT
 objtype as [Object Type]
 , count(*) as [Plan Count]

Listing 17.5 Summary of procedure cache
Figure 17.12 Rerunning an ad hoc query converts the stub into a full plan.

Licensed to Gayle M. Noll <pedbro@gmail.com>

405Common performance problems

 , sum(cast(size_in_bytes as bigint))/1024/1024 as [Total Size (mb)]
 , avg(usecounts) as [Avg. Use Count]
 FROM sys.dm_exec_cached_plans
 GROUP BY objtype

Procedure caches suffering from a high volume of ad hoc SQL typically have a dispro-
portionate volume of ad hoc/prepared plans with a low average use count. Listing
17.6 determines the size in megabytes of such queries with a single-use count.

-- Procedure Cache space consumed by AhHoc Plans
 SELECT SUM(CAST(size_in_bytes AS bigint))/1024/1024 AS
 [Size of single use adhoc sql plans]
 FROM sys.dm_exec_cached_plans
 WHERE
 objtype IN ('Prepared', 'Adhoc')
 AND usecounts = 1

From a waits perspective, the RESOURCE_SEMAPHORE_QUERY_COMPILE wait type is a
good indication of the presence of query compilation pressure. SQL Server 2005 intro-
duced a throttling limit to the number of concurrent query compilations that can
occur at any given moment. By doing so, it avoids situations where a sudden (and
large) amount of memory is consumed for compilation purposes. A high incidence of
this wait type may indicate that query plans are not being reused, a common problem
with frequently executed unparameterized SQL.

 Another method for determining plan reuse is measuring the following Perfor-
mance Monitor counters:

SQL Server SQL Statistics:SQL Compilations/Sec
SQL Server SQL Statistics:SQL Re-Compilations/Sec
SQL Server SQL Statistics:Batch Requests/Sec

With these counter values, we can measure plan reuse as follows:

Initial Compilations = SQL Compilations/Sec – SQL Recompilation/Sec
Plan Reuse = (Batch Req/sec - Initial Compilations) / Batch Req/sec

In other words, of the batch requests coming in per second, how many of them are
resulting in query compilations? Ideally, in an OLTP system, this should be less than 10
percent, that is, a 90 percent or greater plan reuse. A value significantly less than this
may indicate a high degree of compilations, and when observed in conjunction with
significant RESOURCE_SEMAPHORE_QUERY_COMPILE waits, it’s a reasonable sign
that query parameterization may well be an issue, resulting in higher CPU and mem-
ory consumption.

 Poor plan reuse not only has a direct impact on available RAM, but it also affects
CPU usage courtesy of higher amounts of compilations. In the next section, we’ll
address CPU pressure from a general perspective.

Listing 17.6 Size of single-use ad hoc plans
Licensed to Gayle M. Noll <pedbro@gmail.com>

406 CHAPTER 17 Waits and queues: a performance-tuning methodology

17.3.2 CPU pressure

How do you measure CPU pressure for a SQL Server system? While classic Perfor-
mance Monitor counters such as Processor:% Processor Time and System:Processor
Queue Length provide a general overview, they are insufficient on their own to use in
forming the correct conclusion. For that, we need to look a little further, with signal
waits a critical consideration.

SIGNAL WAITS

Earlier in the chapter, we looked at how SQLOS uses schedulers (figure 17.2) in allo-
cating CPU time with processes (SPIDs) moving between three states: running, sus-
pended, and runnable. There can be only a single SPID in the running status of a
given scheduler at any one time, with the runnable queue containing SPIDs that are
ready to run. The classic analogy used when discussing this model is the supermarket
checkout line; that is, SPIDs in the runnable queue can be considered in the same
manner as people lining up in the checkout queue: they have their groceries and are
ready to leave, pending the availability of the checkout operator.

 As we saw earlier, the sys.dm_os_wait_stats DMV includes a signal_wait_time_ms col-
umn, which indicates the amount of time, in total, processes spent in the runnable status
for each wait type. Calculating the sum total of the signal wait time for all wait types as
a percentage of the overall wait time gives a good indication of the depth of the runnable
queue and therefore an indication of CPU pressure, from a SQL Server perspective.

 When calculating the signal wait percentage, you should consider excluding cer-
tain wait types, LAZYWRITER_SLEEP, for example. Earlier in the chapter, we looked at
the get/track_waitstats procedures, which take care of this automatically. A similar
script is included toward the end of this section, in listing 17.7.

 Generally speaking, a signal wait percentage of more than 25 percent may indicate
CPU pressure, particularly in combination with a sustained high value for Processor:%
Processor Time (> 80 percent). However, in some cases, CPU percentage may be well
below 100 percent even though there is still significant CPU pressure. In such cases,
the SOS_SCHEDULER_YIELD wait type is more than likely in the mix.
SOS_SCHEDULER_YIELD
As we covered earlier, a single SQLOS scheduler is created for each CPU core that a
SQL Server instance has access to. When a request is sent to SQL Server for execution,
it’s assigned to a scheduler for execution and remains on that scheduler until com-
plete. Despite SQL Server using various mechanisms for balancing load across the
available schedulers, various situations may lead to a disproportionate load being
assigned to a single scheduler.

 Consider the following example: at a given point, all schedulers are equally busy,
and two large CPU bound queries are submitted for execution. If they land on the
same scheduler, they must remain on that scheduler until complete, even if load
drops off the others. When multiple CPU bound tasks are executing on one scheduler,
they yield to each other in order to ensure each task receives equal amounts of CPU

time. In our example, the two large CPU bound tasks would be yielding to each other,

Licensed to Gayle M. Noll <pedbro@gmail.com>

407Common performance problems

despite the availability of a number of idle schedulers.4 In this case, the total CPU per-
centage (as reported by Performance Monitor) may be well below 100 percent, even
though there is significant contention on some CPU cores.

 Of course, if a system is completely CPU bound (all CPU cores), then the yielding
process, exposed with the SOS_SCHEDULER_YIELD wait type, would be occurring on
all schedulers. The important point is that the yielding process may be occurring on
only some schedulers, even when overall CPU usage appears low. This makes the
SOS_SCHEDULER_YIELD wait type an important consideration in an overall assess-
ment of CPU pressure.

In closing this section on CPU pressure, let’s look at some DMV queries that can be
used in supplementing information from the waits and queues analysis.
DMV QUERIES

The two DMV queries in this section identify signal wait percentage and top CPU con-
sumers.

 Listing 17.7 can be used to detect signal waits and resource waits as a percentage of
the total wait time. As discussed previously, a high signal wait time usually indicates
CPU pressure.

-- Wait Analysis; Signal vs. Resource Waits
SELECT
 SUM(wait_time_ms - signal_wait_time_ms) as [ResourceWaitTotal]
 , CAST(100.0 * sum(wait_time_ms - signal_wait_time_ms)
 / SUM(wait_time_ms) as numeric(20, 2)) AS [ResourceWait%]
 , SUM(signal_wait_time_ms) AS [SignalWaitTotal]
 , CAST (100.0 * sum(signal_wait_time_ms)
 / SUM (wait_time_ms) AS numeric(20, 2)) AS [SignalWait%]
FROM sys.dm_os_wait_stats
WHERE
 wait_type not in (
 'CLR_SEMAPHORE'
 , 'LAZYWRITER_SLEEP'
 , 'RESOURCE_QUEUE'
 , 'SLEEP_TASK'

sys.dm_os_schedulers
Scheduler details can be inspected with the sys.dm_os_schedulers DMV. Querying
this DMV will reveal one scheduler per CPU core that the instance has access to, a
number of system schedulers, and one for the dedicated administrator connection
(DAC). Included columns reveal a number of scheduler-level details such as the num-
ber of tasks and yield count.

Listing 17.7 Signal wait time
4 In this case restarting one of the processes would more than likely position it on an idle scheduler.

Licensed to Gayle M. Noll <pedbro@gmail.com>

408 CHAPTER 17 Waits and queues: a performance-tuning methodology

 , 'SLEEP_SYSTEMTASK'
 , 'WAITFOR'
)

Notice that the script excludes a number of wait types not relevant to a performance-
tuning process. The get/track_waitstats stored procedures we covered earlier per-
form the same exclusions.

 Listing 17.8 lists the top 50 queries ordered by CPU time. It includes the
execution_count column to indicate how many times this query has been executed.
Frequently executed queries with large CPU consumption are targets for optimization.

-- Top 50 Queries by CPU Consumption
SELECT TOP 50
 queryStats.total_worker_time/queryStats.execution_count AS [Avg CPU
 ➥ Time]
 , queryStats.execution_count
 , SUBSTRING(queryText.text,queryStats.statement_start_offset/2,
 (CASE WHEN queryStats.statement_end_offset = -1
 THEN len(convert(nvarchar(max), queryText.text)) * 2
 ELSE queryStats.statement_end_offset end -
 queryStats.statement_start_offset) / 2)
AS query_text
 , dbname=db_name(queryText.dbid)
FROM sys.dm_exec_query_stats queryStats
 CROSS APPLY sys.dm_exec_sql_text(queryStats.sql_handle) AS queryText
ORDER BY
 [Avg CPU Time] DESC

One of the things that will become obvious as we move throughout this section is that
common design problems affect a number of resources. For example, poor index
selection and maintenance can have a dramatic impact on both memory and disk I/O.

17.3.3 Index-related memory pressure

As we covered in chapter 13, the correct selection and maintenance of indexes are cru-
cial from a query-performance perspective. Numerous unused indexes have a large
maintenance overhead, and missing or poorly maintained indexes have a double
impact on resources: additional disk I/O and a reduction in the available buffer cache.

 From a performance-monitoring perspective, the following performance counters
are of interest in assessing the impact of poor index design and maintenance:

SQL Server:Buffer Manager – Page Life Expectancy —This counter indicates the aver-
age time (in seconds) that data pages remain in memory. A common occur-
rence is for this value to drop suddenly in response to a large query that
requires a lot of disk access, flushing data pages from memory to make way for
the required data from disk. Missing indexes are a common contributor to this
type of event. A system with adequate memory and good indexing should see
this value in excess of 500 seconds, without frequent sudden drops during nor-

Listing 17.8 Top 50 queries by CPU consumption
mal activity.

Licensed to Gayle M. Noll <pedbro@gmail.com>

409Common performance problems

SQL Server:Buffer Manager – Buffer Cache Hit Ratio —This counter indicates the
percentage of time required pages are found in the buffer cache. The higher
the value, the better, as memory access is obviously much faster than disk access.
Once a SQL instance has been up and running for a period of time covering
typical activity, values lower than 95 percent indicate memory pressure, one
cause of which may be additional disk I/O required to fulfill queries without the
appropriate indexes.
SQL Server:Access Methods – Full Scans/Sec —This counter represents the number
of full table (or index) scans per second. There are no benchmark numbers to
compare this value against. In some cases, a table (or index) scan is actually pre-
ferred over an index lookup, as we discussed in chapter 13; however, one thing
to look out for here is a sudden increase in this value, possibly indicating that
an index is no longer being used. As with many other counters, baseline analy-
sis is critical in being able to accurately detect a significant increase/decrease.
SQL Server:Access Methods – Index Searches/Sec —Similar to Full Scans/Sec (but in
the opposite direction), sudden decreases in this value may indicate an index is
no longer being used.
SQL Server:Access Methods – Page Splits/Sec —When a record is inserted into an
index, it must be inserted in order. If the data page is full, the page splits in order
to maintain the appropriate order. A high value for this counter may warrant
the consideration of a lower fill factor, as covered in chapter 13.

In chapter 13, we covered a number of DMV-related queries that can be used to detect
missing, unused, and duplicate/overlapping indexes. We won’t duplicate coverage here.

 In addition to increased memory pressure, poor index selection and maintenance
have a direct and measurable impact on disk I/O.

17.3.4 Disk bottlenecks

Throughout this book we’ve covered a number of best practices pertaining to the lay-
out of data and transaction log files, tempdb configuration, and sizing files to avoid
autogrow operations. We’ve also covered the importance of striping data across multi-
ple disks (spindles) and using RAID volumes for both performance and redundancy.
With these things in mind, let’s explore the waits and queues of significance in a disk
bottleneck.
WAITS

A classic performance-tuning dictum is there will always be a bottleneck somewhere, the
idea being to address/reduce each bottleneck until performance is acceptable. As the
slowest component, the bottleneck is usually on disk, on both high- and low-perform-
ing systems. The following wait types usually occupy the top two wait-list positions
(after excluding system background waits) on systems experiencing disk bottlenecks:

PAGEIOLATCH —As pages are read into the buffer cache from disk, SQL Server
uses a series of latches (lightweight locks) on the buffer pages as they are filled

with data and released to the requesting process. Both PAGEIOLATCH_SH and

Licensed to Gayle M. Noll <pedbro@gmail.com>

410 CHAPTER 17 Waits and queues: a performance-tuning methodology

PAGEIOLATCH_EX are used as part of this process, and the appearance of these
wait types in the top wait positions may be an indication of a disk I/O bottle-
neck, particularly when seen in combination with high disk sec/transfer coun-
ters, which we’ll cover shortly.
ASYNC/IO_COMPLETION —Both ASYNC_IO_COMPLETION and IO_COMPLETION
indicate waits on disk I/O, with the async version typically associated with opera-
tions such as backups and restores.
WRITELOG —This wait type is associated with writes to the transaction log. As
covered throughout this book, locating transaction logs on dedicated disk vol-
umes, preferably with a large battery-backed write cache, is essential in any
high-volume database solution.

A top ranking of these waits necessitates the inspection of a number of related queues.

QUEUES

The classic disk-related Performance Monitor counters are PhysicalDisk:Avg. Disk Sec/
Read and PhysicalDisk:Avg. Disk Sec/Write, with the commonly accepted ranges for per-
formance as follows:

< 10ms —Good
10–20ms —Average/typical performance
20–50ms —Slow
> 50ms —Very slow, needs immediate attention

These counters measure the time in milliseconds for a read or write operation to disk
and should be measured for each of the applicable disk volumes. For high-throughput
applications, you need to pay particular attention to these counters for the transaction
log disk, which should be well under 10ms.

 As we covered earlier in the book, you should use the SQLIO and SQLIOSIM tools
before commissioning any SQL Server system for production use to verify both the
throughput and validity of the I/O system and compare the results to published ven-
dor performance expectations. In addition to these counters, additional counters of
interest are as follows:

Physical Disk:% Disk Time —This counter measures the percentage of time the
disk was busy servicing reads and writes. The generally accepted idea is that
more than 50 percent may represent a bottleneck for the measured disk.
Physical Disk:Avg./Current Disk Queue Length —A sustained value of more than 2
indicates the disk is struggling to service its queue. When measuring these
counters, you need to consider the number of disks in the array. For example, a
volume with 10 disks could reasonably service a queue of up to 20.
Physical Disk:Avg. Disk Reads & Writes /Sec —As with the disk queue-length coun-
ters, you need to measure these counters in awareness of the disk volume’s
underlying disk count. Values approaching 90 percent of the disk’s published

read/writes per second capacity may indicate an approaching bottleneck.

Licensed to Gayle M. Noll <pedbro@gmail.com>

411Common performance problems

Bear in mind that during disk-bound operations such as backups and restores, it’s per-
fectly normal and reasonable to see sustained disk activity, with cause for concern cen-
tered on the speed or duration of the operation. For example, backing up a terabyte
database to disk will obviously bottleneck on disk; however, the performance can be
maximized by using dedicated backup disks, multiple backup files, and so forth.

 In closing our brief look at disk I/O, let’s examine a couple of DMV queries.
DMV QUERIES

The two DMV queries in this section identify queries with the largest I/O usage and
database files with the highest stall rates.

 Listing 17.9 lists the top 50 queries ordered by I/O usage.

-- Top 50 Queries by I/O Consumption
SELECT TOP 50
 (total_logical_reads + total_logical_writes) / execution_count AS [Avg

 ➥ IO]

 , substring (qt.text,qs.statement_start_offset/2, (
 CASE WHEN qs.statement_end_offset = -1
 THEN len(convert(nvarchar(max), qt.text)) * 2
 ELSE qs.statement_end_offset end - qs.statement_start_offset)/2
) AS query_text
 , qt.dbid
 , qt.objectid
FROM sys.dm_exec_query_stats qs
 CROSS APPLY sys.dm_exec_sql_text (qs.sql_handle) AS qt
ORDER BY [Avg IO] DESC

Listing 17.10 uses the sys.dm_io_virtual_file_stats function to inspect the stall
rate of disk I/O per file. A stall occurs when a process waits for I/O to complete. By
determining which files are stalling the most, opportunities arise for rebalancing I/O.
A good example of this is multiple high-transaction-rate databases using the same
physical disk(s). By segregating their database files on separate disks, you should be
able to improve the throughput (and reduce the stall rate).

-- Identify database files with the highest stall rate
SELECT
 db_name(database_id)
 , file_id
 , io_stall_read_ms
 , num_of_reads
 , cast(io_stall_read_ms/(1.0+num_of_reads) as numeric(10,1)) as
 'avg_read_stall_ms'
 , io_stall_write_ms
 , num_of_writes
 , cast(io_stall_write_ms/(1.0+num_of_writes) as numeric(10,1)) as
 'avg_write_stall_ms'

Listing 17.9 Top 50 queries by I/O usage

Listing 17.10 Database file I/O stalls
 , io_stall_read_ms + io_stall_write_ms as io_stalls

Licensed to Gayle M. Noll <pedbro@gmail.com>

412 CHAPTER 17 Waits and queues: a performance-tuning methodology

 , num_of_reads + num_of_writes as total_io
 , cast((io_stall_read_ms+io_stall_write_ms)/(1.0+num_of_reads +
 num_of_writes) as numeric(10,1)) as 'avg_io_stall_ms'
FROM sys.dm_io_virtual_file_stats(null,null)
WHERE database_id > 4
ORDER BY
 database_id, avg_io_stall_ms DESC

As we covered in chapter 14, the Data File I/O pane in the new Activity Monitor pres-
ents some of this information in graphical form.

 In closing this section on common performance problems, let’s turn our attention
to blocking.

17.3.5 Blocking

A block occurs when one query wants to access data that is locked by another. Despite
blocks and locks being normal, fundamental components of any relational database
management system, they present a significant problem in poorly designed databases
and transactions.

 In chapter 14, we covered the use of SQL Server Profiler in determining the pres-
ence of deadlocks and blocks exceeding a particular threshold. In this section, we’ll
cover blocking from a waits perspective.

LCK_* WAITS

SQL Server Books Online lists all of the wait types that may be encountered, including
an impressive collection beginning with LCK_. All of these represent a wait on a partic-
ular lock being released. For example, a transaction with a shared lock on a row will
block a separate transaction that requires an exclusive lock on the same row. In this
case, the registered wait type will be LCK_M_X.

 When the volume of locks and subsequent blocks increases, overall transaction
throughput decreases, often accompanied by a reduction in Performance Monitor
counters such as SQL Server SQL Statistics:Batch Requests/Sec. To the untrained eye,
a severe blocking problem is often met with confusion; users complain of poor perfor-
mance, but a quick check of the classic Performance Monitor counters (CPU, disk,
and so forth) reveals little in the way of server load. When the blocking transaction
completes, activity returns to normal.

 A fundamental component of a good database design is short transaction length
with the appropriate isolation level (and usually with an optimistic locking mode).
Such topics are beyond the scope of this book: however, should you identify blocking
as a top wait type, the sys.dm_db_index_operational_stats function can assist you
in investigating the problem further.

SYS.SM_DB_INDEX_OPERATIONAL_STATS

One of the purposes of the sys.dm_db_index_operational_stats function is to
determine the tables and indexes with the highest occurrence of row lock waits, as
shown in listing 17.11.
Licensed to Gayle M. Noll <pedbro@gmail.com>

413Best practice considerations: performance tuning

-- Identify tables and indexes with the highest number of row lock waits
SELECT
 db_name(db_id())
 , object_name(s.object_id) as objectname
 , i.name as indexname
 , row_lock_count
 , row_lock_wait_count
 , cast (100.0 * row_lock_wait_count /
 (1 + row_lock_count) as numeric(15,2)) as [block %]
 , row_lock_wait_in_ms
 , cast (1.0 * row_lock_wait_in_ms /
 (1 + row_lock_wait_count) as numeric(15,2)) as [avg row lock waits in
 ➥ ms]
FROM sys.dm_db_index_operational_stats (db_id(), NULL, NULL, NULL) s
 INNER JOIN sys.indexes i on s.object_id = i.object_id
 AND s.index_id = i.index_id
WHERE objectproperty(s.object_id,'IsUserTable') = 1
ORDER BY row_lock_wait_count desc

In combination with the SQL Profiler blocked process report event, this script can be
used to identify the source of common blocking problems. The avg row lock waits in ms
column, as the name suggests, returns the average lock wait time. This value can be used
in estimating which value to set for the sp_configure 'blocked process threshold'
value, although it should be noted that the sp_configure value is set in seconds, whereas
the value returned from the above script is in milliseconds.

 In closing the chapter, let’s summarize the waits, queues, and DMV scripts that
we’ve covered thus far into resource categories.

17.4 Waits, queues, and DMV cross-reference
Figure 17.13 groups together relevant wait types, Performance Monitor counters, and
DMVs by the appropriate resource bottleneck. This is certainly not an exhaustive list,
but it’s a reasonable starting point for further analysis.

17.5 Best practice considerations: performance tuning
Performance tuning is a specialist skill. In this chapter, we’ve briefly covered a num-
ber of common problems in addition to looking at the waits and queues methodology
for a targeted tuning approach. I encourage you to visit http://www.sqlCrunch.com/
performance for links that provide broader and deeper coverage on this most impor-
tant area.

A good performance-tuning strategy considers input from multiple sources
before drawing any conclusions. In this chapter, we’ve consider input from waits,
queues, and DMVs in assisting in the diagnosis of common performance problems.
The waits and queues methodology permits a targeted approach to perfor-
mance tuning by narrowing the target to the biggest pain points identified

Listing 17.11 Tables/indexes with high lock waits
using the sys.dm_os_wait_stats DMV.

Licensed to Gayle M. Noll <pedbro@gmail.com>

http://www.sqlCrunch.com/performance
http://www.sqlCrunch.com/performance

414 CHAPTER 17 Waits and queues: a performance-tuning methodology

P
U

Si
gn

al
 W

ai
t %

SO
S_

SC
HE

DU
LE

R_
YI

EL
D

CX
PA

CK
ET

em
or

y
PA

G
EI

O
LA

TC
H

_*

is
k

IO
PA

G
EI

O
LA

TC
H

_*
AS

YN
C

/IO
_C

O
M

PL
ET

IO
N

W
R

IT
EL

O
G

LO
G

M
G

R

et
w

or
k

N
ET

_W
AI

TF
O

R
_P

AC
KE

T

lo
ck

in
g

LC
K_

*

de
xi

ng
R

ef
er

 d
is

k
an

d
m

em
or

y
w

ai
ts

om
pi

la
tio

n
R

ES
O

U
R

C
E_

SE
M

AP
H

O
R

E_
Q

U
ER

Y_
C

O
M

PI
LE

%
 P

ro
ce

ss
or

 T
im

e
%

 U
se

r
Ti

m
e

%
 P

riv
ile

ge
d

Ti
m

e
In

te
rr

up
ts

/s
ec

P
ro

ce
ss

or
 Q

ue
ue

 L
en

gt
h

C
on

te
xt

 S
w

itc
he

s/
se

c
P

ag
e

Li
fe

 E
xp

ec
ta

nc
y

B
uf

fe
r

C
ac

he
 H

it
R

at
io

P
ag

es
/s

ec
P

ag
e

Fa
ul

ts
/s

ec
M

em
or

y
G

ra
nt

s
P

en
di

ng
C

he
ck

P
oi

nt
 P

ag
es

/s
ec

La
zy

 W
rit

es
/s

ec
R

ea
da

he
ad

 P
ag

es
/s

ec

D
is

k
S

ec
on

ds
/R

ea
d

an
d

W
rit

e
D

is
k

R
ea

ds
 a

nd
 W

rit
es

/s
ec

%
 D

is
k

TI
m

e
C

ur
re

nt
 a

nd
 A

vg
. D

is
k

Q
ue

ue
 L

en
gt

h
Lo

g
Fl

us
h

W
ai

t T
im

e
Lo

g
Fl

us
h

W
ai

ts
/s

ec
A

ve
ra

ge
 L

at
ch

 W
ai

t T
im

e
La

tc
h

W
ai

ts
/s

ec
To

ta
l L

at
ch

 W
ai

t T
im

e

B
yt

es
 R

ec
ei

ve
d/

se
c

B
yt

es
 S

en
t/s

ec
O

ut
pu

t Q
 le

ng
th

D
ro

pp
ed

/D
is

ca
rd

ed
 P

ac
ke

ts

Lo
ck

 W
ai

ts
/s

ec
Lo

ck
 W

ai
t T

im
e

Fo
rw

ar
de

d
R

ec
or

ds
/s

ec
Fu

ll
S

ca
ns

/s
ec

In
de

x
S

ea
rc

he
s/

se
c

P
ag

es
 S

pl
its

/s
ec

S
Q

L
C

om
pi

la
tio

ns
/s

ec
S

Q
L

R
ec

om
pi

la
tio

ns
/s

ec
B

at
ch

 R
eq

ue
st

s/
se

c
A

ut
o

P
ar

am
 A

tte
m

pt
s/

se
c

Fa
ile

d
A

ut
o

P
ar

am
 A

tte
m

pt
s/

se
c

C
ac

he
 H

it
R

at
io

 (
P

la
n

C
ac

he
)

sy
s.

dm
_o

s_
w

ai
t_

st
at

s
sy

s.
dm

_e
xe

c_
qu

er
y_

st
at

s
sy

s.
dm

_e
xe

c_
sq

l_
te

xt
sy

s.
dm

_e
xe

c_
ca

ch
ed

_p
la

ns
sy

s.
dm

_o
s_

sc
he

du
le

rs

sy
s.

dm
_o

s_
w

ai
t_

st
at

s
sy

s.
dm

_o
s_

m
em

or
y_

cl
er

ks

sy
s.

dm
_o

s_
w

ai
t_

st
at

s
sy

s.
dm

_e
xe

c_
qu

er
y_

st
at

s
sy

s.
dm

_e
xe

c_
sq

l_
te

xt
sy

s.
dm

_i
o_

vi
rt

ua
l_

fil
e_

st
at

s

sy
s.

dm
_o

s_
w

ai
t_

st
at

s

sy
s.

dm
_o

s_
w

ai
t_

st
at

s
sy

s.
dm

_d
b_

in
de

x_
op

er
at

io
na

l_
st

at
s

sy
s.

dm
_o

s_
w

ai
t_

st
at

s
sy

s.
dm

_d
b_

in
de

x_
op

er
at

io
na

l_
st

at
s

sy
s.

dm
_o

s_
w

ai
t_

st
at

s
sy

s.
dm

_e
xe

c_
ca

ch
ed

_p
la

ns
sy

s.
dm

_e
xe

c_
sq

l_
te

xt

S
ig

na
l w

ai
ts

 <
 2

5%
.

H
ig

h
%

 p
ri

ve
le

ge
d

tim
e

m
ay

 in
di

ca
te

 h
ar

dw
ar

e/
dr

iv
er

 is
su

e.
If

 C
on

te
xt

 S
w

itc
he

s/
se

c
>

20
,0

00
,

co
ns

id
er

 f
ib

re
 m

od
e.

C
X

PA
C

K
E

T
w

ai
ts

 o
n

O
LT

P
 s

ys
te

m
s

<
5%

. C
on

si
de

r
M

A
X

D
O

P
 1

 a
nd

 in
de

x
an

al
ys

is
.

P
ag

e
Li

fe
 E

xp
ec

ta
nc

y
>

50
0.

S
ud

de
n

pa
ge

 li
fe

 d
ro

ps
 m

ay
 in

di
ca

te
 p

oo
r

in
de

xi
ng

.

E
ns

ur
e

st
or

ag
e

te
st

ed
 w

ith
 S

Q
LI

O
/S

IM
 b

ef
or

e
pr

od
uc

tio
n

im
pl

em
en

ta
tio

n.
te

m
pd

b
se

pa
ra

tio
n.

D
is

k
La

yo
ut

 b
es

t
pr

ac
tic

es
 in

cl
ud

in
g

au
to

gr
ow

/s
hr

in
k

an
d

t-
lo

g
se

pa
ra

tio
n.

D
is

k
S

ec
/r

ea
d

an
d

w
ri

te
 <

20
 m

s.
Tr

an
sa

ct
io

n
lo

g
di

sk
 <

 1
0m

s.
D

is
k

qu
eu

e
le

ng
th

 <
 2

 p
er

 d
is

k
in

 v
ol

um
e.

C
on

si
de

r
nu

m
be

r
of

 a
pp

lic
at

io
n

ro
un

d
tr

ip
s.

S
w

itc
he

d
gi

ga
bi

t
ne

tw
or

k
co

nn
ec

tio
ns

.

C
on

si
de

r
S

Q
L

P
ro

fil
er

's
 b

lo
ck

ed
 p

ro
ce

ss
 r

ep
or

t
an

d
de

ad
lo

ck
 g

ra
ph

s.
C

he
ck

 t
ra

ns
ac

tio
n

le
ng

th
,

is
ol

at
io

n
le

ve
ls

 a
nd

 o
pt

im
is

tic
 lo

ck
in

g.

P
ag

e
Li

fe
 E

xp
ec

ta
nc

y
>

50
0.

S
ud

de
n

pa
ge

 li
fe

 d
ro

ps
 m

ay
 in

di
ca

te
 p

oo
r

in
de

xi
ng

.

P
ar

am
et

er
iz

ed
 q

ue
rie

s
w

ith
 s

p_
ex

ec
ut

es
ql

.
C

on
si

de
r

fo
rc

ed
 p

ar
am

et
er

iz
at

io
n

(a
ft

er
 a

ck
no

w
le

dg
in

g
po

ss
ib

le
 d

ow
ns

id
es

).
C

on
si

de
r

"o
pt

im
iz

e
fo

r
ad

 h
oc

 w
or

kl
oa

ds
"

(a
ft

er
 a

ck
no

w
le

dg
in

g
po

ss
ib

le
 d

ow
ns

id
es

).
P

ay
 a

tt
en

tio
n

to
 la

rg
e

pl
an

 c
ac

he
 o

n
64

-b
it

sy
st

em
s.

P
la

n
re

us
e

on
 a

n
O

LT
P

 s
ys

te
m

 s
ho

ul
d

be
 >

 9
0%

.

A
dd

iti
on

al
 n

ot
es

 a
nd

 id
ea

l v
al

ue
s

D
M

V
s/

D
M

F
s

Q
ue

ue
s

W
ai

ts
at

eg
or

y

gu
re

 1
7

.1
3

P
er

fo
rm

an
ce

-t
un

in
g

in
fo

rm
at

io
n

so
ur

ce
s

by
 r

es
ou

rc
e

ca
te

go
ry

C M D N B In CC Fi

Licensed to Gayle M. Noll <pedbro@gmail.com>

415Best practice considerations: performance tuning

A good baseline and regular baseline analysis should form part of an overall
performance-tuning exercise. The values for many of the counters discussed
throughout this chapter are meaningless unless seen in the context of a known
value recorded during times of acceptable performance. Knowing these values
is key in detecting emerging trends that can be arrested before the problem
becomes widespread.
Wherever possible, use stored procedures (or parameterized sp_executesql)
instead of dynamically executed SQL using exec. Parameterizing SQL avoids the
common procedure bloat issue whereby valuable memory (and CPU resources)
is wasted on single-use ad hoc SQL; further, dynamic SQL opens up the possibil-
ities of SQL injection attacks that we covered in chapter 6.
In situations where direct control over application code is not possible, con-
sider using the Forced Parameterization or the Optimize for Ad Hoc Workload
option. As with all other configuration recommendations throughout this
book, such changes should be made after observation in a testing environment
with an appropriate workload simulation.
In cases where a small number of queries are causing compilation issues, and
the queries themselves cannot be changed, such as in a vendor-supplied appli-
cation, consider using plan guides (not covered in this book) in place of Forced
Parameterization.
The excellent Microsoft whitepaper titled Batch Compilation, Recompilation and
Plan Caching Issues is a must read in understanding the (many) issues for consid-
eration in increasing plan usage. One such recommendation is ensuring
objects are fully qualified, for example, select * from dbo.table rather than
select * from table.
For stored procedures that take a wide variety of parameter values, consider cre-
ating the procedure with the WITH RECOMPILE option to avoid parameter-sniff-
ing issues whereby ongoing performance is dictated by the parameters used in
the first execution. While ongoing compilation will be higher, the resultant
plans are typically more accurate. In cases where the additional compilation
overhead is accepted in return for improved (and consistent) performance,
such an option is certainly worth considering.

Additional links and information on the best practices covered in this chapter can be
found online at http://www.sqlcrunch.com/performance.

Licensed to Gayle M. Noll <pedbro@gmail.com>

Licensed to Gayle M. Noll <pedbro@gmail.com>

Appendix A:
Top 25 DBA worst practices

While there may be some disagreement on best practices, there is usually no argu-
ment on worst practices, some of which are listed below (in no particular order):

1 Not considering service-level agreements (SLAs) when designing a database
environment and/or not considering the need for scheduled downtime for
various maintenance activities, such as the installation of service packs.

2 Defining “disaster” too narrowly and not simulating/practicing a disaster
recovery (DR) plan. Having a DR plan is fine, but how do you know it will
work (and several people can follow it) when required?

3 Designing a storage system from a capacity perspective alone.
4 Assuming a storage area network (SAN) will meet/exceed performance

requirements. Just because SANs are (typically) expensive, it does not mean
the storage design process can be skipped.

5 Failing to track-align disk partitions and/or formatting them with the default
allocation unit size (4K).

6 Using RAID 5 volumes for write-intensive applications.
7 Failing to validate an I/O subsystem for performance and validity before pro-

duction implementation.
8 Virtualizing/consolidating SQL Server instances and databases without con-

sideration of the scalability, licensing, support, administration, and perfor-
mance profile implications.

9 Installing service packs, cumulative updates, or hotfixes without reading the
release notes and/or not installing them in a test environment first.

10 Installing all SQL Server features on the off chance they may be needed at
some point in the future. Doing so increases the attack surface area and
results in running unnecessary services that may reduce performance.
417

Licensed to Gayle M. Noll <pedbro@gmail.com>

418 APPENDIX A Top 25 DBA worst practices

11 Installing multi-instance clusters without considering the resource implications
of failover situations.

12 Creating logins/jobs with elevated privileges. Implementing least privilege can
be tough work, but it’s essential in locking down a system for maximum security.

13 Changing configuration values from their default settings without adequate
research and/or a detailed change log.

14 Placing data and transaction logs on the same physical disk(s).
15 Storing backups on the same disk as the database files.
16 Relying on autogrow for file sizing, and leaving the tempdb database at its

default size.
17 Not making backups and/or not checking their validity and/or not practicing

and documenting various recovery situations. All of these are equally bad.
18 Leaving the database in the full recovery model without taking transaction log

backups.
19 Implementing database mirroring in high-safety (synchronous) mode without

considering network latency and/or transaction log usage from index mainte-
nance.

20 Not running regular DBCC checks.
21 Running REPAIR_ALLOW_DATA_LOSS as the primary/default recovery response,

and not following up corruption events with a root-cause analysis.
22 Not evaluating index usage and/or fragmentation levels as part of an index-

maintenance routine.
23 Updating statistics using the default sampling rate after a full index rebuild.
24 Using SQL Profiler in place of server-side traces, and using it as the primary per-

formance analysis/tuning technique.
25 Doing manual administration with SQL Server Management Studio. For maxi-

mum efficiency and minimal errors, tasks should be scripted and automated,
and you should employ appropriate monitoring and alerting mechanisms such
as MOM or SQL Agent operators and alerts.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Appendix B:
Suggested DBA work plan

The tasks presented here are general DBA tasks that are appropriate in most
instances. Obviously each environment will have specific tasks, and depending on
the automation techniques and monitoring software, the implementation and
monitoring of these tasks will differ. For that reason, implementation and monitor-
ing commentary have been excluded. The goal of this section is to suggest a start-
ing point in developing a site-specific DBA task list.

B.1 Daily tasks
■ Check for successful backup completion, including tape archives if using the

“disk then tape” backup methodology.
■ Confirm SQL Server Agent jobs completed successfully.
■ Check free disk space on all disks, including system drives and SQL Server

data, log, tempdb, and backup disks.
■ Check the free space of each database’s data and transaction log files and

expand if necessary to avoid autogrow operations.
■ Check SQL Server errors logs and Windows event logs.
■ Confirm DBCC checks executed without error by opening and inspecting the

appropriate log files. Depending on the DBCC check frequency, this may be a
weekly task.

■ Check site-specific tasks as appropriate, such as the success of archive batch
jobs.

■ Check technology-specific tasks as appropriate, such as log shipping or data-
base mirroring status/health.

■ Throughout the day, monitor long-running queries and general perfor-
mance of critical servers using a dashboard of key Performance Monitor
419

counters.

Licensed to Gayle M. Noll <pedbro@gmail.com>

420 APPENDIX B Suggested DBA work plan

■ Stay up to date with SQL Server via magazine/website articles, blogs (using a
good RSS reader), and other general-research methods. Good managers under-
stand the importance of allocating time to this task.

B.2 Weekly tasks
■ Collate and update Performance Monitor log information for baseline analysis

purposes, looking for emerging trends among counter values. This information
will feed into the monthly capacity-planning task.

■ Review recent wait statistics and include them alongside the Performance Mon-
itor counter information in the performance baseline.

■ Execute index and statistics maintenance jobs (during periods of low activity) as
appropriate. For systems with large enough maintenance windows, this may be
a simple rebuild of all indexes (while being aware of the impact on log ship-
ping/database mirroring) or a more targeted approach that selects the appro-
priate technique (reorganize/rebuild) based on the fragmentation level.

■ Record disk usage trends and note them for the monthly capacity-planning
exercise.

■ Review server configuration for unauthorized configuration changes. Policy-
based management is purpose built for this task.

B.3 Monthly tasks
■ Review and update documentation and scripts as appropriate, ensuring their

accuracy and suitability for use in disaster-recovery situations.
■ Review and plan the implementation of any service packs and/or hotfixes as

appropriate.
■ Conduct capacity planning using the inputs from the weekly baseline-analysis

and disk-usage tasks. In addition to using this as a chance to identify upcoming
budgetary requirements, this task may also serve as an opportunity to consolidate
databases and/or instances for a better performance/resource usage balance.

■ Conduct “fire drills” to practice recovering from various failure conditions. Ide-
ally these drills are random and unannounced and involve simulated corrup-
tion (preferably not on production databases!) to ensure all staff are capable of
recovering from a wide variety of possible failure conditions. The more these
events are simulated and practiced, the quicker the recovery in the event of a
real disaster.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Appendix C:
Common Performance

Monitor counters

There are literally hundreds of counters that could be captured. The capture pur-
pose (for example, troubleshooting or baseline analysis) usually determines which
ones are included. Provided here is a list of common counters by category. Each
counter is preceded by the object, for example, Processor:%Processor Time indi-
cates the %Processor Time counter in the Processor object. The descriptions for
all of these counters can be found in the Performance Monitor tool itself.

C.1 CPU
■ Processor:%Processor Time
■ Processor:Interrups/Sec
■ System:Processor Queue Length
■ System:Context Switches/Sec

C.2 Memory
■ Memory:Pages/Sec
■ Memory:Page Faults/Sec
■ SQL Server Memory Manager:Memory Grants Pending
■ SQL Server Buffer Manager:Buffer Cache Hit Ratio
■ SQL Server Buffer Manager:Page Life Expectancy

C.3 Disk
■ Physical Disk:Current Disk Queue Length
■ Physical Disk:Avg. Disk Queue Length
421

Licensed to Gayle M. Noll <pedbro@gmail.com>

422 APPENDIX C Common Performance Monitor counters

■ Physical Disk:Avg. Disk Sec/Read
■ Physical Disk:Avg. Disk Sec/Write
■ SQL Server Databases:Log Flush Wait Time
■ SQL Server Databases:Log Flush Waits/Sec

C.4 Network
■ Network Interface:Bytes Received/Sec
■ Network Interface:Bytes Sent/Sec

C.5 SQL Server
■ SQL Server Access Method:Forwarded Records/Sec
■ SQL Server Access Method:Full Scans/Sec
■ SQL Server Access Method:Index Searches/Sec
■ SQL Server Access Method:Pages Splits/Sec
■ SQL Server Buffer Manager:CheckPoint Pages/Sec
■ SQL Server Buffer Manager:Lazy Writes/Sec
■ SQL Server Buffer Manager:Readahead Pages/Sec
■ SQL Server Plan Cache:Cache Hit Ratio
■ SQL Server Databases:Log Growths
■ SQL Server Databases:Transactions/Sec
■ SQL Server General Statistics:Logins/Sec
■ SQL Server General Statistics:Logouts/Sec
■ SQL Server General Statistics:User Connections
■ SQL Server Latches:Average Latch Wait Time (ms)
■ SQL Server Latches:Latch Waits/Sec
■ SQL Server Latches:Total Latch Wait Time
■ SQL Server Locks:Lock Waits/Sec
■ SQL Server Locks:Lock Wait Time (ms)
■ SQL Server SQL Statistics:SQL Compilations/Sec
■ SQL Server SQL Statistics:SQL ReCompilations/Sec
■ SQL Server SQL Statistics:Batch Requests/Sec
■ SQL Server SQL Statistics:Auto Param Attempts/Sec
■ SQL Server SQL Statistics:Failed Auto Params/Sec
Licensed to Gayle M. Noll <pedbro@gmail.com>

Appendix D:
Top 10 Management
Studio enhancements

1 IntelliSense, plus T-SQL collapse/expand regions.
2 Want quick information on a column’s data type and nullability? Enable the

Quick Info feature by selecting Edit > IntelliSense > Quick Info (or Ctrl+K,
Ctrl+I). After this, simply mouse over a column in a query for pop-up infor-
mation, including its nullability and data type.

3 Have you ever accidentally dropped a production table when you thought you
were connected to a test server? When connecting to a new server, click
Options and under the Connection Properties tab, select a custom color.
Whenever a query window is opened against this server, the status bar at the
bottom will display the chosen color (for example, bright red for production!).

4 Right-clicking a process within the new Activity Monitor allows the process to
be tracked in Profiler with an automatic filter applied for the SPID. Further,
you can automatically open Activity Monitor on startup of Management Stu-
dio by choosing Open Object Explorer and Activity Monitor in the General
page of the Tools > Options menu in SQL Server Management Studio.

5 The missing index DMV information is displayed in the graphical execu-
tion plan output. Right-click it and choose Missing Index Details to display
the T-SQL to create the index.

6 T-SQL Debugger (accessed by clicking the green arrow next to the ! Execute
icon), with associated Step Into/Over, Breakpoints, Locals, and Call Stacks,
is fantastic for tracking variable values as they pass through multiple proce-
dures, triggers, and so forth.
423

Licensed to Gayle M. Noll <pedbro@gmail.com>

424 APPENDIX D Top 10 Management Studio enhancements

7 The ability to run a query against multiple servers. Open a query window
against a registered servers group. Query results will contain an extra column
for the server name.

8 The Tools > Options menu (SQL Server Object Explorer section) allows you to
specify the number of rows for Edit/Select Top N; for example, setting Edit Top
<n> Rows Command to 12 will change the right-click menu option for a table to
Edit Top 12 Rows.

9 Powershell integration. For a DBA who is responsible for managing a large num-
ber of servers, Powershell is an essential tool. Those who learn it will be one step
ahead of most DBAs.

10 Right-clicking a selection of results in the query output window lets you select
Copy with Headers, which allows the results to be pasted into another applica-
tion with the corresponding column names.
Licensed to Gayle M. Noll <pedbro@gmail.com>

Appendix E:
Date/time data types in

SQL Server 2008

SQL Server 2008 introduces a number of new data types. In chapter 9 we covered
one of these, FILESTREAM. In addition to a couple of geospatial types (GEOGRAPHY
and GEOMETRY), the major new types are HIERARCHYID, used for storing data rep-
resenting positions in a hierarchical structure (for example, an organizational
chart), and four date-related types: DATE, TIME, DATETIME2, and DATETIMEOFFSET.
Let’s spend a little time exploring the new date data types, beginning with DATE.

E.1 DATE
In SQL Server 2005 and earlier, there was no way of storing a date without a time
component (unless stored as a string). Further, the earliest date that could be
stored was 1 Jan 1753. Fortunately, SQL Server 2008 introduces the DATE type, and
as the name suggests, it stores only the date without a time component.

 Consuming just 3 bytes (compared to 8 bytes for DATETIME), DATE types are
stored in the format YYYY-MM-DD and permit dates from 0001-01-01 through to
9999-12-32.

E.2 TIME
One of the limitations of the old DATETIME data type (which is still available) is the
precision of the time component. Accurate to .333 second, the DATETIME type
lacked granularity for certain applications, an issue addressed by the TIME type.

 In addition to supporting the ability to store just the time component (without a
corresponding date), the TIME data type, consuming between 3 and 5 bytes, is
accurate to 100 nanoseconds and permits the storage of time values from
425

00:00:00.0000000 through 23:59:59:9999999.

Licensed to Gayle M. Noll <pedbro@gmail.com>

426 APPENDIX E Date/time data types in SQL Server 2008

E.3 DATETIME2
With a storage footprint of between 6 and 8 bytes, DATETIME2 combines the advan-
tages of the DATE and TIME types, enhancing DATETIME by allowing dates from 0001
and times accurate to 100 nanoseconds.

E.4 DATETIMEOFFSET
DATETIMEOFFSET further enhances the DATETIME2 type by accommodating a time
zone offset component. With a storage size of between 8 and 10 bytes, DATETIMEOFF-
SET types are ideal for multinational database applications.

 To further illustrate these data types, let’s cast a string in both the old datetime for-
mats (DATETIME and SMALLDATETIME) as well as the four new types covered above:

Licensed to Gayle M. Noll <pedbro@gmail.com>

index
Symbols

/3GB 129–131
/PAE 130–131
##MS_PolicyTsqlExecution-

Login## 164
% Disk Time 410
% Processor Time 406
%TMP% 365

Numerics

32-bit memory management 131
64-bit memory management 131

A

abnormal activity 331
acceptable data loss 229
Active Directory 151
active transaction 197
active/active 84
active/passive 84
Activity Monitor 171, 331–334
ad hoc queries 398
Address Windowing Extensions

(AWE) 44, 129
addressable memory 44
administration cost 184
advanced cluster completion 87
advanced cluster preparation 87
advanced installation. See install-

ing SQL Server 2008
AdventureWorks database 291
AES encryption algorithm 121
aggregate query cost 341

alias 101
allocation bitmap 171
allocation contention 171, 174
allocation errors (DBCC) 265
allocation unit 33, 35

size 181
ALTER DATABASE 204
ALTER DATABASE SET

PARTNER 246
ALTER RESOURCE

GOVERNOR 386
Analysis Services 154, 376
antivirus software 92, 127
application design 12
application failure 68
application performance 12
application reconnection

logic 245
application roles 110
APP_NAME() 117, 378
archive filegroup 176
asynchronous database mirror-

ing. See database mirroring
asynchronous statistics

update 322
ASYNC_IO_COMPLETION 410
ATA 16
at-rest encryption 119
attach database (upgrade

technique) 72
audit 112
audit action groups 112, 147
auditing

C2 111
database audit

specification 113

server audit specification 112
SQL Server audit 111–115
support per SQL edition 7

authentication mode 65
Mixed Mode 98
Windows authentication

mode 97
auto create statistics 321
auto stats event 322
auto update statistics 321
autoclose 157, 191, 304–305
autogrow 363
autogrowth 154, 172
automatic failover

(mirroring) 243
automatic failover support 230
automation 331, 350–358
autosense (networking) 50
AutoShrink 157, 191
availability target 226, 229
average disk queue length 372
average latency (SQLIO) 40
avg row lock waits in ms 413
Avg. Disk Reads & Writes /

Sec 410
Avg. Disk Sec/Read 410
Avg. Disk Sec/Write 410
Avg./Current Disk Queue

Length 410
AWE. See Address Windowing

Extensions

B

background services 144
backup
427

alerts 354 implementing 111–119 checksum 210

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX428

backup (continued)
compression 221–223, 232
compression default 221
convenience 223
COPY_ONLY backup 203–204
dedicated disks 170
design 195, 199, 221
destination, disk vs. tape 207
devices 225, 359
differential backup 199–200,

351
disk 170
duration 184
filegroup backup 214
frequency 154, 201
full backup 196–198
hard-coded filename 225
maintenance plans 352
MDW database 367
mirroring 210
multiple files 199
portability 221
retention policy 209
rotation policy 209
scheduling 223
snapshot backups 209, 217
strategy 195, 219, 223
support per SQL edition 7
tail log backups 202
transaction log 198, 200–203
upgrade technique 72
verification 195, 231
verification servers 224
window 210
WITH COMPRESSION 221
WITH COPY_ONLY 237
WITH NORECOVERY 202
WITH NO_TRUNCATE 202

BACKUP DATABASE 197
BACKUP DATABASE MIRROR

TO 210
BACKUP DATABASE WITH

CHECKSUM 210
BACKUP DATABASE WITH

COMPRESSION 221
BACKUP DATABASE WITH

DIFFERENTIAL 199
backup domain controller

(BDC) 61
BACKUP LOG 200
BACKUP LOG WITH

NORECOVERY 203, 215
BACKUP LOG WITH

NO_TRUNCATE 202
BACKUP WITH

COPY_ONLY 204
backups, SATA disk 17

bandwidth requirements 17
base backup 200
baseline analysis 38, 53, 57,

348–350, 360
batch process 53
batch request/sec 372, 348,

405
battery-backed cache 37
BCDEdit 129
BCM. See Bulk Changed Map
BCP. See Bulk Copy Process
BDC. See backup domain control-

ler
BEGIN TRANSACTION WITH

MARK 211
benchmarking. See baseline anal-

ysis
best practices

backup and recovery 223
Data Collector and MDW 374
data management 190
database mirroring 256
DBCC validation 278
failover clustering 91
high availability 256
indexes 325
installing and upgrading SQL

Server 75
log shipping 256
monitoring and

automation 358
physical server design 56
policy-based management 166
Resource Governor 388
security 124
SQL Server configuration 145
storage system sizing 30

binary large object (BLOB)
storage in the database 178
storage in the filesystem 179
See also FileStream

bit mask (NUMA node) 49
BitLocker 127
BLOB. See binary large object
block replication 24
blocked process report 345, 413
blocked process threshold 345
blocking 263, 412
BOL. See SQL Server Books

Online
bookmark lookup 285
boost SQL Server priority 135
boot time 28
boot.ini 129
bottleneck 12

disk 32
RAM 47

breaking point. See baseline anal-
ysis

brute-force attack 97
b-trees 178, 284
budgetary constraints 3, 21
buffer cache 180, 184–185, 189,

197
Buffer Cache Hit Ratio 409
buffer overflow bug 101
buffer pool 269
bug 75
BUILTIN\Administrators 66,

104
Bulk Changed Map (BCM) 206
Bulk Copy Process (BCP) 206,

340
bulk insert 206
bulk load 242
bulk update 41
Bulk_Logged recovery

model 206, 232, 239
bus bandwidth 17

C

cache (storage) 37
bloat. See procedure cache
churn 403
efficiency 34

calculating required disk
quantity 15

capacity-centric design 18
capacity planning 172–173, 191,

370, 371
CDC. See Change Data Capture
cell erasure (SSD) 29
cell-level encryption 119, 123
central management servers 159
central point of failure 228, 230
centralized computing 51
certificate 120
change control 148
Change Data Capture

(CDC) 117–119
support per SQL edition 7

change log 128, 145, 257
character large object

(CLOB) 177
check constraints 268
checklist (installation) 59
checkpoint 38, 41, 140, 197, 204
checksum 210, 269
classifier function (Resource

Governor) 378–379
cleanup tasks (maintenance

plans) 353

backwards compatibility 68 SSD implications 29 client redirection logic 227

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX 429

client-side trace 337
CLOB. See character large object
CLR. See Common Language

Runtime
CLRIntegrationEnabled 152
cluadmin.msc 91–92
cluster management tool 91
cluster security policy 90
clustered index 281–284, 288–

291
clustering. See failover clustering
cmdlets 164
codeplex.com 291
collation 60, 64, 247
column prefix 185
column statistics 322–323
command center 330
command prompt

installation 67
commodity servers 32
Common Language Runtime

(CLR) 152
Compact edition 8
compatibility level 69
composite index 295–296
composite keys 283
compressed backups 221–223
compression (NTFS) 5, 35

rate 186, 222
See also data compression,

backup compression
compute constrained systems 30
computed columns 267
condition (policy-based

management) 152
conditional index

maintenance 353
configuration changes history

report 337
configurationfile.ini 66
connection properties (Manage-

ment Studio) 160
connection string 62, 71, 379
connection strings

(passwords) 98
consistency errors (DBCC) 265
constraining resources 376
context switches/sec 136
CONTINUE_AFTER_ERROR

210
controller cards 36
controlling object

placement 175
copy database wizard 73
copy on write 217
COPY_ONLY backup 203–204
Core i7 43

corrupted page 241
corruption 260

logical 268
physical 268
root cause analysis 278

cost savings 221
cost threshold for

parallelism 139
counter logs 348
covering indexes 286, 295–296
CPU

affinity 137, 376
affinity mask 49
boost SQL Server priority 135
cache 43
clock speed 43
compilation pressure.

See procedure cache
cost threshold for

parallelism 139
fiber mode 136
hot-add 46
hyperthreading 42
Itanium 44
kernel mode 136
lightweight pooling 136
max worker threads 69, 135–

136
multicore 42
Opteron 44
overhead (compression) 184
parallelism 137
support per SQL edition 45
thread pooling 135
threads 134
throttling with Resource

Governor 384
user mode 136
x64 44
x86 44
Xeon 45

CREATE DATABASE AS
SNAPSHOT 218

CREATE EVENT SESSION 395
CREATE RESOURCE

POOL 385
CREATE STATISTICS 324
CREATE WORKLOAD

GROUP 385
credentials 105
credit card details

(encryption) 120
cumulative updates 74, 223
custom reports 374

D

DAC. See dedicated administra-
tor connection

daily tasks 419
damaged database 203
DAS. See direct-attached storage
data

corruption 241
distribution. See replication
encryption 119–123
integrity 23
latency 230
loss 195, 202, 242

data access pattern 175
data cache 130, 140
data center 19
Data Collector

cache directory 365
component overview 361
custom collection sets 368
default collection sets 361
logging 368
new in 2008 5
scheduling uploads 365
setup and configuration 362–

365
support per SQL edition 7

data collector sets (Performance
Monitor) 348

data compression 164, 183–189
support per SQL edition 6

Data Dude 256
data file configuration

AutoClose 191
autogrowth 172
AutoShrink 191
instant initialization 174
multiple files 171
proportional fill 174
sizing files 172
volume separation 169

data file I/O 332
data type conversion 303
data warehousing 117, 317
database administrator

(DBA) 11
development DBA 10
production DBA 10, 330
responsibilities 10
work plan 419

database audit specification 112
database consistency check. See

DBCC
database console commands. See

DBCC

corrupt backup 226 custom statistics 322 database design 29

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX430

database encryption key
(DEK) 121

Database Engine Tuning
Advisor 313–314, 341

Database Exposure Survey
2007 101

database integrity 260, 352
Database Mail 7, 125, 152, 155,

355
database migration 67, 172
database mirroring overview 228

automatic corruption
recovery 270

automatic failover 243
configure security 248
design considerations 246
encryption 249
endpoint 239, 249
failover 239
failure scenarios 246
FileStream limitations 182
forced service 239, 241, 245
high performance mode 239,

241
high safety mode 239–240,

242
initializing 247
log sequence number

(LSN) 240
log stream compression 241
manual failover 245, 254
mirror database 238
mirror instance 238
mirroring multiple

databases 255
monitor 250
monitoring stored

procedures 251
network latency 243
performance counters 252
principal database 238
principal instance 238
recovery model 247
redo queue 238–241
restrictions 239
resuming 254
send queue 238–239
snapshots 259
SQL logins 247
status 250
support per SQL edition 6
suspending 253
TCP port 249
terminology 238
thresholds 252
timeout 244

database ownership chain 127
database roles 108–110
database snapshots 182, 217–

221, 239
DatabaseMailEnabled 152
DATETIME data types 425
David Litchfield 101
DBA. See database administrator
DBCC

auditing 113
commands categorized 261
database snapshot 263
false positives 263
I/O load 14
interpreting output 274
page restore 276
REPAIR_ALLOW_DATA_

LOSS 273, 277
REPAIR_REBUILD 274
source (database

snapshots) 221
transactional consistency 263
user defined snapshots 273

DBCC CHECKALLOC 262, 267
DBCC CHECKCATALOG 262,

267
DBCC CHECKCONSTRAINTS

268
DBCC CHECKDB 262

ALL_ERRORMSGS 264
controlling user impact 270
DATA_PURITY 265
described 262
ESTIMATE_ONLY 264
EXTENDED_LOGICAL_

CHECKS 264
last successful execution 272
MAXDOP 272
NOINDEX 264
NO_INFOMSGS 264
repair options 264
TABLOCK 264
WITH PHYSICAL_ONLY 265,

271
DBCC

CHECKFILEGROUP 267,
272

DBCC CHECKIDENT 268
DBCC CHECKTABLE 262, 267,

272
DBCC DBREINDEX 318
DBCC DROPCLEANBUFFERS

188–189, 293
DBCC FREEPROCCACHE 403
DBCC

FREESYSTEMCACHE 403

DBCC PAGE 272, 275
DBCC SHOWCONTIG 315
DBCC SHOW_STATISTICS 287,

324
DBCC SQLPERF 392–394
DBCC TRACEON 272, 345
DBCC UPDATEUSAGE 70
dbcreator 111
db_datareader 111
db_datawriter 111
dbi_dbccLastKnownGood 272
DCM. See Differential Changed

Map
DDL triggers 115–116, 153
deadlock 343–344

graph 344
trace flags 345
victim 344

debugging 334, 338, 340
decentralized computing 51
decision support system

(DSS) 13
dedicated administrator connec-

tion (DAC) 136, 143, 379
dedicated disks 170
default filegroup 176, 214
default instance 62–63
default schema 110
default trace 154, 337
DEK. See database encryption key
density_vector 324
design surface 350
detach database 172
detach database (upgrade

technique) 72
detecting corruption 268
Developer edition 8
development environments 205
DHCP. See Dynamic Host Config-

uration Protocol
differential backup 199–200
Differential Changed Map

(DCM) 203
direct-attached storage

(DAS) 22, 169
directory locations 66
dirty pages 140, 197
dirty reads 142
disabling indexes 316
disaster recovery (DR) 23, 174

planning 206
SAN options 24, 27
simulation 223
time 229
virtualization 55
witness 239 DBCC INDEXDEFRAG 317 disconnect users 234

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX 431

disk
backups 207
configuration 32
controller 172
controller cards 22
drive anatomy 32
enclosures 22
failure 18, 36
fragmentation 33, 168, 173
head 32
mirroring 20
performance 185
quantity 25
queue 18, 36
response time 372
space requirements

(installation) 63
transfer rate 372
usage report 361, 370
utilization 20, 25

disk management tool 35
disk reads per second 14
disk then tape backups 208
disk writes per second 14
diskpar.exe 34
diskpart.exe 34
display replay results 340
distributed partitioned views 7
distributed transactions 240
DML triggers 115
documentation 162, 206, 223
domain accounts 60
domain administrator 60
double caching 37
downtime 68, 74
DR. See disaster recovery
drive letters (mount points) 171
drivers 38, 268
DROP DATABASE 219
DROP STATISTICS 323
dropped events 337–338
dropping indexes 316
DSS. See decision support system
dual channel SCSI 16
Dynamic Host Configuration

Protocol (DHCP) 82
Dynamic Management View

(DMV) 304
dynamic ports 100

E

ECC. See error-correcting code
editions of SQL Server

Compact 8
Developer 8

Express 8
Standard 7
Web 8
Workgroup 7

effective maximum percentage
(Resource Governor) 382

EFS 127
EKM. See Extensible Key Manage-

ment
encryption 5

See also cell level encryption,
TDE, data encryption,
backup encryption, and SSL

endpoint 239, 249
enterprise DBA 148
Enterprise edition 5
environment destruction 231
error logs 357
error-correcting code (ECC) 46
ESX Server. See virtualization
ETL. See extract, transform, load
event alert 356
event sequencing 337, 340
EVENTDATA function 115
event tracing 337
exception-based

management 150, 350
exclusive lock 344
ExecuteSql() 162
ExecuteWql() 162
execution plan 291, 321
expensive queries 333
exporting policies (policy-based

management) 158
Express edition 8
extended events 395
Extensible Key Management

(EKM) 127
extent 35, 206, 265–266
external waits 393
extract, transform, load

(ETL) 117

F

facet (policy-based
management) 151

failback settings. See failover clus-
tering

failover
database mirroring 243
log shipping 237

Failover Cluster Configuration
Program (FCCP) 82

failover clustering

architecture 79
cluster network priority 92
failover rules 85
FCCP certification 82
high availability 227
iSCSI storage 24
multi-instance clusters 84
N + 1/M clusters 85
quorum models 82–83
resource groups 80
single instance clusters 84
validation test 81

failover partner (SNAC) 244
failure rate (tape) 207
failure tolerance (RAID) 21
false positive (DBCC) 263
fault tolerance 36, 169
faulty hardware 260
fiber mode 136
fibre channel 17, 22
file header 266
file I/O streaming access

(filestream) 180
file system (blob storage) 179
filegroup backup 214
filegroups 175–177

dbcc checks 272
default filegroup 176
primary filegroup 176
secondary filegroup 176

FileStream
allocation unit size 181
DBCC checks 263
described 180–183
installing 66
limitations 182

fill factor 141, 319, 409
filtered indexes 297–299

compared to indexed
views 303

filtered statistics 324
fine-grained auditing 111
fire drill 206
firewall 61

perimeter configuration 100
ports 100
Windows firewall 101

firmware 38, 268
five nines 229
fixed database roles 111
fixed server roles 111
flash storage. See solid-state disk
fn_trace_getinfo 338
follow the sun 298
forced parameterization 401–

403
forced service 239, 241
Enterprise 5 advantages and limitations 80 foreign keys 268, 307

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX432

foreign keys (DBCC) 277
fragmentation 35, 168, 173
fragmentation (indexes) 314
free list 140
FTP utility 127
full backup 196–198
full duplex 17
full recovery model 205, 232,

239
full scan 324
Full Scans/Sec 409
full table index 298
full text indexes 284

G

GAM. See global allocation map
get_waitstats 394
GFS. See grandfather-father-son
global allocation map

(GAM) 266
globally unique identifier

(GUID) 117, 290, 340
grandfather-father-son (GFS)

tape rotation policy 209
GRANT CONNECT 249
granular auditing 111
graphical execution plan 291,

333
group policy editor 130
GROUP_MAX_REQUESTS 381
growth patterns 173
GUID. See globally unique identi-

fier

H

hard error 244
hardening (disk writes) 38
hardware components 31
hardware NUMA. See non-uni-

form memory access
hardware security module

(HSM) 127
hash join 323
HBA. See host bus adapter
heap 274, 281, 284
heartbeat (mirroring) 244
heat generation 28
hidden snapshot (dbcc) 273
high availability 226

options compared 229
high performance database

mirroring. See database
mirroring

high-performance mode 239
high-safety mode 239

host bus adapter (HBA) 22
HOST_NAME() 378
hot spots 331
hot standby 238
hot-add CPU 46
hot-add RAM 46
hotfix 74, 223
HP Integrity Superdome 45
HP ProLiant DL585 36
HSM. See hardware security mod-

ule
hubs (networking) 50
Hyper-V. See virtualization
hypervisors. See virtualization

I

I/O
capacity 36
delay messages 154, 162
driver 38
failure 36
firmware 38
generation 38
integrity (SQLIOSIM) 41
IOPS 38
latency 38
load balancing

(multipathing) 37
profile 26
thread (NUMA) 49
throughput 38

I/O per second (IOPS) 15
IANA registration database 100
IDE. See ATA
identity columns 289, 323
identity spoofing 98, 379
image data type 178
inaccessible database 203
included columns 286, 296–297
increaseuserva 129
incremental servicing model 74
index scan 175, 291
Index Searches/Sec 409
index seek 291
indexed views 299–303

compared to filtered
indexes 303

DBCC checks 263
support per SQL edition 7

indexes
analysis 303–316
bookmark lookup 285
clustered index 281–283, 288–

291
composite index 296
conditional maintenance 353
covering indexes 286,

create with drop existing 319
data compression 320
design 287–303
disabling 316
dropping 316
duplicate and overlapping

indexes 307
dynamic management

views 303
fill factor 141, 319
filtered indexes 297–299
fragmentation 314–316, 319
full table index 298
full text indexes 284
heap 281
hint 292
identifying indexes to

add 307–314
identifying indexes to drop/

disable 304–307
included columns 286, 297
key lookup 286
leaf node 284
maintenance 316–320
maintenance plans 352
nonclustered index 283–284,

291
online operations 318
PAD_INDEX 320
predicate 298
range scan 290
rebuild 242, 318
reorganize 317, 351
seek 284
selectivity 287
sort 290
sort in tempdb 320
SSD implications 29
statistics 320–322
structure 284–285
support per SQL edition 7

information storage
explosion 183

infrastructure solution 231
in-place upgrade 70
input verification (SQL

injection) 124
installation center 62
installation checklist 59
installing SQL Server 2008

command prompt
installation 67

GUI installation 62–67
installing a clustered

instance 86–91
pre-installation checklist 59–

62

histogram 325 295–296 instance ID 62

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX 433

instant initialization 60, 173–174
integrated installation. See install-

ing SQL Server 2008
Integration Services 376
integrity 38
intent-based management 150
interleaved NUMA. See non-uni-

form memory access
Internet Protocol Security

(IPSec) 102
internet SCSI (iSCSI) 23
Invoke-PolicyEvaluation

cmdlet 165
IO_COMPLETION 410
IOPS. See I/O per second
IPAll 100
IPSec. See Internet Protocol

Security
IPv6 81
IsAlive 85
iSCSI. See internet SCSI
IS_MEMBER() 379
isolation level 344
IS_SRVROLEMEMBER() 379

J

job failover 230
join logic 323

K

kernel mode 136
key column 297
key lookup 286, 291, 294

L

LAN. See local area network
lane (PCI) 36
large object (LOB) 177
latency 38
LazyWriter 41, 49, 140
LAZYWRITER_SLEEP 393
LCK_* waits 412
.ldf file 169
leaf node (index) 284
least privilege 103–111, 149
license terms 63
licensing 56
lightweight pooling 136
linked servers 127
load balancing (I/O) 37
load generation 338
load testing

high availability 256

OStress 342
Resource Governor

considerations 384
Visual Studio Team

System 343
LoadRunner 343
LOB. See large object
local administrator 60
local administrator privilege 103
local area network (LAN) 243
local server groups 160
lock pages in memory 60, 130–

132
locks (configuration

setting) 142
log chain 200, 203, 219

validation 231
log sequence number

(LSN) 119, 198, 240
log shipping

backup verification 224
disconnect users 234
failover and role reversal 237
monitoring instance 236
no recovery mode 234
overview 227
pre–SQL Server 2000 230
recovery model 205
restore frequency 236
script configuration 236
standby mode 234
status report 236
transaction latency 231
usage scenarios 231
warm standby 236

log stream compression 241
logical corruption 268
logical integrity 262
logical reads 293, 333
logical unit number (LUN) 22

configuring for SQL Server 26
replication 23
snapping and cloning 209
zoning 27

logical write 16
login failover 230
login timeout 378
logins/sec 372
logon triggers 116–117, 378
long-running transactions 205
LooksAlive 85
lossless compression 183
lossy compression 183
LSN. See log sequence number

M

magnetic erase 127
maintenance plans 314, 350–353
maintenance window 53, 74, 270
Majority Node Set (MNS) 82
man-in-the-middle attacks 98
MAN. See metropolitan area net-

work
management data warehouse

(MDW) 361
advantages of centralizing 363
autogrow operations 363
backup considerations 367
configure MDW wizard 362
database roles 364
mdw_admin 364
mdw_reader 364
mdw_writer 364
retention period 368

manual failover, (log
shipping) 237

manual failover (mirroring) 245
master boot record (MBR) 33
master database 239
master key 120
max worker threads 69, 135–136
MAXDOP. See Maximum Degree

of Parallelism
Maximum Degree of Parallelism

(MAXDOP) 154, 137–139,
187, 320, 381

max_wait_time_ms 393
MBR. See master boot record
.mdf file 169
MDW. See management data

warehouse
mdw_admin 364
mdw_reader 364
mdw_writer 364
media cost 196
media failure 208
memory bus. See non-uniform

memory access
memory sniffing 122
merge join 323
metropolitan area network

(MAN) 243
Microsoft assessment and plan-

ning toolkit 51
Microsoft Baseline Security Ana-

lyzer (MBSA) 153
Microsoft iSCSI Software

Initiator 24
Microsoft Multipath I/O
LoadRunner 343 LUN. See logical unit number (MPIO) 36

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX434

Microsoft product support ser-
vices (PSS) 340

Microsoft Source Code Analyzer
for SQL Injection 124

Microsoft Virtual Server. See vir-
tualization

migrating databases 67
mirror commit overhead 253
mirror database 238
mirror instance 238
mirroring backups 210
mirroring session 240
missing index 314
missingindexes XML

element 307
MissingIndexGroup XML

element 309
mission-critical database 231
mixed extent 266
Mixed Mode authentication 65,

98
MNS. See Majority Node Set
model database 169, 173, 204,

239
monitoring instance 236
monitoring regime 350
monitoring tools 330
monthly tasks 420
mount points 171
MPIO. See Microsoft Multipath

I/O
msdb database 166, 239, 367
MSDTC 91
multi-server queries 160
multi-file backups 199
multipathing 36
multiple column statistics 321
multiple data files 171
multiple standby

destinations 230
MySQL 148

N

named instances 62–63, 100
namespace 110
NAS. See network-attached stor-

age
Native Command Queuing

(NCQ) 16
natural key 289
NCQ. See Native Command

Queuing
.ndf file 169
nested loop join 323
net send 355

.NET framework 62
network

autosense 50
bandwidth 50, 241
configuring 50
data transmission 122
hubs 50
latency 243
NIC teaming 24, 50, 92
quality 247
saturation 255
switches 50
traffic 50

network-constrained systems 30
network protocols

AppleTalk 99
Banyan Vines 99
Multiprotocol 99
Named Pipes 99
NWLink IPX/SPX 99
shared memory 99
TCP/IP 99
VIA 99

network-attached storage
(NAS) 23

NewSequentialID() 290
NIC teaming 50
no majority. See failover cluster-

ing
NO_CHECKSUM 210
node and disk majority. See

failover clustering
node and file share majority. See

failover clustering
noexpand 303
nonclustered index 262,

283–284, 290–291
non-uniform memory access

(NUMA) 47–50, 146, 357
notify operator task (mainte-

nance plans) 352
NTFS compression 35, 183
NUMA. See non-uniform mem-

ory access
nvarchar(max) data type 178

O

object placement 175
offline 305
offsetting partitions 33
offsite recovery point 231
offsite rotation (backup

tape) 207
off-the-shelf components 32
OLAP. See online analytical pro-

OLTP. See online transaction pro-
cessing

on demand (policy-based
management) 153

on schedule (policy-based
management) 153

on-call rotation 148
online analytical processing

(OLAP) 13, 138
online backups 197
ONLINE index operations 318
online piecemeal restore 72,

212–217
online transaction processing

(OLTP) 13, 138, 145
operating costs 52
operations staff 148
operator 355
Opteron 45
Optimization hints 402
OPTIMIZE FOR 402
Optimize for Ad Hoc

Workloads 403–404
Oracle 148
ORIGINAL_LOGON 117
OStress 342, 349
out-of-the-box settings 148
owner-qualified object

reference 415

P

P2V. See physical to virtual
pad_index 320
PAE. See Physical Address Exten-

sions
page 140, 266

checksums 269
compression 185
dictionary 185
file 145

page free space (PFS) 266
Page Life Expectancy 408
page restore 276
Page Splits/Sec 409
PAGEIOLATCH 409
pager alert 355
PAGE_VERIFY 210
parallel ATA. See ATA
parallel queries 137
parallelism 44, 381
parameter sniffing 309, 400
parity 20
partitioning 164
partition offset. See track-aligning

partitions

NetBIOS 61 cessing partitioned tables 177

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX 435

partitioning 6
password complexity 60, 97

policies 97
password expiration 60

policies 97
Paul Randal 198
PCI Express (PCI-E) 36
PCI-E. See PCI Express
PDC. See primary domain con-

troller
peak latency (SQLIO) 40
peak usage period 349
peer-to-peer transactional

replication 259
pending reboots 61
PerfAnalysis database 341
perform volume maintenance

tasks 60, 174
performance baseline 27
performance-centric design 18
performance condition

alert 356
Performance Monitor 14, 27,

346–350, 387
counters 421

performance requirements 32
performance trends 348
performance tuning 12
permissions management 110
PFS. See Page Free Space
Physical Address Extensions

(PAE) 129
physical corruption 268
physical integrity 262
physical reads 293, 37, 333
physical security 120, 127
physical to virtual (P2V) 54
physical write 16
piecemeal restore 175
plan cache 44
plan count 333
Plan Guides 402
plan reuse. See procedure cache
platter 32
point-in-time recovery 205, 207,

209, 217
policy (policy-based

management) 153
policy compliance 153
policy failure alerts 156
PolicyAdministratorRole 164
policy-based management 51

##MS_PolicyTsqlExecution-
Login## 164

alerts 356
central management

servers 161

creating new policies 157
evaluating policies 155
evaluation modes 153
exporting policies 158
facet 151
importing policies 153
new in 2008 4
policies 153
policy state 154
PolicyAdministratorRole 164
Powershell 164
predefined policies 154
target 151

poor maintenance practice 226
port 1433 100
port scanners 101
possible owner. See failover clus-

tering
power consumption 28
power failure 37, 244
Powershell 147, 164–166
precedence constraint (mainte-

nance plans) 352
predefined policies (policy-based

management) 153
preferred owner. See failover clus-

tering
preinstallation checklist 59
prepared plans 401
preserved on import (policy-

based management) 154
preventing corruption 268
primary data file 169
primary domain controller

(PDC) 61
primary filegroup 175–176
primary key 282, 288
principal 107
principal database 238
principal instance 238
principals (proxy) 106
private network 92
proactive maintenance 150, 173,

191, 227
procedure cache

AWE setting 130
bloating 398–405

processadmin 111
processes 332
Processor Queue Length 406
product key 63
production DBA 330
proportional fill 174
proxies 106
public certification authority

certificates 102
public network 92
pure NUMA. See non-uniform

Q

query governor cost limit 143,
388

query importance 380
query optimizer 307, 321
query statistics (report) 361, 371
query wait 142
queue depth (HBA

configuration) 27
queue depth (SQLIO) 39
queue wait 393
quorum, failover clustering 82

R

RAID. See redundant array of
inexpensive disks

RAM
32-bit memory

management 131
64-bit memory

management 131
controlling usage with

Resource Governor 383
ECC RAM 46
hot-add 46
lock pages in memory 60,

130–132
maximum memory

setting 132–134
minimum memory

setting 132–134
page file 145
query wait 142
support per SQL edition 46

random I/O 13, 170, 286, 291
random read performance

(SSD) 29
random write performance

(SSD) 29
range scan 290
rate of database change (differ-

ential backups) 199
reactive administration 3
reactive work environment 227
read ahead 41, 294
read cache 37
read/write percentage 27
reading a database mirror (data-

base snapshots) 220
readtrace 341–342
rebuilding indexes 318
recompilation 400
reconfigure server (policy-based

management) 161
recovering state 200
conditions 152 memory access recovery interval 140

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX436

recovery model
bulk_logged 206, 232, 239
full 149, 205, 232, 239
MDW database 367
simple 204

recovery point 196
redo queue 239–241
reduced maintenance

requirements 205
reducing backup impact 221
Redundant Array of Inexpensive

Disks (RAID) 19
hardware RAID 22
RAID 0 19
RAID 1 20
RAID 10 21
RAID 5 20
RAID controller 33
software RAID 22
stripe size 33

refresh rate 331
registered servers 159
registry 62
regulatory requirements 183
Reliability and Performance

Monitor 347
remote memory. See non-uni-

form memory access
reorganize indexes 317
REPAIR_ALLOW_DATA_LOSS

277
replay events, in order 339
replay events, multiple

threads 340
replay markup language

(RML) 343
replay server 339
replay threads 339
replaying a trace 338
replication 227, 340
replication (upgrade

technique) 73
Report Builder 381
Reporter (RML utility) 342
reporting database 271
reporting database (database

snapshots) 220
Reporting Services 154, 376
reporting solution 230–231
reports

custom reports 374
disk usage summary 370
query statistics history 371
server activity history 372

REQUEST_MAX_CPU_TIME_
SEC 381

REQUEST_MAX_MEMORY_

REQUEST_MEMORY_GRANT_
TIMEOUT_SEC 381

resource arbitration 80
resource crunch 85
resource flexibility 54
Resource Governor 376

Activity Monitor 332
benefits and limitations 376
classifier function 377–379
CPU considerations 383
effective maximum and

minimums 382
establishing resource

boundaries 388
load testing 384
memory considerations 383
monitoring 387
new in 2008 4
resource pools 377, 382–384
workload groups 377, 380–

382
resource pools (Resource

Governor) 382–384
resource segregation 376
resource starvation 383
resource throttling 383
resource waits 393
RESOURCE_SEMAPHORE_

QUERY_COMPILE 405
response time 38
restoration time 195
restore

complexity 202
differential backup

restore 200
FROM

DATABASE_SNAPSHOT
219

full backup restore 198
online piecemeal restore 72,

212–217
page restore 276
STOPBEFOREMARK 211
support per SQL edition 6
synchronized restores 211
transaction log restore 202
WITH NORECOVERY 200
WITH RECOVERY 202
WITH STOPAT 202

RESTORE DATABASE 198
RESTORE DATABASE FROM

DATABASE
SNAPSHOT 219

RESTORE DATABASE WITH
NORECOVERY 200

RESTORE DATABASE WITH

RESTORE LOG WITH
NORECOVERY 203, 237

RESTORE LOG WITH
RECOVERY 203, 237

RESTORE LOG WITH
STOPAT 203

RESTORE LOG WITH
STOPBEFOREMARK 211

restoring compressed
backups 221

retrospective performance
troubleshooting 348

ribbon cable 16
RID. See row id
role reversal, log shipping 237
role-based security 107–111
roll back 198, 200
roll forward 198, 200
rollback (DBCC) 277
ROLLBACK (DDL Trigger) 116
rollback point 217, 232
rolling back database changes

(database snapshots) 220
root cause analysis 278
row compression 185
row id (RID) 284

lookup 291
row locator 284
ROWGUIDCOL 181
RPC:Completed 335
run as 107
run to cursor 340
runaway query 376
runnable queue 392

S

SA account 65, 97
sampling frequency 349
sampling frequency

(statistics) 323
SAN. See storage area network
SAS. See Serial Attached SCSI
SATA. See Serial ATA
scalability 44
schedulers 392
schema 110
schema binding 301
schema comparison tools 256
SCOM. See Systems Center Oper-

ations Manager
script configuration 236
scripting a trace definition 337
SCSI. See Small Computer Sys-

tems Interface
secondary data file 169
secondary filegroups 176, 217
GRANT_PERCENT 380 PARTIAL 215 sector 32

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX 437

securable 107
secure environment 95
Secure Sockets Layer (SSL) 102
security breach 226
security identifier (SID) 247,

257
security notifications 127
security token 97
seek (index) 284
seek latency 17, 28
selectivity 287, 321
self-managing features 148
self-signed certificates 98, 102
send queue 239
separation of powers 104
sequential I/O 13, 170, 286, 291
Serial ATA (SATA) 16, 170
Serial Attached SCSI (SAS) 17,

170
serializable isolation level 344
server activity (report) 361, 372
server audit specification 112
server components 31
server consolidation 51–56, 62
server load 349
Server Message Block (SMB) 61
server replacement policy 56
server-side trace 337
server sizing 29
server sprawl 51
Server Virtualization Validation

Program (SVVP) 55
service accounts 249, 59, 64,

104
service broker 263
service level agreement

(SLA) 12, 38, 195, 202, 221,
223, 229, 256

service packs 223
application outage 74
installation considerations 74
named instance 62

services (stopping
unnecessary) 144

SET PARTNER FAILOVER 254
SET PARTNER

FORCE_SERVICE_ALLOW
_DATA_LOSS 255

SET PARTNER RESUME 254
SET PARTNER SUSPEND 253
SET STATISTICS IO 309
SET STATISTICS XML 309
set warnings thresholds

(mirroring) 253
setup support files 63
setup support rules 63
SGAM. See shared global alloca-

shared global allocation map
(SGAM) 266

shared lock 344
shared nothing 79
shared percentage (Resource

Governor) 382
shared scalable databases 259
shared storage 80, 228
shell plans 401
shock resistance 28
show execution plan XML 308
SID. See security identifier
side-by-side upgrade

techniques 71
attach/detach 72
backup and restore 72
transaction log backup/

restore 72
transactional replication 73

signal waits 394, 406
signal_wait_time_ms 393
simple parameterization 401
simple recovery model 204
single-column statistics 324
single-user mode 104
sizing database files 168
SLA. See service level agreement
sliding window (disk

backups) 208
sliding windows

(partitioning) 177
Small Computer Systems Inter-

face (SCSI) 16, 170
SMB. See Server Message Block
SMO. See SQL Server Manage-

ment Objects
SNAC. See SQL Server Native Cli-

ent
snapshot backups (SAN) 24
snapshot. See database snapshots
soft error 244
soft NUMA. See non-uniform

memory access
solid-state disks (SSD) 17, 28–30

array 29
sort space 44
SOS_SCHEDULER_YIELD 406
source control 256
sparse file 217
sp_createstats 324
sp_dbcmptlevel 69
sp_dbmmonitoraddmonitoring

252
sp_dbmmonitorchangealert 253
sp_dbmmonitorchangemonitor-

ing 252
sp_dbmmonitordropalert 253
sp_dbmmonitordropmonitoring

sp_dbmmonitorhelpalert 253
sp_dbmmonitorhelpmonitoring

252
sp_dbmmonitorresults 252
sp_dbmmonitorupdate 251
specialization 148
sp_estimate_data_compression_

savings 186–187
spindle-based storage 28
split brain 82
split I/O 35
split mirror backup (SAN) 27
sp_setapprole 110
sp_spaceused 70
sp_syscollector_create_collection

_item 369
sp_syscollector_create_collection

_set 368
sp_trace_create 338
sp_trace_setstatus 338
sp_updatestats 324
SQL Agent job steps 107
SQL compilatons/sec 372, 405
SQL injection 123–124
SQL Mail 125
SQL Operating System

(SQLOS) 391
SQL recompilations/sec 372,

405
SQL Server Agent 356–357

automating jobs 356
event alerts 355
job permissions 105
Powershell job type 166

SQL Server Books Online
(BOL) 9

SQL Server Browser 100
SQL Server Configuration Man-

ager
FileStream configuration 180
network configuration 99
service accounts 105

SQL Server features
new in SQL Server 2008 4
support per SQL edition 5

SQL Server log 270, 357
SQL Server Management

Objects (SMO) 147
SQL Server management

pack 354
SQL Server Management

Studio 423
SQL Server Native Client

(SNAC) 244
SQL Server network name 87
SQL Server Profiler 314, 332,

334–347

tion map 252 SQL slammer worm 101

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX438

SQL Trace 337
SQL trace file 313
SQL:BatchCompleted 335
SQLIO 38, 61
SQLIOSIM 41, 61, 268, 278
SQLOS. See SQL Operating Sys-

tem
sqlos.wait_info 395
SQLskills.com 198
SSD. See solid state disk
SSIS package subsystem 106
SSL. See Secure Sockets Layer
staggered uploads (MDW) 367
standard configuration 150
Standard edition 7
standard server build 56
standby mode 234
startup option 104, 345
StarWind iSCSI software 24
stat_header 324
static ports 100
statistics 320–325, 287

asynchronous statistics
update 322

auto create statistics 321
auto update statistics 321
column statistics 322–323
create statistics 324
DBCC

SHOW_STATISTICS 324
density vector 324
drop statistics 323
filtered indexes 299
fullscan 324
histogram 325
sp_createstats 324
sp_updatestats 324
stat header 324
update statistics 321, 324
updating post upgrade 69

STATISTICS IO 293
STATISTICS XML 308
status bar (Management

Studio) 160
STOPAT 202
storage

bottlenecks 12
cost 199
design 30
formats 16
infrastructure 22
management 23
requirements 27

storage allocation 23
storage area network (SAN) 22

administrator 25
configuring for SQL Server 25

performance testing 27
storage cache 27, 37
storage controller 36
storage virtualization 27
stored procedures 399
streaming events 337
streaming performance

(FileStream) 180
stress testing 349
stripe size 33
striping 20, 26, 36
subplan. See maintenance plans
support lifecycle 74–75
surface area configuration 98,

152, 154
surrogate key 289
SUSER_NAME() 379
SUSER_SNAME() 379
suspect_pages table 210
SVVP. See Server Virtualization

Validation Program
switch speed (networking) 50
symmetric key 120
Symmetric MultiProcessor

(SMP) 48
synchronized backups 211
synchronized restores 211
synchronous database mirroring.

See database mirroring
synonyms 220
sys.database_mirroring 252
sys.database_mirroring_

endpoints 252
sys.database_mirroring_witnesses

252
sys.dm_database_encryption_

keys 121
sys.dm_db_index_operational_

stats 188
sys.dm_db_index_physical_stats

315–316
sys.dm_db_index_usage_stats

188, 304–305
sys.dm_db_missing_index

DMVs 309–313
sys.dm_exec_cached_plans 398,

404
sys.dm_exec_query_plan 404
sys.dm_exec_query_stats 333,

361
sys.dm_exec_sql_text 398
sys.dm_io_virtual_file_stats 332,

411
sys.dm_os_memory_clerks 48
sys.dm_os_performance_

counters 347
sys.dm_os_schedulers 407

sys.dm_os_wait_stats 332, 393
sys.dm_resource_governor_

configuration 387
sys.dm_resource_governor_

resource_pools 388
sys.dm_resource_governor_

workload_groups 388
sys.fn_cdc_map_time_to_lsn 119
sys.fn_xe_file_target_read_file

396
sys.indexes 305
sys.objects 305
sys.schemas 305
sys.sm_db_index_operational_

stats 412
sys.sp_cdc_enable_table 126
sysadmin lock-out 104
system cache 180
system database backup 223
system databases 239
system failures 154
system objects 176
system tables 169
system_health extended

event 397
Systems Center Operations Man-

ager (SCOM) 125, 148, 354

T

table lock (DBCC) 263
table name policy 155
table scan 40, 175, 286
tail log backups 202
tape archive 208
tape backups 207
tape drivers 211
tape rotation policy 209
tape software 211
target (policy-based

management) 151
TCO. See total cost of ownership
TDE. See Transparent Data

Encryption
tempdb 122

allocation contention 171,
266

consolidation
considerations 53

dedicated disks 170
multiple data files 171
presizing files 173
RAID level 19
single vs. multi-instance 53
sizing for DBCC 278
sort_in_tempdb option 320
monitoring tools 27 sys.dm_os_waiting_tasks 395 space required for DBCC 264

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX 439

test data 256
test environments 205
Test Load Agent (Visual Studio

Team System) 343
testing strategy (database

snapshots) 220
text data type 178
third-party backup compression

tools 208, 221
thread pooling 135
threads 134
timestamp 117
toggle breakpoint 340
total cost of ownership

(TCO) 24
TPC. See Transaction Processing

Performance Council
TPC-C 45
trace

definition 337
file 313
filter 335
flag 3604 275
flags 345
process 332
properties 335
replay 338
template 335

track 32
track-aligning partitions 33
track_waitstats 394
transaction

performance 238
profile 38
rate 37
response time 26, 242
safety 238
throughput 16, 241

transaction (DBCC) 277
transaction duration 37
transaction latency 231, 242
transaction log

backup frequency 201
backups 198, 200
bottleneck 37
Bulk_Logged backup 206
checkpoint 140
dedicated disks 16
described 197
growth 198
log chain 200
log sequence number

(LSN) 198
LUN configuration 26
marking WITH MARK 211
purpose and usage 200
recovery interval 140

roll back 140
roll forward 140
tail log backups 202
volume separation 170

transaction log backup 200–203
transaction log marks 211
transaction performance

targets 229
Transaction Processing Perfor-

mance Council (TPC) 18
transactional consistency

(BLOBs) 182
transactional replication 340
transactionally consistent 179,

197, 273
transactions/sec 372
Transparent Data Encryption

(TDE) 102, 120–123, 182,
223

support per SQL edition 7
triple DES 120
trustworthy computing

initiative 124
TSQL_Replay template 339
tuning advisor. See Database

Engine Tuning Advisor

U

Ultra320 SCSI 17
UMS. See User Mode Scheduler
unattended installation 67
unexpected outage 226
uniform extent 266
unique constraint 285
UNIQUEIDENTIFIER 181
uniqueifier 285
unpredictable performance 376
unrestored log 253
unsent log 253
UPDATE STATISTICS 321, 324
Upgrade Advisor 68
upgrade solution 232
upgrade technical reference

guide 68
upgrading to SQL Server 2008

in-place upgrade 70
side-by-side upgrade 71–73
Upgrade Advisor 68–70
upgrade technical reference

guide 68
UPS 37
usable life (SSD) 29
USE PLAN 402
usecount 400
user connections 143
user connections (report) 372

User Mode Scheduler
(UMS) 391

user objects 169
user/schema separation 110
user_lookups. See

sys.dm_db_index_usage_
stats

user_scans. See
sys.dm_db_index_usage_
stats

user_seeks. See
sys.dm_db_index_usage_
stats

user_updates. See
sys.dm_db_index_usage_
stats

V

varbinary(max) data type 178
varchar(max) data type 178
VDI. See Virtual Device Interface
vendor support 74
very large database (VLDB) 212
Virtual Device Interface

(VDI) 23
virtual LAN (VLAN) 92
virtual machines (VM) 53
virtual server 79
virtualization 51–56, 70
virtualized RAID 15, 19
virtualized storage 169
virus scanners 41
Visual Studio Team System Data-

base Edition 256
VLAN. See virtual LAN
VLDB. See very large database
VM. See virtual machines
VMWare. See virtualization
volume separation 169
volume test environment 314
V-RAID. See virtualized RAID

W

wait category 332
wait list 392
waiting_tasks_count 393
waits 372

observing with Activity
Monitor 332

observing with
sys.dm_os_wait_stats 393

waits and queues tuning
methodology 392

wait_time_ms 393

restore 202 user mode 136 wait_type 393

Licensed to Gayle M. Noll <pedbro@gmail.com>

INDEX440

WAN. See wide area network
warm standby 236, 238
_WA_Sys 322
Web edition 8
weekly tasks 420
wide area network (WAN) 243
Windows administrator 104
Windows authentication 65, 97,

160
Windows authentication

mode 97
Windows event log 162, 270, 357
Windows installer 62
Windows Management Instru-

mentation (WMI) 61, 162
Windows Server 2008 61

clustering improvements 81

WMI Query Language
(WQL) 162

WMI. See Windows Management
Instrumentation

worker threads 255
Workgroup edition 7
working relationship 26
workload analysis 334
workload classification 14
workload groups (Resource

Governor) 380–382
worst practices 417
WQL. See WMI Query Language
write balancing (SSD) 29
write burst 37
write cache 37, 172
write ordering 28

write performance 37
WRITELOG 410

X

Xeon 45
XML indexes 264
XML policy files 158
xp_cmdshell 105, 125, 152
XPCmdShellEnabled 152

Z

ZBR. See zoned-bit recording
zero data loss 238, 242
zero padding files 174
zoned-bit recording (ZBR) 32
WITH RECOMPILE 400 write overhead (RAID) 21 zoning 27

Licensed to Gayle M. Noll <pedbro@gmail.com>

ISBN 13: 978-1-933988-72-6

ISBN 10: 1-933988-72-X

9 781933 988726

99445

E
nsuring databases are secure, available, reliable, and recoverable
are core DBA responsibilities. Th is is a uniquely practical book
that drills down into techniques, procedures, and practices that

will keep your databases running like clockwork.

Open SQL Server 2008 Administration in Action and fi nd sharply
focused and practical coverage of

Selecting and confi guring server components
 Confi guring RAID arrays
 Working with SANs and NUMA hardware
New features in SQL Server 2008
 Policy-based management
 Resource Governor
 Management Data Warehouse
And much more!
 Performance tuning techniques
 Index design and maintenance
 SQL Server clustering and database mirroring
 Backup and restore

Th e techniques and practices covered in this book are drawn from
years of experience in some of the world’s most demanding SQL Server
environments. It covers new features of SQL Server 2008 in depth.
Its best practices apply to all SQL Server versions.

Rod Colledge is an SQL Server consultant based in
Brisbane, Australia, and founder of sqlCrunch.com,
a site specializing in SQL Server best practices. He’s
a frequent speaker at SQL Server user groups and
conferences.

For online access to the author, code samples, and
a free ebook for owners of this book, go to:

www.manning.com/SQLServer2008AdministrationinAction

$44.99 / Can $56.99 [INCLUDING eBOOK]

SQL Server 2008 Administration IN ACTION

SQL SERVER/DATABASE

Rod Colledge Foreword by Kevin Kline

“Simply loaded with excellent
 and immediately useful
 information.”
 —From the Foreword by Kevin Kline,
 Technical Strategy Manager,
 Quest Soft ware

“I thought I knew SQL Server
 until I read this book.”
 —Tariq Ahmed, coauthor of
 Flex 4 in Action

“A refreshing database
 administration book.”
 —Michael Redman, Principal
 Consultant (SQL Server),
 Microsoft

“Required for any MS DBA.”
 —Andrew Siemer, Architect,
 OTX Research

“It delivered way beyond my
 expectations... Packed with
 useful enterprise-level
 knowledge.”
 —Darren Neimke, Author of
 ASP.NET 2.0 Web Parts in Action

M A N N I N G

SEE INSERT

	SQL Server 2008 Administration in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	about the cover illustration
	about the author
	Part 1 Planning and installation
	Chapter 1 The SQL Server landscape
	1.1 SQL Server 2008: evolution or revolution?
	1.2 Editions and features
	1.3 SQL Server tools
	1.4 DBA responsibilities

	Chapter 2 Storage system sizing
	2.1 Characterizing I/O workload
	2.2 Determining the required number of disks and controllers
	2.3 Selecting the appropriate RAID level
	2.4 Selecting an appropriate storage system
	2.5 SQL Server and SANs
	2.6 Solid-state disks
	2.7 Best practice considerations: storage system sizing

	Chapter 3 Physical server design
	3.1 Disk configuration
	3.2 CPU architecture
	3.3 Memory configuration
	3.4 Networking components
	3.5 Server consolidation and virtualization
	3.6 Best practice considerations: physical server design

	Chapter 4 Installing and upgrading SQL Server 2008
	4.1 Preparing for installation
	4.2 Installing SQL Server
	4.3 Upgrading to SQL Server 2008
	4.4 Developing a service pack upgrade strategy
	4.5 Best practice considerations: installing and upgrading SQL Server

	Chapter 5 Failover clustering
	5.1 Clustering overview
	5.2 Clustering topologies and failover rules
	5.3 Installing a clustered SQL Server instance
	5.4 Best practice considerations: failover clustering

	Part 2 Configuration
	Chapter 6 Security
	6.1 Authentication mode
	6.2 Networking
	6.3 Implementing least privilege
	6.4 Auditing
	6.5 Data encryption
	6.6 SQL injection protection
	6.7 Best practice considerations: security

	Chapter 7 Configuring SQL Server
	7.1 Memory configuration
	7.2 CPU configuration
	7.3 Server configuration
	7.4 Operating system configuration
	7.5 Best practice considerations: configuring SQL Server

	Chapter 8 Policy-based management
	8.1 Server management challenges
	8.2 Policy-based management terms
	8.3 Policies in action
	8.4 Enterprise policy management
	8.5 Advanced policy-based management
	8.6 Best practice considerations: policy-based management

	Chapter 9 Data management
	9.1 Database file configuration
	9.2 Filegroups
	9.3 BLOB storage with FileStream
	9.4 Data compression
	9.5 Best practice considerations: data management

	Part 3 Operations
	Chapter 10 Backup and recovery
	10.1 Backup types
	10.2 Recovery models and data loss exposure
	10.3 Backup options
	10.4 Online piecemeal restores
	10.5 Database snapshots
	10.6 Backup compression
	10.7 Best practice considerations: backup and recovery

	Chapter 11 High availability with database mirroring
	11.1 High-availability options
	11.2 Transaction log shipping
	11.3 Database mirroring overview
	11.4 Mirroring modes
	11.5 Failover options
	11.6 Mirroring in action
	11.7 Best practice considerations: high availability

	Chapter 12 DBCC validation
	12.1 DBCC validation overview
	12.2 Preventing and detecting corruption
	12.3 Controlling CHECKDB impact
	12.4 Removing corruption
	12.5 Best practice considerations: DBCC validation

	Chapter 13 Index design and maintenance
	13.1 An introduction to indexes
	13.2 Index design
	13.3 Index analysis
	13.4 Index maintenance
	13.5 Managing statistics
	13.6 Best practice considerations: index design and maintenance

	Chapter 14 Monitoring and automation
	14.1 Activity Monitor
	14.2 SQL Server Profiler
	14.3 Performance Monitor
	14.4 Task automation and alerts
	14.5 Best practice considerations: monitoring and automation

	Chapter 15 Data Collector and MDW
	15.1 Component overview
	15.2 Setup and configuration
	15.3 Data collection
	15.4 Custom collection sets
	15.5 Reporting
	15.6 Best practice considerations: Data Collector and MDW

	Chapter 16 Resource Governor
	16.1 Resource Governor overview
	16.2 Classifier function
	16.3 Workload groups
	16.4 Resource pools
	16.5 Resource Governor in action
	16.6 Monitoring resource usage
	16.7 Best practice considerations: Resource Governor

	Chapter 17 Waits and queues: a performance-tuning methodology
	17.1 SQLOS schedulers
	17.2 Wait analysis
	17.3 Common performance problems
	17.4 Waits, queues, and DMV cross-reference
	17.5 Best practice considerations: performance tuning

	Appendix A: Top 25 DBA worst practices
	Appendix B: Suggested DBA work plan
	Appendix C: Common Performance Monitor counters
	Appendix D: Top 10 Management Studio enhancements
	Appendix E: Date/time data types in SQL Server 2008

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back Cover

