
Matthew Scarpino
Stephen Holder

Stanford Ng
Laurent Mihalkovic

M A N N I N G

SWT/JFace
IN ACTION

How to design graphical applications with Eclipse 3.0

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

SWT/JFace
in Action

MATTHEW SCARPINO
STEPHEN HOLDER

STANFORD NG
AND LAURENT MIHALKOVIC

M A N N I N G

Greenwich
(74° w. long.)
Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-27-3

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04
Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

brief contents
1 ■ Overview of SWT and JFace 1

2 ■ Getting started with SWT and JFace 13

3 ■ Widgets: part 1 27

4 ■ Working with events 48

5 ■ More widgets 78

6 ■ Layouts 109

7 ■ Graphics 133

8 ■ Working with trees and lists 167

9 ■ Tables and menus 190

10 ■ Dialogs 212

11 ■ Wizards 234

12 ■ Advanced features 253

13 ■ Looking beyond SWT/JFace: the Rich Client Platform 284
v

Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

contents
preface xv
acknowledgments xvi
about this book xviii
about the authors xxiii
about the title xxiv
about the cover illustration xxv

1 Overview of SWT and JFace 1
1.1 What is SWT/JFace? 2

Building GUIs with SWT 3
Simplifying GUI development with JFace 3

1.2 Looking under the hood 4
The old standby: Swing 4 ■ The newcomer: SWT/JFace 6
The SWT/Swing debate 9

1.3 SWT/JFace: licensing and platform support 9
The Common Public License 9 ■ Platforms supported 9

1.4 The WidgetWindow 11

1.5 Summary 12
vii

Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

viii CONTENTS
2 Getting started with SWT and JFace 13
2.1 Programming in SWT 14

The HelloSWT program 14 ■ The Display class 16
The Shell class 18

2.2 Programming in SWT/JFace 20
Model-based adapters 20 ■ The HelloSWT_JFace program 21
Coding in JFace and SWT/JFace 23
The ApplicationWindow class 23

2.3 Beginning the WidgetWindow application 24

2.4 Summary 26

3 Widgets: part 1 27
3.1 Introducing the Widget and Control classes 28

Understanding the Widget class 28
Working with Control objects 30

3.2 Labels 32
Styles and separators 33 ■ Label methods 33

3.3 Involving the user with buttons 34
Causing action with push buttons and SWT.PUSH 34
Moving on with arrow buttons and SWT.ARROW 35
Changing state with toggle buttons and
SWT.TOGGLE 35 ■ Choosing with check buttons
and SWT.CHECK 36 ■ Making a single choice with
radio buttons and SWT.RADIO 36

3.4 Containing components with Composites 38
Understanding the Composite class 39 ■ Groups 40
SashForms 43 ■ TabFolders 44

3.5 Updating WidgetWindow 45
Creating the Ch3_Composite class 45
Creating the WidgetWindow TabFolder 46

3.6 Summary 47
Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
4 Working with events 48
4.1 Event processing in SWT 49

Using typed listeners and events 50 ■ Adapters 54
Keyboard events 55 ■ Customizing event processing with untyped
events 58 ■ An SWT listener/event application 60

4.2 Event processing in JFace 62
Understanding actions and contributions 63 ■ Creating Action
classes 65 ■ Implementing contributions in an
ApplicationWindow 66 ■ Interfacing with contributions 69
Exploring the Action class 70

4.3 Updating the WidgetWindow 74
Building the chapter 4 Composite 74
Adding Ch4_Composite to the WidgetWindow 75

4.4 Summary 77

5 More widgets 78
5.1 Editing text with SWT 79

The basic Text widget 79 ■ The StyledText widget 82
5.2 JFace text support 88

Obtaining the JFace text packages 88 ■ TextViewer and
Document 89 ■ A JFace example 91

5.3 The Combo widget 100

5.4 ToolBarManager 101
ControlContribution 102 ■ Creating toolbars by hand 103

5.5 CoolBar 103

5.6 Slider 105

5.7 ProgressBar 106

5.8 ProgressIndicator 107

5.9 Summary 108
Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS
6 Layouts 109
6.1 The fill layout 110

6.2 The row layout 112
Customizing individual layout cells 114

6.3 The grid layout 116
GridData 117

6.4 The form layout 119
Using FormData 120 ■ Specifying relations using
FormAttachment 120 ■ Laying out controls using a form layout 122

6.5 Custom layouts 124
Calculating the layout’s size 125 ■ Laying out the widgets 126
Updating WidgetWindow 128

6.6 Summary 132

7 Graphics 133
7.1 The graphic context 134

Creating a GC object 134 ■ Drawing shapes on a Canvas 136
Painting and PaintEvents 138
Clipping and Canvas styles 139

7.2 Programming with colors 140
Color development with SWT 140
Additional color capability with JFace 144

7.3 Displaying text with fonts 145
Using fonts with SWT 145 ■ Coding with fonts 148
Improved font management with JFace 150

7.4 Incorporating images in graphics 152
Allocating images 152 ■ Coding graphics with images 154
Creating a bitmap with ImageData 155 ■ Manipulating images
with ImageData 159 ■ Managing images with JFace 163

7.5 Updating the WidgetWindow 164
Building the chapter 7 composite 164
Adding Ch7_Composite to the WidgetWindow 165

7.6 Summary 166
Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xi
8 Working with trees and lists 167
8.1 Viewers and the Viewer framework 168

Providers 170 ■ Listeners 172 ■ Filters and sorters 173
8.2 Trees 176

SWT trees 176 ■ JFace TreeViewers 177
8.3 Using the List widget 180

SWT lists 180 ■ JFace ListViewers 181
8.4 Updating WidgetWindow 182

8.5 Summary 189

9 Tables and menus 190
9.1 Tables 191

Understanding SWT tables 191 ■ JFace TableViewers 194
9.2 Creating menus 200

Accelerator keys 201 ■ Creating menus in SWT 201
Using JFace actions to add to menus 204

9.3 Updating WidgetWindow 205

9.4 Summary 211

10 Dialogs 212
10.1 SWT dialogs 213

ColorDialog 213 ■ DirectoryDialog 214 ■ FileDialog 215
FontDialog 216 ■ MessageBox 216

10.2 JFace dialogs 218
Message dialogs 219 ■ Error dialogs 220 ■ Input
dialogs 222 ■ Progress monitor dialogs 224
Custom dialogs 228

10.3 Updating WidgetWindow 230

10.4 Summary 233

11 Wizards 234
11.1 Multipage dialogs 236

IDialogPage 236 ■ IWizardPage 237 ■ WizardPage 237
Licensed to jromero <jose.romero@galicia.seresco.es>

xii CONTENTS
11.2 The wizard 239
IWizard 239 ■ Wizard 240

11.3 Putting it all together 241
Wizard containers 241 ■ WizardDialog 242

11.4 Combining wizards 243
 WizardSelectionPage 243 ■ IWizardNode 244

11.5 Persistent wizard data 244
DialogSettings 245

11.6 Updating WidgetWindow 246

11.7 Summary 252

12 Advanced features 253
12.1 Transferring data 254

The Transfer class 255 ■ Drag-and-drop capability 256
Using the clipboard 261 ■ The filesystem browser 262

12.2 Preferences 268
Preference pages 268 ■ Field editors 270 ■ Preference page
containers 273 ■ Persistent preferences 274

12.3 Label decorators 276
ILabelDecorator 276 ■ DecoratingLabelProvider 277
An example 277

12.4 The Browser widget 280

12.5 Summary 283

13 Looking beyond SWT/JFace: the Rich Client Platform 284
13.1 Understanding RCP workbenches 285

Entering data with editors 285 ■ Displaying information with
views 287 ■ Combining editors and views with perspectives 288

13.2 RCP: Looking under the hood 288
Creating and configuring an RCP project 288 ■ Building the
application class 290 ■ Adding a WorkbenchAdvisor 291

13.3 Adding views and perspectives 294
Building views 294 ■ Arranging workbench windows with a
perspective 295 ■ Executing an RCP application 296
Reviewing the RCP process 297
Licensed to jromero <jose.romero@galicia.seresco.es>

CONTENTS xiii
13.4 Populating forms with Eclipse Forms widgets 299
Using FormToolkit and the Eclipse Forms containers 299
Firing text-based events with Hyperlinks 302

13.5 Building a standalone RCP application 306
Exporting RCPExample to an application directory 306
Adding plug-ins to the application directory 307
Executing the application 308

13.6 Summary 308

appendix A Creating projects with SWT/JFace 311

appendix B OLE and ActiveX in SWT/JFace 324

appendix C Changeable GUIs with Draw2D 362

appendix D The Graphical Editing Framework (GEF) 388

index 461
Licensed to jromero <jose.romero@galicia.seresco.es>

Licensed to jromero <jose.romero@galicia.seresco.es>

preface
We developed this book with one primary goal in mind: to introduce the SWT and
JFace toolsets as simply and as thoroughly as possible. Although the available doc-
umentation covers many aspects of the two libraries, we were disappointed by the
amount (particularly in graphics) that has gone undocumented. So, we came
together in late 2003 to create an approachable book that covers both the high-level
theory and the low-level details of the combined SWT/JFace development tools.

 Thanks to the hard work of the folks at eclipse.org, SWT and JFace have
recently received quite a bit of attention and debate within the Java community.
Most of this discussion has focused on the relative merits of Swing as a standard
component of the Java 2 platform, versus SWT as a nonstandard library that uses
native code—an approach foreign to the “write once run anywhere” mantra
embraced by most Java developers. Although Swing has many strengths, we
believe that SWT and JFace together provide a compelling alternative for develop-
ing the user interface of many types of applications.

 We wrote this book not only for Swing developers but also for new Java users
who want to build applications that reach beyond the command line. Toward this
end, we present code samples and also do our best to explain the general theories
behind graphical user interface construction. In particular, we’ve gone into great
depth concerning the Model-View-Controller paradigm, which greatly improves
both the reliability and maintainability of graphical applications.

 Our goal is to share our SWT experience with you, help you decide if SWT and
JFace make sense for your project, and help you to make effective use of these
technologies.
xv

Licensed to jromero <jose.romero@galicia.seresco.es>

acknowledgments
The authors would like to acknowledge and thank the people who made this book
a reality:

 First, we'd like to express our appreciation to Marjan Bace, publisher of Man-
ning, for this opportunity, and to his staff, Clay Andres, Susan Capparelle, and
Dave Roberson, for their support throughout the process. Our heartfelt thanks go
to Jacquelyn Carter, our beleaguered and ever-patient developmental editor who
put up with all our whining and last-minute changes. We particularly want to rec-
ognize the hard work put in by the production team: Mary Piergies, Tiffany Tay-
lor, and Tony Roberts. Their efforts have provided the professionalism and polish
that has kept this book to its high production standard.

 Next, we want to extend our sincere appreciation to our diligent reviewers: Phil
Hanna, Christophe Avare, Frank Jania, Ted Neward, Dan Dobrin, Ryan Lowe,
Steve Gutz, Carl Hume, Ed Burnette, Charles Bundy, and Robert McGovern. Their
feedback and encouragement helped us tremendously and in many cases guided
the direction of the book’s content. We’re particularly grateful for the technical
reviewing of Phil Hanna. There’s nothing worse than a programming book with
poor code, and his exacting tests ensured that our code will work as promised.

 We also want to thank the Eclipse.org community in general. Not only have
they produced a quality product, but this book wouldn’t be possible without their
dedication to technical support. Their programmers have promptly and thor-
oughly answered our many questions, and their documentation has provided a
great deal of assistance. Of course, we’re also indebted to the Eclipse developers
xvi

Licensed to jromero <jose.romero@galicia.seresco.es>

ACKNOWLEDGMENTS xvii
for making their code open source, thereby giving us the means to look under the
hood and discover exactly how the SWT/JFace mechanisms function.

 Finally, we’d like to thank you for purchasing our book. We hope you enjoy it
as much as we’ve enjoyed creating it, and we wish you the best of luck coding with
SWT/JFace!
Licensed to jromero <jose.romero@galicia.seresco.es>

about this book
This book is written with the intermediate to advanced Java programmer in mind.
We assume that you’re familiar with the basics of Java syntax and comfortable con-
sidering design alternatives where there may not be a single choice that is supe-
rior in all situations.

 Having some experience with developing graphical applications, whether in
Java or any other language, will be helpful but isn’t necessary. We define all terms
as they’re introduced and attempt to point out the purpose behind each widget as
well as discuss the technical details of how to use it. However, this isn’t a book
about user interface design, so we won’t attempt to cover the myriad details that
go into assembling a compelling user experience out of the widgets we present.

 We assume that most readers have some experience with Swing, but such expe-
rience isn’t necessary to fully enjoy this book. We attempt to draw comparisons to
Swing where we feel that doing so imparts additional understanding for Swing vet-
erans, but these comparisons are secondary to the main discussion of each topic.
We have made sure you can understand every topic in this book without having
programmed a single line of Swing code.

Roadmap
This book is structured around the development of a sample application—the
Widget Window—that shows off the details of each component included in SWT
and JFace. The application consists of a series of tabs, one for each chapter. At the
end of each chapter, we present code that you can drop into the overall project to
xviii

Licensed to jromero <jose.romero@galicia.seresco.es>

ABOUT THIS BOOK xix
add another tab. Where the initial chapters develop the foundation of the appli-
cation, the code for the later chapters can stand on its own without needing that
from the preceding chapters. We hope this approach lets you focus on the topics
that are of particular interest to you, using the framework of the Widget Window
application to play with the code and see the effects of different parameters on
each component.

 Beyond a general introduction to the tools, we cover several specific aspects of
SWT/JFace:

■ The relationship between SWT and JFace—When you first approach these two
libraries, it’s difficult to know when to use one over the other, or why JFace
exists. We explain the seeming redundancies between the two libraries and
demonstrate the trade-offs in coding with one or the other.

■ Rules of thumb concerning GUI development—Having used these tools exten-
sively, we’ve found a number of routines that simplify the process of creat-
ing GUIs. We’ve also encountered a number of places where SWT/JFace’s
operation differs from its documentation. In each case, we provide explana-
tions and practical examples to help you avoid these pitfalls and create reli-
able SWT/JFace applications.

■ Cross-platform development—Between SWT and JFace, you can find many dif-
ferent ways to build the same user interface. However, some methods trans-
late well across operating systems, and some don’t. Throughout this book,
we present screenshots on multiple windowing platforms to show you how
your application will appear.

■ Practical code examples—When we came up with the example code in this
book, we held two priorities in mind: We kept them concise, for hands-on
readers; and we made them modular, so you can use them in SWT/JFace
applications you build in the future.

■ Toolsets that build on SWT/JFace—We’re excited to present the first thorough
walkthrough of the Draw2D and Graphical Editor Framework (GEF)
toolsets. These libraries, which build on the capabilities of SWT and JFace,
greatly extend the power and flexibility of GUI design.

Chapter 1, “Overview,” presents the history of SWT and JFace and places these tech-
nologies in context. We present an overview of the history of graphical user inter-
face development using Java and discuss the organization of the various classes
and packages within SWT and JFace.

 Chapter 2, “Getting started with SWT/JFace,” shows you how to set up a project to
use SWT and JFace, either within the Eclipse IDE or as a standalone project built
Licensed to jromero <jose.romero@galicia.seresco.es>

xx ABOUT THIS BOOK
from the command line. After showing how to implement a traditional “Hello
World” application using SWT and JFace, we introduce the basic framework on
which the Widget Window will be built.

 Chapter 3, “Widgets: part 1,” discusses the inheritance hierarchy used by the SWT
and JFace classes. We also discuss several concepts common to all widgets within
SWT and show how to use some basic, common widgets such as buttons and labels.

 Chapter 4, “Working with events,” explains how to enable your application to
react appropriately when the user takes an action such as clicking a button on the
screen. We show the details of low-level event classes in both SWT and JFace and
discuss the higher-level Action framework that makes handling events easier.

 Chapter 5, “More widgets,” dives back in to the discussion of individual compo-
nents provided by SWT. Most important, we discuss how to let users edit text
within your application, and we cover a variety of useful widgets that are often
used in user interfaces.

 Chapter 6, “Layouts,” takes a break from the details of individual widgets to dis-
cuss ways to organize widgets on the screen. After covering the built-in layout
managers provided by SWT, we show how to create a custom layout manager if the
default ones don’t meet the needs of your application.

 Chapter 7, “Graphics,” covers low-level SWT facilities for drawing graphics by
hand. In addition, we show how to programmatically manipulate colors, fonts,
and images from within SWT.

 Chapter 8, “Working with trees and lists,” introduces the Viewer framework, a set
of classes and interfaces provided by JFace to make working with data easier. We
use this discussion of viewers and their related classes to show you how to easily
work with tree and list widgets.

 Chapter 9, “Tables and menus,” continues the Viewer framework discussion from
chapter 8 and includes several advanced features of the framework. We show how
these features enable you to create tables that users can easily and intuitively edit.
The chapter ends with a discussion of menus and how they tie into the action
classes from chapter 4.

 Chapter 10, “Dialogs,” covers ways to create dialog boxes in both SWT and JFace.
We discuss the dialog boxes provided by SWT and JFace and show how to create
your own dialogs when necessary.

 Chapter 11, “Wizards,” shows how to use the framework provided by JFace to
create a wizard that guides the user through a series of steps.

 Chapter 12, “Advanced features,” covers a variety of miscellaneous features. These
are important topics to understand in order to fully master SWT and JFace, but
they aren’t essential to get a basic application running. We discuss subjects such as
Licensed to jromero <jose.romero@galicia.seresco.es>

ABOUT THIS BOOK xxi
implementing drag and drop, interacting with the operating system’s clipboard,
and embedding a web browser in your application.

 Chapter 13, “Looking beyond SWT/JFace: the Rich Client Platform,” shows how to
build custom workbench applications that contain editors and views. In addi-
tion, this chapter presents the new Eclipse Forms toolset for designing form-like
applications.

 Appendix A, “Creating projects with SWT/JFace,” shows how set up a Java project
that uses SWT and JFace. Specifically, it covers how to find the necessary libraries
and set up common IDEs such as Eclipse.

 Appendix B, “OLE and ActiveX in SWT/JFace,” covers facilities provided by SWT for
integrating with the Windows operating system. Obviously, the techniques we dis-
cuss in this appendix are relevant only to developers willing to tie themselves closely
to one operating system; as such, they may not be of interest to some readers.

 Appendix C, “Changeable GUIs with Draw2D,” shows a framework you can use to
create custom widgets for use in SWT. We cover the creation of a custom widget
used in appendix D.

 Appendix D, “The Graphical Editing Framework (GEF),” covers the most complicated
topic in this book and requires knowledge of almost every aspect of JFace as well as
the Eclipse Workbench. GEF is a powerful framework that you can use to create to
create powerful graphical editors for your applications. This appendix uses the cus-
tom widget developed in appendix C to create a flowchart editor application.

 If you have any questions or concerns about our content, visit the www.man-
ning.com/scarpino web site. From there, we can answer questions and provide
further explanations. We also provide our example code for download.

Conventions
Throughout this book, the text follows certain conventions. Method and variable
names appear in monotype font in the text. Code snippets that illustrate a tech-
nique in context without necessarily covering every detail required to get the
code to compile are also presented in monotype font, as are full code listings. Any
code listing (preceded by a “Listing X.Y” header) can be typed in, compiled, and
run as is.

 We also present several UML diagrams in this book. These diagrams are in the
spirit of what Martin Fowler refers to as “UML as sketch”—they aren’t full-blown,
comprehensive diagrams that cover every member variable and private method of
the classes in question. Rather, they’re intended to convey essential information
about the relationship between certain classes and interfaces at a high level. The
text and code samples around each diagram discuss the low-level details necessary
to make effective use of the classes presented in the diagrams.
Licensed to jromero <jose.romero@galicia.seresco.es>

xxii ABOUT THIS BOOK
Source code downloads
Source code for the programming examples in this book is available for download
from the publisher's web site at www.manning.com/scarpino.

Author Online
Purchase of SWT/JFace in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access
the forum and subscribe to it, point your web browser to www.manning.com/scar-
pino. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning's commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher's web site as long as the book is in print.
Licensed to jromero <jose.romero@galicia.seresco.es>

about the authors
MATT SCARPINO has more than 10 years of software design and engineering experi-
ence. He uses Eclipse to build editing software for reconfigurable computing and
has submitted code for Eclipse’s graphical library. He lives in Fort Worth, Texas.

STEPHEN HOLDER is a software engineer who has worked as a consultant for several
large commercial and government agencies on enterprise-level Java projects,
including writing Eclipse plug-ins to streamline the development process. He cur-
rently resides in Tustin, California.

STANFORD NG is the cofounder of Nuglu, LLC and is currently working on improv-
ing back-end systems at Automotive.com, a top-5 automotive e-commerce site. He
is also a co-conspirator with Dr. Robert Nideffer behind the International award-
winning Proxy/MAM research project. He lives in Irvine, California.

LAURENT MIHALKOVIC is a technology consultant with 10 years’ experience design-
ing solutions in C/C++/Java/COM. He currently lives between Vancouver and
Toronto, Canada.
xxiii

Licensed to jromero <jose.romero@galicia.seresco.es>

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and to explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.
xxiv

Licensed to jromero <jose.romero@galicia.seresco.es>

about the cover illustration
The figure on the cover of SWT/JFace in Action is a "Femme Patagonne," a woman
from Patagonia, an area of breathtaking natural beauty in the southern regions of
Argentina and Chile. From the towering tips of the Andes to the sweeping vistas of
the central plains to the pristine beaches on both coasts, Patagonia is a land of
stark contrasts. Sparsely populated even today, it has become the ultimate destina-
tion for modern-day adventurers.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by
J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phe-
nomenon at the time and travel guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to inhabitants of faraway places.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.
xxv

Licensed to jromero <jose.romero@galicia.seresco.es>

xxvi ABOUT THE COVER ILLUSTRATION
 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.
Licensed to jromero <jose.romero@galicia.seresco.es>

Overview of SWT
and JFace
This chapter covers
■ The purpose of SWT and JFace
■ The reasons for their creation
■ How the two libraries differ from Swing
■ Licensing and platform support
1

Licensed to jromero <jose.romero@galicia.seresco.es>

2 CHAPTER 1

Overview of SWT and JFace
In March 2004, the Java Developer’s Journal announced the results of its Readers’
Choice Award for Best Java Component. More than 15,000 developers voted for
one of many Java toolsets, including offerings from such established names as
Oracle and Apple. But in the end, Eclipse’s Standard Widget Toolkit (SWT) won
handily, just as it did in 2003. Despite their late entry into the field of Java develop-
ment, Eclipse and SWT have also won awards and recognition from JavaWorld,
JavaPro, and LinuxWorld.

 This well-earned applause goes a long way in showing the impact these tools have
made on Java development. Java programmers around the world have embraced
the power and versatility of SWT and JFace, deploying new plug-ins and standalone
applications with each passing day. The goal of this book is to show you how this
toolset functions and how you can use these tools for your own applications.

 In particular, you’ll be able to

■ Develop SWT/JFace-based applications with hands-on code examples

■ Create customized graphics with SWT’s built-in graphical context

■ Understand the structure and methodology behind the SWT/JFace API

■ Further your knowledge of GUI (graphical user interface) design

■ Build and deploy SWT/JFace applications for Eclipse and standalone usage

Most important, GUI development should be fun! No other branch of program-
ming provides the same satisfaction as watching a new graphical interface spring
to life. Therefore, we’ll intersperse the theory of SWT and JFace with example
code showing practical GUI development.

 But before we start programming, we need to show you what this new technol-
ogy is all about and what tasks it will help you perform.

1.1 What is SWT/JFace?

Although we refer to SWT and JFace as tools or toolsets, they’re essentially software
libraries. They consist of packages that contain Java classes and interfaces. But
what makes these components so special is that you can combine them to form
GUIs. And not just any GUIs, either! Your applications will run quickly, make effec-
tive use of computer memory, and, like chameleons, assume the look and feel of
whichever Java-supported operating system they run on. No other GUI-building
library can say that.

 Although SWT and JFace accomplish the same goal, they follow different phi-
losophies in creating user interfaces. Our favorite analogy involves automobile
Licensed to jromero <jose.romero@galicia.seresco.es>

What is SWT/JFace? 3
transmissions. SWT development is like using a standard transmission: It gives you
greater control and access to the system internals, but it’s more complicated to
use. JFace, on the other hand, resembles an automatic transmission: It does most
of the work for you, but you lose flexibility.

 Of course, the truth is more complicated than any analogy. So, let’s investigate
these two libraries in greater depth.

1.1.1 Building GUIs with SWT

Every operating system contains a number of graphical components that make up
its default user interface. These include buttons, windows, menus, and everything
else you see on your computer screen. The goal of SWT is to give you, the Java pro-
grammer, direct access to these components so that you can configure and posi-
tion them however you like.

 You don’t have to worry about the end user’s operating system. When you add
an SWT Button object to your application, it will look and act like a Windows but-
ton on Windows, a Macintosh button on Macintosh, and a Linux button on a
Linux system. Users will think that you wrote the GUI specifically for their
machines, and they’ll have no idea that you wrote the code only once using SWT.

 In addition to graphical components, SWT also provides access to events. This
means you can keep track of what buttons your users have clicked and which
menu items they’ve selected. This powerful capability makes it possible to receive
and respond to nearly every form of user input, and we’ll spend a great deal of
time showing how this works.

 Finally, if you want to add graphics to your application, SWT provides a large
set of tools for creating images, working with new fonts, and drawing shapes. This
feature not only allows you to build new graphics, but also lets you control how,
when, and where they’re displayed in your GUI. This book will show you how SWT
manages colors, drawings, fonts, and images, and will present a great deal of
example code.

 SWT provides a wealth of capabilities for building user interfaces, but as you’ll
see in this book, the code can become lengthy and complex. For this reason, the
Eclipse designers built a second library for GUI development: JFace.

1.1.2 Simplifying GUI development with JFace

Rather than write the same SWT code over and over again, the designers of the
Eclipse Workbench created JFace. This library provides shortcuts around many of
the tasks that can be time-consuming using SWT alone. But JFace is not a replace-
ment for SWT, and many GUIs will need features from both toolsets.
Licensed to jromero <jose.romero@galicia.seresco.es>

4 CHAPTER 1

Overview of SWT and JFace
 An important example of JFace’s increased efficiency involves events. In many
user interfaces, you may have different events, such as button clicks, keystrokes, or
menu selections, that all perform the same function. In SWT, each event needs to
be received and handled separately. But JFace allows you to combine them into a
single object, so you can concern yourself with the event’s response instead of the
component that triggered it. This simple but powerful concept makes it possible to
add context menus, toolbars, and palettes to your GUIs without adding a lot of code.

 JFace is also helpful when you’re building large GUIs that require multiple win-
dows and graphics. It provides registry classes that help you organize SWT compo-
nents and manage their memory allocation. For example, in SWT, you need to
specifically create and deallocate every Font and Image in your application. But
with JFace, you can use built-in FontRegistry and ImageRegistry objects to take
care of these tedious concerns for you.

 Now that you understand the basic characteristics behind these two libraries,
we need to dig a little deeper and show you the concepts behind their design.
This discussion will explain why SWT/JFace GUIs are so fast, why they can take the
appearance of whatever operating system they run on, and why they were created
in the first place.

1.2 Looking under the hood

Adding components, events, and graphics to a user interface isn’t a new idea.
Therefore, to see why the SWT/JFace toolset has caused such a stir, you need to
understand what its designers were thinking. This means investigating the princi-
ples behind Java GUI development and how these libraries make use of them.

 But before we can investigate SWT/JFace in depth, we need to introduce
Swing. SWT and JFace were created in response to this library, and by understand-
ing the contrast between the two design philosophies, you’ll better appreciate
how SWT and JFace function. Further, in addition to recognizing the trade-offs
between Swing and SWT/JFace, you’ll be able to participate in the passionate
debates concerning the two.

1.2.1 The old standby: Swing

When Sun released the Swing library in 1998, the Java community was delighted.
Finally, Sun had backed up its “Write Once, Run Anywhere” credo with a toolset
capable of building platform-independent user interfaces. Swing quickly became
the most popular tool for creating GUIs in Java.
Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

Looking under the hood 5
 But as time went by, many developers became discontented. The qualities that
made Swing so attractive initially also made for complex development and slow
operation. For this reason, Java GUIs have found little use in desktop applications.

Swing rendering
In order to ensure consistent appearance and operation across operating systems,
Swing takes complete control of rendering its user interfaces. That is, the Java Vir-
tual Machine (JVM) specifies every pixel of its components and controls their
behavior. It still communicates with the underlying platform, but instead of using
the operating system’s prebuilt objects, it creates everything from scratch.

 Because these components are implemented at a high level, they’re referred to
as lightweight components. These components look the same on any operating sys-
tem that supports the JVM. This cross-platform look-and-feel is shown graphically
in figure 1.1, and it looks and behaves identically whether it’s running on Win-
dows, Macintosh, or *nix platforms.

 But this approach has drawbacks. Because the JVM micromanages every aspect
of the GUI’s appearance and behavior, the application runs more slowly than if it
relied on the operating system. Also, most users like the way their operating sys-
tem looks and prefer that their Java applications resemble their other platform-
specific (or native) applications.

Swing automatic garbage collection
Keeping with Java’s promise of reliable computing, Swing uses Java’s automatic
garbage collection (AGC) for its applications. This process spawns a thread, or dae-
mon, that runs beneath the application layer and deallocates memory for objects
that are no longer needed. It activates during program execution and functions
independently of the developer. AGC is an important capability: If programmers
don’t free their data, then other applications won’t be able to reclaim memory for
their objects.

 The main advantage of AGC is that developers can concentrate on code design
instead of keeping track of every object’s lifetime. The downside involves the
unpredictable nature of the garbage-collection thread. The deallocation process

Figure 1.1
This application will act and appear
similarly on every platform supported
by Swing.
Licensed to jromero <jose.romero@galicia.seresco.es>

6 CHAPTER 1

Overview of SWT and JFace
leaves you no idea as to when it will take place. Also, AGC capabilities change from
one JVM to the next and from one platform to the next. Therefore, given the
time-intensive nature of creating and disposing objects within large applications,
programs may behave erratically from system to system.

Swing design architecture
Swing directs the GUI design process through an implementation of Model-View-
Controller (MVC) architecture. MVC decomposes a user interface component
into three parts: its state information, its displayed appearance, and its ability to
react to outside events. These aspects are called the Model, View, and Controller,
respectively. The Swing designers modified this methodology and created the
Model-Delegate architecture, shown in figure 1.2. This architecture combines the
component’s View and Controller aspects into a UI-Delegate. So, for each element
of the user interface—button, frame, and label—Swing allocates memory for a
model that contains the component’s state and the UI-Delegate, which controls its
appearance and response to events.

 By separating model information from appearance, Swing provides a program-
ming methodology that ensures flexible, reusable code. But this capability also
produces multiple objects for each widget that appears on the screen. As GUIs
become more complex, this additional allocation and disposal can place a large
burden on the processor.

1.2.2 The newcomer: SWT/JFace

The designers of Eclipse responded strongly to Swing’s complexity and execution
issues. They wanted a tool that would enable a Java user interface to run on a
desktop with the same performance as a native application. In fact, they wanted it
so badly that they created their own libraries: SWT and JFace.

Model

holds state
information

UI-Delegate

Controller

reacts to input

View

provides display
Figure 1.2
The design architecture of Swing
GUIs. This diagram shows the
relationship between classic MVC
and Swing’s Model-Delegate
method.
Licensed to jromero <jose.romero@galicia.seresco.es>

Looking under the hood 7
Both Swing and SWT/JFace create Java-based, platform-independent GUIs. But
their methods differ in nearly every other respect.

SWT/JFace rendering
The most prominent aspect of SWT/JFace involves its direct access to the operat-
ing system. Rather than reinventing graphics for its GUIs, it uses heavyweight compo-
nents from the underlying platform. This decision makes possible the speed and
appearance of SWT/JFace user interfaces, as shown in figure 1.3.

 The communication between SWT/JFace and the operating system is per-
formed using the Java Native Interface (JNI). We’ll explore this topic in greater
depth in the next chapter, but a short description here is helpful. Since the origi-
nal creators of Java knew that its applications would eventually need to access leg-
acy code and operating systems, they provided a library of methods to call
procedures in other languages (such as C and Fortran) from within a Java class.
SWT/JFace relies on JNI to manage the operating system’s rendering instead of
performing all the work by itself.

SWT/JFace resource management
Another important characteristic of SWT/JFace is that it doesn’t rely on automatic
garbage collection. At first, it may seem as though this will result in buggy code.
However, you need to be careful when accessing operating system resources, and
non-deterministic memory disposal can cause more problems than it solves.
There are two reasons behind Eclipse’s decision to remove AGC from SWT/JFace:

■ The process of automatically deallocating memory during program opera-
tion is unpredictable, giving no indication when a freed resource will be

Figure 1.3 Example Eclipse GUIs for Windows XP and Linux (GTK). By using heavyweight components,
they take the appearance of their host operating system.
Licensed to jromero <jose.romero@galicia.seresco.es>

8 CHAPTER 1

Overview of SWT and JFace
available. If an irregularity occurs during the deallocation process, the pro-
cess may not finish. This is a minor concern when you’re dealing with sim-
ple data structures. But when these objects make up a large graphical
application, memory allocation and deallocation become important tasks
whose behavior you should fully understand.

■ Using AGC with operating system resources is difficult. Since Swing builds
its lightweight components at such a high level, this isn’t as large a concern.
However, automatic disposal of low-level resources, such as SWT’s widgets, is
error-prone and erratic across different platforms. If these objects take too
much time to be deleted, the memory leaks can crash the program. Or, if
these resources are deallocated in the wrong order, then the system’s opera-
tion can grind to a halt.

To prevent the errors associated with automatic object disposal, SWT/JFace lets
you determine when your resources should be deallocated. The toolset simplifies
this process by providing dispose() methods within the component classes. Also,
once you have freed a parent resource, its child resources will automatically be
disposed of. As you’ll see in future chapters, this means that few explicit dealloca-
tion calls are necessary within most applications. You might call SWT/JFace’s
resource management semi-automatic.

Simplicity of design and development
GUI generation in Swing is performed with a Model-Delegate architecture, which
creates different objects to represent different aspects of the GUI components.
But this complexity isn’t suitable for all cases. Developers building simple button-
and-label interfaces, as well as those just ascending the learning curve, don’t need
this sophistication. At the other extreme, programmers building complex graphi-
cal editors and computer-aided design tools need more separation of GUI func-
tions in order to allow for different views and designs.

 SWT and JFace make no rules regarding the design architecture of their com-
ponents. This means that you can build GUIs with as much sophistication or sim-
plicity as you prefer. Because Eclipse is easily extensible and the source code is
always available, you can add whatever tools or modifications you like. In fact, a
number of plug-ins have been developed to provide MVC wrappers for SWT/
JFace components.
Licensed to jromero <jose.romero@galicia.seresco.es>

SWT/JFace: licensing and platform support 9
1.2.3 The SWT/Swing debate

Any casual web search for SWT and Swing will bring up a number of heated argu-
ments regarding which toolset is superior. This controversy is unnecessary and coun-
terproductive. SWT was created as an alternative to Swing, not as a replacement.

 Our goal in writing this section wasn’t to praise one tool over the other, but to
explain how and why they work. Infighting between Java developers can only
harm the effort to build freely available, platform-independent applications. The
world is big enough for both SWT and Swing, and we hope the two camps will be
able to put aside their differences and concentrate on improving the Java commu-
nity as a whole.

1.3 SWT/JFace: licensing and platform support

Before continuing with the code, we’d like to touch on two important concerns
regarding building applications with SWT/JFace. The first involves the lack of
strings attached to Eclipse and its development libraries, outlined in the Common
Public License. This is important, and you should understand it if you’re looking
to build commercial applications. The second concern deals with the platforms
currently supported by Eclipse in general and SWT/JFace in particular.

1.3.1 The Common Public License

The Eclipse consortium has released Eclipse to the public under the terms of the
Common Public License (CPL). This license is fully compliant with the Open
Source Initiative (OSI) licensing scheme and allows full commercial use of the
software by granting royalty-free source code and worldwide redistribution rights.
This means anyone can use the source code, modify it, and sell the resulting prod-
uct. More information is available at www.eclipse.org/legal/main.html.

 Although some components of the platform are distributed under specific
licenses, the SWT and JFace toolsets are governed by the CPL. This makes it possi-
ble to develop commercial SWT/JFaces applications for all supported platforms.

1.3.2 Platforms supported

At the time of this writing, SWT/JFace development is available for a number of
operating systems. Because it relies on particular windowing system functions,
some platforms have multiple SWT implementations. Table 1.1 lists the operating
systems and user interfaces supported by SWT/JFace.
Licensed to jromero <jose.romero@galicia.seresco.es>

10 CHAPTER 1

Overview of SWT and JFace
On Linux, KDE support isn’t yet available. However, SWT/JFace applications can
run under the KDE desktop provided that the GTK runtime libraries are also
installed on the desktop. KDE is built on top of the Trolltech Qt toolkit, which is
distributed under a more restrictive licence than the CPL. Should a KDE version of
the SWT library be developed in the future, all existing SWT/JFaces applications
would support it and inherit the native KDE look.

 Support for Microsoft Pocket PC 2002 is one of the hidden treasures of SWT.
The SWT distribution provides support for the StrongARM processor in both
Pocket PC 2002 and Smartphone 2002 devices. Thanks to its great flexibility, the
SWT Pocket PC version can be run against both the familiar J2SE (the standard dis-
tribution of Java) and the J2ME Connected Limited Device Configuration (CLDC)
profile for embedded devices. Coverage of how to build the SWT library for the
CDLC profile and use it in conjunction with the IBM J9 VM is beyond the scope of
the book. If you’re interested in exploring embedded development, visit the SWT
newsgroup at the Eclipse Consortium web site (news://news.eclipse.org/
eclipse.platform.swt).

 Support for the Windows operating systems includes an unforeseen bonus: You
can embed ActiveX controls directly inside SWT container widgets. The Eclipse
platform uses this facility to include support for web browsing by embedding the

Table 1.1 Platforms supported by SWT/JFace

Operating system User interface

Microsoft Windows XP, 2000, NT, 98, ME Windows

Microsoft Windows PocketPC 2002 Strong ARM Windows

Microsoft Windows PocketPC 2002 Strong ARM (J2ME) Windows

Red Hat Linux 9 x86 Motif, GTK 2.0

SUSE Linux 8.2 x86 Motif, GTK 2.0

Other Linux x86 Motif, GTK 2.0

Sun Solaris 8 SPARC Motif

IBM PowerPC Motif

HP-UX 11i hp9000 PA-RISC Motif

QNX x86 Photon

Mac OS Carbon
Licensed to jromero <jose.romero@galicia.seresco.es>

The WidgetWindow 11
Microsoft WebBrowser control. You can find further details on ActiveX support in
appendix B, “OLE and ActiveX in SWT/JFace.”

1.4 The WidgetWindow

The best way to learn about the SWT/JFace toolset is to build GUIs that use its
classes. With this priority in mind, we struggled to come up with an overarching
project that would touch on the various aspects of SWT/JFace development. At
first, we wanted to build something exciting, such as a web-enabled database dis-
play. But we decided that this would incorporate too much irrelevant code and
place too large a burden on our hands-on readers.

 So, we’ve opted for a simple application that incorporates as many GUI ele-
ments as possible while minimizing the amount of code. We feel that a TabFolder
object (described in chapter 3) will be the clearest manner of presenting the
information in this book. Then, with each following chapter, we’ll add a new tab
whose contents show the chapter’s subject. The fully designed application is
shown in figure 1.4. Not the savviest at marketing, we call it the WidgetWindow.

 Development of the WidgetWindow application serves a number of purposes. Of
course, it provides a single application for integrating the different components
within the SWT and JFace libraries. But it also gives you a repository of reusable
SWT/JFace code. Because it’s a single project with multiple classes, as opposed to
multiple projects with single classes, the WidgetWindow will ensure that you can
reuse each part for your own user interfaces.

Figure 1.4 The WidgetWindow application. This overarching project will
incorporate all the GUI and graphical elements presented in this book.
Licensed to jromero <jose.romero@galicia.seresco.es>

12 CHAPTER 1

Overview of SWT and JFace
1.5 Summary

The contents of the SWT and JFace libraries are effective for building user inter-
faces, but by themselves, they don’t constitute anything groundbreaking. There
are still buttons, containers, labels, and menus that can be positioned and
manipulated just as in other toolsets. Instead, the philosophy behind the toolset
makes it revolutionary.

 SWT/JFace may not conform to every rule of Java ideology, but it fulfills the
goals of open-source software to a much greater extent than Java, with its pseudo-
proprietary development. Not only doesn’t SWT/JFace require any licences or roy-
alties, but it also allows you, the developer, to charge these fees for software that
you develop. If you have developed a new operating system and need a develop-
ment tool to draw programmers to your platfrom, you can’t do much better than
tailoring SWT and JFace for your system. If you’re building a new programming
language and want something more than a command-line compiler and linker,
the Eclipse platform, with SWT and JFace, is ideally suited to your task.

 When Java developers debate the merits of SWT/JFace over those of other
toolsets, they consider the capabilities available now or within the next six
months. This mindset overlooks the fact that SWT/JFace, like Eclipse, is developed
in a truly bazaar-like fashion, with companies and individuals providing improve-
ments from across the world. If the abundance of programmer hours can be cor-
related with future improvement, then SWT/JFace will be the hands-down victor
as its evolution continues.

 Historically, software development has never been IBM’s strong suit. There-
fore, we’d like to express our appreciation to whichever lateral thinker realized
that helping the open source effort is the best way to add value to IBM hardware.
Given the freedom and extensibility of Eclipse and SWT/JFace and the enthusiasm
of its developers, we feel confident that this toolset will continue to benefit the
open source development community in years to come.

 But enough backslapping. Let’s start building applications!
Licensed to jromero <jose.romero@galicia.seresco.es>

Getting started with
SWT and JFace
This chapter covers
■ The important classes of SWT: Display and Shell
■ An SWT programming example
■ The important class of JFace: ApplicationWindow
■ An SWT/JFace programming example
13

Licensed to jromero <jose.romero@galicia.seresco.es>

14 CHAPTER 2

Getting started with SWT and JFace
GUI programming is one of the most rewarding aspects of software development,
but when you rely on graphics instead of the command line, there are important
questions to be asked. How can your program access the widgets, containers, and
events of the operating system? What software classes represent the different com-
ponents in a GUI, and how can you manipulate them?

 The goal of this chapter is to answer the first question and begin answering the
second. We’ll discuss the fundamental classes of both the SWT and JFace libraries
and how they access operating system resources. This chapter presents two main
code examples—HelloSWT.java and HelloSWTJFace.java—that show how to use
the Standard Widget Toolkit (SWT) with and without the JFace library. We’ll exam-
ine these programs and draw conclusions about their underlying structures.

 This chapter will also begin adding code to the WidgetWindow project. This is a
graphical interface that will combine all the SWT and JFace topics discussed in this
book. We’ll build its frame here and update it in each chapter that follows.
Because each chapter adds to this application, we recommend that you follow its
development closely.

2.1 Programming in SWT

Although we’ll use JFace shortly, this section focuses on programming with SWT
alone. First, we’ll present the code for a basic GUI and examine its structure.
Then, this section will describe the two fundamental classes of the toolset: Display
and Shell. These classes provide the foundation on which widgets, containers,
and events can be added.

NOTE In order to compile and execute the code in this book, you need to add
the SWT/JFace Java libraries to the project and make the native graphic li-
brary available. This procedure is fully documented in appendix A, “Cre-
ating Projects with SWT/JFace.”

2.1.1 The HelloSWT program

Before we explore SWT theory in detail, it will be helpful to prove in advance that
it works. For this purpose, we present our first SWT GUI, HelloSWT.java, in
listing 2.1. We encourage you to add this class to the com.swtjface.Ch2 package
and execute the application.
Licensed to jromero <jose.romero@galicia.seresco.es>

Programming in SWT 15
package com.swtjface.Ch2;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class HelloSWT
{
 public static void main (String [] args)
 {
 Display display = new Display();
 Shell shell = new Shell(display);

 Text helloText = new Text(shell, SWT.CENTER);
 helloText.setText("Hello SWT!");
 helloText.pack();

 shell.pack();
 shell.open();
 while (!shell.isDisposed())
 {
 if (!display.readAndDispatch())
 display.sleep();
 }
 display.dispose();
 }
}

Although HelloSWT is a simple GUI, most SWT applications consist of the same
three-part structure:

The first part begins by creating an instance of the Display and Shell classes. As
we’ll show shortly, this allows the GUI to access the resources of the underlying
platform and create a primary window for viewing widgets.

The next section adds a Text widget to the shell. Although this is simple in Hello-
SWT, this section usually requires the most effort in an SWT application. It deals with
adding and configuring the building blocks necessary to provide the GUI’s func-
tion. Widgets and groups of widgets (in containers) are added as children of the
shell. Listeners and events are defined for each widget that the user can act on.
The code in this section also sets the parameters for these widgets, containers, and
events to make sure they look and act as required. In this case, the pack() methods
tell the Shell and Text components to use only as much space as they need.

The last part represents the operation of the GUI. Up to this point, all of the appli-
cation’s code has done nothing more than initialize variables. But when the
Shell’s open() method is invoked, the application’s main window takes shape

Listing 2.1 HelloSWT.java

b Allocation and
initialization

c Adding widgets
to the shell

d GUI operation

b

c

d

Licensed to jromero <jose.romero@galicia.seresco.es>

16 CHAPTER 2

Getting started with SWT and JFace
and its children are rendered in the display. So long as the Shell remains open,
the Display instance uses its readAndDispatch() method to keep track of relevant
user events in the platform’s event queue. When one of these actions involves clos-
ing the window, the resources associated with the Display object (such as the
Shell and its children) are deallocated.

Figure 2.1 shows an example of how the GUI should appear
(in Linux/GTK).

 Congratulations! You’ve created your first graphical
user interface with the SWT library. Before moving on to an
application that uses both SWT and JFace, it’s important to
further understand the classes we’ve used and the methods
available for accessing and configuring them.

2.1.2 The Display class

Although the Display class has no visible form, it keeps track of the GUI resources
and manages communication with the operating system. That is, it concerns itself
with how its windows are displayed, moved, and redrawn. It also ensures that
events such as mouse clicks and keystroke actions are sent to the widgets that can
handle them.

Operation of the Display class
Although the Display class may only appear in a few lines of your GUI code, it’s
important to respect and understand its operation. It’s the workhorse of any SWT/
JFace application, and whether you work with SWT/JFace or SWT alone, you must
include an instance of this class in your program. This way, your interface will be
able to use the widgets and containers of the operating system and respond to the
user’s actions. Although most applications do little more than create a Display
object and invoke a few of its methods, the role played by this class is sufficiently
important to be worth describing in detail.

 The main task of the Display class is to translate SWT/JFace commands from
your code into low-level calls to the operating system. This process comprises two
parts and begins once the application creates an instance of the Display class.
First, the Display object constructs an instance of the OS class, which represents
the platform’s operating system (OS). This class provides access to the computer’s
low-level resources through a series of special Java procedures called native methods.

Figure 2.1
Simple but effective:
the output of the
HelloSWT code
Licensed to jromero <jose.romero@galicia.seresco.es>

Programming in SWT 17
Then, like a switchboard operator, this Display object uses these methods to direct
commands to the operating system and convey user actions to the application.

 As an example of a native method, the OS declaration for SetFocus() is shown
here:

public static final native int SetFocus (int hWnd);

This method sets the focus on a window according to its handle, hWnd. Because of
the native modifier, there is no Java code to specify its operation. Instead, this
keyword tells the compiler that the method’s code is written in another language
and resides in another file. In the case of HelloSWT.java and all SWT/JFace appli-
cations, this other language is C and the other file is the native graphics library
you included in your project. The C code in the graphic library corresponding to
the SetFocus() method is presented here:

JNIEXPORT jint JNICALL OS_NATIVE(SetFocus)
 (JNIEnv *env, jclass that, jint arg0) {
 jint rc;
 NATIVE_ENTER(env, that, "SetFocus\n")
 rc = (jint)SetFocus((HWND)arg0);
 NATIVE_EXIT(env, that, "SetFocus\n")
 return rc;
}

As shown, the C implementation of the Java SetFocus() method calls the operat-
ing system function SetFocus(). This isn’t a coincidence; this exact matching of
SWT commands and operating system calls makes GUI debugging a straightfor-
ward process. As long as you can riddle out the Application Programming Inter-
face (API) for your operating system, you can determine what is happening in
your code. This example uses the Windows operating system, but the process is
similar for all platforms supported by Eclipse.

 Another important point to consider is that, if any features in your operating
system aren’t incorporated into SWT, you can use the Java Native Interface to add
them yourself. All it requires is a native Java method in the SWT package and a C
function in the native graphics library that calls the operating system.

Methods of the Display class
Table 2.1 identifies and describes a number of methods that belong to the Display
class. This isn’t a full listing, but it shows the methods vital for SWT/JFace GUIs to
function and those necessary to implement particular capabilities in an application:
Licensed to jromero <jose.romero@galicia.seresco.es>

18 CHAPTER 2

Getting started with SWT and JFace
The first two methods must be used in any SWT-based GUI. The first, Display(),
creates an instance of the class and associates it with the GUI. The second, get-
Current(), returns the primary thread of the application, the user-interface thread.
This method is generally used with the dispose() method to end the operation
of the Display.

 The next two methods in the table enable the application to receive notifica-
tions from the operating system whenever the user takes an action associated with
the GUI. Event processing, handlers, and listeners will be fully discussed in
chapter 4. However, it’s important to understand the readAndDispatch() method,
which accesses the operating system’s event queue and determines whether any of
the user’s actions are related to the GUI. Using this method, the HelloSWT class
knows whether the user has decided to dispose of the Shell. If so, the method
returns TRUE, and the application ends. Otherwise, the Display object invokes its
sleep() method, and the application continues waiting.

 Although the Display class is important, there is no way to directly see the
effects of its operation. Instead, you need to use classes with visual representa-
tions. The most important of these is the Shell class.

2.1.3 The Shell class

Just as the Display class provides window management, the Shell class functions
as the GUI’s primary window. Unlike the Display object, a Shell instance has a
visual implementation, as shown in figure 2.1. The Shell class accesses the operat-
ing system through the OS class to an extent, but only to keep track of opening,
activating, maximizing, minimizing, and closing the main window.

 The main function of the Shell class is to provide a common connection point
for the containers, widgets, and events that need to be integrated into the GUI. In
this respect, Shell serves as the parent class to these components. Figure 2.2
shows the relationship between an application’s operating system, Display, Shell,
and their widgets.

Table 2.1 Important methods of the Display class and their functions

Display method Function

Display() Allocates platform resources and creates a Display object

getCurrent() Returns the user-interface thread

readAndDispatch() Display object interprets events and passes them to receiver

sleep() Display object waits for events
Licensed to jromero <jose.romero@galicia.seresco.es>

Programming in SWT 19
Every SWT/JFace application bases its widgets on a main Shell object, but other
shells may exist in an application. They’re generally associated with temporary
windows or dialog boxes, which will be discussed further in chapter 10. Because
these shells aren’t directly attached to the Display instance, they’re referred to as
secondary shells. Shells that are attached to the Display are called top-level shells.

 The Shell instance created in the HelloSWT application has a number of prop-
erties associated with it that allow users to alter its state or read information.
These characteristics make up the component’s style. You can control a Shell’s
style by adding a second argument to its constructor. Since the only argument in
HelloSWT’s Shell declaration is the display, it receives the default style for top-level
windows, called SHELL_TRIM. This combines a number of individual style elements
and tells the application that the window should have a title bar (SWT.TITLE) and
that the user can minimize (SWT.MIN), maximize (SWT.MAX), resize (SWT.RESIZE),
and close (SWT.CLOSE) the shell. The other default shell style, DIALOG_TRIM,
ensures that dialog shells have title bars, a border around the active area
(SWT.BORDER), and the ability to be closed.

 Within your GUIs, you can set the style bits of the shell, or another widget, to
whatever you prefer, and combine them with the | operator. In addition to the
properties mentioned, you can also specify the shell’s modality, which restricts the
user’s ability to alter the shell’s state. A modal dialog box commands the user’s
attention by blocking all actions except those related to the dialog. It can’t be
moved or resized, and the user can only close or cancel it using the buttons pro-
vided. Finally, since not every platform can render these properties in GUI compo-
nents, you must understand that SWT treats style settings as guidelines instead of
strict rules.

Operating system

OS class

Display class

Shell class

Widgets

Figure 2.2
The class communication structure
of an SWT user interface
Licensed to jromero <jose.romero@galicia.seresco.es>

20 CHAPTER 2

Getting started with SWT and JFace
2.2 Programming in SWT/JFace

With a clear understanding of SWT, learning JFace is straightforward. Although
applications using both SWT and JFace have very different structures than those
coded with SWT alone, the concepts underlying both libraries are similar. Like the
preceding part, this section will provide a basic example of SWT/JFace code and
explain its structure. Further, we’ll delve into an important class provided in the
JFace library: ApplicationWindow.

 In chapter 1, we explained how JFace was constructed to simplify SWT develop-
ment. We can now go into further depth by showing how its main classes work.

2.2.1 Model-based adapters

Eclipse documentation uses two terms to refer to JFace classes that work with SWT
widgets: helper classes and model-based adapters. We’ve chosen to use the latter term
in this book. This may be confusing because, in Java, an adapter is a class that pro-
vides additional event-handling capability to a widget. However, no self-respecting
programmer will use helper classes, so we’ll call them model-based adapters, or
JFace adapters.

 These adapters can be split into four categories, shown in table 2.2. We’ll fur-
ther elaborate on each in future chapters, but we’ll briefly describe them here.

The first and most widely used category of model-based adapters includes the
Viewer classes, fully described in chapter 9. In SWT, the information and appear-
ance of a GUI component are bound together. However, viewers separate these
aspects and allow for the same information to be presented in different forms. For
example, the information in an SWT tree can’t be separated from the tree object.
But the same information in a JFace TreeViewer can be displayed in a TableViewer
or a ListViewer.

 The next category involves Actions and Contributions, which are described in
chapter 4. These adapters simplify event handling, separating the response to a

Table 2.2 Categories of JFace adapters

Adapter classification Function

Viewers Separate a widget’s appearance and information

Actions and contributions Simplify and organize event-handling procedures

Image and font registries Manage the allocation/deallocation of fonts and images

Dialogs and wizards Extend the capability of SWT Dialogs for user interaction
Licensed to jromero <jose.romero@galicia.seresco.es>

Programming in SWT/JFace 21
user’s command from the GUI events that result in that response. This can be best
explained with an example. In SWT, if four different buttons will close a dialog box,
then you must write four different event-handling routines even though they
accomplish the same result. In JFace, these four routines can be combined in an
action, and JFace automatically makes the four buttons contributors to that action.

 The third category involves image and font registries, which are further
explained in chapter 7. In SWT, it’s important to keep the number of allocated
fonts and images to a minimum, since they require operating system resources.
But with JFace registries, these resources can be allocated and deallocated when
needed. Therefore, if you’re using multiple images and fonts, you don’t need to
be concerned with manual garbage collection.

 The last group comprises JFace dialogs and wizards, described in chapters 10
and 11. These are the simplest adapters to understand, since they extend the
capability of SWT dialogs. JFace provides dialogs that present messages, display
errors, and show the progress of ongoing processes. In addition, JFace provides a
specialized dialog called a wizard, which guides the user through a group of tasks,
such as installing software or configuring an input file.

2.2.2 The HelloSWT_JFace program

The best way to learn about JFace is to write a program that uses its library. The
code for the HelloSWT_JFace class is shown in listing 2.2. The output is similar to
that of HelloSWT, but the program structure is very different.

package com.swtjface.Ch2;
import org.eclipse.jface.window.*;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class HelloSWT_JFace extends ApplicationWindow
{
 public HelloSWT_JFace()
 {
 super(null);
 }

 protected Control createContents(Composite parent)
 {
 Text helloText = new Text(parent, SWT.CENTER);
 helloText.setText("Hello SWT and JFace!");
 parent.pack();
 return parent;
 }

Listing 2.2 HelloSWTJFace.javaHelloSWTJFace.java

b Window allocation

c Window
presentation
Licensed to jromero <jose.romero@galicia.seresco.es>

22 CHAPTER 2

Getting started with SWT and JFace
 public static void main(String[] args)
 {
 HelloSWT_JFace awin = new HelloSWT_JFace();
 awin.setBlockOnOpen(true);
 awin.open();
 Display.getCurrent().dispose();
 }
}

Although the code for HelloSWTJFace.java is slightly longer than that of Hello-
SWT.java, its structure is more clearly separated between the three class methods:

The first method, HelloSWT_JFace(), constructs an instance of the main class. Any
configuration or communication actions that need to be performed during allo-
cation should be coded here. Because this is unnecessary for HelloSWT_JFace, this
class only invokes the constructor of its superclass.

The createContents() method deals with designing the presentation of the win-
dow. Since the visual aspect of an ApplicationWindow can’t be directly accessed,
this method associates a widget container called a Composite to control the GUI’s
appearance. This container object serves as the parent of any GUI components
that need to be added to the application. After all the widgets are created, config-
ured, and added to the parent, createContents() returns the Composite to the
main window for display.

The final part of this application, framed by the main() method, takes care of the
actual operation of the GUI. After allocating resources for the ApplicationWindow,
this method configures the window to appear until closed by invoking the set-
BlockOnOpen() method with a TRUE argument. Then, the ApplicationWindow’s
open() method is called, displaying the window according to the Composite
returned by the createContents() method. The code after the open() method
only functions after the window is closed. Then, the program deallocates the
GUI’s Display instance by using its dispose() method. Because every widget in
HelloSWT_JFace is a child of the display, this disposal also deallocates every GUI
component in the program.

Once the code is compiled and the application is run, the result should look like
the window shown in figure 2.3.

d Window
operation

b

c

d

Licensed to jromero <jose.romero@galicia.seresco.es>

Programming in SWT/JFace 23
2.2.3 Coding in JFace and SWT/JFace

At this point, it’s helpful to contrast the code behind HelloSWT.java, programmed
with SWT alone, and that of HelloSWTJFace.java, which uses both SWT and JFace.
The main difference is that SWT combines the GUI’s appearance and operation in
its Shell class, whereas SWT/JFace splits these aspects. This modular structure pro-
motes code reuse and enables one developer to design the window’s view while
another determines its behavior. The appearance is controlled by the Composite
configured in the createContents() method, and the operation is performed
mainly through the instance of the ApplicationWindow class. Because this class is
so crucial in SWT/JFace applications, it’s important to examine its function in
greater detail.

2.2.4 The ApplicationWindow class

Although we’ve just mentioned how the ApplicationWindow in HelloSWT_JFace
differs from the Shell object in HelloSWT, both applications rely on Shell and
Display objects to communicate with the operating system. An SWT/Face applica-
tion still needs a separate Display instance, but the ApplicationWindow creates its
own Shell whenever it’s constructed with a null argument. This class relationship
is shown in figure 2.4. Although this may seem like an unnecessary complication,
the benefits of using JFace windows become apparent when you’re building large
user interfaces.

 Like the model-based adapters mentioned in the beginning of this section, the
ApplicationWindow serves as a JFace adapter on the Shell class and provides two
main benefits. First, as mentioned, the ApplicationWindow separates the GUI’s
appearance from its behavior. Second, it provides a number of additional ways to
configure the window that are useful for designers. Although the Shell class has
methods that change its size and style, those of the ApplicationWindow class allow
for much more useful customization. These methods, which include those from
the Window class, are listed in table 2.3.

 As shown in the table, the methods of an ApplicationWindow object make GUI
programming much more convenient. You can quickly configure the window to
include menu bars, toolbars, and status lines. These methods can also set the

Figure 2.3
The HelloSWTJFace.java code is very different from
that of HelloSWT.java, but the results are similar.
Licensed to jromero <jose.romero@galicia.seresco.es>

24 CHAPTER 2

Getting started with SWT and JFace
application’s exception handler and default image. In SWT, these capabilities
need to be provided for and configured for each different shell you create. In
JFace, this is performed automatically.

2.3 Beginning the WidgetWindow application

Although the HelloSWT and HelloSWT_JFace classes are helpful for learning the
basics of SWT/JFace programming, the toolset offers a great deal more functional-
ity that we need to explore. Rather than rewrite the same code in multiple
projects, we thought it would be best to build a single project and add classes to it
with each chapter.

Table 2.3 Configuration methods of the ApplicationWindow class

ApplicationWindow method Function

addMenuBar() Configures the window with a top-level menu

addToolBar() Adds a toolbar beneath the main menu

addStatusLine() Creates a status area at the bottom of the window

setStatus(String) Displays a message in the status area

getSeparator() Returns the line separating the menu from the window

setDefaultImage(Image) Displays an image when the application has no shell

setExceptionHandler
(IExceptionHandler)

Configures the application to handle exceptions according to the
specified interface

Operating system

OS class

Display class

Shell created by the Application Window

Widgets

ApplicationWindow class

Composite Class

Figure 2.4
JFace’s ApplicationWindow uses
a separate Composite object to
control its appearance.
Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

Beginning the WidgetWindow application 25
 To reduce the complexity of the WidgetWindow’s design, we decided to use both
SWT and JFace. In this chapter, we’ll create the basic window, shown in listing 2.3.
We strongly recommend that you add this class to your com.swtjface.Ch2 package.

package com.swtjface.Ch2;
import org.eclipse.swt.widgets.*;
import org.eclipse.jface.window.*;

public class WidgetWindow extends ApplicationWindow
{
 public WidgetWindow()
 {
 super(null);
 }

 protected Control createContents(Composite parent)
 {
 getShell().setText("Widget Window");
 parent.setSize(400,250);
 return parent;
 }

 public static void main(String[] args)
 {
 WidgetWindow wwin = new WidgetWindow();
 wwin.setBlockOnOpen(true);
 wwin.open();
 Display.getCurrent().dispose();
 }
}

 Figure 2.5 presents the unexciting but important output of the WidgetWindow class.

Listing 2.3 WidgetWindow.java

Figure 2.5
The blank-slate WidgetWindow
application
Licensed to jromero <jose.romero@galicia.seresco.es>

26 CHAPTER 2

Getting started with SWT and JFace
2.4 Summary

Although you’ll have to wait until the next chapter to build something fun and
exciting, you should have a solid grasp of the internals of SWT and JFace at this
point. These libraries make it possible to access platform-specific resources in a
platform-independent manner, and it’s important to understand the objects that
make this possible.

 The main object is the Display, which works behind the scenes to communi-
cate with the operating system. This communication enables your SWT/JFace
applications to use native components and process events. Although the Display
has no appearance itself, other widgets require its operation to take shape.

 SWT provides the Shell class as an overall container for GUI applications and
dialog boxes. The Shell forms the GUI’s parent window and makes it possible for
child widgets to communicate with the Display. Using style bits, you can custom-
ize the Shell’s appearance and behavior.

 In contrast, JFace applications use an ApplicationWindow as their main con-
tainer. Unlike Shells, ApplicationWindows have no built-in form. This means you
can specify what your top-level window should look like. Also, these objects pro-
vide methods for easily integrating other features, such as menus, toolbars, and
status lines.

 As you can see from the Shell and ApplicationWindow classes, the SWT and
JFace libraries provide similar capabilities. This redundancy played a large role in
determining the structure of this book. At first, we thought it would be best to
present these toolsets in two separate parts: one covering SWT and the other cov-
ering SWT/JFace. But we realized that this approach wasn’t feasible. First, because
JFace provides so few widgets and containers of its own, most of the code between
the two parts would be repeated. Second, as we’ll show in later chapters, trying to
build complex functionality with SWT requires a great deal of code, and the pro-
cess is simplified by incorporating JFace.

 Therefore, this book presents SWT and SWT/JFace development side by side.
For the sake of being thorough and explaining basic concepts, we show how to
implement GUI features in SWT. But when it comes to adding capability to the
WidgetWindow application, we strongly recommend coding with both libraries.
Doing so will not only improve your understanding of SWT and JFace, but also
increase your appreciation for combining the two tools.

 However, the best way to increase your appreciation is to start building real
GUIs with real widgets. Let’s see how they work!

Licensed to jromero <jose.romero@galicia.seresco.es>

Widgets: part 1
This chapter covers
■ Widgets and controls
■ Labels
■ Buttons
■ Composites
■ Updating WidgetWindow
27

Licensed to jromero <jose.romero@galicia.seresco.es>

28 CHAPTER 3

Widgets: part 1
To the less enlightened, the term widget may suggest a gadget or gizmo—a mecha-
nism that may or may not serve a useful purpose. But in studying SWT and JFace,
you need to take widgets very seriously. These are the paints in your palette and
the ingredients in your cupboard. Your understanding of the subject will deter-
mine how well your applications appear and perform.

 The Eclipse designers define a widget as “any UI object that can be placed
inside another widget.” However, rather than use this recursive definition, we’ve
come up with our own: A widget is “any object in a graphical user interface that
displays information and/or allows the user to interface with an application.”

 We’ve used the word object on purpose, since every widget in an SWT/JFace GUI
is the visual representation of an instance of a class. The goal of this chapter is to
present many of these classes and show how you can configure their appearance.
In particular, this chapter will cover three of the most important widget classes in
SWT. We’ll start with one of the most common widgets, the Label. Then, we’ll add
input capability to a label and learn about the Button class. Finally, we’ll discuss
Composites, which are widgets capable of containing other widgets.

 But first, we need to examine the Widget class, which resides at the top of the
widget hierarchy, and its most important subclass, Control.

3.1 Introducing the Widget and Control classes

Although our widget definition may be helpful from a conceptual standpoint, it’s
useless for writing programs. Therefore, this section will begin describing the
classes behind these concepts. We’ll start with the Widget class and its associated
methods. Then, we’ll focus on the Control class and the many ways its methods
make our lives as GUI designers easier.

3.1.1 Understanding the Widget class

As the antecedent of all the widgets described in this book, the Widget class is very
important when you’re learning about SWT and JFace. It’s the superclass of all
classes that display information and allow user interface in SWT and JFace. How-
ever, not only is it an abstract class, but Eclipse.org strongly recommends against
creating subclasses due to the complexity involved. Therefore, you won’t be inher-
iting from Widget or using it directly in your code. Instead, this class is important
because it unifies all widgets under one structure.
Licensed to jromero <jose.romero@galicia.seresco.es>

Introducing the Widget and Control classes 29
 The methods in the Widget class represent the basic capabilities inherent in
any SWT/JFace widget. Table 3.1 presents an important subset of these methods
and their functions.

The setData() method allows an application to attach information to a widget in
the form of an Object. This may be particularly useful if a widget must be shared
across different classes and must contain information beyond that normally pro-
vided by its class. It may also be helpful if a widget has a global scope and must
provide information across procedures that can’t directly communicate with each
other. This method works by associating a String value to the Object, which will
be deallocated when the widget is disposed of.

 The next four methods allow an application to obtain information about the
referenced Widget. The first, getData(), returns all the data associated with the
widget through the setData() method, whereas the second only returns the
String value of the data. The next method in the table, getStyle(), returns an
int value that represents the appearance settings for the particular widget object.
The fourth method in the table, getDisplay(), returns the Display object associ-
ated with the GUI; the final method, toString(), returns a String value corre-
sponding to the class of the widget.

 These capabilities are important, but GUI designers need much more to con-
figure widgets for practical applications. For this reason, we need to investigate
the Control class.

Table 3.1 Important methods of the Widget class and their functions

Widget method Function

setData(String, Object) Attaches an object to the widget, accessible through String

getData() Returns the objects associated as data within the widget

getData(String) Returns the data object corresponding to the String

getStyle() Returns an int corresponding to the widget’s style

getDisplay() Returns the Display object associated with the widget

toString() Returns a String representing the widget class

dispose() Deallocates the widget and its resources

isDisposed() Returns a boolean value regarding the widget’s deallocation
Licensed to jromero <jose.romero@galicia.seresco.es>

30 CHAPTER 3

Widgets: part 1
3.1.2 Working with Control objects

As we mentioned in chapter 2, SWT/JFace uses widgets provided by the operating
system to render its graphical applications. Since different platforms offer differ-
ent sets of GUI components, SWT can fully support only a subset of these widgets.
Objects in the Control class have a direct counterpart in the operating system that
you can access through the class’s handle field. However, SWT still provides a num-
ber of widgets outside the Control class. This structure is displayed in figure 3.1.

 The majority of the widgets you’ll be working with, such as Labels, Buttons,
and Composites, are members of the Control class. As a result, because of their
associated handles, you can manipulate and configure these objects using a num-
ber of methods unavailable to the general Widget class. Although we won’t cover
all of them here, we’ll present two categories of methods that allow you to obtain
and specify the characteristics of a given Control object (see tables 3.2 and 3.3).

 One of the most fundamental properties of a Control object is its size. The first
method in table 3.2, getSize(), returns this value in the form of a Point. The next
two methods set the widget’s size either with the width and height or with a Point
instance representing these dimensions.

 The rest of the methods in the table deal with a Control’s preferred size. These
are the minimum dimensions the Control needs in order to display its contents,
which may comprise images, text, or other widgets. These coordinates can be
obtained through the computeSize() method. Then, the program can resize the
widget to these dimensions using the pack() method. You can also use both of
these methods with a boolean argument to tell the layout manager that the wid-
get’s properties have changed.

Widget

DropTargetControlCaret TrackerScrollBar Menu

ProgressBarLabel ScrollableButtonSash Scale Slider

CompositeList Text

 Item

Figure 3.1 The Widget class and its primary subclasses
Licensed to jromero <jose.romero@galicia.seresco.es>

Introducing the Widget and Control classes 31
NOTE Due to differences in resolution and platform rendering, we recommend
that you use pack() instead of setSize() whenever possible. Doing so will
ensure that your container will tailor its appearance to its contents, whose
size may be controlled by the operating system. Also, you should invoke
pack() only after the widgets have been added to the container.

The getLocation() method in table 3.3 returns a Point containing the coordi-
nates of the Control relative to the widget that surrounds it. These coordinates
can be specified with the setLocation() method. The next two methods refer to a
widget’s bounds, which incorporate both its size and location. The getBounds()

Table 3.2 Methods for acquiring and manipulating a Control’s size

Control method Function

getSize() Returns a Point object representing the widget’s size

setSize(int, int) Sets the widget’s size based on the given length and width

setSize(Point) Sets the widget’s size according to a Point object

computeSize(int, int) Returns the dimensions needed to fully display the widget

computeSize(int, int, boolean) Returns the dimensions needed to fully display the widget,
and indicates whether its characteristics have changed

pack() Resizes the widget to its preferred size

pack(boolean) Resizes the widget to its preferred size, and indicates
whether its characteristics have changed

Table 3.3 Methods for setting and determining a Control’s location

Control method Function

getLocation() Returns the widget’s location relative to its parent

setLocation(int, int) Sets the widget’s location relative to its parent

getBounds() Returns the widget’s size and location relative to its parent

setBounds(int, int, int, int) Sets the widget’s size and location relative to its parent

toControl(int, int) Converts display-relative coordinates to a control-relative
Point

toControl(Point) Converts a display-relative Point to a control-relative Point

toDisplay(int, int) Converts display-relative coordinates to a control-relative
Point

toDisplay(Point) Converts a display-relative Point to a control-relative Point
Licensed to jromero <jose.romero@galicia.seresco.es>

32 CHAPTER 3

Widgets: part 1
method returns the Control’s x and y coordinates and its width and height. Simi-
larly, the setBounds() method requires four integers to represent these quantities.

 When describing any location, you need a point of reference. For the getLoca-
tion() method, this point is the upper-left corner of the widget’s container, which
is generally its Shell. For a Shell object, the getLocation() method returns its
coordinates relative to the user’s console, represented by the Display object. This
is shown graphically in figure 3.2.

 Using the dimensions shown in the figure, shell.getLocation() returns
(72, 66), and button.getLocation() returns (60, 40).

 Using the last methods in the table, Controls can also obtain their locations rel-
ative to the Display object. In this case, the application converts coordinates rela-
tive to the Shell, called control-relative coordinates, to those relative to the Display,
called display-relative coordinates. This translation is performed by the toDisplay()
method. The reverse process, which converts display-relative coordinates to con-
trol-relative coordinates, is performed through the toControl() method.

 Although we haven’t described all (or even half) of the methods associated
with the Control class, we’ve presented enough to show how you can manipulate
these objects in a user interface. Now all you need to know is what concrete Con-
trol subclasses you can add to your applications.

3.2 Labels

The Label class is the simplest of the Control classes. Labels display static informa-
tion in a GUI, such as a String or Image, and receive no user input. Because
they’re used so frequently, you need to become familiar with their properties.
This section will describe the styles and methods behind Labels, and how they’re
used in code.

Figure 3.2
Different controls use different points of reference.
Licensed to jromero <jose.romero@galicia.seresco.es>

Labels 33
3.2.1 Styles and separators

Fonts and Images will be fully explained in chapter 7; we’ll focus here on the dif-
ferent methods of displaying basic information in Labels. The fundamental
parameter in determining how a Label appears is its style, an integer value speci-
fied during construction. This is similar to the style of the Shell class, described in
chapter 2.

 The text-related styles of a Label object deal with the String’s alignment and
are represented by the values SWT.CENTER, SWT.LEFT, and SWT.RIGHT. In addition,
you can configure Labels to display only a line—a separator—by setting the
SWT.SEPARATOR style. These separators can be configured to appear horizontally or
vertically (SWT.VERTICAL, SWT.HORIZONTAL) and shadowed or unshadowed
(SWT.SHADOW_IN, SWT.SHADOW_OUT, and SWT.SHADOW_NONE).

 Figure 3.3 shows how these different styles look inside a
simple Shell.

 To give you an idea how Labels (both text and separator
Labels) are coded in an application, consider the following
code:

Label shadow_label = new Label(shell, SWT.CENTER);
shadow_label.setText("SWT.SHADOW_OUT");
shadow_label.setBounds(30,60,110,15);

Label shadow_sep = new Label(shell, SWT.SEPARATOR |
SWT.SHADOW_OUT);

shadow_sep.setBounds(30,85,110,5);

The first label declaration creates a Label object with center-aligned text. The
next two methods set the label’s display String, size, and location in the Shell.
The next declaration uses the SWT.SEPARATOR style to create a separator and com-
bines the SWT.SHADOW_OUT and SWT.HORIZONTAL styles to control its appearance.

 The only Label-specific method in the code sample is setText(), which tells
the object which String to display. However, there are other methods worth
examining when working with Labels.

3.2.2 Label methods

Table 3.4 lists the primary methods for manipulating Label objects in a GUI. As
you can see, most are straightforward.

Figure 3.3
Different separator
styles provided by
the Label class
Licensed to jromero <jose.romero@galicia.seresco.es>

34 CHAPTER 3

Widgets: part 1
It’s important to remember that an application can set text alignment after con-
structing the Label. Also, when we discuss Image objects in a later chapter, the
getImage() and setImage() methods will prove very helpful.

 Labels are useful and frequently used in GUIs. But they’re boring. They would
be much more interesting if users had an opportunity to act. SWT provides this capa-
bility by adding an interface aspect to a Label and calling the combination a Button.

3.3 Involving the user with buttons

Outside of the menu, GUI users interface more with buttons than with any other
type of component. Button objects are also the simplest interface components
because they’re strictly binary; they’re either on or off. The Buttons presented in
this chapter won’t be able to react to the user’s selection. But once we discuss the
SWT/JFace event model in the next chapter, you’ll be able to associate these
objects with the Listeners and Adapters needed to react to user action.

 Like Shells and Labels, a Button’s appearance in the GUI depends on the style
bits used during their creation. Five of the available styles result in Buttons that
look and act very differently from one another; we present them in the following
subsections.

3.3.1 Causing action with push buttons and SWT.PUSH

The most common type of Button in a GUI is the push button, whose style is spec-
ified by the SWT.PUSH constant. This is the default style for the Button class. As with
a Label object, a Button’s text is specified with the setText() method and
acquired with the getText() method. It’s simple to create and configure a push
button, as shown in this code sample:

Table 3.4 Methods for acquiring and manipulating a Control’s visibility

Label method Function

getText() Returns the String associated with the Label

setText(String) Associates a String object with the Label for display

getAlignment() Returns an int representing the Label’s text alignment

setAlignment(int) Specifies text alignment according to an SWT constant

getImage() Returns the Image object associated with the Label

setImage(Image) Associates an Image object with the Label
Licensed to jromero <jose.romero@galicia.seresco.es>

Involving the user with buttons 35
Button push = new Button(shell, SWT.PUSH);
push.setText("PUSH");
push.pack();

In addition to setting a Button’s text, an application can also control the align-
ment and appearance of the String in the Button. The Button’s constructor can
combine any one of the SWT.LEFT, SWT.CENTER, and SWT.RIGHT styles with SWT.PUSH
using the | operator. After the Button is allo-
cated, you can use its setAlignment()

method. These different alignments are
shown in figure 3.4.

 Figure 3.4 also shows another style avail-
able for any Button that appears as a raised
surface. This is the SWT.FLAT style, which low-
ers the Button to the GUI’s plane.

3.3.2 Moving on with arrow buttons and SWT.ARROW

Sometimes a simple picture is more appropriate than text for describing a But-
ton’s purpose. A common picture is the arrow, which tells a user that he can navi-
gate through a document, graphic, or map. An arrow button is simple to create,
and you can specify the arrow’s direction by combining the SWT.ARROW style with
any one of the SWT.UP, SWT.DOWN, SWT.LEFT, and SWT.RIGHT constants. Here’s a
short code example:

Button push = new Button(shell, SWT.ARROW | SWT.RIGHT);
push.setText("RIGHT");
push.pack();

These styles are shown graphically in figure 3.5. Like
push buttons, arrow buttons can also appear flat using
the SWT.FLAT style.

 Of course, if you want to customize the picture shown
on a Button object, the setImage() method will attach an
Image object for display. You’ll create and manipulate
these images in chapter 7.

3.3.3 Changing state with toggle buttons and SWT.TOGGLE

Push buttons and arrow buttons are used to perform actions, but sometimes all
you need is a component to keep track of a binary state. SWT provides this capa-
bility using toggle buttons, which specify the SWT.TOGGLE style during allocation.
Toggle buttons function similarly to push buttons, but they keep track of the

Figure 3.4
Push buttons with SWT.LEFT,
SWT.CENTER, SWT.RIGHT, and
SWT.FLAT styles

Figure 3.5
Left, up, down, and right,
but no rewind or fast-
forward
Licensed to jromero <jose.romero@galicia.seresco.es>

36 CHAPTER 3

Widgets: part 1
application’s state information instead of performing a rou-
tine. Also, once clicked, a toggle button remains pressed
until selected again (see figure 3.6).

 The toggle button is the first component we’ve discussed
that maintains a change in appearance when selected. In this
case, an application can set the Button’s state using the set-
Selection(boolean) method, where the boolean value selects
the button if true and deselects it when false. The two other
buttons that share this capability are the check button and
the radio button, which are described next.

3.3.4 Choosing with check buttons and SWT.CHECK

Check buttons work similarly to toggle buttons but are generally incorporated
into lists. The user can select one or more options by marking check buttons in a
collection. Because of their square selection area, these components are generally
called checkboxes. For easier processing, we recommend using check buttons in an
array, as shown in the following code:

Button[] checks = new Button[2];

checks[0] = new Button(shell, SWT.CHECK);
checks[0].setText("Choice 1");
checks[0].setLocation(10,5);
checks[0].pack();

checks[1] = new Button(shell, SWT.CHECK);
checks[1].setText("Choice 2");
checks[1].setLocation(10,30);
checks[1].pack();

By creating an array, an application can loop
through the check button values by invoking the
getSelection() method on each Button. Also, if the
program needs to set any of the choices in advance,
the setSelection() method marks the default
options. In figure 3.7, the setSelection() method
has been used to mark the first and third choices in
the Shell.

3.3.5 Making a single choice with radio buttons and SWT.RADIO

Sometimes a GUI only wants a single selection. In these situations, the open-
ended nature of check buttons, which allow the user to pick as many or as few

Figure 3.6
Toggle buttons keep
track of user
preferences instead
of performing an
action.

Figure 3.7
Check buttons let the user
select zero or more options
from a group.
Licensed to jromero <jose.romero@galicia.seresco.es>

Involving the user with buttons 37
options as desired, is unacceptable. You need a capability similar to buttons on a
radio, where selecting one immediately deselects the others. Appropriately, this
capability is made possible by using what SWT/JFace calls radio buttons, which are
created with the SWT.RADIO style.

Collecting radio buttons in arrays
Like check buttons, radio buttons are usually placed in a collection. A common
method for manipulating these Button objects involves placing them in arrays;
this technique allows the application to cycle through each object to acquire and
set its parameters, as shown in the following code:

Button[] radios = new Button[3];

radios[0] = new Button(shell, SWT.RADIO);
radios[0].setSelected(true);
radios[0].setText("Choice 1");
radios[0].setLocation(10,5);
radios[0].pack();

radios[1] = new Button(shell, SWT.RADIO);
radios[1].setText("Choice 2");
radios[1].setLocation(10,30);
radios[1].pack();

radios[2] = new Button(shell, SWT.RADIO);
radios[2].setText("Choice 3");
radios[2].setLocation(10,55);
radios[2].pack();

for (int i=0; i<radios.length; i++)
 if (radios[i].getSelected())
 System.out.println(i);

Placing this code in a Shell produces the result
shown in figure 3.8.

Containing radio buttons with
RadioGroupFieldEditors
Many toolsets provide components specifically for
collecting and managing groups of radio buttons.
SWT/JFace provides a similar capability, but not in
the Widget class or even in the org.eclipse.

swt.widgets package. The RadioGroupField-

Editor() class is hidden in the org.eclipse.

jface.preference package; it provides a means of containing radio buttons in a
single object.

Figure 3.8
With radio buttons, only one of
the available alternatives can be
selected.
Licensed to jromero <jose.romero@galicia.seresco.es>

38 CHAPTER 3

Widgets: part 1
 We’ll cover the topic of preferences in greater depth later in this book, but we’ll
provide a brief example here. This code sample creates a RadioGroupFieldEditor
object and populates it with three radio button labels:

RadioGroupFieldEditor rgfe = new RadioGroupFieldEditor(
 "UserChoice", "Choose an option:", 1,
 new String[][] {{"Choice1", "ch1"},
 {"Choice2", "ch2"},
 {"Choice3", "ch3"}},
 shell, true);

The first argument in the constructor provides a
name for the type of value returned by the editor.
The second and third arguments specify the
group’s label and its number of columns. The
fourth creates a set of option names with their asso-
ciated values. In this manner, the RadioGroupField-
Editor can display a series of radio buttons without
allocating Button objects. The fifth argument adds
the editor to a Shell object, which is shown in
figure 3.9.

 The final argument in the RadioGroupFieldEdi-
tor constructor specifies whether the radio buttons
should be incorporated in a Group object. This object is categorized as a container
widget because it collects a set of widgets and displays them in its boundaries. In
SWT/JFace, these container widgets are provided by the Composite class.

3.4 Containing components with Composites

Although container widgets aren’t as interesting as their contents, they’re neces-
sary in any SWT/JFace application. They make up the background structure of
GUIs and provide for modular code, which means multiple Composite objects can
be combined in a single Composite. Throughout this book, the majority of the
classes in our code examples extend the Composite class.

 In this section, we’ll examine these container widgets in depth. First, we’ll dis-
cuss the Composite class, its characteristics, and its parameters. Then, we’ll
describe three of its most prominent Composite subclasses: Groups, SashForms, and
TabFolders. This last subclass will be particularly important in this book, since it
forms the structure behind the WidgetWindow application.

Figure 3.9
With a RadioGroupField-
Editor object, you can display
a set of radio buttons without
creating individual Button
objects.
Licensed to jromero <jose.romero@galicia.seresco.es>

Containing components with Composites 39
3.4.1 Understanding the Composite class

We first discussed Composites when dealing with the parent object in chapter 2’s
HelloSWT_JFace application. There, the ApplicationWindow created a single Com-
posite to provide its visual aspect. However, Composite objects are generally used
to organize widgets in both the GUI and the application’s code. Like any Control,
they can be resized and repositioned in an application. Composites also have a
number of capabilities particular to their class. These are represented by the
methods listed in table 3.5.

These methods give applications the ability to manage the widgets contained
inside a Composite. The first method, getChildren(), lists the children of a Com-
posite as an array of Control objects. The next two methods, getLayout() and
setLayout(), deal with Layout objects, which specify how widgets are spatially
arranged. (We’ll discuss Layouts in chapter 6.) The getTabList() and setTab-

List() methods acquire and specify the tab order of widgets in a Composite; this
refers to the order in which widgets will be selected if the user repeatedly presses
the Tab key.

 As shown in figure 3.1, the Composite class is a direct subclass of the Scrol-
lable class. This means that all Composite objects in SWT/JFace can have
ScrollBars (covered in chapter 5) associated with them. In addition, all Scrol-
lable objects can use the methods listed in table 3.6 to access their dimensions
and ScrollBar objects.
The first two methods deal with an important concern in GUI design. Although
getSize() can tell you the total area of a Control, it can’t tell you how much of
that area is taken up by title bars, scrollbars, or status bars. This uneditable area of
a Composite is called its trim, whereas the region available for use is its client area,
which can be accessed using the Composite’s getClientArea() method. On the

Table 3.5 Methods provided by the Composite class

Composite method Function

getChildren() Returns an array of Control objects

getLayout() Returns the layout associated with the Composite

setLayout(Layout) Specifies the layout associated with the Composite

getTabList() Returns an array of Control objects according to their tab
order

setTabList(Control[]) Specifies the tab order of the widgets within the Composite
Licensed to jromero <jose.romero@galicia.seresco.es>

40 CHAPTER 3

Widgets: part 1
other hand, if you know how much client area your application needs, you can
use the computeTrim() method to return the size of the Composite necessary to
meet your specification.

 Figure 3.10 graphically shows the relationship between the Composite class, the
Scrollable class, and their many descendants.

3.4.2 Groups

Of all the Composite subclasses, the Group is the easiest to work with. It doesn’t
perform any action by itself, but it can improve the appearance and organization
of an application. Essentially, it functions by drawing a rectangular border around
its child widgets with a given label. You can specify this label with the set-
Text()method.

 The Group’s border closely resembles the separator (see section 3.2.1), in that
it provides the same SWT.SHADOW_IN, SWT.SHADOW_OUT, and SWT.SHADOW_NONE styles.

Table 3.6 Methods provided by the Scrollable class (superclass of Composite)

Composite method Function

getClientArea() Returns the available display area of a Scrollable object

computeTrim(int, int,
int, int)

Returns the necessary dimensions of the Composite for the desired
client area

getHorizontalBar() Returns the horizontal ScrollBar object

getVerticalBar() Returns the vertical ScrollBar object

Composite

TabFolderComboSashForm TableToolBar GroupTree

Scrollable

Control

List Text

Figure 3.10 The Control, Scrollable, and Composite classes and their hierarchical structure
Licensed to jromero <jose.romero@galicia.seresco.es>

Containing components with Composites 41
However, you can further customize this shadowing effect with etching by choosing
the SWT.SHADOW_ETCHED_IN or SWT.SHADOW_ETCHED_OUT style.

 Like many of the Widget subclasses, the Group class can’t be extended. There-
fore, our Ch3_Group, shown in listing 3.1, subclasses the Composite class and cre-
ates a Group object in it. This class will be integrated into the WidgetWindow
application at the end of the chapter, so we recommend that you create a package
named com.swtjface.Ch3 and insert Ch3_Group.

package com.swtjface.Ch3;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class Ch3_Group extends Composite
{
 public Ch3_Group(Composite parent)
 {
 super(parent, SWT.NONE);

 Group group = new Group(this, SWT.SHADOW_ETCHED_IN);
 group.setText("Group Label");

 Label label = new Label(group, SWT.NONE);
 label.setText("Two buttons:");
 label.setLocation(20,20);
 label.pack();

 Button button1 = new Button(group, SWT.PUSH);
 button1.setText("Push button");
 button1.setLocation(20,45);
 button1.pack();

 Button button2 = new Button(group, SWT.CHECK);
 button2.setText("Check button");
 button2.setBounds(20,75,90,30);

 group.pack();
 }
}

This straightforward code creates the straightforward container displayed in
figure 3.11.

 The Ch3_Group class can’t be directly executed: It needs an application to
invoke its constructor method and add its object to a Shell or ApplicationWindow.
Since most of the example code in this book is structured in Composite classes,
you need to create a short application specifically for viewing Composite objects.

Listing 3.1 Ch3_Group.java
Licensed to jromero <jose.romero@galicia.seresco.es>

42 CHAPTER 3

Widgets: part 1
This application, called CompViewer, is presented in listing 3.2. This class creates
an instance of Ch3_Group, adds it to the window’s parent Composite, and displays it
in the ApplicationWindow.

package com.swtjface.Ch3;
import org.eclipse.jface.window.*;
import org.eclipse.swt.widgets.*;

public class CompViewer extends ApplicationWindow
{
 public CompViewer()
 {
 super(null);
 }

 protected Control createContents(Composite parent)
 {
 Ch3_Group cc1 = new Ch3_Group(parent);
 return parent;
 }

 public static void main(String[] args)
 {
 CompViewer cv = new CompViewer();
 cv.setBlockOnOpen(true);
 cv.open();
 Display.getCurrent().dispose();
 }
}

Listing 3.2 CompViewer.java

Figure 3.11
Group objects organize child
widgets in a labeled border.
Licensed to jromero <jose.romero@galicia.seresco.es>

Containing components with Composites 43
The Group class performs the main functions of a Composite object, but other con-
tainers provide additional capability. This can be seen with the SashForm, which
allows users to manipulate the sizes of the Composite’s children.

3.4.3 SashForms

Although the Group container is suitable for static displays, sometimes applica-
tions need controls that can be dynamically resized. Such GUIs may present multi-
ple panels in a limited space, making it necessary for the user to expand one and
reduce others. The SashForm provides this capability by creating a moveable bar-
rier between child widgets. This barrier, called a Sash, allows the user to increase
the size of one widget while reducing the size of the other widgets in the Compos-
ite. The Sash class is located in the org.eclipse.swt.widgets package with the
majority of your widgets, but the SashForm class can be found in the
org.eclipse.swt.custom package.

 The styles and methods associated with the SashForm are mainly concerned
with the position of the Sash and the degree of expansion and reduction of the
form’s child widgets. You can specify the Sash’s orientation using the SWT.HORI-
ZONTAL or SWT.VERTICAL constant, or by incorporating one of these constants in
the setOrientation() method. The SashForm class provides a method called get-
MaximizedControl(), which returns the Control object that has been expanded
the most. Similarly, the getWeights() method returns an int array containing the
weight of each of the SashForm’s children. The setWeights() method uses an int
array to specify weights for each of the widgets in the Composite.

 Listing 3.3 presents the second Composite example in this chapter:
Ch3_SashForm. This class shows the capability of the SashForm by creating two
arrow buttons separated by a Sash.

package com.swtjface.Ch3;
import org.eclipse.swt.*;
import org.eclipse.swt.custom.SashForm;
import org.eclipse.swt.widgets.*;

public class Ch3_SashForm extends Composite
{
 public Ch3_SashForm(Composite parent)
 {
 super(parent, SWT.NONE);

 SashForm sf = new SashForm(this, SWT.VERTICAL);
 sf.setSize(120,80);

Listing 3.3 Ch3_SashForm.java
Licensed to jromero <jose.romero@galicia.seresco.es>

44 CHAPTER 3

Widgets: part 1
 Button button1 = new Button(sf, SWT.ARROW | SWT.UP);
 button1.setSize(120,40);

 Button button2 = new Button(sf, SWT.ARROW | SWT.DOWN);
 Button2.setBounds(0,40,120,40);
 }
}

When this Composite is instantiated in an application such as CompViewer, you get
the result shown in figure 3.12. This figure also displays how the GUI reacts when
the user raises and lowers the Sash object.

SashForms give you a certain amount of control over the GUI, but you may want to
do more than just expand or reduce child widgets. For example, if there are too
many GUI elements to fit in a given display, then you need a Composite to arrange
them into logical groups. This functionality is provided by the last Composite we’ll
present in this chapter, the TabFolder.

3.4.4 TabFolders

The TabFolder class extends the capability of Composites to incorporate multi-
ple Composite objects in a single container. Instances of this class hold other
containers in a structure resembling a filing cabinet, each accessible through a
tabbed index.

 The process of creating and populating a TabFolder is simple. After creating
the main instance, the application constructs a TabItem object for each page in the
TabFolder, also called a tab. Then, it invokes the setText() method with a String
argument that will serve as the tab’s label. Finally, using the setControl() method,
the application associates a Control that will be displayed when its tab is selected.

 A brief example of this configuration is shown here. Although the TabFolder’s
constructor takes an int argument, there are no styles particular to this class:

TabFolder folder = new TabFolder(parent, SWT.NONE);
TabItem item1 = new TabItem(folder, SWT.NONE);
item1.setText("Tab Label");
item1.setControl(new SashForm(folder));

Figure 3.12
SashForms allow the user to specify the
relative sizes of the Composite’s children.
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 45
In addition to the methods used to configure the tabs, the TabFolder class pro-
vides methods to acquire information about its TabItems:

■ getItemCount()—Returns the number of TabItems in the TabFolder

■ getItems()—Returns an array of the TabItem objects

■ getSelection()—Determines which TabItem the user has picked

■ setSelection()—Makes this decision from within the application

Because of this function and the modular manner in which new Composites can
be added, we decided to base the WidgetWindow application on a TabFolder object.
Therefore, rather than present a short TabFolder example here, we’ll proceed to
add this class to this book’s main application.

3.5 Updating WidgetWindow

From this point on, each chapter will contain a section devoted to adding graph-
ical components to the WidgetWindow GUI created in chapter 2. We’ll now
update this application by performing two tasks. First, we’ll add the two Compos-
ites from this chapter (Ch3_Group and Ch3_SashForm) into a final container,
Ch3_Composite. Then, we’ll create a TabFolder object in the WidgetWindow and
create its first TabItem.

3.5.1 Creating the Ch3_Composite class

Now that you’re familiar with programming with Composites, integrating two con-
tainers in a larger object will be simple. Listing 3.4 creates the Ch3_Composite class
for this purpose.

package com.swtjface.Ch3;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

public class Ch3_Composite extends Composite
{
 public Ch3_Composite(Composite parent)
 {
 super(parent, SWT.NONE);
 parent.getShell().setText("Chapter 3 Composite");

 Ch3_Group cc1 = new Ch3_Group(this);
 cc1.setLocation(0,0);
 cc1.pack();

Listing 3.4 Ch3_Composite.java
Licensed to jromero <jose.romero@galicia.seresco.es>

46 CHAPTER 3

Widgets: part 1
 Ch3_SashForm cc2 = new Ch3_SashForm(this);
 cc2.setLocation(125,25);
 cc2.pack();

 pack();
 }
}

As shown, adding Composites to a Composite is as simple as adding a normal Con-
trol. Each container maintains its features and functions. To see the result, let’s
add an instance of this class to the WidgetWindow application.

3.5.2 Creating the WidgetWindow TabFolder

As you’ve seen, working with TabFolders is a straightforward process. You need to
perform two steps to add the Ch3_Composite class to WidgetWindow: import the
com.swtjface.Ch3 package and then create a TabFolder with a TabItem representing
the Ch3_Composite class. This can be accomplished by updating the WidgetWindow
program in com.swtjface.Ch2 with the code shown in bold in listing 3.5.

package com.swtjface.Ch2;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.jface.window.*;

import com.swtjface.Ch3.*;

public class WidgetWindow extends ApplicationWindow
{
 public WidgetWindow()
 {
 super(null);
 }

 protected Control createContents(Composite parent)
 {
 TabFolder tf = new TabFolder(parent, SWT.NONE);

 TabItem chap3 = new TabItem(tf,SWT.NONE);
 chap3.setText("Chapter 3");
 chap3.setControl(new Ch3_Composite(tf));

 getShell().setText("Widget Window");
 return parent;
 }

 public static void main(String[] args)
 {

Listing 3.5 WidgetWindow.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Summary 47
 WidgetWindow wwin = new WidgetWindow();
 wwin.setBlockOnOpen(true);
 wwin.open();
 Display.getCurrent().dispose();
 }
}

When you execute WidgetWindow, the result should appear similar to figure 3.13.
 Although this simple application may not seem exciting yet, you have our

word that WidgetWindow will grow more interesting and more complex with
each chapter.

3.6 Summary

This chapter has delved deeply into the Widget class and its many subclasses and
methods. In addition to describing individual components, we have clarified the
class structure behind SWT/JFace widgets. This is important since a component’s
place in the hierarchy will determine what methods are available for use.

 This has been a relatively simple chapter, focusing on the Label widget, the
Button widget, and a small set of Composite subclasses. In each case, we’ve shown
you the styles and methods available and used them in code samples. But along
with being straightforward, these classes are necessary for any serious GUI pro-
grammer. Later chapters of this book will assume that you understand this mate-
rial thoroughly.

 The main drawback of this chapter is that its GUIs are so static. All the buttons
change with user selection, but the application doesn’t do anything. The Controls
in this chapter may as well be images for all they accomplish. Similarly, a Tab-
Folder with only one tab might as well be a plain Composite.

 What we need are events: We need to make these applications active instead of
passive. The theory behind this topic can become complex, but the capability it
provides is well worth the effort. Without further ado, let’s learn about the SWT/
JFace event model.

Figure 3.13
The updated WidgetWindow
application
Licensed to jromero <jose.romero@galicia.seresco.es>

Working with events
This chapter covers
■ Event processing with SWT
■ Typed and untyped listeners
■ Mouse and keyboard events
■ Event processing with JFace
■ Actions and contributions
48

Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in SWT 49
Without events, the widgets and containers we’ve looked at are only good for dec-
oration. This chapter focuses on how to configure these components to under-
stand and respond to user actions. In particular, it describes the SWT/JFace
framework that acquires these actions and translates them into software con-
structs called events. The process of using a toolset to generate, receive, and
respond to these events is the toolset’s event model. Many books on GUIs leave the
event model until later chapters, but we feel the subject’s importance demands an
early introduction.

 The first part of this chapter describes the SWT data structures that enable
applications to process events. These include the event classes, which are created
when a user carries out actions, and the listener interfaces, which receive event
objects. By combining these appropriately, an application can provide multiple
responses to nearly every form of event that can occur. However, SWT’s powerful
event-processing mechanisms can make coding more complicated than it needs
to be. For this reason, we need to examine how JFace simplifies the process.

 This chapter’s second part deals with using both SWT and JFace to interface
with the user. The JFace library replaces events and listeners with actions and con-
tributions, which perform the same function as their SWT counterparts but in very
different ways. These new classes simplify the process of event programming by
separating the event-processing methods from the GUI’s appearance. Also, actions
and contributions are meant for performing window-oriented interfacing, and
this narrowed scope reduces the developer’s programming burden.

4.1 Event processing in SWT

The SWT event-processing cycle is depicted in figure 4.1. It begins with the operat-
ing system’s event queue, which records and lists actions taken by the user. Once
an SWT application begins running, its Display class sorts through this queue
using its readAndDispatch() method and msg field, which acts as a handle to the
underlying OS message queue. If it finds anything relevant, it sends the event to
its top-level Shell object, which determines which widget should receive the
event. The Shell then sends the event to the widget that the user acted on, which
transfers this information to an associated interface called a listener. One of the lis-
tener’s methods performs the necessary processing or invokes another method to
handle the user’s action, called an event handler.
Licensed to jromero <jose.romero@galicia.seresco.es>

50 CHAPTER 4

Working with events
When making a widget responsive to events, the main tasks of the GUI designer
are determining which events need to be acted on, creating and associating listen-
ers to sense these events, and then building event handlers to perform the neces-
sary processing. This section will show how to accomplish these tasks using the
SWT data structures contained in the org.eclipse.swt.events package.

4.1.1 Using typed listeners and events

Most of the listener interfaces in SWT only react to a particular set of user actions.
They’re called typed listeners for this reason, and they inherit from the TypedLis-
tener class. Similarly, the events corresponding to these specific actions are typed
events, which subclass the TypedEvent class. For example, a mouse click or double-
click is represented by a MouseEvent, which is sent to an appropriate MouseLis-
tener for processing. Keyboard actions performed by the user are translated into
KeyEvents, which are picked up by KeyListeners. A full list of these typed events
and listeners is shown in table 4.1.

 In order to function, these listeners must be associated with components of the
GUI. For example, a TreeListener will only receive TreeEvents if it’s associated
with a Tree object. But not every GUI component can use each listener. For exam-
ple, as shown in the GUI component column of the table, a Control component
broadcasts many more types of events than a Tracker object. There are also listen-
ers, such as MenuListeners and TreeListeners, that can only be attached to very
specific widgets. This attachment is performed by invoking the component’s
add...Listener() method with the typed listener as the argument.

Operating
Sytem Event

Queue
Top-Level

Shell

Listener
Interface

Display

Event Handling
Method

msg Event Event Invokes

Widget

Figure 4.1 Acquiring events from the operating system and processing them in an SWT application
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in SWT 51
Table 4.1 SWT Event classes and their associated listeners

Event Listener Listener methods GUI component

ArmEvent ArmListener widgetArmed() MenuItem

ControlEvent ControlListener controlMoved()
controlResized()

Control,
TableColumn,
Tracker

DisposeEvent DisposeListener widgetDisposed() Widget

FocusEvent FocusListener focusGained()
focusLost()

Control

HelpEvent HelpListener helpRequested() Control, Menu,
MenuItem

KeyEvent KeyListener keyPressed()
keyReleased()

Control

MenuEvent MenuListener menuHidden()
menuShown()

Menu

ModifyEvent ModifyListener modifyText() CCombo, Combo,
Text, StyledText

MouseEvent MouseListener mouseDoubleClick()
mouseDown()
mouseUp()

Control

MouseMoveEvent MouseMoveListener mouseMove() Control

MouseTrackEvent MouseTrackListener mouseEnter()
mouseExit()
mouseHover()

Control

PaintEvent PaintListener paintControl() Control

SelectionEvent SelectionListener widgetDefaultSelected()
widgetSelected()

Button, CCombo,
Combo, CoolItem,
CTabFolder, List,
MenuItem, Sash,
Scale, ScrollBar,
Slider,
StyledText,
TabFolder, Table,
TableCursor,
TableColumn,
TableTree, Text,
ToolItem, Tree

ShellEvent ShellListener shellActivated()
shellClosed()
shellDeactivated()
shellDeiconified()
shellIconified()

Shell

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

52 CHAPTER 4

Working with events
Understanding Event classes
The Event column in table 4.1 lists the subclasses of TypedEvent that the Display
and Shell objects send to typed listeners. Although programmers generally don’t
manipulate these classes directly, the classes contain member fields that provide
information regarding the event’s occurrence. This information can be used in
event handlers to obtain information about the environment. These fields, inher-
ited from the TypedEvent and EventObject classes, are shown in table 4.2.

In addition to these, many event classes have other fields that provide more infor-
mation about the user’s action. For example, the MouseEvent class also includes a
button field, which tells which mouse button was pressed, and x and y, which spec-
ify the widget-relative coordinates of the mouse action. The ShellEvent class con-
tains a boolean field called doit, which lets you specify whether a given action will
result in its intended effect. Finally, the PaintEvent class provides additional meth-
ods that we’ll discuss in chapter 7.

Programming with listeners
There are two main methods of incorporating listeners in code. The first creates
an anonymous interface in the component’s add...Listener() method, which

TraverseEvent TraverseListener keyTraversed() Control

TreeEvent TreeListener treeCollapsed()
treeExpanded()

Tree, TableTree

VerifyEvent VerifyListener verifyText() Text, StyledText

Table 4.2 Data fields common to all typed events

TypedEvent

 field
Function

data Information for use in the Event handler

display The display in which the Event fired

source The component that triggered the Event

time The time that the Event occurred

widget The widget that fired the Event

Table 4.1 SWT Event classes and their associated listeners (continued)

Event Listener Listener methods GUI component
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in SWT 53
narrows the scope of the listener to the component only. This method is shown in
the following code snippet:

Button button = new Button(shell, SWT.PUSH | SWT.CENTER);
button.addMouseListener(new MouseListener()
{
 public void mouseDown(MouseEvent e)
 {
 clkdwnEventHandler();
 }

 public void mouseUp(MouseEvent e)
 {
 clkupEventHandler();
 }

 public void mouseDoubleClick(MouseEvent e)
 {
 dblclkEventHandler();
 }
});

static void dblclkEventHandler()
{
 System.out.println("Double click.");
}

static void clkdwnEventHandler()
{
 System.out.println("Click - down.");
}

static void clkupEventHandler()
{
 System.out.println("Click - up.");
}

In the first line, a Button widget is created and added to the application’s Shell.
Then, the addMouseListener() method creates an anonymous MouseListener
interface and associates it with the button. This interface contains three meth-
ods—mouseDown(), mouseUp(), and mouseDoubleClick()—which must be imple-
mented in any instance of a MouseListener. If the user presses the mouse button,
releases the button, or double-clicks, a MouseEvent is sent to one of these meth-
ods, which invokes the appropriate event-handling method. These event handlers
complete the event processing by sending a message to the console. Although the
event-handling routines are simple in this example, they generally demand more
effort than any other aspect of event processing.

 An anonymous interface can be helpful if you need to access objects (declared
with the final keyword) in the outer class. However, the listener can’t be associated
Licensed to jromero <jose.romero@galicia.seresco.es>

54 CHAPTER 4

Working with events
with other components. You can solve this problem by declaring a separate inter-
face that inherits from MouseListener. An example is shown here:

Button button = new Button(shell, SWT.PUSH | SWT.CENTER);
button.addMouseListener(ExampleMouseListener);

MouseListener ExampleMouseListener = new MouseListener()
{
 public void mouseDoubleClick(MouseEvent e)
 {
 System.out.println("Double click.");
 }

 public void mouseDown(MouseEvent e)
 {
 System.out.println("Click - down.");
 }

 public void mouseUp(MouseEvent e)
 {
 System.out.println("Click - up.");
 }
};

The previous code samples declare all three of the MouseListener’s member meth-
ods. But what if you’re only concerned with the double-click event, and you only
want to work with the mouseDoubleClick() method? If you use the MouseListener
interface, you have to declare all of its methods, just as in any interface. However,
you can eliminate this unnecessary code by using special classes called adapters.

4.1.2 Adapters

Adapters are abstract classes that implement Listener interfaces and provide
default implementations for each of their required methods. This means that
when you associate a widget with an adapter instead of a listener, you only need to
write code for the method(s) you’re interested in. Although this may seem like a
minor convenience, it can save you a great deal of programming time when
you’re working with complex GUIs.

NOTE The adapters mentioned in this section are very different from the model-
based adapters provided by the JFace library, first mentioned in chapter 2.
Here, adapters reduce the amount of code necessary to create listener
interfaces. Although model-based adapters can simplify event process-
ing, as you’ll see in section 4.2, they also help with many other aspects
of GUI programming.
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in SWT 55
Adapters are only available for events whose listeners have more than one mem-
ber method. The full list of these classes is shown in table 4.3, along with their
associated Listener classes.

Adapter objects are easy to code and are created with the same add...Listener()
methods. Two examples are shown here:

button.addMouseListener(new MouseAdapter()
{
 public void mouseDoubleClick(MouseEvent e)
 {
 dblclkEventHandler();
 }
)};

static void dblclkEventHandler()
{
 System.out.println("Double click.");
}

As shown, using the MouseAdapter class allows you to disregard the other methods
associated with the MouseListener interface and concentrate on handling the
double-click event. Similar to listener interfaces, adapters can be coded as anony-
mous classes or local classes.

4.1.3 Keyboard events

Although most of the events in table 4.1 are straightforward to understand and
use, the keyboard event classes require further explanation. Specifically, these

Table 4.3 SWT adapter classes and their corresponding listener interfaces

Adapter Listener

ControlAdapter ControlListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MenuAdapter MenuListener

MouseAdapter MouseListener

MouseTrackAdapter MouseTrackListener

SelectionAdapter SelectionListener

ShellAdapter ShellListener

TreeAdapter TreeListener
Licensed to jromero <jose.romero@galicia.seresco.es>

56 CHAPTER 4

Working with events
events include the KeyEvent class, which is created any time a key is pressed, and
its two subclasses, TraverseEvent and VerifyEvent. A TraverseEvent results when
the user presses an arrow key or the Tab key in order to focus on the next widget.
A VerifyEvent fires when the user enters text that the program needs to check
before taking further action.

 In addition to the fields inherited from the TypedEvent and EventObject
classes, the KeyEvent class has three member fields that provide information con-
cerning the key that triggered the event:

■ character—Provides a char value representing the pressed key.

■ stateMask—Returns an integer representing the state of the keyboard mod-
ifier keys. By examining this integer, a program can determine whether any
of the Alt, Ctrl, Shift, and Command keys are currently pressed.

■ keyCode—Provides the SWT public constant corresponding to the typed key,
called the key code. These public constants are presented in table 4.4.

The following code snippet shows how to use a KeyListener to receive and pro-
cess a KeyEvent. It also uses the fields (character, stateMask, and keyCode) to
acquire information about the pressed key:

Button button = new Button(shell, SWT.CENTER);
button.addKeyListener(new KeyAdapter()
{
 public void keyPressed(KeyEvent e)
 {
 String string = "";
 if ((e.stateMask & SWT.ALT) != 0) string += "ALT-";
 if ((e.stateMask & SWT.CTRL) != 0) string += "CTRL-";
 if ((e.stateMask & SWT.COMMAND) != 0) string += "COMMAND-";
 if ((e.stateMask & SWT.SHIFT) != 0) string += "SHIFT-";
 switch (e.keyCode)
 {
 case SWT.BS: string += "BACKSPACE"; break;
 case SWT.CR: string += "CARRIAGE RETURN"; break;
 case SWT.DEL: string += "DELETE"; break;
 case SWT.ESC: string += "ESCAPE"; break;
 case SWT.LF: string += "LINE FEED"; break;
 case SWT.TAB: string += "TAB"; break;
 default: string += e.character; break;
 }
 System.out.println (string);
 }
});
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in SWT 57
This code uses the KeyEvent fields and the public constants to create a String that
displays the name of the pressed key and any associated modifier keys. The first
step in the event handler’s operation involves checking the event’s stateMask field
to see whether the Alt, Ctrl, Shift, and Command keys are pressed. If so, the name
of the modifier key is added to the String. The method continues by checking
whether the event’s keyCode corresponds to an alphanumeric character or one of

Table 4.4 Keyboard entries and their SWT code constants

Key Key code

Alt SWT.ALT

Arrow (down) SWT.ARROW_DOWN

Arrow (left) SWT.ARROW_LEFT

Arrow (right) SWT.ARROW_RIGHT

Arrow (up) SWT.ARROW_UP

Backspace SWT.BS

Mouse button 1 SWT.BUTTON1

Mouse button 2 SWT.BUTTON2

Mouse button 3 SWT.BUTTON3

Carriage return SWT.CR

Ctrl SWT.CTRL

End SWT.END

Esc SWT.ESC

F1–F12 SWT.F1–SWT.F12

Home SWT.HOME

Insert SWT.INSERT

Line feed SWT.LF

Mod1–Mod4 SWT.MOD1–SWT.MOD4

Page Down SWT.PAGE_DOWN

Page Up SWT.PAGE_UP

Shift SWT.SHIFT

Tab SWT.TAB
Licensed to jromero <jose.romero@galicia.seresco.es>

58 CHAPTER 4

Working with events
the support keys. In either case, the name of the key is appended to the String,
which is sent to the console.

 The TraverseEvent fires when the user presses a key to progress from one
component to another, such as in a group of buttons or checkboxes. The two
fields contained in this class let you control whether the traversal action will
change the focus to another control, or whether the focus will remain on the wid-
get that fired the event. The simplest field, doit, is a boolean value that allows
(TRUE) or disallows (FALSE) traversal for the given widget. The second field of the
TraverseEvent class, detail, is more complicated. It’s an integer that represents
the identity of the key that caused the event. For example, if the user presses the
Tab key to switch to a new component, the detail field will contain the SWT con-
stant TRAVERSE_TAB_NEXT.

 Each type of control has a different default behavior for a given traversal key.
For example, a TraverseEvent that results from a TRAVERSE_TAB_NEXT action will,
by default, cause a traversal if the component is a radio button, but not if it’s a
Canvas object. Therefore, by setting the doit field to TRUE, you override the
default setting and allow the user to traverse. Setting the field to FALSE keeps the
focus on the component.

 The use of the VerifyEvent is similar to that of the TraverseEvent. The goal is
to determine beforehand whether the user’s action should result in the usual or
default behavior. In this case, you can check the user’s text to determine whether
it should be updated or deleted in the application. Two of the class fields, start
and end, specify the range of the input, and the text field contains the input
String under examination. Having looked at the user’s text, you set the boolean
doit field to allow (TRUE) or disallow (FALSE) the action.

4.1.4 Customizing event processing with untyped events

Typed events and listeners enable event processing with classes and interfaces
expressly suited to their tasks. Further, typed listeners provide specific methods to
receive and handle these events. By narrowing the scope of listeners and events to
handle only particular actions, the use of typed components reduces the possibil-
ity of committing coding errors.

 However, if you prefer coding flexibility over safety, SWT provides untyped
events and listeners. When an untyped listener, represented by the Listener class,
is associated with a GUI component, it receives every class of event that the com-
ponent is capable of sending. Therefore, you have to manipulate the catch-all
event, represented by the Event class, to determine which action the user per-
formed. The proper event-handling method can then be invoked.
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in SWT 59
 It’s important to note that Eclipse.org recommends against using untyped
events and listeners. In fact, it mentions that they are “not intended to be used by
applications.” These mechanisms also aren’t included with their typed counter-
parts in the org.eclipse.swt.events package. Instead, both the untyped Listener
interface and the Event class are located in the org.eclipse.swt.widgets package.

 Despite this, the SWT code snippets provided by the Eclipse website use
untyped listeners and events exclusively. This makes coding convenient, since you
can create a customized listener that reacts to a specified set of events. An exam-
ple is shown here:

Listener listener = new Listener ()
{
 public void handleEvent (Event event)
 {
 switch (event.type)
 {
 case SWT.KeyDown:
 if (event.character == 'b')
 System.out.println("Key"+event.character);
 break;
 case SWT.MouseDown:
 if (event.button == 3)
 System.out.println("Right click");
 break;
 case SWT.MouseDoubleClick:
 System.out.println("Double click");
 break;
 }
 }
};
Button button = new Button(shell, SWT.CENTER);
button.addListener(SWT.KeyDown, listener);
button.addListener(SWT.MouseDown, listener);
button.addListener(SWT.MouseDoubleClick, listener);

In this code, the Listener object sends any Event instance to its single method,
handleEvent(). Then, the Event’s type field determines what processing needs to
be done. If the event has type SWT.Keydown and the character is the letter b, then a
statement is sent to the console. If the type is SWT.MouseDown and the third mouse
button was pressed (that is, the user right-clicked), then the statement Right click is
shown. If an SWT.MouseDoubleClick event fires, then Double click is displayed.

 You can obtain this capability using typed listeners and events, but the process
is more involved. The button needs to add both a MouseListener and KeyLis-
tener, with corresponding adapters. Then, you need to place the event-handling
routines in the appropriate listener method. Clearly, untyped event processing is
Licensed to jromero <jose.romero@galicia.seresco.es>

60 CHAPTER 4

Working with events
not only more convenient in this case, but also reduces the number of classes nec-
essary to handle the event.

 In order to take the place of typed events, the Event class contains all the fields
in each typed event. It has the same character field as a KeyEvent and the same
button field as a MouseEvent. As shown in the previous code, it also has a field
called type, which refers to the nature of the event. A listing of these types is pre-
sented in table 4.5.

4.1.5 An SWT listener/event application

Before we discuss the JFace event model, we’ll present an SWT Composite that
integrates and summarizes the material covered. This class, shown in listing 4.1,
contains two buttons, a label, and the necessary event processing. We recommend
creating a com.swtjface.Ch4 package to your project and adding this class to it.

package com.swtjface.Ch4;
import org.eclipse.swt.events.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.*;

public class Ch4_MouseKey extends Composite
{
 Label output;

 Ch4_MouseKey(Composite parent)
 {
 super(parent, SWT.NULL);

Table 4.5 SWT type values for the Event class

Values for type field

SWT.Activate SWT.FocusIn SWT.KeyUp SWT.Move

SWT.Arm SWT.FocusOut SWT.MenuDetect SWT.None

SWT.Close SWT.Expand SWT.Modify SWT.Paint

SWT.Collapse SWT.HardKeyDown SWT.MouseDoubleClick SWT.Resize

SWT.Deactivate SWT.HardKeyUp SWT.MouseEnter SWT.Selection

SWT.DefaultSelection SWT.Help SWT.MouseExit SWT.Show

SWT.Deiconify SWT.Hide SWT.MouseHover SWT.Traverse

SWT.Dispose SWT.Iconify SWT.MouseMove SWT.Verify

SWT.DragDetect SWT.KeyDown SWT.MouseUp

Listing 4.1 Ch4_MouseKey.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in SWT 61
 Button typed = new Button(this, SWT.PUSH);
 typed.setText("Typed");
 typed.setLocation(2,10);
 typed.pack();

 typed.addKeyListener(new KeyAdapter()
 {
 public void keyPressed(KeyEvent e)
 {
 keyHandler();
 }
 });

 Button untyped = new Button(this, SWT.PUSH);
 untyped.setText("Untyped");
 untyped.setLocation(80,10);
 untyped.pack();
 untyped.addListener(SWT.MouseEnter, UntypedListener);
 untyped.addListener(SWT.MouseExit, UntypedListener);

 output = new Label(this, SWT.SHADOW_OUT);
 output.setBounds(40,70,90,40);
 output.setText("No Event");

 pack();
 }

 Listener UntypedListener = new Listener()
 {
 public void handleEvent(Event event)
 {
 switch (event.type)
 {
 case SWT.MouseEnter:
 output.setText("Mouse Enter");
 break;
 case SWT.MouseExit:
 output.setText("Mouse Exit");
 break;
 }
 }
 };

 void keyHandler()
 {
 output.setText("Key Event");
 }
}

The first button is associated with an anonymous typed listener that receives key-
board events when selected. An untypedListener interface is added to the second
Licensed to jromero <jose.romero@galicia.seresco.es>

62 CHAPTER 4

Working with events
button, which catches events that occur when the mouse pointer enters and exits
the button. Whenever either button fires an event, a String is sent to the label.

 By integrating this Composite in the CompViewer application from the previous
chapter, the displayed Shell should resemble figure 4.2.

 The SWT structure of this code allows a widget to receive many types of events
and provides for many different responses. But in the majority of GUIs, this isn’t
necessary. In these cases, SWT’s broad capabilities only increase the complexity of
coding event processing. Those willing to trade power for simplicity will find the
JFace event model very helpful.

4.2 Event processing in JFace

A listener interface can provide the same event handling for different controls, but
its usage depends on the component that launched the event. Listeners that
receive MouseEvents can’t be used for menu bar selections. Even untyped Events are
only useful after the program determines which type of control triggered the event.

 But when you’re dealing with complex user interfaces, it’s helpful to separate
the event-handling capability from the GUI components that generated the event.
This allows one group to work on a GUI’s event handling independently from the
group designing its appearance. Also, if a listener’s capability can be attached to
any component, then its code can be reused more often. Finally, if one section of
a program deals strictly with the GUI’s view and another is concerned only with
event processing, then the code is easier to develop and understand.

 JFace provides this separation with its Action and ActionContributionItem
classes. Put simply, an ActionContributionItem combines the function of a GUI
widget and its attached listener class. Whenever the user interfaces with it, it trig-
gers its associated Action class, which takes care of handling the event. Although
this may seem similar to SWT’s listener/event model, these classes are more
abstract, simpler to use, and narrower in scope.

Figure 4.2
The Ch4_MouseKey Composite.
This example combines many types of
SWT classes and interfaces used for
event handling.
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in JFace 63
 Because these classes are more abstract than their SWT counterparts, it may
take time to appreciate their merits. However, once you understand them, we feel
certain that you’ll use them regularly when handling repetitive event processing.
This can be best proven through coding examples. But first, a technical introduc-
tion is in order.

4.2.1 Understanding actions and contributions

Although it’s interesting to know that you can handle TraverseEvents and
ArmEvents if they occur, few applications use them. Also, it may be fascinating to
attach multiple listeners and event handlers to a widget, but GUI components usu-
ally perform only a single function in response to a single input type. Because
SWT’s structure provides for every conceivable component and combination of
events, even the simplest listener/event code requires complexity.

 It would make event programming easier if a toolset concentrated on only
those few widgets and events that are used most often and made their usage as
simple as possible. JFace’s event-processing structure does exactly this: Its goal is
to make event processing more straightforward, allowing programmers to receive
and use common events with fewer lines of code. In reaching this goal, JFace
makes three assumptions:

■ The user’s actions will involve buttons, toolbars, and menus.

■ Each component will have only one associated event.

■ Each event will have only one event handler.

By taking these assumptions into account, JFace simplifies event processing consid-
erably. The first assumption means that contributions only need to take one of
three forms. The second assumption provides the separation of contributions from
their associated actions; that is, if each contributing component triggers only one
event, then it doesn’t matter what action is triggered or which component fired the
event. The third assumption means that each action needs only one event-handling
routine. This simplified event model for SWT/JFace is shown in figure 4.3.

 Like the SWT event model, the interface process begins with the Display class
keeping track of the operating system’s event queue. This time, though, it passes
information to the ApplicationWindow, which contains the Display’s Shell object.
The ApplicationWindow creates an Actionb class and sends it to the contribution
that generated the original event. The contribution then invokes the run()
method of the Action class as the single event handler.
Licensed to jromero <jose.romero@galicia.seresco.es>

64 CHAPTER 4

Working with events
The Action class behaves similarly to SWT’s Event class, but the contribution capa-
bility is more complicated. The two main contribution classes are the Contribu-
tionItem class and the ContributionManager class. The ContributionItem class
provides individual GUI components that trigger actions, and the Contribution-
Manager class produces objects capable of containing ContributionItems. Because
these are both abstract classes, event handling is performed with their subclasses.
Figure 4.4 shows these inheritance relationships.

 Although the ActionContributionItem class is one of many concrete subclasses
of ContributionItem, it’s the most important. This class is created and imple-
mented in an ApplicationWindow to connect an action to the GUI. It has no set
appearance, but instead takes the form of a button, menu bar item, or toolbar
item, depending on your use of the fill() method.

 The second way to incorporate contributions in an application involves the
use of a ContributionManager subclass. These subclasses serve as containers for

Operating
System Event

Queue
Application

Window

Display Contribution

run()

msg Action Invokes

Figure 4.3 By combining listeners and widgets into contributions, this event model is much
easier to code.

«interface»
IContributionItem ContributionItem

«interface»
IContributionManager ContributionManager

ActionContributionItem MenuManager Tool Bar Manager

Figure 4.4 The classes and interfaces that provide contribution capability in the SWT/JFace model
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in JFace 65
ContributionItems, combining them to improve GUI organization and simplify
programming. The MenuManager class combines ContributionItems in a window’s
top-level menu, and the ToolBarManager class places these objects in a toolbar
located just under the menu.

4.2.2 Creating Action classes

Listing 4.2 creates a subclass of the abstract Action class called Ch4_StatusAction.
This class functions by sending a String to an ApplicationWindow’s status line when-
ever it triggers. We recommend that you add this class to your project directory.

 Because this class will be implemented in a toolbar, it needs an associated
image. The simplest way to do this is to enter the $ECLIPSE_HOME/plugins/
org.eclipse.platform_x.y.z directory, copy the eclipse.gif file, and paste it into the
current project folder.

package com.swtjface.Ch4;

import org.eclipse.jface.action.*;
import org.eclipse.jface.resource.*;

public class Ch4_StatusAction extends Action
{
 StatusLineManager statman;
 short triggercount = 0;

 public Ch4_StatusAction(StatusLineManager sm)
 {
 super("&Trigger@Ctrl+T", AS_PUSH_BUTTON);
 statman = sm;
 setToolTipText("Trigger the Action");
 setImageDescriptor(ImageDescriptor.createFromFile
 (this.getClass(),"eclipse.gif"));
 }

 public void run()
 {
 triggercount++;
 statman.setMessage("The status action has fired. Count: " +
 triggercount);
 }
}

The first thing to observe in this class is what isn’t present. Although the construc-
tor receives a StatusLineManager object to display output, the Ch4_StatusAction

Listing 4.2 Ch4_StatusAction.java
Licensed to jromero <jose.romero@galicia.seresco.es>

66 CHAPTER 4

Working with events
class has no idea what components are firing its action. Therefore, any control
that can generate actions can have an associated Ch4_StatusAction without addi-
tional code. Also, there is only one event-handling routine, run(), as opposed to
the multiple handlers associated with SWT events.

 The run() method handles the event processing, but the main work in this
class is performed in the constructor. First, it invokes the constructor of its super-
class, Action, and initializes its TEXT and STYLE fields. This way, if the
Ch4_StatusAction is incorporated in a menu, the item label will read Trigger. The
& before the T means that this letter will serve as the accelerator key for the
action. The Ctrl+T in the TEXT field ensures that the action will fire if the user
presses the Ctrl and T keys simultaneously.

 Beneath the Action constructor, further methods are invoked to configure its
appearance in the GUI. If it’s implemented in a Composite, the Ch4_StatusAction
class will take its form according to the AS_PUSH_BUTTON style, as opposed to the
AS_RADIO_BUTTON or AS_CHECK_BOX style. Next, the setToolTipText() method ini-
tializes the TOOL_TIP_TEXT field of the class, creating the String that will appear
when a mouse pointer hovers over the toolbar item. Finally, the constructor asso-
ciates an image with the Ch4_StatusAction class, which will appear on the toolbar
item and button.

 Every time the Ch4_StatusAction is generated, the run() method is invoked. In
this case, the triggercount accumulator is updated, and a message is sent to the
StatusLineManager object. In most applications, however, this method will be
much more involved in order to serve your event-processing needs.

4.2.3 Implementing contributions in an ApplicationWindow

Because actions and contributions can only be associated with buttons, toolbar
items, and menu items, any application demonstrating their capability must rely
on these components. So, although a formal introduction to these widgets will
have to wait until later chapters, we must include them here for that purpose.

 Listing 4.3 shows how ContributionItem and ContributionManager classes are
added to a window. Three contributor classes, ActionContributionItem, MenuMan-
ager, and ToolBarManager, all trigger the Ch4_StatusAction when acted on. This
action sends a message to the status line at the bottom of the window.

 We recommend that you create the Ch4_Contributions class in com.swtjface.Ch4
and run the executable with the Ch4_StatusAction class in the same directory.
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in JFace 67
NOTE On many platforms, the Contribution operation can’t take place unless
the OSGi library is added. For this reason, we recommend that you cre-
ate an OSGI_LIB variable and match it to the osgi.jar file located at
$ECLIPSE/plugins/osgi_x.y.z/. The full process for adding classpath
variables is described in appendix A.

OSGi refers to the Open Services Gateway Initiative, which was
formed to enable networking for smart devices in consumer electronics,
cars, and homes. Although its widespread adoption seems uncertain at
the time of this writing, it’s certain that IBM wants it to succeed very badly.

package com.swtjface.Ch4;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.jface.window.*;
import org.eclipse.jface.action.*;

public class Ch4_Contributions extends ApplicationWindow
{
 StatusLineManager slm = new StatusLineManager();
 Ch4_StatusAction status_action = new Ch4_StatusAction(slm);
 ActionContributionItem aci = new
 ActionContributionItem(status_action);

 public Ch4_Contributions()
 {
 super(null);
 addStatusLine();
 addMenuBar();
 addToolBar(SWT.FLAT | SWT.WRAP);
 }

 protected Control createContents(Composite parent)
 {
 getShell().setText("Action/Contribution Example");
 parent.setSize(290,150);
 aci.fill(parent);
 return parent;
 }

 public static void main(String[] args)
 {
 Ch4_Contributions swin = new Ch4_Contributions();
 swin.setBlockOnOpen(true);
 swin.open();
 Display.getCurrent().dispose();
 }

 protected MenuManager createMenuManager()
 {

Listing 4.3 Ch4_Contributions.java

b
Assign status_action
contribution

c Add resources to
ApplicationWindow

d Create button
within window
Licensed to jromero <jose.romero@galicia.seresco.es>

68 CHAPTER 4

Working with events
 MenuManager main_menu = new MenuManager(null);
 MenuManager action_menu = new MenuManager("Menu");
 main_menu.add(action_menu);
 action_menu.add(status_action);
 return main_menu;
 }

 protected ToolBarManager createToolBarManager(int style)
 {
 ToolBarManager tool_bar_manager = new ToolBarManager(style);
 tool_bar_manager.add(status_action);
 return tool_bar_manager;
 }

 protected StatusLineManager createStatusLineManager()
 {
 return slm;
 }
}

The only difference between this JFace application and those in prior chapters is
the introduction of actions and contributions.

Beneath the class declaration, the program constructs an instance of the
Ch4_StatusAction with a StatusLineManager object as its argument. Then, it cre-
ates an ActionContributionItem object and identifies it with the
Ch4_StatusAction instance. This contribution has no form yet, but is simply a
high-level means of connecting an action to the user interface.

The constructor method creates an ApplicationWindow object and adds a menu,
toolbar, and status line.

The createContents() method sets the title and size of the window and then
invokes aci.fill(). This method is important since it places the ActionContribu-
tionItem object in the GUI. In this case, because the fill() argument is a Compos-
ite object, the contributor takes the form of a button that triggers a StatusEvent
whenever it’s pressed.

The last three methods in Ch4_Contributions are also straightforward. The main()
method takes care of creating and opening the window and then disposing of the
GUI resources. Then, the createMenuManager() method creates a menu instance at
the top of the window. Because it’s a subclass of ContributionManager, an Action
object can be associated with it, and the status_action object is added with the
add() method. This method is also used in the createToolBarManager() method to
associate the action instance. In both cases, an ActionContributionItem is

b Assign status_action
contribution

b

b

c

d

Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in JFace 69
implicitly created and added to the menu in the form of a menu item and to the
toolbar as a toolbar item.

 Figure 4.5 shows the user interface of Ch4_Contributions. The status line at
the bottom keeps a running count of the number of Ch4_StatusActions that
trigger.

4.2.4 Interfacing with contributions

There are two main ways of incorporating an ActionContributionItem in a GUI.
The first method is to use the add() method of a ContributionManager subclass, as
performed by the MenuManager and ToolBarManager in the Ch4_Contributions
application. The second is to use the fill() method associated with the Action-
ContributionItem class and add an SWT widget as its argument. If the argument is
a Composite, as in Ch4_Contributions, then the contributor will appear as deter-
mined by the STYLE property of the action. If the argument is an SWT Menu object,
then the contributor will take the form of a menu item. Finally, if the argument is
an SWT ToolBar object, then the contributor will appear as an item in a toolbar.
The characteristics of the fill() method are shown in table 4.6.

Figure 4.5 Ch4_Contributions. This application shows the three ways a ContributionItem can
be incorporated in a window.

Table 4.6 Overloaded fill() methods of the ActionContributionItem and their associ-
ated appearances

fill() method GUI implementation (appearance)

fill(Composite) According to Action’s STYLE property

fill(Menu, index) MenuItem with index position

fill(ToolBar, index) ToolBarItem with index position
Licensed to jromero <jose.romero@galicia.seresco.es>

70 CHAPTER 4

Working with events
An interesting characteristic of the ContributionManager class is that its add()
method is overloaded to accept arguments of both Action and ActionContribution-
Item classes. So, you can associate a ContributionItem with a ContributionManager
implicitly (with the Action) or explicitly (with the ActionContributionItem). But
there’s a fundamental difference: You can perform implicit contribution association
repeatedly with the same Action object, as shown in the Ch4_Contributions class.
Explicit contribution association can be performed only once.

4.2.5 Exploring the Action class

Although Ch4_StatusAction was simple to code and understand, you need to
keep in mind many more aspects of the Action class. The Action class contains a
large number of methods to enhance the capability of your user interface. These
have been divided into categories and listed in the tables that follow.

 The first set of methods, shown in table 4.7, is important in any implementa-
tion of the Action class. The first and most important method is run(). As we men-
tioned earlier, this is the single event-handling routine in an Action class, and it’s
invoked every time the action is triggered. The next method in the table serves as
the default constructor. In addition, constructor methods initialize the member
fields associated with the Action class, which we’ll fully describe shortly.

As shown in the Ch4_StatusAction code sample, an instance of the Action class
contains a number of fields that provide information about displaying the Action
in a GUI. You can access and manipulate these fields using the methods listed in
table 4.8. The TEXT field, set and accessed by the first two methods, contains a
String that displays a title or menu item description in a contributor. The next
two deal with the DESCRIPTION field, which is generally written to a status line to
provide additional help. When the user rests the pointer on a contributor, the

Table 4.7 Important methods of the Action class

Action method Function

run() Performs event processing associated with the Action

Action() Default constructor

Action(String) Constructor that initializes the TEXT field

Action(String, ImageDescriptor) Constructor that initializes the TEXT field and associ-
ates an image with the Action

Action(String, int) Constructor that sets the TEXT and STYLE fields
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in JFace 71
String in the TOOL_TIP_TEXT field is shown. The last two methods in this table set
and access the IMAGE property of the Action class, which contains a String repre-
senting an object of the ImageDescriptor class. As we’ll further explain in
chapter 7, an ImageDescriptor isn’t an image, but an object that holds informa-
tion needed to create one.

The final field contained in the Action class is the STYLE. This integer value is set
by a constructor and accessed through the getStyle() method listed at the top of
table 4.9. The next two methods, setEnabled() and getEnabled(), determine
whether the component(s) associated with the Action object can be acted on by
the user. If not, they are grayed out by default. The final methods, setChecked()
and isChecked(), are useful if the Action is associated with a radio button or
checkbox. They’re used to set the default state of the button or determine
whether the user has checked it.

Table 4.8 Property methods for the Action class

Action property method Function

setText(String) Sets the TEXT field

getText() Returns the TEXT field

setDescription(String) Sets the DESCRIPTION field

getDescription() Returns the DESCRIPTION field

setToolTipText(String) Sets the TOOL_TIP_TEXT field

getToolTipText() Returns the TOOL_TIP_TEXT field

setImageDescriptor(ImageDescriptor) Sets the IMAGE field

getImageDescriptor() Returns the IMAGE field

Table 4.9 Style methods for the Action class

Action style method Function

getStyle() Returns the STYLE field

setEnabled(boolean) Sets the ENABLED field

getEnabled() Returns the ENABLED field

setChecked(boolean) Sets the CHECKED field

isChecked(void) Returns the CHECKED field
Licensed to jromero <jose.romero@galicia.seresco.es>

72 CHAPTER 4

Working with events
Table 4.10 shows the methods that deal with accelerator keys and keyboard con-
version. Accelerator keys are keyboard shortcuts that accomplish the same function
as a mouse click. As mentioned in section 4.1.4, pressed keys are represented in
SWT with integer key codes, which include all alphanumeric keys and modifier
keys (Alt, Ctrl, Shift, Command). The first method creates an accelerator key for
the Action object and associates it with an SWT key code. The next method pro-
vides the key code for the Action’s accelerator key. The next two methods convert
back and forth between an accelerator key’s key code and its String representa-
tion. The removeAcceleratorKey() method parses text and deletes occurrences of
the Action’s accelerator key. The last four methods in the table provide conver-
sion between Strings representing keyboard characters and modifier keys, and
their SWT code representations.

Although JFace uses actions to replace the SWT listener/event mechanism, the
Action class can still incorporate listeners for special-purpose event handling.
These methods are shown in table 4.11; they mainly concern the IProperty-
ChangeListener interface. This interface pays attention to user-customized Prop-
ertyChangeEvents, which fire whenever a given Object changes into a different
Object in a manner you describe. Although dealing with property changes may
seem complicated, they let you create custom listener/event relationships instead
of being limited to those provided by SWT.

 The first two methods in table 4.11 take care of associating and disassociat-
ing PropertyChangeListeners. You can use the next two methods to test these

Table 4.10 Accelerator key / keyboard methods for the Action class

Keyboard method Function

setAccelerator(int) Set the key code as the Action’s accelerator key

getAccelerator() Returns the key code for the Action’s accelerator key

convertAccelerator(int) Converts the accelerator key to a String

convertAccelerator(String) Converts the String to an accelerator key

removeAcceleratorText(String) Removes the accelerator keys from a given String

findKeyCode(String) Converts the key name to an SWT key code

findKeyString(int) Converts the key code to a key name

findModifier(String) Converts the modifier name to a modifier key code

findModifierString(int) Converts the modifier key code to a modifier name
Licensed to jromero <jose.romero@galicia.seresco.es>

Event processing in JFace 73
listeners by triggering property changes, based on a precreated event class or a
specified change in a given Object. The final methods in this table relate to
HelpListeners, which deal with the user’s attempt to obtain information con-
cerning a given component.

Table 4.12 lists a group of diverse methods contained in the Action class. The first
four are used to obtain and access identifiers for both the Action class and its def-
inition. The next two, setMenuCreator() and getMenuCreator(), work with IMenu-
Creator interfaces that can be associated with an Action object. This interface
provides a simple way of creating a drop-down or pop-up menu when a particular
action triggers. The last four methods concern more images that can be linked to
an action. When an Action’s ENABLED field is set to FALSE, you can specify which
image will represent the action by using the setDisabledImageDescriptor()
method and retrieve the image with the getDisabledImageDescriptor() method.
Also, if you want to change an image while a pointer hovers above it, the set-
HoverImageDescriptor() method will set this property.

Table 4.11 Listener methods for the Action class

Action listener method Function

addPropertyChangeListener
(IPropertyChangeListener)

Associates a property change listener with the Action

removePropertyChangeListener
(IPropertyChangeListener)

Removes a property change listener from the Action

firePropertyChange(Event) Changes a property according to an event

firePropertyChange
(String, Object, Object)

Changes a property according to old and new objects

setHelpListener(HelpListener) Associates a help listener with the Action

getHelpListener() Returns a help listener associated with the Action

Table 4.12 Miscellaneous methods of the Action class

Method Description

setID(String) Sets an Action identifier

getID() Returns an Action identifier

setActionDefinitionID(String) Sets an Action definition identifier

getActionDefinitionID() Returns an Action definition identifier

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

74 CHAPTER 4

Working with events
With these methods, the JFace toolset broadens the functionality of the Action
class far beyond the simple Ch4_StatusAction class. Although you may not need
all of them, it’s important to know how they function and how they can be used in
applications.

4.3 Updating the WidgetWindow

To continue populating the WidgetWindow application, this chapter provides a
Composite subclass containing widgets that receive and respond to user actions.
This will incorporate code presented earlier in the chapter.

4.3.1 Building the chapter 4 Composite

Listing 4.4 presents the Ch4_Composite class, which subclasses the Ch4_MouseKey
class from section 4.1 and launches the Ch4_Contributions class developed in sec-
tion 4.2. We recommend that you add this class to the com.swtjface.Ch4 package.

package com.swtjface.Ch4;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.events.*;

public class Ch4_Composite extends Ch4_MouseKey
{
 public Ch4_Composite(Composite parent)
 {
 super(parent);
 Button launch = new Button(this, SWT.PUSH);
 launch.setText("Launch");
 launch.setLocation(40,120);
 launch.pack();

setMenuCreator(IMenuCreator) Sets a menu creator for the Action

getMenuCreator() Returns a menu creator for the Action

setDisabledImageDescriptor(ImageDescriptor) Sets the disabled Action image

getDisabledImageDescriptor() Returns the disabled Action image

setHoverImageDescriptor(ImageDescriptor) Sets the mouse-hovering image

getHoverImageDescriptor() Returns the mouse hovering image

Table 4.12 Miscellaneous methods of the Action class (continued)

Method Description

Listing 4.4 Ch4_Composite.java
Licensed to jromero <jose.romero@galicia.seresco.es>

www.allitebooks.com

http://www.allitebooks.org

Updating the WidgetWindow 75
 launch.addMouseListener(new MouseAdapter()
 {
 public void mouseDown(MouseEvent e)
 {
 Ch4_Contributions sw = new Ch4_Contributions();
 sw.open();
 }
 });
 }
}

The operation of Ch4_Composite is simple to understand. By extending the
Ch4_MouseKey class, it incorporates the typed and untyped SWT listeners associated
with that Composite. It also adds a third button labeled Launch. When clicked,
this button creates an instance of the JFace window that uses actions and contrib-
utors to perform event processing.

4.3.2 Adding Ch4_Composite to the WidgetWindow

Next a tab is added to the WidgetWindow Tabfolder that comprises the Composite
created in this chapter. The code for the main WidgetWindow application is shown
in listing 4.5, with the lines added in this chapter in boldface.

package com.swtjface.Ch2;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.jface.window.*;

import com.swtjface.Ch3.*;
import com.swtjface.Ch4.*;

public class WidgetWindow extends Window {

 public WidgetWindow() {
 super(null);
 }

 protected Control createContents(Composite parent) {
 TabFolder tf = new TabFolder(parent, SWT.NONE);

 TabItem chap3 = new TabItem(tf,SWT.NONE);
 chap3.setText("Chapter 3");
 chap3.setControl(new Ch3Comp(tf));

 TabItem chap4 = new TabItem(tf,SWT.NONE);
 chap4.setText("Chapter 4");
 chap4.setControl(new Ch4_Composite(tf));

Listing 4.5 The updated WidgetWindow
Licensed to jromero <jose.romero@galicia.seresco.es>

76 CHAPTER 4

Working with events
 getShell().setText("Widget Window");
 return parent;
 }

 public static void main(String[] args) {
 WidgetWindow wwin = new WidgetWindow();
 wwin.setBlockOnOpen(true);
 wwin.open();
 Display.getCurrent().dispose();
 }
}

Once updated, the WidgetWindow should appear similar to the GUI shown in
figure 4.6. Ch4_Contributions appears when the Launch button is clicked.

Figure 4.6
The updated WidgetWindow
Licensed to jromero <jose.romero@galicia.seresco.es>

Summary 77
4.4 Summary

Event handling is simple in theory but complicated in practice. It’s obvious that
when a user clicks a button or enters text, a software routine should respond. But
the process of keeping track of which widget fired the event, what type of event
occurred, and which software routine should execute isn’t obvious and requires
effort. To an extent, the degree of effort depends on the toolset. If the toolset pro-
vides processing of as many events as possible, for as many widgets as possible, then
you’ll pay for this vast scope by having to comply with a complicated code structure.

 This is the situation with SWT’s event model. Because there are so many differ-
ent types of events, you need tables 4.1 and 4.5 in order to write responsive code.
So many methods are available for responding to events that a separate adapter
class becomes necessary. This event processing demands a fair amount of under-
standing, but when you need to keep track of right-click events and whether the
user can traverse a widget, SWT is the best toolset available.

 The developers of JFace, on the other hand, used the Pareto Rule in designing
the toolset. This rule, applied to GUI programming, states that 80% of the code
needed for event processing will deal with only 20% of the available events. Simi-
larly, the majority of these events will be fired by a small set of widgets. By follow-
ing these rules, the developers of JFace concluded that there is no need for
listeners, adapters, or widgets. Instead, JFace performs event processing with
actions, which are triggered when a user interfaces the GUI, and contributors,
which can take multiple forms but trigger a single action.

 Clearly, a user interface of any complexity must incorporate both event-
processing methods. Although JFace will provide rapid coding for menus, tool-
bars, and buttons, SWT is needed to process keyboard actions as well as events
related to widgets like Shells and tables. Also, JFace’s classes won’t help you when
you need to distinguish between a left click and a right click. Therefore, a GUI
developer seeking to provide a maximum of capability with a minimum of code
should be familiar with both toolsets.

 As shown by the tables in this chapter, effective event programming depends
on keeping track of a myriad of rules, classes, and details. Because of this com-
plexity, we thought long and hard about where to present this material in this
book. We first planned to present the SWT/JFace event model in the later chap-
ters, but then all of the preceding code would be static. So, to ensure that future
code examples will be more helpful to readers, we decided to introduce this con-
voluted subject early on.

 Let’s start building dynamic GUIs!
Licensed to jromero <jose.romero@galicia.seresco.es>

More widgets
This chapter covers
■ SWT Text widgets
■ JFace Text widgets
■ Combo boxes
■ Toolbars
■ Sliders
■ Progress indicators
78

Licensed to jromero <jose.romero@galicia.seresco.es>

Editing text with SWT 79
Now that you know how to tie together widgets with events and listeners, we’ll
continue our tour of JFace/SWT widgets. The controls we discuss in this chapter
will round out your toolbox of widgets and give you an understanding of the
majority of controls you’ll be using in a GUI application.

 We’ll explore two (mostly) separate approaches to text editing in this chapter.
First we’ll discuss in some detail the text widgets built into SWT. We’ll follow this
discussion with an overview of the enhanced text support available in JFace.
Although the JFace text packages offer more advanced options, they’re also much
more complicated to use.

 Once we’ve covered the details of text editing, we’ll move on to a demonstra-
tion of several commonly used widgets. We’ll cover combo boxes, toolbars, sliders,
and progress indicators, as well as discussing the coolbar, which allows you to
group several toolbars and let users rearrange them in whatever configuration
they find most convenient.

 In a break from the way we’ve been doing things, we won’t build a single exam-
ple for the WidgetWindow application. Instead, due to the wide variety of widgets
we cover, we’ll create several smaller examples that demonstrate a single widget or
concept at a time. These examples will each be structured the same as the Compos-
ites you’ve seen before, and they can be plugged in to the WidgetWindow like any
of our other examples.

5.1 Editing text with SWT

SWT provides two controls for your text-editing needs: Text allows text to be
entered with no style or formatting; StyledText, on the other hand, lets you
change the color and style of both the entered text and the control itself.
Although StyledText is very similar to Text, with the addition of methods to con-
trol styles, the classes are unrelated other than the fact that both extend Compos-
ite (as most widgets do).

 The editing facilities provided by these classes are rudimentary. They provide
convenience methods to copy text to or from the clipboard, but you’ll need to
write code to call these methods at the appropriate times.

5.1.1 The basic Text widget

The Text control allows the user to enter unformatted text. Text can be instanti-
ated and used in its basic form; however, a few more interesting capabilities are
available. Text exposes several events, and by listening to them, you can affect the
Licensed to jromero <jose.romero@galicia.seresco.es>

80 CHAPTER 5

More widgets
widget’s behavior. A brief example will demonstrate: Ch5Capitalizer, presented in
listing 5.1, capitalizes text as the user enters it.

package com.swtjface.Ch5;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.VerifyEvent;
import org.eclipse.swt.events.VerifyListener;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Text;

public class Ch5Capitalizer extends Composite
{

 public Ch5Capitalizer(Composite parent)
 {
 super(parent, SWT.NONE);
 buildControls();
 }

 private void buildControls()
 {
 this.setLayout(new FillLayout());
 Text text = new Text(this, SWT.MULTI | SWT.V_SCROLL);

 text.addVerifyListener(new VerifyListener() {
 public void verifyText(VerifyEvent e) {
 if(e.text.startsWith("1"))
 {
 e.doit = false;
 }
 else
 {
 e.text = e.text.toUpperCase();
 }
 } });
 }
}

For the sake of this example, assume that in addition to capitalizing all text, we
also need to reject anything that starts with a number one (1). This example
accomplishes both tasks by using the VerifyListener interface. Any registered
VerifyListeners are called whenever the text is modified and given the chance to
react to the new text being inserted.

Listing 5.1 Ch5Capitalizer.java

b Validate

C Modify text
Licensed to jromero <jose.romero@galicia.seresco.es>

Editing text with SWT 81
First the VerifyListener checks to make sure the new text doesn’t start with 1. If it
does, the doit field of the event is set to false, causing the edit to be rejected by
the Text control. For the user typing at his keyboard, this method will be called
once for each keypress, effectively preventing any 1s from being entered but
allowing any other character through. However, if more than one character is
inserted at a time, programmatically or through pasting text, the listener is called
only once for the entire block of text that’s inserted. Therefore, it will be rejected
only if the first character is a 1—any others will make it through.

After validating that the text should be allowed, we capitalize it by assigning the new
text to insert to the text field of the event. Initially this field holds the String being
inserted, but as shown here, we can modify that string to be whatever we want.

To run this example, add it to the WidgetWindow by adding the following lines to
the createContents() method:

TabItem chap5Capitalizer = new TabItem(tf, SWT.NONE);
chap5Capitalizer.setText("Chapter 5 Capitalizer");
chap5Capitalizer.setControl(new Ch5Capitalizer(tf));

Table 5.1 summarizes the important methods controlling an instance of Text.
These methods allow you to modify the text, control its appearance, and attach lis-
teners to be notified of events you’re interested in.

Table 5.1 Important Text methods

Method Description

addModifyListener() Adds a listener to be notified when the text is modified

addSelectionListener() Adds a listener to be notified when this control is selected

addVerifyListener() Adds a listener to validate any changes to the text

append() Appends the given String to the current text

insert() Replaces the current contents with the given String

copy(), cut(), paste() Moves the current selection to the clipboard, or replaces the current
selection with whatever currently is in the clipboard

setSelection(),
selectAll()

Programmatically modifies the current selection

setEchoCharacter() Displays the character passed to this method instead of the text typed by
the user (useful for hiding passwords, for example)

continued on next page

b

C

Licensed to jromero <jose.romero@galicia.seresco.es>

82 CHAPTER 5

More widgets
For the most part, these methods are straightforward. The only thing you need to
pay attention to is that insert() replaces the entire contents of the widget—it
doesn’t allow you to insert text into the existing content.

 Now that we’ve covered simple text entry, we’ll move on to more visually inter-
esting options using the StyledText widget.

5.1.2 The StyledText widget

Although the Text control can be useful for text entry, often you’ll want more
control over the presentation of text. Toward that end, SWT provides the Styled-
Text widget.

 StyledText provides all the methods present on Text and adds capabilities to
modify the displayed font, text color, font style, and more. Additionally, Styled-
Text provides support for basic operations expected of an edit control, such as
cutting and pasting.

 StyledText includes a large set of predefined actions that can be applied to
the widget; these are common things such as cut, paste, move to the next word,
and move to the end of the text. Constants representing each of these actions are
defined in the ST class in the org.eclipse.swt.custom package. The constants are
useful in two cases: First, you can use them to programmatically invoke any of
these actions by using the invokeAction() method; second, you can bind these
actions to keystrokes by using the setKeyBinding() method. setKeyBinding()
takes a key (which can be optionally modified by one of the SWT constants for
modifier keys such as Shift or Ctrl) and binds it to the action specified. The fol-
lowing example binds the key combination Ctrl-Q to the paste action. Note that
this doesn’t clear the default key binding; either one will now work.

StyledText.setKeyBinding('Q' | SWT.CONTROL, ST.PASTE);

StyledText also broadcasts many events that you can listen for. In addition to the
same ones defined by Text, StyledText adds events for drawing line backgrounds
and line styles. You can use them to modify the style or background color of an
entire line as it’s drawn by setting the attributes on the event to match the way you

setEditable() Turns editing on or off

setFont() Sets the font used to display text, or uses the default if passed null (the
font can only be set for the widget as a whole, not for individual sections)

Table 5.1 Important Text methods (continued)

Method Description
Licensed to jromero <jose.romero@galicia.seresco.es>

Editing text with SWT 83
wish the line to be displayed. However, be aware that if you use a LineStyleLis-
tener, it’s no longer valid to call the get/setStyleRange() methods (discussed in
the next section) on the StyledText instance. Likewise, using a LineBackground-
Listener means that you can’t call getLineBackground() or setLineBackground().

 You modify the styles displayed by a StyledText through the use of
StyleRanges.

Updating text styles with StyleRange
StyledText uses the class StyleRange to manage the different styles it’s currently
displaying. A StyleRange holds information about the styled attributes of a range
of text. All fields of a StyleRange are public and may be modified freely, but the
modified style won’t be applied until setStyleRange() is called on the Styled-
Text instance.

 StyleRanges specify a region of text by using a start offset and length. Each
StyleRange tracks both background and foreground colors (or null, to use the
default) and a font style, which may be either SWT.NORMAL or SWT.BOLD.

 StyleRange also has a similarTo() method, which you can use to check
whether two StyleRanges are similar to each other. Two StyleRanges are defined as
being similar if they both contain the same foreground, background, and font
style attributes. This can be useful when you’re trying to combine adjacent
StyleRanges into a single instance.

 To demonstrate the use of StyleRange, we’ll present snippets from a simple
text editor that is capable of persisting both the text and style information to a
file. Due to space constraints, we won’t show the complete code listing here, but
it’s included in the code you can download from this book’s website.

 We’ll first consider how to persist the style information. After we’ve saved the
text, we can obtain the style information by calling styledText.getStyleRanges(),
which gives an array of StyleRange representing every style currently in the docu-
ment. Because this is a simple example, we assume that the only possible style is
bold text; we loop through the array and save the start offset and length of each
StyleRange to our file. This example could easily be expanded to query each
StyleRange and persist additional information such as the background and fore-
ground colors. The following snippet demonstrates:

StyledText styledText = ...
StyleRange[] styles = styledText.getStyleRanges();
for(int i = 0; i < styles.length; i++)
{
 printWriter.println(styles[i].start + " " + styles[i].length);
}

Licensed to jromero <jose.romero@galicia.seresco.es>

84 CHAPTER 5

More widgets
Once the styles have been saved, they need to be loaded when the file is
reopened. We read the styles one line at a time and parse each line to retrieve the
style information:

StyledText styledText = ...
String styleText = ... //read line from the file
StringTokenizer tokenizer = new StringTokenizer(styleText);
int startPos = Integer.parseInt(tokenizer.nextToken());
int length = Integer.parseInt(tokenizer.nextToken());

StyleRange style = new StyleRange(startPos, length, null, null, SWT.BOLD);
styledText.setStyleRange(style);

Again, in this example the only possible style is bold text, so we can assume that
each style line represents a length of text that should be made bold starting at the
given offset. We instantiate a new StyleRange using the offset and length values
read from the file, mark it as bold, and add it to our StyledText control. Alterna-
tively, we could have built an array of all the StyleRanges to be used and used set-
StyleRanges() to apply them all at once.

 The following method, toggleBold(), switches between entering text in bold
and normal font. It’s called from a KeyListener that listens when the F1 key is
pressed:

private void toggleBold()
{
 doBold = !doBold;
 styledText = ...
 if(styledText.getSelectionCount() > 0)
 {
 Point selectionRange = styledText.getSelectionRange();
 StyleRange style = new StyleRange(selectionRange.x,
 selectionRange.y,
 null, null,
 doBold ? SWT.BOLD
 : SWT.NORMAL);
 styledText.setStyleRange(style);
 }
}

After toggleBold() switches the current text mode, it checks whether there is cur-
rently selected text. If so, it ensures that the selected text matches the new mode.
getSelectionRange() returns a Point object whose x field represents the offset of
the start of the current selection; the y field holds the length of the selection. We
use these values to create a StyleRange, and we apply it to the currently selected text.

 Finally, there remains the question of how the text is made bold in the first
place. We once again use an ExtendedModifyListener:
Licensed to jromero <jose.romero@galicia.seresco.es>

Editing text with SWT 85
public void modifyText(ExtendedModifyEvent event)
{
 if(doBold)
 {
 StyleRange style = new StyleRange(event.start,
 event.length,
 null, null,
 SWT.BOLD);
 styledText.setStyleRange(style);
 }
}

modifyText() is called after text has been newly inserted. If bold mode is currently
on (toggled by pressing F1), we use the information about the recent modifica-
tion included in the event to create a new StyleRange with bold text attributes and
apply it to the document. Calling setStyleRange() applies our new style to the
document. StyledText tracks the styles of adjacent text and, where possible, com-
bines multiple smaller ranges into a single larger range.

A StyledText example
Our detailed StyledText example (listing 5.2) demonstrates how you can use the
events published by StyledText to implement undo/redo functionality. The exam-
ple presents a text area with scrollbars, where the user may type. Pressing F1
undoes the last edit, and pressing F2 redoes the last undone edit. Notice that cut,
copy, and paste functionality is provided automatically with no explicit code
required on our part; it’s tied to the standard keyboard shortcuts for our platform.

 ExtendedModifyListener differs from ModifyListener, which is also present on
StyledText, in the amount of information that is sent as part of the event.
Whereas ExtendedModifyListener is provided with details about exactly what was
done, ModifyListener is given notification that an edit occurred without details of
the exact modification.

 In the interest of keeping the code shorter, this example makes the assump-
tion that all edits occur at the end of the buffer. Inserting text anywhere else in
the buffer will therefore cause undo/redo to behave strangely. Tracking actual
edit locations, as well as style information, is left as an exercise for the reader.

package com.swtjface.Ch5;

import java.util.LinkedList;
import java.util.List;

import org.eclipse.swt.SWT;

Listing 5.2 Ch5Undoable.java
Licensed to jromero <jose.romero@galicia.seresco.es>

86 CHAPTER 5

More widgets
import org.eclipse.swt.custom.*;
import org.eclipse.swt.events.KeyAdapter;
import org.eclipse.swt.events.KeyEvent;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;

public class Ch5Undoable extends Composite
{
 private static final int MAX_STACK_SIZE = 25;
 private List undoStack;
 private List redoStack;

 private StyledText styledText;

 public Ch5Undoable(Composite parent)
 {
 super(parent, SWT.NONE);
 undoStack = new LinkedList();
 redoStack = new LinkedList();
 buildControls();
 }

 private void buildControls()
 {
 this.setLayout(new FillLayout());
 styledText = new StyledText(this, SWT.MULTI | SWT.V_SCROLL);

 styledText.addExtendedModifyListener(
 new ExtendedModifyListener() {
 public void modifyText(ExtendedModifyEvent event)
 {
 String currText = styledText.getText();
 String newText = currText.substring(event.start,
 event.start + event.length);
 if(newText != null && newText.length() > 0)
 {
 if(undoStack.size() == MAX_STACK_SIZE)
 {
 undoStack.remove(undoStack.size() - 1);
 }
 undoStack.add(0, newText);
 }
 } });

 styledText.addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e)
 {
 switch(e.keyCode)
 {
 case SWT.F1:
 undo(); break;
 case SWT.F2:
 redo(); break;

B ExtendedModifyListener

c KeyListener
Licensed to jromero <jose.romero@galicia.seresco.es>

Editing text with SWT 87
 default:
 //ignore everything else
 }
 } });
 }

 private void undo()
 {
 if(undoStack.size() > 0)
 {
 String lastEdit = (String)undoStack.remove(0);
 int editLength = lastEdit.length();
 String currText = styledText.getText();
 int startReplaceIndex = currText.length() - editLength;
 styledText.replaceTextRange(startReplaceIndex,
 editLength, "");
 redoStack.add(0, lastEdit);
 }
 }

 private void redo()
 {
 if(redoStack.size() > 0)
 {
 String text = (String)redoStack.remove(0);
 moveCursorToEnd();
 styledText.append(text);
 moveCursorToEnd();
 }
 }

 private void moveCursorToEnd()
 {
 styledText.setCaretOffset(styledText.getText().length());
 }
}

This is the key section of this example: An ExtendedModifyListener is added to the
StyledText object so that we can track edit events. The ExtendedModifyListener is
called each time the text is edited. The event that’s passed contains information
about the newly inserted text. In the example, we use the start offset and length to
retrieve the new text from the StyledText and save it in case the user wants to
undo her edit later. The event also provides information about the text that was
replaced, if any, in the replacedText field. A more robust implementation could
save this text along with the new edit and reinsert it if the edit was undone.

A KeyListener listens for keypresses, which are reported using a KeyEvent. We
check the keyCode field to see if it matches one of the keys we’re interested in.

d Undo

e Redo

b

C

Licensed to jromero <jose.romero@galicia.seresco.es>

88 CHAPTER 5

More widgets
Constants for the keys are defined in the SWT class. Additionally, we can query the
state of modifier keys such as Ctrl or Alt by masking the stateMask field of the
event against the appropriate constants defined in the SWT class.

Undo pops the top entry of the undo stack, which holds a record of all edits that
have been made. We then use replaceTextRange() to replace the last n characters
in the buffer with the empty string, where n is the length of the edit we retrieved
from the stack.

To redo an edit, we pop the top entry off the redo stack. It’s then inserted at the
end of the document using append().

The following lines added to WidgetWindow will let you test the undoable editor:

TabItem chap5Undo = new TabItem(tf, SWT.NONE);
chap5Undo.setText("Chapter 5 Undoable");
chap5Undo.setControl(new Ch5Undoable(tf));

There are some complexities to editing text in SWT, but once you understand the
events that are broadcast by the widget, it isn’t difficult to add basic types of valida-
tion or control logic to your application. Certain features, however, are difficult to
implement with the facilities provided by SWT. JFace text editing, although more
complex, is also more powerful; it offers a host of new options that we’ll discuss in
the next section.

5.2 JFace text support

As an alternative to using the StyledText control provided by SWT, JFace offers an
extensive framework for text editing. More than 300 classes and interfaces are
spread between 7 jface.text packages and subpackages. Rather than try to cover
them all in the limited space we have available, we’ll provide an overview of the
key classes in org.eclipse.jface.text and develop a small example showing
some of the advanced capabilities available.

5.2.1 Obtaining the JFace text packages

Before you can use the JFace text packages, you need to extract a couple of
jar files from your Eclipse installation: text.jar, located in $ECLIPSE_HOME/
plugins/org.eclipse.text_x.y.z; and jfacetext.jar, in $ECLIPSE_HOME/plugins/
org.eclipse.jface.text_x.y.z. Make sure both of them are in your classpath
before you try any of the examples in this section.

d

e

Licensed to jromero <jose.romero@galicia.seresco.es>

JFace text support 89
5.2.2 TextViewer and Document

JFace text support is implemented by a core set of classes and augmented by a
variety of extensions that add specific advanced features. We’ll discuss the core
first and then provide an overview of the available extensions.

 Two interfaces form the core of JFace’s text support: IDocument and IText-
Viewer. Each has a default implementation provided by JFace.

 An instance of IDocument holds the actual text that’s being edited. The primary
implementation of IDocument is the class Document, although AbstractDocument
provides a partial implementation that you can extend if you decide to write your
own. In addition to standard methods to set or retrieve text, IDocument also allows
for listeners to receive notification of content edits through the IDocumentLis-
tener interface.

 IDocument also supports several more advanced features:

■ Positions—You can assign a “sticky” marker known as a Position to a
region of text. A Position object is given an offset and a length of text when
it’s assigned to the document. As the document’s text is updated, the Posi-
tion is kept in sync with the text changes so that it always points to the same
section of text, no matter how it moves in the document. You can use this to
implement features such as bookmarks, which allow the user to jump to a
marked location in the document. The base Position class offers little
beyond basic tracking of an offset and length; you’ll usually need to subclass
it in order to build useful behavior for your application.

■ Partition content types—Conceptually, a document is composed of one or
more partitions represented by the ITypedRegion interface. Each partition
can have a different content type, such as plain text, rich text, or HTML. To
use this feature, you need to create an IDocumentPartitioner and assign it
to your document. The document partitioner is then responsible for
responding to queries about the content type of specific locations in the
document, and it must implement computePartitioning() to return an
array of all the ITypedRegions present in the document. It isn’t necessary to
implement your own document partitioner; if you don’t assign one, the
entire document will be treated as a single region with type IDocu-
ment.DEFAULT_CONTENT_TYPE.

■ Searching—IDocument provides search facilities to clients through the
search() method. Although it doesn’t support regular expressions or other
patterns in the search, it does give you control over the search start location,
direction, and case sensitivity and whether to match whole words only.
Licensed to jromero <jose.romero@galicia.seresco.es>

90 CHAPTER 5

More widgets
ITextViewer is intended to turn a standard text widget into a document-based text
widget. The default implementation is TextViewer, which uses a StyledText
under the hood to display data. ITextViewer supports listeners for both text mod-
ifications and visual events, such as changes in the currently visible region of text
(known as the viewport). Although the default implementation of ITextViewer,
TextViewer, allows direct access to the StyledText if you wish to modify the dis-
play, it’s intended that you use TextPresentation instead; it collects the various
StyleRanges present in the document.

 ITextViewer also supports a number of different types of plug-ins that can be
used to modify the behavior of the widget. The functionality that can be custom-
ized includes undo support, through IUndoManager; how to react to double
clicks, through ITextDoubleClickStrategy; automatic indentation of text, sup-
plied by IAutoIndentStrategy; and text to display when the mouse is left on a
section of the document, through ITextHover. You use each of these plug-ins by
assigning an appropriate instance of the interface to the text viewer and then
calling activatePlugins().

 Finally, a variety of subpackages of org.eclipse.jface.text provide useful
extensions; they’re summarized in table 5.2.

Table 5.2 The subpackages of org.eclipse.jface.text provide a variety of advanced
functionality.

Package Description

org.eclipse.jface.text.contentassist Provides a framework for automatic completion of text
as it’s being typed, such as is found in many Java
IDEs. IContentAssistant and IContentAssis-
tantProcessor work together to provide IComple-
tionProposals at appropriate times.

org.eclipse.jface.text.formatter Provides utilities to format text. IContentFormatter
registers instances of IFormattingStrategy with
different content types. When text needs formatting,
the appropriate formatting strategy is given a String
representing the text to be modified.

org.eclipse.jface.text.presentation Used to update the visual appearance of the docu-
ment in response to changes. After a change, an
IPresentationDamager is used to calculate the
region of the document that needs to be redrawn, and
that information is given to an IPresentationRe-
pairer along with a TextPresentation to reset the
styles on the damaged region.

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace text support 91
5.2.3 A JFace example

We’ll now build a simple text editor that uses some of TextViewer’s features.
Inspired by a feature in OpenOffice and other word processors, this editor tracks
individual words as the user types. At any time, the user can press F1 to obtain a
list of suggested completions for the word he’s currently typing, drawn from the
list of all words he has typed so far that start with the text currently under the
cursor.

 To implement this functionality, we’ll use the classes in org.eclipse.jface.
text.contentassist. We’ve created a utility class called WordTracker, which is
responsible for tracking the user’s most recently typed words and is capable of
suggesting completions for a string. An instance of IContentAssistProcessor,
RecentWordContentAssistProcessor, presents the possible completions to the
framework. Finally, CompletionTextEditor is our main class: It configures the
TextViewer and attaches the appropriate listeners. We’ll discuss each of these
classes in detail, followed by the complete source code.

 A ContentAssistant is responsible for suggesting possible completions to the
user. Each ContentAssistant has one or more instances of IContentAssistPro-
cessor registered; each processor is associated with a different content type.

org.eclipse.jface.text.reconciler Used to synchronize a document with an external
store of its text. The default Reconciler runs period-
ically in the background, delegating to instances of
IReconcilingStrategy as it finds dirty regions that
need to be kept in sync.

org.eclipse.jface.text.rules Defines classes to scan and match text based on con-
figurable IRules. This framework is used to imple-
ment the presentation package and document
partitioner and includes built in rules to match com-
mon occurrences such as words, numbers,
whitespace, or ends of lines.

org.eclipse.jface.text.source Used to attach visual markers to text, such as the red
Xs used in Eclipse to denote compilation errors. To
employ these features, you must use ISource-
Viewer instead of ITextViewer, which it extends.
You’ll then need to subclass Annotation to draw
appropriate images.

Table 5.2 The subpackages of org.eclipse.jface.text provide a variety of advanced func-
tionality. (continued)

Package Description
Licensed to jromero <jose.romero@galicia.seresco.es>

92 CHAPTER 5

More widgets
When the TextViewer requests suggestions, the ContentAssistant delegates to the
assist processor that is appropriate for the content type of the current region of
the document.

 You can often use ContentAssistant as is. However, we need to define an ICon-
tentAssistProcessor. The processor’s main responsibility is to provide an array of
possible completions when computeCompletionProposals() is called. Our imple-
mentation is straightforward: Given the current offset of the cursor into the docu-
ment, it looks for the first occurrence of whitespace to determine the current
word fragment, if any, by moving backward through the document one character
at a time:

while(currOffset > 0
 && !Character.isWhitespace(
 currChar = document.getChar(currOffset)))
{
 currWord = currChar + currWord;
 currOffset--;
 }

Once it has the current word, it requests completions from the WordTracker and
uses those completions to instantiate an array of ICompletionProposal in the
buildProposals() method:

 int index = 0;
 for(Iterator i = suggestions.iterator(); i.hasNext();)
 {
 String currSuggestion = (String)i.next();
 proposals[index] = new CompletionProposal(
 currSuggestion,
 offset,
 replacedWord.length(),
 currSuggestion.length());
 index++;
 }

Each proposal consists of the proposed text, the offset at which to insert the text,
the number of characters to replace, and the position where the cursor should be
afterward. The ContentAssistant will use this array to display choices to the user
and insert the proper text once she chooses one.

 In this example, we always activate the ContentAssistant programmatically by
listening for a keypress. However, IContentAssistProcessor also contains meth-
ods that allow you to specify a set of characters that will serve as automatic
triggers for suggestions to be displayed. You implement the getCompletion-
ProposalAutoActivationCharacters() method to return the characters that you
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace text support 93
wish to serve as triggers. Listing 5.3 shows the complete implementation of the
IContentAssistProcessor.

package com.swtjface.Ch5;

import java.util.Iterator;
import java.util.List;

import org.eclipse.jface.text.*;
import org.eclipse.jface.text.contentassist.*;

public class RecentWordContentAssistProcessor
 implements IContentAssistProcessor
{
 private String lastError = null;
 private IContextInformationValidator contextInfoValidator;
 private WordTracker wordTracker;

 public RecentWordContentAssistProcessor(WordTracker tracker)
 {
 super();
 contextInfoValidator = new ContextInformationValidator(this);
 wordTracker = tracker;
 }

 public ICompletionProposal[] computeCompletionProposals(
 ITextViewer textViewer,
 int documentOffset)
 {
 IDocument document = textViewer.getDocument();
 int currOffset = documentOffset - 1;

 try
 {
 String currWord = "";
 char currChar;
 while(currOffset > 0
 && !Character.isWhitespace(
 currChar = document.getChar(currOffset)))
 {
 currWord = currChar + currWord;
 currOffset--;
 }

 List suggestions = wordTracker.suggest(currWord);
 ICompletionProposal[] proposals = null;
 if(suggestions.size() > 0)
 {
 proposals = buildProposals(suggestions, currWord,
 documentOffset - currWord.length());
 lastError = null;

Listing 5.3 RecentWordContentAssistProcessor

B Find current word
Licensed to jromero <jose.romero@galicia.seresco.es>

94 CHAPTER 5

More widgets
 }
 return proposals;
 }
 catch (BadLocationException e)
 {
 e.printStackTrace();
 lastError = e.getMessage();
 return null;
 }
 }

 private ICompletionProposal[] buildProposals(List suggestions,
 String replacedWord,
 int offset)
 {
 ICompletionProposal[] proposals =
 new ICompletionProposal[suggestions.size()];
 int index = 0;
 for(Iterator i = suggestions.iterator(); i.hasNext();)
 {
 String currSuggestion = (String)i.next();
 proposals[index] = new CompletionProposal(
 currSuggestion,
 offset,
 replacedWord.length(),
 currSuggestion.length());
 index++;
 }
 return proposals;
 }

 public IContextInformation[] computeContextInformation(
 ITextViewer textViewer,
 int documentOffset)
 {
 lastError = "No Context Information available";
 return null;
 }

 public char[] getCompletionProposalAutoActivationCharacters()
 {
 //we always wait for the user to explicitly trigger completion
 return null;
 }

 public char[] getContextInformationAutoActivationCharacters()
 {
 //we have no context information
 return null;
 }

 public String getErrorMessage()
 {

c Build proposals
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace text support 95
 return lastError;
 }

 public IContextInformationValidator getContextInformationValidator()
 {
 return contextInfoValidator;
 }
}

We move backward through the document a character at a time until we hit
whitespace or the beginning of the document.

Each proposal contains the text to propose, as well as information about where to
insert the text into the document. Theoretically, you could insert the proposed
text wherever you wish, although doing so could be confusing for the user if the
text isn’t inserted at the cursor’s current position.

WordTracker is a utility class used to maintain and search a list of words (see
listing 5.4). Our implementation isn’t particularly efficient, but it’s simple and fast
enough for our purposes. Each word is added to a List, and when suggestions are
needed, the List is traversed looking for any item that starts with the given
String. WordTracker doesn’t contain any SWT or JFace code, so we won’t examine
it in detail.

package com.swtjface.Ch5;

import java.util.*;

public class WordTracker
{
 private int maxQueueSize;
 private List wordBuffer;
 private Map knownWords = new HashMap();

 public WordTracker(int queueSize)
 {
 maxQueueSize = queueSize;
 wordBuffer = new LinkedList();
 }

 public int getWordCount()
 {
 return wordBuffer.size();
 }

 public void add(String word)

Listing 5.4 WordTracker.java

b

c

Licensed to jromero <jose.romero@galicia.seresco.es>

96 CHAPTER 5

More widgets
 {
 if(wordIsNotKnown(word))
 {
 flushOldestWord();
 insertNewWord(word);
 }
 }

 private void insertNewWord(String word)
 {
 wordBuffer.add(0, word);
 knownWords.put(word, word);
 }

 private void flushOldestWord()
 {
 if(wordBuffer.size() == maxQueueSize)
 {
 String removedWord =
 (String)wordBuffer.remove(maxQueueSize - 1);
 knownWords.remove(removedWord);
 }
 }

 private boolean wordIsNotKnown(String word)
 {
 return knownWords.get(word) == null;
 }

 public List suggest(String word)
 {
 List suggestions = new LinkedList();
 for(Iterator i = wordBuffer.iterator(); i.hasNext();)
 {
 String currWord = (String)i.next();
 if(currWord.startsWith(word))
 {
 suggestions.add(currWord);
 }
 }
 return suggestions;
 }

}

Ch5CompletionEditor brings together the components we’ve discussed. In build-
Controls(), we instantiate and configure a TextViewer. The ContentAssistant is
created, and our custom processor is assigned to the default content type:
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace text support 97
final ContentAssistant assistant = new ContentAssistant();
assistant.setContentAssistProcessor(
 new RecentWordContentAssistProcessor(wordTracker),
 IDocument.DEFAULT_CONTENT_TYPE);
assistant.install(textViewer);

Once the assistant has been configured, it’s installed on the viewer. Note that the
assistant is given the viewer to install itself to, instead of the viewer receiving a Con-
tentAssistant as you might expect.

 To be notified about edits, we use an ITextListener, which is similar to the
ExtendedModifyListener used by StyledText:

 textViewer.addTextListener(new ITextListener() {
 public void textChanged(TextEvent e)
 {
 if(isWhitespaceString(e.getText()))
 {
 wordTracker.add(findMostRecentWord(e.getOffset() - 1));
 }
 }
 });

Listening for keystrokes here uses the same listener classes that StyledText did.
When we find the completion trigger key, we programmatically invoke the con-
tent assistant:

 case SWT.F1:
 assistant.showPossibleCompletions();

ContentAssistant does all the work from this point on, displaying the possible
completions and inserting the selected one into the document; see listing 5.5.

package com.swtjface.Ch5;

import java.util.StringTokenizer;

import org.eclipse.jface.text.*;
import org.eclipse.jface.text.contentassist.ContentAssistant;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.KeyAdapter;
import org.eclipse.swt.events.KeyEvent;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;

public class Ch5CompletionEditor extends Composite
{
 private TextViewer textViewer;
 private WordTracker wordTracker;

Listing 5.5 Ch5CompletionEditor
Licensed to jromero <jose.romero@galicia.seresco.es>

98 CHAPTER 5

More widgets
 private static final int MAX_QUEUE_SIZE = 200;

 public Ch5CompletionEditor(Composite parent)
 {
 super(parent, SWT.NULL);
 wordTracker = new WordTracker(MAX_QUEUE_SIZE);
 buildControls();
 }

 private void buildControls()
 {
 setLayout(new FillLayout());
 textViewer = new TextViewer(this, SWT.MULTI | SWT.V_SCROLL);

 textViewer.setDocument(new Document());

 final ContentAssistant assistant = new ContentAssistant();
 assistant.setContentAssistProcessor(
 new RecentWordContentAssistProcessor(wordTracker),
 IDocument.DEFAULT_CONTENT_TYPE);

 assistant.install(textViewer);

 textViewer.getControl().addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e)
 {
 switch(e.keyCode)
 {
 case SWT.F1:
 assistant.showPossibleCompletions();
 break;
 default:
 //ignore everything else
 }
 }
 });

 textViewer.addTextListener(new ITextListener() {
 public void textChanged(TextEvent e)
 {
 if(isWhitespaceString(e.getText()))
 {
 wordTracker.add(findMostRecentWord(e.getOffset() - 1));
 }
 }
 });
 }

 protected String findMostRecentWord(int startSearchOffset)
 {
 int currOffset = startSearchOffset;
 char currChar;
 String word = "";
 try

B Assign an IDocument instance

c Assign content
assist processor

d Display completions

e Capture new words
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace text support 99
 {
 while(currOffset > 0
 && !Character.isWhitespace(
 currChar = textViewer.getDocument()
 .getChar(currOffset)
))
 {
 word = currChar + word;
 currOffset--;
 }
 return word;
 }
 catch (BadLocationException e)
 {
 e.printStackTrace();
 return null;
 }
 }

 protected boolean isWhitespaceString(String string)
 {
 StringTokenizer tokenizer = new StringTokenizer(string);
 //if there is at least 1 token, this string is not whitespace
 return !tokenizer.hasMoreTokens();
 }
}

Each TextViewer needs an IDocument to store its text. Here we use the default
Document class, which is sufficient for most needs. You must set the document on a
TextViewer before it’s used, or NullPointerExceptions will be generated.

Each ContentAssistant can have a variety of IContentAssistProcessors assigned;
the appropriate one will be selected based on the content type of the document.
Here we assign our processor to the default content type, which is defined in the
IDocument interface.

When we detect that the proper key has been pressed, we programmatically
invoke the ContentAssistant.

We examine each edit as it’s made. When we find an edit that consists only of
whitespace, we assume that a new word has been added, retrieve it from the Docu-
ment, and store it in our WordTracker.

Here we cycle backward through the document one character at a time, starting
from the current editing position. When we find whitespace, we grab the word for
the WordTracker.

f Find last word

b

c

d

e

f

Licensed to jromero <jose.romero@galicia.seresco.es>

100 CHAPTER 5

More widgets
To see this in action, add the following to WidgetWindow:

TabItem chap5Completion = new TabItem(tf, SWT.NONE);
chap5Completion.setText("Chapter 5 Completion Editor");
chap5Completion.setControl(new Ch5CompletionEditor(tf));

As you can see, SWT and JFace provide a wide variety of text-editing options.
Although we’ve only touched on the possibilities offered by JFace, by understand-
ing the overall design you should be able to use the extensions without much
trouble. Now we’ll move on to several less complicated widgets, starting with
combo boxes.

5.3 The Combo widget

The Combo control is used to create a combo box. Typically, the Combo control lets the
user select an option from a list of choices. There are three styles of Combo controls:

■ Simple—Contains an editable text field at the top and a list box with the
choices on the bottom. This is the default combo style.

■ Drop-down—An editable text field with an arrow at the right side. Clicking
the arrow reveals a list of choices and allows the user to select one.

■ Read-only—A drop-down combo whose text field can’t be edited. This style is
used when you want to limit the choices the user can input. The read-only
combo defaults to an empty selection, so most of the time you’ll call
select(0) to default the combo to the first choice available.

These styles are set via the usual STYLE.* attributes in the constructor and, slightly
unexpectedly, are mutually exclusive. Figure 5.1 shows the available styles of com-
bos; you can use the code in listing 5.6 to generate these results.

Figure 5.1
Combo styles, from left to right: simple,
drop-down, and read-only
Licensed to jromero <jose.romero@galicia.seresco.es>

ToolBarManager 101
package com.swtjface.Ch5;

import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.RowLayout;
import org.eclipse.swt.widgets.Combo;
import org.eclipse.swt.widgets.Composite;

public class Ch5ComboComposite extends Composite {

 public Ch5ComboComposite(Composite parent) {
 super(parent, SWT.NONE);
 buildControls();
 }

 protected void buildControls() {
 setLayout(new RowLayout());

 int[] comboStyles = { SWT.SIMPLE,
 SWT.DROP_DOWN,
 SWT.READ_ONLY };

 for (int idxComboStyle = 0;
 idxComboStyle < comboStyles.length;
 ++idxComboStyle) {
 Combo combo = new Combo(this,
 comboStyles[idxComboStyle]);
 combo.add("Option #1");
 combo.add("Option #2");
 combo.add("Option #3");
 }
 }
}

Run this example by adding the following code to WidgetWindow:

TabItem chap5Combos = new TabItem(tf, SWT.NONE);
chap5Combos.setText("Chapter 5 Combos");
chap5Combos.setControl(new Ch5ComboComposite(tf));

5.4 ToolBarManager

The ToolBarManager is a JFace class that simplifies the construction of toolbars by
making use of the action framework we discussed in chapter 4. It’s the toolbar
equivalent of the MenuManager, and the interfaces are similar. This class is also
derived from the ContributionManager class. As such, objects implementing
either the IAction or IContribution interface can be added to the ToolBarMan-
ager. The ToolBarManager will generate the appropriate SWT Controls when

Listing 5.6 Ch5ComboComposite.java
Licensed to jromero <jose.romero@galicia.seresco.es>

102 CHAPTER 5

More widgets
required, so you don’t have to get involved with the gritty details. Most of the time
you’ll be adding Action objects to the ToolBarManager, which will then automati-
cally generate instances of the Toolbar and ToolItem classes that we discuss later.

 You can easily add a toolbar to your application by calling the ApplicationWin-
dow’s createToolBarManager() method. Unlike its MenuManager counterpart, cre-
ateToolBarManager() requires a style parameter. This style parameter determines
the style of buttons to be used by the ToolBar: either flat or normal pushbuttons.
As we mentioned earlier, it’s handy to use the same Actions to generate items on
both the menu and the toolbar—for example, actions such as OpenFile are nor-
mally found on both. By reusing Actions, you simplify the code and ensure that
menu and toolbar are always in sync.

5.4.1 ControlContribution

In addition to the ContributionItems that MenuManager works with, there is a new
ContributionItem that can only be used with a ToolBarManager: the ControlCon-
tribution. This is a cool class that wraps any Control and allows it to be used on a
ToolBar. You can even wrap a Composite and throw it onto the toolbar.

 To use the ControlContribution class, you must derive your own class and
implement the abstract createControl() method. The following code snippet
demonstrates a simple implementation of such a class. We create a custom Con-
trolContribution class that can be used by the JFace ToolBarManager:

toolBarManager.add(new ControlContribution("Custom") {
 protected Control createControl(Composite parent) {
 SashForm sf = new SashForm(parent, SWT.NONE);
 Button b1 = new Button(sf, SWT.PUSH);
 b1.setText("Hello");
 Button b2 = new Button(sf, SWT.PUSH);
 b2.setText("World");
 b2.addSelectionListener(new SelectionAdapter() {
 public void widgetSelected(SelectionEvent e) {
 System.out.println("Selected:" + e);
 }
 });
 return sf;
 }
});

Note that you must implement the SelectionListeners on your controls if you
want anything to happen. For all intents and purposes, the ControlContribution
class lets you place anything you want on the ToolBar.
Licensed to jromero <jose.romero@galicia.seresco.es>

CoolBar 103
5.4.2 Creating toolbars by hand

Although it’s often easiest to create a toolbar by using a ToolBarManager, you may
occasionally wish to create one manually, if it’s simple or if you aren’t using JFace.
In this case, you’ll need to use two classes: ToolBar and ToolItem.

ToolBar
The Toolbar is a composite control that holds a number of ToolItems. The ToolBar
is rendered as a strip of small iconic buttons, typically 16-by-16 bitmap graphics.
Each of these buttons corresponds to a ToolItem, which we’ll discuss in the next sec-
tion. By clicking the button, the user triggers an action represented by the ToolItem.

 A ToolBar may be oriented either horizontally or vertically, although it’s hori-
zontal by default. In addition, it’s possible for ToolItems to wrap around and form
additional rows.

 Typically, ToolBars are used to organize and present sets of related actions. For
example, there might a ToolBar representing all text operations with buttons for
paragraph alignment, typeface, font size, and so on.

ToolItem
The ToolItem represents a single item in a ToolBar. Its role with respect to the
ToolBar is similar to that of the MenuItem to a Menu. Unlike MenuItems, ToolItems
aren’t text but iconic in nature. As such, an image should always be assigned to a
ToolItem. A ToolItem on a ToolBar ignores the text label and displays only a small
red square if no image is assigned. When the user selects a ToolItem from the
menu, it broadcasts the event to any registered SelectionListeners. Your applica-
tion should register a listener with each ToolItem and use that listener to perform
whatever logic corresponds to the menu item.

5.5 CoolBar

The CoolBar control is like the ToolBar control with upgraded functionality. The
primary distinction between the two is that the items on a CoolBar can be reposi-
tioned and resized at runtime. Each of these items is represented by a CoolItem
control, which can contain any sort of control. The most common uses of a Cool-
Bar are to hold toolbars or buttons.

 The next snippet shows the creation of a CoolBar that holds multiple toolbars.
Each child ToolBar contains items that are grouped together by function. In this
case, we have one ToolBar with file functions, another with formatting functions,
and a third with search functions, each of which is wrapped in a CoolItem control
Licensed to jromero <jose.romero@galicia.seresco.es>

104 CHAPTER 5

More widgets
and contained in a single parent CoolBar. This example is representative of a typi-
cal CoolBar; there are many ways to layer and organize controls to create striking
user interfaces. Figure 5.2 shows what the toolbars look like before moving them
around; notice that initially, the file and search items are next to each other.
The code to create the CoolBar looks like this:

String[] coolItemTypes = {"File", "Formatting", "Search"};
CoolBar coolBar = new CoolBar(parent, SWT.NONE);
for(int i = 0; i < coolItemTypes.length; i++)
{
 CoolItem item = new CoolItem(coolBar, SWT.NONE);
 ToolBar tb = new ToolBar(coolBar, SWT.FLAT);
 for(int j = 0; j < 3; j++)
 {
 ToolItem ti = new ToolItem(tb, SWT.NONE);
 ti.setText(coolItemTypes[i] + " Item #" + j);
 }
}

Notice that each CoolItem has a handle on the left side: Double-clicking the han-
dle expands the CoolItem to the full width of the CoolBar, minimizing the other
CoolItems if necessary. By clicking the handle and dragging it, the user can move a
CoolItem to different parts of the CoolBar. To create additional rows, drag a Cool-
Item below the current CoolBar. To reorder a CoolItem, drag it to the new posi-
tion—other CoolItems will be bumped out of the way to accommodate it.
Figure 5.3 shows our example after we’ve repositioned the CoolItems.

Figure 5.2 The initial toolbars, controlled by a CoolBar. Notice that the File and
Search items are adjacent.

Figure 5.3 The same toolbars have been repositioned by the user.
Licensed to jromero <jose.romero@galicia.seresco.es>

Slider 105
5.6 Slider

The Slider control is similar to the scrollbars you see on a window. Although it
seems logical to assume that scrollbars are implemented with Slider controls,
they’re different. Scrollbars are associated with the item they’re scrolling and
aren’t available for use outside of that context. This is where the Slider comes in.

 You can use the Slider as a control to select any value along an integral range.
This range is set via the setMinimum() and setMaximum() methods.

 The rectangular slider you can click and drag is officially referred to as the
thumb. You set the size of the thumb via setThumb(); it should be an integral num-
ber. Visually, the size of the thumb is depicted realistically as a percentage of the
entire range. Thus, if the range is from 0 to 100 and the size of the thumb is 10,
then the thumb will take up 10% of the Slider control.

NOTE Some operating systems have native scrollbars that feature a constant-
sized thumb. On these platforms, the size of the thumb is ignored for vi-
sual purposes but used in other calculations.

Arrows at each end move the thumb by a set amount referred to as the increment.
You specify this increment via the setIncrement() method. Clicking the area
between the thumb and an endpoint arrow causes the thumb to jump by a larger
set amount. This amount is referred to as the page increment and is set via the set-
PageIncrement() method. Figure 5.4 shows a typical slider; notice that it appears
similar to a vertical scrollbar.

 There is also a convenience method called setValues() that takes in all these
values at once. The method signature is as follows:

void setValues(int selection, int minimum, int maximum, int thumb,
 int increment, int pageIncrement)

The selection is the starting point for the thumb. This is again represented by an
integral number that specifies a value along the range of the Slider. The example
in listing 5.7 demonstrates a Slider control with a range of 400 to 1600, as might
be needed to represent a standardized test score.

Figure 5.4 A typical Slider control
Licensed to jromero <jose.romero@galicia.seresco.es>

106 CHAPTER 5

More widgets
package com.swtjface.Ch5;

import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Slider;

public class Ch5Slider extends Composite {
 public Ch5Slider(Composite parent) {
 super(parent, SWT.NONE);
 setLayout(new FillLayout());
 Slider slider = new Slider(this, SWT.HORIZONTAL);
 slider.setValues(1000, 400, 1600, 200, 10, 100);
 }
}

The code sets the selection to 1000, the minimum to 400, the maximum to 1600,
the thumb size to 200, the increment value to 10, and the page increment to 100.

The Slider also takes a style attribute that lets you specify whether it should be
vertical or horizontal. By default, a horizontal Slider is constructed.

 The following code adds the slider example to WidgetWindow:

 TabItem chap5Slider = new TabItem(tf, SWT.NONE);
 chap5Slider.setText("Chapter 5 Slider");
 chap5Slider.setControl(new Ch5Slider(tf));

5.7 ProgressBar

The ProgressBar control lets you convey the progress of a lengthy operation. Its sim-
plified counterpart, the ProgressIndicator, is recommended in most cases. Occa-
sionally, you may need more control than a ProgressIndicator allows; if you decide
that you need to use a ProgressBar directly, you’re taking responsibility for chang-
ing the display of the bar yourself. The following code snippet shows an example:

 //Style can be SMOOTH, HORIZONTAL, or VERTICAL
 ProgressBar bar = new ProgressBar(parent, SWT.SMOOTH);
 bar.setBounds(10, 10, 200, 32);
 bar.setMaximum(100);
 ...
 for(int i = 0; i < 10; i++) {
 //Take care to only update the display from its
 //own thread
 Display.getCurrent().asyncExec(new Runnable() {
 public void run() {

Listing 5.7 Ch5Slider.java

b Create Slider

b

Licensed to jromero <jose.romero@galicia.seresco.es>

ProgressIndicator 107
 //Update how much of the bar should be filled in
 bar.setSelection((int)(bar.getMaximum() * (i+1) / 10));
 }
 });
}

As you examine this code, note that in addition to needing to calculate the
amount to update the bar, the call to setSelection() causes the widget to be
updated every time. This behavior is unlike that of ProgressIndicator or Pro-
gressMonitorDialog, which will update the display only if it has changed by an
amount that will be visible to the end user.

 As you can see, more work is involved with using ProgressBars than the other wid-
gets we’ve discussed, and in general we recommend avoiding them unless you have
no choice. However, a ProgressBar may occasionally be necessary—for example, if
you need to unfill the bar, there is no way to do it with the higher-level controls.

5.8 ProgressIndicator

The ProgressIndicator widget allows you to display a progress bar without worry-
ing much about how to fill it. Like the ProgressMonitorDialog, it supports
abstract units of work—you need only initialize the ProgressIndicator with the
total amount of work you expect to do and notify it as work is completed:

ProgressIndicator indicator = new ProgressIndicator(parent);
...

indicator.beginTask(10);
...
Display.getCurrent()display.asyncExec(new Runnable() {
 public void run() {
 //Inform the indicator that some amount of work has been done
 indicator.worked(1);
 }
});

As this example shows, there are two steps to using a ProgressIndicator. First you
let the indicator know how much total work you intend to do by calling begin-
Task(). The control won’t be displayed on the screen until this method is called.
Then you call worked() each time some work has been completed. As we discussed
in chapter 4, there are several threading issues to pay attention to here. Doing the
actual work in the UI thread will cause the display to lock up and defeats the pur-
pose of using a ProgressIndicator in the first place. However, you aren’t allowed
to update widgets from a non-UI thread. The solution is to use asyncExec() to
schedule the code that updates the widget to be run from the UI thread.
Licensed to jromero <jose.romero@galicia.seresco.es>

108 CHAPTER 5

More widgets
 The ProgressIndicator also provides an animated mode, where the total
amount of work isn’t known. In this mode, the bar continually fills and empties
until done() is called. To use animated mode, call beginAnimatedTask() instead of
beginTask(); there is no need to call the worked() method. Assuming your work is
being correctly done in a non-UI thread, this implies that you don’t have to worry
about the asyncExec() call, either.

5.9 Summary

SWT and JFace provide many options for editing text. The SWT controls are fairly
easy to use, but implementing anything beyond simple text editing using them
can quickly become painful. The JFace controls, on the other hand, offer enough
power to create sophisticated text editors, such as the one in Eclipse. However,
they’re much more complicated to understand and use.

 We’ve now covered many useful widgets. We’ve discussed creating combo
boxes and toolbars, combining controls with coolbars, adding sliders to a control,
and several ways of displaying the progress of a task to the user. As you may have
noticed, the code examples have also become more complex and closer to how
real-world usage may look. The points we’ve discussed in relation to threading
issues are important to keep in mind always, not just when you’re using progress
bars or indicators.

 In the next chapter, we’ll cover layouts and explain how you can control the
overall presentation of controls in a GUI application.

Licensed to jromero <jose.romero@galicia.seresco.es>

Layouts
This chapter covers
■ Fill layouts
■ Row layouts
■ Grid layouts
■ Form layouts
■ Creating custom layouts
109

Licensed to jromero <jose.romero@galicia.seresco.es>

110 CHAPTER 6

Layouts
We’ve used layouts throughout the course of this book. Now that you have a firm
grasp of widgets and controls, we’ll delve into the complexities of how to use lay-
outs to arrange widgets into a pleasant interface.

 Layouts are associated with a composite and help organize the controls within
it. One way to think about the process is to imagine each widget as a book and the
layout as shelving. You can stack books up on the shelf or lay them side by side in
a horizontal row. Layouts can consist of partitions to separate the books or new
layers to hold them more efficiently. Unlike real-world shelving, SWT layouts are
dynamic: the container and its contents can be resized, reflowed, and laid out
according to rules you specify. These rules are known as constraints in SWT.

 Building a wooden bookshelf can be a lot of work, taking days or weeks.
Although creating a UI can also be time consuming, the many options available in
SWT’s layouts can make the job much easier. You may not ever make a nice oak
bookshelf, but this chapter will show you how to exercise your imagination in cre-
ating virtual cabinets.

NOTE Before we get into the details, it’s worth taking a moment to compare
SWT’s approach with Swing’s design. Swing also has layouts, such as the
ubiquitous BorderLayout. Unfortunately, SWT’s layouts typically differ
from the Swing layouts, and knowledge of Swing doesn’t ease the learn-
ing curve much. The layout algorithms have a tangibly different feel.
SWT’s approach minimizes layouts, using attributes and modifiers on
widgets to control their position. By contrast, Swing uses a recursive ap-
proach that nests layouts. The drawback is that the nesting can quickly
become deep, leading to inefficiency and high resource costs. Compared
to Swing, SWT layouts require you to do more advance planning and map
where the Controls will go, often breaking out paper and pencil to sketch
your ideas in advance. With Swing, it’s possible to use a divide-and-
conquer approach, laying out small sections at a time and then nesting
them to form the overall GUI. Ultimately, the two toolkits chose to em-
phasis different strengths: design-time simplicity versus runtime simplici-
ty. Neither holds a marked advantage, but this difference shapes our
approach as GUI designers.

6.1 The fill layout

Our desks are often littered with books stacked in gigantic piles; this system is sim-
ple, easy, and useful in many cases. The fill layout is the layout equivalent of a stack
of books. It’s a simple layout that takes the child controls and lays them out at
Licensed to jromero <jose.romero@galicia.seresco.es>

The fill layout 111
equal intervals to fill the space in a composite. By default, the controls are stacked
side by side, from left to right. Each control is given the space it needs, and any
leftover space in the composite is divided among the child controls.

 Figure 6.1 shows buttons in a FillLayout; the code in listing 6.1 demonstrates
how to create this layout. You add a series of buttons to a composite, and the lay-
out resizes them to take up all the available space.

package com.swtjface.Ch6;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.layout.*;

public class Ch6FillLayoutComposite extends Composite {

 public Ch6FillLayoutComposite(Composite parent) {
 super(parent, SWT.NONE);

 FillLayout layout = new FillLayout(SWT.VERTICAL);
 setLayout(layout);
 for (int i = 0; i < 8; ++i) {
 Button button = new Button(this, SWT.NONE);
 button.setText("Sample Text");
 }
 }
}

Notice the setLayout() method call. This method in Composite is used to associ-
ate a layout with the composite that will be used to arrange all the child controls.
Without this call, SWT won’t know how to size or position any of the child con-
trols, so nothing will be displayed. (If you’re having trouble getting your widgets
to appear, forgetting to set a layout is a common cause.)

Listing 6.1 Ch6FillLayoutComposite.java

Figure 6.1
Buttons in a
FillLayout, before
resizing
Licensed to jromero <jose.romero@galicia.seresco.es>

112 CHAPTER 6

Layouts
Resizing the window changes the buttons to look like figure 6.2. There is little vis-
ible difference between the two images, because the FillLayout always expands
the buttons to fill all available space.

 You can call the FillLayout constructor with no parameters or with a single
style parameter. The default constructor uses the SWT.HORIZONTAL style, in which
case the layout arranges child controls from left to right. Using SWT.VERTICAL
causes the controls to be arranged from top to bottom.

 Add the following code to WidgetWindow to see how the FillLayout works:

TabItem fillLayoutItem = new TabItem(tf, SWT.NONE);
fillLayoutItem.setText("Chapter 6 FillLayout");
fillLayoutItem.setControl(new Ch6FillLayoutComposite(tf));

Like a stack of books, the fill layout is good only for simple situations. As you
gather more books—or controls, in the case of JFace/SWT—the stack becomes
unmanageable. Books get lost in the clutter, and your eyes become distracted. To
organize more effectively, you need the GUI equivalent of a bookcase.

6.2 The row layout

If the fill layout is like a stack of books, then the row layout is a basic bookcase.
Instead of being limited to one pile, you can organize controls into a number of
rows, much like shelves. Since the row layout arranges child controls into single
row by default, you need to pass in SWT.WRAP to get the functionality of additional
rows. The row layout provides additional customization options by giving you
access to margin and spacing options. (Note that the name row layout is a bit of a
misnomer, because you can choose to use either a horizontal row or a vertical row.
The vertical row layout is therefore really a column layout.)

 Let’s see how having multiple rows can facilitate user interfaces that have a
large number of controls. The code for the WidgetWindow pane in figure 6.3 is

Figure 6.2
The same buttons,
after resizing
Licensed to jromero <jose.romero@galicia.seresco.es>

The row layout 113
almost the same as for the fill layout, but the child controls are laid out differently.
The code to produce this layout appears in listing 6.2.

package com.swtjface.Ch6;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.layout.*;

public class Ch6RowLayoutComposite extends Composite {

 public Ch6RowLayoutComposite(Composite parent) {
 super(parent, SWT.NONE);

 RowLayout layout = new RowLayout(SWT.HORIZONTAL);
 setLayout(layout);
 for (int i = 0; i < 16; ++i) {
 Button button = new Button(this, SWT.NONE);
 button.setText("Sample Text");
 }
 }
}

Add the next three lines to WidgetWindow, and resize the window showing the
buttons:

TabItem rowLayoutItem = new TabItem(tf, SWT.NONE);
rowLayoutItem.setText("Chapter 6 RowLayout");
rowLayoutItem.setControl(new Ch6RowLayoutComposite(tf));

As you can see, instead of using all available space for each child, the row layout
combines multiple buttons into each row. The layout does so dynamically, so

Listing 6.2 Ch6RowLayoutComposite.java

Figure 6.3 Buttons positioned by a RowLayout, before resizing
Licensed to jromero <jose.romero@galicia.seresco.es>

114 CHAPTER 6

Layouts
when you reduce the width of the window, the buttons shift downward, as
figure 6.4 shows.

 Much of the other behavior in a RowLayout is specified through property val-
ues. We’re mainly concerned with the following properties:

■ wrap—A boolean value that defaults to true. You’ll probably want to keep
the default. Switching it off will result in all the controls staying on a single
row, with the controls cut off at the end of the visible edge of the parent
composite.

■ pack—A boolean value that defaults to true. This property keeps child con-
trols the same size, which typically is desirable in the context of a row layout.
You get even rows of controls by setting pack; on the other hand, keeping
pack off lets controls retain their natural sizing.

■ justify—A boolean value that defaults to false. This property distributes
controls evenly across the expanse of the parent composite. If justify is on
and the parent is resized, then all the child controls pick up the slack and
redistribute themselves evenly across the empty space.

6.2.1 Customizing individual layout cells

You’ve seen how to control the overall behavior of the layout. However, it’s also
possible to tinker with each individual child control’s sizing in the layout by using

Figure 6.4 After resizing, the RowLayout rearranges the buttons into two columns.
Licensed to jromero <jose.romero@galicia.seresco.es>

The row layout 115
the RowData class. Many layouts use the layout data mechanism. The idea is that
you can help guide the parent layout by associating hints with each control using
the setLayout() method, which takes an instance of LayoutData. An examination
of the class hierarchy reveals that RowData is derived from LayoutData and there-
fore all the layouts have the potential to understand the associated layout data. In
practice, though, you need to use the exact layout data class that each layout
expects in order to get tangible results. Layouts will ignore hints from layout data
they don’t recognize. By convention, for each layout class that supports data for
individual children, there is a data class whose name matches: FooLayout has a
data class called FooData, and so on.

 Creating row data hints for the row layout is simple. All the information is
passed in through the row data’s constructor. Let’s expand our WidgetWindow
example to give more room for the first couple controls. Add the line in bold in
listing 6.3 to the existing code.

package com.swtjface.Ch6;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.layout.*;

public class Ch6RowLayoutComposite extends Composite {

 public Ch6RowLayoutComposite(Composite parent) {
 super(parent, SWT.NONE);

 RowLayout layout = new RowLayout(SWT.HORIZONTAL);
 setLayout(layout);
 for (int i = 0; i < 16; ++i) {
 Button button = new Button(this, SWT.NONE);
 button.setText("Sample Text");
 button.setLayoutData(new RowData(200 + 5 * i, 20 + i));
 }
 }
}

The figures have illustrated the effects of having row data set. Remember, the best
way to learn what these options do and how they interact is to tinker with the
code. Often, to get the result you want, you’ll need a combination of style hints,
properties, and layout data.

Listing 6.3 Ch6RowLayoutComposite.java
Licensed to jromero <jose.romero@galicia.seresco.es>

116 CHAPTER 6

Layouts
6.3 The grid layout

The grid layout builds on the row layout model by allowing you to explicitly create
multiple rows and columns. In effect, the grid layout offers a nicely partitioned
bookcase with multiple shelves and clean divisions on each shelf to further orga-
nize your controls. Factor in a flexible grid data object, and the end result is that
the grid layout is the most useful and widely used layout. Figure 6.5 shows a series
of buttons, this time controlled by a GridLayout.

 Listing 6.4 demonstrates a simple grid layout example in the WidgetWindow
framework. We create a GridLayout with four columns and allow the layout to cre-
ate as many rows as necessary.

package com.swtjface.Ch6;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.layout.*;

public class Ch6GridLayoutComposite extends Composite {

 public Ch6GridLayoutComposite(Composite parent) {
 super(parent, SWT.NONE);

 GridLayout layout = new GridLayout(4,false);
 setLayout(layout);
 for (int i = 0; i < 16; ++i) {
 Button button = new Button(this, SWT.NONE);
 button.setText("Cell " + i);
 }
 }
}

Listing 6.4 Ch6GridLayoutComposite.java

Figure 6.5
Buttons controlled by a GridLayout

GridLayout
constructor
Licensed to jromero <jose.romero@galicia.seresco.es>

The grid layout 117
Note that the constructor takes two parameters: the number of columns and a
boolean to indicate whether the columns should take up an even amount of
space. By passing false, you tell the layout to only use the minimum amount of
space needed for each column.

 You can run the composite by adding the following lines to WidgetWindow:

TabItem gridLayoutItem = new TabItem(tf, SWT.NONE);
gridLayoutItem.setText("Chapter 6 GridLayout");
gridLayoutItem.setControl(new Ch6GridLayoutComposite(tf));

6.3.1 GridData

At first, the notion of having a grid may seem contrary to a flexible layout. The key
to using the grid layout is understanding that a single child control can span more
than one grid cell at a time. You do this through layout data. In this case, let’s turn
to the GridData object, which provides additional hints for the GridLayout on how
to lay out a Control.

Using GridData styles
GridData is in many ways similar to the RowData object that we examined in the
previous section. The constructor takes a series of style constants, which when
combined determine how the layout will position an individual widget. These
styles fall into three categories: FILL, HORIZONTAL_ALIGN, and VERTICAL_ALIGN.

 The various FILL styles determine whether the cell should be expanded to fill
available space. Valid values include FILL_HORIZONTAL, which indicates that the
cell should be expanded horizontally; FILL_VERTICAL, to expand the cell verti-
cally; and FILL_BOTH, which effectively causes the cell to fill all the space available.

 The ALIGN styles, on the other hand, determine where the control should be
positioned in the cell. Values include BEGINNING, END, CENTER, and FILL. BEGIN-
NING positions the control at the left or topmost edge of the cell, whereas END
puts the control at the right or bottommost edge. CENTER centers the control, and
FILL causes the control to expand to fill all available space.

 Table 6.1 summarizes the available style combinations for a GridData object.

Using GridData size attributes
Unlike RowData, GridData also has a number of public attributes that can be set
to control its behavior. Several of these are boolean values that are automatically
managed when the different styles are set, so it isn’t typically necessary to manipu-
late them directly. Some, however, are integer values used to precisely control the
size of individual cells. These attributes are summarized in table 6.2.
Licensed to jromero <jose.romero@galicia.seresco.es>

118 CHAPTER 6

Layouts
Of particular importance are the horizontalSpan and verticalSpan attributes.
As we mentioned earlier, by setting a certain control to cover more than one cell,
you can make your UI look less like a spreadsheet so it’s more visually appealing.
Figure 6.6 demonstrates this concept. We’ve created a grid layout with three

Table 6.1 Style combinations for GridData

Style Constant Description

FILL_HORIZONTAL Expand the cell to fill any empty space horizontally. Implies
HORIZONTAL_ALIGN_FILL.

FILL_VERTICAL Expand the cell to fill any empty space vertically. Implies
VERTICAL_ALIGN_FILL.

FILL_BOTH Expand the cell both vertically and horizontally. Equivalent to
FILL_HORIZONTAL | FILL_VERTICAL.

HORIZONTAL_ALIGN_BEGINNING Align the cell’s contents at the leftmost edge of the cell.

HORIZONTAL_ALIGN_END Align the cell’s contents at the rightmost edge of the cell.

HORIZONTAL_ALIGN_CENTER Center the cell’s contents horizontally.

HORIZONTAL_ALIGN_FILL Expand the cell’s contents to fill all empty horizontal space in
the cell.

VERTICAL_ALIGN_BEGINNING Align the cell’s contents at the top of the cell.

VERTICAL_ALIGN_END Align the cell’s contents at the bottom of the cell.

VERTICAL_ALIGN_CENTER Center the cell’s contents vertically.

VERTICAL_ALIGN_FILL Expand the cell’s contents to fill all empty vertical space in
the cell.

Table 6.2 GridData size attributes

Attribute Description Default Value

widthHint Minimum width for the column. SWT.DEFAULT desig-
nates that there is no minimum width.

SWT.DEFAULT

heightHint Minimum height for the row. SWT.DEFAULT designates
that there is no minimum height.

SWT.DEFAULT

horizontalIndent Number of pixels to be placed between the control
and the left edge of the cell.

0

horizontalSpan Number of columns in the grid that this cell should
cover.

1

verticalSpan Number of rows in the grid that this cell should cover. 1
Licensed to jromero <jose.romero@galicia.seresco.es>

The form layout 119
columns and three rows. The text area in the lower-left corner has been config-
ured to cover two columns and two rows, allowing it to expand to cover much
more area than the buttons. Note that button 2 along the top and buttons 4 and 5
on the right have been set to FILL_HORIZONTAL and FILL_VERTICAL, respectively.

 For reference, the snippet of code that configures the text area is shown here:

 Text t = new Text(this, SWT.MULTI);
 GridData data = new GridData(GridData.FILL_BOTH);
 data.horizontalSpan = 2;
 data.verticalSpan = 2;
 t.setLayoutData(data);

We set both span attributes to 2 and tell the GridData that we wish to expand as
much as possible in both directions.

6.4 The form layout

You’ve seen a steady progression in capability as we’ve discussed the fill layout, the
row layout, and finally the grid layout. Those layouts share the same underlying
layout algorithm—laying out controls in rows and columns—albeit in varying
degrees of complexity. The form layout is a departure from that path. Instead of
partitioning sections, the form layout lets you create a UI based on gluing
together controls relative to each other or the parent composite.

 This makes it much easier to create resizable forms with controls of differing
sizes. A typical dialog box, for example, has a large central text area and two but-
tons located just below and to the right. In this case, the most natural way to think
of how the controls should be positioned is by envisioning them relative to each
other. It’s easier to say “the buttons should be below the text area, and the Cancel
button should be to the right of the Ok button” and let SWT worry about the
details than to try to calculate how many rows and columns each control should

Figure 6.6
A more advanced GridLayout.
The text area covers two
columns and two rows. All the
other controls are contained in
one cell each.
Licensed to jromero <jose.romero@galicia.seresco.es>

120 CHAPTER 6

Layouts
span. Figure 6.7 shows an example of this setup; in the following sections, we’ll
discuss the elements necessary to create it.

 The FormLayout class is fairly simple. The only configuration options come
from attributes that control the height and width of the margins around the edge
of the layout, and the spacing attribute, which lets you specify the amount of
space (in pixels) to be placed between all controls. Similar to the layouts we exam-
ined previously, you configure individual controls using instances of FormData.

6.4.1 Using FormData

A FormData instance is typically associated with each child control in a composite.
Even more so than with other layouts, it’s important to provide configuration data
for each child, because the whole idea of a form layout is to specify positions of
child controls relative to each other. If a given control doesn’t have a FormData
instance describing it, it will default to being placed in the upper-right corner of
the composite, which is rarely what you want.

 The width and height attributes specify the dimensions of a control in pixels.
More important are the top, bottom, right, and left attributes, each of which
holds an instance of FormAttachment. These attachments describe the control’s
relations to other controls in the composite.

6.4.2 Specifying relations using FormAttachment

Understanding the FormAttachment class is the most important part of using a
form layout. As mentioned earlier, each instance of FormAttachment describes
the positioning of one side of a control. You can use FormAttachment two differ-
ent ways.

 First, you can specify a FormAttachment using a percentage of the parent com-
posite. For example, if the left side of a FormData is set to a FormAttachment

Figure 6.7
A FormLayout has been used to position
the two buttons relative to the text area.
Licensed to jromero <jose.romero@galicia.seresco.es>

The form layout 121
with 50%, then the left edge of the control will be placed at the horizontal middle
of the parent. Likewise, setting the top edge to 75% positions the control three
quarters of the way down the composite. Table 6.3 summarizes the FormAttach-
ment constructors that can be used to specify percentages.

Specifying FormAttachments in terms of percentages can be useful, but you
shouldn’t use this approach often. Specifying all your controls using percentages
isn’t much different from assigning them absolute pixel positions: It quickly
becomes difficult to visualize the positions of each element; and when the com-
posite is resized, it’s unlikely that the controls will still be in the positions you
desire. The point of using a FormLayout is to position controls relative to each
other, which the second form of FormAttachment allows.

 The second series of FormAttachment constructors are based on passing in
other controls. They’re used to position the edge of one control next to another.
By setting the right attribute of the FormData for button1 to a FormAttachment
constructed with button2, you’re saying that button1 should always be posi-
tioned such that button2 is immediately to its right. Laying out most or all of your
controls in this fashion has several benefits. The intent of your layout code
becomes easier to understand: Instead of your having to guess which controls are
meant to be next to each other based on percentages or pixels, it becomes obvi-
ous that, for example, control foo should always be below bar. Second, the form
layout is also aware of your intent. However the composite may be resized, it will
always be able to maintain the correct relative positions.

 Again, there are several different forms of the FormAttachment constructor
for specifying relative positions; they’re summarized in table 6.4.

Table 6.3 Percentage-based FormAttachment constructors

Constructor signature Description

FormAttachment(int numerator) Assumes a denominator of 100, meaning that the argument will
be treated as a percentage. Only available in SWT 3.0.

FormAttachment(int numerator,
int offset)

Assumes a denominator of 100, meaning that the argument will
be treated as a percentage. The offset is the number of pixels
that the control should be offset from the percentage position.

FormAttachment(int numerator,
int denominator, int offset)

The numerator divided by the denominator gives the percentage
used to position the control. The offset is the number of pixels
that the control should be offset from the percentage position.
Licensed to jromero <jose.romero@galicia.seresco.es>

122 CHAPTER 6

Layouts
6.4.3 Laying out controls using a form layout

Now that we’ve discussed the classes that work together to drive a form layout,
we’ll look at the code we used to produce the screenshot in figure 6.7. Listing 6.5
creates a text area and two buttons. The text control is anchored to the top and
left edges of the composite. Both buttons are placed below the text control, and
the Ok button is placed to the left of the Cancel button.

package com.swtjface.Ch6;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.layout.*;

public class Ch6FormLayoutComposite extends Composite {

 public Ch6FormLayoutComposite(Composite parent) {
 super(parent, SWT.NONE);

 FormLayout layout = new FormLayout();
 setLayout(layout);

 Text t = new Text(this, SWT.MULTI);
 FormData data = new FormData();
 data.top = new FormAttachment(0, 0);
 data.left = new FormAttachment(0, 0);
 data.right = new FormAttachment(100);
 data.bottom = new FormAttachment(75);
 t.setLayoutData(data);

 Button ok = new Button(this, SWT.NONE);
 ok.setText("Ok");

Table 6.4 FormAttachment constructors that accept relative positions

Constructor signature Description

FormAttachment(Control control) Attach the current widget to the adjacent side of the
control parameter.

FormAttachment(Control control, int
offset)

Attach the current widget to the adjacent side of the
control parameter, offset by the number of pixels in
the offset parameter.

FormAttachment(Control control, int
offset, int alignment)

alignment must be one of SWT.TOP, SWT.BOTTOM,
SWT.LEFT, SWT.RIGHT, or SWT.CENTER. Attach the
current widget to the side of the control parameter
specified by alignment, offset by the number of pix-
els in the offset parameter.

Listing 6.5 Ch6FormLayoutComposite.java

b Text goes at upper left
Licensed to jromero <jose.romero@galicia.seresco.es>

The form layout 123
 Button cancel = new Button(this, SWT.NONE);
 cancel.setText("Cancel");

 data = new FormData();
 data.top = new FormAttachment(t);
 data.right = new FormAttachment(cancel);
 ok.setLayoutData(data);

 data = new FormData();
 data.top = new FormAttachment(t);
 data.right = new FormAttachment(100);
 cancel.setLayoutData(data);
 }
}

Here we position the text widget, which is the main control that everything else
will be positioned relative to. By setting both the top and left fields to FormAt-
tachments with a percentage of 0, we anchor the text widget to the upper-left cor-
ner. The right field is 100, so the text widget expands horizontally to fill the
available area; and the bottom field’s value of 75 causes it to take up the top three
quarters of the available area.

The Ok button must follow two rules: It should always be immediately below the
text area and immediately to the left of the Cancel button. We specify this using
the top and right fields of the FormData, giving each a FormAttachment
instance with a reference to the appropriate control.

After positioning the Cancel button below the text area, we force it to the right
side of the composite by using a FormAttachment with a percentage of 100.

However you resize the window, the buttons and the text area always maintain
their correct positions.

 You may have noticed that although we use the line

 data.right = new FormAttachment(cancel);

when we set up the data for the Ok button, there is no corresponding

 data.left = new FormAttachment(ok);

statement for the Cancel button. The second line is implied by the first, but SWT
forbids you from creating such circular attachments. Whenever you have a control
foo that refers to control bar, bar must not refer back to foo. According to the
SWT documentation, if you create such an attachment, the result of the layout
algorithm will be undefined, although it’s guaranteed to terminate and not leave
your program stuck in an infinite loop.

C
Ok button positioned
relative to other widgets

d Cancel button on right side

b

c

d

Licensed to jromero <jose.romero@galicia.seresco.es>

124 CHAPTER 6

Layouts
 Add the following lines to WidgetWindow to see for yourself how FormLayout
works:

TabItem formLayoutItem = new TabItem(tf, SWT.NONE);
formLayoutItem.setText("Chapter 6 FormLayout");
formLayoutItem.setControl(new Ch6FormLayoutComposite(tf));

6.5 Custom layouts

The standard layouts serve a variety of roles and are suitable for most situations.
Sometimes, though, you need to build a custom layout to deal with the exceptions
to the rule. Like a finely crafted piece of custom cabinetry, a custom layout can
make everything it contains look better.

 It’s relatively rare that you’ll need to create a custom layout implementation—
the existing layouts can handle most situations, especially when they’re used with
a ResizeListener to tweak the positions of widgets after the window has been
resized. It’s only appropriate to create a new layout class if the same layout logic
will be reused in several places in your application, or if manually adjusting posi-
tions after resize events proves to be more awkward than laying them out precisely
in the first place.

 To demonstrate the process of creating a custom layout manager, we’ll create a
RadialLayout class that positions its widgets in a circle. You wouldn’t often use this
layout in an application, but the fairly straightforward algorithm lends itself to being
used as an example. When we’re done, the final result will look like figure 6.8.

 Custom layouts are derived from the abstract Layout class. You need to write
only two methods: computeSize() and layout(). (These are the only methods

Figure 6.8
Buttons laid out using RadialLayout
Licensed to jromero <jose.romero@galicia.seresco.es>

Custom layouts 125
that Layout defines; it’s more of an interface than a true abstract class.) The com-
puteSize() method is called when the parent composite is instantiated to calcu-
late how much space the layout requires. This is followed by a call to layout() to
position all the controls.

6.5.1 Calculating the layout’s size

The first method we’ll examine is computeSize(). The relevant bits of this
method are as follows:

 protected Point computeSize(Composite composite,
 int wHint, int hHint,
 boolean flushCache)
 {
 Point maxDimensions =
 calculateMaxDimensions(composite.getChildren());
 int stepsPerHemisphere =
 stepsPerHemisphere(composite.getChildren().length);

 int maxWidth = maxDimensions.x;
 int maxHeight = maxDimensions.y;

 int dimensionMultiplier = (stepsPerHemisphere + 1);
 int controlWidth = maxWidth * dimensionMultiplier;
 int controlHeight = maxHeight * dimensionMultiplier;
 int diameter = Math.max(controlWidth, controlHeight);
 Point preferredSize = new Point(diameter,
 diameter);
 ... // code to handle case when our calculations
 // are too large
 return preferredSize;
 }

The parameters to this method are straightforward:

■ composite—The object we’re going to populate. At the time this method is
called, it has children, but neither the composite nor the children have
been sized or positioned on the screen.

■ wHint and hHint—Suggestions for the width and height, respectively.
These values represent the largest size the layout should request. They may
also have the special value SWT.DEFAULT, which signifies that the layout is
free to use whatever sizes it decides it needs.

■ flushCache—A simple flag to tell the layout whether it’s safe to use any
cached values that it may be maintaining. In our example, we don’t cache
anything, so it’s safe to ignore this flag.
Licensed to jromero <jose.romero@galicia.seresco.es>

126 CHAPTER 6

Layouts
The purpose of computeSize() is to calculate how large the composite we’re lay-
ing out should be. In particular, this method shouldn’t modify the sizes of any
components—the system will set the parent composite’s size when it’s ready and
call layout() when it’s time to position the children. Because our example lays
out the controls in a circle, we need to figure out an appropriate radius to fit all
the controls without having them overlap and then return a size for the composite
that will accommodate a circle of that size.

 The calculations are simple. We first find the largest child by calling calcu-
lateMaxDimensions(), which asks each child for its preferred size and returns
the largest. In order to keep the code simple, we assume that each child is as large
as the largest one. (This approach works fine when you’re laying out objects that
are all approximately the same size, but it would cause trouble in a real system if
some widgets were significantly larger than the others.) Once we have a size for
our child objects, we multiply that size by half the number of children. Because
one hemisphere of the circle will contain half the child objects, this gives us the
diameter of the circle. We create a Point object representing a square of this size
(plus some padding) and return it as the preferred size of our composite.

6.5.2 Laying out the widgets

Once we’ve recommended a size for our composite, the layout() method is
called. This is our cue to position each of the children in the parent composite.

 The parameters are even simpler this time. We’re given the composite that’s
being populated and the same flushCache flag as before. The logic, however, is a
bit more complex, because we have to calculate the exact position of each child
object. To do so, we use an equation you may remember from geometry:

We can easily calculate R (the radius), so for any X coordinate we might choose, Y
can be calculated as:

Starting at the leftmost point of the circle, the layout method traverses the list of
children, regularly spacing each along the X axis and using this X coordinate to cal-
culate the appropriate Y coordinate. The work is done in the calculateControl-
Positions() method, which is called by layout(). Here’s a summary of the code:

 2R=YX 22 +

22 XR±=Y −
Licensed to jromero <jose.romero@galicia.seresco.es>

Custom layouts 127
 private Point[] calculateControlPositions(Composite composite)
 {
 ... // set up control counts, max width, etc.
 Rectangle clientArea = composite.getClientArea();

 int radius = (smallestDimension / 2) - maxControlWidth;
 Point center = new Point(clientArea.width / 2,
 clientArea.height / 2);
 long radiusSquared = radius * radius;

 int stepXDistance = ...

 int signMultiplier = 1;
 int x = -radius;
 int y;
 Control[] controls = composite.getChildren();
 for(int i = 0; i < controlCount; i++)
 {
 Point currSize = controls[i].getSize();
 long xSquared = x * x;

 int sqrRoot = (int)Math.sqrt(radiusSquared - xSquared);
 y = signMultiplier * sqrRoot;

 ... // translate coordinates to be relative to
 // actual center, instead of the origin

 positions[i] = new Point(translatedX - (currSize.x / 2),
 translatedY - (currSize.y / 2));

 x = x + (signMultiplier * stepXDistance);
 //we've finished the upper hemisphere, now do the lower
 if(x >= radius)
 {
 x = radius - (x - radius);
 signMultiplier = -1;
 }
 }

 return positions;
 }

This method is mostly a straightforward implementation of the algorithm men-
tioned earlier. The only tricky part is that we lay out one hemisphere at a time.
Once the X value has reached the rightmost point of the circle, we switch the X
coordinates to decrease back along the same path and reverse the sign on the Y
coordinates (which accounts for the +/- part of our equation earlier). The sign-
Multiplier variable takes care of this for us. It has the value of either 1 or –1,
and it controls both whether the X value is increasing or decreasing and whether
the Y values are positive or negative.
Licensed to jromero <jose.romero@galicia.seresco.es>

128 CHAPTER 6

Layouts
 The other “gotcha” in this code is remembering that the equation we’re using
assumes that the center of the circle is at the origin. It’s therefore necessary to
translate each point to be relative to the actual center of the circle instead.

 Once we have calculateControlPositions() working, writing layout() is
easy. We take the list of positions that we’ve calculated and apply them to the chil-
dren of the parent composite:

 protected void layout(Composite composite, boolean flushCache)
 {
 Point[] positions = calculateControlPositions(composite);
 Control[] controls = composite.getChildren();
 for(int i = 0; i < controls.length; i++)
 {
 Point preferredSize = controls[i].computeSize(SWT.DEFAULT,
 SWT.DEFAULT);
 controls[i].setBounds(positions[i].x, positions[i].y,
 preferredSize.x, preferredSize.y);
 }
 }

Because the complete class has already grown rather large, we ask each control to
calculate its preferred size and use that value, plus the positions calculated earlier,
to place each control in the composite. Giving each control a size is critical: If you
don’t set the size, the control will default to having a width and height of 0, mean-
ing that it will be invisible.

6.5.3 Updating WidgetWindow

The complete code for RadialLayout is shown in listing 6.6. The listing is long, but
we’ve already examined the complicated parts in detail, so it should be easy to follow.

package com.swtjface.Ch6;

import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.graphics.Rectangle;
import org.eclipse.swt.widgets.*;

public class RadialLayout extends Layout
{
 public RadialLayout()
 {
 super();
 }

 protected Point computeSize(Composite composite,

Listing 6.6 RadialLayout.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Custom layouts 129
 int wHint, int hHint,
 boolean flushCache)
 {
 Point maxDimensions =
 calculateMaxDimensions(composite.getChildren());
 int stepsPerHemisphere =
 stepsPerHemisphere(composite.getChildren().length);

 int maxWidth = maxDimensions.x;
 int maxHeight = maxDimensions.y;

 int dimensionMultiplier = (stepsPerHemisphere + 1);
 int controlWidth = maxWidth * dimensionMultiplier;
 int controlHeight = maxHeight * dimensionMultiplier;
 int diameter = Math.max(controlWidth, controlHeight);
 Point preferredSize = new Point(diameter,
 diameter);

 if(wHint != SWT.DEFAULT)
 {
 if(preferredSize.x > wHint)
 {
 preferredSize.x = wHint;
 }
 }

 if(hHint != SWT.DEFAULT)
 {
 if(preferredSize.y > hHint)
 {
 preferredSize.y = hHint;
 }
 }

 return preferredSize;
 }

 protected void layout(Composite composite, boolean flushCache)
 {
 Point[] positions = calculateControlPositions(composite);
 Control[] controls = composite.getChildren();
 for(int i = 0; i < controls.length; i++)
 {
 Point preferredSize = controls[i].computeSize(SWT.DEFAULT,
 SWT.DEFAULT);
 controls[i].setBounds(positions[i].x, positions[i].y,
 preferredSize.x, preferredSize.y);
 }
 }

 private Point[] calculateControlPositions(Composite composite)
 {
 int controlCount = composite.getChildren().length;
Licensed to jromero <jose.romero@galicia.seresco.es>

130 CHAPTER 6

Layouts
 int stepsPerHemisphere = stepsPerHemisphere(controlCount);
 Point[] positions = new Point[controlCount];

 Point maxControlDimensions =
 calculateMaxDimensions(composite.getChildren());
 int maxControlWidth = maxControlDimensions.x;

 Rectangle clientArea = composite.getClientArea();
 int smallestDimension =
 Math.min(clientArea.width, clientArea.height);
 int radius = (smallestDimension / 2) - maxControlWidth;
 Point center = new Point(clientArea.width / 2,
 clientArea.height / 2);
 long radiusSquared = radius * radius;

 int stepXDistance =
 calculateStepDistance(radius * 2, stepsPerHemisphere);

 int signMultiplier = 1;
 int x = -radius;
 int y;
 Control[] controls = composite.getChildren();
 for(int i = 0; i < controlCount; i++)
 {
 Point currSize = controls[i].getSize();
 long xSquared = x * x;

 int sqrRoot = (int)Math.sqrt(radiusSquared - xSquared);
 y = signMultiplier * sqrRoot;
 int translatedX = x + center.x;
 int translatedY = y + center.y;
 positions[i] = new Point(translatedX - (currSize.x / 2),
 translatedY - (currSize.y / 2));

 x = x + (signMultiplier * stepXDistance);
 //we've finished the upper hemisphere, now do the lower
 if(x >= radius)
 {
 x = radius - (x - radius);
 signMultiplier = -1;
 }
 }

 return positions;
 }

 private Point calculateMaxDimensions(Control[] controls)
 {
 Point maxes = new Point(0, 0);

 for(int i = 0; i < controls.length; i++)
 {
 Point controlSize =
 controls[i].computeSize(SWT.DEFAULT, SWT.DEFAULT);
Licensed to jromero <jose.romero@galicia.seresco.es>

Custom layouts 131
 maxes.x = Math.max(maxes.x, controlSize.x);
 maxes.y = Math.max(maxes.y, controlSize.y);
 }

 return maxes;
 }

 private int stepsPerHemisphere(int totalObjects)
 {
 return (totalObjects / 2) - 1;
 }

 private int calculateStepDistance(int clientAreaDimensionSize,
 int stepCount)
 {
 return clientAreaDimensionSize / (stepCount + 1);
 }
}

Now that we have our custom layout, using it is easy, as shown by the class in
listing 6.7.

package com.swtjface.Ch6;

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Composite;

public class Ch6RadialLayoutComposite extends Composite
{

 public Ch6RadialLayoutComposite(Composite parent)
 {
 super(parent, SWT.NONE);
 setLayout(new RadialLayout());

 for(int i = 0; i < 8; i++)
 {
 Button b = new Button(this, SWT.NONE);
 b.setText("Cell " + (i + 1));
 }

 }
}

When you add this class to the WidgetWindow with the following code, it creates a
series of buttons laid out in a circle, as you saw earlier:

Listing 6.7 Ch6RadialLayoutComposite.java
Licensed to jromero <jose.romero@galicia.seresco.es>

132 CHAPTER 6

Layouts
TabItem radialLayoutItem = new TabItem(tf, SWT.NONE);
radialLayoutItem.setText("Chapter 6 RadialLayout");
radialLayoutItem.setControl(new Ch6RadialLayoutComposite(tf));

6.6 Summary

When you’re using SWT, choosing a layout is often an exercise of weighing flexi-
bility versus complexity. The available options range from the simple FillLay-
out, which makes all your controls as large as can be such that they all fit; to
RowLayout, which lets you position controls in rows or columns; to the more com-
plicated GridLayout and FormLayout, which allow more advanced positioning
but require more planning and more code to use. No single layout is the correct
choice for all situations, but by knowing the options that are available, you can
make appropriate trade-offs for your application. You can use simple layouts to
get quick results when the UI isn’t complicated, and advanced layouts can create a
good-looking interface when required.

 In addition to the layouts, you’ll be using a variety of data classes. Each data
class is associated with a specific layout that knows how to use it. Instances of these
data classes are attached to individual controls to fine-tune the way they’re laid
out by the algorithms embedded in the layout classes.

Licensed to jromero <jose.romero@galicia.seresco.es>

Graphics
This chapter covers
■ The graphic context
■ Working with colors
■ Programming with fonts
■ Manipulating images
133

Licensed to jromero <jose.romero@galicia.seresco.es>

134 CHAPTER 7

Graphics
The main reason for the popularity of the SWT/JFace toolset is its use of the oper-
ating system’s native widgets. Most users, accustomed to their operating system,
prefer applications that resemble their environment. They want widgets that look
and operate similarly from one GUI to the next. But sometimes, a developer needs
to go beyond built-in parts and create components of his own. Customized con-
trols add a sense of individuality to a user interface, and images may be necessary
for visually oriented applications. In these situations, it’s necessary to understand
the graphics capabilities of the SWT/JFace toolset.

 This chapter’s goal is to provide that understanding. To meet this goal, we’ll
proceed from general concepts to specific applications. The first section will
describe the class that makes the toolset’s graphical capability possible: the graphic
context. Then, we’ll explain how SWT works with colors and how JFace makes this
easier. The third section will show how SWT and JFace allow applications to use
text with different fonts and graphical properties. Finally, we’ll show how the SWT
and JFace libraries create and modify images, and when to use the methods of
one library over the other.

7.1 The graphic context

The graphic context functions like a drawing board on top of a Control. It lets
you add custom shapes, images, and multifont text to GUI components. It also
provides event processing for these graphics by controlling when the Control’s
visuals are updated.

 In SWT/JFace, the graphic context is encapsulated in the GC class. GC objects
attach to existing Controls and make it possible to add graphics. This section will
deal with how this important class and its methods operate.

7.1.1 Creating a GC object

The first step in building a graphically oriented application is creating a graphic
context and associating it with a component. The GC constructor method per-
forms both tasks. The two available constructor methods are shown in table 7.1.

Table 7.1 The constructor methods of the GC class and their functions

Color constructor Function

GC(Drawable) Creates a GC and configures it for the Drawable object

GC(Drawable, int) Creates and configures a GC and sets the text-display style
Licensed to jromero <jose.romero@galicia.seresco.es>

The graphic context 135
The style constant mentioned in the second constructor determines how text
appears in the display. The two values are RIGHT_TO_LEFT and LEFT_TO_RIGHT; the
default style is LEFT_TO_RIGHT.

 The first argument requires an object that implements the Drawable interface.
This interface contains methods that relate to the internals of a graphic context.
SWT provides three classes that implement Drawable: Image, Device, and Control.
Unless you create your own Drawable objects, you can only add graphics to
instances of these classes or their subclasses. A diagram describing these relation-
ships is presented in figure 7.1. Since Image objects will be covered in a later sec-
tion, we’ll discuss Devices and Controls here.

 The Device class represents any mechanism capable of displaying SWT/JFace
objects. This is easier to understand if you consider its two main subclasses:
Printer, which represents print devices, and Display, which accesses a computer’s
console. The Display class, the base class of any SWT/JFace application, is
described in chapter 2. But since this chapter deals with adding graphics to indi-
vidual components, we’ll associate our GC with the third Drawable class, Control.

 As we mentioned in chapter 3, a Control object is any widget that has a coun-
terpart in the underlying operating system. Instances of this class and its sub-
classes can be resized, traversed, and associated with events and graphics.
Figure 7.1 shows some of the Control subclasses provided in SWT. Although of
all them can contain graphics, only one class is particularly suited for GC objects:
Canvas, shown at the bottom of figure 7.1. This class not only provides the

Device Image

Composite Composite Button Scrollable Label

Composite

Group Canvas TabFolder

Drawable
(Interface)

Control

Figure 7.1 Only classes that implement the Drawable interface can have
graphic contexts associated with them.
Licensed to jromero <jose.romero@galicia.seresco.es>

136 CHAPTER 7

Graphics
containment property of a Composite, but also can be customized with a num-
ber of styles that determine how graphics are shown in its region.

 Because of this, the code in this chapter will focus on creating images in Canvas
objects. Since we have a means of creating graphics (the GC class) and a means of
seeing them displayed (the Canvas class), let’s see how these classes work together.

7.1.2 Drawing shapes on a Canvas

A full graphical application, DrawExample.java, is shown in listing 7.1. It uses a GC
object to draw lines and shapes on a Canvas instance.

package com.swtjface.Ch7;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.widgets.*;

public class DrawExample
{
 public static void main (String [] args)
 {
 Display display = new Display();
 Shell shell = new Shell(display);
 shell.setText("Drawing Example");

 Canvas canvas = new Canvas(shell, SWT.NONE);
 canvas.setSize(150, 150);
 canvas.setLocation(20, 20);
 shell.open ();
 shell.setSize(200,220);

 GC gc = new GC(canvas);
 gc.drawRectangle(10, 10, 40, 45);
 gc.drawOval(65, 10, 30, 35);
 gc.drawLine(130, 10, 90, 80);
 gc.drawPolygon(new int[] {20, 70, 45, 90, 70, 70});
 gc.drawPolyline(new int[] {10,120,70,100,100,130,130,75});
 gc.dispose();

 while (!shell.isDisposed())
 {
 if (!display.readAndDispatch())
 display.sleep();
 }
 display.dispose();
 }
}

Listing 7.1 DrawExample.java

Create Canvas
object in shell

Create graphic
context in Canvas

Deallocate Color
object when finished
Licensed to jromero <jose.romero@galicia.seresco.es>

The graphic context 137
Figure 7.2 shows the GUI created by the
DrawExample class.

 This example demonstrates two important
concerns to keep in mind when you work with
GCs. First, the program constructs its Canvas
object before invoking the shell.open()

method; it creates and uses the GC object after-
ward. This sequence is necessary since open()
clears the Canvas display. This also means that
graphic contexts must be created in the same
class as the Shell object. Second, the program
deallocates the GC object immediately after its
last usage. Doing so frees up computer
resources quickly without affecting the draw-
ing process.

 Along with those used in DrawExample.java, the GC class provides a number of
methods that draw and fill shapes on a Drawable object. These are listed in table 7.2.

Table 7.2 Drawing methods of the GC class

Method Function

drawArc(int x, int y, int width, int height,
int startAngle, int arcAngle)

Draws a curve with the given starting point
and parameters

fillArc(int x, int y, int width, int height,
int startAngle, int arcAngle)

Draws and fills an arc with the background
color

drawFocus(int x, int y, int width, int
height)

Draws a focus rectangle with the given
vertices

drawLine(int x1, int y1, int x2, int y2) Draws a line between coordinates

drawOval(int x, int y, int width, int height) Draws an oval with the given center point and
dimensions

fillOval(int x, int y, int width, int height) Fills an oval with the given dimensions

drawPolygon(int[] pointArray) Draws a closed figure with the given vertices

fillPolygon(int[] pointArray) Fills a closed figure with points

drawPolyline(int[] pointArray) Draws a line with multiple segments and the
specified endpoints

drawRectangle(int x, int y, int width, int
height)

Draws a rectangle with the given starting
point and coordinates

continued on next page

Figure 7.2
Creating shapes on a Canvas
using the graphic context
Licensed to jromero <jose.romero@galicia.seresco.es>

138 CHAPTER 7

Graphics
One problem with DrawExample is that its shapes are erased whenever the shell is
obscured or minimized. This is an important concern, since we need to make
sure the graphics remain visible despite windowing changes. For this purpose,
SWT lets you control when a Drawable object is refreshed. This updating process
is called painting.

7.1.3 Painting and PaintEvents

When a GC method draws an image on a Drawable object, it performs the painting
process only once. If a user resizes the object or covers it with another window, its
graphics are erased. Therefore, it’s important that an application maintain its
appearance whenever its display is affected by an external event.

 These external events are called PaintEvents, and the interfaces that receive
them are PaintListeners. A Control triggers a PaintEvent any time its appearance
is changed by the application or through outside activity. These classes are used in
a similar manner to the events and listeners mentioned in chapter 4. The follow-
ing snippet shows an example; because a PaintListener has only one event-
handling method, no adapter class is necessary:

Canvas canvas = new Canvas(shell, SWT.NONE);
canvas.setSize(150, 150);
canvas.setLocation(20, 20);
canvas.addPaintListener(new PaintListener()
{
 public void paintControl(PaintEvent pe)
 {
 GC gc = pe.gc;
 gc.drawPolyline(new int[] {10,120,70,100,100,130,130,75});
 }

fillRectangle(int x, int y, int width, int
height)

Draws and fills a rectangle with the given
coordinates

drawRectangle(Rectangle rect) Draws a rectangle based on an object

fillRectangle(Rectangle rect) Fills a rectangle based on an object

drawRoundRectangle(int x, int y, int width,
int height, int arcWidth, int arcHeight)

Creates a rounded rectangle with the given
width, height, and arc dimensions

fillGradientRectangle(int x, int y, int
width, int height, boolean vertical)

Draws and fills a rectangle with a gradient
from the foreground to the background color

Table 7.2 Drawing methods of the GC class (continued)

Method Function
Licensed to jromero <jose.romero@galicia.seresco.es>

http://127.0.0.1:9119/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/graphics/Rectangle.html
http://127.0.0.1:9119/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/graphics/Rectangle.html

The graphic context 139
});
shell.open();

An interesting aspect of using PaintListeners is that each PaintEvent object con-
tains its own GC. This is important for two reasons. First, because the GC instance is
created by the event, the PaintEvent takes care of its disposal. Second, the appli-
cation can create the GC before the shell is opened, which means that graphics can
be configured in a separate class.

 SWT optimizes painting in PaintListener interfaces, and its designers strongly
recommend painting with Controls only in response to PaintEvents. If an applica-
tion must update its graphics for another reason, they recommend using the con-
trol’s redraw() method, which adds a paint request to the queue. Afterward, you
can invoke the update() method to process all the paint requests associated with
the object.

 It’s important to remember that, although painting in a PaintListener is rec-
ommended for Control objects, Device and Image objects can’t use this interface.
If you need to create graphics in an image or device, you must create a separate GC
object and dispose of it when you’re finished.

7.1.4 Clipping and Canvas styles

By default, the area available for drawing with a graphic context is the same as
that of its associated Control. However, the GC provides methods that establish
bounds for its own graphical region, called the clipping region. The setClipping()
method specifies the limits for the GC’s graphics, and the getClipping() method
returns the coordinates of the clipping region.

 The concept of clipping is also important when you’re dealing with Paint-
Events. Not only do these events fire whenever a Drawable object is covered by
another window, but they also keep track of the area being obscured. That is, if a
user covers part of a Canvas with a second window, the PaintEvent determines
which section has been clipped and sets its x, y, height, and width fields according
to the smallest rectangle that encloses the concealed region. This is necessary
since repainting refreshes only this clipped region, not the entire object.

 If multiple sections of a Control object are obscured, then by default, the
object merges these sections into a single region and requests that it be repainted.
However, if an application requires that separate requests be made for each con-
cealed area, then the Control should be constructed with the NO_MERGE_PAINTS
style. This is the first of the styles associated with the Composite class but specifi-
cally intended for Canvas objects. The rest of these styles are shown in table 7.3.
Licensed to jromero <jose.romero@galicia.seresco.es>

140 CHAPTER 7

Graphics
Normally, when a user clicks a window, any keyboard input is directed to it. This
property is called focus behavior, and you can remove it from a Canvas object by con-
structing the object with the NO_FOCUS style. Similarly, when a Canvas is resized, a
PaintEvent is triggered by default and the display is repainted. You can change this
default behavior by using the NO_REDRAW_RESIZE style. It’s important to note,
though, that using this style may cause graphical artifacts during a resize operation.

 Before a graphic context draws its images, its Canvas paints itself with the color
of its shell, the default background color. These paint operations can cause screen
flicker on certain displays. You can prevent this by using the NO_BACKGROUND style,
which prevents the first painting. Without a background color, the graphic con-
text must cover every pixel of the Canvas, or it will take the appearance of the
screen behind the shell.

 Now that we’ve begun discussing the colors associated with graphic contexts,
let’s pursue this important topic in detail.

7.2 Programming with colors

One of the fundamental aspects of any graphical toolset is its use of colors. The
theory behind colors is straightforward, but their practical usage requires expla-
nation. This section will discuss how colors are represented in SWT and how to
allocate and deallocate them in a program. It will also discuss two classes provided
by the JFace library that simplify the process of working with colors.

7.2.1 Color development with SWT

Because monitors use light to provide color, it makes sense to use light’s primary
colors—red, green, and blue (RGB)—to represent the colors of a display. This
color system is additive, which means that colors are generated by adding red,
green, and blue elements to a black field. For example, if 24 bits are used to specify

Table 7.3 Style options for Canvas objects

Style Function

NO_MERGE_PAINTS Keeps concurrent paint requests separate

NO_FOCUS Specifies that Canvas can’t receive focus

NO_REDRAW_RESIZE Specifies that Canvas doesn’t repaint itself if
resized

NO_BACKGROUND Specifies that Canvas has no default back-
ground color
Licensed to jromero <jose.romero@galicia.seresco.es>

Programming with colors 141
the RGB value at a point, then black (the absence of light) is represented in hexa-
decimal as 0x000000, and white (the combination of light) as 0xFFFFFF. SWT fol-
lows this course by providing classes and methods that access and use RGB objects.

 This concept may seem simple, but SWT’s designers faced a serious challenge
in implementing it on multiple platforms. The problem involved providing a stan-
dard set of colors despite variations in display resolution and color management
policy. In the end, they decided on a two-part solution.

 First, SWT provides a set of 16 basic colors (called system colors) using the dis-
play’s getSystemColor() method. This method takes an integer representing one
of SWT’s color constants and returns a Color object. These constants are listed in
table 7.4 with their RGB representations.

If you want to use colors that fall outside this set, you must allocate a Color object
according to its RGB values. You do so by invoking one of two constructor methods

Table 7.4 Default system colors provided by SWT

SWT color constant Color hex value

SWT.COLOR_BLACK 0x000000

SWT.COLOR_DARK_GRAY 0x808080

SWT.COLOR_GRAY 0xC0C0C0

SWT.COLOR_WHITE 0xFFFFFF

SWT.COLOR_RED 0xFF0000

SWT.COLOR_DARK_RED 0x800000

SWT.COLOR_MAGENTA 0xFF00FF

SWT.COLOR_DARK_MAGENTA 0x800080

SWT.COLOR_YELLOW 0xFFFF00

SWT.COLOR_DARK_YELLOW 0x808000

SWT.COLOR_GREEN 0x00FF00

SWT.COLOR_DARK_GREEN 0x008000

SWT.COLOR_CYAN 0x00FFFF

SWT.COLOR_DARK_CYAN 0x008080

SWT.COLOR_BLUE 0x0000FF

SWT.COLOR_DARK_BLUE 0x000080
Licensed to jromero <jose.romero@galicia.seresco.es>

142 CHAPTER 7

Graphics
associated with the Color class, shown in table 7.5. If a display’s resolution is too
low to show this color, then it will use the system color with the nearest RGB value.

In both constructors, the first argument is an object of the Device class. Afterward,
the color’s RGB value is set according to three integers between 0 and 255, or an
instance of the RGB class. This RGB class, whose constructor is RGB(int, int, int),
is used to describe a color according to the values of its elements. It’s important to
remember that creating an RGB instance doesn’t create a color and that an RGB
object doesn’t require disposal.

 The code in listing 7.2 creates a Canvas that displays colored two shapes. At this
point, we recommend that you create a package named com.swtjface.Ch7 in the
WidgetWindow project and add the Ch7_Colors class.

package com.swtjface.Ch7;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.events.*;

public class Ch7_Colors extends Canvas
{
 public Ch7_Colors(Composite parent)
 {
 super(parent, SWT.NONE);
 setBackground(this.getDisplay().
 getSystemColor(SWT.COLOR_DARK_GRAY));
 addPaintListener(drawListener);
 }

 PaintListener drawListener = new PaintListener()
 {
 public void paintControl(PaintEvent pe)
 {
 Display disp = pe.display;
 Color light_gray = new Color(disp, 0xE0, 0xE0, 0xE0);
 GC gc = pe.gc;
 gc.setBackground(light_gray);

Table 7.5 The constructor methods of the Color class

Color constructor Function

Color(Device, int, int, int) Allocates a color according to separate RGB values

Color(Device, RGB) Allocates a color according to a given RGB object

Listing 7.2 Ch7_Colors.java

Use system color for
Canvas background

Create Color
object based
on RGB
value
Licensed to jromero <jose.romero@galicia.seresco.es>

Programming with colors 143
 gc.fillPolygon(new int[] {20, 20, 60, 50, 100, 20});
 gc.fillOval(120, 30, 50, 50);
 light_gray.dispose();
 }
 };
}

This code demonstrates the two ways that applications can obtain and use color.
In the constructor, the getSystemColor() method returns a basic color,
SWT.COLOR_DARK_GRAY, which doesn’t need to be disposed of. The graphic context
created by the PaintEvent allocates resources for a new color using the Color()
constructor. This color, light_gray, is created using three hexadecimal values cor-
responding to the desired amounts of red, green, and blue. After its last use, the
light_gray color is deallocated. These colors are shown in figure 7.3.

 In both cases, a Display object is needed in order to generate a color. This is
done by using the getDisplay() method associated with the Canvas. But the
PaintListener interface can’t access the constructor’s members. Instead, it uses
the PaintEvent’s display field.

 The two uses of setBackground() play significant roles in assigning colors. In
the class constructor, this method sets the background color of the Canvas, which
is DARK_GRAY. This method is used again to add color to the PaintEvent’s GC, which
is the color of the triangle and oval. It’s worth noting that the setForeground()
method isn’t needed at all.

 Working with SWT colors is a straightforward process, but there are ways to
make it even simpler. For this purpose, JFace provides classes that reduce the work
of managing colors.

Deallocate Color object
when finished

Figure 7.3 The program uses the system color SWT.COLOR_DARK_GRAY
and creates the color light_gray according to its RGB values.
Licensed to jromero <jose.romero@galicia.seresco.es>

144 CHAPTER 7

Graphics
7.2.2 Additional color capability with JFace

JFace uses the same color methodology as SWT. It also provides two interesting
classes to simplify color manipulation: JFaceColors, located in the org.eclipse.
jface.resource package; and ColorSelector, located in the org.eclipse.jface.
preference package.

The JFaceColors class
The JFaceColors class contains a number of static methods that you can use to
obtain colors in an Eclipse Workbench application. getBannerBackground()
returns the color of an application’s banner, and getErrorBorder() returns the
border color of widgets that display errors. There are also methods that return
colors of different kinds of text.

 The JFaceColors class also provides a useful method that can be invoked in
both SWT and JFace applications: setColors(), which you can use to set both the
foreground and background colors of a widget at once. The following code snip-
pet makes the button’s foreground color red and its background color green:

Button button = new Button(parent, SWT.NONE);
red = display.getSystemColor(SWT.COLOR_RED);
green = display.getSystemColor(SWT.COLOR_GREEN);
JFaceColors.setColors(button,red,green);

There is also a disposeColors() method, which despite its described capability of
deallocating all colors at once, can’t replace the dispose() method in the Color
class. Instead, it’s meant to perform additional tasks when the workbench disposes
of its color resources.

The ColorSelector class
Another class offered by the JFace toolset lets the user choose colors in an applica-
tion. Although the ColorSelector is part of JFace’s Preference framework, we felt
it necessary to mention its capability here. In essence, this class adds a button to
an instance of SWT’s ColorDialog class. An example is shown in figure 7.4.

 The ColorSelector sets and retrieves the RGB value corresponding to the
user’s selection. The setColorValue() method sets the default selection as the dia-
log box is created. The getColorValue() method converts the user’s selection into
an RGB object that can be used to allocate the color. This is shown in the following
code snippet:

ColorSelector cs = new ColorSelector(this);
Button button = cs.getButton();
RGB RGBchoice = cs.getColorValue();
Licensed to jromero <jose.romero@galicia.seresco.es>

Displaying text with fonts 145
Color colorchoice = new Color(display, RGBchoice);

Colors improve the appearance of a GUI, but they don’t convey useful informa-
tion. A proper user interface needs to communicate with the user. This means
adding text, which means working with resources that control how text is pre-
sented. These resources are called fonts.

7.3 Displaying text with fonts

Like working with colors, programming with fonts is simple to understand, but
there are important details to consider. This section will present the means of
choosing, allocating, and deallocating fonts with the SWT toolset. Then, we’ll
show you how to simplify these tasks with JFace.

 In keeping with its goal of maintaining a native look and feel, the SWT/
JFace toolkit relies primarily on fonts provided by the operating system.
Unfortunately, these fonts vary from one platform to another. Therefore, when
this section describes a font’s name, it means the name of one of the fonts
installed on your system.

7.3.1 Using fonts with SWT

SWT provides a number of font-related classes that perform one of three func-
tions. The first involves font management—allocating and deallocating Font
objects. The second function is implementing fonts in objects to change the

Figure 7.4
The ColorSelector allows users
to select an RGB object.
Licensed to jromero <jose.romero@galicia.seresco.es>

146 CHAPTER 7

Graphics
display of their text. Finally, SWT contains methods that provide measurements of
text dimensions for use in graphical applications.

Font management
Just as RGB objects contain the information needed to create Color objects, Font-
Data objects provide the basic data for creating Font instances. This data consists
of three parts, which are also the three arguments to the most common FontData
constructor method:

FontData(String name, int height, int style)

The first argument represents the name of the font, such as Times New Roman or
Arial. The height refers to the number of points in the font, and the style repre-
sents the type of font face: SWT.NORMAL, SWT.ITALIC, or SWT.BOLD.

 In addition, you can customize a FontData object by specifying its locale (the
application’s geographic location and the set of characters that should be used).
A font’s locale can be determined by invoking the getLocale() method and speci-
fied with setLocale().

 Neither RGB or FontData instances need to be disposed of, but Font objects
require allocation and deallocation. Table 7.6 presents the constructor methods
available for the Font class.

There is only one deallocation method for the Font class: dispose(). You should
invoke it shortly after the Font’s last usage.

Implementing fonts in objects
In SWT, fonts are generally associated with one of two GUI objects: Controls and GCs.
When you use the setFont() method associated with Controls, any text presented
with a setText() method is displayed with the specified font. Graphic contexts also
use the setFont() method, but they provide a number of different methods for
painting text in its clipping region. These methods are shown in table 7.7.

Table 7.6 Constructor methods of the Font class

Font constructor Function

Font(Device, FontData) Allocates a font according to its FontData object

Font(Device, FontData[]) Allocates a font according to an array of FontData

Font(Device, String, int, int) Allocates a font based on its name, size, and style
Licensed to jromero <jose.romero@galicia.seresco.es>

Displaying text with fonts 147
Because of the overloaded drawString() and drawText() methods, this table
requires some explanation. Although implementations of drawString() and
drawText() have the same argument types and functions, the difference is that
drawText() processes carriage returns and tab expansions, whereas drawString()
disregards them. Also, the two integers following the String argument represent
the coordinates of the text display.

 The Boolean argument in the second and fourth methods indicates whether
the text background should be transparent. If this value is set to TRUE, then the
color of the rectangle containing the text won’t be changed. If it’s FALSE, the color
of the rectangle will be set to that of the graphic context’s background.

 The third integer in the last drawText() method represents a flag that changes
the text display. These flags are as follows:

■ DRAW_DELIMITER—Displays the text as multiple lines if necessary

■ DRAW_TAB—Expands tabs in the text

■ DRAW_MNEMONIC—Underlines accelerator keys

■ DRAW_TRANSPARENT—Determines whether the text background will be the
same color as its associated object

Many of these flags are implemented in the code that follows.

Measuring font parameters
When incorporating text in GUIs, you may want to know the text’s dimensions,
which means knowing the measurements of a given font. SWT provides this

Table 7.7 Text methods of the graphic context (GC) class

Graphic context text method Function

drawString(String, int, int) Displays String with the given coordinates

drawString(String, int, int, Boolean) Displays String with the given coordinates and
background

drawText(String, int, int) Displays String with the given coordinates

drawText(String, int, int, Boolean) Displays String with the given coordinates and
background

drawText(String, int, int, int) Displays String with the given coordinates and
flags
Licensed to jromero <jose.romero@galicia.seresco.es>

148 CHAPTER 7

Graphics
information through its FontMetrics class, which contains a number of methods
for determining these parameters. These are shown in table 7.8.

This class has no constructor methods. Instead, the GC object must invoke its get-
FontMetrics() method. It returns a FontMetrics object for the font used in the
graphic context and lets you use the listed methods. Each returns an integer that
measures the given dimension according to the number of pixels.

 Now that we’ve described the management, integration, and measurement of
fonts, it’s important to use these classes and methods in actual code.

7.3.2 Coding with fonts

The class Ch7_Fonts, shown in listing 7.3, extends Canvas and creates a graphic
context that draws text with a chosen font. When the user clicks a button, a Font-
Dialog instance opens. This dialog determines which fonts are available on the
platform and lets the user choose the name, size, and style of the text in the Can-
vas. Once the user has chosen, the graphic context displays the text dimensions
by invoking its getFontMetrics() method.

 This class will be added to WidgetWindow, so we recommend placing Ch7_Fonts
in the com.swtjface.Ch7 package.

Table 7.8 Measurement methods of the FontMetrics class

FontMetrics text method Function

getAscent() Returns the distance from the baseline to the top of the characters

getAverageCharWidth() Returns the width of an average character

getDescent() Returns the distance from the baseline to the bottom of the charac-
ters

getHeight() Returns the sum of the ascent, the descent, and the leading area

getLeading() Returns the distance between the top of the characters and raised
marks
Licensed to jromero <jose.romero@galicia.seresco.es>

Displaying text with fonts 149
package com.swtjface.Ch7;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.events.*;

public class Ch7_Fonts extends Canvas
{
 static Shell mainShell;
 static Composite comp;
 FontData fontdata;

 public Ch7_Fonts(Composite parent)
 {
 super(parent, SWT.BORDER);
 parent.setSize(600, 200);
 addPaintListener(DrawListener);
 comp = this;
 mainShell = parent.getShell();

 Button fontChoice = new Button(this, SWT.CENTER);
 fontChoice.setBounds(20,20,100,20);
 fontChoice.setText("Choose font");
 fontChoice.addMouseListener(new MouseAdapter()
 {
 public void mouseDown(MouseEvent me)
 {
 FontDialog fd = new FontDialog(mainShell);
 fontdata = fd.open();
 comp.redraw();
 }
 });
 }

 PaintListener DrawListener = new PaintListener()
 {
 public void paintControl(PaintEvent pe)
 {
 Display disp = pe.display;
 GC gc = pe.gc;
 gc.setBackground(pe.display.getSystemColor(SWT.COLOR_DARK_GRAY));
 if (fontdata != null)
 {
 Font GCFont = new Font(disp, fontdata);
 gc.setFont(GCFont);
 FontMetrics fm = gc.getFontMetrics();
 gc.drawText("The average character width for this font is " +
 fm.getAverageCharWidth() + " pixels.", 20, 60);
 gc.drawText("The ascent for this font is " +
 fm.getAscent() + " pixels.", 20, 100, true);

Listing 7.3 Ch7_Fonts.java

Open FontDialog
box in Canvas

Create Font based
on user choice

Measure properties of
chosen font
Licensed to jromero <jose.romero@galicia.seresco.es>

150 CHAPTER 7

Graphics
 gc.drawText("The &descent for this font is " + fm.getDescent()+
 " pixels.", 20, 140, SWT.DRAW_MNEMONIC|SWT.DRAW_TRANSPARENT);
 GCFont.dispose();
 }
 }
 };
}

Once the user clicks the Choose Font button, the MouseEvent handler creates an
instance of a FontDialog and makes it visible by invoking the dialog’s open()
method. This method returns a FontData object, which is used in the DrawLis-
tener interface to create a font for the graphic context. This GC object, created by
the PaintEvent, then invokes its getFontMetrics() method to measure the param-
eters of the font.

 When the graphic context sets its foreground color to SWT.COLOR_DARK_GRAY,
this usually means that all text created by the GC will be surrounded by this color.
However, as you can see in figure 7.5, only the first drawText() method is sur-
rounded by the foreground color; this is because the second and third invocations
are considered transparent and take the color of the underlying Canvas. The third
drawText() method also enables mnemonic characters, which means that an
ampersand (&) before a letter results in the display underlining this character.
This is shown in figure 7.5 by the underlined d in the third sentence.

 In the DrawListener interface, a great deal of the processing is performed only
after the FontData object has been set by the FontDialog. This is necessary since
errors will result if the FontData argument is null. Also, since the graphic context
only draws its text after a PaintEvent, the MouseAdapter ends by invoking the
redraw() method, which causes the Canvas to repaint itself.

7.3.3 Improved font management with JFace

As we mentioned in section 7.3.1, one of the main functions of SWT’s graphics
is to provide font management—the allocation and deallocation of font
resources. This can be accomplished with the Font constructor and dispose()
methods, but there is no efficient way to manage multiple fonts in a single
application. JFace provides this capability with its FontRegistry class, located in
the org.eclipse.jface.resource package.

 By using a FontRegistry, you don’t need to worry about the creation or dis-
posal of Fonts. Instead, the FontRegistry’s put() method lets you match a String
value with a corresponding FontData[] object. This method can be invoked multi-
ple times to add more Fonts to the registry. Then, when the application needs a
Licensed to jromero <jose.romero@galicia.seresco.es>

Displaying text with fonts 151
new Font to change its text display, it calls the registry’s get() method, which
returns a Font object based on the argument’s String value. This is shown in the
following example code:

FontRegistry fr = JFaceResources.getFontRegistry();
fr.put("User_choice", fontdialog.getFontList());
fr.put("WingDings", WDFont.getFontData());
Font choice = fr.get("User_choice");

Rather than create an empty registry, this code uses the preexisting FontRegistry
associated with JFace and adds two more fonts. The first font is placed in the regis-
try from the result of a FontDialog selection, and the second is taken from a font
that existed previously in the application. In the last line, the FontRegistry con-
verts the FontData[] object associated with the FontDialog into a Font instance.
Just as the FontRegistry manages the creation of this font, it also performs its dis-
posal, as well as that of every font in its registry.

 The fonts in the FontRegistry include those used in the Eclipse Workbench’s
banners and dialog boxes. However, you need the JFaceResources class to access
them. The following code shows how this can be performed. It’s important to
note that the Strings used to invoke the registry’s get() method, as well as the
FontRegistry itself, are member fields in JFaceResources:

Figure 7.5 The user interface for Ch7_Fonts.java. This application
combines the many elements of SWT font manipulation.
Licensed to jromero <jose.romero@galicia.seresco.es>

152 CHAPTER 7

Graphics
FontRegistry fr = JFaceResources.getFontRegistry();
Font headFont = fr.get(JFaceResources.HEADER_FONT);
Font dialogFont = fr.get(JFaceResources.DIALOG_FONT);

Table 7.9 lists these fonts with their String values and functions.

Although the String value in the left column remains the same across multiple
platforms, the font to which it refers may vary. For example, on Linux, the Banner
font is Adobe Courier, Boldface, at 14 pitch. On MacOS, the default Banner font
is Lucida Grande, Bold, at 12 pitch.

 Having progressed from colors to fonts, we need to discuss graphics that convey
even more information: images. After all, a picture is worth a thousand words…

7.4 Incorporating images in graphics

Although the subject of manipulating images is more complicated than fonts or
colors, there are fewer concerns with platform dependence. Different operating
systems and applications may support divergent file types, but many image for-
mats have become so prevalent that they are supported on nearly all systems. The
code examples in this section work exclusively with these common image types.

 As this section will make clear, working with images is similar to working with
fonts. SWT provides classes and methods for image management and integration
in much the same way that it provides for font handling. Also, JFace provides
built-in resources and registries that reduce the amount of complexity involved
with image management.

7.4.1 Allocating images

Most applications only create Image objects to add existing image files to a user
interface. In this case, you should use the first and simplest of the Image construc-
tor methods:

Table 7.9 Fonts available in the JFace FontRegistry

Access String Font function

JFaceResources.BANNER_FONT Font used in JFace banners

JFaceResources.DEFAULT_FONT Standard JFace font

JFaceResources.DIALOG_FONT Font used in JFace dialogs

JFaceResources.HEADER_FONT Font used in JFace headers

JFaceResources.TEXT_FONT Font used for Workbench text
Licensed to jromero <jose.romero@galicia.seresco.es>

Incorporating images in graphics 153
Image(Device, String)

Applications seeking to present the image in a GUI invoke this method using the
Display object as the first argument and the image file’s pathname as the second. As
of the time of this writing, SWT accepts *.jpg, *.gif, *.png, *.bmp, and *.ico file types.

 If the image file resides in the same directory as a known class, then an Input-
Stream can be generated by invoking the class’s getResourceAsStream() method.
With this InputStream, you can use the second constructor method:

InputStream is = KnownClass.getResourceAsStream("Image.jpg");
Image Knownimage = new Image(Display, is);

The full list of overloaded Image constructor methods is shown in table 7.10.

The third and fourth constructor methods create empty Image instances with
dimensions set by the method’s arguments. The two integers specify the x and y
parameters of the image, and the Rectangle object in the fourth method frames
the image according to its boundaries. The fifth creates an Image based on a sec-
ond Image instance and an integer flag that determines whether the image should
appear disabled or in grayscale.

 The last two constructor methods construct Image instances using objects of
the ImageData class. This class provides device-independent information about an
Image object and contains methods to manipulate the image. Like the FontData
class, instances of ImageData don’t use operating system resources and don’t

Table 7.10 Constructor methods for the Image class

Constructor method Function

Image(Device, String) Creates an Image using an existing file

Image(Device, InputStream) Creates an Image using an InputStream from an exist-
ing image

Image(Device, int, int) Creates an empty Image with the given dimensions

Image(Device, Rectangle) Creates an empty Image with the dimensions of a Rect-
angle

Image(Device, Image, int) Creates an Image based on another Image and a set
parameter

Image(Device, ImageData) Creates an Image according to information in the
ImageData

Image(Device, ImageData, ImageData) Creates an Image (icon) according to an ImageData
object and a second ImageData object that determines
transparency
Licensed to jromero <jose.romero@galicia.seresco.es>

154 CHAPTER 7

Graphics
require deallocation. Image instances, however, need to invoke their dispose()
methods when they’re no longer in use.

 The ImageData class and its ability to incorporate effects in images will be
explored in greater depth shortly. First, it’s important for you to understand how
images are integrated in applications.

7.4.2 Coding graphics with images

The process of adding an Image to a GUI begins with creating a graphic context.
This GC object then calls its drawImage() method, which takes one of two forms,
based on whether the image will be presented with its original dimensions. This
method is presented in the code that follows.

 In chapter 4, we used a standard Eclipse image to show how the Action class
functions. To fully show SWT’s image capabilities, we need a larger image. There-
fore, we recommend that you copy eclipse_lg.gif from $ECLIPSE_HOME/
plugins/org.eclipse.platform_x.y.z and add it to the com.swtjface.Ch7 package.
This way, any class in the package will be able to work with this image.

 However, the following snippet is presented only to demonstrate how an Image
object works in a graphic context:

public class ImageTest extends Composite
{
 public ImageTest(Composite parent)
 {
 super(parent, SWT.NONE);
 parent.setSize(320,190);
 InputStream is = getClass().getResourceAsStream("eclipse_lg.gif");
 final ImageData eclipseData = new ImageData(is).scaledTo(87,123);
 this.addPaintListener(new PaintListener()
 {
 public void paintControl(PaintEvent pe)
 {
 GC gc = pe.gc;
 Image eclipse = new Image(pe.display, eclipseData);
 gc.drawImage(eclipse, 20, 20);
 gc.drawText("The image height is: " + eclipseData.height +
 " pixels.",120,30);
 gc.drawText("The image width is: " + eclipseData.width +
 " pixels.",120,70);
 gc.drawText("The image depth is: " + eclipseData.depth +
 " bits per pixel.",120,110);
 eclipse.dispose();
 }
 });
 }
}

Create ImageData
object from file

Create Image
from ImageData
Licensed to jromero <jose.romero@galicia.seresco.es>

Incorporating images in graphics 155
This code begins by constructing an ImageData object using an InputStream. In
this case, it makes sense to start with an ImageData instance since Image objects
can’t be resized or recolored. This resizing process is performed using the
scaleTo() method, which shrinks the image for the GUI. This new image is shown
in figure 7.6.

 When a PaintEvent occurs, the program invokes the paintControl() method.
This method creates the window’s graphic context and an Image object based on
the ImageData. To the right of the image, three statements provide information
regarding the fields of the ImageData instance. It’s worth noting that by changing
the coordinates, you can superimpose the text (or any graphic) on the image.

 The code shows how you can ue the ImageData class to obtain information
about images and change their size. However, this class is capable of much more.
But before we can discuss how ImageData creates image effects, you need to fully
understand this class and how it represents images.

7.4.3 Creating a bitmap with ImageData

The easiest way to learn about ImageData is to design, build, and display an
instance of this class. In this case, you’ll create a bitmap and use it to form an
Image. Doing so will introduce many of the fields and methods associated with the
ImageData class and provide a better idea why this class is necessary.

 The first step involves determining which colors will be used. Given this book’s
grayscale presentation, we’ll restrict ourselves to shades of gray. To reduce the
amount of programming, we’ll keep the number of different colors to a mini-
mum. With this in mind, this example uses three colors—white, black, and gray—
and combines them into a racing flag bitmap. This isn’t terribly exciting, but it
will be sufficient to show you how to generate ImageData.

Figure 7.6
Although an Image object can
be displayed in a window, the
ImageData instance provides
the information.
Licensed to jromero <jose.romero@galicia.seresco.es>

156 CHAPTER 7

Graphics
 To tell ImageData about the colors you’ll be using, you need to create an
instance of the PaletteData class. This object contains an array of the RGB values
in the image. For the image sketched in figure 7.7, this consists of three elements:
0x000000 (black), 0x808080 (gray), and 0xFFFFFF (white).

 Each pixel in an image has three pieces of information: its x coordinate, or off-
set; its y coordinate, or scanline; and the pixel’s color, which is referred to as its
value or index. Because this image contains only three colors, you don’t need to
assign each pixel its full RGB value (0x000000, 0x808080, 0xFFFFFF). Instead, it’s
simpler and less memory-intensive to use the color’s index in the PaletteData
array and assign pixel values of (0, 1, 2). This simplified mapping between a
pixel’s value and color is referred to as an indexed palette. For example, because the
eclipse_lg.gif file used in the last code snippet has a depth of only 8 bits per
pixel, each pixel is assigned a value between 1 and 28 (255).

 However, for images with depth greater than 8 bits per pixel, the additional
processing needed to translate between an index and its color isn’t worth the
reduced memory. These images use a direct palette, which directly assigns a pixel’s
value to its RGB value. The isDirect() method in the PaletteData class tells
whether an instance uses direct or indexed conversion.

 If you understand how the PaletteData class functions, then coding a bitmap
is straightforward, as shown in listing 7.4. Because this ImageData object will be
integrated in an animated graphic, we recommend that you add this FlagGraphic
class to the com.swtjface.Ch7 package.

 Pixel offset (x coordinate)

Pixel
scanline

 (y coordinate)

Figure 7.7
Each pixel in an image can be identified by
its offset, scanline, and color value.
Licensed to jromero <jose.romero@galicia.seresco.es>

Incorporating images in graphics 157
package com.swtjface.Ch7;
import org.eclipse.swt.graphics.*;

public class FlagGraphic
{
 public FlagGraphic()
 {
 int pix = 20;
 int numRows = 6;
 int numCols = 11;

 PaletteData pd = new PaletteData(new RGB[]
 {
 new RGB(0x00, 0x00, 0x00),
 new RGB(0x80, 0x80, 0x80),
 new RGB(0xFF, 0xFF, 0xFF)
 });

 final ImageData flagData = new ImageData(pix*numCols,
 pix*numRows, 2, pd);

 for(int x=0; x<pix*numCols; x++)
 {
 for(int y=0; y<pix*numRows; y++)
 {
 int value = (((x/pix)%3) + (3-((y/pix)%3))) % 3;
 flagData.setPixel(x,y,value);
 }
 }
 }
}

This example begins by creating a PaletteData object as an array of RGB objects
corresponding to black, gray, and white colors. Then, an ImageData instance is
constructed with the dimensions of the image, the depth of the image, and the
PaletteData. Because there are three possible colors, the depth is set to 2, which
provides support for up to 22 (4) colors. If an image’s color depth is 1, 2, 4, or 8,
then the application creates an indexed palette for the ImageData object during
its allocation process. For images with greater depth, the application will create a
direct palette.

NOTE If the user attempts to create a palette with a depth outside the set of {1,
2, 4, 8, 16, 24, 32}, the compiler will throw an ERROR_INVALID_ARGUMENT.

Listing 7.4 FlagGraphic.java

Create color palette with
black, gray, and white

Set value of each
pixel in image
Licensed to jromero <jose.romero@galicia.seresco.es>

158 CHAPTER 7

Graphics
In this example, the setPixel() method assigns values to all the pixels in the
220x120 image. This is only one of many bitmap methods provided by the Image-
Data class; table 7.11 provides a complete list.

It’s important to remember that, because flagData only works with RGB, Palette-
Data, and ImageData objects, no dispose() methods need to be invoked. Dealloca-
tion is only necessary when an ImageData instance is used to create an Image or if
the RGB values are used to create Colors. However, if an Image was constructed
from the flagData information, it would resemble that shown in figure 7.8.

 Now that we’ve covered the basics of working with ImageData objects, we can
progress to more advanced topics. It will take some time before an SWT application
can compete with a commercial photo-editing tool, but the toolset provides a num-
ber of impressive ways to manipulate images.

Table 7.11 Bitmap methods for the ImageData class

Method Function

getPixel(int, int) Returns the pixel value at the specified coordinates

getPixels(int, int, int,
 int[], int)

Returns a specified number of pixels beginning at a given offset
and scanline

getPixels(int, int, int,
 byte[], int)

Returns a specified number of pixels beginning at a given offset
and scanline

getRGBs() Returns the array of RGB objects in the indexed palette; returns
null if a direct palette is used

setPixel(int, int, int) Sets the value of the pixel located at the given coordinates

setPixels(int, int, int,
 int[], int)

Sets the values of a specified number of pixels beginning at a
given offset and scanline

setPixels(int, int, int,
 byte[], int)

Sets the values of a specified number of pixels beginning at a
given offset and scanline

Figure 7.8
Bitmap of an example ImageData object
Licensed to jromero <jose.romero@galicia.seresco.es>

Incorporating images in graphics 159
7.4.4 Manipulating images with ImageData

Along with the bitmap methods described so far, the ImageData class also contains
methods that provide graphical effects. You can set pixels in an image to provide
transparency instead of a color. Using alpha blending, two images can be com-
bined into an image that contains elements of both. Finally, using the ImageData
and ImageLoader classes, you can sequence images into animated GIF files.

Transparency
With sufficient color depth, the RGB system can provide any color in the visible
spectrum. However, this won’t help if you want sections of the image to be trans-
parent. No combination of red, green, and blue elements will add up to a see-
through color, so you need to set a specific pixel value to represent transparency.
This way, any pixel with this value will instead take the color of the background
behind it. This capability is provided with the transparentPixel field of the
ImageData class. This is simple to use in code, as the following snippet shows:

flagData.transparentPixel = 2;
Image flagImage = new Image(pe.display, flagData);
gc.drawImage(flagImage, 20, 20);

In this code, any pixels in FlagImage with the value of 2 (representing white) take
the color of the image’s background. This is shown on the left image in figure 7.9.
The right image is the result of setting the transparentPixel value to 1 (repre-
senting gray).

 In addition to the transparentPixel field, the ImageData class contains a num-
ber of methods that provide information about transparency. The getTranspar-
encyMask() method returns an ImageData object with its transparent pixels
separated in a mask array. The getTransparencyType() method returns an integer

Figure 7.9 Image transparency. On the left, all white pixels are made transparent. On
the right, all gray pixels are transparent.
Licensed to jromero <jose.romero@galicia.seresco.es>

160 CHAPTER 7

Graphics
representing the type of transparency used. In many image-editing toolsets, a pro-
gram can specify different degrees of transparency in an image. However, since
there is no setTransparencyType() method at the time of this writing, this feature
has yet to be integrated in SWT.

 Transparency is a helpful capability, but it’s still static. It would be much more
striking to create a series of images and display them at short time intervals to pro-
vide the illusion of continuous motion. We’ll now cover this king of computer
graphic effects: animation.

Saving and animating images
Of the many common types of images, the Graphics Interchange Format (GIF) is
the only one that supports animation. Therefore, before we can discuss animation
in depth, we need to describe how SWT’s Image objects are saved as image files.
This means looking into SWT’s ImageLoader class.

 Like the ImageData constructors, the ImageLoader class contains methods that
accept image files and streams and return ImageData[] objects. However, this
class’s main purpose involves converting ImageData[] instances into Output-
Streams and image files. This way, graphics can be persisted instead of being dis-
posed with their Image objects. Table 7.12 shows the formats accepted for loading
and saving files with SWT.

There are two steps in the process of building an image file in SWT:

1 The application creates an instance of the ImageLoader class and sets its
data field equal to the ImageData or ImageData[] object that contains the
image information.

2 The image file is created by invoking the ImageLoader’s save() method.
This method can also be used to create an OutputStream for the image.

Table 7.12 Image file formats accepted for SWT access

SWT constant Image type

SWT.IMAGE_JPEG Joint Photographic Experts Group (*.jpg)

SWT.IMAGE_GIF Graphics Interchage File (*.gif)

SWT.IMAGE_PNG Portable Native Graphic (*.png)

SWT.IMAGE_BMP Windows Bitmap (*.bmp)—No compression

SWT.IMAGE_BMP_RLE Windows Bitmap (*.bmp)—RLE compression

SWT.IMAGE_ICO Windows Icon format (*.ico)
Licensed to jromero <jose.romero@galicia.seresco.es>

Incorporating images in graphics 161
However, an application seeking to create an animated GIF file must perform sev-
eral additional tasks:

3 Each ImageData object, or frame, in the sequence must be configured to
display itself for a specified amount of time and then dispose of itself
appropriately. In code, this is done using the delayTime and disposal-
Method fields of the ImageData class.

4 The application must combine these frames in an ImageData array and
load this array into an ImageLoader.

5 The application must initialize the repeatCount field of the ImageLoader
instance in order to specify how many times the animated sequence
should repeat itself.

6 The ImageLoader’s save() method is used with the SWT.IMAGE_GIF tag to
save the image array as an animated GIF file.

The Ch7_Images class, shown in listing 7.5, demonstrates the process of integrat-
ing multiple instances of the ImageData class into a single animated GIF.

NOTE This GIF works best if you open it in a browser that supports animation.

package com.swtjface.Ch7;
import java.io.*;
import org.eclipse.swt.*;
import org.eclipse.swt.graphics.*;

public class Ch7_Images {

 public static void main(String[] args) {

 int numRows = 6, numCols = 11, pix = 20;
 PaletteData pd = new PaletteData(new RGB[]
 {
 new RGB(0x00, 0x00, 0x00),
 new RGB(0x80, 0x80, 0x80),
 new RGB(0xFF, 0xFF, 0xFF)
 });

 ImageData[] flagArray = new ImageData[3];
 for(int frame=0; frame<flagArray.length; frame++)
 {
 flagArray[frame]= new ImageData(pix*numCols, pix*numRows, 4, pd);
 flagArray[frame].delayTime = 10;
 for(int x=0; x<pix*numCols; x++)
 {
 for(int y=0; y<pix*numRows; y++)

Listing 7.5 Ch7_Images.java

Initialize color
palette

Create three
images
Licensed to jromero <jose.romero@galicia.seresco.es>

162 CHAPTER 7

Graphics
 {
 int value = (((x/pix)%3) + (3 - ((y/pix)%3)) + frame) % 3;
 flagArray[frame].setPixel(x,y,value);
 }
 }
 }

 ImageLoader gifloader = new ImageLoader();
 ByteArrayOutputStream flagByte[] = new ByteArrayOutputStream[3];
 byte[][] gifarray = new byte[3][];
 gifloader.data = flagArray;

 for (int i=0; i<3; i++)
 {
 flagByte[i] = new ByteArrayOutputStream();
 flagArray[0] = flagArray[i];
 gifloader.save(flagByte[i],SWT.IMAGE_GIF);
 gifarray[i] = flagByte[i].toByteArray();
 }

 byte[] gif = new byte[4628];
 System.arraycopy(gifarray[0],0,gif,0,61);
 System.arraycopy(new byte[]{33,(byte)255,11},0,gif,61,3);
 System.arraycopy(new String("NETSCAPE2.0").getBytes(),0,gif,64,11);
 System.arraycopy(new byte[]{3,1,-24,3,0,33,-7,4,-24},0,gif,75,9);

 System.arraycopy(gifarray[0],65,gif,84,1512);
 for (int i=1; i<3; i++)
 {
 System.arraycopy(gifarray[i],61,gif,1516*i + 80,3);
 gif[1516*i + 83] = (byte) -24;
 System.arraycopy(gifarray[i],65,gif,1516*i + 84,1512);
 }

 try
 {
 DataOutputStream in = new DataOutputStream
 (new BufferedOutputStream(new FileOutputStream
 (new File("FlagGIF.gif"))));
 in.write(gif, 0, gif.length);
 }
 catch (FileNotFoundException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
}

Convert images
to bytes

Prepare output
GIF stream

Add images to
GIF stream

Create GIF file
from stream
Licensed to jromero <jose.romero@galicia.seresco.es>

Incorporating images in graphics 163
The complexity of this code is due to the fact that the ImageLoader.save()
method can’t convert an ImageData array into an animated GIF. However, this
method can create a GIF OutputStream from an individual ImageData object, and
this capability is used for each image in the array. Then, after a great deal of byte
manipulation, these three OutputStreams are fused into a final OutputStream that
creates the FlagGIF.gif file.

 If this file doesn’t immediately appear in Eclipse, right-click the project name
(WidgetWindow) and select the Refresh option. The file will appear in the project.

 Now that we’ve discussed SWT’s image-handling capability in excruciating
detail, let’s look at JFace. Although the JFace library can’t create incredible special
effects, it can greatly simplify the process of working with images.

7.4.5 Managing images with JFace

Just as JFace’s FontRegistry class simplifies font management, the ImageRegistry
class lets you incorporate multiple images in an application without worrying
about resource deallocation. It also uses the same access methods as the FontReg-
istry class. To place an image in the registry, you use the put() method with an
Image object and a String. When the image needs to be displayed, the get()
method returns the image based on the key. Here’s an example that uses the
eclipse_lg.gif file:

ImageRegistry ir = new ImageRegistry();
ir.put("Eclipse", new Image(display, "eclipse_lg.gif"));
Image eclipse = ir.get("Eclipse");

In this case, you still need to allocate resources for the Image object. This may
cause a problem if the application places many images in the registry but only
needs to display a few. For this reason, JFace created the ImageDescriptor class.
Like SWT’s ImageData class, the ImageDescriptor contains the information
needed for an image without requiring allocation of system resources. The get()
and put() methods associated with the ImageRegistry class are also available for
ImageDescriptor objects, as shown in the following code sample:

ImageRegistry ir = new ImageRegistry();
ImageDescriptor id = createFromFile(getClass(),"eclipse_lg.gif");
ir.put("Eclipse", id);
Image eclipse = ir.get("Eclipse");

If you use ImageDescriptors, the put() and get() operations can be performed
without allocating for Image objects. This way, you can add a large number of
ImageDescriptors to an application’s ImageRegistry without worrying about image
Licensed to jromero <jose.romero@galicia.seresco.es>

164 CHAPTER 7

Graphics
creation. Finally, since an ImageRegistry disposes of its contents when its Display
object is closed, you don’t need to concern yourself with image deallocation.

7.5 Updating the WidgetWindow

To add graphics to the WidgetWindow application, in this section you’ll create a
Composite subclass containing colors, fonts, and images. This container incorpo-
rates the Ch7_Colors and Ch7_Fonts classes, as well as the animated image created
by the Ch7_Images class.

7.5.1 Building the chapter 7 composite

Listing 7.6 presents the Ch7_Composite class, which extends the Canvas class and
combines the drawing from section 7.2.1 with the font dialog box from
section 7.3.2 and the animated image from section 7.4.4. In order for this to func-
tion properly, you must add the FlagGIF.gif file to the com.swtjface.Ch7 package.

package com.swtjface.Ch7;
import java.io.*;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.events.*;
import org.eclipse.swt.graphics.*;

public class Ch7_Composite extends Canvas
{
 public Ch7_Composite(Composite parent)
 {
 super(parent, SWT.BORDER);
 Ch7_Colors drawing = new Ch7_Colors(this);
 drawing.setBounds(20,20,200,100);
 Ch7_Fonts fontbox = new Ch7_Fonts(this);
 fontbox.setBounds(0,150,500,200);
 Ch7_Images flagmaker = new Ch7_Images();
 addPaintListener(new PaintListener()
 {
 public void paintControl(PaintEvent pe)
 {
 Display disp = pe.display;
 GC gc = pe.gc;
 InputStream is=getClass().getResourceAsStream("FlagGIF.gif");

Listing 7.6 Ch7_Composite.java

 Add figure
drawing

Add font
dialog button

Add GIF
to Canvas
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating the WidgetWindow 165
 Image flag = new Image(disp, is);
 gc.drawImage(flag, 255, 10);
 flag.dispose();
 }
 });
 }
}

The operation of Ch7_Composite is simple to understand: It creates a Ch7_Colors
Composite in the upper-left corner of the Canvas and a Ch7_Fonts Composite at the
bottom of the display. It also constructs a graphic context that displays the Flag-
GIF.gif file in the upper-right corner of the window.

7.5.2 Adding Ch7_Composite to the WidgetWindow

Let’s add a tab to the WidgetWindow Tabfolder that comprises the Ch7_Composite
class created in this chapter. As in previous chapters, the only parts of the code
that need to be updated are the import statements and the createContents()
method. To conserve space, these are the only sections presented in listing 7.7.

...Previous import statements...
import com.swtjface.Ch6.*;
import com.swtjface.Ch7.*;

protected Control createContents(Composite parent) {
 getShell().setText("Widget Window");
 TabFolder tf = new TabFolder(parent, SWT.NONE);

 ...Previous tab items...

 TabItem chap7 = new TabItem(tf,SWT.NONE);
 chap7.setText("Chapter 7");
 chap7.setControl(new Ch7_Composite(tf));

 return parent;
}

Once it’s been updated, the WidgetWindow should appear similar to the GUI shown
in figure 7.10. Unfortunately, although the FlagGIF.gif file is an animated GIF, the
image loaded in the application remains static.

Listing 7.7 WidgetWindow.java (updated)
Licensed to jromero <jose.romero@galicia.seresco.es>

166 CHAPTER 7

Graphics
7.6 Summary

The SWT/JFace graphics library allows applications to display significantly more
than the widgets described in chapters 3 and 5. This capability isn’t perfect, but
it’s incredible for such a young toolset. Not only does it let you manage and
manipulate colors, images, and fonts, it also provides numerous classes to hold
their information. These are particularly helpful for running graphical applica-
tions on systems with limited resources.

 It’s difficult to keep track of ImageData, ImageDescriptor, and ImageLoader
objects, but SWT/JFace separates the roles of the graphical classes clearly. Also,
although the registries provided by JFace may seem complicated to work with,
they perform helpful functions, so we hope you remember them when building
your applications.

 The special-effects methods in SWT/JFace need work, but the potential for
future capabilities is enormous. We hope that in a few years’ time, Eclipse applica-
tions will be used to create and manipulate professional-quality graphical editing
applications, which can be used not only to create images and animation, but also
to incorporate full audio/visual aspects.

Figure 7.10 The updated WidgetWindow combines the color, font,
and image-handling capabilities of SWT/JFace.
Licensed to jromero <jose.romero@galicia.seresco.es>

Working with
trees and lists
This chapter covers
■ The Viewer framework
■ SWT trees
■ JFace trees
■ SWT lists
■ JFace lists
167

Licensed to jromero <jose.romero@galicia.seresco.es>

168 CHAPTER 8

Working with trees and lists
In this chapter and the next, we’ll explore some of the most useful widgets pro-
vided by JFace. However, the framework that goes along with those widgets is also
one of the most complicated that we’ll cover in this book, so pay attention.

 Certain widgets’ main purpose is to display sets of data. Although the data can
be anything from rows in a database to a list of your most frequently played mp3s,
certain common ways of structuring that data for display occur frequently. Even
when the final display is very different, many common tasks must be done to make
sure the data is ready to be shown to the user. The data must be obtained from a
source; it’s often sorted into a certain order or has elements filtered out; and you
need a way to associate a text string or image with each domain object. JFace pro-
vides the Viewer framework to deal with these common issues; we’ll need to discuss
the common elements of that framework before we get into the details of particu-
lar widgets.

 After we provide a foundation for understanding viewers and their related
classes, this chapter will show you how to display data in a list or tree. We’ll follow
that up with a discussion of tables in chapter 9.

8.1 Viewers and the Viewer framework

JFace provides the Viewer framework to enable easy manipulation of certain wid-
gets. This framework includes many classes and interfaces with complex relation-
ships, as shown in figure 8.1. As we discuss each section of this framework in turn,
you may find it helpful to refer to this diagram frequently.

 As we discuss these classes, it’s important to keep the big picture in mind.
The Viewer framework is an implementation of the design pattern known as
Model-View-Controller (MVC). The core of the idea is to separate domain
objects (the Model) from the user interface (the View) and the logic that con-
trols them (the Controller).

 At the heart of the framework is the abstract class Viewer and its descendants.
The path of the inheritance hierarchy we’re concerned with here involves Con-
tentViewer and StructuredViewer.

 An appropriate Viewer provides a layer of abstraction between a widget and
the data it displays and forms the View portion of the MVC triad, creating a display
for a domain object. To the client programmer, a Viewer provides an interface
that is much more natural to manipulate than is provided by the widget itself. The
widget, on the other hand, is given a way to obtain data without having to worry
about its source. By manipulating a collection of objects through the interface
Licensed to jromero <jose.romero@galicia.seresco.es>

Viewers and the Viewer framework 169
provided by the Viewer, the widget can rearrange the data into a form most conve-
nient for its own internal use without affecting the original data structure.

 ContentViewer adds functionality to deal with data in the form of domain
objects by making use of a variety of interfaces, which by JFace convention have an
I at the beginning of their names. These interfaces, which we’ll discuss in more
detail later in the chapter, represent extension points, which you can use to plug
your application’s custom logic into the framework.

 StructuredViewer imposes a structure on the data provided to ContentViewer.
The specifics of the structure can vary widely, but methods to perform common
tasks such as filtering or sorting are implemented at this level of the hierarchy.

 Each widget—Tree, List, Table, and so on—has a matching Viewer subclass,
such as ListViewer or TableViewer. The widget is intended to be matched with at
most one instance of its Viewer, and once the Viewer has been associated with the
widget, all manipulation should be done through the viewer instead of to the wid-
get directly. Trying to mix calls between the widget and its viewer will have unpre-
dictable results. All concrete Viewer subclasses provide a constructor that takes an

<<interface>>

IContentProvider Viewer

<<interface>>

IInputProvider
<<interface>>

ISelectionProvider

<<interface>>

IStructuredContentProvider

<<interface>>

IInputSelectionProvider

<<interface>>

ITreeContentProvider

ViewerFilter

<<interface>>

IBaseLabelProvider

ListViewer TableViewer

<<interface>>

ILabelProvider

<<interface>>

ITableLabelProvider

TreeViewer TableTreeViewer

LabelProvider

ContentViewer

StructuredViewer

AbstractTreeViewer

inputChanged() : void

getElements() : Object[]

getChildren() : Object[]

isLabelProperty() : boolean

getImage() : Image
getText() : String

getColumnImage() : Image
getColumnText() : String

Figure 8.1 An overview of the Viewer framework
Licensed to jromero <jose.romero@galicia.seresco.es>

170 CHAPTER 8

Working with trees and lists
instance of the appropriate widget and associates it with the new viewer. Alterna-
tively, a constructor taking only a Composite is provided, which instantiates a wid-
get as a child of the given Composite and binds it to the viewer.

 Once associated with the widget, viewers typically provide several methods.
The most important of these are easy ways to add elements to and retrieve or
remove elements from the collection of data displayed by the widget. Additionally,
methods to set label providers are implemented at this level. Label providers, dis-
cussed in detail in the next section, generate suitable UI text from domain objects.
The IBaseLabelProvider interface serves as the common interface that all label
providers must implement. More specific interfaces then derive from IBaseLabel-
Provider and are used by individual widget types. The abstract ContentViewer
class defines these methods to take the IBaseLabelProvider interface; but by
implementing the methods here, you can insert checks to ensure that only imple-
mentations of IBaseLabelProvider that are appropriate to the given widget are
added, while the common logic is performed by the superclass.

 Most of the methods defined in these base classes won’t be called directly by
your code. Instead, you’ll provide the viewer with a class that implements one of
the interfaces, and the viewer will call methods on your class at the appropriate
time. Table 8.1 summarizes the methods you’ll need to be familiar with to make
proper use of viewers.

8.1.1 Providers

The first subclass of Viewer, ContentViewer, adds functionality for dealing with the
data displayed by a widget, thereby providing the M (Model) in MVC. It’s the role

Table 8.1 Important viewer methods

Method Defined in…

getControl() Viewer

getSelection() Viewer

refresh() Viewer

setInput() Viewer

setContentProvider() ContentViewer

setLabelProvider() ContentViewer

addFilter() StructuredViewer

reveal() StructuredViewer

setSorter() StructuredViewer
Licensed to jromero <jose.romero@galicia.seresco.es>

Viewers and the Viewer framework 171
of a provider to perform application-specific work to make a piece of data avail-
able to the widget—for example, to return the text that should be displayed to
represent a given domain object in a list. There are two types of providers: Label-
Providers and ContentProviders. The class hierarchies we discuss here are both
shown in figure 8.1; you’ll probably find it helpful to refer back to the diagram as
we explore the various interfaces and classes.

Label providers
Label providers implement either ILabelProvider or ITableLabelProvider, both
of which extend IBaseLabelProvider. ILabelProvider and ITableLabelProvider
are similar in spirit, the only difference being that ITableLabelProvider deals
with table columns, whereas ILabelProvider assumes one-dimensional data.

 The logic for label providers revolves around three methods. The first is isLa-
belProperty(), defined in IBaseLabelProvider. Given an object and the name of
a property, the method returns a boolean indicating whether a change to the
given property requires a corresponding update to a visible label. It isn’t manda-
tory, but properties typically conform to JavaBean naming standards: that is, if the
bean has a property name, then a getName() and possibly a setName() method is
defined for the object. isLabelProperty() is called when an object has been
updated by an Editor (see the next section) to optimize drawing operations. If
isLabelProperty() returns false, ContentViewer knows that it isn’t necessary to
redraw the widget.

 Subinterfaces of IBaseLabelProvider also provide getText() and getImage()
methods in various forms. Each is given an object, and it’s the responsibility of the
provider to return the text and/or image that should be displayed for that object.
Returning null results in no text or image being displayed. The only difference
between standard label providers and table label providers is that the methods in
ITableLabelProvider take an additional parameter indicating the index of the
column being populated; the concept is otherwise exactly the same.

 JFace provides a default implementation of ILabelProvider called LabelPro-
vider, which returns null for all images, along with the result of calling
toString() on the given object for the text. This can be useful for debugging or
getting a prototype running quickly, but you’ll usually need to subclass LabelPro-
vider or provide a new implementation of the interface that performs logic
appropriate to your application. The data returned by toString() typically isn’t
appealing for users to look at.
Licensed to jromero <jose.romero@galicia.seresco.es>

172 CHAPTER 8

Working with trees and lists
Content providers
In addition to label providers, ContentViewer concerns itself with content provid-
ers. Whereas a label provider provides the text or image to display for an element,
a content provider provides the actual elements to be displayed. IStructuredCon-
tentProvider defines the getElements() method, which is given an Object as
input and returns an array of Objects to display in the widget. When setInput() is
called on the Viewer, the object given as a parameter is passed to the content
viewer. The content provider is then responsible for using that input parameter to
return a collection of domain objects to be displayed by the widget.

 A simple example is a content provider that displays information from an XML
file. It could take an input stream as a parameter, parse the XML from the stream,
and then return objects representing various elements of the XML data to be dis-
played by the viewer. It isn’t necessary to use a content provider, however; if you
add() the elements that you wish to display, it will work fine.

 Two other methods on IStructuredContentProvider can often be left empty.
The first is dispose(), which the viewer calls when it’s being disposed of; you can
use this method to clean up any allocated resources that the content provider may
be hanging on to. The last method is inputChanged(Viewer viewer, Object old-
Input, Object newInput), which the viewer uses to notify the content provider
that the root input object has changed. Although many applications can safely
ignore this method, the Javadocs suggest its intended use. Suppose your applica-
tion contains domain objects that broadcast events, such as a network resource
that sends notifications when it becomes unavailable. When the viewer’s input is
changed from one of these objects to another, inputChanged() can be used to
unregister the content provider from listening to the old input object and register
for events from the new one.

8.1.2 Listeners

The various viewer classes provide support for a variety of event listeners. The
base Viewer class offers notification of help request and selection changed events.
Moving down the hierarchy, StructuredViewer adds support for double-click
events, and AbstractTreeViewer adds default selections and tree events. Events
and listeners were already discussed in detail in chapter 4; the same principles
that we talked about earlier apply here as well. Listeners are used to implement
the logic behind the application; they make up the Controller portion of MVC.
Licensed to jromero <jose.romero@galicia.seresco.es>

Viewers and the Viewer framework 173
8.1.3 Filters and sorters

As we mentioned earlier, it’s common to want to sort items before they are dis-
played. This sorting can be done by an infinite variety of parameters, from alpha-
betically sorting contact information in an address book to listing emails by data
received. To perform sorting or similar manipulations of data, the elements need
some sort of structure. Knowledge of this structure comes from the Structured-
Viewer class. The key functionality offered by a StructuredViewer is the ability to
run objects through a filter and sort them before they’re displayed.

 Filters are an elegant idea; they help decouple the creation of a group of items
from the act of deciding which ones should be displayed. A natural first inclina-
tion would be to create only the items that should be displayed. However, this
approach lacks flexibility. For each set of objects to display, you must rewrite the
retrieval logic. Additionally, for efficiency reasons, it may make more sense to load
the entire set of objects once and cache them. Making constant round trips to a
database is a sure way to slow your application to a crawl.

 In order to use a filter, you’ll load the entire collection once, either by using a
ContentProvider or by add()ing the objects. When it’s time to display the data,
you call StructuredViewer’s addFilter() method, giving it an implementation of
ViewerFilter that only accepts the items to be displayed.

 For example, assume we have a list of words. The user can choose to display
only words that start with a certain string. The code is simple. It first defines a filter:

public class SubstringFilter extends ViewerFilter
{
 private String filterString;

 public SubstringFilter(String s)
 {
 filterString = s;
 }

 public boolean select(Viewer viewer,
 Object parentElement, Object element)
 {
 return element.toString().startsWith(filterString);
 }
}

Now we can use it on the viewer:

StructuredViewer viewer = ...
//set content provider, etc for the viewer
SubstringFilter filter = new SubstringFilter("");
viewer.addFilter(filter);
Licensed to jromero <jose.romero@galicia.seresco.es>

174 CHAPTER 8

Working with trees and lists
By default, this displays every element, because any string starts with the empty
string. When the user enters a string to filter by, these lines of code update the
display:

viewer.removeFilter(filter);
filter = new SubstringFilter(userEnteredString);
viewer.addFilter(filter);

Calling addFilter() automatically triggers refiltering of the elements, and now
only strings that start with the string entered by the user are displayed. Notice that
there was no need to worry about the original collection of objects. The viewer
still maintains the entire collection; it chooses to display only the ones for which
the filter returns true when select() is called. It’s even possible to have multiple
filters on a viewer; in this case, only items that pass all the filters are displayed.

 There is one caveat to be aware of when you’re using a design that revolves
around filters: Although it’s conceptually simpler to load an entire collection and
let the filters handle selection, this approach won’t scale well if your collection
potentially contains millions of items. In this case, you’ll probably have to fall back
on the “load only what you need” method. As always, carefully consider the
demands of your specific application.

 Similar in spirit to filters, StructuredViewer also allows custom sorting of its
elements using setSorter() and a ViewerSorter. After all elements have been fil-
tered, the sorter is given a chance to reorder the elements before they are dis-
played. To continue our earlier example, you could use a sorter to alphabetize the
words in the list. The default implementation of ViewerSorter sorts the labels for
each element in a case-insensitive manner. The easiest way to implement your
own ViewerSorter is to override the compare() method, which acts identically to
the compare() method in java.util.Comparator. compare() is given two objects
and returns a negative integer, zero, or a positive integer, to denote less than,
equals, or greater than, respectively.

 You can use the isSorterProperty() method to avoid resorting if a given
change wouldn’t change the sort order. If you need more complex comparisons,
you can use the category() method to break elements into different categories,
each of which will be sorted independently. For example, if you have a list of
Order objects, category() could return 1 for inbound orders and 2 for outbound
orders, whereas compare() sorts based upon the order number. The list will then
group all the inbound orders together, sorted by order number, followed by all
the outbound orders, also sorted by order number. This technique is most
Licensed to jromero <jose.romero@galicia.seresco.es>

Viewers and the Viewer framework 175
effective if there is also a visual cue that corresponds to the different categories.
The following example shows the code used to implement such an approach:

public class OrderSorter extends ViewerSorter
{
 public int category(Object element)
 {
 //assumes all objects are either InboundOrder
 //or OutboundOrder
 return (element instanceof InboundOrder) ? 1 : 2;
 }

 public int compare(Viewer viewer, Object e1, Object e2)
 {
 int cat1 = category(e1);
 int cat2 = category(e2);
 if(cat1 != cat2) return cat1 – cat2;
 //Order is the superclass of both InboundOrder
 //and OutboundOrder
 int firstOrderNumber = ((Order)e1).getOrderNumber();
 int secondOrderNumber = ((Order)e2).getOrderNumber();
 return firstOrderNumber – secondOrderNumber;
 }
}

Notice that this example manually calls category(). This is necessary because
we’ve overridden the compare() method, so if we don’t call category() ourselves,
it won’t be called at all.

 Unlike filters, it’s only possible to have one sorter at a time on a given Struc-
turedViewer. Multiple sorters wouldn’t make sense, because each would clobber
the work done by the others.

 The default implementation of compare() generates labels for each item and
sorts based on those generated labels. For this reason, the Viewer is passed to the
compare() method. By casting the Viewer to a ContentViewer, the label provider
can be retrieved using getLabelProvider() and used to get the text that will be
displayed for the given element. In the previous example, overriding compare()
thus becomes unnecessary if the label provider is implemented such that it
returns the order number in String form. In that case, you could get away with
implementing category() to differentiate between inbound and outbound orders
and trust the default compare() to correctly group the orders. However, doing so
would introduce coupling between the label provider and the sorter, since if the
label provider changes, the orders may not be sorted correctly. How serious an
issue this might be will vary from application to application.
Licensed to jromero <jose.romero@galicia.seresco.es>

176 CHAPTER 8

Working with trees and lists
 Now that we have all the background out of the way, let’s see some examples of
using these widgets.

8.2 Trees

A tree control displays data in a hierarchal format, allowing a
user to easily see the relationship between different ele-
ments. You’re probably familiar with using Windows
Explorer or a similar tool on your platform of choice to navi-
gate your machine’s file system. The folders on your
machine are displayed, with each subfolder displayed
beneath its parent. Sections of this hierarchy can be
expanded or hidden, allowing you to focus on the section of
the file system that interests you. A tree control lets you pro-
vide similar functionality for any group of objects that has a parent/child relation-
ship, the way folders and subfolders do. Figure 8.2 shows a simple tree.

 We’ll first discuss the SWT Tree widget, followed by the TreeViewer from JFace,
which you can use to simplify use of the Tree.

8.2.1 SWT trees

Tree doesn’t have a particularly useful interface. It extends Scrollable and pro-
vides the basic operations outlined in table 8.2.

The items in the tree are a bit more interesting.

TreeItem
TreeItem is the class used to add items to a Tree. In addition to displaying content,
TreeItems maintain a relationship with both parent and child items. A given

Figure 8.2
A tree showing
parent/child
relationships

Table 8.2 Operations available on a tree

Method Description

addSelectionListener() Enables notification of selection events.

addTreeListener() The TreeListener interface provides callbacks for notification
when a level of the tree is expanded or collapsed.

select()/deselect() Modifies the current selection.

getSelection() Retrieves the current selection.

show() Forces the control to scroll until the given item is visible.
Licensed to jromero <jose.romero@galicia.seresco.es>

Trees 177
item’s parent can be retrieved with getParentItem(), which returns null for an
item at the root of the Tree; getItems() returns the children in the form of an
array of TreeItem.

 Two style options are relevant for a Tree. The first is a choice between SWT.SIN-
GLE or SWT.MULTI, which affects how many items may be selected at a time. Tree
defaults to SWT.SINGLE, which means that each time an item is selected, the previ-
ous selection disappears. Using SWT.MULTI lets the user select multiple options in
whatever way is supported by the operating system (usually by Ctrl- or Shift-
clicking multiple entries).

 The last style that may be applied is SWT.CHECK, which causes checkboxes to be
drawn to the left of each item in the tree. If checkboxes have been enabled, the
status of any given TreeItem can be queried using the getChecked() method,
which returns a boolean indicating whether the item has been checked. Note that
on some platforms, an item can be selected without being checked.

 A parent is set by passing it to the constructor of TreeItem and can’t be modi-
fied from either end of the relationship. Because of the way these relationships
are maintained, removing a single item from a Tree is awkward: You must call
removeAll() to empty the Tree and rebuild its contents, minus the items you wish
to remove.

 TreeItems provide methods to modify the text or image displayed in the form
of setText() and setImage(). A TreeItem can be forced to expand or contract
itself using setExpanded(boolean).

 You’re welcome to build and display a tree by directly creating and manipulat-
ing TreeItems, but doing so forces you to deal with widgets on a lower level than is
necessary. By using a TreeViewer to handle your tree, you can focus on the logic of
your application rather than on the details of user interface elements.

8.2.2 JFace TreeViewers

A TreeViewer offers the filtering and sorting capabilities common to all Viewers,
as well as the ability to use a label provider. Additionally, a TreeViewer can use an
ITreeContentProvider to populate itself. The ITreeContentProvider interface
extends IStructuredContentProvider to add methods for querying the parent or
children of a given node.

 As we mentioned in our earlier discussion of general Viewer features, a con-
tent provider provides an interface to business object relationships. For example,
suppose you need to display the elements of an XML document in a tree to allow
the user to easily navigate between them. Using a Tree and TreeItems directly, this
would require you to loop through all elements in the document, building the
Licensed to jromero <jose.romero@galicia.seresco.es>

178 CHAPTER 8

Working with trees and lists
items by hand. Using the DOM parsing facilities in JDK 1.4, the resulting
pseudocode looks something like this:

Document document = ... //parse XML
Tree tree = ...
NodeList rootChildren = document.getChildNodes();
for(int i = 0; i < rootChildren.getLength(); i++)
{
 Element rootElement = (Element)rootChildren.item(i);
 TreeItem item = new TreeItem(tree, NODE_STYLE);
 item.setText(rootElement.getTagName());
 buildChildren(rootElement, item);
}

...

/*
Recursively builds TreeItems out of the child
nodes of the given Element
*/
private void buildChildren(Element element,
 TreeItem parentItem)
{
 NodeList children = element.getChildNodes();
 for(int i = 0; i < children.length(); i++)
 {
 Element child = (Element)children.item(i);
 TreeItem childItem = new TreeItem(parentItem, NODE_STYLE);
 buildChildren(child, childItem);
 }
}

In contrast, the code to use a content provider consists of trivial implementations
of methods defined in ITreeContentProvider:

Document document = ... //parse XML document
TreeViewer viewer = ...
viewer.setContentProvider(new XMLContentProvider());
viewer.setInput(document);
viewer.setLabelProvider(XMLLabelProvider());

...

class XMLContentProvider
 implements ITreeContentProvider
{
 public Object[] getChildren(Object parentElement) {
 return toObjectArray(((Node)parentElement).getChildren());
 }

 public Object[] getElements(Object inputElement) {
 return toObjectArray(((Node)inputElement).getChildren())
 }
Licensed to jromero <jose.romero@galicia.seresco.es>

Trees 179
 private Object[] toObjectArray(NodeList list){
 Object[] array = new Object[list.getLength()];
 for(int i = 0; i < list.getLength(); i++) {
 array[i] = list.item(i);
 }
 return array;
 }

 public Object getParent(Object element) {
 return ((Node)element).getParentNode();
 }

 public boolean hasChildren(Object element) {
 return ((Node)element).getChildNodes().getLength() > 0;
 }

 ... //additional methods with empty implementations
}

At first glance, the content provider code takes more space, and in terms of lines
of code it’s longer. However, we would argue that the content provider is both
conceptually simpler and easier to maintain. getChildren() and getElements()
call getChildren() on the current Node and convert the result to an array. Using
Tree, you’re forced to handle the top-level elements differently than the rest of
the items, creating two separate sections of code that must be updated if the
requirements change. More importantly, by using a TreeViewer, content provider,
and label provider, you’re operating directly on your domain objects (in this case,
Nodes of an XML document). If the document changes, the display can be
updated by calling refresh() on the viewer. At runtime, if more detail should be
displayed at each node, an alternate implementation of ILabelProvider can be
assigned to the viewer. If you’re creating a Tree and TreeItems by hand, these
cases require you either to manually traverse the tree to find and update the rele-
vant nodes or to rebuild the entire Tree from scratch. On the whole, use of a con-
tent provider results in a design that is both simpler and more flexible.

 It’s worth discussing the hasChildren() method briefly. It’s provided as an opti-
mization hint for the tree. It would be possible to call getChildren() and check
the size of the returned array, but in some cases it may be expensive to get the
children of a given element. If a content provider can determine whether there
are children for a node without having to compute all the children, then return-
ing false here enables the tree to skip calling getChildren() when there aren’t any
children to display. If there is no easy way to calculate this, it’s safe to always return
true from hasChildren() and let getChildren() return an empty array when there
are no children to display.
Licensed to jromero <jose.romero@galicia.seresco.es>

180 CHAPTER 8

Working with trees and lists
8.3 Using the List widget

A List widget presents a sequence of items. An mp3 player
could use a List to present playlists to the user, whereas
Eclipse uses a List to display possible matching classes when
you choose Open Type. The user can select one or more val-
ues from the list, as shown in figure 8.3.

 Again, we’ll cover building lists with the basic SWT classes
and then dive into the more powerful capabilities offered by
ListViewers.

8.3.1 SWT lists

Because the widget is so simple, it’s easy to use a List without an attached Viewer
and still obtain useful results. For example, building a list of Strings requires
nothing more than the following:

List list = new List(parent, SWT.SINGLE);
for(int i = 0; i < 20; i++)
{
 list.add("item " + i);
}

Like Tree, List supports SWT.SINGLE or SWT.MULTI to control how many items may
be selected simultaneously. No other styles (other than the ones supported by
superclasses) are supported by Tree.

NOTE If you’re developing an SWT application that will run on Motif, you
should be aware that it isn’t possible to absolutely prevent the vertical
scrollbar from being shown on a list. Accordingly, in Motif, SWT.V_SCROLL
is added to whatever other styles you specify for a List in order to ensure
that the style bits match what is displayed.

The List inherits scrolling capability from its superclass, Scrollable. Unless you
specifically change it, the style is assumed to be SWT.V_SCROLL. This means that if
the list of items exceeds the space available, a vertical scrollbar appears to allow
the user to navigate the list. No horizontal scrollbar is available unless you add
SWT.H_SCROLL to the style.

 The drawback in our example is that List only accepts instances of String.
Consequently, there is no way to display an image in the list, and updating a
domain object requires searching the List for its old value, removing it, and
replacing with the new one. This approach works fine for simple situations like

Figure 8.3
A simple list
Licensed to jromero <jose.romero@galicia.seresco.es>

Using the List widget 181
the one shown previously, but eventually you’ll most likely want to do something
more interesting with your List. For that, you’ll need to use a ListViewer.

8.3.2 JFace ListViewers

Using a ListViewer is the preferred way to interact with a List. At its most basic
level, using the viewer allows more options for controlling the behavior of the wid-
get, such as adding an image to each element or changing the order of the items
on the fly without having to rebuild the entire list. It also allows decoupling of
your model data from the way it’s presented.

 A ListViewer is instantiated with a parent Composite and an SWT style. The
viewer supports the same styles as the basic List: SWT.SINGLE and SWT.MULTI,
which designate how many items may be selected at the same time.

 Although ListViewer provides an add() method that you can use to insert
objects directly into the list, using a ContentProvider, as we did with the Tree-
Viewer, is a good idea. ListViewer uses the IStructuredContentProvider inter-
face. This interface is simple, generally requiring only that the method Object[]
getElements(Object inputElement) be implemented. After setInput() is called
in the viewer, getElements() is called and passed the same object that was set the
input to the viewer.

 With all the various helper classes operating on the viewer—content providers,
label providers, filters, sorters—it’s important to understand the way they interact.
Everything starts with the content provider, which returns the entire set of items
that may be displayed. This set is then passed to any filters attached to the viewer,
which have the opportunity to remove items. Any items that pass all filters are
then sorted and finally given to the label provider to determine what to display.

Retrieving items with IStructuredSelection
Up to this point, we haven’t discussed how to retrieve the selected items from a
ListViewer or TreeViewer. Any time you wish to query which items are selected,
JFace provides an interface, IStructuredSelection, to manage the results.

 getSelection(), which returns an instance of IStructuredSelection, is pro-
vided by the StructuredViewer class. Being an IStructuredSelection implies that
there is some structure to the data returned—namely, an order. The interface
provides a method to retrieve an iterator for the selected items, the same as the
objects in the Collections framework. This iterator returns items in the same
order in which they appear in the List. Typically, you’ll loop through the items, as
shown here:
Licensed to jromero <jose.romero@galicia.seresco.es>

182 CHAPTER 8

Working with trees and lists
...
IStructuredSelection selection =
 (IstructuredSelection)viewer.getSelection();
for(Iterator i = selection.iterator();
 i.hasNext();)
{
 Object item = i.next();
 //process item
}
...

If necessary, however, the interface also provides toArray() and toList() meth-
ods to retrieve the entire collection of selected items at once.

8.4 Updating WidgetWindow

Let’s add two new composites to the WidgetWindow, one to demonstrate trees and
the second for lists. First add Ch8TreeComposite, which appears in listing 8.1.

package com.swtjface.Ch8;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.jface.viewers.ITreeContentProvider;
import org.eclipse.jface.viewers.TreeViewer;
import org.eclipse.jface.viewers.Viewer;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;

public class Ch8TreeComposite extends Composite
{
 public Ch8TreeComposite(Composite parent)
 {
 super(parent, SWT.NULL);
 populateControl();
 }

 protected void populateControl()
 {
 FillLayout compositeLayout = new FillLayout();
 setLayout(compositeLayout);

 int[] selectionStyle = {SWT.SINGLE, SWT.MULTI};
 int[] checkStyle = {SWT.NONE, SWT.CHECK};

 for(int selection = 0;
 selection < selectionStyle.length;

Listing 8.1 Ch8TreeComposite.java

b Styles
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 183
 selection++)
 {
 for(int check = 0; check < checkStyle.length; check++)
 {
 int style = selectionStyle[selection] | checkStyle[check];
 createTreeViewer(style);
 }
 }
 }

 private void createTreeViewer(int style)
 {
 TreeViewer viewer = new TreeViewer(this, style);

 viewer.setContentProvider(new ITreeContentProvider() {
 public Object[] getChildren(Object parentElement) {
 return ((TreeNode)parentElement).getChildren().toArray();
 }

 public Object getParent(Object element) {
 return ((TreeNode)element).getParent();
 }

 public boolean hasChildren(Object element) {
 return ((TreeNode)element).getChildren().size() > 0;
 }

 public Object[] getElements(Object inputElement) {
 return ((TreeNode)inputElement).getChildren().toArray();
 }

 public void dispose() {}

 public void inputChanged(Viewer viewer,
 Object oldInput,
 Object newInput) {}
 });

 viewer.setInput(getRootNode());
 }

 private TreeNode getRootNode()
 {
 TreeNode root = new TreeNode("root");
 root.addChild(new TreeNode("child 1")
 .addChild(new TreeNode("subchild 1")));
 root.addChild(new TreeNode("child 2")
 .addChild(new TreeNode("subchild 2")
 .addChild(new TreeNode("grandchild 1"))));

 return root;
 }

}

class TreeNode

c ContentProvider

d setInput()

e getRootNode()

f TreeNode
Licensed to jromero <jose.romero@galicia.seresco.es>

184 CHAPTER 8

Working with trees and lists
{
 private String name;
 private List children = new ArrayList();
 private TreeNode parent;

 public TreeNode(String n)
 {
 name = n;
 }

 protected Object getParent()
 {
 return parent;
 }

 public TreeNode addChild(TreeNode child)
 {
 children.add(child);
 child.parent = this;
 return this;
 }

 public List getChildren()
 {
 return children;
 }

 public String toString()
 {
 return name;
 }
}

These two orthogonal style sets cover all possible styles available for a Tree. The
code loops through and combines them to make several sample tree instances,
demonstrating all the different styles.

Here the code defines a ContentProvider, which is used to provide data to the
TreeViewer. Notice that it can assume the parameters to each method are an
instance of the appropriate domain object (TreeNode, in this case) and cast them
accordingly.

Calling setInput() on the viewer starts the process of populating the tree with the
given data.

This method builds the initial collection of domain objects.

This simple class serves as the domain object for the example.

b

c

d

e

f

Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 185
This pane creates simple trees three levels deep. We use the class TreeNode to act
as the domain objects. TreeNode’s only function is to maintain a list of children.

 The key method to pay attention to is createTreeViewer(), which creates a
new TreeViewer instance and assigns it an ITreeContentProvider. This content
provider receives TreeNodes and knows how to return the children for each node.
Because the domain objects naturally know about their own relationships, imple-
menting the content provider consists of trivially asking each node for its parent
or children and calling toArray() when appropriate. There is no need to convert
objects to Strings in getChildren() or getElements(). You can return the full
domain object and let the label provider (in this case, the default BaseLabelPro-
vider, which calls toString()) worry about how to display them.

 After assigning the content provider, you must
remember to call setInput() and pass it the
TreeNode to use as the base of the tree. This step
associates actual domain objects with the viewer;
otherwise the viewer can’t know which objects to
display. This root object is passed to getElements()
to retrieve the first level of children. Each element
in the array returned by getElements() is in turn
passed to getChildren() to build the next level of
the hierarchy. This process continues until has-
Children() returns false or no more children are returned by getChildren().
Figure 8.4 shows the results when you run this example.

 To run this example, you must add the following three lines to WidgetWindow:

TabItem chap8Tree = new TabItem(tf, SWT.NONE);
chap8Tree.setText("Chapter 8 Tree");
chap8Tree.setControl(new Ch8TreeComposite(tf));

Next, listing 8.2 presents the Ch8ListComposite, which uses some of the more
advanced viewer features.

package com.swtjface.Ch8;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.jface.viewers.IStructuredContentProvider;
import org.eclipse.jface.viewers.LabelProvider;
import org.eclipse.jface.viewers.ListViewer;
import org.eclipse.jface.viewers.Viewer;

Listing 8.2 Ch8ListComposite.java

Figure 8.4 Tree pane
Licensed to jromero <jose.romero@galicia.seresco.es>

186 CHAPTER 8

Working with trees and lists
import org.eclipse.jface.viewers.ViewerFilter;
import org.eclipse.jface.viewers.ViewerSorter;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;

public class Ch8ListComposite extends Composite
{
 public Ch8ListComposite(Composite parent)
 {
 super(parent, SWT.NULL);
 populateControl();
 }

 protected void populateControl()
 {
 FillLayout compositeLayout = new FillLayout();
 setLayout(compositeLayout);

 int[] styles = {SWT.SINGLE, SWT.MULTI};

 for(int style = 0; style < styles.length; style++)
 {
 createListViewer(styles[style]);
 }
 }

 private void createListViewer(int style)
 {
 ListViewer viewer = new ListViewer(this, style);

 viewer.setLabelProvider(new LabelProvider() {
 public String getText(Object element) {
 return ((ListItem)element).name;
 }
 });

 viewer.addFilter(new ViewerFilter() {
 public boolean select(Viewer viewer,
 Object parent,
 Object element) {
 return ((ListItem)element).value % 2 == 0;
 }
 });

 viewer.setSorter(new ViewerSorter() {
 public int compare(Viewer viewer,
 Object obj1,
 Object obj2) {
 return ((ListItem)obj2).value - ((ListItem)obj1).value;
 }
 });

 viewer.setContentProvider(new IStructuredContentProvider() {

b Styles

c Filter

d Sorter
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 187
 public Object[] getElements(Object inputElement)
 {
 return ((List)inputElement).toArray();
 }

 public void dispose() {}

 public void inputChanged(Viewer viewer,
 Object oldInput,
 Object newInput)
 {
 }
 });

 List input = new ArrayList();
 for(int i = 0; i < 20; i++)
 {
 input.add(new ListItem("item " + i, i));
 }

 viewer.setInput(input);
 }

}

class ListItem
{
 public String name;
 public int value;

 public ListItem(String n, int v)
 {
 name = n;
 value = v;
 }
}

These two styles are the only ones available for lists. The code creates one of each.

This simple ViewerFilter selects only items whose value field is even. If two divides
cleanly into the value, you return true, which allows the item to be displayed.

This ViewerSorter sorts domain objects by their value field, from high to low.

ListItem acts as the domain object for this example.

This code creates a class ListItem to act as domain objects. ListItem stores a
name and an integer value, which are used for ordering and filtering.

 Because a List handles only simple data with no relationships between ele-
ments, implementing the IStructuredContentProvider requires only a single line
in getElements(). To make up for the boring implementation of the content

e ListItem

b

c

d

e

Licensed to jromero <jose.romero@galicia.seresco.es>

188 CHAPTER 8

Working with trees and lists
provider, we’ve added a label provider, a filter, and a sorter. We’ll consider these
in the order in which they’re executed.

 After the viewer has retrieved the list of items from the content provider, the
filter is given first shot at the items. For the sake of this example, we decided to
only display items whose value field is even. This can be accomplished by imple-
menting the select() method of the filter and returning true or false depend-
ing on whether the value is even. Only items that you return true for will
eventually be displayed. If you added more than one filter to the viewer, they
would each be called in turn.

 Next the sorter is used to determine the order of items in the list. The com-
pare() method sorts ListItems by their value, from high to low. Again, this
requires a single line of code.

 Finally, once the items have been filtered and sorted, the text to display is
determined by calling a label provider. Because the results of calling toString()
on objects wouldn’t be pretty, you create a label provider that returns the name
field of each ListItem. The final result is shown in figure 8.5; add these lines to
WidgetWindow, compile, and run:

TabItem chap8List = new TabItem(tf, SWT.NONE);
chap8List.setText("Chapter 8 List");
chap8List.setControl(new Ch8ListComposite(tf));

The elegance of the viewer design becomes appar-
ent when you consider that all these operations
are cleanly decoupled from each other. The con-
tent provider doesn’t care what will be done with
the objects it provides. Filters don’t need to know
about each other or how the items will be sorted.
The label provider displays objects without having
to care how the sorter ordered them. And any one
of these can be swapped for a completely differ-
ent implementation without affecting the rest of
the code.

Figure 8.5 The list pane
Licensed to jromero <jose.romero@galicia.seresco.es>

Summary 189
8.5 Summary

Understanding the relationships between the various widgets and their viewers is
key to using these controls effectively. Simple use of the controls is possible with-
out the viewers, but being able to use filters, sorters, label providers, and content
providers will enable you to separate the concerns of your application much more
cleanly. Above all, decide whether you’re going to use the viewers, and stick to
that decision. Mixing direct creation of TreeItems (or any other item class) with
use of a content provider will cause unpredictable results and make understand-
ing your code very difficult.

Licensed to jromero <jose.romero@galicia.seresco.es>

Tables and menus
This chapter covers
■ SWT tables
■ JFace tables
■ Editing table data
■ Creating menus
190

Licensed to jromero <jose.romero@galicia.seresco.es>

Tables 191
Just about every time we want to go out to eat, we find ourselves sitting in the car,
wracking our brains as we try to think of somewhere to go. We end up naming dif-
ferent styles of food—“Japanese?” “Not bad, but not really what I’m in the mood
for.” “Italian?” “Not tonight.” “Indian?” “That’s a good idea, but let’s keep think-
ing.” Especially when we’re hungry, we have a hard time thinking about what res-
taurants are nearby and coming up with good options.

 Eventually, we came up with a plan: One afternoon, when we weren’t hungry
and had time to think, we wrote up a list of restaurants in the area, organized by
price and type of food. Now, when we decide to go out, we can look at the list and
have concrete options to discuss. It doesn’t help when we’re in the mood for dif-
ferent things, but it makes the process of deciding where to go easier.

 In a software application, a menu provides a function similar to our list of res-
taurants. A finite list of options is presented to users to guide them in deciding
what tasks they wish to perform. Just as we sometimes rediscover a favorite place to
eat that we haven’t visited in a while, users can discover functionality they didn’t
know existed in your application by seeing it listed in a pull-down or context menu.

 We’ll cover two tasks in this chapter. First, we’ll continue our discussion of the
Viewer framework from the previous chapter by covering the last of the basic
viewer widgets, the table. The concepts you’ve already learned are just as applica-
ble to tables as they were to trees and lists, but JFace also provides advanced
options in the form of cell editors to make it easy to implement user-editable
tables. Once you’re familiar with the editing framework, we’ll revisit the Actions
we discussed in chapter 4 and show how to apply them to the creation of menus,
so that you can present functions to your users instead of leaving them to guess or
remember what your application is capable of. Finally, our example in this chap-
ter shows how to apply a context menu to a table by presenting a small user-
editable widget that could be used to edit data in a relational database.

9.1 Tables

To the user, a table looks like a two-dimensional grid composed of many cells.
Often this is a convenient way to display items such as the result of a database
query—each row of the result set maps nicely to a single row in the table. As you’ll
see, however, JFace provides advanced facilities for editing table data as well.

9.1.1 Understanding SWT tables

Continuing SWT’s trend of intuitive widget names, a table is represented by a class
named Table. The Table class isn’t terribly interesting. In general, if you’re using
Licensed to jromero <jose.romero@galicia.seresco.es>

192 CHAPTER 9

Tables and menus
JFace, you’ll be better off interacting with a Table through the interface provided
by a TableViewer, which we discuss later in the chapter. However, if you need to
manipulate the currently selected table items directly, or you aren’t using JFace,
you’ll need to use the underlying Table.

 The first thing you’ll notice when looking at the methods available on Table is
that although there are plenty of accessor methods to query its state, there is a dis-
tinct lack of setters that would let you customize the Table. In fact, rather than
adding data or columns directly to the Table, you’ll pass a Table instance to the
appropriate dependent class when that dependent is instantiated, similar to the
way Composites are passed to other widgets rather than the widget being added to
the Composite. Other than a few setters for straightforward display properties,
such as header visibility, the critical methods to be aware of when manipulating a
Table are summarized in table 9.1.

It’s also important to remember that Table extends Scrollable and will therefore
automatically come equipped with scrollbars unless you turn them off.

TableItems
To add data to a table, you must use a TableItem. Each instance of TableItem rep-
resents an entire row in the table. Each TableItem is responsible for controlling
the text and image to display in each column of its row. These values can be set
using the setText() and setImage() methods, each of which takes an integer
parameter designating which column to modify.

 As we mentioned, TableItems are associated with a Table in their constructor,
as shown here:

 Table t = ...
 //Create a new TableItem with the parent Table
 //and a style

Table 9.1 Important Table methods

Method Description

addSelectionListener() Notifies you when the table’s selection changes

select()/deselect() Overloaded in several ways to let you programmatically add or
remove the selection on one or more items

getSelection() Retrieves an array of the currently selected items

remove() Removes items from the table

showItem()/showSelection() Forces the table to scroll until the item or selection is visible
Licensed to jromero <jose.romero@galicia.seresco.es>

Tables 193
 TableItem item = new TableItem(t, SWT.NONE);
 item.setText(0, “Hello World!”);
 ...

According to the Javadocs, no styles are valid to be set on a TableItem, but the
constructor accepts a style parameter anyway. This seems rather unnecessary to us,
but it’s at least consistent with the other widgets we’ve seen.

TableColumn
The final class you’ll need to work directly with tables is TableColumn, which cre-
ates an individual column in the table. As with TableItem, you must pass a Table to
the constructor of TableColumn in order to associate the two objects.

 Each TableColumn instance controls one column in the table. It’s necessary to
instantiate the TableColumns you need, or the Table will default to having only one
column. Several methods are available to control the behavior and appearance of
each column, such as the width, alignment of text, and whether the column is resiz-
able. You can add header text by using the setText() method. Instead of setting the
attributes directly on a column, however, it’s usually easier to use a TableLayout. By
calling TableLayout’s addColumnData() method, you can easily describe the appear-
ance of each column in the table. The ability to pass addColumnData() instances of
ColumnWeightData is key; doing so lets you specify a relative weight for each column
without having to worry about the exact number of pixels required for each one.

 The following snippet shows how to create a table using a TableLayout. The
code creates three columns of equal width and fills two rows with data. The code
produces a table that looks similar to figure 9.1.

 //Set up the table layout
 TableLayout layout = new TableLayout();
 layout.addColumnData(new ColumnWeightData(33, 75, true));
 layout.addColumnData(new ColumnWeightData(33, 75, true));
 layout.addColumnData(new ColumnWeightData(33, 75, true));

 Table table = new Table(parent, SWT.SINGLE);
 table.setLayout(layout);

 //Add columns to the table
 TableColumn column1 = new TableColumn(table, SWT.CENTER);
 TableColumn column2 = new TableColumn(table, SWT.CENTER);
 TableColumn column3 = new TableColumn(table, SWT.CENTER);

 TableItem item = new TableItem(table, SWT.NONE);
 item.setText(new String[] { "column 1",
 "column 2",
 "column 3" });
 item = new TableItem(table, SWT.NONE);
 item.setText(new String[] { "a", "b", "c" });
Licensed to jromero <jose.romero@galicia.seresco.es>

194 CHAPTER 9

Tables and menus
The first thing to do is set up the structure for this table using a TableLayout. Each
time you call addColumnData(), it adds a new column to the table. We’ll have three
columns, so we add a ColumnWeightData to describe each. The parameters to the
constructor that we use here are weight, minimumWidth, and resizeable. weight
indicates the amount of screen space this column should be allocated, as a per-
centage of the total space available to the table. minimumWidth is, as the name indi-
cates, the minimum width in pixels to use for this column. The resizeable flag
determines whether the user can resize this column.

 After we’ve set up the table, we need to instantiate three columns so they will
be added to the table. It’s important to keep in mind that adding columns is a
two-step process: create a TableLayout that describes how large each column will
be, and then create the columns themselves. Because we allow the TableLayout to
control sizing, we don’t need to use the columns after they’ve been created.

9.1.2 JFace TableViewers

Although it’s possible to use a Table directly in your code, as you can see, doing so
is neither intuitive nor convenient. Similarly to List, however, JFace provides a
viewer class to make using tables easier. The following snippets demonstrate a
basic TableViewer that displays data from a database. The same concepts of filters,
sorters, and label providers that we discussed in chapter 8 apply here as well. Addi-
tionally, we’ll use a ContentProvider to supply the data to our table, because the
same arguments presented in the previous chapter apply here.

 First, the table must be set up. This is similar to the process of setting up a
Table, which you saw in the previous section, using addColumnData() for each col-
umn that will be created:

 final TableViewer viewer = new TableViewer(parent,
 SWT.BORDER | SWT.FULL_SELECTION);

 //configure the table for display
 TableLayout layout = new TableLayout();
 layout.addColumnData(new ColumnWeightData(33, true));
 layout.addColumnData(new ColumnWeightData(33, true));
 layout.addColumnData(new ColumnWeightData(33, true));

 viewer.getTable().setLayout(layout);

Figure 9.1
A simple three-column table
Licensed to jromero <jose.romero@galicia.seresco.es>

Tables 195
 viewer.getTable().setLinesVisible(true);
 viewer.getTable().setHeaderVisible(true);

Once the table has been configured, we attach the appropriate providers. The
most important one in this example is the content provider, which is responsible
for retrieving data from the database and passing it back to the viewer. Note that
you never return null from getElements()—instead, return an empty array if
there are no more children:

 viewer.setContentProvider(new IStructuredContentProvider() {
 public Object[] getElements(Object input)
 {
 //Cast input appropriately and perform a database query
 ...
 while(results.next())
 {
 //read results from database
 }
 if(resultCollection.size() > 0)
 {
 return new DBRow[] { ... };
 }
 else
 {
 return new Object[0];
 }
 }

 //... additional interface methods
 });

 viewer.setLabelProvider(new ITableLabelProvider() {
 public String getColumnText(Object element, int index) {
 DBRow row = (DBRow)element;
 switch(index)
 {
 //return appropriate attribute for column
 }
 }
 //... additional interface methods
 });

Once the providers have been set up, we can add the columns. The text we set on
each column will appear as a header for that column when the table is displayed:

 TableColumn column1 = new TableColumn(viewer.getTable(),
 SWT.CENTER);
 column1.setText("Primary Key");
 TableColumn column2 = new TableColumn(viewer.getTable(),
 SWT.CENTER);
 column2.setText("Foreign Key");
Licensed to jromero <jose.romero@galicia.seresco.es>

196 CHAPTER 9

Tables and menus
 TableColumn column3 = new TableColumn(viewer.getTable(),
 SWT.CENTER);
 column3.setText("Data");

Finally, we need to provide input to drive the content provider. The input object
(in this case, a String describing a query) is set on the viewer, which passes it to
the content provider when it’s ready to display the table:

 viewer.setInput(QUERY);

This example simulates retrieving multiple rows from a database and displaying
the results. However, it suffices to get our point across about content providers.
The role of the IStructuredContentProvider implementation is straightforward:
Given an input element, return all the children elements to be displayed. A table
doesn’t maintain parent/child relationships, so this method is called only once
and is given the current input object. The final issue to be aware of when using a
content provider is that it will always execute in the UI thread. This means updates
to the interface will be waiting for your methods to complete, so you definitely
shouldn’t query a database to get your updates. The content provider should
traverse a graph of already-loaded domain objects to select the appropriate con-
tent to display.

A word about error handling
When you’re using JFace—especially the providers that the widgets call inter-
nally—it pays to be careful with your error handling. When JFace makes the
callback to your class, it typically does so inside a try/catch block that catches
all exceptions. JFace does some checks to see whether it knows how to handle
the exception itself before letting the exception propagate. Unfortunately,
these checks rely upon the Platform class, which is tightly coupled with
Eclipse; it’s practically impossible to initialize Platform correctly unless you’re
running Eclipse. This leads to internal assertion failures when JFace tries to
use Platform outside of Eclipse, and these exceptions end up masking your
own errors.

In practical terms, you shouldn’t ever let an exception be thrown out of a
provider method. If it happens, you’re in for strange “The application has not
been initialized” messages. If you ever see one of these, check your code care-
fully—things such as ClassCastExceptions can be hard to spot, and locating
them is even more difficult when JFace hides them from you.
Licensed to jromero <jose.romero@galicia.seresco.es>

Tables 197
Editing table data
Displaying data can be useful on its own, but eventually you’ll want to let the user
edit it. Often, the most user-friendly way to enable editing is to allow the user to
change it directly in the table as it’s presented. JFace provides a means to support
this editing through CellEditors.

 As we mentioned in the chapter overview, CellEditors exist to help decouple
the domain model from the editing process. In addition, using these editors can
make your UI more user friendly: Users won’t be able to enter values your applica-
tion doesn’t understand, thus avoiding confusing error messages further down
the line. The framework assumes that each domain object has a number of named
properties. Generally, you should follow the JavaBeans conventions, with property
foo having getFoo() and setFoo() methods; but doing so isn’t strictly necessary as
long as you can identify each property given only its name. You begin by attaching
an instance of ICellModifier to your TableViewer. The ICellModifier is responsi-
ble for retrieving the value of a given property from an object, deciding whether a
property can currently be edited, and applying the updated value to the object
when the edit has been completed. The actual edit, if allowed, is performed by a
CellEditor. JFace provides CellEditors for editing via checkbox, combo box,
pop-up dialog, or directly typing the new text value. In addition, you can subclass
CellEditor if you need a new form of editor. After registering CellEditors, you
associate each column with a property. When the user clicks on a cell to change its
value, JFace does all the magic of matching the proper column with the property
to edit and displaying the correct editor, and it notifies your ICellModifier when
the edit is complete.

 We’ll show examples of the important parts of the process here. The rest of the
snippets in this section are taken from the Ch9TableEditorComposite, which is
presented in full at the end of the chapter.

 The first snippet sets up data that the rest of the code will reference. The array
of Strings in VALUE_SET holds the values that will be displayed by our ComboBox-
CellEditor. We’ll need to convert between indices and values several times (see
the discussion later in the chapter):

 private static final Object[] CONTENT = new Object[] {
 new EditableTableItem("item 1", new Integer(0)),
 new EditableTableItem("item 2", new Integer(1))
 };
 private static final String[] VALUE_SET = new String[] {
 "xxx", "yyy", "zzz"
 };
Licensed to jromero <jose.romero@galicia.seresco.es>

198 CHAPTER 9

Tables and menus
 private static final String NAME_PROPERTY = "name";
 private static final String VALUE_PROPERTY = "value";

Our class contains several different methods that are each responsible for setting up
a different facet of the cell editor. They are called in turn from buildControls. The
first thing this method does is set up the table and the classes required by the viewer:

 protected Control buildControls()
 {
 final Table table = new Table(parent, SWT.FULL_SELECTION);
 TableViewer viewer = new TableViewer(table);
 ... //set up a two column table

Once the table has been initialized, we continue by adding an instance of ITable-
LabelProvider to our viewer. The idea is similar to the label providers we dis-
cussed in chapter 8. However, because each row of a table has many columns, the
signature of our methods must change slightly. In addition to the element, each
method now takes the integer index of the column that is being requested. The
label provider must therefore contain the logic to map column indices to proper-
ties of the domain objects. The next snippet shows how this is done:

 viewer.setLabelProvider(new ITableLabelProvider() {
 public String getColumnText(Object element,
 int columnIndex) {
 switch(columnIndex)
 {
 case 0:
 return ((EditableTableItem)element).name;
 case 1:
 Number index = ((EditableTableItem)element).value;
 return VALUE_SET[index.intValue()];
 default:
 return "Invalid column: " + columnIndex;
 }
 }

 });

 attachCellEditors(viewer, table);
 return table;
 }

The attachCellEditors() method is where we set up our ICellModifier, which is
responsible for translating a property name into data to be displayed, deciding
whether a given property can be edited, and then applying whatever changes the
user makes. When the user double-clicks a cell to edit it, canModify() is called to
determine whether the edit should be allowed. If it’s allowed, getValue() is called
next to retrieve the current value of the property being edited. Once the edit is
Licensed to jromero <jose.romero@galicia.seresco.es>

Tables 199
complete, modify() is called; it’s modify()’s responsibility to apply the changes the
user made back to the original domain object. While in getValue() and canMod-
ify(), it’s safe to cast parameters directly to the domain objects; this doesn’t work
in modify(). modify() receives the TableItem that’s displaying the row. This
TableItem has had the domain object set as its data, so we must retrieve it using
getData() before we can update it:

 private void attachCellEditors(final TableViewer viewer,
 Composite parent)
 {
 viewer.setCellModifier(new ICellModifier() {
 public boolean canModify(Object element,
 String property) {
 return true;
 }

 public Object getValue(Object element, String property) {
 if(NAME_PROPERTY.equals(property))
 return ((EditableTableItem)element).name;
 else
 return ((EditableTableItem)element).value;
 }
 //method continues below...

When modify() is finished updating the domain object, we must let the viewer
know to update the display. The viewer’s refresh() method is used for this pur-
pose. Calling refresh() with the domain object that changed causes the viewer to
redraw the given row. If we skip this step, users will never see their changes once
the edited cell loses focus:

 public void modify(Object element,
 String property, Object value) {
 TableItem tableItem = (TableItem)element;
 EditableTableItem data =
 (EditableTableItem)tableItem.getData();
 if(NAME_PROPERTY.equals(property))
 data.name = value.toString();
 else
 data.value = (Integer)value;

 viewer.refresh(data);
 }
 });

The items given in the CellEditor array here are matched in order with the col-
umns of the underlying table:

 viewer.setCellEditors(new CellEditor[] {
 new TextCellEditor(parent),
Licensed to jromero <jose.romero@galicia.seresco.es>

200 CHAPTER 9

Tables and menus
 new ComboBoxCellEditor(parent, VALUE_SET)
 });

Next, the strings in setColumnProperties() are the names of the editable proper-
ties on our domain objects. They’re also matched in order with the table’s col-
umns, so that in our example clicking column 0 will try to edit the name property,
and column 1 will edit the value property:

 viewer.setColumnProperties(new String[] {
 NAME_PROPERTY, VALUE_PROPERTY
 });
 }
}

class EditableTableItem
{
 ... //name and value properties
}

Using a ComboBoxCellEditor as we do here is tricky. The editor’s constructor takes
an array of Strings that are the values presented for the user to choose from.
However, the editor expects Integers from getValue() and returns an Integer to
modify() when the edit is complete. These values should correspond to the index
of the selected value in the array of Strings passed to the ComboBoxCellEditor
constructor. In this simple example we save the Integer directly in the value field,
but in a real application you’ll probably need utilities to easily convert back and
forth between indices and values.

 Again, using CellEditors is an area where it’s smart to pay attention to your
casting and error handling. Especially when different methods require you to cast
to different objects, as in the ICellModifier, it’s easy to make a mistake the com-
piler can’t catch for you. Due to JFace’s exception handling, as we discussed ear-
lier, these issues show up as cryptic “Application not initialized” runtime errors
that can be hard to track down if you don’t know what you should be looking for.

9.2 Creating menus

Every graphical application uses a menu of some sort. You’ll often find File, Edit,
and so on across the top of your application’s window. These menus fill an
important role, because they provide a place for users to browse through the
functionality offered by your application.

 We’ll first discuss creating menus using SWT. We’ll then revisit the JFace Action
classes that we mentioned in chapter 4, to discuss an alternate way to create
menus that allows for easy sharing of common code.
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating menus 201
9.2.1 Accelerator keys

Before we get too deep into the specifics of menus, let’s discuss how SWT handles
accelerator keys. Accelerator keys are keyboard shortcuts that activate a widget with-
out the user having to click it with the mouse. The best example is the ubiquitous
Ctrl-C (or Open Apple-C if you’re using a Mac) to copy text to the clipboard, the
same as if you selected Copy from the Edit menu that’s present in most applica-
tions. Offering accelerator keys for common tasks can greatly increase advanced
users’ productivity, because their hands don’t have to continually switch between
the keyboard and mouse. The accelerator keystroke for an item customarily
appears next to the item’s name in drop-down menus for the application, making
it easier for users to learn the keystrokes as they use the application.

 In both SWT and JFace, accelerator keys are expressed by using constants from
the SWT class. The concept is the same as for styles: All the constants are bitwise
ORed together to determine the final key combination. Additionally, chars are
used to represent letters or numbers on the keyboard. Because a Java char can be
automatically converted to an int, chars can be used just like the SWT style con-
stants to build a bitmask. This bitmask is passed to the setAccelerator() method
on a Menu to register the combination of keys that will activate that menu item. For
example, a MenuItem whose accelerator is set to SWT.CONTROL | SWT.SHIFT | 't'
will activate when the Ctrl, Shift, and T keys are pressed simultaneously.

9.2.2 Creating menus in SWT

When you’re creating menus using SWT, you’ll use only two classes: Menu and
MenuItem. Although the classes themselves aren’t complicated, several areas of
complexity arise once you begin to use them.

 Menu acts as a container for MenuItems. Menu extends Widget and contains meth-
ods for adding MenuItems and controlling the visibility and location of the menu.
Menu also broadcasts events to implementors of the MenuListener interface, which
receives notification when the menu is shown or hidden.

 Menu supports three different styles, which go beyond controlling the visual
appearance to determine the type of menu created:

■ SWT.POP_UP—Creates a free-floating pop-up menu of the type that typically
appears when you right-click in an application.

■ SWT.BAR—Creates the menu bar at the top of an application window. A
menu bar doesn’t typically have selectable menu items; instead, it acts as a
container for menu items that contain menus of type SWT.DROP_DOWN.
Licensed to jromero <jose.romero@galicia.seresco.es>

202 CHAPTER 9

Tables and menus
■ SWT.DROP_DOWN—Creates the File, Edit, and other drop-down menus that
we’re all familiar with. These menus may contain a mix of MenuItems and
submenus of their own.

A MenuItem is a widget that either can be selected by the end user or can display
another menu. A MenuItem is always created as a child of a Menu. A variety of styles
are available for MenuItems:

■ SWT.PUSH—Creates a standard menu item with no frills.

■ SWT.CHECK, SWT.RADIO—Add either a checkbox or radio button, as appropri-
ate, which flips between on and off each time the item is selected.

■ SWT.SEPARATOR—Visually separates groups of menu items. It displays the
standard separator for your platform (usually a thin line) and may not be
selected by the user.

■ SWT.CASCADE—Creates a submenu. When a cascading menu item has a
menu assigned to it, highlighting that item results in the submenu being
displayed.

All MenuItems except separators broadcast SelectionEvents that can be listened
for. Figure 9.2 shows the different menu styles.

 Creating Menus is straightforward. Classes are instantiated and configured,
and then assigned to the widgets on which they should be displayed. The follow-
ing snippet shows how to create a File menu attached to the main window of
your application:

Composite parent = ... //get parent
Menu menuBar = new Menu(parent.getShell(), SWT.BAR);

MenuItem fileItem = new MenuItem(menuBar, SWT.CASCADE);
fileItem.setText("&File");

Menu fileMenu = new Menu(fileItem);
fileItem.setMenu(fileMenu);

parent.getShell().setMenuBar(menuBar);

Figure 9.2
Menu types. From top to bottom, SWT.CHECK,
SWT.CASCADE, SWT.PUSH, and SWT.RADIO.
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating menus 203
Notice that you must first create the root menu bar and then add a menu item to
hold each drop-down menu that will appear on it. At this point, we have a menu
bar that displays File but is empty. Our next task is to populate this menu:

MenuItem open = new MenuItem(fileMenu, SWT.PUSH);
open.setText("Open...");
open.setAccelerator(SWT.CONTROL | 'o');
open.addSelectionListener(new SelectionListener() {
 public void widgetSelected(SelectionEvent event) {
 ... //handle selection
 }
};

Clicking File will now reveal a drop-down menu with an Open option. If Open is
selected, the selection listener we’ve defined is invoked to display an Open File
dialog or do whatever other action is appropriate to the application. We’ve also
set the keyboard accelerator for this option to Ctrl-O by calling setAccelerator()
with a bitmask of the keys we wish to assign. The result is that pressing Ctrl-O
invokes the selection listener just as if it was selected with the mouse.

 Creating a pop-up menu is similar to what we’ve done here, but there is a slight
wrinkle. We don’t need a menu bar, so we can start with the pop-up:

Composite parent = ... //get composite
final Menu popupMenu = new Menu(parent.getShell(), SWT.POP_UP);

Notice that we declare the Menu instance to be final. This is important, because
we’ll need to reference it in a listener later.

 Creating the MenuItems is the same as for a drop-down menu. For variety, we’ll
show how to create a menu item that reveals a submenu when highlighted. The
important point to notice in this process is that after the submenu is created, it
must be assigned to its parent menu item using setMenu(), just as we did with the
menu bar in our earlier example:

MenuItem menuItem = new MenuItem(popupMenu, SWT.CASCADE);
menuItem.setText("More options");

Menu subMenu = new Menu(menuItem);
menuItem.setMenu(subMenu);
MenuItem subItem = new MenuItem(subMenu, SWT.PUSH);
subItem.setText("Option 1");
subItem.addSelectionListener(...);

Unlike a menu bar, a pop-up menu isn’t displayed by default—you must decide
when to display it. Typically this is done in response to a mouse right-click, so we’ll
use a MouseListener on the parent Composite. This is where we need the pop-up
menu instance to be final, so we can reference it within our anonymous inner class:
Licensed to jromero <jose.romero@galicia.seresco.es>

204 CHAPTER 9

Tables and menus
parent.addMouseListener(new MouseListener() {
 public void mouseDown(MouseEvent event) {
 if(event.button == 2)
 {
 popupMenu.setVisible(true);
 }
 }
 ... //other MouseListener methods
});

MouseEvent contains information about the button that was clicked. The buttons
are numbered: 1 is the left mouse button, and 2 is the right button. If this button
was clicked, we make the pop-up menu visible; it’s displayed at the location that
was clicked. Pressing Esc or clicking anywhere other than on the menu automati-
cally causes the pop-up to be hidden.

 Now that you’ve seen how SWT handles menus, we’ll turn our attention to the
menu options offered by JFace.

9.2.3 Using JFace actions to add to menus

We’ve already discussed the design of JFace’s Action classes in chapter 4. To
review briefly, an action encapsulates the response to a single application level
event, such as “Open a file” or “Update the status bar.” This action can then be
reused and triggered in different contexts, such as a toolbar button or a menu
item. We’ll discuss this last case here. By using actions to create your menus,
instead of doing it by hand, you can simplify the design of your application and
reuse common logic.

 Using actions in a menu is similar to using them anywhere else. Remember
that an IContributionManager is responsible for assembling individual Actions
and transforming them into a form that can be displayed to the user. For menus,
we’ll use the MenuManager implementation of IContributionManager. After adding
whatever actions are needed to the MenuManager, we can tell it to create a new
menu or to add the actions to another menu. The code looks something like this:

Shell shell = ... //obtain a reference to the Shell
MenuManager fileMenuManager = new MenuManager("File");

IAction openAction = new OpenAction(...);
... //create other actions as appropriate

fileMenuManager.add(openAction);
... //add other actions

Menu menuBar = new Menu(shell, SWT.BAR);
fileMenuManager.fill(menuBar, -1);
shell.setMenuBar(menuBar);
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 205
Although we’ve still created the menu bar manually, we can add actions to the
manager and let it worry about how the menu should be built. In this case, we end
up with a File menu on the window’s menu bar, because that is the name we gave
the MenuManager when we instantiated it. The advantage of doing it this way
instead of building menus by hand is that the action classes can be easily reused
elsewhere. For example, if we have a toolbar that includes a button to let users
open files, we can use the same OpenAction class there.

 You must keep one caveat in mind when you’re using menu managers: Once
fill() or createXXX() has been called on a given instance, Menu and MenuItem
instances are created and cached internally. This is necessary so that the manager
can be used to update the menu. However, it also means that you shouldn’t make
further calls to fill() or create(), especially for a different type of menu. For
example, suppose that after the previous code we called createContextMenu() on
fileMenuManager. We would get exceptions when we tried to add the menu to a
composite, because the menu would be the cached instance with type SWT.CAS-
CADE instead of type SWT.POP_UP (which is required by context menus).

9.3 Updating WidgetWindow

Our pane for this chapter combines a table viewer, cell editors, and a context
menu. We’ll expand the snippets of a database editor that we discussed earlier
and add a right-click menu that lets the user insert a new row. The final product
looks like figure 9.3.

 Listing 9.1 is longer than the code for most of our chapter panes, so we’ll point
out the most interesting bits before you begin reading it. The first thing to notice
is the inner class NewRowAction. This class holds the logic to insert a new row into
the table; it’s added to the MenuManager we create in createPane().

 Next is the createPane() method, which is the entry point into the class. After
delegating to methods to lay out the table and attach a label provider, content
provider, and cell editor, we instantiate a MenuManager and use it to build a context

Figure 9.3 Our database table editor
Licensed to jromero <jose.romero@galicia.seresco.es>

206 CHAPTER 9

Tables and menus
menu that we then attach to the newly created Table. Finally, we pass the initial
content to the viewer.

 After createPane() come the private utility methods. The most important for
our purposes is attachCellEditors(), which contains the logic to allow editing of
individual table cells. Note that these modifications are performed directly on the
domain objects.

 At the end of the listing is the EditableTableItem class, which serves as a
domain object for this example and is included in the same file for convenience.

package com.swtjface.Ch9;

import org.eclipse.jface.action.*;
import org.eclipse.jface.viewers.*;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.*;

public class Ch9TableEditorComposite extends Composite
{

 private static final Object[] CONTENT = new Object[] {
 new EditableTableItem("item 1", new Integer(0)),
 new EditableTableItem("item 2", new Integer(1))
 };

 private static final String[] VALUE_SET = new String[] {
 "xxx", "yyy", "zzz"
 };
 private static final String NAME_PROPERTY = "name";
 private static final String VALUE_PROPERTY = "value";

 private TableViewer viewer;

 public Ch9TableEditorComposite(Composite parent)
 {
 super(parent, SWT.NULL);
 buildControls();
 }

 private class NewRowAction extends Action
 {
 public NewRowAction()
 {
 super("Insert New Row");
 }

 public void run()
 {

Listing 9.1 Ch9TableEditorComposite.java

b Initial content

c NewRowAction class

d run() method
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 207
 EditableTableItem newItem =
 new EditableTableItem("new row", new Integer(2));
 viewer.add(newItem);
 }
 }

 protected void buildControls()
 {
 FillLayout compositeLayout = new FillLayout();
 setLayout(compositeLayout);

 final Table table = new Table(this, SWT.FULL_SELECTION);
 viewer = buildAndLayoutTable(table);

 attachContentProvider(viewer);
 attachLabelProvider(viewer);
 attachCellEditors(viewer, table);

 MenuManager popupMenu = new MenuManager();
 IAction newRowAction = new NewRowAction();
 popupMenu.add(newRowAction);
 Menu menu = popupMenu.createContextMenu(table);
 table.setMenu(menu);

 viewer.setInput(CONTENT);
 }

 private void attachLabelProvider(TableViewer viewer)
 {
 viewer.setLabelProvider(new ITableLabelProvider() {
 public Image getColumnImage(Object element,
 int columnIndex) {
 return null;
 }

 public String getColumnText(Object element,
 int columnIndex) {
 switch(columnIndex)
 {
 case 0:
 return ((EditableTableItem)element).name;
 case 1:
 Number index = ((EditableTableItem)element).value;
 return VALUE_SET[index.intValue()];
 default:
 return "Invalid column: " + columnIndex;
 }
 }

 public void addListener(ILabelProviderListener listener) {
 }

 public void dispose(){
 }

e Build menu

f getColumnText()
method
Licensed to jromero <jose.romero@galicia.seresco.es>

208 CHAPTER 9

Tables and menus
 public boolean isLabelProperty(Object element,
 String property){
 return false;
 }

 public void removeListener(ILabelProviderListener lpl) {
 }
 });
 }

 private void attachContentProvider(TableViewer viewer)
 {
 viewer.setContentProvider(new IStructuredContentProvider() {
 public Object[] getElements(Object inputElement) {
 return (Object[])inputElement;
 }

 public void dispose() {
 }

 public void inputChanged(Viewer viewer,
 Object oldInput,
 Object newInput) {
 }
 });
 }

 private TableViewer buildAndLayoutTable(final Table table)
 {
 TableViewer tableViewer = new TableViewer(table);

 TableLayout layout = new TableLayout();
 layout.addColumnData(new ColumnWeightData(50, 75, true));
 layout.addColumnData(new ColumnWeightData(50, 75, true));
 table.setLayout(layout);

 TableColumn nameColumn = new TableColumn(table, SWT.CENTER);
 nameColumn.setText("Name");
 TableColumn valColumn = new TableColumn(table, SWT.CENTER);
 valColumn.setText("Value");
 table.setHeaderVisible(true);
 return tableViewer;
 }

 private void attachCellEditors(final TableViewer viewer,
 Composite parent)
 {
 viewer.setCellModifier(new ICellModifier() {
 public boolean canModify(Object element, String property){
 return true;
 }

 public Object getValue(Object element, String property) {

g getElements()
method

buildAndLayoutTable()
method

H

Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 209
 if(NAME_PROPERTY.equals(property))
 return ((EditableTableItem)element).name;
 else
 return ((EditableTableItem)element).value;
 }

 public void modify(Object element,
 String property,
 Object value) {
 TableItem tableItem = (TableItem)element;
 EditableTableItem data =
 (EditableTableItem)tableItem.getData();
 if(NAME_PROPERTY.equals(property))
 data.name = value.toString();
 else
 data.value = (Integer)value;

 viewer.refresh(data);
 }
 });

 viewer.setCellEditors(new CellEditor[] {
 new TextCellEditor(parent),
 new ComboBoxCellEditor(parent, VALUE_SET)
 });

 viewer.setColumnProperties(new String[] {
 NAME_PROPERTY, VALUE_PROPERTY
 });
 }

}

class EditableTableItem
{
 public String name;
 public Integer value;

 public EditableTableItem(String n, Integer v)
 {
 name = n;
 value = v;
 }
}

These constants hold the data we’ll use for our initial content. In a real applica-
tion, this data would likely be read from a database or other external source.

This class contains the logic to insert new rows into the data set. It extends Action
so it can be used by a MenuManager.

i modify() method

j EditableTableItem class

b

c

Licensed to jromero <jose.romero@galicia.seresco.es>

210 CHAPTER 9

Tables and menus
To perform the necessary logic, we override the run() method defined in Action.
The action framework ensures that this method is invoked at the appropriate
time. Our implementation creates a new domain object and calls add() on the
table viewer. Most real applications will need additional logic here to manage the
collection of domain objects.

We build a simple context menu by creating a new MenuManager and adding the
actions we want to use. In this case, we add the menu directly to the Table. If the
tab contained more controls than just this table, then the menu would appear
only when the user right-clicked on the table. If we wanted it to appear when the
user clicked anywhere on the tab, we would need to add the menu to the par-
ent Composite.

This is a standard LabelProvider implementation, similar to ones you’ve seen ear-
lier. It returns the value of whichever property matches the requested column.

Our content provider assumes that whatever input it’s given is an array of Objects.
It performs the appropriate cast and returns the result.

Here we construct the table. We add two columns and set the header text.

The modify() method is the most important part of our CellModifier implemen-
tation. The element parameter contains the TableItem for the cell that was just
changed. The domain object associated with this item is retrieved with the get-
Data() method. We then check the propertyName parameter to determine what
property was modified; we update the matching property on the domain object
using the value parameter, which contains the date entered by the user.

This small class serves as the domain objects for our example.

Run this example by adding the following lines to WidgetWindow:

TabItem chap9TableEditor = new TabItem(tf, SWT.NONE);
chap9TableEditor.setText("Chapter 9");
chap9TableEditor.setControl(new Ch9TableEditorComposite(tf));

When you run this example, the initial window contains two rows with sample
data. Right-clicking brings up a context menu that lets you insert a new row into
the table. Double-clicking a cell allows you to edit the data, either by typing or by
choosing from a drop-down menu.

d

e

f

g

h

i

j

Licensed to jromero <jose.romero@galicia.seresco.es>

Summary 211
9.4 Summary

Most of what you’ve seen with Tables and TableViewers should be familiar from
chapter 8. The basic concepts of viewers and providers are identical to those we
discussed earlier. Because tables impose a two-dimensional structure on data, they
require more configuration than some of other widgets we’ve examined. The
TableLayout and TableColumn classes create this structure for each table and con-
trol the details of how the table appears to the user.

 After working through these two chapters, you should be well equipped to
handle any requirement that calls for the use of one of these viewers, or any of the
more esoteric classes such as TableTreeViewer that are included in JFace.

 CellEditors, however, are a useful feature unique to TableViewers. CellEdi-
tors provide a framework for handling updates to specific cells in a table, and the
predefined CellEditor classes provide an easy way to provide discrete options for
the user to choose from.

 Just about any application will need to provide a menu bar, and it’s common to
provide context menus that show only options that are relevant to what the user is
currently doing. For example, right-clicking in a word processor typically brings
up options related to formatting text. SWT makes creating these menus easy, and
JFace adds the action framework to facilitate reusing logic easily regardless of the
context from which it was invoked. We discussed the theory behind actions in
chapter 4, and the examples we’ve shown here should give you a good feel for
how they’re used in practice.

Licensed to jromero <jose.romero@galicia.seresco.es>

Dialogs
This chapter covers
■ Dialogs included by SWT
■ Dialogs included by JFace
■ Progress indicators
■ Creating custom dialogs in JFace
212

Licensed to jromero <jose.romero@galicia.seresco.es>

SWT dialogs 213
If you want to be noticed, you must find a way to attract attention to yourself.
Whether your goal is to woo a potential sweetheart or market a new invention, it’s
impossible to succeed if your target isn’t aware of your efforts. The same principle
holds for software. If your program needs something from the user, it must find a
way to draw that user’s attention to itself. There are a variety of ways to accomplish
this, but the most common is to present the user with a dialog box. A dialog box is
a window that is separate from your application’s main window. When this window
is placed in front of the application, the user is forced to pay attention to whatever
you display there, whether it’s a status message or a request for input, such as a
filename to save to. Because displaying dialogs is such a common and necessary
task, SWT and JFace provide support to make handling dialogs easy.

 We need to discuss two independent Dialog classes: org.eclipse.swt.wid-
gets.Dialog and org.eclipse.jface.dialogs.Dialog. As their package names
suggest, the first class is part of SWT, whereas the second is from JFace. It would be
possible to build an application using only the SWT dialogs, but doing so wouldn’t
be fun. Still, SWT provides several prebuilt dialogs that perform common tasks.
We’ll cover the use of the SWT dialogs first, followed by a comparison with JFace
dialogs. We’ll round out the chapter by creating a username/password prompt
dialog to demonstrate how to write a custom dialog.

10.1 SWT dialogs

The abstract class Dialog provides the basis for all dialogs in SWT. By itself, this
class is of little interest, because it doesn’t provide much in the way of behavior.
It’s possible to derive your own SWT Dialog subclasses if you wish. However, deriv-
ing from the Dialog classes provided by JFace will make your job easier. Conse-
quently, we’ll discuss creating custom dialogs in the JFace section of this chapter.

 SWT does provide prebuilt dialogs for common tasks that are convenient and
easy to use. We’ll discuss how and when to use each of these dialogs next.

10.1.1 ColorDialog

Suppose you’re writing a text editor, and you want to let users specify the color of
the text on the screen. You may be able to get away with letting them specify RGB
values by hand if your target audience consists of hard-core programmers, but in
general users want to see the available options and choose one by pointing and
clicking. SWT does this for you with the class ColorDialog.
Licensed to jromero <jose.romero@galicia.seresco.es>

214 CHAPTER 10

Dialogs
 The grayscale nature of this book doesn’t do
the image justice, but figure 10.1 shows how
the user can easily choose a color from a Color-
Dialog.

 Displaying this dialog is simple. Just instanti-
ate it, and call open():

ColorDialog dialog = new
ColorDialog(shell);

RGB color = dialog.open();

If you wish to preselect a color, call setRGB()
before opening the dialog.

 The call to open() blocks, which means it
won’t return until the user clicks OK or Cancel.
The selected color, if any, is returned from
open() as an instance of RGB. null is returned if
the user clicks Cancel. The selected color can
also be retrieved later by using getRGB().

10.1.2 DirectoryDialog

DirectoryDialog chooses a target directory—for example, the location to which
to save a group of files. The following snippet displays the directory chooser dia-
log along with a message explaining what the user is supposed to do:

DirectoryDialog dialog = new DirectoryDialog(shell);
dialog.setMessage("Choose a save directory");
String saveTarget = dialog.open();
if(saveTarget != null)
{
 java.io.File directory = new java.io.File(saveTarget);
 ...
}

The dialog looks something like figure 10.2.
 Once the user has chosen a directory, the call to open()returns a String that

holds the absolute path to the chosen directory. This String can be used to create
a java.io.File and then manipulated accordingly. Should the user cancel,
open() returns null.

Figure 10.1
ColorDialog allows the user to
select from available colors.
Licensed to jromero <jose.romero@galicia.seresco.es>

SWT dialogs 215
10.1.3 FileDialog

In many ways, FileDialog is similar to DirectoryDialog. The dialogs appear
nearly identical, except that whereas DirectoryDialog displays only a list of direc-
tories, FileDialog adds the files present in each current directory to the display,
as shown in figure 10.3.

 The next snippet shows how to let the user select multiple files, as long as the
filenames end in “.txt”:

FileDialog dialog = new FileDialog(shell, SWT.MULTI);
dialog.setFilterExtensions(new String[] {"*.txt"});
dialog.open();

As usual, open() blocks and returns either the full path to the file as a String, or
null. Unlike the dialogs you’ve seen before, FileDialog supports three different
styles:

■ SWT.SAVE—Treats the dialog as a save dialog, allowing the user to either
select an existing file or type in the name of a new file to create.

■ SWT.OPEN—Lets the user select a single existing file to be opened.

■ SWT.MULTI—Lets the user select multiple files at once to be opened. Even if
the user selects multiple files in a MULTI-style dialog, open() will return only

Figure 10.2
DirectoryDialog waiting for the
user to choose a directory

Figure 10.3
FileDialog in Save mode allows the
user to enter a filename to save to.
Licensed to jromero <jose.romero@galicia.seresco.es>

216 CHAPTER 10

Dialogs
one. getFileNames() must be used to retrieve the array of all filenames
selected after open() returns.

Also of note in FileDialog are the methods setFilterPath(), setFilterNames(),
and setFilterExtensions(). When they’re called before the dialog opens, these
methods can be used to restrict the list of files that are visible to the user. setFil-
terPath() takes a single String that’s used as the path to the directory that should
be displayed by default. The other two methods take arrays of Strings, which are
used to assemble valid filenames and extensions. Our previous example filters out
everything that doesn’t end in “*.txt”. Note that the filter is displayed to the user
and is editable, so there is no guarantee that they won’t select a file of a type other
than what you expect.

10.1.4 FontDialog

Just as users of your text editor need to select a color for their text, they also need
to select a font to display it in. For this purpose, we have FontDialog. Its use is
nearly identical to that of the ColorDialog we discussed earlier:

FontDialog dialog = new FontDialog(shell);
FontData fontData = dialog.open();

FontDialog automatically picks up the fonts available to SWT on the user’s system.
This can result in a complex display, as figure 10.4 shows.

 The returned FontData can be used to instantiate the correct font, as discussed
in chapter 7.

10.1.5 MessageBox

If your application encounters an error it can’t recover from, the typical response
is to display a text message to the user and then exit. For this or any other purpose
where you need to display a dialog with a message, SWT provides MessageBox. A

Figure 10.4
FontDialog displays all fonts
installed on the user’s system.
Licensed to jromero <jose.romero@galicia.seresco.es>

SWT dialogs 217
simple dialog that gives the user the option of continuing or not can be displayed
with the following lines:

MessageBox dialog = new MessageBox(shell,
 SWT.OK | SWT.CANCEL);
dialog.setMessage("Do you wish to continue?");
int returnVal = dialog.open();

There are two important steps when you’re using MessageBox. The easy part is to
set the text message to display using setMessage(). More complicated is setting
the style. Using an icon style adds an appropriate icon next to your message. Styles
can also be used to control what buttons the MessageBox displays. However, some
styles are valid only in combination with certain other styles; the allowed combina-
tions are presented in table 10.1. Any of these can also be freely combined with
one of the icon styles, which are listed in table 10.2. If no button or an invalid but-
ton style is specified, SWT.OK is used, resulting in a single OK button. open()
returns an integer matching the SWT constant of the button that was clicked.

Table 10.1 Valid button style combinations

Dialog button style combinations

SWT.OK

SWT.OK | SWT.CANCEL

SWT.YES | SWT.NO

SWT.YES | SWT.NO | SWT.CANCEL

SWT.RETRY | SWT.CANCEL

SWT.ABORT | SWT.RETRY | SWT.IGNORE

Table 10.2 Dialog icons

Dialog icon Indicates that…

SWT.ERROR_ICON An error has occurred.

SWT.ICON_INFORMATION The dialog is presenting noninteractive information to the user.

SWT.ICON_QUESTION The dialog requires an answer (usually OK or Cancel) from the
user.

SWT.ICON_WARNING The user is about to perform a potentially harmful action.

SWT.ICON_WORKING The program is in the middle of a task.
Licensed to jromero <jose.romero@galicia.seresco.es>

218 CHAPTER 10

Dialogs
10.2 JFace dialogs

The standard JFace dialog classes are straightforward to use, because they work
similarly to dialogs in other UI toolkits such as Swing. The main difference you
need to be aware of is that whereas Swing provides JOptionPane with a variety of
static methods to display message dialogs, error dialogs, and so on, JFace has a
separate subclass for each of these dialog types that may be instantiated and dis-
played as is or subclassed to further customize appearance or behavior.

 All JFace dialogs extend from the abstract class org.eclipse.jface.dia-
logs.Dialog, which itself extends org.eclipse.jface.window.Window. Figure 10.5
shows the relationship between the standard dialog classes. As you can see, the
relationships are for the most part simple; the Error and Input dialogs rely upon
interfaces outside the basic hierarchy.

 A few design considerations are common to any subclass of Dialog. You change
dialog behavior by overriding the buttonPressed() method. The default implemen-
tation closes the dialog immediately as soon as any button is clicked—even non-
standard buttons that you may have added yourself. If you wish to change this
behavior or do processing of any kind before the dialog is closed, you must override

Window

Dialog

ErrorDialog MessageDialog TitleAreaDialog InputDialog

<<interface>>

IStatus

<<interface>>

IInputValidator

getSeverity() : int
getMessage() : String

isValid(newText : String) : String

Figure 10.5 JFace dialog inheritance hierarchy
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace dialogs 219
the method. Keep in mind that if you do override buttonPressed(), the dialog won’t
close unless you call super.buttonPressed() at the end of your implementation.

 You can also get hooks into specific buttons by overriding okPressed() or can-
celPressed() for any dialog that supports those buttons. Again, by default, these
methods just close the dialog—if you’re going to add behavior, be sure to call the
parent method when you’re done.

 Finally, the createButtonsForButtonBar() method controls the buttons that
are created for any given dialog. If you want to change the buttons for any dialog,
this is the place to do it. The one exception is MessageDialog—because you’ll
much more frequently want to change the buttons in a message dialog, the con-
structor provides a convenient way to specify the buttons that should be displayed
without having to create a subclass.

 It’s recommended that a dialog be modal, meaning that once it’s opened, no
other window can receive focus until the dialog is closed. Writing code that uses a
modal dialog is generally simpler, because you can be sure that as long as the dia-
log is displayed, your user isn’t interacting with the rest of your application. All
the basic dialogs discussed in this section follow this recommendation. This
impacts your code in two ways. First, it doesn’t make sense to open a dialog with-
out a parent window, so all our code examples include a parent ApplicationWin-
dow for this purpose. Second, you must remember that in your code, the call to
open() blocks, meaning that the method won’t return until the dialog is dismissed
in one way or another. open() returns an int, which is the zero-based index of the
button that was clicked, or –1 if the dialog’s window was closed by some means
other than clicking a button (such as pressing the Esc key).

10.2.1 Message dialogs

A message dialog is used to display a message to the user. Little interaction is pos-
sible with a message dialog—the user is limited to dismissing the dialog by click-
ing one of the displayed buttons.

 The following snippet shows how to display a message dialog—as you can see,
displaying the dialog itself requires only two lines of code. This is roughly equiva-
lent to calling JOptionPane.showMessageDialog() in Swing:

 MessageDialog dialog =
 new MessageDialog(
 testWindow.getShell(),
 "Greeting Dialog", //the dialog title
 null,
 "Hello! How are you today?", //text to be displayed
 MessageDialog.QUESTION, //dialog type
Licensed to jromero <jose.romero@galicia.seresco.es>

220 CHAPTER 10

Dialogs
 new String[] { "Good",
 "Been better",
 "Excited about SWT!" }, //button labels
 0);
 dialog.open();

Message dialogs come in several different types, defined as static constants in the
MessageDialog class. This type determines the image that’s displayed; in our
example, we get an image of a question mark, because we’ve declared this to be a
dialog of type QUESTION. Other types include ERROR, INFORMATION, WARNING, and
NONE. Each uses the standard image for that type on your operating system (except
type NONE, which causes no image to be displayed).

 You can also create buttons automatically by passing an array of Strings that
are the button labels. For each label found, MessageDialog creates a correspond-
ing button. By default, all buttons behave the same and close the dialog. In prac-
tice, it’s unusual to find a message dialog with any button other than OK and
perhaps Cancel.

 The constructor also optionally accepts an image to be displayed.

10.2.2 Error dialogs

Error dialogs are in many ways similar to MessageDialogs, in that they display an
error message to the user. You can mimic an ErrorDialog by creating a MessageDi-
alog with type ERROR. However, the ErrorDialog allows you to display more in-
depth error details by using the IStatus interface. IStatus holds a detailed mes-
sage and information about the severity of each error that has occurred. The
result can be seen in figure 10.6.

 The error dialog shown in figure 10.6 is created with the following code. We
create an instance of ErrorDialog and pass it an IStatus object that holds error
information. The root IStatus holds several other instances of IStatus that pro-
vide increasingly granular details about the errors:

Figure 10.6
An error dialog with multiple
instances of IStatus
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace dialogs 221
...
 ErrorDialog errorDialog = new ErrorDialog(testWindow.getShell(),
 "Test Error Dialog",
 "This is a test error dialog",
 testWindow.createStatus(),
 IStatus.ERROR | IStatus.INFO);
...
 public IStatus createStatus()
 {
 final String dummyPlugin = "some plugin";

 IStatus[] statuses = new IStatus[2];

 statuses[0] = new Status(IStatus.ERROR,
 dummyPlugin,
 IStatus.OK,
 "Oh no! An error occurred!",
 new Exception

 statuses[1] = new Status(IStatus.INFO,
 dummyPlugin,
 IStatus.OK,
 "More errors!?!?",
 new Exception());

 MultiStatus multiStatus = new MultiStatus(dummyPlugin,
 IStatus.OK
 statuses,
 "Several errors have occurred.",
 new Exception());
 return multiStatus;
 }

IStatus defines several severity-related constants. By bitwise ORing them together,
we create a bitmask describing the severities we’re interested in displaying. The
severity set in each individual IStatus object is compared with this mask, and
details of that object only are displayed in the case of a match. By changing INFO to
WARNING in this example, the details of our second Status object are suppressed.

Here we create an instance of Status, which implements the IStatus interface.
The idea is to encapsulate all the information about an error in this class and let
the ErrorDialog or any other consumer decide what is appropriate to display
based on the context.

IStatus requires a plug-in identifier, which is supposed to be a unique string. This
identifier is never used for ErrorDialogs, so we give the object a dummy value.

The Status stores the exception it’s given. The exception is included in the output
of Status’s toString() method and can also be retrieved using getException().

b Severity mask

c Status
d Plug-in

e Exception

f MultiStatus
g Severity

b

c

d

e

Licensed to jromero <jose.romero@galicia.seresco.es>

222 CHAPTER 10

Dialogs
MultiStatus also implements the IStatus interface and groups together multiple
instances of IStatus.

The severity set here is used to select an appropriate image to display in the dia-
log. The choices work the same as in a MessageDialog.

This code will display an error dialog with the message “Several errors have
occurred”, as you saw in figure 10.6. Clicking the Details button opens a panel at the
bottom of the dialog with the messages from the two Status objects we’ve defined.

 The Details button appears because the root IStatus object given to the dialog
is a MultiStatus and returns true for the isMultiStatus() method. Upon seeing
that it’s dealing with a MultiStatus, the ErrorDialog calls getChildren() to
retrieve the detailed status messages. If the root IStatus returns false for isMulti-
Status(), a Details button won’t appear. Children of a MultiStatus may be Multi-
Statuses themselves, allowing you to build trees of arbitrary complexity, should
the need arise. A MultiStatus’s severity is equal to the greatest severity of its chil-
dren. The Javadocs define a MultiStatus with no children as defaulting to a sever-
ity of OK.

 As you can see, ErrorDialog provides a significantly more advanced error-
reporting mechanism than using a MessageDialog of type ERROR. The primary
drawback to using ErrorDialog, however, is that it’s tied more closely to the Eclipse
platform than we’d like, instead of being a purely JFace-based widget. Not only do
the various IStatus-related classes come from org.eclipse.core.runtime, but
they also ask for plug-in identifiers as parameters—a concept that’s present in
Eclipse but not in JFace. How serious a drawback this may be is open for debate; it’s
possible to use the classes in this case by passing dummy values, because the values
aren’t used. However, you can’t pass null, because Status checks the plug-in value
it’s given and throws an internal assertion failure exception in case of null. Thus,
using the classes is at minimum confusing, and in general creates an awkward
design for any application not based on Eclipse. If you don’t need to provide
expanded details for your error messages, it’s best to avoid ErrorDialog and stick
to creating MessageDialogs with type ERROR. However, if you need the Details func-
tionality, it may be worth making a small compromise in your application design to
take advantage of these classes that have already been written and debugged.

10.2.3 Input dialogs

As the name suggests, an InputDialog is used to allow the user to enter text. These
dialogs are primarily intended for relatively short amounts of text (one line at
most). They fill the same role as Swing’s JOptionPane.showInputDialog().

f

g

Licensed to jromero <jose.romero@galicia.seresco.es>

JFace dialogs 223
 The key functionality provided by an InputDialog is the optional use of an
IInputValidator, which is responsible for validating an input string. The follow-
ing example prompts the user for a string that’s from 5 to12 characters long:

 IInputValidator validator = new IInputValidator() {
 public String isValid(String text) { //return an error message,
 if(text.length() < 5) //or null for no error
 return "You must enter at least 5 characters";
 else if(text.length() > 12)
 return "You may not enter more than 12 characters";
 else
 return null;
 }
 };

 InputDialog inputDialog = new InputDialog(testWindow.getShell(),
 "Please input a String", //dialog title
 "Enter a String:", //dialog prompt
 "default text", //default text
 validator); //validator to use
 inputDialog.open();

The isValid() method implements the validation check for the text entered by
the user. The semantics of the method seem slightly odd at first glance, but they
let you be flexible in communicating status back to the user. The method is
passed the text to validate and returns null if the text is valid. If it’s invalid, the
method should return a String that’s displayed to the user as an error message.
It’s permissible to return different error messages in different conditions, to help
make it clear to the user exactly what you expect them to enter.

 Note that this method is called frequently—each time the text is modified
(every keystroke), it’s checked for validity. This means your implementation
should perform as little work here as possible in order to return quickly. Spending
much time in this method will make your UI unbearably sluggish.

 You may provide a default string to be entered into the dialog. You can pass
null, in which case the text field is left empty. The validator passed may also be
null, in which case any input is accepted.

 The InputDialog is passed a title, a prompt, and optionally some default text
and an instance of IInputValidator. The dialog is shown with OK and Cancel but-
tons. The OK button is enabled or disabled at any given time depending on the
return value of isValid() from the supplied IInputValidator; if no validator is
supplied, the button is always enabled. Once the dialog has been closed, you can
retrieve the entered value using getValue().
Licensed to jromero <jose.romero@galicia.seresco.es>

224 CHAPTER 10

Dialogs
10.2.4 Progress monitor dialogs

Applications often perform tasks that take a long time to complete (in computer
terms, at least). While your application is busy, it’s important to let users know that
you’re working on fulfilling their request so they don’t become frustrated. JFace
makes doing so relatively easy by providing a framework for displaying the task sta-
tus to the user. We’ll start by discussing the ProgressMonitorDialog and how it fits
into this framework.

 You must understand several interfaces to effectively use a ProgressMonitor-
Dialog. Figure 10.7 shows the relationship between these interfaces.

 The most important things to note here are the IRunnableContext and IRunna-
bleWithProgress interfaces. IRunnableContext provides a context for any long-
running task, and ProgressMonitorDialog implements this interface. IRunnable-
WithContext uses an instance of IRunnableWithProgress, which is meant to be
implemented by a long-running task. IRunnableWithProgress is therefore the
interface that your class must implement. Finally, IRunnableWithProgress is pro-
vided with an instance of IProgressMonitor, which it uses to report its progress as
it executes.

 When interacting with an IProgressMonitor, calls must take place in a certain
sequence. The process starts by calling run() on an IRunnableContext, giving it an
instance of IRunnableWithProgress. After doing whatever initialization might be
necessary, IRunnableContext calls run() on IRunnableWithProgress, passing an
IProgressMonitor. IRunnableWithProgress starts by calling beginWork() with the
total amount of work it expects to do. It periodically calls worked() and subTask()

Dialog

ProgressMonitorDialog <<interface>>

IRunnableContext

<<interface>>

IRunnableWithProgress

<<interface>>

IProgressMonitor

run() : void
run() : void run() : void

beginTask() : void
done() : void
isCanceled() : void
worked() : void
setTaskName() : void
subTask() : void

Figure 10.7 Progress monitor classes
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace dialogs 225
to notify the progress monitor of its progress. It should also call isCanceled() to
check whether it has been canceled. Finally, done() is called when the task is fin-
ished. After the call to done(), no more calls can be made on the IProgressMonitor.

 IProgressMonitor assumes that your task can be broken into abstract units of
work. It then provides a callback method to let you notify it that x units of work
have been completed. Typically, this notification is called as the last step in a loop.
However, if your task is a sequential series of slow operations, such as database or
network accesses, you can assign a value to each operation as a percentage of the
total work to be done. Doing so effectively decouples the implementation of the
long-running task from the code that notifies the user how much work remains to
be done. In our case, ProgressMonitorDialog implements IRunnableContext and
provides the instance of IProgressMonitor; but because we deal only with the
interfaces, the same code can be used with any implementation of IRunnableCon-
text. In SWT/JFace, the only other implementation of IRunnableContext is
ApplicationWindow, but it’s conceivable that you could implement your own status
notification for your specific application—for example, for truly long-running
tasks, it may be appropriate to send an email as each stage is completed. In this
case, you can use these same interfaces.

 Our next code snippet provides an example of using a ProgressMonitorDia-
log. Note that the status text to display to the user is controlled by the IRunnable-
Context when it calls beginTask() and subTask(), whereas updating the progress
bar on screen is handled by the IProgressMonitor as it receives calls through its
worked() method:

ProgressMonitorDialog progressMonitor =
 new ProgressMonitorDialog(shell);
try
{
 IRunnableWithProgress runnable = new IRunnableWithProgress() {
 public void run(IProgressMonitor progressMonitor)
 throws InterruptedException
 {
 progressMonitor.beginTask("Doing hard work...",
 100);
 while(!taskCompleted())
 {
 progressMonitor.worked(10);
 progressMonitor.subTask("sub task: " +
 getCurrentTask());
 ... //Perform some long task
 if(progressMonitor.isCanceled())
 {
 throw new InterruptedException();

b Total work

c Amount worked

d Canceled check
Licensed to jromero <jose.romero@galicia.seresco.es>

226 CHAPTER 10

Dialogs
 }
 }
 progressMonitor.done();
 }
 };

 progressMonitor.run(true,
 true,
 runnable);
}
catch (Exception e)
{
 e.printStackTrace();
}

We must notify the ProgressMonitor that we’re starting work on our task. Addi-
tionally, we must either tell it how many units of work we expect to perform or use
the constant IProgressMonitor.UNKNOWN if we don’t know. This value is a hint to
the UI—if we end up performing more work than we specified, the progress bar
will clear itself and start over until we tell it we’re done.

Here we notify the ProgressMonitor that we’ve performed some amount of work.
This causes it to update the progress bar displayed to the user, if the increase is
enough to be visible. In our case, each unit of work is 10% of the total, so every
call to this method causes the bar to increase in length by a significant amount.

If we allow the user the option of canceling our task, we must periodically check
whether they have requested cancellation. IRunnableContext.run() specifies that
when a task has canceled itself, it should throw an InterruptedException after
doing whatever cleanup is necessary. This exception eventually propagates to the
original caller of IRunnableContext.run().

When we’re finished, we must notify the IProgressMonitor.

When starting a long-running task using an IRunnableContext, we’re allowed to
specify whether we should run the task in a separate thread. If you do run in a sep-
arate thread, you’re responsible for ensuring that you access all resources in a
thread-safe manner—see Chapter 4 for a discussion of threading and SWT.

We can also specify whether this task may be canceled by the user. In the case of a
ProgressMonitorDialog, this value decides whether a Cancel button is displayed.
Generally, if your task takes long enough to require the use of a ProgressMonitor
in the first place, you should allow the user to cancel it if at all possible. Note that
clicking the Cancel button is only a recommendation to the running task; the task
won’t be forcibly stopped. It’s up to the task to check for cancellation requests and

e Done

F Fork
g Cancellable

b

c

d

e

f

g

Licensed to jromero <jose.romero@galicia.seresco.es>

JFace dialogs 227
handle them appropriately—it’s free to ignore them, and by default it will do so if
you forget to add the check to your code.

Using ProgressIndicator for more control
The ProgressMonitorDialog provides an easy way to keep the user informed of a
task’s progress. Sometimes, however, you’ll want more control over the way in
which a progress bar is presented. When necessary, SWT lets you instantiate and
directly use widgets that control the progress bar, as we’ll discuss next.

 The ProgressIndicator widget allows you to display a progress bar without
worrying about how to fill it. Like the ProgressMonitorDialog, it supports abstract
units of work—you need only initialize the ProgressIndicator with the total
amount of work you expect to do and notify it as work is completed:

 ProgressIndicator indicator = new ProgressIndicator(parent);
 ...
 indicator.beginTask(10); //total work to be done. Control is
 ... //not displayed until this method is called
 //use asyncExec() to update in the UI thread
 Display.getCurrent()display.asyncExec(new Runnable() {
 public void run() {
 indicator.worked(1); //inform the ProgressIndicator that
 //some amount of work has completed
 }
 });

As it receives notifications, the ProgressIndicator assumes responsibility for
updating the appearance of the bar on the screen by calculating the percentage
of the total work that has been completed.

 The ProgressIndicator also provides an animated mode, where the total
amount of work isn’t known. In this mode, the bar continually fills and empties
until done() is called. To use animated mode, you call beginAnimatedTask()
instead of beginTask(); and there is no need to call the worked() method. Assum-
ing your work is being correctly done in a non-UI thread, this implies that you
don’t need to worry about the asyncExec() call, either.

 Occasionally, you may need more control than a ProgressIndicator allows.
For times when you need to manipulate widgets at a low level, SWT provides the
ProgressBar.

 If you decide that you need to use a ProgressBar directly, you’re taking respon-
sibility for changing the display of the bar yourself. The following code snippet
shows an example:

 //styles are SMOOTH, HORIZONTAL, or VERTICAL
ProgressBar bar = new ProgressBar(parent, SWT.SMOOTH);
Licensed to jromero <jose.romero@galicia.seresco.es>

228 CHAPTER 10

Dialogs
 bar.setBounds(10, 10, 200, 32);
 bar.setMaximum(100);
 ...
 for(int i = 0; i < 10; i++) {
 //use asyncExec() to do updates in the UI thread
 Display.getCurrent()display.asyncExec(new Runnable() {
 public void run() {
 //update how much of the bar should be filled in
 bar.setSelection((int)(bar.getMaximum() * (i+1) / 10));
 }
 });
}

Note that in addition to needing to calculate the bar update amounts yourself,
calling setSelection() causes the widget to be updated every time; this behavior
is unlike that of ProgressIndicator or ProgressMonitorDialog, which will update
the display only if it has changed by an amount that will be visible to the end user.

 As you can see, there is more work involved with using ProgressBars than the
other widgets we’ve discussed, and in general we recommend avoiding them
unless you have no choice. However, you may occasionally need to use them—for
example, if you need to unfill the bar, there is no way to do it with the higher-
level controls.

10.2.5 Custom dialogs

Although the dialogs that we’ve discussed so far cover many common tasks, you’ll
frequently find that your application’s requirements call for a unique dialog that
the designers of JFace couldn’t have anticipated. If you need to create a new type
of dialog for your application, we recommend that you extend from the JFace
Dialog class instead of using SWT’s Dialog. The JFace framework provides more
structure to make your job easier; using SWT, you would be taking on the job of
writing most of this common functionality yourself.

 Because JFace provides the framework necessary to manage opening and clos-
ing dialogs, your job primarily consists of defining the controls present on the
page. Dialog provides several different hooks to use in defining the layout of your
dialog, depending on the level of control you need. We’ll discuss what methods
are called in what order before we talk about when to override specific methods.

 Because Dialog extends Window, everything starts with the createContents()
method discussed in chapter 2. After it does some initialization, createDialog-
Area() is called. This method builds the top section of the dialog. After createDi-
alogArea() returns, createButtonBar() is called and creates a new Composite and
Layout for the bars at the bottom of the dialog. Finally, createButtonBar() calls
Licensed to jromero <jose.romero@galicia.seresco.es>

JFace dialogs 229
createButtonsForButtonBar() to instantiate the buttons that appear on the dia-
log. By default, OK and Cancel buttons are created.

 You’re free to take control of this process at any point by overriding the appro-
priate methods. In general, however, you can limit yourself to implementing cre-
ateDialogArea() or createButtonsForButtonBar().

 createDialogArea() takes a Composite that’s used as the parent for any con-
trols you create and must return a Control whose layout data is an instance of
GridData. The easiest way to fulfill this contract is to call the default implementa-
tion before you do your own work:

Composite composite = (Composite)super.createDialogArea(parent);
...//add custom controls
return composite;

Other than these restrictions, you’re free to add whatever controls are appropri-
ate for your dialog.

 Like createDialogArea(), createButtonBar() must return a Control with a Grid-
Data for its layout data. Rather than override createButtonBar(), however, it’s sim-
pler to implement createButtonsForButtonBar(), where you can focus on creating
the buttons you need without worrying about layout issues. Buttons are created using
the createButton() method. For example, the default implementation of create-
ButtonsForButtonBar() uses the following code to create OK and Cancel buttons:

createButton(parent,
 IDialogConstants.OK_ID,
 IDialogConstants.OK_LABEL,
 true); //make this button the default
createButton(parent,
 IDialogConstants.CANCEL_ID,
 IDialogConstants.CANCEL_LABEL,
 false);

createButton() takes the button’s parent, an integer ID, the String to use as the
label, and a flag indicating whether this button should be made the default. In
addition to adding the button to its internal list and updating the layout data
appropriately, by default createButton() also adds a SelectionListener to the
button, which causes the dialog’s buttonPressed() method to be called with the
ID of the button that was clicked. You’re free to override createButton() if you
have requirements unique to your dialog, such as adding a specific style to all but-
tons created.
Licensed to jromero <jose.romero@galicia.seresco.es>

230 CHAPTER 10

Dialogs
10.3 Updating WidgetWindow

You’ve already seen examples of invoking each of the dialogs provided by SWT
and JFace, so our in-depth example for this chapter demonstrates creating a cus-
tom dialog. Listing 10.1 creates a subclass of Dialog that displays two text-entry
fields, one for a username and one for a password. We’ve also added a third but-
ton that clears any text that has been entered. Figure 10.8 shows what this dialog
will look like.

 To accomplish this, we override the createDialogArea(), createButtonsFor-
ButtonBar(), and buttonPressed() methods of Dialog. Notice that createDialog-
Area() is the only one of these methods that is at all complex.

package com.swtjface.Ch10;

import org.eclipse.jface.dialogs.Dialog;
import org.eclipse.jface.dialogs.IDialogConstants;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.*;

public class UsernamePasswordDialog extends Dialog
{
 private static final int RESET_ID =
 IDialogConstants.NO_TO_ALL_ID + 1;

 private Text usernameField;
 private Text passwordField;

 public UsernamePasswordDialog(Shell parentShell)
 {
 super(parentShell);
 }

 protected Control createDialogArea(Composite parent)
 {
 Composite comp = (Composite)super.createDialogArea(parent);

 GridLayout layout = (GridLayout)comp.getLayout();

Listing 10.1 UsernamePasswordDialog.java

Figure 10.8
The custom password dialog

super.createDialogArea()
method

b

Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 231
 layout.numColumns = 2;

 Label usernameLabel = new Label(comp, SWT.RIGHT);
 usernameLabel.setText("Username: ");

 usernameField = new Text(comp, SWT.SINGLE);
 GridData data = new GridData(GridData.FILL_HORIZONTAL);
 usernameField.setLayoutData(data);

 Label passwordLabel = new Label(comp, SWT.RIGHT);
 passwordLabel.setText("Password: ");

 passwordField = new Text(comp, SWT.SINGLE | SWT.PASSWORD);
 data = new GridData(GridData.FILL_HORIZONTAL);
 passwordField.setLayoutData(data);

 return comp;
 }

 protected void createButtonsForButtonBar(Composite parent)
 {
 super.createButtonsForButtonBar(parent);
 createButton(parent, RESET_ID, "Reset All", false);
 }

 protected void buttonPressed(int buttonId)
 {
 if(buttonId == RESET_ID)
 {
 usernameField.setText("");
 passwordField.setText("");
 }
 else
 {
 super.buttonPressed(buttonId);
 }
 }
}

We override createDialogArea() to instantiate the controls necessary for this dia-
log. First we call the method on the superclass to handle all the layout informa-
tion. The superclass guarantees that it will return a Composite with a GridLayout,
so it’s safe to cast the object that is returned. After setting the layout to have two
columns, we create a pair of labels and text fields to be displayed.

Adding our Reset All button requires only a single line. We make sure to call super.
createButtonsForButtonBar() so we get the standard OK and Cancel buttons.

Finally, we want to react to the user’s button clicks. When createButton() was
called, it associated an appropriate listener with each button to ensure that
buttonPressed() is called. We check the ID of the button to see if it matches the

createButtonsForButtonBar()
method

C

d buttonPressed() method

b

c

d

Licensed to jromero <jose.romero@galicia.seresco.es>

232 CHAPTER 10

Dialogs
ID we used to create the Reset All button earlier. If so, we reset the text on our text
fields. Otherwise we can delegate to the superclass and let it handle the button
click as normal.

Listing 10.2 presents the Composite, which isn’t terribly interesting. Its only pur-
pose is to launch our dialog. We can’t display a dialog directly in the tab, so the
Composite creates a button instead. When the button is clicked, the listener
instantiates and displays the UsernamePasswordDialog we showed you earlier.

package com.swtjface.Ch10;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Composite;

public class Ch10CustomDialogComposite extends Composite
{
 public Ch10CustomDialogComposite(Composite parent)
 {
 super(parent, SWT.NONE);
 buildControls();
 }

 protected void buildControls()
 {
 FillLayout layout = new FillLayout();
 setLayout(layout);

 Button dialogBtn = new Button(this, SWT.PUSH);
 dialogBtn.setText("Password Dialog...");
 dialogBtn.addSelectionListener(new SelectionListener() {

 public void widgetSelected(SelectionEvent e)
 {
 UsernamePasswordDialog dialog =
 new UsernamePasswordDialog(getShell());
 dialog.open();
 }

 public void widgetDefaultSelected(SelectionEvent e){}
 });
 }

}

Listing 10.2 Ch10CustomDialogComposite.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Summary 233
After creating a button, we attach a SelectionListener to it. When the listener
receives a widget-selected event, it creates a new UsernamePasswordDialog and
opens it, just like any prebuilt dialog that comes with JFace.

 You can run this example by adding the following lines to WidgetWindow:

TabItem chap10 = new TabItem(tf, SWT.NONE);
chap10.setText("Chapter 10");
chap10.setControl(new Ch10CustomDialogComposite(tf));

10.4 Summary

Using the dialog classes provided by JFace is generally straightforward, although
you’ll be well served by carefully considering the design of your application
before you write any code.

 MessageDialog and InputDialog provide powerful alternatives to the capabili-
ties provided by the dialog support in Swing. Unlike JOptionPane’s static meth-
ods, the dialog classes in JFace may be subclassed and customized to meet your
application’s unique requirements, yet they provide easy-to-use options for han-
dling the simple cases.

 ErrorDialog provides more advanced error-reporting capabilities at the cost
of introducing extra library dependencies into your application as well as
parameters that you’ll never use. You should give careful thought to these issues
before you use ErrorDialog; but we think the class is valuable enough that it’s
sometimes worth using anyway, especially if you can effectively isolate knowl-
edge of the org.eclipse.core.runtime-related classes and parameters from the
rest of your application.

 The IProgressMonitor framework, on the other hand, provides a clean, exten-
sible set of classes ready to be used by your code. It’s possible to manipulate the
lower-level controls directly, but we recommend sticking to the framework classes
and interfaces except in unusual circumstances. By writing to the IRunnableWith-
Progress and IProgressMonitor interfaces, you’ll make it much easier to reuse
your code in new situations as they arise.

 Finally, when you’re creating a custom dialog, you’ll be better served by start-
ing from the dialog class provided by JFace, as opposed to deriving from the basic
SWT class. JFace’s framework provides the structure needed to make creating a
new dialog easy. All you need to do is override a couple of methods to define the
specific components used by your dialog.

Licensed to jromero <jose.romero@galicia.seresco.es>

Wizards
This chapter covers
■ Multipage dialogs
■ The JFace wizard framework
■ Persisting dialog settings
234

Licensed to jromero <jose.romero@galicia.seresco.es>

Multipage dialogs 235
Today, most people are familiar with the concept of an application providing a
wizard for certain tasks. By separating a complex task into a series of steps, per-
formed one at a time, it’s possible to condense an otherwise intimidating set of
options into a relatively pleasant end-user experience. A good example can be
found in Eclipse when creating a new project. Eclipse supports development in a
wide variety of languages, and each of those languages has many different options
that can be configured for a new project. Rather than dump you straight into a
dialog box filled with combo boxes, text-entry fields, and checkboxes, however,
Eclipse guides you through the process of creating a new project one step at a
time. You can choose the language for your new project, then a location, and then
configure language-specific settings. Eclipse can infer sensible defaults for most of
these options; any time after you’ve provided the bare minimum of information,
you can click the Finish button to tell the program to go ahead with creating the
project. If you choose to configure details yourself, you can freely move back and
forth between steps, changing choices you made earlier. The whole experience is
made enjoyable because you can see what effects your choices have before they’re
made permanent.

 JFace provides a framework to help you create and use wizards in your own
application. The framework is composed of a three-level hierarchy. Each level can
contain multiple instances of the level below it—a container contains wizards,
whereas wizards contain pages. Each level defines both an interface and a default
implementation of that interface. It’s generally easiest to subclass the default
implementations, but for maximum flexibility the framework is designed to only
reference objects by the interfaces. Any complete implementation of a wizard-
related interface may be freely mixed with the existing classes with no problems.

 Figure 11.1 provides an overview of the classes used to create a typical wizard.
You should recognize some of these classes from our discussion of dialogs in the
previous chapter.

 Figure 11.1 shows how the classes and interfaces of the wizard framework fit
together. The most important thing to take away is that the concrete classes at
each level, WizardDialog and Wizard, depend only on the interface of the next
level down, not the default implementation. This same property holds when tra-
versing the other direction—although IWizardPage makes use of IWizard, it
doesn’t matter whether IWizard is implemented by Wizard or by some other class.
We’ll start at the bottom of the diagram and work our way upward through the
hierarchy, discussing each of these classes in turn. We’ll then show you how they
work together.

Multipage dialogs
Licensed to jromero <jose.romero@galicia.seresco.es>

236 CHAPTER 11

Wizards
11.1 Multipage dialogs

All the dialogs we discussed in the previous chapter consisted of a single page. All
the available options were displayed at the same time, and the dialog could only
open and close. However, a wizard needs to display more than one page in a sin-
gle dialog. JFace provides a generic interface for use in multipage dialogs that
serves as the parent of the wizard-specific interfaces. We’ll briefly cover this
generic interface before turning our attention to wizards.

11.1.1 IDialogPage

IDialogPage is the base interface for the pages in any multipage dialog. The
interface provides methods to configure all the attributes for a given page, such
as its title, a description, or an Image to display. The most important method is
createControl(), which is called when it’s time for the page to create its con-
tents. JFace provides a default implementation of IDialogPage with the abstract

TitleAreaDialog

<<interface>>

IWizardContainer WizardDialog

<<interface>>

IRunnableContext

<<interface>>

IDialogPage

<<interface>>

IWizard

<<interface>>

IWizardPage Wizard

WizardPage

run() : void

Figure 11.1 Wizard classes
Licensed to jromero <jose.romero@galicia.seresco.es>

Multipage dialogs 237
DialogPage class, which provides default implementations of all methods
declared in the interface except createControl(). On its own, IDialogPage is nei-
ther very interesting nor useful, so we’ll move on to discuss its most commonly
used subinterface: IWizardPage.

11.1.2 IWizardPage

The basic element of the wizard is a page. A page should represent one step for
the user in whatever process you’re guiding them through. Key to creating a
usable wizard is defining these steps well—too much information on the page is
confusing, but too many separate steps are annoying for the user.

 JFace uses the IWizardPage interface to represent a single page in a wizard. A
variety of methods are defined in this interface; the most important ones are sum-
marized in table 11.1.

Several other straightforward getter and setter methods are also defined in IWiz-
ardPage. Implementing all of them could quickly become tedious. Luckily, JFace
comes to your rescue with a default implementation—the WizardPage class.

11.1.3 WizardPage

WizardPage implements the IWizardPage interface and provides much of the basic
logic for a page. You need only implement createControl() from IDialogPage to
build the controls appropriate to your page, although a variety of other methods
may be overridden if you wish to modify the page’s behavior.

Table 11.1 Important methods defined by IWizardPage

Method Description

getName() Each page must have a unique name. This method is often used to
retrieve a particular page from the wizard.

getNextPage(),
getPreviousPage()

These methods are called when the user clicks the Next or Previous
button to move to another page. The proper page to move to (which
may vary depending on selections the user has made) must be
returned.

isPageComplete() Indicates whether the user has filled out everything that is necessary
on this page.

canFlipToNextpage() Indicates whether the Next button should be available for use. This
method typically returns true if the page is complete and at least one
page is left in the wizard.
Licensed to jromero <jose.romero@galicia.seresco.es>

238 CHAPTER 11

Wizards
 Listing 11.1 shows a sample implementation of WizardPage. The page presents
a single checkbox, asking the user whether to use the default directory (perhaps
for setting up a new Java project, or some similar task). Taken on its own, the class
doesn’t provide any interesting behavior. Later in the chapter, we’ll show you how
to combine multiple implementations of IWizardPage to build a complete wizard.

package com.swtjface.Ch11;

import org.eclipse.jface.wizard.WizardPage;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.*;

public class DirectoryPage extends WizardPage
{
 public static final String PAGE_NAME = "Directory";
 private Button button;

 public DirectoryPage()
 {
 super(PAGE_NAME, "Directory Page", null);
 }

 public void createControl(Composite parent)
 {
 Composite topLevel = new Composite(parent, SWT.NONE);
 topLevel.setLayout(new GridLayout(2, false));

 Label l = new Label(topLevel, SWT.CENTER);
 l.setText("Use default directory?");

 button = new Button(topLevel, SWT.CHECK);

 setControl(topLevel);
 setPageComplete(true);
 }

 public boolean useDefaultDirectory()
 {
 return button.getSelection();
 }
}

The WizardPage constructor takes a page name (which must be unique in this wiz-
ard), the title for the page, and (optionally) an image descriptor for the image to
display on this page.

Listing 11.1 DirectoryPage.java

b Constructor

c createControls() method

d setControl() method
e setPageComplete() method

f useDefaultDirectory() method

b

Licensed to jromero <jose.romero@galicia.seresco.es>

The wizard 239
Your page must implement this method. Here you create all the controls that will
be displayed on the page. For this example, we create a single label and a checkbox.

When you’ve finished creating your controls, you must call setControl() to let
the superclass know about your new creations. Failing to do so results in internal
JFace assertions failing at runtime.

This method is used to signal whether the page has sufficient information to allow
the user to move on. For simplicity, we set it to true here. In most applications,
you’ll need to attach listeners to your controls and wait for events to signal that
the user has entered all required data.

Here we make a public method available to allow the status of the checkbox to be
queried. Other classes in the wizard can then query whether the user wants to use
the default location, and act accordingly.

The page is responsible for maintaining its own state, but it doesn’t need to worry
about other pages in the wizard or where it fits into the overall flow. Its only job is
to let the wizard framework know whether it’s complete enough to move on.

11.2 The wizard

A wizard is a step up from an individual page. A wizard groups a collection of
pages and represents the overall task that the user is trying to perform. In addi-
tion to grouping the pages, the wizard’s primary responsibility is to keep track of
whether the overall task has enough information to finish and to do whatever pro-
cessing is necessary when the task is finished.

 Like wizard pages, the wizard has both an interface and a default implementation.

11.2.1 IWizard

The IWizard interface has quite a few methods, most of which are straightforward
accessors for configuration options. A few are worth mentioning in greater detail,
however; we present them in table 11.2.

 As with wizard pages, JFace saves you from the drudgery of implementing all
the methods defined in IWizard by providing a default implementation in the
form of the Wizard class.

c

d

e

f

Licensed to jromero <jose.romero@galicia.seresco.es>

240 CHAPTER 11

Wizards
11.2.2 Wizard

Continuing our example, we’ll show the use of Wizard, JFace’s default implemen-
tation of IWizard. Our subclass is simple, because Wizard does most of the work
for us. Note that Wizard provides a variety of configuration options (such as set-
ting images or colors) that we don’t show here.

 Our sample wizard continues the project setup that we discussed earlier, using
the DirectoryPage class we developed. We’ll discuss only the skeleton of the class
here and present the full listing later in the chapter:

public class ProjectWizard extends Wizard
{
 public ProjectWizard()
 {
 super();
 }

 public void addPages()
 {
 addPage(new DirectoryPage());
 //... add other pages as needed
 }

Table 11.2 Important methods defined by the IWizard interface

Method Description

canFinish() Called periodically to check whether it’s currently possible for this wizard to
finish. The result is used to determine whether to enable the Finish button.
Note that returning true doesn’t imply that the wizard will immediately fin-
ish, only that if the user clicked the Finish button right now; any informa-
tion he hasn’t entered can be given reasonable defaults.

createPageControls() Intended to allow the wizard to create the controls for all of its pages in
advance, so that it can calculate the maximum size needed and avoid hav-
ing to resize when switching from one page to another. The Wizard imple-
mentation of this method calls createControl() on all pages included in
the wizard, which is generally what you want. However, this method can be
overridden if you want to delay creation of some of the pages, especially if
the creation is slow and may not be needed.

performCancel() Provides notification that the user has asked to cancel the wizard. Any
cleanup or other processing that should be done for a cancellation should
be performed here. This method returns a boolean; returning false signals
the framework that cancellation isn’t allowed at the current time.

performFinish() Provides notification that the user has successfully finished the wizard. All
logic related to the wizard finishing should be performed here. Like per-
formCancel(), this method returns a boolean, and returning false signals
the framework that the finish request was refused.

b addPages() method
Licensed to jromero <jose.romero@galicia.seresco.es>

Putting it all together 241
 public boolean performFinish()
 {
 DirectoryPage dirPage =
 (DirectoryPage)getPage(DirectoryPage.PAGE_NAME);
 if(dirPage.useDefaultDirectory())
 {
 ...
 }
 return true;
 }

 public boolean performCancel()
 {
 //... perform cancel processing
 return true;
 }
}

This method is called to tell the wizard to add any pages it desires. Pages are nor-
mally displayed in the order they’re added. To change this behavior, you must
override getNextPage() and getPreviousPage().

Here we go through the actual process of creating our project. The Directo-
ryPage we added earlier is retrieved using its page name, and it can then be que-
ried for the data we’re interested in. This also demonstrates why each page in a
wizard must have a unique name—if there were duplicates, getPage() wouldn’t be
able to determine which page to return.

If any cleanup must be done when the user cancels, we do it here.

As you can see, Wizard takes care of most of the work for you. Aside from setting
configuration options, there is little to do other than implement performFinish()
and, if you wish, performCancel().

11.3 Putting it all together

Finally, we come to the layer that controls the entire wizard: the wizard container.
Although at first glance it may seem odd to have this separate from the wizard
itself, it allows one container to group multiple wizards together and switch
between them.

11.3.1 Wizard containers

A wizard container is meant to act as a host for one or more wizards. The IWizard-
Container interface isn’t interesting in itself—it provides methods to get the

c performFinish() method

d performCancel() method

b

c

d

Licensed to jromero <jose.romero@galicia.seresco.es>

242 CHAPTER 11

Wizards
current page, several methods to update aspects of the container’s window, and a
method to programmatically change the currently displayed page. Most of the
real action comes from WizardDialog, which implements IWizardContainer.

11.3.2 WizardDialog

Clients are free to provide their own implementations of IWizardContainer, but
WizardDialog will be sufficient for most needs. Typically it isn’t even necessary to
subclass WizardDialog. We’ll first show how to use WizardDialog as is, and then dem-
onstrate creating a subclass that decides at runtime whether to display certain pages.

 First, listing 11.2 shows the standard WizardDialog.

package com.swtjface.Ch11;

import org.eclipse.jface.window.ApplicationWindow;
import org.eclipse.jface.wizard.WizardDialog;
import org.eclipse.swt.widgets.Display;

public class WizardDialogDemo
{
 public static void main(String[] args)
 {
 ApplicationWindow testWindow = new ApplicationWindow(null);

 testWindow.setBlockOnOpen(false);
 testWindow.open();

 ProjectWizard wizard = new ProjectWizard();
 WizardDialog wizardDialog = new WizardDialog(
 testWindow.getShell(),
 wizard);

 wizardDialog.create();
 wizardDialog.open();
 }
}

As our demo program shows, if all you wish to do is display a wizard’s pages in
order, using a WizardDialog is simple. Just pass the IWizard to the dialog’s con-
structor and call open(), and your wizard’s pages will be displayed in the order in
which they were added.

Listing 11.2 WizardDialogDemo.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Combining wizards 243
A warning about initialization errors
The example code will run as we’ve presented it, but there is a gotcha to be
aware of if you’re testing wizard code on your own. When we were originally test-
ing wizard functionality, we created a subclass of WizardDialog and added a
main() method. Unfortunately, this doesn’t work due to a subtle interaction
between SWT and the java classloader. When you type java TestWizardDialog,
the Java VM first loads and initializes the TestWizardDialog class; it then looks for
and executes the static void main() method defined there. To initialize
TestWizardDialog, the VM needs to initialize all of its superclasses, which include
org.eclipse.jface.dialogs.Dialog. Dialog, however, has static initialization
code that attempts to retrieve certain images from the ImageRegistry. Because
the system hasn’t been fully initialized at this point (remember, main() hasn’t
even started execution), retrieving the values from the registry fails, throwing a
NullPointerException and causing the main thread to terminate. In a typical
application this won’t be an issue, because main() is usually located in a class by
itself or in a subclass of ApplicationWindow. However, it’s worth being aware of
this potential issue here and in other SWT classes, in case you’re ever bitten by it.
The symptoms are strange, but the solution is simple—put your main() method
in a class that doesn’t extend an SWT class.

11.4 Combining wizards

Occasionally you may have a situation that requires the user to select from one of
several possible wizards. A good example occurs in Eclipse when you select
File->New->Other. You’re shown a wizard with a variety of options to choose which
new object you wish to create. Whichever one you choose launches a separate wiz-
ard as appropriate. JFace provides support for this use case with the WizardSelec-
tionPage class and the IWizardNode interface.

11.4.1 WizardSelectionPage

WizardSelectionPage extends WizardPage and is in general intended to act like
any other page in a wizard. One additional method is important for this class:
setSelectedNode(), which takes an IWizardNode as a parameter. The subclass
should call this method as appropriate when a node has been selected.

 As is the case when you subclass WizardPage directly, you must implement cre-
ateControl() in a subclass of WizardSelectionPage. The method should be imple-
mented to present the available choices to the user—often it’s in the form of a
tree, but the JFace designers chose to not make any assumptions about what
Licensed to jromero <jose.romero@galicia.seresco.es>

244 CHAPTER 11

Wizards
might be the best presentation for your situation. Each available selection should
be tied to an instance of IWizardNode.

11.4.2 IWizardNode

An IWizardNode is intended to be a placeholder for an actual instance of a wizard.
WizardSelectionPage passes these instances to setSelectedNode() and retrieves
them from getSelectedNode() when the selection page has completed. This inter-
face includes two important methods (see table 11.3).

Generally, you’ll use these classes by subclassing WizardDialog. After a WizardSe-
lectionPage has finished, you’ll call getSelectedNode() to retrieve the node the
user chose. You can then call getWizard() on that node to retrieve the wizard and
pass the wizard instance to setWizard() in WizardDialog.

11.5 Persistent wizard data

Sometimes you need to save a wizard’s data between invocations. For example, the
Create New Java Class wizard in Eclipse includes a series of checkboxes to gener-
ate code such as a public static void main() method or default implementa-
tions of abstract methods in the superclass. The state of these checkboxes is saved
between uses of the wizard so that if you uncheck the box to generate a main()
method once, you won’t have to change it every time.

 JFace provides a convenient way to manage these persistent settings with the
DialogSettings class. Although theses techniques are often used with wizards,
there is no reason the same classes can’t be used by any other dialog that wishes to
persist state.

Table 11.3 Important methods defined by the IWizardNode interface

Method Description

getWizard() Retrieves the wizard tied to this node. It’s assumed that the wizard
won’t be created until this method is called for the first time, and that
if this method is called multiple times, the same cached wizard
instance will be returned rather than a new one being created every
time.

isContentCreated() Queries the status of an IWizardNode and checks whether it has
already instantiated a wizard.
Licensed to jromero <jose.romero@galicia.seresco.es>

Persistent wizard data 245
11.5.1 DialogSettings

DialogSettings provides an implementation of the IDialogSettings interface
using a hash table and backed by an XML file. This is sufficient for most needs; but
you should generally reference objects in terms of the interface rather than the
concrete implementation, in case you find it necessary to switch implementations
at some point in the future.

 Using IDialogSettings is simple:

IDialogSettings settings = new DialogSettings("mydialog");
settings.put("checkboxOneChecked", true);
settings.put("defaultName", "TestDialog");

settings.save("settings.xml");

IDialogSettings loadedSettings = new DialogSettings(null);
loadedSettings.load("settings.xml");

loadedSettings.getBoolean("checkboxOneChecked");
loadedSettings.get("defaultName");

When run, this code writes a simple XML file to the current directory that (once
cleaned up for readability) looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<section name="mydialog">
 <item key="defaultName" value="TestDialog"/>
 <item key="checkboxOneChecked" value="true"/>
</section>

Storing values in XML this way has the advantage that it’s easy to edit them by
hand, either to test odd combinations of values or to make emergency repairs if
invalid values are somehow stored.

Storing values
The values are put into the settings object. It may be saved either to a file by
giving the save() method a filename (as shown) or to any java.io.Writer. Like-
wise, it’s read from the file (or a java.io.Reader) using the load() method.
Because DialogSettings loads and saves using XML, you’ll need xercesImpl.jar
and xmlParserAPIs.jar (from $ECLIPSE_HOME/plugins/org.apache.xerces_x.y.z)
in your classpath.

 The name you pass to the constructor of DialogSettings creates a section. Sec-
tions are ways to group related data in the overall dialog settings. You can retrieve
a section by name using getSection(), which returns another instance of IDia-
logSettings. As you can see from the code that loads the settings, there is no
Licensed to jromero <jose.romero@galicia.seresco.es>

246 CHAPTER 11

Wizards
need to specify section names when loading; they’re picked up automatically from
the file.

Retrieving values
Calling get() or getArray() returns null if no value has been set for the given key.
However, the various numeric get()s throw NumberFormatExceptions if you
attempt to retrieve a nonset value (or if the file has been edited by hand so it’s no
longer a valid number), so you must be prepared to handle these cases if there is
a possibility that some values haven’t been set.

 How useful all this is depends on your target platform. In Java 1.4, similar func-
tionality is provided by the classes in the java.util.prefs package. From a design
standpoint, it’s generally better to stick to the facilities provided by the base plat-
form, but you don’t have this luxury if you’re supporting Java 1.3 or earlier in your
application; in this case, IDialogSettings can make a convenient alternative.

11.6 Updating WidgetWindow

To create a functional wizard, we need a few more classes than are usually
required for WidgetWindow. You saw DirectoryPage earlier in the chapter. In order
to finish the example, we need to add a couple more pages, complete the imple-
mentation of ProjectWizard, and add a Composite subclass.

 First, let’s look at the ChooseDirectoryPage. This page is invoked when the user
declines to use the default directory. The page presents a text input field for the
user to enter a choice of directory. ChooseDirectoryPage is presented in
listing 11.3.

NOTE It’s important to remember that this design is purely for the purpose of
demonstrating how multiple wizard pages work. In a real application, you
should let the user enter his choice of directory on the same page as the
use default checkbox, and you’ll probably use a DirectoryDialog as dis-
cussed in the previous chapter.

package com.swtjface.Ch11;

import org.eclipse.jface.wizard.WizardPage;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.*;

public class ChooseDirectoryPage extends WizardPage

Listing 11.3 ChooseDirectoryPage.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 247
{
 public static final String PAGE_NAME = "Choose Directory";

 private Text text;

 public ChooseDirectoryPage()
 {
 super(PAGE_NAME, "Choose Directory Page", null);
 }

 public void createControl(Composite parent)
 {
 Composite topLevel = new Composite(parent, SWT.NONE);
 topLevel.setLayout(new GridLayout(2, false));

 Label l = new Label(topLevel, SWT.CENTER);
 l.setText("Enter the directory to use:");

 text = new Text(topLevel, SWT.SINGLE);
 text.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

 setControl(topLevel);
 setPageComplete(true);
 }

 public String getDirectory()
 {
 return text.getText();
 }
}

This page is similar to DirectoryPage. The input field is presented to the user, and
a public method is made available for the rest of the application to query the
user’s choice.

 The final page in our example wizard is a summary of the user’s choices. There
is no user interaction on this page; it displays a text string indicating the choice
made. SummaryPage appears in listing 11.4.

package com.swtjface.Ch11;

import org.eclipse.jface.wizard.WizardPage;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;

public class SummaryPage extends WizardPage
{
 public static final String PAGE_NAME = "Summary";

Listing 11.4 SummaryPage.java
Licensed to jromero <jose.romero@galicia.seresco.es>

248 CHAPTER 11

Wizards
 private Label textLabel;

 public SummaryPage()
 {
 super(PAGE_NAME, "Summary Page", null);
 }

 public void createControl(Composite parent)
 {
 Composite topLevel = new Composite(parent, SWT.NONE);
 topLevel.setLayout(new FillLayout());

 textLabel = new Label(topLevel, SWT.CENTER);
 textLabel.setText("");

 setControl(topLevel);
 setPageComplete(true);
 }

 public void updateText(String newText)
 {
 textLabel.setText(newText);
 }
}

In some respects, this class is the opposite of the previous two. Instead of provid-
ing a method for clients to query the state of the page, the class offers a method to
update the displayed text. As an alternative to forcing the state of the page to be
explicitly updated, it would also be possible to let this class query some shared
state when it needs to display itself, such as a Project object that represents the
project that’s in the process of being built. This approach would require overrid-
ing the setVisible() method defined in IDialogPage. When setVisible(true) is
called, the textLabel and any other relevant widgets will be refreshed. In general,
you should prefer this approach, because it localizes knowledge of how to display
things to the SummaryPage. We implemented it as we did to avoid having to write a
Project class and to keep the example short.

 We next present the full implementation of ProjectWizard in listing 11.5. There
are two enhancements over the snippet we showed earlier in the chapter. First,
we’ve expanded the implementation of addPages() to add all the pages needed for
the wizard. More importantly, we’ve expanded the logic in getNextPage().
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 249
package com.swtjface.Ch11;

import org.eclipse.jface.wizard.IWizardPage;
import org.eclipse.jface.wizard.Wizard;

public class ProjectWizard extends Wizard
{
public void addPages()
 {
 addPage(new DirectoryPage());
 addPage(new ChooseDirectoryPage());
 addPage(new SummaryPage());
 }

 public boolean performFinish()
 {
 DirectoryPage dirPage = getDirectoryPage();
 if (dirPage.useDefaultDirectory())
 {
 System.out.println("Using default directory");
 }
 else
 {
 ChooseDirectoryPage choosePage = getChoosePage();
 System.out.println(
 "Using directory: " + choosePage.getDirectory());
 }
 return true;
 }

 private ChooseDirectoryPage getChoosePage()
 {
 return (ChooseDirectoryPage) getPage(
 ChooseDirectoryPage.PAGE_NAME);
 }

 private DirectoryPage getDirectoryPage()
 {
 return (DirectoryPage) getPage(DirectoryPage.PAGE_NAME);
 }

 public boolean performCancel()
 {
 System.out.println("Perform Cancel called");
 return true;
 }

 public IWizardPage getNextPage(IWizardPage page)
 {
 if (page instanceof DirectoryPage)
 {

Listing 11.5 ProjectWizard.java
Licensed to jromero <jose.romero@galicia.seresco.es>

250 CHAPTER 11

Wizards
 DirectoryPage dirPage = (DirectoryPage) page;
 if (dirPage.useDefaultDirectory())
 {
 SummaryPage summaryPage =
 (SummaryPage) getPage(SummaryPage.PAGE_NAME);
 summaryPage.updateText("Using default directory");
 return summaryPage;
 }
 }

 IWizardPage nextPage = super.getNextPage(page);
 if (nextPage instanceof SummaryPage)
 {
 SummaryPage summary = (SummaryPage) nextPage;
 DirectoryPage dirPage = getDirectoryPage();
 summary.updateText(
 dirPage.useDefaultDirectory()
 ? "Using default directory"
 : "Using directory:" + getChoosePage().getDirectory());
 }
 return nextPage;
 }
}

The meat of this class is contained in the getNextPage() method. It’s here that we
control the navigation between pages. We must handle two scenarios correctly.

 First is the case when the user is leaving the DirectoryPage, which is where she
can choose to use the default directory. The parameter passed to getNextPage() is
the page the user is coming from, so we check whether it’s the DirectoryPage. If
so, after casting the parameter to the correct implementation of IWizardPage, we
query the status of the checkbox. If it has been checked, we want to skip straight
to the status page, so we retrieve it using getPage() and return it.

 If the previous page wasn’t DirectoryPage, or if the user unchecked the check-
box, we fall back on the default behavior for determining the next page by calling
super.getNextPage(). However, if the next page will be the summary page, we
need to make sure to update the text to reflect the user’s current choice. In this
case, we cast the IWizardPage to a SummaryPage and then retrieve the other pages
as necessary to determine the correct text to display. As noted after our discussion
of SummaryPage, this logic is caused by our not having a shared state available to
SummaryPage; in general it should be avoided because the complexity can quickly
become overwhelming in a wizard with more pages.

 The final class to complete our example is the composite used by WidgetWin-
dow, shown in listing 11.6. Like the composite used in the previous chapter, this
Licensed to jromero <jose.romero@galicia.seresco.es>

Updating WidgetWindow 251
one isn’t very interesting. It presents a button that, when clicked, initializes and
displays a WizardDialog with our ProjectWizard.

package com.swtjface.Ch11;

import org.eclipse.jface.wizard.WizardDialog;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Composite;

public class Ch11WizardComposite extends Composite
{
 public Ch11WizardComposite(Composite parent)
 {
 super(parent, SWT.NONE);
 buildControls();
 }

 protected void buildControls()
 {
 final Composite parent = this;
 FillLayout layout = new FillLayout();
 parent.setLayout(layout);

 Button dialogBtn = new Button(parent, SWT.PUSH);
 dialogBtn.setText("Wizard Dialog...");
 dialogBtn.addSelectionListener(new SelectionListener()
 {

 public void widgetSelected(SelectionEvent e)
 {
 WizardDialog dialog =
 new WizardDialog(
 parent.getShell(),
 new ProjectWizard());
 dialog.open();
 }

 public void widgetDefaultSelected(SelectionEvent e) {}
 });
 }

}

Listing 11.6 Ch11WizardComposite.java
Licensed to jromero <jose.romero@galicia.seresco.es>

252 CHAPTER 11

Wizards
The part of this class to notice is in widgetSelected(), where we initialize the dia-
log. Notice that WizardDialog works exactly as we want with no modifications. We
can pass a new instance of our ProjectWizard to it and let it do its thing.

11.7 Summary

The wizard framework builds on the dialog classes we’ve already discussed by add-
ing support for multiple pages in a single dialog. There are three levels in the
hierarchy of the wizard framework. IWizardContainer, which is implemented by
WizardDialog, contains instances of IWizard, usually Wizard. An IWizard, in turn,
contains multiple IWizardPages.

 The life cycle of a wizard isn’t complex. Each IWizardPage implements the
createControl() method to build whatever controls are necessary to display.
addPages() is called on IWizard, which instantiates and tracks the pages it intends
to use. In the default Wizard implementation, this requires nothing more than
calling addPage() for each one. As each page is displayed, isPageComplete() and
canFlipToNextPage() are called to determine whether the Next and Previous but-
tons should be enabled. When the user clicks either Next or Previous, getNext-
Page() or getPreviousPage() is called on the current page to determine which
page should be displayed next. Finally, once the user clicks Finish or Cancel, per-
formFinish() or performCancel() is called on the wizard itself to signal that the
appropriate processing should be performed.

 In addition to the standard three interfaces necessary to implement any wizard,
JFace provides an additional level in the hierarchy that you can use to assemble
multiple wizards. A WizardSelectionPage uses instances of IWizardNode to present
multiple wizards to the user, allowing one to be selected. Each node is set up to
instantiate the wizard only after it’s selected, to avoid doing unnecessary work.

 The IDialogSettings interface provides a way to easily store persistent settings
data, as long as those settings can be represented by Java primitives. The default
implementation, DialogSettings, serializes the objects to an XML file.

Licensed to jromero <jose.romero@galicia.seresco.es>

Advanced features
This chapter covers
■ Interacting with the system clipboard
■ Implementing drag and drop
■ Storing user preferences
■ Adding images to labels
■ Embedding a web browser within your application
253

Licensed to jromero <jose.romero@galicia.seresco.es>

254 CHAPTER 12

Advanced features
By now, you should be familiar with everything you need to build a working appli-
cation using SWT and JFace. We’ve covered the essential widgets, shown you how
to easily position them on the screen, and discussed the issues to keep in mind to
ensure a well-designed piece of software. However, you’ll want to become familiar
with a few miscellaneous topics as your use of SWT increases.

 This chapter covers a variety of issues. We’ll start by discussing how to transfer
data to and from the underlying operating system, and we’ll show how to use this
capability to implement drag-and-drop and copy-and-paste functionality in your
applications. Next we’ll discuss two frameworks provided by SWT for managing user
preferences and enhancing how your labels are displayed by the viewer classes.
Finally, we’ll close with a brief look at a new widget provided in SWT 3.0, the Browser,
which enables you to control the user’s web browser from within your application.

 Because some of these classes are designed around interacting directly with the
underlying operating system, there are differences in how they function on differ-
ent platforms. In addition, some widgets aren’t fully supported on all platforms at
the current time. We’ll point out these platform-specific gotchas as we go along.

12.1 Transferring data

Although you may not notice it, almost any application you use is constantly shuf-
fling data back and forth behind the scenes. Every time you cut and paste, the
application must interact with the system clipboard, where data is stored tempo-
rarily. Dragging and dropping items requires similar communication, because the
application needs to let the system know what kind of data formats it can provide
as well as whether it will accept any given data type.

 SWT handles many of the common cases automatically. For example, you saw
in earlier chapters that it’s possible to cut and paste text from a text control using
the standard keyboard shortcuts for your operating system. However, you need to
handle this work yourself if you wish to support drag-and-drop operations or cut-
ting and pasting with application-specific formats. This section will cover how to
do so, as we build a primitive file browser that supports dragging, dropping, and
copy-and-paste operations both internally and interacting with the native operat-
ing system tools.

 Before we get too deep into the technical details, look at figure 12.1, which
shows what we’re about to build. Two ListViewers are used, each displaying the
Licensed to jromero <jose.romero@galicia.seresco.es>

Transferring data 255
contents of a certain directory. Dragging a file or files from one to the other will
cause a corresponding file copy on disk. The Copy and Paste buttons copy the
current selection in the left list to the system clipboard or paste files from the clip-
board to the directory currently displayed in the left list, respectively.

12.1.1 The Transfer class

In order for data to be moved or copied between elements, there must be a way
for those elements to agree on what format that data is in. If the application
doesn’t understand a given format, it won’t make sense to try to import it—for
example, there is no way for a text editor to handle an image that’s dropped into
it. SWT provides a relatively simple way for elements to negotiate what data for-
mats are acceptable through the use of the Transfer class and its subclasses.

 Each subclass of Transfer represents a certain type of data and knows how to
convert that data between a Java representation and one that makes sense to the
underlying operating system. SWT ships with Transfer subclasses to handle files,
plain text, and text in Rich Text Format (RTF). If none of these meets your needs,
you can write your own Transfer implementation, although doing so is beyond the
scope of this book. Consult the Javadocs for org.eclipse.swt.dnd.Transfer and
org.eclipse.swt.dnd.ByteArrayTransfer if you need a custom implementation.

 For our purposes, we can treat the Transfer instances as black boxes that rep-
resent certain data types. Each subclass has a static factory method getInstance()
to obtain an instance of the class. We can pass these instances around to designate
what data types we’re interested in, but we never need to call any methods on
them ourselves. Under the hood, SWT calls javaToNative() and nativeToJava()
when appropriate to transform data.

 Table 12.1 shows the default general-purpose transfer agents that SWT provides.

Figure 12.1
The File Browser, displaying the
contents of two different directories
Licensed to jromero <jose.romero@galicia.seresco.es>

256 CHAPTER 12

Advanced features
12.1.2 Drag-and-drop capability

Allowing a user to drag an item from its current location to wherever they wish it
to be can help make your application’s interface intuitive and easy to use. How-
ever, to accomplish this, a fair amount of work must go on behind the scenes.
First, your application must make the system aware of the kinds of data it can pro-
vide or knows how to accept. These data types are configured separately for each
widget—just because an object can accept objects dropped into it doesn’t imply
that it can provide data to be dragged out. Once the system is aware of the capa-
bilities of the various widgets in your application, those widgets will receive events
when a drag or drop occurs that it must use to implement appropriate logic.

Types of drag-and-drop operations
When a user drags an item from one place to another, there are typically multiple
ways the action can be interpreted—for example, as either a copy or a move. Each
operating system has different keyboard conventions that are used to toggle
between these operations. However, your widgets also need to tell SWT what oper-
ations they support. A read-only display may support copying items by dragging
them out but may not allow the user to move them. Support for these operations
is designated by using constants from the org.eclipse.swt.dnd.DND class, summa-
rized in table 12.2.

Table 12.1 Default transfer agents provided by SWT

Transfer class name Description

FileTransfer Transfers one or more files. Data is an array of Strings, each of
which is the path to a file or directory.

TextTransfer Transfers plain text. Data is a String.

RTFTransfer Transfers text in RTF. Data is a String with rich text formatting.

Table 12.2 Types of transfer operations

Operation constant Description

DROP_COPY The item is copied when dragged in or out of this control.

DROP_MOVE The item is moved from its current location to wherever it’s
dropped.

DROP_LINK Dropping the item creates a link back to the original.

DROP_NONE Nothing happens when the item is dropped.
Licensed to jromero <jose.romero@galicia.seresco.es>

Transferring data 257
Dropping items into an application
You can register a control to be able to receive dropped data by using an instance
of DropTarget. DropTarget stores both the type of data a widget can select and the
operations that are legal to perform on that widget. The operating system uses
this information to provide visual feedback as to whether an item may be dropped
when it’s dragged over the widget. Once the target has been registered, any
DropTargetListeners will receive DropTargetEvents when the user attempts to
drop something within the control.

 Creating a DropTarget is simple. You instantiate it with a widget and a set of
operations, and you set the allowed data types by calling setTransfer(). A listener
is then attached, which contains the logic to execute when something is dropped.
The following snippet demonstrates:

int operations = DND.DROP_MOVE | DND.DROP_COPY;
DropTarget target = new DropTarget(control, operations);
Transfer[] transfers = new Transfer[] {
 TextTransfer.getInstance(),
 RTFTransfer.getInstance() };
target.setTransfer(transfers);
target.addDropListener(new DropTargetListener(){...});

If you’re working with a viewer, you must call the method addDropSupport() on
the viewer instance instead of attempting to manipulate the control directly. The
next snippet, taken from our file browser example, shows how we add support for
dropping files into a list viewer:

Transfer[] types = new Transfer[] {
 FileTransfer.getInstance()
};

viewer.addDropSupport(DND.DROP_COPY,
 types,
 new FileDropListener(this));

The registration process isn’t complicated. The most important part is imple-
menting the DropTargetListener interface. The methods in this interface are
called in the following specific order as the user drags an item into a control:

1 dragEnter()—The cursor has entered the boundaries of the control while
dragging an item.

2 dragOver()—The cursor is moving across the control, dragging an item.

3 dragOperationChanged()—This method may be called multiple times dur-
ing the operation, whenever the user changes the type of operation to be
Licensed to jromero <jose.romero@galicia.seresco.es>

258 CHAPTER 12

Advanced features
performed. This occurs most often when the user presses or releases a
modifier key, such as Ctrl or Option.

4 dropAccept()—The user has dropped an item in the control. This is the
application’s last chance to reject the drop or to change the type of opera-
tion being performed.

5 drop()—The data has been dropped. The listener must implement the
appropriate logic to handle the data it has been given.

Each method is given a DropTargetEvent containing information about the cur-
rent operation. Most important, this event contains a list of data types that the
data source can support, the current data type that will be dropped, the opera-
tions available to be performed, and the current operation to be performed. You
can change the data type to be used and the operation to be performed by modi-
fying the currentDataType and detail fields, respectively.

 A sixth method, dragLeave(), may be called at any time before dropAccept().
This method lets the application know that the user has moved the cursor outside
of the control and that no drop will occur.

 Unless you need to dynamically change the data type or operation, the only
method for which you need to implement logic is drop(). SWT and the operating
system handle the other details; if a suitable agreement on data type and opera-
tion can’t be reached, the drop won’t be allowed, and your listener won’t receive
the events. Listing 12.1 shows how we implemented a DropTargetListener for the
file browser example.

package com.swtjface.Ch12;

import org.eclipse.swt.dnd.DropTargetEvent;
import org.eclipse.swt.dnd.DropTargetListener;

final class FileDropListener implements DropTargetListener
{
 private final FileBrowser browser;

 FileDropListener(FileBrowser browser)
 {
 this.browser = browser;
 }
 public void dragEnter(DropTargetEvent event) {}
 public void dragLeave(DropTargetEvent event) {}
 public void dragOperationChanged(DropTargetEvent event) {}
 public void dragOver(DropTargetEvent event) {}
 public void dropAccept(DropTargetEvent event) {}

Listing 12.1 FileDropListener.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Transferring data 259
 public void drop(DropTargetEvent event)
 {
 String[] sourceFileList = (String[])event.data;
 browser.copyFiles(sourceFileList);
 }
}

The logic to implement the drop operation is simple. We only support the file
transfer type, so when this method is called it’s safe to assume that the data type is
FileTransfer, which provides the data as an array of Strings. If we supported
other data types, we would need to add conditional logic to react differently
depending on the data type. Likewise, we can assume that the operation is a copy.
Therefore, all our listener needs to do is extract the list of filenames and tell the
FileBrowser component to copy them.

Dragging items from your application
Allowing data to be dragged from your application follows a process similar to
what you just saw. A DragSource is created to register the control as a source of
data. An implementation of DragSourceListener receives events when the user
starts a drag operation and is responsible for implementing the logic once the
item(s) have been dropped. The registration code looks almost identical. The
first snippet shows how to create a DragSource by hand:

int operations = DND.DROP_MOVE | DND.DROP_COPY;
DragSource source = new DragSource(control, operations);
Transfer[] transfers = new Transfer[] {
 TextTransfer.getInstance(),
 RTFTransfer.getInstance() };
source.setTransfer(transfers);
source.addDragListener(new DragSourceListener(){...});

Just like for a DropTarget, when you’re using a viewer a method on the viewer han-
dles some of the work for you. The next excerpt shows the drag registration in the
file browser example:

Transfer[] types = new Transfer[] {
 FileTransfer.getInstance()
};
...
viewer.addDragSupport(DND.DROP_COPY,
 types,
 new FileDragListener(this));

The drop method
Licensed to jromero <jose.romero@galicia.seresco.es>

260 CHAPTER 12

Advanced features
The DragSourceListener interface is much simpler than the one to handle drops;
it consists of only three methods, called in the following order:

1 dragStart()—The user has started dragging data from this control. If the
drag should be allowed to proceed, the doit field of the event must be set to
true.

2 dragSetData()—A drop has been performed. This method must supply
the data to be dropped by putting it in the event’s data field.

3 dragFinished()—The drop has completed successfully. Any cleanup
remaining to be done, such as deleting the original data for a move oper-
ation, should be performed here.

Each method receives a DragSourceEvent with data about the drag. Unlike the
DropTargetEvent, this event may not be modified except as noted.

 Listing 12.2 shows how we implement this listener in the filesystem browser.

package com.swtjface.Ch12;

import org.eclipse.swt.dnd.DragSourceEvent;
import org.eclipse.swt.dnd.DragSourceListener;

public class FileDragListener implements DragSourceListener
{
 private FileBrowser browser;

 public FileDragListener(FileBrowser browser)
 {
 this.browser = browser;
 }

 public void dragStart(DragSourceEvent event)
 {
 event.doit = true;
 }

 public void dragSetData(DragSourceEvent event)
 {
 event.data = browser.getSelectedFiles();
 }

 public void dragFinished(DragSourceEvent event) {}
}

Listing 12.2 FileDragListener.java

b Drag has started

c Provide data to be
transferred

d Clean up
Licensed to jromero <jose.romero@galicia.seresco.es>

Transferring data 261
This method is called when the user attempts to drag an item from the control. If
this drag should be allowed, the doit field must be set to true. Our example
always allows drags, so we always set this field to true.

The item has been dropped in a receiver, and data must be provided. This data
must match what is expected by the current data type, obtained from the
dataType field. We only support FileTransfers, so our implementation gets the
currently selected files from the browser and inserts them into the event.

The operation has completed successfully. If the operation was a move, the origi-
nal data should be deleted. Likewise, if any cleanup is associated with the other
operation types, it should be performed in this method. Because our example
only supports copying, our implementation is empty.

12.1.3 Using the clipboard

The process of copying data to or from the system clipboard has some similarities
to dragging and dropping. It also uses Transfer subclasses to copy data to or from
the operating system. The primary difference is that it isn’t necessary to register in
advance to use the system clipboard, as it is when you’re dragging or dropping. Any
time your application decides to cut, copy, or paste, usually in response to an Action
of some sort, it can access the clipboard using the org.eclipse.swt.dnd.Clipboard
class and do whatever it needs to do.

 Each instance of Clipboard is created with a Display. Remember that on some
platforms, accessing the clipboard may use native resources. It’s therefore critical
that you use dispose() to discard the Clipboard as soon as you’ve finished using it.

Putting data into the clipboard
Placing data on the system clipboard is a simple method call, setContents(). All it
must do is pass the data, along with suitable Transfers to interpret it. This snippet
shows how this is done for our filesystem browser:

Clipboard clipboard = new Clipboard(getDisplay());
FileTransfer transfer = FileTransfer.getInstance();
clipboard.setContents(
 new Object[] { browser.getSelectedFiles()},
 new Transfer[] { transfer });
clipboard.dispose();

Notice that we pass both an Object array and a Transfer array. These arrays must
be the same size, and the Transfer instance at index i must be able to handle the
Object at index i in the Object array. This way, all data in all supported formats is

b

c

d

Licensed to jromero <jose.romero@galicia.seresco.es>

262 CHAPTER 12

Advanced features
placed on the clipboard at once, and your application doesn’t need to worry
about when it’s removed.

 Although our example implements a copy operation, not a cut, the Clipboard
doesn’t care. It accepts the data; whether that data should be removed from its
original source is up to the application and must be implemented separately.

Pasting data from the clipboard
Likewise, copying data from the clipboard is a simple process. When your appli-
cation wishes to retrieve data that is currently stored in the clipboard, it can use
two methods.

 getAvailableTypeNames() returns an array of Strings with the names of all data
types that the clipboard can currently provide. These values are operating-system
dependent, and the String returned for a given data type will vary from platform
to platform. Hence, this method is intended as a debugging aid and shouldn’t be
used in production code. However, when you’re debugging and trying to figure
out what data is currently on the clipboard, this method is invaluable.

 getContents() takes a Transfer and returns the data from the clipboard in the
format given by that Transfer, or null if no data can be provided in the given for-
mat. If your application supports multiple data formats, you’ll typically call get-
Contents() repeatedly, passing a different Transfer type each time, until you find
data that you can handle.

 This code implements a paste in the file browser example:

Clipboard clipboard = new Clipboard(getDisplay());
FileTransfer transfer = FileTransfer.getInstance();

Object data = clipboard.getContents(transfer);
if (data != null)
{
 browser.copyFiles((String[]) data);
}
clipboard.dispose();

You should always check for null after calling getContents(). It’s always possible
that the data currently on the clipboard can’t be converted to a format your appli-
cation understands, or that the clipboard is empty. Forgetting to check will even-
tually lead to NullPointerExceptions, which users never appreciate.

12.1.4 The filesystem browser

You’ve seen all the code our file browser uses to interact with the operating sys-
tem. Some snippets have been presented out of context, however, and you haven’t
Licensed to jromero <jose.romero@galicia.seresco.es>

Transferring data 263
seen the FileBrowser class itself. For completeness, we’ll present listings for the
remaining code needed to compile and run this example.

 First, listing 12.3 shows the Composite that builds the visual components. This
class instantiates the visual controls and attaches listeners to the two buttons to
handle the copy and paste logic when the buttons are clicked.

package com.swtjface.Ch12;

import org.eclipse.swt.SWT;
import org.eclipse.swt.dnd.*;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.layout.RowLayout;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Composite;

public class Ch12FileBrowserComposite extends Composite
{

 private FileBrowser browser;

 public Ch12FileBrowserComposite(Composite parent)
 {
 super(parent, SWT.NONE);

 RowLayout layout = new RowLayout(SWT.HORIZONTAL);
 setLayout(layout);

 Button copyButton = new Button(this, SWT.PUSH);
 copyButton.setText("Copy");
 copyButton.addSelectionListener(new SelectionListener()
 {

 public void widgetSelected(SelectionEvent e)
 {
 Clipboard clipboard = new Clipboard(getDisplay());

 FileTransfer transfer = FileTransfer.getInstance();
 clipboard.setContents(
 new Object[] { browser.getSelectedFiles()},
 new Transfer[] { transfer });
 clipboard.dispose();
 }

 public void widgetDefaultSelected(SelectionEvent e) {}
 });

 Button pasteButton = new Button(this, SWT.PUSH);
 pasteButton.setText("Paste");
 pasteButton.addSelectionListener(new SelectionListener()
 {

Listing 12.3 Ch12FileBrowserComposite.java
Licensed to jromero <jose.romero@galicia.seresco.es>

264 CHAPTER 12

Advanced features
 public void widgetSelected(SelectionEvent e)
 {
 Clipboard clipboard = new Clipboard(getDisplay());
 FileTransfer transfer = FileTransfer.getInstance();

 Object data = clipboard.getContents(transfer);
 if (data != null)
 {
 browser.copyFiles((String[]) data);
 }
 clipboard.dispose();
 }

 public void widgetDefaultSelected(SelectionEvent e) {}
 });

 browser = new FileBrowser(this);
 new FileBrowser(this);
 }
}

Next, listing 12.4 shows the FileBrowser class. Each instance of FileBrowser cre-
ates and manages a ListViewer. A ContentProvider reads the contents of the cur-
rent directory, and we add a sorter and a LabelProvider to make the display
clearer. (We covered the use of these components in chapters 8 and 9, so we won’t
discuss them in detail here.) FileBrowser also contains public methods to retrieve
the list of currently selected files and to copy a list of files into the current direc-
tory. This code isn’t SWT related; if you’re unfamiliar with what’s going on, we rec-
ommend consulting the documentation for the java.io package.

package com.swtjface.Ch12;

import java.io.*;
import java.util.*;

import org.eclipse.jface.viewers.*;
import org.eclipse.swt.dnd.*;
import org.eclipse.swt.widgets.Composite;

public class FileBrowser
{
 private ListViewer viewer;
 private File currentDirectory;

 public FileBrowser(Composite parent)
 {
 super();

Listing 12.4 FileBrowser.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Transferring data 265
 buildListViewer(parent);

 Transfer[] types = new Transfer[] {
 FileTransfer.getInstance()
 };

 viewer.addDropSupport(DND.DROP_COPY,
 types,
 new FileDropListener(this));
 viewer.addDragSupport(DND.DROP_COPY,
 types,
 new FileDragListener(this));
 }

 private void buildListViewer(Composite parent)
 {
 viewer = new ListViewer(parent);
 viewer.setLabelProvider(new LabelProvider()
 {
 public String getText(Object element)
 {
 File file = (File) element;
 String name = file.getName();
 return file.isDirectory() ? "<Dir> " + name : name;
 }
 });

 viewer.setContentProvider(new IStructuredContentProvider()
 {

 public Object[] getElements(Object inputElement)
 {
 File file = (File) inputElement;
 if (file.isDirectory())
 {
 return file.listFiles();
 }
 else
 {
 return new Object[] { file.getName()};
 }
 }

 public void dispose()
 {
 }

 public void inputChanged(Viewer viewer,
 Object oldInput,
 Object newInput)
 {
 }
 });
Licensed to jromero <jose.romero@galicia.seresco.es>

266 CHAPTER 12

Advanced features
 viewer.setSorter(new ViewerSorter()
 {

 public int category(Object element)
 {
 return ((File) element).isDirectory() ? 0 : 1;
 }

 public int compare(Viewer viewer, Object e1, Object e2)
 {
 int cat1 = category(e1);
 int cat2 = category(e2);
 if (cat1 != cat2)
 return cat1 - cat2;

 return ((File) e1).getName().compareTo(
 ((File) e2).getName());
 }
 });

 viewer.addDoubleClickListener(new IDoubleClickListener()
 {

 public void doubleClick(DoubleClickEvent event)
 {
 IStructuredSelection selection =
 (IStructuredSelection) event.getSelection();
 setCurrentDirectory((File) selection.getFirstElement());
 }
 });

 setCurrentDirectory(File.listRoots()[0]);
 }

 private void setCurrentDirectory(File directory)
 {
 if (!directory.isDirectory())
 throw new RuntimeException(
 directory + " is not a directory!");

 currentDirectory = directory;
 viewer.setInput(directory);
 }

 String[] getSelectedFiles()
 {
 IStructuredSelection selection =
 (IStructuredSelection) viewer.getSelection();
 List fileNameList = new LinkedList();
 Iterator iterator = selection.iterator();
 while (iterator.hasNext())
 {
 File file = (File) iterator.next();
 fileNameList.add(file.getAbsoluteFile().toString());
Licensed to jromero <jose.romero@galicia.seresco.es>

Transferring data 267
 }
 return (String[]) fileNameList.toArray(
 new String[fileNameList.size()]);
 }

 void copyFiles(String[] sourceFileList)
 {
 for (int i = 0; i < sourceFileList.length; i++)
 {
 File sourceFile = new File(sourceFileList[i]);
 if (sourceFile.canRead() && currentDirectory.canWrite())
 {
 File destFile =
 new File(currentDirectory, sourceFile.getName());
 if (!destFile.exists())
 {
 FileOutputStream out;
 FileInputStream in;
 try
 {
 out = new FileOutputStream(destFile);
 in = new FileInputStream(sourceFile);
 byte[] buffer = new byte[1024];
 while ((in.read(buffer)) != -1)
 {
 out.write(buffer);
 }
 out.flush();
 out.close();
 in.close();
 viewer.refresh();
 }
 catch (FileNotFoundException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
 else
 {
 System.out.println(
 destFile + " already exists, refusing to clobber");
 }
 }
 else
 {
 System.out.println(
 "Sorry, either your source file is not readable " +
Licensed to jromero <jose.romero@galicia.seresco.es>

268 CHAPTER 12

Advanced features
 "or the target directory is not writable");
 }
 }
 }
}

To run this code, add the following lines to WidgetWindow:

TabItem ch12Files = new TabItem(tf, SWT.NONE);
ch12Files.setText("Chapter 12 File Broswer");
ch12Files.setControl(new Ch12FileBrowserComposite(tf));

12.2 Preferences

Any nontrivial application has settings the user may configure. Although the spe-
cific options that may be modified are limitless and tightly tied to the specific
application, the process of setting these options can generally be boiled down to a
few interactions such as clicking a checkbox, choosing from a list, or choosing a
target directory. JFace provides a framework to simplify storing a user’s prefer-
ences, retrieving them, and presenting them to the user to be modified.

 Like most areas of JFace, the preference framework is divided into a series of
interfaces, each of which has a default implementation. You’re free to use the pro-
vided concrete classes, or you may implement your own from scratch to meet your
specific needs. We’ll consider each interface, followed by the implementation
provided by JFace.

 The preferences framework is an extension of the JFace dialog framework.
Only the IPreferencePage interface extends the interfaces from the dialogs pack-
age, but the assumption is that preferences will be displayed in a modal dialog. It’s
possible to change this behavior if you need to by writing your own implementa-
tion of IPreferencePageContainer, which we’ll discuss later in the chapter.

12.2.1 Preference pages

Preferences are generally grouped into related sets, rather than strewn about ran-
domly, in order to make it easier for a user to find the specific option he is looking
for. In JFace, these sets are assigned to separate preference pages, which are dis-
played to the user one at a time. It isn’t necessary to split up your settings, espe-
cially if there aren’t many, but you must have at least one page.
Licensed to jromero <jose.romero@galicia.seresco.es>

Preferences 269
IPreferencePage
The IPreferencePage interface extends IDialogPage. In addition to the IDialog-
Page methods we discussed in chapter 11, seven new methods are defined (see
table 12.3).

PreferencePage
The abstract class PreferencePage forms the basis of all implementations of
IPreferencePage provided by JFace. Extending from DialogPage, PreferencePage
provides much of the support needed to display preferences in a dialog, including
a title and an optional image.

 If you’re subclassing PreferencePage directly, you must implement the abstract
createControl() method to instantiate the controls necessary for the page. Again,
this is the same as any other DialogPage. Two buttons, Apply and Defaults, are
automatically added to the parent composite of your control unless the noDe-
faultAndApplyButton() method is called before the control is created. Typically
this will be done in the constructor of your subclass if necessary.

 By default, PreferencePage returns true for okToLeave() whenever isValid()
returns true. Unless you change the validity of the page using setValid(), a
PreferencePage will always consider itself to be valid. This also means that a user
will be allowed to flip pages or close the dialog at any time.

Table 12.3 Methods defined by the IPreferencePage interface

Method Description

setContainer() Associates an instance of IPreferencePageContainer with the
page.

computeSize(), setSize() Deal with the size of the control as it appears on screen. These meth-
ods are passed and return an instance of org.eclipse.swt.graph-
ics.Point. Instead of representing an (x,y) coordinate, the fields of
this Point object should be interpreted as the width and height,
respectively, of the control.

okToLeave() Called when the use wishes to flip to another page. Returning false
prevents the user from leaving the page.

isValid() Indicates whether the page is currently valid. Exactly what “valid”
means is subjective, but it’s generally an indicator of whether it’s pos-
sible to leave the page or close the dialog in the current state.

performOk(),
performCancel()

Indicate that the OK or Cancel button has been clicked, respectively.
Any processing relevant to these events should be performed in these
methods, both of which return a boolean indicating whether the event
should be allowed to happen.
Licensed to jromero <jose.romero@galicia.seresco.es>

270 CHAPTER 12

Advanced features
 The performOk(), performCancel(), performApply(), and performDefaults()
methods may all be overridden to react to the occurrence of the appropriate
event. By default, these methods do nothing, so you need to override them if you
wish your page to do anything useful.

FieldEditorPreferencePage
The only subclass of PreferencePage provided by JFace, and the only one you’ll
need for the majority of cases, is FieldEditorPreferencePage. FieldEditorPref-
erencePage assumes that your preferences consist of a number of discrete fields
that can be modified independently. The FieldEditorPreferencePage is meant to
make it easy to collect all the FieldEditors necessary to edit the preferences for
the page. As such, it implements and overrides all the methods from Preference-
Page discussed in the previous section. Typically, you’re left with only one method
that you must implement.

 createFieldEditors() is called once the page is ready to lay out the editors.
All the method does is add the editors to be displayed using addField(). Editors
are then laid out on the displayed control in the order in which they were added.

 FieldEditorPreferencePage exposes only a few public methods beyond those
present in PreferencePage, and clients generally have little need to call them.

12.2.2 Field editors

A field editor is responsible for displaying and editing a single preference value.
The editor can range from displaying a text field and allowing the user to type, to
opening a complex dialog and allowing the user to select a valid value. JFace
includes nine concrete FieldEditor subclasses, which we’ll discuss. These should
cover most of your needs.

 You must follow a few steps if you need to define your own FieldEditor subclass:

1 Think about the basic controls you’ll need in order for your editor to function.
Implement getNumberOfControls() to return the number of controls you’ll
be using. FieldEditor uses this value to figure out how to lay out your control.

2 In its implementation of createControl(), FieldEditor calls the abstract
doFillIntoGrid() method. This should be implemented to instantiate
your controls and add them to the Composite that’s passed to the method.

3 If your editor includes a label, FieldEditor includes built-in support for
storing the label text and the label control. You should use getLabelCon-
trol(Composite parent) in this case, rather than creating your own Label.
Licensed to jromero <jose.romero@galicia.seresco.es>

Preferences 271
4 Implement the doLoad(), doLoadDefault(), and doStore() methods to
load values from and persist them to the PreferenceStore associated with
your editor. This store can be retrieved by using the getPreference-
Store() method, which may return null if no persistent store has been
configured for the editor.

In addition to implementing all the abstract methods, you can fire events when
your editor’s properties change. FieldEditor provides a fireValueChanged()
method, which takes a property name, the old value, and the new value and auto-
matically invokes any registered PropertyChangeListener. This isn’t necessary if
your control doesn’t have any properties that are interesting to outside listeners—
most of the FieldEditor subclasses included in JFace don’t bother to fire these
events, but the support is there if you need it.

 Whether you’re implementing a completely new editor or using a built-in one,
it can be useful to add validation to your FieldEditor. You do so by overriding
both the isValid() and refreshValidState() methods. By default, isValid()
always returns true, and refreshValidState() does nothing. isValid() is simple:
It returns true or false according to whether your editor currently contains a value
that is valid to save. refreshValidState() is slightly more complicated. This
method should query isValid() and, if the value has changed, fire a value-
changed event for the property FieldEditor.IS_VALID. refreshValidState() is
invoked at various times by the FieldEditor framework, particularly after loading
and before attempting to save values.

 Implementing your own FieldEditor may sound complicated, but you
shouldn’t need to do this very often. JFace provides nine types of FieldEditor (see
table 12.4), and most of the time you should be able to use or subclass one of them.

Table 12.4 Field editors provided by JFace

Editor class Description

BooleanFieldEditor Displays its preference as checkboxes, which are checked to indicate
true or unchecked to indicate false. By default, the checkbox appears
to the left of any supplied label, but using the style BooleanFieldEd-
itor.SEPARATE_LABEL creates the label on the left and the checkbox
on the right.

ColorFieldEditor Lets the user choose a color. A button is displayed; when it’s clicked,
another dialog is opened, allowing the user to see the available colors
and choose one by pointing with the mouse. The chosen color is saved
as an org.eclipse.swt.graphics.RGB value.

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

272 CHAPTER 12

Advanced features
DirectoryFieldEditor Lets the user choose any directory on the filesystem. A text field dis-
plays the current chosen directory. This value may be modified in place,
or the displayed Browse button lets the user navigate the filesystem
and choose a directory graphically.

FileFieldEditor Lets the user choose a filename and location. You can filter the types
of files displayed when browsing the filesystem by using the setFile-
Extensions() method, which takes an array of Strings. Files must
match one of the extensions in this array, or they won’t be displayed.

FontFieldEditor Lets the user choose a font, including size and bold or italic
attributes. Clicking the Change button opens a dialog presenting all the
available font options. Text demonstrating the chosen font is displayed;
you can set the string to use for this text in FontFieldEditor's con-
structor.
The value for this editor is returned as an org.eclipse.swt.graph-
ics.FontData object.

IntegerFieldEditor Ensures that any entered value is an integer. You can force the entered
value to be in a certain range by using the setValidRange() method.

PathEditor Lets the user choose multiple directory paths. The currently selected
paths are displayed in a list on the left; buttons to add, remove, or
change the order of the paths are on the right.

RadioGroupFieldEditor Presents a set of mutually exclusive options, forcing the user to pick
exactly one of them. Labels for the available options are specified in
the constructor, along with the value to return if each one is selected.
These are passed as a two-dimensional array of Strings, as shown
here:
RadioGroupFieldEditor editor = new RadioGroupFieldEditor(

 /*some other parameters*/,
 new String[][] {
 {"Option One", "Value1"},
 {"Option Two", "Value2"} },
 /*more parameters*/);

StringFieldEditor Provides the user with a text field to enter a string of characters. This
editor supports two options for validating the entered text:
VALIDATE_ON_FOCUS_LOST and VALIDATE_ON_KEY_STROKE; you can
toggle between them using setValidateStrategy(). By default,
StringFieldEditor accepts any string as valid. To add your own vali-
dation, override the protected doCheckState() method.
To limit the length of the entered text, use the setTextLimit()
method.

Table 12.4 Field editors provided by JFace (continued)

Editor class Description
Licensed to jromero <jose.romero@galicia.seresco.es>

Preferences 273
12.2.3 Preference page containers

Just as wizard pages are hosted by a wizard container, preference pages are dis-
played by a preference page container.

IPreferencePageContainer
The IPreferencePageContainer interface must be implemented by any class that
wishes to host preference pages. The interface is straightforward; it has only four
methods (see table 12.5).

Although it’s easy to implement IPreferencePageContainer if you need to, doing
so generally isn’t necessary. Preference pages are typically displayed in a dialog,
and PreferencePageDialog provides a default implementation that handles this
case well.

IPreferencePageNode
Whereas in a wizard dialog pages are typically displayed in a set order, preference
pages may be filled out in any sequence the user desires. It would be unfriendly to
force a user to click through several pages of options that she isn’t interested in,
just to modify one setting. However, avoiding this scenario necessitates a way to
display a list of the pages to the user. A preference node fills this role.

 A preference node combines a preference page with a unique ID and an
optional title and image. The title and image are displayed to the user in a tree on
the left side of a dialog; when one of them is clicked, the corresponding page is
displayed on the right. This way, users can quickly navigate to the group of set-
tings they’re interested in. IPreferenceNode also adds support for making one
node a subnode of another with the add() method; in this case, the children are
shown when the parent is expanded in the tree. PreferenceNode provides a
default implementation of IPreferenceNode, and you’ll rarely need to implement
the interface yourself.

Table 12.5 Methods defined by the IPreferencePageContainer interface

Method Description

getPreferenceStore() Used by preference pages to retrieve a persistent
store for their values

updateButtons(), updateMessage(),
updateTitle()

Let pages request that the container update its dis-
play to match the currently active page
Licensed to jromero <jose.romero@galicia.seresco.es>

274 CHAPTER 12

Advanced features
 Most of the methods on PreferenceNode are used by the framework. You can
set a title and image when instantiating PreferenceNode. Typically the only other
methods you’ll ever need to call on it are add() and remove(), to manage the chil-
dren associated with a given node.

PreferenceManager
PreferenceManager is a utility class that JFace uses to organize preference nodes. It
introduces the concept of a path, which is used to identify nodes in the hierarchy.
A path consists of a string made up of the IDs of one or more nodes, divided by a
separator character. By default, the separator is a period (.), but you can change
it by passing any other character to PreferenceManager’s constructor. The string is
tokenized on the separator character, and each ID is used to search starting from
the root, then the children of the first node found, then the next node’s children,
and so on, until the final node in the path has been found. You can add nodes at
the root or as a child of any node currently in the structure, identified by its path.

PreferencePageDialog
PreferencePageDialog is JFace’s implementation of IPreferencePageContainer. It
extends Dialog and adds support for displaying preference pages. The pages avail-
able are displayed in a tree on the left, and the currently active page is displayed
in the main area of the dialog. Once you have instantiated the dialog with an
instance of PreferenceManager and associated a persistent store using setPrefer-
enceStore(), you can call open(); PreferencePageDialog takes care of the rest.

12.2.4 Persistent preferences

Preferences aren’t very useful if they must be reset each time an application is
launched. JFace provides a way to make your preferences persistent using the
IPreferenceStore.

IPreferenceStore
An IPreferenceStore maps preference names to values. Each named preference
may have both a default value and a current value; if there is no current value, the
default is returned. Preferences may be any of Java’s primitive types (see also the
discussion of PreferenceConverter for an easy way to store certain JFace objects in
an IPreferenceStore). Each get and set method defined in this interface takes
the name of the preference to operate on. Additionally, there are methods to set
the default value for a given preference or reset a preference to the default, and a
Licensed to jromero <jose.romero@galicia.seresco.es>

Preferences 275
dirty indicator to check whether the store has been changed. A subinterface,
IPersistentPreferenceStore, adds a save() method to persist the values.

PreferenceStore
JFace includes PreferenceStore, an implementation of IPreferenceStore that’s
based on the java.util.Properties class. PreferenceStore only saves properties
that aren’t equal to the default value, thereby minimizing the amount of data that
must be written to disk. Values are persisted using the standard properties file for-
mat (name-value pairs separated by =). You have two options for loading and sav-
ing your data when using PreferenceStore. The simplest way is to specify a
filename when instantiating a new instance:

PreferenceStore store = new PreferenceStore("some_file_name");
store.load();

Alternatively, you can give the store a stream to use when loading or saving:

PreferenceStore store = new PreferenceStore();
FileInputStream in = new FileInputStream("some_file_name");
store.load(in);
...
FileOutputStream out = new FileOutputStream("some_file_name");
store.save(out, "Custom Header");

You must also remember to explicitly call load() before passing your Prefer-
enceStore to a PreferenceDialog, because the dialog won’t call the method on
your behalf. It automatically calls save() when appropriate, however.

 Note that calling the no-argument load() or save() method when no filename
is specified in the PreferenceStore constructor results in an IOException. Because
PreferenceDialog calls the no-argument method, you should always use the con-
structor that takes a filename; use the overloaded versions of load() and save()
only if you need to copy the values to a backup stream.

PreferenceConverter
PreferenceConverter is another utility provided by JFace. It consists of a series of
static methods used to set or retrieve common SWT objects that otherwise
couldn’t be used with an IPreferenceStore. Behind the scenes, PreferenceCon-
verter serializes the object to or from a string format suitable for long-term stor-
age. Values are set and retrieved like so:
Licensed to jromero <jose.romero@galicia.seresco.es>

276 CHAPTER 12

Advanced features
IPreferenceStore store = ...
PreferenceConverter.setValue(store,
 "color_pref",
 new RGB(0, 255, 0));
...
RGB color = PreferenceConverter.getColor(store,
 "color_pref");

12.3 Label decorators

In our earlier discussion of ILabelProvider, we mentioned that there is an alter-
nate implementation of IBaseLabelProvider. That implementation is in ILabel-
Decorator, an interface designed to collaborate with basic label providers to
provide additional information.

 Label decorators are intended to “decorate” a given object’s presentation with
visual cues as to the object’s current state. A good example can be found in the
Package Explorer in Eclipse. The Package Explorer displays all the Java classes in
the current project in a tree, organized by the package to which each belongs. A
label provider displays each object’s name along with an icon designating the
object as either a class or package. Label decorations are added on top of the stan-
dard icons to designate abnormal conditions, such as the small red X that appears
when there is a compilation error.

 The main advantage of this design is the way it encourages decoupling. Con-
tinuing the Eclipse example, the standard label provider for a Java class only
needs to know how to retrieve the name of a class and draw the basic icon. The
logic to overlay the error icon (or warning icon, or any other variable status) is
separated out into the decorator, where it can also be applied to packages or any
other appropriate type of object. Likewise, because the Java class label provider
isn’t encumbered with code to display the status icons, it can easily be reused in
another context where the status icons aren’t desired.

12.3.1 ILabelDecorator

The main interface you’ll use to implement decorator functionality is ILabelDec-
orator. ILabelDecorator extends IBaseLabelProvider and is similar to ILabel-
Provider. Two methods are defined: decorateText() and decorateImage(). Each
is passed a domain object, along with the text or image that’s currently being dis-
played. Each method returns the new text or image that should be displayed for
the given domain object.

 When you’re implementing decorateImage(), keep in mind that each Image con-
sumes relatively rare system resources. It’s therefore important to avoid creating
Licensed to jromero <jose.romero@galicia.seresco.es>

Label decorators 277
new Images if possible. Using the ImageRegistry, as we do in the example later in
the chapter, is helpful to avoid instantiating unnecessary Image instances. Best prac-
tices for using Images are discussed further in chapter 7.

12.3.2 DecoratingLabelProvider

Once you’ve implemented the decorator, we need to make sure it gets a shot at per-
forming its decorations. Rather than provide methods to explicitly add decorators
to viewers, JFace supplies the DecoratingLabelProvider class. DecoratingLabel-
Provider extends LabelProvider and thereby implements ILabelProvider. Instead
of providing labels itself, DecoratingLabelProvider takes an instance of ILabelPro-
vider and an ILabelDecorator in its constructor. Calls to getText() or getImage()
are delegated first to the label provider and then to the label decorator. The Dec-
oratingLabelProvider is then associated with the viewer, instead of calling setLa-
belProvider() with the ILabelProvider directly.

 Because DecoratingLabelProvider is an instance of ILabelProvider, you can
easily chain decorators together by passing appropriate instances of Decorat-
ingLabelProvider in the constructor instead of LabelProviders. Each decorator is
then called in turn to build the final result. This technique is shown here:

DecoratingLabelProvider firstDecorator =
 new DecoratingLabelProvider(new MyLabelProvider(),
 new FirstLabelDecorator());
DecoratingLabelProvider secondDecorator =
 new DecoratingLabelProvider(firstDecorator,
 new SecondLabelDecorator());
viewer.setLabelProvider(secondDecorator);

12.3.3 An example

We’ll now show an example of the decorator concepts we’ve discussed as they’re
used to build a tree showing the relationships between family members. Each per-
son will be decorated with their family name and an icon indicating whether they
are male or female. The infrastructure for this example is similar to the TreeView-
ers we’ve discussed earlier. In the interest of conserving space, we won’t repro-
duce the entire example; instead, we’ll discussing only the sections that are
relevant for label decorators.

 The first step is to create the TreeNode class that represents each node in the
tree. The member variables and constructor look like this:

public class TreeNode
{
 private String firstName;
Licensed to jromero <jose.romero@galicia.seresco.es>

278 CHAPTER 12

Advanced features
 private boolean isMale = false;
 private String familyName;
 private List children = new ArrayList();
 private TreeNode parent;

 public TreeNode(String firstName,
 String familyName,
 boolean male)
 {
 this.firstName = firstName;
 this.familyName = familyName;
 isMale = male;
 }
 //accessor methods
 ...
}

Each of the attributes has an accessor, so that our decorator will be able to query
the TreeNode for the data it needs.

 Our implementation of ILabelDecorator is straightforward. Here we extend
LabelProvider for the convenient implementations of the methods defined in
IBaseLabelProvider:

public class FamilyDecorator
 extends LabelProvider
 implements ILabelDecorator
{
 private static final String MALE_IMAGE_KEY = "male";
 private static final String FEMALE_IMAGE_KEY = "female";
 private ImageRegistry imageRegistry;

 public FamilyDecorator(Shell s)
 {
 imageRegistry = new ImageRegistry(s.getDisplay());
 Image maleImage = new Image(s.getDisplay(), "male.gif");
 Image femaleImage = new Image(s.getDisplay(), "female.gif");
 imageRegistry.put(FEMALE_IMAGE_KEY, femaleImage);
 imageRegistry.put(MALE_IMAGE_KEY, maleImage);
 }

 public Image decorateImage(Image image, Object element)
 {
 if(element == null) return null;
 TreeNode node = (TreeNode)element;
 if(node.isMale())
 {
 return imageRegistry.get(MALE_IMAGE_KEY);
 }
 else
Licensed to jromero <jose.romero@galicia.seresco.es>

Label decorators 279
 {
 return imageRegistry.get(FEMALE_IMAGE_KEY);
 }
 }

 public String decorateText(String text, Object element)
 {
 if(element == null) return null;
 TreeNode node = (TreeNode)element;
 return text + " [" + node.getFamilyName() + "]";
 }

}

The constructor creates the Images we need and saves them in an ImageRegistry
for future use. When decorateImage() is called, it checks the isMale() method of
the TreeNode object and retrieves the appropriate image by name from the regis-
try; this is then returned as the Image to display. (Note that this section has been
simplified; in a real application, you’ll typically need to draw your decoration on
top of another image and return the combined result.)

 decorateText() is also straightforward. Each node’s family name is retrieved
and appended to whatever text is already being displayed, and the result is
returned as the text to display.

 Finally, we create a DecoratingLabelProvider with an instance of our decorator
and tell the viewer to use the new instance instead of the default label provider:

...
viewer.setLabelProvider(
 new DecoratingLabelProvider(
 (ILabelProvider)viewer.getLabelProvider(),
 new FamilyDecorator(getShell())));
...

Note that here we retrieve the viewer’s default
label provider and pass it as the base for the
DecoratingLabelProvider to use. In your own
applications, this code may frequently be
replaced with an instance of a custom label pro-
vider.

 Running the demo results in a tree such as
the one shown in figure 12.2.

 The default label provider only added the
text for each character’s first name by calling

Figure 12.2
A decorated TreeViewer
Licensed to jromero <jose.romero@galicia.seresco.es>

280 CHAPTER 12

Advanced features
toString() on each node. The icons and family names were added after the fact
by our label decorator.

NOTE Using label decorators in Eclipse—When you’re using label decorators in an
Eclipse plug-in, you must be aware of some additional gotchas, such as
making sure you don’t accidentally clobber the built-in decorators. Ad-
ditional features are also available to you, such as configuring your dec-
orators in the plugin.xml file. A detailed discussion of these issues is
outside of the scope of this book; but the excellent article “Understand-
ing Decorators in Eclipse” by Balaji Krish-Sampath, available online at
www.eclipse.org/articles/Article-Decorators/decorators.html, will prove
invaluable if you’re working with decorators in Eclipse.

12.4 The Browser widget

With the rise of the World Wide Web, HTML has become one of the most impor-
tant technologies for creating a user interface. It has the advantage of being sim-
ple to write, easy to understand, and quick to modify in order to try out different
designs. When you’re developing an application using a thick-client technology
such as SWT or Swing, it’s common to find yourself becoming envious of the quick
development cycles afforded by an HTML-based interface. When you consider the
vast amount of information that exists in HTML, sometimes it makes sense to
design your application to be able to display HTML documents.

 Thankfully, in the 3.0 release the SWT team has provided the Browser widget to
make this easy to do. By using Browser, you can embed the user’s web browser in
your application and use it to display HTML without having to write a custom ren-
dering engine. Additionally, because Browser uses the full-fledged native web
browser for your platform, you gain the ability to handle JavaScript, XML, and any
other format already understood by the browser.

 Before we dive too deeply into our discussion of the Browser widget, a couple
of caveats are in order:

■ Browser isn’t currently supported on all platforms. It works on Microsoft
Windows without a problem, but using it on Linux requires Mozilla 1.5.
OS X and other platforms don’t support Browser at all; if you try to instanti-
ate it, the result is an SWTError. This code is under active development, how-
ever, so if you’re considering using Browser you should check the status
under all platforms you plan to support.

■ As of the time of this writing, the API for Browser is considered unstable. It
will be finalized by the time the final version of SWT 3.0 is released, but it’s
Licensed to jromero <jose.romero@galicia.seresco.es>

The Browser widget 281
possible that it will be different from the code samples we discuss here. In
this case, you should consult the Javadocs for the version of the widget in
your distribution to learn the differences.

The API for Browser is simple. It consists of methods to load the document found
at a URL, to navigate backward and forward between pages, to refresh the current
URL, and to stop the loading of the current page. Additionally, Browser broad-
casts several unique events. At the current time, these events include opening,
closing, and hiding windows; changing locations; and indicating progress as a
page is loaded.

 Using the Browser widget may also require additional native libraries, depend-
ing on your platform. There are no additional dependencies for Windows, but
using Browser in the Linux/GTK distribution of SWT requires the libswt-mozilla-
gtk library to be included in your LD_LIBRARY_PATH. On other supported plat-
forms, you should check for the existence of a native library that includes the
name of your platform’s web browser.

 We next provide a simple example of Browser in action. The code in
listing 12.5 opens a browser window when you run it. A text box allows the user to
type a URL, and when the Open button in the WidgetWindow is clicked, the corre-
sponding location is opened in the browser. Forward and Back buttons let the
user control navigation in the browser from within WidgetViewer. Running the
example results in the screenshot shown in figure 12.3.

Figure 12.3
Mozilla embedded in
an SWT application
Licensed to jromero <jose.romero@galicia.seresco.es>

282 CHAPTER 12

Advanced features
package com.swtjface.Ch12;

import org.eclipse.swt.SWT;
import org.eclipse.swt.browser.Browser;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.*;

public class Ch12WebBrowserComposite extends Composite
{
 private Browser browser;

 public Ch12WebBrowserComposite(Composite parent)
 {
 super(parent, SWT.NONE);

 GridLayout layout = new GridLayout(2, true);
 setLayout(layout);

 browser = new Browser(this, SWT.NONE);
 GridData layoutData = new GridData(GridData.FILL_BOTH);
 layoutData.horizontalSpan = 2;
 layoutData.verticalSpan = 2;
 browser.setLayoutData(layoutData);
 browser.setUrl("http://www.manning.com/catalog/view.php?book=scarpino");

 final Text text = new Text(this, SWT.SINGLE);
 layoutData = new GridData(GridData.FILL_HORIZONTAL);
 text.setLayoutData(layoutData);

 Button openButton = new Button(this, SWT.PUSH);
 openButton.setText("Open");
 openButton.addSelectionListener(new SelectionListener() {
 public void widgetSelected(SelectionEvent e)
 {
 browser.setUrl(text.getText());
 }
 public void widgetDefaultSelected(SelectionEvent e) {}
 });

 Button backButton = new Button(this, SWT.PUSH);
 backButton.setText("Back");
 backButton.addSelectionListener(new SelectionListener() {
 public void widgetSelected(SelectionEvent e)
 {
 browser.back();
 }
 public void widgetDefaultSelected(SelectionEvent e) {}
 });

Listing 12.5 Ch12WebBrowserComposite.java

b Create Browser instance

c Open URL

d Forward and Back buttons
Licensed to jromero <jose.romero@galicia.seresco.es>

Summary 283
 Button forwardButton = new Button(this, SWT.PUSH);
 forwardButton.setText("Forward");
 forwardButton.addSelectionListener(new SelectionListener() {
 public void widgetSelected(SelectionEvent e)
 {
 browser.forward();
 }
 public void widgetDefaultSelected(SelectionEvent e) {}
 });
 }
}

Browser is instantiated like any other control, with a parent Composite and a style
parameter. Currently, Browser doesn’t support any styles.

Any valid URL can be opened by passing it to the setUrl() method. This will clear
whatever page is currently loaded in the browser.

The browser can be told to move forward and back through its history by calling
the appropriate method.

If you’re on a supported platform, you can run this example by adding these lines
to WidgetWindow:

TabItem ch12WebBrowser = new TabItem(tf, SWT.NONE);
ch12WebBrowser.setText("Chapter 12 Web Browser");
ch12WebBrowser.setControl(new Ch12WebBrowserComposite(tf));

12.5 Summary

We’ve covered several important topics in this chapter, and the volume of infor-
mation can seem overwhelming. Don’t worry about mastering it all at first glance;
many of the concepts we’ve discussed aren’t necessary for day-to-day program-
ming with SWT and JFace. The important thing is to be aware of the capabilities
that are present, so that when you find yourself needing to implement drag and
drop or user preferences, you’ll know where to turn.

 You should also keep in mind that SWT is under constant development.
Although at the time we’re writing this, widgets such as Browser aren’t fully sup-
ported on all platforms, the situation may have changed by the time you write
your own SWT application. Check the articles available at www.eclipse.org to see
what enhancements have been made since this book went to press.

d Forward and Back buttons

b

c

d

Licensed to jromero <jose.romero@galicia.seresco.es>

Looking beyond SWT/JFace:
the Rich Client Platform
This chapter covers
■ The theory behind the Rich Client Platform (RCP)
■ The classes that make RCP operation possible
■ The Eclipse Forms toolset
■ Building an example RCP application
284

Licensed to jromero <jose.romero@galicia.seresco.es>

Understanding RCP workbenches 285
So far, we’ve discussed how SWT serves as a general-purpose toolset for building
GUI applications. We’ve also shown how JFace provides more specialized capabili-
ties (Actions, Contributions, and Viewers) like those in the Eclipse platform.
These aspects of JFace simplify the development process, as long as your GUI’s
operation resembles that of the Eclipse Workbench.

 To conclude this book, we’d like to take this progression one step further.
Instead of just using behavioral aspects of the Workbench, we’ll now explore
building complete, custom applications that look and function like Eclipse. We’ll
call them (lowercase) workbenches. Like JFace GUIs, they provide a great deal of
functionality but remain simple to code.

 This exciting capability is made possible by Eclipse’s new Rich Client Platform
(RCP). With RCP, not only can you create workbenches quickly, but you can also
compile them into standalone applications. So, you won’t need the entire Eclipse
platform to run your GUIs.

 In this chapter, we’ll explain the underlying structure of RCP and progress
through the stages of building a complete, standalone application. To make this
even more interesting, we’ll create this application using structures from Eclipse
Forms. Eclipse Forms is more than a new package or plug-in: It’s a complete tool-
kit for building powerful form-based applications.

 Before you start coding, you need to understand how workbenches are
structured.

13.1 Understanding RCP workbenches

We’ll start our discussion by describing the building blocks that make up an RCP
application. Figure 13.1 presents our favorite workbench—the Eclipse Work-
bench—with labels for its individual sections.

 In previous chapters, we’ve discussed the title, menu, toolbar, and status line,
and how to configure them inside user interfaces. A workbench is distinguished
from these other GUIs by its editors and views. We’ll discuss these now, along with
the perspective that controls their placement.

13.1.1 Entering data with editors

Essentially, a workbench consists of an editor and a series of views that support the
editing process. The Eclipse Workbench centers on a text editor whose view panes
let you alter or examine the editor’s environment. But in your RCP workbenches,
you have many options beyond regular text editing. Figure 13.2 shows the full
class hierarchy for workbench editors.
Licensed to jromero <jose.romero@galicia.seresco.es>

286 CHAPTER 13

Looking beyond SWT/JFace
Your editor doesn’t need to be text-based or even single-paged. But it must be a
subclass of EditorPart. This class contains the methods that communicate with
the workbench.

 At the far left of figure 13.2, the GraphicalEditor creates diagrams based on
shapes and connections between them. (This is an involved topic and is the focus
of appendix D.) In the center, the TextEditor and its superclasses contain only
text. The MultiEditor contains a set of editors whose content can be communi-
cated between them.

 The MultiPageEditorPart is similar to the MultiEditor except that it holds a
series of Controls that may or may not function as editors. Their only requirement
is that they extend the Control class. The FormEditor is a particularly interesting
and useful subclass of this editor; it creates a series of forms (FormPages) based on
the content of a main editor.

 You can build TextEditors and MultiPageEditorParts quickly by starting a Java
plug-in project and selecting one of the editor-based templates. But if you want to
create a FormEditor, you have to start from scratch.

Figure 13.1 The structural elements of a workbench
Licensed to jromero <jose.romero@galicia.seresco.es>

Understanding RCP workbenches 287
13.1.2 Displaying information with views

Although a workbench’s focal point is its editor, views are needed to organize the
editor’s content, examine its environment, and display its results. For example,
the Eclipse Workbench contains views for navigating packages and directories,
keeping track of tasks and errors, and displaying console output from the Java
runtime. More than anything else, it’s these views that have made Eclipse so popu-
lar as a development platform. Without them, it would be just a text editor with
ties to the Java SDK.

 It’s simple to create views, particularly if you want panes that function like those
in Eclipse. Figure 13.3 shows these different view types as ViewPart subclasses.

 You can see what many of these classes look like by choosing the Window entry
in the Eclipse menu and selecting Show View. The BookmarkNavigator looks like a
specialized property view, and the ResourceNavigator view looks like the directory
navigator that appears on the left-hand side of the Eclipse Workbench. The
TaskList takes the same form as the corresponding window at the bottom of
Eclipse. The PageBookView and its subclasses represent views with multiple pages.

 You can also create views that look and behave completely differently than
those in Eclipse. The ViewPart class is easy to extend; we’ll create a complete view
class as we progress through our RCP example.

 Now that we’ve looked at the editors and views available, let’s examine how these
parts are integrated into the workbench. This capability is provided by perspectives.

EditorPart

GraphicalEditor FormPage
AbstractText

Editor MultiEditor
MultiPage
EditorPart

GraphicalEditor
withPalette

StatusText
Editor FormEditor

AbstractDecorated
TextEditor

TextEditor

Figure 13.2 The EditorPart and its subclasses
Licensed to jromero <jose.romero@galicia.seresco.es>

288 CHAPTER 13

Looking beyond SWT/JFace
13.1.3 Combining editors and views with perspectives

Just as SWT Composites use Layouts to arrange child components, workbenches
select and organize editors and views with perspectives. For example, the Eclipse
platform displays one set of editors and views in the Java perspective and another
set when you choose the Debug perspective.

 Although the majority of the work involved in RCP development deals with
building and arranging editors and views, you also need to create a set of classes
that provides the workbench’s basic functionality. Next, we’ll present these classes
in the framework of building an RCP project.

13.2 RCP: Looking under the hood

The ability to create workbench editors and views isn’t new. These classes have
been around since Eclipse 2.1 and haven’t changed significantly since the previ-
ous version. What makes the RCP so different is that, with very few classes, you can
now create an entirely new, standalone application with these windows. In this sec-
tion, we’ll begin RCP development by creating an Eclipse project. Then, we’ll cre-
ate the three classes that make RCP operation possible.

13.2.1 Creating and configuring an RCP project

RCP development starts by creating an Eclipse plug-in project, but it’s important
to understand that the end result is not a plug-in. The ultimate goal is to build an
application that functions independently from the Eclipse Workbench.

 To make this point clear, we need to go into greater technical depth. The dif-
ference between a plug-in and an RCP application centers around a small kernel

ViewPart

Bookmark
Navigator

Rescue
Navigator PageBookView TaskList

Content
Online

Abstract
DebugView

Property
Sheet

Figure 13.3 The ViewPart and its subclasses
Licensed to jromero <jose.romero@galicia.seresco.es>

RCP: Looking under the hood 289
called the platform runtime. This is the first element of Eclipse to execute, and it
functions by organizing plug-ins and controlling their operation. Unlike a plug-
in, a workbench contains its own platform runtime, which means that it controls
its own operation. You can execute a workbench like a regular Java application.

 But even though a workbench operates differently than a plug-in, the process
of creating one requires that you build a plug-in project. Let’s get started.

NOTE This chapter describes the process of building of a plug-in project, but
doesn’t provide the overall theory behind Eclipse plug-ins. For more in-
formation on the subject, we recommend Eclipse in Action by David Gallar-
do, Ed Burnette, and Rob McGovern (Manning, 2003).

Creating and configuring the RCPExample project
To begin, open Eclipse, select File->New->Plug-in Project, and click Next. Enter
the name com.swtjface.RCPExample. Click Next to reach the Plug-in Content
screen, and click Finish to create the project.

 You don’t need to modify the RCPExamplePlugin class that the wizard created,
but the project’s plugin.xml file must be updated to reflect the project’s configu-
ration. You can use the Plug-in Manifest Editor or change the file directly. Either
way, listing 13.1 uses boldface to show the alterations you’ll need to make.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin
 id="com.swtjface.RCPExample"
 name="RCPExample Plug-in"
 version="1.0.0"
 provider-name="SWTJFACE"
 class="com.swtjface.RCPExample.RCPExamplePlugin">

 <runtime>
 <library name="RCPExample.jar">
 <export name="*"/>
 </library>
 </runtime>

 <requires>
 <import plugin="org.eclipse.ui"/>
 <import plugin="org.eclipse.core.runtime"/>
 <import plugin="org.eclipse.ui.forms"/>
 </requires>

Listing 13.1 plugin.xml
Licensed to jromero <jose.romero@galicia.seresco.es>

290 CHAPTER 13

Looking beyond SWT/JFace
 <extension point="org.eclipse.core.runtime.applications"
 id="ExampleApplication">
 <application>
 <run class="com.swtjface.RCPExample.ExampleApplication"/>
 </application>
 </extension>

 <extension point="org.eclipse.ui.views">
 <view
 id="com.swtjface.RCPExample.ExampleView"
 name="ExampleView"
 class="com.swtjface.RCPExample.ExampleView">
 </view>
 </extension>

 <extension point="org.eclipse.ui.perspectives">
 <perspective
 id="com.swtjface.RCPExample.ExamplePerspective"
 name="ExamplePerspective"
 class="com.swtjface.RCPExample.ExamplePerspective"/>
 </extension>
</plugin>

13.2.2 Building the application class

The first extension in plugin.xml extends from org.eclipse.core.run-

time.applications. This point makes it possible for workbenches to operate with-
out Eclipse. Our example uses this extension to create a class called
ExampleApplication. This class functions like the main() method of a regular Java
application—it tells the runtime environment where it should begin processing.

 Application classes need to implement the IPlatformRunnable interface in the
org.eclipse.core.runtime package. This interface requires only one method,
run(), which—like main()—may contain arguments that control the workbench’s
processing. In building an application class, you need to make sure that run()
performs the application’s top-level tasks. At the very least, it needs to create a
Display object for the workbench and start the application’s life cycle by invoking
methods from PlatformUI.

 Listing 13.2 shows the code for ExampleApplication; we recommend that you
add it to the com.swtjface.RCPExample package. It won’t compile yet, but the
error will resolve once you add the ExampleAdvisor class.

Tells
workbench
how to
function as
application

Matches view class
with its identification
information

Tells
application
what class will
arrange its
windows
Licensed to jromero <jose.romero@galicia.seresco.es>

RCP: Looking under the hood 291
package com.swtjface.RCPExample;

import org.eclipse.core.runtime.IPlatformRunnable;
import org.eclipse.swt.widgets.Display;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.application.WorkbenchAdvisor;

public class ExampleApplication implements IPlatformRunnable

{
 public Object run(Object args) throws Exception
 {
 WorkbenchAdvisor advisor = new ExampleAdvisor ();

 Display display = PlatformUI.createDisplay();

 int code = PlatformUI.createAndRunWorkbench(display, advisor);
 if (code == PlatformUI.RETURN_RESTART)
 return IPlatformRunnable.EXIT_RESTART;
 else
 return IPlatformRunnable.EXIT_OK;
 }
}

This application limits itself to the essentials—configuring a WorkbenchAdvisor,
creating a Display, and starting the application. The createAndRunWorkbench()
method continues functioning until you close the workbench. At that point, it
returns a value that either restarts or exits the application. Beyond the methods
shown here, the PlatformUI class also provides methods for obtaining IWorkbench
and IPreferenceStore interfaces and lets you use isWorkbenchRunning() to check
whether the workbench is running.

 You might wonder how this small amount of code ties in with the editors,
views, menus, and toolbars inside a workbench. This connection is provided by a
very important class called WorkbenchAdvisor.

13.2.3 Adding a WorkbenchAdvisor

The WorkbenchAdvisor class is one of the RCP’s main innovations. Despite its
name, it performs a great deal of the work. This class concentrates the functions
of controlling the workbench’s operation and setting features of its appearance.
To see how this works, let’s examine the WorkbenchAdvisor class and the IWork-
benchWindowConfigurer interface that it accesses.

Listing 13.2 ExampleApplication.java

Associate
WorkbenchAdvisor
object with
application

Create Display object
for workbench

Start
application
Licensed to jromero <jose.romero@galicia.seresco.es>

292 CHAPTER 13

Looking beyond SWT/JFace
Controlling workbench operation with WorkbenchAdvisor methods
The WorkbenchAdvisor’s methods let you perform processing tasks before each
stage of your application’s life cycle. For example, if you want to disable a feature
during startup, you can do this in the preStartup() method. You can enable the
feature afterward with postStartup(). The preWindowOpen() method is particu-
larly important since it gives you a chance to configure the window’s appearance
before it’s displayed in the workbench.

 In addition to the life-cycle methods, the WorkbenchAdvisor also contains
methods that let you configure aspects of the workbench. In our example, we’ll
invoke getInitialWindowPerspectiveId() to provide the ID of the perspective
that we’ll use. As you saw in plugin.xml, this is com.swtjface.RCPExample.Exam-
plePerspective.

 Listing 13.3 shows how the WorkbenchAdvisor controls processing just before
the window opens and how it lets you specify the workbench’s perspective. We rec-
ommend that you add this class to the com.swtjface.RCPExample package.

package com.swtjface.RCPExample;

import org.eclipse.ui.application.WorkbenchAdvisor;
import org.eclipse.swt.graphics.Point;
import org.eclipse.ui.application.IWorkbenchWindowConfigurer;

public class ExampleAdvisor extends WorkbenchAdvisor
{

 public String getInitialWindowPerspectiveId()
 {
 return "com.swtjface.RCPExample.ExamplePerspective";
 }

 public void preWindowOpen(IWorkbenchWindowConfigurer configurer)
 {
 super.preWindowOpen(configurer);
 configurer.setTitle("RCPExample");
 configurer.setInitialSize(new Point(225, 250));
 configurer.setShowMenuBar(false);
 configurer.setShowStatusLine(false);
 configurer.setShowCoolBar(false);
 }
}

The WorkbenchAdvisor methods are simple, but controlling the workbench’s
appearance is performed with the IWorkbenchWindowConfigurer interface. In our

Listing 13.3 ExampleAdvisor.java

Set workbench’s
perspective according
to its ID

Configure
workbench’s
appearance
Licensed to jromero <jose.romero@galicia.seresco.es>

RCP: Looking under the hood 293
example, the WorkbenchAdvisor obtains an instance of this with preWindowOpen()
and uses its methods to set application parameters. This interface allows you to
control the workbench’s appearance; let’s examine it more closely.

Configuring visuals with the IWorkbenchWindowConfigurer
Although your workbenches will necessarily look similar to Eclipse, the Rich Cli-
ent Platform provides a great deal of design flexibility with the IWorkbenchWindow-
Configurer. Our example WorkbenchAdvisor used a few of these to configure the
application’s title, size, menu bar, status line, and coolbar, but many more are
available. Table 13.1 doesn’t provide a complete account, but it lists those that
directly affect the appearance of the workbench.

Many of these methods are similar to those found in SWT and JFace containers, but
a few deserve additional attention. The first two, addEditorAreaTransfer() and
configureEditorAreaDropListener(), provide drag-and-drop capability between
editors and views, which enables you to cut and paste between windows. It’s

Table 13.1 Workbench configuration methods of the IWorkbenchWindowConfigurer

Method Function

addEditorAreaTransfer(Transfer) Provides a Transfer object for editor drag and drop

configureEditorAreaDropListener
(DropTargetListener)

Sets the DropTargetListener needed to receive
drag-and-drop events

createCoolBarControl(Composite) Specifies the control to receive CoolBar entries

createMenuBar() Creates a Menu within the workbench

createPageComposite(Composite) Sets the container for the editors and views

createStatusLineControl(Composite) Specifies the control to provide status-line information

setInitialSize(Point) Provides the workbench’s initial size

setShellStyle(int) Specifies style bits for the workbench’s Shell object

setShowCoolBar(boolean) Tells the workbench if it should display a CoolBar

setShowMenuBar(boolean) Tells the workbench if it should display a Menu

setShowPerspectiveBar(boolean) Tells the workbench if it should display a bar to select
different workbench perspectives

setShowStatusLine(boolean show) Tells the workbench if it should display a status line

setTitle(String title) Specifies a title for the workbench application
Licensed to jromero <jose.romero@galicia.seresco.es>

294 CHAPTER 13

Looking beyond SWT/JFace
interesting that the createXYZ(Composite) methods let you create custom GUI com-
ponents, but setXYZ(true) creates a default control provided by the application.

 Now that we’ve discussed the workbench’s fundamental classes and top-level
appearance, we need to build a perspective to arrange its internal structure.

13.3 Adding views and perspectives

By default, workbenches contain editors to access, manipulate, and save file con-
tent. But the process of adding file handling to an RCP application is long and
involved. To keep our example as simple as possible, we’ll create a single view. In
this section, we’ll create the class for this view and the perspective needed to place
it inside the workbench.

NOTE If you want to see a full editor example involving file access and data per-
sistence, skip ahead to appendix D.

13.3.1 Building views

Essentially, a view is an editor without data-entry or file operations. Views provide
user interaction, but none of the user’s actions need to be saved. Further, views
activate immediately, without waiting for the user to select an appropriate file.

 Rather than use a preconfigured class like ResourceNavigator, our custom
view extends from ViewPart. You need only one method to configure its appear-
ance and operation: createPartControl(Composite). The Composite argument of
this method serves as the view’s top-level container. Later, when we discuss the
child components provided by Eclipse Forms, we’ll add a series of widgets to this
parent Composite.

 For now, the ExampleView class provides empty methods for createPartCon-
trol(Composite) and setFocus(). The workbench invokes this second method
when the user clicks on the view; you can add code to customize how the view
operates when it receives focus.

 Our example, shown in listing 13.4, performs only the view’s default operation.
We recommend that you add this class to the com.swtjface.RCPExample package.

package com.swtjface.RCPExample;

import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.part.ViewPart;

public class ExampleView extends ViewPart
{

Listing 13.4 ExampleView.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Adding views and perspectives 295
 public void createPartControl(Composite parent)
 {
 }

 public void setFocus()
 {
 }
}

Now that we have a basic shell for our view, we need to place it inside the work-
bench. For this, we’ll need to create a perspective.

13.3.2 Arranging workbench windows with a perspective

The plugin.xml file holds a separate extension for the perspective. This tells the
workbench what editors and views will be used and where they should be placed.
It also specifies the interface that our class will implement: IPerspectiveFactory.

 By itself, the IPerspectiveFactory interface is easy to understand. It obtains an
IPageLayout object and configures this to provide the workbench’s appearance. Its
only method is createInitialLayout(IPageLayout), which makes it simple to code.

 Configuring the IPageLayout is more involved. By default, the layout assumes
the presence of a single editor with no views. In our example, we need to make
the editor invisible and add our ExampleView to the IPageLayout.

 Table 13.2 lists a number of IPageLayout methods that make this possible.
Other methods add folders, placeholders, and wizard shortcuts, but those in the
table are sufficient for most workbenches.

The addView() method is the most crucial method in the IPageLayout interface,
and it’s important to understand how it works. Its four arguments are as follows:

Table 13.2 Configuration methods of the IPageLayout class

Method Function

addShowViewShortcut(String) Creates a Window->Show View option in the menu

addView(String, int, float, String) Adds a view to the workbench with the given ID at the
specified position and dimensional ratio

GetEditorArea() Returns the ID of the workbench’s editor

isFixed() Returns whether the layout is changeable

setEditorAreaVisible(boolean) Specifies whether the editor will be displayed

setFixed() Specifies whether the layout is fixed in form
Licensed to jromero <jose.romero@galicia.seresco.es>

296 CHAPTER 13

Looking beyond SWT/JFace
■ viewID—A String (specified in plugin.xml) that identifies the view.

■ relationship—An int that specifies where the view should be placed rela-
tive to a reference. This can be IPageLayout.TOP, IPageLayout.BOTTOM,
IPageLayout.RIGHT, or IPageLayout.LEFT.

■ ratio—A float that describes what percentage of the reference should be
taken up by the view.

■ refID—A String that identifies the reference window.

An editor is automatically created in a workbench, so we’ll use that as our refer-
ence. But because we haven’t mentioned an editor in plugin.xml, we’ll use getEd-
itorArea() to obtain our refID. Further, to ensure that the view takes up the
entire workbench area, our example invokes setEditorAreaVisible(false).

 Listing 13.5 presents the code for the example perspective. We recommend
that you add it to the com.swtjface.RCPExample package.

package com.swtjface.RCPExample;

import org.eclipse.ui.*;

public class ExamplePerspective implements IPerspectiveFactory
{
 public void createInitialLayout(IPageLayout layout)
 {
 String editor = layout.getEditorArea();
 layout.addView("RCPExample.ExampleView",
 IPageLayout.RIGHT, 0f, editor);
 layout.setEditorAreaVisible(false);
 layout.setFixed(true);
 }
}

Since the perspective makes the editor invisible, the relationship and ratio argu-
ments in addView() aren’t important. The view occupies the entire workbench. To
see this, you need to execute the example; but because our example is an applica-
tion (not a plug-in), we need to look into a separate process.

13.3.3 Executing an RCP application

Once we’re finished with the example, you’ll see how to compile it into a stand-
alone Java application. But if you only want to check to make sure that it works,
you can run it inside of Eclipse. This process consists of these steps:

Listing 13.5 ExamplePerspective.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Adding views and perspectives 297
1 In the Eclipse main menu, choose the Run option under the Run menu item.

2 In the left pane, select the Run-time Workbench option, and click the
New button. A New_Configuration option appears; the window looks like
that in figure 13.4.

3 At the top, enter RCPExample as the workbench name. You can leave the
Workspace Location alone, but you need to select com.swtjface.RCPExam-
ple.ExampleApplication in the Program To Run group.

4 Click the Plug-ins tab, and select the Choose Plug-ins And Fragments To
Launch From The List radio button. Click Deselect All.

5 Select only the com.swtjface.RCPExample checkbox under Workspace
Plug-ins. Click Add Required Plug-ins, click Apply, and then click Run.

The resulting workbench should look like that shown in figure 13.5. At present, it
doesn’t look exciting. But that will change once we add the new containers and
components provided by the Eclipse Forms toolset.

13.3.4 Reviewing the RCP process

Before you learn about the new and exciting components provided by Eclipse
Forms, it will be helpful to look at the classes you’ve created and how they

Figure 13.4
Eclipse dialog to configure
application execution
Licensed to jromero <jose.romero@galicia.seresco.es>

298 CHAPTER 13

Looking beyond SWT/JFace
interact. This will clarify the structure of the RCP and make its development pro-
cess clearer.

 So far, we’ve provided the code for five important files:

■ ExampleApplication.java—Starts initial execution, and points to the ID of
the application’s WorkbenchAdvisor

■ ExampleAdvisor.java—Provides overall visual configuration of the work-
bench, and identifies its perspective according to its ID

■ ExamplePerspective.java—Arranges the panes within the workbench, and
identifies each (in our case, only the view) by its ID

■ ExampleView.java—Provides the behavior and appearance of the window
that makes up the workbench

■ plugin.xml—Matches each of the classes mentioned here to a specific ID

Figure 13.5 The top-level workbench in the RCPExample application
Licensed to jromero <jose.romero@galicia.seresco.es>

Populating forms with Eclipse Forms widgets 299
As you can see, these files progress from the top-level application execution to the
low-level configuration of an individual window. By understanding each step of
the development process, you’ll be better able to improve and debug your future
RCP applications. But to finish the ExampleRCP project, we need to present the new
components contained in the Eclipse Forms toolset.

13.4 Populating forms with Eclipse Forms widgets

Eclipse’s Plug-in Manifest Editor used to bother us. It has hyperlinks, expandable
sections, and a cleaner, more professional appearance than anything we could
build with SWT/JFace. But after discovering the Eclipse Forms toolset, we can add
these features to our applications and make them look just as sharp. The goal of
this section is to show you how to do this.

 We’ll start by examining the FormToolkit class that creates new GUI compo-
nents. Then, we’ll see what Composites the Eclipse Forms toolset has to offer and
add a number of them to the ExampleView class. Finally, we’ll examine the Hyper-
link class and the capability of adding text-based events.

13.4.1 Using FormToolkit and the Eclipse Forms containers

In SWT/JFace, you create widgets and add them to a parent Composite. Using
Eclipse Forms, you start with a FormToolkit object and create components by
invoking its methods. To show you what components are available, we’ll divide
these methods into two categories: those that create regular SWT widgets and
those that create Eclipse Forms widgets.

Adding SWT components with the FormToolkit
Table 13.3 lists the FormToolkit methods that create SWT widgets inside a form. In
each case, the method returns an instance of the desired component. (Refer to
chapters 3 and 5 if any of these look unfamiliar.)

Table 13.3 FormToolkit methods for creating SWT widgets

Method Function

createButton(Composite, String, int) Returns a Button with the given text and style

createComposite(Composite) Returns a Composite object

createComposite(Composite, int) Returns a Composite object with the given style

createLabel(Composite, String) Returns a Label with the given text

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

300 CHAPTER 13

Looking beyond SWT/JFace
It’s important to remember that many of these Controls need to be adapted for
insertion into the form. This limits the component’s colors to those used in the
form and provides keyboard access and tracking. The FormToolkit’s adapt()
method makes this possible.

 Alternatively, you can use the Controls provided by the Eclipse Forms toolkit.
First we’ll present the new Composite classes provided by Eclipse Forms, and then
we’ll update the ExampleView class with them.

Understanding Eclipse Forms Composites
When you’re building form-based applications, you need more capabilities than
those provided by regular SWT Composites. For this reason, Eclipse Forms pro-
vides a series of container classes that simplify form development. These are listed
in table 13.4.

createLabel(Composite, String, int) Returns a Label with the given text and style

createSeparator(Composite, int) Returns a Separator with the given style

createTable(Composite, int) Returns a Table with the given style

createText(Composite, String) Returns a Text object with the given text

createText(Composite, String, int) Returns a Text object with the given text and style

createTree(Composite, int) Returns a Tree with the given style

Table 13.4 FormToolkit methods for creating Eclipse Forms composites

Method Function

createCompositeSeparator(Composite) Returns a Composite to serve as a separator

createExpandableComposite(Composite, int) Creates an ExplandableComposite object

createForm(Composite) Creates a Form object in the Composite

createFormText(Composite, boolean) Returns a FormText, and sets HTML reading

createPageBook(Composite, int) Returns a ScrolledPageBook Composite

createScrolledForm(Composite) Returns a ScrolledForm Composite

createSection(Composite, int) Returns a Section Composite

Table 13.3 FormToolkit methods for creating SWT widgets (continued)

Method Function
Licensed to jromero <jose.romero@galicia.seresco.es>

Populating forms with Eclipse Forms widgets 301
We’ll discuss the Form, FormText, and ExpandableComposite classes here. Forms
serve as the top-level containers in a form-based application, but FormText Compos-
ites are more interesting. Not only can you can configure them for word wrap-
ping, but they also can display text marked with HTML.

 ExpandableComposites make it possible to expand and collapse regions of a
GUI by clicking on toggle signs called Twisties. These regions are represented by
Composites that are added to the ExpandableComposite with its setClient()
method. This is useful for forms with optional sections that need to save space.

 Listing 13.6 creates these components inside the createPartControl()

method of the ExampleView class. We recommend that you update the Example-
View with this code.

package com.swtjface.RCPExample;

import org.eclipse.swt.widgets.*;
import org.eclipse.ui.forms.widgets.*;
import org.eclipse.ui.part.ViewPart;

public class ExampleView extends ViewPart
{

 public void createPartControl(Composite parent)
 {
 FormToolkit kit = new FormToolkit(parent.getDisplay());
 Form form = kit.createForm(parent);
 ColumnLayout layout = new ColumnLayout();
 form.getBody().setLayout(layout);

 ExpandableComposite exComp = kit.createExpandableComposite
 (form.getBody(), ExpandableComposite.TWISTIE);
 exComp.setText("The Eclipse Forms toolset is:");
 exComp.setExpanded(true);

 FormText ft = kit.createFormText(exComp, true);
 exComp.setClient(ft);
 String html = "<form>UsefulPowerful" +
 "Simple</form>";
 ft.setText(html, true, false);
 }

 public void setFocus()
 {
 }
}

Listing 13.6 ExampleView.java (updated)

Use
FormToolkit to
create form
containers

b

Configure
ExpandableComposite

for display

c

d Configure
FormText
for
display
Licensed to jromero <jose.romero@galicia.seresco.es>

302 CHAPTER 13

Looking beyond SWT/JFace
You need to call the Form.setBody() method to associate a layout with the con-
tainer. This method provides the Form’s underlying Composite.

The ExpandableContainer.TWISTIE style creates a triangle component that con-
trols the state of the container. The setClient(ft) method tells it to expand and
collapse the FormText, and setExpanded(true) tells the container that its initial
state should be expanded.

When you’re using FormText objects to display HTML, you need to set the second
argument of setText() to true. Also, make sure the HTML starts with <form> and
ends with </form>.

Figure 13.6 shows how these containers work
together. It’s important to note that, because we
chose a Form container, the background is white
and the text takes the font and size shown.

 Just as with SWT Composites, you can control
how child components are arranged with layouts.
You can still use the Layout classes from chapter 6,
and you can also use two subclasses provided by
Eclipse Forms: ColumnLayout and TableWrapLay-
out. The first organizes widgets into vertical col-
umns and tries to keep children at their preferred
size. The second produces a table format similar to
that used in HTML, where cells expand to provide
word-wrapping of text.

 Now that we’ve discussed Eclipse Forms Com-
posites and how they arrange children, let’s look into the newest child compo-
nent available for use: the Hyperlink.

13.4.2 Firing text-based events with Hyperlinks

Regular hyperlinks function by causing a web browser to jump to a new URL,
but Eclipse Forms Hyperlinks provide more flexibility. In essence, they are
Labels that generate new events called HyperlinkEvents. By creating appropri-
ate event-handling routines, you can use these events to perform whatever pro-
cessing you choose.

b

C

D

Figure 13.6
The ExampleView with an
expandable container and
HTML display
Licensed to jromero <jose.romero@galicia.seresco.es>

Populating forms with Eclipse Forms widgets 303
 Components can respond to HyperlinkEvents with addHyperlinkListener().
Table 13.5 lists the methods needed to implement the HyperlinkListener inter-
face and those contained in the HyperlinkEvent class.

When you click the link, the LinkActivated() method fires. The other event-
handling methods, LinkEntered() and LinkExited(), work similarly to the Mouse-
Entered() and MouseExited() methods discussed in chapter 4. Since most forms
only require LinkActivated(), we recommend creating a HyperlinkAdapter.

 HTML hyperlinks use an HREF attribute to tell the web browser which URL to
locate upon activation. Eclipse Forms Hyperlinks have setHref() and getHref()
methods, but they serve a different purpose. In this case, setHref() stores an
Object for use during processing.

 As shown, you can access this Object with the HyperlinkEvent’s getHref()
method. You can also access the Hyperlink’s text with getLabel() and determine
which modifier keys were pressed with getStateMask().

 The following snippet shows how to create a Hyperlink with a FormToolkit
object (ft), and the process of setting and retrieving data using setHref() and
getHref(). In this case, clicking the Hyperlink changes its text to the String
assigned with setHref():

final Hyperlink hl = ft.createHyperlink(form.getBody(), "Click",
 SWT.NULL);
hl.setHref("http://www.eclipse.org/");
hl.addHyperlinkListener(new HyperlinkAdapter()
{
 public void linkActivated(HyperlinkEvent e)
 {

Table 13.5 Methods to implement the HyperlinkListener interface and contained in the Hyper-
linkEvent class

Method Function

IHyperlinkListener.linkActivated() Performs processing if the link is clicked

IHyperlinkListener.linkEntered() Performs processing if the mouse hovers over the
link

IHyperlinkListener.linkExited() Performs processing if the mouse leaves the link

HyperlinkEvent.getHref() Returns the Object specified with setHref()

HyperlinkEvent.getLabel() Returns the text of the Hyperlink that fired the
event

HyperlinkEvent.getStateMask() Returns the modifier keys pressed during activation
Licensed to jromero <jose.romero@galicia.seresco.es>

304 CHAPTER 13

Looking beyond SWT/JFace
 hl.setText((String)e.getHref());
 }
});

By default, Hyperlinks are displayed in black without an underline. You can change
these parameters with the Hyperlink’s setUnderline(boolean) method and the
Control’s setForeground(Color) method. You can also standardize your Hyper-
links’ appearance throughout your form by obtaining a HyperlinkGroup with the
FormToolkit’s getHyperlinkGroup() method and adding each link to the group.

 The HyperlinkGroup object’s methods are listed in table 13.6.

The code in bold in listing 13.7 updates the ExampleView’s createPartControl()
method to provide a Button and a series of Hyperlinks. When activated, these
links update the Button to display the text stored by their setHref() methods.

package com.swtjface.RCPExample;

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.*;
import org.eclipse.ui.forms.*;
import org.eclipse.ui.forms.events.HyperlinkAdapter;
import org.eclipse.ui.forms.events.HyperlinkEvent;
import org.eclipse.ui.forms.widgets.*;
import org.eclipse.ui.part.ViewPart;

public class ExampleView extends ViewPart
{

 public void createPartControl(Composite parent)
 {
 FormToolkit kit = new FormToolkit(parent.getDisplay());
 Form form = kit.createForm(parent);
 ColumnLayout layout = new ColumnLayout();
 form.getBody().setLayout(layout);

Table 13.6 HyperlinkGroup methods for controlling Hyperlink appearance

Method Function

add(Hyperlink) Performs processing if the link is clicked

getLastActivated() Returns the most recently clicked Hyperlink

setBackground(Color) Sets the foreground color of the group’s Hyperlinks

setForeground(Color) Sets the foreground color of the group’s Hyperlinks

setHyperlinkUnderlineMode(int) Determines whether the links should be underlined

Listing 13.7 ExampleView.java (completed)
Licensed to jromero <jose.romero@galicia.seresco.es>

Populating forms with Eclipse Forms widgets 305
 ExpandableComposite exComp = kit.createExpandableComposite
 (form.getBody(), ExpandableComposite.TWISTIE);
 exComp.setText("The Eclipse Forms toolset is:");
 exComp.setExpanded(true);

 FormText ft = kit.createFormText(exComp, true);
 exComp.setClient(ft);
 String html = "<form>UsefulPowerful" +
 "Simple</form>";
 ft.setText(html, true, false);

 Label sep = kit.createSeparator(form.getBody(), SWT.HORIZONTAL);
 final Button button = kit.createButton(form.getBody(),
 "Favorite color?", SWT.NULL);

 HyperlinkGroup hg = kit.getHyperlinkGroup();
 hg.setHyperlinkUnderlineMode(HyperlinkSettings.UNDERLINE_HOVER);
 hg.setForeground(parent.getDisplay().getSystemColor
 (SWT.COLOR_RED));

 String[] cnames = {"red", "green", "yellow", "blue"};
 Hyperlink[] hl = new Hyperlink[4];
 String name;
 for (int i=0; i<4; i++)
 {
 name = "My favorite color is "+cnames[i]+".";
 hl[i] = kit.createHyperlink(form.getBody(), name, SWT.NULL);
 hg.add(hl[i]);

 hl[i].setHref(cnames[i]);
 hl[i].addHyperlinkListener(new HyperlinkAdapter()
 {
 public void linkActivated(HyperlinkEvent e)
 {
 button.setText("My favorite color is "
 + (String)e.getHref() + ".");
 button.redraw();
 }
 });
 }
 }

 public void setFocus()
 {
 }
}

Add
separator

and button

Create HyperlinkGroup;
standardize links’

appearance

Add Hyperlinks to form
and HyperlinkGroups

Store color name
to Hyperlink

Retrieve color
name; update
button text
Licensed to jromero <jose.romero@galicia.seresco.es>

306 CHAPTER 13

Looking beyond SWT/JFace
Figure 13.7 shows the result of the completed ExampleView.
 Now that we’ve completed our discussion of creating workbenches with the

Rich Client Platform, let’s take advantage of its main benefit: standalone applica-
tion development. So far, we’ve created an Eclipse plug-in that can be executed as
an application, but we need to compile it into a form that can be run with a regu-
lar Java compiler.

13.5 Building a standalone RCP application

Having finished the workbench plug-in, it’s time to turn it into a regular Java
application. This straightforward process requires three steps:

1 Export the RCPExample project to a directory.

2 Add the necessary plug-ins to the exported directory.

3 Enter the command to launch the application.

We’ll start with step 1, which involves creating a separate directory to hold the
workbench application and its support files.

13.5.1 Exporting RCPExample to an application directory

Because Eclipse does most of the work, the first task is simple. Follow these steps:

1 To create the directory, go to the Eclipse Workbench and right-click the
project name, com.swtjface.RCPExample. Choose the Export option in the
context menu.

2 Select the Deployable plug-ins and fragments option, and click Next.

3 When the Export Plug-ins and Fragments dialog appears, make sure that
the com.swtjface.RCPExample checkbox is the only one selected.

Figure 13.7
The completed ExampleView, with
expandable containers and hyperlinks
Licensed to jromero <jose.romero@galicia.seresco.es>

Building a standalone RCP application 307
4 Under Export Options, choose to
deploy the plug-in as a directory
structure.

5 Enter a path name for the directory.
In the dialog shown in figure 13.8,
we’ve chosen to export the plug-in
to C:\RCPExample. Click Finish.

Look through the directory that you’ve cre-
ated. You should see a folder called plugins
and, immediately inside that, one called
RCPExample_1.0.0. There, you should find
plugin.xml and RCPExample.jar. You may
not think these two files are sufficient for
the application, and you’re right. Next,
we’ll add plug-ins to provide the work-
bench’s complete functionality.

13.5.2 Adding plug-ins to the application directory

Just as you have to add classpath variables to make an Eclipse-based application
run, you need to add plug-ins to execute a workbench application. Unfortu-
nately, Eclipse won’t do this for you. So, you need to go through your $ECLIPSE/
plugins folder and copy the following directories to the plugins folder in your
application directory:

■ org.eclipse.core.expressions_x.y.z

■ org.eclipse.core.runtime_x.y.z

■ org.eclipse.jface_x.y.z

■ org.eclipse.help_x.y.z

■ org.eclipse.osgi_x.y.z

■ org.eclipse.swt_x.y.z

■ org.eclipse.ui.forms_x.y.z

■ org.eclipse.ui.workbench_x.y.z

■ org.eclipse.ui_x.y.z

■ org.eclipse.update.configurator_x.y.z

Figure 13.8
The dialog settings for exporting
com.swtjface.RCPExample
to a directory
Licensed to jromero <jose.romero@galicia.seresco.es>

308 CHAPTER 13

Looking beyond SWT/JFace
In addition, you need to add the specific SWT plug-in(s) needed for your operat-
ing system and windowing system. In Windows, this is org.eclipse.swt.win32_x.y.z;
for Linux GTK, the plug-in is org.eclipse.swt.gtk_x.y.z. Just to be safe, we recom-
mend copying every plug-in that contains org.eclipse.swt in its title.

 Finally, you need to add the file that lets you execute the application. Find
startup.jar in the top-level Eclipse directory ($ECLIPSE), and copy it to your top-level
application directory. On our Windows system, this directory is C:\RCPExample.

 Once you’re finished with this step, you’re ready to execute the workbench. In
the next section, we’ll show you how this is done.

13.5.3 Executing the application

In the application directory, execute the following command:

java -cp startup.jar org.eclipse.core.launcher.Main –application
RCPExample.ExampleApplication

This should launch the view. If it doesn’t, find the log file in the configuration
directory in your application directory; this file will describe any errors that arose
in processing the application.

 But if the form appears, congratulations! You’ve successfully used the Rich Cli-
ent Platform to build a standalone workbench. This capability will enable you to
build powerful, extensible applications based on the Eclipse framework. And who
knows? Maybe future developers will devote their time to building plug-ins for
your workbench.

13.6 Summary

The Rich Client Platform builds on what we’ve discussed in SWT and JFace and
provides a simple means of building workbenches with editors and views. As
you’ve seen, these can be exported as standalone applications. Similarly, the
Eclipse Forms toolset augments the widgets and containers from SWT/JFace to
enable rapid development of form-based interfaces.

 It seems that each passing month brings a new and incredible capability involv-
ing SWT/JFace. Eclipse.org has just released a new version of its Visual Editor that
lets you build SWT GUIs in a graphical development environment (think MS
Visual Studio). The open-source GCJ tool can turn SWT/JFace code into native
executables, and Sun’s Java Web Start can deploy SWT/JFace applications across
the Internet.
Licensed to jromero <jose.romero@galicia.seresco.es>

Summary 309
 Learning SWT/JFace can be an exciting process, but the new applications are
more exciting still. What will happen when the 3-D programming language,
OpenGL, merges with the rest of the SWT toolset? Will SWT/JFace become exe-
cutable in browsers and revolutionize applets in the same way that it’s revolution-
ized desktop development? What about J2EE?

 One thing’s for certain: The SWT/JFace toolkit is becoming more important as
Eclipse gains in capability and popularity. Those familiar with its development will
have an advantage as new technologies become available. We hope that this book
has provided you with a firm foundation on which to build new and more exciting
graphical applications.

 We, the authors, would like to thank you for sharing your time with us. If you’d
like to contact us for any reason, you can reach us through our publisher at
www.manning.com.
Licensed to jromero <jose.romero@galicia.seresco.es>

Licensed to jromero <jose.romero@galicia.seresco.es>

Creating projects
with SWT/JFace
311

Licensed to jromero <jose.romero@galicia.seresco.es>

312 APPENDIX A

Creating projects with SWT/JFace
Before you can begin coding with SWT and JFace, you need to prepare the Eclipse
development environment to include the two libraries. This appendix focuses on
the steps needed to ensure that your GUI code will compile and execute properly.

 We hold Eclipse in the highest esteem, but if you intend to market your own
SWT/JFace applications, you’ll need to know how to build GUIs that can run without
the Workbench. Therefore, this appendix is divided into two parts. The first outlines
the steps needed to set up an SWT/JFace project in Eclipse. The second shows how
to accomplish the same purpose using the Java SDK (Java, Javac, and so on).

A.1 Eclipse-based SWT/JFace development

All the code samples in this book are part of one large project, WidgetWindow, and
each chapter adds classes in a separate package. Therefore, for this book, you
need to perform the process outlined here only once.

A.1.1 SWT and JFace projects in Windows

In writing this book, we have assumed that you’re already familiar with Eclipse.
But a brief review of creating projects will be helpful if you are out of practice. In
particular, this section outlines the process of setting up the WidgetWindow project
in Eclipse. For a full description of Eclipse projects, we recommend Eclipse in
Action by David Gallardo, Ed Burnette, and Robert McGovern (Manning, 2003).

 The steps for setting up an SWT/JFace Eclipse project in Windows are listed in
table A.1.

Table A.1 Preparing an SWT/JFace application in Eclipse for Windows

Goal Procedure

1 Acquire the
necessary
software
tools.

1. If it isn’t already available, download the Java SDK (ver. 1.2.2 or later) from
http://java.sun.com. Install the SDK in your operating system.

2. Download the Eclipse SDK (ver. 2.0 or later) from Eclipse.org at
www.eclipse.org/downloads/index.php. No installation is necessary.

3. If you’re interested, download the source code for SWT from Eclipse.org by scroll-
ing down the same page in the Eclipse.org site.

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

Eclipse-based SWT/JFace development 313
2 Create the
Widget-
Window
project.

1. Start the Eclipse IDE, click the File option in the main menu, and select
New->Project from the drop-down menus that appear.

2. In the first page of the New Project Wizard, click Java in the left pane and Java
Project in the right pane. Click Next.

3. Enter WidgetWindow as the project name and leave the default option checked.
Click Finish. Doing so creates a WidgetWindow project and places it in the Wid-
getWindow directory.

4. In the Workbench, right-click the new project and select the New->Package
option from the drop-down menu. Enter a package name such as com.swtj-
face.Ch2. Click Finish.

continued on next page

Table A.1 Preparing an SWT/JFace application in Eclipse for Windows (continued)

Goal Procedure
Licensed to jromero <jose.romero@galicia.seresco.es>

314 APPENDIX A

Creating projects with SWT/JFace
3 Start the
process of
creating
classpath
variables
for the
SWT/JFace
libraries.

1. Right-click the WidgetWindow project and choose Properties, the final option in
the pull-down menu. Click the Java Build Path option at left on the screen. You’ll
now tell the Java compiler where to find the necessary SWT/JFace files.

2. Click the Libraries tab just below the Java Build Path title. Click the Add Variable
button. These variables will represent the libraries (*.jar) you need for compilation.
In the New Variable Classpath Entry dialog, click the Configure Variables button.

3. When the Preferences window appears, click New. Enter SWT_LIB as the vari-
able name, and click File to search for its corresponding library.

4. In the dialog that appears, search the directory to find $ECLIPSE/plugins/
org.eclipse.swt.win32_x.y.z/ws/win32/swt.jar. Select this file and click Open.
Click OK in the New Variable Entry dialog, and the SWT_LIB variable will join the
list of classpath variables.

continued on next page

Table A.1 Preparing an SWT/JFace application in Eclipse for Windows (continued)

Goal Procedure
Licensed to jromero <jose.romero@galicia.seresco.es>

Eclipse-based SWT/JFace development 315
4 Create vari-
ables for the
libraries
needed for
JFace.

1. Use the procedure described previously to create a variable named JFACE_LIB
for the jface.jar (or jface_new.jar) file at $ECLIPSE/plugins/
org.eclipse.jface_x.y.z/.

2. Create a variable named BOOT_LIB for the runtime.jar file located at $ECLIPSE/
plugins/org.eclipse.core.boot_x.y.z/.

3. Create a variable named RUNTIME_LIB for the runtime.jar file located at
$ECLIPSE/plugins/org.eclipse.core.runtime_x.y.z/.

4. Create a variable named WORKBENCH_LIB for the workbench.jar (or
workbench_new.jar) file at $ECLIPSE/plugins/org.eclipse.ui.workbench_x.y.z/.

5. Click OK in the Preferences window.

5 Add these
variables to
the Widget-
Window
project.

1. In the Workbench, right-click on the WidgetWindow project, and select the Prop-
erties option.

2. Select the Java Build Path option in the left pane, and click the Libraries tab on
the right pane.

3. Click the Add Variable button. In the New Variable Classpath Entry box, select
the JFACE_LIB, BOOT_LIB, RUNTIME_LIB, and WORKBENCH_LIB variables.
Click OK after each.

4. Use the procedure described previously to create a variable named JFACE_LIB
for the jface.jar (or jface_new.jar) file at
$ECLIPSE\plugin\org.eclipse.jface_x.y.z\.

5. Create a variable named BOOT_LIB for the runtime.jar file located at
$ECLIPSE\plugins\org.eclipse.core.boot_x.y.z\.

6. Create a variable named RUNTIME_LIB for the runtime.jar file located at
$ECLIPSE\plugins\org.eclipse.core.runtime_x.y.z\.

7. Create a variable named WORKBENCH_LIB for the workbench.jar (or
workbench_new.jar) file at $ECLIPSE\plugins\org.eclipse.ui.workbench_x.y.z\.

8. Click OK in the Preferences window.

continued on next page

Table A.1 Preparing an SWT/JFace application in Eclipse for Windows (continued)

Goal Procedure
Licensed to jromero <jose.romero@galicia.seresco.es>

316 APPENDIX A

Creating projects with SWT/JFace
A.1.2 SWT and JFace projects in *nix

Table A.2 shows the steps needed to prepare a project to use the SWT/JFace
toolset. Although they’re geared for Linux and GTK, the procedures should be
similar for any *nix platform and windowing system.

6 Add the
native graph-
ics library to
the project.

1. To enable communication between SWT/JFace commands and the operating
system calls, you need to make the SWT native graphics file available. It’s
called swt-win-nnnn.dll, and it’s located at $ECLIPSE/plugins/
org.eclipse.swt.win32_x.y.z/os/win32/x86.

2. Once you’ve found the graphics library, you need to make sure the application
launcher can use it. The documentation lists a number of ways to do this, but
we’ve found that adding a copy to the $JAVA/jre/bin directory works best.

Other methods, which can be less reliable, include the following:

Option 1: Copy and paste these files directly in the WidgetWindow project.
Option 2: Include the native library in any directory pointed to by the

java.library.path variable. This variable, among others, can be seen by
clicking Help->About Eclipse Platform->Configuration Details.

Option 3: Go to Control Panel->System->Advanced->Environmental Variables and
update the PATH variable with the directory containing the library file.

Table A.1 Preparing an SWT/JFace application in Eclipse for Windows (continued)

Goal Procedure

Table A.2 Preparing an SWT/JFace application in Eclipse for *nix

Goal Procedure

1 Acquire the
necessary
software
tools.

1. If it isn’t already available, download the Java SDK (ver. 1.2.2 or later) from
http://java.sun.com. Install the SDK in your operating system.
2. Download the Eclipse SDK (ver. 2.0 or later) from Eclipse.org at
www.eclipse.org/downloads/index.php.
3. Unzip the file. The resulting directory will be called $ECLIPSE.
4. If you’re interested, download the source code for SWT from Eclipse.org by
scrolling down the same page in the Eclipse.org site.

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

Eclipse-based SWT/JFace development 317
2 Create the
WidgetWind

ow project.

1. Start the Eclipse IDE, click the File option in the main menu, and select
New->Project from the drop-down menus that appear.

2. In the first page of the New Project Wizard, click Java in the left pane and Java
Project in the right pane. Click Next.

3. Enter WidgetWindow as the project name and leave the default options
checked. Click Finish. Eclipse will create a WidgetWindow project and add it to
the WidgetWindow directory.

4. In the Workbench, right-click the new project and select the New->Package
option from the drop-down menu. Enter a name for your package, such as
com.swtjface.Ch2. Click Finish.

continued on next page

Table A.2 Preparing an SWT/JFace application in Eclipse for *nix (continued)

Goal Procedure
Licensed to jromero <jose.romero@galicia.seresco.es>

318 APPENDIX A

Creating projects with SWT/JFace
3 Start the pro-
cess of creat-
ing classpath
variables
for the
SWT/JFace
libraries.

1. Right-click the WidgetWindow project and choose Properties. Click the Java
Build Path option at the left of the screen. You’ll now tell the Java compiler
where to find the necessary SWT/JFace files.

2. Click the Libraries tab just below the Java Build Path title. Click Add Variable.
These variables will represent the libraries (*.jar) you need for compilation. In
the New Variable Classpath Entry dialog, click the Configure Variables button.

3. When the Preferences window appears, click New button. Enter SWT_LIB as
the variable name, and click File to search for its corresponding library.

4. In the dialog that appears, search the directory to find $ECLIPSE/plugins/
org.eclipse.swt.gtk_x.y.z/ws/gtk/swt.jar. Select this file and click OK. Click OK
in the New Variable Entry dialog, and the SWT_LIB variable will be added to the
list of classpath variables.

5. For Linux/GTK, repeat steps 3 and 4 to add the SWT_PI variable, whose
swt_pi.jar file is located at $ECLIPSE/plugins/org.eclipse.swt.gtk_x.y.z/ws/
gtk/swt_pi.jar.

For Linux/Motif, repeat steps 3 and 4 to add the SWT_GTK variable, whose swt-
gtk.jar file is located at $ECLIPSE/plugins/org.eclipse.swt.motif_x.y.z/ws/gtk/
swt_gtk.jar.

continued on next page

Table A.2 Preparing an SWT/JFace application in Eclipse for *nix (continued)

Goal Procedure
Licensed to jromero <jose.romero@galicia.seresco.es>

Eclipse-based SWT/JFace development 319
4 Create addi-
tional vari-
ables for the
libraries
needed for
JFace.

1. Use the procedure described earlier to create a variable named JFACE_LIB for
the jface.jar (or jface_new.jar) file at $ECLIPSE/plugins/org.eclipse.jface_x.y.z/.

2. Create a variable named BOOT_LIB for the runtime.jar file located
at$ECLIPSE/plugins/org.eclipse.core.boot_x.y.z/.

3. Create a variable named RUNTIME_LIB for the runtime.jar file located at
$ECLIPSE/plugins/org.eclipse.core.runtime_x.y.z/.

4. Create a variable named WORKBENCH_LIB for the workbench.jar (or
workbench_new.jar) file at $ECLIPSE/plugins/org.eclipse.ui.workbench_x.y.z/.

5. Once finished, click OK in the Preferences window.

5 Add these
variables to
the Widget-
Window
project.

1. In the New Variable Classpath Entry dialog, select each of the variables you’ve
created—SWT_LIB, SWT_PI_LIB (or SWT_GTK), JFACE_LIB, BOOT_LIB,
RUNTIME_LIB, and WORKBENCH_LIB—and click OK.

2. Click OK to return to the Workbench.

continued on next page

Table A.2 Preparing an SWT/JFace application in Eclipse for *nix (continued)

Goal Procedure
Licensed to jromero <jose.romero@galicia.seresco.es>

320 APPENDIX A

Creating projects with SWT/JFace
6 Add the
native graph-
ics file (files)
to the
project.

1. To provide communication between the SWT/JFace commands and the operat-
ing system calls, you need to make the SWT native graphics files available. The
first step involves finding them. The locations for these files are as follows:

Platform
Native library file
Library pathname

Linux GTK
libswt-gtk-nnnn.so
libswt-gtk-pi.nnnn.so
libswt-gnome-gtk-nnnn.so
org.eclipse.swt.gtk_x.y.z/os/linux/x86

Linux Motif
libswt-motif-nnnn.so
libswt-gtk-motif.nnnn.so
libswt-gnome-gtk-nnnn.so
libswt-motif-nnnn.so
libswt-kde-motif.nnnn.so
org.eclipse.swt.motif_x.y.z/os/linux/x86

Solaris
libswt-cde-motif-nnnn.so
org.eclipse.swt.photon_x.y.z/os/qnx/x86

AIX Motif
libswt-motif-nnnn.so
org.eclipse.swt.motif_x.y.z/os/ppc

PhotonQNX
libswt-photon-nnnn.so
org.eclipse.swt.photon_x.y.z/os/qnx/x86

2. Once you’ve found the necessary file or files, you need to make sure the appli-
cation launcher can find them. The documentation lists a number of ways to do
this, but we’ve found that adding the files to the /usr/lib directory works best.
This isn’t the safest thing to do, but it’s reliable.

Other methods, which can be less reliable, include the following:

Option 1: Copy and paste these files directly in the WidgetWindow project.
Option 2: Include the native library in any directory pointed to by the

java.library.path variable. This variable, among others, can be seen by
clicking Help->About Eclipse Platform->Configuration Details.

Option 3: Make sure the LD_LIBRARY_PATH environmental variable contains the
directory in which these library files are located.

Table A.2 Preparing an SWT/JFace application in Eclipse for *nix (continued)

Goal Procedure
Licensed to jromero <jose.romero@galicia.seresco.es>

Eclipse-based SWT/JFace development 321
A.1.3 SWT in OS X

Since the advent of OS X, the Macintosh has become popular as a platform for
Java development. In fact, much of this book and many of the examples were orig-
inally developed on OS X. However, due to SWT’s use of native libraries, running
an SWT application on OS X is more complicated than the instructions for Win-
dows and Linux described in the previous sections. This section addresses the
steps necessary to get an SWT application running on OS X; the rest of this section
assumes that you’re using a Mac.

 If you examine your Eclipse installation, you’ll notice that instead of the single
executable file that is found on Windows or Linux, there is a directory called
Eclipse.app. Naming the directory with an .app extension and conforming to a
certain specification causes the operating system to treat the directory as an appli-
cation to be launched when double-clicked. To run your own SWT application,
you’ll need to set up the same directory structure. We recommend using Ant or
some other tool to perform this step as part of your standard build process.

 Although OS X supports launching Java applications by double-clicking a .jar
file, in order to properly hook an SWT application into the native event queue you
need to launch your code through a small wrapper program. This executable file
is called java_swt, and it can be found at $ECLIPSE_HOME/Eclipse.app/Contents/
MacOS/java_swt. This program will launch first and will load your application’s
.class files after it has set things up for you.

 We’ll assume you’re assembling an application named Foo. Follow these steps:

1 Create a directory called Foo.app, which will eventually hold your complete
application.

2 After you’ve built a .jar containing your application’s files as usual, copy it,
along with the SWT/JFace .jar files and any other necessary third-party librar-
ies, to Foo.app/Contents/Resources/Java. The SWT native libraries (files
ending in .jnilib) should be put in Foo.app/Contents/Resources/Java/dll.
Finally, copy the java_swt executable to Foo.app/Contents/MacOS.

3 Once the file is copied, you must also make sure the executable permis-
sion is set on the file. If you’re using Ant, remember that the copy task
doesn’t preserve file permissions. If your application doesn’t launch when
clicked, and there are no error messages, check that the permissions are
set correctly.
Licensed to jromero <jose.romero@galicia.seresco.es>

322 APPENDIX A

Creating projects with SWT/JFace
4 Once you’ve placed your application’s files, you need to create couple of
additional files describing your application to the operating system. Both
files belong in Foo.app/Contents:

■ The file PkgInfo should contain a single line of text. If you’ve regis-
tered as an Apple developer and received a creator code for your
application, use it.

■ A bit more complicated is the Info.plist file, which contains XML
describing various aspects of your application. We don’t have space to
discuss the format of this file in detail here; a working version is available
from this book’s website, and you can easily customize it for your needs.
Of particular note are the CFBundleExecutable entry, which tells the
OS to execute java_swt when the application is clicked, and an entry
allowing you to specify a file containing the icon that should be dis-
played for your application. At the bottom of the file is an entry that
describes the environment to be used when the JVM is launched.
Change the ClassPath attribute to name the .jar files used by your own
application, and change the MainClass attribute so it names the class
containing your application’s main() method.

These instructions seem complicated, but it’s fairly simple to get things up and
running, especially if you look at a working example. Additionally, these tasks are
all easily scriptable using Ant, so they can be automated.

A.2 SWT/JFace in standalone applications

Even without the Eclipse platform, the process of building an SWT/JFace project
is straightforward. The only real work involves telling the Java compiler where to
find the libraries. The steps are listed in table A.3.

Table A.3 Preparing an SWT/JFace application for standalone development

Goal Procedure

1 Add the neces-
sary SWT/JFace
library files to
the Java class-
path.

1. Add the SWT library or libraries (described earlier) to your compilation
path. Then, add the library files needed for JFace.

2. Add the -Djava.library.path= option to the compiler command fol-
lowed by the directory containing the native graphics library. The path to
this library was described earlier.

3. As a Windows example, the compiler command would have the following
option: –Djava.library.path=

 C:\eclipse\plugins\org.eclipse.swt.win32
3.0.0\os\win32\x86.
Licensed to jromero <jose.romero@galicia.seresco.es>

SWT/JFace in standalone applications 323
With the WidgetWindow project set up, you can begin building classes and display-
ing their GUIs. Fortunately, programming with the SWT and JFace libraries is sim-
pler than preparing the Workbench to compile their applications.

Licensed to jromero <jose.romero@galicia.seresco.es>

OLE and ActiveX
in SWT/JFace
324

Licensed to jromero <jose.romero@galicia.seresco.es>

COM simplified 325
In earlier chapters, we explored how SWT is built in layers: a small library of C
code built with Java Native Interface (JNI) interacts with the underlying operating
system to provide the necessary building blocks for more elaborate capabilities.
One of the design goals of the native layer was for it to be very small, often provid-
ing simple wrappers around native APIs. Using this novel approach, the OTI/IBM
team has been able to give programmers unprecedented access to the native capa-
bilities of all supported platforms. In so doing, the team chose not limit itself to
the features common to all platforms. Among these platforms, Microsoft Windows
offers a unique capability that has appealed to Visual Basic programmers for many
years: reusable binary objects, otherwise known as COM objects.

 SWT/JFace programmers haven’t been left out; this appendix covers the
nature and depth of COM support in SWT. Specifically, you’ll see how you can
include ActiveX controls and OLE documents inside your applications in just a
few SWT method calls. So that you can fully take advantage of this feature, we’ll
first review some basic COM features and general principles.

B.1 COM simplified

Microsoft designed the Component Object Model (COM) to try to solve a simple
problem: how to reuse binary objects. Previous solutions based solely on shared
libraries (Dynamic Link Libraries [DLLs]) showed that they weren’t practical for
C++ programming and that managing their proliferation on a given system was in
itself a major cause of application problems. In the process of designing a replace-
ment solution, Microsoft felt it should also address a new class of problems for the
time: location transparency.

 In the end, the new technology was built to provide a unique solution for situ-
ations using three distinct types of objects:

■ In-process objects share the same address space as the client code using them
(the code is inside DLLs).

■ Local out-of-process objects are located on the same computer as the client
code but reside in a separate address space (inside a separate EXE file).

■ Remote objects are located inside an EXE or DLL on a different machine and
are accessible via remote procedure calls.

These are important concepts for anyone interested in doing COM with SWT/JFace.
Licensed to jromero <jose.romero@galicia.seresco.es>

326 APPENDIX B

OLE and ActiveX in SWT/JFace
B.1.1 IUnknown/IDispatch

COM is based on the notion of interfaces. Interfaces allow the logical grouping of
functionalities as well as their discovery at runtime by querying the objects them-
selves. Each interface has an identifier (IID) that uniquely defines both the meth-
ods available and their physical placement relative to one another in memory.
Physically, interfaces are organized into vtables (arrays of function pointers). The
notion of physical ordering of these functions is crucial, as you’ll see when we
investigate the details of SWT programming. COM makes widespread usage of Glo-
bally Unique Identifiers (GUIDs). Specific GUID uses include object identifiers, type
library identifiers, and interface identifiers. The algorithm for generating these
IDs is beyond the scope of this book, but it’s described on the Microsoft Develop-
ers Library web site (msdn.microsoft.com).

 The way COM interfaces are versioned may surprise Java programmers: An
interface that has been published can’t be modified. Instead, it must be extended
via an entirely new interface. According to Microsoft’s best practices, the new
interface should have the same base name followed by a version number that
increases for each new version. For example, when Microsoft needed to give users
more control over the web browser ActiveX control, it extended the original
IWebBrowser interface with a richer IWebBrowser2.

 Unlike the Java model, where class files contain enough metadata to allow the
reflection API to return a complete description of objects and methods, the COM
runtime discovery model is based on the existence of IUnknown, a core interface
that all others extend. Given a specific GUID, QueryInterface returns a pointer to
the interface implementation. The two other IUnknown functions, AddRef and
Release, are responsible for tracking the number of references to the interface
and returning all allocated resources to the operating system. Reference counting
is an important aspect of COM programming and is the cause of many bugs that
are difficult to identify.

 SWT fully adheres to Microsoft’s guidelines for reference counting, but some-
times you’ll need to remember these simple rules: Clients are responsible for call-
ing AddRef and Release on every interface they query; and both calls must be
made on the same interface reference, to allow an object to track the references
on a per-interface basis rather than for the whole object. These important func-
tions are listed in table B.1.
Licensed to jromero <jose.romero@galicia.seresco.es>

COM simplified 327
Using this simple design, and with the aid of a small runtime library that provides
support for registering, discovering, and instantiating objects, it’s possible to start
creating powerful reusable binary entities using a language like C or C++. Objects
can then be segregated into families based on their implementing predefined sets
of interfaces, all deriving from the core IUnknown. Over the years, Microsoft has
defined several such families: scriptable objects, ActiveX controls, active docu-
ments, and so on. Some of these definitions have gradually evolved toward fewer
mandatory interfaces and more optional behaviors.

 Although a powerful concept, this interface proved too complicated for high-
level languages like VBScript, JScript, and the first versions of Visual Basic. To allow
these interpreter-based languages (and other scripting languages) to access COM
objects, Microsoft defined another key COM interface. IDispatch allows object
capabilities to be queried by name rather than by interface identifier. Like all the
other COM interfaces, IDispatch extends IUnknown. Each method that needs to be
publicized is given a unique dispatch identifier that can be used to invoke it. COM
automation (or just automation) is the process of letting client code interface with a
COM object using the IDispatch-based discovery and invocation mechanism. The
flexibility it provides comes at a price: the automation querying and invocation pro-
cess is significantly slower that the default binary binding used for non-automation
calls. The functions provided by this interface are shown in table B.2.

Table B.1 Functions of the IUnknown COM interface

IUnknown function Description

AddRef Increases the reference count for this interface

QueryInterface Returns pointers to supported interfaces

Release Decreases the reference count for this interface

Table B.2 Functions of the IDispatch COM interface

IDispatch function Description

AddRef Increases the reference count for this interface

GetIDsOfNames Maps a single member and an optional set of argument names to a
corresponding set of integer dispatch IDs (DISPIDs)

GetTypeInfo Gets the type information for an object

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

328 APPENDIX B

OLE and ActiveX in SWT/JFace
SWT provides methods for two of these functions. Provided with an optional list of
method names, GetIDsOfNames() returns a list of matching dispatch IDs
(DISPIDs). These can be used in subsequent calls to the Invoke() method to trig-
ger their execution. Using this simple mechanism, objects can expose both meth-
ods and properties. COM recognizes four reasons to call Invoke():

■ To call a method (DISPATCH_METHOD)

■ To retrieve the value of a property (DISPATCH_PROPERTYGET)

■ To modify the value of a property (DISPATCH_PROPERTYPUT)

■ To modify the value of a property that is a reference to another object
(DISPATCH_PROPERTYPUTREF)

NOTE You may wonder why there’s no way to get the value of a property that is a
reference to an object. This situation is covered by DISPATCH_PROPERTYGET
via the fact that all automation methods manipulate a universal data type
called Variant. A variant is a unique way to represent all the possible data
types supported by automation-capable languages. You can find the na-
ture of the content of a given variant by ORing predefined constants. Pos-
sible contents include a simple string (BSTR in COM parlance), a
primitive type, or a reference to an object. Object references come in two
flavors: a reference to an IUnknown and a reference to an IDispatch in-
stance. Variants are a rich data type, and at this point SWT supports only a
portion of the complete specification. Notably absent is support for Safe-
Arrays (the Visual Basic way of dealing with arrays) and user-defined
types (the Visual Basic types).

B.1.2 Object hosting

The ability to reuse the capabilities of an external object by embedding the object
directly inside your application lies at the heart of client-side COM programming.
COM provides two types of user experiences for interacting with embedded

GetTypeInfoCount Retrieves the number of type information interfaces that an object pro-
vides (either 0 or 1)

Invoke Provides access to properties and methods exposed by an object

QueryInterface Returns pointers to supported interfaces

Release Decreases the reference count for this interface

Table B.2 Functions of the IDispatch COM interface (continued)

IDispatch function Description
Licensed to jromero <jose.romero@galicia.seresco.es>

COM simplified 329
objects. In the first scenario, the embedded object retains its own interface that
users see in a window that’s separate from the main application window. In the sec-
ond scenario, known as in-place activation, the user can interact with the embedded
object without leaving the container document or application. In this scenario, the
container and the embedded object collaborate to provide a composite menu bar
where commands and features from both applications are available at the same
time. The richer of the two scenarios, in-process activation is also more compli-
cated to program, because it requires (among other things) that mouse and key-
board events be routed properly. COM allows both local servers (standalone EXEs
like Microsoft Word) and in-process servers (DLLs) to be in-place-activated.

 In both scenarios, the container must implement a number of predefined
COM interfaces in order for the embedded object to communicate with it.
Microsoft refers to these mandatory interfaces as sites. The complete description
of all the site interfaces and the features they provide is beyond the scope of this
book. In most cases, the interfaces implemented by the SWT programmers are
enough; however, in some situations you’ll need to extend one of the default site
classes and implement additional site interfaces. Hosting an ActiveX control ver-
sus an OLE document requires the implementation of two sets of COM interfaces,
described in tables B.3 and B.4. One of the examples later in this appendix shows
how to create a custom container by extending an existing one.

Table B.3 Document site interfaces

Interface Description

IAdviseSink Receives general notifications from the embedded object

IOleClientSite Manages general communication with the container

IOleInPlaceSite Manages in-place activation of the hosted control

IOleDocumentSite Provides a means to activate a hosted document

IUnknown The fundamental COM interface

Table B.4 Control site interfaces

Interface Description

IAdviseSink Receives general notifications from the embedded object

IOleControlSite Manages general communication with the container

IOleInPlaceSite Manages in-place activation of the hosted control

IUnknown The fundamental COM interface
Licensed to jromero <jose.romero@galicia.seresco.es>

330 APPENDIX B

OLE and ActiveX in SWT/JFace
B.1.3 Object instantiation

For the most part, instantiating a COM object is a straightforward task. The simplest
case involves a single call to CoCreateInstance(). However, more complex object-
instantiation strategies involve calling OleCreate() and passing it an instance of
IStorage that represents either a new document or one that you intend to edit; or
calling CoGetClassObject() to obtain an instance of an ActiveX IObjectFactory or
IObjectFactory2, and then calling their respective CreateInstance()or CreateIn-
stanceLic() method to obtain the new object’s IUnknown instance.

 You use the latter approach to instantiate ActiveX controls that need a license
key to operate. Microsoft added licensing to ActiveX controls in order to prevent
programmers from creating their own applications by reusing the controls redis-
tributed with other applications; you had to purchase the development version of
the controls to use them. SWT contains a default implementation of these instanti-
ation strategies, but you may need to replicate them inside your code to address
current limitations or bugs in SWT. The beauty of the SWT COM library layering is
that you’ll be able to do so easily.

B.1.4 Event handling

The COM object embedding model includes a rich mechanism for dispatching
and handling events. It’s based on several simple notions. A sink interface is an
interface exposed by a COM client; it’s called by a COM server as a callback for the
purpose of sinking (handling) event notifications. In order for a server to dispatch
events to a client’s sink interface, the client code needs a process to pass a sink ref-
erence to the server. This is done via server connection points. A connection point is
the server-based mechanism that handles notification to the client’s sink inter-
face. A server exposes all of its connection points by implementing the IConnec-
tionPointContainer interface. Clients call FindConnectionPoint(), passing it the
GUID of an interface to get a reference to the IConnectionPoint exposed by the
server for this sink interface. IConnectionPoint contains the Advise() and Unad-
vise() methods to start and stop the flow of incoming events on the sink inter-
face, respectively.

B.1.5 Threading model

The COM threading model is based on the notion of apartments. An apartment is
an arbitrary construct meant to help the COM runtime library make the right
decisions about how to route method calls to a COM object. The simplest of all
scenarios is the single-threaded apartment (STA) model where the runtime takes care
Licensed to jromero <jose.romero@galicia.seresco.es>

The SWT COM library 331
of all concurrency problems (which happens when multiple threads in the client
code call the same method on the same object at the same time) transparently.
This is done by creating a hidden window and using Windows’ default message-
passing mechanism to ensure that all the method calls are serialized.

 In the multithreaded apartment (MTA) model, each COM object must be multi-
thread-aware to ensure that no data corruption can arise as the result of two simul-
taneous calls from two distinct client threads. In recent versions of Windows,
Microsoft has added more threading models that are beyond the scope of this book.

 Like Swing, SWT doesn’t contain any synchronization code to guard against
resource corruption due to concurrency. The rationale behind this decision is
that in most cases, the performance trade-off is too great to be justifiable. Conse-
quently, synchronization is entirely your responsibility. To avoid introducing syn-
chronization code, the SWT team chose to support only the STA threading model
where no special code is required; all synchronization issues are handled by the
COM runtime.

B.2 The SWT COM library

True to the general philosophy adopted for SWT, support for COM comes in the
form of a minimal amount of C code coupled with a series of Java classes building
on these foundations. The interesting side effect is that SWT COM programming is
very similar to C++ COM programming. This can be a double-edged sword. The
bonus is that whenever you’re in doubt about how to use a specific SWT feature,
you can look for help in the Microsoft documentation. The trade-off is that you’ll
sometimes be looking at unusual and nonintuitive Java code. As you get more
familiar with code from both languages, you’ll come to enjoy the outcome and
forget about the means.

 In the following sections, we’ll cover the parts of the SWT COM library shown
in figure B.1. We’ll begin with a tour of the native language part of the library and
then look at the user-oriented Java classes that use it. The OleEventTable, Ole-
EventSink, and OlePropertyChangeSink classes are only visible inside the
org.eclipse.swt.ole.win32 package.

B.2.1 The native language support library

When you look at figure B.1, don’t be fooled by the names of the packages. The
code inside org.eclipse.swt.internal.ole.win32 isn’t just for SWT developers,
and you’ll often find yourself referring to it for advanced SWT COM applications.
Licensed to jromero <jose.romero@galicia.seresco.es>

332 APPENDIX B

OLE and ActiveX in SWT/JFace
The org.eclipse.swt.internal.ole.win32.COM class
As we discussed, the COM threading model supports several options. The COM
specification mandates that every thread that wants to use COM must first call the
runtime to specify a threading model. SWT performs this mandatory initialization
for you inside a static block located in the COM class. The default threading model
is apartment-threaded; therefore you don’t have to do anything special to ensure
that all calls to embedded COM objects are serialized.

 The class has no constructor or instance members, but it contains a long
series of constants and static methods. The static methods are mostly native
methods named after their C equivalents. Their role is to expose the COM run-
time to Java. The method signature is often identical to the original Windows

Figure B.1 Core components of the SWT COM library
Licensed to jromero <jose.romero@galicia.seresco.es>

The SWT COM library 333
API. So, when in doubt, look at the original Microsoft documentation for expla-
nations and examples.

 Half the constants are instances of another class from the same package. SWT
stores objects and interfaces unique identifiers using the GUID class For the most
part you need not concern yourself with GUID because it contains no methods.
However, it has an interesting public static final field named sizeof that con-
tains the size of the structure in bytes. The COM SWT code uses this pattern in all
classes that map to a native structure (more on this in section B.2.2).

 Chances are, all the interfaces you’ll ever need to access are defined in COM as
public constants. The following examples were taken from the source code and
show how you should define any interface not already included:

public static final GUID IIDIUnknown =
 IIDFromString("{00000000-0000-0000-C000-000000000046}");
public static final GUID IIDIDispatch =
 IIDFromString("{00020400-0000-0000-C000-000000000046}");

IIDFromString() returns an instance of GUID based on the string representation
of an interface identifier. Similarly, CLSIDFromProgID() and CLSIDFromString() let
you find an object’s GUID from the same string representation or from the object’s
program identifier. To instantiate a COM object, you need to find either of these
two values. The IsEqualGUID() method lets you compare two GUIDs for identity,
which you need to do to implement the QueryInterface() when creating custom
COM interfaces.

 The COM class also contains the low-level SWT code to access native drag and
drop: the RegisterDragDrop(), RevokeDragDrop(), and DoDragDrop() methods.
The latest version of SWT introduced a new cross-platform level of abstraction that
uses this code. More interestingly, the class lets you manipulate OLE storage files.
StgCreateDocfile() allows you to create a new file; StgIsStorageFile() lets you
test if a file is an OLE storage file; a call to ReleaseStgMediums() is necessary to
release the memory allocated by COM to an open storage file; and StgOpenStor-
age() is used to open a storage file.

 If you’re familiar with Visual Basic, you know how simple it is to deal with
strings. This simplicity comes at a price for people programming with lower-level
languages. OLE strings, otherwise known as BSTR, can be manipulated using the
SysAllocString(), SysFreeString(), and SysStringByteLen() methods. Some-
times COM requires that newly allocated memory be placed under the control of
its runtime (often the case when dealing with automation) to allow sharing of that
memory between different process address spaces. You can use CoTaskMemAlloc()
Licensed to jromero <jose.romero@galicia.seresco.es>

334 APPENDIX B

OLE and ActiveX in SWT/JFace
and CoTaskMemFree(), respectively, to allocate or free blocks of memory compati-
ble with COM.

 Several of the methods from the COM class come with multiple prototypes, due
to the strongly typed nature of Java. For example, the MoveMemory() method
comes in 16 different flavors, one for each of the main types of COM structures
you may have to manipulate. Keep in mind that using them takes you one step
closer to function pointers (and therefore dangerously closer to memory leaks)
than the makers of Java intended.

 The most unconventional part of the COM class is a series of VtblCall() native
static methods with different parameter combinations. These cover the method
signatures for all the COM interfaces supported by SWT. The first two parameters
are the index of the method that needs to be called in the vtable followed by the
address of the table. The native code uses the index to find the address of the
method to call inside the vtable and calls it with the remaining parameters. In the
following example, int COM.VtblCall(int fnNumber, int ppVtbl, GUID arg0,
int[] arg1) is called to implement the QueryInterface() method from IUnknown:

public int QueryInterface(GUID riid, int ppvObject[]) {
 return COM.VtblCall(0, address, riid, ppvObject);
}

The org.eclipse.swt.internal.ole.win32.COMObject class
Although it isn’t composed of native methods, the COMObject class belongs to the
lower level of the COM library. Its purpose is to provide a Java representation of
the vtable at the heart of every COM object. The class contains 80 public methods
with the same signature—public int methodXX(int[] args)—and an equal num-
ber of matching callbacks prototyped static int callbackXX(int[] callback-
Args). Each method is a placeholder for the matching method inside the vtable of
the COM interface.

 By default, the 80 methodXX() methods return a constant called COM.E_NOTIMPL
that tells the caller that the method isn’t implemented. This avoids COM errors
and gives you room to implement complex COM interfaces. All COM interfaces
extend one another to form a hierarchy, and each level of inheritance translates
into an extension of the methods in the vtable. Provided that some of the stan-
dard COM interfaces are two or three levels down from IUnknown, the creators of
SWT have tried to anticipate future growth.

 The class constructor is an array of int. Its size is the number of methods in
the vtable, and its content is the number of parameters each vtable method takes.
Be sure you don’t make any mistakes when you create this array, or you’ll be in for
Licensed to jromero <jose.romero@galicia.seresco.es>

The SWT COM library 335
difficult debugging and crashes. Internally, the constructor uses this information
to create an array of callbacks, one for each of the methods in the vtable. The
native layer uses these callbacks to invoke Java code when COM needs to invoke a
method from your interface.

Program identifiers revisited
Table B.5 contains the program identifiers for several common applications you
may encounter in your exploration of the SWT COM library.

If you don’t find the application you’re looking for, open the standard Microsoft Reg-
istry Editor that comes with Windows and look under the key My Computer\
HKEY_CLASSES_ROOT. It contains a list of IDs for all the applications installed on your
machine. Figure B.2 shows the program ID for the Web Browser control (the reus-
able part of Internet Explorer). Unless you have a specific reason not to do so, it’s
good practice to leave the terminating version number out of the name. COM uses
the CurVer key to find out which version is current and uses it automatically.

 Microsoft created this mechanism to allow the transparent migration of appli-
cations. However, some vendors don’t follow this guideline; in this case you’ll have

Table B.5 Common program identifiers

Program identifier Description

Shell.Explorer Internet Explorer

Word.Application Microsoft Office Word application (as an out-of-process server)

Word.Document Microsoft Office Word document

Excel.Application Microsoft Office Excel application (as an out-of-process server)

Excel.Sheet Microsoft Office Excel document

Excel.Chart Microsoft Office Excel chart

PowerPoint.Show Microsoft Office PowerPoint presentation

Visio.Drawing Visio document

PDF.PdfCtrl.5 Adobe Acrobat PDF Reader 5.0

MediaPlayer.MediaPlayer Windows Media Player

Agent.Control Microsoft Agent control

DHTMLEdit.DHTMLEdit DHTML Edit control for IE5

InternetShortcut Internet shortcut
Licensed to jromero <jose.romero@galicia.seresco.es>

336 APPENDIX B

OLE and ActiveX in SWT/JFace
to keep the version number as an integral part of the name (see Adobe Acrobat in
the table B.5).

B.2.2 The Java COM library

The org.eclipse.swt.internal.ole.win32 and org.eclipse.swt.ole.win32 pack-
ages sit directly above the native library. The second package contains all the high-
level code necessary to write COM client code with SWT. As shown in figure B.1,
three classes consist of implementation details that aren’t exposed outside of the
package boundaries. OleEventTable() is a lookup mechanism that maps an event
type to a specific listener, and OleEventSink() is the heart of SWT’s ability to
receive and dispatch COM events to your code; it contains a partial IDispatch
implementation that can be a source of ideas for how to implement one yourself.
Note that the OLE class contains mostly constants and a utility method to convert
COM errors into SWT exceptions.

The org.eclipse.swt.internal.ole.win32.IUnknown class
By now you’re familiar with the role played by the IUnknown COM interface in the
discovery process of COM features. Even though it’s described as a COM interface,
the SWT team chose to implement it as a Java class. Its constructor takes one
parameter: int address. Its value is the address of the vtable containing the
implementation of the interface. All the methods of the COM IUnknown interface
are implemented as normal Java methods with parameters similar to those of the
native COM counterpart. These methods are implemented by calling COM.Vtbl-
Call() with all the parameters and the index of the native method in the vtable.
The following snippets show the implementation of QueryInterface() and
AddRef(), which are the first two physical methods in the IUnknown COM interface:

Figure B.2 The program ID for the reusable Web Browser control
Licensed to jromero <jose.romero@galicia.seresco.es>

The SWT COM library 337
public int QueryInterface(GUID riid, int ppvObject[]) {
 return COM.VtblCall(0, address, riid, ppvObject);
}
public int AddRef() {
 return COM.VtblCall(1, address);
}

Figure B.3 is a class diagram showing all the COM interfaces declared in the SWT
COM library. In section B.3.3, we explain how to add new interface declarations
when these aren’t enough.

The org.eclipse.swt.ole.win32.OleFrame class
To embed a COM object (ActiveX control or OLE document) in your SWT applica-
tion, you need to create a container window. As you’ve seen, COM mandates that
this container implement certain interfaces in order for the embedded object to
dialog with it. SWT provides the OleFrame class for that purpose. Although the

Figure B.3 COM interfaces derived from IUnknown
Licensed to jromero <jose.romero@galicia.seresco.es>

338 APPENDIX B

OLE and ActiveX in SWT/JFace
class is derived from Composite, it makes no sense to assign it a layout or try to add
Control children. The only reason for inheriting from Composite is to access the
window-management capabilities offered by Composite, in order to implement the
IOleInPlaceFrame COM interfaces.

 Internally, OleFrame handles sizing, menu management, and window place-
ment. Looking at figure B.3, you’ll notice that IOleInPlaceFrame isn’t on the dia-
gram. SWT doesn’t require that you declare a COM interface (create a class
derived from IUnknown that lists all its methods) in order to implement it. All that
is required is that you create an instance of COMObject with public methods map-
ping the methods exposed by the COM interface.

 When activated, OLE documents negotiate with the container to display their
menu bar. Using public methods from OleFrame, your application can contribute
menu items to the final menu bar. When adding menu items, you can choose
between three locations on the menu bar—File (on the far left), Container (in
the middle), or Window (far right, before Help)—by calling SetFileMenus(),
SetContainerMenus(), and SetWindowMenus(), respectively. All three methods take
an array of SWT MenuItem. Just before displaying the menu bar, the embedded
object calls IOleInPlaceFrame.InsertMenus(); at that point OleFrame merges your
items with those from the embedded object.

The org.eclipse.swt.ole.win32.OleClientSite class
The OleClientSite class implements a complete COM site. Aside from implement-
ing the mandatory IUnknown, IOleClientSite, and IAdviseSink, the class also imple-
ments in-place activation via the optional IOleInPlaceSite and IOleDocumentSite.

 This class contains several useful public methods. doVerb() plays an important
role in the activation process, as you’ll see later. SaveFile() can be used to save
the current OLE document to a normal file (includeOleInfo = false) or to a
storage file (includeOleInfo = true). showProperties() lets you display all the
properties of the embedded COM object in a separate window, provided the
object implements the ISpecifyPropertyPages interface. The only control you
have over the window is its title, because it’s created by the COM runtime via a call
to the standard COM.OleCreatePropertyFrame().

 queryStatus() is a helper method that accepts the ID of a command and
returns a bitwise OR’d combination of OLECMDF_SUPPORTED, OLECMDF_ENABLED, and
OLECMDF_LATCHED indicating the status of the specified command. This method is
usually called before a call to exec() to verify that the command is available
before executing it. Both functionalities are based on querying the embedded
Licensed to jromero <jose.romero@galicia.seresco.es>

The SWT COM library 339
object for its IOleCommandTarget interface and subsequently calling the QuerySta-
tus() or Exec() method on this interface.

 You may be faced with situations where the site doesn’t implement some inter-
faces that are necessary to provide more control over the embedded COM object.
Fortunately, the SWT team structured the code in a way that makes it easy to
extend. You need to follow three rules:

1 The constructor of your derived class must call the parent constructor
before anything else.

2 You need to override the protected createCOMInterfaces (where you cre-
ate one COMObject instance for each COM interface you want your site to
support) and disposeCOMInterfaces (where you call the dispose()

method for each of the COMObject instances previously created).

3 You must ensure that your new QueryInterface() method properly dele-
gates to its parent (we present a complete example in section B.3.3).

The org.eclipse.swt.ole.win32.OleControlSite class
The OleControlSite class inherits from OleClientSite and provides the
extended capabilities necessary to host an ActiveX control. The visible differ-
ences from the parent class are full support for events and property change notifi-
cations from the ActiveX control, simplified access to well-known control
properties (straight method calls instead of COM automation calls), and direct
access to ambient properties.

 You can access the container’s ambient properties via calls to the setSiteProp-
erty() and getSiteProperty() methods. For example, the Web Browser control
has properties that determine whether the browser should support embedded
ActiveX controls or JavaScript scripts. The font as well as color of the ActiveX con-
trol are accessible via setFont(), getFont(), setBackground(), getBackground(),
setForeground(), and getForeground().

 addEventListener() allows you to register instances of OleListener in order to
receive specific events. You can register a single listener instance for several event
types, in which case your handler will probably contain an if statement based on
the value of OleEvent.type. Alternatively, you can register different listeners for
the various events your application needs to handle. When you’re no longer inter-
ested in receiving an event, don’t forget to call the removeEventListener()
method. Similar methods exist for receiving notifications about changes in the
value of a property.
Licensed to jromero <jose.romero@galicia.seresco.es>

340 APPENDIX B

OLE and ActiveX in SWT/JFace
The org.eclipse.swt.ole.win32.OleAutomation class
Dealing with dispatch interfaces (COM interfaces that extend IDispatch) can lead
to code that’s hard to read, involving many Variant instances copied to and from
arrays. OleAutomation provides a wrapper to manipulate the functionality deliv-
ered by the IDispatch COM interface. Two constructors are available. The first
takes an instance of OleClientSite (remember that OleControlSite extends Ole-
ClientSite, which guarantees that the class works for both ActiveX controls and
OLE documents) and uses package-level methods to obtain the client’s private
instance of the org.eclipse.swt.internal.ole.win32.IDispatch class. The sec-
ond constructor directly takes an instance of IDispatch as its unique parameter.
Both constructors acquire an ITypeInfo reference via a call to QueryInterface()
on the object.

 Internally, this reference is used in the implementation of all the public meth-
ods involved in describing the dispatch interface. This gives you access to the com-
plete type library for the interface. The first method, getTypeInfoAttributes(),
returns a structure of type TYPEATTR that contains a high-level description of the
interface. The description includes such information as the interface GUID, the
number of variables it exposes, and its total number of methods. The following
code snippet shows how to access all the variables of an automation interface:

OleControlSite site = new OleControlSite(frame, SWT.NONE, progID);
OleAutomation auto = new OleAutomation(site);
TYPEATTR typeattr = auto.getTypeInfoAttributes();
if (typeattr != null && typeattr.cVars > 0) {
 System.out.println("\n\nVariables for " + progID + " :\n");
 for (int i = 0; i < typeattr.cVars; i++) {
 OlePropertyDescription data = auto.getPropertyDescription(i);
 System.out.println("PROPERTY (id = " + data.id + ") :"
 + "\n\tName : " + data.name + "\n\tType : "
 + getTypeName(data.type) + "\n");
 }
}

Based on a program ID similar to those listed in table B.5, we create a control site
and then use it to create an OleAutomation wrapper.

The cVars field contains the number of variables exposed by the interface. Succes-
sive calls to getPropertyDescription() return OlePropertyDescription instances.
The class contains the description for an Automation property. Its type field con-
tains an OR’ed combination of the different variant types described in OLE.java
(OLE.VT_XXXX). Similarly, we could enumerate all the public methods of an inter-
face by calling the getFunctionDescription() method with successive integer val-
ues, provided this index remains inferior to typeattr.cFuncs.

b
Acquire
TYPEATTR

c
Loop over
properties

b

c

Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 341
Besides providing a description of the interface, OleAutomation also contains
methods to simplify accessing the properties of the COM object (setProperty()
and getProperty()). As you may recall from the general discussion on COM and
automation, properties are exposed via public getters and setters rather than data.
Consequently, setProperty() and getProperty() are convenience wrappers
around the more general invoke() method. All automation calls into the object
ultimately translate into a call to IDispatch.Invoke() using one of the four stan-
dard dispatch codes (DISPATCH_XXXX constants from COM) as the fourth parameter.
Finally, getIDsOfNames() is a thin wrapper that simplifies calling GetIDsOfNames()
from the underlying IDispatch interface.

B.3 Doing COM with SWT

You should now have an idea about how to embed a COM object in an SWT-based
application. In this section, we’ll put this understanding to the test and write some
examples, as well as explore patterns that will help you write more complex code.

B.3.1 A simple example

Before we dive further into the full life cycle of a COM object embedded inside an
SWT container, we’ll write the simplest possible example. Despite its simplicity,
listing B.1 shows several important aspects of SWT COM programming. Its purpose
is to embed an instance of Internet Explorer inside a SWT frame and display the
home page of the Manning Publications web site.

package com.swtjface.AppB;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.*;
import org.eclipse.swt.events.*;
import org.eclipse.swt.layout.*;
import org.eclipse.swt.ole.win32.*;
public class SimpleBrowser {
 private Shell shell;
 private OleAutomation automation;
 public Shell open(Display display) {
 this.shell = new Shell(display);
 shell.setLayout(new FillLayout());
 OleFrame frame = new OleFrame(shell, SWT.NONE);
 OleControlSite controlSite =
 new OleControlSite(frame, SWT.NONE, "Shell.Explorer");
 automation = new OleAutomation(controlSite);
 boolean activated =

Listing B.1 SimpleBrowser.java
Licensed to jromero <jose.romero@galicia.seresco.es>

342 APPENDIX B

OLE and ActiveX in SWT/JFace
 (controlSite.doVerb(OLE.OLEIVERB_INPLACEACTIVATE) == OLE.S_OK);
 this.openURL("html://www.manning.com/");
 shell.open();
 return shell;
 }
 public void openURL(String url) {
 int[] rgdispid =
 automation.getIDsOfNames(new String[]{"Navigate", "URL"});
 int dispIdMember = rgdispid[0];
 Variant[] rgvarg = new Variant[1];
 rgvarg[0] = new Variant(url);
 int[] rgdispidNamedArgs = new int[1];
 rgdispidNamedArgs[0] = rgdispid[1];
 Variant pVarResult =
 automation.invoke(dispIdMember, rgvarg, rgdispidNamedArgs);
 }
 public static void main(String[] args) {
 Display display = new Display();
 Shell shell = (new SimpleBrowser()).open(display);
 while (!shell.isDisposed()) {
 if (!display.readAndDispatch()) {
 display.sleep();
 }
 }
 display.dispose();
 }
}

Creating a COM object
The first step creates the container where the COM object (ActiveX control or
OLE document) will be embedded. For that we instantiate an OleFrame, as follows:

Display display = new Display();
Shell shell = new Shell(display);
OleFrame frame = new OleFrame(shell, SWT.NONE);

SWT provides two site implementations, one for OLE documents (OleClientSite)
and one for ActiveX controls (OleControlSite). When in doubt about which to
use for a COM object you want to embed, look at its type library to see if it imple-
ments either the IOleDocument or IOleControl interface. To do so, you can use
Microsoft’s OLE View, which is distributed with all major development tools and
presented by msdn.microsoft.com (see figure B.4).

 The constructor for OleClientSite lets you create a site based on a program ID
(see table B.5 for a list of program IDs for known applications) or a filename. In
the latter case, the shell does all the work of matching it to the corresponding
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 343
program ID based on the file extension. Behind the scenes, OleClientSite trans-
parently creates an instance of IStorage that it then passes to the object:

OleClientSite clientSite =
 new OleClientSite(frame, SWT.NONE, "Word.Document");

File file = new File ("C:\\file1.doc");
OleClientSite clientSite =
 new OleClientSite(frame, SWT.NONE, file);

Embedding an ActiveX control is much simpler and only involves creating an
instance of OleControlSite by passing its constructor the control’s program ID:

OleControlSite controlSite =
 new OleControlSite(frame, SWT.NONE, "Shell.Explorer");

Activating an object
Creating an object isn’t enough to make it become visible inside its container. It
needs to be activated by the container. Activation is controlled by the doVerb()
method. Table B.6 lists all the possible values for the method’s unique parameter.
In most cases, you’ll us OLE.OLEIVERB_INPLACEACTIVATE to activate an ActiveX con-
trol in place. OLE documents work differently; the COM runtime must first start

Figure B.4 The type library for Internet Explorer displayed in Microsoft OLE View
Licensed to jromero <jose.romero@galicia.seresco.es>

344 APPENDIX B

OLE and ActiveX in SWT/JFace
the associated application and ask it on behalf of your container to open the doc-
ument in the site you supply.

People have reported trouble activating certain documents, particularly Microsoft
Office documents. In these cases, better results have been reported using
OLE.OLEIVERB_SHOW as the activation verb.

 Also remember that OLE documents are complete applications hosted inside
your container. It’s a common mistake to activate an OLE document in a con-
tainer that doesn’t have a menu bar—some applications will forgive you, others
won’t. Remember: always create your application’s menu bar before activating an
OLE document, as in the following snippet.

Display display = new Display();
Shell shell = new Shell(display);
shell.setLayout(new FillLayout());
Menu bar = new Menu(shell, SWT.BAR);
shell.setMenuBar(bar);
OleFrame frame = new OleFrame(shell, SWT.NONE);
OleClientSite clientsite;
try {
 clientsite = new OleClientSite(frame, SWT.NONE, "PowerPoint.Slide");
 shell.layout();
 clientsite.doVerb(OLE.OLEIVERB_SHOW);
} catch (SWTException ex) {
 System.out.println("Failed to create <<PowerPoint Document>> : " +
 ex.getMessage());
 return;
}
shell.open();

Table B.6 Standard verbs for manipulating OLE objects

ProgID Description

OLE.OLEIVERB_DISCARDUNDOSTATE Closes the OLE object and discards the undo state

OLE.OLEIVERB_HIDE Hides the OLE object

OLE.OLEIVERB_INPLACEACTIVATE Opens the OLE object for editing in place

OLE.OLEIVERB_OPEN Opens the OLE object for editing in a separate window

OLE.OLEIVERB_PRIMARY Opens the OLE object for editing (the action that occurs
when a user double-clicks on the object inside the container)

OLE.OLEIVERB_PROPERTIES Requests the OLE object properties dialog

OLE.OLEIVERB_SHOW Shows the OLE object

OLE.OLEIVERB_UIACTIVATE Activates the UI for the OLE object

 Before activating
OLE document

Activation of Microsoft
Office OLE document
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 345
while (shell != null && !shell.isDisposed()) {
 if (!display.readAndDispatch())
 display.sleep();

Saving changes to an OLE document
At this point, we’ve successfully activated an OLE document inside an SWT con-
tainer, and the user would like to save her changes. The first step is to call isDirty()
from the OleClientSite to test that the file needs saving. When it is the case, we can
proceed to call the save() method, passing it a standard java.io.File instance and
a boolean indicating whether to save the file as a standard file (includeOleInfo =
false) or a storage file (includeOleInfo = true). It’s a good practice to save the
document to a temporary file and replace the original file only if the operation is
successful. The following snippet illustrates the process:

if (clientSite.isDirty()) {
 File tempFile = new File(file.getAbsolutePath() + ".tmp");
 file.renameTo(tempFile);
 if (clientSite.save(file, true)){
 // save was successful so discard the backup
 tempFile.delete();
 } else {
 // save failed so restore the backup
 tempFile.renameTo(file);
 }
}

Disposing of an object
The examples we’ve looked at so far have been simple in the sense that the con-
tainer was only dealing with a single embedded object. However, nothing prevents
your container from embedding several objects. OLE documents negotiate with
their container about the content of the main menu toolbar. Consequently, your
container must implement a strict control over the activation process. You should
activate each COM object individually when doing so makes the most sense—for
example, upon receiving a mouse double-click event—and deactivate them
before activating the next one. To deactivate an object, call the deactivateIn-
PlaceClient() method from its OleClientSite.

 When you’re done working with an embedded COM object, you must remem-
ber to perform one last task. The class diagram in figure B.1 showed that OleFrame,
OleClientSite, and OleControlSite are all subclasses of org.eclipse.swt.wid-
gets.Composite. As such, it’s imperative that you dispose of them by calling dis-
pose(). Unless you’ve saved all changes made to an OLE document prior to calling
dispose(), they will be lost.
Licensed to jromero <jose.romero@galicia.seresco.es>

346 APPENDIX B

OLE and ActiveX in SWT/JFace
Handling properties
To access automation properties, you must first get their dispatch identifier
(dispid) by calling getIDsOfNames() on the OleAutomation wrapper. You can use
the resulting int in subsequent calls to getProperty() or setProperty(). Also
keep in mind that all property values have the Variant type, which is the standard
automation data type. A common source of mistakes is improperly initializing a
variant by selecting the wrong type attributes, especially when dealing with vari-
ants that are references rather than contain data. The following snippet reads the
Document property from an automation server:

OleAutomation server = new OleAutomation(…);
int[]documentID = server.getIDsOfNames(new String[]{"Document"});
if (documentID == null) return null;
Variant pVarResult = server.getProperty(documentID[0]);

Interacting with an object
One of the compelling reasons for embedding COM objects (ActiveX controls or
OLE documents) in your application is the ability to inherit portions of the
object’s native user interface inside your own. However, this is only a small part of
the possible interactions.

 Using the invoke() method from OleAutomation gives you access to the entire
object model of a COM component. Using it is a simple extension of what we did
to access a property. A call to getIDsOfNames() with the name of a command
returns its dispid, and once again all values have the Variant type. (Note that
dealing with Microsoft Word presents some unique problems: When you’re invok-
ing a command that doesn’t return a value, it’s preferable to use the invokeNoRe-
ply() method.)

 SWT also gives you access to the event model of an embedded COM object by
registering instances of OleListener with an OleControlSite. You’ll have to dig
inside each type library to find the specific int value for the event you wish to sub-
scribe to. As we’ve discussed, you can either register the same listener for multiple
events or use distinct listeners for each event.

 All handlers implement one unique method: void handleEvent(OleEvent

event). By reading the type library, you’ll find the number and type of parameters
associated with the event. SWT copies them into an array that’s publicly accessible
from the event as public Variant[] arguments. The parameters are ordered from
left to right in the prototype from the type library. For example, the following
information is from the Excel 10.0 type library. In this scenario, SeriesIndex
would be arguments[0] and PointIndex would be stored in arguments[1]:
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 347
dispinterface ChartEvents {
 ...
 [id(0x00000602), helpcontext(0x00010602)]
 void SeriesChange(
 [in] long SeriesIndex,
 [in] long PointIndex);
 ...
}

B.3.2 SWT COM programming patterns

What seems at first like a disconcerting way of writing Java code has identifiable
patterns that are repeated throughout. Understanding them is the key to writing
more serious COM-related code with SWT. Let’s review some of these patterns.

Null-terminated strings
In some instances, you’ll be forced to deal with the fact that C/C++ strings are ter-
minated by the null-end-of-string character (\0). This code snippet shows how to
create a null-terminated string from a Java String:

String lpsz = "This is a string";
char[] buffer = (lpsz +"\0").toCharArray();

The next snippet shows a way to turn a null-terminated string back into a Java
String. We hope that future versions of SWT will include a way to find the length
of a native string directly:

public static String getString(int addr) {
 String str = null;
 TCHAR buffer = new TCHAR (0, 256);
 OS.MoveMemory (buffer, addr, 256);
 str = buffer.toString(0, buffer.strlen());
 return str;
}

Pointer to structure
A common situation in SWT Windows/COM programming has to do with han-
dling pointers. Typically you’ll deal with a pointer to a native Windows structure, a
pointer to a string, or a pointer to a native type. Many of the Windows APIs manip-
ulate 32-bit quantities that are pointers to complex data structures. The creators
of SWT mapped these structures to Java classes with public data members and no
methods. The many versions of MoveMemory() contain the necessary JNI code to
initialize the public data members of all the supported structures one field at a
time. As we previously discussed, each structure includes the following line of
code, where XXX is the size of the structure in bytes:

 Assume String is shorter
than 256 characters

Trim excess characters
Licensed to jromero <jose.romero@galicia.seresco.es>

348 APPENDIX B

OLE and ActiveX in SWT/JFace
public static final int sizeof = XXX;

The pointers are mapped to Java int. In the following snippet, we use an int as a
pointer to a GUID and copy the data into an already allocated GUID object:

GUID guid = new GUID();
COM.MoveMemory(guid, riid, GUID.sizeof);

A typical misconception could lead you to declare only the guid variable and not
allocate the memory for the structure, which would cause a memory violation error.

Pointer to pointer to an interface
Another recognizable pattern in COM programming with SWT has to do with the
notion of pointers to pointers. Many COM methods take one or more parameters
that are pointers to interface pointers. In the following code snippet, we’re look-
ing at this coding pattern in the context of obtaining a temporary instance of
IStorage (similar code is invoked every time you create a new automation docu-
ment with SWT):

int[] tempStg = new int[1];
int grfMode = COM.STGM_READWRITE |
 COM.STGM_SHARE_EXCLUSIVE |
 COM.STGM_DELETEONRELEASE;
int result = CO .StgCreateDocfile(null, grfMode, 0, tmpStg);

if (result != COM.S_OK)
 OLE.error(OLE.ERROR_CANNOT_CREATE_FILE, result);
IStorage st = new IStorage(tmpStg [0])

An int array with a size of 1 is created. This is a pointer (the reference to the
array) to a pointer (the first value of the array).

The array is passed to a method that expects a pointer to a pointer to a COM interface.

All COM methods return an HRESULT: a 4-byte value where the sign bit is used to
communicate the presence/absence of an error. Errors are reported using the
static method error() defined in the org.eclipse.swt.internal.win32.OS class.
The method builds an error message based on the error code and throws an
SWTException. Note that SWTException extends RuntimeException; consequently,
the exception isn’t declared in any method signature, and handling it is left to
your discretion.

If there are no errors, the method initializes the first value of the array with the
address of the reference. All that’s left is to instantiate the proper IUnknown
derived class, which we do by passing the address to the constructor.

b Allocate int array

c Method call

d Status check

e Create reference

b

c

d

e

Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 349
B.3.3 Advanced topics

Now that we’ve discussed the standard methods for incorporating COM inside SWT
code, it’s time to go further. This section will explain how to customize applications
with your own OLE/COM interfaces and QueryInterfaces. Then, we’ll investigate
more advanced data structures such as IDispatch parameters and SafeArrays.

Adding new interfaces to the org.eclipse.swt.internal.ole.win32 package
Despite the long list of interfaces supplied in the org.eclipse.swt.inter-
nal.ole.win32 package, you may need an interface that isn’t defined. Listing B.2
shows how to create a Java class that describes a COM interface. In the simpler
cases, your interface will inherit directly from IUnknown and add one or more
methods; our next example will show a slightly more complicated scenario.

package org.eclipse.swt.internal.ole.win32;
public class IPersistFile extends IPersist {
 public IPersistFile(int address) {
 super(address);
 }
 public int IsDirty() {
 return COM.VtblCall(4, address);
 }
 public int Load(String szFileName, int dwMode) {
 char[] fileName = (szFileName + "\0").toCharArray();
 int pszFileName = 0;
 COM.MoveMemory(pszFileName, fileName, 4);
 return COM.VtblCall(5, address, pszFileName, dwMode);
 }
 public int Save(String szFileName, boolean fRemember) {
 char[] fileName = (szFileName + "\0").toCharArray();
 int pszFileName = 0;
 COM.MoveMemory(pszFileName, fileName, 4);
 return COM.VtblCall(6, address, pszFileName, fRemember);
 }
 public int SaveCompleted(int pszFileName) {
 return COM.VtblCall(7, address, pszFileName);
 }
 public int GetCurFile() {
 return COM.VtblCall(8, address);
 }
}

According to the Microsoft documentation, IPersistFile extends IPersist, which
inherits from IUnknown. Before starting the implementation, we must count the

Listing B.2 IPersistFile.java
Licensed to jromero <jose.romero@galicia.seresco.es>

350 APPENDIX B

OLE and ActiveX in SWT/JFace
number of methods already implemented by the complete chain of parent inter-
faces. The index of the first new method is the total plus one: in this case, 4. IUnknown
contains three methods (index 0 to 2), and IPersist contains a single method
(index 3). For the sake of simplifying the code, it directly accesses the address field
from the IUnknown class. Unfortunately at this point address has package-only visi-
bility, which is the reason for the package declaration on the first line of the listing.
Alternatively, we could have replaced every reference to address with a call to the
public method getAddress(). Finally, notice that the body of the Save() and Load()
methods uses the null-terminated strings pattern we just described.

Implementing a known COM interface
Let’s walk through the steps of the complete implementation of a standard COM
interface. We’ll implement IDocHostUIHandler; the reason for this choice will
become evident at the end of this appendix.

 COMObject contains a long list of empty methods. This is our first stop: We need
to create an instance that maps to the methods of IDocHostUIHandler. The follow-
ing snippet shows how to do this. Each of the interface’s methods is mapped to a
locally defined method of the Java class taking the same number of parameters as
its COM counterpart:

iDocHostUIHandler = new COMObject(new int[]{2, 0, 0, 4, 1, 5, 0,
 0, 1, 1, 1, 3, 3, 2, 2, 1, 3, 2}) {
 public int method0(int[] args)
 {return QueryInterface(args[0], args[1]);}
 public int method1(int[] args)
 {return AddRef();}
 public int method2(int[] args)
 {return Release();}
 public int method3(int[] args)
 {return ShowContextMenu(args[0], args[1], args[2], args[3]);}
 public int method4(int[] args)
 {return GetHostInfo(args[0]);}
 public int method5(int[] args)
 {return ShowUI(args[0], args[1], args[2], args[3], args[4]);}
 public int method6(int[] args)
 {return HideUI();}
 public int method7(int[] args)
 {return UpdateUI();}
 public int method8(int[] args)
 {return EnableModeless(args[0]);}
 public int method9(int[] args)
 {return OnDocWindowActivate(args[0]);}
 public int method10(int[] args)
 {return OnFrameWindowActivate(args[0]);}
 public int method11(int[] args)

b
Interface
signature

c Method
implementations
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 351
 {return ResizeBorder(args[0], args[1], args[2]);}
 public int method12(int[] args)
 {return TranslateAccelerator(args[0], args[1], args[2]);}
 public int method13(int[] args)
 {return GetOptionKeyPath(args[0], args[1]);}
 public int method14(int[] args)
 {return GetDropTarget(args[0], args[1]);}
 public int method15(int[] args)
 {return GetExternal(args[0]);}
 public int method16(int[] args)
 {return TranslateUrl(args[0], args[1], args[2]);}
 public int method17(int[] args)
 {return FilterDataObject(args[0], args[1]);}
};

The Microsoft specification shows that IDocHostUIHandler contains 18 methods.
The array contains the number of input parameters for each of these 18 methods.

Method0() is mapped to a privately defined QueryInterface method that takes two
parameters. The rest of the code maps the other methods to other private meth-
ods while preserving the same ordering as in the COM interface definition.

Rolling your own QueryInterface
Of all the methods that you’ll implement when designing custom interface imple-
mentations, QueryInterface() presents the most difficulties. The following code
demonstrates several useful patterns for implementing your own:

protected int QueryInterface(int riid, int ppvObject) {
 int result = super.QueryInterface(riid, ppvObject);
 if (result == COM.S_OK)
 return result;
 if (riid == 0 || ppvObject == 0)
 return COM.E_INVALIDARG;
 GUID guid = new GUID();
 COM.MoveMemory(guid, riid, GUID.sizeof);
 if (COM.IsEqualGUID(guid, COM.IIDIDocHostUIHandler)) {
 COM.MoveMemory(ppvObject,
 new int[]{iDocHostUIHandler.getAddress()},
 4);

 AddRef();
 return COM.S_OK;
 }
 COM.MoveMemory(ppvObject, new int[] {0}, 4);
 return COM.E_NOINTERFACE;
}

b

c

b Signature

c Delegation

d
Check
requested
interface

QueryInterface must increment reference
count before returning interface

Return error-free status code

Clear pointer
Licensed to jromero <jose.romero@galicia.seresco.es>

352 APPENDIX B

OLE and ActiveX in SWT/JFace
In general, it’s a good idea to make all your COM interface implementation meth-
ods protected or with limited visibility, because these methods exist only so you
can call them in the context of your COM object. QueryInterface takes only two
parameters. In C++, riid is a reference to an interface ID that translates into a
Java int.

This implementation of QueryInterface was taken from a class extending OleCli-
entSite, for the purpose of creating an extended client site. This new site imple-
ments one more interface than the default OleClientSite. First, the code
attempts to delegate to the parent QueryInterface. If the parent returns S_OK,
then the interface was found and its address is already inside ppvObject. All that’s
left is to return the status code.

Next we must check that the GUID of the requested interface matches an inter-
face supported by this object. In this case, the new client site adds support for
COM.IIDIDocHostUIHandler. If the two GUIDs are identical, then we need to copy
the address of the private instance of the class that implements IDocHostUIHan-
dler to the result pointer.

Passing IDispatch references as parameters
A common situation may require that you pass a reference to an IDispatch as a
parameter to a method exposed by the COM object you host inside your applica-
tion. The following is the Interface Definition Language (IDL) description for a
method from the Microsoft Excel object model. The _Chart interface contains
the SetSourceData() method, which takes a Range pointer as its first parameter.
Looking at the object model also shows that the Range interface is derived from
IDispatch:

[id(0x00000585), helpcontext(0x00010585)]
void SetSourceData(
 [in] Range* Source,
 [in, optional] VARIANT PlotBy);

The proper way to invoke SetSourceData() consists of passing the range reference
as a byRef Variant, as follows:

{
 Variant rangeVar = //execute some method on another automation object
 IDispatch rangeDisp = rangeVar.getDispatch();
 OleAutomation range = rangeVar.getAutomation();

 rgdispid = chart.getIDsOfNames(new String[]{"SetSourceData",
 "Source"});
 int hGlobal = OS.GlobalAlloc(OS.GMEM_FIXED, 4);
 OS.Memmove(hGlobal, new int[] {rangeDisp.getAddress()}, 4);

b

c

d

Obtain reference
to method

b

c
Check
requested
interface
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 353
 int ptr = OS.GlobalLock(hGlobal);
 Variant rangeRefVar =
 new Variant(ptr, OLE.VT_BYREF | OLE.VT_DISPATCH);
 chart.invoke(rgdispid[0],
 new Variant[]{rangeVar},
 new int[]{rgdispid[1]});
}

As usual, we must get the method’s dispid from its name.

We create a pointer to the Range reference by allocating 4 bytes of memory and
copying the address of Range to it.

Using our new pointer to the Range, we can create a new Variant using the
OLE.VT_BYREF | OLE.VT_DISPATCH style. VT_BYREF indicates that the variant con-
tains a pointer to something, and VT_DISPATCH indicates that the something is an
IDispatch reference.

Anatomy of a storage file
The example in listing B.3 shows how to explore the content of a storage file. The
code also shows how to use a class derived from IEnum to perform an enumeration.

package com.swtjface.AppB;
import java.io.File;
import org.eclipse.swt.internal.ole.win32.*;
import org.eclipse.swt.internal.win32.*;
import org.eclipse.swt.ole.win32.*;
public class Storage {
 public static void main(String[] args) {
 if (args.length == 0) {
 System.out.println("Usage: java Storage <file name>");
 return;
 }
 String fileName = args[0];
 parseFile(new File(fileName));
 }
 public static void parseFile(File file) {
 char[] fileName = (file.getAbsolutePath() + "\0").toCharArray();

IStorage storage = null;
 if (COM.StgIsStorageFile(fileName) == COM.S_OK) {
 int mode = COM.STGM_READ | COM.STGM_TRANSACTED |
 COM.STGM_SHARE_EXCLUSIVE;

 int[] address = new int[1];
 int result = COM.StgOpenStorage(fileName, 0, mode, 0, 0, address;
 if (result != COM.S_OK)

Listing B.3 Storage.java

d Create
variant

b

c

d

Method takes null-
terminated string

Get IStorage reference (pointer in address[0])
Licensed to jromero <jose.romero@galicia.seresco.es>

354 APPENDIX B

OLE and ActiveX in SWT/JFace
 OLE.error(OLE.ERROR_CANNOT_OPEN_FILE, result);
 storage = new

IStorage(address[0]);
int[] ppEnum = new int[1];

 result = storage.EnumElements(0, 0, 0, ppEnum);
 if (result != COM.S_OK)
 OLE.error(OLE.ERROR_ACTION_NOT_PERFORMED, result);
 IEnumSTATSTG enum = new IEnumSTATSTG(ppEnum[0]);

 // loop over the file content
 int rgelt = OS.GlobalAlloc(OS.GMEM_FIXED | OS.GMEM_ZEROINIT,
 STATSTG.sizeof);
 int[] pceltFetched = new int[1];
 enum.Reset();
 while (enum.Next(1, rgelt, pceltFetched) == COM.S_OK
 && pceltFetched[0] == 1) {
 STATSTG statstg = new STATSTG();
 COM.MoveMemory(statstg, rgelt, STATSTG.sizeof);
 System.out.println(getString(statstg.pwcsName));
 }
 OS.GlobalFree(rgelt);
 enum.Release();
 storage.Release();
 }
 }
 public static String getString(int addr) {
 String str = null;
 TCHAR buffer = new TCHAR (0, 256);
 OS.MoveMemory (buffer, addr, 256);
 str = buffer.toString(0, buffer.strlen());
 return str;
 }
}

Looking inside a SafeArray
When Microsoft needed to add support for arrays to automation, it created the
notion of SafeArray: a structure that describes the characteristics of an array and
holds its data. Dealing with SafeArrays was deemed complicated enough that
Microsoft created a specific API for that purpose. For memory, the anatomy of a
SafeArray is as follows (the offset and size information will help you understand
the code that follows):

typedef struct tagSAFEARRAYBOUND {
 ULONG cElements; // offset 0, size 4
 LONG lLbound; // offset 4, size 4
} SAFEARRAYBOUND;

typedef struct tagSAFEARRAY {

Dereference pointer; get IStorage

Get
IEnumSTATSTG

Access STATSTG
structure one
at a time

Release
interfaces
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 355
 USHORT cDims; // offset 0, size 2
 USHORT fFeatures; // offset 2, size 2
 ULONG cbElements; // offset 4, size 4
 ULONG cLocks; // offset 8, size 4
 PVOID pvData; // offset 12, size 4
 SAFEARRAYBOUND rgsabound[...]; // offset 16
} SAFEARRAY;

Unfortunately there is currently no special support for SafeArray in SWT. How-
ever, based on the C definition of the SafeArray structure, it’s possible to display
their content. The following is an extract from the type library for the Web
Browser ActiveX control:

interface DWebBrowserEvents : IUnknown {
 ...
 [helpstring("Fired when a new hyperlink is being navigated to.")]
 HRESULT _stdcall BeforeNavigate(
 [in] BSTR URL, long Flags, BSTR TargetFrameName,
 VARIANT* PostData,
 BSTR Headers, [in, out] VARIANT_BOOL* Cancel);
 ...
}

The Microsoft web site states that PostData (parameter number 4) is a Variant that
contains a reference to a Variant that is itself a SafeArray. The following code uses
some of the simpler patterns we reviewed to parse the content of an array:

public void handleEvent(OleEvent event) {
 Variant varPostData = event.arguments[4];
 int pPostData = varPostData.getByRef();
 short[] vt_type = new short[1];
 OS.MoveMemory(vt_type, pPostData, 2);
 if (vt_type[0] == (short)(OLE.VT_BYREF | OLE.VT_VARIANT)) {
 int[] pVariant = new int[1];
 OS.MoveMemory(pVariant, pPostData + 8, 4);
 vt_type = new short[1];
 OS.MoveMemory(vt_type, pVariant[0], 2);
 if (vt_type[0] == (short)(OLE.VT_ARRAY | OLE.VT_UI1)) {
 int[] pSafearray = new int[1];
 OS.MoveMemory(pSafearray, pVariant[0] + 8, 4);
 short[] cDims = new short[1];
 OS.MoveMemory(cDims, pSafearray[0], 2);
 System.out.println("total dimensions= "+cDims[0]);
 int[] pvData = new int[1];
 OS.MoveMemory(pvData, pSafearray[0] + 12, 4);
 int offset = 0; int arrayboundOffset = 0;
 for (int i = 0; i < cDims[0]; i++) {
 int[] cElements = new int[1];

Check second
Variant type:
SafeArray of
unsigned char

Establish pointer
to SafeArray

Iterate through dimensions
Licensed to jromero <jose.romero@galicia.seresco.es>

356 APPENDIX B

OLE and ActiveX in SWT/JFace

 OS.MoveMemory(cElements,pSafearray[0]+16+arrayboundOffset,4);

 arrayboundOffset += 8;
 System.out.println("dim "+i+" has "+cElements[0]+"elements");
 for (int j = 0; j < cElements[0]; j++) {
 char[] ui1_data = new char[1];
 OS.MoveMemory(ui1_data, pvData[0]+offset, 1);
 System.out.println("data at "+j+" is "+ui1_data[0]);
 offset += 1;
 }
 }
 }
 }
}

B.3.4 A final example

Let’s work on something more elaborate that brings together everything we’ve
covered so far. The enhanced version of our SimpleBrowser from listing B.1,
shown in listing B.4, is now capable of displaying a personalized context menu as
well as saving the content of the page to a file.

package com.swtjface.AppB;
import org.eclipse.swt.SWT;
import org.eclipse.swt.internal.ole.win32.*;
import org.eclipse.swt.internal.win32.*;
import org.eclipse.swt.layout.*;
import org.eclipse.swt.ole.win32.*;
import org.eclipse.swt.widgets.*;

public class BetterBrowser {
 private Shell shell;
 private OleAutomation automation;
 static final int DocumentComplete = 104;
 static final int NavigateComplete = 101;
 private int globalDispatch;

 public Shell open(Display display) {
 this.shell = new Shell(display);
 shell.setLayout(new FillLayout());
 OleFrame frame = new OleFrame(shell, SWT.NONE);
 OleControlSite controlSite = new ExtWebBrowser(frame, SWT.NONE,
 "Shell.Explorer");
 automation = new OleAutomation(controlSite);
 boolean activated =

First 4 bytes of SafeArrayBound: number of elements

Jump to next SafeArrayBound

Listing B.4 BetterBrowser.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 357
 (controlSite.doVerb(OLE.OLEIVERB_INPLACEACTIVATE) == OLE.S_OK);

 OleListener listener = new OleListener() {
 public void handleEvent(OleEvent event) {
 switch (event.type) {
 case DocumentComplete : {
 Variant varResult = event.arguments[0];
 IDispatch dispatch = varResult.getDispatch();
 Variant variant = new Variant(automation);
 IDispatch top = variant.getDispatch();
 varResult = event.arguments[1];
 String url = varResult.getString();
 if (globalDispatch != 0 && dispatch.getAddress()
 == globalDispatch) {
 /* final document complete */
 globalDispatch = 0;
 }
 System.out.println("DocComplete");
 break;
 }
 case NavigateComplete : {
 Variant varResult = event.arguments[0];
 IDispatch dispatch = varResult.getDispatch();
 if (globalDispatch == 0)
 globalDispatch = dispatch.getAddress();
 System.out.println("NavComplete");
 break;
 }
 }
 Variant[] arguments = event.arguments;
 for (int i = 0; i < arguments.length; i++)
 arguments[i].dispose();
 }
 };
 controlSite.addEventListener(DocumentComplete, listener);
 controlSite.addEventListener(NavigateComplete, listener);

 this.openURL("http://www.manning.com");
 shell.open();
 return shell;
 }
 public void openURL(String url) {
 int[] rgdispid = automation.getIDsOfNames
 (new String[]{"Navigate", "URL"});
 int dispIdMember = rgdispid[0];
 Variant[] rgvarg = new Variant[1];
 rgvarg[0] = new Variant(url);
 int[] rgdispidNamedArgs = new int[1];
 rgdispidNamedArgs[0] = rgdispid[1];
 Variant pVarResult = automation.invoke(dispIdMember, rgvarg,
 rgdispidNamedArgs);
 }
Licensed to jromero <jose.romero@galicia.seresco.es>

358 APPENDIX B

OLE and ActiveX in SWT/JFace
 public static void main(String[] args) {
 Display display = new Display();
 Shell shell = (new BetterBrowser()).open(display);
 while (!shell.isDisposed()) {
 if (!display.readAndDispatch()) {
 display.sleep();
 }
 }
 display.dispose();
 }

 public OleAutomation getHtmlDocument(OleAutomation browser) {
 int[] htmlDocumentID =
 browser.getIDsOfNames(new String[]{"Document"});
 if (htmlDocumentID == null) return null;
 Variant pVarResult = browser.getProperty(htmlDocumentID[0]);
 if (pVarResult == null || pVarResult.getType() == 0) return null;
 //IHTMLDocument2
 OleAutomation htmlDocument = pVarResult.getAutomation();
 return htmlDocument;
 }

 class ExtWebBrowser extends OleControlSite {

 COMObject iDocHostUIHandler;

 public ExtWebBrowser(Composite parent, int style, String progId) {
 super(parent, style, progId);
 }

 protected void createCOMInterfaces () {

 super.createCOMInterfaces();
 iDocHostUIHandler =
 new COMObject(new int[]{2, 0, 0, 4, 1, 5, 0, 0, 1,
 1, 1, 3, 3, 2, 2, 1, 3, 2}){
 public int method0(int[] args)
 {return QueryInterface(args[0], args[1]);}
 public int method1(int[] args) {return AddRef();}
 public int method2(int[] args) {return Release();}
 public int method3(int[] args)
 {return ShowContextMenu(args[0], args[1], args[2],
 args[3]);}
 public int method4(int[] args)
 {return GetHostInfo(args[0]);}
 public int method5(int[] args)
 {return ShowUI(args[0], args[1], args[2], args[3],
 args[4]);}
 public int method6(int[] args) {return HideUI();}
 public int method7(int[] args) {return UpdateUI();}
 public int method8(int[] args)
 {return EnableModeless(args[0]);}
 public int method9(int[] args)
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 359
 {return OnDocWindowActivate(args[0]);}
 public int method10(int[] args)
 {return OnFrameWindowActivate(args[0]);}
 public int method11(int[] args)
 {return ResizeBorder(args[0], args[1], args[2]);}
 public int method12(int[] args)
 {return TranslateAccelerator(args[0], args[1], args[2]);}
 public int method13(int[] args)
 {return GetOptionKeyPath(args[0], args[1]);}
 public int method14(int[] args)
 {return GetDropTarget(args[0], args[1]);}
 public int method15(int[] args)
 {return GetExternal(args[0]);}
 public int method16(int[] args)
 {return TranslateUrl(args[0], args[1], args[2]);}
 public int method17(int[] args)
 {return FilterDataObject(args[0], args[1]);}
 };
 }
 protected void disposeCOMInterfaces() {
 super.disposeCOMInterfaces();
 if (iDocHostUIHandler != null)
 iDocHostUIHandler.dispose();
 iDocHostUIHandler = null;
 }
 protected int QueryInterface(int riid, int ppvObject) {
 int result = super.QueryInterface(riid, ppvObject);
 if (result == COM.S_OK)
 return result;
 if (riid == 0 || ppvObject == 0)
 return COM.E_INVALIDARG;
 GUID guid = new GUID();
 COM.MoveMemory(guid, riid, GUID.sizeof);
 if (COM.IsEqualGUID(guid, COM.IIDIDocHostUIHandler)) {
 COM.MoveMemory(ppvObject, new int[]
 {iDocHostUIHandler.getAddress()}, 4);
 AddRef();
 return COM.S_OK;
 }
 COM.MoveMemory(ppvObject, new int[]{0}, 4);
 return COM.E_NOINTERFACE;
 }

 //~- IDocHostUIHandler -----------------------------
 int EnableModeless(int EnableModeless) {
 return COM.E_NOTIMPL;
 }
 int FilterDataObject(int pDO, int ppDORet) {
 return COM.E_NOTIMPL;
 }
 int GetDropTarget(int pDropTarget, int ppDropTarget) {
Licensed to jromero <jose.romero@galicia.seresco.es>

360 APPENDIX B

OLE and ActiveX in SWT/JFace
 return COM.E_NOTIMPL;
 }
 int GetExternal(int ppDispatch) {
 return COM.E_NOTIMPL;
 }
 int GetHostInfo(int pInfo) {
 return COM.E_NOTIMPL;
 }
 int GetOptionKeyPath(int pchKey, int dw) {
 return COM.E_NOTIMPL;
 }
 int HideUI() {
 return COM.E_NOTIMPL;
 }
 int OnDocWindowActivate(int fActivate) {
 return COM.E_NOTIMPL;
 }
 int OnFrameWindowActivate(int fActivate) {
 return COM.E_NOTIMPL;
 }
 int ResizeBorder(int prcBorder, int pUIWindow, int fFrameWindow) {
 return COM.E_NOTIMPL;
 }
 int ShowContextMenu(int dwID, int ppt,
 int pcmdtReserved, int pdispReserved) {
 int [] pts = new int[2];
 OS.MoveMemory(pts, ppt, 8);

 System.out.println(dwID);
 Menu menu = new Menu (shell, SWT.POP_UP);
 MenuItem item = new MenuItem (menu, SWT.PUSH);
 item.setText ("Save Source");
 item.addListener (SWT.Selection, new Listener () {
 public void handleEvent (Event e) {
 System.out.println ("Save Selected");
 if (globalDispatch != 0) {
 IUnknown iuk = new IUnknown(globalDispatch);
 int[] ppvObject = new int[1];
 if (iuk.QueryInterface(COM.IIDIPersistFile, ppvObject)
 == COM.S_OK) {
 IPersistFile pf = new IPersistFile(ppvObject[0]);
 pf.Save("c:\\test.html", false);
 pf.Release();
 }
 }
 }
 });
 item = new MenuItem (menu, SWT.PUSH);
 item.setText ("View Source");
 item.addListener (SWT.Selection, new Listener () {
 public void handleEvent (Event e) {
Licensed to jromero <jose.romero@galicia.seresco.es>

Doing COM with SWT 361
 System.out.println ("View Selected");
 }
 });
 menu.setLocation (pts[0], pts[1]);
 menu.setVisible (true);
 Display display = getShell().getDisplay();
 while (!menu.isDisposed () && menu.isVisible ()) {
 if (!display.readAndDispatch ()) display.sleep ();
 }
 menu.dispose ();
 return COM.S_OK;
 }

 int ShowUI(int dwID, int pActiveObject, int pCommandTarget,
 int pFrame,int pDoc) {
 return COM.E_NOTIMPL;
 }
 int TranslateAccelerator(int lpMsg, int pguidCmdGroup,
 int nCmdID) {
 Menu menubar = getShell().getMenuBar();
 if (menubar != null && !menubar.isDisposed()
 && menubar.isEnabled()) {
 Shell shell = menubar.getShell();
 int hwnd = shell.handle;
 int hAccel = OS.SendMessage(hwnd, OS.WM_APP + 1, 0, 0);
 if (hAccel != 0) {
 MSG msg = new MSG();
 OS.MoveMemory(msg, lpMsg, MSG.sizeof);
 if (OS.TranslateAccelerator(hwnd, hAccel, msg) != 0)
 return COM.S_OK;
 }
 }
 return COM.S_FALSE;
 }
 int TranslateUrl(int dwTranslate, int pchURLIn, int ppchURLOut) {
 return COM.E_NOTIMPL;
 }
 int UpdateUI() {
 return COM.E_NOTIMPL;
 }
 }
}

Licensed to jromero <jose.romero@galicia.seresco.es>

Changeable GUIs
with Draw2D
362

Licensed to jromero <jose.romero@galicia.seresco.es>

Understanding Draw2D 363
The SWT/JFace toolset has two shortcomings that we haven’t addressed. The
first involves building truly custom widgets. Because it relies on native widgets,
SWT/JFace makes it difficult to extend the Control class. So, you can’t create
your own components.

 SWT/JFace’s second deficiency involves building graphical editors. These appli-
cations are similar to normal GUIs, but they allow you to manipulate diagrams and
save their models to a file. Generally, these diagrams represent large systems, like
those found in Computer-Aided Design (CAD), Unified Modeling Language
(UML) software, and graphical software development tools such as Microsoft’s
Visual Studio. With great pains, SWT/JFace can be used to build a graphical edi-
tor, but the toolset wasn’t designed for this purpose. We need a tool that specifi-
cally addresses the requirements of building graphical editors.

 In response to these concerns, the Eclipse designers created the Draw2D and
Graphical Editing Framework (GEF) libraries. The Draw2D tool lets you render
GUI components with whatever appearance and functionality you prefer. It pro-
vides this capability by creating a high-level drawing region that operates indepen-
dently from the native platform. The GEF library combines these Draw2D figures
into a framework suitable for graphical editing.

 This appendix presents Draw2D, and appendix D covers GEF. Because GEF
requires Draw2D to provide its graphics, these two appendices can be taken as a
whole. Old-fashioned at heart, we’ll present these toolsets in the context of build-
ing a flowchart editor. Our first step involves creating the graphical region and the
shapes needed to represent different types of operation. This is a job for Draw2D.

C.1 Understanding Draw2D

The Draw2D library provides a great deal of freedom in generating custom com-
ponents, but you pay a price in the amount of code needed to implement them.
Draw2D relies on many constructs from SWT (not JFace), but you must draw and
design most of the graphical components within it. You also need to specify their
event responses and any drag-and-drop capability. Essentially, the Draw2D library
serves as a complete graphics package, with the additional feature that these
graphics can be moved and associated with events.

 This section begins the discussion by providing an overview of Draw2D’s cen-
tral classes and their functions. Then, we’ll intersperse theoretical discussion with
the development of the flowchart’s graphics. We’ll cover the drag-and-drop capa-
bility as well as the process of adding Connector objects between shapes. Let’s start
with the basics.
Licensed to jromero <jose.romero@galicia.seresco.es>

364 APPENDIX C

Changeable GUIs with Draw2D
C.1.1 Using Draw2D’s primary classes

If you’ve understood our discussion of SWT so far, then Draw2D won’t present
much difficulty. As shown in table C.1, the two libraries use related classes and
provide similar structures for drawing, event handling, and component layout. In
fact, all Draw2D GUIs must be added to an SWT Canvas. The first difference is that
whereas a normal Canvas adds a GC object to provide graphics, a Canvas in a
Draw2D application uses an instance of a LightweightSystem.

LightweightSystems function similarly to Display objects in SWT. They have no
visual representation but provide event handling and interaction with the exter-
nal environment. As the name implies, LightweightSystems operate at a level
removed from the operating system. This means you lose the advantages of SWT/
JFace’s heavyweight rendering, such as its rapid execution and native look and
feel. However, now you can truly customize the appearance and operation of
your components.

 Without question, the most important class in Draw2D is the Figure, and the
majority of our Draw2D discussion will focus on its methods and subclasses. Like
an SWT Shell, it must be added to a LightweightSystem in order to provide a basis
for the GUI’s appearance. Like an SWT Control, it provides for resizing and relo-
cating, adding Listeners and LayoutManagers, and setting colors and fonts. It also
functions like a Composite in SWT, providing methods for adding and removing
other Figure objects—children—within its frame. This is shown in figure C.1.

 However, unlike Widget and Control objects, you can easily subclass Figures.
Their graphical aspects can be represented by a drawing or image. Not only can

Table C.1 Three primary classes of the Draw2D library

Class Function Similar SWT class

LightweightSystem High-level environment for rendering images Display

Figure Component or container within a Light-
weightSystem object

Shell, Control, Composite

Graphics Provides a graphical region within a Figure GC

Graphics
Figure

Graphics
Figure

Graphics
Figure

Container Figure

Lightweight System

Canvas

Figure C.1
Class relationships within
Draw2D user interfaces
Licensed to jromero <jose.romero@galicia.seresco.es>

Understanding Draw2D 365
Figures use separate Listener interfaces, they can also perform the majority of
their event handling by themselves. Figures can even initiate specific kinds of
events to alert other objects in the GUI.

 To add images and drawings to Figures, you need to use instances of the
Graphics class. It functions similar to SWT’s GC (graphics context) class, and it pro-
vides methods for incorporating graphics in a given area. It also contains many of
the same methods as GC, particularly for drawing lines and shapes, displaying
images, and working with fonts. However, the Graphics class provides one very dif-
ferent capability: Its objects can be moved, or translated, within the Lightweight-
System. This means that when you want to change the position of a graphical
component, Draw2D provides its own drag-and-drop capability to translate a Fig-
ure to the desired location.

C.1.2 The Flowchart application

UML has long been preeminent in modeling soft-
ware, but flowcharts are still helpful in depicting
sequential operations within a program. Our
Draw2D example focuses on drawing a simple flow-
chart, as shown in figure C.2.

 This appendix provides the code needed to cre-
ate this figure in Draw2D. Appendix D will show
you how to build a full flowchart editor based on
the Figures we build here.

 At the time of this writing, the Draw2D/GEF
plug-ins aren’t included in Eclipse and must be
downloaded separately. Currently, you can acquire
the GEF Software Development Kit (SDK) from
www.eclipse.org/gef. This file, which contains the
GEF and the Draw2D libraries, can be quickly inte-
grated by placing it in the $ECLIPSE directory and
decompressing its contents. Doing so will place the
Draw2D/GEF plug-ins in the $ECLIPSE/plugins directory and their features in the
$ECLIPSE/features directory.

 Because the code in this appendix is lengthy, we recommend that you down-
load our files from the Manning web site (www.manning.com/scarpino). However,
if you intend to build your own application, start by adding a com.swtjface.AppB
package to the WidgetWindow project. Then, create a classpath variable,

Figure C.2
A simple flowchart. Not much
help for complex projects, but
always good for nostalgia.
Licensed to jromero <jose.romero@galicia.seresco.es>

366 APPENDIX C

Changeable GUIs with Draw2D
Draw2D_LIB, pointing to $ECLIPSE/plugins/org.eclipse.draw2d_x.y.z/draw2d.jar.
Add this variable to the project.

 The Draw2D library incorporates many classes and capabilities, and this
appendix can’t cover every facet of its operation. Therefore, we’ll concentrate on
those classes that perform the main work of the toolset. This means investigating
the Figure class and its subclasses in greater depth.

C.2 Draw2D Figures

As you’ll see, it takes a fair amount of code to build a Draw2D GUI. However,
unlike those in an SWT/JFace GUI, Draw2D elements can be moved and manipu-
lated. These components, including the overall container, are descendents of
Draw2D’s main class, Figure. This class contains a number of subclasses that pro-
duce the visual aspects of the toolset’s GUI. Figure C.3 shows a small but impor-
tant subset.

 These subclasses will be used extensively in the flowchart editor, particularly those
involving Connections and Layers. But first, we need to explore Figures in general.

Figure

Clickable Label Layer ScrollPane Shape

Button Toggle LayeredPane FreeformLayer

PolyLine

PolyLine
Connection

Freeform
LayeredPane

Scalable
LayeredPane ConnectionLayer

Connection

Figure C.3 The Draw2D Figure class and a portion of its subclasses. Many of these play
an important role in the flowchart editor presented in appendix D.
Licensed to jromero <jose.romero@galicia.seresco.es>

Draw2D Figures 367
C.2.1 Figure methods

Like the SWT Control class, the Figure class contains many methods for manipu-
lating its properties. We can’t describe all 137 of them, but we can divide them
into four main categories:

■ Working with the Figure’s visual aspects

■ Event handling

■ Keeping track of parents and children

■ Managing graphics

If you’ve come this far, then you can probably figure out all you need to know
from the Draw2D Javadocs. However, we’ll provide a brief description of these cat-
egories here.

Working with a Figure’s visual aspects
The methods in the first category are exactly like those in SWT. These include get-
ting and setting the Figure’s bounds, location, and size. The Figure’s maximum
and minimum size can be controlled as well as its border size and visible area.
This category also provides methods for changing the Figure’s foreground and
background color and getting/setting its focus and visibility parameters.

Event handling in Draw2D
The process of handling events in Draw2D is also similar to SWT, but it provides a
few new events and listeners. Unlike SWT, Figures can handle many of their own
events. The entire list of listeners and their handling methods is shown in
table C.2.

Table C.2 Figure methods for event listening and handling

Draw2D listener Event-handling method(s)

addFocusListener() handleFocusGained()
handleFocusLost()

addKeyListener() handleKeyPressed()
handleKeyReleased()

addMouseListener() handleMouseDoubleClicked()
handleMousePressed()
handleMouseReleased()

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

368 APPENDIX C

Changeable GUIs with Draw2D
The first five methods look and act just like those in SWT, with addListener()
receiving untyped Events. But the last three methods are unique to Draw2D.

 The addAncestorListener() method responds to any changes to the Figure’s
ancestors and functions like the Swing implementation. Similarly, the FigureLis-
tener responds whenever the Figure is moved.

 The last method, addPropertyChangeListener(), lets you create your own
events. This process starts by associating a property, such as a Figure’s location, with
a String descriptor. Then, when firePropertyChange() is invoked with this String,
any PropertyChangeListeners listening for this property change respond. We’ll
revisit this subject in greater depth when we discuss the GEF and its model classes.

Parent and child Figures
SWT and JFace allow components to be included in other components by provid-
ing a Composite class. But in Draw2D, any Figure can be a container, and any Fig-
ure can be contained. Therefore, Draw2D uses the term parent to refer to the
outer graphic and child to refer to the graphic contained within. You create and
manipulate these relationships with the methods listed in table C.3.

addMouseMotionListener() handleMouseDragged()
handleMouseEntered()
handleMouseExited()
handleMouseHovered()
handleMouseMoved()

addListener() N/A

addAncestorListener() N/A

addFigureListener() N/A

addPropertyChangeListener() N/A

Table C.3 Parent/child methods of the Figure class

Method Function

add(Figure, Object, int) Adds a child Figure with the given constraint and
List index

getChildren() Returns a List of child Figures

continued on next page

Table C.2 Figure methods for event listening and handling (continued)

Draw2D listener Event-handling method(s)
Licensed to jromero <jose.romero@galicia.seresco.es>

Draw2D Figures 369
In SWT, Buttons and Labels add themselves to Composites by identifying parents in
their constructors. In Draw2D, a parent Figure uses its add() method to include
Figures in its List of children. This method can include an optional constraint
(such as the child’s size or location) and/or an index in the parent’s List. Parent
Figures can obtain this List with the getChildren() method, and children can
access their parent with getParent(). Parents can also enable or disable children
with setChildrenEnabled() or alter an aspect of the child with setConstraint().

Managing graphics
Although Draw2D provides a Graphics class that performs most of the duties of
SWT’s GC, Figures have a few graphical methods of their own. Not only can they
control their display with paint(), they can also use paintBorder() and paintCli-
entArea() to select which section to show. Figures can display their children with
paintChildren() or use paintFigure() to only show themselves. There are also a
number of repaint() methods available, which work similarly to those in SWT.

 Draw2D contains methods for finding information about the user’s selection
location. This is different from SWT because Draw2D is particularly concerned
with precise mouse movements, whereas an SWT GUI is only concerned about the
selected Control. These methods include FindMouseEventAt(), FindFigureAt(),
and FindFigureAt().

C.2.2 Using Labels and Clickables

The first Figure subclasses for our investigation are the simplest: Labels and
Clickables. These objects look and act similarly to their SWT counterparts, but
there are a few interesting concerns that you need to keep in mind.

Labels
Draw2D Labels resemble those of SWT but contain more methods for text mea-
surement and image location. You can measure the parameters of the Label’s
String through getTextBounds() and getTextLocation(). Similarly, if the Label is

getParent() Returns the Figure’s parent Figure

setChildrenEnabled(boolean) Enables or disables the Figure’s children

setConstraint(Figure, Object) Sets a constraint for the given child Figure

Table C.3 Parent/child methods of the Figure class (continued)

Method Function
Licensed to jromero <jose.romero@galicia.seresco.es>

370 APPENDIX C

Changeable GUIs with Draw2D
associated with an Image, then getIconBounds() and getIconAlignment() will pro-
vide information about the Image.

Clickables
This class, which includes Buttons and Toggles, provides binary information con-
cerning the user’s preferences. Like SWT Buttons, they can be configured with
style bits to appear like toggle buttons, checkboxes, or regular pushbuttons. You
can also control their selection and add images or text. But there are two main
differences between Draw2D Clickables and SWT Buttons. The first is that Click-
ables can take the appearance of any Draw2D Figure. The second has to do with
Clickable event handling.

 Draw2D user interfaces are generally more complex than those created with
SWT and JFace. Therefore, a Clickable’s state information is managed by a But-
tonModel or ToggleModel object. This separates the component’s appearance from
its behavior and enables you to develop the two aspects independently. You can
also contain these Model objects in a ButtonGroup, which manages multiple Click-
ables at once.

 Clickables update their Model objects by calling fireChangeEvent(), which
works like the Figure’s firePropertyChangeEvent(). Clickable properties, such as
MOUSEOVER_PROPERTY and PRESSED_PROPERTY, are represented by constants in the
Model class. When they change, the Model may fire a number of Draw2D events or
inform its ButtonGroup by default.

Example application
The code in listing C.1 won’t be used in our flowchart editor, but it shows how
Draw2D Clickables, Models, and ButtonGroups work together. In this case, we use
the CheckBox subclass of Clickable and associate it with a ToggleModel.

package com.swtjface.AppC;

import org.eclipse.swt.widgets.*;
import org.eclipse.draw2d.*;
import org.eclipse.draw2d.Label;
import org.eclipse.draw2d.geometry.*;

public class Draw2D_Example
{
 public static void main(String args[])
 {
 final Label label = new Label("Press a button!");
 Shell shell = new Shell();

Listing C.1 Draw2D_Example.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Draw2D Figures 371
 LightweightSystem lws = new LightweightSystem(shell);
 Figure parent = new Figure();
 parent.setLayoutManager(new XYLayout());
 lws.setContents(parent);

 Clickable above = new CheckBox("I'm above!");
 parent.add(above, new Rectangle(10,10,80,20));
 ButtonModel aModel = new ToggleModel();
 aModel.addChangeListener(new ChangeListener()
 {
 public void handleStateChanged(ChangeEvent e)
 {
 label.setText("Above");
 }
 });
 above.setModel(aModel);

 Clickable below = new CheckBox("I'm below!");
 parent.add(below, new Rectangle(10,40,80,20));
 ButtonModel bModel = new ToggleModel();
 bModel.addChangeListener(new ChangeListener()
 {
 public void handleStateChanged(ChangeEvent e)
 {
 label.setText("Below");
 }
 });
 below.setModel(bModel);

 ButtonGroup bGroup = new ButtonGroup();
 bGroup.add(aModel);
 bGroup.add(bModel);
 bGroup.setDefault(bModel);

 parent.add(label, new Rectangle(10,70,80,20));
 shell.setSize(130,120);
 shell.open();
 shell.setText("Example");
 Display display = Display.getDefault();
 while (!shell.isDisposed())
 {
 if (!display.readAndDispatch())
 display.sleep ();
 }
 }
}

As you can see, a Draw2D application is just an SWT Shell with a LightweightSys-
tem and Figures. It’s important to understand that the ChangeListener is created
by the button’s Model and responds to any mouse action, including clicks and
Licensed to jromero <jose.romero@galicia.seresco.es>

372 APPENDIX C

Changeable GUIs with Draw2D
hovering. Also, because the two Models are added to the ButtonGroup, only one of
them can be selected at a time.

 In order for the parent Figure to understand the Rectangle constraints of its
children, you must configure it with a LayoutManager called XYLayout. We’ll now
focus on LayoutManagers and how they enable you to determine how children are
arranged within Figures.

C.3 Using LayoutManagers and panes

LayoutManagers, like SWT’s Layout classes, specify how child components should
be positioned and sized in a container. This section describes LayoutManager’s
subclasses and how you can use them.

 In addition, we’ll go over Draw2D’s panes: ScrollPanes, LayerPanes, and their
subclasses. Draw2D has no Composite class, but these panes generally serve as
background containers for its GUIs. As you’ll see, these window-like classes pro-
vide a number of capabilities that make it simple to build graphical editors. We’ll
finish this section by creating the first flowchart Figure by extending the Free-
formLayeredPane class.

C.3.1 Understanding LayoutManager subclasses

In SWT, containers rely on a default layout policy for their children; but Draw2D
demands that you choose a LayoutManager subclass. Two of these, FlowFigureLay-
out and ScrollBarLayout, are only useful for specific Figures, so we’ll concentrate
on three (see table C.4).

It’s important to understand that when a parent Figure uses its add() method with
a position constraint, its LayoutManager is responsible for interpreting the con-
straint and setting the child’s location as needed.

Table C.4 LayoutManager subclasses

Subclass Description

AbstractHintLayout Uses hint constraints to determine the size of the child Figures, calculat-
ing one dimension based on a specified value for the other

DelegatingLayout Allows children to set their own size according to a Locator constraint

XYLayout Gives the parent the responsibility for sizing and positioning its children
according to a Rectangle constraint
Licensed to jromero <jose.romero@galicia.seresco.es>

Using LayoutManagers and panes 373
 We’ll choose the XYLayout for our editor. Now we need a suitable container
class: We’ll choose the LayeredPane.

C.3.2 LayeredPanes

Since Draw2D applications can become very complex, a LayeredPane provides
many levels for displaying Figures. Using transparent Layers, you can separate the
graphical aspects of your GUIs. Different Layers can have different properties,
including separate LayoutManagers. This will be important for our editor, because
we add not only Figures but also Connections and feedback.

 The first step in understanding how LayeredPanes work is learning about Lay-
ers. These transparent objects can be manipulated as individual Figures, and the
Layer class contains two methods of its own: containsPoint() and findFig-
ureAt(). These objects have fixed boundaries, but the FreeformLayer subclass can
be extended in all directions. This is necessary for a graphical editing application
whose drawings are larger than the window’s visible region.

 A LayeredPane adds new Layers with its add() method, which specifies the
Layer object, a key to identify it, and an index representing its position. It can also
remove Layers or change their positions in its stack.

 By choosing subclasses of LayeredPane, you can increase its capabilities. If
you’d like to be able to zoom in on sections of the pane, choose ScalableLayered-
Pane. Use FreeformLayeredPane if you’d like to extend the window in all direc-
tions. If you want both capabilities, use ScalableFreeformLayeredPane. In our
case, we’re only interested in extensibility; listing C.2 shows the FreeformLayered-
Pane that we’ll use as the basis of our editor.

package com.swtjface.AppC;

import org.eclipse.draw2d.*;

public class ChartFigure extends FreeformLayeredPane
{
 public ChartFigure()
 {
 setLayoutManager(new FreeformLayout());
 setBorder(new MarginBorder(5));
 setBackgroundColor(ColorConstants.white);
 setOpaque(true);
 }
}

Listing C.2 ChartFigure.java
Licensed to jromero <jose.romero@galicia.seresco.es>

374 APPENDIX C

Changeable GUIs with Draw2D
We configure the FreeformLayeredPane with its appearance constraints, but we
don’t add any Layers yet. That will happen later in the editor’s development.

C.3.3 ScrollPanes and Viewports

Before ending our discussion of Draw2D’s panes, we need to briefly mention
ScrollPanes. These classes are easy to understand and function by creating
Scrollbars on top of another Figure. The bars’ visibility can be configured so that
they are always showing, never showing, or shown only when needed.

 At any given time, only a section of the ScrollPane can be seen. This visible
region is called a Viewport. These work similarly to Layers but provide more
methods for controlling size and shape. There is also a FreeformViewport for
panes that can be extended in all directions.

 Now that we’ve built the primary container for our application, we need to cre-
ate the shapes that will be added to its diagram. For this, we need to investigate
Draw2D’s Graphics class and its drawing capability.

C.4 Using the Graphics class to create Shapes

In SWT, graphic contexts (GCs) can either be created as separate objects or obtained
as part of a PaintEvent. But in Draw2D, a Figure can acquire a Graphics object by
one of the paint methods described in section C.2.1. The vast majority of the Graph-
ics methods are exactly the same as those in GC; the only important difference is
that Draw2D allows a Graphics object to move through its translate() method.

 However, Draw2D provides more powerful capabilities for creating and manip-
ulating Shapes. As you’ll see, it has packages of helpful classes for working with
geometry and graphs.

C.4.1 Using the Graphics class

As we’ve mentioned, the Graphics methods are nearly identical to those of SWT’s
GC. Therefore, in this subsection we’ll create the classes that represent the compo-
nents shown in figure C.2. To clarify, these three Figures function as follows:

■ DecisionFigure—Contains a question. One input, two outputs (Yes or No).

■ ProcessFigure—Contains an action to be followed. One input, one output.

■ TerminatorFigure—Represents the start or end of the flowchart. If it’s used
as a start, only the output should be connected. If it’s used as an end, only
the input should be connected.
Licensed to jromero <jose.romero@galicia.seresco.es>

Using the Graphics class to create Shapes 375
In each case, the Figure’s size is controlled by a variable called bounds. Its text is
set with a message String. These constraints are controlled outside of their Figure
classes, so you won’t be able to view them yet.

 The code for these classes, including the paintFigure() method that creates
the Graphics object, is shown in listings C.3 through C.5.

package com.swtjface.AppC;
import org.eclipse.draw2d.*;
import org.eclipse.draw2d.geometry.*;

public class DecisionFigure extends ActivityFigure
{
 FixedAnchor inAnchor, yesAnchor, noAnchor;

 public DecisionFigure()
 {
 inAnchor = new FixedAnchor(this);
 inAnchor.place = new Point(1, 0);
 targetAnchors.put("in_dec",inAnchor);

 noAnchor = new FixedAnchor(this);
 noAnchor.place = new Point(2, 1);
 sourceAnchors.put("no",noAnchor);

 yesAnchor = new FixedAnchor(this);
 yesAnchor.place = new Point(1, 2);
 sourceAnchors.put("yes",yesAnchor);
 }

 public void paintFigure(Graphics g)
 {
 Rectangle r = bounds;
 PointList pl = new PointList(4);
 pl.addPoint(r.x + r.width/2, r.y);
 pl.addPoint(r.x, r.y + r.height/2);
 pl.addPoint(r.x + r.width/2, r.y + r.height-1);
 pl.addPoint(r.x + r.width, r.y + r.height/2);
 g.drawPolygon(pl);
 g.drawText(message, r.x+r.width/4+5, r.y+3*r.height/8);
 g.drawText("N", r.x+7*r.width/8, r.y+3*r.height/8);
 g.drawText("Y", r.x+r.width/2-2, r.y+3*r.height/4);
 }
}

Listing C.3 DecisionFigure.java
Licensed to jromero <jose.romero@galicia.seresco.es>

376 APPENDIX C

Changeable GUIs with Draw2D
Because of the DecisionFigure’s irregular diamond shape, we need to create a
separate Polygon by specifying a series of Points. Thankfully, the ProcessFigure is
a Rectangle and is much easier to code.

package com.swtjface.AppC;
import org.eclipse.draw2d.*;
import org.eclipse.draw2d.geometry.*;

public class ProcessFigure extends ActivityFigure
{
 FixedAnchor inAnchor, outAnchor;

 public ProcessFigure()
 {
 inAnchor = new FixedAnchor(this);
 inAnchor.place = new Point(1, 0);
 targetAnchors.put("in_proc", inAnchor);

 outAnchor = new FixedAnchor(this);
 outAnchor.place = new Point(1, 2);
 sourceAnchors.put("out_proc", outAnchor);
 }

 public void paintFigure(Graphics g)
 {
 Rectangle r = bounds;
 g.drawText(message, r.x + r.width/4, r.y + r.height/4);
 g.drawRectangle(r.x, r.y, r.width-1, r.height-1);
 }
}

Since the TerminatorFigure contains two arcs on either side, it isn’t nearly as easy
to draw as the ProcessFigure. However, its code is easy to understand.

package com.swtjface.AppC;

import org.eclipse.draw2d.*;
import org.eclipse.draw2d.geometry.*;

public class TerminatorFigure extends ActivityFigure
{
 FixedAnchor inAnchor, outAnchor;

 public TerminatorFigure()
 {
 inAnchor = new FixedAnchor(this);

Listing C.4 ProcessFigure.java

Listing C.5 TerminatorFigure.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Using the Graphics class to create Shapes 377
 inAnchor.place = new Point(1, 0);
 targetAnchors.put("in_term",inAnchor);

 outAnchor = new FixedAnchor(this);
 outAnchor.place = new Point(1, 2);
 sourceAnchors.put("out_term",outAnchor);
 }

 public void paintFigure(Graphics g)
 {
 Rectangle r = bounds;
 g.drawArc(r.x + r.width/8, r.y, r.width/4, r.height-1, 90, 180);
 g.drawLine(r.x + r.width/4, r.y, r.x + 3*r.width/4, r.y);
 g.drawLine(r.x + r.width/4, r.y + r.height-1, r.x + 3*r.width/4,
 r.y + r.height-1);
 g.drawArc(r.x + 5*r.width/8, r.y, r.width/4, r.height-1, 270, 180);
 g.drawText(message, r.x+3*r.width/8, r.y+r.height/8);
 }
}

Clearly, there’s a great deal more to these classes than just drawings. The added
complexity is present for two reasons. First, these Figures need to be connected to
other Figures, which means they need ConnectionAnchors (called FixedAnchors).
Second, these Figures will play an important role in the full flowchart editor that
we’ll create in appendix D. Many of their methods can’t be explained until then
(but they’re worth waiting for!).

 Since all these Figures extend from an ActivityFigure, it would be a good
idea to show what that is. This superclass contains all the methods common to our
DecisionFigure, ProcessFigure, and TerminatorFigure. As you can see from
listing C.6, most of its methods keep track of Connections and their anchors.

package com.swtjface.AppC;

import org.eclipse.draw2d.*;
import org.eclipse.draw2d.geometry.*;

import java.util.*;

abstract public class ActivityFigure
 extends Figure
{
 Rectangle r = new Rectangle();
 Hashtable targetAnchors = new Hashtable();
 Hashtable sourceAnchors = new Hashtable();
 String message = new String();

Listing C.6 ActivityFigure.java
Licensed to jromero <jose.romero@galicia.seresco.es>

378 APPENDIX C

Changeable GUIs with Draw2D
 public void setName(String msg)
 {
 message = msg;
 repaint();
 }

 public ConnectionAnchor ConnectionAnchorAt(Point p)
 {
 ConnectionAnchor closest = null;
 long min = Long.MAX_VALUE;
 Hashtable conn = getSourceConnectionAnchors();
 conn.putAll(getTargetConnectionAnchors());
 Enumeration e = conn.elements();
 while (e.hasMoreElements())
 {
 ConnectionAnchor c = (ConnectionAnchor) e.nextElement();
 Point p2 = c.getLocation(null);
 long d = p.getDistance2(p2);
 if (d < min)
 {
 min = d;
 closest = c;
 }
 }
 return closest;
 }

 public ConnectionAnchor getSourceConnectionAnchor(String name)
 {
 return (ConnectionAnchor)sourceAnchors.get(name);
 }

 public ConnectionAnchor getTargetConnectionAnchor(String name)
 {
 return (ConnectionAnchor)targetAnchors.get(name);
 }

 public String getSourceAnchorName(ConnectionAnchor c)
 {
 Enumeration enum = sourceAnchors.keys();
 String name;
 while (enum.hasMoreElements())
 {
 name = (String)enum.nextElement();
 if (sourceAnchors.get(name).equals(c))
 return name;
 }
 return null;
 }

 public String getTargetAnchorName(ConnectionAnchor c)
 {
 Enumeration enum = targetAnchors.keys();
Licensed to jromero <jose.romero@galicia.seresco.es>

Using the Graphics class to create Shapes 379
 String name;
 while (enum.hasMoreElements())
 {
 name = (String)enum.nextElement();
 if (targetAnchors.get(name).equals(c))
 return name;
 }
 return null;
 }

 public ConnectionAnchor getSourceConnectionAnchorAt(Point p)
 {
 ConnectionAnchor closest = null;
 long min = Long.MAX_VALUE;
 Enumeration e = getSourceConnectionAnchors().elements();
 while (e.hasMoreElements())
 {
 ConnectionAnchor c = (ConnectionAnchor) e.nextElement();
 Point p2 = c.getLocation(null);
 long d = p.getDistance2(p2);
 if (d < min)
 {
 min = d;
 closest = c;
 }
 }
 return closest;
 }

 public Hashtable getSourceConnectionAnchors()
 {
 return sourceAnchors;
 }

 public ConnectionAnchor getTargetConnectionAnchorAt(Point p)
 {
 ConnectionAnchor closest = null;
 long min = Long.MAX_VALUE;
 Enumeration e = getTargetConnectionAnchors().elements();
 while (e.hasMoreElements())
 {
 ConnectionAnchor c = (ConnectionAnchor) e.nextElement();
 Point p2 = c.getLocation(null);
 long d = p.getDistance2(p2);
 if (d < min)
 {
 min = d;
 closest = c;
 }
 }
 return closest;
Licensed to jromero <jose.romero@galicia.seresco.es>

380 APPENDIX C

Changeable GUIs with Draw2D
 }

 public Hashtable getTargetConnectionAnchors()
 {
 return targetAnchors;
 }
}

We’ll describe these ConnectionAnchors and Connections shortly. But first, we
need to address Draw2D’s package for geometry and shapes.

C.4.2 Draw2D geometry and graphs

You’ve seen how Points and Rectangles are used, but Draw2D provides many
more classes for incorporating shapes in GUIs. For higher-precision measure-
ments, Draw2D provides PrecisionPoints, PrecisionRectangles, and Precision-
Dimensions. It contains Ray objects that function like mathematical vectors and a
Transform class to translate, rotate, and scale graphical Points and dimensions.

 The org.eclipse.draw2d.graph package contains a number of useful classes
for creating and analyzing directed graphs. Along with basic Nodes and Edges, this
package also provides a DirectedGraphLayout for arranging them. Graph theory is
far beyond the scope of this appendix, but if it interests you, this package should
prove helpful.

 Draw2D’s Figures aren’t connected by Edges, but by Connection objects. To fin-
ish our flowchart diagram, we need to show you how this class operates.

C.5 Understanding Connections

The FixedAnchor class has figured prominently in our code listings so far. These
objects (subclasses of AbstractConnectionAnchor) enable you to add lines, or Con-
nections, between two Figures. Because Connections create relationships between
components, they’re fundamental in system models and diagrams. However, man-
aging Connections and their ConnectionAnchors can be complicated, so it’s impor-
tant that you understand how they function.

C.5.1 Working with ConnectionAnchors

ConnectionAnchors don’t have a visual representation. Instead, they specify a point
on a Figure that can receive Connections. You add them by identifying the Figure
Licensed to jromero <jose.romero@galicia.seresco.es>

Understanding Connections 381
in the ConnectionAnchor’s constructor method. This Figure is called the anchor’s
owner, not its parent.

 The difficulty in working with anchors isn’t adding them, but placing them
appropriately. For this reason, the only method required by the ConnectionAnchor
interface is getLocation() (see listing C.7).

package com.swtjface.AppC;

import org.eclipse.draw2d.*;
import org.eclipse.draw2d.geometry.*;

public class FixedAnchor
 extends AbstractConnectionAnchor
{
 Point place;

 public FixedAnchor(IFigure owner)
 {
 super(owner);
 }

 public Point getLocation(Point loc)
 {
 Rectangle r = getOwner().getBounds();
 int x = r.x + place.x * r.width/2;
 int y = r.y + place.y * r.height/2;
 Point p = new PrecisionPoint(x,y);
 getOwner().translateToAbsolute(p);
 return p;
 }
}

The getLocation() method is called whenever the owner’s location changes. The
Point returned by the method tells the GUI where the anchor should be posi-
tioned. In our case, we use getOwner() to obtain the owner’s bounds and a con-
straint called place. This variable specifies the anchor’s location as a proportion
of the owner’s dimensions. This way, if the Figure’s size changes, the anchor will
still be positioned properly.

 For example, we want the input connection into our DecisionFigure to be
located at the top of its bounds and halfway across its width. We set this in our
class as follows:

Listing C.7 FixedAnchor.java
Licensed to jromero <jose.romero@galicia.seresco.es>

382 APPENDIX C

Changeable GUIs with Draw2D
inAnchor = new FixedAnchor(this);
inAnchor.place = new Point(1, 0);
targetAnchors.put("in_dec",inAnchor);

Here, place is set to (1,0) to tell the anchor to be located at 1/2 its width and 0/2
its height, as measured from the top, leftmost corner of the Figure’s enclosing
Rectangle. The anchor is then placed in a Hashtable with a String key. This
doesn’t mean anything in Draw2D, but it will be important when we use this Fig-
ure in the GEF editor.

C.5.2 Adding Connections to the GUI

Working with Connections is easier than dealing with their anchors, because
Draw2D takes care of drawing the line. Draw2D’s implementation of the Connec-
tion interface is PolylineConnection, which is a connected line. Our subclass of
PolylineConnection is PathFigure (see listing C.8).

package com.swtjface.AppC;

import org.eclipse.draw2d.*;

public class PathFigure extends PolylineConnection
{
 public PathFigure()
 {
 setTargetDecoration(new PolylineDecoration());
 setConnectionRouter(new ManhattanConnectionRouter());
 }
}

Of course, Connections are more than connected lines. We need to set their
source and target Figures, and we can configure their appearance and routing.
With regard to appearance, you can add decorations to the start and end of the
Connection by calling setSourceDecoration() or setTargetDecoration(). In our
case, we create a new PolylineDecoration for the end of the Connection, which
looks like a triangle tip.

 In addition to decorators, you can add Labels or other Figures to Connections
by using a ConnectionEndpointLocator. These objects are created with a Connec-
tion object and a boolean value representing whether the Figure should be
added at the start or end. Then, setVDistance() tells the new Figure how far away
it should be from the Connection, and setUDistance() specifies the distance to
the Connection’s source or target.

Listing C.8 LiPathFigure.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Putting it all together 383
 The Connection’s router refers to the path it takes from one anchor to the
next. The four subclasses of AbstractConnectionRouter are listed in table C.5.

As you can see in figure C.2, our PathFigures always bend at right angles; this is
because we chose to use the ManhattanConnectionRouter. It’s important to note,
though, that if your LayeredPane contains a ConnectionLayer, you can also use it
to set the routing.

 Now that you understand Draw2D’s Figures and Connections, we’ll combine
the two in our final section.

C.6 Putting it all together

We’re nearly ready to add the main class of the diagram. But to allow users to repo-
sition Figures, you need to understand how drag-and-drop works in Draw2D. We’ll
also present the FigureFactory class so that you can centralize Figure allocation.

C.6.1 Drag-and-drop in Draw2D

We’ve already mentioned a number of important listeners and events in Draw2D,
but none of them involved DragSources, DropTargets, or anything resembling the
drag-and-drop capability of SWT. This is because at the time of this writing,
Draw2D has yet to incorporate this feature. Therefore, our Dnd class, shown in
listing C.9, relies on the Figure’s ability to translate itself according to the distance
between its present and future locations.

Table C.5 AbstractConnectionRouter subclasses

Subclass Description

AutomaticRouter Positions Connections so that they never inter-
sect, or intersect as little as possible

ManhattanConnectionRouter Positions Connections so that all bends are
made with right angles

ConnectionRouter.NullConnectionRouter Positions Connections in a straight line from
the source anchor to the target

BendpointConnectionRouter Creates moveable points (Bendpoints) for
each bend in the Connection
Licensed to jromero <jose.romero@galicia.seresco.es>

384 APPENDIX C

Changeable GUIs with Draw2D
package com.swtjface.AppC;

import org.eclipse.draw2d.*;
import org.eclipse.draw2d.geometry.*;

public class Dnd extends MouseMotionListener.Stub
 implements MouseListener
{
 public Dnd(IFigure figure)
 {
 figure.addMouseMotionListener(this);
 figure.addMouseListener(this);
 }
 Point start;
 public void mouseReleased(MouseEvent e){}
 public void mouseClicked(MouseEvent e){}
 public void mouseDoubleClicked(MouseEvent e){}
 public void mousePressed(MouseEvent e)
 {
 start = e.getLocation();
 }
 public void mouseDragged(MouseEvent e)
 {
 Point p = e.getLocation();
 Dimension d = p.getDifference(start);
 start = p;
 Figure f = ((Figure)e.getSource());
 f.setBounds(f.getBounds().getTranslated(d.width, d.height));
 }
};

Because this class extends MouseMotionListener.Stub, it doesn’t need to add all
the methods for a MouseMotionListener. But because it needs to respond to
mouse clicks, it implements MouseListener and needs to add all the methods for
this interface.

C.6.2 Creating Figures with a FigureFactory

To prevent outside methods from directly invoking constructor methods, the edi-
tor uses the factory pattern for its Figures. This is a single class whose static methods
create new Figures for insertion into the GUI. The code for the FigureFactory is
shown in listing C.10.

Listing C.9 Dnd.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Putting it all together 385
package com.swtjface.AppC;

import org.eclipse.draw2d.IFigure;

public class FigureFactory
{

 public static IFigure createTerminatorFigure()
 {
 return new TerminatorFigure();
 }

public static IFigure createDecisionFigure()
 {
 return new DecisionFigure();
 }

 public static IFigure createProcessFigure()
 {
 return new ProcessFigure();
 }

 public static PathFigure createPathFigure()
 {
 return new PathFigure();
 }

 public static ChartFigure createChartFigure()
 {
 return new ChartFigure();
 }
}

We’ve created all the Figures needed for the flowchart and the factory class that
creates them. Now we can add the final executable that combines them.

C.6.3 The Flowchart class

To finish the application, listing C.11 presents the Flowchart class.

package com.swtjface.AppC;

import org.eclipse.swt.widgets.*;
import org.eclipse.draw2d.*;
import org.eclipse.draw2d.geometry.*;

public class Flowchart
{

Listing C.10 FigureFactory.java

Listing C.11 Flowchart.java
Licensed to jromero <jose.romero@galicia.seresco.es>

386 APPENDIX C

Changeable GUIs with Draw2D
 public static void main(String args[])
 {
 Shell shell = new Shell();
 shell.setSize(200,300);
 shell.open();
 shell.setText("Flowchart");
 LightweightSystem lws = new LightweightSystem(shell);
 ChartFigure flowchart = new ChartFigure();
 lws.setContents(flowchart);

 TerminatorFigure start = new TerminatorFigure();
 start.setName("Start");
 start.setBounds(new Rectangle(40,20,80,20));
 DecisionFigure dec = new DecisionFigure();
 dec.setName("Should I?");
 dec.setBounds(new Rectangle(30,60,100,60));
 ProcessFigure proc = new ProcessFigure();
 proc.setName("Do it!");
 proc.setBounds(new Rectangle(40,140,80,40));
 TerminatorFigure stop = new TerminatorFigure();
 stop.setName("End");
 stop.setBounds(new Rectangle(40,200,80,20));

 PathFigure path1 = new PathFigure();
 path1.setSourceAnchor(start.outAnchor);
 path1.setTargetAnchor(dec.inAnchor);
 PathFigure path2 = new PathFigure();
 path2.setSourceAnchor(dec.yesAnchor);
 path2.setTargetAnchor(proc.inAnchor);
 PathFigure path3 = new PathFigure();
 path3.setSourceAnchor(dec.noAnchor);
 path3.setTargetAnchor(stop.inAnchor);
 PathFigure path4 = new PathFigure();
 path4.setSourceAnchor(proc.outAnchor);
 path4.setTargetAnchor(stop.inAnchor);

 flowchart.add(start);
 flowchart.add(dec);
 flowchart.add(proc);
 flowchart.add(stop);
 flowchart.add(path1);
 flowchart.add(path2);
 flowchart.add(path3);
 flowchart.add(path4);

 new Dnd(start);
 new Dnd(proc);
 new Dnd(dec);
 new Dnd(stop);

 Display display = Display.getDefault();
 while (!shell.isDisposed())
 {
Licensed to jromero <jose.romero@galicia.seresco.es>

Putting it all together 387
 if (!display.readAndDispatch())
 display.sleep();
 }
 }
}

Although the code for this class is long, its operation is easy to understand. After
the ChartFigure is added to the LightweightSystem, four component Figures are
created and initialized. These components are connected with four PathFigures.
After all the Figures are added to the diagram, the code associates a Dnd object
with each component.

 The diagram we’ve created is more interesting than many of our SWT GUIs,
but it leaves much to be desired. We’d like to add and remove Figures and the
Connections between them. We want to resize them and set their messages during
operation. Finally, we’d like to persist our flowcharts in a file so we don’t have to
rebuild them every time we close the application.

 All of this is possible, but it’s not easy. If you thought the code in this appendix
was involved, you haven’t seen anything yet. In appendix D, we’ll introduce the
Graphical Editing Framework.

Licensed to jromero <jose.romero@galicia.seresco.es>

The Graphical Editing
Framework (GEF)
388

Licensed to jromero <jose.romero@galicia.seresco.es>

A GEF overview 389
GEF development is, without question, the most complex topic thus far—it would
take an entire book to examine the GEF toolset in full. So, this appendix will only
describe the structure and function of a simple (but complete) graphical editor.

 Building a graphical editor involves much more than Draw2D Figures: It
requires a sound knowledge of plug-ins, Model-View-Controller (MVC) architec-
ture, JavaBean components, JFace Viewers, JFace Actions, JFace properties, and
many of the classes that make up the Eclipse Workbench. Although this appendix
won’t attempt to explain any of these concepts in depth, we’ll clarify how they
work together in the GEF. Learning to build a graphical editor isn’t easy, but with
sufficient experience, you can create powerful applications with reusable, inter-
changeable code.

 GEF development is complicated but not impossible. How do you eat a two-ton
elephant? One bite at a time.

D.1 A GEF overview

Before we go into the nuts and bolts of GEF development, it will be helpful to dis-
cuss how the machine works as a whole. A graphical editor functions by allowing a
user to create a visual representation of a complex system. The editing process is
performed by adding graphical elements to a container, setting their properties,
and creating relationships between them. Once these elements and relationships
are set, the editor must be able to persist the editor’s state in a file. Of course, this
file doesn’t keep track of every color, dimension, and pixel in the editor. Instead,
it contains the diagram’s information—its meaning—which has been separated
from its appearance.

D.1.1 Separation of concerns theory

Not only does GEF development split information and appearance, it also requires
classes for every separable aspect of the editor. That is, a GEF editor isn’t a single,
monolithic application, but a combination of many small objects that communicate
using standard interfaces. This modular structure makes editor code easy to replace
and maintain. However, the multiplicity of parts makes the learning curve steep.

 Figure D.1 shows how the MVC architecture provides a separation of concerns.
The View is the easiest to understand, since it provides the component’s display.
The Model aspect is more subtle; put simply, it holds the properties of the editor
that can be modified by the user. These could include the size and location of the
Licensed to jromero <jose.romero@galicia.seresco.es>

390 APPENDIX D

The Graphical Editing Framework (GEF)
editor’s components and the presence and placement of the connections
between them.

 The Controller manages the component’s interaction with the rest of the GUI.
It receives notice of user input and directs changes to its Model and View objects.
It keeps track of connections between components and any message communica-
tion. In essence, the Controller aspect takes care of everything that isn’t related to
the Model or View.

D.1.2 Separation of concerns: GEF implementation

Every editable component in a GEF editor consists of three objects that provide its
MVC structure. The View aspect is generally implemented as a Figure or Image.
The Controller is a subclass of AbstractGraphicalEditPart. A Model class extends
only Object. Figure D.2 shows the classes that will be used to create our Decision
component and the naming conventions for each.

 Thankfully, we created the View aspects of the editor’s components in appen-
dix C. We can now show how these aspects work together during editing.

Controller

(Interface/
Management)

View

(Appearance)
Model

(Information)
Figure D.1 MVC architecture for
graphical editors

DecisionPart

(Controller)

DecisionFigure

(View)
Decision

(Model)

Should I?

Y

N
Figure D.2 The flowchart’s Decision
component and the classes used to
represent its Model, View, and Controller
Licensed to jromero <jose.romero@galicia.seresco.es>

A GEF overview 391
NOTE Although the EditPart object makes up the Controller aspect of a GEF
component, the entire MVC combination is generally referred to as an
EditPart, or component, or just part. Therefore, we’ll refer to the aspects
described in figure D.2 collectively as a DecisionPart.

D.1.3 MVC interaction

It isn’t difficult to see how the Model, View, and Controller classes function indi-
vidually. The main obstacle to understanding the GEF is dealing with their interac-
tions, both between themselves and with the rest of the application. Even the
simplest editing modification requires a complex data exchange involving Tools,
Requests, EditPolicys, Commands, and PropertyChangeEvents. We’ll cover these
topics in staggering detail to enable you to customize your GEF editor. But since
you’re still in the first section, a quick analogy will be helpful.

 Think about how your nervous system works. Your senses perceive a stimulus
and send their impression to the nervous system. The nervous system, functioning
like a switchboard, updates the brain with the new information. The brain sends a
response, and the nervous system extends or retracts muscles to move the skele-
ton. This interaction is shown in figure D.3.

The Brain

Nervous

System

Senses

Muscular/

Skeletal System

Figure D.3 The GEF/nervous system analogy, part 1
Licensed to jromero <jose.romero@galicia.seresco.es>

392 APPENDIX D

The Graphical Editing Framework (GEF)
 When you examine the interaction between the classes that make up GEF’s
MVC architecture, the process may seem similar. When the user causes an event, a
Tool object sends a Request to the selected EditPart. This EditPart uses a List of
EditPolicys to create a Command that updates the Model class. When the Model
changes, it fires a PropertyChangeEvent. After receiving this event, the EditPart
modifies the component’s Figure (View) by invoking one of its refresh() meth-
ods. This process is shown in figure D.4.

 This comparison isn’t perfect, but it provides a framework for understanding
the many interfaces and objects that take part in the editing process. As we
progress into greater detail, it’s easy to lose sight of the big picture; we hope you’ll
keep this analogy in mind.

D.1.4 Building the flowchart editor

A graphical editor requires classes for the Model, View, and Controller aspects of
each component. For the flowchart editor, the top-level (parent) component will
be the Chart, which serves as the main container for the rest of the GUI elements.
We’ve already created the View (ChartFigure), so we need to build a Controller
(ChartPart) and a Model (Chart).

The Model Object

The EditPart

(Controller)

Object

The Active

Tool

The Figure

(View)

getABC() (....)

setABC() (....)

getXYZ() (....)

setXYZ() (....)

EditPolicy
getGommand
(Request)
(....)

Refresh(ABC
(....)

RefreshXYZ
(....)

EditPart.
getCommand
(Request)

setConstraint
(ABC)

setConstraint
(XYZ)

Command

Property
Change

Request

Refresh

Figure D.4 The GEF/nervous system analogy, part 2
Licensed to jromero <jose.romero@galicia.seresco.es>

A GEF overview 393
 The three shapes in the editor, corresponding to the Decision, Terminator,
and Process components, also require MVC triples. This means building Edit-
Parts and Model classes in addition to the Figures created in appendix C.
Because these three components have so much in common, we’ll show how to
create an abstract class called an Activity; then, each concrete class will extend
the ActivityPart, ActivityFigure, or Activity class. In addition, we’ll show how
to build an MVC triple for connections: Path, PathPart, and PathFigure.

 Once we’ve finished with the individual components, we’ll explain how they
communicate. This will require Commands, Requests, and EditPolicys. In addition,
we’ll show how a palette adds components to the editor and how an EditorPart
keeps track of the entire application.

 This may seem confusing, but figure D.5, which depicts the full class hierarchy
of the FlowchartProject, should help.

 Table D.1 shows our plan of attack for building the graphical editor. Since the
editing process begins with adding components from the editor’s palette, that’s
where we’ll start.

Table D.1 Creating the flowchart editor using the GEF

Goal Procedure

1 Create Figure objects
to represent elements
of the flowchart
(already accomplished).

1. Create a container to serve as the application’s top-level Figure.
2. Build child Figures to be placed in the container.
3. Extend the ConnectionAnchor and PolylineConnection

classes to provide connections between Figures.

2 Create the project,
FlowchartProject.

1. Create a blank Java plug-in project for the flowchart.
2. Configure plugin.xml to reflect the editor’s configuration.
3. Add the class libraries needed for Draw2D, GEF, and Workbench

integration.
4. Build an organized package structure to hold the project’s classes.
5. Add the Figure classes to the appropriate package.

3 Build the palette for the
flowchart editor and the
drag-and-drop ability.

1. Create a subclass of PaletteViewer.
2. Add the tool entries needed for selection, marquee selection, and

connections to a PaletteGroup.
3. Add the template entries needed to add components to the Graph-

icalViewer to a secondary group.
4. Create a class to provide drag-and-drop between the palette and the

main viewer.

continued on next page
Licensed to jromero <jose.romero@galicia.seresco.es>

394 APPENDIX D

The Graphical Editing Framework (GEF)
Since this section has summarized the entire GEF development, you may feel over-
whelmed. Don’t worry! All of this will be become clearer as you start program-
ming. Let’s begin by creating the project, aptly named FlowchartProject.

4 Add Model classes for
the Figures.

1. Build a top-level Model class (AbstractChartElement) incorporat-
ing the methods needed for firing PropertyChangeEvents.

2. Create an abstract class (Activity) that will be extended by the
components.

3. Add Model classes for the components: Decision, Process, and
Terminator.

4. Create a Model class for the container (Chart), with methods for
handling children.

5. Create a Model class for the connections (Path).
6. Build a factory class (ModelFactory) that will convert templates

into Models.

5 Add Commands to pro-
vide interfaces to the
Model classes.

1. Build Commands for creating and deleting components from the
editor.

2. Build Commands for making connections and changing component
shapes.

6 Create EditParts to
combine the Model and
Figure classes.

1. Create an EditPart (ChartPart) for the container.
2. Create an abstract EditPart for Process, Terminator, and

Decision components.
3. Build individual concrete EditParts for the components.
4. Add an EditPart (PathPart) for the component connections.

7 Create EditPolicys to
provide manipulation of
the EditPart objects.

1. Create an EditPolicy for the container (LayoutPolicy).
2. Create an EditPolicy for general components

(ComponentPolicy).
3. Create an EditPolicy for the node components (NodePolicy).

8 Enable Actions to pro-
vide multiple methods
of editing.

1. Create a ContextMenuProvider for immediate Undo, Redo,
Delete, and Save.

2. Create RetargetActions to enable users to edit with the Eclipse
Workbench.

3. Add these RetargetActions to an ActionBarContributor.

9 Create the overall
FlowchartEditor
class.

Create a FlowchartEditor class that will
1. Save a Chart object to a file and retrieve Chart objects from files.
2. Configure and initialize a GraphicalViewer and a Palette-

Viewer.

3. Use a KeyHandler and a CommandStack to keep track of user
activity.

Table D.1 Creating the flowchart editor using the GEF (continued)

Goal Procedure
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating the FlowchartProject 395
D.2 Creating the FlowchartProject

Although much of this book was written for both Eclipse-based and standalone
Java development, this section assumes you’re building this project using Eclipse.
A user can run normal Java applications whenever he pleases, but Eclipse editors
are activated only when an appropriate file is selected for editing. This means
Eclipse needs to know in advance which editor should be used for a given file
type. In our case, the Workbench needs to know that the flowchart editor should

FlowchartEditor

GraphicalViewer

Flowchart
Palette

The Editor

The Parent
EditPartChartPart

ChartFigure Chart

Activity
Part PathPart

Activity
Figure Activity PathFigure Path

Decision
Part

Process
Part

Terminator
Part

Decision
Figure Decision Process

Figure Process Terminator
Figure Terminator

Initialization

The Child
EditParts

RootEditPart

Figure D.5 Class structure of the FlowchartEditor application
Licensed to jromero <jose.romero@galicia.seresco.es>

396 APPENDIX D

The Graphical Editing Framework (GEF)
be activated whenever the user edits a flowchart file, designated by *.fcf. A
Draw2D application won’t do the job: We need a plug-in.

 To begin building this plug-in project, follow these steps:

1 Select File->New->Project.

2 Choose Plug-in Development and Plug-in Project in the New Project dia-
log. Click Next.

3 Call the project FlowchartProject and click Next.

4 Use the default values for Plug-in Project Structure and click Next once
more.

5 In the Plug-in Content dialog, you need to make two changes. First, use
swtjface as the provider name. Then, leaving the checkboxes checked,
change the Class Name field to com.swtjface.flowchart.Flowchart-
ProjectPlugin. Click Finish.

6 Now that you’ve created the project, you need to tell the Workbench what
the editor is and what resources it needs to function. You do this by setting
the parameters in the project’s plugin.xml file.

D.2.1 Configuring the Plugin.xml file

Every Eclipse plug-in describes its characteristics and resource requirements in its
plugin.xml file. You can modify this file with Eclipse’s Plug-in Manifest Editor or
code it directly. The plugin.xml code for our flowchart editor is shown in
listing D.1.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin
 id="FlowchartProject"
 name="Flowchart Plug-in"
 version="1.0.0"
 provider-name="swtjface"
 class="com.swtjface.flowchart.FlowchartProjectPlugin">

 <runtime>
 <library name="flowchart.jar">
 <export name="*"/>
 </library>
 </runtime>
 <requires>

Listing D.1 The plugin.xml file

Identifies
project’s plug-in
information
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating the FlowchartProject 397
 <import plugin="org.eclipse.core.runtime"/>
 <import plugin="org.eclipse.core.runtime.compatibility"
 optional="true"/>
 <import plugin="org.eclipse.core.resources"/>
 <import plugin="org.eclipse.ui.views"/>
 <import plugin="org.eclipse.ui.workbench"/>
 <import plugin="org.eclipse.jface"/>
 <import plugin="org.eclipse.ui.ide"/>
 <import plugin="org.eclipse.draw2d"/>
 <import plugin="org.eclipse.gef"/>
 </requires>

 <extension
 point="org.eclipse.ui.editors">
 <editor
 default="true"
 name="Flowchart Editor"
 extensions="fcf"
 icon="eclipse.gif"
 class="com.swtjface.flowchart.FlowchartEditor"
 contributorClass=
 "com.swtjface.flowchart.actions.
 FlowchartActionBarContributor"
 id="GEF Flowchart Editor">
 </editor>
 </extension>
</plugin>

NOTE Since every editor requires an icon, we’ve chosen to use the eclipse32.gif
image from org.eclipse.platform_x.y.z. This file must be added to the
project in order for the plug-in to function.

The first sections of this file specify the identification information about the plug-
in and the libraries it needs to operate. The plug-in class, FlowchartProject-
Plugin, has already been created and added to the com.swtjface.flowchart pack-
age; this file shouldn’t be modified.

 The important configuration information for our editor is contained in the
<extension></extension> tags, including the main class for the editor and the
contribution class needed to incorporate Workbench Actions into our editor. The
line extensions="fcf" ensures that the editor will be activated whenever the user
creates a file with the fcf suffix.

 Along with the extension for the editor, many GEF projects incorporate a wiz-
ard to build an initial *.fcf file for the editor. Doing so is straightforward but
beyond the scope of this appendix. For further information about plug-ins, wizard

Lists plug-ins
needed for
project

Provides
information
about editor
Licensed to jromero <jose.romero@galicia.seresco.es>

398 APPENDIX D

The Graphical Editing Framework (GEF)
extensions, and XML configuration, we recommend Eclipse in Action, by David Gal-
lardo, Ed Burnette, and Robert McGovern (Manning, 2003).

D.2.2 Adding class libraries

Depending on which version of Eclipse you use, the necessary plug-ins may have
already been added to the project. If you open the Plug-in Dependencies in the
Package Explorer, you may already see a list of jar files; if so, you can skip this sub-
section. If not, you need to include a number of class libraries. Since the boot.jar
and runtime.jar files were automatically added during project creation, add the
JFACE_LIB and WORKBENCH_LIB variables created in appendix A and the DRAW2D_LIB
variable created in appendix C. You also need to add the OSGI_LIB variable cre-
ated in chapter 4.

 Unlike the other graphical applications in this book, GEF editors need to be
integrated in the Eclipse Workbench. This means you need to add even more
libraries. Table D.2 lists the jar files required to work with Workbench parts and
recommended names for their classpath variables.

Once we’ve created these classpath variables and added them to Flowchart-
Project, we can begin adding packages and classes.

D.2.3 Adding packages and classes

GEF projects keep their code organized with a series of packages that represent
different aspects of the editor. Package names may differ from one application to
the next, but table D.3 lists those used in the flowchart editor. We recommend
that you add them to the FlowchartProject inside the src directory.

Table D.2 Additional libraries needed for GEF applications

Classpath variable Library file

GEF_LIB $ECLIPSE/plugins/org.eclipse.gef_x.y.z/gef.jar

UI_EDITORS_LIB $ECLIPSE/plugins/org.eclipse.ui.editors_x.y.z/editors.jar

UI_IDE_LIB $ECLIPSE/plugins/org.eclipse.ui.ide_x.y.z/ide.jar

UI_LIB $ECLIPSE/plugins/org.eclipse.ui_x.y.z/ui.jar

UI_VIEWS_LIB $ECLIPSE/plugins/org.eclipse.ui.views_x.y.z/views.jar
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating the FlowchartProject 399
Since the Figure objects for this project
have already been written, we can add them
to the project. To do this, we move Activity-
Figure.java, ChartFigure.java, DecisionFig-
ure.java, FigureFactory.java, FixedAnchor
.java, PathFigure.java, ProcessFigure.java,
and TerminatorFigure.java to the com.swtj-
face.flowchart.figures package. The end
result of this process is shown in figure D.6.

 Now that we’ve added these files, we’ve
completed the View aspect of the editor.
However, these Figures aren’t much use
unless users can add them to the editor.
Toward this end, our next goal is to dis-
cuss GEF palettes.

Table D.3 Class packages in the flowchart editor

Package Function

com.swtjface.flowchart Editor’s EditorPart and plug-in

com.swtjface.flowchart.actions Classes that create and manage Actions

com.swtjface.flowchart.commands Classes used to modify the Model properties

com.swtjface.flowchart.dnd Classes that provide the drag-and-drop capability

com.swtjface.flowchart.editpart Editor’s EditParts

com.swtjface.flowchart.figures Graphics used to create EditPart visuals

com.swtjface.flowchart.model Information contained in the EditParts

com.swtjface.flowchart.palette GUI element used to instantiate EditParts

com.swtjface.flowchart.policies Policies available for the EditParts

Figure D.6
The package structure for
FlowchartProject
Licensed to jromero <jose.romero@galicia.seresco.es>

400 APPENDIX D

The Graphical Editing Framework (GEF)
D.3 Creating the editor’s PaletteViewer

Look at figure D.7. In the simplest terms, it shows a Canvas with a LightweightSys-
tem object—just like any Draw2D application. What differentiates a GEF editor
from a Draw2D application or text editor is its Viewer. Viewer classes, as described
earlier, rest on top of a component and control its appearance and event handling.
In this case, we have two of them: a Viewer that represents the main editor and one
that contains the palette. Since the palette is the first object a user will come in
contact with, we’ll start our GEF discussion by examining the PaletteViewer.

 The PaletteViewer class builds components and handles events for the left-
hand section of the Canvas, whose default width is 125 pixels. Like the viewer on
the right-hand side, it implements the GraphicalViewer interface. But Palette-
Viewer has a number of distinguishing features:

■ The ability to add buttons that provide editing functions, called ToolEntrys

■ The ability to add buttons that create new components, called TemplateEn-
trys

■ Configuration information contained in a single object, the PaletteRoot

This PaletteRoot is important for a PaletteViewer because it provides the entries
that will be available to the user. Like a Model class, it contains the palette’s

Figure D.7
The flowchart editor in its
dazzling glory
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating the editor’s PaletteViewer 401
information. The getPaletteRoot() method configures one of these objects by
creating and populating a List of PaletteGroups. In FlowchartPalette, the first
PaletteGroup, toolGroup, contains a List of tool-related entries. The second, tem-
plateGroup, contains a List of template-related entries. The code is shown in
listing D.2, and we recommend that you add this to the com.swtjface.flow-
chart.palette package.

package com.swtjface.flowchart.palette;

import java.util.*;
import com.swtjface.flowchart.model.*;
import org.eclipse.gef.palette.*;
import org.eclipse.jface.resource.*;

public class FlowchartPalette
{
 public static final String
 TERMINATOR_TEMPLATE = "TERM_TEMP",
 DECISION_TEMPLATE = "DEC_TEMP",
 PROCESS_TEMPLATE = "PROC_TEMP";

 public static PaletteRoot getPaletteRoot()
 {

 PaletteRoot root = new PaletteRoot();

 PaletteGroup toolGroup = new PaletteGroup("Chart Tools");
 List toolList = new ArrayList();

 ToolEntry tool = new SelectionToolEntry();
 toolList.add(tool);
 root.setDefaultEntry(tool);

 tool = new MarqueeToolEntry();
 toolList.add(tool);

 tool = new ConnectionCreationToolEntry(
 "Connection_Tool", "Used to connect multiple components", null,
 ImageDescriptor.getMissingImageDescriptor(),
 ImageDescriptor.getMissingImageDescriptor());
 toolList.add(tool);
 toolGroup.addAll(toolList);

Listing D.2 FlowchartPalette.java

Create palette
entries that
activate tools

Add tool entry list to group
Licensed to jromero <jose.romero@galicia.seresco.es>

402 APPENDIX D

The Graphical Editing Framework (GEF)
 PaletteGroup templateGroup =
 new PaletteGroup("Chart Templates");
 List templateList = new ArrayList();

 CombinedTemplateCreationEntry entry = new
 CombinedTemplateCreationEntry(
 "Terminator", "Start or End Component", TERMINATOR_TEMPLATE,
 new ModelFactory(TERMINATOR_TEMPLATE),
 ImageDescriptor.getMissingImageDescriptor(),
 ImageDescriptor.getMissingImageDescriptor());
 templateList.add(entry);

 entry = new CombinedTemplateCreationEntry(
 "Process", "Action within a flowchart", PROCESS_TEMPLATE,
 new ModelFactory(PROCESS_TEMPLATE),
 ImageDescriptor.getMissingImageDescriptor(),
 ImageDescriptor.getMissingImageDescriptor());
 templateList.add(entry);

 entry = new CombinedTemplateCreationEntry(
 "Decision", "Choosing between 'Yes' and 'No'", DECISION_TEMPLATE,
 new ModelFactory(DECISION_TEMPLATE),
 ImageDescriptor.getMissingImageDescriptor(),
 ImageDescriptor.getMissingImageDescriptor());
 templateList.add(entry);

 templateGroup.addAll(templateList);

 List rootList = new ArrayList();
 rootList.add(toolGroup);
 rootList.add(templateGroup);

 root.addAll(rootList);
 return root;
 }
}

As you can see, a PaletteRoot is a collection of PaletteGroups, which are collec-
tions of entries. These entries, represented by the ToolEntry and CombinedTem-
plateCreationEntry classes, create buttons that will be added to the palette.
Except for the SelectionTool and the MarqueeSelectionTool, these entries are
initialized with descriptors, images, and classes that implement the CreationFac-
tory interface. But before we can discuss their constructor methods, we need to
explain how Tools and templates work.

D.3.1 Handling events with the ToolEntry and Tool classes

The first three entries in our palette are ToolEntrys, which provide the ability to
select and connect existing components. Whenever any of these entries are

Create palette
entries that

activate tools

Add template entry list to group

Add both groups to palette
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating the editor’s PaletteViewer 403
clicked, they create a new Tool object. The top tool entry, labeled Select, creates a
SelectionTool; the Marquee entry creates a MarqueeSelectionTool; and the
Connection_Tool entry creates a ConnectionCreationTool.

 The entries are simple to understand, but what exactly is a Tool? A Tool pro-
vides a distinctive means of interpreting keyboard and mouse events. For exam-
ple, when you click a component with the SelectionTool activated, there will be a
different result than if the ConnectionCreationTool had been activated. This is
because the two Tools have different handlers for MouseEvents; they also interact
differently with components and their EditParts. These Tool/EditPart interac-
tions are accomplished through Requests.

 Table D.4 lists a group of important Tools provided in GEF, their functions, and
the Requests they send to EditParts during activation.

It’s important to note that DragTrackers such as ResizeTracker and Connection-
BendpointTracker are also GEF Tools. They determine how DragEvents affect an
EditPart. Whereas a Tool’s activation is independent of the components in the edi-
tor, DragTrackers are specified in EditParts. In many cases, a high-level Tool trans-
fers its event-handling authority to the DragTracker associated with the EditPart.

 For example, when a user clicks a Decision component, the SelectionTool will
activate. But if the user presses the button and moves the mouse, then the Selec-
tionTool delegates authority to the DecisionPart’s DragTracker.

Table D.4 Class packages in the FlowchartProject project

Tool Tool description Requests

ConnectionBendpoint
Tracker

Creates or moves Bendpoints within a
Connection

BendpointRequest

ConnectionCreationTool Tells the EditPart that it will be the
start of a new connection

ConnectionCreation
Request

CreationTool Creates new EditParts (components) CreateRequest

MarqueeSelectionTool Selects all the EditParts within the
marquee

SelectionRequest

ResizeTracker Tells the EditPart to change its size ChangeBounds
Request

SelectionTool Tells an EditPart that it has been
selected or that the mouse cursor has
come in contact with the component

SelectionRequest
LocationRequest
Licensed to jromero <jose.romero@galicia.seresco.es>

404 APPENDIX D

The Graphical Editing Framework (GEF)
Requests
Requests are the means by which Tools perform editing. When a component is
clicked with the SelectionTool activated, the Tool sends a SelectionRequest or a
LocationRequest to the EditPart. Similarly, when the ConnectionCreationTool is
activated, the tool sends a CreateConnectionRequest. In each case, the Request
provides the EditPart with information about the event, such as which key was
pressed or which button was clicked.

 When an EditPart receives a Request, it responds with a Command object if one
is available. This Command tells the Tool how the EditPart should be altered when
the event occurs. Once the Tool receives a Command, it takes responsibility for mod-
ifying the EditPart by invoking the Command’s execute() method. We’ll discuss
Commands in depth shortly.

 We need to mention two points about Requests. First, there is no subpackage
(such as com.swtjface.flowchart.requests) for Requests because GEF already
provides all the classes that will be needed in most editors. However, users can cre-
ate their own Tools and Requests as needed.

 Second, although Requests are generally categorized according to their class,
they’re further distinguished by a TYPE field. This integer makes the Request’s
function more specific. For example, when the mouse hovers over an EditPart,
the SelectionTool sends a LocationRequest to the component. Because this Loca-
tionRequest’s TYPE field is REQ_SELECTION_HOVER, the part knows that the mouse is
hovering above it.

EditDomains and Tools
Although EditDomain objects operate behind the scenes, it’s important to know
what they are and how they relate to palettes and palette entries. EditDomains keep
track of an editor’s state information, and part of this information consists of which
Tool is currently active. The EditDomain sets the editor’s default Tool, which is usu-
ally the SelectionTool, and manages the process of switching from one Tool to the
next. It ensures that only one Tool is active at any time and directs events to it.

 This object also plays a role in creating an editor’s palette. The EditDomain
ensures that the PaletteViewer receives the PaletteRoot containing the List of
ToolEntrys and TemplateEntrys. Then, it determines which Tool in the List is the
default tool and activates this Tool when the editor initializes.

D.3.2 Creating components with templates

At the time of this writing, the GEF documentation describes many classes that
create and handle templates, but it never explains exactly what a template is. An
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating the editor’s PaletteViewer 405
examination of the code tells us that a template is any object that can be matched to a
component. If you’d like to number your components, then you can use ints or
chars as your templates. For our editor, we’ll use Strings. That is, TERM_TEMP is the
template that corresponds to the Terminator component, PROC_TEMP represents
the Process, and DEC_TEMP represents the Decision.

TemplateEntry objects
Just as a ToolEntry creates Tool objects, TemplateEntrys create templates. After
clicking a TemplateEntry in the palette, the user can either drag the template to
the editor or click an area in the editor. Once the drop location is determined,
the editor’s TemplateTransferDropTargetListener determines how the compo-
nent will be created.

 In our example, the entry list consists of CombinedTemplateCreationEntrys,
which create both a template and a CreationEntryTool to create the template’s
matching component. The constructor for these entries requires a number of
fields to specify its appearance and operation:

■ label (a String)—The entry’s name

■ shortDesc (a String)—Description when the mouse hovers over the entry

■ template (an Object; a String, in our case)—The component to be created

■ factory (a CreationFactory)—The class that builds the component

■ iconSmall (an ImageDescriptor)—The image shown near the label

■ iconLarge (an ImageDescriptor)—The image shown during the drag

For our flowchart editor, we’ll use getMissingImageDescriptor() to provide the
icons. These are the small, red squares provided by the JFace library.

 So far, we’ve discussed every aspect of palette entry constructors except the
CreationFactory.

Converting templates to Model classes with a CreationFactory
Components are created when the user drags a template from the palette and
drops it in a container. The CreationTool tells the editor which component to
build by identifying a class that implements the CreationFactory interface.

 This important interface contains only two methods: getNewObject() receives
a template object and returns a newly created Model object for the requested
component, and getObjectType() returns the template created by the palette
tool. The code in listing D.3 shows how these methods are used in the flowchart
Licensed to jromero <jose.romero@galicia.seresco.es>

406 APPENDIX D

The Graphical Editing Framework (GEF)
editor’s ModelFactory class. We recommend that you place this class in the
com.swtjface.flowchart.model package.

package com.swtjface.flowchart.model;

import org.eclipse.gef.requests.CreationFactory;
import com.swtjface.flowchart.palette.*;

public class ModelFactory
 implements CreationFactory
{

 private String template;

 public ModelFactory(Object str)
 {
 template = (String) str;
 }

 public Object getNewObject()
 {
 if (FlowchartPalette.TERMINATOR_TEMPLATE.equals(template))
 return new Terminator();
 if (FlowchartPalette.DECISION_TEMPLATE.equals(template))
 return new Decision();
 if (FlowchartPalette.PROCESS_TEMPLATE.equals(template))
 return new Process();
 return null;
 }

 public Object getObjectType()
 {
 return template;
 }

 public static Chart getChart()
 {
 return new Chart();
 }

 public Path getPath()
 {
 return new Path();
 }
}

In this case, getNewObject() checks to see if it recognizes the template. If it does, then
the method returns a constructed Model object that contains the component’s infor-
mation. In addition, this class contains two methods, getChart() and getPath(),

Listing D.3 ModelFactory.java

Create Model objects according
to their templates root

Create Model objects
without templates
Licensed to jromero <jose.romero@galicia.seresco.es>

The Model aspect: Model classes 407
which return Model objects for the Chart and Path components. These objects
require separate methods because they aren’t directly created with templates.

TemplateTransferDropTargetListeners
Like any drag-and-drop operation, a DropTargetListener must be present in
order to respond to a DropTargetEvent. GEF provides a class specifically for
responding to template drops: TemplateTransferDropTargetListener. This class
must be extended to identify the CreationFactory that will construct the Model.

 For our flowchart editor, this subclass is FlowchartDropTargetListener; its
code is presented in listing D.4. We recommend that you add this class to the
com.swtjface.flowchart.dnd package.

package com.swtjface.flowchart.dnd;

import org.eclipse.gef.EditPartViewer;
import org.eclipse.gef.dnd.TemplateTransferDropTargetListener;
import org.eclipse.gef.requests.CreationFactory;

import com.swtjface.flowchart.model.ModelFactory;

public class FlowchartDropTargetListener
 extends TemplateTransferDropTargetListener
{

 public FlowchartDropTargetListener(EditPartViewer viewer)
 {
 super(viewer);
 }

 protected CreationFactory getFactory(Object template)
 {
 return new ModelFactory(template);
 }
}

As you can see, the only difference between the FlowchartDropTargetListener
and the TemplateTransferDropTargetListener is the ModelFactory class. Now that
you know how these Model objects are created, you need to learn how they work.

D.4 The Model aspect: Model classes

The fundamental question in building Model classes is this: What information
should be saved to a file? You don’t need to persist each pixel in the main window.

Listing D.4 FlowchartDropTargetListener.java

Identifies class needed to
create Model objects
Licensed to jromero <jose.romero@galicia.seresco.es>

408 APPENDIX D

The Graphical Editing Framework (GEF)
A good rule of thumb is that every editable aspect of a component should be
saved and incorporated in its Model class. This section will show how these classes
are formed and how their structures are used in the flowchart editor.

D.4.1 Model classes and JavaBeans

The role of a Model class is to keep track of a component’s editable characteris-
tics, called properties. Each property has a mutator method (setXYZ()) to specify its
value and an accessor method (getXYZ()) to acquire it. The Model class also fires
events when these properties change. Both the event and listener classes needed
for this are provided by the java.beans package.

 This relationship between Model classes and the JavaBean library is deliberate.
For those unfamiliar with component-based (JavaBean) software development,
the goal is to construct applications with simple, reusable objects that keep track
of information. Java doesn’t provide a specific class for JavaBeans, but instead
gives rules for their interfaces and methods. Because GEF Model classes follow
these rules, they’re considered JavaBeans.

 In addition to the accessor and mutator methods, Sun’s JavaBean specification
also describes the event model needed for dealing with PropertyChangeEvents.
The GEF implementation of this model is shown in figure D.8. It’s important to
note that although the methods are contained in the Model class, the EditPart
invokes them.

Model
Creation

EditPart
Creation

Model
Change

EditPart
EventHandling

EventPart/Model
Disposal

Create
PropertyChange

Support

Invoke
addPropertyChange

Listener()

Invoke
fireProperty

Change()

Invoke
PropertyChange()

Invoke
removePropertyChange

Listener()

Figure D.8 The PropertyChangeEvent model for GEF Model classes
Licensed to jromero <jose.romero@galicia.seresco.es>

The Model aspect: Model classes 409
 First, a Model object creates a PropertyChangeSupport instance during its cre-
ation. This enables an EditPart to listen to its PropertyChangeEvents. Then, when
the EditPart is created, it calls the Model’s addPropertyChangeListener()

method to be able to respond to these events. Whenever a property changes, the
Model calls its firePropertyChange() method, and the EditPart handles the
Event with its propertyChange() method. When the component is deallocated,
the EditPart calls the Model’s removePropertyChangeListener() method.

 These methods must be available in each Model class you build. Therefore,
you can save yourself effort by creating an abstract class for your Models.

D.4.2 The AbstractChartElement class

Since all Model classes must contain these event-handling methods, it makes
sense to incorporate them in an abstract class. For our project, this class is called
AbstractChartElement. Listing D.5 presents the code for this class; we recom-
mend that you add it to the com.swtjface.flowchart.model package.

NOTE This class provides listeners for receiving events and methods to fire
them, but it doesn’t implement propertyChange(PropertyChangeEvent),
which is the only event-handling method in the PropertyChangeListener
interface. This method is invoked by the EditPart, which controls the
Model and View.

package com.swtjface.flowchart.model;
import java.io.*;
import java.beans.*;

abstract public class AbstractChartElement
 implements Cloneable, Serializable
{
 public static final String
 SIZE = "size", LOC = "location", NAME = "name",
 CHILD = "children", TARGETS = "targets", SOURCES = "sources";

 transient protected PropertyChangeSupport listeners = new
 PropertyChangeSupport(this);

 public void addPropertyChangeListener(PropertyChangeListener pcl)
 {
 listeners.addPropertyChangeListener(pcl);
 }

 public void removePropertyChangeListener
 (PropertyChangeListener pcl)

Listing D.5 AbstractChartElement.java

Properties to be
monitored

Provide property
monitoring
Licensed to jromero <jose.romero@galicia.seresco.es>

410 APPENDIX D

The Graphical Editing Framework (GEF)
 {
 listeners.removePropertyChangeListener(pcl);
 }

 protected void firePropertyChange(String propName,
 Object old, Object newValue
 {
 listeners.firePropertyChange(propName, old, newValue);
 }

 private void readObject(ObjectInputStream in) throws IOException,
 ClassNotFoundException
 {
 in.defaultReadObject();
 listeners = new PropertyChangeSupport(this);
 }
}

Each of the property changes has a String as a label. The first three, SIZE, LOC,
and NAME, refer to changes in a component’s size, location, and message, respec-
tively. A CHILD property change is fired whenever a new part is added to the con-
tainer (Chart). Similarly, TARGETS and SOURCES events are fired whenever a new
source or target connection is made or removed.

 Another important point about this class is that it implements the Serializ-
able interface. This means concrete subclasses can be converted into bytes and
persisted in a file. The transient keyword preceding the PropertyChangeSupport
declaration means that this class cannot be serialized. Therefore, when the top-
level Model is saved to a file, it won’t include these objects. For this reason, the
readObject() method at the end of the code creates a new PropertyChangeSup-
port object when the Model is deserialized.

 By making our Model classes descendants of AbstractChartElement, we ensure
that each of these methods will be available. The first concrete Model class that we’ll
discuss is Chart, which holds the information concerning the editor’s container.

D.4.3 The Chart class

Despite its importance, a Chart object doesn’t hold a great deal of data. Its func-
tion is to keep track of child Model classes by adding and removing them from an
ArrayList. The code for this class is shown in listing D.6; add it to com.swtj-
face.flowchart.model.

Provide property
monitoring

Send alert if property changes
Licensed to jromero <jose.romero@galicia.seresco.es>

The Model aspect: Model classes 411
package com.swtjface.flowchart.model;

import java.util.*;

public class Chart
 extends AbstractChartElement
{
 protected List children = new ArrayList();

 public List getChildren()
 {
 return children;
 }

 public void addChild(Activity child)
 {
 children.add(child);
 firePropertyChange(CHILD, null, child);
 }

 public void removeChild(Activity child)
 {
 children.remove(child);
 firePropertyChange(CHILD, null, child);
 }
}

These methods are straightforward: addChild() and removeChild() perform the
essential job of mutator methods, whereas getChildren() provides access to the
object’s properties. If any properties change, then a PropertyChangeEvent is cre-
ated and fired.

 The Chart class may not be exciting, but as you’ll see later, it’s vital in saving
the editor’s contents to a file. Now that you’ve seen how these children are
arranged, let’s look at their abstract superclass, Activity.

D.4.4 The Activity class

For the flowchart editor’s Decision, Process, and Terminator components, five
fields need to be stored:

■ size—The part’s x and y dimensions, represented by a Dimension

■ location—The part’s position, represented by a Point

■ name—The part’s message, represented by a String

■ sources—The part’s SourceConnections, contained in a Vector

■ targets—The part’s TargetConnections, contained in a Vector

Listing D.6 Chart.java
Licensed to jromero <jose.romero@galicia.seresco.es>

412 APPENDIX D

The Graphical Editing Framework (GEF)
Since this list is the same for each Model, we’ll use the same class, Activity, to
hold the information for the components. This class will contain mutator and
accessor methods for each of the above properties.

 Now that we have the Activity class, we can see the entire Model class hierar-
chy, shown in figure D.9.

 The full code for the Activity class is shown in listing D.7.

package com.swtjface.flowchart.model;

import java.util.*;
import org.eclipse.draw2d.geometry.*;
import org.eclipse.ui.views.properties.*;

public class Activity
 extends AbstractChartElement implements IPropertySource
{
 // Information content of the Model class
 private String name;
 private Point location = new Point(0,0);
 private Dimension size = new Dimension(-1,-1);
 protected Vector targets = new Vector(2);
 protected Vector sources = new Vector(2);

 public Dimension getSize()
 {return size;}

 public void setSize(Dimension dim)
 {
 if (size.equals(dim)) return;
 size = dim;
 firePropertyChange(SIZE, null, size);
 }

 public Point getLocation() {return location;}

 public void setLocation(Point place)
 {

Listing D.7 Activity.java

AbstractChartElement

Chart Activity Path

Decision Process Terminator

Figure D.9
The Model classes of the
flowchart editor

Accessor/mutator
method for
Model class
Licensed to jromero <jose.romero@galicia.seresco.es>

The Model aspect: Model classes 413
 if (location.equals(place)) return;
 location = place;
 firePropertyChange(LOC, null, place);
 }

 public String getName()
 {return name;}

 public void setName(String str)
 {
 if (str.equals(name)) return;
 name = str;
 firePropertyChange(NAME, null, str);
 }

 public Vector getConnections()
 {
 Vector v = getSourceConnections();
 v.addAll(getTargetConnections());
 return v;
 }

 public Vector getSourceConnections()
 {
 return (Vector)sources.clone();
 }

 public void addSourceConnection(Path p)
 {
 sources.add(p);
 firePropertyChange(SOURCES, null, p);
 }

 public void removeSourceConnection(Path p)
 {
 sources.remove(p);
 firePropertyChange(SOURCES, null, p);
 }

 public Vector getTargetConnections()
 {
 return (Vector)targets.clone();
 }

 public void addTargetConnection(Path p)
 {
 targets.add(p);
 firePropertyChange(TARGETS, null, p);
 }

 public void removeTargetConnection(Path p)
 {
 targets.remove(p);
 firePropertyChange(TARGETS, null, p);

Accessor/mutator
method for
Model class
Licensed to jromero <jose.romero@galicia.seresco.es>

414 APPENDIX D

The Graphical Editing Framework (GEF)
 }

 public Object getEditableValue()
 {return null;}

 public IPropertyDescriptor[] getPropertyDescriptors()
 {
 return new IPropertyDescriptor[]
 {
 new TextPropertyDescriptor(NAME, "Name"),
 new TextPropertyDescriptor(SIZE, "Size"),
 new TextPropertyDescriptor(LOC, "Location")
 };
 }

 public Object getPropertyValue(Object propName)
 {
 if (propName.equals(SIZE))
 return getSize().width + "," + getSize().height;
 else if(propName.equals(LOC))
 return getLocation().x + "," + getLocation().y;
 else if(propName.equals(NAME))
 return getName();
 return null;
 }

 public void setPropertyValue(Object propName, Object value)
 {
 String str = (String)value;
 int comma = str.indexOf(",");
 if (propName.equals(SIZE))
 setSize(new Dimension(Integer.parseInt
 (str.substring(0,comma)),
 Integer.parseInt(str.substring(comma+1))));
 else if (propName.equals(LOC))
 setLocation(new Point(Integer.parseInt
 (str.substring(0,comma)),
 Integer.parseInt(str.substring(comma+1))));
 else if (propName.equals(NAME))
 setName(str);
 }

 public boolean isPropertySet(Object id)
 {return true;}

 public void resetPropertyValue(Object id)
 {}
}

A bit longer than the Chart Model, isn’t it? As you can see, keeping track of many
properties can be complicated, especially Connections. But in addition, we’ve

Interface with
Eclipse
Property
View

Interface
with
Eclipse
Property
View
Licensed to jromero <jose.romero@galicia.seresco.es>

The Model aspect: Model classes 415
added six methods needed to implement the IPropertySource interface. By doing
so, users can change the size, location, and name of an Activity component
using a Property View. This window is provided by the Eclipse Workbench; an
example is shown in figure D.10.

 The IPropertySource methods make it possible to transfer property values
between the Model and Eclipse’s Property View: The first method, getProperty-
Descriptors(), tells the View what properties it needs to display and that input
should be provided through a textbox. The next two methods get and set the
EditPart’s property values; the fourth, resetPropertyValue(), returns the default
property. isPropertySet() returns whether the property value is equal to its
default, and getEditableValue() returns the object responsible for keeping track
of the EditPart’s property.

 Now that we’ve taken care of the abstract superclass, we need to create the con-
crete subclasses. The code for these Model classes—Decision, Process, and Ter-
minator—is shown in listings D.8, D.9, and D.10.

package com.swtjface.flowchart.model;

import org.eclipse.draw2d.geometry.Dimension;

public class Decision extends Activity
{
 public Decision()
 {
 setName("Decision");
 setSize(new Dimension(100,60));
 }
}

Listing D.8 Decision.java

Figure D.10
Example property view for
the flowchart editor
Licensed to jromero <jose.romero@galicia.seresco.es>

416 APPENDIX D

The Graphical Editing Framework (GEF)
import org.eclipse.draw2d.geometry.Dimension;

public class Process extends Activity
{
 public Process()
 {
 setName("Process");
 setSize(new Dimension(80,40));
 }
}

package com.swtjface.flowchart.model;

import org.eclipse.draw2d.geometry.Dimension;

public class Terminator extends Activity
{
 public Terminator()
 {
 setName("Term");
 setSize(new Dimension(80,20));
 }
}

These classes do nothing more than set their message and size during construc-
tion. It’s easy to remove them and use only the Activity Model class. However, for
the purposes of teaching the GEF, we’ve made sure that each MVC triple has its
own Model class.

D.4.5 The Path class

In addition to creating classes for the Activity components, we need to create
Model classes for their Connections. This Path class doesn’t fire PropertyChan-
geEvents or display information in the Property View, but it keeps track of which
Activity objects it connects (source and target) and the names of its anchors
(sourceName and targetName). The code for this class is provided in listing D.11.

package com.swtjface.flowchart.model;

public class Path
 extends AbstractChartElement
{

Listing D.9 Process.java

Listing D.10 Terminator.java

Listing D.11 Path.java
Licensed to jromero <jose.romero@galicia.seresco.es>

The Model aspect: Model classes 417
 protected Activity source, target;
 protected String sourceName, targetName;

 public void attachSource()
 {
 if (getSource() == null ||
 getSource().getSourceConnections().contains(this))
 return;
 getSource().addSourceConnection(this);
 }

 public void detachSource()
 {
 if (getSource() == null)
 return;
 getSource().removeSourceConnection(this);
 }

 public void attachTarget()
 {
 if (getTarget() == null ||
 getTarget().getTargetConnections().contains(this))
 return;
 getTarget().addTargetConnection(this);
 }

 public void detachTarget()
 {
 if (getTarget() == null)
 return;
 getTarget().removeTargetConnection(this);
 }

 public Activity getSource()
 {
 return source;
 }

 public void setSource(Activity e)
 {
 source = e;
 }

 public Activity getTarget()
 {
 return target;
 }

 public void setTarget(Activity e)
 {
 target = e;
 }

 public String getSourceName()
Licensed to jromero <jose.romero@galicia.seresco.es>

418 APPENDIX D

The Graphical Editing Framework (GEF)
 {
 return sourceName;
 }

 public void setSourceName(String s)
 {
 sourceName = s;
 }

 public String getTargetName()
 {
 return targetName;
 }

 public void setTargetName(String s)
 {
 targetName = s;
 }
}

Again, these methods are easy to understand. The only new concepts involve
attaching and detaching Connections. These functions tell their source and target
Activity Models that a new Connection has been added or removed. This is one
of the few instances where one Model class interacts with another.

 The process of modifying components begins with the mutator methods of the
Model classes and the PropertyChangeEvents that they fire. However, these meth-
ods are only invoked by Command objects. Therefore, to continue discussing the
editing process, our next step must involve investigating Commands.

D.5 Changing Model properties with Commands

When we briefly discussed Commands in the last section, we mentioned how they’re
created in response to Requests. We can’t discuss the full process by which a
Request becomes a Command just yet. But in this section, we’ll describe the Com-
mand’s purpose and structure and then build customized classes for our editor.

D.5.1 Commands and CommandStacks

It’s possible to extend the Request class, but doing so is generally unnecessary
since GEF provides so many subclasses of its own. However, you’ll have to build all
your own Command classes; you must do so because Commands interact with Model
objects, which have no standard structure beyond accessor/mutator methods. But
GEF does provide an abstract Command class, and it’s important that you under-
stand how it works.
Licensed to jromero <jose.romero@galicia.seresco.es>

Changing Model properties with Commands 419
 The execute() method performs the real work of the Command by invoking the
mutator methods (setXYZ()) of the Model class. This execute() method is called
by the active Tool after it receives the Command in response to its Request. Commands
can also have other methods and fields associated with them, and these are gener-
ally used to provide information for the execute() method.

 Two other important Command methods are undo() and redo(). As expected,
these methods are used to reverse the results of execute() or reinvoke it. For
these methods to work, the editor must keep track of which Commands have been
executed. The data structure used for this task is the CommandStack, which is ini-
tialized during the editor’s construction. This object pushes executed Commands
onto its Undo stack and pushes undone Commands onto its Redo stack. The Redo
stack is cleared whenever a new Command is executed.

 Our flowchart editor needs four concrete Command classes. We’ll start with the
first Command that will be executed in a normal GEF editor: the CreateCommand.

D.5.2 The CreateCommand class

The CreateCommand is used to update the Chart container with a new component.
It also initializes the properties of the new component by setting its size and loca-
tion. The execute() method of the CreateCommand is simple and requires only the
Model class of the parent (parent), the added child (child), and the child’s
bounds (rect). The code is provided in listing D.12.

package com.swtjface.flowchart.commands;

import org.eclipse.draw2d.geometry.Rectangle;
import org.eclipse.gef.commands.Command;
import com.swtjface.flowchart.model.*;

public class CreateCommand extends Command
{
 private Chart parent;
 private Activity child;
 private Rectangle rect;

 public void execute()
 {
 if (rect != null)
 {
 child.setLocation(rect.getLocation());
 if (!rect.isEmpty())
 child.setSize(rect.getSize());
 }
 parent.addChild(child);

Listing D.12 CreateCommand.java
Licensed to jromero <jose.romero@galicia.seresco.es>

420 APPENDIX D

The Graphical Editing Framework (GEF)
 }

 public void setParent(Chart sa)
 {parent = sa;}

 public void setChild(Activity activity)
 {child = activity;}

 public void setConstraint(Rectangle bounds)
 {rect = bounds;}

 public void redo()
 {execute();}

 public void undo()
 {parent.removeChild(child);}
}

The execute() method calls the setLocation() and setSize() methods of the
Activity object and adds the new child to the Chart with its addChild() method.
The redo() method reinvokes execute(), and undo() calls the removeChild()
method. The setParent(), setChild(), and setConstraint() methods provide
initialization parameters to the Command during its formation.

 The CreateCommand class is simple to understand. However, because the Path-
Command deals with Path objects, it’s slightly more complicated.

D.5.3 The PathCommand class

The process of creating a Connection presents greater complications than build-
ing a child Model class in a parent. With connections, or Paths in our case, the
Model must keep track of both of the components to which it’s attached and the
names of the anchors in each component. Also, just as the CreateCommand adds an
Activity to a Chart, this command tells both the source and target Activity
objects to add this Path to their ArrayLists (see listing D.13).

package com.swtjface.flowchart.commands;

import org.eclipse.gef.commands.Command;
import com.swtjface.flowchart.model.*;

public class PathCommand
 extends Command
{
 protected Activity oldSource, source;
 protected Activity oldTarget, target;

Listing D.13 PathCommand.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Changing Model properties with Commands 421
 protected String oldSourceName, sourceName;
 protected String oldTargetName, targetName;
 protected Path path;

 public PathCommand()
 {}

 public boolean canExecute()
 {
 return true;
 }

 public void execute()
 {
 if (source != null)
 {
 path.detachSource();
 path.setSource(source);
 path.setSourceName(sourceName);
 path.attachSource();
 }
 if (target != null)
 {
 path.detachTarget();
 path.setTarget(target);
 path.setTargetName(targetName);
 path.attachTarget();
 }
 }

 public void redo()
 {
 execute();
 }

 public void undo()
 {
 source = path.getSource();
 target = path.getTarget();
 sourceName = path.getSourceName();
 targetName = path.getTargetName();

 path.detachSource();
 path.detachTarget();
 path.setSource(oldSource);
 path.setTarget(oldTarget);
 path.setSourceName(oldSourceName);
 path.setTargetName(oldTargetName);

 path.attachSource();
 path.attachTarget();
 }

 public void setSource(Activity newSource)
Licensed to jromero <jose.romero@galicia.seresco.es>

422 APPENDIX D

The Graphical Editing Framework (GEF)
 {
 source = newSource;
 }

 public void setSourceName(String newSourceName)
 {
 sourceName = newSourceName;
 }

 public void setTarget(Activity newTarget)
 {
 target = newTarget;
 }

 public void setTargetName(String newTargetName)
 {
 targetName = newTargetName;
 }

 public void setPath(Path p)
 {
 path = p;
 oldSource = p.getSource();
 oldTarget = p.getTarget();
 oldSourceName = p.getSourceName();
 oldTargetName = p.getTargetName();
 }
}

This Command changes the properties of the Path and its source and target Activ-
ity objects, but not the Chart. It’s important to understand that Connection
objects aren’t considered children of other components; they’re part of an inter-
nal Vector in each EditPart.

 Now that you know how new Model classes are created, the next class describes
how they’re removed from the Chart and deallocated.

D.5.4 The DeleteCommand class

The DeleteCommand reverses the actions of both the CreateCommand and the Path-
Command and is performed in two steps. First, it deletes the Path objects associated
with the selected component. This process involves detaching the Path from both
the deleted component and the one to which it was attached. The second step
removes the child Activity from the parent Chart. This is shown in listing D.14.
Licensed to jromero <jose.romero@galicia.seresco.es>

Changing Model properties with Commands 423
package com.swtjface.flowchart.commands;

import java.util.*;

import org.eclipse.gef.commands.Command;
import com.swtjface.flowchart.model.*;

public class DeleteCommand extends Command
{
 private Chart parent;
 private Activity child;
 private List sourceConnections = new ArrayList();
 private List targetConnections = new ArrayList();

 private void deleteConnections(AbstractChartElement a)
 {
 if (a instanceof Chart)
 {
 List children = ((Chart)a).getChildren();
 for (int i = 0; i < children.size(); i++)
 deleteConnections((Activity)children.get(i));
 }
 else
 {
 sourceConnections.addAll
 (((Activity)a).getSourceConnections());
 for (int i = 0; i < sourceConnections.size(); i++)
 {
 Path path = (Path)sourceConnections.get(i);
 path.detachSource();
 path.detachTarget();
 }
 targetConnections.addAll
 (((Activity)a).getTargetConnections());
 for (int i = 0; i < targetConnections.size(); i++)
 {
 Path path = (Path)targetConnections.get(i);
 path.detachSource();
 path.detachTarget();
 }
 }
 }

 public void execute()
 {
 deleteConnections(child);
 parent.removeChild(child);
 }

 private void restoreConnections()
 {

Listing D.14 DeleteCommand.java
Licensed to jromero <jose.romero@galicia.seresco.es>

424 APPENDIX D

The Graphical Editing Framework (GEF)
 for (int i = 0; i < sourceConnections.size(); i++)
 {
 Path path = (Path)sourceConnections.get(i);
 path.getTarget().addTargetConnection(path);
 path.getSource().addSourceConnection(path);
 }
 sourceConnections.clear();
 for (int i = 0; i < targetConnections.size(); i++)
 {
 Path path = (Path)targetConnections.get(i);
 path.getSource().addSourceConnection(path);
 path.getTarget().addTargetConnection(path);
 }
 targetConnections.clear();
 }

 public void setChild (Activity a)
 {child = a;}

 public void setParent(Chart c)
 {parent = c;}

 public void redo()
 {execute();}

 public void undo()
 {
 parent.addChild(child);
 restoreConnections();
 }
}

The code is somewhat involved, but the theory of operation is straightforward.
The execute() method removes the Path objects from both the source and target
Activity objects, and then it removes the deleted Activity objects from the
Chart. The undo() method restores the component’s connections and adds it to
the Chart.

D.5.5 The SetConstraintCommand class

So far, we’ve created Commands that modify every aspect of the editor’s Model
except the appearance of the individual components. Since we want the user to
be able to change the size and shape of Activity objects, we need to create a Com-
mand that invokes their appropriate mutator methods. This is the purpose of the
SetConstraintCommand, which is one of the simplest of the Commands in our project.
Its code is presented in listing D.15.
Licensed to jromero <jose.romero@galicia.seresco.es>

Changing Model properties with Commands 425
package com.swtjface.flowchart.commands;

import org.eclipse.draw2d.geometry.*;
import com.swtjface.flowchart.model.*;

public class SetConstraintCommand
 extends org.eclipse.gef.commands.Command
{

 private Point oldPos, newPos;
 private Dimension oldSize, newSize;
 private Activity act;

 public void execute()
 {
 oldSize = act.getSize();
 oldPos = act.getLocation();
 act.setLocation(newPos);
 act.setSize(newSize);
 }

 public void setLocation(Rectangle r)
 {
 setLocation(r.getLocation());
 setSize(r.getSize());
 }

 public void setLocation(Point p)
 {newPos = p;}

 public void setPart(Activity part)
 {this.act = part;}

 public void setSize(Dimension p)
 {newSize = p;}

 public void redo()
 {
 act.setSize(newSize);
 act.setLocation(newPos);
 }

 public void undo()
 {
 act.setSize(oldSize);
 act.setLocation(oldPos);
 }
}

Listing D.15 SetConstraintCommand.java
Licensed to jromero <jose.romero@galicia.seresco.es>

426 APPENDIX D

The Graphical Editing Framework (GEF)
This Command changes the Activity’s size and location parameters, but not its
name. For this, we’ll use a direct statement from the Activity’s EditPart, which
we’ll discuss next.

D.6 The Controller aspect: EditPart classes

Now that we’ve handled the View and Model aspects of the application’s compo-
nents, we need to start building their Controllers, represented by EditPart
objects. Previously, we described the function of a Controller as “everything else,”
but now we need to be more specific. An EditPart’s activity may be divided into
three main functions:

■ Respond to Model changes and update the component’s View

■ Keep track of the component’s Connections and ConnectionAnchors

■ Activate EditPolicys and associate them with their editing roles

The first function is important to understand. An EditPart’s activate() method
is called during its creation. This invokes the Model’s addPropertyChangeLis-
tener() method and enables the EditPart to respond to property changes in the
Model. This response is performed with the propertyChange() method, which
updates the View with the new information from the Model.

 For example, when a SetConstraintCommand is executed, it calls the Model’s
setSize() and setLocation() methods. When these properties change, the two
PropertyChangeEvents are received by the EditPart, which modifies the Figure’s
size and location.

 In addition to updating size and location, many EditParts must manage Con-
nection objects. These EditParts need to implement the NodeEditPart interface,
which provides methods for matching Connections with ConnectionAnchors. When
a PathCommand needs to know where to attach a new Connection, it communicates
with a NodeEditPart.

 The last EditPart function deals with EditPolicys, which determine the differ-
ent ways the component can be edited. These policies function by creating Com-
mand objects in response to Requests. An EditPart specifies its applicable policies
with the createEditPolicies() method and contains them in a List. We’ll discuss
these objects further in the next section.

 Although we refer to these objects as EditParts, all of the GEF Controllers are
really extensions of the AbstractGraphicalEditPart class. This class provides
many of the methods needed for Connection management and child/parent
interaction. It also creates a default DragTracker object to handle DragEvents.
Licensed to jromero <jose.romero@galicia.seresco.es>

The Controller aspect: EditPart classes 427
The EditPart class hierarchy for our flowchart editor is shown in figure D.11. Just
as we had an abstract class for Activity models, we now have an abstract Activi-
tyPart for our Process, Decision, and Terminator EditParts. The editor also
includes ChartParts for the container and PathParts that extend the Connec-
tionEditPart class.

 Before we can discuss the individual classes, we need to show how these objects
are created. Therefore, our next subject is the EditPartFactory class.

D.6.1 Creating new EditParts with EditPartFactory objects

Earlier, we showed how palettes add Model classes to the parent container, but we
didn’t mention how new EditParts are formed. When a new child Model is cre-
ated from its template, the parent Model fires a PropertyChangeEvent. In
response, the parent EditPart invokes its refreshChildren() method. If any child
Models exist without matching EditParts, then this method calls the create-
Child() method.

 createChild() accesses the editor’s EditPartFactory object. Just as our Model-
Factory created Model classes according to templates, our PartFactory creates
EditParts according to their Models. The interface specifies only one method,
createEditPart(); as listing D.16 shows, this is the only method we need. If you’re
coding these classes, we recommend that you add this class (and all the classes in
this section) to the com.swtjface.flowchart.editpart package.

AbstractGraphicalEditPart

ChartPart ActivityPart AbstractConnection
Edit Part

DecisionPart ProcessPart PathPart

TerminatorPart

Figure D.11
The EditPart hierarchy
for the flowchart editor
Licensed to jromero <jose.romero@galicia.seresco.es>

428 APPENDIX D

The Graphical Editing Framework (GEF)
package com.swtjface.flowchart.editpart;

import org.eclipse.gef.EditPart;
import org.eclipse.gef.EditPartFactory;
import com.swtjface.flowchart.model.*;
import com.swtjface.flowchart.model.Process;

public class PartFactory implements EditPartFactory
{
 public EditPart createEditPart(EditPart context, Object model)
 {
 EditPart part = null;
 if (model instanceof Decision)
 part = new DecisionPart();
 else if (model instanceof Process)
 part = new ProcessPart();
 else if (model instanceof Terminator)
 part = new TerminatorPart();
 else if (model instanceof Path)
 part = new PathPart();
 else if (model instanceof Chart)
 part = new ChartPart();
 part.setModel(model);
 return part;
 }
}

Like the ModelFactory class, the PartFactory is simple. However, the operation of
the individual EditParts is more involved. We’ll begin with the parent EditPart of
the flowchart editor, the ChartPart.

D.6.2 The ChartPart class
A GraphicalViewer object is initialized by specifying the highest-level Model class
in the editor. In our case, this is the Chart class. Afterward, it calls its setCon-
tents() method, which tells the PartFactory to create a new ChartPart. The
viewer’s RootEditPart uses this object to create, activate, and remove child com-
ponents from the editor. The code for this class is presented in listing D.17.

package com.swtjface.flowchart.editpart;

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.util.List;

import org.eclipse.draw2d.IFigure;

Listing D.16 PartFactory.java

Listing D.17 ChartPart.java
Licensed to jromero <jose.romero@galicia.seresco.es>

The Controller aspect: EditPart classes 429
import org.eclipse.gef.EditPolicy;
import org.eclipse.gef.editparts.*;

import com.swtjface.flowchart.figures.FigureFactory;
import com.swtjface.flowchart.model.Chart;
import com.swtjface.flowchart.policies.*;

public class ChartPart extends AbstractGraphicalEditPart
 implements PropertyChangeListener
{

 public void propertyChange(PropertyChangeEvent evt)
 {
 String prop = evt.getPropertyName();
 if (Chart.CHILD.equals(prop))
 refreshChildren();
 }

 protected IFigure createFigure()
 {
 return FigureFactory.createChartFigure();
 }

 protected void createEditPolicies()
 {
 installEditPolicy(EditPolicy.LAYOUT_ROLE, new LayoutPolicy());
 }

 public void activate()
 {
 if (isActive())
 return;
 super.activate();
 getChart().addPropertyChangeListener(this);
 }

 public void deactivate()
 {
 if (!isActive())
 return;
 super.deactivate();
 getChart().removePropertyChangeListener(this);
 }

 protected Chart getChart()
 {
 return (Chart)getModel();
 }

 protected List getModelChildren()
 {
 return getChart().getChildren();
 }
}

Update children if
CHILD property

Start monitoring
property changes

Stop monitoring
property changes
Licensed to jromero <jose.romero@galicia.seresco.es>

430 APPENDIX D

The Graphical Editing Framework (GEF)
The first method handles the PropertyChangeEvents created by the Chart object.
When invoked, it calls refreshChildren(), which activates child EditParts and
removes deleted children. The next method, createFigure(), builds a ChartFig-
ure using the FigureFactory. The createEditPolicies() method sets two policies
for the part and the roles they will perform. The next two methods take care of
activation and deactivation, and the last two methods access the Model object of
the EditPart and its children.

D.6.3 The ActivityPart class

Because of its connections and properties, the ActivityPart contains more meth-
ods than any other EditPart in our project. But, as shown in listing D.18, the
structure remains similar to that of ChartPart.

 It begins with the event-handling method, propertyChange(), and continues
with the methods needed to alter the View. It contains activate() and deacti-
vate() methods, and it adds EditPolicys to its internal List. But after its Model-
accessing methods, the ActivityPart contains four methods related to Connec-
tionAnchor objects. These are the methods that the class must provide as part of
the NodeEditPart interface, which makes the process of adding and removing
Connections possible.

package com.swtjface.flowchart.editpart;

import java.beans.*;
import java.util.*;

import org.eclipse.draw2d.ConnectionAnchor;
import org.eclipse.draw2d.geometry.*;
import org.eclipse.gef.*;
import org.eclipse.gef.requests.DropRequest;

import com.swtjface.flowchart.figures.*;
import com.swtjface.flowchart.model.*;
import com.swtjface.flowchart.policies.*;

abstract public class ActivityPart
 extends org.eclipse.gef.editparts.AbstractGraphicalEditPart
 implements NodeEditPart, PropertyChangeListener
{
 public void propertyChange(PropertyChangeEvent evt)

Listing D.18 ActivityPart.java
Licensed to jromero <jose.romero@galicia.seresco.es>

The Controller aspect: EditPart classes 431
 {
 String prop = evt.getPropertyName();
 if (Activity.CHILD.equals(prop))
 refreshChildren();
 else if (Activity.TARGETS.equals(prop))
 refreshTargetConnections();
 else if (Activity.SOURCES.equals(prop))
 refreshSourceConnections();
 else if (Activity.SIZE.equals(prop) ||
 Activity.LOC.equals(prop) ||
 Activity.NAME.equals(prop))
 refreshVisuals();
 }

 protected void refreshVisuals()
 {
 getActivityFigure().setName(getActivity().getName());
 Point loc = getActivity().getLocation();
 Dimension size = getActivity().getSize();
 Rectangle r = new Rectangle(loc ,size);
 ((GraphicalEditPart) getParent()).setLayoutConstraint
 (this, getFigure(), r);
 }

 public void activate()
 {
 if (isActive())
 return;
 super.activate();
 getActivity().addPropertyChangeListener(this);
 }

 public void deactivate()
 {
 if (!isActive())
 return;
 super.deactivate();
 getActivity().removePropertyChangeListener(this);
 }

 protected void createEditPolicies()
 {
 installEditPolicy(EditPolicy.COMPONENT_ROLE,
 new ComponentPolicy());
 installEditPolicy(EditPolicy.GRAPHICAL_NODE_ROLE,
 new NodePolicy());
 }

Update
feature
according to
property
name

Update name
and bounds
for Figure and
Model
Licensed to jromero <jose.romero@galicia.seresco.es>

432 APPENDIX D

The Graphical Editing Framework (GEF)
 public ConnectionAnchor getSourceConnectionAnchor
 (ConnectionEditPart connEditPart)
 {
 Path Path = (Path) connEditPart.getModel();
 return getActivityFigure().
 getSourceConnectionAnchor(Path.getSourceName());
 }

 public ConnectionAnchor getSourceConnectionAnchor
 (Request request)
 {
 Point pt = new Point(((DropRequest)request).getLocation());
 return getActivityFigure().getSourceConnectionAnchorAt(pt);
 }

 public ConnectionAnchor getTargetConnectionAnchor
 (ConnectionEditPart connEditPart)
 {
 Path Path = (Path) connEditPart.getModel();
 return getActivityFigure().
 getTargetConnectionAnchor(Path.getTargetName());
 }

 public ConnectionAnchor getTargetConnectionAnchor
 (Request request)
 {
 Point pt = new Point(((DropRequest)request).getLocation());
 return getActivityFigure().getTargetConnectionAnchorAt(pt);
 }

 public String mapSourceConnectionAnchorToName
 (ConnectionAnchor c)
 {
 return getActivityFigure().getSourceAnchorName(c);
 }

 public String mapTargetConnectionAnchorToName
 (ConnectionAnchor c)
 {
 return getActivityFigure().getTargetAnchorName(c);
 }

 protected ActivityFigure getActivityFigure()
 {
 return (ActivityFigure) getFigure();
 }

 protected Activity getActivity()
 {
 return (Activity)getModel();
 }

 protected List getModelSourceConnections()
 {

NodeEdit-
Part
interface
methods
Licensed to jromero <jose.romero@galicia.seresco.es>

The Controller aspect: EditPart classes 433
 return getActivity().getSourceConnections();
 }

 protected List getModelTargetConnections()
 {
 return getActivity().getTargetConnections();
 }
}

The one method not included in the ActivityPart is createFigure(), which is
needed to initialize the component’s View aspect. Because this is the only distin-
guishing factor between the ActivityPart’s subclasses, it must be specified in the
ProcessPart, DecisionPart, and TerminatorPart classes. The code for these
classes is shown in listings D.19, D.20, and D.21.

package com.swtjface.flowchart.editpart;

import org.eclipse.draw2d.IFigure;
import com.swtjface.flowchart.figures.FigureFactory;

public class ProcessPart extends ActivityPart
{
 protected IFigure createFigure()
 {
 return FigureFactory.createProcessFigure();
 }
}

package com.swtjface.flowchart.editpart;

import org.eclipse.draw2d.IFigure;
import com.swtjface.flowchart.figures.FigureFactory;

public class DecisionPart extends ActivityPart
{
 protected IFigure createFigure()
 {
 return FigureFactory.createDecisionFigure();
 }
}

package com.swtjface.flowchart.editpart;

import org.eclipse.draw2d.IFigure;

Listing D.19 ProcessPart.java

Listing D.20 DecisionPart.java

Listing D.21 TerminatorPart.java
Licensed to jromero <jose.romero@galicia.seresco.es>

434 APPENDIX D

The Graphical Editing Framework (GEF)
import com.swtjface.flowchart.figures.FigureFactory;

public class TerminatorPart extends ActivityPart
{
 protected IFigure createFigure()
 {
 return FigureFactory.createTerminatorFigure();
 }
}

It’s important to note that the ActivityPart object responds to events related to
new and deleted Connections, but the PathPart doesn’t. This is the case because
these events are triggered only once the source and target Connections are added
to the Activity’s Model.

D.6.4 The PathPart class

Since the PathPart doesn’t respond to Connection changes, and its activation and
deactivation are handled by the ConnectionEditPart superclass, all our class
needs to do is specify its applicable policies and the Figure that should be con-
structed upon its creation. The code is shown in listing D.22.

package com.swtjface.flowchart.editpart;

import org.eclipse.draw2d.*;

import org.eclipse.gef.editparts.AbstractConnectionEditPart;
import com.swtjface.flowchart.figures.FigureFactory;

public class PathPart extends AbstractConnectionEditPart
{
 protected void createEditPolicies()
 { }

 protected IFigure createFigure()
 {
 return FigureFactory.createPathFigure();
 }
}

Now that we’ve completed building the EditParts for the flowchart editor, we
need to examine their policies. This will enable us to finally show the entire pro-
cess of how a Tool’s Request becomes a Model’s Command.

Listing D.22 PathPart.java
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating Commands with EditPolicy objects 435
D.7 Creating Commands with EditPolicy objects

Let’s say that your editing project has a ChangeColorCommand, and you want this Com-
mand to execute whenever the component receives a DirectEditRequest. For
another component, you want the ChangeShapeCommand to be executed for this
Request. Clearly, you need to modify the EditPart classes of these components, since
these are the objects that receive Requests. But how do you make this distinction?

 The answer involves EditPolicys, which make it possible for EditParts to con-
trol how Commands are created in response to Requests. This section discusses how
EditPolicy objects operate, the policies provided by the GEF, and how they’re
implemented in our editor.

D.7.1 The getCommand() method

Just as execute() makes Command operation possible, the getCommand() method
performs the work for EditPolicys. Once a Tool determines which EditPart
should receive a given Request, it calls the part’s getCommand() method with the
Request object as its parameter. Then, the EditPart iterates through its list of
EditPolicy objects and invokes each of their getCommand() methods. In each case,
if the policy can respond to the Request, it returns a Command object to the Tool,
which executes it.

 In addition, EditPolicys provide information to the Command that specify how its
execution should be performed. That is, they tell the Command which Model prop-
erties should be modified and provide any parameters associated with the Request.

D.7.2 GEF policies in the flowchart editor

Although you can create customized EditPolicys from scratch, the GEF toolset
provides a number of helpful abstract classes. To build concrete EditPolicys, you
only need to specify which Model objects and properties should be changed when
the Command executes. This section describes the main abstract policies we’ll need
for our editor and how you can extend them.

 The flowchart editor needs three policies in order to function:

■ ComponentPolicy—Removes Activity objects from the Chart

■ NodePolicy—Manages the process of adding new Paths

■ LayoutPolicy—Creates and arranges Activity objects in the Chart

Each of these classes extends an existing GEF policy class. Their inheritance struc-
ture is shown in figure D.12.
Licensed to jromero <jose.romero@galicia.seresco.es>

436 APPENDIX D

The Graphical Editing Framework (GEF)
The ComponentEditPolicy creates Commands when an EditPart is deleted or
orphaned from a container. The GraphicalEditPolicy contains a number of sub-
classes for creating, deleting, and adding children to a LayoutManager. The Graph-
icalNodeEditPolicy subclass creates Commands for creating connections to and
from a component. The GEF library provides many more policies than those
shown in figure D.12, particularly subclasses of GraphicalEditPolicy; the library’s
documentation summarizes their functions.

 Although our naming convention may seem lazy, there is a good reason. As we
add new components and more functionality to the editor, we need to keep track
of component behaviors. If we use names like ChartPolicy and ActivityPolicy,
then it will be difficult to see which capabilities are present and which need to be
added. Therefore, our policy names closely resemble those of their superclasses.

The LayoutPolicy class
The top-level policy in our project is the LayoutPolicy, which handles creating,
deleting, and reshaping components in the ChartPart. This policy places children
according to a Rectangle constraint, which specifies the component’s dimensions
and size. In addition, it lets the user resize children by creating a ResizableEdit-
Policy for each of its children.

AbstractEditPolicy

Component
EditPolicy

Graphical
EditPolicy

Component
Policy

Layout
EditPolicy

GraphicalNode
EditPolicy

ConstrainedLayout
EditPolicy

NodePolicy

XYLayout
EditPolicy

XYLayout
Policy

Figure D.12
The EditPolicy structure of the flowchart editor. Concrete
classes are shown in gray and abstract superclasses in white.
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating Commands with EditPolicy objects 437
 The code for this class is shown in listing D.23. This, and all classes in this sec-
tion, should be added to the com.swtjface.flowchart.policies package.

package com.swtjface.flowchart.policies;

import org.eclipse.draw2d.PositionConstants;
import org.eclipse.draw2d.geometry.Rectangle;

import org.eclipse.gef.*;
import org.eclipse.gef.commands.Command;
import org.eclipse.gef.editpolicies.*;
import org.eclipse.gef.requests.*;

import com.swtjface.flowchart.model.*;
import com.swtjface.flowchart.commands.*;

public class LayoutPolicy extends XYLayoutEditPolicy
{
 protected Command createAddCommand(EditPart childEditPart,
 Object constraint)
 {
 Activity part = (Activity) childEditPart.getModel();
 Rectangle rect = (Rectangle)constraint;

 CreateCommand create = new CreateCommand();
 create.setParent((Chart)(getHost().getModel()));
 create.setChild(part);
 create.setConstraint(rect);
 return create;
 }

 protected Command createChangeConstraintCommand
 (EditPart child, Object constraint)
 {
 SetConstraintCommand locationCommand =
 new SetConstraintCommand();
 locationCommand.setPart((Activity)child.getModel());
 locationCommand.setLocation((Rectangle)constraint);
 return locationCommand;
 }

 protected Command createChangeConstraintCommand
 (ChangeBoundsRequest request, EditPart child, Object constraint)
 {
 SetConstraintCommand cmd = (SetConstraintCommand)
 createChangeConstraintCommand(child, constraint);
 return cmd;
 }

 protected Command getCreateCommand(CreateRequest request)
 {

Listing D.23 LayoutPolicy.java

Set parameters of
Command
Licensed to jromero <jose.romero@galicia.seresco.es>

438 APPENDIX D

The Graphical Editing Framework (GEF)
 CreateCommand create = new CreateCommand();
 create.setParent((Chart)(getHost().getModel()));
 create.setChild((Activity)(request.getNewObject()));
 Rectangle constraint = (Rectangle)getConstraintFor(request);
 create.setConstraint(constraint);
 return create;
 }

 protected Command getDeleteDependantCommand(Request request)
 {return null;}

 protected EditPolicy createChildEditPolicy(EditPart child)
 {
 ResizableEditPolicy policy = new ResizableEditPolicy();
 policy.setResizeDirections(PositionConstants.EAST |
 PositionConstants.WEST | PositionConstants.NORTH |
 PositionConstants.SOUTH);
 return policy;
 }
}

The createAddCommand() and getDeleteDependantCommand() methods return null
because their functions are already accomplished: getCreateCommand() takes care
of building new components, and getDeleteCommand() deletes them. This second
method is part of our next policy, the ComponentPolicy.

The ComponentPolicy class
The ComponentEditPolicy superclass provides Commands when the user wants to
remove a component from its container (make it an orphan) or delete it alto-
gether. Since our only container in the flowchart is the ChartPart, there is no dif-
ference between becoming an orphan and being deleted. So, the only method in
listing D.24 creates a DeleteCommand.

package com.swtjface.flowchart.policies;

import org.eclipse.gef.commands.Command;
import org.eclipse.gef.editpolicies.*;
import org.eclipse.gef.requests.*;

import com.swtjface.flowchart.model.*;
import com.swtjface.flowchart.commands.*;

public class ComponentPolicy extends ComponentEditPolicy
{
 protected Command createDeleteCommand(GroupRequest request)
 {

Listing D.24 ComponentPolicy.java

Specify how
figure can be
resized
Licensed to jromero <jose.romero@galicia.seresco.es>

Creating Commands with EditPolicy objects 439
 Object parent = getHost().getParent().getModel();
 DeleteCommand deleteCmd = new DeleteCommand();
 deleteCmd.setParent((Chart)parent);
 deleteCmd.setChild((Activity)getHost().getModel());
 return deleteCmd;
 }
}

Because our ActivityParts have so much work to do, they require two policies.
The ComponentPolicy shown in listing D.24 lets them handle their responsibili-
ties as child components. But in order to manage Connection objects, they need
a NodePolicy.

The NodePolicy class
The abstract GraphicalNodeEditPolicy class creates and initializes the parame-
ters of a PathCommand. The subclass in our editor is called NodePolicy, and its
code is shown in listing D.25. The createDummyConnection() serves an interesting
purpose: It doesn’t create a real Connection, but instead displays a new connec-
tion to the user before they choose a target component.

package com.swtjface.flowchart.policies;

import org.eclipse.draw2d.*;
import org.eclipse.gef.GraphicalEditPart;
import org.eclipse.gef.Request;
import org.eclipse.gef.commands.Command;
import org.eclipse.gef.requests.*;

import com.swtjface.flowchart.commands.*;
import com.swtjface.flowchart.model.*;
import com.swtjface.flowchart.figures.*;
import com.swtjface.flowchart.editpart.*;

public class NodePolicy
 extends org.eclipse.gef.editpolicies.GraphicalNodeEditPolicy
{
 protected Connection createDummyConnection(Request req)
 {
 PolylineConnection conn = FigureFactory.createPathFigure();
 return conn;
 }
 protecded Command getConnectionCompleteCommand
 (CreateConnectionRequest request)
 {
 PathCommand command = (PathCommand)request.getStartCommand();

Listing D.25 NodePolicy.java

Finish connection
Licensed to jromero <jose.romero@galicia.seresco.es>

440 APPENDIX D

The Graphical Editing Framework (GEF)
 command.setTarget(getActivity());
 ConnectionAnchor ctor = getActivityPart().
 getTargetConnectionAnchor(request);
 if (ctor == null)
 return null;
 command.setTargetName(getActivityPart().
 mapTargetConnectionAnchorToName(ctor));
 return command;
 }

 protected Command getConnectionCreateCommand
 (CreateConnectionRequest request)
 {
 PathCommand command = new PathCommand();
 command.setPath(new Path());
 command.setSource(getActivity());
 ConnectionAnchor ctor = getActivityPart().
 getSourceConnectionAnchor(request);
 command.setSourceName(getActivityPart().
 mapSourceConnectionAnchorToName(ctor));
 request.setStartCommand(command);
 return command;
 }

 protected ActivityPart getActivityPart()
 {return (ActivityPart) getHost();}

 protected Activity getActivity()
 {return (Activity) getHost().getModel();}

 protected Command getReconnectTargetCommand
 (ReconnectRequest request)
 {
 PathCommand cmd = new PathCommand();
 cmd.setPath((Path)request.getConnectionEditPart().getModel());
 ConnectionAnchor ctor = getActivityPart().
 getTargetConnectionAnchor(request);
 cmd.setTarget(getActivity());
 cmd.setTargetName(getActivityPart().
 mapTargetConnectionAnchorToName(ctor));
 return cmd;
 }

 protected Command getReconnectSourceCommand
 (ReconnectRequest request)
 {
 PathCommand cmd = new PathCommand();
 cmd.setPath((Path)request.getConnectionEditPart().getModel());
 ConnectionAnchor ctor = getActivityPart().
 getSourceConnectionAnchor(request);
 cmd.setSource(getActivity());
 cmd.setSourceName(getActivityPart().
 mapSourceConnectionAnchorToName(ctor));

Start connection

Reconnect target

Reconnect source
Licensed to jromero <jose.romero@galicia.seresco.es>

Adding Actions to the editor 441
 return cmd;
 }

 protected ActivityFigure getActivityFigure()
 {
 return (ActivityFigure)((GraphicalEditPart)getHost()).getFigure();
 }
}

We’ve presented Tools, Requests, Commands, and EditPolicys. But one class of GEF
objects demands our attention: Actions make it possible for menu items and tool-
bar options to perform the same kind of functionality as Tools, and they’re the
subject of the next section.

D.8 Adding Actions to the editor

Users expect multiple ways to accomplish an editing task. For example, the
Eclipse Workbench lets users copy GUI elements with a keystroke (Ctrl-C), a menu
item (Edit->Copy), or an option in a context menu. GEF enables you to provide
these capabilities through Actions.

 These are essentially the same JFace Actions as those discussed in Chapter 4.
They can be associated with text, images, and accelerator keys; and they can
appear as buttons, toolbar items, or options in a menu. However, GEF’s Actions
have two important differences.

 First, they’re subclasses of WorkbenchPartAction,
whose hierarchy is shown in figure D.13. Second,
although they invoke run() when activated, their opera-
tion varies from class to class. A SelectionAction func-
tions like a Tool by sending the selected component a
Request. StackActions function by accessing the Com-
mandStack, and EditorPartActions work by accessing
the EditorPart itself.

 In order to function, WorkbenchPartActions need to
notify the editor of their presence. This is accomplished
by adding them to the editor’s ActionRegistry.

D.8.1 The ActionRegistry and ContextMenus

Every GraphicalEditor creates an ActionRegistry as part of its initialization and
populates it by calling createActions(). The code is shown here:

Figure D.13
A context menu in a
GEF editor
Licensed to jromero <jose.romero@galicia.seresco.es>

442 APPENDIX D

The Graphical Editing Framework (GEF)
action = new UndoAction(this);
registry.registerAction(action);
getStackActions().add(action.getId());

action = new RedoAction(this);
registry.registerAction(action);
getStackActions().add(action.getId());

action = new SelectAllAction(this);
registry.registerAction(action);

action = new DeleteAction((IWorkbenchPart)this);
registry.registerAction(action);
getSelectionActions().add(action.getId());

action = new SaveAction(this);
registry.registerAction(action);
getPropertyActions().add(action.getId());

action = new PrintAction(this);
registry.registerAction(action);

We mention this code for two reasons. First, it’s helpful to know which Actions
have already been added to your GraphicalEditor by default. It also shows that,
in addition to the ActionRegistry, the editor keeps track of certain groups of
Action classes.

 These groups include PropertyActions, which deal with changes to the editor’s
state; StackActions, which manipulate the CommandStack; and SelectionActions,
which communicate with selected components. If you intend to add custom
Actions to your editor, you need to register them in the ActionRegistry and add
them to any groups to which they belong. You do so by implementing the create-
Actions() method in your editor.

 After you add your Actions to the editor, you need to make them available to the
user. One of the simpler ways to do this involves a ContextMenu, shown in figure D.14.
This menu is easily accessible by right-clicking in the editor’s main window.

WorkbenchPartAction

EditorPart
Action

Print
Action

Selection
Action

CopyTemplate
Action

Stack
Action

Save
Action

Alignment
Action

Delete
Action

DirectEdit
Action

Redo
Action

Undo
Action

Figure D.14
Actions provided
by the GEF
Licensed to jromero <jose.romero@galicia.seresco.es>

Adding Actions to the editor 443
 For our flowchart editor, we’ll only use the Actions that are added by default,
so we won’t need to create any new classes. Instead, we’ll create a ContextMenuPro-
vider and add our desired Actions to it (see listing D.26). We recommend that
you add this class to the com.swtjface.flowchart.actions package.

package com.swtjface.flowchart.actions;

import org.eclipse.jface.action.*;
import org.eclipse.ui.actions.ActionFactory;
import org.eclipse.gef.*;
import org.eclipse.gef.ui.actions.*;

public class FlowchartContextMenuProvider
 extends ContextMenuProvider
{
 private ActionRegistry actionRegistry;

 public FlowchartContextMenuProvider(EditPartViewer viewer,
 ActionRegistry registry)
 {
 super(viewer);
 setActionRegistry(registry);
 }

 private ActionRegistry getActionRegistry()
 {
 return actionRegistry;
 }

 public void setActionRegistry(ActionRegistry registry)
 {
 actionRegistry = registry;
 }

 public void buildContextMenu(IMenuManager menu)
 {
 GEFActionConstants.addStandardActionGroups(menu);

 IAction action;
 action = getActionRegistry().getAction
 (ActionFactory.UNDO.getId());
 menu.appendToGroup(GEFActionConstants.GROUP_UNDO, action);

 action = getActionRegistry().getAction
 (ActionFactory.REDO.getId());
 menu.appendToGroup(GEFActionConstants.GROUP_UNDO, action);

 action = getActionRegistry().getAction
 (ActionFactory.DELETE.getId());
 if (action.isEnabled())
 menu.appendToGroup(GEFActionConstants.GROUP_EDIT, action);

Listing D.26 FlowchartContextMenuProvider.java

Add menu to editor’s Viewer

Add GEF Action to
ContextMenu

Add GEF Action to
ContextMenu
Licensed to jromero <jose.romero@galicia.seresco.es>

444 APPENDIX D

The Graphical Editing Framework (GEF)
 action = getActionRegistry().getAction
 (ActionFactory.SAVE.getId());
 if (action.isEnabled())
 menu.appendToGroup(GEFActionConstants.GROUP_SAVE, action);
 }
}

The buildContextMenu() method acquires a MenuManager and searches through
the ActionRegistry to find desired Actions. Then, it calls the appendToGroup()
method to include them in the context menu.

 Context menus are helpful, but it would be more interesting to include our
Actions in the Eclipse Workbench. To accomplish this, we need to use a new kind
of Action.

D.8.2 Redirecting Workbench actions with RetargetAction

The Eclipse Workbench contains a number of global Actions that can be triggered
through its main menu and toolbar. We’d like to redirect them to allow users to
perform editing in our editor and use Actions such as Undo, Redo, and Delete.

 The process is simple. First, we need to create a set of RetargetActions and add
them to the editor’s ActionRegistry. Then, these Actions must be made available
to the user. All of this can be accomplished with one class: ActionBarContributor.

RetargetActions
RetargetActions function by directing the effects of the Workbench’s internal
Actions to an application. When we use one of these Actions, its corresponding
menu option is available for our editor. For example, when we add the DeleteRe-
targetAction, the Workbench’s Edit->Delete can be used to delete an EditPart.

 Table D.5 shows the RetargetActions provided by the GEF. Our editor uses the
DeleteRetargetAction, the CopyRetargetAction, and the UndoTargetAction.
There is no SaveRetargetAction because saving an editor’s contents is always
directed to the editor being used.

Add GEF Action to
ContextMenu
Licensed to jromero <jose.romero@galicia.seresco.es>

Adding Actions to the editor 445
The Label column in the table refers to whether the RetargetAction can be given
a custom label, which works like a tooltip. Only UndoRetargetAction and Redo-
RetargetAction are subclasses of LabelRetargetAction; the rest of the Retar-
getActions retain the label specified by the Workbench.

 Because GEF makes RetargetActions so easy to use, we don’t need to create
separate classes for them. Instead, we only need a single ActionBarContributor.

The ActionBarContributor class
FlowchartProject’s plugin.xml file specifies its contributorClass field as
com.swtjface.Actions.FlowchartActionBarContributor. This tells the Work-
bench that this class will access and modify its resources. In particular, this class
functions by specifying which global Actions should be redirected and how they
should be made available to the user.

 An ActionBarContributor adds Actions to an application’s main menu or
ToolBar/CoolBar. For the flowchart editor, we need to add RetargetActions to the
Workbench’s toolbar. The code for the FlowchartActionBarContributor is pre-
sented in listing D.27. If you’re coding these classes, we recommend that you add
this to the com.swtjface.flowchart.actions package.

package com.swtjface.flowchart.actions;

import org.eclipse.jface.action.IToolBarManager;
import org.eclipse.ui.actions.ActionFactory;
import org.eclipse.gef.ui.actions.*;

public class FlowchartActionBarContributor

Table D.5 GEF retargetable actions

Action Function Label

AlignmentRetargetAction Aligns EditParts No

CopyRetargetAction Copies and pastes components No

DeleteRetargetAction Removes EditParts from the editor No

RedoRetargetAction Reexecutes the given Command Yes

UndoRetargetAction Negates the effect of the last Command execu-
tion

Yes

ZoomInRetargetAction Focuses on a smaller area within the editor No

ZoomOutRetargetAction Views a greater area of editor space No

Listing D.27 FlowchartActionBarContributor.java
Licensed to jromero <jose.romero@galicia.seresco.es>

446 APPENDIX D

The Graphical Editing Framework (GEF)
 extends ActionBarContributor
{
 protected void buildActions()
 {
 addRetargetAction(new UndoRetargetAction());
 addRetargetAction(new RedoRetargetAction());
 addRetargetAction(new DeleteRetargetAction());
 }

 public void contributeToToolBar(IToolBarManager toolBarManager)
 {
 toolBarManager.add(getAction(ActionFactory.UNDO.getId()));
 toolBarManager.add(getAction(ActionFactory.REDO.getId()));
 toolBarManager.add(getAction(ActionFactory.DELETE.getId()));
 }

 protected void declareGlobalActionKeys()
 {}
}

These methods are easy to understand. The buildActions() method updates the
ActionRegistry with RetargetActions. Then declareGlobalActionKeys() can be
used to match them with keystrokes. The contributeToToolBar() method adds
them to the Workbench’s ToolBarManager.

 Although the Actions in the flowchart editor are fairly simple, multifunctional
editors require many more capabilities. To add them, you need a sound under-
standing of how the Request-EditPolicy-Command process works. Therefore,
instead of discussing a new facet of the GEF, we’ll like to present two detailed,
complete examples of how the GEF performs component and connection editing.

D.9 Editing with GEF: two examples

We’ve discussed the GEF’s basic objects and their functions, but you haven’t seen
the full editing process from start to finish. Therefore, this section presents two
examples that show how a user-generated Event results in a modification to an
EditPart’s Model and View aspects. We hope these examples clarify how Tools,
EditParts, and Model classes function, and the relationships between them.

D.9.1 Example 1: deleting a component with a keystroke

Users expect that when they click a component and press the Delete key, the com-
ponent and its connections will disappear. This process is is simple and obvious to
the user, but it takes some time to understand what’s going on under the hood.

Retarget
Workbench Actions
to editor

Use Actions from
Workbench’s toolbar

to editor
Licensed to jromero <jose.romero@galicia.seresco.es>

Editing with GEF: two examples 447
1: EditorPart sends user-initiated event to Tool
The process of deleting a component has two Events. First, the component needs
to be selected. This could result from a number of actions, but we’ll assume the
user pressed and lifted her mouse button on the component. Next is a KeyEvent
fired by the Delete key.

 The editor’s LightWeightSystem forwards the MouseEvent to the editor’s Edit-
Domain. The EditDomain determines which Tool should receive the Event and
invokes the Tool’s mouseDown() method. In our example, the EditDomain transfers
the MouseEvent to the SelectionTool. When the SelectionTool receives it, it
determines whether the cursor was over an EditPart. If so, it sends the EditPart a
SelectionRequest by invoking the part’s getCommand(Request) method.

2: KeyHandler receives Delete keystroke and responds
Once the EditPart is selected, the SelectionTool receives the Delete keystroke
and calls its KeyDown() method. However, this tool can’t recognize the Delete key,
so its method returns false.

 But when the user releases the Delete key, the SelectionTool calls its KeyUp()
method, which sends the key to the editor’s KeyHandler. This object has already
been initialized with a HashMap containing pairs of keys and Action objects. There-
fore, it understands that the Delete key corresponds to a DeleteAction. Once the
KeyHandler matches the two, it invokes the DeleteAction’s run() method to exe-
cute the Action.

3: DeleteAction sends DeleteRequest to part
The DeleteAction’s run() method invokes its createRequest() method to gener-
ate a DeleteRequest. It sends the Request object to the selected EditPart by invok-
ing the part’s getCommand(Request) method with a DeleteRequest. If multiple
EditParts have been selected for deletion, then a DeleteRequest is sent to each.

4: EditPart determines which EditPolicy to use
When its getCommand() method is invoked, the EditPart accesses its List of Edit-
Policys, which was populated with createEditPolicies(). The EditPart then
calls the getCommand() method contained in each of its EditPolicy classes, and if
any can accept the DeleteRequest, it returns a Command object. Those that can’t do
so return null. If multiple EditPolicys return a Command, the EditPart combines
them using the chain() method contained in the Command class.
Licensed to jromero <jose.romero@galicia.seresco.es>

448 APPENDIX D

The Graphical Editing Framework (GEF)
5: Policy returns DeleteCommand to delete EditPart
When the EditPart has finished cycling through its available policies, its getCom-
mand() method completes; it returns a DeleteCommand object if any of these policies
were able to interpret the DeleteRequest. If so, the execute() method of the
DeleteCommand is called. In our code, this method removes the Connection objects
associated with the EditPart. Then, it invokes the parent’s removeChild() method.

6: EditPart’s parent deactivates part
When its removeChild() method is called, the parent Model object removes the
child EditPart from its list of children and fires a PropertyChangeEvent. The par-
ent’s EditPart responds by calling propertyChange(). In our editor, this method
invokes refreshChildren().

 This method searches through the parent’s List of child Models and their
EditParts. Since the deleted part’s Model has been removed, the parent invokes
removeChild(), which calls the part’s deactivate() and removeNotify() methods.
These methods tell the part to remove its ConnectionEditParts and children.
Finally, the parent’s removeChildVisual() method removes the child’s Figure
from the editor.

D.9.2 Example 2: how connections are created

To further describe GEF’s Event-Request-Policy-Command-PropertyChangeEvent
methodology, this subsection will present a second example involving connec-
tions between EditParts. So far, we’ve created a great deal of code that creates
and manipulates these objects, but we haven’t described their interrelated activity.

1: User’s palette selection creates Tool
Users start the process by clicking the ConnectionCreationToolEntry in the Flow-
chartPalette. Doing so creates a ConnectionCreationTool object, which now han-
dles all external events.

2: User chooses an EditPart as connection source
If the user clicks an EditPart, the ConnectionCreationTool creates a CreateCon-
nectionRequest and initializes it with the location of the mouse click. The tool
then determines which part has been targeted and sends the request by invoking
the part’s getCommand() method.
Licensed to jromero <jose.romero@galicia.seresco.es>

Editing with GEF: two examples 449
3: CreateConnectionRequest becomes a Command
When the Editpart receives the request from the tool, it searches its policies in
the EditPolicyIterator to see if any can respond. In the case of our flowchart
editor, the NodePolicy, a subclass of GraphicalNodeEditPolicy, starts the response
by creating a PathCommand and initializing its parameters. These four parameters
are as follows:

■ The Path object, which holds the connection information

■ The Activity object from which the connection starts (source)

■ The ActivityPart’s ConnectionAnchor

■ The String name used to represent the ConnectionAnchor

To initialize the first two fields, the tool creates a new Path object and uses the
selected ActivityPart as the source. Getting the third and fourth fields is more
involved.

 This process starts by invoking the part’s getConnectionAnchor() method with
the location of the selection. This method calls getConnectionAnchorAt() method
in the Activity class, which returns the anchor object. To match the anchor to
the terminal name, the policy calls the ActivityPart’s mapConnectionAnchorTo-
Terminal() method, which finds the terminal by calling the ActivityFigure’s
getConnectionAnchorName() method. Once the command is fully initialized with
the anchor and terminal, it’s sent to the ConnectionCreationTool as the return
value of the getCommand() method.

 It’s important to understand that this Command won’t be executed immediately.
Instead, it’s stored in the startCommand field of the request and is executed after
the second EditPart has been selected.

4: Tool creates new Path object
When the ConnectionCreationTool receives the command, it sets the editor’s state
to STATE_CONNECTION_STARTED. Then, it uses its handleMove() method to update
the editor’s appearance. This means creating a Path object between the source’s
anchor and the current mouse position. The process of providing this graphical
update, or feedback, begins with invoking the source ActivityPart’s showSource-
Feedback() method with a new CreateConnectionRequest. The part passes this
request to its policies and, by default, invokes the showSourceFeedback() method
of the GraphicalNodeEditPolicy. This method calls the createDummyConnection()
method of our NodePolicy, which returns the new Path object.
Licensed to jromero <jose.romero@galicia.seresco.es>

450 APPENDIX D

The Graphical Editing Framework (GEF)
5: User moves mouse and chooses second EditPart
As the user moves the pointer, the ConnectionCreationTool continually checks
whether the mouse is pointing to an EditPart. If so, the target Activity provides
feedback by moving the Connection’s endpoint to one of its ConnectionAnchors.
The tool also sends the part an updated ConnectionRequest by invoking the part’s
getCommand() method.

 As before, the request is sent to the target part’s ActivityPolicy, which
updates the PathCommand created by the source part. This update involves setting
the Command’s target field equal to the target Activity and setting the targetName
field equal to name of the target’s ConnectionAnchor.

 If the user clicks a second EditPart, then the tool changes the state from
STATE_CONNECTION_STARTED to STATE_TERMINAL. It also erases the dummy Polyline-
Connection and begins creating the connection.

6: PathCommand executes
The PathCommand’s execute() method creates the Connection. First, it sets the
Path’s source, sourceName, target, and targetName fields equal to the source
Activity, the name of the source’s ConnectionAnchor, the target Activity, and
the name of the target’s ConnectionAnchor, respectively. Finally, it informs the
source and target that they’re the source and target of a new connection.

 Both the source and target Activities fire PropertyChangeEvents, and their
ActivityParts respond by invoking refreshSourceConnections() and refresh-
TargetConnections(). Since these parts have Path objects without PathParts, this
method creates PathParts using the PartFactory.

 Now that you have a thorough understanding of Tools, Actions, Requests,
EditPolicys, and Commands, it’s time to work with the class that brings them all
together. The next section deals with the EditorPart.

D.10 Introducing the EditorPart

If you’ve come this far, you have our respect. Learning how GEF operates is diffi-
cult, but you’re near the end of the road. We’re now going to discuss the object
that brings everything together: EditorPart. This section will cover this class and
the GraphicalViewer that does most of the work. We’ll finish by showing the final
code for the FlowchartEditor.
Licensed to jromero <jose.romero@galicia.seresco.es>

Introducing the EditorPart 451
D.10.1 Working with EditorParts and GraphicalEditors

Graphical components in the Eclipse Workbench are divided into views and edi-
tors. Views, which extend the ViewPart class, organize and display information
about the Workbench. Editors function by allowing the user to manipulate and
save files; they descend from the EditorPart class.

 Both EditorPart and its superclass, WorkbenchPart, are abstract classes with
abstract methods. Therefore, if you’re seeking to build an Eclipse editor, you must
provide code for each of these methods, shown in table D.6.

The two most important of these are init() and createPartControl(). The Work-
bench calls init() when the user opens a file with the supported extension.
Then, to display the editor, the workbench calls createPartControl(). Like the
createContents() method of a JFace Window, this method embodies the editor’s
appearance within a Composite object.

 The nature of this Composite determines how the editor looks and acts. For
text editors, this is one large Text box. Graphical editors use a Canvas, but there’s
much more to a graphical editor than this object. To provide added functionality,
GEF supplies an EditorPart subclass, GraphicalEditor.

 The documentation recommends using the GraphicalEditor class as a refer-
ence, but we’ll directly integrate one in our flowchart editor. This class provides a
number of important capabilities to the editor, such as an ActionRegistry, a

Table D.6 Abstract methods of the WorkbenchPart and EditorPart classes

Method Function

WorkbenchPart.createPartControl
(Composite)

Specifies the Composite control that provides the
editor’s appearance

WorkbenchPart.setFocus() Gives the focus property to the editor

EditorPart.init(IEditorSite,
IEditorInput)

Initializes the editor with the given location and input
(file)

EditorPart.isDirty() Returns whether the editor content has changed

EditorPart.doSave
(ProgressMonitor)

Specifies actions when editor content is saved to its
file

EditorPart.doSaveAs() Specifies actions when editor content is saved to a
new file

EditorPart.isSaveAllowed() Specifies whether the SaveAs operation is enabled

EditorPart.gotoMarker() Changes the selection based on the presence of
markers
Licensed to jromero <jose.romero@galicia.seresco.es>

http://127.0.0.1:1425/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/IEditorSite.html
http://127.0.0.1:1425/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/IEditorSite.html
http://127.0.0.1:1425/help/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/IEditorInput.html

452 APPENDIX D

The Graphical Editing Framework (GEF)
CommandStack, an EditDomain, and a SelectionSynchronizer to coordinate selec-
tions across multiple viewers. Its most important feature is the GraphicalViewer,
which accomplishes the main work of a GEF editor.

D.10.2 Understanding the GraphicalViewer

Earlier, we mentioned that JFace Viewers serve as adapters for Widgets and can
simplify and extend the capabilities of their underlying components. Therefore,
you can think of a GEF editor as a GraphicalViewer on top of a Canvas object. It
handles events, keeps track of the user’s selections, and creates the basis for the
editor’s EditPart hierarchy.

 Our editor’s Viewer extends GraphicalViewerImpl, a concrete class that imple-
ments the GraphicalViewer interface. The best way to see how this object works is
to examine its methods, shown in table D.7.

The first two methods create the structure underlying the GEF editor. First, the
createControl() method builds the SWT Canvas object. Afterward, it creates a
LightWeightSystem to hold the editor’s Draw2D Figures. These objects also pro-
vide a channel through which the Viewer can receive Events.

Table D.7 Important methods of the GraphicalViewerImpl class

Method Function

createControl() Constructs the Canvas beneath the graphical editor

createLightweightSystem() Builds the Draw2D object to handle events and Figures

setRootEditPart() Creates the EditPart that activates all its children

setRootFigure() Specifies the top-level Figure for this editor

setContents() Specifies the top-level Model class for the editor (Chart)

getEditPartFactory() Finds the class to create an EditPart based on its Model

setRouteEventsToEditDomain() Transfers Events from the LightweightSystem to the
EditDomain

addDragSourceListener() Keeps track of components being moved

addDropTargetListener() Keeps track of components being dropped

setKeyHandler() Keeps track of the user’s keystrokes

addSelectionChangedListener() Listens for changes in the user’s selection

findObjectAtExcluding() Determines which EditPart was selected by the user

getSelectedEditParts() Obtains a list of the EditParts in the selection
Licensed to jromero <jose.romero@galicia.seresco.es>

Introducing the EditorPart 453
 The next two methods provide a basis for the editor’s MVC structure. First, the
setRootEditPart() creates a new top-level parent for the EditPart hierarchy. It’s
important to understand that this is not a part that we’ve created previously. It
doesn’t perform event handling or specify EditPolicys; it does interact with the
editor’s Layers, but its main purpose is to manage child EditParts.

 Another purpose of the RootEditPart is to specify a Figure to create when set-
RootFigure() is invoked. Again, this isn’t a Figure that we’ve coded. The nature of
this Figure depends on the RootEditPart. In our case, because we’re using a Scal-
ableRootEditPart, the Viewer creates a new Viewport with a LayeredPane.

 The next two methods continue this MVC development. The getContents()
method initializes the Viewer by providing the top-level Model class of the Viewer.
In our case, this is a Chart. The class returned by getEditFactory() uses this
Model to create a new EditPart, or a ChartPart for our editor. This EditPart is
then added as a child of the Viewer’s RootEditPart.

 The next four methods handle events in the Viewer. The first method directs
Events from the LightWeightSystem to the editor’s EditDomain. The Viewer creates
Listeners for DragEvents and DropTargetEvents and also provides a KeyHandler to
respond to keyboard actions. It’s important to note that the Viewer doesn’t
respond to Events itself, but sends them to the object best suited to handle them.

 The last three methods in the table deal with the Viewer’s management of selec-
tions. The Viewer listens for the user’s selections and calls the findObjectAtEx-
cluding() method to see if a selection location matches that of an EditPart. If so,
the EditPart is added to the List of EditParts returned by getSelectedEdit-
Parts(). Even though the SelectionTool responds to the user’s selection, it gets its
information from the Viewer.

D.10.3 The FlowchartEditor

Now that you understand how GraphicalEditors and GraphicalViewers operate,
we can present the complete code for the FlowchartEditor. This class extends the
GraphicalViewerWithPalette class, which is just a GraphicalEditor with the Com-
posite split into two sections. The code is shown in listing D.28.

package com.swtjface.flowchart;

import java.io.*;
import java.util.EventObject;

import org.eclipse.core.resources.*;
import org.eclipse.core.runtime.*;

Listing D.28 FlowchartEditor.java
Licensed to jromero <jose.romero@galicia.seresco.es>

454 APPENDIX D

The Graphical Editing Framework (GEF)
import org.eclipse.swt.SWT;
import org.eclipse.ui.*;
import org.eclipse.ui.actions.ActionFactory;

import org.eclipse.gef.*;
import org.eclipse.gef.dnd.TemplateTransferDragSourceListener;
import org.eclipse.gef.editparts.ScalableRootEditPart;
import org.eclipse.gef.palette.PaletteRoot;
import org.eclipse.gef.ui.parts.*;

import com.swtjface.flowchart.actions.FlowchartContextMenuProvider;
import com.swtjface.flowchart.dnd.FlowchartDropTargetListener;
import com.swtjface.flowchart.editpart.*;
import com.swtjface.flowchart.model.*;
import com.swtjface.flowchart.palette.*;

public class FlowchartEditor extends GraphicalEditorWithPalette
{
 public FlowchartEditor()
 {
 DefaultEditDomain defaultEditDomain =
 new DefaultEditDomain(this);
 setEditDomain(defaultEditDomain);
 }

 Chart Flowchart;

 protected void setInput(IEditorInput input)
 {
 super.setInput(input);

 IFile file = ((IFileEditorInput)input).getFile();
 try
 {
 InputStream is = file.getContents(false);
 if(is.available()!=0)
 {
 ObjectInputStream ois = new ObjectInputStream(is);
 Flowchart = (Chart)ois.readObject();
 ois.close();
 setTitle(file.getName());
 } else
 Flowchart = new Chart();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 Flowchart = new Chart();
 }
 }

 protected Chart getChart()
 {
 return Flowchart;

Setting editor’s
initial chart

If file contains
chart, use it

If file is empty,
create new chart
Licensed to jromero <jose.romero@galicia.seresco.es>

Introducing the EditorPart 455
 }

 public void setChart(Chart chart)
 {
 Flowchart = chart;
 }

 protected void createOutputStream(OutputStream os)
 throws IOException
 {
 ObjectOutputStream outStream = new ObjectOutputStream(os);
 outStream.writeObject(getChart());
 outStream.close();
 }

 public void doSaveAs()
 {}

 public void doSave(IProgressMonitor monitor)
 {
 try
 {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 createOutputStream(out);
 IFile file = ((IFileEditorInput)getEditorInput()).getFile();
 file.setContents(new ByteArrayInputStream(out.toByteArray()),
 true, false, monitor);
 out.close();
 getCommandStack().markSaveLocation();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 private boolean savePreviouslyNeeded = false;

 public boolean isDirty()
 {
 return isSaveOnCloseNeeded();
 }

 public boolean isSaveAsAllowed()
 {
 return true;
 }

 public boolean isSaveOnCloseNeeded()
 {
 return getCommandStack().isDirty();
 }

Convert existing chart
to output stream

Set file contents with
output stream
Licensed to jromero <jose.romero@galicia.seresco.es>

456 APPENDIX D

The Graphical Editing Framework (GEF)
 private boolean savePreviouslyNeeded()
 {
 return savePreviouslyNeeded;
 }

 private void setSavePreviouslyNeeded(boolean value)
 {
 savePreviouslyNeeded = value;
 }

 protected void configureGraphicalViewer()
 {
 super.configureGraphicalViewer();
 getGraphicalViewer().setRootEditPart
 (new ScalableRootEditPart());
 getGraphicalViewer().setEditPartFactory(new PartFactory());
 ContextMenuProvider provider =
 new FlowchartContextMenuProvider(getGraphicalViewer(),
 getActionRegistry());
 getGraphicalViewer().setContextMenu(provider);
 getSite().registerContextMenu
 (provider, getGraphicalViewer());
 getGraphicalViewer().setKeyHandler(new
 GraphicalViewerKeyHandler(getGraphicalViewer())
 .setParent(getCommonKeyHandler()));
 }

 protected void initializeGraphicalViewer()
 {
 getGraphicalViewer().setContents(Flowchart);
 getGraphicalViewer().addDropTargetListener(
 new FlowchartDropTargetListener(getGraphicalViewer()));
 }

 private PaletteRoot root;

 protected PaletteRoot getPaletteRoot()
 {
 if (root == null)
 root = FlowchartPalette.getPaletteRoot();
 return root;
 }

 protected void initializePaletteViewer()
 {
 super.initializePaletteViewer();
 getPaletteViewer().addDragSourceListener(
 new TemplateTransferDragSourceListener(getPaletteViewer()));
 }

 // Part 4: Allow the user to interact with the environment
 private KeyHandler sharedKeyHandler;

 protected KeyHandler getCommonKeyHandler()

Create initial objects
for Graphical Viewer

Set top-level Model for
Graphical Viewer

Tell Graphical
Viewer where
to create new
Models
Licensed to jromero <jose.romero@galicia.seresco.es>

Introducing the EditorPart 457
 {
 if (sharedKeyHandler == null)
 {
 sharedKeyHandler = new KeyHandler();
 sharedKeyHandler.put(KeyStroke.getPressed(SWT.DEL, 127, 0),
 getActionRegistry().getAction
 (ActionFactory.DELETE.getId()));
 }
 return sharedKeyHandler;
 }

 public void commandStackChanged(EventObject event)
 {
 if (isDirty())
 {
 if (!savePreviouslyNeeded())
 {
 setSavePreviouslyNeeded(true);
 firePropertyChange(IEditorPart.PROP_DIRTY);
 }
 }
 else
 {
 setSavePreviouslyNeeded(false);
 firePropertyChange(IEditorPart.PROP_DIRTY);
 }
 super.commandStackChanged(event);
 }

 public void gotoMarker(IMarker marker)
 { }
}

Whew! As shown by the annotations, this class performs three tasks. The first
involves file operations. Once the user starts the editor by selecting a *.fcf file, the
editor converts it into an ObjectInputStream and attempts to convert this into a
Chart object. If the conversion succeeds, then this Chart is used to initialize the
GraphicalViewer. Otherwise, if the file is empty, the editor constructs a new Chart
object. Similarly, when the user wants to save the Chart to a file, the editor con-
verts it into an ObjectOutputStream and then to a file. Notice that the editor con-
stantly monitors the CommandStack to see if the contents are dirty, which means
they’ve been changed since the last save.

 The next task involves configuring and initializing the GraphicalViewer and
PaletteViewer. The editor provides the GraphicalViewer with its RootEditPart, its
EditPartFactory, ContextMenu, and KeyHandler, and initializes it with the Chart.

Associate Delete key
with Delete Action
Licensed to jromero <jose.romero@galicia.seresco.es>

458 APPENDIX D

The Graphical Editing Framework (GEF)
To enable the user to drag template objects from the palette, the editor provides a
TemplateTransferDragSourceListener for the PaletteViewer and a Flowchart-
DropTargetListener for the GraphicalViewer. It also initializes the PaletteViewer
with the PaletteRoot created in the FlowchartPalette class.

 Finally, the editor manages user input. This means creating a KeyHandler and
making sure the Delete keystroke creates a DeleteAction. The editor also
responds to Command execution by firing a PropertyChangeEvent whenever the
CommandStack changes.

 And that finishes our flowchart editor. With luck, your application should
resemble figure D.15.

D.11 Other GEF aspects

Despite the lengthy presentation, the GEF provides a number of important fea-
tures that we failed to mention. We’ll talk about these subjects in this final section.

Figure D.15
The flowchart editor in full
Licensed to jromero <jose.romero@galicia.seresco.es>

Other GEF aspects 459
D.11.1 Accessibility

We’re ashamed that we failed to make the flowchart editor accessible, especially
since the GEF makes accessibility so easy. GEF EditParts interact with accessibility
tools by creating an AccessibilityEditPart() method and making it available.
This new EditPart responds to AccessibilityEvents and AccessibilityCon-
trolEvents by providing information concerning the part’s name, description,
state, and children. AccessibleAnchors make it possible to create and remove Con-
nections through the keyboard.

D.11.2 Grid layout

One of the most interesting features of a GEF editor is the possibility of adding rul-
ers and a grid to the GraphicalViewer. This lets the user force the editor’s Figures
to position themselves according to the grid’s points, a process also called SnapTo-
Grid. Once the GridLayout is specified, Actions such as the ToggleSnapToGeometry-
Action cause EditParts to change their location in response to SnapMoveRequests
and SnapResizeRequests.

D.11.3 Zooming in and out

Another interesting capability lets the user increase or decrease the size of a
selected portion of the editor through zooming. This is accomplished by a Zoom-
Manager, which is associated with the GraphicalViewer and fires a ZoomEvent when
the user changes the zoom level. This Event results in a ZoomInAction or Zoom-
OutAction, which causes the Viewer to enlarge or reduce the component’s graph-
ics. These Actions can also be performed through the Workbench by adding their
RetargetActions.

D.11.4 Kudos to Randy Hudson

The inspiration for our flowchart editor was the Logic Editor created by Randy
Hudson, technical lead for IBM’s GEF development and the driving force behind
its improvement. Like a latter-day Prometheus, he took this powerful tool out of
IBM’s cloistered research group and made it freely available for us commoners.

 We’d like to doff our hats to Mr. Hudson for his hard work in both developing
and supporting this toolkit, and to you, gentle reader, for your patience in learn-
ing how it works.

Licensed to jromero <jose.romero@galicia.seresco.es>

Licensed to jromero <jose.romero@galicia.seresco.es>

index
A

AbstractConnectionAnchor 380
AbstractConnectionRouter 383
AbstractGraphicalEditPart 390
AbstractHintLayout 372
AbstractTextEditor 286
AbstractTreeViewer 172
accelerator keys 72, 201, 203
accessibility 459
accessor 408
ActionBarContributor 394,

444–446
ActionContributionItem 62, 64,

66, 68, 70
ActionRegistry 441–444, 446,

451
Actions 20, 49, 62, 66, 70, 77,

102, 154, 204, 261, 285, 389
and Menus 204–205, 209
GEF and Draw2D Actions

397–399, 402, 441–442,
444–445, 447, 459

ActiveX 10
adapters 20, 54
add() 368
addAncestorListener() 368
addChild() 411
addEditorAreaTransfer() 293
addFigureListener() 368
addFocusListener() 367
addKeyListener() 367
addListener() 368
addMenuBar() 24
addMouseListener() 53, 367
addMouseMotionListener() 368

addPoint 375
addPropertyChangeListener()

73, 368
addStatusLine() 24
addToolBar() 24
addView() 295–296
AlignmentRetargetAction 445
animation 160
Ant 321–322
Apple 322
application class 290
application directory 307
Application Programming Inter-

face 17
ApplicationWindow 20, 22–23,

42, 63, 68
ArmEvents 63
array 37
AS_CHECK_BOX 66
AS_PUSH_BUTTON 66
AS_RADIO_BUTTON 66
AutomaticRouter 383

B

BANNER_FONT 152
Bendpoint 403
BendpointConnectionRouter

383
BendpointRequest 403
BookmarkNavigator 287
Browser 280–281
browser

dependencies 281
supported platforms 280

Button 34, 299, 304
ButtonGroup 370, 372
ButtonModel 370
Buttons 370

C

C programming language 17
Canvas 135–137, 139–140,

164–165, 364, 400, 451–452
CDLC 10
CellEditor 197, 199–200
CellModifier 210
CFBundleExecutable 322
check button 36
child widgets 15
ClassPath 322
Classpath Variables 314, 318, 365
Clickable 369–370
client area 39
Clipboard 254, 261–262
clipping 139
Color 141
ColorDialog 144, 213
colors 140, 145, 164

choosing 214
depth 157
RGB 213
system 140

ColorSelector 144–145
ColumnLayout 301–302
ColumnWeightData 193–194
CombinedTemplateCreation-

Entry 402
Combo 100
461

Licensed to jromero <jose.romero@galicia.seresco.es>

462 INDEX
drop-down 100
read-only 100
simple 100
styles 100
styles demonstrated 100

ComboBoxCellEditor 197, 200
Command 391–394, 404,

418–420, 422–426, 434–435,
437–441, 445–450, 458

CommandStack 394, 419,
441–442, 452, 457–458

Common Public License 9
compilation 318
ComponentEditPolicy 436, 438
ComponentPolicy 439
Composite 22–23, 38, 40, 42–44,

164–165, 293–295, 299–301,
364, 368, 372, 451, 453

Computer Aided Design 363
computeSize() 31
computeTrim() 40
Configure Variables 318
configureEditorAreaDropLis-

tener() 293
Connection 373, 377, 380, 382,

387, 401, 403, 414, 416, 418,
420, 422, 426, 434, 439, 448,
450

ConnectionAnchor 377,
380–381, 393, 426, 430,
432, 440, 449–450

ConnectionBendpointTracker
403

ConnectionCreationTool
403–404, 448–450

ConnectionCreationToolEntry
401, 448

ConnectionEditPart 427, 432,
434, 448

ConnectionEndpointLocator
382

ConnectionLayer 383
ConnectionRouter.NullConnec-

tionRouter 383
Connections 366
Connector 363
containers 15, 38, 41, 372–373,

389, 393
containsPoint() 373
content providers 172, 177, 196

advantages of 179

ContentAssistant 92, 96–97, 99
ContentProvider 173, 181,

184, 194
ContentViewer 168–170, 172
Context menu 444
ContextMenuProvider 394,

443, 456
ContributionItem 64–66, 70
ContributionManager 64, 66, 68,

70
contributions 20, 49, 63, 67, 285
contributors 77
Control 28, 30, 32, 134–135,

138–139, 286, 363–364, 367
ControlAdapter 55
ControlContribution 102
Controller 390–392
control-relative coordinates 32
convertAccelerator() 72
CoolBar 103–104

vs. ToolBar 103
CoolItem 103–104
copy 255
CopyRetargetAction 445
CPL See Common Public License
createAndRunWorkbench() 291
CreateCommand 419–420, 422,

437–438
CreateConnectionRequest 404,

439–440, 448–449
createContents() 22–23, 68, 165
createEditPart() 427
createEditPolicies() 426,

429–431, 434, 447
createFigure() 433
createMenuManager() 68
createPartControl() 301, 304
CreateRequest 403
createToolBarManager() 68
CreationEntryTool 405
CreationFactory 402, 405
CreationTool 403
custom components 363
custom dialogs 213
custom layouts 124–125, 128

calculating size 125
positioning widgets 126
when to use 124

D

data formats 255
data persistence 294
DecoratingLabelProvider 277,

279
decorators 277
DEFAULT_FONT 152
DelegatingLayout 372
DeleteAction 442, 447, 458
DeleteCommand 422–423,

438–439, 448
DeleteRequest 447–448
DeleteRetargetAction 445
DIALOG_FONT 152
DIALOG_TRIM 19
DialogPage 269
dialogs 19–21, 213, 228, 230

custom 218, 228–230
error 220
input 222
JFace 218, 228
JFace compared to Swing 218
JFace hieararchy 218
message 219
modal 219
multipage 236
parent window 219
preferences 268
progress 224
SWT 213
validating input 223

DialogSettings 245
direct palette 156
DirectedGraphLayout 380
DirectEditRequest 435
directory

choosing 214
DirectoryDialog 214
Display 14–16, 18, 23, 52, 63,

135, 153, 290–291, 364
display-relative coordinates 32
dispose() 8, 22, 29, 144, 150, 158
disposeColors() 144
Document 89, 99
drag and drop 254–257, 383, 393

implementing 257, 259
types 256

DragEvent 403, 426, 453
DragSource 259, 383
DragSourceEvent 260
Licensed to jromero <jose.romero@galicia.seresco.es>

INDEX 463
DragSourceListener 259–260
DragTracker 403, 426
DRAW_DELIMITER 147
DRAW_MNEMONIC 147
DRAW_TAB 147
DRAW_TRANSPARENT 147
Draw2D 362–365, 367, 370–374,

380, 382–383, 389, 393, 400
Drawable 135, 138
drawArc() 137
drawFocus() 137
drawing 374
drawLine() 137
drawOval() 137
drawPolygon() 137, 375
drawPolyline() 137
drawRectangle() 137–138
drawRoundRectangle() 138
drawString() 147
drawText() 147, 150
DropTarget 257, 383
DropTargetEvent 257–258, 453
DropTargetListener 257

E

Eclipse 312
Eclipse Forms 285, 294, 297,

299–303, 308
Eclipse IDE 317
Eclipse in Action 312
Eclipse SDK 312, 316
Eclipse Workbench 285,

287–288, 306
Eclipse.app 321
Eclipse.org 312
Edge 380
EditDomain 404, 447, 452–453
editing text

SWT vs. JFace 108
with JFace 91

EditorPart 286, 393, 399, 441,
447, 450–451

EditorPartAction 441
editors 285–288, 291, 293–295,

308
EditPart 391–394, 399, 403, 408,

422, 426–428, 430, 446
EditPartFactory 427–428, 457
EditPolicy 394

Environmental Variables 316,
320

error dialogs 216
detailed messages 220

error handling 196, 200
ErrorDialog 220, 222

dependencies 222
event handling 49, 63, 367
event model 49, 77
event responses 363
EventObject 52
events 4, 15, 49, 58, 62, 368

typed 50, 60
execute() 404
ExpandableComposite 301
Export 306
ExtendedModifyListener 84–85,

87, 97

F

factory 384, 394
FieldEditor 270–271

provided by JFace 271
FieldEditorPreferencePage 270
Figure 364–368, 370–374, 377,

380–384, 387, 390, 392–393,
399, 434

FigureListener 368
file extensions

filtering 216
file handling 294
FileDialog 215

styles 215
files

choosing 215
fill layout 110

styles 112
fill() 69
fillArc() 137
fillGradientRectangle() 138
fillOval() 137
fillPolygon() 137
fillRectangle() 138
Filters 174
filters 173
findFigureAt() 369, 373
findKeyCode() 72
findKeyString() 72
findModifier() 72
FindMouseEventAt() 369

fireChangeEvent() 370
firePropertyChange() 73, 368,

409
firePropertyChangeEvent() 370
FlowFigureLayout 372
focus behavior 140
FocusAdapter 55
Font 145, 150
FontData 146
FontDialog 150, 216
FontMetrics 148
FontRegistry 4, 150–151, 163
fonts 20, 134, 145–146, 148,

150–152, 164, 166
choosing 216
management 145

Form 300–302
form layout 119, 122
FormAttachment 120–121, 123

constructors 121
FormData 120, 123
FormEditor 286
FormLayout 120
FormPage 286
FormText 300–302
FormToolkit 299–301, 303–304
FreeformLayer 373
FreeformLayeredPane 372–373
FreeformViewport 374

G

GC 364–365, 369, 374
GC See graphic context
GCJ 308
GEF 363, 365, 387, 389–391,

393–394, 400, 403
getAccelerator() 72
getActionDefinitionID() 73
getAlignment() 34
getAscent() 148
getAverageCharWidth() 148
getBannerBackground() 144
getBounds() 31
getChildren() 39, 368–369, 411
getClientArea() 40
getColorValue() 144
getCurrent() 18
getData() 29
getDescent() 148
getDescription() 71
Licensed to jromero <jose.romero@galicia.seresco.es>

464 INDEX
getDisabledImageDescriptor()
73–74

getDisplay() 29, 143
getErrorBorder() 144
getFontMetrics() 148
getHeight() 148
getHelpListener() 73
getHorizontalBar() 40
getHoverImageDescriptor() 74
getImage() 34
getImageDescriptor() 71
getInitialWindowPerspec-

tiveId() 292
getItemCount() 45
getLayout() 39
getLeading() 148
getLocale() 146
getLocation() 31, 381
getMaximizedControl() 43
getMenuCreator() 73–74
getNewObject() 406
getOwner() 381
getPaletteRoot() 401
getParent() 369
getPropertyDescriptors()

414–415
getResourceAsStream() 153
getRGBs() 158
getSelection() 36, 45
getSeparator() 24
getSize() 31
getStyle() 29
getSystemColor() 141, 143
getTabList() 39
getText() 34
getTextBounds() 369
getTextLocation() 369
getToolTipText() 71
getTransparencyMask() 159
getVerticalBar() 40
GIF 160, 163
graphic context 134–137,

139–140, 143, 147–148,
150, 154–155, 165

Graphical Editing Framework
363

graphical editors 363, 389
GraphicalEditor 286, 441–442,

451, 453
GraphicalEditPolicy 436

GraphicalNodeEditPolicy 436,
439, 449

GraphicalViewer 393–394, 400,
428, 450, 452–453, 457, 459

GraphicalViewerWithPalette 453
Graphics 365, 369, 374–375
graphics 134, 136
graphs 380
grid layout 116
GridData 117, 119

size attributes 117
styles 117

GridLayout 116, 231
Group 38, 40
GTK 16, 308, 316
GUIs 3, 7, 285

H

handleEvent() 59
handleFocusGained() 367
handleFocusLost() 367
handleKeyPressed() 367
handleKeyReleased() 367
handleMouseDoubleClicked()

367
handleMouseDragged() 368
handleMouseEntered() 368
handleMouseExited() 368
handleMouseHovered() 368
handleMouseMoved() 368
handleMousePressed() 367
handleMouseReleased() 367
Hashtable 382
HEADER_FONT 152
heavyweight 364
heavyweight components 7
HelloSWT 14
HelloSWTJFace 14, 21
helper classes 20
HREF 303
HTML 300–303
Hyperlink 299, 302–305
HyperlinkAdapter 303
HyperlinkEvent 303
HyperlinkGroup 304–305
HyperlinkListener 303

I

IAutoIndentStrategy 90

IBaseLabelProvider
170–171, 278

ICellModifier 197–198
ICompletionProposal 92
IContentAssistProcessor

 91–92, 99
getCompletionProposalAuto-

ActivationCharacters 92
IContributionManager 204
IDialogPage 236–237, 248, 269
IDocument 89, 99

regions 89
IDocumentPartitioner 89
IInputValidator 223
ILabelDecorator 276, 278
ILabelProvider 171, 179, 276

default implementation See
LabelProvider

Image 152, 154, 158, 390
ImageData 153–155, 157–159,

161, 166
ImageDescriptor 163, 166
ImageLoader 159–160, 163, 166
ImageRegistry 4, 163, 277, 279
images 20, 152, 164
indexed palette 156–157
InputDialog 222–223
InputStream 153
InterruptedException 226
IPageLayout 295–296
IPerspectiveFactory 295–296
IPlatformRunnable 290–291
IPreferencePage 268
IPreferencePageContainer 268,

273–274
IPreferencePageNode 273
IPreferenceStore 274, 291
IProgressMonitor 225–226
IPropertyChangeListener 72
IPropertySource 412, 415
IRunnableContext 224–226
IRunnableWithProgress 224
isDirect() 156
isDisposed() 29
IStatus 220–222

severity 221
IStructuredContentProvider

172, 177, 181, 187, 196
IStructuredSelection 181

retrieving items 181
ITableLabelProvider 171, 198
Licensed to jromero <jose.romero@galicia.seresco.es>

INDEX 465
ITextDoubleClickStrategy 90
ITextHover 90
ITextListener 97
ITextViewer 89–90

plug-ins 90
ITreeContentProvider

177–178, 185
ITypedRegion 89
IUndoManager 90
IWizard 235, 239, 242
IWizardContainer 241
IWizardNode 244
IWizardPage 235, 237
IWorkbench 291
IWorkbenchWindowConfigurer

291–293

J

J2EE 309
J2ME 10
Java Build Path 314–315, 318
Java compiler 314
Java Native Interface 17
Java SDK 287, 312
Java Web Start 308
java.library.path 316, 320, 322
JavaBeans 197, 389, 408
JFace 144, 150, 163, 285, 312,

314–316, 318, 389, 405
ApplicationWindows 23
event model 63
origin 3

JFace text packages
obtaining 88

JFaceColors 144
JFaceResources 151
JNI 7, 17
JOptionPane 218–219, 222
JVM 5

K

KDE 10
key code 56
KeyAdapter 55
keyCode 57
KeyEvent 56–57, 60, 447
KeyHandler 394, 447, 453,

456–458
KeyListener 50, 59, 84, 87

L

Label 32, 299–300, 369, 382
label decorators in Eclipse 280
Label providers 170–171, 198,

210, 277
Layer 373–374
LayeredPane 373, 453
LayerPanes 372
Layers 366
Layout 302, 372
LayoutData 115
LayoutManager 364, 372–373
LayoutPolicy 394
layouts

overview 110
SWT compared to Swing 110

LEFT_TO_RIGHT 135
libraries 14, 314
lightweight components 5
LightweightSystem 364–365,

371, 387, 400
LineStyleListener 83
Linux 3, 16, 316
List 180, 369, 392

on Motif 180
styles 180

listeners 18, 49, 52, 54, 364, 367
typed 52, 58–59
typed listeners 50
untyped 58–59

lists
JFace 181
SWT 180

ListViewer 20, 181
styles 181

LocationRequest 403–404
long-running tasks 224

cancelling 226

M

Macintosh 3, 321
MainClass 322
ManhattanConnectionRouter

383
marquee selection 393
MarqueeSelectionTool 402–403
MenuAdapter 55
MenuItem 103, 201–203

styles 202

MenuListener 201
MenuManager 65–66, 101,

204–205, 210
menus 23, 191, 200–202

events 201
JFace 204
styles 201
SWT 201

message dialogs
types 220

MessageBox 216
styles 217

MessageDialog 219–220
Model 389, 391–392, 394, 400,

406–407, 409, 426
Model-Delegate See Swing
Model-View-Controller 168,

170, 172
ModifyListener

vs. ExtendedModifyListener
85

modular 389
MouseAdapter 55
mouseDoubleClick() 53
mouseDown() 53
MouseEvent 52, 62, 150,

204, 403
MouseListener 50, 53, 59,

203, 384
MouseMotionListener 384
MouseMotionListener.Stub 384
MOUSEOVER_PROPERTY 370
MouseTrackAdapter 55
mouseUp() 53
MultiEditor 286
MultiPageEditorPart 286
MultiStatus 222
mutator 408, 411–412,

418–419, 424
MVC 6, 8, 389, 391, 416

N

native 17
native graphics 316, 320, 322
native graphics library 17, 316
native methods 16
NO_MERGE_PAINTS 139
Node 380
NodeEditPart 426, 430
Licensed to jromero <jose.romero@galicia.seresco.es>

466 INDEX
O

Object 390
ObjectInputStream 457
offset 156
Open file dialog 215
open() 150
OpenGL 309
OS class 16
OS X 321
OSGi 67
OutputStream 160

P

pack() 15, 31
packages 398
paint() 369
paintBorder() 369
paintChildren() 369
paintClientArea() 369
PaintEvent 138–140, 142,

149–150, 154–155, 164, 374
paintFigure() 369, 375
painting 138
PaintListener 138–139, 142, 149,

154, 164
palette 393, 399, 402
PaletteData 156–157
PaletteGroup 401–402
PaletteRoot 400, 402, 404
PaletteViewer 393–394, 400, 404,

457–458
Pareto Rule 77
paste 255
PATH variable 316
PathFigure 382
perspective 285, 288, 290, 292,

294–296, 298
Platform 196
PlatformUI 290–291
plug-in 285–286, 288–289, 296,

306–308, 393, 396–397
Plug-in Manifest Editor 289,

299, 396
plugin.xml 289–290, 295–296,

298, 307, 393, 396
Pocket PC 10
Point 376, 380–381
PointList 375
Polygon 376

PolylineConnection 382, 393,
439, 450

PolylineDecoration 382
Position 89
PrecisionDimension 380
PrecisionPoint 380
PrecisionRectangle 380
PreferenceConverter 275
PreferenceManager 274
PreferencePage 269
PreferencePageDialog 273–274
Preferences 318
PreferenceStore 275
preferred size 30
PRESSED_PROPERTY 370
preStartup() 292
preWindowOpen() 292–293
Printer 135
ProgressBar 106, 227–228

when to use 107
ProgressIndicator 106–107,

227–228
animated mode 108

ProgressMonitor 226
ProgressMonitorDialog 224–228
project 312–313, 395
Property View 415
propertyChange() 409, 426,

430, 448
PropertyChangeEvent 72,

391–392, 394, 408–409,
411, 416, 418, 427–430, 448,
450, 458

PropertyChangeListener 271,
368

PropertyChangeSupport
409–410

providers 170

R

RadialLayout 128
radio buttons 37–38
RadioGroupFieldEditors 37
Ray 380
RCP 284–285, 287–288, 291,

294, 296–299, 306
readAndDispatch() 16, 18, 49
Rectangle 153, 375–376,

380, 382
Redo stack 419

RedoRetargetAction 445
redraw 139, 149–150
refID 296
refresh() 392
refreshChildren() 430
registries 21
removeChild() 411
removePropertyChange-

Listener() 73
repaint() 369
repeatCount 161
Request 391–393, 403–404, 419,

434–435, 441
ResizableEditPolicy 436, 438
ResizeTracker 403
ResourceNavigator 287, 294
RetargetAction 394, 444–445
RGB 140, 142, 144, 146, 156, 159
Rich Client Platform 284–285,

293, 306, 308
RIGHT_TO_LEFT 135
RootEditPart 428, 453, 457
router 383
row layout 112
RowData 115
RowLayout 114

properties 114
RTF 255

S

Sash 43–44
SashForms 43–44
Save dialog 215
ScalableFreeformLayeredPane

373
ScalableLayeredPane 373
ScalableRootEditPart 453
scaleTo() 155
scanline 156
ScrollBar 374
ScrollBarLayout 372
ScrollPane 372, 374
SDK 316
SelectionAction 442
SelectionAdapter 55
SelectionListener 102
SelectionRequest 403–404, 447
SelectionTool 402–404, 447, 453
separation of concerns 389–390
separator 33
Licensed to jromero <jose.romero@galicia.seresco.es>

INDEX 467
Serializable 409–410
setAccelerator() 72
setActionDefinitionID() 73
setAlignment(int) 34
setBackground() 143
setBlockOnOpen() 22
setBounds() 31
setChild() 420
setChildrenEnabled() 369
setClient() 301
setClipping() 139
setColors() 144
setColorValue() 144
setConstraint() 369, 420
setControl() 44
setData() 29
setDefaultImage(Image) 24
setDescription() 71
setDisabledImageDescriptor()

73–74
setExceptionHandler() 24
SetFocus() 17
setFocus() 294–295
setFont() 146
setForeground() 143, 304
setHelpListener() 73
setHoverImageDescriptor() 74
setImage(Image) 34
setImageDescriptor() 71
setLayout() 39, 111
setLocale() 146
setLocation() 31
setMenuCreator() 73–74
setOrientation() 43
setParent() 420
setPixel() 158
setSelection() 36, 45
setSize() 31
setSourceDecoration() 382
setStatus(String) 24
setTabList() 39
setTargetDecoration() 382
setText() 146
setText(String) 34
setToolTipText() 71
setUDistance() 382
setVDistance() 382
setWeights() 43
Shape 374
Shell 14–15, 18, 23, 52, 364, 371

modality 19

secondary 19
top-level 19

ShellAdapter 55
ShellEvent 52
sleep() 18
Slider 105

on different operating systems
105

styles 106
SnapMoveRequest 459
SnapResizeRequest 459
sorters 173–174
ST 82
StackAction 441–442
standalone 285, 288, 296, 306,

308, 395
standalone applications 285
stateMask 57
Status 221–222
status line 23
StatusLineManager 65, 68
String 382
StructuredViewer 168–169,

172–175
style 19, 33
StyledText 82, 85, 97

actions 82
binding actions

to keystrokes 82
events 85
invoking actions

programmatically 82
setStyleRange 85
vs. Text 79

StyleRange 83–84
modifying 83
persisting 83

Swing
automatic garbage

collection 5
Model-Delegate 6
origin 4
rendering 5

SWT 16, 144, 154, 160, 163, 285,
312, 314, 316, 318, 321,
364–365, 371, 374, 383, 387

graphics 3
origin 6
platforms supported 9
resource management 7

SWT initialization 243

SWT.ARROW 35
SWT.BORDER 19
SWT.CENTER 33, 35
SWT.CHECK 36
SWT.CLOSE 19
SWT.FLAT 35
SWT.HORIZONTAL 33
SWT.KeyDown 59
SWT.LEFT 33, 35
SWT.MAX 19
SWT.MIN 19
SWT.MouseDoubleClick 59
SWT.PUSH 34
SWT.RADIO 37
SWT.RESIZE 19
SWT.RIGHT 33, 35
SWT.SEPARATOR 33
SWT.SHADOW_ETCHED_IN 41
SWT.SHADOW_ETCHED_OUT

41
SWT.SHADOW_IN 33, 40
SWT.SHADOW_NONE 33, 40
SWT.SHADOW_OUT 33, 40
SWT.TITLE 19
SWT.TOGGLE 35
SWT.VERTICAL 33
SWT/JFace 2, 6, 16, 134, 145,

312, 316, 366
system colors 141–142

T

tab 44
TabFolders 44, 46
TabItem 44
Table 191, 293, 295, 299–300,

303–304
columns 193

TableColumn 193
TableItem 192, 199
TableLayout 193–194
Tables 191

editing 197
JFace 194
SWT 191

TableViewer 20, 194
TableWrapLayout 302
TaskList 287
template 394, 402, 404–406
TemplateEntry 400, 405
Licensed to jromero <jose.romero@galicia.seresco.es>

468 INDEX
TemplateTransferDrag-
SourceListener 454,
456, 458

TemplateTransferDrop-
TargetListener 405, 407

Text 15, 79, 81–82, 300
events 79
Method summary 81

text editing
in JFace 88
in SWT 88
Validation 81
with StyledText 82

TEXT_FONT 152
TextViewer 90, 96, 99
toControl() 31
toDisplay() 31
Toggle 370
toggle button 36
ToggleModel 370
Tool 391–392, 402–403, 434,

441, 446
ToolBarManager 65–66, 101
ToolBars 23, 102–103

and Actions 102
creating 102
creating by hand 103
styles 102

ToolEntry 400, 402
ToolItem 103
toString() 29
Transfer 255, 261–262
Transform 380
translate 374
transparency 159
transparentPixel 159
TRAVERSE_TAB_NEXT 58
TraverseEvents 56, 58, 63
Tree 176

styles 177
vs. TreeViewer 179

TreeAdapter 55

TreeItem 176–177
Trees 176

JFace 177
SWT 176

TreeViewer 20, 177, 184
vs. Tree 179

trim 39
TypedEvent 50, 52
TypedListener 50

U

UI thread 196
UML 363
UndoRetargetAction 445
Unified Modeling Language 363
untypedListener 61
user preferences 268, 270

persistent 274
user-interface thread 18

V

VerifyEvent 56, 81
VerifyListener 80
View 389–392, 433
Viewer 168, 285, 389, 400, 459
Viewer framework 168

events 172
mixing with standard widgets

169
ViewerFilter 187
viewers 20
ViewerSorter 174, 187

implementing 174
viewID 296
ViewPart 287–288, 294
Viewport 374, 453
Visual Studio 363

W

widgets 28, 364
Overview 79

WidgetWindow example 11
windowing system 316
Windows 17
wizard containers 241
WizardDialog 235, 242
WizardPage 237–238

building custom 237, 239
wizards 20–21, 235, 240–241, 397

classes vs. interfaces 235
hierarchy 235
page display order 241, 250
persistent settings 244–246

WizardSelectionPage 243
workbench 285–298, 306–308,

323, 397
WorkbenchAdvisor 291–293, 298
WorkbenchPartAction 441
wrapper program 321

X

XYLayout 372–373

Z

ZoomInAction 459
ZoomInRetargetAction 445
ZoomManager 459
ZoomOutAction 459
ZoomOutRetargetAction 445
Licensed to jromero <jose.romero@galicia.seresco.es>

Licensed to jromero <jose.romero@galicia.seresco.es>

	Cover
	Contents
	Preface
	Acknowledgments
	About this book
	Roadmap
	Conventions
	Source code downloads
	Author Online

	About the authors
	Overview of SWT and JFace
	1.1 What is SWT/JFace?
	1.2 Looking under the hood
	1.3 SWT/JFace: licensing and platform support
	1.4 The WidgetWindow
	1.5 Summary

	Getting started with SWT and JFace
	2.1 Programming in SWT
	2.2 Programming in SWT/JFace
	2.3 Beginning the WidgetWindow application
	2.4 Summary

	Widgets: part 1
	3.1 Introducing the Widget and Control classes
	3.2 Labels
	3.3 Involving the user with buttons
	3.4 Containing components with Composites
	3.5 Updating WidgetWindow
	3.6 Summary

	Working with events
	4.1 Event processing in SWT
	4.2 Event processing in JFace
	4.3 Updating the WidgetWindow
	4.4 Summary

	More widgets
	5.1 Editing text with SWT
	5.2 JFace text support
	5.3 The Combo widget
	5.4 ToolBarManager
	5.5 CoolBar
	5.6 Slider
	5.7 ProgressBar
	5.8 ProgressIndicator
	5.9 Summary

	Layouts
	6.1 The fill layout
	6.2 The row layout
	6.3 The grid layout
	6.4 The form layout
	6.5 Custom layouts
	6.6 Summary

	Graphics
	7.1 The graphic context
	7.2 Programming with colors
	7.3 Displaying text with fonts
	7.4 Incorporating images in graphics
	7.5 Updating the WidgetWindow
	7.6 Summary

	Working with trees and lists
	8.1 Viewers and the Viewer framework
	8.2 Trees
	8.3 Using the List widget
	8.4 Updating WidgetWindow
	8.5 Summary

	Tables and menus
	9.1 Tables
	9.2 Creating menus
	9.3 Updating WidgetWindow
	9.4 Summary

	Dialogs
	10.1 SWT dialogs
	10.2 JFace dialogs
	10.3 Updating WidgetWindow
	10.4 Summary

	Wizards
	Multipage dialogs
	11.1 Multipage dialogs
	11.2 The wizard
	11.3 Putting it all together
	11.4 Combining wizards
	11.5 Persistent wizard data
	11.6 Updating WidgetWindow
	11.7 Summary

	Advanced features
	12.1 Transferring data
	12.2 Preferences
	12.3 Label decorators
	12.4 The Browser widget
	12.5 Summary

	Looking beyond SWT/JFace: the Rich Client Platform
	13.1 Understanding RCP workbenches
	13.2 RCP: Looking under the hood
	13.3 Adding views and perspectives
	13.4 Populating forms with Eclipse Forms widgets
	13.5 Building a standalone RCP application
	13.6 Summary

	Creating projects with SWT/JFace
	A.1 Eclipse-based SWT/JFace development
	A.2 SWT/JFace in standalone applications

	OLE and ActiveX in SWT/JFace
	B.1 COM simplified
	B.2 The SWT COM library
	B.3 Doing COM with SWT

	Changeable GUIs with Draw2D
	C.1 Understanding Draw2D
	C.2 Draw2D Figures
	C.3 Using LayoutManagers and panes
	C.4 Using the Graphics class to create Shapes
	C.5 Understanding Connections
	C.6 Putting it all together

	The Graphical Editing Framework (GEF)
	D.1 A GEF overview
	D.2 Creating the FlowchartProject
	D.3 Creating the editor’s PaletteViewer
	D.4 The Model aspect: Model classes
	D.5 Changing Model properties with Commands
	D.6 The Controller aspect: EditPart classes
	D.7 Creating Commands with EditPolicy objects
	D.8 Adding Actions to the editor
	D.9 Editing with GEF: two examples
	D.10 Introducing the EditorPart
	D.11 Other GEF aspects

	index

