
SQL on
Big Data

Technology, Architecture, and Innovation
—
Sumit Pal

www.allitebooks.com

http://www.allitebooks.org

 SQL on Big Data

 Technology, Architecture, and
Innovation

Sumit Pal

www.allitebooks.com

http://www.allitebooks.org

SQL on Big Data: Technology, Architecture, and Innovation

Sumit Pal
Wilmington, Massachusetts, USA

ISBN-13 (pbk): 978-1-4842-2246-1 ISBN-13 (electronic): 978-1-4842-2247-8
DOI 10.1007/978-1-4842-2247-8

 Library of Congress Control Number: 2016958437

Copyright © 2016 by Sumit Pal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Developmental Editor: Laura Berendson
Technical Reviewer: Dinesh Lokhande
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Michael G. Laraque
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Selected by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ .

 Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.allitebooks.org

 I would like to dedicate this book to everyone and everything that made me capable
of writing it. I would like to dedicate it to everyone and everything that destroyed

me—taught me a lesson—and everything in me that forced me to rise, keep looking
ahead, and go on.

 Arise! Awake! And stop not until the goal is reached!

 —Swami Vivekananda

 Success is not fi nal, failure is not fatal: it is the courage to
continue that counts.

 —Winston Churchill

 Formal education will make you a living; self-education will
make you a fortune.

 —Jim Rohn

 Nothing in the world can take the place of Persistence. Talent will not; nothing is
more common than unsuccessful men with talent. Genius will not; unrewarded genius

is almost a proverb. Education will not; the world is full of educated derelicts. Per-
sistence and Determination alone are omnipotent. The slogan “Press On” has solved

and always will solve the problems of the human race.

 —Calvin Coolidge, 30th president of the United States

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgements ... xv

Introduction ... xvii

 ■Chapter 1: Why SQL on Big Data? ... 1

 ■Chapter 2: SQL-on-Big-Data Challenges & Solutions 17

 ■Chapter 3: Batch SQL—Architecture .. 35

 ■Chapter 4: Interactive SQL—Architecture 61

 ■ Chapter 5: SQL for Streaming, Semi-Structured, and
Operational Analytics ... 97

 ■Chapter 6: Innovations and the Road Ahead 127

 ■Chapter 7: Appendix ... 147

Index .. 153

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgements ... xv

Introduction ... xvii

 ■Chapter 1: Why SQL on Big Data? ... 1

Why SQL on Big Data? ... 3

Why RDBMS Cannot Scale .. 4

SQL-on-Big-Data Goals ... 4

SQL-on-Big-Data Landscape ... 7

Open Source Tools .. 9

Commercial Tools ... 11

Appliances and Analytic DB Engines .. 13

How to Choose an SQL-on-Big-Data Solution 14

Summary ... 15

 ■Chapter 2: SQL-on-Big-Data Challenges & Solutions 17

Types of SQL .. 17

Query Workloads ... 18

Types of Data: Structured, Semi-Structured, and Unstructured 20

Semi-Structured Data ... 20

Unstructured Data .. 20

www.allitebooks.com

http://www.allitebooks.org

viii

■ CONTENTS

How to Implement SQL Engines on Big Data ... 20

SQL Engines on Traditional Databases ... 21

How an SQL Engine Works in an Analytic Database ... 22

Approaches to Solving SQL on Big Data ... 24

Approaches to Reduce Latency on SQL Queries ... 25

Summary ... 33

 ■Chapter 3: Batch SQL—Architecture .. 35

Hive ... 35

Hive Architecture Deep Dive ... 36

How Hive Translates SQL into MR ... 37

Analytic Functions in Hive .. 40

ACID Support in Hive... 43

Performance Improvements in Hive ... 47

CBO Optimizers ... 56

Recommendations to Speed Up Hive ... 58

Upcoming Features in Hive ... 59

Summary ... 59

 ■Chapter 4: Interactive SQL—Architecture 61

Why Is Interactive SQL So Important? ... 61

SQL Engines for Interactive Workloads ... 62

Spark .. 62

Spark SQL ... 64

General Architecture Pattern .. 70

Impala ... 71

Impala Optimizations .. 74

Apache Drill .. 78

Vertica... 83

Jethro Data ... 87

Others ... 89

www.allitebooks.com

http://www.allitebooks.org

ix

■ CONTENTS

MPP vs. Batch—Comparisons .. 89

Capabilities and Characteristics to Look for in the SQL Engine 91

Summary ... 95

 ■ Chapter 5: SQL for Streaming, Semi-Structured, and
Operational Analytics ... 97

SQL on Semi-Structured Data ... 97

Apache Drill—JSON ... 98

Apache Spark—JSON .. 101

Apache Spark—Mongo .. 103

SQL on Streaming Data ... 104

Apache Spark ... 105

PipelineDB .. 107

Apache Calcite .. 109

SQL for Operational Analytics on Big Data Platforms 111

Trafodion ... 112

Optimizations .. 117

Apache Phoenix with HBase ... 118

Kudu ... 122

Summary ... 126

 ■Chapter 6: Innovations and the Road Ahead 127

BlinkDB .. 127

How Does It Work ... 129

Data Sample Management ... 129

Execution .. 130

GPU Is the New CPU—SQL Engines Based on GPUs .. 130

MapD (Massively Parallel Database) ... 131

Architecture of MapD .. 132

GPUdb .. 133

www.allitebooks.com

http://www.allitebooks.org

x

■ CONTENTS

SQream.. 133

Apache Kylin .. 134

Apache Lens .. 137

Apache Tajo ... 139

HTAP .. 140

Advantages of HTAP .. 143

TPC Benchmark ... 144

Summary ... 145

 ■Appendix ... 147

Index .. 153

www.allitebooks.com

http://www.allitebooks.org

xi

 About the Author

 Sumit Pal is an independent consultant working with
big data and data science. He works with multiple
clients, advising them on their data architectures and
providing end-to-end big data solutions, from data
ingestion to data storage, data management, building
data flows and data pipelines, to building analytic
calculation engines and data visualization. Sumit has
hands-on expertise in Java, Scala, Python, R, Spark, and
NoSQL databases, especially HBase and GraphDB.
He has more than 22 years of experience in the software
industry across various roles, spanning companies from
startups to enterprises, and holds an M.S. and B.S. in
computer science.

 Sumit has worked for Microsoft (SQL Server
Replication Engine development team), Oracle (OLAP
development team), and Verizon (big data analytics).

He has extensive experience in building scalable systems across the stack, from middle
tier and data tier to visualization for analytics. Sumit has significant expertise in database
internals, data warehouses, dimensional modeling, and working with data scientists to
implement and scale their algorithms.

 Sumit has also served as Chief Architect at ModelN/LeapFrogRX, where he
architected the middle tier core analytics platform with open source OLAP engine
(Mondrian) on J2EE and solved some complex ETL, dimensional modeling, and
performance optimization problems.

 He is an avid badminton player and won a bronze medal at the Connecticut Open,
2015, in the men’s single 40–49 category. After completing the book - Sumit - hiked to
Mt. Everest Base Camp in Oct, 2016.

 Sumit is also the author of a big data analyst training course for Experfy. He actively
blogs at sumitpal.wordpress.com and speaks at big data conferences on the same topic
as this book. He is also a technical reviewer on multiple topics for several technical book
publishing companies.

www.allitebooks.com

http://www.allitebooks.org

xiii

 About the Technical Reviewer

 Dinesh Lokhande Distinguished Engineer, Big Data &
Artificial Intelligence, Verizon Labs, is primarily focused
on building platform infrastructure for big data
analytics solutions across multiple domains. He has
been developing products and services using Hive,
Impala, Spark, NoSQL databases, real-time data
processing, and Spring-based web platforms. He has
been at the forefront in exploring SQL solutions that
work across Hadoop, NoSQL, and other types of sources.
He has a deep passion for exploring new technologies,
software architecture, and developing proof of concepts
to share value propositions.

 Dinesh holds a B.E. in electronics and
communications from the Indian Institute of Technology (IIT), Roorkee, India, and an
M.B.A. from Babson College, Massachusetts.

xv

 Acknowledgments

 I would like to thank Susan McDermott at Apress, who approached me to write this book
while I was speaking at a conference in Chicago in November 2015. I was enthralled with
the idea and took up the challenge. Thank you, Susan, for placing your trust in me and
guiding me throughout this process.

 I would like to express my deepest thanks to Dinesh Lokhande, my friend and
former colleague, who so diligently reviewed the book and extended his immense help in
creating most of the diagrams illustrating its different chapters. Thank you, Dinesh.

 My heartfelt thanks to everyone on the Apress team who helped to make this book
successful and bring it to market.

 Thanks to everyone who has inspired, motivated, and helped me—both
anonymously and in other ways—over the years to mold my career, my thought process,
and my attitude to life and humanity and the general idea of happiness and well-being,
doing good, and helping all in whatever little ways I can and, above all, being humble and
respectful of all living beings.

 Thank you to all who buy and read this book. I hope it will help you to extend your
knowledge, grow professionally, and be successful in your career.

xvii

 Introduction

 Hadoop, the big yellow elephant that has become synonymous with big data, is here to
stay. SQL (Structured Query Language), the language invented by IBM in the early 1970s,
has been with us for the past 45-plus years or so. SQL is the most popular data language,
and it is used by software engineers, data scientists, and business analysts and quality
assurance professionals whenever they interact with data.

 This book discusses the marriage of these two technologies. It consolidates SQL
and the big data landscape. It provides a comprehensive overview, at a technology and
architecture level, of different SQL technologies on big data tools, products, and solutions.
It discusses how SQL is not just being used for structured data but also for semi-
structured and streaming data. Big data tools are also rapidly evolving in the operational
data space. The book discusses how SQL, which is heavily used in operational systems
and operational analytics, is also being adopted by new big data tools and frameworks to
expand usage of big data in these operational systems.

 After laying out, in the first two chapters, the foundations of big data and SQL and
why it is needed, the book delves into the meat of the related products and technologies.
The book is divided into sections that deal with batch processing, interactive processing,
streaming and operational processing of big data with SQL. The last chapter of the book
discusses the rapid advances and new innovative products in this space that are bringing
in new ideas and concepts to build newer and better products to support SQL on big data
with lower latency.

 The book is targeted to beginner, intermediate, and some advanced-level developers
who would like a better understanding of the landscape of SQL technologies in the big
data world.

 Sumit can be contacted at palsumitpal@gmail.com .

1© Sumit Pal 2016
S. Pal, SQL on Big Data, DOI 10.1007/978-1-4842-2247-8_1

 CHAPTER 1

 Why SQL on Big Data?

 This chapter discusses the history of SQL on big data and why SQL is so essential for
commoditization and adoption of big data in the enterprise. The chapter discusses how
SQL on big data has evolved and where it stands today. It discusses why the current breed
of relational databases cannot live up to the requirements of volume, speed, variability,
and scalability of operations required for data integration and data analytics. As more
and more data is becoming available on big data platforms, business analysts, business
intelligence (BI) tools, and developers all must have access to it, and SQL on big data
provides the best way to solve the access problem. This chapter covers the following:

• Why SQL on big data?

• SQL on big data goals

• SQL on big data landscape—commercial and open source tools

• How to choose an SQL on big data

 The world is generating humongous amount of data. Figure 1-1 shows the amount of
data being generated over the Internet every minute. This is just the tip of the iceberg. We
do not know how much more data is generated and traverses the Internet in the deep Web.

CHAPTER 1 ■ WHY SQL ON BIG DATA?

2

 All the data generated serves no purpose, unless it is processed and used to gain
insights and data-driven products based on those insights.

 SQL has been the ubiquitous tool to access and manipulate data. It is no longer a
tool used only by developers and database administrators and analysts. A vast number
of commercial and in-house products and applications use SQL to query, manipulate,
and visualize data. SQL is the de facto language for transactional and decision support
systems and BI tools to access and query a variety of data sources.

 Figure 1-1. Data generated on the Internet in a minute

CHAPTER 1 ■ WHY SQL ON BIG DATA?

3

 Why SQL on Big Data?
 Enterprise data hubs are being created with Hadoop and HDFS as a central data
repository for data from various sources, including operational systems, social media, the
Web, sensors, smart devices, as well as applications. Big data tools and frameworks are
then used to manage and run analytics to build data-driven products and gain actionable
insights from this data. 1

 Despite its power, Hadoop has remained a tool for data scientists and developers and
is characterized by the following:

• Hadoop is not designed to answer analytics questions at business speed.

• Hadoop is not built to handle high-volume user concurrency.

 In short, Hadoop is not consumable for business users.
 With increasing adoption of big data tools by organizations, enterprises must figure

out how to leverage their existing BI tools and applications to overcome challenges
associated with massive data volumes, growing data diversity, and increasing information
demands. Existing enterprise tools for transactional, operational, and analytics workloads
struggle to deliver, suffering from slow response times, lack of agility, and an inability
to handle modern data types and unpredictable workload patterns. As enterprises start
to move their data to big data platforms, a plethora of SQL–on–big data technologies
has emerged to solve the challenges mentioned. The “SQL on big data” movement has
matured rapidly, though it is still evolving, as shown in Figure 1-2 .

 Hadoop is designed to work with any data type—structured, unstructured, semi-
structured—which makes it very flexible, but, at the same time, working with it becomes
an exercise to use the lowest level APIs. This comprised a steep learning curve and makes
writing simple operations very time-consuming, with voluminous amounts of code. Hadoop’s
architecture leads to an impedance mismatch between data storage and data access.

 While unstructured and streaming data types get a lot of attention for big data
workloads, a majority of enterprise applications still involve working with data that keeps
their businesses and systems working for their organizational purposes, also referred
to as operational data. Until a couple of years ago, Hive was the only available tool to
perform SQL on Hadoop. Today, there are more than a dozen competing commercial and
open source products for performing SQL on big data. Each of these tools competes on
latency, performance, scalability, compatibility, deployment options, and feature sets.

 Figure 1-2. SQL tools on big data—a time line

 1 Avrilia Floratou, Umar Farooq Minhas, and Fatma Özcan, “SQL-on-Hadoop: Full Circle Back to
Shared-Nothing Database Architectures,” http://www.vldb.org/pvldb/vol7/p1295-floratou.pdf , 2014.

http://www.vldb.org/pvldb/vol7/p1295-floratou.pdf

CHAPTER 1 ■ WHY SQL ON BIG DATA?

4

 Traditionally, big data tools and technologies have mostly focused on building
solutions in the analytic space, from simple BI to advanced analytics. Use of big data
platforms in transactional and operational systems has been very minimal. With changes
to SQL engines on Hadoop, such as Hive 0.13 and later versions supporting transactional
semantics and the advent of open source products like Trafodion, and vendors such as
Splice Machines, building operational systems based on big data technologies seems to
be a possibility now.

 SQL on big data queries fall broadly into five different categories:

• Reporting queries

• Ad hoc queries

• Iterative OLAP (OnLine Analytical Processing) queries

• Data mining queries

• Transactional queries

 Why RDBMS Cannot Scale
 Traditional database systems operate by reading data from disk, bringing it across an
I/O (input/output) interconnect, and loading data into memory and into a CPU cache
for data processing. Transaction processing applications, typically called OnLine
Transactional Processing (OLTP) systems, have a data flow that involves random I/O.
When data volumes are larger, with complex joins requiring multiphase processing,
data movement across backplanes and I/O channels works poorly. RDBMS (Relational
Database Management Systems) were initially designed for OLTP-based applications.

 Data warehousing and analytics are all about data shuffling—moving data through
the processing engine as efficiently as possible. Data throughput is a critical metric in
such data warehouse systems. Using RDBMS designed for OLTP applications to build and
architect data warehouses results in reduced performance.

 Most shared memory databases, such as MySQL, PostgreSQL, and SQL Server
databases, start to encounter scaling issues at terabyte size data without manual sharding.
However, manual sharding is not a viable option for most organizations, as it requires
a partial rewrite of every application. It also becomes a maintenance nightmare to
periodically rebalance shards as they grow too large.

 Shared disk database systems, such as Oracle and IBM DB2, can scale up beyond
terabytes, using expensive, specialized hardware. With costs that can exceed millions per
server, scaling quickly becomes cost-prohibitive for most organizations.

 SQL-on-Big-Data Goals
 A SQL on-big-data solution has many goals, including to do exactly the same kind of
operations as in a traditional RDBMS, from an OLTP perspective or an OLAP/analytic
queries perspective. This book focuses on the analytic side of SQL-on-big-data solutions,
with architectural explanations for low-latency analytic queries. It also includes sections
to help understand how traditional OLTP-based solutions are implemented with SQL-on-
big-data solutions.

CHAPTER 1 ■ WHY SQL ON BIG DATA?

5

 Some of the typical goals of an SQL-on-big-data solution include the following:

• Distributed, scale-out architecture : The idea is to support SQL on
distributed architectures to scale out data storage and compute
across clusters of machines. Before the advent of SQL on big data,
distributed architectures for storage and to compute were far and
few and extremely expensive.

 Databases such as SQLServer, MySQL, and Postgres can’t
scale out without the heavy coding required to manually
shard and use the sharding logic at the application tier. Shared
disk databases such as Oracle or IBM DB2 are too expensive
to scale out, without spending millions on licensing.

• Avoid data movement from HDFS (Hadoop Distributed File
System) to external data stores : One of the other goals of
developing an SQL-on-big-data solution is to prevent data
movement from the data hub (HDFS) to an external store for
performing analytics. An SQL engine that could operate with
the data stored in the data node to perform the computation
would result in a vastly lower cost of data storage and also avoid
unnecessary data movement and delays to another data store for
performing analytics.

• An alternative to expensive analytic databases and appliances :
Support low-latency scalable analytic operations on large data
sets at a lower cost. Existing RDBMS engines are vertically scaled
machines that reach a ceiling in performance and scalability after
a certain threshold in data size. The solution was to invest in either
appliances that were extremely costly MPP (Massively Parallel
Processing) boxes with innovative architectures and solutions or
using scalable distributed analytic databases that were efficient,
based on columnar design and compression.

• Immediate availability of ingested data : The SQL on big data
has a design goal of accessing data as it is written, directly on
the storage cluster, instead of taking it out of the HDFS layer
and persisting it in a different system for consumption. This
can be called a “query-in-place” approach, and its benefits are
significant.

• Agility is enhanced, as consumption no longer requires
schema, ETL, and metadata changes.

• Lower operational cost and complexity result, as there is no
need to maintain a separate analytic database and reduce
data movement from one system to another. There is cost
savings of storage, licenses, hardware, process, and people
involved in the process.

CHAPTER 1 ■ WHY SQL ON BIG DATA?

6

• Data freshness is dramatically increased, as the data is
available for querying as soon as it lands in the data hub
(after initial cleansing, de-duplication, and scrubbing).
Bringing SQL and BI workloads directly on the big data
cluster results in a near-real-time analysis experience and
faster insights.

• High concurrency of end users : Another goal of SQL on big data
is to support SQL queries on large data sets for large number of
concurrent users. Hadoop has never been very good at handling
concurrent users—either for ad hoc analysis or for ELT/ETL
(Extract, Load, Transform) -based workloads. Resource allocation
and scheduling for these types of workloads have always been a
bottleneck.

• Low latency : Providing low latency on ad hoc SQL queries on
large data sets has always been a goal for most SQL-on-big-data
engines. This becomes even more complex when velocity and
variety aspects of big data are being addressed through SQL
queries. Figure 1-3 shows how latency is inherently linked to our
overall happiness.

 Figure 1-3. Latency and happiness

CHAPTER 1 ■ WHY SQL ON BIG DATA?

7

• Unstructured data processing : With the schema-on-demand
approach in Hadoop, data is written to HDFS in its “native”
format. Providing access to semi-structured data sets based on
JSON/XML through an SQL query engine serves two purposes: it
becomes a differentiator for an SQL-on-big-data product, and it
also allows existing BI tools to communicate with these semi-
structured data sets, using SQL.

• Integrate—with existing BI tools : The ability to seamlessly
integrate with existing BI tools and software solutions. Use
existing SQL apps and BI tools and be productive immediately, by
connecting them to HDFS.

 SQL-on-Big-Data Landscape
 There is huge excitement and frantic activity in the field of developing SQL solutions
for big data/Hadoop. A plethora of tools has been developed, either by the open source
community or by commercial vendors, for making SQL available on the big data platform.
This is a fiercely competitive landscape wherein each tool/vendor tries to compete on any
of the given dimensions: low latency, SQL feature set, semi-structured or unstructured
data handling capabilities, deployment/ease of use, reliability, fault tolerance, in-
memory architecture, and so on. Each of these products and tools in the market has been
innovated either with a totally new approach to solving SQL-on-big-data problems or has
retrofitted some of the older ideas from the RDBMS world in the world of big data storage
and computation.

 However, there is one common thread that ties these tools together: they work on
large data sets and are horizontally scalable.

 SQL-on-big-data systems can be classified into two categories: native Hadoop-based
systems and database-Hadoop hybrids, in which the idea is to integrate existing tools
with the Hadoop ecosystem to perform SQL queries. Tools such as Hive belong to the first
category, while tools such as Hadapt, Microsoft PolyBase, and Pivotal’s HAWQ belong
to the second category. These tools heavily use the in-built database query optimization
techniques—a thoroughly researched area since the 1970s—and planning to schedule
query fragments and directly read HDFS data into database workers for processing.

 Analytic appliance-based products have developed connectors to big data storage
systems, whether it is HDFS or NoSQL databases, and they work by siphoning off the data
from these storage systems and perform the queries within the appliance’s proprietary
SQL engine.

 In this section, let’s look at the available products for SQL on big data—both open
source and commercial.

 Figure 1-4 shows some of the SQL engines and products that work on a big data
platform. Tools on the right show open source products, while those on the left indicate
commercial products.

CHAPTER 1 ■ WHY SQL ON BIG DATA?

8

 Figure 1-5 shows the same tools as in Figure 1-4 but categorized based on their
architecture and usage.

 Figure 1-5. SQL on Hadoop landscape, by architectural category

 Figure 1-4. SQL on Hadoop landscape

CHAPTER 1 ■ WHY SQL ON BIG DATA?

9

 Open Source Tools
 Apache Drill
 An open source, low-latency SQL query engine for big data for interactive SQL analytics
at scale, Apache Drill has the unique ability to discover schemas on read, with data
discovery and exploration capabilities on data in multiple formats residing either in flat
files, HDFS, or any file system and NoSQL databases.

 Apache Phoenix
 This is a relational layer over HBase packaged as a client-embedded JDBC driver targeting
low-latency queries over HBase. Phoenix takes SQL query, compiles it to a set of HBase
scans, and coordinates running of scans and outputs JDBC result sets.

 Apache Presto
 An open source distributed SQL query engine for interactive analytics against a variety of
data sources and sizes, Presto allows querying data in place, including Hive, Cassandra,
relational databases, or even proprietary data stores. A query in Presto can combine data
from multiple sources. Presto was architected for interactive ad hoc SQL analytics for
large data sets.

 BlinkDB
 A massively parallel probabilistic query engine for interactive SQL on large data sets,
BlinkDB allows users to trade off accuracy for response time within error thresholds.
It runs queries on data samples and presents results annotated with meaningful error
thresholds. BlinkDB uses two key ideas: (1) a framework that builds and maintains
samples from original data, and (2) a dynamic sample selection at runtime, based on a
query’s accuracy and/or response time requirements.

 Impala
 Impala is an MPP-based SQL query engine that provides high-performance, low-
latency SQL queries on data stored in HDFS in different file formats. Impala integrates
with the Apache Hive metastore and provides a high level of integration with Hive
and compatibility with the HiveQL syntax. The Impala server is a distributed engine
consisting of daemon processes, such as the Impala deamon itself and the catalog
service, and statestore deamons.

CHAPTER 1 ■ WHY SQL ON BIG DATA?

10

 Hadapt
 Hadapt is a cloud-optimized system offering an analytical platform for performing
complex analytics on structured and unstructured data with low latency. Hadapt
integrates the latest advances in relational DBMS with the Map-Reduce distributed
computing framework and provides a scalable low-latency, fast analytic database. Hadapt
offers rich SQL support and the ability to work with all data in one platform.

 Hive
 One of the first SQL engines on Hadoop, Hive was invented at Facebook in 2009–2010
and is still one of the first tools everyone learns when starting to work with Hadoop. Hive
provides SQL interface to access data in HDFS. Hive has been in constant development,
and new features are added in each release. Hive was originally meant to perform read-
only queries in HDFS but can now perform both updates and ACID transactions on
HDFS.

 Kylin
 Apache Kylin is an open source distributed OLAP engine providing SQL interface and
multidimensional analysis on Hadoop, supporting extremely large data sets. Kylin is
architected with Metadata Engine, Query Engine, Job Engine, and Storage Engine. It also
includes a REST Server, to service client requests.

 Tajo
 Apache Tajo is a big data relational and distributed data warehouse for Hadoop. It is
designed for low-latency, ad-hoc queries, to perform online aggregation and ETL on
large data sets stored on HDFS. Tajo is a distributed SQL query processing engine with
advanced query optimization, to provide interactive analysis on reasonable data sets. It
is ANSI SQL compliant, allows access to the Hive metastore, and supports various file
formats.

 Spark SQL
 Spark SQL allows querying structured and unstructured data within Spark, using SQL.
Spark SQL can be used from within Java, Scala, Python, and R. It provides a uniform
interface to access a variety of data sources and file formats, such as Hive, HBase,
Cassandra, Avro, Parquet, ORC, JSON, and relational data sets. Spark SQL reuses the Hive
metastore with access to existing Hive data, queries, and UDFs. Spark SQL includes a
cost-based optimizer and code generation to make queries fast and scales to large data
sets and complex analytic queries.

CHAPTER 1 ■ WHY SQL ON BIG DATA?

11

 Spark SQL with Tachyon
 Spark SQL can be made faster with low latency and more interactivity by using Tachyon,
an in-memory file system, to store the intermediate results. This is not a product/tool by
itself but an architectural pattern to solve low-latency SQL queries on massive data sets.
This combination has been used heavily at Baidu to support data warehouses and ad hoc
queries from BI tools.

 Splice Machine
 Splice Machine is a general-purpose RDBMS, a unique hybrid database that combines
the advantages of SQL, the scale-out of NoSQL, and the performance of in-memory
technology. As a general-purpose database platform, it allows real-time updates with
transactional integrity and distributed, parallelized query execution and concurrency. It
provides ANSI SQL and ACID transactions of an RDBMS on the Hadoop ecosystem.

 Trafodion
 Apache Trafodion is a web scale SQL-on-Hadoop solution enabling transactional or
operational workloads on Hadoop. It supports distributed ACID transaction protection
across multiple statements, tables, and rows. It provides performance improvements
for OLTP workloads with compile-time and runtime optimizations. It provides an
operational SQL engine on top of HDFS and is geared as a solution for handling
operational workloads in the Hadoop ecosystem.

 Commercial Tools
 Actian Vector
 Actian Vector is a high-performance analytic database that makes use of “Vectorized
Query Execution,” vector processing, and single instruction, multiple data (SIMD) to
perform the same operation on multiple data simultaneously. This allows the database to
reduce overhead found in traditional “tuple-at-a-time processing” and exploits data-level
parallelism on modern hardware, with fast transactional updates, a scan-optimized buffer
manager and I/O, and compressed column-oriented, as well as traditional relational
model, row-oriented storage. Actian Vector is one of the few analytic database engines
out there that uses in-chip analytics to leverage the L1, L2, and L3 caches available on
most modern CPUs.

 AtScale
 AtScale is a high-performance OLAP server platform on Hadoop. It does not move
data out of Hadoop to build analytics. It supports schema-on-demand, which allows
aggregates, measures, and dimensions to be built on the fly.

CHAPTER 1 ■ WHY SQL ON BIG DATA?

12

 Citus
 A horizontally scalable database built on Postgres, Citus delivers a combination of
massively parallel analytic queries, real-time reads/writes, and rich SQL expressiveness.
It extends PostgreSQL to solve real-time big data challenges with a horizontally scalable
architecture, combined with massive parallel query processing across highly available
clusters.

 Greenplum
 Greenplum provides powerful analytics on petabyte scale data volumes. Greenplum
is powered by the world’s most advanced cost-based query optimizer, delivering high
analytical query performance on large data volumes. It leverages standards-compliant
SQL to support BI and reporting workloads.

 HAWQ
 HAWQ combines the advantages of a Pivotal analytic database with the scalability of
Hadoop. It is designed to be a massively parallel SQL processing engine, optimized for
analytics with full ACID transaction support. HAWQ breaks complex queries into small
tasks and distributes them to query-processing units for execution.

 JethroData
 Jethro is an innovative index-based SQL engine that enables interactive BI on big data. It
fully indexes every single column on Hadoop HDFS. Queries use the indexes to access only
the data they need, instead of performing a full scan, leading to a much faster response
time and lower system resources utilization. Queries can leverage multiple indexes
for better performance. The more a user drills down, the faster the query runs. Jethro’s
architecture harnesses the power of indexes to deliver superior performance.

 Query processing in Jethro runs on one or a few dedicated, higher-end hosts
optimized for SQL processing, with extra memory and CPU cores and local SSD for
caching. The query hosts are stateless, and new ones can be dynamically added to
support additional concurrent users.

 The storage layer in Jethro stores its files (e.g., indexes) in an existing Hadoop cluster.
It uses a standard HDFS client (libhdfs) and is compatible with all common Hadoop
distributions. Jethro only generates a light I/O load on HDFS, offloading SQL processing from
Hadoop and enabling sharing of the cluster between online users and batch processing.

 SQLstream
 SQLstream is a platform for big data stream processing that provides interactive real-time
processing of data in motion to build new real-time processing applications. SQLstream’s
 s-Server is a fully compliant, distributed, scalable, and optimized SQL query engine for
unstructured machine data streams.

http://www.sqlstream.com/blaze/s-server/
http://www.sqlstream.com/products/what-is-machine-data/

CHAPTER 1 ■ WHY SQL ON BIG DATA?

13

 VoltDB
 VoltDB is an in-memory, massively parallel relational database. It falls under the category
of NewSQL databases. It provides transactional capabilities and ACID (Atomicity,
Consistency, Isolation, Durability) semantics of relational databases, but at a distributed
scale, and provides SQL- and Java-based constructs to access the data.

 Appliances and Analytic DB Engines
 IBM BLU
 This is a fast in-memory computing engine that works with IBM’s DB2 to provide
in-memory columnar processing without the limitations that require all data to be
in memory for better performance. BLU’s improved performance is in accelerating
movement of data from storage to memory to CPU.

 Microsoft PolyBase
 PolyBase allows T-SQL statements to access data stored in Hadoop or Azure Storage and
query in an ad hoc fashion. It allows queries on semi-structured data and can join results
with data sets in SQLServer. It is optimized for data warehousing workloads and intended
for analytical queries. It can work with external file formats, external data sources, and
external tables. It allows T-SQL to store data from HDFS or Azure Blob as regular tables.

 Netezza
 Now called PureData System for Analytics, this is an appliance-based solution for
analytics on large data sets. It is designed for rapid analysis of petabyte-sized data
volumes. Its implementation is characterized by shared-nothing architecture, whereby
the entire query is executed on the nodes, with emphasis on reducing data movement,
use of commodity FPGAs to augment the CPUs, and minimize network bus traffic and
embedded analytics at the storage level.

 Oracle Exadata
 Oracle’s Exa suite of products includes Exadata, Exalytics, and Exalogic, the three classes
of machines built to overcome bottlenecks in either Memory, Disk, or CPU.

 Memory : Exalytics is an in-memory analytics solution
designed to boost performance of analytic queries typically
used in BI by processing data in memory.

 Disk : Exadata is designed to optimize the performance
of queries on large data sets, in which query overhead is
experienced at the disk layer.

 CPU : Exalogic is designed for large application servers that
require massive parallelism and scalability at the CPU layer.

CHAPTER 1 ■ WHY SQL ON BIG DATA?

14

 Teradata
 Originally designed as an appliance (both storage and data engine) for handling
analytical queries on large data sets (way before the advent of Hadoop), Teradata is now
morphing into an appliance that works with data stored in HDFS. Teradata Connector for
Hadoop is a set of APIs and tools that supports high-performance parallel bidirectional
data movement between Teradata and HDFS. It has an SQL engine to process queries on
the data stored within Teradata or from HDFS.

 Vertica
 One of the first extremely successful columnar databases, Vertica is an MPP-based
columnar store analytic database with the capability to run complex analytic queries with
very low latency on the right hardware with the right cluster size. Vertica can integrate
with HDFS as the storage layer and process data loads from HDFS.

 How to Choose an SQL-on-Big-Data Solution
 Owing to the surfeit of products and tools in the SQL-on-Hadoop space, it is often very
difficult to choose the right one. Tool selection is not an easy task by any measure. Some
of the points to consider when selecting the tools/products are listed following. This list
includes questions that have to be answered by the architectural requirements, service-
level agreements (SLAs), and deployment options for the tool.

• What are the latency requirements?

• What is the f ault tolerance ?

• Deployment options : Does the tool have to be installed across all
data nodes in the cluster? Does the tool require a separate cluster?
Can the tool be used on the cloud? This can have implications
from budgeting, SLA, and security perspectives.

• Hardware requirements : Does the tool require special CPU
chipsets, memory requirements, or HDD/SDD requirements?

• How does the tool handle node failures? How does the tool
handle adding new nodes? How does the tool handle adding new
data sets?

• Processing requirements : Does the tool require special processing
before it can be used?

• Analytical/SQL feature capabilities : Not all tools are ANSI SQL
compliant. Not all of them support Analytic/Window functions.

• Can the tool handle semi-structured/unstructured data?

• Can the tool handle streaming analytics with streaming data?

CHAPTER 1 ■ WHY SQL ON BIG DATA?

15

• Extensibility capabilities of the tool : How easy/difficult is it to add
new features UDFs (User Defined Functions), etc., to the tool?

• Pricing : Some tools are priced according to the number of nodes,
some by the data they ingest/work upon.

• Maturity/community size/customer feedback/number of
customers

• Does it support real-time operational analytics?

• Can it perform reliable, real-time updates?

• Can it support concurrent user activity consistently with no
deadlocks, etc.?

• Can it support authentication and integration with security
frameworks?

• Does it provide connectivity through the drivers/APIs?

• Can it handle compressed data?

• Does it support secondary indexes?

• What kind of join algorithms does it use to speed up large joins?

• What kind of SQL Query and Query execution optimization does
it offer.

 Summary
 In this chapter, we discussed the growth of big data adoption in the enterprise and how
this has sparked a race for developing SQL-on-big-data platforms, because SQL is the
most ubiquitous language used for data access in an enterprise. We discussed in detail
the goals of such SQL-based solutions and the rapidly evolving landscape of tools,
products, and frameworks that address the gap.

 In the next chapter, we will discuss the challenges of building SQL engines for big
data platforms and how to address them.

17© Sumit Pal 2016
S. Pal, SQL on Big Data, DOI 10.1007/978-1-4842-2247-8_2

 CHAPTER 2

 SQL-on-Big-Data Challenges
& Solutions

 This chapter discusses the challenges of implementing SQL engines on big data
platforms, and the possible approaches to solving them at scale and with low latency,
using different techniques. The chapter introduces the SQL-on-big-data philosophy on
unstructured, semi-structured, and streaming data. We will also cover the different types
of SQL queries, with a focus on analytic queries.

 Types of SQL
 SQL is a declarative language that is highly expressive and feature-rich. There are three
broad categories of SQL statements: Data Definition Language (DDL), Data Manipulation
Language (DML), and Data Querying Language (DQL). The statements are used in the
following ways:

• DDL Statements : Used to create or modify the structure/
constraints of tables and other objects in the database, including
the creation of schemas and databases. When executed, it
takes effect immediately. Create and Alter are examples of DDL
statements.

• DML Statements : Used to Insert, Delete, and Update the data in
the existing structures/objects in database tables. Insert, update,
delete, commit, rollback, grant, and revoke are examples of DML
statements. These are used to add, modify, query, or remove data
from database tables.

• DQL Statements : Used to extract/retrieve and work with the data
in the database. DQL—Data Querying—doesn’t modify data in
the database. SELECT <Columns> from a Table/Object is the
basic example of a DQL statement.

 A little more complicated and involved DQL is what are called Analytic DQL
Statements or windowing queries. These queries process data on “windows”/partitions
of the data, performing calculations across a set of rows related to the current row in

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

18

question. This is somewhat similar to an aggregate function; however, unlike aggregate
functions, a windowing function does not return a single result for the row in question. In
other words, in an analytic window query, the result set retains each individual row in the
original window that was processed. The result set returns a value for every row. Let’s take
the simple example of a window function, to clarify the concepts.

 Assume we have a data set—Employee—that has the following fields: EmpNum,
DepartmentName, Salary.

 If we want to find out how to compare the salary of all employees to the average salary
of their department, the easiest way to do this query in SQL is to use an analytic function.

 SELECT DepartmentName, EmpNum, Salary, avg(Salary) OVER (PARTITION BY
DepartmentName) FROM Employee;

 The result would look something like the following:

 DepartmentName | EmpNum | Salary | Avg
 A | 11 | 5200 | 5020.00
 A | 7 | 4200 | 5020.00
 A | 9 | 4500 | 5020.00
 A | 8 | 6000 | 5020.00
 A | 10 | 5200 | 5020.00
 B | 5 | 3500 | 3700.00
 B | 2 | 3900 | 3700.00
 C | 3 | 4800 | 4900.00
 C | 1 | 5000 | 4900.00

 A window function contains an OVER clause with the function’s name and arguments.
The OVER clause determines how rows in the query are divided for processing by the
window function. The PARTITION BY clause lists within the OVER clause how to divide
the rows into groups, or partitions, that share the same values of the PARTITION BY
expression. The window function basically computes the function across all the rows that
fall in the same partition as the current row.

 Query Workloads
 Figure 2-1 shows the different categories of query workloads across the four quadrants,
with the x axis showing data volumes, and the y axis showing latency. Each of the
quadrants is labeled with the different query types, based on the expected latency timings
and the volume of data it works with.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

19

 The lower left quadrant is where current business intelligence (BI) tools are
categorized. The lower right quadrant belongs to batch tools and frameworks with large
latencies. The architecture for doing SQL over batch data is discussed in Chapter 3 .

 The upper left quadrant represents tools and frameworks that perform complex
analytics with real-time and streaming data for event processing systems—in which
extreme low latencies are desirable with gigabyte-sized data sets. These systems are
typically architected as in-memory solutions, whereby data is processed before it is
stored; i.e., data processing occurs while the data is in motion. This requires a completely
different architecture, which we will cover in Chapter 5 .

 The upper right quadrant represents a green playing field—a fiercely competitive
zone—wherein tools and products are trying to innovate and excel and bring about
newer, faster, and better solutions. Here, complex analytics queries are performed over
multi-terabyte-sized data sets, with desirable latency in the hundreds of milliseconds.

Area of fierce
competition and

innovation

ln-memory

Batch Processing

TB

1–10 Sec

> .5 Hr

Batch Time

Operational Data Reporting

GB

Data Size

Complex Event Processing

Real Time

1–10 mS

lnteractive Analytics

10–100 mS

PB

 Figure 2-1. DQL across data volumes and response time

http://dx.doi.org/10.1007/978-1-4842-2247-8_3
http://dx.doi.org/10.1007/978-1-4842-2247-8_5

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

20

 Types of Data: Structured, Semi-Structured, and
Unstructured
 Before we start exploring the possibilities of doing SQL on big data, let’s discuss the
different types of data generated by Internet scale applications. Data is no longer
restricted to just plain structured data. Analytics over semi-structured and unstructured
data can enrich structured data and yield deeper, richer, and, sometimes, more accurate
and in-depth insights into business questions. In many organizations, about 80% of the
data is unstructured or semi-structured, (e.g., e-mail, document, wiki pages, etc.).

 Semi-Structured Data
 Any data that is not organized as a proper data structure but has associated information,
such as metadata, embedded inside is called semi-structured. In semi-structured data, a
schema is contained within the data and is called self-describing. Much of the data on the
Web is semi-structured, such as XML, JSON, YAML and other markup languages, e-mail
data, and Electronic Data Interchange (EDI).

 Unstructured Data
 Data not associated with structure or metadata is classified as unstructured. Textual data
(e.g., e-mail, blogs, wiki posts, word and PDF documents, social media tweets) or non-
textual data (e.g., images, audio, videos) are labeled as unstructured.

 More often than not, unstructured data is noisy, and one major challenge of working
with it is cleaning it before it can be put to use for analytics. For example, before doing
Natural Language Processing (NLP) on textual data, the data has to be tokenized (i.e., stop
words must be removed and stemming algorithms applied), to get it into a form in which
sophisticated algorithms can be applied to make meaning out of the textual content.

 Unlike SQL on structured data, SQL on semi-structured and unstructured data
requires transformation to a structure that SQL Engines can interpret and operate. The
acronym SQL stands for “Structured Query Language,” which means it is a language that
works on structured data.

 Technologies such as Apache Drill and SparkSQL have evolved and are evolving
further to bring the rich features of SQL to semi-structured data like JSON. You will see
more in Chapter 5 , in which we will discuss the architecture of SQL engines in terms of
how they perform SQL over semi-structured and unstructured data.

 How to Implement SQL Engines on Big Data
 In this section, we will explain how SQL can be implemented at an architectural level on
data sets that span across multiple machines in a Hadoop/HDFS cluster. Before we delve
deeper into the architectural underpinnings of an SQL engine on Hadoop, let’s look at the
architectures of SQL engines on a traditional RDMS and analytics databases (MPP engine).

http://dx.doi.org/10.1007/978-1-4842-2247-8_5

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

21

 SQL Engines on Traditional Databases
 When a SQL query is submitted to the database engine, a number of processes get to
work to satisfy the query. At a high level there are two major sets of processes that spring
into action: query engine and the storage engine. This is shown in Figure 2-2 .

 The query engine parses the query, verifies the semantics of the query against the
catalog store, and generates the logical query plan that is then optimized by the query
optimizer to generate the optimal physical execution plan, based on CPU, I/O, and
network costs to execute the query. The final query plan is then used by the storage
engine to retrieve the underlying data from various data structures, either on disk or in
memory. It is in the storage engine that processes such as Lock Manager, Index Manager,
Buffer Manager, etc., get to work to fetch/update the data, as requested by the query.

 Most RDBMS are SMP-based architectures. Traditional database platforms operate
by reading data off disk, bringing it across an I/O interconnect, and loading it into
memory for further processing. An SMP-based system consists of multiple processors,
each with its own memory cache. Memory and I/O subsystems are shared by each of the
processors. The SMP architecture is limited in its ability to move large amounts of data, as
required in data warehousing and large-scale data processing workloads.

 The major drawback of this architecture is that it moves data across backplanes and
I/O channels. This does not scale and perform when large data sets are to be queried,
and more so when the queries involve complex joins that require multiple phases of
processing. A huge inefficiency lies in delivering large data off disk across the network
and into memory for processing by the DataBase Management System (DBMS).

Query Processor

Storage Engine

SQL Queries

Transaction Manager
Lock Manager

File/Buffer Manager

Query Parser Query Optimizer Query Executor

Access Methods
Row Manager
Block Manager
Index Manager

 Figure 2-2. SQL engine architecture for traditional databases

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

22

 These data flows overwhelm shared resources such as disks, I/O buses, and memory.
In order to get rid of these inefficiencies, novel indexing techniques, aggregates, and
advanced partitioning schemes to limit the amount of data movement were devised over
the years.

 How an SQL Engine Works in an Analytic Database
 Analytic databases are used in Data Warehouse (DW) and BI applications to support
low-latency complex analytic queries. These databases are based on Massively Parallel
Processing (MPP) architectures.

 MPP systems consist of large numbers of processors loosely coupled, with each
processor having its own memory and storage attached to a network backplane. MPP
systems are architected to be shared-nothing, with the processor and disk operating in
parallel to divide the workload. Each processor communicates with its associated local
disk to access the data and perform calculations. One processor is assigned the role
of master, to coordinate and collect the intermediate results and assemble the query
response. A major weakness of this architecture is that it requires significant movement of
data from disks to processors for executing the queries.

 The interconnect between each processor-disk pair becomes the bottleneck, with
data traffic adversely affecting query response timings. The inability of data transfer
speeds to keep pace with growing data volumes creates a performance bottleneck that
inhibits performance and scalability of the MPP architecture. Concurrency, i.e., multiple
user queries, all coming at relatively the same time, causes lot of performance and
scheduling problems in MPP-based architectures.

 Typically in MPP systems, the data is automatically partitioned across multiple nodes
(worker nodes), based on a hashing algorithm on one or more columns in the data set.

 Figure 2-3 shows how a typical query would execute on an MPP system. The query
first goes to the master node, where it is parsed and semantically analyzed and the query
execution plan generated. The execution plan is relayed to each of the worker nodes,
where some partition of the data set resides. Once the worker nodes are done executing
the query in their partition of the data, results are transmitted to the master node, where a
coordinator consolidates the results and returns the result set to the client.

Clients

Master Node –
Metadata,
Optimizer,

Coordinator

SQL

Results

Compute Engine +
Data Shard 1

Compute Engine +
Data Shard N

Parallel SQL
Execution

Plan

Results

 Figure 2-3. Query execution in an MPP-based SQL engine

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

23

 Why Is DML Difficult on HDFS?
 HDFS, the distributed file system on which most big data tools and frameworks are
based, is architected to be WORM (write once read many). HDFS support appends but
performs no updates. Modifying data becomes an inherent limitation of HDFS, hence,
most SQL solutions do not support any DML operations on Hadoop. Some vendors come
up with novel ways of supporting updates by logging modifications and then merging the
modifications with the original data.

 Challenges to Doing Low-Latency SQL on Big Data
 You have experienced that relational databases do not scale beyond a certain data set
size, in terms of performance and scalability. There are techniques, such as manual
sharding and partitioning of data, to overcome these problems, but those, again, run
into their own set of problems. One of the major challenges with distributed systems is
making distributed joins perform at scale across a cluster of machines with low latency.
Solving this problem runs into the inherent issues with transferring bits across the
network connect at high speed and throughput.

 Reducing the amount of data to be shuffled is a major challenge. Developing scalable
algorithms that work with a variety of data sets, especially semi-structured data, to perform
the same set of SQL functionality as on structured data is challenging, to say the least.
Processing SQL queries on streaming data, in which latency requirements are more stringent
and calculations require preserving state from previous computes, makes designing scalable
SQL engines that work across all workloads a herculean effort. In order to work with ever-
growing data set sizes, different techniques can be applied to compress and format the data
with the best data layout to minimize data transfer and data access overhead.

 All these challenges need to be overcome by the SQL-on-big-data engines of today
and provide solutions that meet today’s data-processing and querying requirements.

 One of the first SQL engines on Hadoop—Hive, developed at Facebook in 2009—has
some inherent limitations of doing low-latency SQL on Hadoop. This is primarily due
to Hive’s architecture being based on transforming SQL queries to MapReduce, and the
inherent limitations of MapReduce being a batch-oriented system. Complex SQL queries
require multiple MapReduce phases, with each phase writing to disk the temporary
results, and the next phase reading from the disk for further processing. Data shuffling
across the network, along with disk I/O, make the system slow. In the next chapter, you
will see how Hive is morphing and innovating to address latency issues and overcome
some of its initial architectural limitations.

 MapReduce was never designed for optimized long-data pipelines, and complex
SQL is inefficiently expressed as multiple MapReduce stages, which involve writing
outputs from Map process to disk and then re-reading from disk by the Reduce process
and data shuffling. When multiple such MapReduce stages are chained, the I/O latency
overshadows the pure computation/processing latency.

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

24

 Approaches to Solving SQL on Big Data
 There are several categories of workloads that SQL-on-big-data solutions must address:
SQL on batch-oriented workloads, SQL on interactive workloads, and SQL on streaming
workloads. To add more complexity, data for each of these workloads can be structured
or semi-structured.

 There are basically four different approaches to doing SQL on big data:

 1. Build a translation layer that translates SQL queries to
equivalent MapReduce code and executes it on the cluster.
Apache Hive is the best example of the batch-oriented SQL-
on-Hadoop tool. It uses MapReduce and Apache Tez as an
intermediate processing layer. It is used for running complex
jobs, including ETL and production data “pipelines,” against
massive data sets. This approach will be discussed in more
detail in Chapter 3 . Figure 2-4 (third block) illustrates this
approach.

 2. Leverage existing relational engines, which incorporate all the
40-plus years of research and development in making them
robust, with all the storage engine and query optimizations.
An example would be to embed MySQL/Postgres inside each
of the data nodes in the Hadoop cluster and build a layer
within them to access data from the underlying distributed
file system. This RDBMS engine is collocated with the data
node, communicates with the data node to read data from
the HDFS, and translates it to their own proprietary data
format. Products such as Citus data and HAWQ leverage this
architectural aspect of doing SQL on Hadoop. Figure 2-4
(fourth block) shows this approach.

 3. Build a new query engine that co-resides in the same nodes
as the data nodes and works with the data on HDFS directly
to execute the SQL queries. This query engine uses a query
splitter to route query fragments to one or more underlying
data handlers (HDFS, HBase, relational, search index, etc.), to
access and process the data.

 Apache Drill and Impala were one the first few engines in
this space to perform interactive SQL queries running over
data on HDFS. This category of SQL on Hadoop engines
excels at executing ad hoc SQL queries and performing data
exploration and data discovery and is used directly by data
analysts to execute auto-generated SQL code from BI tools.
This approach will be discussed in more detail in Chapter 4 .
Figure 2-4 (second block) illustrates this approach.

http://dx.doi.org/10.1007/978-1-4842-2247-8_3
http://dx.doi.org/10.1007/978-1-4842-2247-8_4

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

25

 4. Use existing analytic databases (deployed on a separate
cluster, different from the Hadoop cluster) that interact with
the data nodes in the Hadoop cluster, using a proprietary
connector to get data from HDFS, but execute the SQL queries
within the analytical engine. These external analytical engines
can be integrated to use metadata in Hive or HCatalog, to
seamlessly work with the data in HDFS. Examples of such
products include Vertica and Teradata. Figure 2-4 (first block)
shows this approach.

 Figure 2-4 illustrates these architectural concepts.

 Approaches to Reduce Latency on SQL Queries
 The larger the data size and larger the I/O, the longer is the time spent in scanning the
data to get to the right data required to fulfill the query. Much thought, research, and
innovation has gone into optimizing the storage layer to build optimizations in reducing
the footprint of the data set. Below, we discuss some optimizations that can be performed
at the storage layer, to reduce the I/O.

 When thinking about performance improvements, there are three types of
performance considerations to keep in mind:

 1. Write performance—how fast the data can be written

 2. Partial read performance—how fast you can read individual
columns within a data set

 3. Full read performance—how fast you can read every data
element in a data set

Client

SQL

Data Node
+ RDBMS
Engine

Native Code

Client

SQL

Hive

Data Node

MapReduce

Data Node

Client

SQL

Data Node
+ Query
Engine

Query
Coordinator

Query
Coordinator

Native Code

Analytic DB Cluster

Client

Hadoop Cluster

SQL

Connectors

Hadoop Cluster Hadoop Cluster Hadoop Cluster

Data Node
+ Query
Engine

Data Node
+ RDBMS
Engine

 Figure 2-4. Approaches to building SQL on Hadoop engines

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

26

 File Formats
 Figure 2-5 shows how data encoding can reduce data size, which eventually reduces the
I/O and the amount of data a process has to scan or load in memory for processing.

 Choosing the optimal file format when working with big data is an essential
driver to improve performance for query processing. There is no single file format that
optimizes for all the three performance considerations mentioned above. One must
understand trade-offs in order to make educated decisions. File formats can store data in
a compressed columnar format. They can also store indexing and statistical information
at block level.

 A columnar compressed file format such as Parquet or ORC may optimize partial and
full-read performance, but it does so at the expense of write performance. Conversely,
uncompressed CSV files are fast to write but, owing to the lack of compression and
column orientation, are slow for reads. File formats include optimizations such as
skipping to blocks directly without scanning the full data and quickly searching the data
at the block level.

 Text/CSV Files
 Comma-separated values (CSV) files do not support block compression, thus
compressing a CSV file in Hadoop often comes at a significant read-performance cost.
When working with Text/CSV files in Hadoop, never include header or footer lines. Each
line of the file should contain a record. This means that there is no metadata stored
with the CSV file. One must know how the file was written in order to make use of it. File
structure is dependent on field order: new fields can only be appended at the end of
records, while existing fields can never be deleted. As such, CSV files have limited support
for schema evolution.

Text
RC

Parquet
ORC

Data Formats

Da
ta

 S
iz

e
fo

r S
am

e
Da

ta

 Figure 2-5. Effect of data encoding on the data set size

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

27

 JSON Records
 JSON records are different from JSON files in that each line is its own JSON datum,
making the files splittable. Unlike CSV files, JSON stores metadata with the data, fully
enabling schema evolution. However, as with CSV files, JSON files do not support block
compression. Third-party JSON SerDe (discuss SerDe in Chapter 3) are frequently
available and often solve these challenges.

 Avro Format
 Avro is quickly becoming the best multipurpose storage format within Hadoop. Avro
format stores metadata with the data and also allows for specifying an independent
schema for reading the file. Avro is the epitome of schema evolution support, because one
can rename, add, delete, and change the data types of fields by defining new independent
schema. Avro files are also splittable and support block compression.

 Sequence Files
 Sequence files store data in a binary format with a structure similar to CSV. Sequence files
do not store metadata with the data, so the only schema evolution option is to append
new fields. Sequence files do support block compression. Owing to the complexity of
reading sequence files, they are often used only for “in flight” data, such as intermediate
data storage used within a sequence of MapReduce jobs.

 RC Files
 Record Columnar (RC) files were the first columnar file format in Hadoop. The RC file
format provides significant compression and query-performance benefits. RC files
in Hive, however, do not support schema evolution. Writing an RC file requires more
memory and computation than non-columnar file formats, and writes are generally slow.

 ORC Files
 Optimized RC files were invented to optimize performance in Hive and are primarily
backed by Hortonworks. ORC files, however, compress better than RC files, enabling
faster queries. They don’t support schema evolution.

 Parquet Files
 As with RC and ORC, the Parquet format also allows compression and improved query-
performance benefits and is generally slower to write. Unlike RC and ORC files, Parquet
supports limited schema evolution. New columns can be added to an existing Parquet
format. Parquet is supported by Cloudera and is optimized for Cloudera Impala. Native
Parquet support is rapidly being added for the rest of the Hadoop and Spark ecosystem.

http://dx.doi.org/10.1007/978-1-4842-2247-8_3

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

28

 How to Choose a File Format?
 Each file format is optimized by some goal. Choice of format is driven by use case,
environment, and workload. Some factors to consider in deciding file format include the
following:

• Hadoop Distribution : Note that Cloudera and Hortonworks
support/favor different formats.

• Schema Evolution : Consider whether the structure of data evolves
over time.

• Processing Requirements : Consider the processing load of the data
and the tools to be used in processing.

• Read/Write Requirements : What are the read/write patterns, is it
read-only, read-write, or write-only.

• Exporting/Extraction Requirements : Will the data be extracted
from Hadoop for import into an external database engine or other
platform?

• Storage Requirements : Is data volume a significant factor?
Will you get significantly more bang for your storage through
compression?

 If you are storing intermediate data between MapReduce jobs, Sequence files are
preferred. If query performance is most important, ORC (Hortonworks/Hive) or Parquet
(Cloudera/Impala) are optimal, but note that these files take longer to create and cannot
be updated.

 Avro is the right choice if schema is going to change over time, but query
performance will be slower than with ORC or Parquet. CSV files are excellent when
extracting data from Hadoop to load into a database.

 Data Compression
 Most analytic workloads are I/O-bound. In order to make analytic workloads faster, one of
the first things required is to reduce the I/O. Apart from data encoding, another technique
to reduce I/O is compression. There are multiple compression algorithms to choose from.
However, in a distributed environment, compression has an issue: compression must be
splittable, so that data chunks on each data node can be processed independently of data
in other nodes in the cluster.

 Compression always involves trade-offs, as shown in Figure 2-6 , because data must
be uncompressed before it can be processed. However, systems such as Spark Succinct
are being innovated to work with compressed data directly.

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

29

 Hadoop stores large files by splitting them into blocks, hence if blocks can be
independently compressed, this results in higher speedup and throughput. Snappy and
LZO are commonly used compression algorithms that enable efficient block processing.

 Table 2-1 shows a few of the compression algorithms and the various metrics involved.

 Splittable column: This indicates whether every compressed split of the file can be
processed independently of the other splits.

 Native Implementations: These are always preferred, owing to speed optimizations
that leverage native machine-generated code.

 Figure 2-7 shows how the different compression algorithms align with each other in
terms of CPU utilization and space savings.

 Figure 2-6. Compression trade-offs

 Table 2-1. Compression Algorithms and Their Associated Metrics

 Format Algorithm File Extension Splittable Java/Native Compression
Time

 Compressed
Size

 GZIP Deflate .gz N Both Medium Low

 BZIP2 Bzip2 .bz2 Y Both Very High Low

 LZO LZO .lzo Y (when
indexed)

 Native Low Medium

 Snappy Snappy .snappy N Native Very Low High

 LZ4 LZ77 .lz4 N Native Low Medium

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

30

 Indexing, Partitioning, and Bucketing
 Techniques such as indexing, partitioning, and bucketing have been tried by different
vendors, to improve query latency of SQL queries. Let’s take a brief look at indexing,
partitioning, and bucketing in the world of big data.

 Why Indexing Is Difficult

 Indexing is a challenge in a world of big data that is based on a distributed file system
such as HDFS. HDFS’s random block placement presents difficulties in doing traditional
indexes.

 An index is another data file organized by one or more columns in the original
raw data file. Building an index entails pointing to data in the HDFS file blocks that are
randomly scattered on the distributed file system.

 As newer raw data files are made available on the file system, the index somehow has
to know to update itself. With traditional indexes, adding rows to a table leads to many
random updates to the index files. While standard (POSIX compliant) file systems support
random updates, big data storage solutions such as HDFS and S3 do not. With HDFS,
existing files cannot be updated. HDFS only supports appending new data at the end of
an existing file. Amazon S3 does not support random writes or file append; hence, it is
impossible to implement standard indexes on HDFS or Amazon S3. When companies such
as Pivotal migrated from the Greenplum database to HDFS, they eliminated index support.

 JethroData, a company based in Israel, has resurrected the idea of indexes to solve
some of the problems noted previously. JethroData indexes have been designed to
work natively on HDFS and Amazon S3 without index update overhead. JethroData
has made index maintenance so cheap that, without a second thought, every column
can be automatically indexed, thus accelerating many more queries. A detailed look at
JethroData architecture is done in Chapter 4 .

Storage

CP
U

Ti
m

e

Lower Storage Costs
Slower Compress-Decompress

Bzip, Gzip, ZLib

Larger Storage Costs
Faster Compress-Decompress

Snappy, LZO, LZ4

 Figure 2-7. Compression algorithms trade-offs: CPU vs. Storage

http://dx.doi.org/10.1007/978-1-4842-2247-8_4

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

31

 Hive has supported indexes since version 0.8, but these are very limited in utility
and not used widely. Hive supports CREATE INDEX at the DDL level. The Hive index table
contains one row for each index-value, block offset and a set of block lists for each row
in the block (1 = row contains the indexed column value). Hive indexes are similar to
non-clustered indexes in relational databases. Hive keeps a map of the data and HDFS
blocks it resides in. This enables a MapReduce job to figure out relevant blocks to process
queries. Internally, Hive indexes are nothing but another file on HDFS.

 The Hive DDL for creating indexes looks like the following:

 CREATE INDEX <IndexName>
 ON TABLE <TableName>(<ColumnName>)
 AS 'COMPACT'
 WITH DEFERRED REBUILD;

 OR

 CREATE INDEX <IndexName>
 ON TABLE <TableName>(<ColumnName>)
 AS 'BITMAP'
 WITH DEFERRED REBUILD;

 The DEFERRED REBUILD directive instructs Hive to populate the index at a later stage.
When data in the base table changes, the ALTER…REBUILD command is used to bring the
index up to date.

 Once the index is built, Hive will create a new index table for each index, which is
added to the hive metadata and can be queried/described by as any regular table.

 Partitioning

 Partititioning, especially in the context of Hive, allows for division of the data in a table by
one or more columns, based on the values of the partitioned columns. This segregates the
input records into different files/directories, based on the column values.

 A simple query in Hive scans the whole table. This is a slow process, which could
be speeded up by creating Hive partitions. When the table is queried, if the partitioned
clause is used in the WHERE clause, only the required partitions (directory) is scanned,
thereby reducing the I/O costs, by avoiding reading of data that is known not to satisfy the
query, based on the partitioned column.

 Advantages
• As the data is sliced in partitions across directories, a query is

faster to process the partitioned part of the data, instead of doing
a full scan.

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

32

 Limitations
• Having too many partitions creates large numbers of files and

directories in HDFS, which is an overhead to Name Node,
because it must keep all metadata for the file system in memory.

• Partitions optimize queries based on WHERE clauses but are less
useful for other queries not involving the partition column in the
 WHERE clause.

 Bucketing

 Bucketing is another technique used to cluster data sets into more manageable parts,
to optimize query performance. It is different from partitioning in that each bucket
corresponds to segments of files in HDFS. Too granular a partitioning may lead to deep
and small partitions and directories that can increase the number of files and slow down
Name Node performance and increase its overhead.

 Bucketing can be used on tables with partitioning or without partitions. The value
of the bucket column is hashed by a user-defined number into buckets. Records with
the same values of the bucket column are stored in the same bucket (segment of files).
Buckets help Hive to efficiently perform sampling and map side joins.

 Buckets are essentially files in the leaf-level directories that correspond to records
that have the same column-value hash. Hive users can specify the number of buckets per
partition or per table.

 When tables have been bucketed, it is important to set the number of Reduce tasks
to be equal to the number of buckets. This can be done by setting the number of Reduce
tasks explicitly for every job. Another way is to let Hive automatically bucket the data by
setting the hive.enforce.bucketing property to true .

 Recommendations
 In most cases, your workloads will be bottlenecked with I/O or network. It is wise,
therefore, to choose a format that reduces the amount of data that gets transferred over
the wire. In most cases, it is true that CPU cores are idle while waiting to get the data
and start processing. Depending on your workload pattern and the complexities of SQL
analytic queries, it behooves you to choose the right data format, along with the right
compression algorithm, based on whether the compression algorithm is CPU-bound or
space-bound.

 Always incorporate partitioning in your data ingestion and data pipelines, because
that is the best way to leverage distributed systems and improve throughput. If there are
too many partitions in your data, it is also advisable to consider using bucketing as a way
to reduce small partitions. Partitions also help in use cases involving bad data or data
quality issues or solving change-data-capture-based scenarios.

 Performance tuning is a whole separate topic by itself, and performance tuning
on distributed systems is an even more involved topic. A lot of performance tuning
also depends on the kind of hardware, the specification of the I/O and networking, and
memory sizing and bandwidth.

CHAPTER 2 ■ SQL-ON-BIG-DATA CHALLENGES & SOLUTIONS

33

 Summary
 This chapter, we covered different types of SQL and the different SLAs associated with the
different types of workloads. It also looked at the architecture of SQL engines on relational
databases and how the same can be achieved with the big data–processing frameworks
of today with different implementations. We discussed ways of reducing latency of
SQL queries on large data sets, using different file formats, encoding, and compression
techniques.

 In the next chapter, we will delve deeper into the architecture of SQL on Hadoop with
the Hive engine, which uses MapReduce to perform SQL queries. We will see how Hive is
making architectural advances to accommodate the growing need to support low latency
and reduce data-movent and shuffling issues encountered on complex MapReduce jobs.

35© Sumit Pal 2016
S. Pal, SQL on Big Data, DOI 10.1007/978-1-4842-2247-8_3

 CHAPTER 3

 Batch SQL—Architecture

 In this chapter, we will take a deeper look at the first SQL engine on Hadoop: Hive. We discuss
the architectural details of Hive and look at how it translates SQL queries to MapReduce.
This chapter also covers the recent advances in Hive that support more complex analytic and
window queries and the various innovations to improve latency of SQL queries.

 Hive is essentially a batch-processing system. Batch processing is a way of efficiently
processing high-volume data where

 data is collected, given to the system, processed, and results
produced in batches;

 batch jobs are configured to run without manual intervention;

 the system has access to all data;

 the system computes something complex and time-
consuming;

 the system is generally more concerned with the throughput
than the latency (latency measured in minutes or more) of the
computation.

 Hive
 Hive was initially developed by Facebook in 2009. One of the primary reasons engineers
at Facebook decided to build Hive was to enable business analysts to access the data
stored in HDFS, using SQL—a language they were most familiar with. During that time,
the only way to access the data stored in HDFS was to use MapReduce and Hadoop’s API,
which was something only seasoned developers were able to work with.

 Hive is one of the first tools in the Hadoop ecosystem that most people learn to
use. Hive is an SQL engine built on top of HDFS and leverages MapReduce internally.
It allows querying of data stored on HDFS via HQL (Hive Query Language, a SQL-like
language translated to MapReduce jobs). Hive was designed to run SQL queries as batch-
processing jobs. It was not built to provide interactive querying of data on HDFS, wherein
results would come back within a few seconds. However, as Hadoop began being adopted
within organizations, the requirements for Hive morphed, and users started demanding
more from Hive in terms of its capabilities as well as performance.

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

36

 Surprisingly, however, Hive stores its metadata in a relational database, mostly either
MySQL or Postgres deployed as a single instance on the Hadoop cluster. Hive supports
multiple data and file formats, such as Text, SequenceFile, ORC, RCFile, Parquet, and Avro.

 Hive has continually expanded its SQL capabilities by adding windowing functions,
support for subqueries, and additional new data types. Hive is probably the most mature
and most comprehensive SQL support structure within the Hadoop ecosystem.

 Following is a list of some of Hive’s most notable features:

• Hive allows applications to be written, using high-level APIs such
as JDBC, ODBC, and Thrift, without writing MapReduce jobs.

• It supports external tables, which makes data processing possible
without actually storing it in HDFS.

• Hive offers support for structured and semi-structured data, such
as JSON and XML using SerDe.

• It supports multiple file formats, including TextFile, SequenceFile,
ORC, RCFile, Avro files, Parquet, and LZO compression.

• It supports partitioning of data on different columns to improve
performance.

• Hive provides complex data structure, such as Array, Struct, and
Map, which facilitates working with nested, hierarchical, and
semi-structured data.

• It supports enhanced aggregation and analytic functions, such as
Cube, Grouping Sets, and Rollup.

• Hive offers user-defined functions (UDFs), which can be written
in Python or Java.

• It supports out-of-the-box UDFs to work with XML and JSON
data, such as xpath , explode , LATERAL VIEW , json_tuple , get_
json_object , etc.

• Hive has out-of-the-box support for Text processing with UDFs.

 Hive Architecture Deep Dive
 Hive uses a relational store to store the metadata for all the database objects it manages.
This relational store is typically either MySQL or Postgres, and it contains the metadata
for all the objects: databases, database properties, tables, views, table column data
types, file formats for the table, file locations, partitioning and bucketing details, etc. The
metastore has a Thrift interface, whereby it can be accessed by clients written in different
programming languages. Figure 3-1 depicts and overall view of the Hive architecture.

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

37

 Hive is written in Java and has an ORM (object-relational mapping) layer to read and
write data into the store.

 CLI, web interface, and JDBC/ODBC connectors are the various means by which
clients can submit queries to Hive. Hive Driver handles query submissions and is
responsible for orchestrating the life cycle of a query and managing the sessions. Each
of the components shown in Figure 3-1 are discussed in more detail in later parts of this
chapter.

 How Hive Translates SQL into MR
 In this section, we will briefly discuss how Hive Server converts an SQL query into a
MapReduce program. We will offer a few examples to help you to understand the process.
Note: You will require familiarity with the MapReduce framework fundamentals in order
to understand this section. Let us take the most basic SQL query, such as the following:

 Select Col1, Col2, Col3 from Table1 where Col4 = "X"

 This query scans all the rows of a table (file in Hive), takes only those rows that have
 Col4 = " X ", and returns the three columns—Col1, Col2, and Col3 of those filtered rows.

 Figure 3-1. Hive architecture

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

38

This query is a Map-only query, in which the Mapper code filters out the rows, based on
the criterion Col4 == " X ", and emits Col1, Col2, and Col3. The Map code in pseudo code
would look something like this:

 Map(k, record) {
 // k – is the key and record is the value – in the key-value paradigm of
Map-Reduce
 If (record.Col4 == "X") {
 outRecord = <Col1, Col2, Col3> // Create a record with only the

expected output columns
 collect(k, outRecord) // output the collected columns with

the same Key
 }
 }

 Let’s consider a slightly more complex query, which involves some aggregation
operators.

 Select Col1, Sum(Col2), Avg(Col3) from Table1 where Col4 = "X" groupby Col1

 This query requires some aggregation work—Sum and Average—and, hence, it is not
a Map-only query. This query would require the Reduce side framework to get the right
aggregated results.

 However, the Map side of this query remains very similar to the first one, except that,
because we are doing a group by on Col1, the key emitted from the Map method has to
have Col1 as the key. This key allows the MapReduce framework to shuffle all records with
the same value of Col1 to the same reducer, which will then work on the list of records with
the same values and calculate the Average and Sum of those records on Col2 and Col3.

 The code for this would look like this:

 Map(k, record)
 If (record.Col4 == "X") {
 outRecord = < Col2, Col3> // Create a record with only the expected

output columns
 collect(Col1, outRecord) // output the collected columns with the

same Key
 }
 }
 Reduce (k, listOfRecords) {
 Sum = Avg = 0
 foreach record in listOfRecords {
 Sum += record.Col2
 Avg += record.Col3
 }
 Avg = Avg / length(listOfRecords)
 outputRecord = <Sum, Avg>
 emit(k, outputRecord)
 }

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

39

 These were two very simple, basic queries translated to MapReduce. Complex queries
involving joins and aggregations can often have multiple Mappers and Reducers across
multiple stages, wherein each MapReduce combination feeds data through disk (HDFS)
writes to the next MapReduce job in a chain before the final results are available for use.

 Hive Query Compiler
 Figure 3-2 shows the steps that occur inside Hive processes, from the moment an HQL is
submitted until the execution is complete. This is not much different from what occurs in
a typical relational database engine when an SQL query is submitted.

 The overall objective of the series of steps is for the Hive compiler to take a HiveQL
query and translate it into one or more MapReduce jobs. The parser will parse the HQL
and generate a Parse Tree, also known as an Abstract Syntax Tree (AST). The parser
tokenizes the query and identifies the type of the query and the components involved
in the query: table name, WHERE clause, selected columns, join type, etc. The parser also
makes sure that the query is correct in terms of its syntax and structure.

 The Semantic Analyzer takes the parse tree (AST) and makes sure that the query
is semantically correct, in terms of validity of the objects used in the query, ensuring
that the query is valid and the objects that the query refers to exist, making sure, for
example, that the table referred exists. Semantic Analyzer also performs security-based
authorization, from an access perspective, as to whether the given user is allowed to
access the relevant objects used in the query. Metadata from the metastore is used to
complete this step.

 The Logical Plan Generator takes the output of the Semantic Analyzer and generates
a logical plan to execute the query—in terms of what types of operators (Scan operators,
Filter operators, Join operators, Select operators) would be used to satisfy the query—and
builds a logical query plan that is like an inverted tree.

 The Logical Optimizer takes the logical plan for executing the query and applies
algorithms to optimize the query at a logical level. In other words, it applies optimizations
to the logical plan with two things in mind: reducing the data scanned and improving
the query latency. It does this by intelligently applying rules and using basic descriptive
statistics of the existing objects to prune the data for the tables involved in the query
as early as possible. This layer makes sure that whatever optimization is being done or
applied will result in the same result set, without applying the optimization. This is based
on the set equivalence theory.

HQL

Parser

Semantic Analyzer

Logical Plan
Generator

Logical
Optimizer

Physical Plan
Generator

Physical Optimizer

Execution

 Figure 3-2. Hive query execution

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

40

 The Physical Plan Generator takes the optimized plan generated previously and
translates this to the actual implementation—in terms of what is being used as the
underlying engine to satisfy the query, whether it is plain MapReduce, Tez Engine, or
Spark Engine. It converts the optimized plan to operators that will actually implement
the query. The transformation of an SQL query to MapReduce happens here. A complex
SQL query can involve multiple MapReduce stages, and the operators to shuffle the data
between the stages, etc., are added here, in this plan optimization stage.

 The Physical Plan Optimizer is the final level of optimization. It applies another level of
optimization, to ensure that the query uses the least amount of resources. It is here that the
best algorithm to perform the join is decided—whether to apply Broadcast join or Hash join
or Shuffle join or a Map Join at the implementation layer, based on the data set sizes, etc.

 Finally, at the execution stage, the whole optimized plan is written to an XML file
called plan.xml , which the MapReduce engine within Hive takes and submits the query
to the Hadoop scheduler.

 Analytic Functions in Hive
 Analytic/window functions are a category of functions that are like aggregate functions
but scan multiple input rows to compute their outputs. Unlike GROUP BY , which shows
one result per group, analytic functions operate on groups of rows, called windows,
expressed in an OVER clause as conditions.

 Analytic capabilities are critical to a variety of data integration and analytic
functions. Most relational databases have support for window and analytic functions
in their SQL repertoire. Starting from Hive version 0.13, Hive has been steadily adding
support for common analytic window functions. This allows Hive to move beyond just
batch processing to a realm where it can be used to support complex analytics queries.

 One minor but very important point to remember with regard to analytic functions
is that they are evaluated after joins , WHERE , and GROUP BY clauses have been applied.
Analytic functions are heavily used in finance and time series analytics, to provide trend,
outlier, seasonality, and bucketed analysis. With the advent of IoT (Internet of Things)
and streaming data, applying analytic functions on an IoT data stream becomes a very
important use case.

 The typical syntax of an analytic query looks as follows:

 SELECT function() OVER (w)
 FROM ...
 WINDOW w as ([PARTITION BY ...]
 [ORDER BY ...]
 [ROWS|RANGE BETWEEN ...]) ;

 Following is what each clause indicates:

• PARTITION BY separates the data into distinct separable groups,
similar to GROUP BY .

• ORDER BY describes how the data should be ordered within a
partition.

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

41

• RANGE|ROWS BETWEEN describes which rows within the partition
apply to the current calculation. The default is all the rows prior to
the current one.

• WINDOW enables creation of an alias for a particular window
specification, so that it can be simply referenced in multiple
places within the query.

• Analytic queries enable many types of calculations that would
be difficult to express with plain SQL that involves calculations
across rows.

• The OVER clause is required for calls to analytic functions such as
 LEAD() , RANK() , and FIRST_VALUE() .

• PARTITION BY is like the GROUP BY clause in the outermost block
of a query. It divides rows into groups having identical values in
the columns concerned. These logical groupings are known as
partitions.

 The following example shows an SQL pattern to generate a sequence of ID for all
rows in a table. The output table has the same columns as the old one, with an additional
column ID containing an increasing sequence of numbers corresponding to the order of
a TIMESTAMP column in the original table.

 CREATE TABLE EventID AS
 SELECT row_number() OVER (ORDER BY date_and_time) AS id,
 c1, c2, c3, c4 FROM event_table;

 Common Real-Life Use Cases of Analytic Functions
 In this section, you will see some real-life use cases of how analytic functions are being
used in Hive with SQL queries.

 TopN

 This is used for calculating TopN queries, clickstream sessionization, and time series
sliding-window analytics.

 A very common use case in many SQL applications is to get the TopN rows from a
table, based on some criteria. There are multiple ways to address this with plain SQL, but
using window functions to partition and order, based on the criteria, and then filter the
results to the desired value of N, is the most elegant and performant approach.

 SELECT *
 FROM (
 SELECT id, type, price, row_number() OVER (w)
 FROM houses
 WINDOW w as (PARTITION BY type ORDER BY price)

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

42

) houses
 WHERE row_number <= 10
 ORDER BY type, price;

 Clickstream Sessionization

 Sessionization is the process of dividing a clickstream into sessions, based on key
partitions, and within that partition, subdividing, based on click frequency.

 What makes it interesting is that the dependency on a session is defined according to
the difference between the current timestamp and the previous timestamp, which can be
calculated using the lag() window function, as follows:

 SELECT
 IP, ts,
 ts - lag(ts,1) OVER (w) > '10 minutes' as newsession
 FROM clickstream
 WINDOW w as (PARTITION BY IP ORDER BY ts)
 ORDER BY IP, ts;

 Grouping Sets, Cube, and Rollup
 Hive has incorporated support for aggregation features for GROUP BY , using grouping sets.
Grouping sets is a concise way to implement advanced multiple GROUP BY operations
against the same set of data with multiple UNION and SELECT clauses.

 For example, an SQL query with a grouping set looks like the following:

 SELECT a,b, SUM(c) FROM tab1 GROUP BY a, b GROUPING SETS (a,b)

 The preceding SQL is equivalent to the following SQL, with GROUP BY , UNION , and
multiple SELECT statements:

 SELECT a, null, SUM(c) FROM tab1 GROUP BY a
 UNION
 SELECT null, b, SUM(c) FROM tab1 GROUP BY b

 The advantage of using a grouping set as opposed to multiple GROUP BY and UNION
clauses is that it completes all processes in one stage of jobs, which is more efficient than
 GROUP BY and UNION all having multiple stages.

 Hive also includes support for CUBE , and ROLLUP , based queries to be specified
directly in the SQL. ROLLUP enables a SELECT statement to calculate multiple levels of
aggregations across dimensions. It is an extension of the GROUP BY clause, with high
efficiency and low overhead.

 The ROLLUP clause is used with GROUP BY to compute the aggregate at the hierarchy
levels of a dimension. GROUP BY a, b, c with ROLLUP assumes that the hierarchy is “a”
drilling down to “b” drilling down to “c.”

 GROUP BY a, b, c, WITH ROLLUP is equivalent to GROUP BY a, b, c GROUPING
SETS ((a, b, c), (a, b), (a), ())

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

43

 CUBE takes a specified set of grouping columns and creates aggregations for all
of their possible combinations. If n columns are specified for CUBE , there will be n 2
combinations of aggregations formed.

 GROUP BY a, b, c WITH CUBE

 This is equivalent to the following:

 GROUP BY a,b,c GROUPING SETS ((a,b,c),(a,b),(b,c),(a,c),(a),(b),(c),())

 ACID Support in Hive
 Now let’s take a look at some of the recent additions in Hadoop and Hive to support
ACID and transactions. ACID is an acronym for Atomicity, Consistency, Isolation, and
Durability. ACID is what protects two people from booking the same seat in a movie
theater when making an online booking.

 Most NoSQL and Hadoop data stores don’t support ACID. In turn, they support
BASE (Basically Available Soft State and Eventual) consistency. “Basically available”
means that the system guarantees availability. “Soft State” means that the state of the
system may change over time, even without input that could result from the eventual
consistency model.

 Eventual consistency is the core concept behind BASE. Maintaining changing data
in a cluster-based data-storage system that spans across data centers and is replicated
across multiple locations involves latency. A change made in one data center takes a
while to propagate to another data center or node. So, if two simultaneous queries are
started and hit two different replicated versions of the data, they could get different
answers. Eventually, though, the data will be replicated across all copies and will be
consistent. This is called “eventual consistency.” This is exactly what happens when, for
example, you try to sell a product on Amazon. After you have successfully submitted your
request to list the product for sale, Amazon’s internal storage system—DynamoDB, which
is an eventually consistent database—comes up with the message that it will take some
time for the product to show up across different zones in Amazon’s data centers.

 When Hadoop was initially designed, HDFS was designed to be a WORM (write once
read many times) file system. Hive provided SQL support over files in HDFS, which meant
it was basically a file database platform. Starting in HDFS 2.0, data could be loaded or
appended, but support for incremental updates or deletes without complex ETL (Extract,
Transform, Load) -like batch transformations was not possible.

 However, as of now, using Hadoop doesn’t mean you have to give up on ACID. Hive
now supports new SQL query syntax, which supports transactions, which has been part of
relational databases since the ’70s.

 Some of the new SQL query syntax added to Hive include the following:

 INSERT INTO TABLE X
 VALUES (col1, col2, ...), (col1, col2, ...);

 UPDATE C SET col1 = value1 [, col2 = value2 ...] [WHERE expression]

 DELETE FROM X [WHERE expression]

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

44

 SHOW TRANSACTIONS;
 Shows all currently running and aborted transactions in the system

 SHOW LOCKS <table_name>;

 Transaction and ACID support is very essential for multiple-use cases in the big
data platform. When tracking changes made on a particular row or column over time—
to determine, for example, the lineage, when they were made, and by whom—ACID
becomes important. If some data was inserted inaccurately, and you want to be able to
correct it, the ability to update the data becomes important.

 Applications that required data merges, updates, or deletes had to rely on
reinstatement of the table or partitions or buckets. Support for ACID and support for
incremental updates and deletes eliminates the need to develop, maintain, and manage
entire sets of complex ETL/ELT code. This provides a boost to traditional database
developers to engage SQL on Hadoop, using familiar syntax and semantics, and it reduces
time and effort within the development and quality analysis of operational workloads.

 ACID support is essential for building transactions. Support for ACID began with
version 0.13, but it was incomplete. Support for ACD (Atomicity, Consistency and
Durability) was only at the partition level, and support for isolation was done using
Zookeeper. Hive 0.14 introduced new APIs that completed the ACID properties’ support
for Hive. Transactions are supported at the row level—for Update, Insert, and Deletes.

 Any change to row data is logged in row order in a file that resides in the same
directory in HDFS, where the base table data resides. For each transaction or a batch of
transactions, a new delta file is created. A separate directory in HDFS is maintained for
the base files, and a separate one is maintained for the delta files. On read, the delta is
merged into the base data, applying any update or deletes. The process of purging the
delta files is known as compaction. In order to do this, all the deltas are merged into
the original base file. The compaction process is done by a set of threads in the Hive
metastore. During a minor compaction process, multiple delta files are coalesced into
one delta file on a per-bucket basis, while for a major compaction process, one or more
delta files are rewritten to a new base file on a per-bucket basis. Compaction is done
both to reduce the load of too many files on the name node, as well as to reduce the
latency time to merge on the fly while processing the query. Compactions are generally
scheduled by the Thrift server, and the only way for an end user to run compactions is
by using the ALTER TABLE COMPACT command. The compactor is clever enough not to
remove a delta file until all the readers have finished their reads.

 However, there are constraints to supporting transactions in Hive. Only ORC formats
can support transactions, and tables have to be bucketed to support transactions.
Transactional statements such as BEGIN , COMMIT , and ROLLBACK are not yet supported, and
all operations are automatically committed. Transaction support is off by default. From
an isolation perspective, only the snapshot isolation level is supported. Other isolation
levels, such as read committed, repeatable read, and serializable, are not supported as of
now. A reader will see consistent data for the duration of the query.

 In order to provide the durability feature of transaction, all transaction-related
metadata is stored in the Hive metastore. A new lock manager has been added to Hive, to
support transactions. All lock metadata is stored in the Hive metastore. To ensure that no
lock or transaction is left in the state of limbo, a keep alive, or heartbeat, mechanism has
been implemented, whereby each lock holder and transaction communicates with the
metastore to indicate liveliness.

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

45

 The following properties have to be set in order to support transactions:

• hive.support.concurrency — true

• hive.enforce.bucketing — true

• hive.exec.dynamic.partition.mode — nonstrict

• hive.txn.manager — org.apache.hadoop.hive.ql.lockmgr.
DbTxnManager

• hive.compactor.initiator.on — true

• hive.compactor.worker.threads —must be set to at least 1 for
the Thrift metastore service.

 When creating a table that supports a transaction, the following clauses need to be
used: buckets , ORC , and TBLPROPERTIES , as follows:

 CREATE TABLE Users(Name string, Address string, Designation string)
clustered by (Name) into 10 buckets stored as orc TBLPROPERTIES
('transactional'='true');

 However, Update is not supported on the column on which the table is bucketed.
Typically, this feature in Hive should be used only for data warehousing applications and
not for OLTP-based applications.

 As a part of Hadoop’s new API changes to support ACID, a new input format called
 AcidInputFormat has been added. This class and its associated methods allow external
applications to write into Hive, using ACID semantics.

 Examples of such applications can include streaming applications and data
warehousing applications that update dimension tables and fact table insert and updates.
This API only supports batch updates, and not simultaneous updates, as replacements
for OLTP applications. Each operation writes to a new delta directory, which is created
when events insert, update, or delete rows. Files are stored and sorted by the original
transaction id, bucket id, and row id, and current transaction id, which is modifying the
row in question.

 Serialization and SerDe in Hive
 Hive has capabilities built in for extensibility, to interact with different data formats and
to allow an end user to plug in new functionality for data transformations using UDFs
(user-defined functions), UDTFs (user-defined table functions) and UDAFs (user-defined
aggregate functions). We will not be discussing the details of UDFs, UDTFs, and UDAFs
here but will take a look at the concept of SerDe.

 Serialization is the process of converting raw data into a byte stream, which is
transmitted through the network, and for storage. Serialization is very important within
the Hadoop ecosystem, because it reduces the data footprint, resulting in lesser storage
and faster data transfer. Extensibility components such as SerDe and ObjectInspector
interfaces provide Hive the capability to integrate with different data types and legacy data.

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

46

 Serialization is the conversion of structured data into its raw form, while
deserialization is the process of reconstructing structured form from the raw byte stream.
Deserialization allows Hive to read data from a table, and serialization is writing it into
HDFS. Hive has a number of built-in SerDe classes, and it supports building new custom
serializers and deserializers for your own use case.

 Hive was originally built to work with MapReduce’s file format, such as SequenceFile
format and TextFormat. The whole idea of moving to the ORC file format was conceived
to reduce I/O by reading only relevant columns, as required by the query, and supporting
efficient columnar compression.

 Before we go on to the next part, a brief comment on some of terms such as
InputFormat and OutputFormat is worth providing. InputFormat defines how to read
data from a raw input file into the Mapper. Because raw data can be in any format,
InputFormat conveys the file format to the Mapper object. Typical InputFormats would
be TextInputFormat, KeyValueTextInputFormat, NLineInputFormat, and so on.

 The output side follows a similar concept, called OutputFormat, which defines to the
Reducer process how to output the data.

 Any record read by the InputFormat class in Hive is converted by the deserializer to a
Java object, and an ObjectInspector converts this Java object to Hive’s internal type system.
By default, when no InputFormat, OutputFormat, or SerDe is specified, Hive reverts to
using a built-in SerDe class called LazySimpleSerDe . The ObjectInspector is the glue
of the data types in Hive with the file formats. Hive has a multitude of ObjectInspectors
to support Java primitives and collections of Java objects. Figure 3-3 shows how the
SerDe mechanism fits in the large scheme of things with respect to ObjectInspector and
InputFormats and RecordReaders.

 The entire SerDe mechanism in Hive is an extensible and flexible way to allow Hive
to work with any file format. If one wanted to make Hive work with an unknown format
that is still not invented, writing a SerDe for that format would provide an easy way to
integrate Hive with that data format.

 Let’s take an example of how to work with JSON data in a Hive table using JSON SerDe.
 If we have a file with JSON data as the following:

 {"Country":"A","Languages":["L1","L2","L3"],"Geography":{"Lat":"Lat1", "Long
":"Long1"},"Demographics":{"Male":"10000", "Female":"12000"}}

 Let us create a Hive table using JSON SerDe to work with the JSON data in the
preceding file.

 The Hive DDL would look like

InputSplit RecordReader

DeSerialize ObjectInspect

Hive Engine RecordWriter OutputSplit

 Figure 3-3. Hive deserialization internals

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

47

 CREATE TABLE JSonExample (
 Country string,
 Languages array<string>,
 Geography map<string,string>,
 Demographics map<string,int>
)
 ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
 STORED AS TEXTFILE;

 Here, we are using the JSON from openx . Once the table is defined and data is loaded
using

 LOAD DATA LOCAL INPATH 'json_data_file.txt' OVERWRITE INTO TABLE
JSonExample;

 one can run SQL queries on the preceding table, using the following queries:

 Select Country from JSonExample; // Will return "A"
 Select Languages[0] from JSonExample; // Will return "L1"
 Select Languages from JSonExample; // Will return ["L1", "L2", "L3"]
 Select Geography["Lat"] from JSonExample; // Will return "Lat1"

 Although at the highest level, we are using SQL under the hood, the Hive engine is
using SerDe to read the data from the file, parsing it, and passing objects to the Hive Java
code, to run the MapReduce job to get the results.

 Performance Improvements in Hive
 Over the last few releases of Hive, starting from version 0.10, Hive has gone through
multiple changes, focused primarily on improving the performance of SQL queries. Some
of these changes have resulted in 100–150x speed improvements. Hive was originally built
around a one-size-fits-all MapReduce execution framework that was optimized for batch
execution. While this solution worked for some workloads and applications, it turned out
to be inefficient for many types of workloads, especially where multiple MapReduce jobs
were chained or for machine learning algorithms that required iterative data processing.

 Apache Tez, a new engine that works closely with YARN, generalizes the MapReduce
paradigm with a framework based on expressing computations as a dataflow graph. Tez is
not meant directly for end users, but it enables developers to build end-user applications
with much better performance and flexibility. Tez helps Hive to support both interactive
and batch queries by reducing the latency.

 Hive has a setting

 set hive.execution.engine=tez;

 that specifies the type of engine Hive should use to execute the SQL queries. By default,
Hive will revert to using plain MapReduce with no optimization. If set to Tez, Hive will use
the Tez engine, which will result in queries executing faster, in most cases.

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

48

 The following sections offer a deeper look at some of those optimizations. Some
of the goals of Tez are to allow for low latency on interactive queries and improve the
throughput for batch queries. Tez optimizes Hive jobs by eliminating synchronization
barriers and minimization of the reads and write to HDFS.

 Some of these changes include vectorization of queries, ORC columnar format
support, use of a cost-based optimizer (CBO), and incorporation of LLAP (Live Long and
Process) functionality. Pipelined execution of the reducer without writing intermediate
results to disk, vectorized query execution, and other novel approaches (some of which
are discussed later in this chapter) for query execution fall outside the scope and
capabilities of the pure MapReduce framework.

 Startup costs of Java virtual machines (JVMs) have always been the key bottleneck in
Hive, where each JVM started for each mapper/reducer can often take up to 100ms or so.

 Let’s look at a simple Select query with a group by clause.

 Select Table1.col1, Table1.Average, Table2.Count From (select col1,
avg(col2) from X group by col1) Table1 Join (select col1, count(col2) from Y
group by col1) Table2 On (Table1.col1 = Table2.col2)

 Figure 3-4 shows the logical plan of how each section of the query is translated to
map and reduce tasks and how the intermediate results of the map or reduce is written to
HDFS before being used by the next section.

R

HDFS

M M M

R

M M

R

HDFS

M M

R

HDFS

JOIN Table1, Table2

Group X by Col 1 Group Y by Col 1

 Figure 3-4. SQL query to MapReduce in Hive

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

49

 Figure 3-5 shows how the Tez engine eliminates the extra disk write (by Map Tasks)
and reads (Reduce Tasks) from HDFS. This optimization itself results in better throughput
and lower latency, because the disk access is eliminated.

 Optimization by Using a Broadcast Join
 Let’s consider a simple SQL query with no aggregation and involving a relatively smaller
table in the right-hand side of the JOIN clause (Inventory Table).

 SELECT sales.item, sales.quantity,inventory.quantityleft
 FROM sales JOIN inventory
 ON (sales.productId = inventory.productID)

 Without Tez, the SQL query would be executed using the MapReduce data flow, as in
Figure 3-6 , with temporary writes to disk.

R

M M M

R

R

M M

R

JOIN Table1, Table2

Group X by Col 1 Group Y by Col 1

 Figure 3-5. Same SQL query, with the Tez execution engine

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

50

 However, with the optimizations by the Tez engine, the same SQL query is executed
efficiently, by broadcasting the smaller table to all the mapper tasks in the next stage, and
there are no intermediate writes to disk (see Figure 3-7).

 Let’s take another SQL query, with aggregation and group by clause, that involves a
relatively smaller table at the right-hand side of the JOIN clause.

HDFS

M

HDFS

Inventory Table
broadcasted to all Sales

tables for Join

Scan RHS Table –
Inventory
(smaller)

M M M

 Figure 3-6. Hive query execution without the Tez engine, with Inventory Table broadcasted
to all Sales tables

Inventory Table Scan
on multiple mappers

Sales Table Scan and
Join with broadcasted

Inventory Table

M M

M M M

HDFS

 Figure 3-7. Hive query execution with the Tez engine

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

51

 SELECT SalesTable.item, SalesTable.quantity, SalesTable.AvgPrice, inventory.
quantityLeft
 FROM (select item, quantity, avg(sales.sellPrice) as AvgPrice, FROM Sales
GROUPBY item, quantity) SalesTable
 JOIN Inventory
 ON (sales.itemId = inventory.itemID)

 Without Tez, the SQL query would be executed using the MapReduce code, as shown
in Figure 3-8 , with temporary writes to disk.

 However, with the optimizations by the Tez engine, the same SQL query is executed
efficiently, by broadcasting the smaller table to all the mapper tasks in the next stage, and
there are no intermediate writes to disk, as shown in Figure 3-9 .

M

R

HDFS

M M

R

JOIN – Store Table
Output with

Inventory - Involved
Shuffle Join

Store Table – Scan,
GroupByand Avg

Calculation

M

R

HDFS

M M

R

 Figure 3-8. Hive query execution without the Tez engine

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

52

 Pipelining the Data for Joins
 Some SQL queries—especially in large data warehouses—involve star or snowflake
schemas. The joins across the fact tables generally involve a lot of the data from the
dimension tables too. These dimension tables are not generally small, especially if the
dimensions have a lot of attributes. In such cases, broadcasting may not be an option, in
terms of efficiency.

 Under such conditions, Tez allows records from one data node to be streamed to the
next. This allows Hive to build a pipeline of in-memory joins that can efficiently stream
records during the join process.

 Dynamically Partitioned Joins
 In cases in which the tables to be joined are already partitioned or bucketed, and the
table on the right side of the JOIN clause is not small enough to be broadcasted to all the
Map or Reduce processes in the next layer, Tez just transmits the right partitions to the
process in the next layers that are required by them, based on the partitioning/bucketing
information. This works very well when the Hash join algorithm is used to perform joins.

 For example, take the following SQL query (seen earlier, under “Optimization by
Using a Broadcast Join”). Assume that both the tables are partitioned/bucketed on
the join key, and the inventory table is not small enough to be broadcasted to all the
processes.

M

R

M M

R

Join Broadcasted
Data with – Inventory

Table

Store Table – Scan,
GroupByand Aggregation

 - reduced size -
broadcasted without

temporary disk writes

M

HDFS

M M

 Figure 3-9. Hive query execution with the Tez engine

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

53

 SELECT sales.item, sales.quantity,inventory.quantityleft
 FROM sales JOIN inventory
 ON (sales.productId = inventory.productID)

 In this case, Tez would optimize the SQL query by broadcasting to the later
processes, not the whole table to the later processes in the chain, but only the correct
partitions from the right-hand side of the table (see Figure 3-10).

 Vectorization of Queries
 Vectorized query execution is a Hive feature that greatly reduces the CPU usage for
queries such as table scans, filters, aggregates, and joins. Typically, a query processor will
scan and process one row at a time. Processing rows one at a time results in poor CPU
utilization and a larger number of CPU instructions. What vectorized query execution
does is process a block of rows at a time. In other words, the idea is to process a batch
of rows as an array of column vectors. Within each such block, a column of vectors of
primitive types is stored, either in compressed or uncompressed form.

 A one-row-at-a-time-based execution model is essentially very slow. There are a
couple of primary reasons for this. Because Hive internally uses object inspectors, which
enable a good level of abstraction, it has, however, a major cost implication. This cost
implication gets worse because of lazy SerDe implementation within the internals of
Hive. Each such loop for a row processing creates Java objects, which adds to the object
creation overhead and time, and has a lot of if-then clauses and lots of CPU instructions.
This also causes the CPU to stall, because it has to wait for the data to be fetched before it
can start working.

 However, operations on a block of data can be done quickly, by iterating through
the block in a loop with very few branches, which is the core concept behind the
speedup. These loops can then be compiled to very few streamlined operations, which
can be completed in fewer CPU cycles, taking advantage of CPU cache and executing in

Scan RHS Table -
Inventory (smaller) and
Broadcast Partitions

Join – Sales Partitions
with Broadcasted

Partitions of Inventory

M M

M M M

HDFS

 Figure 3-10. Tez optimizations for JOIN query execution

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

54

fewer clock cycles. This makes an effective use of pipelining, which most modern CPU
architectures are very effective at. Most of the primitive data types are supported as part
of vectorized query execution.

 Use of LLAP with Tez
 One of the new additions to Hive is a new execution model that is a combination of
process-based tasks and long-lived daemons running on worker nodes. LLAP (Long
Live and Process) is a long-lived daemon process on the data nodes within the Hive
framework that reduces the startup costs of tasks and gives the JIT (just in time) compiler
a few extra ms with which to optimize the code. LLAP is an in-memory columnar cache
that replaces direct interactions with the DataNode.

 Functionality such as caching, pre-fetching, query fragment processing, and access
control can be moved into the daemon. Small queries can be processed by the LLAP
daemon directly, while any resource-intensive queries can be performed inside YARN
containers.

 LLAP is not an execution engine or a storage layer. The idea of introducing LLAP was
to improve the latency of the queries with some local caching. The LLAP process has a
number of executors within it, and each of them executes some task of the Map or Reduce
process.

 An LLAP process is an optional daemon process running on multiple nodes with the
following capabilities:

• Caching and data reuse across queries with compressed
columnar data in-memory (off-heap)

• Multi-threaded execution, including reads with predicate
pushdown and hash joins

• High throughput I/O using Asynchronous Elevator algorithms
with dedicated thread and core per disk

• Granular column level security across applications

 This hybrid engine approach provides fast response times by efficient in-memory
data caching and low-latency processing, provided by node-resident LLAP processes.

 LLAP enables efficient execution of queries by approaches such as caching columnar
data, building JIT-friendly operator pipelines, and adding new performance-enhancing
features like asynchronous I/O, pre-fetching, and multi-threaded processing (see Figure 3-11).

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

55

HiveServer2

HQL

Vector Cache

Query Fragment

Query Fragment Queue

Executors Executors

HDFS

LLAP

Data Node

 Figure 3-11. LLAP architecture

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

56

 LLAP works only with the TEZ engine, does not currently support ACID-based
transactions in Hive, and only supports the ORC format.

 All these optimizations enable Hive to execute not only ETL/ELT workloads but also
such applications as data discovery. The ability to work interactively with SQL on Hive
expands the roles of Hive users and expedites development, testing, data flow, and data
pipeline execution.

 CBO Optimizers
 When Hive originally came into the ecosystem, it had a simple rule-based optimizer to
translate SQL queries into MapReduce code. Hive relied on some complex hints from the
end user embedded in the SQL to address the shortcomings of the rule-based optimizer.
These hints would be used to drive selections between a map-side vs. reduce-side join.

 Relational databases engines reflect more than 30-plus years of research and
development work in query optimization. Starting from version 0.13, Hive introduced
cost-based optimization using Apache Calcite. Calcite is an open source, enterprise-grade
CBO and query execution framework.

 CBO generates efficient execution plans by examining the tables and conditions
(filter, join) in the query to reduce latency and resource utilization. Calcite uses a plan
pruner to select the cheapest query plan. All SQL queries are converted by Hive to a
physical operator tree, which is then converted to MapReduce jobs. This conversion
includes SQL parsing and transforming and operator-tree optimization.

 Inside the CBO, an SQL query goes through the following four phases of evaluation:

 1. Parse and validate query. It generates an AST (abstract syntax
tree) for a valid query that contains the operations/operators
the code must execute.

 2. Generate exhaustive execution plans. It generates logically
equivalent plans that yield the same result set.

 3. Perform cost evaluation. For each of the preceding plans
generated, it calculates the execution cost, based on heuristic
statistics (cardinality, selectivity).

 4. Choose the best low-cost plan.

 Two of the biggest challenges for a query optimizer are how to leverage the join
ordering and table sizes. Let us look briefly at each of them.

 Join Order
 The order of tables joined while executing an SQL query affects performance, because
of the intermediate data sets that are generated. This problem is very similar to the order
in which a series of matrices can be multiplied. The number of possible join orders
increases exponentially with the number of tables involved, and it is not possible to
evaluate the cost of execution of each such join order. The idea is to find the join order
that results in the maximum reduction of intermediate rows generated, or, in other words,

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

57

select the join order that is the most selective in terms of reducing or initially pruning the
data sets. If the least amount of data sets that are to be worked on by later operators is
identified early enough, this automatically speeds up the queries.

 Join orders can be of three types: left-deep, bushy, and right-deep.
 A left-deep join tree is shown in Figure 3-12 .

 A left-deep join tree does not produce efficient plans for snowflake schemas.

 Bushy Trees

 In the case of bushy trees, the join occurs on the results of two other joins, rather than
on one table being scanned. It is very useful for snowflake schemas. These trees contain
subtrees that can reduce the size of the intermediate data. The other advantage of a
bushy tree is that the joins can be done in parallel, which could yield better performance,
depending on the infrastructure and I/O patterns (see Figure 3-13).

 Figure 3-12. Left-deep query plan

 Figure 3-13. Bushy query plan

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

58

 Table Sizing

 CBO relies heavily on the statistics present in the Hive metastore for the table and
columns to make the best query execution plans. These statistics include row counts,
column distinct values, boundary statistics, and data distribution metrics. This helps the
optimizer decide the type of algorithm to apply, based on whether the full table can be
cached in-memory or the query processing requires swapping of the data to disk.

 Recommendations to Speed Up Hive
 In the last section of this chapter, we’ve outlined some of the very high-level approaches
one can take to improve Hive performance. The following is by no means an exhaustive
list, however.

 Here are some recommendations to speed up Hive:

• Use the Tez or Spark engine and not MapReduce. Set the
configuration to hive.execution.engine=tez or hive.
execution.engine=spark , to use a different engine from the
default MapReduce.

• Use Partitions and Bucketing wherever possible, if your data sets
allow it and your data processing pipelines make it feasible. This
drastically reduces the join time, because, in such cases, Hive only
looks at a small fragment of the data sets when it does the join.

• Always enable statistics on Hive tables. This can help the CBO
optimizer to build the best plan, based on actual data rather than
plain heuristics.

• If you are on the latest version of Hive, make sure hive.
vectorized.execution.enabled = true is turned on. Older
versions of Hive had some problems with vectorization that are
now resolved.

• Use ORC. Hive is optimized to work best with the ORC format,
and, wherever possible, convert non-ORC tables to the ORC
format before doing analytics or running SQL queries on the data.
Using ORC and vectorization provides a lot of speedup with very
little effort.

• When you have complex SQL queries that involve subqueries,
make sure the subqueries are rewritten to temporary tables before
the actual higher level query executes. It has been seen that this
pattern always yields better performance than letting Hive work
with subqueries directly.

CHAPTER 3 ■ BATCH SQL—ARCHITECTURE

59

 Upcoming Features in Hive
 Still missing from Hive are features such as referential integrity, unique constraints,
secondary indexes, and other multiple types of indexes. Hive has had indexes for quite
a while now, but their usage in real-life applications has been very minimal. There is no
plan to support any of these features in the near future.

 The latest version of Hive 2.0 has added the following capabilities from an SQL and
performance perspective:

• Metastore support on HBase

• LLAP support

• Support for Hive Procedural Language, which implements
procedural SQL for Hive

• Multiple features to support integration of Hive with Apache
Spark

 The following are some of the major still remaining functionalities to be supported
by Hive:

• Support for Theta join : With this, tables can be joined on non-
equality-based conditions on the columns.

• Support for GeoSpatial analytics

• Support for updatable views : Views have existed in Hive for a
while, and all relational databases support updatable views with
their own rules. Updatable views in Hive can help in some ETL-
related tasks, especially when the underlying data changes.

 Summary
 This chapter covered Hive, from a high level as well as from a deep architectural
perspective, detailing how a complex SQL on a Hadoop engine such as Hive is
engineered, both from functionality and performance aspects.

 In the next chapter, we will discuss some of the SQL engines for interactive and ad
hoc query analysis, in which improving the latency of SQL queries is the main objective.

61© Sumit Pal 2016
S. Pal, SQL on Big Data, DOI 10.1007/978-1-4842-2247-8_4

 CHAPTER 4

 Interactive SQL—
Architecture

 In the last chapter, we discussed in depth the architectural details of Hive and the batch-
processing-based SQL engine on Hadoop. We learned about its architecture, components,
and features, and how it is evolving to keep pace with the technology innovations.

 In this chapter, we will discuss the internal details of SQL on Hadoop engines for
interactive workloads. The chapter primarily focuses on the architecture and internals of
SQL engines that fall into the interactive category and their approaches to executing ad
hoc SQL queries with low latency on large data sets.

 Why Is Interactive SQL So Important?
 Interactive querying of big data is primarily for supporting data discovery, data
exploration, and speed of thought-based data analysis capabilities. Allowing interactive
ad hoc queries is essential, as more often than not, the user does not necessarily know
all the questions to ask of the data ahead of time. As questions are asked and answers
obtained, it raises new questions, based on thought process, to the answers to previous
queries. During this process of asking new questions based on results obtained from
previous queries, it is important to provide low latency; otherwise, the train of thought for
a given user could be lost.

 In the new world of big data, business intelligence (BI) and visual analytics tools are
evolving to interactively work with big data ecosystems. Interactive workloads include the
ability to execute ad hoc SQL queries on the data, through either front-end tools, APIs, or
the command line. These interactive workload-class SQL engines execute ad hoc queries
using a variety of optimization techniques on large-scale data sets, to return the results in
the shortest possible time.

 Currently, for interactive analysis, the pattern is to apply ETL (Extract, Transform,
Load) to data from different source systems, prepare the data so that it is compatible for
fast data access, and build a new data set that has aggregated information for best latency
and I/O load characteristics. In other words, ETL is initially used to prepare the data
to expedite data loading, preparing new data sets containing aggregated information,
to make it efficient for BI tools to provide faster response time for downstream ad hoc
analytic queries. This pattern has been used in the past in typical data warehouses and

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

62

to build materialized views and data marts, but it inherently suffers from impedance
mismatches and delays in the actual analysis, due to data preparation tasks.

 At a high level, interactive SQL on Hadoop engines has the following challenges:

• Low latency : Response times for interactive queries should be
significantly faster than with batch processes.

• ANSI SQL compatibility : Ensuring that interactive SQL engines
on big data are used by the BI tools also presents the challenge of
supporting the SQL ANSI standards and compatibility issues, to
find broad applicability and usage.

• High concurrency : As these tools get better at providing low
latency, more and more users adopt and use them, which gives
rise to another challenge that these engines have to address:
keeping low latency with high concurrency. It is an extremely
challenging proposition to keep low-latency service-level
agreements (SLAs) with high concurrency on large-scale data sets.

• Federated data sources : The ability to query data that is set across
multiple different data sources, different formats, and different
locations and form holistic results that select subsets of attributes
from each of the data sets to get the answer.

 Interactive SQL engines on big data is a fiercely competitive field in which both
commercial and open source products are coming up with innovative ideas and
architectures to address the challenges. This chapter will cover some of the popular SQL-
on-big-data engines: Spark SQL, Impala, Apache Drill, Jethro, and Vertica.

 SQL Engines for Interactive Workloads
 In this section, we will look at quite a few SQL engines that fall into the category of
interactive SQL engines for big data.

 Spark
 Apache Spark is an in-memory distributed computing platform for fast general-purpose
data processing and computation. Spark supports different types of computations—
batch, interactive, stream processing, and iterative machine-learning algorithms—on
the same framework. One of the distinguishing features of Spark is its ability to run
computations in memory and store intermediate results in memory without going to disk.

 Because varying workloads can be supported within the same framework and
processing engine, Spark is a very convenient and productive framework to use from
code development, code maintenance, and deployment perspectives. This is so because
developers, devops, and dataops teams have to learn only one framework—its internals,
nuances, and best practices—rather than different frameworks for different workloads.
This also has been the major reason for adoption of Spark as a distributed processing
framework.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

63

 We will not go into detail about Spark, because this is not a Spark-related book, but
we will cover how Spark SQL is engineered and architected for interactive SQL queries.

 Spark Stack
 Figure 4-1 shows the Spark component stack, in which the bottom layer is the cluster
operating system (OS), such as Yarn, Mesos, or Standalone Spark. The cluster OS is meant
to abstract out the details of the cluster related to resource management, scheduling, and
fault tolerance from the higher layers.

 Spark Core, which contains RDDs (Resilient Distributed Datasets), optimizers,
and DAG (Directed Acyclic Graph), is built on top of the cluster OS, while the major
components that developers use reside a layer above the core Spark framework—Spark
SQL, Spark Streaming, MLlib, and GraphX for machine learning algorithms.

 Spark Architecture
 At a very high level, Figure 4-1 describes the Spark architecture stack, while Figure 4-2
shows how a Spark application works. A Spark application is composed of drivers, workers,
executors, and tasks. The Spark driver starts the Spark worker processes on nodes in
the cluster. Each Spark worker process spawns executors that spawn tasks, which are
threads of the same code executing on different pieces of the data. The executor process
coordinates the execution of the tasks and the details around them, such as scheduling,
fault tolerance, etc., while the worker process communicates with the driver process.

Spark SQL
Spark

Streaming
MLlib GraphX Packages

Spark Core

YARN STANDALONE MESOS

 Figure 4-1. Spark component stack

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

64

 Spark SQL
 Spark SQL supports interacting with the Spark engine using SQL and HiveQL. Spark SQL
represents structured data, as Spark DataFrames, which are internally represented as
Spark RDDs with an associated schema. Spark SQL allows developers to mix SQL queries
with code written with any of the language bindings supported in Spark—Python, Java,
Scala, and R—all within a single application. The whole idea of providing an SQL layer on
top of the Spark engine framework is to support the following:

• Writing less code

• Reading less code

• Allowing the Spark Catalyst optimizer (discussed later in this
chapter) to do most of the hard work of figuring out where, when,
and how to execute the query, so that it is best optimized, has low
latency, and does the least amount of work to obtain the results.

 The Spark SQL library is composed of the following components:

• Data Source API : This is an API for loading/saving data from any
data source.

• DataFrame API : This is the API for higher level representation for
data, used directly by the application developers.

Spark Context
Scheduler

Spark Application

Spark Driver

Executors

…
Task

Task

Task

Task

Worker

Executors

…
Task

Task

Task

Task

Worker

.

.

.

 Figure 4-2. Spark deployment architecture

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

65

• SQL optimizer : This is a rule-based optimizer to optimize the data
transformations specified in SQL.

 Data Source API is a universal API for loading/saving data, with support for data
sources such as Hive and NoSQL databases, flat files, and data formats such as Avro,
JSON, JDBC, and Parquet. It allows third-party integration through Spark packages. For
example, the built-in comma-separated value (CSV) data source API allows for

• Loading/Saving CSV data

• Automatic schema discovery within the CSV file

• Automatic data type inference

 The Data Source API can also automatically prune columns and push filters to the
source, as the first steps to optimize the data access.

 The DataFrame is a distributed collection of rows organized into named columns.
DataFrame is a data structure for structured data, whereas RDD is a data structure for
unstructured data. DataFrame, in other words, is the combination of RDD plus schema.
The DataFrame API in Spark is inspired from R data frames and Python panda libraries,
which support data processing and data wrangling of structured data.

 A Data Source API implementation returns DataFrames, which provide the ability to
combine data from multiple sources and provide uniform access from different language
APIs. Having a single data structure allows users to build multiple DSLs (Domain Specific
Languages) targeting different developers, but all such DSLs eventually use the same
optimizer and code generator. A high-level Spark SQL architecture and how the Data
Source API and DataFrame API interact is shown in Figure 4-3 .

DataFrame DSL Spark SQL and HQL

DataFrame API

DataFrame API

 Figure 4-3. Spark SQL components and architecture

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

66

 Spark SQL Architecture
 As shown in Figure 4-4 and Figure 4-5 , the elegance of DataFrame design is that it allows
a uniform abstraction layer on top of the core Spark libraries for different data processing
tasks. This allows a developer to do data frame-based development work for SQL as well
as for streaming applications or data processing on GraphX or GraphFrames (introduced
in Spark 1.6).

 Figure 4-6 shows how DataFrame and the Catalyst optimizer are the major
underlying underpinnings of the whole SQL-on-Spark stack architecture. Any SQL
query—HQL, SQL, or queries originating from a DSL-based Spark application—is

Spark SQL
Spark

Streaming
Streaming

MLlib
Machine
Learning

GraphX
Graph

Computation

Packages
R on Spark

Spark Core Engine

DataFrame

 Figure 4-4. DataFrame and Spark components

Spark SQL
Spark

Streaming
Streaming

MLlib
Machine
Learning

GraphX
Graph

Computation

Packages
R on Spark

RDD API

DataFrame

Spark Core Engine

 Figure 4-5. DataFrame and Spark stack

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

67

processed by the Spark SQL engine and goes through the DataFrame library and Catalyst
optimizer layer. This provides the same kind of optimization for any of these queries,
irrespective of their point of origin.

 With the introduction of the DataFrame abstraction, multiple DSLs can now share
the same optimizer and execution engines, and all DSLs generate code based on the
DataFrame API.

 Spark SQL Optimization—Catalyst Optimizer
 Catalyst is a query plan optimizer. It is a rule-based framework that

• allows developers to plug custom rules specific to their DSL for
adding new forms of optimizations to query execution; and

• allows extensibility of existing rules to add data-source-specific
rules that can push filtering or aggregation into external storage
systems or to support new data types.

 The Catalyst optimizer is based on functional programming constructs available in
the Scala language. It supports both rule-based and cost-based optimization.

 One of the first steps for executing an SQL query is transformation of the query into
a DataFrame API, which is also a logical plan representation of the query. The logical
plan is the tree representation of the query. Every transformation in Spark is essentially

HiveQL SparkQL
DataFrame

DSL

Hive parser
SparkSQL

parser

DataFrame

Catalyst

Hive queries
Spark SQL
queries

Spark RDD
code

 Figure 4-6. Spark SQL pipeline

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

68

modeled as a tree, which is optimized by the Catalyst optimizer’s built-in rules. The
logical plan goes through a series of rules to resolve and optimize the execution plan, and
after optimization, the logical plan is converted to a physical plan for actual execution of
the query.

 Spark SQL, along with the Catalyst optimizer, helps to read less data by converting to
more efficient formats and modifying the logical plan to execute the query with the lowest
possible latency.

 Catalyst optimizes the logical plan by rearranging the query operators and lower-
level operations. As an example, the Catalyst optimizer might decide to move a filter
operation before a join operation—a very typical example to reduce the data that is
operated on during the join execution phase.

 Because Spark is a lazy execution framework, optimization occurs as late as possible;
therefore, Spark SQL can optimize across functions. Some of the optimizations that
Catalyst performs include the following:

• It pushes filter predicates down to the data source, so irrelevant
data can be skipped right at the source, thus reducing
unnecessary data movement.

• When reading Parquet files, it skips entire blocks and turns string
comparisons to integer comparisons via dictionary encoding,
which results in faster operations.

• Catalyst compiles operations into physical plans and generates
highly optimized Java virtual machine (JVM) bytecodes.

• It intelligently chooses between broadcast joins and shuffle joins,
to reduce network traffic.

• It eliminates expensive object allocations and reduces virtual
function calls.

 When the DataFrame is cached in memory by the Spark code, the Catalyst optimizer
automatically calculates the statistics—maximum and minimum values of a column,
number of distinct and NULL values—which it later uses to skip some partitions while
running filter-based SQL queries, resulting in additional performance improvements.

 The Catalyst optimizer is also a compiled library to manipulate trees, in this case, a
logical plan tree specific to relational query processing, to move around nodes, remove
edges, and short-circuit branches. Internally, it applies pattern matching recursively
across the tree, to apply the optimization rules and update the tree with the best
execution plan.

 In Figure 4-7 , you will see the different steps through which an SQL query has to
go through in order to be ready for execution. These sets of steps are generally the same
across most of the SQL engines. The core difference between SQL engines is in the middle
sections, where the optimizer steps in to build the best optimized plan, based on different
criteria. These optimization criteria could be based on rules, code generation, and query-
execution costs. The core IP of SQL engines lies in this optimizer layer, to lower the SQL
data-processing latencies.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

69

 The final piece of work that the Catalyst optimizer does is code generation. For
workloads that are CPU-bound, any optimization at the code-execution level for each
row of data to be processed can result in massive speedups for large data sets. Imagine if
you can shave off 1 microsecond of query execution time from a single row of data, for big
data sets having a billion row data, the query engine would be 1000 seconds faster. This is
the extreme to which the Catalyst optimizer works to improve the query speed.

 Code generation is an extensive and complex topic in itself, and we will not go into
too much detail about it here. Essentially, the Catalyst optimizer uses a special feature of
the Scala language called quasiquotes that allows automatic generation of abstract syntax
trees (AST), which are fed to the Scala compiler to generate bytecodes.

 An expression used in the SQL query is converted to AST by Catalyst, which is then
worked upon by Scala code to evaluate the expression and then compile and run the
generated code. Without code generation, simple expressions within an SQL query, such
as (Col1 + Col2)*2 , would have to be parsed and interpreted for each row of data. This
could result in lots of overhead, especially CPU branching and virtual function calls,
which can slow down processing.

 Spark SQL with Tachyon (Alluxio)
 Tachyon, now called Alluxio, is an in-memory file system that enables reliable data
sharing across data-processing frameworks such as Spark and MapReduce. Tachyon
achieves high performance by using memory caching and internally using lineage
information. It caches a working set of files in memory and avoids going to disk.

 Tachyon with Spark SQL has been used successfully at Baidu to provide low-latency
ad hoc SQL query to data warehouses for business analysts. The addition of Tachyon to
Spark SQL provides 10–20 times the speed for analytic query processing.

 The initial computes are done in Spark engine, but the results are then cached within
the Tachyon file system. Within Spark, SQL calls can be made using the DataFrame to the
data stored on Tachyon.

 After the query parsing and optimization is done within the Spark SQL engine, the
query executor checks whether the requested data is already cached within the Tachyon
file system. If so, it reads from Tachyon; otherwise, a new Spark job is initiated to read
from the data store the computations done within the Spark engine, which are then
cached in the Tachyon file system.

Analysis
Logical

Optimization
Physical
Planning

Code
Generation

SQL Query

DataFrame

Logical Plan

Catalog

Optimized
Logical Plan

Physical
Plans

Selected
Physical

Plan
RDDs

Co
st

 M
od

el

Unresolved
Logical Plan

 Figure 4-7. Catalyst optimizer role in query processing

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

70

 Analytic Query Support in Spark SQL
 Spark started supporting analytic functions from version 1.4. Addition of windowing
functions to Spark improves the expressiveness of DataFrame and Spark SQL. Spark
supports three basic kinds of analytic functions: ranking (rank, dense_rank, ntile, row_
number), analytic (first_value, last_value, lead, lag), and aggregate.

 With Spark SQL, the window functions are used with the OVER clause.
 When using the DataFrame API, one uses the function name followed by the OVER

clause.
 Inside the OVER clause is the window specification, which consists of the partitioning

(which decides what rows are to be part of the same partition as the given row in
question), Order (how the rows inside a partition are ordered), and Frame (the rows to be
included, based on the current row in question) specification.

 In SQL parlance, it would look something like OVER (PARTITION BY ... ORDER BY
... frame_type BETWEEN start AND end) .

 While in the DataFrame API world it would look like the following:

 windowSpec = Window.partitionBy(...).orderBy(...)
 windowSpec.rowsBetween(start, end)

 The frame specification is more detailed, with lots of options, and the frame_type
can be either – ROW / RANGE .

 Start can be either UNBOUNDEDPRECEDIN G, CURRENT ROW , <value> PRECEDING , and
 <value> FOLLOWING ; and end can be either UNBOUNDED , FOLLOWING , CURRENT ROW , <value>
PRECEDING , and <value> FOLLOWING .

 Spark 2.0 introduced built-in support for time windows. These behave very similarly
to the Spark streaming time windows.

 General Architecture Pattern
 In the next few sections, we take a deeper look at some of the state-of-the-art massive
parallel processing (MPP) analytic processing engines for big data processing. Impala
from Cloudera (now open source) and Apache Drill are the two MPP SQL engines we will
cover in the following sections. The core ideas for these two MPP engines have evolved
from Google’s Dremel, which introduced two main innovations: handling nested data
with column-striped formats and multilevel query execution trees, which allow parallel
processing of large data sets over large-scale computing clusters. Both these MPP engines
rely on full scan to return the relevant data but also on smart optimizations to figure out
what to scan before the actual scanning process starts.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

71

 Impala
 One of the initial main goals of Impala was to provide an SQL-on-Hadoop solution for
fast interactive workloads. Impala is part of the crowded marketplace of low-latency SQL
engines on large data sets for analytic queries.

 Like all MPP SQL engines, Impala is architected to be a shared nothing architecture
in which all the processors are loosely coupled, have their own memory and CPU, and
own chunks of data to work with. Impala is designed for analytic workloads, rather than
transaction or operational workloads.

 However, unlike other high-cost MPP engines out there, Impala has been designed
to scale out by adding commodity servers to the Impala cluster. Impala has been
designed to work as the back-end engine of BI tools for fast analytic queries on large data
sets, and it supports application connectivity with support for Java Database Connectivity
(JDBC) and open database connectivity (ODBC).

 Impala has been written in the C++ language to increase its speed and make possible
lots of machine-generated code for faster execution. As an engine based on C++, Impala
avoids many of the problems associated with Java-based engines related to garbage
collection slowdowns and heap size issues. Impala is not a storage engine; it is an SQL
query engine that leverages data stored on HDFS/HBase or flat files and directories.
Impala uses an internal in-memory tuple format that puts fixed-width data at fixed
offsets for faster data access. It uses special CPU instructions for text parsing and crc32
computation.

 Impala Architecture
 Impala uses its unique distributed query engine to minimize response time. This
distributed query engine is installed on all data nodes in the cluster.

 There were twofold architectural tenets for Impala. One was to make Impala
extremely fast, to support the low-latency query requirement for SQL on large data
sets. The other was to ensure its linear scalability. Impala optimizes CPU usage to get
the query result in the shortest possible time. Impala recommends using servers with
large memory, preferably 96GB+, in addition to servers with modern chipsets, such as
Sandybridge. Impala heavily leverages modern CPU instructions for fast code generation
and speeding up queries on large data sets.

 In this section, we discuss the main components that make Impala a low-latency
SQL query engine. Let us start by looking at Figure 4-8 .

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

72

 Impala comprises three main daemons (long-running processes) that handle the
functionalities that Impala needs to process a query. Impala daemons are installed in
each of the data nodes. This is done during the installation phase of Impala. Impala
daemons run on the same node from where the data is to be queried, preserving the data
locality. Each Impala daemon is an isolated process in the shared nothing architecture.

 The Impala node to which the clients (e.g., impala-shell) are connected plays the
role of query planner/coordinator, while the other nodes are the query execution engines.
In other words, one Impala daemon acts as a leader, while the other Impala daemons
running on each Hadoop data node act as execution engines. Outlined following are the
main components of the Impala engine.

 impalad : The brain behind Impala is the query engine. Its
function is to process queries using all the optimization
rules built within the engine, to access and process the
data in the most efficient manner. Impala relies heavily on
the data distribution and block placement capabilities of
HDFS, to ensure data locality for each impalad. The impalad
process has three components: the Query Planner, the Query
Coordinator, and the Query Executor. The Query Planner
syntactically and semantically validates the query, transforms
it to a logical and physical plan, and, finally, compiles the
plan into a physical distributed query plan made up of query
fragments, which are taken by the Query Coordinators to
execute. impalad processes data blocks in the data node
where it is executing and reads the data directly from the local
disk. This minimizes network load and benefits from the file
cache on the data nodes.

Query Planner

Query Coordinator

Execution Engine

HDFS HBASE

Metadata
(Hive Metastore)

Catalog
Server

Statestore
Server

Query Planner

Query Coordinator

Execution Engine

HDFS HBASE

Query Planner

Impala Daemon

Query Coordinator

Execution Engine

HDFS HBASE

Query

JDBC ODBC Thrift

 Figure 4-8. Impala architecture and the components

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

73

 statestored : This maintains the status of the other Impala
daemons running on the data nodes, where status includes
information about the health of the node. This daemon
monitors the health of impalad on all the nodes in a cluster.
If by chance an impalad daemon becomes unresponsive, the
statestore daemon communicates with other nodes in the
cluster, and subsequent queries do not involve the unresponsive
impala node. This daemon has only one running process.

 catalog server : This daemon synchronizes the metadata of
the tables with impalad, guaranteeing that all of impalad’s
metadata is in sync. There is only one instance of this daemon
running in the cluster.

 Queries can be submitted to Impala through either Impala Shell or JDBC/ODBC
drivers. Once a query is submitted, the query planner process turns the query request
into a collection of plan fragments, and then the coordinator initiates execution on a
remote impalad. Intermediate results are streamed between impalad’s before the query
results are streamed back to client.

 The coordinator orchestrates interactions between impalad across all the data nodes
and also aggregates results produced by each data node. impalad also exposes a remote
procedure call (RPC) interface that other impalad can use to connect to exchange data.
Also, this interface allows the coordinator to assign work for each impalad.

 Following query submission by the client, the usual steps of query validation, syntax
and semantic analysis, are done before the query is optimized by the query engine.
Every query is first validated syntactically and semantically, to make sure that there are
no errors in the user’s query, both from a syntax perspective as well as from a semantic
perspective, ensuring that the query makes sense. The metadata for the query exists
in the Hive metastore. After this step, query planning occurs, whereby Impala tries to
figure out the best way to solve the query to get the results. The EXPLAIN query dumps the
output of what is going on within Impala to figure out the way to solve the problem. The
 EXPLAIN query provides an outline of the steps that impalad will perform and the relevant
details on how the workload will be distributed among the nodes.

 Optimization involves generating the best physical plan for the query, in terms
of cost of execution as well as code generation of the query for faster execution on
the hardware. The optimized query is submitted to the coordinator process, which
orchestrates the query execution. When a query executes, the coordinator orchestrates
interactions between Impala nodes, and once the result is available from each impalad
process, it aggregates the results. This coordinator process is part of the impalad
process and resides in all the nodes. Any node can act as the query coordinator. It is the
coordinator that assigns work units to the impalad processes.

 Once the work is assigned to each impalad process by the coordinator, the impalad
process works with the storage engine to implement the query operators, for example,
constant folding, predicate pushdown, etc., so as to extract only the relevant portions of
the data that are really needed to satisfy the query.

 The execution engine (executor process) in the impalad daemon executes the
optimized query by reading from the data source at high speeds. It leverages all the disks
and their controllers to read at an optimized speed and executes query fragments that
have been optimized by the code optimizer, which includes Impala LLVM and the code-
generation process. Impala executor serves hundreds of plan fragments at any given time.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

74

 Impala does nothing special for failover. Because HDFS provides failover using
replication, if the impalad daemon is installed on the replicated nodes, the Impala
process will seamlessly start using the impalad on the replicated nodes.

 Impala Optimizations
 Impala is built to take full advantage of modern-day hardware chips and the latest
techniques for efficient query execution. Impala uses many tools and techniques to get
the best query performance. Some of the techniques Impala uses for best performance
are discussed following.

 HDFS Caching
 Impala can leverage HDFS (Hadoop distributed file system) caching to use the memory
effectively, especially for repeated queries that take advantage of data pinned in memory,
regardless of the size of the data being processed. With HDFS caching, one can designate
a subset of frequently used data to be pinned in memory. This applies to tables or table
partitions frequently accessed and small enough to fit in the HDFS memory cache.

 Once HDFS caching is set up, within Impala DDL, CREATE and ALTER statements
specify the cache pool name, to enable HDFS caching for that table. The actual syntax
looks like CREATE TABLE ... CACHED IN <pool name> or ALTER TABLE ... SET CACHED
IN <pool name> .

 For a table that is already cached, if new partitions are added through ALTER TABLE
... ADD PARTITION statements, the data in those new partitions is automatically cached
in the same pool.

 File Format Selection
 Different file formats and compression codecs work better for different data sets. Impala
provides performance gains irrespective of file format; however, choosing the most
optimized and efficient format for the data you work with yields further performance
improvements. Better data formats allow users to leverage lower storage and optimization
at query time, by processing less data, and also during I/O and network, by reading and
transmitting less data.

 Text format data is not efficient for storage and query, unlike Parquet and ORC,
which are highly optimized file formats that result in better storage and I/O efficiency.
Hence, is it always advisable to convert text data to a Parquet format, for which Impala
is most optimized. If the data is available as a text file, create a new table with a Parquet
format and use Impala to query that data format. Natively, Impala has been designed to
work best with a Parquet format. Parquet has lots of optimizations built in, which makes it
suitable for querying large data sets with low latency.

 Optimizations in Parquet make it suitable for low-latency queries, which include
those optimized for large data blocks and nested data. Internally, Parquet uses an
extensible set of column encodings and also includes embedded inlined column statistics
for optimization of scan efficiency through min/max values for a block.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

75

 Recommendations to Make Impala Queries Faster
 Some of the recommended best practices and empirical rules to keep in mind to make
queries run faster include the following:

• Use numeric types (not strings) when possible, because using
string data types can result in higher memory consumption, more
storage, and slower processing.

• Opt for a decimal data type rather than a float/double type.

• Identify query access patterns from the different use cases and
create the right partitioning strategy, for example.

• Table columns used in WHERE clauses are possible choices for
partition keys.

• Dates or spatial boundaries or geography can be good choices for
partition keys.

• Make sure partition size is less than 100K or so.

• If possible, limit the columns to less than 2K. This can affect
performance of the Hive metastore.

• Configure Impala to use Parquet and Snappy for best
performance. If you’ve given any updates, opt for using Avro, for
best performance.

• There is a fine line between block size selection. Larger blocks
result in better throughput but lower parallelism, while the
opposite is true for smaller block sizes.

• You should tune your memory requirements after gathering some
query statistics, using the explain query plan feature. Look at the
peak memory usage profile to get better estimates.

• Favor machines with 128GB of RAM and 10GB network
interconnect.

• Use such tools as EXPLAIN , SUMMARY , and PROFILE , which return
plan fragments without executing the query. SUMMARY gives
an overview of the runtime statistics, and PROFILE gives an
exhaustive listing of runtime statistics after query execution, for
example, the number of rows processed and amount of memory
consumed to run the query.

 Code Generation

 Impala extensively uses code generation to optimize CPU utilization and reduce latency,
by utilizing the latest trends in modern CPUs. It is recommended that you run Impala on
newer systems with more disks, because Impala can utilize the full bandwidth of available

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

76

disks to improve I/O throughput. It is also recommended that you have nodes with large
memory, because Impala benefits from being able to work with data in memory, which
often results in lower latency of the SQL queries.

 Code generation can dramatically improve CPU efficiency and query execution time.
Query execution engines typically incur a lot of overhead in the following:

 Virtual function calls : Any expression in the SQL query incurs
the overhead of being evaluated again and again for each
row of data the engine processes. Even if the expression by
itself is simple to evaluate, the underlying implementation
causes virtual function calls to evaluate the expressions. This
causes a huge CPU overhead of context switching, saving the
current space in the stack, and calling the virtual function.
Elimination of this overhead can shave off valuable time from
the query execution perspective, if the virtual calls are inlined
with code generation.

 Switch statements : Branching-based queries and branch
instructions prevent effective instruction pipelining and
instruction-level parallelism, and this can cause CPU
inefficiency. The branch predictor can help in these
circumstances, but code generation results in better
speedups.

 Propagating constant literals : Any constant value used in the
query can result in memory lookups by the engine when it is
executing the query. This can add more latency and can be
eliminated if the engine can fold these constants within the
generated code.

 LLVM : Low Level Virtual Machine is an innovation that
is applied by Impala to speed up queries and remove the
previously mentioned overheads. You can think of LLVM as
the JVM byte code generator. LLVM generates optimized code
for the program you have written, using certain compiler flags.
These kinds of optimum code generation are routinely done
for code written in C/C++, based on the hardware platform
in which they are deployed. The only difference, in this case,
is that LLVM is generating optimized code for the SQL query
to be executed. LLVM includes a set of libraries that are the
building blocks of a compiler that is used to generate the code
from the SQL query syntax tree. LLVM provides an API for
code generation.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

77

 Post-SQL Semantic Analysis : The LLVM steps in and generates
the code for the query operators, in which the SQL engine spends
most of the CPU cycles. At this time, all the data types and the file
formats are known, and application of the LLVM code generation
technique here provides all the necessary function call inline
generation to provide the maximum speedup.

 By leveraging LLVM and code generation, Impala can speed up queries by three to
five times. Code generation is applied to inner loops that are executed millions of times,
especially in large data sets, and, if they shave off even a couple of microseconds from
each row of a million row table, this results in multisecond speedups for a given query.

 Figure 4-9 shows how Impala is leveraged by BI and Data Analysis tools to provide
low-latency interactive queries. Impala provides ODBC drivers for external applications
to connect and run SQL queries. During deployment, Impala needs the daemons to be
installed on the data nodes. For certain deployments, this can be an issue, in terms of
installations, maintenance, and upgrades.

 Figure 4-9. Impala in the BI stack

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

78

 Impala processes reside on the same data nodes where the other processes reside
and where ETL takes place. In order to have guaranteed SLAs, and for best Impala
performance, it is always advisable to isolate the clusters for ETL workloads from the
clusters for interactive workloads. In order to preserve data locality, this can necessitate
data movement from the ETL clusters to interactive clusters.

 SQL Enhancements and Impala Shortcomings
 Let us look into why Impala and Hive show different performance characteristics in the
response time to the same data. According to Cloudera, the following are the two main
reasons for Impala’s good performance:

 1. Impala reduces CPU load by multiple optimization, as LLVM
and by working on special chipsets, as compared to Hive, and,
hence, can increase its I/O bandwidth, which is why it has
better performance than Hive for pure I/O-bound workloads.

 2. For long and complex queries, Hive has a multistage MR
pipeline that results in multiple stages of reads and writes to
disks, resulting in slowdowns. Impala avoids this by having a
totally different engine that does not rely on MR but pipelines
the data between the nodes, resulting in efficient usage of the
intra-cluster network bandwidth.

 Impala version 2.3 has built-in support for querying complex types in Parquet
format: ARRAY , MAP , and STRUCT s. SQL queries can work directly on the nested data sets
without the need to flatten the data before querying. Impala supports queries on complex
data types, using join syntax rather than explode() , as in Hive.

 Though the latest version of Impala has very good coverage of SQL queries in terms
of its compatibility to SQL-2003 standards, Impala does still lag behind Hive in support
of SQL support. Impala needs the Hive metastore to function. This can be a problem
for certain deployments that do not need or use Hive. Most HiveQL SELECT and INSERT
statements run unmodified with Impala. Hive functionality related to TRANSFORM,
JSON, XML, and SerDe is not available in Impala. Some of the aggregate functions in
Hive, such as covar* and percentile* are named differently in Impala.

 Impala and Hive share the same metastore database, and their tables are often used
interchangeably. Impala’s SQL syntax follows the SQL-92 standard and includes many
industry extensions in areas such as built-in functions. UDFs in Impala are written in
C++, which makes them even faster. Impala does support scalar UDFs and UDAFs but
currently does not support UDTFs (table functions). Impala only supports single-column
distinct count queries. Impala can query data residing in HDFS or HBase. Impala’s
support for querying from JSON files is very new.

 Apache Drill
 In this section, we look at Apache Drill, which is a low-latency, distributed SQL engine for
large-scale data sets. Drill has propounded the theory of SQL on everything (Figure 4-10),
which illustrates the power of Apache Drill in its ability to query almost any data, irrespective

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

79

of what format it is in and where it resides, using SQL. Drill has shown how to do SQL on
any data source, whether that be RDBMS, NoSQL database, files of any format—structured,
unstructured, or semi-structured—and even on directories that can contain files in multiple
formats. This is shown in Figure 4-10 .

 Drill has been designed to scale out to thousands of nodes and query multi-terabytes
of data at interactive speeds, which is very essential for BI and analytic tools. Drill
supports SQL against a plethora of data sources—both relational, file-based data sources
and NoSQL databases—as well as access to both structured and semi-structured data.
Apache Drill is based partly on Google’s research into building Dremel, which added
innovations to generically handle nested data sets with columnar representation.

 As with Impala, Apache Drill is not a storage engine—it is a query engine that can
leverage a distributed framework architecture to scale out SQL queries across a cluster of
machines on large data sets. Apache Drill relies completely on its modular and scalable
architecture to perform low-latency SQL queries on multi-TB data sets. It does not rely
on keeping any special indices or metadata for speeding up the queries and, like Impala,
relies on building optimized full-table scans to get results.

 Apache Drill Architecture
 Apache Drill has a layered architecture, which comprises a user layer, processing layer,
and data source layer. Apache Drill is a masterless architecture, with which a client can
send a query to any node that works with other nodes in the cluster to execute the query
and return the results.

Files NOSQL Hive

Apache Drill

SQL
ANSI SQL
SQL Functions/UDF
Windowing SQL
Nested Data SQL

Flatten
Repeated Count
Conditional Expressions

HBASE and Others
Flat Files
JSON
Parquet
Avro
File Systems
Directories
Sequence Files

 Figure 4-10. Apache Drill—SQL everywhere

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

80

 The core of Apache Drill architecture is the drillbit, a process that is installed on all
of the data nodes in the cluster. A drillbit can also be categorized as a service that takes
queries from the client, processes the queries, and returns results.

 A query can go to any of the drillbits. This becomes the initiator drillbit for that
query. The initiator drillbit obtains the list of other available drillbit nodes in the cluster,
while the client uses ZooKeeper to find any drillbit to which it can submit a query. The
initiator drillbit determines the appropriate nodes in which queries can be executed,
based on the data locality criteria for the best query execution.

 Figure 4-11 shows the two major functionalities of a drillbit process: parsing and
validating the syntax and semantics of the query and transforming the query to a logical
plan. Internally, Drill uses Apache Calcite, an open source SQL parser, to parse queries.
Drill’s parser supports full ANSI SQL: 2003 standards and supports correlated subqueries,
analytics functions, and ANSI SQL extensions for hierarchical data, which includes
support for XML, JSON, BSON, and Avro and Protocol buffers.

 Internally, the logical plan can be either a set of objects within the system
representing the query or a textual representation in the form of a JSON file. The logical
plan describes the dataflow, using a data structure called a directed acyclic graph, which
consists of a sequence of operators or nodes in the graph that describe the operations
needed to arrive at the results.

 This logical query is then optimized by the optimizer to a physical plan, which
contains physical operators that are a description to the execution engine of how to
execute the query. While optimizing the query, the optimizer takes into consideration the
data formats of the data that is being queried, as well as the cluster sizing, etc., to prepare
the optimized query plan. Drill uses standard database optimizations, both rule-based
and cost-based, to rewrite and split the query. This is shown in Figure 4-12 .

 Figure 4-12. Apache Drill—query processing and execution

Drillbit

SQL Parsers Query Planner

 Figure 4-11. Apache Drill—drillbits

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

81

 Once the optimized query plan is ready, it is processed by the executors. Query
execution is distributed across multiple data nodes to address data locality. Results of
queries are then aggregated locally, and aggregated results are transmitted to the executor
that originated the query, as shown in Figure 4-13 .

 Key Features
 One of the beauties of Apache Drill’s design and architecture is its extensibility. The
logical plan can also be directly ingested into the system, if it is written as a DSL.

 Apache Drill is designed from the ground up with well-designed APIs, having
extensibility in mind . It supports the ability to write UDFs and allows a pluggable query
language and the ability to write custom low-level operators. Apart from these, it also
allows users to plug in new optimizers and to define scanners for new data sources and
file formats.

 One of the most highlighted features of Drill is its ability to read data sets with no
schema defined up front, unlike Impala and Hive, in which schema definition is required
before any query can be performed. Drill supports queries against unknown schemas,
while the user has the flexibility to define a schema up front or allow Apache Drill to
discover it. This almost achieves the holy grail of data warehousing, whereby you can
avoid the whole ETL process of processing the data according to the schema before the
data is used for analytics, reporting, or dashboards.

 In short, the following is how Apache Drill is different when it comes to schemas:

• Apache Drill—schema discovery on the fly

• Relational Engines—schema on write

• Hive, Impala—schema on read

 Drill has decentralized metadata, unlike Impala, so that it is not tied to a single Hive
metastore for its metadata requirements. Queries can span tables from multiple Hive
repositories, and the same query can refer to data sources from HBase or a distributed file
store.

Executor

Aggregator

Query planner

SQL Query parser

Executor

Aggregator

Query planner

SQL Query parser

Data
Access

Data
Access

Data
Access

Data
Access

Data
Access

SQL Query parser

Drill Driver

Aggregator

Query planner

 Figure 4-13. Apache Drill—internal architecture

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

82

 Query Execution
 Drill is an MPP-based SQL query execution engine that performs distributed query
processing across the nodes in the cluster.

 During query execution, Drill optimizes for columnar storage and execution by
using an in-memory columnar data model. With columnar data formats, Drill avoids disk
access for columns not used in the query. Drill’s execution layer performs SQL processing
directly on columnar data, without any intermediate conversion to row-oriented data.
Drill’s query engine is characterized by

• Columnar/Vectorized : Drill operates on more than one record at
a time with SIMD-based optimized instructions using LLVM and
JVM optimizations. Internally Drill also maintains bitmaps to
allow checking for null values.

• Pipelining : Drill works in record batches (in columnar format)
and pipelines the results of such batches in between the drillbits
on each node. Pipelining occurs in memory and, hence, reduces
the serialization/de-serialization costs.

 Drill’s query engine is characterized by the following:

• Runtime compilation

• Late binding

• Extensibility

 Figure 4-14 show the sequence of steps in Apache Drill for an SQL query execution
as it occurs across the different layers of the product.

Drillbit Drillbit Drillbit

Query

Driver

DFS/Hbase/Hive

1. Query comes to Drillbit (JDBC,
ODBC, CLI, REST

2. Drillbit generates execution plan –
query optimization and locality

3. Fragments are farmed to individual
nodes

4. Result is returned to driving node

DFS/Hbase/Hive DFS/Hbase/Hive

 Figure 4-14. Apache Drill—query execution process

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

83

 Apache Drill is a very mature product—more mature than Impala or Apache Spark.
Selecting the right SQL-on-big-data engine depends to a certain extent on the kind of
Hadoop distribution your organizations has. If it has Cloudera as the Hadoop distribution,
Impala is probably the best way to go. If it has MapR distribution, definitely use Apache
Drill. If you are using Apache Spark as your framework for different workloads, it is worth
giving Spark SQL a try for your interactive queries to see how it performs.

 Spark SQL is very new and evolving in terms of its support for SQL coverage and
analytic queries.

 If you are starting from a blank slate, it is recommended that you use Apache Drill
before trying other products on the market. Apache Drill is a very versatile product,
reflecting the kind of talent behind it. Apache Drill has wide support for a variety of data
types, data sources, and complex SQL queries.

 Vertica
 One of the first commercial implementations of columnar databases was Vertica. It was
largely based on C-Store and MonetDB. Vertica is optimized for large-scale analytics
designed with a distributed compressed columnar architecture, which makes it faster
for modern analytics workloads. It is an MPP platform that uses commodity servers and
distributes its workload using a shared-nothing architecture. It is both a query and a
storage engine. The query engine is highly optimized for querying the data in the fastest
possible way.

 Vertica is architected to reduce latency by lowering I/O, reading only necessary data
using a highly compressed columnar format. It provides high scalability, with no single
point of failure. Vertica SQL is fully ANSI SQL 99 compliant.

 Vertica with Hadoop
 Hadoop is best-suited for tasks involving large-scale ETL workloads on structured and
unstructured data sets. Vertica works best on structured data, for low-latency complex
analytic SQL queries. With Vertica’s connectors to Hadoop and other big data tools,
analysts can use familiar BI/analytics tools that generate SQL code to interact with any
Hadoop distribution using Vertica.

 The major use cases of Hadoop and Vertica are in conjunction with the following:
 Use Hadoop to do ETL and then push the results required by BI tools and

dashboards to Vertica for data analytics. These tools can query data seamlessly through
Vertica, using Vertica’s SQL interface, irrespective of whether the data resides in an
optimized Vertica store or on HDFS as external Vertica tables. Both are accessed using
SQL queries.

 Vertica can query data from its native data store or from Hadoop, using connectors.
The Vertica connector for Hadoop allows these two platforms to take advantage of their
strengths. With the Vertica Hadoop connector, one can use data from Vertica in a Hadoop
job and store the results of a Hadoop job in a Vertica database. Vertica can directly read
data stored in HDFS in such formats as ORC, Parquet, and Avro.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

84

 Vertica is installed in its own cluster (see Figure 4-15 and Figure 4-16), which is
separate from the Hadoop cluster. However, Vertica can be co-located within the same
nodes as your Hadoop cluster. This deployment option should be selected with care,
because most Hadoop installations are used primarily for ETL and data storage, while
Vertica is used for low-latency analytical queries. If the Vertica engine is co-located
with the Hadoop data nodes, guaranteeing SLAs for Vertica can be difficult, because it
is hard to predict load on Hadoop nodes. This can be adjusted using the right capacity
scheduling options with YARN on Hadoop, though nodes with Vertica installed may not
be able to leverage YARN, because HP Vertica for SQL on Hadoop does not currently
support the YARN resource manager.

 Vertica integrates with Hadoop using Vertica’s in-house developed Hadoop
connector, which is an implementation of the input and output APIs of Hadoop
(see Figure 4-16). In this book, we will not go into the details or architecture of these APIs.

 Figure 4-15. Vertica integration with HDFS

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

85

 Vertica’s HDFS connector is used to create and query external tables, reading the
data in place, i.e., from HDFS, and not making additional copies into Vertica’s own
format. The HDFS connector can be used with any data format for which a parser is
available. The connector is installed and runs on each node in the Hadoop cluster.

 There are actually two Vertica to Hadoop connectors.

 Hadoop MapReduce Connector

 This is used to create Hadoop MapReduce jobs that read and write data to HP Vertica.
This connector is used in the following instances:

• When a MapReduce job requires data stored in Vertica

• When MapReduce jobs directly inserts data into Vertica
for analysis in real time, using Vertica’s out-of-the-box SQL
capabilities for advanced analytics. The connector can create a
new table for the data, if it does not already exist.

 Figure 4-16. Vertica accessing data in HDFS through connectors

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

86

• To provide access to Hadoop of the data stored in Vertica

• To allow Apache Pig to access data stored in Vertica

 A MapReduce job that has to access data from Vertica executes a query to select its
input. This query is passed into Hadoop’s Map-Reduce API, the setInputMethod of the
 VerticaInputFormat class.

 There are two ways one can use the query from the MapReduce job to get the input
data from Vertica. The Vertica connector for MapReduce sends the query to Hadoop nodes,
which individually connect to Vertica nodes to run the query and get their input data.

 Queries can be in either of the following formats:

 Self-contained query— VerticaInputFormat.setInput
(job, "SELECT * FROM VerticaTable;");

 Parameterized query with explicit parameters—
 VerticaInputFormat.setInput(job, "SELECT * FROM V
WHERE ID = ?", "A", "B");

 Vertica Hadoop Connector for HDFS

 This connector is used by Vertica when HDFS acts as a source for an external table against
which queries can be performed directly. This use case is needed when one needs to
extract data from files that are periodically updated.

 CREATE EXTERNAL TABLE HadoopFile(ID VARCHAR(10), Col1 INTEGER, Col2 INTEGER,
Col3 INTEGER) AS COPY SOURCE Hdfs(url='http://hadoopNameNode:50070/webhdfs/
user/User1/data/input/*',username='User1’);
 SELECT * FROM HadoopFile;

 If you are looking for very fast low-latency analytics with SQL interface on large data
sets that can reside either in a Vertica data store or on HDFS, Vertica’s integration with
Hadoop provides the right solution. However, keep in mind that Vertica is a commercial
product whose pricing is based on the uncompressed data that is stored within its data
store for analytical queries.

 Vertica is not an open source product, and licensing costs of Vertica are charged at
the amount of data ingested (before compression), apart from yearly maintenance costs.
Vertica is a more mature product than any of the open source tools and technologies out
there. Vertica also, if deployed correctly and set up correctly in terms of the projection
tables, is blazingly fast with ad hoc SQL queries on large data sets.

 Vertica’s SQL compliance and support is richer and more complete, because it has
been on the market for more than seven years. Vertica also supports a lot of advanced
algorithms for some routine data-mining problems. Vertica is also very useful for doing
star schema-based data warehouse queries. Vertica works well and has been battle-tested
in its integration with most of the BI tools out there.

 However, Vertica ideally requires its own dedicated cluster. If an organization already
has a big data cluster, the provisioning and ongoing maintenance costs for Vertica can be
prohibitive.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

87

 Jethro Data
 One of the unique commercial SQL-on-Hadoop tools out there is Jethro. Jethro leverages
the age-old technique of making queries run faster, using indexes. We are all so familiar
with indexes in the world of databases, and with how they are used to speed up SQL
queries in the relational world. So why did no one think about using indexes in the world
of big data, to speed up queries? Well, Hive has had support for indexes for a while,
although, to my knowledge, not too many real-world use cases and implementations
have used it extensively.

 The world of big data, especially HDFS, has a problem with indexes. Because HDFS
is a WORM (write once read many [times]) kind of file system, keeping indexes updated
as data is added and updated becomes a problem on HDFS. Indexes have had a minor
role in speeding up queries in high-performance analytic databases and in big data
implementations, owing to several reasons.

• Index data typically uses smaller block sizes, which are quite
incompatible to the whole idea of bigger block sizes in the big
data world.

• Index creation slows down data loads.

• With the addition of newer data, indexes have to be updated,
which is, again, incompatible with the architecture of big data file
systems such as HDFS and S3.

 Jethro brings indexes into the world of big data SQL, by way of an innovative
indexing mechanism to offset the aforementioned problems. Jethro’s indexing
mechanism is architected to work with HDFS/S3 and also solves the index update
problem, using their architecture. Jethro’s append-only index structure converts index
updates to cheap sequential writes, solving the index update problem.

 Jethro’s solution fully indexes all columns in the data set and stores it on HDFS. Only
the indexes are used to answer the query, instead of doing a full scan, as in the case of
other MPP-based SQL-on-Hadoop solutions. The more a query drills down into a data
set to get a finer level of detail, the better the performance gets, because indexes are
leveraged to the best possible extent, unlike full-scan systems, which will do a full scan
even for drilled-down queries. Index-based access to the data results in dramatically
lowering the load on I/O and CPU and memory usage, as compared to MPP-based full-
scan architectures.

 When new data is added to the data set, Jethro architecture does not modify the
existing indexes but adds the newer indexes at the end of the current indexes, allowing
duplicate index entries. Instead of in-place updates of the index, the new index is
appended to allow repeated values. An asynchronous process runs in the background,
which merges the newer indexes with the older ones and removes the duplicates.

 During the time frame when duplicate indexes exist in the system, the query
executor will read multiple index fragments but makes sure to resolve the query results to
the latest index values in case of duplicates.

 The Jethro engine is installed on its own dedicated cluster, in which each node is
stateless. This Jethro cluster is connected to either HDFS or S3, in which all the indexes
are stored. Figure 4-17 shows the deployment architecture of Jethro.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

88

 Apart from the regular speedup of accessing only the data needed for the query,
Jethro has other performance-enhancing features, such as compressed columnar storage
format of the index data, efficient skip scan I/O, automatic caching of locally frequently
accessed column and index blocks. Jethro’s query optimizer uses the index metadata to
optimize the queries, rather than the usual statistics gathering and collection processes
used in other systems.

 Figure 4-18 shows the data flow of index creation during data ingestion and storage
of the indexes on HDFS. These indexes are accessed by the Jethro cluster servers during
query processing. The indexes are created synchronously as the data is ingested into the
big data system.

 Figure 4-17. Jethro deployment architecture (Reproduced with permission from Jethro)

 Figure 4-18. Jethro data ingestion and query architecture (Reproduced with permission
from Jethro)

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

89

 Jethro’s execution engine is highly parallelized. The execution plan is made of many
fine-grained operators, and the engine parallelizes the work within and across operators.
The execution engine leverages query pipelining, whereby the rows are pipelined
between operators, resulting in higher throughput and lower latency.

 There are two downsides to Jethro’s architecture:

 1. A separate dedicated cluster of Jethro servers—separate from
the Hadoop cluster—for hosting Jethro servers

 2. A proprietary format of data, which is much faster than ORC/
Parquet formats

 The first downside is not a downside in the true sense, as it is always advisable to have
separate clusters that support different workloads. Hadoop clusters meant for doing ETL
and batch workloads should be separated from clusters that support real-time or interactive
workloads to satisfy the SLAs. This separation of query clusters from other workload
clusters results in better performance and the independent scalability of each cluster.

 Others
 There are a lot more products out there, but we cannot have full coverage to all of them.
One product that has been gaining usage lately is Presto.

 Presto has been developed at Facebook and is written completely in Java. It is very
similar to Impala and Drill in terms of architecture and general concepts, though it is
written in Java. However, compared to Impala or Drill, which have been on the market
for a longer time, Presto is very new, although Netflix uses Presto extensively for ad hoc
interactive analytics. Presto is an in-memory distributed SQL query engine that supports
ANSI SQL and rich analytical functions. Presto is just the query engine; it is like Impala/
Drill, not a storage engine. It can connect to a wide variety of data sources—relational,
NoSQL, and distributed file systems.

 Presto should not be used when you require batch processing or when one has to
implement iterative machine-learning algorithms. Presto is also not recommended to use
in data warehouses in which the dimensional modeling is done with star schemas.

 MPP vs. Batch—Comparisons
 We looked at Batch processing in last chapter, and in this chapter, we have focused on
MPP-based architectures. Let’s take some time to review the differences in architectures
and the pros and cons of each from a purely architectural perspective and consider when
to use which architectural solution.

 MPP systems are different from SMP (symmetric multiprocessing). MPP systems
are shared nothing architectures, that is, they eliminate usage of shared resources by
processing units, with no SPOF (single point of failure) and hot swappable component
architecture. These systems scale horizontally by adding nodes and scale queries by
adding new nodes.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

90

 MPP architecture distributes data across many nodes (see Figure 4-19), and each
node processes all of its local data for every query. It is a simple architecture that
handles large aggregate queries well but requires many servers to be effective and
consumes many resources per query across the cluster, limiting SQL concurrency. MPP
architectures are designed to consume a significant portion of memory, CPU, and I/O
bandwidth from every node in the cluster, for low latency.

 In an MPP-based architecture, each execution unit cannot access any resource from
another execution unit. The only way for one execution unit to access data from another
execution unit is through data exchange, using the network fabric. Each executor in an
MPP architecture runs the same processing logic on its local data.

 MPP architecture has some design problems, specifically problems associated when
one of the executors becomes slow. It becomes the weakest link in the chain, a problem
often called stragglers—tasks that are taking longer to finish than other tasks at the same
stage. Under such circumstances, the performance characteristic of the whole system
does not depend on the cluster size; it depends on the slowest node.

 Performance of one or more nodes can degrade because of multiple reasons:
perhaps a failed disk, failed memory, or any OS-level problems. Observations have led
to the conclusion that at a certain scale, any MPP system would have a node with some
problem, which would lead to degraded performance for the node, thereby limiting
performance of the whole cluster.

 Another major point to note for an MPP system is that because an MPP system is a
perfectly symmetric system where each node is performing exactly the same task, all in
parallel, the concurrency level of an MPP system is unrelated to the number of nodes in
the cluster. Low concurrency of an MPP system, owing to the reasons previously stated, is
the biggest trade-off users have to pay for extreme low latency.

 In contrast to MPP systems, batch systems have multiple tasks running on each
node in which the data resides. If the batch processing is based on HDFS, in case of node
degradation, two solutions are attempted. Because HDFS is a file system with a default
replication of three, tasks on one node can access the data on another data node across

A2 A3A1 A7 A6 A5

A

A4

 Figure 4-19. MPP architecture distributes the work of a query across many nodes

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

91

the network. Also, a speculative execution model allows the system to be resilient if
one of the tasks is slow and is unable to keep pace with other tasks on other machines.
Speculative execution is a mechanism used to guard against slow nodes in a cluster,
by starting more tasks if a task fails to complete within some given SLAs. Speculative
execution is not possible in an MPP system.

 Speculative execution tries to solve the problem of stragglers. Speculative execution
tries to run on some other executor a task that is not completing for any apparent reason.
If the new task now happens to complete earlier than the original task that was not
completing, a batch-based engine accepts the results of the new task and discards the
old task. This avoids the problem of a single task holding up or slowing down the full
execution.

 In an MPP system, the intermediate data results are pipelined across the executors
running on different nodes, while in a batch system, the intermediate results in the
computations are stored on disk on the data nodes. This adds a huge amount of latency
in batch-oriented systems. However, because batch systems are not shared nothing
architectures, in the perfect sense, as are MPP systems, the scalability and concurrency of
batch systems are much higher than in MPP systems, but with higher latency.

 So, in short, batch-oriented systems have higher latency (bad) and higher
concurrency (good), while MPP systems have low latency (good) and poor concurrency
(bad). Whenever you evaluate an MPP system, make sure also to evaluate and benchmark
it, based on your concurrency requirements.

 Capabilities and Characteristics to Look for in the SQL
Engine
 In this last section of this chapter, we offer a brief look at some of the capabilities one
should look out for when making a choice about the SQL engine. The following is by no
means an exhaustive list, but it provides sufficient guidance and direction to make smart
choices.

 Technical Decisions
 Latency : Does the product support the kind of latency SLAs
your business mandates? To make a decision requires careful
consideration of the types of workloads, in addition to
concurrency tests. The best way to approach this is to conduct
a POC (proof of concept) of the product, with your data sets
and the cluster size that your organization can support, and
obtain realistic numbers from the POC. This is a very critical
step, and it is always wise to do it for your data with your
workloads, rather than just to trust the TPC benchmarks or
the marketing materials of the product. One important point
to remember when undertaking this POC is to make sure the
product is tested for its latency at low, average, and worst-case
concurrency levels, setting the expectations correctly.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

92

 Deployment modes : Does the product support the deployment
models that your organization is comfortable with, whether
they are cloud-, on-Premise-, or hybrid-based deployment
models?

 Data types : Does the product support all the data types that
are part of the data sets within your organization?

 Data formats : Does the product support the data formats
that are currently being used in your data pipelines and ETL
processes? If this is not the case, new ETL has to be written to
convert the data formats, and this could entail missing the SLAs.

 Data sources : Does the product work with all the data
sources—streaming, files, directories, NoSQL, NewSQL,
RDBMS, and mainframes—data sources that your
organization relies on as raw data sources?

 Dependence on HDFS : Does the product rely on Hadoop-
based components, such as working with HDFS? Verifying
this ensures that your organization is not adding accidental
complexity to the overall deployments just to satisfy the
requirements of the product you are selecting.

 Schema requirements : Does the engine require schema
definition up front, or can the schema be defined on read?

 Query language support : This is a very important decision
point. What type of query support does the engine offer out
of the box, and does it satisfy the minimum query support
criteria required for the system your organization is building?

 UDF/UDAF/UDTF support : To the preceding point, is it
possible to build out unsupported features or functionality
using UDFs, UDAFs, UDTFs, and the language in which these
functionalities can be developed?

 Support triggers : Does the system support triggers for alerts
and notifications as a typical RDBMS would do, if this is an
important criterion for your organization and workflows?

 Security : What are the minimum security requirements, in
terms of data encryption for data at rest, data in motion, and
authentication and authorization policies and ACLs permitted
by the system in consideration, and do they match what your
current organizational policies are.

 Concurrency : This is a very important consideration,
in addition to that of latency. Understanding how the
concurrency affects latency and the workload and whether
the engine can be made scalable by adding more nodes with
increasing concurrency must be thoroughly examined, and
the system tuned, to get the best performance.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

93

 Compression : It is important to understand what kind of
compression formats are supported by the engine and what
the pros and cons of each of them are. Also important to
evaluate are the performance characteristics of the engine for
some of the chosen compression formats that are to be used
by your organization.

 Secondary indexes : Most SQL engines do not support
secondary indexes from an architecture perspective.
Depending on your use cases and your data, it is wise to
include in your POC workloads that which would perform
better with secondary index support. Then you should
evaluate the performances of the engines without secondary
index support and compare the trade-offs.

 Massive table join : Most MPP engines shy away or do not
perform too well with joins across massive tables on a
distributed platform. However, there could be cases in your
organization in which you will require them. There are
multiple ways to avoid this, but in the case where it cannot be
avoided, it is best to learn the gotchas and test the robustness
and latency of the SQL engine in consideration of such
massive joins.

 Optimizers : This is an internal component of most SQL
engines, over which the end user has no control. However, it is
still best to understand the kind of optimizations that the SQL
engine would achieve for the different workloads that your
use cases require.

 Performance tuning : Before selecting an SQL engine, it is vital
to know the kinds of performance tuning knobs and controls
available to the end user, to improve performance and identify
the bottlenecks and how they can be avoided.

 Data import/export capabilities : It is important to know the
different ways of ingesting and exporting data from the SQL
engines and the latencies associated with them, making sure
that the processes are acceptable and the latencies are within
the SLA bounds of your organization.

 Data locality : How does the engine under consideration
handle data locality issues? Does it totally disregard it, but still
perform very well? This becomes especially important when
these engines are deployed on the cloud.

 Hardware : The kind of hardware platform—in terms of CPU,
memory, I/O and networking capabilities—that the SQL
engine recommends for best practices and most optimum
performance is an important consideration from budgetary,
data growth and scalability perspectives.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

94

 Fault tolerance : Questions such as how is fault tolerance
achieved by the architecture of the engine and its components
are very important to consider clearly, in order to provide
reliability and uptime-related metrics and SLAs to the end
customers who are relying on the SQL engine for their
activities.

 CLI/API/ODBC/JDBC : What kind of APIs (REST) and driver
support does the SQL engine have to connect with external
applications? This may be a non-blocking issue in terms of
the product selection, but an important consideration when
selecting the SQL engine of choice.

 Tool support : Understanding the tooling support—admin,
monitoring, maintenance, troubleshooting, data ingestion—
of the SQL engine is very important for debugging and
troubleshooting purposes, as well as for regular automation,
monitoring, and admin-related functionalities.

 Soft Decisions
 Maturity : When choosing an SQL engine for big data
processing, it is very important to reach a decision based on
the maturity of the product and its adoption rate, etc. A lot of
new products come to the market and then fizzle out and do
not have enough tracking, backing by investors/committers
who could work on the product. Newer products go through a
lot of changes in the initial stages of product development and
require time to mature and become robust for industrial-scale
data loads and performance.

 Customer base : Evaluating the customer base and typical
things those customers are doing with the SQL engine offer a
good perspective on the quality of the product, its capabilities,
shortcomings, best practices, and best usage scenarios.

 License : Understanding fully the licensing model is always
helpful, keeping in mind future growth, both from hardware
and licensing perspectives.

 Source code : It is also important to understand the nature of
the source code of the product and if that is something that
can be changed/contributed to by your organization, in case
of bug fixes or adding new capabilities, etc. Understanding in
what language the product has been written is also equally
important, because it determines if your organization has the
necessary skillset in case some things have to be changed or
modified at the code level.

CHAPTER 4 ■ INTERACTIVE SQL—ARCHITECTURE

95

 Roadmap : As with any product evaluation, it is important
to understand the roadmap and vision of the particular SQL
engine you have chosen. You must be aware of its release
cycle and also of how the product addresses the most
commonly asked questions and customer concerns.

 Summary
 This chapter covered a lot of ground, exploring the architecture and internals of many
interactive features of SQL on big data engines. This is a vast area, with lots of related
products on the market, which often causes difficulty in making the right choice as to
which product is best for different workloads and different use cases.

 The final section of this chapter covered the criteria to follow in order to select the
right product and make the right decisions.

97© Sumit Pal 2016
S. Pal, SQL on Big Data, DOI 10.1007/978-1-4842-2247-8_5

 CHAPTER 5

 SQL for Streaming, Semi-
Structured, and Operational
Analytics

 This chapter is divided into three major topics: SQL on semi-structured data, SQL on
streaming data, and SQL for operational analytics on big data platforms. It covers the
technologies for each of the preceding areas in which SQL can be applied in big data
systems. Because of the ubiquity, ease of understanding, and available skill set of SQL,
rather than designing a new way to query and access data irrespective of its origin, mode
of availability, or format, SQL is being increasingly used as the way to access these data
sets. New tools and frameworks are being developed today with this in mind, and at the
same time, existing tools and frameworks are being morphed to ensure that they accept
SQL as the lingua franca for any of these data types.

 SQL on Semi-Structured Data
 Though not evident, unstructured data comprises most of the data we deal with on a
daily basis. It has been found that the majority of the data in an enterprise is unstructured
data, in the form of e-mails, blogs, wiki, documents, and so on. In the past, most of this
unstructured data lay unused, primarily for two reasons: lack of tools to support easy
access, manipulation, and querying of this data, and the inability of a lot of enterprises to
figure out good business use cases to make this data valuable and useful. However, this
has changed dramatically over the last couple of years. With the digital revolution and
most of the web data being available in JSON format, more and more organizations want
to use this untapped data for building products that provide data-driven insights and
leverage unstructured data sets for building newer products and improving the quality of
existing ones.

 With increased adoption by enterprises and organizations of both unstructured
and semi-structured data sets, the onus is now on the products, tools, and frameworks
to provide ways to access the semi-structured data in a seamless way. This access
becomes even more seamless if existing tools and applications in an enterprise can
obtain the semi-structured data by using SQL, which is deeply embedded within most
organizations.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

98

 In this section, we will cover some of the existing products, such as Apache Drill and
Apache Spark, which have adapted to this trend from the very beginning, and how they
have been architected and evolved to support SQL over semi-structured data sets.

 Apache Drill—JSON
 Apache Drill has been architected with the idea of building an SQL engine for everything,
i.e., applying SQL query semantics to any form of data, residing anywhere, whether in
files or databases that are structured or semi-structured. Apache Drill has very powerful
capabilities to work with JSON data, and it infers the schema automatically. Drill can
perform SQL directly on files and directories, without requiring any schema definitions.

 For example, Apache Drill can do the following SQL query on JSON data out of the
box, on a file that contains JSON data:

 Select field1, field2, ... from <path to JSON file> where field2 like '%me%'

 The best part of Apache Drill is that it can seamlessly join different datasets, each of
which can reside either in raw files/directories/RDBMS/NoSQL data stores/Hive, etc.

 Unlike Apache Spark, which, you will see later, requires that the JSON data be in one
line for it to be queried, Drill has no such restriction.

 Some Examples of Querying JSON Data with Apache Drill
 If you have a JSON key such as the one below

 group:
 [
 [1,2,3],

 [4,5,6],

 [7,8,9]
]

 Select group[1][2] ...

 will return 5

 If you have a JSON file as below

 {
 "id": "0001",
 "type": "pizza",
 "name": "NYStyle",
 "ppu": 0.1,
 "sales": 50,

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

99

 "batters":
 {
 "batter":
 [
 { "id": "1", "type": "Regular" },
 { "id": "2", "type": "Chilli" }
]
 },
 "topping":
 [
 { "id": "1", "type": "None" },
 { "id": "2", "type": "Eggplant" },
 { "id": "3", "type": "Pepper" },
 { "id": "4", "type": "Olives" },
 { "id": "5", "type": "Onion" },
 { "id": "6", "type": "Pineapple" },
 { "id": "7", "type": "Chicken" }
]
 }

 select topping[3] as top from pizza.json

 will return {"id": "4", "type": "Olives"} .

 select t.topping[3].id as record, t.topping[3].type as type from pizza.json
as t

 will return

 +------------+---------------+
 | record | type |
 +------------+---------------+
 | 4 | Olives |
 +------------+---------------+

 All data in Apache Drill is internally represented as a JSON data structure, which aids
Drill in discovering the schema on the fly. This idea is extremely powerful and allows Drill
to query complex data models that change the structure dynamically. This makes Apache
Drill ideal for working with unstructured and semi-structured data sets.

 Flatten and KVGEN are two useful functions in Apache Drill that work with JSON
data. We discuss this in the next two sections.

 FLATTEN
 FLATTEN is a UDF (user defined function) available out of the box in Drill. It is useful to
represent repeated data typically found in JSON data formats in a more structured and
easier way.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

100

 FLATTEN is typically used in arrays in JSON data, to break them up into multiple
rows. Let’s say you have a data row from JSON which is like this:

 {
 "Name":"Workbar",
 "Location":["Cambridge", "Arlington", "Boston", "Needham"]
 }

 With the FLATTEN function, as used in the following example, you get something like
this:

 select Name, flatten(locations) as location from workbar_business.json

 This will return the following:

 +------------+-------------+
 | Name | Locations |
 +------------+-------------+
Workbar	Cambridge
Workbar	Arlington
Workbar	Boston
Workbar	Needham
 +------------+-------------+

 KVGEN
 KVGEN is applied to JSON data when, within the JSON files, there are arbitrary maps
consisting of unknown or unspecified column names. This is very typical of semi-
structured data. Rather than specifying keys (columns) in the map to access the data,
KVGEN can return a list of keys in the map. Essentially, it transposes a map with a wide
set of columns into an array of key-value pairs. See the example below for more clarity.

 If we have a JSON file that has data such as the following:

 {"Row":{"1": "A", "2": "B"}}
 {"Row":{"3": "C", "4": "D"}}
 {"Row":{"5": "E", "6": "F"}}

 running this SQL: select KVGEN (row) from file.json will return the data as

 [{"key":"1","value":"A"},{"key":"2","value":"B"}]
 [{"key":"3","value":"C"},{"key":"4","value":"D"}]
 [{"key":"5","value":"E"},{"key":"6","value":"F"}]

 Now, if we apply the FLATTEN operation to the preceding, we get a structure as
following code example.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

101

 select FLATTEN(KVGEN(row)) from file.json will return the data as in the
following code, which seems more structured and meaningful.

 {"key": "1", "value": "A"}
 {"key": "2", "value": "B"}
 {"key": "3", "value": "C"}
 {"key": "4", "value": "D"}
 {"key": "5", "value": "E"}
 {"key": "6", "value": "F"}

 Apache Drill—XML
 XML is another data format used widely to represent semi-structured data. However,
JSON is considered a much slimmer version of XML. We will not cover too many of the
capabilities of Apache Drill with XML data. However, if you have XML data and would like
to use Apache Drill, here is the way to go about doing it. Drill supports XML by converting
XML to JSON format. A SAX-based XML to JSON parser can generate JSON-compatible
code to work with Drill, using the JSON parsing capabilities.

 Apache Spark—JSON
 Spark SQL has supported JSON since Spark version 1.1, and it has continuously kept
improving its support. Spark SQL is capable of loading data from a variety of data sources,
including plain JSON files. However, one of the constraints of using Spark SQL with JSON
is that the JSON file must be such that it has one line for the full JSON object. This can
be achieved with some tools and some code, but in order to use Spark SQL on JSON, the
JSON file cannot be in the pretty format we see when we open a JSON file in a text editor
in which we have line breaks and tabs to make the JSON file readable by humans.

 Internally, JSON parsing in Spark SQL uses Jackson’s ObjectMapper. It is easy and
fast, but it requires two things to work: JSON data and the Java class that describes the
schema. Spark infers the schema of a JSON file internally, using the parser, and using a
Map-based data structure, it converts Jackson’s data types to Spark’s own data types. For
this to work reliably, each line of this file should contain a separate, self-contained, valid
JSON object.

 Internally, it uses a TextInputFormat , which is a predefined file input format in
Spark to parse text files. The following code in Spark with Scala demonstrates how easy it
is to use JSON data with SQL semantics using the Spark framework.

 Let us look at the following simple example. It shows the JSON data we have, which is
nested one level deep.

 {"firstName": "First_AA", "lastName": "Last_AA", "age": 35, "address":
{"state": "WA", "postalCode": "30021"}}
 {"firstName": "First_BB", "lastName": "Last_BB", "age": 40, "address":
{"state": "MA", "postalCode": "40345"}}
 {"firstName": "First_CC", "lastName": "Last_CC", "age": 65, "address":
{"state": "VA", "postalCode": "64321"}}
 {"firstName": "First_DD", "lastName": "Last_DD", "age": 20, "address":
{"state": "TX", "postalCode": "02345"}}

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

102

 The code to infer the schema automatically by Spark is

 val fileName = "test.json"
 val testJSONDF = spark.read.json(path)
 testJSONDF.printSchema()

 This results in the following:

 root
 |-- address: struct (nullable = true)
 | |-- postalCode: string (nullable = true)
 | |-- state: string (nullable = true)
 |-- age: long (nullable = true)
 |-- firstName: string (nullable = true)
 |-- lastName: string (nullable = true)

 This is the code to run a simple SQL query against the data set:

 testJSONDF.createOrReplaceTempView("test")
 val query1DF = spark.sql("SELECT * FROM test WHERE age BETWEEN 20 AND 40")
 query1DF.show()

 The results are as follows:

 +----------+---+---------+--------+
 | address|age|firstName|lastName|
 +----------+---+---------+--------+
[30021,WA]	35	First_AA	Last_AA
[40345,MA]	40	First_BB	Last_BB
[02345,TX]	20	First_DD	Last_DD
 +----------+---+---------+--------+

 val query2DF = spark.sql("SELECT * FROM test WHERE test.address.state like
'TX'")
 query2DF.show()

 Further results follow:

 +----------+---+---------+--------+
 | address|age|firstName|lastName|
 +----------+---+---------+--------+
 |[02345,TX]| 20| First_DD| Last_DD|
 +----------+---+---------+--------+

 More complex SQL with aggregations and window-based functions can be applied to
the data set thus derived from JSON data. Very large JSON data sets can be easily parsed
at scale, and SQL queries run over them, using Spark SQL’s native interface to work with
JSON data using SQL.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

103

 At an architectural level, this is what happens under the hood, as shown in Figure 5-1 .

 Apache Spark—Mongo
 In this section, we will briefly discuss how Apache Spark can work with MongoDB.
MongoDB is best suited to natively storing JSON/BSON (Binary JSON) data. You will see
how Spark SQL can work with data stored in MongoDB with JSON data.

 Ideally, MongoDB is meant to store data for content-management systems or
product catalog data with hierarchies or operational data. It has a flexible JSON-based
data model, which allows dynamic schema modifications. Spark, on the other hand, is a
highly scalable data-processing framework. With Spark’s ability to read any data source
in any format, it becomes ideal to leverage Spark SQL to query and work with JSON data
residing in a Mongo database.

 There exists an open source MongoDB to Spark connector developed by a company
called Stratio based out of Spain. MongoDB connector is a plug-in for Spark that provides
the ability to use MongoDB as an input/output source for jobs running in either Spark/
Hadoop-based frameworks. The Stratio connector to Spark supports SQL queries on Mongo
data. This is exposed as a data source that implements the Spark DataFrame API. Internally,
this connector API implements a PrunedFilterScan algorithm rather than a plain vanilla
 TableScan , because MongoDB supports secondary indexes on its data. The connector API
infers the schema, by sampling documents from the MongoDB collection, and internally
uses Spark’s Catalyst optimizer for both rule-based and cost-based optimizations.

 Figure 5-1. JSON data processing in Spark

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

104

 The following sample Code shows how Spark SQL can be used to connect to a
Mongo data source and how data is queried using SQL syntax:

 // Import the relevant implicits classes and packages from Stratio

 val mongoConnectionBuilder = MongodbConfigBuilder(Map(Host ->
List("HOSTNAME:PORT#"), Database -> "DBName", Collection ->
"mongoColletionName", SamplingRatio -> 1.0, WriteConcern ->
MongodbWriteConcern.Normal))

 val connection = mongoConnectionBuilder.build()

 val sparkToMongo = sqlContext.fromMongoDB(connection) //set up the MongoDB
collection to read from as a DataFrame
 //make a pointer to the collection from Spark as register it as a temp table
 sparkToMongo.registerTempTable("MongoCollectionAsSparkTable")

 // Valid SQL query to query JSON from Mongo
 val dataFrame = sqlContext.sql("SELECT columns* FROM
MongoCollectionAsSparkTable")
 dataFrame.show

 Other document databases, such as Couchbase, also provide similar connectors to
leverage the power of Spark SQL with semi-structured data sets.

 SQL on Streaming Data
 With the rapid rise of the IOT (Internet of Things) and cybersecurity, support for SQL on
data in motion—streaming data or fast data—has become a necessity in most tools and
frameworks. Stream processing has taken off in the big data world in a big way. Various
products, both in the commercial and open source spaces, are trying to add an SQL
interface for streaming data analysis.

 SQL for stream processing will make streaming technology accessible to a wider
audience. It will also enable development of new use cases, as interactive and ad hoc
stream analysis, and simplify applications that use data in motion to perform real-time
analytics.

 We will explore streaming SQL capabilities available in the Spark framework and a
new database called PipelineDB. In addition, we will look at Apache Calcite, an evolving
framework defining the standards for correct SQL syntax and semantics for supporting
SQL on streams.

 Traditionally, SQL is applied on stored data. However, the idea of first storing
the data and then doing the queries falls apart with streaming data. Streams can be
considered to be infinitely long tables. The idea of doing SQL on streaming data is flipped,
as compared to doing SQL on static data. For SQL on streaming data, the data flows while
the queries are static, meaning that the queries that have to be executed on the data
are generally predetermined. Compared to the traditional way of doing SQL, the data is
static—stored on the disk/memory, while the end user or applications access this data
with ad hoc SQL queries.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

105

 Because streaming data is fleeting and has associated velocity, Hadoop, which was
designed mainly for batch operations, is unable to offer latency and throughput for real-
time applications such as telecom, cybersecurity, and IOT. The general approach while
implementing SQL on streaming data is to continuously operate on the data as it arrives
and store the computed results into a data store for future access.

 Because the concept of store and then compute does not apply for streaming data,
most streaming SQL engine architectures employ in-memory processing capabilities,
along with usage of lock-free data structures, and use stateless implementations that
enable queries to be distributed over nodes in the cluster.

 Apache Spark
 Batch data can be thought of as a snapshot of streaming data. This is what Apache
Spark leverages in order to support SQL on streaming data. Spark has inherently been
architected to be an in-memory batch-processing system. However, to implement
streaming capabilities with Spark, it uses the concept of micro-batches, in which the
batch size is reduced to accommodate smaller windows of processing time. In other
words, Spark streaming takes incoming data that arrives at some time periods and
repackages them as RDDs (Resilient Distributed Datasets) or data frames or data sets.

 Spark streaming brings in the concept of DStreams—Discretized Streams—in which
computations are structured as a series of stateless, deterministic batch computations
at small-time intervals called windows. Each such DStream contains a series of RDDs
that are processed as a unit. A DStream is defined when a StreamingContext, in Spark
parlance, is defined with two parameters (refer to Figure 5-2).

 1. Window of data (from the infinite data stream that is coming in),
at which the processing is going to look

 2. Amount of units, by which the window is to be slided, to get
the next data set for processing

 There are two important concepts to understand when talking about DStreams in
Spark streaming, as shown in Figure 5-2 .

 1. Windows: Operation, which groups all the records from a
sliding window of past time intervals into one data unit to be
processed at a time

 Figure 5-2. Window and sliding interval for DStream

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

106

 2. State: How to preserve the computations made in an earlier
window and how to apply the previously computed results to
the next DStream to calculate the new results

 The basic idea of applying SQL on streaming data in Spark can be easily explained if
we look at Figure 5-3 .

 Delving one layer deeper, Figure 5-4 shows what happens after the streaming
data comes into the Spark framework and how to apply Spark SQL on the data streams
(DStream).

 Figure 5-3. High-level spark streaming architecture

 Figure 5-4. Spark streaming integrated with Spark SQL components

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

107

 The basic idea is that Spark streaming splits the streaming data into time-based
mini-batches, called the DStream, which internally are RDDs.

 Following is an outline of the set of steps required in a Spark streaming application in
which Spark SQL is to be used to work with DStreams.

 1. Define the Spark StreamingContext with the window size.

 2. Define the data source that identifies the streaming data,
which could be files, sockets, or a message bus.

 3. Wrap the source with the StreamingContext.

 4. Create the DStream by defining the window and slider sizes.

 5. For each DStream, get the RDDs, and for each such RDD,
create the Spark DataFrame or DataSet object.

 6. Register the DataFrame or DataSet as a temporary table.

 7. Start using SQL queries on the DataFrame or DataSet as one
would use them for a normal data set.

 PipelineDB
 In this section, we will take a quick look at a new upcoming database called Pipeline DB
and some of its streaming SQL capabilities. As the name suggests, it is a database that
works continuously on streaming incoming data.

 PipelineDB is a relational database that runs SQL queries continuously on streaming
data and stores incremental results in tables. PipelineDB provides a continuous view of
the desired calculations (specified using SQL operations), updating results continuously.
The continuous update of the results is achieved by seamlessly integrating the previous
computed results with the latest results.

 Traditional databases store the data on disk first, before it becomes ready for
querying. PipelineDB flips the order by first doing the query and then storing the results.
It is important to understand the rationale behind this. Streaming data often arrives at
a high velocity, and there is not enough time to store the data, read it, and then apply
analytics or do a computation. In order to reduce latency, the analytics and computation
have to be done as the data streams in.

 The original data can be either thrown away or stored, depending on the end
application use cases. PipelineDB makes streaming analytics possible with pure SQL. You
can think of PipelineDB as doing continuous SQL on streaming data, with incremental
materialized views. Under the covers, PipelineDB uses Postgres.

 However, PipelineDB is most useful when queries are known in advance. It is not
meant to perform ad hoc SQL queries on streaming data. The outputs of PipelineDB can
be explored in an ad hoc manner, but ad hoc SQL queries cannot be performed using
PipelineDB.

 PipelineDB has three primitive operations: continuous view, continuous transform,
and continuous trigger.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

108

 Continuous View
 A continuous view is a view over continuously flowing data.

 A continuous view looks like the following: CREATE CONTINUOUS VIEW V AS
<A SQL Query> , where SQL Query is a subset of Postgres-based SQL syntax with
windowing capabilities.

 Following is an example of a continuous view with a condition:

 CREATE CONTINUOUS VIEW V WITH (window = '1 day') AS
 SELECT COUNT (*) FROM stream

 Continuous Transform
 Continuous transform applies an end-user-specified transform to an event in the
incoming data and creates a new transformed stream.

 CREATE CONTINUOUS TRANSFORM T AS query THEN EXECUTE PROCEDURE function

 Continuous Trigger
 Continuous trigger is a trigger that fires when a condition becomes true in a continuous
view, as in the following example:

 CREATE TRIGGER X ON VIEW WHEN Condition (Value)

 Continuous Aggregate
 Continuous Aggregate computes the aggregates (PipelineDB has a rich set of aggregate
and windowing functions) and incrementally updates the results in real time as new data
streams arrive. PipelineDB ships with a plethora of aggregate functions, some of which
are based on approximate probabilistic data structures such as Bloom Filters, T-Digest,
HyperLogLog, and Count-Min Sketch, to name a few.

 PipelineDB has the following kind of flow:

 Buffer the Streaming Data ➤ Query the Microbatch ➤
Incrementally Update the Table

 PipelineDB has been built to support some of the most commonly used analytic
functions: COUNT , DISTINCT , Top-K , Percentiles .

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

109

 Apache Calcite
 Apache Calcite, originally called Apache Optiq, is built to provide a framework for
performing SQL query optimization. Any SQL engine will have to do query optimization,
based on numerous rules and cost models and I/O, CPU time, or data shuffling time.
Calcite provides the libraries, so that SQL optimization can be provided out of the box by
the Calcite engine once metadata is provided to Calcite.

 So, why was a product like Calcite conceived? All SQL engines use an SQL optimizer
to optimize the SQL queries. This optimization is needed to reduce the latency as well as
to prevent unnecessary use of system resources, thus indirectly helping with latency and
concurrency. These optimizers are invisible to the end user who issues the query and
impatiently waits for the results. Internally, these optimizers are complex engines that use
cost metrics such as– amount of I/O and disk access, amount of CPU cycles, and amount
of memory consumed to run the query. These optimizers use rule-based algorithms to
rewrite the original SQL query, so that it returns the same results but performs lesser work
in doing so. Internally, these optimizers use data profiling and data statistics to prepare
the best query execution plan, which optimizes the resource usage and minimizes the
time it takes to return the query results.

 Over a period of time, it was found that these optimizers across most SQL engines
essentially do the same task. Hence, the idea for Calcite was, rather than to reinvent the
wheel by building in hard-coded specific rules to perform SQL optimization within each
SQL Engine, to reuse SQL optimization capabilities across multiple SQL engines.

 Calcite can also be called a data management framework—one which is used in
creating databases—but Calcite ignores solving all the problems associated with building
databases. It does not focus on storage, metadata, or the internal algorithms used for data
processing. By doing this, Calcite becomes the glue layer that brings together the different
pieces needed to build a database. Calcite provides an abstraction to create federated
data architectures. It is not a database but provides a way to access the data in the data
stores, using adapters.

 With Apache Calcite, data stored in any data store, whether NoSQL, files (any
format), or streams, can be accessed using SQL. With the rapid development of SQL on
top of streaming solutions, each tool is bringing to market its own extensions to the SQL
language, to accommodate stream processing primitives to its processing engine. What
Apache Calcite is trying to do is to build a standard set of streaming SQL query primitives
that can be parsed and optimized and then passed on to the SQL engine and its data
store for processing. This is done in accordance with the adapter pattern principle in
software engineering, by developing adapters that work with Calcite and the SQL engine
in question.

 Figure 5-5 offers a snapshot of Calcite’s high-level architecture.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

110

 Calcite has extended SQL and relational algebra to support SQL on streaming data.
This streaming SQL is easy and very implicit.

 SELECT [STREAM] [ALL | DISTINCT]
 { * | projectItem [, projectItem]* }
 FROM tableExpression
 [WHERE booleanExpression]
 [GROUP BY { groupItem [, groupItem]* }]
 [HAVING booleanExpression]
 [WINDOW windowName AS windowSpec [, windowName AS windowSpec]*]

 The sections in boldface are the extensions added by Calcite for SQL on streaming
support.

 The STREAM keyword is the main extension in streaming SQL. It tells the system that
the source of data is the stream.

 With this SQL syntax, one can use a table as a stream and vice versa. This is a very
powerful concept, because now, one can execute SQL both from stream and from static
table and do essentially what lambda architecture tries to do, by mixing and matching

 Figure 5-5. Apache Calcite high-level architecture

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

111

both past data as well as fast data (fresh streaming data) to give consolidated results. This
allows end results to have both the data from short-term history as well as long-term
history. It also allows one to join a data from a stream to a static table, or join a stream
with another stream.

 Streaming SQL query support has to have very strong support for windowing-based
queries, which in the streaming world use the time dimension heavily. Apache Calcite
supports three types of windowing queries:

 1. Tumbling Windows: Every “N” seconds emits the results of
the computation for “N” seconds.

 Select Stream ... from Table group by tumble(rowtimestamp,
"interval N Time Units")

 2. Hopping Windows: Every “N1” seconds emits the results of
the computation for “N2” seconds.

 Select Stream ... from Table group by hop(rowtimestamp, "interval
N1 Time Units", "interval N2 Time Units")

 3. Sliding Window: For every record emits the results of the
computation for “N” surrounding records.

 SQL for Operational Analytics on Big Data
Platforms
 Hadoop was invented to do batch analytics on large data sets. These data sets were
read-only, and Hadoop’s major component HDFS was a write once read many (WORM)
file system. Use cases or workloads that would entail use of these systems for updates,
deletes, etc., were never part of the initial features Hadoop was meant to address.

 Realistically, however, the success of a platform usually has had the effect of
demanding more from it. This is why the industry began to explore the idea of having
Hadoop, big data tools, and frameworks dispatch transactional workloads typically
executed on operational systems. In this section of the chapter, we will take a look at some
of the new tools in the landscape that are trying to address this use case and build new
systems and databases, and ways to solve this problem on a big data platform. In Chapter 6 ,
we will also look at the Hybrid Transactional and Analytics Platform (HTAP), which is a
unified platform that supports both operational and analytical workloads. Development
of systems capable of executing operational workloads within a big data ecosystem
represents a step in the right direction.

 In Chapter 3 , we looked at how newer versions of Hive, starting from version 0.14,
support transactional SQL capabilities, and this helps to support operational workloads.
This was just the starting point that fueled industry leaders and innovators to delve further
into supporting this, by building newer systems. “Operational” capabilities is an emerging
Hadoop market category and, therefore, one of the least mature, stable, and robust, but the
tools in this space are rapidly evolving and getting used in real production environments.

http://dx.doi.org/10.1007/978-1-4842-2247-8_6
http://dx.doi.org/10.1007/978-1-4842-2247-8_3

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

112

 Transactional workloads are always mission-critical for business, because they
represent their bread and butter and touch points for customers. Hence, handling
operational workloads has very strict SLAs in terms of response times, transactional
guarantees, data integrity, concurrency, and availability.

 The different types of workloads, with their latency requirements, are shown in
Figure 5-6 .

 Trafodion
 Trafodion is one of the first big data systems we explore and delve deeper into to see
how it addresses operational capabilities on a big data system. It is an open source
product, initiated by HP Labs, to develop an enterprise-level SQL-on-Hadoop engine
that targets transactional and operational workloads. Under the covers, Trafodion builds
on the capabilities of Hadoop, such as scalability, availability, replication, and parallel
processing, but does not reinvent the wheel.

 Following is a list of some of the major features of Trafodion:

 It is a fully functional ANSI SQL DBMS with support for the
syntax and semantics of INSERT / DELETE / UPDATE / MERGE , etc.

 It extends HBase by adding transactional support with ACID
semantics.

 It has an extensive list of built-in optimizations for low-latency
SQL, both for read and write operations.

 It provides standard JDBC and ODBC drivers for third-party
applications to connect and interact with it.

 It provides a relational schema abstraction on top of HBase,
which makes it feel like working with any other relational
database and makes transition to HBase much easier.

 It supports creating and managing database objects such as
schemas, tables, views, stored procedures, and constraints.
It supports referential integrity and not-null, unique, and
primary-key based constraints.

 Figure 5-6. Workloads and their typical latencies

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

113

 It has the transactional support found in most relational
databases, such as BEGIN WORK , COMMIT WORK , ROLLBACK WORK ,
 SET TRANSACTIONS , etc.

 It provides security privileges with operators such as
 GRANT / REVOKE .

 It provides a plethora of utilities, such as Update Statistics,
Explain, Command Line Interface, Bulk Loader, Backup and
Restore, etc., found in most typical RDBMS.

 In spite of being built on top of HBase, Trafodion innovates in
multiple areas and provides the following capabilities:

• It has the ability to define Primary Keys, which can be simple
or composite.

• It supports secondary indexes (which HBase does not).

• It adds a broader scope of ACID over HBase and allows
transactions to span over multiple SQL statements, tables,
and rows.

• It defines data types for columns, though HBase treats any
stored data as an array of bytes.

 Architecture
 In this section, we will look at the core architectural underpinnings of Trafodion.
Trafodion is not a storage engine per se but an SQL execution engine that leverages
HBase and, hence, Hadoop and HDFS, under the covers. We will first look at how
Trafodion fits the scheme of things within the Hadoop ecosystem and then take a look a
level deeper into the architecture of the Trafodion engine.

 Trafodion is designed to build upon and leverage Apache Hadoop and HBase core
modules. Trafodion extensively uses HDFS and Zookeeper, the tow vital cogs within the
Hadoop ecosystem. Internally, Trafodion interacts with HDFS, HBase, and Zookeeper,
using Java-based APIs. Trafodion leverages the scalability, elasticity, and availability
aspects of Hadoop and leverages parallel performance, load balancing across regions
of data available from HBase and weaving the two together to form a true transactional
processing system on the big data platform.

 Figure 5-7 shows how Trafodion fits into the Hadoop ecosystem.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

114

 Trafodion adds its own ODBC and JDBC drivers for third-party tools and APIs. It
also adds its own SQL engine, which sits atop HBase and HDFS and adds a Distributed
Transaction Manager module to coordinate transactions within the database.

 Trafodion is architected in three distinct layers: Client, SQL, and Storage layers.

 Client layer : This allows connectivity to third-party
applications, tools, and BI engines, using standard ODBC/
JDBC drivers. It supports both Type 2 and Type 4 JDBC
drivers.

 SQL layer : This consists of the services for managing the
different database-related objects and operations. It includes
basic services such as connection management, SQL
compilation and generation and execution of execution plans,
and transaction and workload management.

 Storage layer : This is the set of services Trafodion requires
from HDFS and HBase to store and manage the different
database objects. On this layer, Trafodion maps the standard
SQL queries and operational/transaction semantics to native
HBase API calls. Trafodion can manage data residing in Hive
and HBase—labeled as external data.

 At a very high level, Trafodion’s architecture looks as shown in Figure 5-8 .

 Figure 5-7. Trafodion and the Hadoop ecosystem

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

115

 Upon request for a client connection, Trafodion’s database connection service, which
resides in the SQL layer, processes the request and assigns the connection to a Trafodion
Master process residing in the SQL layer. Zookeeper (not shown in the diagram) internally
manages all the connections in coordination with the connection service.

 Master process is the entry point for all SQL queries. On receipt of a DML query, the
Master process hands over the query to the CMP (compiler and optimizer process), which
checks to see if the query result or the query plan is cached and, if not, parses, compiles,
and generates the optimized query execution plan. The query is then fanned out to all or
one (depending on whether the query is to be handled in parallel) to the ESP residing in
each of the region server nodes (Executive Service Processes), to perform the actual work
of executing the query. The ESP process coordinates with the storage engine to fetch the
data from the data store in the most optimized way and also works with the Storage layer
to push down the query predicates.

 Finally, when all the ESPs have returned the query results, the Master process
assembles all the fragments of query results and returns the result to the Client layer. In
the event that parallel processing of the data by the ESPs is not required (depending on
the type of the query), the Master process interacts directly with the HBase API to do the
work and get the results.

 Figure 5-8. Trafodion—overall architecture

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

116

 How Trafodion Handles Transactions
 HBase by itself offers transaction boundaries across only a single row. When transactional
guarantees are required across tables, or multiple rows, HBase falls short. This is where
Trafodion takes HBase to the next level, by supporting transactions across multiple rows
and across multiple tables residing across any region server. Trafodion does this using a
two-phase commit protocol. Transaction protection is automatically propagated across
Trafodion components and processes.

 Trafodion added a brand-new HBase distributed transaction management (DTM)
subsystem for distributed transaction processing across multiple HBase regions. DTM
provides both implicit (auto-commit) and explicit (BEGIN , COMMIT , ROLLBACK WORK)
transaction control boundaries. Trafodion also leverages MVCC features, which are built-
in within HBase to allow some of the transactional semantics such as read committed and
conflict resolution in a multi-concurrency environment. Figure 5-9 shows how the DTM
is positioned as a process across the architectural stack.

 In the current version of DTM, the transaction endpoints are implemented within
the HBase region servers as coprocessors (stored procedures, in the HBase world).
Some portions of the DTM are written in C++, and it supports transaction recovery from
a region server crash. An SQL call that is part of a transaction first goes through the
Transaction Manager Library, which works in coordination with the Transaction Manager
and Resource Manager Library. The Transaction Manager is the core of the DTM module.

 Figure 5-9. Trafodion transactional management

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

117

 For a given transaction with Begin/Commit and Abort semantics, the transaction
first calls the Transaction Manager Library to put a fence around the regions that would
be affected by the transaction. It generates a transaction ID and creates an internal
transaction object and transaction state. This process also associates, or loops in, the
HBase regions associated, which would eventually affect the data in those regions.

 Also associated with the Transaction Manager (not shown in the figure above)
is a transaction log. This log contains the metadata about the transaction and the
information about the regions involved in the transaction. All updates that occur within
the transaction boundaries are handled by the Resource Manager. It contains the core of
the module that works with HBase tables to do the necessary scans to complete the get/
put/delete-related work at the data level. All calls from either the Transaction Manager
Library or the Resources Manager Library are coordinated with the corresponding HBase
region servers.

 Optimizations
 Trafodion is a complex engine that provides many compile and runtime optimizations
for operational workloads, both simple workloads accessing a single row of data to more
complex OLTP transactions spanning multiple rows.

 The executor process in Trafodion that executes the SQL queries is architected quite
differently from most of the SQL-on-Hadoop engines. The executor process queries
with data flowing entirely through memory and not hopping over disks, thus providing
better performance by avoiding expensive I/O. The dataflow architecture of the executor
processes leverages both partitioned parallelism, in which the operators all work on the
same plan, or pipelined parallelism, whereby the architecture connects the operators in
queues, with the output of one operator piped to the next operator, to execute the queries.
Like most relational engines, it caches compiled SQL query plans for reuse and to avoid
recompilations. It heavily leverages HBase filters and coprocessors and performs query
fragment pushdown into the HBase engine wherever appropriate.

 The executor process prepares two types of plans for most queries—parallel plans
and non-parallel plans—and does a cost-based optimization on both to eventually use
the one with lower cost. Internally, it is coded to use HBase APIs in the most optimized
way, in terms of scan and data buffering and support for Rowset of data for large batches
of rows. Trafodion optimizes the amount of data that is stored in HBase by using very
small names for the column qualifiers and compression of the column names with right
encoding. The executor process optimizes queries by using the right database statistics
to identify and offset data skews. Internally, it implements parallel n-way joins and
aggregation algorithms. (See Figure 5-10 .)

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

118

 Apache Phoenix with HBase
 Apache Phoenix is an SQL engine on top of HBase. Phoenix maps the HBase data model
to the relational model. Phoenix can be used for building transactional systems on top of
HBase for operational workloads using SQL. It is a lot like Trafodion but has better SQL
support and coverage.

 Apache Phoenix has the Query Engine, Metadata Repository, and JDBC Driver as its
major architectural components. It supports composite keys on HBase and provides SQL
data types on top of HBase’s byte-oriented data with DDL-like schemas and definition
syntax, very much like the relational world on top of data residing in HBase. It also
provides read-only views on top of existing HBase data. New columns can be added at
runtime to extend the schema. Phoenix supports all of the SQL join syntax with equality
constraints and correlated subquery support over HBase. Phoenix can execute most of
the TPC-H queries but does not support nested loop joins. The latest release of Phoenix
has support for writing UDFs as well as support for extensive out-of-the-box built-in
functions and transactions.

 Transaction support is what is very essential to be used in OLTP workloads.
Phoenix internally uses an open source framework called Tephra to provide support
for transactional semantics. Out of the box, Phoenix supports Snapshot isolation, and
the transactions can see their own uncommitted data and use optimistic concurrency
control.

 Apache Phoenix compiles SQL queries into a bunch of HBase scans and orchestrates
execution of these scans to produce JDBC result sets. Phoenix stores its own metadata
for each of the tables, columns, and data types in an HBase table. One of the main use
cases of Apache Phoenix is to provide SQL access to HBase data. HBase data is difficult

 Figure 5-10. View of Trafodion’s query optimizer

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

119

to access using its own command line interface (CLI) and proprietary scripting and Java
APIs. Phoenix makes it extremely convenient to access HBase data using SQL and also
applies its own set of optimizations and leverages to HBase’s architecture to optimize the
SQL queries and lower the latency.

 Architecture
 Phoenix compiles SQL queries into low-level HBase API calls. Phoenix is a lightweight
process sitting on the region servers in HBase. It executes the HBase row scans in parallel.

 Figure 5-11 shows the components of Phoenix with respect to HBase’s components.
The Phoenix JDBC driver is installed on the client side as jar files, while the Phoenix
executable jar file is installed on the region servers in HBase.

 The Phoenix client is part of the Phoenix query server, which is very similar to the
HiveServer or HBase REST Server. It contains the JDBC and ODBC drivers for HBase.
The Phoenix query engine is very typical of any SQL-based query engine and comprises
a parser, query planner, and an optimizer, for which Phoenix uses Apache Calcite.
Phoenix’s query execution engine pushes as much compute to the HBase server as
possible, leveraging the right hooks available in HBase API.

 The Phoenix query engine stack is shown in Figure 5-12 .

 Figure 5-11. Phoenix, with respect to HBase components

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

120

 The Phoenix RPC endpoint contains the following components: the Dynamic
Coprocessor and Dynamic Observers, as shown in Figure 5-13 . Dynamic Coprocessors
execute aggregation operations at each data node; the Dynamic Observers act as triggers
to observe for events and sync data.

 Figure 5-12. Phoenix query engine component stack

 Figure 5-13. Phoenix RPC endpoint

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

121

 Transaction Support in Phoenix
 Figure 5-14 shows the overall high-level architectural components of Apache Phoenix
that support transactions. Internally, Phoenix uses Apache Tephra, which provides
globally consistent transactions on top of Apache HBase. HBase is by itself transactionally
consistent at a single atomic row level. However, HBase has made some architectural
trade-offs to not support global transaction across region servers and across tables
over multiple rows. This support can be implemented in HBase using Apache Tephra.
Figure 5-14 shows how Tephra integrates with HBase to provide global transactional
support. We will not look into the internal details of Apache Tephra. Tephra internally
uses HBase’s native support for multiversioning, also known as multiversion concurrency
control, abbreviated as MVCC or MCC, for transactional reads and writes. Each
transaction sees its own "snapshot" of data, providing snapshot isolation of concurrent
transactions out of the box.

 Internally, Phoenix uses the aforementioned architecture to support SQL transactions
over HBase. Phoenix supports the REPEATABLE_READ isolation level by default.

 Optimizations in Phoenix
 Following are some of the most basic optimization techniques that Phoenix uses:

• It supports functional indexes and covered indexes, which are
available on almost all RDBMS.

• It supports a statistics-driven parallel execution, whereby it can
choose the smaller table for the build side during the join process.

 Figure 5-14. Transaction Manager from Tephra within the HBase Phoenix ecosystem

http://en.wikipedia.org/wiki/Snapshot_isolation

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

122

• It offers query rewrite for correlated subqueries.

• It has predicate push down to the source data using HBase’s rich
filtering techniques and using its API.

 Index Support

 Phoenix has extensive support for indexes. Phoenix-generated indexes are stored as
separate tables in HBase. Primary keys have to be specified during table creation time.
Secondary indexes can be created by the usual CREATE INDEX DDL clause in Phoenix.

 Three different secondary indexing strategies are supported by Apache Phoneix,
based on usage patterns.

 1. Immutable for write-once/append only data. This is managed
by the Phoenix client-side code.

 2. Global indexes for read-heavy and low-write mutable data.
In this case, the actual data and index data could reside on
separate servers. Server side intercepts the table updates and
updates the indexes that would be on a remote server.

 3. Local for write-heavy mutable or immutable data. In this
case, the actual data and index data are co-located.

 Apache Phoenix has its own set of limitations.

• Phoenix is not to be used if your use cases and the majority of
your queries require sophisticated SQL queries that involve joins
over large tables and use of advanced SQL queries.

• Do not use Phoenix if your queries require large scans, which
cannot be avoided by indexes.

• It is advisable not to use Phoenix for ETL-related work, which
involves large batches of data.

 Kudu
 In this section, we discuss Kudu, a relatively new storage engine in the Hadoop
ecosystem. Kudu has been designed with the core idea that it can do both random
updates and analytic workloads in the same storage, overcoming the operational
problems of maintaining multiple systems for different types of workloads. Kudu is an
open source storage engine for structured data that supports low-latency random access
with efficient analytical access patterns. You can think of Kudu as an alternative to HDFS
or HBase.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

123

 Kudu has been developed with two objectives in mind:

 1. It makes management of streaming data for ad hoc analysis
easier.

 2. It bridges the gap from random access to update and append
only mode of data operations, in other words, it covers the gap
between a fast transactional store, at the same time providing
storage for low-latency analytics.

 From the preceding two points, it seems that Kudu is ideally suited for the middle
ground. It is a system that can handle high volumes of reads/writes with high throughput
and also provide the storage for low-latency analytic engines to work on. Kudu is not an
analytic engine or a transactional engine.

 Simply stated, it provides the storage capabilities that support both transactional
workloads and analytical workloads, unlike HDFS, which was primarily meant for batch
analytical workloads and read-only semantics. Kudu is, however, not an OLTP system,
and it does not support transactional semantics or multi-row transactions.

 So what problems does Kudu solve? In order to understand this, let’s take a look
at what an organization typically would do if it needed to support both transactional
workloads and analytical workloads. In such cases, an organization would have one set
of infrastructure, which would include storage and databases to support transactional
workloads and another set of infrastructure for storage, and an analytic engine to support
analytic workloads. These two infrastructures would have to be isolated from each other
physically, so that they did not affect the SLAs of either.

 With the advent of Kudu, the game changes. Now, the same organization can use
Kudu to store both transactional and analytical data. Kudu provides strong performance
for scan and random access and helps customers simplify complex hybrid architectures.
It provides capabilities of updating data in place and avoids processing and data
movement.

 Kudu should not be confused with an in-memory database, file system, or SQL
database, nor is it a replacement for HDFS or HBase. Single-row reads will be slower
in Kudu than HBase, and, in addition, random updates in Kudu will be slower than
with HBase. In the overall scheme of this, the picture below (Figure 5-15), taken from
Cloudera, represents the positioning of Kudu, as compared to systems that do one thing
well: either transactional or analytics.

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

124

 Kudu Architecture
 Kudu is a distributed system store for structured data. It is written in C++ and has no
dependencies on other Hadoop components. It provides updateable storage, in which
SQL operations support updates, deletes, and merges. However, Kudu does not have its
own SQL interface. For analytic workloads, it has to be used with Impala/Vertica/Apache
Drill for low-latency SQL. Kudu layers directly over the file system.

 Kudu has a fixed table schema and uses column-oriented storage for disk and row-
oriented storage for in-memory (which makes the updates easier to handle). In Kudu,
tables must have a primary key, which is used for data sharding and provides access using
this primary key.

 In terms of performance optimizations, Kudu builds on the shoulders of giants
and internally uses Bloom filters and lazy materialization of columnar data and the Raft
consensus algorithm, to ensure consistency of the data.

 Figure 5-16 shows where Kudu fits in the overall stack in the Hadoop ecosystem.

 Figure 5-15. Kudu positioned in comparison to transactional analytic systems

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

125

 In Kudu, tables are horizontally partitioned across nodes, and each such partition is
called a tablet in Kudu speak. Each of these tablets has replicas that are kept in sync using
the Raft consensus protocol. The architecture allows reading from any tablet, while all
writes go to a master tablet. Each server on which a tablet exists is called a tablet server,
and one tablet server can handle multiple tablets. Data is stored locally on the disk in
each of these servers, and this is not HDFS. Each tablet can be typically 10s of GB, and a
tablet server can hold up to about 100 tablets. Each of these tablets is replicated across
other machines in the cluster for fault tolerance and reliability. Kudu has two types
of partitioning strategies for distributing the data. Range partitioning, in which rows
are distributed into tablets uses an ordered partitioning scheme, whereby each tablet
contains a contiguous segment of the table’s data. Hash partitioning distributes rows to
tablets, based on the hash value of the row data.

 Kudu has a master server that contains the metadata that describes the logical
structure of the data stored in tablets. Multiple masters can be deployed to provide master
failure reliability.

 Updates in Kudu are handled using a log structured model (as in HBase), in which
updates, deletes, upserts, and merges are buffered temporarily in memory before they are
written to disk in columnar format.

 Kudu Usage Scenarios
 Kudu’s inherent goal is to accept data very quickly and make that data available for
analytics as soon as possible. Kudu has been built to accept lots of fast random writes
from streams and also allows updates and inserts. Because of this, Kudu’s main usage can
be for low-latency analytics with an SQL engine—an alternative to Kafka.

 Below, we outline in brief some of the use cases of Kudu.

Data Ingestion Tools and Message Queue

Batch, Streaming, SQL, Search Apps

HDFS
HBase

Apache Kudu
HDFS

 Figure 5-16. Kudu and the Hadoop ecosystem stack

CHAPTER 5 ■ SQL FOR STREAMING, SEMI-STRUCTURED, AND OPERATIONAL ANALYTICS

126

 Kudu with Impala

 Impala, which was extensively discussed in Chapter 4 , can work directly with Hive or
files on HDFS. However, using Impala with Kudu offers several performance benefits.
Kudu has been architected to deliver very high scan performance. Impala, an MPP
engine, relies exclusively on high scan rates and file formats supporting that. Hence
Kudu and Impala form a good combination for low-latency analytic query performance
improvements.

 Impala with Kudu is an attempt to build an analytic database management
system into the Hadoop ecosystem. However, it is still very early for Kudu to claim this
distinction.

 During query processing, Impala fetches metadata from Kudu’s master server, and
during this process, defines the scan range. Impala defines a new processing node, called
the Kudu Scan Node, and uses Kudu’s C++ API to execute the Scan Nodes that define the
scan. Typically, one Scan Node is associated with one tablet, but in the case that multiple
Scan Nodes are associated with a tablet, Impala spawns multiple threads to scan in
parallel.

 Apart from the usual mechanics of scanning the data—data encoding in Parquet
format, applying compression algorithms—Impala heavily relies on Kudu’s capability to
associate predicates with the scan, especially when the predicates are on the primary key.
Impala relies on pushing the predicates down to the data storage layer, to optimize both
the I/O and improve scan performance.

 Kudu As an Alternative to Kafka

 Kudu can be thought of as a more flexible and reliable queueing system, like Kafka, or, in
other words, a publish/subscribe system based on a database. Kudu overcomes some of
the architectural- and usability-related trade-offs for throughput that Kafka made. Use
cases such as modifying the queue after en-queuing and a queue per user, are difficult to
do in Kafka, and Kudu’s is architected to overcome these problems.

 Kudu ensures consistency, unlike Kafka, which relies on an asynchronous replication
system. Kudu has been architected to satisfy reads and writes within a bounded interval
and guarantees a consistent view of the data, using the Raft consensus protocol.

 Another tool that has recently been open sourced to address operational workloads
on big data systems is Splice Machines. We will not be covering this tool in this book.

 Summary
 This chapter extensively covered SQL engines, which span the gamut of applications,
from being used for processing semi-structured data to stream processing and usage in
operational systems with transactional support. This field is a rapidly developing one,
with new products being created with newer ideas and innovations.

 In the next chapter, we will cover the new and exciting innovations occurring in the
world of SQL engines on big data, in which totally new concepts and ways of solving SQL
with big data are addressed.

http://dx.doi.org/10.1007/978-1-4842-2247-8_4

127© Sumit Pal 2016
S. Pal, SQL on Big Data, DOI 10.1007/978-1-4842-2247-8_6

 CHAPTER 6

 Innovations and the Road
Ahead

 This is an exciting chapter that discusses the shiny new products and tools addressing
SQL on Hadoop that are evolving in the market. It discusses the new concept of hybrid
transaction/analytical processing (HTAP), which addresses consolidation of online
transaction processing (OLTP) and online analytical processing (OLAP) platforms. This
chapter considers these at a high level and from an architecture perspective. These
products are in a state of evolution and rapid change and must to be tested further in
actual production systems.

 BlinkDB
 In this section, we will look at an interesting SQL engine called BlinkDB. BlinkDB was
innovated in the same research lab as Spark—AMPLabs. BlinkDB is an approximate
interactive, in-memory SQL engine for large data sets.

 With many projects, there is a classic perception that one can realize any two of three
objectives (refer to Figure 6-1), as most project managers would have it. In fact, no project
can accomplish all three objectives at the same time.

ANY
TWO

CHEAP

FASTGOOD

 Figure 6-1. Choose any two features for a project. You cannot have all three

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

128

 BlinkDB follows the same concept. Any SQL engine for big data processing can have
any two of the desired features, but not all three at once, as shown in Figure 6-2 .

 In order to improve performance and lower latency of SQL queries on large data sets,
BlinkDB decided to get rid of accuracy, within an error threshold or margin. In the real
world, especially in analytics, which is not accounting, we can afford to be slightly off a
correct/accurate/precise number by a certain margin.

 For example, when counting the number of visitors to a web site, it is fine if the actual
number is something like 245,885 in the last 24 hours and your query returns a result of
240,000, but returns it fast—let’s say, in 1 second rather than waiting for 30 seconds to get
a more accurate number. This is what BlinkDB excels in: it provides a massive boost to
the latency by arriving at a result in a much shorter time, with the returned result within a
specific error range.

 As shown in Figure 6-3 , the basic idea of BlinkDB is to return results faster with
low latency within a given threshold. As the threshold approaches zero, or as the result
approaches higher levels of accuracy, the execution time increases.

ANY
TWO

FAST

ACCURATEBIG

 Figure 6-2. Choose any two features for an SQL engine. You cannot have all three

 Figure 6-3. Varying execution times with error rate

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

129

 BlinkDB is based on deep math and statistics and a lot of probability theory as a
core part of its engine. The core part of BlinkDB is the right data sampling, so that during
runtime, the queries are only executed on the sampled data, but the magic is that it still
returns the results within the error margin, but with a much lower latency.

 How Does It Work
 BlinkDB is an SQL engine that uses a variety of random and stratified data samples from
an original data set. At runtime, it executes the SQL queries on these data samples. The
magic of the query engine lies in how it selects the sampled data.

 In the world of data sampling, there are primarily two ways of sampling data

 1. Uniform Sampling

 2. Stratified Sampling . Stratified sampling is the process
of choosing a random sample in which members of the
population are divided into strata/groups/clusters and then
samples are randomly selected from the clusters.

 Queries
 BlinkDB offers a variant of the well-known SQL syntax whereby one can make analytic
queries that return within a specific time or return results with an error rate and
confidence interval that is user-specified.

 SELECT avg (sessionTime) FROM Table WHERE city='Boston' WITHIN .1 SECONDS
 SELECT avg (sessionTime) FROM Table WHERE city='Boston' ERROR 0.1 CONFIDENCE
99.0%

 BlinkDB also adds new predefined UDFs, based on approximate aggregate functions
with statistical closed forms, to HiveQL: approx_avg() , approx_sum() , approx_count() .

 Data Sample Management
 When BlinkDB starts and is given a data set, it creates an optimal set of samples on native
data sets and summarized views based on query history and workload characteristics that
the data set will cater to. This process is shown in Figure 6-4 .

 Figure 6-4. Sampling a data set for best results

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

130

 Once the samples are created, they can be stored on disk or cached in memory, with
optimized data formats for faster execution, loading, and efficient storage. These samples
can be created either with no known training or information as to the type of query
patterns, or BlinkDB can be configured to generate these samples, based on some of the
typical queries that the engine will be handling at runtime, as shown in Figure 6-5 .

 Execution
 When a given query is sent to the BlinkDB engine, it picks up the best sample out of the
pre-created samples, based on query latency and accuracy requirements desired by the
end user, and executes the query on that sample, to return query results with low latency.

 GPU Is the New CPU—SQL Engines Based on GPUs
 In this section, we will explore some upcoming SQL engines on big data that leverage
GPUs to do blazing fast computations. These engines leverage the parallel power of
modern GPUs and try to bring in a lag-free data exploration experience on large data sets.

 From being used mainly in the high-resolution graphics engines in the gaming
industry, graphics processing units (GPUs) are rapidly evolving to become the main
computation engine in virtual reality (VR) engines, self-driving vehicles, drones, and
machine learning. GPUs have also found a new home with their introduction into the
computing brain of next generation analytic engines.

 Figure 6-6 shows the difference, from an architectural perspective, in the layout of
cores for GPUs as compared to CPUs.

Query Plan

Sample
Selection

SQL Query

Blink DB

 Figure 6-5. Query is executed on the samples pre-prepared by BlinkDB

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

131

 MapD (Massively Parallel Database)
 MapD is a GPU-powered database and visual analytics platform using GPUs that
provides interactive exploration on extremely large data sets with very low latency. MapD
leverages GPUs to execute SQL queries in parallel across nearly 40K cores per server,
yielding massive speedups over other SQL engines. It also leverages graphic processing
capabilities to provide data visualization and visual insights into complex data sets.

 MapD is a full-blown product that offers a high-speed SQL-compatible database
that internally leverages columnar data storage and processing formats and a data
visualization front end to drive real-time decision making. MapD doesn’t require GPUs
and can run on CPUs, but the architecture is tuned for massively parallel computation,
and the performance on GPUs is an order of magnitude better than on CPUs with
multiple cores and threads per core.

 GPUs perform best on algorithms that can be parallelized with the least amount of
branching in algorithms that leverage each core to do the same operation repeatedly.
One of the best things about GPU-based computes is that, when GPUs are used for
query execution, the CPU is not doing anything, and its compute capacity can be used to
perform other tasks associated with the query execution.

 MapD leverages three major traits of GPUs to build a scalable system that allows
high-speed SQL querying, advanced analytics, and data visualization—all in one system.

 1. Computational parallelism

 2. High-speed memory

 3. Graphics pipeline

 Currently, MapD is only architected to be deployed on a single node with up to eight
of Nvidia’s top-of-the-line Tesla K80 coprocessors; however, work is under way to make
it a distributed database. Like Impala and Spark SQL, MapD also uses LLVM to generate
and compile SQL code on the fly for massive speedup. It is written in C++ and leverages
CUDA and OpenCL to talk to the GPUs.

RAM

L1/L2/L3 Cache

CPU ARCHITECTURE GPU ARCHITECTURE

CORES

Core Core

Core Core

Core Core

Core

Cache

Cache

Cache

Core

Core

RAM

 Figure 6-6. Architectural differences between GPUs and CPUs, based on core layouts

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

132

 Internally, MapD uses a columnar data store and uses data compression to make
memory on the GPUs perform better. It offers connectivity to the outside world, using
both JDBC/ODBC and Thrift servers.

 Some of the distinguishing features of MapD include the following:

• Caching hot data in the GPU memory

• Vectorizing the queries like other SQL engines we have seen to
leverage parallelism

• Built-in kernel operators for frequently used database operations,
to reduce the delay in code generation on the fly, because
GPU code generation takes more time than typical CPU code
generation

• Routine leveraging of both the GPU and CPU when a data set
cannot fit into GPUs

• Very deep built-in text mining features

 With all the preceding features and capabilities, MapD can support a scan rate of
almost 2-3TB/sec of data, which is 40 times faster than similarly configured CPU servers.

 As GPUs performance and memory capabilities improve further, MapD has a
roadmap to utilize the next generation GPUs to optimize its performance. One of the main
problems of GPU-based databases is the low limited size of the memory on the GPU.
However, Nvidia’s roadmap to couple GPUs more tightly with the CPUs using NVlink ports
and use of InfiniBand network cards can change all that. InfiniBand network can also help
with distributed join-based queries that can require a large amount of data shuffling.

 Architecture of MapD
 A very high-level overview of MapD architecture is shown in Figure 6-7 . It has ODBC and
Thrift connectors to allow third- party tools and libraries to connect to the engine and
execute SQL queries. The MapD engine not only processes SQL queries but also provides
the native graphic rendering capabilities to show high-resolution images for large-scale
data visualization.

(Massive Dataset Visualization)

GPU Rendered
Graphics

HDFS/Mem SQL

192 GB

Data Stores

MAPD

MAPD Front End BI Tools

ODBC/Thrift Connector

 Figure 6-7. High-level MapD architecture

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

133

 GPUdb
 MapD, however, is not a distributed SQL engine. Currently, it is designed to work on a
stand-alone machine. A close open source competitor to MapD is GPUdb, which is a
distributed database with SQL capabilities. GPUdb provides ODBC connectors and an
API for developers and business analysts to interact with and provides standard SQL
interface to interact with the database. It provides ANSI SQL ‘92 compatible SQL interface
and also has a RESTful API.

 GPUdb leverages many-core devices and is currently supported with NVIDIA GPUs
and Xeon Phi many-core devices. It works a lot like an MPP engine, wherein the core
engine is deployed on each node in the cluster, preferably with identical nodes and same
number of GPUs. A single node is chosen to be the coordination/aggregation node.
The cluster can be scaled up or down, depending on the storage and query efficiency
requirements.

 SQream
 Another analytic SQL engine database based on GPUs is SQream. SQream uses MPP
on chip technology to deliver power of more than 10K cores for high-performance
computing in a single appliance.

 SQream DB is a massively parallel analytic database SQL engine using GPUs to
harness its unique performance characteristics for handling large-scale data sets. It runs
on single or multiple NVIDIA GPUs. It supports ANSI SQL. SQream provides JDBC and
ODBC interfaces for ETL and BI tools to be easily connected.

 Internally, SQream is a columnar database in which each column is stored as a
collection of data chunks. SQream creates its own metadata on top of each column,
which results in smarter and faster access to large data sets. (See Figure 6-8 .)

 Figure 6-8. High-level SQream architecture (courtesy of SQream Technologies)

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

134

 SQream works by transforming SQL queries into parallelizable relational algebra
query fragments. Like any other SQL engine, SQream’s query optimizer does a lot of
the hard work in the background, to optimize the queries, optimize the I/O workload,
and effectively utilize the massive parallelism offered by the GPUs. The execution plan
chosen by the optimizer is the one that is optimized for the GPUs, based on the GPU
architecture and chipsets used. SQream’s storage and query engines are both columnar,
and, to process the data, the query engine does not have to convert the compressed
columnar data format back to the uncompressed row format. This makes SQream faster
than a lot of the other columnar analytic databases out there, in terms of performance,
scalability, and concurrency. Using compression results in lower I/O, and because of the
GPUs’ processing capabilities, decompression, if and when needed, is massively faster, as
compared to when running on CPU-based machines.

 During data ingestion, all the metadata is generated by the SQream’s ingestor
process, which helps the query engine to build the optimized query plans.

 Apache Kylin
 Online analytical processing (OLAP), which was so popular in the last decade of the last
century and the first decade of this century and beyond, got sidelined by the big data
tools expansion, but it is making a comeback, by reinventing itself for the world of big
data. There were two reasons why OLAP became so popular.

 1. As data sets were growing in size and relational databases
were becoming bloated and slow in query response,
especially for analytical queries, database engineers invented
the concepts of OLAP and cubes to perform analytical queries
with lower latency.

 2. It provided the right data structures to do multidimensional
querying, especially for complicated analytic queries, with
each OLAP provider having its own querying language, until
providers came up with a standard language called MDX
(Multidimensional Expressions).

 One of the reasons OLAP slowly started losing its value, especially as data sets
started getting bigger and queries became more complex, was because OLAP relied on
building either one right cube that could address almost all the queries or multiple cubes,
a combination of which could support most of the query workloads. Building cubes
consumed a lot of time, resources, storage, and maintenance work during the ETL stage.
This often entailed the possibilities of missing out on the SLAs. However, more recently,
two new OLAP engines on Hadoop with an SQL interface (not MDX) are gaining traction
in the world of big data for doing SQL-based analytics. Apache Kylin, an open source
project started in South Korea, and AtScale, a startup based in the Silicon Valley, are
trying to innovate and build OLAP engines for big data, using the current tools in the big
data ecosystem. We discuss Apache Kylin and its architecture in the following sections.

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

135

 Kylin is an open source distributed analytics engine that provides SQL interface and
OLAP capabilities on Hadoop for large data sets. Kylin has been designed to reduce query
latency on Hadoop and provide interactive SQL analysis on Hadoop. This allows Kylin
to be integrated well with BI and third-party tools. Internally, Kylin is a MOLAP engine
(multidimensional OLAP engine), in which the data is precomputed along different
dimensions of interest and stored as pre-built and precomputed cubes. MOLAP is much
faster but is inflexible and requires the cubes to be refreshed as data changes. The other
type of OLAP is ROLAP (relational OLAP), as used in star or snow-flake schemas in data
warehouses to do runtime aggregation. ROLAP is flexible but much slower. All existing
SQL-on-Hadoop engines can be classified as ROLAP engines.

 Kylin builds data cubes (MOLAP) from an underlying Hive table (ROLAP), according
to the metadata specification. When an SQL query comes into Kylin, if the query can be
fulfilled by an existing pre-built data cube, Kylin routes the query to the data cube and
delivers the results immediately. These precomputed data cubes reside in HBase. If the
query can’t be fulfilled by an existing cube, Kylin will route the query to the Hive table that
is ROLAP and trigger a cube-building process for the query, so that future queries can be
supported by the cube.

 Apart from a more general set of features, Kylin also provides the following
enterprise-level features out of the box:

• Incremental refresh of cubes

• A web interface to manage, build, monitor, and query cubes

• Under-the-covers leverage HBase for query latency

• Approximate query capabilities for distinct count performance,
using the HyperLogLog algorithm

• Compression and encoding Support

• Job management and monitoring

• LDAP integration

 Figure 6-9 and Figure 6-10 provide a high-level overview of the internals of Apache
Kylin and how it works.

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

136

 Kylin is fronted by a REST server, which accepts SQL queries from third-party tools.
On receiving a query, the REST server hands over the SQL query to the query engine,
which decides the optimal way to execute the query. This optimization can be for either
the MapReduce-based job for building the cube to satisfy the query or for running the
query on an already built data cube that resides in HBase.

 Kylin maintains two types of Metadata: end-user Metadata, which forms the data
model for the star schema, and metadata for the cubes that have been generated by Kylin
and stored in HBase.

 Cubes are built using MapReduce, and, hence, this can be a time-consuming
process. Typically, this process would be baked in as part of the ETL pipeline, so that the
cube is ready to be queried when queries arrive in real time. In case a cube has not been
built for a specific SQL query, and the already built cubes in HBase cannot satisfy the
query, i.e, do not have the data for the query, Kylin offloads the cube-building process
by running a MapReduce job on Hive for building the new cube. This new cube is then
moved to HBase, the query results are executed on HBase, and the results are returned.
The latter workflow can result in significant delays in query latency.

 Kylin uses HBase as the storage engine and leverages the HBase coprocessor to
reduce network traffic, parallelize scan logic, and improve the latency of the queries.

 As seen in Figure 6-10 , – Apache Calcite is used internally by Kylin as the SQL query
optimization engine which that optimizes the query before it is executed either by the
MapReduce job in Hive or within the pre-built cube in HBase.

CLI/BI

ODBC/JDBC SQL REST API

REST Server

Query Engine

Switcher

Metadata

Cube Builder
OLAP
Cubes

Hive

APACHE KYLIN

Build Cubes

 Figure 6-9. Kylin’s process flow for executing a SQL query

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

137

 Apache Lens
 Apache Lens is a project that tries to abstract out data silos, by providing a single view of
data across different data stores. It also tries to provide an optimal execution environment
for the analytical queries across all the data silos it abstracts out. It tries to achieve a
unified view of the data source across either Hadoop-based systems or data warehouses,
by providing a uniform metadata layer.

 An approximate architecture is shown in Figure 6-11 . Apache Lens has been
designed with a pluggable architecture in mind. Modules for data access and processing
engines can be plugged in to the overall architecture of Apache Lens. Apache Lens
supports an OLAP-based data model across all the data stores. It also supports an SQL
interface on top of it that can be accessed using a REST interface. Internally, Apache Lens
models all the tables as facts and dimensions, and all its data-management functions are
modeled along the lines of an OLAP model.

JDBC/ODBC

REST Server

JDBC Engine
Calcite

Storage Engine

HBASE Cubes

Star Schema

Meta Data

Dictionary

Cube Metadata

Jobs

Hive

Write
Cubes

SQL

 Figure 6-10. Kylin high-level architecture

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

138

 It supports a high-level SQL-like query language to describe data sets organized as
cubes. CLI-based and third-party-tools-based queries are issued through Java Database
Connectivity (JDBC) libraries.

 An application server hosts the REST server, which is the gateway for ad hoc
and metadata queries. It also has a cost-based optimized engine that selects the best
execution engine for a given query, based on the query cost.

 It runs a REST-based server—Lens Server—which has several endpoints for each type
of service. It has endpoints for the following types of services across all the data stores it
abstracts: Metadata Service, Query Service, Session Service, and Scheduler Service.

 Metadata Service : This provides an abstract metadata view
over tiered data stores, which provides a uniform layer for
data flow and data pipelines to share and access the metadata
across the silos. Any DDL-related operations are handled by
this service.

 Query Service : This is used to run queries across different data
stores that have been configured. Internally, it uses a database
resource service, which automatically adds jar files at runtime,
based on the query destination. Internally, the query service
uses the session service to create a session to the data store
to which the query is directed. It also monitors the queries,
returns the results, and tracks the query history across the
different data stores.

Applications

MetaDataLENS Server

API

HIVE Spark

CLI/WEB/JDBC

Execution Engine

DataHDRS/HBASE/S3/PARQUET/S3

 Figure 6-11. Apache Lens server—how it fits into the overall data pipeline

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

139

 Session Service : All session-level operations are performed
using REST and Java APIs. Sessions allows configurations to
be set across a group of queries. Any metadata operation or
database query operation must use Session Service.

 Apache Tajo
 Apache Tajo, an open source project since 2014, is a distributed data-processing
framework that does not use MapReduce and has an SQL interface. Tajo is designed for
low-latency ad hoc queries and ETL on large data sets stored on HDFS and/or other data
sources. Its goal is to provide a single framework that can be used both for ETL
(long-running batch processing) as well as for interactive ad hoc queries.

 Tajo is a data-warehouse system with ANSI SQL compliance. It is built as a master/
slave architecture with a single master and multiple workers and looks strikingly similar
to Hive. The master is the gateway to the framework for clients. It also coordinates query
processing across the slaves on the cluster. The master also performs resource tracking
and allocation across the cluster, while the slaves run in a cluster and process the data
stored on the local nodes.

 An SQL query goes through the same layers of analysis and planning, to generate the
logical and optimized physical plan with the data flow. Tajo provides query federation across
multiple data silos residing in NoSQL, RDBMS, or Cloud or on-premise across multiple
formats, such as Parquet, JSON, Avro, ORC, CSV, and it offers index and UDAF support.

 Tajo has a pluggable storage framework that can connect to most of the data sources
available today. It also has its own query optimizer, which is a combination of rule-based and
cost-based optimizer. Figure 6-12 provides a high-level overview of Apache Tajo architecture.

Client

JDBC/CLI/WEB Catalog Server

DBMS

HCatalog

Tajo Master

Query
Coordinator

Query
Coordinator

Query Engine Query Engine

Store Manager

HDFS HDFS

Tajo Slave Tajo Slave

Store Manager

 Figure 6-12. Apache Tajo—high-level architecture

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

140

 During query execution, Tajo can exploit the processing capabilities and
optimizations built into the underlying storage or data store. For query federation, Tajo
has to have a global view of the metadata across different storages. Tajo maintains its own
metadata and also references the metadata for each of the data stores it is querying in the
federated query. SQL query federation is shown in Figure 6-13 .

 HTAP
 In this section we will briefly try to cover and explain what this new term coined by
Gartner in 2014 is all about and how SQL on big data is helping this vision to come true in
light of HTAP.

 HTAP stands for Hybrid Transactional/Analytical Processing . This term is more
applicable to enterprises. In a traditional enterprise, there is a set of database processing
systems that keep the operational applications running for the enterprise’s functional
capabilities. These database processing systems are mostly transactional and are always
supposed to be on, with strict SLAs, and can process data in real time.

 On the other side is a set of database processing systems, for analytics, BI, reporting,
and data warehousing, where batch processing such as ETL is done. The data for analytics
primarily comes from operational data. OLTP and operational data systems are essential
to keeping the business operating, while analytics and BI help to improve business.
Figure 6-14 offers a high-level overview of these systems.

SQL QUERIES

TAJO

Query Federation

Application DBMS NOSQL Cloud

 Figure 6-13. Query federation in Apache Tajo

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

141

 Traditionally, these different silos of data-processing tools, frameworks, and
databases are installed on different hardware, may be located in different data centers,
and require totally different skill sets, from development and maintenance perspectives.
This sort of fragmented system causes multiple problems.

• Different systems have to be kept operational, which in itself is a
huge challenge.

• There are huge delays in performing analytics, because data from
operational systems has to be moved to the data warehouses for
analytics.

• Multiple investments, in terms of licensing for different
technologies, each of which is suited for a specific purpose, are
required.

 Today, businesses demand immediate analytics, data-driven decision making. The
old approach of delivering analytics through a layered architecture is no longer sufficient.
Today’s business managers and analysts want to follow up-to-the-minute changes and
fluctuations in the operational aspects of their businesses. For example, recommendation
algorithms for retailers must use up-to-date information on purchases by similar users, in
order to recommend new products to other users with similar tastes. Digital advertisers
seek to improve their targeting algorithms with up-to-the-minute clickstream data.

 Figure 6-14. Operational data store and EDWs

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

142

 The idea of HTAP is to provide a unified system in which end users do not have to
use different systems—for storage or for differing workloads—whether they want to use
current or historical data. This implied creation of a combined operational and analytical
environment is called HTAP.

 The challenges of building an HTAP system are numerous.

• A single query engine for all workloads

• Support for multiple storage engines

• The same data model for all workloads

• Enterprise-grade features—security, failover, backup, and
concurrency

 The biggest challenge of HTAP is to have a single query engine that works across
all workloads and across multiple storage systems. The query engine should allow the
client to submit queries and get the results, as well as compile, optimize, and execute the
query. The query engine has to support clustering, partitioning, and transaction support
(along with support from the storage engine, for transactions). An HTAP system would
also have to work across multiple storage engines, because, typically, HTAP systems have
to support both transactional (write-heavy, with large concurrency) workloads, as well as
analytic queries (read-heavy) workloads with multiple different data formats. Figure 6-15
illustrates this idea.

 Figure 6-15. What the HTAP high-level architecture might look like

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

143

 There are two fundamental forces happening in today’s technology that can make
the HTAP vision a reality:

 1. In-memory systems : These avoid disk-based systems and
provide the latency SLAs.

 2. Scale-out architectures : Traditionally, it has been difficult
to scale out relational databases; however, with changes to
underlying architectures in new engines, starting from Google’s
F1 engine to newer and commercial ones such as MemSQL,
NuoDB, and VoltDB, for example, building distributed OLTP
systems that can scale out has become a reality.

 Advantages of HTAP
 Listed below are some of the advantages of an HTAP system.

• It simplifies data transfer.

• Analytics can rely upon the freshest data.

• It reduces ETL and pipeline complexity.

• There is no need to pre-aggregate, requiring fewer systems.

 HTAP can perform time-sensitive transactional and analytical operations in a single
database system. This reduces costs and administrative and operational overhead. With
HTAP, no data movement is required from operational databases to data warehouses or
data marts for analytics. Data is processed in a single system, eliminating ETL.

 Figure 6-16 illustrates what is essentially possible with HTAP.

 Figure 6-16. Single DB for both distributed transactions and analytics

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

144

 With all the advances occurring in the world of databases, HTAP tries essentially
to bring in a single query engine for all workloads, whether they are OLTP or OLAP
workloads.

 With the rapid evolution of new classes of database engines called
NewSQL—VoltDB, NuoDB, and Trafodion (covered in Chapter 5) being the primary
forerunners in this space—it seems that HTAP is on the verge of possibly providing what
could be termed database nirvana.

 TPC Benchmark
 Until about the beginning of 2016, most of the SQL-on-Hadoop engine vendors were
running SQL queries to do the benchmarking for their SQL queries. The problem was that
those sets of 50–100 queries were designed for relational databases, and big data vendors
were somehow trying to shoehorn those queries into their engines and comparing the
results. Also, vendors were cherry-picking parts of the TPC-DS Benchmark to give a
skewed picture of their engine capabilities. This resulted in skewed interpretations of
those queries, as they applied to the SQL-on-Hadoop engines.

 Recently, the Transaction Processing Performance Council (TPC) designed a new
set of queries and metrics. They represent a variation on the long-standing TPC-DS
Benchmark and resulted in a newer version called TPC-DS 2.0. TPC-DS 2.0 is the first
industry standard benchmark for measuring the end-to-end performance of SQL engines
in the big data space. The latest version of TPC-DS made the following changes to the 1.0
version:

• It increases the minimum raw data set size to 1TB, with a ceiling
of 100TB.

• It eliminates benchmarking of update statements on dimension
tables.

 Because most big data systems are BASE (Basically Available, Soft State, Eventually
consistent), TPC-DS 2.0 removes any ACID compliance–related tests but adds durability
tests at the functional and performance levels.

 It separates the querying of data from data maintenance, because most big data
systems focus on analyzing and querying data.

 The new TPC benchmarks are quite exhaustive, as they encompass a variety of
queries (ad hoc reporting, iterative OLAP, and data mining) in both single and multi-user
modes. They also measure how quickly an SQL engine can complete data loads, and they
also add some data integration (ETL) metrics.

 However, the major changes were made at the conceptual level. Because the existing
TPC benchmarks were based on relational database engines, they were designed keeping
in mind the properties of relational algebra and ACID properties, table- and field-based
constraints, and foreign and primary keys, which are part of relational engines. However,
in the brave new world of big data, none of these constraints or ACID capabilities applies.

http://dx.doi.org/10.1007/978-1-4842-2247-8_5

CHAPTER 6 ■ INNOVATIONS AND THE ROAD AHEAD

145

 The new benchmarks give customers better clarity for comparing SQL execution
engines and query optimizer capabilities. Also, some changes have been made
concerning how the final score, in terms of performance, is determined in the new
TPC-Benchmark. In the previous TPC version, various subcomponents were weighted
more or less equally, by calculating the mean across all the components. However, in the
latest version of the TPC-Benchmark on big data, the calculations use a geometric mean.

 With the proliferation of big data systems being deployed using VMs or
container-based solutions on the cloud, the new benchmarks accommodate performance
for virtualized environments as well. This benchmark is known as TPCx-V. This
virtualized TPC measurement can offer good concrete metrics with which to evaluate and
compare virtualized environments for production systems.

 Vendors will be adapting to the new TPC-Benchmark soon and, based on their usage
and results, some changes will result in a tweak of the TPC-Benchmark, to accord with
current usage.

 Summary
 This chapter is the last in the book, and it completes our journey through the different
technologies and architectures that go into building an SQL engine on a big data
platform.

 This chapter provided a bird’s-eye view of what is happening in the brave new world
of SQL on big data and how research labs and organizations are innovating with new
ideas, concepts, and approaches to solving problems. This is an area of frantic activity
and fierce competition, and things will keep changing and evolving in this space with the
adoption of new technologies and new, innovative ideas.

147© Sumit Pal 2016
S. Pal, SQL on Big Data, DOI 10.1007/978-1-4842-2247-8_7

 Appendix

 Figure A-1. SQL on big data choices

 This appendix highlights four items that summarize the most important topics covered in
this book.

 Figure A-1 is a mind map that summarizes the different SQL engine solutions, based
on their applicability and capabilities, consolidated in a single diagram. However, please
keep in mind that with rapid changes to technology and new solutions coming to market,
this map is bound to change over time.

 Figure A-2 shows the current SQL engine technology solutions available on the
market for developing operational systems and performing operational analytics with
big data.

 ■ APPENDIX

148

 Table A-1 summarizes the features and characteristics to support operational
systems and operational analytics that one should look for in an SQL engine.

 Figure A-2. Operational SQL engines—choices

 Table A-1. Characteristics to Look for Before Making a Decision Regarding Operational
SQL Engines

 Features Apache Phoenix Trafodion VoltDB NuoDB SpliceMachine

 ACID Support

 Adding New Columns

 Latency
 • Worst Case
 • Average Case
 • Best Case

 Concurrency
 • (10–100 Users)
 • (100–1K Users)
 • (1K+ Users)

 Failover

 High Availability

 Additional Nodes

(continued)

 ■ APPENDIX

149

Table A-1. (continued)

 Features Apache Phoenix Trafodion VoltDB NuoDB SpliceMachine

 Scalability

 Hardware Requirement
 Commodity
 High-End Servers
 High-Memory Servers

 Cluster Size Limitations

 Licensing

 Replication

 CAP Characteristic

 Security Features

 Data Sources Support

 Storage Format Support

 Compression

 Hadoop Distros Support

 Data Balancing

 Tool Support
 Admin
 Monitoring
 Troubleshooting
 Performance
Measurement

 Upgrades
 Downtime
 Migration of Schema

 Data Partitioning
Strategies

 Query Troubleshooting
Capabilities
 Explain Plan
 Plan Caching
 Query Result Caching

 Data-Mining Algorithms

 Search Capabilities—
Integration
 Solr/ ElasticSearch

 ■ APPENDIX

150

 Table A-2. Characteristics to Look for Before Making a Decision Regarding Interactive SQL
Engines

 Features Apache Drill Impala Spark SQL Vertica Jethro

 Latency
 • Worst Case
 • Average Case
 • Best Case
 • Low Data Set Size (100GB)
 • Medium Data Set Size

(100GB-10TB)
 • Huge Data Set Size (>10TB)

 Concurrency
 • (10–100 Users)
 • (100–1K Users)
 • (1K+ Users)

 Failover

 High Availability

 Additional Nodes

 Scalability

 Hardware Requirement
 • Commodity
 • High-End Servers
 • High-Memory Servers

 Cluster Size Limitations

 Licensing

 Replication

 CAP characteristic

 UDF Support

 SQL Support

 Security Features
 • Access (Row, Column)
 • Encryption (Rest, Motion)

(continued)

 Table A-2 summarizes the features and characteristics to support low-latency
interactive ad hoc SQL queries that one should look for in an SQL engine.

 ■ APPENDIX

151

 Features Apache Drill Impala Spark SQL Vertica Jethro

 Data Sources Support
 • HDFS
 • S3

 Storage Format Support
 • Parquet
 • ORC
 • Avro
 • Text
 • Un-structured
 • JSON
 • SequenceFile

 Compression
 • Zlib
 • Gzip
 • BZIP
 • Snappy
 • LZO

 Hadoop Distro Support
 • MapR
 • Cloudera
 • HDP

 Data Balancing

 Tool Support
 • Admin
 • Monitoring
 • Troubleshooting
 • Performance Measurement

 SPOF

 Data-Ingestion Tools

 Customer Base

 Pricing Model
 • Data Size
 • Number of Nodes

 • Upgrades
 • Downtime
 • Migration of Schema

Table A-2. (continued)

(continued)

 ■ APPENDIX

152

 Features Apache Drill Impala Spark SQL Vertica Jethro

 Data-Partitioning Strategies

 • Query Troubleshooting
Capabilities

 • Explain Plan
 • Plan Caching
 • Query Result Caching

 Data Mining Algorithms

 Search Capabilities
 • Integration Solr/

ElasticSearch

Table A-2. (continued)

153© Sumit Pal 2016
S. Pal, SQL on Big Data, DOI 10.1007/978-1-4842-2247-8

 A
 Abstract Syntax Tree (AST) , 39, 56, 69
 ACID . See Atomicity, Consistency,

Isolation, Durability (ACID)
 Actian Vectorwise , 11
 Adapter pattern , 109
 Aggregations , 10, 11, 18, 22, 36, 38–40, 42,

43, 45, 49, 50, 53, 61, 67, 70, 73,
78, 81, 90, 102, 108, 117, 120, 129,
133, 135, 143

 Alluxio , 69
 AMPLabs , 127
 Analytic databases , 5, 10–12, 14, 22, 25, 87,

126, 133, 134
 Analytic engines , 123, 130
 Analytic Functions , 18, 36, 40–42,

70, 108
 Analytic query , 4, 10, 12–14, 17, 22, 32, 40,

41, 61, 69–71, 83, 126, 129, 134,
142

 ANSI SQL , 10, 11, 14, 62, 80, 83, 89, 112,
133, 139

 Apache Calcite , 56, 80, 104, 109–111, 119,
136

 Apache Drill , 9, 20, 24, 62, 70, 78–83,
98–99, 101, 124, 150, 151

 Apache Kudu , 122–126
 Apache Lens , 137–139
 Apache Optiq , 109
 Apache Phoenix , 9, 118–122, 148, 149
 Apache Presto , 9, 89
 Apache Spark , 59, 62–70, 83, 98, 101–103,

105–107
 Apache Tajo , 10, 139–140
 Array , 36, 47, 53, 78, 100, 113
 AST . See Abstract Syntax Tree (AST)

 Atomicity, Consistency, Isolation,
Durability (ACID) , 10–13, 43–45,
56, 112, 113, 144, 148

 AtScale , 11, 134
 Avro , 10, 27, 28, 36, 65, 75, 80, 83,

139, 151

 B
 Basically Available Soft State and Eventual

(BASE) , 43, 144
 Batch processing , 12, 35, 40, 62, 89, 90,

105, 139, 140
 BI . See Business intelligence (BI)
 Big data , 1–15, 17–33, 44, 61, 62, 69, 70,

83, 86–88, 94, 95, 97, 104,
111–121, 126, 128, 130, 134, 140,
144, 145, 147

 BlinkDB , 9, 127–131
 BSON , 80, 103
 Bucketing , 30–32, 36, 40, 44, 45, 52, 58
 Bushy Query Plan , 57
 Business intelligence (BI) , 1–4, 6, 7, 11–13,

19, 22, 24, 61, 62, 71, 77, 79, 83,
86, 114, 133, 135, 140

 BZIP2 , 29

 C
 Catalog server , 73
 Catalyst optimizer , 64, 66–69, 103
 CBO . See Cost-based optimizer (CBO)
 Citus data , 12, 24
 CLI . See Command line interface (CLI)
 Clickstream , 41, 42, 141
 CMP . See Compiler and optimizer process

(CMP)

 Index

■ INDEX

154

 Code generation , 10, 68, 69, 71, 73, 75–78,
132

 Columnar , 5, 10, 13, 14, 26, 27, 46, 48, 54,
79, 82, 83, 88, 124, 125, 131–134

 Columnar format , 26, 48, 82, 83, 125
 Command line interface (CLI) , 37, 94,

118–119, 138
 COMMIT , 44, 113, 116
 Compiler and optimizer process (CMP) , 115
 Compression , 5, 11, 15, 23, 26–30, 32, 33,

36, 46, 53, 54, 74, 83, 86, 88, 93,
117, 126, 132, 134, 135, 149, 151

 Concurrent transactions , 121
 Connector , 7, 14, 25, 37, 83–86, 103, 104,

132, 133
 CoProcessor , 116, 117, 120, 131, 136
 Cost-based optimizer (CBO) , 10, 48, 56,

58, 139
 Cube , 36, 42–45, 134–136, 138

 D
 Databricks,
 Data Defi nition Language (DDL) , 17, 31,

46, 74, 118, 122, 138
 Datafl ow , 47, 80, 117
 DataFrame , 64–70, 103, 104, 107
 Data Manipulation Language (DML) , 17,

23, 115
 Data Querying Language (DQL) , 17, 19
 Dataset , 63, 98, 105, 107
 Data warehousing (DW) , 4, 10, 11, 13, 21,

22, 45, 52, 61–62, 69, 81, 86, 89,
135, 137, 139–141, 143

 Dimensions , 7, 10, 11, 42, 45, 52, 89, 111,
134, 135, 137, 144

 Discretized streams (DStreams) , 105
 Distributed Transaction Manager (DTM) ,

114, 116
 Domain Specifi c Language (DSL) ,

65–67, 81
 DQL . See Data Querying Language (DQL)
 Dremel , 70, 79
 Drillbit , 80, 82
 DStreams . See Discretized streams

(DStreams)
 DTM . See Distributed Transaction

Manager (DTM)
 DW . See Data warehousing (DW)
 Dynamic Coprocessor , 120
 Dynamic Observers , 120

 E
 ELT . See Extract, Load, Transform

(ELT/ETL)
 Enterprise Data Hubs , 3
 ETL . See Extract, Load, Transform

(ELT/ETL)
 Executive Service Processes (ESP) , 115
 Executors , 54, 63, 69, 72, 73, 81, 87, 90, 91,

117
 Explode , 36, 78
 Extract, Load, Transform (ELT/ETL) , 6, 44,

56

 F
 Federated Data Source , 62
 File formats , 9, 10, 13, 26–28, 33, 36, 46, 74,

77, 81, 126
 FLATTEN , 99–101

 G
 GPUDB , 133
 GraphFrames , 66
 Graphics processing units (GPUs) ,

130–134
 GraphX , 63, 66
 Greenplum , 12, 30
 Grouping Set , 36, 42–45
 GZIP , 29, 151

 H
 Hadapt , 7, 10
 Hadoop , 3–8, 10–14, 20, 23–29, 33, 35, 36,

40, 43–45, 59, 61, 62, 71, 72, 74,
83–89, 92, 103, 105, 111–114, 117,
122, 124–127, 134, 135, 137, 144,
149, 151

 Hadoop Distributed File System (HDFS) ,
3, 5, 7, 9–14, 20, 23–25, 30–32, 35,
36, 39, 43, 44, 46, 48, 49, 71, 72,
74, 78, 83–88, 90–92, 111, 113,
114, 122, 123, 125, 126, 139, 150

 HAWQ , 7, 12, 24
 HBase , 9, 10, 24, 59, 71, 78, 81, 112–119,

121–123, 125, 135, 136
 HDFS caching , 74
 High concurrency , 6, 62
 Hive , 3, 23, 35, 61, 98, 135

■ INDEX

155

 HiveQL , 9, 39, 64, 78, 129
 Hive Query Language (HQL) , 35, 39, 66–67
 HiveServer , 119
 Hybrid Transactional and Analytics

Platform (HTAP) , 111, 127,
140–144

 I
 IBM BLU , 13
 Impala , 9, 24, 27, 28, 62, 70–79, 81, 83, 89,

124, 126, 131, 150, 151
 Impalad , 72–74
 InputFormats , 46
 Interactive SQL , 9, 24, 61–95, 135, 150

 J
 Java Database Connectivity (JDBC) , 9, 36,

37, 65, 71, 73, 94, 112, 114, 118,
119, 132, 133, 138

 JethroData , 12, 30
 Join Order , 56–58
 JSON , 7, 10, 20, 27, 36, 46, 47, 65, 78, 80,

97–104, 139, 151

 K
 K80 , 131
 Kafka , 125, 126
 Kudu tablet , 125, 126
 KVGEN , 99–101
 Kylin , 10, 134–137

 L
 Lambda architecture , 110–111
 Late binding , 82
 LazySimpleSerDe , 46
 Left Deep Query Plan , 57
 Live Long and Process (LLAP) , 48,

54–56, 59
 LLVM . See Low Level Virtual Machine

(LLVM)
 Logical Optimizer , 39
 Logical plan , 39, 48, 67–69, 80, 81
 Low Latency , 4–7, 9–11, 14, 17, 19,

22–25, 33, 48, 54, 61, 62, 64,
69, 71, 74, 77–79, 83, 84, 86, 90,
91, 112, 122–126, 128, 130, 131,
139, 149

 Low Level Virtual Machine (LLVM) , 73,
76–78, 82, 131

 LZ4 , 29
 LZO , 29, 36, 151

 M
 Machine learning library (MLlib) , 63
 MAP , 78
 Massively Parallel Database (MapD) ,

131–133
 Massively Parallel Processing (MPP) , 5, 9,

14, 20, 22, 70, 71, 82, 83, 87,
89–91, 93, 126, 133

 MDX . See Multidimensional Expressions
(MDX)

 Mesos , 63
 Metadata Repository , 118
 Microbatch , 108
 Microsoft Polybase , 7, 13
 MLlib . See Machine learning library

(MLlib)
 MOLAP . See Multidimensional OLAP

engine (MOLAP)
 MonetDB , 83
 MongoDB , 103, 104
 MPP . See Massively Parallel Processing

(MPP)
 Multidimensional Expressions

(MDX) , 134
 Multidimensional OLAP engine

(MOLAP) , 135

 N
 Netezza , 13
 NLineInputFormat , 46
 NVidia , 131–133
 NVlink , 132

 O
 ObjectInspector , 45, 46
 ObjectMapper , 101
 Object-relational mapping (ORM) , 37
 OLAP model , 137
 Online analytical processing (OLAP) , 4,

10, 11, 127, 134, 135, 137, 144
 Online transactional processing (OLTP) ,

4, 11, 45, 117, 118, 123, 127, 140,
143, 144

■ INDEX

156

 Open database connectivity (ODBC) , 36,
37, 71, 73, 77, 82, 94, 112, 114,
119, 132, 133

 Operational analytics , 15, 97–126,
147, 148

 Oracle Exadata , 13
 ORC , 10, 26–28, 36, 44–46, 48, 56, 58, 74,

83, 89, 139, 151
 ORM . See Object-relational mapping

(ORM)
 OVER , 18, 40–42, 70

 P
 Parquet , 10, 26–28, 36, 65, 68, 74, 75, 78,

83, 89, 126, 139, 151
 Parse tree , 39
 PARTITION BY , 18, 40–42, 70
 Partitioning , 17–18, 22–23, 30–32, 36,

40–42, 44, 45, 52–53, 58, 68, 70,
74–75, 117, 125, 142, 149, 151

 Physical Plan , 40, 68, 72–73, 80, 139
 Physical Plan Generator , 40
 Physical Plan Optimizer , 40
 PipelineDB , 104, 107–108
 Pipelined execution , 48
 Predicate push down , 122
 Protocol buff ers , 80
 PrunedFilterScan , 103

 Q
 Quasiquote , 69

 R
 RDDs . See Resilient Distributed Datasets

(RDDs)
 Record columnar (RC) , 27
 RecordReaders , 46
 Relational database management system

(RDBMS) , 4–5, 7, 11, 21, 24, 67,
79, 92, 98, 113, 121, 139

 Relational databases , 1, 4, 9, 13, 23, 31, 33,
36, 39, 40, 43, 56, 59, 107, 112,
113, 134, 143–144

 Relational OLAP (ROLAP) , 135
 REPEATABLE_READ , 121
 Resilient Distributed Datasets (RDDs) ,

63–64, 105, 107
 ROLLBACK , 44, 113, 116

 Rollup , 36, 42–45
 RPC endpoint , 120

 S
 S3 , 30, 87, 150
 Schema , 5, 7, 9, 11, 17, 20, 26–28, 52, 57,

64–65, 81, 86, 89, 92, 98–99,
101–103, 112, 118, 124, 135–136,
149, 151

 Semantic Analyzer , 39
 Semi-Structured , 3, 7, 13–14, 17, 20, 23–24,

36, 79, 97–126
 SequenceFile , 36, 46, 151
 Sequence fi les , 27–28
 SerDe , 27, 36, 45–47, 53, 78
 Sessionization , 41–42
 Sharding , 4–5, 23, 124
 Shuffl e join , 40, 68
 Snappy , 29, 75, 151
 Snapshot isolation , 44, 118, 121
 Spark Engine , 40, 58, 64, 69
 Spark SQL , 10–11, 62–70, 83, 101–104, 106,

107, 131, 150–151
 Spark streaming , 63, 70, 105–107
 Splice Machine , 4, 11, 126
 SQL , 1, 17, 35, 61, 97, 127, 147
 SQL Optimizer , 65, 109
 SQLStream , 12
 SQReam , 133–134
 Statestored , 73
 Stratifi ed sampling , 129
 Stratio , 103, 104
 Streaming , 3, 14, 17, 19, 23–24, 40, 45, 63,

66, 70, 92, 97–126
 StreamingContext , 105, 107
 STRUCT , 78
 Structured , 3, 7, 10, 13, 14, 17, 20, 23–24,

36, 46, 64–65, 78–79, 83, 97–126

 T
 TableScan , 103
 Tachyon , 11, 69
 Teradata , 14, 25
 Tesla , 131
 TextFile , 36, 47
 TextInputFormat , 46, 101
 Tez Engine , 40, 47, 49–52, 56
 Th rift , 36, 44–45, 132
 TopN , 41–42

■ INDEX

157

 TPC-DS , 144
 Trafodion , 4, 11, 112–119, 144, 148, 149
 Transaction Processing Performance

Council (TPC) , 91, 118, 144–145
 TRANSACTIONS , 44, 113

 U
 Uniform Sampling , 129
 Unstructured , 3, 7, 10, 12, 14, 17, 20, 65,

79, 83, 97, 99
 User-defi ned aggregate functions

(UDAFs) , 45, 78, 92, 139
 User-defi ned functions (UDFs) , 10, 15, 36,

45, 78, 81, 92, 99, 118, 129
 User-defi ned table functions (UDTFs) , 45,

78, 92

 V
 Vectorization , 48, 53–54, 58
 Vectorize , 11, 48, 53, 54, 82
 Vertica , 14, 25, 62, 83–86, 124, 150, 151
 Virtual reality (VR) , 130

 W
 Window , 14, 17, 18, 35, 36, 40–42, 70, 102,

105–108, 110, 111
 Workloads , 3, 6, 11–13, 18–19, 21–24, 28,

32–33, 44, 47, 56, 61–71, 73, 78,
83, 89, 91–93, 95, 111, 112, 114,
117, 118, 122–124, 126, 129, 134,
142, 144

 Write once read many (WORM) , 23, 43,
87, 111

 X
 XML , 7, 20, 36, 40, 78, 80, 101
 XPath , 36

 Y
 Yarn , 47, 54, 63, 84

 Z
 Zookeeper , 44, 80, 113, 115

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Why SQL on Big Data?
	Why SQL on Big Data?
	Why RDBMS Cannot Scale

	SQL-on-Big-Data Goals
	SQL-on-Big-Data Landscape
	Open Source Tools
	Apache Drill
	Apache Phoenix
	Apache Presto
	BlinkDB
	Impala
	Hadapt
	Hive
	Kylin
	Tajo
	Spark SQL
	Spark SQL with Tachyon
	Splice Machine
	Trafodion

	Commercial Tools
	Actian Vector
	AtScale
	Citus
	Greenplum
	HAWQ
	JethroData
	SQLstream
	VoltDB

	Appliances and Analytic DB Engines
	IBM BLU
	Microsoft PolyBase
	Netezza
	Oracle Exadata
	Teradata
	Vertica

	How to Choose an SQL-on-Big-Data Solution
	Summary

	Chapter 2: SQL-on-Big-Data Challenges & Solutions
	Types of SQL
	Query Workloads
	Types of Data: Structured, Semi-Structured, and Unstructured
	Semi-Structured Data
	Unstructured Data

	How to Implement SQL Engines on Big Data
	SQL Engines on Traditional Databases
	How an SQL Engine Works in an Analytic Database
	Why Is DML Difficult on HDFS?
	Challenges to Doing Low-Latency SQL on Big Data

	Approaches to Solving SQL on Big Data
	Approaches to Reduce Latency on SQL Queries
	File Formats
	Text/CSV Files
	JSON Records
	Avro Format
	Sequence Files
	RC Files
	ORC Files
	Parquet Files
	How to Choose a File Format?
	Data Compression
	Indexing, Partitioning, and Bucketing
	Why Indexing Is Difficult
	Partitioning
	Advantages
	Limitations

	Bucketing

	Recommendations

	Summary

	Chapter 3: Batch SQL—Architecture
	Hive
	Hive Architecture Deep Dive
	How Hive Translates SQL into MR
	Hive Query Compiler

	Analytic Functions in Hive
	Common Real-Life Use Cases of Analytic Functions
	TopN
	Clickstream Sessionization

	Grouping Sets, Cube, and Rollup

	ACID Support in Hive
	Serialization and SerDe in Hive

	Performance Improvements in Hive
	Optimization by Using a Broadcast Join
	Pipelining the Data for Joins
	Dynamically Partitioned Joins
	Vectorization of Queries
	Use of LLAP with Tez

	CBO Optimizers
	Join Order
	Bushy Trees
	Table Sizing

	Recommendations to Speed Up Hive
	Upcoming Features in Hive

	Summary

	Chapter 4: Interactive SQL—Architecture
	Why Is Interactive SQL So Important?
	SQL Engines for Interactive Workloads
	Spark
	Spark Stack
	Spark Architecture

	Spark SQL
	Spark SQL Architecture
	Spark SQL Optimization—Catalyst Optimizer
	Spark SQL with Tachyon (Alluxio)
	Analytic Query Support in Spark SQL

	General Architecture Pattern
	Impala
	Impala Architecture

	Impala Optimizations
	HDFS Caching
	File Format Selection
	Recommendations to Make Impala Queries Faster
	Code Generation

	SQL Enhancements and Impala Shortcomings

	Apache Drill
	Apache Drill Architecture
	Key Features
	Query Execution

	Vertica
	Vertica with Hadoop
	Hadoop MapReduce Connector
	Vertica Hadoop Connector for HDFS

	Jethro Data
	Others

	MPP vs. Batch—Comparisons
	Capabilities and Characteristics to Look for in the SQL Engine
	Technical Decisions
	Soft Decisions

	Summary

	Chapter 5: SQL for Streaming, Semi-Structured, and Operational Analytics
	SQL on Semi-Structured Data
	Apache Drill—JSON
	Some Examples of Querying JSON Data with Apache Drill
	FLATTEN
	KVGEN
	Apache Drill—XML

	Apache Spark—JSON
	Apache Spark—Mongo

	SQL on Streaming Data
	Apache Spark
	PipelineDB
	Continuous View
	Continuous Transform
	Continuous Trigger
	Continuous Aggregate

	Apache Calcite

	SQL for Operational Analytics on Big Data Platforms
	Trafodion
	Architecture
	How Trafodion Handles Transactions

	Optimizations
	Apache Phoenix with HBase
	Architecture
	Transaction Support in Phoenix
	Optimizations in Phoenix
	Index Support

	Kudu
	Kudu Architecture
	Kudu Usage Scenarios
	Kudu with Impala
	Kudu As an Alternative to Kafka

	Summary

	Chapter 6: Innovations and the Road Ahead
	BlinkDB
	How Does It Work
	Queries

	Data Sample Management
	Execution
	GPU Is the New CPU—SQL Engines Based on GPUs

	MapD (Massively Parallel Database)
	Architecture of MapD

	GPUdb
	SQream
	Apache Kylin
	Apache Lens
	Apache Tajo
	HTAP
	Advantages of HTAP

	TPC Benchmark
	Summary

	Appendix
	Index

