
ptg18222824

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

24in

Hours

SamsTeachYourself

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Aram Cookson
Ryan DowlingSoka
Clinton Crumpler

Unreal®

Engine 4 Game
Development

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

Editor-in-Chief

Greg Wiegand

Executive Editor

Laura Lewin

Marketing Manager

Stephane Nakib

Development Editor

Sheri Replin

Managing Editor

Sandra Schroeder

Senior Project

Editor

Lori Lyons

Copy Editor

Kitty Wilson

Indexer

Larry D. Sweazy

Proofreader

Paula Lowell

Technical Editors

Rusel DeMaria
Jack Mamais
Martin Murphy

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours
Copyright © 2016 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
 reproduction, storage in a retrieval system, or transmission in any form or by any means,
 electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability is
assumed with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-672-33762-8
ISBN-10: 0-672-33762-2

Library of Congress Control Number: 2016904542

First Printing June 2016

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Unreal® is a trademark or registered trademark of Epic Games, Inc. in the United States of America
and elsewhere.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The authors
and the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book or programs
 accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
 department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

www.allitebooks.com

http://www.pearsoned.com/permissions/
http://www.allitebooks.org

ptg18222824

Contents at a Glance

HOUR 1 Introducing Unreal Engine 4 ..1

2 Understanding the Gameplay Framework ...21

3 Coordinates, Transforms, Units, and Organization . 37

4 Working with Static Mesh Actors . 53

5 Applying Lighting and Rendering . 75

6 Using Materials . 89

7 Using Audio System Elements . 109

8 Creating Landscapes and Foliage . 123

9 World Building . 139

10 Crafting Effects with Particle Systems . 161

11 Using Skeletal Mesh Actors . 181

12 Matinee and Cinematics . 203

13 Learning to Work with Physics . 223

14 Introducing Blueprint Visual Scripting System . 245

15 Working with Level Blueprints . 269

16 Working with Blueprint Classes . 287

17 Using Editable Variables and the Construction Script . 311

18 Making Key Input Events and Spawning Actors . 325

19 Making an Action Encounter . 341

20 Creating an Arcade Shooter: Input Systems and Pawns 355

21 Creating an Arcade Shooter: Obstacles and Pickups . 377

22 Working with UMG . 407

23 Making an Executable . 429

24 Working with Mobile . 441

Index . 465

Companion Files: To gain access to project files and downloads, go to the book’s companion

website at www.sty-ue4.com.

www.allitebooks.com

http://www.sty-ue4.com
http://www.allitebooks.org

ptg18222824

Table of Contents

HOUR 1: Introducing Unreal Engine 4 1

Installing Unreal ..2

Creating Your First Project ...4

Learning the Interface ...7

View Modes and Visualizers ..14

Playing a Level ...16

Summary ...17

Q&A ..18

Workshop ..18

Exercise ...19

HOUR 2: Understanding the Gameplay Framework 21

Available Resources ..21

Asset References and the Reference Viewer ...29

Gameplay Framework ..30

Summary ...35

Q&A ..35

Workshop ..35

Exercise ...36

HOUR 3: Coordinates, Transforms, Units, and Organization 37

Understanding Cartesian Coordinates ..37

Working with Transforms..38

Assessing Units and Measurements ...42

Organizing a Scene ...45

Summary ...50

Q&A ..51

Workshop ..51

Exercise ...52

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

Table of Contents v

HOUR 4: Working with Static Mesh Actors 53

Static Mesh Assets ..53

Static Mesh Editor ...54

Viewing UV Layouts ...57

Collision Hulls ...59

Static Mesh Actors ..66

Summary ...73

Q&A ..73

Workshop ..73

Exercise ...74

HOUR 5: Applying Lighting and Rendering 75

Learning Light Terminology ...75

Understanding Light Types ..76

Using Light Properties ...82

Building Lighting..83

Summary ...87

Q&A ..87

Workshop ..87

Exercise ...88

HOUR 6: Using Materials 89

Understanding Materials..89

Physically Based Rendering (PBR) ..90

Material Input Types ...91

Creating Textures ...94

Making a Material ..96

Summary ..105

Q&A ...105

Workshop ...106

Exercise ..107

HOUR 7: Using Audio System Elements 109

Introducing Audio Basics ..109

Using Sound Actors ..112

Controlling Sounds with Audio Volumes ...119

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

vi Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours

Summary ..120

Q&A ...120

Workshop ...121

Exercise ..122

HOUR 8: Creating Landscapes and Foliage 123

Working with Landscapes ..123

Sculpting Shapes and Volumes ..127

Using Foliage...133

Summary ..136

Q&A ...136

Workshop ...137

Exercise ..137

HOUR 9: World Building 139

Building Worlds ..140

World Building Process ...141

Summary ..157

Q&A ...157

Workshop ...158

Exercise ..159

HOUR 10: Crafting Effects with Particle Systems 161

Understanding Particles and Data Types ...161

Working with Cascade ..162

Using Common Modules ...168

Setting Up Materials for Particles ...172

Triggering Particle Systems ..176

Summary ..177

Q&A ...177

Workshop ...178

Exercise ..179

HOUR 11: Using Skeletal Mesh Actors 181

Defining Skeletal Meshes ..181

Importing Skeletal Meshes ...186

Learning Persona ...191

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

Table of Contents vii

Using Skeletal Mesh Actors ..199

Summary ..201

Q&A ...201

Workshop ...202

Exercise ..202

HOUR 12: Matinee and Cinematics 203

Matinee Actors ...203

Matinee Editor..206

Curve Editor ...212

Working with Other Tracks ...215

Working with Cameras in Matinee ..216

Summary ..220

Q&A ...220

Workshop ...221

Exercise ..222

HOUR 13: Learning to Work with Physics 223

Using Physics in UE4 ...223

Simulating Physics ...227

Using Physical Materials ...230

Working with Constraints ..234

Using Force Actors...239

Summary ..241

Q&A ...241

Workshop ...242

Exercise ..242

HOUR 14: Introducing Blueprint Visual Scripting System 245

Visual Scripting Basics ...245

Understanding the Blueprint Editor ...247

Fundamental Concepts in Scripting ...252

Summary ..264

Q&A ...264

Workshop ...265

Exercise ..266

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

viii Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours

HOUR 15: Working with Level Blueprints 269

Actor Collision Settings ...271

Assigning Actors to Events ...272

Assigning Actors to Reference Variables ...274

Summary ..284

Q&A ...284

Workshop ...285

Exercise ..286

HOUR 16: Working with Blueprint Classes 287

Using Blueprint Classes ..287

The Blueprint Editor Interface ...289

Working with the Components ..291

Working with the Timeline ...296

Scripting a Pulsating Light ..300

Summary ..307

Q&A ...308

Workshop ...308

Exercise ..309

HOUR 17: Using Editable Variables and the Construction Script 311

Setting Up ..311

Making Editable Variables ...312

Using the Construction Script ..314

Summary ..321

Q&A ...321

Workshop ...322

Exercise ..323

HOUR 18: Making Key Input Events and Spawning Actors 325

Why Spawning Is Important..325

Creating a Blueprint Class to Spawn ..326

Setting Up the Spawner Blueprint ..329

Spawning an Actor from a Class ..332

Summary ..336

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

Table of Contents ix

Q&A ...336

Workshop ...336

Exercise ..337

HOUR 19: Making an Action Encounter 341

Project Game Modes ...341

Knowing Characters’ Abilities ...342

Using Blueprint Classes ..344

Actor and Component Tags ..350

Summary ..351

Q&A ...351

Workshop ...352

Exercise ..352

HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns 355

Identifying Requirements with a Design Summary ..356

Creating a Game Project ...356

Creating a Custom Game Mode ...359

Creating a Custom Pawn and Player Controller ...361

Controlling a Pawn’s Movement ..365

Setting Up a Fixed Camera ...371

Summary ..373

Q&A ...373

Workshop ...374

Exercise ..375

HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups 377

Creating an Obstacle Base Class ..378

Making Your Obstacle Move ..381

Damaging the Pawn ...384

Restarting the Game on Death ..388

Creating a Health Pickup ...391

Creating an Actor Spawner ...397

Cleaning Up Old Obstacles ...403

Summary ..403

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

x Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours

Q&A ...404

Workshop ...405

Exercise ..405

HOUR 22: Working with UMG 407

Creating a Widget Blueprint ..407

Navigating the UMG Interface ...408

Creating a Start Menu ...413

Sample Menu System ...425

Summary ..426

Q&A ...426

Workshop ...427

Exercise ..427

HOUR 23: Making an Executable 429

Cooking Content ..429

Packaging a Project for Windows...430

Resources for Android and iOS Packaging ...435

Accessing Advanced Packaging Settings ..436

Summary ..437

Q&A ...438

Workshop ...438

Exercise ..439

HOUR 24: Working with Mobile 441

Developing for Mobile Devices ...442

Using Touch ...454

Using a Device’s Motion Data ..459

Summary ..462

Q&A ...462

Workshop ...463

Exercise ..464

Index 465

ptg18222824

Preface

Unreal Engine 4 is a powerful game engine used by many professional and indie game

developers. When using a tool such as Unreal Engine for the first time, figuring out where to

begin can be a daunting task. This books provides a starting point by introducing you to the

interface, workflow, and many of the editors and tools Unreal Engine 4 has to offer. It will

help you get a strong foundation you can later build on, and it will spark your interest to

explore Unreal Engine and game design further. Each chapter is designed to get you up and

running quickly in key areas.

Who Should Read This Book
If you want to learn to make games, applications, or interactive experiences but don’t

know where to begin, this book and Unreal Engine are for you. This book is for anyone

interested in understanding the fundamentals of Unreal Engine. Whether you are new to

game development, a hobbyist, or a student learning to become a professional, you will find

something useful in these pages.

How This Book Is Organized
and What It Covers
Following the Sam’s Teach Yourself approach, this book is organized into 24 chapters that

should take approximately 1 hour each to work through:

 Hour 1, “Introducing Unreal Engine 4”: This hour gets you up and running by

 showing you how to download and install Unreal Engine 4 and introduces you to the

Editor interface.

 Hour 2, “Understanding the Gameplay Framework”: This hour introduces you to

the concept of the Gameplay Framework, a key component of every project created

in UE4.

 Hour 3, “Coordinates, Transforms, Units, and Organization”: This hour helps you

understand how the measurement, control, and organizational systems work in UE4.

 Hour 4, “Working with Static Mesh Actors”: In this hour, you learn how to import

3D models and use the Static Mesh Editor.

ptg18222824

xii Sams Teach Yourself Unreal® Engine 4 Game Development in 24 Hours

 Hour 5, “Applying Lighting and Rendering”: In this hour, you learn how to place

lights in a level and how to change their properties.

 Hour 6, “Using Materials”: This hour teaches you how to use textures and materials

in UE4.

 Hour 7, “Using Audio System Elements”: In this hour, you learn to import audio

files, create Sound Cue assets, and place Ambient Sound Actors into a level.

 Hour 8, “Creating Landscapes and Foliage”: In this hour, you learn to work with

UE4’s landscape system to create your own landscapes and how to use the foliage

 system.

 Hour 9, “World Building”: In this hour, you apply what you learned in the previous

hours and create a level.

 Hour 10, “Crafting Effects with Particle Systems”: In this hour, you learn the

 fundamental controls of Cascade, which you can use to craft dynamic particle effects.

 Hour 11, “Using Skeletal Mesh Actors”: In this hour, you learn about the Persona

Editor and the different asset types needed to bring characters and creatures to life.

 Hour 12, “Matinee and Cinematics”: In this hour, you learn to use the Matinee

Editor and animate cameras and meshes.

 Hour 13, “Learning to Work with Physics “: In this hour, you learn to make Actors

simulate physics to respond to the world around them, and you also learn how to

 constrain them.

 Hour 14, “Introducing Blueprint Visual Scripting System”: In this hour, you are

introduced to basic scripting concepts and learn to use the Level Blueprint Editor.

 Hour 15, “Working with Level Blueprints”: In this hour, you learn about Blueprint

event sequences and create a collision event that responds to the player’s actions.

 Hour 16, “Working with Blueprint Classes”: In this hour, you learn how to create a

Blueprint class, use Timeline, and create a simple Pickup Actor.

 Hour 17, “Using Editable Variables and the Construction Script”: In this hour, you

learn to use the Construction Script and editable variables to make modifiable Actors.

 Hour 18, “Making Key Input Events and Spawning Actors”: In this hour, you learn

to make a keyboard input event that spawns an Actor during gameplay.

 Hour 19, “Making an Action Encounter”: In this hour, you use an existing Game

mode and Blueprint classes to design and create your own first- or third-person action-

based obstacle course.

ptg18222824

Preface xiii

 Hour 20, “Creating an Arcade Shooter: Input System and Pawns”: In this hour, you

begin work on a 1990s arcade-style space shooter. You learn about the input system

and user-controlled Actors called Pawns.

 Hour 21, “Creating an Arcade Shooter: Obstacles and Pickups”: In this hour, you

continue working on the arcade shooter game, creating asteroid obstacles and health

pickups, and you learn how to utilize Blueprint class inheritance.

 Hour 22, “Working with UMG”: In this hour, you learn to use the Unreal Motion

Graphics UI designer and make a start menu.

 Hour 23, “Making an Executable”: In this hour, you learn the quick path to

 preparing a project for deployment to other devices.

 Hour 24, “Working with Mobile”: In this hour, you learn optimization guidelines

and techniques for working with mobile devices and some simple ways to utilize touch

and motion sensors.

We hope you enjoy this book and benefit from it. Good luck on your journey with the UE4

game engine!

Companion Files: To gain access to project files and downloads, go to the book’s companion

website at www.sty-ue4.com.

http://www.sty-ue4.com

ptg18222824

About the Authors

Aram Cookson is a professor in the Interactive Design and Game Development (ITGM)

department at the Savannah College of Art and Design (SCAD). He has a B.F.A in Sculpture

and an M.F.A. in Computer Art. After finishing his M.F.A., he went on to help start the ITGM

program and served as the graduate coordinator for 9 years. Over the past 15 years, Aram

has developed and taught a range of game art and design courses in classrooms and online,

utilizing the Unreal Engine technology.

Ryan DowlingSoka is a technical artist working on the Gears of War franchise at Microsoft

Studio’s The Coalition, located in Vancouver, British Columbia. He works primarily on

content features for the team, crafting systems for destruction, foliage, visual effects, post-

processes, and user interfaces in Unreal Engine 4. Previously, he worked at Microsoft,

developing experiences for the Microsoft HoloLens in Unity5. Ryan is an expert in a variety

of entertainment software creation packages, including Maya, Houdini, Substance Designer,

Photoshop, Nuke, and After Effects. Ryan holds a B.F.A. in Visual Effects from Savannah

College of Art and Design. With a passion for interactive storytelling, rooted in playing

1990s console role-playing games (Baldur’s Gate II and Planescape: Torment), Ryan focuses

on applying interactive technical solutions to solving difficult problems in modern gaming.

When not working on video games, Ryan can be found swing dancing his evenings away

with his wife.

Clinton Crumpler is currently a senior environment artist at Microsoft Studio’s

The Coalition, located in Vancouver, British Columbia. Previously an artist at Bethesda’s

Battlecry Studios, KIXEYE, Army Game Studio, and various other independent studios,

Clinton’s primary focus areas are environment art, shader development, and art direction.

Clinton has released multiple video tutorials in collaboration with Digital Tutors, with a

focus on game art development for Unreal Engine. He completed an M.F.A. in Interactive

and Game Design and a B.F.A. in Animation at Savannah College of Art and Design

(SCAD) in Savannah, Georgia. Prior to attending SCAD, he received a B.F.A. in Graphic

Design at Longwood University, located in Farmville, Virginia. More information and his

digital works are available at www.clintoncrumpler.com.

http://www.clintoncrumpler.com

ptg18222824

Dedication

Tricia, Naia, and Elle: I love you all. —Aram

To Grandpa Bob: Thank you for the constant support through my education and
career. Without your contributions to my future, I would not be where I am today,

and I am ever grateful. —Ryan

To Amanda: Thanks for driving me across the desert while I wrote. —Clinton

Acknowledgments

To my family: Thank you for being so understanding and patient, and for giving me the

time to get this done.

Mom and Dad: Thank you for buying my first computer (TRS-80).

Luis: Thank you for thinking of me. You were an awesome department chair.

To Laura, Sheri, Olivia, and all the reviewers: Thank you for all your efforts.

Epic Games: Thank you for developing, and continuing to develop, such amazing

 technology and games.

—Aram

A big thank you to Samantha for tolerating and accommodating my weekends being

entirely consumed at a keyboard. Your patience and support through this process have been

invaluable.

—Ryan

Big thanks go out to my best friend, Brian, for always helping me become a better writer

and editing my works and always increasing my confidence through brotherly support.

Thanks to Amanda and her family for supporting me while I wrote this during our move

cross-country. Your understanding and help are always appreciated.

—Clinton

ptg18222824

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what areas

you’d like to see us publish in, and any other words of wisdom you’re willing to pass our

way.

We welcome your comments. You can email or write to let us know what you did or

didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name

and email address. We will carefully review your comments and share them with the author

and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Sams Publishing

ATTN: Reader Feedback

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Register your copy of Sams Teach Yourself Unreal Engine 4 Game Development in 24 Hours

at informit.com for convenient access to updates and corrections as they become available.

To start the registration process, go to informit.com/register and log in or create an account*.

Enter the product ISBN, 9780672337628, and click Submit.

*Be sure to check the box that you would like to hear from us in order to receive exclusive

discounts on future editions of this product.

ptg18222824

HOUR 1
Introducing Unreal Engine 4

What You’ll Learn in This Hour:

 Installing the Epic Games Launcher

 Installing Unreal Engine

 Creating a new project

 Using the Unreal Engine Editor interface

Welcome to Unreal Engine! Unreal Engine 4 (UE4) is a game engine and Editor developed by Epic

Games to create games and applications ranging from the AAA console market to indie mobile

development. Unreal Engine runs on both Windows and Mac operating systems and can publish

to Windows, Mac, PlayStation 4, Xbox One, iOS, Android, HTML5, and Linux platforms. In its

simplest form, Unreal Engine 4 is a collection of Editors used by different disciplines in any game

or application production.

In this hour, you learn to download and install the Unreal Engine, create your first project,

and become familiar with the Editor interface. You start with creating a user account and

downloading and installing the Epic Games Launcher. From there, you download UE4. Once that

is done, you create your first project, learn to navigate the Editor interface, and learn to move

around a Level and playtest the default map.

NOTE

Unreal Engine Is Free!
That’s right, UE4 is completely free to use! You have access to everything—for free! Why does Epic
Games make it free? You never know where the next great game or application is going to come
from. How does Epic do it? Not until you release a game and start to make money do you need
to pay Epic 5% of royalties. The details, of course, can be found on Epic’s website. Epic also has
a marketplace where you can purchase and download content for your projects. You don’t need
to because you can, of course, make everything from scratch, but not reinventing the wheel can
 certainly speed up production.

ptg18222824

2 HOUR 1: Introducing Unreal Engine 4

Installing Unreal
Installing Unreal Engine is a simple three-part process:

1. Create a new user account.

2. Download and install the Epic Games Launcher.

3. Download Unreal Engine.

Downloading and Installing the Launcher
The Launcher helps you keep track of the different versions of Unreal Engine that you have

installed. From it, you can manage your projects, access free sample projects, and get to the

 marketplace, where you can purchase content to use in your projects; it also keeps you updated

with community news and links to online learning resources and documentation.

NOTE

Operating Systems and Hardware Requirements
To effectively use Unreal Engine, you need a Windows PC or Macintosh computer that meets the
 following criteria:

 OS: Windows 7 or 8 64-bit or Mac OS X 10.9.2

 Processor: Quad-core Intel or AMD, 2.5 GHz or faster

 Graphics card: NVIDIA GeForce 470 GTX or AMD Radeon 6870 series card or higher

 Memory: 8 GB RAM

Follows these steps to download and install the Epic Games Launcher:

1. Go to the Unreal Engine website (www.unrealengine.com), as shown in Figure 1.1.

2. Click the Get Unreal button.

3. When prompted, create a new user account.

4. Choose Windows or Mac download, depending on your operating system, and download

the installer file to your download folder (.msi for Windows or .dmg for Mac).

5. Run the installer, choose an install location, and follow any onscreen prompts.

http://www.unrealengine.com

ptg18222824

Installing Unreal 3

FIGURE 1.1
Unreal Engine website.

TIP

Hard Drive Space
Game engines take up a lot of hard drive space. When you download a new version of UE4, it is auto-
matically installed in the same location as the Launcher. Choose an install location for the Launcher
that has at least 20 GB of free space. While the initial install does not require this much space, as
you download sample content or purchase assets from the marketplace, the demand for space will
increase. Fortunately, as you create your own projects, you can save them to any location you want.

Downloading and Installing Unreal Engine
Once the Launcher is installed, you can download and install UE4 through the Launcher. UE4 is

much larger than the Launcher and takes a few minutes to download. Epic is always improving its

software and, as a result, there are many versions of UE4. When you start out, it is best to install

the most recent official version.

CAUTION

Preview Versions
Epic often releases previews of the next version it is working on for bug testing. When you’re just
getting to know UE4, it is best to download the most recent version that is not a preview version.
You can always upgrade projects to the newest version once it is made available.

ptg18222824

4 HOUR 1: Introducing Unreal Engine 4

The following steps walk you through the process of downloading and installing UE4 through

the Epic Games Launcher:

1. Open the Launcher and click the Library link (see Figure 1.2).

2. Go to the Unreal Engine version section and click Add Version to add a new version slot.

3. Go to the newly created version slot, click the drop-down arrow, and select the desired

 version.

4. Click Install, and the Launcher downloads and installs Unreal Engine. UE4 is large, so it

takes time to download.

FIGURE 1.2
Launcher Library tab.

Creating Your First Project
Once UE4 has been downloaded, it is time to create your first project. When you launch UE4 for

the first time, it opens the Project Browser. The Project Browser has a Projects tab that shows you

all the projects you are currently working on and a New Project tab for creating new projects

based on existing common game mode templates.

GO TO HOUR 2, UNDERSTANDING THE GAMEPLAY FRAMEWORK, for more in-depth information about the anatomy
of a project.

ptg18222824

Creating Your First Project 5

The Project Browser
When you’re starting a new project from the Project Browser, you have to make a few choices.

First, you can create either a Blueprint-based project or a C++-based project. This book focuses

on Blueprint-based projects only. You also need to choose the target hardware: either Desktop/

Console or Mobile/Tablet. And you can choose either Maximum Quality and Scalable 3D or 2D

for target graphics. These options change the project’s default settings for content development.

Finally, you need to decide if you want to start off with default art content. If you choose With

Starter Content, you have assets to Play around with.

NOTE

Blueprint Versus C++ Projects
Blueprint is the visual scripting environment used to script functionality for a game project.
C++ -based projects allow users to script functionality in the traditional manner of writing code.
A C++ -based project requires you to install a compiler, such as Visual Studio 2013. If you have never
scripted before or if you have but have never used UE4 before, it is a good idea to become familiar
with the Editor and workflow before you move to a C++ -based project.

CAUTION

Project Size
When projects are first created, they are not very large, but project file sizes grow rapidly, depending
on the amount of content and the quality of content, such as model details and texture sizes. UE4
also generates auto saves and backup files as you work; while these files take up space, they are
helpful when anything goes wrong.

▼TRY IT YOURSELF

Create a Project

You can create projects anywhere you have enough hard drive space. Pick a location that has at
least 2 GB of free space and is easy to find. Figure 1.3 shows you the basic settings for your first
project, and these are the steps to follow:

1. In the Launcher, click Launch.

2. Select the New Project tab.

3. Select the Blueprint tab.

4. Choose the First Person template.

5. Select Desktop/Console for target hardware.

ptg18222824

6 HOUR 1: Introducing Unreal Engine 4

 NOTE

Modifying Project Settings
You can modify project settings, such as target hardware and target graphics, after you have created
a project. You can do this in Project Settings, which is found under the Edit tab on the main menu.

▼ 6. Pick Scalable 3D or 2D for target graphics quality.

7. Select With Starter Content.

8. Pick a location that has at least a few gigabytes of free space.

9. Give the project a name.

10. Click Create Project.

FIGURE 1.3
Settings used to create your first project.

ptg18222824

Learning the Interface 7

Learning the Interface
Now that you have installed UE4 and created your first project, it is time to jump in and get

your feet wet. As stated earlier, UE4 is a collection of Editors and tools for different disciplines in

game production. For now, focus on learning the key areas of the main interface and learning to

 moving around a Level. The main interface, referred to as the Level Editor, is primarily used for

world and Level building and for asset placement.

The Editors main interface has seven key panels that you need to be familiar with: the menu

bar, the Modes panel, the World Outliner panel, the Details panel, the Content Browser panel,

the Level Editor toolbar, and the Viewport panel (see Figure 1.4). The following sections show

each individual panel and describe them.

FIGURE 1.4
The UE4 Editor default main interface.

NOTE

Interface Layout
The Editor interface layout is modifiable. You can easily reposition panes and windows to improve
workflow. In this book, all interface elements are left in their default locations for consistency, but as
you become a more experienced user, you will most likely want to reposition elements to increase
productivity.

ptg18222824

8 HOUR 1: Introducing Unreal Engine 4

Menu Bar
The menu bar, as in most other modern applications, consists of File, Edit, Window, and

Help menus. File contains operations for loading and saving projects and Levels. Edit has

your standard copy and paste operations, as well as Editor preferences and project settings.

Window opens Viewports and other panels. If you ever close a window or panel, you can go to

the Window menu to open it again. Help contains links to external resources, such as online

 documentation and tutorials.

Modes Panel
The Modes panel displays the various Editing modes of the Level Editor (see Figure 1.5). It allows

for specialized Editing interfaces for working with certain types of Actors and geometry.

TIP

What Is an Actor?
The key to learning any software is learning its interface, workflow, and vocabulary. Unreal has a lot
of terms to learn, and you will be exposed to them throughout this book. The term Actor refers to
any asset that has been placed in a Level. For example, a 3D model in the Content Browser panel is
referred to as a Static Mesh asset. But once an instance of the Static Mesh asset has been placed
in a Level, the instance is referred to as a Static Mesh Actor.

The Modes panel consists of different tool modes for the Level Editor that allow you to change

the main performance of the Editor. In it, you can select a specialized task such as placing new

assets in the world, sculpting landscapes, creating geometry brushes and volumes, generating

Foliage, or painting on meshes. Table 1.1 lists the Editor modes and describes their effects.

FIGURE 1.5
Modes panel.

ptg18222824

Learning the Interface 9

TABLE 1.1 Editor Modes

Action Effect

Place mode For placing Actors in a scene.

Paint mode For painting vertex color data on Static Mesh Actors.

Landscape mode For Editing Landscape Terrain Actors.

Foliage mode For painting instanced Foliage Actors in a Level.

Geometry Editing mode For Editing BSP Brush Actors on the vertex edge face Level.

World Outliner Panel
The World Outliner panel displays all the Actors within the current Level in a hierarchical tree

view (see Figure 1.6). You can select an Actor simply by clicking its name in the World Outliner

panel, and its properties show up in the Details panel. If you double-click a name, the Viewport

panel focuses on the asset.

FIGURE 1.6
World Outliner panel.

Details Panel
The Details panel is one of the areas in UE4 that you will use the most. There is a Details panel

in just about every one of the subeditors. The Details panel displays all the editable properties

for the selected Actors in the Viewport. The properties that appear depend on the type of Actor

selected, but there are some common properties found on most Actors (see Figure 1.7). Typical

properties include the name of the Actor; transform edit boxes for moving, rotating, and scaling

Actors; and rendering display properties.

ptg18222824

10 HOUR 1: Introducing Unreal Engine 4

NOTE

Selecting Actors
To select an Actor, click the Actor in a Viewport or in the World Outliner panel. The Actor is then
 highlighted, and its base properties appear in the Details panel. It is possible to select multiple
Actors at one time:

 In a Viewport and World Outliner panel, hold down Ctrl or Shift key while adding or removing
multiple Actors from the current selection.

 In a Viewport only, press Ctrl+Alt+click and drag to create a bounding box selection around
multiple Actors.

FIGURE 1.7
Main Editor Details panel.

ptg18222824

Learning the Interface 11

Content Browser Panel
The Content Browser panel is the primary area for managing assets in a project (see Figure 1.8).

You use this browser for general tasks related to content, such as creating, viewing, modifying,

importing, and organizing. The Content Browser also allows you to manage folders and execute

basic operations on assets, like viewing references, moving, copying, and renaming. The Content

Browser panel also has a search bar and filter flags for quickly locating assets.

It can help to think of the Content Browser panel as a never-ending toy box of assets. Any time

you need something, you can pull an instance (that is, a copy) of an asset out of your toy box

and place it into a Level. Once an instance has been placed in a Level, it is referred to as an

Actor. The initial instance of a placed Actor is an exact copy of the original asset found in the

Content Browser panel. Once you have placed an Actor, you can modify it individually in the

Details panel. On the left side of the Content Browser is the Source panel, which displays the

content folder hierarchy. The Source panel can be expanded or collapsed by clicking on the icon

in the upper-left corner under the green Add New button. The right side of the Content Browser

is referred to as the Asset Management area, which displays the asset in the selected folder in the

Source panel.

FIGURE 1.8
Content Browser panel, with the source view on the left and asset management area on the right.

TIP

Folder Organization
Projects can grow in complexity rapidly, so file organization is crucial to maintaining an efficient
 working environment. A good rule of thumb is to organize asset content by type in separate folders.
You can nest folders within each other to allow for maximum organization and flexibility.

ptg18222824

12 HOUR 1: Introducing Unreal Engine 4

Viewport Panel
Viewports are windows into the worlds you create. You use the Viewport panel to move around

the current Level. The Viewport panel has many different modes, layouts, and settings, all of

which help you create, edit, and manage your Levels (see Figure 1.9).

FIGURE 1.9
The Viewport panel.

Viewport Panel Layout
By default, the Viewport panel displays a single-pane Perspective view, but you can easily

change it to a two-, three-, or four-pane layout by clicking the Viewport drop-down menu,

 selecting Layouts, and selecting the desired format (see Figure 1.10). You can change each pane

in the Viewport panel to a different view mode.

Viewport Types
There are two basic Viewport types: Perspective and Orthographic (see Figure 1.11).

Perspective Viewports display the world in 3D with vanishing points, while Orthographic

Viewports show the world in a 2D schematic view. The Perspective view will most likely be

your primary working environment, but Orthographic views are great for fine-tuning Actor

placement in a scene.

ptg18222824

Learning the Interface 13

FIGURE 1.10
Viewport panel layout options.

FIGURE 1.11
Viewport view type settings.

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

14 HOUR 1: Introducing Unreal Engine 4

View Modes and Visualizers
View modes (see Figure 1.12) change the visual display of the world in a Viewport, regardless of

the view type, and they can provide important feedback on the state of a Level. Table 1.2 lists

the commonly used view modes.

FIGURE 1.12
View modes.

TABLE 1.2 Common View Modes for Viewports

Mode Effect

Lit Shows the final result of a scene with materials and lighting applied.

Unlit Removes all lighting from the scene, showing base color from assigned
 materials.

Wireframe Shows all the polygon edges of Actors in the scene.

Detail Lighting Displays a neutral material across the entire scene, using the normal
maps of the assigned materials.

Lighting Only Displays neutral material that is affected only by lighting without normal
maps data.

ptg18222824

View Modes and Visualizers 15

NOTE

Visualization
More than 13 different view modes, along with other visualization tools, are available. You can use
them to get feedback on a Level and to debug and troubleshoot.

Show Flags
Like view modes, show flags help display relevant information directly within the Level Viewport,

such as displaying Actor collision hulls or bounding boxes.

Navigating a Scene in the Perspective Viewport
Now that you have a basic understanding of each of the key areas of the main interface, you

need to become familiar with using the Viewport to move around a Level. Tables 1.3 and 1.4 list

the most commonly used controls for moving around in a Level in the Viewport.

TABLE 1.3 Viewport Movement Controls

Control Action

Perspective View

Click+drag Moves the Viewport camera forward and backward and
rotates left and right.

Right-click+drag Rotates the Viewport camera in place without forward or
backward movement.

Click+right-click+drag Moves the Viewport camera up and down in the world.

Orthographic Views (Top, Front, Side)

Click+drag Creates a marquee selection box.

Right-click+drag Pans the Orthographic view left and right.

Click+right-click+drag Zooms the Orthographic view in and out.

NOTE

Level Navigation
Unlike in 3D modeling applications, which are set up for focusing and orbiting around a single asset
as it’s being built, the Unreal Engine Viewport movement controls are designed for set-dressing
large game Levels. So moving through large areas quickly is key.

ptg18222824

16 HOUR 1: Introducing Unreal Engine 4

TABLE 1.4 Orbiting, Dolly, and Track Viewport Controls

Control Action

F Pressing the F key focuses the Viewport camera on the selected
Actor in the Viewport.

Alt+LMB+drag Tumbles the Viewport around a single pivot or point of interest.

Alt+right-click+drag Dollies (zooms) the camera toward and away from a single pivot
or point of interest.

Alt+middle-click+drag Tracks the camera left, right, up, and down in the direction
of mouse movement.

TIP

Game-Style Navigation
While you’re in the Perspective view, if you hold down the right mouse button, you can use W, A, S,
and D keys to move through the Level as you would in a typical first-person shooter.

Level Editor Toolbar
The Level Editor toolbar provides quick access to commonly used tools and operations, such

as saving the current Level, building pre-calculated lighting for Static Actors, changing Editor

 display properties, and playtesting the current Level. Figure 1.13 shows the Level Editor toolbar.

FIGURE 1.13
Level Editor toolbar.

Playing a Level
When you create a project, a default Level is already made for you, and it is one of the first

things you see in the Editor when you open the project. Playtesting a Level involves using the

input system your players will use when interacting with your game. There are a few different

modes for playtesting a Level (see Figure 1.14). For now, try out the primary Play in Editor (PIE)

modes: Selected Viewport and New Editor Window. You can click the Play icon to Play your Level

or click the drop-down arrow to the right of the Play icon and choose one of the Play modes.

ptg18222824

Summary 17

FIGURE 1.14
Play modes.

TIP

Playtesting a Level
The last Play mode you use automatically becomes the default Play mode on the Level Editor toolbar.
If you want to use a different Play mode from the default, click the Play drop-down and choose
 another Play mode.

Summary
In this hour, you downloaded and installed Unreal Engine, familiarized yourself with key areas

in the main interface, created your first project, learned how to move around a Level in a

 Viewport, and learned to playtest a Level. The more familiar you are with these tasks, the better

off you will be.

ptg18222824

18 HOUR 1: Introducing Unreal Engine 4

Q&A
Q. What is the purpose of the Epic Games Launcher?

A. The Epic Games Launcher allows you to manage projects and gives you access to the
 marketplace for purchasing content and keeping UE4 updated.

Q. Where is UE4 installed?

A. UE4 is installed in the same location as the Launcher.

Q. Where should I save my projects?

A. You should save projects on a hard drive that has sufficient free space and is easy to
locate.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: The Mode panel allows you to switch between different Editing modes.

2. If you want to focus a Viewport on a selected Actor, what key or key combination do you
use?

3. True or false: Any asset placed in a Level is referred to as an Actor.

4. You use the ___________ for managing and creating new projects.

5. True or false: The main interface layout is completely modifiable.

6. True or false: PIE stands for Play in Editor.

Answers
1. True. The Mode panel allows you to switch between placing Actors, creating Terrain and

 creating Foliage.

2. The F key will focus the Viewport on to the currently selected Actor.

3. True. Regardless of type, once an asset is placed into a Level it is an instance of the
 original asset and is referred to as an Actor.

4. Project Browser. You can work on many projects at one time. The Project Browser allows you
to switch between projects

ptg18222824

Exercise 19

5. True. If you click and drag on a panel’s tab, you can move to different locations in the
 interface.

6. True. PIE stands for Play in Editor. You can preview a Level in separate window or in the
selected Viewport.

Exercise
On your own, spend time becoming familiar with the UE4 interface. For this exercise, practice
creating a new Level and placing Actors in it and then save the Level. These are simple but
fundamental skills, and the more comfortable you are with these basics, the more successful you
will be as you work further with Unreal Engine.

1. Create a new default Level by selecting File > New Level or pressing Ctrl+N.

2. To place a point light Actor in the Level, go to the Place tab in the Modes panel.

3. Place a Static Mesh asset in the Level. You can find this asset in the StarterContent folder
in the Content Browser.

4. To save your Level, right-click the Content folder in the Content Browser and select Add New

Folder and name the new folder Maps.

5. Save your Level in the newly created Maps folder by selecting File > Save.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 2
Understanding the Gameplay

Framework

What You’ll Learn in This Hour:

 Downloading and setting up a content example project

 Importing assets

 Migrating content from one project to another

 Introducing the Gameplay Framework

Unreal Engine 4 (UE4) is a deep and rich application that can be used to create anything from

2D indie Games to 3D AAA titles to interactive applications, architectural visualizations and

VR experiences. UE4 can create content for various platforms ranging from PC and consoles to

mobile as well as web-based HTML. The UE4 Editor takes many of the complicated processes of

development and puts them into an easy-to-use developer’s application environment. As with

any other application, there is a learning curve with UE4. This hour introduces you to some of

the terminology, the anatomy of a project, and the basic Gameplay Framework of UE4.

Available Resources
One of the great things Epic has done with the release of version 4 of Unreal Engine and its

Editor is to provide quality online documentation and project examples. In the Epic Games

Launcher is a Community section that offers news, project spotlights, and links to forums,

blogs, and the engine development road map. The Learn section also provides links to online

documentation, video tutorials, and sample projects demonstrating various topics. There are

categories for projects that highlight features of the engine, for common Gameplay examples,

examples of complete Game projects, and sample projects contributed from the Unreal

 community and Epic partners. Once you are familiar with the interface and the workflow of UE4,

one of the best ways to learn is to deconstruct existing projects.

ptg18222824

22 HOUR 2: Understanding the Gameplay Framework

Play in Editor (PIE)
Play in Editor (PIE) refers to a collection of options that allows you to playtest a level without

having to compile or package content beforehand. The PIE preview options are found on the

Level Editor main toolbar, under the Play button (see Figure 2.1). If you click the downward-

facing tringle to the right of the Play button on the Level Editor toolbar, you see that there are

many options for previewing a level. By default, UE4 uses the Selected Viewport option, which is

great when you’re testing functionality. At some point, you may need to preview the level in the

resolution or aspect ratio of the target platform.

▼ TRY IT YOURSELF

Download the Content Example Project

To see some of the amazing things that can be done with Unreal Engine 4, go to the Learn
 section of the Epic Games Launcher and explore the Content Examples Project found in the
Engine Feature Samples category. Download and set up a project using sample content:

1. In the Epic Games Launcher, navigate to the Learn tab.

2. Under Engine Feature Samples, find the Content Examples Project and click it to open it.

3. Next to the word Download, make sure the version matches the version of the engine you
installed and then click Download. The download process starts for this 2+ GB project.
Once the Content Examples Project is installed, it shows up in the Vault section in the
Library tab in the Launcher.

4. In the Launcher, navigate to the Library tab and look for the Vault section. Then click Create
Project under the Content Example header.

5. Give the project a name or leave the default.

6. Pick a location on your hard drive or leave the default.

7. Verify/choose the version to match the version of the engine you downloaded.

8. Click Create. After a few seconds, the Launcher creates a new project with the feature
 content.

9. Open the project in the Editor. Under My Projects, double-click the newly created project.

10. Once the project is loaded into the Editor, select File > Open Level.

11. Select any level to open and then double-click it or select it and click Open.

12. Once the level is open, preview it by clicking Play on the main Editor toolbar.

13. Continue opening and previewing as many levels as you like so you can see and interact
with all the features the project has to demonstrate.

ptg18222824

Available Resources 23

Selecting the New Editor Window option changes the preview play icon and launches a pre-

view of the level in a new window. At the bottom of the preview options is the option Advanced

Settings, which you can select to bring up the Editor preferences. Then on the right side of the

screen, under Play in New Window, you can set the resolution of the window by using a drop-

down list that includes common settings. You can also set the location of the window, which is

by default set to 0, 0 to indicate the upper-left corner of your monitor. Enable the Always Center

Window to Screen check box if you want the new Editor preview window to be displayed in the

center of your monitor.

FIGURE 2.1
Play in Editor (PIE) options in the Editor preferences.

Project Folder Structure
When you first create a Blueprint-based project from scratch through the Epic Games Launcher,

you need to specify a location and a name for the project. The Editor then copies a collection of

default folders and files into the project folder for you. If you look at a project folder after it has

been made, you find Config, Content, Intermediate, and Saved folders, as well as an .uproject file:

 Config: This folder contains default .ini files that store default Editor and project settings

and preferences.

 Content: This folder stores all the assets in the project that are either imported or created

directly in the Editor.

ptg18222824

24 HOUR 2: Understanding the Gameplay Framework

 Intermediate: This folder stores the project’s working .ini setting and preference files, along

with a CachedAssetRegistry.bin file.

 Saved: This folder contains Editor autosave and backup files, a Collections folder for assets

organized into collections in the content browser, project Config settings for target platforms,

Editor log files, and the project thumbnail .png image file that you see in the Launcher.

As you work on a project, more files and folders are added to it.

▼ TRY IT YOURSELF

Create a Blank Project Without Starter Content

To familiarize yourself with a typical project directory structure, in this Try It Yourself you will create
a blank project without starter content:

1. In the Launcher, under the Library tab, open the version of the Editor installed from Hour 1,
“Introducing Unreal Engine 4,” by clicking Launch under the version number.

2. In the Unreal project browser, select the New Project tab.

3. Under Blueprints, select the Blank Project template.

4. Make sure the Desktop/Console setting is selected.

5. Make sure Graphics Level is set to a quality level that your hardware supports.

6. Make sure No Starter Content is selected.

7. Choose a location for the project.

8. Name the project MyHour02. When naming a project, do not use blank spaces in the name.

9. Click Create Project. Once the project has been created, it opens automatically.

10. Save it on your hard drive and minimize the project.

If you look through all the folders, you see that some files have already been created, such as

config files. Any file with .ini extension is a config file—a text file that stores Editor, engine, and

Game preferences. Whenever you make changes to the project or Editor preferences in the Editor,

these files are modified and updated.

NOTE

Editor Preferences and Project Settings
You can find Editor Preferences and Project Settings by selecting to Edit on the Level Editor menu bar.

ptg18222824

Available Resources 25

Content Folder
The Content folder is where the Editor stores all the imported and migrated content for a project

(see Figure 2.2). In it you typically find two file types: .uasset and .umap. Once you import an

external asset, it is saved as a .uasset file in the Content folder for the project. Every time you

make a new map and save it, UE4 creates a .umap file and stores it in Content. When you use

the Content Browser in the Editor, you see the directory structure of the Content folder.

FIGURE 2.2
The project Content folder on the left and the Content Browser Source View on the right.

Importing Content
Unreal Engine 4 supports a variety of file types for importing content. Table 2.1 shows some of

the most common files types and which asset types they are associated with.

TABLE 2.1 Common External File Types That Can Be Imported into the Editor

Asset Type File Extension

3D model, skeletal meshes rigs,
animation data

.fbx, .obj

Texture and images .bmp, .jpeg, .pcx, .png, .psd, .tga, .hdr

Fonts .otf, .ttf

Audio .wav

Video and multimedia .wmv

PhysX .apb, .apx

Other .csv

ptg18222824

26 HOUR 2: Understanding the Gameplay Framework

TIP

Identifying File Types
Operating systems tend to hide file extensions by default. When you start working on a project that
has a lot of content, it can be hard to keep track of which file is what type. Turning on the option for
showing file extensions in your OS can help you quickly identify what type of file you are looking for.

There are a few ways to bring content into a project. For example, you can import content cre-

ated in an external Editor, such as 3DS Max or Maya for models, Photoshop for textures, and

Audacity for sound.

There are two ways to import new content created in an external application. One way is to use

the Content Browser as described in the following Try It Yourself. Another way is to go to your

operating system’s file manager, select the file you want to import, and drag it into the Asset

Management Area in the Content Browser (see Figure 2.3).

FIGURE 2.3
Content Browser with Source View on the left and Asset Management Area on the right.

▼ TRY IT YOURSELF

Create a Folder in the Content Browser and Import an External Asset

Importing an asset is one of the most common operations you will perform. In this Try it Yourself
you will learn a common method for importing an asset into a project.

1. Open the MyHour02 project you created in the previous Try It Yourself.

2. Click on the Show or Hide Source view icon below the green Add New button to show the
Source View in the Content Browser.

ptg18222824

Available Resources 27

TIP

Asset Icons
Asset icons in the Content Browser give you a preview of most assets so you don’t have to open
them up. If you roll the cursor over an icon, you see relevant information about the asset. For
 example, a small asterisk in the lower-left corner of an asset’s icon tells you that the asset has not
been saved. Any time you import an asset for the first time or modify it in some way, the asterisk
shows up, letting you know that the changes need to be saved. If you close the Editor without saving
an imported or modified asset, you will lose that asset or any changes you have made. Press Ctrl+S
to save all the assets or right-click an asset and choose Save.

Migrating Content from an Existing Project
Another way to add content to a project is to migrate it from an existing project. Every project

created has its own Content folder that stores all the assets for the project. Migrating allows

you to move assets from one project to another. When you migrate assets, you also move their

dependencies while maintaining the folder structure.

3. In the source panel of the Content Browser, right-click the Content folder, select Add New

Folder, and name the new folder MyAssets.

4. With the MyAssets folder selected in the source panel of the Content Browser, right-click
in the Asset Management Area and select Import Asset > Import To. The Asset dialog box
appears.

5. In the Asset dialog box, navigate to the Hour_02 folder from the book’s companion website
at www.sty-ue4.com select one of the files in the RawAssets folder, and click Open. The file
is added to the Content folder.

6. Right-click on the Asset thumbnail and click Save to save the newly imported asset.

▼

▼

Migrate Content

Follow these steps to migrate content from one project to another:

1. Open the Content Examples project you used at the beginning of this hour.

2. In the Source View of the Content Browser, select Content (at the top of the directory).

3. In the Asset Management Area to the left of the search bar, click Filters and toggle
on particle systems. You now see all the Particle Systems in this project in the Asset
Management Area.

TRY IT YOURSELF

http://www.sty-ue4.com

ptg18222824

28 HOUR 2: Understanding the Gameplay Framework

▼
4. Ctrl+click to select a few of the Particle Systems you want to migrate into your project.

5. After you select three or four Particle Systems, right-click one of the highlighted particle
systems and select Asset Actions > Migrate (see Figure 2.4).

FIGURE 2.4
Content Browser migration.

6. In the Asset Report window, which shows not just the particle systems but also all their
dependencies, click OK.

7. To find the Content folder of the project you want to copy these assets into, in the Browse
for Folder window, navigate to the Content folder of the MyHour02 project and with this
folder selected, click OK.

ptg18222824

Asset References and the Reference Viewer 29

NOTE

Content Browser Filters
The more content you have in a project, the harder it can be to find what you are looking for. This is
why folder organization and naming conventions are important. At the top of the asset view in the
Content Browser are a search box and filter tools. Both of these are relevant to the folder that is
selected in the source panel—that is, they show only what is in the folder that is currently selected
as well as its subfolders. If you select the Content folder at the top, for example, the search box and
filter tools apply to Content and all its subfolders.

Other Asset Types
Many assets are not imported but are created directly in the Editor (for example, Blueprint

 classes, particle systems, and camera animation data). Over the next 22 hours, you’ll learn to

add and create some of these asset types.

TIP

Creating a Raw Asset Folder for Your Projects
When working on large projects with large groups, you need some kind of project management soft-
ware to stay organized. When you first start out, something as simple as adding a folder in your proj-
ect’s root directory to keep track of your raw files can go a long way toward keeping external content
organized outside the Editor.

Here is sample directory structure for keeping common external assets organized before importing
them into a project:

 Raw Assets folder

 Models subfolder

 Audio subfolder

 Textures subfolder

Asset References and the Reference Viewer
You may be tempted to move .uasset files around manually or copy them from one project to

another. Although doing that technically works, it is not good practice because of dependencies.

You should always make changes to locations and folder structure in the Content Browser so the

Editor can update dependencies.

The Reference Viewer shows the dependencies for an asset (see Figure 2.5). For example, if you

assign a material to the Static Mesh in the Static Mesh Editor, the Static Mesh needs to know the

location of the material in the Content Browser. In turn, the material needs to know the location

of the textures that it is dependent on. If you move the material to a new folder in the Content

Browser, the Editor automatically updates the Static Mesh asset references. To see the asset refer-

ences for an asset, right-click it in the Content Browser and select Reference > Reference Viewer.

ptg18222824

30 HOUR 2: Understanding the Gameplay Framework

FIGURE 2.5
The Reference Viewer, displaying the dependencies for the M_Chair Material Asset.

Saved Folder
The Saved folder contains four subfolders: AutoSaves, Backup, Config, and Logs. The Editor

uses the AutoSaves and Backup folders to create backup files and temporary working files for

anything you have opened or modified. You can use these files to save the day if the Editor ever

crashes on you. But they also increase the size of your project greatly as you work, so you may

want to periodically flush these folders to keep the project size down. The Config folder contains

.ini files that are used to store project settings.

Gameplay Framework
The Gameplay Framework is a collection of C++ or Blueprint classes that manages the rules of

the Game, player input and avatars, cameras, and player HUDs in every project.

NOTE

More Than Games
Don’t let the terminology fool you. While UE4 has been developed to make Games and much of
the terminology is Game related, this engine can be used to make many different applications. For
 example, a 3D artist could make a model viewer to display 3D models in the portfolio website.

ptg18222824

Gameplay Framework 31

GameMode Class
In the Gameplay Framework, the GameMode class is used to set the rules of the Game and store

all the other classes that are needed to define the Game’s core functionality. For example, the

GameMode class is a good place to script respawn systems for a first-person shooter or a timer

for a race Game. The following is a list of the classes in the Gameplay Framework that are

assigned to the GameMode class:

 DefaultPawn class

 HUD class

 PlayerController class

 Spectator class

 ReplaySpectator class

 PlayerState class

 GameState class

After a Game mode and its dependencies have been created, you can assign the Game mode to

the project or to each individual level in a project. Most projects have two or three Game modes,

but of course only one can be assigned as the default mode. You do this in the project settings,

under Maps & Modes > Default Modes. Once a Game mode has been set as the default mode, it

is the mode used by every level in the Game unless the Level has been set to override the default

Game mode in the GameMode Override property on the World Settings tab of the Editor.

Controller Classes
A controller class controls a pawn in a Game. The PlayerController class takes the input from

the player and uses it to direct the player’s pawn. There are two basic types of controller classes:

PlayerController and AIController. The PlayerController class manages inputs from the player

and directs a pawn in the Game by possessing it. Player inputs can be anything from mouse

and keyboard or Game pads to touch screens or an Xbox Kinect. The PlayerController class is

also where you can turn on visibility of the mouse cursor and set how the Game will respond to

mouse-click events. Every human player in a Game has an instance of the PlayerController class

assigned to him or her. For example, every time a player joins a multiplayer Game, an instance

of the PlayerController class is created within the GameMode class and assigned to that player

for the rest of the Game session. PlayerController classes do not have physical representations in

the Game world.

ptg18222824

32 HOUR 2: Understanding the Gameplay Framework

Pawn and Character Classes
In Unreal Engine, the term Pawn refers to the player’s avatar. Pawn classes take the input from

the PlayerController class and use it to direct the physical representation of the player in the

Game. This can be as basic as just representing the player’s location in the level or as complex

as an animated Skeletal Mesh with a collision hull moving around the Game world. There are

several classes that can be assigned to the DefaultPawn class property in a Game mode, such as

the Pawn, Character, and Vehicle classes. A Pawn class is a generic class for creating a variety of

Pawn types, while Character and Vehicle classes are set up for dealing with specific but common

Pawns found in most Games. Since pawns take direction from a controller class, Pawns can be

controlled by the PlayerController class or the AIController class.

HUD Class
The HUD class is used to draw 2D interface content to the player’s screen and create in-Game

heads-up display (HUD). A Game’s entire HUD system can be scripted in the HUD class. Epic has

also provided an interface Editor called Unreal Motion Graphics (UMG), which is a collection of

tools and classes for building complex interfaces and HUDs. (See Hour 22, “Working with UMG.”)

The project templates that Epic has provided already have Game modes set up for common

Game types. Typically, you choose a Game mode template every time you created a new project.

▼ TRY IT YOURSELF

Add a Game Mode to a Project

At the beginning of this hour, you created a blank project that you can now use to practice add-
ing the Game modes as a features pack. Follow these steps to add a Game mode to the blank
MyHour02 project:

1. Open the MyHour02 project you created in the previous Try It Yourself.

2. In the Content Browser, click the green Add New button above the source panel.

3. In the pop-up window at the top, select Add Feature or Content Pack. This opens the Add
Content to the Project window (see Figure 2.6).

ptg18222824

Gameplay Framework 33

FIGURE 2.6
Add Content to the Project window.

4. On the Blueprint Features tab, select Side Scroller and click the green +Add to Project

 button to add it to your project.

5. On the Content Packs tab, select the starter content and click the green +Add to Project

button to add it to your project.

6. Close the Add Content to the Project window.

▼

In the Content Browser you will now see a few new folders that have been added to your project.

Navigate to the SideScrollerBP/Maps folder and double-click on the SideScollerExampleMap Level

to open it. Preview the Level by clicking on the Play button on the Level Editor toolbar. As you

can see you now have the beginnings of a side scroller Game. However, if you open any of the

other levels that were added with the Starter Content they use a different Game mode. Navigate

to the StarterContent/Maps folder and open the Minimal_Default level and preview it. You can

see that the Side Scroller Game mode does not work. You need to set the Default Game Mode of

the project.

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

34 HOUR 2: Understanding the Gameplay Framework

▼ TRY IT YOURSELF

Set the Default Game Mode to a Project

Follow these steps to set the Default Game Mode of your project:

1. Open the MyHour02 project you created in the previous Try It Yourself.

2. In the Content Browser, click the green Add New button above the source panel.

3. On the Level Editor menu bar select Edit > Project Settings.

4. Under Project on the left-hand side of the Project Settings window, select Maps & Modes

(see Figure 2.7).

FIGURE 2.7
Project Settings.

5. On the right-hand side, select SideScrollerGameMode from the Default GameMode

drop-down list.

6. Close the Project Settings window and preview the Minimal_Default level again.

You can also assign Game modes to individual levels by going to the GameMode Override
 property on the World Settings tab of the Editor and selecting any of the Game modes that have

been added to the project.

ptg18222824

Workshop 35

Summary
In this hour, you learned to import assets, migrate content from one project to another, and add

various features to an existing project. You were also introduced to concepts related to Game

modes and learned to set the default Game mode for a project.

Q&A
Q. Do I need to assign a Game mode to every level I create?

A. No. You need to assign a mode only if the level needs a different Game mode than the rest
of the project. When a Game mode is set up in the Project Settings, all levels in the Game
use that Game mode.

Q. When I migrated content, the Editor asked if I wanted to overwrite the existing content.

A. When you migrate content, some assets have the same dependencies as others, and if
they are migrated at different times, the Editor warns you that some of the original assets
will be overwritten, which breaks the dependency of the asset that is migrated first. You
have to fix the dependencies manually after you migrate assets.

Q. What is an .ini file?

A. An .ini file is simple text file that stores preferences and settings for both the Editor and a
project. While .ini files can be opened and edited in a simple text Editor, there is not much
need to do this because they are managed through the UE4 Editor.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: The best way to move content from one project to another is to copy the

.uasset file.

2. True or false: You don’t need to save an asset in the Content Browser after it has been
imported or modified.

3. True or false: The Reference Viewer allows you to see an asset’s dependencies on other
assets.

ptg18222824

36 HOUR 2: Understanding the Gameplay Framework

Answers
1. False: The proper way to move content from one project to another is to migrate it.

2. False: When you first import an asset or modify an existing asset, you need to save it.

3. True: The Reference Viewer enables you to visualize an asset’s dependencies.

Exercise
Create a blank project and import external assets. Add two Game Mode templates and Mobile
Starter Content; assign one of the Games as the default Game mode, and assign the other
to a level.

1. Create a new Blank project.

2. From the Content Browser add Third Person Game Mode.

3. From the Content Browser add Flying Game Mode.

4. From the Content Browser add Mobile Starter Content.

5. In the Content Browser, create a new folder called MyContent and import external content
from the book’s Hour_02 folder.

6. Assign the Third Person Game Mode as the project’s default Game mode.

7. Create a new level and set GameMode Override to FlyingGameMode in the Levels property
on the World Settings tab of the Editor.

ptg18222824

HOUR 3
Coordinates, Transforms,
Units, and Organization

What You’ll Learn in This Hour:

 Cartesian coordinates and how they relate to UE4 transformations

 Scaling, moving, and rotating

 The grid system and measurements for Actors

 Scene organization and structure

 Actor grouping, layers, and attaching

In this hour, you learn about using coordinates and transforms, and you develop an

understanding of how to use the grid to create content in a 3D space. This hour looks at what

types of transformations are used to control particular Actors in the Editor. Then it looks at how

to control these transforms and what tools can maximize their use. Next, you examine the grid

system and the measurements that make multi-software package information translate correctly

into UE4. Finally, you examine some organizational systems used in UE4 to keep projects tidy

and readable.

Understanding Cartesian Coordinates
Understanding any type of 3D content creation requires understanding the use of three-

dimensional coordinates—that is, Cartesian coordinates. Cartesian coordinates are a system of

calculations from which you can derive information or points within a given field or space. If

you have taken a geometry or calculus class in school, then you have probably already used

Cartesian coordinates. When placing a point on a 2D plane, as shown in Figure 3.1, you must

pick two numbers, one for the X axis and one for the Y axis. Then you can simply find the place

where the points meet, and you have found the intended coordinate or position within that

space. This process is exactly the same in 3D spaces, except that now there are three axes that

define where the points meet. Instead of using just two numbers, a 3D plane uses X, Y, and Z

coordinates. Each letter corresponds to an axis, where Z is up and down, Y is left to right, and

X is front to back. All 3D graphics are generated by plotting out one single point Relative to

ptg18222824

38 HOUR 3: Coordinates, Transforms, Units, and Organization

specific values. By using a string of these intersection points, you can make connections between

the points to create a shape or volume. You can also use the points for manipulation and

movement to plot out placement and Scale of an object in 3D space.

FIGURE 3.1
Each direction in a 3D coordinate system has an associated letter X, Y, or Z.

Working with Transforms
The following sections look at how to achieve movement, scaling, and Rotation with the

 transformation tools in the UE4 Editor.

ptg18222824

Working with Transforms 39

Transformation Tools
A transformation tool manipulates or translates within the 3D space in UE4. There are three

transformation types (see Figure 3.2):

 Move

 Scale

 Rotate

FIGURE 3.2
The transformation widget representing each transformation type. Beginning from the top, you see the
 transformations for move, Scale, and rotate and their corresponding widget displays.

ptg18222824

40 HOUR 3: Coordinates, Transforms, Units, and Organization

Move Transformation
The Move transformation is one of the most commonly used transformation tools in UE4. This

tool allows you to move an Actor within 3D space from one Location to another.

You know that an Actor has a specific Location on the X, Y, and Z axes within a scene. The

coordinate Location for each Actor is based on the pivot or origin point of the Actor when it was

originally brought into UE4. To move an Actor within the scene, you select the Actor you want to

move and then select the Move transformation tool or press the W key. You can then move the

Actor in any direction by left-click and dragging the desired arrow of the direction you would like

to move and moving the directional cursor in that desired direction. In addition, by left-clicking

and dragging the mouse on the colored square located at the pivot point, between two different

directions, you can move in two directions simultaneously. UE4 has color-coordinated each

 directional axis to make the tools easier to use:

 X = red

 Y = green

 Z = blue

NOTE

Color Connections
Notice that the colors are coordinated not only with the transformation widget tool but also many of
the Details and Context Menus. For instance, the manual transformation options in the Details panel
also have the same correlating color scheme.

Scale Transformation
Scale allows you to increase or decrease an Actor’s size non-uniformly, in an X, Y, or Z direction,

or uniformly, in all axes at once. When you bring an Actor into a scene directly from the

Content Browser, the Scale is 1 on all axes. To change the Scale, first select the Actor and then

select the Scale transformation tool or press the R key. By moving any of the directionally

 oriented Scale handles, you can Scale the Actor in any direction. Also, by selecting the middle

white box, you can Scale the Actor uniformly and in every direction at once. Finally, by selecting

any of the bars connecting two directional scaling boxes, you can Scale two axes at one time.

Rotate Transformation
Rotation is the last type of transformation you can control when it comes to manipulating Actors

within a game World. Rotation is handled the same in UE4 as in most other 3D programs: by

ptg18222824

Working with Transforms 41

using degrees of Rotation. 360 degrees equals a full Rotation, and full Rotation can occur within

any of the three axes, X, Y, and Z. Each axis is Relative to a term specific to Rotation:

 Pitch: X

 Yaw: Y

 Roll: Z

The Rotate degree-snapping tool is located beside the other transform snapping tools. By clicking

the Rotate tool, you can turn on and off snapping and set specific snap degrees. For example,

you can set an Actor to rotate and snap at 5-degree Rotations or 30-degree Rotations. This can

be helpful when you’re using modular sets to control specific measurement Rotations.

TIP

Using the Interactive Transformation Tool
You can press the spacebar to cycle through all the transformation tools, one by one.

Interactive and Manual Transforms
Transformations can be done in two ways: interactive transformation and manual transformation.

Interactive transformation is the process of using the Move, Rotate, or Scale transformation tools

to make less-than-precise changes in the World space widget. The term widget is referring to the

tool being used to control the actions in Editor. You can use these tools to freely manipulate

Actors within the World space and get visual confirmation without having to use numeric values.

Manual transformation, on the other hand, is performed using specific values or numeric setting

in the Details Panel for an Actor. This process is the more precise of the two methods and is the

one to use when exact changes are necessary.

World and Local Transforms
There are two types of transform systems you can use to make additional changes to Actors:

World and Local.

The World transform system uses the whole World, with the understanding that up is up, down

is down, forward is forward, and so on. This means no matter how an Actor has been distorted,

turned, or changed, it follows these World system rules.

The reverse is true for the Local system, which references an Actor specifically as the rule setter.

When an Actor is first brought into a scene, it is exactly the same as in the World coordinate

 system, but what if you turn the Actor 15 degrees to the right? In the Local coordinate system, the

Actor now respects the new rules that all transformations are Relative to the 15-degree change.

ptg18222824

42 HOUR 3: Coordinates, Transforms, Units, and Organization

Assessing Units and Measurements
Understanding Scale and measurement of proportions contributes to establishing style, context,

and continuity in the game World. By default, 1 Unreal unit (uu) is equal to 1 real-world

centimeter (cm). This is an important Details to note, and you should apply it to all aspects of

your design and game for proper development of environments, characters, effects, and so on.

By default settings, a typical player is about 6 feet tall in the game World; this equates to 180 cm,

or 180 uu. You can change this default to suit the needs of a project, but whatever the default is,

you can use it as a base value to establish context for the size of all other Actors.

If a character is known to be 180 uu tall, you can also assume that a door he or she would use

would generally be around 220 uu tall and 130 uu wide so the character can fit through it when

exploring a level. You can also extrapolate that a window would look correct at around 180 uu

tall and 110 uu wide. The sizes of other Actors would follow suit, with ideal Relative measure-

ments. Such size correlations help establish continuity throughout all created Actors and ensure

that level design will function properly for gameplay. Some important Actor sizes to determine

before beginning construction are those for stairs, windows, doors, ceilings, walls, and ramps.

Knowing the general sizes for these structures before you begin constructing Actors will save

major headaches during later parts of development and prevent having to create completely

new Actors because of measurement errors.

Finally, although these guidelines are certainly helpful in designing a level, you shouldn’t be

afraid to get creative with your designs. Understanding the rules of Scale and proportion can

help you better break the rules in order to exaggerate shapes and Scale to create mood or story

interest. You need to know how these guidelines apply to maintain continuity and playability,

but you are free to be creative to suit your project’s needs.

Grid Units
You use a grid to move Actors within UE4. UE4’s grid is a type of sectioning of specific values or

portions of the map. Using a grid allows you to use numeric measurements and establish real-

World context for 3D spacing. Each space on a grid is equivalent to a set number or value

(see Figure 3.3). The grid is ever present, though sometimes it is not visible. As long as any of the

snapping options are on, UE4 uses the measurements of the grid for every moment, Rotation,

or Scale—both on and off the visual grid.

ptg18222824

Assessing Units and Measurements 43

FIGURE 3.3
The grid is always present in UE4 and is vital to World building.

In UE4, each grid space defaults to a multiple of 5, so you can easily sum together the spaces on

the grid to understand the Scale of an Actor. If you place an Actor on a grid that uses 100 as the

grid segment size, and the Actor is 3 grid units long, then the entire Actor is equal to 300. The

tool used to change grid size is located at the top of the Viewport panel to the right, next to the

grid symbol (see Figure 3.3). When you click the value of the current grid, a drop-down appears,

listing available grid unit sizes.

Snapping to the Grid
Using the grid is important for snapping Actors to specific coordinates or unit measurements.

The grid system in game Actor creation is key to creating reusable and modular Actors. There

are three types of transformation snap types: Move, Rotate, and Scale (see Figure 3.4). Each grid

ptg18222824

44 HOUR 3: Coordinates, Transforms, Units, and Organization

 system has its own unique scalar parameters or snapping measurements that can be set at the

top of the Viewport screen located next to the correlating type of transformation (see Figure 3.4).

 Drag Grid: The movement grid uses multiples of 5 and corresponds directly to the UE4 grid

spacing discussed previously.

 Rotation Grid: Rotation movement is based on scalar degrees of multiples of 5, using the

most common Rotation angles: 5 degrees, 10, 15, 30, 45, 60, 90, and 120. There is also

a secondary menu that lists divisions of 360 degrees, starting at 2.812 and ascending to

5.625, 11.25, and 22.5.

 Scale Grid: Scaling Scales down by halves, and it starts with 10 and descends to 1, .5, .25,

.125, and so on.

Move ScaleRotate

FIGURE 3.4
Transform Viewport options and snap drop-down selections.

You can adjust the Scale values for a grid types by selecting the numeric value located next to

the corresponding symbol. The drop-down list then offers multiples of the base value to select

from. Also, you can toggle on and off each of these snaps by simply clicking on the symbol

for the transformation. The symbol is highlighted orange when it’s active, and it is gray when

disabled. While the symbol is disabled, you can manipulate the Actor in the corresponding

transformation method with no constraints to scalar values.

ptg18222824

Organizing a Scene 45

NOTE

Customizing Snap Settings

You can activate many additional helpful snap tools by selecting Preferences > Level Editor and then

selecting the appropriate settings from the Snap section.

Organizing a Scene
When you’re working on a project, the number of Actors involved is likely to grow substantially in

a short time. Therefore, whether you are working by yourself or with a team, scene organization is

key to ensure that each member understands the project’s layout and layering of Actors. It is also

vital that Actors within a scene or level can be found easily and efficiently. The following sections

discuss some of the parts of UE4 that help you stay organized while building a project.

World Outliner
The main UE4 tool for effective Actor organization is the World Outliner. You use the World Outliner

panel to organize all aspects of a scene into one easy-to-read menu (see Figure 3.5). By default, it

appears in the top-right corner of the screen when you open a project, but you can also open the

World Outliner by going to the main menu bar and selecting Window > World Outliner. Each Actor

in the World Outliner is labeled with its given name or label, such as the name the user has given it

or the default one that it was given after being placed in the scene, and the type of Actor it is, such

as Static Mesh or light. In addition, there is an icon beside each Actor to help describe its type.

World Outliner

FIGURE 3.5
The World Outliner is located in the top-right corner of the screen by default.

ptg18222824

46 HOUR 3: Coordinates, Transforms, Units, and Organization

One of the most important features of the World Outliner is that it enables you to find Actors

within the scene. All Actors in the scene are listed and searchable through the search bar at

the top of this panel. You can use this search bar to search the whole scene or look for specific

types of Actors within the scene. You can also exclude words from your search by adding the -

c haracter before a keyword search. For instance, say that you are making a map with two areas,

and you have labeled the ground Actors as area1_ground or area2_ground. If you want to

find an Actor with the word ground, but you want to search all the ground Actors without the

word area1, you could simply type ground, -area1 in the search bar. The result would be all the

Actors containing the word ground but without the word area1.

Folders
The World Outliner is organized in much the same way as your computer’s file browser. There are

individual files and groupings of files in folders, and those folders can be organized and nested

inside one another. This system is used in many digital organizational systems to maintain

consistency, allowing for easy use and efficacy. You can easily make and organize folders in this

type of system. At the top right of the World Outliner panel is a small icon that is a plus symbol

on a folder. You can click this icon to add a new folder to your World Outliner and name it.

NOTE

Creating New Folders
If you already have an Actor selected in the World Outliner and make a new folder, that Actor is
 automatically placed in the new folder.

▼ TRY IT YOURSELF

Create a New Folder and Move Actors

This Try It Yourself gives you practice creating folders and moving Actors around within them.
With the Unreal Editor open, follow these steps:

1. Navigate to the World Outliner panel.

2. Select the Create a New Folder option in the top-right corner.

3. Name the new folder.

4. Navigate to the Viewport and click an Actor in the level to select it. Notice that the actor
you selected in the scene is now highlighted in the World Outliner.

5. Back in the World Outliner panel, click and drag the Actor name from the World Outliner
into the new folder.

ptg18222824

Organizing a Scene 47

As shown in Figure 3.6, each folder in the World Outliner has an eye symbol located next to

it. By clicking this symbol you can toggle the visibility of Actors in the scene on and off. This is

useful when you want to hide certain Actors or groups of Actors located in folders quickly while

working with a scene. For instance, you might want to hide all of your lighting while you are

moving Actors around to avoid selecting and moving the wrong Actors.

FIGURE 3.6
The World Outliner with folders. Notice that Folder contains Staticmesh and Staticmesh2, but Staticmesh3
remains outside Folder.

Grouping
Grouping is another easy way to quickly organize aspects of a project within a scene. Grouping

is similar to using folders, in that it turns a selection of Actors into an individually placed Actor

on the World Outliner. You can group Actors in a scene by clicking one Actor and holding down

the Ctrl key as you click other Actors you want to add to the grouping. Then you can right-click

any of the selected Actors and select Group from the Context Menu. You can also use the short-

cut key Ctrl+G to group the selected Actors together.

By grouping together a set of Actors, you can move, Scale, and rotate them all at one time.

When you apply movement, scaling, or Rotation to a group of Actors, keep in mind that the

transformations apply to the center of all the Actors in the group; it’s important to keep this in

mind if you decide to group Actors that are far apart within a scene.

NOTE

Grouping Actors
An Actor can belong to only one group at a time. This means you cannot group an Actor into more
than one group.

A few options allow you to change how a group is set up. Each group can be unlocked and

locked. By default, all groups created are locked, which means all the parts of it transform as

ptg18222824

48 HOUR 3: Coordinates, Transforms, Units, and Organization

one unit. To manipulate each part inside a group, right-click the group to open the Context

Menu and select Groups > Unlock. While the group is unlocked, you can manipulate the Actors

in the group individually. When you are done making changes, you can lock the group again

by simply right-clicking any of the Actors in the group and selecting Lock Group. This resets the

constraints of the Actors to act as one Actor group again.

Layers
Another method for keeping your project organized is the layer system. In UE4, the layer system

is similar to the systems in 3D programs such as Maya or Max. To access the Layers panel,

simply select Window > Layers from the main menu. In this panel, you can control what parts

of the scene are grouped into layers and can be toggled on and off. When you right-click in the

Layers panel, all available options, such as New Layer, for creating a new layer, are available

(see Figure 3.7).

You can add Actors in a scene to layers in a couple ways. One way is to click names of Actors

in the World Outliner and left-click and drag them to the appropriate layer in the Layers panel.

Another method is to select all the Actors you want to add to a layer, right-click that layer in the

Layers panel, and select Actors to Layer from the Context Menu provided. You can also remove

previously added Actors from layers: Right-click an Actor and select Remove Selected Actors

from Layer from the Context Menu.

FIGURE 3.7
The Layers panel.

To select all Actors in a layer, right-click the layer and choose Select Actors from the Context

Menu. This is a powerful way to keep similar Actors in a scene paired together and easily

selectable all at once. For instance, by using layers, you can put all the lights for a scene in one

layer, all the Static Meshes in one layer, and all the post-processing effects and particles in one

layer. You can control layers in the World Outliner much the way you control Actors there. You

can toggle a layer on and off by using the eye symbol located beside the name of the layer.

ptg18222824

Organizing a Scene 49

NOTE

The Difference Between Groups and Layers
There are a few differences between groups and layers, but the biggest one is the ability to put a
single Actor in multiple layers. While an Actor can be in only one group at a time, that Actor can be
in multiple layers at once. This difference maximizes flexibility for Actor pairing and selection.

Attaching
Attaching Actors to one another allows you to create a parent-child relationship between them.

Once two Actors have been attached (see Figure 3.8), one will be the parent and the other the

child. The child Actor’s transforms become Relative to its parent. This means that when you

move, Scale, or rotate the parent, the child will follow. However, changing the transforms of the

child Actor does not affect its parent. A parent can have any number of child Actors attached

to it, but a child can have only one parent. To attach one Actor to another, select the Actor you

want to be the child in the World Outliner by clicking on its name and dragging it onto the

name of the Actor you want to be the parent. To break an attachment, in the World Outliner

click and drag the child back onto the parent’s name.

FIGURE 3.8
World Outliner showing attached Static Mesh Actors.

Because the Location, Rotation, and Scale transforms for Actors are each set to type Relative

by default, the child mimics the changes made to the parent transforms. You can change the

 transform type for Location, Rotation, and Scale independently of each other from Relative to

World. For example, there may be times when you want a child to follow its parent’s position

but not its Rotation or Scale. To do this, Location needs to be set to type Relative, but Rotation

and Scale need to be set to type World. To change the transform type of Location, Rotation, Scale

ptg18222824

50 HOUR 3: Coordinates, Transforms, Units, and Organization

for the child, select the Actor and in the Details panel under Transform, click the triangle next to

Location, Rotation, or Scale and choose the transform type (see Figure 3.9).

FIGURE 3.9
Details Panel showing Rotation Type property.

Summary
In this hour, you learned about using the transform tools to manipulate and alter the state

of the Actors within a scene. You also looked at the ways you can control these transforms

for maximum flexibility. You now understand how to alter the default settings to suit your

needs and project. This hour you examined the grid system and using snaps in UE4 to increase

 efficiency and maintain precise movements and measurements while manipulating Actors

 within a scene. Finally, you took a look at keeping up with your Actors during development by

organizing them into layers and groups. Using these tools, you can now feel confident in your

use of coordinates, transforms, units, and organization in UE4.

ptg18222824

Workshop 51

Q&A
Q. Can I use the old Unreal system of measurement that uses 2, 4, 8, 16, 32, 64, and so on

that was in the UDK?

A. Yes, you can use this system this by going to the main menu and selecting Edit > Editor

Preferences > Grid Snapping and turn on Use Power of Two Snap Size.

Q. How do I move an Actor back to using the grid after I have moved it off?

A. Right-click an Actor that has been moved off the grid and select Transform > Snap/Align >

Snap Origin to Grid from the Context Menu.

Q. How can I find an Actor in a scene after I find it in the World Outliner?

A. Select the Actor in the World Outliner and, in the Main Scene panel, simply press the F key
to focus on that Actor.

Q. What happens when a group has only one Actor in it?

A. It automatically turns back into a single Actor rather than a group.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. What are the three types of transformation tools?

2. What is 1 uu equal to in real-world measurements?

3. If you toggle off the grid view, will the Actor still move along the grid measurements?

4. Can you add a new light to a preexisting layer?

5. Can an Actor that is already in a group be selected and removed from the group?

Answers
1. Move, Rotate, and Scale are the three types of transformation tools.

2. 1 uu equals 1 cm.

3. Yes, even with the grid toggled off, the Actor will still move as if it were snapping to the grid.

4. Yes, you can add a new light to a layer by selecting the Actor first and right-clicking and
selecting Add to Layer.

5. Yes, first right-click the group and select Unlock and then select the undesired Actor within
the group. Delete the Actor and then relock the group.

ptg18222824

52 HOUR 3: Coordinates, Transforms, Units, and Organization

Exercise
For this exercise, you open the Editor and make a few changes to how you control the scalar
parameters of an Actor. Then you group that Actor and put it into different layers to control
its visibility. Understanding the controls for doing all this gives you versatility to control all the
 transformations of your Actors within the Editor. Also, it’s important to understand how to organize
Actors for maximum control of project organization and structure through groups and layers.

1. Bring any Actor into the level.

2. Scale up the object on the X axis by 15.

3. Rotate the Actor 25 degrees to the right.

4. Move the Actor 12 uu on the Y axis.

5. Move the Actor 140 uu on the Z axis.

6. Bring a second Actor into the level.

7. Group the two Actors.

8. Unlock the group, select the second Actor, and delete it.

9. Move the remaining Actor into a new layer.

10. Name the layer Newtestlayer.

ptg18222824

HOUR 4
Working with Static

Mesh Actors

What You’ll Learn in This Hour:

 Becoming familiar with the Static Mesh Editor

 Importing 3D model files

 Assigning materials and collision hulls to Static Mesh assets

 Placing Static Mesh Actors

 Changing mesh and materials references on Static Mesh Actors

 Setting collision responses on Static Mesh Actors

Static Meshes are some of the most common art assets and Actor types you will work with in

UE4. Static Meshes are 3D models imported from applications such as 3DS Max or Maya. They

are primarily used for set dressing and world building. Just about every Level you make will need

statics meshes. In this hour you familiarize yourself with importing 3D models, using the Static

Mesh Editor, editing collision hulls, learning the key elements of working with Static Mesh assets

and Actors, and assigning materials to Static Mesh assets and Actors.

NOTE

Hour 4 Setup
Create a new project with the Third Person Template and Starter Content.

Static Mesh Assets
Static Mesh assets store the pivot point (local axis), vertices, edges, and polygons that define

the visual look of a model, as well as Levels of detail (LODs). Static Mesh assets also store

 collision hulls, sockets, and the UV layouts used for materials, textures, and lightmaps. The more

 comfortable you are working with and understanding the attributes of Static Mesh assets and

Actors, the easier other concepts will be in later hours.

ptg18222824

54 HOUR 4: Working with Static Mesh Actors

NOTE

LODs
LOD are simply versions of a mesh at different polygonal resolutions. The farther a mesh is from the
camera, the less polygonal detail is needed to display the model. This is an efficiency technique for
keeping rendering frame rates high during gameplay.

Static Mesh Editor
The Static Mesh Editor allows you to edit, modify, and set base properties for Static Mesh assets

stored in the Content Browser. The Static Mesh Editor consists of a menu bar, a toolbar for

 turning on and off display elements, a Viewport window that allows you to view a mesh, a

Details panel for editing and modifying a mesh’s properties, a Socket Manager panel for adding

and editing sockets, and a Convex Decomposition Hull panel for creating unique collision hulls

(see Figure 4.1).

FIGURE 4.1
Static Mesh Editor interface.

Opening the Static Mesh Editor Window
To view a Static Mesh in the Static Mesh Editor, double-click the Static Mesh asset in the Content

Browser, and the Static Mesh Editor opens in a new window. Each Static Mesh asset you double-

click opens its own Static Mesh Editor window.

ptg18222824

Static Mesh Editor 55

▼

Use the Static Mesh Editor to View a Static Mesh Asset

Open the Static Mesh Editor for an existing Static Mesh asset using the following steps:

1. In the Launcher, open the project you created in Hour 1, “Introducing Unreal Engine 4.”

2. In the Content Browser, navigate to the StarterContent folder. If you did not add starter
content to your project back in Hour 1, click the green Add New button and select Add New

Feature or Content Pack. In the pop-up window, select the Content Pack tab, highlight the
starter content, and then click Add to Project.

3. In the StarterContent folder, navigate to the Props folder (see Figure 4.2).

FIGURE 4.2
Finding a Static Mesh asset in the Content Browser. Left pane: Source View. Right pane: Asset
Management Area.

4. In the Asset Management Area (right pane in the Content Browser) double-click any of the
Static Mesh assets to open it in the Static Mesh Editor.

5. Practice moving around the Static Mesh Editor Viewport and toggling on and off the display
options on the toolbar.

TRY IT YOURSELF

NOTE

Using the Static Mesh Editor Viewport
The Static Mesh Editor Viewport window works the same way as the main Editor Viewport. Press F to
focus the view on the mesh and Alt+click+drag to orbit around the mesh.

ptg18222824

56 HOUR 4: Working with Static Mesh Actors

Importing Static Meshes
Two file types are commonly used for importing 3D models into the Editor: .obj and .fbx. When

you import either file type, you open up an FBX Import Options window, which offers a lot of

options. If you do not have a lot of experience working with 3D models, the options to focus on

for now are Auto Generate Collision, Import Materials, and Import Textures. All three of these

options are selected by default. Auto-generating collision hulls and lightmap UVs on import can

speed things up, but you can also edit and modify collision hulls and lightmap UVs in the Static

Mesh Editor.

▼ TRY IT YOURSELF

Import a Static Mesh Asset

Now that you know how to open the Static Mesh Editor for an asset, follow these steps to import
a new Static Mesh into a project:

1. Open the project you created in Hour 1.

2. Go to the Content Browser and pick a folder or create a new one for storing the Static Mesh
asset.

3. Right-click in the asset management view of the Content folder and select Import To, or

click on import on the navigation bar at the top of the Content Browser.

4. In the Open File dialog that appears, locate the .obj or .fbx file for the Archway asset from
the Hour_04 Models folder (available on the book’s companion website at www.sty-ue4.com)
and double-click the file, or select the file and click Open. (You can bypass this step by simply
dragging the file into the asset view of the Content Browser straight on your OS File menu.)
After the file has been selected and opened, the FBX Import Options menu is displayed.

http://www.sty-ue4.com

ptg18222824

Viewing UV Layouts 57

5. In the FBX Import Options window that appears (see Figure 4.3), make sure Auto Generate

Collision is selected.

FIGURE 4.3
The FBX Import Options window.

6. Click Import.

7. Once the mesh has been successfully imported, it is good practice to save it. In the
Content Browser, right-click on the asset thumbnail and click Save from the list.

▼

TIP

Pivot Points
When you import a mesh asset, the Static Mesh’s pivot point is determined by the model’s position
relative to the world coordinate in the 3D application it was exported from—not the model’s local
axis. In the FBX Import Options window, under Transform, you can change the mesh’s relative posi-
tion to the pivot point by editing the position, rotation, and scale values.

Viewing UV Layouts
Before a material can be properly displayed on the surface of a model, it needs a UV map

 layout, also known as a UV channel. If a model has been created properly in a 3D modeling

application, it should already have at least one UV channel set up. Static Meshes can have

ptg18222824

58 HOUR 4: Working with Static Mesh Actors

multiple UV channels. Typically there is at least one UV channel for a material (UV Channel 0)

and one for the lightmap data (UV Channel 1). To view the UV channels for a Static Mesh, click

the UV button on the toolbar to toggle it on and off. The current UV channel is displayed in the

Viewport window. You can change which UV channel is displayed by selecting a channel from

the drop-down on the toolbar (see Figure 4.4).

FIGURE 4.4
The mesh UV channel displayed in the Static Mesh Editor Viewport.

NOTE

Lightmap UV Channel
The lightmap UV channel is used for storing light and shadow information on the surface of a mesh.
The Editor auto-generates a UV channel for lightmaps during import, but you can also create one
after import by using the Static Mesh Editors Details panel options. The default lightmap UV channel
is 1, which is the second UV channel because the UV channel index starts at 0. Although you can
technically use any UV channel you want for lightmaps, when starting out it is best to use the default
settings.

ptg18222824

Collision Hulls 59

Assigning a Material to a Static Mesh Asset
Because a Static Mesh asset is a base asset, it is a good idea to prep the asset for continual use.

One way to do this is to assign a default material so that every time the asset is placed in a Level

as a Static Mesh Actor, it already has a material that you can replace, if desired.

▼

Assigning a Material to a Static Mesh

To assign a material to a Static Mesh asset, follow these steps:

1. Open one of the Static Meshes in the Static Mesh Editor.

2. Select the Details panel and find the LOD0 bar.

3. Under element 0, click the drop-down arrow to the right of the Material thumbnail and
select a material from the list. You can also drag a material from the Content Browser to
the thumbnail to change the material assignment.

4. Click Save on the Static Mesh Editor toolbar to save the changes to the Static Mesh asset.

TRY IT YOURSELF

Collision Hulls
A collision hull is a simple primitive shape that surrounds a mesh and is used to identify collision

events. A collision event occurs when two Actor collision hulls hit, touch, or overlap with each

other. When you import a 3D model, the Editor auto-generates a simple collision hull.

Viewing Collision Hulls
You can view a collision hull in the Static Mesh Editor by clicking the Collision icon on the Static

Mesh Editor toolbar (see Figure 4.5).

FIGURE 4.5
Static Mesh Editor toolbar showing Collision toggled on.

ptg18222824

60 HOUR 4: Working with Static Mesh Actors

You can then interact with the collision hull by clicking any of its wireframe edges. You can

move, scale, and rotate the hull simply by pressing the Spacebar to cycle through Transform

 gizmos (see Figure 4.6). You can remove a selected collision hull by pressing the Delete key.

FIGURE 4.6
Move, Scale, and Rotate Transform Gizmos. The X axis is red, the Y axis is green, and the Z axis is blue.

Editing Collision Hulls
Auto-generating collision hulls during import can save you time, but depending on the shape

of the mesh asset, auto-generation may not always be the best solution. In Figure 4.7, you can

see the auto-generated collision that surrounds the entire Archway mesh. This collision hull will

block Actors from passing through the mesh, but it will also stop Actors from walking under the

Archway. In this case, the collision hull needs to be modified.

ptg18222824

Collision Hulls 61

FIGURE 4.7
An auto-generated collision hull.

NOTE

Simplified Collision
You can add multiple collision hulls to one Static Mesh. To add one, click Collision on the menu bar
and select Add collision you want to add. Do this as many times as you like. If you need to remove a
collision hull, just select it in the Viewport and press Delete. If you want to remove all of the collision
hulls from the Viewport, select Collision > Remove Collision.

ptg18222824

62 HOUR 4: Working with Static Mesh Actors

▼ TRY IT YOURSELF

Work with Collision Hulls

This is a good time to practice editing collision hulls. Try editing the Archway asset found in the
Hour_04 folder (available on the book’s companion website at www.sty-ue4.com):

1. Open the Archway mesh in the Static Mesh Editor. (You can use the previously imported
asset or duplicate the previously imported asset in the Content Browser, or you can just
import a new one altogether.)

2. Select Collision > Remove Collision.

3. Select Collision > Add Box Simplified Collision (see Figure 4.8).

4. Select the collision hull in the Viewport and press the Spacebar to cycle through Move,
Scale, and Rotate as needed to place the Box Simplified collision hull over the Archway top.

FIGURE 4.8
Selecting Collision > Add Box Simplified Collision from the Static Mesh Editor menu bar.

http://www.sty-ue4.com

ptg18222824

Collision Hulls 63

5. Repeat steps 3 and 4 two more times for each of the Archway pillars.

6. Click Save on the toolbar to save the changes to the Static Mesh asset in the Content
Browser. When finished, your collision should look similar to Figure 4.9.

FIGURE 4.9
Manually placed collision Hulls.

▼

ptg18222824

64 HOUR 4: Working with Static Mesh Actors

Convex Decomposition
Collision hulls are simplified convex primitive shapes for efficiency, but the Static Mesh Editor

also has a panel called Convex Decomposition that allows you to auto-generate collision hulls

for more complicated models. Altering the complexity of a Static Mesh and the convex decompo-

sition settings will give you varying results (see Figure 4.10). To open the Convex Decomposition

panel, select Collision > Auto Convex Collision.

FIGURE 4.10
Collision hulls can be generated with the Convex Decomposition panel.

Per-Poly Collision
You can also set Static Mesh assets to per-poly collision, which is the most accurate collision you

can have. It is also the most computational intensive, so you should use it only for specific situ-

ations when you need precision. Go to the Static Mesh Settings section of the Details panel and

set Collision Complexity to Use Complex Collision as Simple (see Figure 4.11). This will tell the

Editor to use Complex Collision (per-poly) instead of Simple Primitive Convex Primitive.

ptg18222824

Collision Hulls 65

FIGURE 4.11
Static Mesh settings for per-poly collision.

CAUTION

Per-Poly Collision Detection
If every Static Mesh Actor onscreen were processing per-poly collision detection during a game, this
would take up a lot of processing power and could quickly reduce frame rates at runtime.

ptg18222824

66 HOUR 4: Working with Static Mesh Actors

Static Mesh Actors
The remainder of this hour focuses on working with Static Mesh Actors. Static Mesh Actors are

placed instances of a Static Mesh asset in a Level. Each placed Static Mesh Actor has its own

 properties that can be modified independently of the referenced Static Mesh asset. Changing

a Static Mesh asset’s properties can affect all of the Static Mesh Actors that reference it. For

 example, if you remove the collision hulls completely from a mesh asset, all the Actors that use

this Static Mesh will not be able to generate collision responses. However, changing a Static Mesh

Actor’s properties and settings has no effect on the original Static Mesh asset.

Placing Static Mesh Actors into a Level
Now that you have gone through the process of importing and editing collision hulls for Static

Mesh assets, it’s a good time to practice placing Static Mesh Actors into a Level. To place a Static

Mesh into your Level, locate one in the Content Browser. (You can use the mesh you imported

earlier or you can import a new mesh and place it into the Level.) To place the mesh in the

 current Level, simply click+drag the asset from the Content Browser to the current Level in the

Level Editor Viewport.

Once you drag a Static Mesh into a Level, you create a Static Mesh Actor that references the

original mesh asset. If you select a placed Static Mesh Actor in a Level, it gets a silhouette outline

around it, and you see the Transform gizmo appear at the Actor’s pivot point. You can see in the

Level Editor Details panel that it now has Transform properties that store its position, rotation,

and scale in the world (see Figure 4.12).

ptg18222824

Static Mesh Actors 67

FIGURE 4.12
Static Mesh Actor Transform settings in the main Editor Details panel.

TIP

Duplicating Static Mesh Actors
If you want to quickly duplicate an already-placed Static Mesh Actor, hold down the Alt key and move
or rotate the Actor by using the Transform gizmo in the Level Viewport.

Mobility Settings
In the Transform section of the Details panel, you can see that a Static Mesh Actor has two

 possible mobility states: Static and Movable. Changing the mobility state of an Actor ultimately

affects how the engine calculates light and shadow information for the Actor. Static tells the

engine that lighting needs to be precalculated, and Movable tells the engine to calculate light-

ing during runtime. If you want to animate a Static Mesh Actor or have it simulate physics, you

need to set Mobility to Movable. To change the mobility stat of a Static Mesh Actor, simply click

on Static or Movable under the Transform properties.

ptg18222824

68 HOUR 4: Working with Static Mesh Actors

NOTE

Static Mesh: To Move or Not to Move, That Is the Question
The term Static Mesh can be a bit deceiving. In this case, static refers to the base state. By default,
a Static Mesh is also static in that it will not move during game play. If a mesh is not going to move,
you can build (precalculate) lighting data so the target runtime platform does not have to worry
about calculating lighting every frame but can simply load and display the precalculated lighting data
on the surface of the placed Actor.

Changing the Mesh Reference for a Static Mesh Actor
As you can see in Figure 4.13, a Static Mesh Actor references the initial Static Mesh asset used

when the Actor was placed in the Level. You can easily change the mesh reference by dragging

a new mesh asset from the Content Browser to the Static Mesh reference thumbnail in the Level

Details panel of the selected Static Mesh Actor or by clicking on the drop-down arrow next to the

currently assigned mesh and selecting a new mesh. When you have changed the mesh, you see

it update in the Level Viewport. Because the Static Mesh Actor stores its own world Transform

data, the newly assigned mesh takes on those properties.

FIGURE 4.13
Static Mesh Actor mesh reference.

ptg18222824

Static Mesh Actors 69

Replacing the Material on a Static Mesh Actor
A Static Mesh Actor also has a material reference that is initially assigned based on the original

material assigned to the mesh asset in the Static Mesh Editor. You can modify the material for

each Actor. Figure 4.14 shows the current material assignment in the main Editor Details panel

for the selected Static Mesh Actor. You can drag a new material from the Content Browser to the

thumbnail image of the current material in the Details panel, or you can click on the drop-down

arrow next to the currently assigned material and select from the list, or you can simply click and

drag the new material from the Content Browser to any of the Static Mesh Actors in the Level.

FIGURE 4.14
Static Mesh Actor material reference.

ptg18222824

70 HOUR 4: Working with Static Mesh Actors

Editing Collision Responses on a Static Mesh Actor
You have already learned how to edit collision hulls on Static Mesh assets in the Static Mesh

Editor. Now you are ready to modify collision responses on Static Mesh Actors placed in a Level.

With a Static Mesh Actor selected in the Level, you can find the collision setting for the Actor

in the main Editor Details panel. For now you can focus just on the collision presets, collision

responses, and object types. To view Actor collision hulls in the Level Editor Viewport, press Alt+C

to toggle collision hull visibility. Figure 4.15 shows the Level Viewport with collision hull display

turned on.

FIGURE 4.15
The Level Editor Viewport, showing four Static Mesh Actors, each referencing a different Static Mesh asset
with different collision hulls and the Level Viewport collision hull show flag toggled on.

ptg18222824

Static Mesh Actors 71

Collision Presets
By clicking the triangle to the left of Collision Preset in the main Editor Details panel, you can

expand the window to show more options. With a preset already assigned, you see that the

 collision response options are grayed out and can’t be modified. The presets define common

 settings for collision responses for Actors with different object types. To unlock the options, you

must choose Custom Preset. Figure 4.16 shows the collision settings.

FIGURE 4.16
Static Mesh Actor collision setting in the main Editor Details panel.

ptg18222824

72 HOUR 4: Working with Static Mesh Actors

TIP

Custom Collision Presets
You can create your own collision presets by selecting Edit > Project Settings on the Level Editor
Main menu. But when you’re first starting out, it is easiest to just choose the custom preset and
modify the collision response for each Actor directly on the selected Static Mesh Actor.

Collision Enabled
The Collision Enabled setting on the Details panel lets you turn collisions on and off for the

selected Actor. When this is selected, even if the referenced Static Mesh asset for this Actor has a

collision hull, this Actor will not process collision interactions and events.

Object Type
The Object Type setting on the Details panel allows you to set what kind of object type this Actor

is, so when other Actors collide with it, they will know how to respond. For example, if a Static

Mesh Actor is set to Static under Transform, then its object type should be set to WorldStatic, but

if it is set to Movable under Transform, the object type should be set to WorldDynamic.

NOTE

Object Types
Every Actor that can collide has an assigned object type. There are seven object types: WorldStatic,
WorldDynamic, Pawn, PhysicsBody, Vehicle, Destructible, and Projectile.

Collision Response Flags
The Collision Responses section of the Details panel allows you to set how this Static Mesh Actor

will respond to other Actors with defined object types.

There are three interaction states for collision interactions:

 Ignore: Ignore any collision responses of these object types.

 Overlap: Check to see if the mesh’s collision hull is intersecting with another Actor.

 Block: Stop another Actor from passing through the mesh’s collision hull.

NOTE

No Collision Hull on the Asset, No Collision Response on the Actor
If a Static Mesh asset does not have an assigned collision hull in the Static Mesh Editor, then any
Static Mesh Actors that reference the Static Mesh asset will not be able to process any collision
events regardless of the collision response type assigned to the Actors.

ptg18222824

Workshop 73

Summary
In this hour, you were introduced to Static Meshes and some of the different tools associated with

them. You now have some experience with importing 3D models, working with the Static Mesh

Editor, creating collision hulls, placing Static Mesh Actors in a Level, and modifying basic colli-

sion properties. There is, of course, more to learn about Static Meshes, but you now have a base

knowledge to build from.

Q&A
Q. I know you can import a Static Mesh into the UE4, but can you export a Static Mesh as well?

A. Yes, right-click the mesh asset in the Content Browser and select Common > Asset Action.
In the dialog that appears, click Export.

Q. Can I modify the pivot point of a Static Mesh asset?

A. No—at least not directly in the Static Mesh Editor. You can, however, make adjustments
to the original mesh asset in an external 3D modeling application and then reimport the
mesh. If you don’t have the original mesh, you can export the mesh as an .fbx file from the
project.

Q. What is the Socket Manager panel, and what is it used for?

A. The Socket Manager panel allows you to create points on a mesh that are used for estab-
lishing parent/child hierarchical relationships—that is, for attaching one Actor to another.
These relationships are helpful when you’re animating or moving an Actor with Blueprint.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: It is always best to set a mesh to per-poly collision.

2. What key do you press along with Alt to display collision hulls in the Level Editor Viewport
window?

3. True or false: By default, lightmap UV layout is stored in UV Channel 1.

4. True or false: If a Static Mesh asset does not have a collision hull assigned, a Static Mesh
Actor that references this mesh will still have a collision response.

5. True or false: If you assign a new material to a Static Mesh Actor, it replaces the material
assigned to the Static Mesh asset.

ptg18222824

74 HOUR 4: Working with Static Mesh Actors

Answers
1. False: For efficiency, it is always best to use simple shapes for collision.

2. Alt + C will toggle on the display of collision hulls in the Level Viewport window.

3. True: By default, UE4 uses UV channel 1 for lightmaps.

4. False: If a Static Mesh asset does not have an assigned collision hull, then any Static Mesh
Actors that reference the Static Mesh asset will not be able to process any collision events.

5. False: Assigning a new material to a Static Mesh Actor only affects that Actor.

Exercise
Find .fbx and .obj model files on the Internet or use the ones provided in the Hour_04 folder
(available on the book’s companion website at www.sty-ue4.com) and import them. Edit their
 collision hulls and place them in a Level.

1. Create a Maps folder in the Content Browser.

2. Create a new default map and save it to the newly created Maps folder.

3. Create a Mesh folder in the Content Browser.

4. Import an .obj model file.

5. Import an .fbx model file.

6. Assign a new material to each of the Static Mesh assets.

7. Change their collision hull properties by using the presets and auto decomposition.

8. Place Static Mesh Actors in the Level several times.

9. For each mesh, change the Move, Scale, and Rotate Transforms.

10. Assign unique materials to each of the Static Mesh Actors.

11. Save the Level to the Maps folder.

http://www.sty-ue4.com

ptg18222824

HOUR 5
Applying Lighting and Rendering

What You’ll Learn in This Hour:

 Learning lighting terminology

 Using different types of lights

 How to apply light properties

 Building lighting

 Using Mobility settings

In this hour, you learn to work with Light Actors. First, you look at the types of lights available.

Then you look at how to place Light Actors in a level, modify their settings, and control how

they affect other Actors in the world.

Although lights are some of the simplest Actors to place in a level and edit, understanding how

they work and interact with other Actors and how to apply rendering settings are difficult skills

to master.

NOTE

Hour 5 Setup
Create a new project with the Third Person Template and Starter Content.

Learning Light Terminology
Some basic key concepts help in understanding the options when dealing with Light Actor

 properties:

 Direct lighting refers to light that falls on the surface of an Actor, without any interference

from other Actors. The light travels directly from the light source to the surface of mesh.

So the Static Mesh Actor receives the full color spectrum of the light.

ptg18222824

76 HOUR 5: Applying Lighting and Rendering

 Indirect or bounced lighting refers to light that has been reflected off the surface of another

Actor in the scene. Because light waves are absorbed or reflected based on the surface

 properties and colors of a mesh, the reflected light takes on some of the color information

and also passes it on to the next surface in its path. Indirect lighting affects the overall

scene light intensity.

 Static lighting refers to lighting for objects and lights that do not move. For things that

don’t move, lighting and shadows have to be calculated only once (during build), which

results in better performance and high quality.

 Dynamic lighting refers to lights and objects that may move at runtime. Because this type of

lighting is calculated every frame, it is often slower and lower quality than static lighting.

 Shadows are created when the engine takes a snapshot of the silhouette of a mesh from the

light’s point of view and then projects that image onto the surface of other Actors on the

inverse side of the lit Mesh Actor. Both Static Mesh Actors and Light Actors have shadow

properties that can be selected.

Understanding Light Types
There are four basic Light Actors in Unreal Engine: Point Light, Spot Light, Directional Light,

and Sky Light (see Figure 5.1). They all have some similar property settings. However, each Light

Actor type also has settings that are unique.

FIGURE 5.1
Light Actors can be found in the Lights section of the Modes panel.

Adding Point Lights
Point Lights work much like a real-world light bulb, emitting light equally in all directions from

a single point in space. This is the most common light type, particularly for indoor scenes.

ptg18222824

Understanding Light Types 77

▼TRY IT YOURSELF

Add a Point Light to a Scene

Follow these steps to create an empty level without lighting and add various types of lighting:

1. Create a new empty level. It should be black.

2. In the Modes panel, select Basic and drag a cube into the level.

3. In the Details panel, set Location to 0,0,0 and set Scale to 20,20,1 to create a floor surface.

4. In the Modes panel, select Lights and drag a Point Light into the level.

5. In the Details panel, set Location to 400,0,200.

6. In the Modes panel, select Basic and drag a cube into the level. Notice the shadow that
is cast on the floor from the Point Light.

7. In the Details panel, set Location to 500,100,90.

8. Play with adjusting various parameters on the light and the cube to see what effects they have.

9. Save and name the Level LightStudy.

Figure 5.2 shows the result of this Try It Yourself.

FIGURE 5.2
Point Lighting.

ptg18222824

78 HOUR 5: Applying Lighting and Rendering

Adding Spot Lights
In UE4, a Spot Light emits light from a single point in a cone shape toward a specific direction,

just like a Spot Light in the real world. The Spot Light direction is set by changing the Spot Light

Actor’s Rotate transform. You can adjust the attenuation to set the distance the light travels

from where the Spot Light is paced. The Inner Cone and Outer Cone angle properties affect how

quickly light changes from full intensity at the center of the cone to no light at the edges. The

closer these values are to one another, the harder the edge of the light will be.

▼ TRY IT YOURSELF

Add a Spot Light

Follow these steps to add some Spot Lights to the level you created in the previous Try It Yourself:

1. Open the LightStudy level you created in the previous Try It Yourself.

2. Delete the Point Light from the scene.

3. In the Modes panel, select Lights and drag a Spot Light into the level.

4. In the Details panel, set Location to 600,60,300.

5. Play with adjusting the color and adding more lights.

Figure 5.3 shows the result of this Try It Yourself.

FIGURE 5.3
Red and blue Spot Light overlapping each other and creating purple lighting.

ptg18222824

Understanding Light Types 79

Adding Sky Lights
A Sky Light captures the distant parts of a level—everything further than SkyDistanceThreshold—

and applies light to it. That means the sky’s appearance and its lighting and reflections will

match, even if the sky is coming from atmosphere, or layered clouds on top of a skybox, or

distant mountains. Using a Sky Light is a good way to brighten up an entire level and affect

shadow colors.

NOTE

Fog Actors
Because of how a Sky Light functions, you may need to add an atmospheric fog or exponential fog
Actor to a scene to see results of the Sky Light in the scene.

▼TRY IT YOURSELF

Add a Sky Light

Follow these steps to add a sky and Sky Light to the scene you’ve been working on:

1. Open the level you created in the previous Try It Yourself. Delete the other lights from the
level if you want.

2. In the Modes panel, select All Classes and drag a Sky Sphere (BP_Sky_Sphere) into the
level. This is the sky.

3. In the Modes panel, select Lights and drag a Sky Light into the level. Notice that the scene
has taken on the color of the sky.

4. Play with the properties on the Sky Sphere and Sky Light to see various effects.

ptg18222824

80 HOUR 5: Applying Lighting and Rendering

 Adding Directional Lights
A Directional Light simulates light that is being emitted from a source that is infinitely far away.

All shadows cast by this light will be parallel, making a Directional Light the ideal choice for

simulating sunlight. When using a Directional Light in your level, it does not matter where you

place it, only the direction it is facing.

Figure 5.4 shows the result of this Try It Yourself.

FIGURE 5.4
Sky lighting.

▼

ptg18222824

Understanding Light Types 81

▼TRY IT YOURSELF

Add a Directional Light

Follow these steps to add Directional Lighting to your scene:

1. Open the level you created in the previous Try It Yourself.

2. In the Modes panel, select Lights and drag a Directional Light into the level.

3. Use the Rotate tool to change the direction of the Directional Light and observe the effect.

4. To make a sky, select Sky Sphere in the World Outliner panel.

5. In the Details panel, set Directional Light Actor to Directional Light. Now the sky controls the
Directional Light.

6. Play with the properties on the Sky Sphere and Directional Light to see various effects.

Figure 5.5 shows the result of this Try It Yourself.

FIGURE 5.5
Directional Lighting with Sky lighting.

ptg18222824

82 HOUR 5: Applying Lighting and Rendering

 Using Light Properties
The Properties tab of each light in a scene shows a number of properties, including the ones

listed in Table 5.1.

TABLE 5.1 Light Properties

Property Description

Intensity Determines the brightness of the light, in lumens, for Point
Lights and Spot Lights, where 1700 lumens corresponds to a
100W bulb.

Light Color Determines the color the light shines. Color is additive, so if you
shine a red light on a blue object, it ends up purple.

Attenuation Radius Determines the maximum distance the light will reach.
Illumination fades from maximum at the source of the light to
zero at the edge of the radius.

Cast Shadows Determines whether objects affected by the light cast shadows.
Calculating dynamic shadows can be processor intensive.

Inside Cone Angle Sets the angle in degrees of a Spot Light’s bright area.

Outside Cone Angle Sets the angle in degrees of a Spot Light’s falloff area. If this is
close to the inside angle, your Spot Light area will be sharp.

Temperature Allows you to set the color of a light based on Kelvin color
 temperature scale. This is great if you are trying to match
 real-world light colors. You need to toggle on the Use
Temperature property in order to set this.

There are many more properties, giving you total control over the lighting in a game, but these

should be enough to get you started.

CAUTION

Performance
Poorly chosen lighting settings can have a big effect on performance. For example, using too many
dynamic lights can cause serious performance issues. In addition, light attenuation radius can have
a serious impact on performance, so use larger radius values sparingly.

ptg18222824

Building Lighting 83

Building Lighting
UE4’s tool for building lighting is called Lightmass. Lightmass has many settings that are

beyond the scope of this book. However, you can control some of these settings by selecting

Window > World Settings and looking at all settings under Lightmass.

While UE4 can render all lights and mesh in a level with dynamic lighting, doing so affects

both performance and quality. If UE4 knows that a light will not move, it can precalculate the

 lighting and shadows for that light and all static Actors in the world that it touches. While

 storing precalculated lighting is less processor intensive during gameplay, it does require

 memory usage.

You use the build light tools in UE4 to precalculate lighting and shadow information in a

level for Static Mesh and Light Actors and BSPs. (See Chapter 9 for information about BSPs.)

This information is stored as images embedded in the level, which you can find by selecting

Window > World Settings > Lightmass > Lightmaps.

Once you have built lighting, the editor displays the precalculated lighting data for any static

lights. When you add a new light to a level or move lights and meshes, lights are rendered as

dynamic and updated in real time until the lighting is rebuilt.

To build lighting, click the down arrow on the Build button on the toolbar (see Figure 5.6).

In the submenu that appears, select Lighting Quality > Preview to get quick results. When

you’re ready with your final level, select Lighting Quality > High. High quality takes longer to

generate but gives more accurate results.

FIGURE 5.6
Build button.

Swarm Agent
Notice that when you build lighting, an application called Swarm Agent automatically launches

in the background. Swarm Agent manages communication between the editor and Lightmass.

When you build lighting, Swarm Agent keeps track of and displays the build progress. As the

complexity of a level increases, so does the amount of time it takes to calculate and build

 lighting. Swarm Agent can also be set up to communicate with remote machines on a network

and utilize their processing power to reduce the amount of computing time. For small projects

and levels, this is usually not a concern, but it is nice to know network rendering is there

when needed.

www.allitebooks.com

http://www.allitebooks.org

ptg18222824

84 HOUR 5: Applying Lighting and Rendering

NOTE

Rebuilding Lighting
Every time you move a light that is set to cast static shadows or a Static Mesh Actor that is set to
static, the editor reminds you to build lighting. The more lights and objects you have, the longer it
takes to rebuild the lighting. When working with light, it is best to follow an iterative process and
build lighting only when significant changes have been made. You can preview and playtest the level
without rebuilding the lighting, but the lighting won’t be correct until you rebuild lighting.

▼ TRY IT YOURSELF

Build Static Lighting for a Scene

Follow these steps to add static lighting for the scene you’ve been working with:

1. Create a new Default Level.

2. Navigate to the Shape_Cube Static Mesh asset found in the StarterContent/Shapes folder
in the Content Browser, and place it into the level so it is sitting on the floor.

3. From the main toolbar, click the down arrow next to Build to expand the options.

4. Select Lighting Quality > Preview.

5. Click the Build icon to build lighting. Once the Lighting build is finished, the shadow of
Static Mesh Actor will update and display the newly built lighting and shadow.

6. Now change the quality of the precalculated shadow. Select the Floor Static Mesh Actor that
was added when you created the Default level. In the Level Details panel under Lighting,
turn on Overridden Light Map Res and set its value to 1024.

ptg18222824

Building Lighting 85

▼7. Click the Build icon to build lighting again. You will see the shadow quality change.
Figure 5.7 shows the result of changing the Lightmap resolution.

FIGURE 5.7
Static lighting with the default Lightmap resolution on the left and 1024 Lightmap resolution on the right.

 NOTE

Adjusting Lightmap Resolution
You can override the Lightmap resolution quality on a per-Actor basis in your level as needed, or
you can change the Default Lightmap resolution on Static Mesh asset in the Static Mesh Editor.
Increasing the resolution will have an effect on lighting build times.

Mobility
Every light has a Mobility option for which you can choose Static, Movable, or Stationary. These

settings help UE4 decide what to light dynamically and what to precalculate and save (bake) in

a Lightmap:

 Static lights are lights that cannot be changed or moved in any way at runtime. The

 lighting information is built prior to gameplay and stored in a special texture called a

light map. Static light gives high performance but does not work with movable objects

within the light’s radius. The primary reason to use the Static setting is for performance,

such as on mobile devices.

ptg18222824

86 HOUR 5: Applying Lighting and Rendering

 Movable lights cast completely dynamic light and shadows, and they can change position,

rotation, color, brightness, falloff, radius, and just about every other property they have.

None of the light they cast gets baked into the light maps, and they cannot have any

 indirect lighting. These lights are usually expensive to render and are not as high quality

as static or stationary lights. You might use a movable light on a character that moves,

such as a player holding a flashlight.

 Stationary lights are like static lights in that they cannot move; however, their brightness

and color can be changed at runtime. This can be useful, for example, on lights that

can be turned on and off that are not movable. The Stationary setting gives medium

 performance and high quality.

Table 5.2 helps you determine which of these Mobility settings to use for Static Mesh Actors.

TABLE 5.2 Static and Movable Settings for Lights and Meshes

Light Settings

Static Mesh Settings Static Stationary Movable

Static Baked lighting Baked lighting Baked lighting

Movable Dynamic shadows Dynamic shadows Dynamic shadows

To change the Mobility setting of any Light Actor in your level, select the light and in the Level

Details panel under Transform, select the Mobility setting you need. The Directional Light that

is found in the default scene already has a Mobility setting of Stationary. So, if you change the

Mobility of the Shape_Cube Static Mesh Actor that you placed in the previous Try it Yourself to

Movable, you will change how the editor casts shadows for the Actor.

▼ TRY IT YOURSELF

Casting Dynamic Shadows

Follow these steps to change the Mobility settings of a Static Mesh Actor and to make it cast
dynamic shadows:

1. Continue with the level you created in the previous Try it Yourself.

2. In the level, select the Shape_Cube Static Mesh Actor; and in the Level Details panel under
Transform, set its Mobility to Movable by clicking on Moveable.

ptg18222824

Workshop 87

 Summary
This hour starts off by highlighting some basic lighting terminology. You learned about the

 different types of light in UE4 and their purposes, and you learned how to place lights and

 configure their settings. You also learned about building lighting and how Mobility settings

impact static and dynamic lighting. Lighting is one of the most complicated and powerful

aspects of UE4, and it can be overwhelming. There is plenty of time to learn the details.

For now you are now equipped with everything you need to get started lighting scenes.

Q&A
Q. How many lights can I add to a scene?

A. This question is not easy to answer. If you’re talking about small, static lights that do not
overlap lots of objects, you can add hundreds or thousands. On the other hand, using just a
few large radius dynamic lights covering the entire scene could be too many. The best way
is to experiment and see what works.

Q. Why don’t the shadows or lighting in my scene look correct?

A. If your lights are static, you may need to build the lighting again by clicking the Build button
on the toolbar.

Q. How do game makers make some scenes look so realistic?

A. Look at all the sample scenes included with UE4 and examine how the lights are set up.
You might be able to figure out some of the tricks used to get various effects. As in magic,
smoke and mirrors are used in game development all the time.

Q. Why are the Lightmaps generated during the build lighting process and embedded in the level?

A. The placement of lights and Actors in a level is unique to each level, so the lighting informa-
tion generated is relevant only to that level.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. To illuminate an entire scene with one light, which type should you use?

2. When would you use a static or stationary light?

3. When would you use a stationary or movable light?

4. What is Lightmass?

ptg18222824

88 HOUR 5: Applying Lighting and Rendering

Answers
1. To illuminate an entire scene with one light, use a Sky Light or Directional Light.

2. Use a static or stationary light when your light and everything it casts upon cannot move.

3. Use a stationary or movable light when your light or the Actor the light casts upon needs to
be moved.

4. Lightmass is UE4’s static lighting engine, which you use when building lighting.

Exercise
In this exercise, build a simple scene by placing BSP, Static Meshes, and all the different
light types.

1. Create a new empty level.

2. In the Modes panel, select BSP and drag out a box into the Viewport.

3. With the box selected in the Details panel, under Brush Settings set both the X and Y
 properties to 1000 and the Z property to 20. UE4 creates a large platform.

4. In the Modes panel, select Basic and drag out a player start in the center of the platform
just above the surface.

5. In the Modes panel, select Basic and drag out two cube Static Meshes. Place them on the
platform just above the surface.

6. Select one of the cube Static Mesh Actors and, in the Details panel, under Physics, turn on
Simulate Physics.

7. Add Directional Light with Rotate set to 0,200,45 and Light Color set to 255,205,105.

8. Add a Point Light to the scene so it is just above the platform. Set its Intensity to 15000,
Light Color to 255,0,255, and the Attenuation Radius to 250.

9. Add a Spot Light to the scene and place it about 300 units above the platform in an empty
location. Set its Intensity to 30000, Light Color to 210,255,15, Inner Cone Angle to 22, and
Outer Cone Angle to 24.

10. In the Modes panel, select Visual Effects and drag out atmospheric fog into the scene.

11. Add a Sky Light. Set its Intensity to 10 and Light Color to 215,60,15.

12. Click the Build button on the toolbar to build the lighting.

13. Preview the level by walking around the level and pushing the Physics cube around to see
how it interacts with the placed lights.

14. Make adjustments to all the Light Actors as desired. Remember to build the light again
before you preview the level.

ptg18222824

HOUR 6
Using Materials

What You’ll Learn in This Hour:

 Understanding materials and how they are used

 Using physically based rendering

 Using the Material Editor

 Using texture types and sizes and importing textures

 Understanding the material node and constants

 Using instances and parameters

In this hour, you learn what materials are and how to use them in UE4. You first get a basic

understanding of how to use physically based rendering. Next, you learn about each type of

material input and how it renders in real time. Then you get familiar with ideal texture sizes,

resolutions, and settings, as well as how to use them in a material setup. You also learn how

to create a new material using the Material Editor, and using that material, you learn about

instances and node parameters. Finally, you create your own material setup.

NOTE

Hour 6 Setup
Create a new Blank project with Starter Content.

Understanding Materials
A material, or shader, is a combination of textures, vectors, and other mathematical

 calculations that work in tandem to create surface descriptions and properties for assets in UE4

(see Figure 6.1). Materials may seem complex at first, but a material is really one of the most

visually simple parts of UE4. You can use materials to describe the surface properties of an asset

for the player and establish visual context and style. Materials primarily inform UE4 how light

reacts to each surface. Assets within UE4 have specific materials applied to them. By default,

ptg18222824

90 HOUR 6: Using Materials

different objects have standard default UE4 materials applied to them. When you are viewing a

rock, a tree, or a concrete wall in a game, each of these assets has a particular material applied

that gives it a unique appearance.

Base Color (Albedo) Normal

Roughness Metalness

C
om

bined T
hrough M

aterial

Results on
In-Game Asset

FIGURE 6.1
The aspects and textures combined in a material make the final result that appear in a game.

Physically Based Rendering (PBR)
UE4’s material rendering system uses physically based rendering (PBR) for real-time rendering.

PBR is a relatively new concept in the world of authoring textures and materials for games.

Previously, PBR was part of a process that placed lighting detail directly into textures to give

shape and surface volume to assets. A problem became apparent with that method when assets

moved into different types of lighting scenarios, and there were viewable discrepancies between

shadow and light information and the light direction and shadows within the scene. Such

 discrepancies tended to cause a visual break in continuity and believability of the game world.

Now, thanks to advances in processing power and UE4 technology, you use material parameters

to allow assets to form their own lighting and shadow information. This prevents assets from

being “baked,” or permanently placed, within the textures. In addition, you can have assets lit

in any time of day under any lighting scenario without having to re-author the textures. All this

boils down to simpler, more consistent creation of textures for game assets.

ptg18222824

Material Input Types 91

NOTE

The PBR Material System
PBR has been adapted to mainstream game development in the past few years, but the film and
television industries have been using it for some time with 3D animation and renderings. PBR helps
different materials react in different lighting scenarios more realistically. It also allows for reuse of
textures and assets during production and a more realistic lighting in each scene.

Material Input Types
To create great materials and textures, you use the Material Editor. The following sections show

you the most commonly used Material Editor inputs.

Base Color (Albedo)
Base color, also sometimes referred to as albedo or diffuse, is the core color description of a surface

in a material minus all shadow and lighting detail. Essentially the base color input uses an

albedo texture, which is the pure color value of the material you are creating. It should be void

of shadow and lighting information and show only the color that you wish to represent in the

material. It can use a texture input or even a simple vector value, which is simply a number

 representing a flat color.

Metalness
The metalness material input is used to describe whether a material is metallic. This input is one

of the easiest parts of the Material Editor to understand, and it is also one of the most impor-

tant inputs to get right for a material to render correctly. The way UE4 uses metalness is very

user-friendly and allows for quick control and understanding of which materials are metallic.

Each pixel on this texture map is typically black or white, with very few grays. Black represents

 materials that are not metallic, such as stone, brick, or wood, while white represents the aspects

of the material that are metallic, such as iron, silver, or copper. Often, if a material is not

 metallic, a simple vector of 0 can be used to simplify this input. You can also reduce this input to

a grayscale texture or just one channel of a texture because of its simplicity.

NOTE

Metalness Versus Specular-Based PBR
There are two major types of PBR-based systems for authoring textures in games. While UE4 uses
a metalness-based system, some other game engines use a specular-based system. Both systems
can produce almost identical results. The main difference is in the way the game maker authors
 textures so the engine can best understand it.

ptg18222824

92 HOUR 6: Using Materials

Roughness
Roughness (also called gloss or micro surface detail) is the most artistically flexible aspect of the

PBR system. You use this texture to represent the roughness and the history of the surface of the

material being created. The roughness depicts the miniature details and describes the sheen or

amount of light projected from a surface. For instance, if you are authoring a new steel metal

material, the metalness and albedo of the material would be fairly simple; you would need

to make little change in color or noise variation, but you would use roughness to describe all

the small surface detail such as minor scratches, dirt, or grime. Very rarely would you have a

single-color roughness, as it is rare that any surface in real life has not had some sort of wear or

change to its surface. You can reduce roughness to grayscale textures as no color information is

used to describe roughness.

Normal
You use the normal input for normal map textures or three-vector values (X, Y, and Z

 coordinates, as discussed in Hour 3, “Coordinates, Transforms, Units, and Organization”).

Normal inputs describe the direction in which light should react with a surface. Normal maps

fake high-definition surface detail and shape in an asset by tricking the light into displaying

these details based on a texture map per pixel being lit. The normal input is similar to a bump

map in other 3D packages and rendering, but with a few minor changes in the authoring.

Understanding normal inputs can be tough at first, but it is easiest to comprehend if you

break down a normal input into the color channels involved in the process. Each channel of a

 texture map (red, green, and blue) is composited to represent a different surface direction angle

per color. Red represents the X-axis, or the left-to-right direction of light hitting the surface.

Green represents the Y-axis, or the top-to-bottom direction. Blue represents the Z-axis, or the

 front-to-back direction (see Figure 6.2).

NOTE

Green Channel
The green channel sometimes changes or flips, depending on what type of 3D software you use.
Maya uses a normal format, while Max and UE4 flip the green channel for rendering normal maps.
To flip the green channel in UE4, select and open the texture in the Content Browser and select the
Flip Green Channel option.

ptg18222824

Material Input Types 93

Material Combined Normal Map

Red Channel Green Channel Blue Channel

FIGURE 6.2
The channels of a normal map each have directional lighting information that UE4 uses to determine the
 volume and shape of the surface.

Imagine a flat polygon being lit by a light. When the light hits it, the polygon reacts simply by

showing that it is being lit as a flat surface because the light rays hit the polygon and react in

one direction. Now think about creating a brick surface. In order to accomplish this, if you have

no model that has thousands of polygons, you can create a normal map to emulate the smaller

surface details that the bricks would display. This normal map, when hooked up through the

Material Editor, notifies UE4 that when a light hits this specific material on a surface, it should

react as specified per pixel represented in that map. When you then shine the same light at the

surface, it reacts accordingly and gives the illusion of form and detail that is not really there.

ptg18222824

94 HOUR 6: Using Materials

Creating Textures
Textures are the foundation for coloring and giving a visual language to materials and assets

within UE4. The following sections explore how to create and use them.

Texture Sizes
Texture sizes are an important part of the authoring process. Creating a texture that does not

use a specific proportion constraint may lead to the texture not rendering properly, being skewed

or distorted, or not being able to be imported at all. Games today use a general set pattern of

texture size resolution.

Powers of 2
Understanding how textures are rendered in UE4 is key to knowing the texture size you should

specify. In order for UE4 to process textures sizes in real time, all textures are rendered in terms

of the distance from the player camera view. So if you are seeing an asset up close in the game

world, the texture resolution on the object is close to the exact size at which the texture was

authored and imported. As the player camera gets further away, smaller texture details are

unnecessary to understand the colors and shapes being represented, and therefore UE4 begins

to reduce the texture size by continuously halving it as the player gets farther from the asset.

This process is called mipping or mip mapping (see Figure 6.3).

Texture Map Sizes

4096
2048
1024
512
256
128
64
32
16
8
4
2

Texture Size
Decreases by
Half the
Further Away
the Camera Is

FIGURE 6.3
The size of the texture is directly related to how the texture resizes within UE4 dynamically to save memory.

ptg18222824

Creating Textures 95

Now that you have an understanding of how UE4 uses and renders textures, you’re ready for

a discussion of aspect ratio, or proportion. Texture sizes begin at around 256 pixels (px) and

increase in scale by doubling over and over (512, 1024, 2048, and sometimes the rare 4096

 pixels). These multiples are important because they enable the texture to be halved or multiplied

by 2 for easy use in UE4. Texture sizes can go down if necessary, as well, to 128, 64, 28, 16, 8,

4, and even 2 pixels. A texture can be any of these sizes in height or width, but it must both be

using one of these pixel size for its height and width measurements. For instance, most textures

are authored within a box or square shape ratio (e.g., 512×512 pixels or 1024×1024 pixels), but

this does not mean the same pixel size must be used for each dimension. A texture created at

512 pixels height and 1024 pixels width is perfectly fine because UE4 halves each aspect individ-

ually while rendering it; that is, UE4 reduces it to 256×512 pixels and again to 128×256 pixels.

Texture File Types
To create materials from the textures you have created, you need to import the textures into the

Content Browser. Certain file types and settings are needed to correctly import and integrate

those textures into the Material Editor. The following file types currently work in UE4:

 .tga

 .psd

 .tiff

 .bmp

 .float

 .pcx

 .png

 .jpg

 .dds

 .hdr

Importing Textures
Now that you understand how to author textures and what formats are acceptable, you can

import some textures into the Content Browser.

ptg18222824

96 HOUR 6: Using Materials

▼ TRY IT YOURSELF

Import Textures into the Content Browser

To import a your own texture into the editor, open UE4 and follow these steps:

1. Open the Content Browser by clicking the Content Browser button on the toolbar or by
 pressing Ctrl+Shift+F.

2. Select the location to import the texture from your computer’s folders.

3. Right-click in an empty area on the right side of the Content Browser and select Import

Asset/Import to location on your computer where project is stored.

4. Select Windows Folder and navigate to the texture you want to import.

5. Click Open.

NOTE

Drag and Drop
To import any content—including textures, models, video files, and other assets—into UE4, you can
also simply click from a local file on your computer, drag, and drop it into the Content Browser. For
instance, if you have a file saved on your desktop, you can simply click and drag it into the Content
Browser.

Making a Material
The following Try It Yourself walks you through creating a new material in the Content Browser.

▼ TRY IT YOURSELF

Create a Material in the Content Browser

To create a material in the Content Browser, open UE4 and follow these steps:

1. Open the Content Browser.

2. Select the location to create the material from the Content folders.

3. Right-click in an empty area on the right side of the Content Browser and select Create

Basic Asset/Material.

4. Rename the new material from its default name.

ptg18222824

Making a Material 97

After you have made a material, you can freely control all aspects of each input for that

 material. You can double-click any material in the Content Editor to open it in the Material

Editor (see Figure 6.4). In the Material Editor, you can make changes to any of the inputs. Notice

that the Material Editor has multiple options available as well as a real-time material preview.

V
ie

w
po

rt
 p

an
el

Details panel Palette panelGraph panel

FIGURE 6.4
The Material Editor.

There are primarily four panels to use in the Material Editor, along with the main toolbar:

 Viewport panel: The top-left corner of the Material Editor is the viewport panel, which

gives a real-time preview of the material. It shows the final result of the material being

compiled. You can change the object on which the material is displayed by using the

shape options below it, and you can change its visual or perspective attributes by using the

options above it.

 Details panel: Directly below the Viewport panel is the Details panel. This is where you

can change overall material properties and rendering techniques that the material uses in

gameplay space, such as opacity options, subsurface options, and shading models. This

panel is useful for advanced material editing.

ptg18222824

98 HOUR 6: Using Materials

 Graph panel: The middle panel is the Graph panel, which is where all the visual editing

happens for the material. It allows you to drag in or place textures to route into inputs

or use special nodes to create different effects in the material. This is where you link the

 textures you bring into UE4 to a material to achieve your final result.

 Palette panel: This is the panel located farthest to the right. It houses all the special nodes

and math functions for creating specific effects within a material.

The panels of the Material Editor each play a part in constructing the final material and

 optimizing the result.

Inputs and Outputs
You can think of the Graph panel as a panel that has an electric current traveling from left to

right. When the current reaches the final node, the material node, the Graph panel creates the

combination of all the material effects shown in the game. The material node is the default for

any new material and contains all the final material attributes (see Figure 6.5).

Each node used in the Graph panel, whether for a texture or a specific node, has outputs and

sometimes inputs and connects to the final material node. The output of a node is located on its

right side. If there is an input, it is located to the left. You can connect nodes together to create

different effects that influence the final result for the material. To connect one node to another,

simply click the output connection of one node and drag the visible connection to the input of

another node.

NOTE

Extra Nodes
When you’re using the Material Editor, it is okay to show floating nodes that you are using to experi-
ment, but they should not appear in the final result. The material takes into account only the nodes
that are hooked into the material node. It ignores all other nodes.

ptg18222824

Making a Material 99

FIGURE 6.5
Nodes connecting through outputs and inputs to the final material node.

Value Nodes
Now that you understand the parts of the Material Editor, you can create a simple material by

using constant values. Constant values are numbers that can create values or colors depending

on the number of values used. You can get these value nodes from the Palette panel and use

them within a material as inputs.

Two commonly used value nodes are the Constant node and the Constant3Vector node. The

Constant node represents a single number or value. The Constant3Vector node represents a

 vector or a set of three numbers, each representing a corresponding RGB value. For instance,

if Constant3Vector is set to 1,4,6, it means the setting is 1 for red, 4 for green, and 6 for blue.

ptg18222824

100 HOUR 6: Using Materials

Most of the commonly used nodes in the Material Editor have a corresponding shortcut key so

you can place them quickly. To place a simple Constant node, for example, press the 1 key and

right-click in the Graph panel area. To create a Constant3Vector, press the 3 key and right-click

in the Graph panel area. You can also click these nodes in the Palette panel and drag them

into the Graph panel to use them. After you have placed one of these value nodes in the Graph

panel, you can click the node and use the Details panel to the left to change the value, name,

and other aspects of the node. Next you’ll practice creating a material using vector values.

▼ TRY IT YOURSELF

Create a Material with Vector Values

To create a material with vector values, open the Material Editor on the new material you just
 created and follow these steps:

1. Create a Constant value node by pressing the 1 key and right-clicking the mouse in the
Graph panel.

2. Click the output of the new Constant node and drag to connect it to the roughness input of
the material.

3. Click the Constant value node to see the information for the node in the Details panel.

4. In the Details panel, change the value of Constant to 1 instead of the default 0. (Notice the
change in the roughness in the Viewport panel.)

5. Create a Constant3Vector by holding down the 3 key and right-clicking in a blank space in
the Graph panel.

6. Click the Constant3Vector value node to see the information for the node in the Details
panel.

7. In the Details panel, change the value of the R value to 1. (If the color values are not
already exposed in the Details panel, click the small arrow to the left of the Constant option
in the Details panel. The R, G, and B options appear, and you can individually change them
to control the red, green, and blue values.)

ptg18222824

Making a Material 101

8. Click and drag the output of the Constant3Vector to the base color of the material node.
(Notice that the color changes to pure red, as shown in Figure 6.6).

FIGURE 6.6
Notice the change that occurs when the material node receives new inputs.

▼

Instances
Instances are key to reusing materials multiple times and preventing you from having to create the

materials over and over again. By changing some of the nodes in a material, you can make specific

nodes in the material dynamically changeable. For instance, if your main material is colored with

a Constant3Vector node to be green, by changing the node to a parameter, you can easily alter the

color in another instance of that material instead of making a whole new material from scratch.

ptg18222824

102 HOUR 6: Using Materials

To work with instances, the main material must accommodate the ability to dynamically

 transform specific nodes into parameter-based nodes. In the Material Editor of the primary

 material, you right-click any of the constants or vectors nodes and select Convert to Parameter

from the context menu (see Figure 6.7). After you convert the material to a parameter, you can

rename it in the Details panel, and then any value or information you give to the main material

in the Details panel will be the default settings for that node until you alter any settings in the

material instance. To create a material instance from a material, simply right-click the material

in the Content Editor and select Create Material Instance. This material instance uses the

parameters from the parent material that we originally created.

FIGURE 6.7
When a constant is changed to a parameter, it can be renamed and labeled. Then it is available to change
dynamically within the material instance.

ptg18222824

Making a Material 103

▼

Create a Material Instance

With the Content Editor open, follow these steps to create a material instance:

1. Open the main material you created previously in the Material Editor.

2. Right-click the Constant3Vector that you made previously and select Convert to Parameter.

3. In the Details panel, rename the Constant3Vector to Color Param.

4. Save changes and close the Material Editor.

5. In the Content Editor, right-click the main material and select Create Material Instance.

6. Rename the new material instance you have just created to Mat_inst and then double-click
it in the Content Browser to open it.

7. Navigate to the Parameter Groups section of the Details panel and click the Color Param

box. The parameter is now active.

TRY IT YOURSELF

Now when you double-click the material instance you just created from the main material, you

can see the parameter settings in the Parameter Groups section of the Details panel. Clicking the

checkmark next to the parameter you want to alter activates that parameter within the instance

so that you can alter any of the details of that parameter.

ptg18222824

104 HOUR 6: Using Materials

▼
8. Change color values as follows: Set R to 0, G to 1, and B to 0. (Notice that the color

 changes to green, as shown in Figure 6.8.)

FIGURE 6.8
Inside the material parameter, you can select the color and change it to any other color without altering the
original material.

ptg18222824

105Q&A

 Summary
You now understand why materials are such a vital part of the production pipeline and how

they are created and used in UE4. Understanding PBR can take some practice, but using this new

system yields more realistic and overall believable game worlds, assets, and characters. Using

material instances and parameters helps you increase production speed and overall memory

conservation. In reducing the number of materials a project uses through smarter instancing

and parameters, you can save time and energy, create larger game spaces, and easily use assets

that have similar material setups. A good material and shader artist finds ways to make innova-

tive and reusable materials that are easy to understand and flexible for multiple instances.

Q&A
Q. Do I have to use the PBR system in UE4? I am used to the old system, and there is still a

specular input node in the Material Editor.

A. Yes, you do need to use PBR. Almost all functions and setups are built to accommodate
PBR. The specular input node has some influence on the final result, but it is not as power-
ful as it was in older versions of Unreal Engine.

Q. Can I create and import a texture that is larger than 4096 pixels?

A. Yes, this is possible, but doing it is highly discouraged. Rendering a texture larger than
4096 in real time is difficult for not only UE4 but most computers, and you may find that
trying to render such a large texture causes problems with frame rate.

Q. Why are some of the material inputs grayed out and not usable?

A. Material setups use specific inputs to generate the final results. The Details panel of the
material node controls what inputs are visible in connection to the type of material. For
example, if you are making a glass material, you may need an opacity input, but if you are
making a brick wall, an opacity input is not necessary.

Q. Can I have more than one output routing into an input of a node?

A. No, only one output is accepted into one input per node. Sometimes nodes have multiple
input nodes for math functions and other special nodes, but there are multiple input slots
for these types of nodes.

Q. Can I change what material a material instance is connected to?

A. Yes, this is possible. In the Details panel of the material instance, you can relink a differ-
ent base material to the material instance. Keep in mind that the material instance then
updates and changes relative to the parameters within that new material and may lose
some of the previous information that may have been set per parameter.

ptg18222824

106 HOUR 6: Using Materials

Q. Can I delete a main material and keep a material instance of it?

A. No, the material instance needs to use the information from a base material. However, you
can switch which material it references. You just need to make sure it has a material to get
its information from.

Q. If I change the main material, will the instance change?

A. That is the glory of material instances! The instance tries to stay up to date with the chang-
es you make across all instances from one material. If you activate a parameter within an
instance, the instance attempts to keep the value but updates the other parameters that
are not active or adds new parameters added later during production.

Q. What are all these other nodes in the Palette panel? Can I also use those to create materials?

A. Those nodes are a collection of mathematical equations, figures, and other special nodes
to help you achieve special results within the material beyond the basic constant values
and texture inputs—and you are free to use them. Experiment and type multiple ones to
see what nodes give you the effects you want.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. What does PBR stand for?

2. Is a texture size of 512×256 pixels a good size to use in UE4?

3. What material input decides the hue of the material?

4. What panel shows a preview of a material in the Material Editor?

5. Why is material instancing important?

Answers
1. PBR stands for physically based rendering.

2. Yes, this is a valid size in UE4. While not the same both vertically and horizontally, the
 texture size 512×256 still follows the rules and can be sized down in UE4 appropriately.

3. The base color input determines the hue of a material.

4. The Viewport panel shows a preview of a material in the Material Editor.

5. Material instancing allows you to quickly iterate and make changes to parameter values
without requiring you to create a whole new material.

ptg18222824

Exercise 107

Exercise
In this exercise, you create a basic material; create values for its roughness, base color, and met-
alness; and create a material instance to control variations of the material. Creating materials and
instances is an important part of controlling how a scene looks and feels and how light reacts to
each aspect of an asset. Understanding how each input directly impacts the visuals of a game is
an important aspect for any world builder to fully understand. Finally, understanding instancing and
parameters will give you maximum flexibility and reusability with the materials in a project.

1. Create a new material in the Content Editor.

2. Name the material.

3. Open the material and create constant values for both roughness and metalness.

4. Create a Constant3Vector for the base color.

5. Convert all the Constant nodes and the Constant3Vector node into parameters.

6. Rename all the new parameters and give them default values.

7. Create a material instance from the main material.

8. Activate and change the settings of the parameters within the instance.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 7
Using Audio System Elements

What You’ll Learn in This Hour:

 Understanding audio basics

 Using Sound Actors

 Creating Sound Cues

 Controlling Sound with audio volumes

In this hour, you learn about audio in Unreal Engine. You start by learning about the basic

 components of audio in UE4 and then how to place sounds in a scene with Sound Actors. You

also learn about the powerful capabilities of Sound Cues and working with the Sound Cue Editor.

NOTE

Hour 7 Setup
Create a new project with the First Person Template and Starter Content.

Introducing Audio Basics
Whatever game you’re creating, it’s likely that Sound will play a big part in the experience. From

ambient Sounds in a scene to spoken dialog between characters and even background music, the

audio in a game can make or break the user’s experience. Most of the time, players don’t realize

it, but Sound is a large part of overall gameplay.

Audio Components
The audio system in UE4 is powerful, and it has a large number of components and terminology.

At first, it may seem overwhelming, but you’ll understand it all in time. If at any point you feel

like you’re getting deeper into Sound than you want to right now, feel free to skip ahead to later

lessons and then come back to this one when you’re ready for more complex features.

ptg18222824

110 HOUR 7: Using Audio System Elements

Here are a few of the fundamental components this lesson covers:

 A Sound Wave asset represents an imported audio file and settings related to the playback

and storage of that file.

 An Ambient Sound Actor is used to represent an audio source in a scene.

 Sound Cue assets and the Sound Cue Editor enable you to combine Sounds and modifiers to

alter the final output.

 The Sound Attenuation asset defines how a Sound is heard based on the player’s distance

from the Sound’s origin.

Importing Audio Files
UE4 supports importing uncompressed.wav files. If your source audio files aren’t in .wav format,

you can easily convert them by using the freely available Audacity Sound editor, among others.

Epic also provides a great deal of audio content in its sample projects and marketplace to help

get you started.

NOTE

Audacity
Audacity can be downloaded at http://www.audacityteam.org.

The easiest way to import audio is simply to drag a .wav file from your operating system’s file

manager into the Content Browser or by clicking Import in the Content Browser and finding

and choosing the file to import. Once it is imported, you can double-click the audio asset to

see its Properties in the Generic Asset Editor’s Details Panel. The next Try it Yourself walks you

through importing a .wav file.

http://www.audacityteam.org

ptg18222824

Introducing Audio Basics 111

When you have a Sound file imported into the Content Browser, you can edit the Sound Wave

asset properties in the Generic Asset Editor by double-clicking the asset. You can set a number of

properties, including the compression amount, whether the Sound asset loops by default, and the

pitch, and you can even add subtitle information. There isn’t anything you need to modify right

now, though. Figure 7.2 shows the Generic Asset Editor’s Details panel.

▼TRY IT YOURSELF

Import Audio Files

In the Content Browser, create a new folder called MyAudio. Then follow these steps to
import .wav files:

1. Navigate to the Hour_07 folder (available on the book’s companion website at
www.sty-ue4.com) and locate the file storm.wav.

2. Click and drag storm.wav into the MyAudio folder in the Content Browser. A new asset is
created.

3. Repeat steps 1 and 2 for the thunder.wav file, also in the Hour_07 folder for this lesson.
Figure 7.1 shows the assets you’ve just imported—storm and thunder—along with a
Steam01 asset.

FIGURE 7.1
Sound Wave assets in the Content Browser.

http://www.sty-ue4.com

ptg18222824

112 HOUR 7: Using Audio System Elements

FIGURE 7.2
Sound Wave properties.

Using Sound Actors
Sound Wave assets are of no use without a source to play them! Ambient Sound Actors are the

components that allow you to play Sounds in a level. The simplest way to create them is to drag

ptg18222824

Using Sound Actors 113

a Sound Wave asset into a scene. You can create many Ambient Sound Actors in a scene and

give them various properties. Table 7.1 shows the properties available in the Details panel when

an Ambient Sound Actor is selected.

TABLE 7.1 Ambient Sound Actor Properties

Property Description

Sound Points to a Sound Wave asset or Sound Cue asset.

Is UI Sound Determines whether the Sound asset plays when the game is
paused.

Volume Multiplier Sets the overall volume of the Sound.

Pitch Multiplier Sets the overall pitch of the Sound.

Instance Parameters Allows addition of per-instance parameters for the Sound.

Sound Class Override Optionally assigns a group for the Sound asset.

▼TRY IT YOURSELF

Place an Ambient Sound Actor

Continuing from the previous Try It Yourself, it’s time to add an audio source:

1. Open the Content Browser and navigate to one of the Sound Wave assets you imported in
the previous Try It Yourself.

2. Click and drag the asset into the scene.

3. You should see your new Actor in the World Outliner panel and the properties exposed in
the Details panel.

4. Click Play. You should hear the Sound but be unable to discern where it’s coming from.

Setting Attenuation
For Sound to appear to have a position in 3D space, you need to specify the Attenuation.

Attenuation is the falloff of the Sound as you move further away from it in 3D space. Table 7.2

shows the Attenuation properties.

In the next Try It Yourself, you use the Override Attenuation setting to control the distance the

Sound can travel from a placed Actor.

ptg18222824

114 HOUR 7: Using Audio System Elements

TABLE 7.2 Attenuation Properties

Property Description

Attenuate Enables the use of Attenuation via volume.

Spatialize Enables the source to be positioned in 3D space.

Distance Algorithm Specifies the type of volume versus distance algorithm to use
for the Attenuation model.

Attenuation Shape Specifies the shape of the Attenuation volume, which is
 usually a sphere.

Radius Specifies the overall size of the volume. Outside this radius,
no Sound will be heard.

Falloff Distance Specifies the distance over which falloff occurs.

Non-Spatialized Radius Specifies the distance at which spatialization begins.

▼ TRY IT YOURSELF

Override Attenuation

Continuing from the previous Try It Yourself, it’s time to set Attenuation:

1. In the World Outliner panel, select your Ambient Sound Actor from the list.

2. In the Details panel, under the Attenuation category, toggle on Override Attenuation.
A yellow wireframe sphere appears around the Actor in the level. This represents the
 distance the sound can travel.

3. Click the little triangle to the left of Override Attenuation at the bottom of the category to
expand the setting.

4. Set Radius to 200 and Falloff Distance to 50.

5. Preview the level. If you are standing outside the Attenuation sphere, you cannot hear the
sound.

You can adjust the Attenuation for each placed Ambient Sound Actor. You can also create Sound

Attenuation assets that can be reused and applied to Sound Wave assets or Ambient Sound Actors.

TIP

Sharing Attenuation Settings
As a project grows, it is a good idea to create a Sound Attenuation asset and share it among many
Sound Actors. This makes it easier to adjust settings for a large number of audio sources.

ptg18222824

Using Sound Actors 115

Using Modulation Properties
Modulation effects add motion and depth to Sound. The modulation settings allow you to

 control the minimum and maximum modulation for both pitch and volume as well as set a

 high-frequency gain multiplier. Table 7.3 lists and describes the modulation properties.

TABLE 7.3 Modulation Properties

Property Description

Pitch Modulation Min Specifies the lower bound to use when randomly
 determining a pitch multiplier.

Pitch Modulation Max Specifies the upper bound to use when randomly
 determining a pitch multiplier.

Volume Modulation Min Specifies the lower bound to use when randomly
 determining a volume multiplier.

Volume Modulation Max Specifies the upper bound to use when randomly
 determining a volume multiplier.

High Frequency Gain Multiplier Specifies a multiplier to apply to the high-frequency gain
for Sounds generated by the component.

Creating Sound Cues
So far, you’ve learned how to apply a Sound Wave asset to an Ambient Sound Actor, but for

every location where you used a wave, you could have also used a cue. Cues give you an

 enormous amount of control over your audio. What if you want to alter Sounds randomly, such

as footsteps or the wind rustling the trees? Or what if you want to apply modulations and other

effects? This is where the Sound Cue steps in. The Sound Cue Editor has the following panels and

buttons (see Figure 7.3).

 Graph panel: This panel displays the flow of the audio from left to right. The output node,

which has an image of a speaker on it, represents the final output.

 Palette panel: This panel lists various Sound nodes that you can drag into the Graph

panel and chain together to create complex Sounds.

 Play Cue: This toolbar button plays an entire Sound Cue, which is equivalent to playing

the output node.

 Play Node: This toolbar button plays just the audio coming from a selected node (which

includes those before it).

ptg18222824

116 HOUR 7: Using Audio System Elements

FIGURE 7.3
Sound Cue Editor.

To open the Sound Cue Editor, you first need to create a Sound Cue asset. In the next Try It

Yourself, you create a new Sound Cue object and then add a Wave Player node.

▼ TRY IT YOURSELF

Make a Sound Cue

Continuing from the previous Try It Yourself, here you add a Wave Player node to a Sound Cue.

1. In the Content Browser, click the Add New button or right-click in an empty space Asset
Management Area in the Content Browser to bring up the New Asset dialog. Under Create
Advanced Asset, select Sound Cue from the Sound list.

2. Name the new Sound Cue thunder, and then double-click it to bring up the Sound Cue
Editor.

3. To add the thunder asset, drag a Wave Player Node from the Palette panel into the Graph
Viewport panel.

4. In the Details panel for the Wave Player node, select your Sound asset. Drag its output pin
to the input pin of the speaker. Your view should look as shown in Figure 7.4.

5. Preview playback of the Sound Cue with the Play Cue button on the toolbar of the Sound
Cue Editor.

ptg18222824

Using Sound Actors 117

▼6. Drag your Sound Cue from the Content Browser into the scene and preview the level.

FIGURE 7.4
Sound Cue Editor playing a sound.

While a Sound Cue is playing, to aid in debugging, the wires of currently active nodes turn red.

This makes it easy to follow the Sound Cue’s construction in real time.

▼TRY IT YOURSELF

Mix Sound in a Sound Cue

Continuing from the previous Try It Yourself, build a Sound Cue with a mixer node to create the
atmospheric effect of a thunderstorm:

1. Open the Sound Cue you created in the Previous Try it Yourself, and add a second Wave
Player node, and assign the Storm.wav file you imported earlier in the hour.

2. Make sure each Wave Player node is set to Looping.

3. Drag a mixer node into the Sound Cue Editor from the Palette panel.

4. Drag from the output pin of each wave player to an input pin on the mixer.

ptg18222824

118 HOUR 7: Using Audio System Elements

Advanced Sound Cues
You can accomplish incredibly complex behavior with Sound Cues that go far beyond what this

hour covers. A great next step is to read Epic’s documentation and examples, which include

detailed information on every type of node available. Figure 7.6 shows an example of one

advanced Sound Cue.

FIGURE 7.6
This Sound Cue mixes together Sound waves with a variety of properties, including Attenuation, randomization,
looping, and delays.

▼
5. Drag from the mixer output pin to the output node (the speaker) pin.

6. Test and save your Sound Cue. When you’re finished, your Sound Cue should look similar
to the one in Figure 7.5.

7. Preview the level.

FIGURE 7.5
This Sound Cue mixes two sounds.

ptg18222824

Controlling Sounds with Audio Volumes 119

Controlling Sounds with Audio Volumes
Audio volumes are not Sound assets, but they can be used to control and apply various Sounds

in a scene. You can also use them in zones to control where Sounds can be heard from. For

example, an audio volume in a small tunnel may have a reverb effect to simulate the bouncy

echo acoustics you’d expect to hear in such a tunnel.

Reverb effects allow you to control elements such as reverb, echo, air absorption, and other

parameters. You can easily adjust and apply them to any audio volume placed in a level.

▼TRY IT YOURSELF

Work with Audio Volumes

In this Try It Yourself, you create an audio volume with some reverb effects to simulate being
in an enclosed space. Start from any previous scene from this lesson that doesn’t have any
enclosed spaces and follow these steps:

1. In the Level Editor, add an audio volume to the level, select Modes > Volumes > Audio

Volume, and drag the audio volume into your Level. The yellow wire outline indicates the
bounds of the volume.

2. With the Audio Volume Actor selected in the level, click Reverb Effect in the Level Details
panel to add a new Reverb Effect.

3. In the menu that appears, select Create Reverb Effect and name your new effect MyEffect.
This adds a new Reverb Effect asset to the Content Browser.

4. In the Content Browser, double-click on the MyEffect Reverb Effect asset you created to
open the Generic Asset Editor.

5. In the Details panel of the Generic Asset Editor for your Reverb Effect, hover your mouse
over each parameter in the Reverb Parameters list in the Details panel to get a brief
description of it. To create an obvious echo/distortion effect, set Density to a very low
number and Reflection Gain to a high number. Feel free to experiment with other values, as
shown in Figure 7.7. When you’re finished, click the Save button in the toolbar.

ptg18222824

120 HOUR 7: Using Audio System Elements

Summary
In this hour, you learned about using audio in UE4. You started by learning about the basics

of audio and the components required to make it work. From there, you explored the Ambient

Sound Actor. You learned how to test audio and use Attenuation. You learned about the Sound

Cue Editor and built your first Sound Cue. You finished the hour by learning about Sound

 volumes.

Q&A
Q. Does UE4 support 2D audio?

A. Absolutely. 2D audio is (usually) Sound without Attenuation, which is covered in this lesson.
For Blueprint, there is specifically a PlaySound2D node that is perfect for 2D and user
 interface audio.

▼
6. In the Level Editor preview, click Play and take note of any sounds playing as well as the

sound your thunder makes. Now enter the volume and listen again. You should now have a
good idea of what you can do with audio volumes.

FIGURE 7.7
Reverb parameters.

ptg18222824

Workshop 121

Q. Can I use a different shape other than a sphere when using Attenuation?

A. Yes. In the Override Attenuation settings for the Ambient Sound Actor, look for the
Attenuation Shape Property and choose from one of the options there.

Q. I am not happy with the way the Sound in my game attenuates. What can I do to change

this?

A. Under the Override Attenuation setting for the Ambient Sound Actor is a property called
Distance Algorithm that you can set to change the way Sound fades out while attenuating.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: You can only make Sound loop with a Sound Cue asset.

2. True or false: To import a Sound, it must be an uncompressed .wav file.

3. True or false: If you wanted to add a Reverb Effect, you can use an Audio Volume.

4. True or false: You can use Sound Cues to mix Sound.

5. True or false: If you are using an Ambient Sound Actor to play background music in a level,
you would want it to have Attenuation.

Answers
1. False. You can set any Sound Wave asset to looping in the Generic Asset Editor. In the

Content Browser, double-click on the Sound Wave asset to open the Generic Asset Editor.

2. True. .wav files are a common audio file type.

3. True. You can place as many Audio Volume Actors as you need in a level and apply a
 different Reverb Effect to each one.

4. True. Sound Cue assets and the Sound Cue Editor give you the ability mix and modify
Sound Wave assets.

5. False. Typically background music should Sound the same to the player throughout the
level. So you do not want to apply Attenuation.

ptg18222824

122 HOUR 7: Using Audio System Elements

Exercise
In one of the Try it Yourself exercises this hour, you created a Sound Cue asset that mixed two
Sound waves. However, the looping thunder you put in it doesn’t Sound realistic. How might you
improve this? For this exercise, improve the quality of the effect by using a delay and looping
node.

1. Open the Sound Cue you created in the “Mix Sound in a Sound Cue” Try It Yourself.

2. Drag a Delay node from the Palette panel to the Graph Viewport panel. Link the wave
player: thunder output pin to the Delay node. In the Sound Cue Editor Detail panel, set the
Delay Min to 1 and the Delay Max to 5.

3. Drag a Looping node from the Palette panel to the Graph Viewport panel. Link the delay
 output pin to the Looping node.

4. Link the Looping node output pin to the already-placed mixer node. When you’re finished,
your Sound Cue should look similar to the one in Figure 7.8.

FIGURE 7.8
This Sound Cue has a random delay between loops of the thunder Sound.

5. Preview the level.

ptg18222824

HOUR 8
Creating Landscapes and

Foliage

What You’ll Learn in This Hour:

 Working with landscape tools and settings

 Using height maps

 How to use landscape materials

 How to use Foliage tools and settings

This hour looks at landscape creation and use. After creating a custom landscape material, you

use the landscape tools to paint and layer the results into a newly formed landscape. Then you

focus on creating Foliage assets and placing them within the game space using UE4’s Foliage tools.

NOTE

Hour 8 Setup
Create a new project with the Third Person Template and Starter Content.

Working with Landscapes
While working on any new project, you may find that Static Meshes cannot cover the space you

need to allow the player to explore, especially if you’re creating free-roaming exterior spaces. In

such situations, landscapes are the tools to use. Landscape tools are powerful and allow for vast

swaths of world creation that can be edited per segment, which means you can quickly edit for

game space expansion and tailor the game for efficient rendering.

Landscape Tools
Many tools are available for creating and editing landscapes and their parameters in UE4. You

access the default landscape controls on the left side of the screen in the Modes panel. You click the

Landscape button—the middle button, which contains a mountain icon (see Figure 8.1)—to bring

up the Landscape panel. You can also press Shift+3 to quickly bring up the Landscape panel.

ptg18222824

124 HOUR 8: Creating Landscapes and Foliage

FIGURE 8.1
You access the Landscape panel by clicking the Landscape button on the Modes panel or pressing Shift+3.

Three major tabs are available on the Landscape panel:

 Manage: This tab controls the construction and management aspects of the landscape.

 Sculpt: This tab changes the volume and form of landscape geometry.

 Paint: This tab controls the material type applied to the landscape’s surface.

The Sculpt and Paint tabs are grayed out and unusable until you create your first base landscape

on which to use these options.

Manage Tab
The first section of the Landscape panel is the Manage section. Here you can create and

 manage existing landscapes. There are two ways to start a new landscape: You can create a new

 landscape based on set parameters, or you can create a landscape based on an imported height

map. This lesson discusses how to create a landscape from scratch.

Height Maps
A height map is a texture that provides height variation information based on a grayscale. White

surfaces on the texture indicate landscape height increases, while black pixels indicate landscape

height decreases. A height map is similar to a bump map in other 3D programs. These textures

can be authored in many other sculpting or photo manipulation programs and then imported

and used in UE4, or they can come directly from UE4.

A height map can be useful when you are re-creating a specific real-world location and want

to use the exact landscape volumes to emulate the area within your game space. Also, you can

use a height map as a mask to notify UE4 what areas have specific types of Foliage or landscape

material types. In order to use a height map as a mask, you must export it from the editor and

resave it as an appropriate file type in an external application, such as Photoshop. Then you

can reimport it as a texture and use it as a mask.

While this lesson does not walk you through how to use an external height map to learn about

landscape creation, as you create a landscape within UE4, you are authoring an internal height

map within UE4 by using the Sculpt tab tools. You can even export the height map from the

landscape you sculpt in UE4 to edit in other programs using a texture format. The texture

 formats are a commonly used texture type that preserves height map variation and details, with

little loss of data.

ptg18222824

Working with Landscapes 125

Creating Landscapes
When creating a new landscape, you have a few options to begin your setup. The first is to

 determine which material is being used on the landscape. We discuss materials in the “Landscape

Materials” section a little later on, but for now, note that this is one of the initial places that the

material and the layers of that material that can be attached to a new landscape.

Following the material and material layers settings are the transform settings for the new

 landscape (see Figure 8.2). Here you can specify where the new landscape is placed in world

space, as well as its size and rotation.

The next section of the landscape controls is for landscape LODing (level of detailing) tech-

niques, which you can change to enable the landscape to render quickly and efficiently. These

controls, labeled Section Size and Sections per Component, relate to how much information is

displayed to the player at once. A larger Section Size setting means there is less to render within

the component or section, which is easier on the CPU. The higher the Sections per Component

setting, the better UE4 is able to divide and decide at what quality to render each section. There

is a delicate balance between ensuring a high frame rate and a desirable quality of landscape

resolution. Experimentation is key here as there is no easy answer about the optimal numbers

for a project.

Next, you can change the settings for the density and size of each landscape tile used to make

up the larger landscape whole. UE4 states that, by default, each subdivided landscape section

or plane has a density of 1 vertex per meter. In the vertical, or Z, scale, which is by default set

to 100, the height range is 256 meters up or down. These are important measurements to know

when manipulating and controlling the density and size of these panels for a new landscape.

If you know these measurements, you can control the number of vertices on the entire landscape

by using the resolution settings and the number of overall landscape segments along with

 components settings. By combining these settings, you can balance the resolution or density of

vertices per landscape section.

NOTE

Section Size
To ensure a good frame rate, Section Size should be the most monitored setting in the Landscape
panel. Increasing the Section Size setting too much will cause major drops in frame rate and editor
usability because of the intense processing power required.

The final two options for creating a new landscape are the Fill World and Create buttons at the

bottom of the Landscape panel. The Create button simply confirms the settings that are currently

in place and uses them to create a new landscape. The Fill World button creates a landscape that

is the size of the entire game space that is currently available.

ptg18222824

126 HOUR 8: Creating Landscapes and Foliage

FIGURE 8.2
The Manage menu in the Landscape panel for creating a new landscape.

▼ TRY IT YOURSELF

Create a New Landscape

To create a new landscape, open the Landscape panel and follow these steps:

1. Set Section Size to 31 ë 31 quads.

2. Set Sections per Component to 2 ë 2 sections.

3. Set Number of Components to 10 ë 10.

4. Click the Create button to create the new landscape.

ptg18222824

Sculpting Shapes and Volumes 127

 Landscape Management
Now that you have created a new landscape, new options are available to control and manage

the new landscape. On the Manage tab, you can now see that the default tool is the Selection

button. You use it to select landscape sections for editing. When you click the Selection button,

a drop-down menu shows other options for controlling aspects of the newly created landscape.

Some of the options on this menu are for deleting or adding components; you use these options

to subtract sections of landscape from the existing landscape or add new sections to it. Another

option, Change Component Size, allows you to edit the component values of the originally

created landscape if you need more resolution or if the landscape differs from what you

 originally created. In addition, you can use the Move Levels option under the Manage tool in

the Landscape Panel to move sections to particular levels. This is a more advanced development

option for stream-specific areas or levels used to reduce rendering power to display areas that

are not persistently needed in player view. Finally, you have options for creating additional

landscapes, as well as options for controlling splines linked to the landscape currently selected.

NOTE

Splines
Splines are a series of connected points that run on top of the landscape. Splines are helpful for
creating malleable roads, sidewalks, and other structures more naturally along the surface of the
landscape.

Sculpting Shapes and Volumes
Now that you have created a new landscape, you can begin sculpting shapes and volumes

into the landscape. The Sculpt tab has three major drop-down menus: Tool, Brush, and Falloff

(see Figure 8.3).

ptg18222824

128 HOUR 8: Creating Landscapes and Foliage

FIGURE 8.3
The Sculpt tab of the Landscape panel.

Tool Menu
The Tool menu contains tools for controlling the surface and volume definition of the landscape.

Each tool has specific settings relative to the type of tool:

 Sculpt: This tool sculpts up or down into the landscape mesh.

 Smooth: This tool brushes smoothness or lessens the variation difference between areas

being influenced by the Sculpt tool.

 Flatten: This tool flattens the landscape to the height specified when you first click the

landscape with the Flatten tool activated. It moves the landscape terrain up or down,

depending on the height value selected.

 Ramp: This tool connects two areas by ramping the landscape between the two with a

constant change in grade between points.

 Hydro Erosion and Erosion: This tool simulates general wear of the ground that happens

in a world scenario to emulate this effect on the game space landscape.

ptg18222824

Sculpting Shapes and Volumes 129

 Noise: This tool applies a general noise to the landscape and uses the settings to determine

the amount and intensity.

 Retopologize: This tool reduces the spacing and difference in variation between surface

components to reduce stretching.

 Visibility: This tool hides or unhides selections of surfaces on the landscape mesh.

 Selection: This tool masks selections of the landscape mesh.

 Copy/Paste: This tool selects a section of the landscape to paste similar height settings into

another section of the landscape.

Brush Menu
The Brush menu allows you to choose the overall shape of the tool being used on the landscape.

There are four types of brushes:

 Circle: This is the most basic and default brush. It is a circular shaped brush.

 Alpha: This brush uses a specific texture as a mask influenced by a grayscale similar to a

height map.

 Pattern: This brush uses a repeating pattern across the whole of the landscape, which acts

as a mask for sculpting.

 Component: This brush affects whole component pieces of the area being sculpted.

Falloff Menu
The Falloff menu allows you to control the strength of the brush’s influence on the landscape

being sculpted. There are four types of falloff:

 Smooth: This is the most commonly used type of falloff. It is a soft blend between the

strong and weak parts of the brush.

 Linear: This is a direct constant falloff.

 Spherical: This is a weaker influenced falloff toward the center and increases to a stronger

influence toward the edge end of the brush.

 Tip: This is a strong influence at the center with a quick falloff to a weaker falloff that

slowly dissipates toward the edges.

ptg18222824

130 HOUR 8: Creating Landscapes and Foliage

Painting
You use the Paint tab of the Landscape panel to paint material layers onto the landscape mesh.

This tab provides many of the same setups and tools as the Sculpt tab. As in the Sculpt tab, the

three main tools in the Paint tab are Tool, Brush, and Falloff. Each of these sections uses the

same rules and applications as for the Sculpt tab, but instead applies the rules to the painting of

materials.

Landscape Materials
Landscape material setups differ slightly from normal material setups. Creating the

 material for a landscape follows the same process as making a new material, except that

the blending between layers is defined using a special node in the Material Editor called a

LandscapeLayerBlend node (see Figure 8.4). With this node, different textures can be used and

divided into specific layers called out in the landscape setup menus. To use this node, simply add

it from the Palette panel on the right of the Material Editor. Then you can click the node and

click the + symbol on the node to add layers. You can add and use more than one layer.

Once placed in a material, textures that would normally be combined or blended into a regular

material are instead routed into the layers of the LandscapeLayerBlend node and then placed

into the related input of the final material, such as base color or normal. You need to be careful

to name these layers properly so UE4 correctly defines the layers in the landscape.

▼ TRY IT YOURSELF

Create a New Landscape Material

To create a new landscape material and set up your own custom textures, follow these steps:

1. Create a new material in the Content Browser and name it Landscape_Material_Test01.

2. Enable the use of this material for landscapes by going to the Details panel for the material
and turning on Used with Landscape under the usage options.

3. Create a LandscapeLayerBlend node from the Palette panel for the new material.

4. Import the desired textures for the landscape materials you want. (For this exercise, we’ll
use example names of textures Dirt_01 and Grass_01 for clarity.) Then drag into the new
material the desired textures from the Content Browser or create a texture sample. The
Grass_01 and Dirt_01 base color textures as well as the accompanying textures (normal,
roughness, etc.) should now be in the material as texture samples.

5. In the LandscapeLayerBlend node, set up the number of layers to use in the landscape
material. To do this, select the LandscapeLayerBlend node and go the Details panel. Click
the + button beside the Layers option. Create two additional layers because you want two
material blends in the landscape.

ptg18222824

Sculpting Shapes and Volumes 131

 Landscape materials are layered differently than are normal materials, and they use a different

form of blending. The blending types are available in the details of the LandscapeLayerBlend

node for each layer. There are three types of landscape layers blending:

 LB_WeightBlend: This is the default type of blend for any type of landscape layer.

It blends on an additive value of 0 to 1. The more of the layer that is painted on the

 landscape, the more predominately visible the layer becomes.

 LB_HeightBlend: This type blends based on the associated height map assigned with the

height layer input of the LandscapeLayerBlend node.

 LB_AlphaBlend: This type is similar to the blending for normal materials in a vertex,

which use a mask to divide the transition of textures between layers. Using a specific map,

the layers are divided and transition based on the grayscale of the alpha map.

By connecting the textures to their layers and then to their appropriate final material, you

can use the material as a layer landscape material. The material can then be applied to the

 landscape through the Details panel of the desired landscape. Once a texture is connected to a

layer, the Palette panel displays the appropriate layers that can now be selected and painted to

the landscape.

NOTE

Landscape Material Nodes
There are other landscape nodes in the Material Editor to help control aspects of the landscape’s
use of layers and textures. Experiment and explore these other nodes to see how they can apply to
the landscape for a project.

6. For the newly created layers in the Details panel of the LandscapeLayerBlend node, use the
Layer Name option to name the layers Dirt and Grass. Connect the base color texture of
Grass_01 to the Grass layer and the base color of Dirt_01 to the Dirt layer.

7. Connect the LandscapeLayerBlend node to the base color input for the material. For each
texture type (normal, base color, roughness, etc.), duplicate the LandscapeLayerBlend node
you just created and connect the LandscapeLayerBlend node to the material in its corre-
sponding location.

8. By default, no textures display in the material preview, so to test the layers, go to the
LandscapeLayerBlend node and change Preview Weight to any number greater than 0 and
less than 1.

▼

ptg18222824

132 HOUR 8: Creating Landscapes and Foliage

FIGURE 8.4
The LandscapeLayerBlend node in the Material Editor allows you to control multiple landscape layers.
Here, you can see a layer blend set up between two types of materials to use to paint the landscape.

▼ TRY IT YOURSELF

Set Up the Landscape with a New Material

Once you have created a landscape and the material for it, you can apply the material to the
 landscape by following these steps:

1. Select the landscape and navigate to the Details panel.

2. Add your material to the section titled Landscape in the Landscape Material area. The
material you previously created is applied to the landscape.

3. In order to paint from the layers you created in your material, you have to create landscape
layers, so click the Landscape button in the Modes panel (see Figure 8.5).

4. Select the Paint tab in the Landscape panel.

5. Look in the Target Layers options for your layers that were created in your material that
is now linked to the landscape. Click the + symbol to the left of each of the layers in the
Detail window to create a new Landscape Layer for each of the layers within the material.
Now each of those layers should be selectable and enabled to use for painting on the
 landscape.

6. Select a target layer to paint with and click+drag onto the landscape to begin painting.
Select another target layer to change to painting that layer.

ptg18222824

Using Foliage 133

7. To alter the brush size, brush falloff, or other painting options, change the settings above
the Target Layers section in the Brush settings or Tool settings.

FIGURE 8.5
The Landscape panel houses the Manage, Sculpt, and Paint tabs.

▼

 Using Foliage
Foliage is a collection of assets placed on top of and in direct relation to the landscape mesh or

other assets in a scene. Foliage assets are usually trees, rocks, grass, shrubs, and other assets that

are connected to the assets below. The Foliage tab is extremely useful for placing a large number

of assets into a scene quickly, while using certain parameters and restrictions on where they can

be placed. It would take a long time to hand-place grass plains and trees into a large open area,

but by using the Foliage tab, you can quickly place these assets by using a brush tool. Foliage

Actors can be any type of Static Mesh that is available through the Content Browser. Simply

dragging and dropping a mesh to the Foliage tab (the fourth one from the left, which contains a

leaves icon) enables it to be used as a Foliage Brush asset (see Figure 8.6).

ptg18222824

134 HOUR 8: Creating Landscapes and Foliage

Five tabs are available on the left side of the Foliage tab:

 Paint: The most commonly used tab for Foliage, Paint controls painting options of the

Static Meshes and what kinds of surfaces are affected.

 Reapply: This tab applies current settings to all of the currently placed Foliage Static

Meshes. It is useful if changes have been made to the settings of a Foliage Static Mesh after

it has been placed within the scene.

 Select: This tab allows you to select certain groups of selections in the entire world space of

Foliage Static Meshes.

 Lasso: This tab allows you to select certain groups of selections of Foliage Static Meshes.

 Fill: This tab allows you to fill complete selections in the scene with the desired Foliage

Static Mesh.

Settings in the Paint tab control the side of the brush or the area being affected. There are

also density options that control how densely the assets are placed while you’re using the tool.

Finally, the boxes in the Paint tab allow you to control what parts of the scene the brush affects.

For instance, if you turn off the landscape selection, only BSPs and Static Meshes are affected

and take Static Meshes applied from the brush in the scene.

FIGURE 8.6
The Foliage tab.

ptg18222824

Using Foliage 135

Placing Foliage
To place Foliage within a scene, you must have Static Meshes added to the Foliage tab

(see Figure 8.7). Then you can select and paint all the Static Meshes in groups or individually

by toggling them on and off. To toggle on a Static Mesh, simply click the icon of the asset and

select the check box in the top-left corner; to toggle it off, deselect the check box. All toggled-on

assets paint at once when you’re using the Foliage Brush within the scene. You can save each of

the Static Meshes in this list for later by clicking the save symbol in the top-right corner of each

Static Mesh in the list. Now each asset in this list has its own parameters for how it is spread and

used in the brush. Each setting defaults to a value or setting, but if you click a Static Mesh from

the list, you can toggle the options displayed below by using the check box beside each one.

These options impact density, angle, direction, scale, and many other factors that change how a

Static Mesh is placed within a scene.

FIGURE 8.7
Foliage Static Mesh settings.

ptg18222824

136 HOUR 8: Creating Landscapes and Foliage

▼ TRY IT YOURSELF

Place Foliage

To place Foliage, with the Foliage tab open, do the following:

1. Drag a Static Mesh actor from the Content Browser and drop it in the Drop Foliage Here

area of the Foliage panel.

2. Change the density of the Foliage Static Mesh to 50.

3. Change the radius to 2.

4. Click and paint on the previously created landscape.

5. Shift+click the painted area to delete the painted Foliage Static Meshes.

To paint with selected Foliage, simply left-click anywhere in the scene. When you do this, you

begin to place assets based on the settings of the brush per Foliage Static Mesh. To delete paint,

hold down the Shift key and left-click, and drag to paint back onto the area that was previously

painted. To remove a Static Mesh entirely from the Foliage tool, simply right-click the desired

asset from the Foliage tab types and select Delete. All instances of the mesh are then removed

from the scene.

 Summary
This hour you examined the landscape tools available in UE4. You learned how to manipulate

the shape and surface of landscapes. You also developed an understanding of how to create

landscape material layers and paint those layers on landscapes. Then you took a look at the

 Foliage tools and how to use Static Meshes to paint Foliage into a scene. Understanding these

tools will expand your ability to make larger expanses of playable game space and help you

quickly populate those landscapes with trees, bushes, and other types of Foliage.

Q&A
Q. Why would I use a landscape instead of a series of Static Meshes?

A. For larger game spaces, landscapes render more efficiently and allow for maximum
 developer control over aspects of the landscape visuals all at once. Static Meshes must
be controlled individually and do not have the culling and rendering development that
 landscapes do.

ptg18222824

137Exercise

Q. Can I select Foliage Static Meshes after I paint them into a scene?

A. Yes. While you’re in the Foliage tab, you can select the painted Static Meshes independent-
ly and transform them.

Q. Can I have base color, normal, roughness, and metallic material for the landscape, just as

with a standard material?

A. Yes. When you’re creating the layer setup node for each input, make sure the name of each
layer is identical to each of its partners. For instance, the name of the dirt layer in normal,
roughness, and base color needs to be the same in each of the landscape layering nodes
in order for them to correctly function together.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. Can you use an animated mesh in the Foliage tab?

2. Once you create a landscape, can you change any of its settings?

3. What is the name of the node used in the material to layer landscape materials?

Answers
1. No, only Static Meshes are allowed. Those Static Meshes can have vertex deformation

through their material to simulate motion, but you cannot directly use Skeletal Meshes with
specific animations.

2. Yes, you can change the settings of the landscape in the Change Component Size section
of the Landscape panel.

3. You use the LandscapeLayerBlend node to layer landscape materials.

Exercise
For this exercise, you create a new landscape with new settings and add variation to the surface.
Then you create a landscape layered material and link it to the landscape for use through the
Paint tab. Finally, you add a Static Mesh to the Foliage and use it to paint the landscape surface.
This exercise helps you understand how to create a new landscape from scratch and paint
 layered materials and meshes on its surface.

1. Create a new landscape.

2. Use the Sculpt tab to sculpt into the surface.

ptg18222824

138 HOUR 8: Creating Landscapes and Foliage

3. Use the Ramp tool to blend between two areas of the sculpted surface.

4. Use the Smooth tool to blend a sculpted area of the landscape.

5. Create a new layered landscape material.

6. Add the layered landscape material to the landscape.

7. Paint different layers onto the landscape.

8. Add multiple Static Meshes to the Foliage tool.

9. Paint with each Static Mesh from the Foliage tab.

10. Paint with all Static Meshes from the Foliage tab at the same time.

ptg18222824

HOUR 9
World Building

What You’ll Learn in This Hour:

 Adding a level to a project

 How to set dress a level

 Combining placed Actors into a Blueprint class

The goal of this hour is to solidify your familiarity with the Editor’s main interface and learn

about the anatomy of a typical level. You will practice your world building and set dressing skills

and practice what you’ve learned in previous hours. World building is the process of placing

Actors and art assets within a level. In world building, the lines between level designer and

environment artist become blurred. (In some production environments, world building may be

the responsibility of the level designer.) In this hour, you make a new project and work with

existing assets, create a new level, place assets of varying types, and familiarize yourself with

good world building practices.

NOTE

Hour 9 Setup
Create a new project with the Third Person Template and Starter Content.

▼TRY IT YOURSELF

Set Up a Project

For this hour, you need a new project based on the Third Person project template. Follow these
steps to set it up:

1. Open the Launcher and load the main Editor.

2. Select New Project to create a new project.

3. On the Blueprint tab, choose the Third Person game template.

ptg18222824

140 HOUR 9: World Building

NOTE

Content Packs
For this hour, you can use the Starter Content. If you prefer, you can find free content in the
Launcher under the Learn section or you can download the free Infinity Blade content packs from the
Marketplace. To get these content packs, in the Launcher, under Marketplace, type Infinity and then
look for Infinity Blade. If you want to use content from an existing project, you need to migrate it
into your project. If you download the Infinity Blade content, it will be added to your vault, under the
Library tab in the Launcher, and from there you can add it to your project.

Building Worlds
World building needs vary depending on the type of game you’re developing, but the

fundamental process applies to most productions. For now, you can work with existing assets

and don’t need to worry about gameplay or modeling, and texturing new content. This way, you

can solidify your familiarity with the Editor interface and focus on your world building skills.

Good world building—including the use of scale, color, lighting, sound, and asset

 placement—establishes a mood and evokes a desired emotional response in players. Set

 dressing should not only look good but it should help guide players through the level and

establish immersion.

Environmental Narrative
If you are working on a game, there is a good chance there already is an established narrative

that determines the locations that your levels need to depict. When you are set dressing, it can

help to form your own visual narratives for each space you make. Before you begin to build

a level, look at all the visual assets you have to work with and create a simple narrative that

explains what happened to the space you are creating before the player got there. This will help

you make decisions about asset placement and lighting later.

▼
4. Choose Desktop/Console.

5. Choose Maximum.

6. Select With Starter Content.

7. Click Create Project.

ptg18222824

World Building Process 141

 Anatomy of a Level
In the level you have just created, look at the World Outliner panel, and you can see that the

default map already has some placed Actors. Take a moment to select and look at the names,

Actor types, and properties in the Details panel for each of the already-placed Actors. There is a

Floor Static Mesh Actor that establishes a ground plane. A Player Start Actor defines the location

where the Pawn will spawn when playing the level. There are two lights: a Sky Light that

 captures a cube map that contributes to the overall lighting of the scene and a Directional Light

that establishes the direction of the sun. There is an Atmospheric Fog Actor that approximates

the scattering of light through a planetary atmosphere. Finally, there is a Blueprint class called

Sky_Sphere that uses Blueprint to control a dynamic material on a Static Mesh to control the

look of the sky in the level. If you switch the viewport to top view and zoom all the way out, you

can see that the sky dome is scaled up to be bigger than the grid.

NOTE

Directional Lights
The location of a Directional Light does not matter; only orientation matters. The light from a
Directional Light starts from outside the world and travels in the direction the Directional Light is
 facing. Because the light is infinitely far away, this light is used to mimic the sun and does not have
a direct falloff.

World Building Process
Now that you have a project set up, let’s talk about process. While set dressing, it is good practice

to work in stages, using the following iterative process:

1. Scale and scope. You need to establish scale and set the level’s footprint, which you

 typically do with simple, primitive objects.

▼TRY IT YOURSELF

Create a Default Level

Every project starts with a default map that allows you to quickly test the game mode and the
players’ controls. You have already created a project, and now you need to create a level within it:

1. In the Content Browser, create a new folder and name it Maps.

2. On the main menu, select File > New Level (or press Ctrl+N).

3. In the dialog that appears, choose Default Level.

4. Save your newly created level into the Maps folder.

ptg18222824

142 HOUR 9: World Building

2. Shelling and blocking. This is the process of handling the architectural and structural

needs of the level by placing large architectural and structures forms, such as buildings

and walls or other structural elements. You can do this with primitive shapes until the

final assets have been created.

3. Prop and asset placement. This stage involves placing props and decorative assets, such

as benches, shrubs, and garbage cans, that are relevant to the project.

4. Lighting and audio pass. At this stage, you place lights and Ambient Audio Actors.

5. Playtest and refine. This aspect deals with traversing the level from the player’s point of

view and identifying, tweaking, and fixing any issues.

Repeat steps 3–5 until you’re satisfied. The following sections walk through all the parts of this

process.

Establishing Scale
When building a level, establishing an appropriate and effective scale for the environment is one

of the most import aspects of setting the level’s mood. To do this, you need to know the size of the

player character. In UE4, remember that 1 Unreal unit (uu) is equal to 1 centimeter (cm) in the

real world by default, so if the average character in your game is 6 feet tall, it will be 182.88 cm

(1.82 meters) or 182.88 uu tall. Even if you don’t have the final character built, placing a tempo-

rary visual representation of the character goes a long way toward establishing scale.

▼ TRY IT YOURSELF

Place a Reference for Scale

Using a character asset or even a simple primitive shape that represents the size of an average
character can help you set the scale of a level. Follow these steps to place a Skeletal Mesh
 provided with the Third Person game template:

1. Open the default level you created in the preceding Try It Yourself.

2. In the Content Browser navigate to the ThirdPersonBP > Character > Mesh and locate the
SK_Mannequin asset.

3. Drag the SK_Mannequin Skeletal Mesh asset into your level and place it on the Floor Actor.

4. Save and preview the level. Figure 9.1 shows the Sk_Mannequin placed scale reference.

ptg18222824

World Building Process 143

Establishing Scope
Now that you have a default map created and saved, it is time to establish the scope of the

level. Bigger is not always better, but many beginning artists and designers make the mistake

of overscoping their projects and immediately trying to building massive MMO-sized levels.

This will most likely create a lot of frustration and increase the time it takes to solve any

problems that crop up. A good rule of thumb to follow when just starting is to choose quality

over quantity. As you become more comfortable with UE4 and the Editor, you can increase the

complexity of your projects.

This hour shows you how to start with the default Floor Static Mesh and add some minor

additions. Go to the Modes panel and select the Place tab. Select BSP from the list on the left-

hand side. You now see list of BSP Actors you can place in your level. Click+drag a box BSP Actor

into the viewport of your level. With the Placed Box Actor selected, under Brush Settings, set the

Y brush shape to 440 units and the Z brush shape to 50 units. Now position the BSP box at the

center of one end of the Floor Static Mesh so the bottom edge of the box lines up with the top

edge to the floor. This will be the footprint of the level (see Figure 9.2). It’s not exactly epic, but

it’s a good starting point.

▼

FIGURE 9.1
Character scale reference.

ptg18222824

144 HOUR 9: World Building

FIGURE 9.2
A box BSP placed to establish the level footprint.

TIP

Working with BSP Actors
BSP Actors are procedurally generated geometric primitives native to UE4. BSP stands for binary
space partitioning, and these Actors are 3D geometry but are treated differently from meshes import-
ed from 3D applications. BSPs are great for quickly blocking out a level. Another term you might
hear when talking about BSPs is constructive solid geometry (CSG), which means they are contigu-
ous shapes. You can perform simple Boolean modeling tasks with multiple BSPs by changing them
from additive to subtractive states. You texture them in the Editor by using simple planar projections,
and you can texture each polygon on a BSP primitive separately by dragging a material from the
Content Browser onto the desired surface.

You can perform other simple modeling task on BSP Actors by switching to the Geometry Editing
tab in the Modes panel. However, if you need something more complex, you should use a modeling
application and import a Static Mesh. When working with BSPs, it is best to set their size directly
under Brush Settings in the Details panel and to avoid scaling them.

ptg18222824

World Building Process 145

Shelling and Blocking
When you have the footprint established, you can begin blocking out the level’s structural assets.

In the Content Browser, in the Starter Content folder named Architecture, you can find Static

Meshes to work with. Select the wall_door_400ë300 Static Mesh asset, drag it into your level,

and place it on the side of the BSP box that faces the floor. Continue to do this with the other

side and roof to make a simple box, as shown in Figure 9.3.

FIGURE 9.3
Level shelling and blocking with BSP Actors.

ptg18222824

146 HOUR 9: World Building

Once you have built a small room, drag out another box BSP Actor and start making walls around

the floor mesh. When you’re finished, your final blockout should look something like Figure 9.4.

FIGURE 9.4
Level shelling progress.

TIP

Snaps and Working Quad View
Placing assets correctly and getting them lined up can be tedious. Enabling transform snapping
when moving, scaling, or rotating Actors can help. (You learned about this in Hour 3, “Coordinates,
Transforms, Units, and Organization.”) It also helps to change the viewport layout to four panes,
so that you can work with top, side, and front views as you line things up. To change the viewport
layout, click on the small Maximize/Restore icon on the far right of the snap settings
(see Figure 9.5).

ptg18222824

World Building Process 147

1 2 3 4

FIGURE 9.5
Transform and grid snapping and viewport toggle.

The following list identifies the four useful snap setting panes shown in Figure 9.5:

1. Snapping to the grid when dragging

2. Snapping objects to rotation grid

3. Snapping objects to scale grid

4. Maximize/restore viewport

Placing Props and Assets
After you have blocked out and shelled a level, you can place props and assets in it. In the

Content Browser, in the Starter Content folder called Props, you can find assets that you can

use to set dress your level. Because you are working in a virtual space, you don’t have to worry

about structural accuracy, but you also don’t want your player to see behind the curtain—so you

need to strike a balance. Drag out a few instances the SM_Rock Static Mesh from the Props folder

place them around the outside of the room and underneath the floor to make it look like the

room is built into the side of a mountain. Now is good time to start assigning materials to some

of the surfaces. Add whatever meshes you have to work with to decorate the space (see Figure

9.5). Periodically build lighting as you go. You may notice that the more content you add, the

longer it takes to build lighting.

Visual Complexity and Framing
Visual complexity is the concept of finding a balance between visual details and asset usage.

Randomly placing a large number of assets throughout a level might add details but will

most likely create a poorly crafted and cluttered experience. When placing assets, consider the

 function of the space based on narrative and set the assets to identify key locations for frameable

moments (see Figure 9.6). Framing is the idea of creating mini compositions in a game world.

These areas of detail can grab players’ attention and help guide them through the space. Try to

create interesting spatial relationships where the player has to move between open and confined

spaces to add interest and help define areas of detail.

ptg18222824

148 HOUR 9: World Building

FIGURE 9.6
Prop and asset placement with assigned materials.

Working with Modular Assets
You will notice that many of the Static Mesh assets provided in the Starter Content are made

for modular modeling. Well-modeled modular assets are modeled and based around consistent

units, with properly placed local pivots so they easily snap together. This helps reduce the time it

takes to set dress, but it also increases the chance of excessive repetition and uniformity. Good set

dressing is speedy because of modular assets, but it requires you to disguise the reuse of similar

assets to create a convincing space.

TIP

Grids and Snaps
The downside to working with modular assets and grid snapping is that you risk making your level
too uniform or gridded. So you have to make a special pass on a level in which you make small
transform changes where applicable to ensure that things look as natural as possible.

Combining Actors into a Single Blueprint Class
When set dressing, it is a good idea to combine assets, which you can do in a few ways. As

 discussed in Hour 3, great ways to keep things organized are to group and attach Actors, move

placed Actors into a folder in the World Outliner panel, and assign Actors to layers. Although

ptg18222824

World Building Process 149

these methods are quick and have benefits, they are unique to the level you are working on.

Combining Actors into a single Blueprint class gives you the benefit of both grouping and

attaching. When you do this, you get the added benefit of making the Actors reusable across

multiple levels, and you can eventually script functionality.

TIP

Combining Assets
When set dressing, you may not always find the asset you need or have a modeler standing by to
create new content. If you get creative, often you can build a new asset with the content you already
have simply by combining assets into a Blueprint class. After you create these assets and place
them in a level, you can move, scale, and rotate them like any other Actors.

▼TRY IT YOURSELF

Create a Simple Blueprint Class

Blueprint Classes are covered in more depth in later lessons, but here you learn a simple method
for combining multiple Actors into a single reusable Blueprint, a torch:

1. Create a new folder in the Content Browser and name it MyBlueprints.

2. Find a cylinder Static Mesh asset in the Starter Content in the Content Browser.

3. Place the cylinder mesh into your level and scale it to a desired size.

4. Assign a material to the placed cylinder by dragging a material from the Content Browser
onto the Static Mesh Actor.

5. Find the Fire01_Cure Sound Cue asset in the Starter Content, drag it into the level, and
place it on top of the cylinder.

6. Add a Point Light Actor from the Place tab in the Modes panel. Position the light so it is just
above the cylinder. Set the color, intensity, and attenuation radius to your desired settings.

7. Find the P_Fire particle system in the Starter Content, add it to the level, and position it
just above the cylinder.

8. Select all the placed Actors from steps 2–7 in the level. Then click the Blueprint icon on the
main toolbar and choose Convert Selected Components to Blueprint Class.

9. In the dialog that appears (see Figure 9.7), select a path, give the Blueprint Class the name
P_Fire_Blueprint, and click Create Blueprint.

ptg18222824

150 HOUR 9: World Building

Creating World Beyond
World beyond refers to areas that fall beyond the player’s reach. The world beyond creates the

illusion that the level is in a much bigger world than it is (see Figure 9.8). Common examples of

world beyond are mountain ranges and cityscapes off in the distance. The world beyond concept

can also be applied to more immediate spaces, such as rooms a player can see into but not

enter, or a fenced courtyard between buildings.

As you build a level, think of different ways you might be able to implement this concept. The

following sections provide some suggestions to get you started.

▼

FIGURE 9.7
Combining placed Actors in to a single reusable Blueprint asset.

10. In the Level Editor main interface, select File > Save All.

11. In the Content Browser, locate the newly created Blueprint asset and drag it into your level
as many times as needed.

ptg18222824

World Building Process 151

FIGURE 9.8
Common implementation of world beyond.

As you can see in Figure 9.8, a big rock hovering in the air has been placed to establish the

world beyond. It might be better if players can’t see that the rock hovers. Adding an Exponential

Height Fog Actor to the level helps obscure the player’s view, as shown in Figure 9.9.

FIGURE 9.9
Image of set dressed level with exponential height fog.

ptg18222824

152 HOUR 9: World Building

Lighting and Audio Pass
Moving on to the fourth stage of the set dressing process, it’s time to start placing lights and

Ambient Sound Actors.

Lighting
Lighting is one of the most important aspects of set dressing. It ties the space and all the placed

assets into a consistent visual experience, and it establishes the mood and, ultimately, the

player’s emotional response to the environment. Beginners often focus on adjusting the intensity

of lights and forget to tweak the color of the lights in a level. This is one of the most important

things to do to set the mood of a level, and varying the color of lights will also help lead the

player from space to space.

When working with lights, it can help to switch view modes between Lit, Detailed Lighting, and

Lighting Only. This way, you can see each of the placed assets in the level with a gray surface,

which allows you to assess the color and intensity of all the lights placed in the world and how

they all work together (see Figure 9.10). Add Point and Spot Light Actors to a level as needed.

Then adjust the Intensity, Light Color, and Attenuation settings. Don’t forget about the already-

placed Directional and Sky Light Actors.

GO TO HOUR 5, APPLYING LIGHTING AND RENDERING, to review working with lights.

TIP

View Modes
You can easily change the viewport view mode. Select a mode by using the following keyboard
 shortcuts:

 Wireframe: Alt+2

 Unlit: Alt+3

 Lit: Alt+4

 Detailed Lighting: Alt+4

 Lighting Only: Alt+5

 Lighting Complexity: Alt+6

ptg18222824

World Building Process 153

FIGURE 9.10
Setting the viewport view mode to Lighting Only helps you visualize the lighting in the level without materials.

TIP

Adding Lights Without Representation
Because Light Actors are easily placed, beginners often light areas in a level but forget to place
a visual source. Whether it’s a lantern, a lamp, or a torch, be sure to have an Actor that explains
where the light is radiating from in order to give logic to lighting the space.

Shadow Colors
Changing the color and intensity of lights in a scene can help establish a mood, but keep in

mind that shadows are always black. While you can’t directly change the color of shadows in

a scene, it is possible to tint their color by placing a Sky Light. Select the Sky Light Actor in the

level and in the Details panel, under the Light category, adjust the Light Color and Intensity

properties as desired.

Lightmass Importance Volume
If you have been building lighting throughout this process, you may have noticed that the

amount of time it takes to build lighting has increased as the amount of content in a level has

increased. When you build lighting, Lightmass calculates the number of times light bounces

around the level (three bounces by default). If a light hits a surface, bounces off, and continues

to travel without ever hitting another surface, UE4 continues to process the light until it leaves

ptg18222824

154 HOUR 9: World Building

the level. To minimize this processing, you can set Lightmass Importance Volume to define the

area beyond which the light is no longer processed. When you do this, you can greatly reduce

the amount of time it takes to build lighting.

The Lightmass Importance Volume is located in the Volume category in the Modes panel. Once

you have added it to a level, you can adjust the size and shape of the volume in the Details

panel, under Brush Settings. When placing the volume, you should have it surround the

 important areas of the level.

Audio
Simple ambient sounds can breathe life into a static level. Audio has a huge impact on player

perception. Sounds such as rushing wind, birds chirping, thunder in the distance, and the hum

of a generator are good environmental sounds to help inject life into a static world. Ambient

sounds typically are looping.

To add an Ambient Sound Actor to a level, find a Sound Wave asset in the Content Browser, drag

into the level, and adjust properties. Under Attenuation, uncheck the Override Attenuation

 setting and then adjust the radius and fall distance.

GO TO HOUR 7, USING AUDIO SYSTEM ELEMENTS, to review working with sound Actors.

Playtesting and Refining
After you have completed the rest of the world building process, such as shelling the level,

 placing Static Mesh Actors, and setting lighting and audio, you need to check over all your work

by playtesting and refining. Hopefully, you have already been periodically playtesting your level

as you have been working. If you haven’t, now is a good time to click the Play button on the

Level Editor toolbar and walk around the level.

Try to look at your level from the player’s point of view and identify any issues. Look for

places that indicate poor attention to detail. This can show up in many ways, such as a

surface not being assigned a material or objects floating above the ground or sinking into

the floor. Look at asset placement: Are props always placed on the perimeters of rooms,

with nothing in the interior spaces? Also ensure that architectural spaces are not perfectly

symmetrical and that there are not so many different materials in a level that the player’s eye

can never rest.

After you make the necessary refinements to the level, you can add a few other Actors that will

make a big difference in the final look of the level. You can find these visual effects Actors on the

Modes panel, under Visual Effects: Sphere Reflection Capture, Fog, and Post Processing Volume

ptg18222824

World Building Process 155

Actors. When you place these Actors in a level and adjust them properly, these Actors make the

final game look professional.

Reflection Capture Actors
Sphere and Box Reflection Capture Actors capture images of the level from their location and

project reflections onto other Actors in the vicinity—if the nearby Actors have materials with

reflective properties. While these Actors do not create accurate reflections, using them is very

effective and efficient because the scene capture is calculated before runtime. You can place them

as needed throughout a level.

Fog Actors
Game makers used to use fog to hide the fact that a level was small and had few assets or for

occluding far-off assets to improve rendering efficiency. Today, fog is more of an aesthetic choice.

Be careful: Fog can easily flatten a scene because it washes out contrast in the lighting.

There are two Fog Actor types that you can place in a scene:

 Atmospheric Fog: Atmospheric Fog is typically used with exterior levels and

 approximates atmospheric light scattering. It works directly with a directional light placed

in the level.

 Exponential Height Fog: The Exponential Height Fog Actor controls fog density in the

level based on height: Lower areas in a level have higher density than do higher areas.

Post Processing Volume Actors
Post processing allows you to apply camera effects to a scene. You can adjust properties like

Depth of Field, Motion Blur, and Scene Color on rendered frames. You can use Post Processing

Volume Actors to apply these effects to areas in a scene that are defined by a primitive shape.

Once a Post Processing Volume Actor is placed in a level and selected, you can adjust the size

and shape of the Actor under Brush Settings in the Details panel. When a camera enters a Post

Processing Volume Actor, the effects are applied. Figure 9.11 shows the level before and after the

Post Processing Volume Actor has been placed with Color Grading, Scene Color, and Depth Of

Field properties adjusted.

While you can place multiple Post Processing Volume Actors in a scene, you can also place

a single one and have it affect the entire level by turning on Unbound in the Post Process

Volume category under Brush Settings in the Details panel. Here you can also find all the other

properties you can control.

ptg18222824

156 HOUR 9: World Building

FIGURE 9.11
Image of a set-dressed level, before (top) and after post-processing (bottom).

ptg18222824

Q&A 157

Summary
In this hour, you learned to add a new level to a project and were introduced to a number of

new skills involved in set dressing a level. You were also introduced to some basic concepts

 related to creating worlds and had a chance to apply the skills you acquired in previous

lessons. In this hour you saw that a good set dresser should think like an interior designer

and a landscape architect, while creating areas of interest and intrigue based on discrete

environmental narratives.

Q&A
Q. When I place Static Mesh Actors in a level and they intersect one another, why do some of

the overlapping polygons flicker?

A. When placing Static Mesh Actors, it is okay to have them intersect; however if any of the
polygons are coplanar (that is, share the same space), the rendering engine doesn’t know
which polygon to display. This results in a flickering effect as UE4 tries to determine the
sorting order. To fix this issue, simply offset one of the assets.

Q. When I preview a level, why am I able to walk though some of the Static Mesh Actors?

A. Most likely, the Static Mesh asset is missing a collision hull. To fix this, find the Static
Mesh in the Content Browser, open it up in the Static Mesh Editor, and generate a new
 collision hull. Refer to Hour 4, “Working with Static Mesh Actors.”

Q. When I try to adjust the sky colors on the Sky_Sphere Actor, my choices do not have an

effect. Why?

A. By default, the Sky_Sphere colors are determined by the Directional Light. You can either
change the rotation of the direction light or, with the Sky_Sphere Actor selected, go to the
Details panel and uncheck Colors Determined By Sun Position. Then you can modify the
override settings on the Sky_Sphere Actor.

Q. Why do I see the word preview on some of my placed Static Meshes? And why am I being

alerted that lighting needs to be rebuilt?

A. If you have Static Mesh and Light Actors with mobility set to Static, you have to build
 lighting to create lighting and shadow data for those Actors. If your level is not too large
and lighting builds don’t take too long, there is no harm in building lighting at regular
 intervals.

Q. Why do I keep seeing the message “there is no Lightmass importance volume”?

A. You need to add a Lightmass Importance Volume setting to the scene and set its size so
that it just fits all the other assets inside its volume.

ptg18222824

158 HOUR 9: World Building

Q. Do I have to use BSPs to block out my level?

A. Not at all. It is okay to use Static Mesh assets only.

Q. My character can jump over the wall and outside the level. How do I stop that?

A. Depending on the scale of an asset, the player may have the ability to jump higher than the
asset. This is really a preplanning issue; it’s a good idea to know a pawn’s abilities before
you set dress an entire space. However, you can place Blocking Volume Actors to define
invisible areas the player cannot pass through. Blocking volumes are found on the Modes
panel under Volumes.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. If building lighting for a level is taking a long time, what option can you set to help shorten

build times by culling and light rays that travel outside the defined area?

2. If you are using materials with reflective properties but reflections are not showing up, what
type of Actors can you add?

3. If the Pawn can jump over walls and fall outside the level, what Actor can you place to
 create invisible collision hulls?

4. True or false: Grouping and linking Actors in the World Outliner panel are the only ways to
combine Actors.

5. True or false: The world beyond concept only refers to far-off distance that the player cannot
reach.

Answers
1. If building lighting for a level is taking a long time, you can add a Lightmass Importance

Volume setting to help shorten build times.

2. If you are using materials with reflective properties but reflections are not showing up, you
should place Sphere and/or Box Reflection Capture Actors in your level.

3. If the Pawn can jump over walls and fall outside the level, you can place Blocking Volume
Actors in your level.

4. False; already-placed Actors can be combined in to a Blueprint Class that can reused
throughout all the levels in your project.

5. False; while far-off distances are the most common implementation of world beyond it also
refers to any nearby areas the players can see but can get to.

ptg18222824

Exercise 159

Exercise
For this exercise, create and set dress a second level but this time start with the Empty Level
template. The Empty Level template does not have any of the preplaced Actors found in the
Default template. It is good practice when starting out to familiarize yourself with all the Actors
needed to set up a basic level. Set dress a small environment using existing assets and materi-
als. There should be a consistent visual theme to the space and a focal object that brings every-
thing together. You should demonstrate your understanding and ability to implement common set-
dressing concepts, such as visual complexity and dealing with world beyond.

1. In the project you created for this hour, from the main menu select File > New Level (or
press Ctrl+N).

2. In the dialog that appears, choose Blank Level.

3. Save your newly created level into the Maps folder.

4. Add a BSP box and under Brush Settings in the Details panel, set the brush shape to 2000

for X, 2000 for Y, and 50 for Z.

5. Add a Player Start Actor.

6. Add a Directional Light.

7. Add a Sky Light.

8. Add an Atmospheric Fog Actor.

9. Add the Sky_Sphere Blueprint Actor.

10. Migrate Static Meshes, Materials, Particle Systems, and Audio assets from another project
or add content packs from the marketplace.

11. Set dress the level.

12. Add an Exponential Height Fog Actor.

13. Add a Lightmass Importance Volume Actor.

14. Add Sphere Reflection Capture Actors.

15. Add a Post Processing Volume Actor.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 10
Crafting Effects with Particle

Systems

What You’ll Learn in This Hour:

 Understanding particles and data types

 Working with the Cascade Editor

 Using emitters and modules

 Using the Curve Editor

 Setting up materials for particles

 Triggering Particle Systems

Particle Systems are the building blocks of visual effects in games. You can use particles for

explosions, muzzle flashes, leaves falling in the wind, waterfalls, magical energy, lightning,

rain, dust, fire, and much more. In UE4, particles have many different flavors that you can

manipulate to create a variety of effects through the particle Editor Cascade. This real-time

particle editor and UE4’s modular approach to controlling particle behavior allows you to design

even the most complex effects quickly and easily. In this hour, you learn about the different

types of particles in UE4, how to use Cascade to create and control how particles behave, how to

use SubUV textures, and how to utilize particle effects with Level Blueprints.

NOTE

Hour 10 Project
For this hour, you need to open the Hour_10 folder, which is available on the book’s companion
 website at www.sty-ue4.com. This folder contains applicable and useful texture sets and premade
Particle Systems that you can explore to further understand the concepts in this hour.

Understanding Particles and Data Types
In video games, a particle is a point in space that follows a set of rules that determine its location

and various visual attributes. There is usually some form of mesh attached to these points that

causes the particles to appear to the player. There are many different types of particles, each

with a different type of mesh or construction attached to its points.

http://www.sty-ue4.com

ptg18222824

162 HOUR 10: Crafting Effects with Particle Systems

UE4 includes the following types of Particle Emitters, each of which has different benefits for

 different situations:

 Sprites: By far the most common type of emitter, a Sprite is a single camera-facing quad

mesh with a texture to define the visuals. Sprites are most often used for smoke and fire,

but they can be used to create many other effects. Effects usually are made with the default

camera-facing Sprite Emitters.

 Mesh data: With this type of emitter, a particle attaches to a single polygonal mesh. This

allows for great looking effects such as rockslides or flying debris from explosions.

 Anim-trail data: Used exclusively with Skeletal Meshes and animations, Anim-Trail Data

Emitters create trails using the sockets from Skeletal Meshes. These work well for creating

streaks behind swords or other melee weapons.

 Beam data: This type of emitter draws a camera-facing set of quads that stretch between

the recently created particles. This type is often used for lasers, lightning, or similar effects.

 GPU Sprites: Visually similar to the default Sprites, GPU Sprites have the distinction of

being simulated entirely on the graphics processor. This allows you to simulate and render

orders of magnitude more particles than their CPU counterparts. Some features available

to the default Sprites are not available to GPU Sprites, however, making GPU Sprites most

useful when you need to simulate large quantities of distinct individual effects, such as

sparks, fireworks, snow, or rain.

 Ribbon data: This type of emitter draws quads between each pair of recently placed

 particles, interpolating bends with smooth curves. This type is often used with moving

emitters to create engine or projectile trails.

This hour focuses on the three most common Particle Emitters: Sprites, GPU Sprites, and mesh data.

Working with Cascade
Unreal Engine 4 has a powerful particle editor called Cascade. The Cascade interface and the

number of options in it can be a bit daunting at first, but the versatility and modular approach

to particle behavior makes Cascade an incredibly useful tool.

A Particle System is a collection of one or more Particle Emitters (potentially of different types)

that make up an effect. Each Particle Emitter spawns an arbitrary number of particles and

 controls their behavior and appearance. It controls these behaviors through modules that you

can add to or remove from any Particle Emitter.

Modules can control effects such as a particle’s size, color, velocity, and rotation, and they can

also handle collisions.

ptg18222824

Working with Cascade 163

You open Cascade by double-clicking any particle template in the Content Brower. The Cascade

Editor has six major parts, as shown in Figure 10.1 and described in the following list:

FIGURE 10.1
The six important sections of Cascade.

The six parts are 1) Toolbar; 2) Viewport Panel; 3) Emitters Panel; 4) Modules Panel; 5) Details

Panel; 6) Curves Editor. The six sections are described in the following list:

 Toolbar: As in most other editors in UE4, the toolbar is where you save changes and

handle asset-level actions. Important commonly used buttons are Restart Sim and Restart

Level, which cause UE4 to refresh a Particle System from scratch.

 Viewport Panel: This panel provides a full-fledged preview Viewport of your Particle

System and allows you to use normal movement controls.

 Emitters Panel: This panel contains all the emitters held by the selected template. Each

emitter is a piece of the effect, controlling distinct particles and represented by a column.

You can add a new emitter by right-clicking in the empty space.

ptg18222824

164 HOUR 10: Crafting Effects with Particle Systems

 Modules Panel: This panel holds the behaviors that control the emitter selected in the

Emitters panel. Each module is displayed as a row, with a type name and a check box to

enable or disable the module. You can add a new modules by right-clicking in this column

and using the context menu to choose a specific module.

 Details Panel: This panel shows the available properties of the selected module. When no

module or emitter is selected, it shows the particle template’s global properties.

 Curves Editor: This panel visualizes property values as curves, allowing for complex effects

that usually occur over the lifetime of a particle. It is commonly used to fade particles in

or out, change their sizes over time, and manipulate their velocities. You can visualize

 modules’ curves in the Curves Editor by clicking the graph icon on the individual module.

Using Emitters and Modules
To understand how to use Cascade to create particle effects, you need to first understand how

modules can manipulate particles inside an emitter. The range of modifications and the variety

of behaviors that a module can describe is massive.

An emitter describes a collection of particles, and how it describes those particles is entirely

 decided by the modules that make up the emitter. Modules can influence an emitter’s movement,

its behavior, its color and appearance, what type of data it is drawing, complex events in the

particle’s lifetime, and much more.

Modules show up as individual rows in an emitter’s column in the Emitters panel. You can add

modules to an emitter by right-clicking the emitter in the Emitters panel. You can modify the

 different properties and parameters of a module through the Details panel.

Required Modules
Each emitter comes with three required modules. The first doesn’t look like a module at all but is

where emitter-specific information like the emitter’s name and quality information reside. This

module rests at the top of an emitter column and shows the emitter’s name, and a thumbnail

render of the emitter’s effect. It is on this module that you can disable the entire emitter by using

the check box underneath the emitter’s name.

Under the top-level module is a black bar, which represents a slot that the emitter’s type data

can be slotted into. This module always exists, but you may choose to leave it empty. Choosing

to not slot in a distinct type data will cause the emitter to spawn CPU Sprite particles.

The next required module is actually named the Required module, which holds the parameters

a Particle Emitter absolutely requires to function. Information about the applied material, the

emitter’s lifetime, and whether the emitter loops can be found here. It is a good idea to look

at all the parameters held in the Required module and get a feel for everything in here. In the

future, you will come back to this module frequently.

ptg18222824

Working with Cascade 165

Finally, the last required module is the Spawn module, which is responsible for the number of

new particles that are created and their frequency or rate of emission. Without this module, no

particles would ever be created.

Module Properties
Each module has a set of properties that control how that module affects the particles it

 contains. The Distribution field controls how each particle determines what value to use for a

given property. The available distributions are grouped into a few different types:

NOTE

Vector and Float Distributions
Each of these distributions has versions for singular scalar float values and three float vector
 values. The type of distribution (whether float or vector) is determined by the property itself and
 cannot be changed by the user.

For more about distributions and how they work in Cascade, check out the excellent documentation
at https://docs.unrealengine.com/latest/INT/Engine/Basics/Distributions.

 Distribution Float/Vector Constant: Some properties, such as the emitter’s Duration

property, can have only one value. No matter at what point in the simulation, a constant

distribution always comes back the same. Other properties (such as the Lifetime module’s

Lifetime property) are not required to be constant but can be interpreted as such.

 Distribution Float/Vector Constant Curve: When properties need to change over the

 lifetime of the Particle System or the emitter, those properties can be interpreted as curves.

At the same point in every particle’s lifetime, the property will evaluate the curve the

same way. This is often used to change the color or opacity of particles over their lifetimes

in a predictable way. Curves are best edited through the Curve Editor, although can be

 manually adjusted in the Details panel.

 Distribution Float/Vector Uniform: Properties that are not forced to be constant may

be interpreted with a variety of different distribution methods. The simplest distribution

 method available is the uniform distribution, which takes in minimum and maximum

values that can be returned and returns a uniformly random value between the two

(see Figure 10.2). These distributions are most often used with modules that affect the

initial state of a particle. One example is the Initial Size module, which can have a

 uniform distribution used to give each particle a random scale.

 Distribution Float/Vector Uniform Curve: A uniform curve distribution is the most

advanced distribution setting for a property, and it offers the benefit of a time-based

result—like constant curves do—but with the controlled randomness provided by the

uniform distribution. These distributions are best used when an effect needs to be both

random and modulated with time. As with the constant curves, it is best to use the Curve

Editor to make modifications to uniform curve distributions.

https://docs.unrealengine.com/latest/INT/Engine/Basics/Distributions

ptg18222824

166 HOUR 10: Crafting Effects with Particle Systems

FIGURE 10.2
An example of using the Distribution Vector Uniform setting, which describes the randomized initial velocity
of each particle. In this case, the X and Y velocities range from values of –10.0 to 10.0, while the upward
Z velocity ranges from 50.0 to 100.0.

NOTE

Initial Versus Over Life
The names of some modules include either Initial or Over Life (e.g., Initial Color, Color over Life).
These names accurately describe the behaviors of a module, and they have measurable differences
in terms of how they are evaluated.

When a module name includes Initial, curve and uniform curve distributions are evaluated over the
emitter’s duration, not over the individual particles’ lifetimes. For example, if Initial Color is defined
as a curve from red to green, as the entire emitter stays active, new particles begin getting more
green, while particles spawned earlier remain their initial red color.

Conversely, when a module has Over Life in the name, curve and uniform curve distributions are
evaluated for the lifetime of each particle. For example, if Color Over Life is defined as a curve from
red to green, each new particle begins as red and transitions to green individually.

Using the Curve Editor
Many modules are best utilized with curve distributions. Editing curves manually through the

Details panel is possible, but it is somewhat unintuitive. Luckily, Cascade comes with a fully

 featured Curve Editor that makes manipulating and creating curves simple.

You can see curves in the Curve Editor by clicking the graph icon on individual modules in

the Emitters panel. Figure 10.3 shows some of the most important features of the Curve Editor:

1) Toolbar; 2) Channel visualizers; 3) Property visualizer; 4) Key. These features are described in

the following list:

ptg18222824

Working with Cascade 167

FIGURE 10.3
The Curve Editor showing several curves, with points of interest highlighted.

 Toolbar: The toolbar has buttons for many tools that are necessary for handling and

manipulating curves. The first three buttons highlighted in Figure 10.3 are the framing

tools, which are used to quickly set the Curve Viewport to match the minimum and

 maximum values of all visible curves.

 Channel visualizers: Each curve distribution is either a singular float curve or a set of

curves that make up a vector distribution. In the case of a vector distribution, these three

red, green, and blue boxes can be used to visualize individual channels of the vector. When

you click any of these boxes, the matching curve in the Editor is either enabled or disabled.

 Property visualizer: This box enables or disables the visualization of all channels of the

associated property. You can use it to disable the display of all curves in a property with

one click.

 Key: As with many other curve or animation editors, this Curve Editor works with placed

keys. You can manipulate keys directly through keyboard shortcuts or by right-clicking and

setting values manually.

The process of adding keys and navigating around the Viewport can take some getting used to.

The controls listed in Table 10.1 are invaluable for effectively using the Curve Editor to define effects.

ptg18222824

168 HOUR 10: Crafting Effects with Particle Systems

TABLE 10.1 Curve Editor Controls

Control Description

Click+drag on the background Pan view around.

Mouse scroll Zoom in and out.

Click a key Select the key.

Ctrl+click a key Toggle selection of a key.

Ctrl+click a curve Add a new key at the clicked location.

Ctrl+click+drag Move the current selection.

Ctrl+Alt+click+drag Box select.

Ctrl+Alt+Shift+click+drag Box select and add to current selection.

Using Common Modules
Many modules are available to you. There are, however, some modules that are almost always

used and whose versatility and distinct properties are worth mentioning. They are described in

the following sections.

Required Module
The Required module, as mentioned previously, handles most of the bare minimum information

required by an emitter. Some of this module’s most important properties, described in this

 section, should not be overlooked.

The Emitter category includes the following important properties:

 Material: This property determines which material is used by each particle in the emitter.

(You learn about particle-friendly materials later in the hour.)

 Use Local Space: This Boolean property determines whether the Particle System should be

completely relative to its Actor’s position, rotation, and scale or whether it should simulate

in world space. This flag is false by default, meaning that as the emitter moves around in

the world, the particles stay behind. This also means that particles ignore the rotation of

the containing Actor. A good time to turn this flag on is when you need an effect to stay

stuck to a character completely—for example, for muzzle flashes or simple engine flares.

 Kill on Deactivated and Kill on Completed: These two properties are primarily for

 efficiency, and you can use them to have UE4 automatically clean up your Particle

Systems. Kill on Deactivated destroys the emitter whenever it is deactivated, while Kill on

Completed destroys the emitter as soon as the Emitter Duration setting’s time runs out.

ptg18222824

Using Common Modules 169

The Duration category includes the following properties of note related to the duration and

 looping of the emitter:

 Emitter Duration: This property is a single float value that determines how long a single

loop of the Particle System is. This is a value in seconds, so if Emitter Duration is set to 5.0,

the emitter will complete one loop in 5 seconds. It is important to note that particles can

technically have longer life spans than the Emitter Duration setting.

 Emitter Loops: This property is an integer value that determines how many times the

emitter loops. When this value is 0, the emitter loops endlessly.

Finally, the SubUV category controls the sizing and controls of the different properties that go

into using SubUV textures. A series of properties in this module determine how SubUV textures

are managed. SubUV textures are commonly used to display simple animations on particles

to create complex multilayered effects. You learn about how to use SubUV textures later in this

hour.

Spawn Module
The Spawn module is always used to determine how many new particles are created and how

often it happens. It can be roughly separated into two categories: per-second spawns and burst

spawns. The first category determines how many particles per second are created, and the

 second category indicates that the emitter should force spawn a set number of particles at a

 particular time.

The Spawn category includes the following properties:

 Rate: This property is a float distribution that determines the number of particles to emit

per second.

 Rate Scale: This property is a secondary scalar applied to the Rate property to modulate

the number of particles. The result of Rate multiplied by Rate Scale determines the number

of particles to emit in a given frame.

The Burst category is slightly more involved than Spawn because it allows you to determine

specific times to force emit a particular number of particles. This category includes the following

properties:

 Burst List: This property contains a list of counts and times to spawn a set number of

 particles. You can add new burst items by clicking the + icon on the burst list array. A burst

item has three properties: Count, Count Low, and Time. Count and Count Low determine

the minimum and maximum numbers of particles to emit in a given frame, determined

by Time. When Count Low is negative, the emitter simply emits the number of particles

defined by Count; otherwise, it picks a random number between the two properties.

ptg18222824

170 HOUR 10: Crafting Effects with Particle Systems

It is important to note that Time is a value between 0.0 and 1.0, where 1.0 denotes the

 maximum duration of the emitter.

 Burst Scale: This property is a distribution that scales the values determined by the Burst

List property.

Lifetime Module
In the vast majority of Particle Systems, the Lifetime module should be considered a requirement.

This module determines how long particles remain in existence. The module has only one

property, and that property can be any of the distribution types. You can use the Lifetime

module to give particles a random lifetime.

Something to keep in mind is that many modules work off the lifetime of individual particles, so

changing the Lifetime module can drastically change the speed at which other modules modify

particle behaviors.

Initial Size and Size By Life Modules
One of the things you most commonly need to control in any Particle System is the size and

scale of the particles being displayed. The Initial Size and Size by Life modules are regularly used

together in many effects for just this purpose. To find these modules, right-click the emitter and

select Add Module > Size. Here are some more details about these two modules:

 Initial Size: The Initial Size module sets the particles’ size at the time that they are

spawned. It is most often used with the Distribution Uniform Vector setting to

 create some variation of randomness between different particles.

 Size By Life: This module handles the important task of modulating an individual

particle’s size over the course of its lifetime. You can use this setting with the Initial

Size module to grow or shrink particles as time moves on. One common use is a curve

distribution where the size starts near or at 0.0 and then grows quickly to a value near 1.0.

This causes the visual effect similar to rapid expansion, a common feature in effects such

as explosions.

Initial Color, Scale Color/Life, and Color
Over Life Modules
The modules dedicated to handling a particle’s color—Initial Color, Scale Color/Life, and Color

Over Life—are very similar to the modules dedicated to scale. In addition to the RGB color

 properties of each particle, these modules can control the alpha (transparency) of each particle.

By modifying the alpha, you can easily hide the creation and deletion of each particle, which is

especially useful for soft effects like smoke or fire.

ptg18222824

Using Common Modules 171

Pushing color values above 1.0, in many cases, causes the post-process bloom effect to take

effect, which can be used to create glowing bright effects like sparks or flames.

These modules require that the material applied to the Particle Emitter be set up with a particle

color node input. Here are some more details about these three modules:

 Initial Color: The Initial Color module, like the Initial Size module, sets the color of each

particle when it spawns. This module is often used to randomize the starting colors of each

particle.

 Scale Color/Life: This module takes the existing color of a particle and modulates the

result over the lifetime of the particle. Curve distributions can be used to great effect with

this module. You can use the Scale Color/Life module with the Initial Color module to

 create slightly different random particles that change color or alpha over time since the

resultant color values are a combination of both modules.

 Color Over Life: This module is different from the By Life modules we have previously

 covered in that this module sets the value of the particle’s color directly. This means it

stomps over the values set by Initial Color or Scale Color/Life modules. Color Over Life

modules are usually used in isolation to fill the role of the other two modules.

Initial Velocity, Inherit Parent Velocity, and Const
Acceleration Modules
Cascade maintains several modules that are dedicated to handling particle motion: Initial

Velocity, Inherit Parent Velocity, and Const Acceleration Modules. Many particle effects require

only the simplest of these—the modules dedicated to applying velocity or acceleration in a

 constant direction. Here are some details on these three modules:

 Initial Velocity: This module determines the starting velocity for any particle. The module

works well with uniform distributions to create a small amount of randomness in any

direction or magnitude.

 Inherit Parent Velocity: This module does exactly what its name implies. If the emitter

is moving at any speed when the particle is spawned, the module applies the speed and

direction of the parent emitter (or Actor) to the particles. This works best for particle effects

that are meant to appear physically based, especially when attached to Actors that move

throughout the world.

 Const Acceleration: This module applies a consistent amount of acceleration to all

 particles in an emitter evenly. This is the module best used to approximate gravity. Most

particle effects that have distinct physical elements (like sparks, dirt, rocks, or water)

should use Const Acceleration with a negative value in the Z component to simulate the

effect of gravity.

ptg18222824

172 HOUR 10: Crafting Effects with Particle Systems

Initial Location and Sphere Modules
Under the Location category are many modules related to the spawn location of each particle.

When none of these modules are used, Cascade simply spawns particles at the emitter’s origin.

These location modules can often be stacked to create interesting and diverse effects, but often

these two simple modules are more than sufficient:

 Initial Location: By far the most commonly used location module, the Initial Location

 module uses a vector distribution to pick the starting location of each particle. When used

with the Distribution Uniform Vector setting, this module can fill a box-like volume

with new particles to spawn. This module is great for creating atmospheric area-filling effects.

 Sphere: Similarly to the Initial Location module, the Sphere module handles spawn loca-

tions. Differently, however, the Sphere module distributes particles throughout a sphere

volume. The sphere’s radius can be set through a distribution, although often a constant

distribution is sufficient. In addition to Initial Location, the Sphere module can also be

used to apply a velocity scale to each particle. This is useful because the velocities this

module applies are aligned to the surface of the sphere. The resultant effect works well for

sparks or particulates intended to come from a point source (explosions come to mind).

Initial Rotation and Rotation Rate Modules
One of the limitations of Particle Systems is that it is difficult to make individual particles look

very different from their neighbors. Using random sizes and random colors can help create

the illusion of diversity, but another important feature is to randomly rotate each particle.

The rotation-based modules can help you create interesting motion and diversity in your effects.

Here are some details on these two modules:

 Initial Rotation: This is a simple module that merely sets the starting rotation of each

particle. By using a Distribution Float Uniform setting, the Initial Rotation module

can create much-needed diversity in nearly all effects. The scale for rotation is 0.0 to 1.0,

where 1.0 is one full rotation of the particle.

 Rotation Rate: Sometimes an initial rotation is not quite enough to make an effect shine.

In such cases, the Rotation Rate module really comes through. You can use this module

to give all particles a unique amount of angular velocity. As with the Initial Rotation

 module, the scale for the Rotation Rate module is 0.0 to 1.0, where a value of 1.0 means

the particle completes a full rotation in a single second.

The Rotation Rate and Initial Rotation modules work together and can be stacked.

Setting Up Materials for Particles
Understanding the interaction between Particle Emitters and the materials applied to the

 particles is crucial to devising interesting and textured effects. There are a number of modules,

ptg18222824

Setting Up Materials for Particles 173

including those related to color modulation, that cannot work unless you first set up the

 materials to interpret those modules.

Emitter modules set properties and parameters on particles, and those properties are then inter-

preted by the attached materials—but only if the proper nodes are used in the material graph.

Particle Color
Being able to modulate a particle’s color is incredibly important and almost always needed.

Therefore, setting up a material to interpret this property is extremely common when you’re

making visual effects.

In its most basic form, a particle material often takes the RGB and A values from an input

 texture and multiplies them with the respective values of a particle color input node. Figure 10.4

shows a simple unlit translucent material with this setup.

FIGURE 10.4
A simple translucent unlit material set up with the ability to take the color set by an emitter’s various color modules.

ptg18222824

174 HOUR 10: Crafting Effects with Particle Systems

SubUV Textures
One of the most convenient and versatile ways to make dynamic effects is to use the SubUV

options provided by UE4 to create SubUV texture effects.

SubUV texture effects are used for visual effects where distinct frames of an animation are preren-

dered into a single texture sheet. The different frames are laid out in a grid pattern, and then at

runtime, UE4 picks and interpolates between the different frames, giving the illusion of animation.

Figure 10.5 shows the order in which an example of a SubUV texture and the order in which the

frames are shown.

FIGURE 10.5
Two examples of SubUV textures. The left image shows an example of a prerendered 6 × 6 explosion effect
made in a third-party package. The right image shows the order the animation goes through, with frame
 numbers for a 4 × 4 SubUV texture.

Using a SubUV texture requires three distinct steps. The first step is to tell the emitter’s Required

module the number of columns and rows in the SubUV texture. The second step is to create a

SubImage index in the Particle Emitter and set up a curve, picking which frames to show at

which time. The final step is to place a ParticleSubUV or a TextureParameterSubUV node

in the material graph of the applied material.

NOTE

SubImage Index
A SubImage index defines a curve where the horizontal axis fits from 0 to 1, where 1 is the lifetime
of the particle. The vertical axis is an integer, with the exact frame number to be displayed, starting
with 0. So if a texture sheet is 4 × 4, it has 16 frames, and the value to use at the end of the
SubUV texture should be 15.

ptg18222824

Setting Up Materials for Particles 175

Create a SubUV Texture Effect

Using SubUV textures is one of the best ways to create deep and complex effects with lots of
secondary animation. Follow these steps to create a new simple Particle Emitter effect and
 material setup, using an explosion SubUV texture:

1. In the Content Browser, in the folder for the Hour_10 project (available on the book’s
 companion website), create a new particle template and name it SimpleExplosion.

2. Open the Cascade Editor for the SimpleExplosion template by double-clicking it.

3. Delete the default Initial Velocity module.

4. Open the Required module’s details and scroll down to the SubUV category. Under
SubUV, set Interpolation Mode to Linear and set both Sub Images Horizontal and Sub Images

Vertical to 6.

5. Right-click the Particle Emitter, select SubUV > SubImage Index.

6. Set the distribution to Distribution Float Curve Constant.

7. Under the distribution field, expand Point #1 and set Out Val to 36.

8. In the Content Browser, create a new material and name it SimpleExplosion_Material.

9. Open SimpleExplosion_Material’s material graph.

10. In the material’s global settings, set Blend Mode to Translucent and set Shading Model to
Unlit.

11. Add a new Particle Color node to the material graph.

12. Create a TextureSampleParameterSubUV node and then set Parameter Name to Particle

SubUV.

13. Replace the Particle SubUV node’s texture with /Game/Textures/T_Explosion_SubUV.

14. Create two Multiply nodes.

15. Connect both the Particle Color and Particle SubUV white RGB pins to the first Multiply node.

16. Hook the first Multiply node’s output into the Emissive Color input.

17. Connect the Particle Color node’s alpha output and the Particle SubUV node’s red output to
the second Multiply node.

18. Hook the second Multiply node’s output to the Opacity node’s input.

▼TRY IT YOURSELF

ptg18222824

176 HOUR 10: Crafting Effects with Particle Systems

 Triggering Particle Systems
Some particle effects always need to be active. Other times, more control is needed to fine-tune

the activation timing of particle effects.

Auto Activate
For ambient effects, such as some fires or wind effects, often there is no need to ever have the

effects be disabled. In cases such as these, the Auto Activate setting on an emitter Actor can be

used to simplify the placement and activation of the effects.

To make a Particle System activate as soon as it is placed, after placing a Particle Emitter, select

the Actor and look for the Activation category. If the Auto Activate property on an emitter Actor

is checked, the emitter automatically activates itself when the game begins.

Activating Particle Systems Through Level Blueprints
In some situations, game designers and developers need more complete control over when and

how particle effects simulate. Level Blueprints and Blueprint classes can be used to great effect to

control the activation behaviors of different emitters.

In Level Blueprints, you can directly access a reference to an emitter Actor and use it to control

the activation state of a Particle System.

Dragging off a reference to a Particle System gives you access to two extremely useful nodes:

Activate and Deactivate (see Figure 10.6).

▼ 19. In the Cascade Editor for the SimpleExplosion template, select the Required module and set
the Material property to SimpleExplosion_Material.

20. Lower the Spawn Rate setting to 0.0 and create a burst spawn item with a value of 1.0.

21. In the Required module, set Duration to 1.0.

22. In the Lifetime module, set the Lifetime property’s distribution to Distribution Float Constant

and set Constant Value to 1.0.

23. Place an instance of the SimpleExplosion particle system into the level.

ptg18222824

177Q&A

FIGURE 10.6
A simple level event graph that waits 5 seconds before activating a Particle System and then waits another
5 seconds before deactivating that same system.

Summary
This hour, you learned about UE4’s modular approach to crafting and controlling particle effects.

You learned about the tightly coupled relationship between Particle Systems and the materials

attached to them. You saw the powerful SubUV texture technique and learned how to trigger

effects from Level Blueprints. Creating Particle Systems is a deep topic and can take time to

master, but the fundamentals covered in this hour form the backbone of nearly every effect

imaginable.

Q&A
Q. I’ve made what should be a one-shot effect, but it keeps restarting. How do I fix this?

A. In the Required module of an emitter, the number of loops of a particle is set on the
Emitter Loops property. If the value is equal to 0, the emitter repeats endlessly. Try setting
its value to 1 to play the effect only once.

Q. I’ve hooked up my Particle System in Level Blueprints to activate after a trigger, but it keeps

playing at the start of the level. How do I stop it from playing until I’m ready?

A. Remember to uncheck the Auto Activate property on the emitter Actor in the level. The Auto
Activate property is on by default, and as long as it is on, the emitter always starts playing
when the game starts.

Q. I’m trying to use a SubUV texture, but the shown texture looks wrong. My effect is being

clipped weirdly. What is wrong?

A. The most common reason for clipped or weird textures is inaccurate SubUV settings. In the
Required node, try changing the SubUV Horizontal and SubUV Vertical properties to better
match your source texture.

ptg18222824

178 HOUR 10: Crafting Effects with Particle Systems

Q. The Color setting modules do not seem to be affecting my particles. What might be

 happening?

A. Take a moment to check the material you are using to make sure the particle color input
node is being used properly. The RGB properties need to end up in the channels that you
want the color to affect. Similarly, the ALPHA output needs to end up in either the Opacity
channel or the Opacity Mask channel. If the Opacity and Opacity Mask channels are
grayed out, the problem may lie in the material settings. Make sure Blend Mode is set to
Translucent or Masked.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: Each Particle System can have only one Particle Emitter.

2. True or false: An emitter cannot have multiples of the same module active at the same
time.

3. True or false: Curve values can be modified either in the Details panel or the Curve Editor.

4. True or false: GPU and CPU particles are identical except for the quantity that can be
 simulated efficiently.

Answers
1. False. Particle Systems can have any number of emitters.

2. False. Some modules can be stacked. In that case, the modules apply their attributes in
top-down order, concatenating their effects together. Some modules stomp over the values
previously changed above.

3. True. The Curve Editor provides a more intuitive way to modify curve distributions, but using
the Details panel is a perfectly valid way to modify curve attributes.

4. False. GPU particles can be simulated in much higher quantities, but some modules cannot
be used with them. When a module that is incompatible with a data type is added, a red X
appears, and an error message describes the issue.

ptg18222824

Exercise 179

Exercise
Practice making new Particle Systems and play around with the different modules available to you
for controlling Particle Emitters. Look at the /Game/Particles/P_Explosion Particle System
and modify it to become a blue energy explosion.

1. In the Hour_10 project, open the /Game/Particles/P_Explosion Particle System.

2. In the Shockwave emitter, select the Color Over Life module. Change the point 0
and 1 colors to a pale electric blue.

3. Change the fireball’s Required module’s material to the provided /Game/Material/

M_explosion_subUV_blue.

4. Modify the fireball’s Color Over Life curve to the same electric blue color chosen in step 2.

5. Repeat steps 2–4 for the remaining modules.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 11
Using Skeletal Mesh Actors

What You’ll Learn in This Hour:

 Understanding what a Skeletal Mesh is and how it differs from a Static Mesh

 Importing a Skeletal Mesh from a 3D package

 Using the Persona Editor

 Playing animations on a new Skeletal Mesh Actor

Often, you need to handle more complex animations than simply moving the transform

 components of Static Meshes. One of the ways to create objects with different parts that move

independently is to use a Skeletal Mesh. With Skeletal Meshes, you can breathe life into charac-

ters through animation. These animations are often made in third-party packages and imported

into UE4. Most of the time when you play a game with a controlled character, that character is

a Skeletal Mesh. This hour, you learn the power of Skeletal Meshes, how to import a character

from a third-party package, and how to place and animate a Skeletal Mesh.

NOTE

Hour 11 Project Setup
For this hour, you need to open the Hour_11 project found in the Hour_11 folder (available on the
book’s companion website at www.sty-ue4.com), which contains Unreal animation content examples.
If you would rather, though, you may use the marketplace to add the content examples manually.

Defining Skeletal Meshes
If Static Meshes make the game world, Skeletal Meshes make the game world feel alive. The

primary difference between Static and Skeletal Meshes is evident in the names: In a Static

Mesh, each vertex is bound to a single location, the object’s pivot. In a Skeletal Mesh, vertices

are manipulated by a skeleton-like hierarchy of independent locations. This hierarchy can

make unique parts of a single mesh translate and animate independently of its neighbors. This

 fundamental ability allows the animation of complex characters, monsters, animals, vehicles,

machines, and much more.

http://www.sty-ue4.com

ptg18222824

182 HOUR 11: Using Skeletal Mesh Actors

Figure 11.1 shows a Skeletal Mesh in UE4; in it, a skinned mesh is on top of the skeleton

 hierarchy in a resting pose. The white bones (or joints) are where animation will be played back,

and the nearby skinned vertices of the mesh will deform to follow them.

FIGURE 11.1
A Skeletal Mesh from the UE4 Matinee example project. This mesh has a series of bones that make up
the skeleton (designated in the screenshot by the white lines). The nearby vertices have been skinned, or
attached to the bones in a third-party program so they will follow the skeleton around as it animates.

ptg18222824

Defining Skeletal Meshes 183

The phrase skinning or skinned mesh refers to the process of binding vertices to the underlying

skeleton. An artist creates a skinned mesh in a third-party content creation tool by telling each

vertex which bone it should be bound to. A variety of packages and tools can be used for this

process. Many such software packages have visualization modes to show the distribution of skin

weights. Figure 11.2 shows an example of this.

FIGURE 11.2
A visualization of the vertex weighting of a character’s lower left arm in Blender. In this visualization red
 indicates that the vertex will completely follow the selected bone, yellow or green indicates that multiple bones
contribute to the vertex’s position, and blue indicates that the vertex is unaffected by the selected bone.

Once the vertices are skinned to the skeleton, animators can rotate, translate, and scale the

 character’s bones to create dynamic animations. Figure 11.3 shows an animated character.

ptg18222824

184 HOUR 11: Using Skeletal Mesh Actors

FIGURE 11.3
A simple punching pose of the Owen character provided in the Unreal Engine 4 content examples.
The Hour 11 project includes this animation and character.

In Unreal Engine 4, animating a Skeletal Mesh takes at least three separate components.

Understanding what these components are and what they are responsible for individually is

imperative to working with Skeletal Meshes:

 Skeletal Mesh: The primary component, a Skeletal Mesh is the skinned vertices that go

with a set of internal bones. This is the component that defines the appearance of the

mesh, including how materials are assigned.

 Skeleton: Each Skeletal Mesh is attached to a separate asset called a skeleton. A skeleton

can be shared between many Skeletal Meshes, but a single Skeletal Mesh can have only

one skeleton. Disparate Skeletal Meshes (potentially with unique hierarchies) can be

 animated by UE4 using the same assets. This level of indirection allows different characters

to share the same animations.

ptg18222824

Defining Skeletal Meshes 185

There are some rules about how Skeletal Meshes can share skeletons. Different hierarchies

can be used, as long as the base bone hierarchy is the same. Removing a bone earlier in

the hierarchy breaks the connection between the child bone and the skeleton. In addition,

naming conventions between the skeleton and the Skeletal Mesh must match. All bones

that are controlled by the skeleton must have exactly the same names in the skeleton and

the Skeletal Mesh.

 Animation sequence: An animation sequence is a record of how a skeleton moves,

 including the keyframe location, rotation, and scale of each animated bone in the

 skeleton. An animation sequence can be assigned to only one skeleton, so if two Skeletal

Meshes want to share the same animation asset, they must also share the same skeleton.

In addition to these three necessary components of animating a mesh, there are two other

 components of the skeleton system. These components are not absolute requirements, but they

allow for extended behavior, especially when you’re making characters:

 Physics assets: When you create characters, or Skeletal Meshes, that need to interact

with the physics system, a fourth file, called a physics asset, is created, which defines the

 simplified collision geometry attached to the skeleton. This asset allows characters to

 ragdoll after death or to receive damage from ray sources.

 Animation Blueprints: Characters and meshes with complex animation requirements

often make use of animation Blueprints. These specialized Blueprints are responsible for

the logic necessary to choose which animation sequences to use at which times. Animation

Blueprints are often responsible for handling animated locomotion, as well as blending

between different animations based on user input.

ptg18222824

186 HOUR 11: Using Skeletal Mesh Actors

Figure 11.4 shows the reference hierarchy of Skeletal Meshes, skeletons, and animations. This

visualization shows the interface-like nature of the skeleton.

FIGURE 11.4
This is the reference hierarchy of Skeletal Meshes, skeletons, animation sequences, and physics assets.
Each arrow points from the reference to the referencer. For example, skeleton assets do not know which
 animations use it, but each animation sequence knows which skeleton it is applied to.

Importing Skeletal Meshes
Unreal Engine 4 is a game engine, and for the most part, it isn’t a content creation tool. As with

Static Meshes or textures, to create a Skeletal Mesh you need to use a third-party program. UE4

interfaces with third-party programs through the use of the Autodesk Filmbox format (.fbx).

An .fbx file contains the mesh, skeleton, and animation data necessary for UE4 to utilize

 animated characters.

ptg18222824

Importing Skeletal Meshes 187

NOTE

3D Software Packages
Creating your own characters can be an involved process and requires software other than UE4.
Several different packages are commonly used, all of which are sufficient for the job. Autodesk’s
Maya, Autodesk’s 3DS Max, and SideFX’s Houdini are three professional paid software options, all of
which have independent developer pricing. In addition to those packages, the free open source tool
Blender can also do everything necessary to create and animate characters.

How to do skinning and animation are both beyond the scope of this book, but this hour does

discuss importing Skeletal Meshes and animations into UE4, and there are a few things to keep

in mind when importing. Before you import a Skeletal Mesh, it first needs to be exported from

the content creation package in which it was made. Although each software package handles

this step a bit differently, a few best practices apply to exporting from any package:

 Triangulating the mesh prior to export is always preferred.

 When exporting, it is best to select the root of the mesh skeleton and use an option such as

Export Selected Only.

 Smoothing groups should be enabled.

 Preserver edge orientation should be enabled.

 Tangent and binomials (also known as tangent space) should be disabled.

CAUTION

Editor Unit Scale
Most content packages treat 1 unit to mean 1 meter. Unreal Engine is different, treating 1 unit as
1 centimeter. Therefore, when you’re working with content creation packages, it is important to either
account for this difference on export or potentially change the Editor in the content creation program
to match UE4’s unit scale. If changing this option in a content creation package is not possible, you
can set the Import Uniform Scale option to 0.01 under Transform Options in UE4’s FBX import dialog
to fix this discrepancy.

The included Blender file Hour_11/RAW/BlenderFiles/_UE4_StartupFile.blend sets Blender’s scale
environment to match the scale of UE4. If you use this file, or if you set your package to treat 1 unit
as 1 centimeter, will prevent you from having to constantly change import and export scales.

NOTE

Sample Files
The Hour_11/RAW folder (available on the book’s companion website) includes a few test assets you
can use to practice importing. Some associated Blender scene files are also available in this folder.

ptg18222824

188 HOUR 11: Using Skeletal Mesh Actors

Importing a Skeletal Mesh and creating a skeleton for the first time is as simple as dragging and

dropping an .fbx file into the Content Browser or importing it by clicking the Import button.

When you do this, you get the dialog shown in Figure 11.5. This dialog allows you to create a

new skeleton if one doesn’t yet exist for the imported mesh.

FIGURE 11.5
The FBX Import Options dialog that appears when a Skeletal Mesh is detected in UE4.

ptg18222824

Importing Skeletal Meshes 189

It is important to note some of the properties in the FBX Import Options dialog:

 Import as Skeletal: When this option is checked, the mesh is treated as a Skeletal Mesh.

If it is unchecked, the imported mesh is just a Static Mesh.

 Import Mesh: Unchecking this option causes UE4 to ignore the mesh completely.

 Skeleton: This asset reference option allows you to use an existing skeleton. If you leave

this option blank, however, a new skeleton is created. When importing a Skeletal Mesh for

the first time, it is a good idea to leave this empty and to use it only for subsequent meshes.

 Import Animations: This option allows you to import animations. You can import an

animation at the same time you first import a Skeletal Mesh and create a skeleton, but

it is usually good practice to first import a mesh with no animations attached and the

 character in a default bind pose. To only import animations and not the Skeletal Meshes,

keep Import Animations checked and uncheck Import Mesh.

 Transform: Occasionally, different software packages use a scene setup that UE4 cannot

account for. You can use the options in the Transform section to correct these differences.

In general, it is best to leave these at their default values and modify the software package

to better match UE4.

 Import Materials: Most of the time when you first import a Skeletal Mesh, it is a good

idea to import materials. With the Import Materials option checked, new default materials

are created next to the Skeletal Mesh, with the same names used in your creation package.

Because most creation packages do not use the same material system as UE4, you usually

end up replacing these materials later.

 Convert Scene: The .fbx coordinate system is substantially different from UE4’s. In most

cases, the Convert Scene check box should remain checked unless you’ve intentionally

changed your .fbx to match UE4. Selecting this check box causes UE4 to convert the Y+ up

axis of most content packages to the Z+ up axis of Unreal Engine.

ptg18222824

190 HOUR 11: Using Skeletal Mesh Actors

After you click Import on the FBX Import Options dialog, the requested files are created,

 including a new skeleton. Figure 11.6 shows the files UE4 creates with the settings shown in

Figure 11.5 when you import Hour_11/RAW/HeroTPP.fbx.

FIGURE 11.6
The files created by the FBX Import Options dialog using the settings defined in Figure 11.5.

TIP

Bones Are Missing from the Bind Pose
Depending on the 3D package you are using to create your content, the .fbx file may or may not
include information about the bind pose. If it doesn’t, you may get a set of warnings on import
 starting with:
“The following bones are missing from the bind pose:”

If the Skeletal Mesh in your 3D Package is in the correct bind pose at frame 0, you should import
the Skeletal Mesh again with the Use T0 as Ref Pose option enabled. You can find this option by
clicking the advanced options downward-pointing arrow at the bottom of the Mesh section of the FBX
Import Options dialog.

Before moving on to how to use and modify these assets, use the next Try It Yourself section to

practice importing Skeletal Meshes.

▼ TRY IT YOURSELF

Import the Hero

The first step with using an asset is always getting the asset into Unreal Engine 4. Use the
 provided HeroTPP.fbx file and follow these steps to try importing a new Skeletal Mesh:

1. In Hour 11 Project’s Content Browser, navigate to the TryItYourself folder, and then open the
_1 folder (available on the book’s companion website).

2. Click the Import button in the top-left corner of the Content Browser.

ptg18222824

Learning Persona 191

Just importing animations is similar to importing Skeletal Meshes, but the process is slightly

 different. When importing an animation for an existing skeleton, it is important that you set

the Skeleton property in the FBX Import Options dialog to a compatible skeleton. (The bone

 hierarchy information must be the same as the hierarchy used to create the animation.)

Also, when you import an animation from a 3D package, it is important to make sure the

Import Animation option is checked, and it’s usually best to uncheck the Import Mesh option.

This way you avoid importing and duplicating your meshes every time you import a new
 animation.

Learning Persona
Unreal Engine 4 contains a special Editor, the Persona Editor, for working with Skeletal Meshes,

skeletons, animation sequences, and animation Blueprints. The Persona Editor is a one-stop shop

for everything to do with animating characters.

Persona is a combined Editor with separate editing modes for the different asset types that make

up an animated character. This Editor style allows you to make use of the tightly integrated

nature of animation assets.

Double-clicking the type of asset you want to edit automatically opens the Persona Editor to the

correct editing mode for that asset.

3. Using the Import dialog, navigate to /Hour_11/RAW/HeroTPP.fbx and click Open.

4. In the FBX Import Options dialog that appears, make sure Import as Skeletal and Import

Mesh and Use T0 as Ref Pose are all checked. (Remember that you find the Use T0 as Ref

Pose option by clicking the downward-pointing arrow at the bottom of the Mesh section.)

5. Make sure the Skeleton property is set to None to ensure that a new skeleton is created.

6. Uncheck the Import Animations check box.

7. Ensure that Convert Scene at the bottom of the dialog box is checked.

8. Click Import.

9. When the import finishes, compare your results to those in Content/TryItYourself/_1_
Result.

▼

ptg18222824

192 HOUR 11: Using Skeletal Mesh Actors

Skeleton Mode
Figure 11.7 shows the Persona Editor’s Skeleton mode. The components of the Editor are

1) Reference Pose button; 2) Skeleton Mode button; 3) Skeleton tree; 4) Persona Viewport.

The different components are numbered on the figure and described in the following list:

FIGURE 11.7
Persona’s Skeleton mode, with points of interest highlighted.

 Reference Pose button: This commonly used button stops any playing animations and

returns the character to its reference pose.

 Skeleton Mode button: This button puts Persona into the Skeleton mode, and it also

 contains an asset reference that allows you to find the edited skeleton in the Content Browser.

 Skeleton tree: This area displays the hierarchical outline of bones in the skeleton.

When you select a bone in this hierarchy, you can then manipulate it in the Viewport.

In addition, right-clicking any bone here allows you to add a socket, which allows for

 additional meshes to be added dynamically.

 Persona Viewport: The Persona Viewport is a miniature scene view that shows the selected

skeleton and Skeletal Mesh. In this Viewport, you can reposition, rotate, or scale bones,

and you can preview animations. You can see additional information about the mesh in

the top-left corner of this Viewport.

ptg18222824

Learning Persona 193

Mesh Mode
Figure 11.8 shows the Persona Editor’s Mesh mode. The components of the Editor are 1) Mesh Mode

button; 2) LOD settings category; 3) Physics category; 4) LOD Visualizer; 5) Viewport statistics;

6) Morph Target Previews tab. The different components are described in the following list:

FIGURE 11.8
Persona’s Mesh editing mode with points of interest highlighted.

 Mesh Mode button: This button puts Persona into Mesh mode, and also contains an

asset reference that allows a different mesh to be selected and edited through a drop-down

menu.

 LOD Settings category: In this part of the Details panel (which closely resembles the

Details panel of a Static Mesh asset), the top categories are reserved for LOD and material

information. In this section you can tell UE4 to generate extra LODs, and you can set

materials on those LODs.

 Physics category: In the Details panel, the Physics category is where you can apply

a Skeletal Mesh’s physics asset. There is also an Enable per Poly Collision option. By

default, this option is turned off, and in most cases it should be. Per-poly collision cannot

be used for physics simulations like ragdolls, but it can be used for ray-cast queries. In

most cases you should leave this check box disabled and instead use a Physics asset.

ptg18222824

194 HOUR 11: Using Skeletal Mesh Actors

 LOD Visualizer: This option can override the displayed LOD, allowing you to visualize the

different LODs on your mesh. The setting LOD Auto allows the Viewport to automatically

LOD the character based on view settings. LODs need to be created for this to work.

 Viewport statistics: In the top left of the Viewport, you see commonly used statistics

about the displayed mesh. These stats include the poly-count, the requested LOD, and the

approximate size of the Skeletal Mesh.

 Morph Target Previews tab: Although this hour doesn’t cover morph targets, it is worth

noting that this tab is where you can preview morph targets. In the animation content

examples provided by Unreal, for example, you can find the Pinnochio morph target

example on the Owen Skeletal Mesh. Modifying the weight of the Pinnochio morph target

extends Owen’s nose out exceptionally far.

Animation Mode
Figure 11.9 shows the Persona Editor’s Animation mode. The components of the Editor are

1) Create Asset button; 2) Animation Mode button; 3) Details panel; 4) Anim Asset details;

5) Anim Sequence Editor; 6) Timeline; 7) Asset Browser. The different components are described

in the following list:

FIGURE 11.9
Persona’s Animation editing mode with points of interest highlighted.

ptg18222824

Learning Persona 195

 Create Asset button: This button provides a convenient way to create new montages,

 animation sequences, and other animation type assets.

 Animation Mode button: This button puts Persona into Animation mode, and it also

 contains an asset reference that allows a different mesh to be selected and edited through

a drop-down menu.

 Details panel: You use this panel to edit socket and anim notify properties.

 Anim Asset details: This section shows the available properties for editing on the

 animation asset selected in the Asset Browser. You can use this section to modify

 asset-specific settings.

 Anim Sequence Editor: Many animation assets have some properties that are Timeline

based. In this section you can modify Additive Animation Curves, Notifications, and

Tracks in a Timeline keyframe fashion.

 Timeline: You can modify the current playback time and animation controls here. By

clicking and dragging the red box in the Timeline, you can move the play head to scrub

through the selected animation.

 Asset Browser: This quick browser is for animation assets. Double-clicking an asset in this

browser sets it as the edited preview asset. If you mouse over an asset, a quick real-time

preview of the animation appears in a pop-up.

In Animation mode, you can make simple animations entirely in the Persona Editor. This

 process is not as streamlined as in most 3D content creation packages, but it is entirely doable,

and for simple animations, this can be very useful. This process takes advantage of the Additive

Animation Tracks setting on an animation sequence, and to use it, you set animation keyframes

for different bones you want to animate on a skeleton.

To set a key on an existing animation sequence, you select a bone in the skeleton and then click

the + Key button in the toolbar (see Figure 11.10). Next, you rotate or position the bone (pressing

the E key to bring up the rotation handle or W to bring up the translation handle) to the new

desired location and then press the Apply button on the toolbar to save those results. You then

move the play head to a new point in the Timeline and repeat the process.

FIGURE 11.10
The highlighted + Key and Apply buttons on the toolbar allow you to create animations of your own directly in
the Persona Editor.

ptg18222824

196 HOUR 11: Using Skeletal Mesh Actors

After you apply an additive animation to a bone by using this process, you can manually

 modify the keys through the Curves Editor in the Anim Sequence Editor section below the

Viewport. You can add new keys by right-clicking in the Track Viewport. Figure 11.11 shows the

different context menus for an edited bone.

FIGURE 11.11
Right-clicking in a bone’s additive curve track allows you to add new keys. You can also manually move keys in
this Editor. In addition, the down arrow in the top-left corner allows you to remove or disable individual tracks.

▼ TRY IT YOURSELF

Shake the Hero’s Head

Sometimes using the Additive Animation Tracks option is enough to create a simple animation.
Follow these steps to create a new animation sequence that shakes the Owen character’s head:

1. In the Hour 11 project’s Content Browser, navigate to the TryItYourself/_1 folder. (If you
didn’t do the first Try It Yourself this hour, navigate to the Hour_11/TryItYourself/_1_Result

folder instead.)

2. Double-click the HeroTPP Skeletal Mesh asset to open the Persona Editor for this
Skeletal Mesh.

3. Click the Animation Mode tab at the top right of the Persona Editor.

4. Click the Create Asset button in the Persona toolbar.

5. Select Create Animation > From Reference Pose.

6. To set the length of the animation, right-click the Timeline at the bottom of Persona and
select Append at the End.

7. In the field that appears, type in 119 to set the animation to 120 frames.

ptg18222824

Learning Persona 197

8. Click on the Viewport and press the E key to switch to the rotation editing mode.
(Alternatively, you can click the Rotate tool in the top right of the Viewport.)

9. In the skeleton tree’s search box, type Head and then select the b_head bone.

10. If it isn’t already there, drag the Timeline slider to frame 0.

11. Click the + Key button on the toolbar twice to create a zeroed-out key on frame 0.

12. Drag the Timeline slider to the last frame in the sequence (frame 120).

13. Click the + Key button on the toolbar twice again to create a zeroed-out key frame on the
last frame. This will allow the animation to loop nicely.

14. Move the Timeline slider to the first one-third of the animation, around frame 40.

15. Click the + Key button and rotate the character’s head to the left about 50°.

16. Click the + Key button again to confirm your changes.

17. Move the Timeline slider to the second one-third of the animation, around frame 60.

18. Click the + Key button and rotate the character’s head to the right 50°. This should mirror
the key frame set on frame 40.

19. Confirm the keyframe by clicking the + Key button again.

20. Click the Apply button on the toolbar to confirm that you are done making changes.

21. Click the Play arrow on the Timeline to preview your animation.

22. Compare your result to the animation sequence available in TryItYourself/_2_Result.

▼

ptg18222824

198 HOUR 11: Using Skeletal Mesh Actors

Graph Mode
Figure 11.12 shows the Persona Editor’s Graph mode, which is by far the most complicated

 editing mode in Persona. Graph mode works in conjunction with animation Blueprint assets to

handle the logic for blending different animation states and behaviors.

FIGURE 11.12
You use Graph mode to handle the logic behind complex blending of different animations and behaviors.

Unlike the other modes, Graph mode’s tab appears only when you’re opening an animation

Blueprint.

Graph mode is critical when you’re working with complex character animations, especially those

that are driven by the user. Animation Blueprints control animation on Skeletal Meshes through

driving blend space assets or aim offset assets, directly blending two anim sequences, and even

directly controlling the bones of a skeleton.

TIP

The powerful set of tools available in Graph mode can be overwhelming at first, and explaining
them all is beyond the scope of this book. If you are interested in learning more about animation
 Blueprints and Persona’s Graph mode, take a look into the included animation demo. Open
Hour_11/ExampleContent/AnimationDemo/AnimBlueprint directory in the Hour_11
 project (available on the book’s companion website) to see several different examples of animation
Blueprints handling different use cases.

ptg18222824

Using Skeletal Mesh Actors 199

In addition, the excellent video series 3rd Person Game with Blueprints (v4.8) produced by Epic
Games goes into more detail about what animation Blueprints are. This series is available on the
Unreal Engine wiki, at http://wiki.unrealengine.com.

Using Skeletal Mesh Actors
One of the primary ways to use animated Skeletal Meshes is simply to place them in a scene as

Actors. Luckily, this is as simple as placing any other Actor in a scene. Dragging a Skeletal Mesh

from the Content Browser to the Viewport is an efficient way to place a Skeletal Mesh as an

Actor.

A Skeletal Mesh Actor does have some unique properties that are worth keeping in mind

(see Figure 11.13).

FIGURE 11.13
A placed Skeletal Mesh Actor has settings for playing animations immediately or through an animation
 Blueprint. The different Details panels for Animation mode are shown here.

http://wiki.unrealengine.com

ptg18222824

200 HOUR 11: Using Skeletal Mesh Actors

In the Animation category of properties for a Static Mesh Actor, controls are available to set

 animations playing, set whether the animations loop, and at what point they start, as well as

the speed at which they play back:

 Animation Mode: This option allows you to specify whether to use an animation

 Blueprint or a single animation asset. Setting this option to Use Animation Asset makes

the following options available.

 Anim to Play: This option allows you to specify a reference from the Content Browser to a

single animation asset.

 Looping: When checked, the Looping Boolean means the animation will play

 continuously by looping back to the start of the animation when it finishes.

 Playing: When checked, the Playing Boolean means the animation will play when the

game begins instead of waiting to be set manually through Blueprints or some other

 method. Turn this off if you want to control when the animation starts playing.

 Initial Position: You can specify a value (in seconds) that determines the starting time of

the animation. Scrubbing this value is a good way to visualize the poses an animation

goes through.

 PlayRate: This value is a multiplier of how fast the animation plays back. Setting it to

0.5 causes the animation to play half as fast as default; on the other hand, a value of

2.0 causes the animation to play twice as fast.

 ▼ TRY IT YOURSELF

Place the Hero

Animations aren’t useful if they aren’t ever played. Follow these steps to place HeroTPP into
a new scene and set him up to play the head shaking animation you created in the last Try It
Yourself:

1. Create a new default level in the Hour 11 project.

2. In the Hour 11 project’s Content Browser, navigate to the TryItYourself/_1 folder. (If you
didn’t do the first Try It Yourself this hour, navigate to the Hour_11/TryItYourself/_1_Result

folder instead.)

3. Select the HeroTPP Skeletal Mesh, drag it into the world, and place it near the origin.

4. Select the new Skeletal Mesh Actor and in the Details panel for the Actor, switch Animation
Mode to Use Animation Asset.

5. In the Content Browser, navigate to the Hour_11/TryItYourself/_2 folder. (If you didn’t do
the second Try It Yourself this hour, navigate to the Hour_11/TryItYourself/_2_Result folder
instead.) In this folder, select the HeroTPP_Skeleton_Sequence animation sequence.

ptg18222824

201Q&A

Summary
Skeletal meshes have an important place in a game maker’s toolbox. With these incredibly ver-

satile tools, you can bring to life diverse and interesting 3D characters. In this hour you learned

the power and strength of Skeletal Meshes and how to import a brand-new Skeletal Mesh into

the Editor. You learned about the many options you need to set to bring your Skeletal Mesh to

life and how they work together. You also learned how to use the very powerful Persona Editor

to make changes to a Skeletal Mesh and even create simple animations—entirely inside Unreal

Engine 4. Finally, you learned how to place and play Skeletal Mesh Actors in a scene.

Q&A
Q. I don’t know any 3D packages that can make Skeletal Meshes. Can I use UE4 instead?

A. Unfortunately, at this writing, UE4 does not contain any skinning or modelling tools. All is
not lost, however, because there are many packages on the Unreal marketplace that provide
prebuilt Skeletal Meshes and animation packs for your projects. In addition to paid options,
the company Mixamo provides 15 excellent animated characters for free through the
 marketplace.

Q. When I import animations, the mesh looks heavily deformed and weirdly positioned—not at

all like how the animation plays in the source package. What is happening?

A. Usually, if you experience heavily disparate deformations from the animation source, there
is a scale discrepancy. Try setting Import Uniform Scale to 0.01 or 100 as a test. If either
of these two options fixes the problem, take some time to check what unit scale your
source package uses and whether you can switch it to match UE4 (1 unit = 1 cm).

Q. I don’t want my animations to play at startup. Instead, I want them to play later. How do I

make this happen?

A. On a Skeletal Mesh Actor, uncheck the Playing option. You can use level Blueprints to set
the animation playing again by using either Play or Play Animation from a reference to your
Skeletal Mesh Actor. (For more on level Blueprints, check out Hour 15, “Working with Level
Blueprints.”)

▼6. With the animation still selected, click the Use Selected Asset from Content Browser left
arrow next to the Anim to Play property or drag and drop the animation sequence onto the
Anim to Play property.

7. Ensure that Looping and Playing are both checked.

8. Click Simulate or Play in Editor to start the game and see your character animate.

9. Compare your result to the level available inHour_11/TryItYourself/_3_Result.

ptg18222824

202 HOUR 11: Using Skeletal Mesh Actors

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: Animation sequences and assets can play on any number of skeletons.

2. True or false: Each Skeletal Mesh requires a unique skeleton asset.

3. True or false: UE4 treats 1 unit as 1 cm.

4. True or false: Animations cannot be made in UE4 and must be made in an external package.

Answers
1. False. Each animation sequence is bound to the skeleton it is imported with. Although you

can retarget an animation sequences to a new skeleton, doing so creates a unique asset.

2. False. Multiple different Skeletal Meshes can share the same skeleton, and this is why the
same animations can be played on different Skeletal Meshes. With this in mind, all Skeletal
Meshes that attempt to share the same skeleton must have the same base bone hierarchy
and bone naming conventions. Any disruptions to the bones in the chain require a new
 skeleton asset to be used.

3. True. This is important when you’re transferring any assets from one software package to
another.

4. False. Although making animations is substantially easier in a dedicated program, you
can make simple Skeletal Mesh animations in the Persona Editor by using the Additive
Animation Tracks option.

Exercise
With the provided content examples, practice placing a variety of animations into a scene.

1. In the Hour_11 project (available on the book’s companion website), create a new Level.

2. In the Content Browser, open the ExampleContent/AnimationDemo/Animations folder.

3. Pick a few Skeletal Mesh animations, such as Jumping Jacks or Run Right, from this folder
and drag them into the scene.

4. Ensure that the animations are set to play and loop and then press Simulate.

ptg18222824

HOUR 12
Matinee and Cinematics

What You’ll Learn in This Hour:

 Working with Matinee Actors

 Using the Matinee Editor

 Working with Camera Actors

 Moving and rotating Actors over time

This hour introduces the Matinee Editor in UE4, which allows you to create in-game cut scenes,

title sequences, and ambient environment animations. The Matinee Editor is the tool used

 mostly by cinematic artists, animators, and level designers. Over the next hour, you will learn

about Matinee Actors, the Matinee Editor, and how to animate a short sequence.

NOTE

Hour 12 Project Setup
For this hour, you can create a new project with the First Person template and Starter Content,
or you can use the book project and work in the Hour_12 folder (available on the book’s companion
website at www.sty-ue4.com).

Matinee Actors
Matinee in UE4 is a complete tool set and pipeline for creating in-game cinematics. Matinee

can be used to animate various properties of many Actor types. You can use it to create videos,

and you can export and import keyframe data through the use of the .fbx file format. You

can have as many Matinee Actors in a single level as you need, and you can control Matinee

Actors and pass events to Blueprint. This hour focuses on setting up and animating cameras.

Before you can begin to use the Matinee Editor, you first need a Matinee Actor in your level. The

Matinee Actor does two main things: First, it allows you to set preferences on how the Matinee

should behave in the level, and second, it points to a Matinee Data asset that stores the group,

tracks, and keyframes for the Matinee sequence. You can add a Matinee Actor to a level in two

http://www.sty-ue4.com

ptg18222824

204 HOUR 12: Matinee and Cinematics

ways: As with any other Actor, you can drag a Matinee Actor from the Modes panel or you can

click the Cinematics icon on the Level Editor toolbar and select Add Matinee. Once you have

placed a Matinee Actor in a level, you should give it a descriptive name in the Level Details

panel (see Figure 12.1).

NOTE

Adding a Matinee Actor
If you add a Matinee Actor using the Cinematics icon on the Level Editor toolbar, the Matinee
Editor opens automatically. To see the Matinee Actor’s properties, you need to close the Editor and
select the Matinee Actor in the Level Viewport.

Matinee Actor Properties
If you select a Matinee Actor and look at its properties in the Details panel, you can find the

play rate of the Matinee under Play (see Figure 12.1). This value is normalized, so a value of 1 is

100% of the play rate, and 0.5 is 50%, or half speed. You also see a Play on Level Load option,

which you can select to start the Matinee playing as soon as the level is loaded in memory.

In addition, the Looping option allows you to set the Matinee to play continuously. The next

 section that is important to look at is Cinematic. Here you can find the ability to temporarily

toggle on and off player movement and rotation inputs, and you can hide the player and HUD

while the Matinee is playing. These options are typically meant for Matinees that use Director

groups and Camera Actors.

NOTE

Playback Speed and Frame per Second
While Matinee uses a normalized value to determine the playback speed, the actual number of
frames per second (FPS) is set inside the Matinee Editor through Snap Settings.

ptg18222824

Matinee Actors 205

FIGURE 12.1
Matinee Actor properties.

ptg18222824

206 HOUR 12: Matinee and Cinematics

Matinee Editor
Matinee Editor is the interface for editing animation sequences (see Figure 12.2). To open the

Matinee Editor, select a Matinee Actor and, in the Details panel, click Open Matinee. The key

areas of the Matinee Editor are indicated in Figure 12.2 and described in the following list:

 1) Menu bar: You use the menu bar to perform operations such as importing and

 exporting Matinee data as an .fbx file or stretching a keyframe.

 2) Toolbar: The toolbar has common operations such as playback and Snap Settings.

 3) Curve Editor: The Curve Editor allows you to refine interpolation data through the use

of splines.

 4) Tracks panel: The Tracks panel allows you to manage groups and tracks and also set

keyframes.

 5) Details panel: The Details panel displays the properties of a selected track or group.

 6) Time Bar: The Time Bar indicates times during the sequence.

FIGURE 12.2
Matinee Editor.

ptg18222824

Matinee Editor 207

NOTE

When Working in the Matinee Editor
Much of the work you do in Matinee requires you to have the Matinee Editor and Level Viewport
 visible at the same time. Although dual monitors are not required, having two monitors—and a
mouse with a scroll wheel—make big difference when you’re working with Matinee.

NOTE

Useful Controls and Shortcuts When Working with Matinee
Here are some useful shortcuts for use in Matinee:

 Rolling the middle mouse wheel up or down zooms in and out of the Timeline.

 Clicking the sequence icon on the Matinee tool fits the Timeline to the Viewport.

 Pressing the Enter key adds a keyframe to the selected track at the current time.

Tracks Panel
The Tracks panel is the area where you will spend the majority of your time when working with

Matinee. The Track panel uses Groups and Tracks to keep things organized. At the top you see

operations for displaying groups based on assigned Actor types. On the left side you have the

group and track list, and at the bottom of the Tracks panel are the frame and time count, the

play head, and the sequence length.

Setting Sequence Length
At the bottom of the Tracks panel, you can find the Timeline info, the play head, and the current

time, as determined by the position of the play head. The total length of time of the sequence

is indicated by the red triangle markers and the active work area by the green triangle markers,

as shown in Figure 12.3. To set the length of time for the sequence, you need to position the red

triangle markers. Click the red marker on the right side and drag it to the right to add more

time or drag it to the left to reduce the length of time. If you are already at the end of the Tracks

panel, remember that you can roll the middle mouse wheel to zoom out and display more time.

NOTE

Dead Space
When first starting out, many people make the mistake of thinking that a sequence ends with the
last keyframe. This is not the case. Matinee plays all the way up to the red triangle marker. If you
have finished setting keys, and there is dead space between the last key and the right red marker,
you can drag the marker back to the last keyframe.

ptg18222824

208 HOUR 12: Matinee and Cinematics

Play Head
The play head, or time marker, as shown in Figure 12.3, shows where you are in time while

editing a sequence and allows you to place keyframes in a track at specific times. Clicking

any empty space at the bottom of the Timeline moves the play head to that location. You can

click+drag to scrub (that is, manually play) the sequence. The following areas are identified in

Figure 12.3 with numbers: 1) Group; 2) Tracks; 3) Play Head/Scrub Bar; 4) Key; 5) Red Markers;

6) Green Markers.

FIGURE 12.3
Red and green markers, play head, time, and frame count.

Groups
In Matinee, groups store the Actor or Actors that you want to control and the tracks that you

are using to affect the assigned Actors (see Figure 12.4). There are five group presets: Empty

group, Camera group, Particle group, Skeletal group, and Lighting group. With the exception

of the Empty group, all the groups have preassigned tracks for working with specific Actor

types identified by their names. The Empty group works with any Actor type, but you have to

 manually assign your own tracks based on the Actor you are animating and its properties.

To add a group, you first need to place the Actor you would like to control into a level. Then,

with the Actor selected, you can add a group to the Matinee. Matinee automatically assigns the

Actor to the group. To add a new group, right-click an empty area of the groups and tracks list

on left side of the Tracks panel. In the dialog that appears, select the group that matches the

placed Actor. If there is not a group listed for your Actor types, select Empty group and give it a

name. After you do this, you are ready to assign new tracks and set keyframes.

TIP

Assigning a New Actor to an Existing Group
If you need to change the Actor assigned to a group, select the new Actor in the Level Viewport
and right-click the group name in the Tracks panel. In the dialog that appears, select Actors >
Replace Group Actors with Selected Actors. When you add a Static Mesh Actor to a group, Matinee
 automatically changes its mobility settings to movable.

ptg18222824

Matinee Editor 209

Tracks
Tracks are used to set and store keyframe data over time for specified properties, and they are

assigned to groups (see Figure 12.4). For example, the movement track stores the position and

rotation data of an Actor. There are more than 16 predefined tracks. For some properties of an

Actor that you might want to animate there may be a track that does not show up in the track

list. The data type of the property determines what type of track you need. For example, the scale

of a Static Mesh Actor can be animated, but there is no scale track in the list of tracks. Some

properties are defined by their data type. Scale, for instance, stores the scale of an Actor as a

 vector (X, Y, Z). So if you want to modify the scale of an Actor, you need to add a vector property

track to the group that has a Static Mesh asset assigned to it. Matinee shows you a list of the

properties of the data type that can be affected. As another example, if you want to modify

the intensity of a Point Light Actor, which is stored as a float, you need a float property track.

Adding the float property track to a group that has a Point Light Actor assigned to it brings up a

list of all the properties of the Point Light Actor that use a float value.

FIGURE 12.4
Groups and tracks.

ptg18222824

210 HOUR 12: Matinee and Cinematics

GO TO CHAPTER 14, INTRODUCING BLUEPRINT VISUAL SCRIPTING SYSTEM, to learn more about variable data types.

NOTE

Keyframes
A key stores property settings data over time. The type of data depends on the Actor and the track
you are using. Just about any Actor’s properties and can animated over time. As Matinee plays, it
interpolates between the stored values in each keyframe.

Folders
Folders are used to organize groups in Matinee. For example, you might have four or five

groups, each set up to control a camera. In the Tracks panel, you can create a folder to

store just the camera groups. Using folders helps you stay organized as the complexity of a

Matinee sequence grows.

TIP

Order of Operations When Setting Keyframes
While adding a keyframe is a straightforward process, order of operations makes a big difference.
The mantra to remember when you are first starting out is this: Move in time, move in space,
add a key.

 Move in time: Move in time means to move the play head in the Tracks panel to the desired
spot where you want to add a key.

 Move in space: Move in space means to move or rotate the Actor in the Level Viewport
assigned to the group that contains the movement track you are adding the key to.

 Add a key: Add a key means to set a key at the current time on the relevant track to store the
change in value.

ptg18222824

Matinee Editor 211

▼TRY IT YOURSELF

Animate Static Mesh Actors and Set Keyframes in Matinee

Follow these steps to set keyframes and create a basic looping animation in Matinee:

1. Drag out a Static Mesh cube either from the Content Browser or from the Place tab in the
Modes panel.

2. Drag out a Matinee Actor from the Place tab in the Modes panel and place it next to the
cube in the level.

3. Select the Matinee Actor in the level and change its name in the Level Details panel to
move cube. Then click Open Matinee.

4. In the Matinee Editor, right-click in the dark gray area on the left side of the track window
and select Create New Empty Group.

5. Give the group the name Cube_A.

6. To assign a Static Mesh Actor to the group, in the Level Viewport, select the cube you
placed in step 1, right-click the Cube_A group in the Matinee Editor, and select Actors > Add

Selected Actors.

7. Turn on frame snapping by clicking the magnet icon on the Matinee toolbar and make sure
Snap Setting is set to 0.5.

8. To set the length of the Matinee to 3 seconds, at the bottom of the Tracks panel, drag the
red triangle on the right side to 3 seconds.

9. Right-click the newly created group and add a new movement track from the list tracks.

10. To add a key, make sure the play head is at 0 seconds and that the Movement track is
selected. Then click the Add Key icon on the Matinee toolbar or press Enter.

11. Move the play head to the end of the Matinee time (3 seconds, in this case) and add a
second key by clicking the Add Key icon or pressing Enter. You now have two keys, one at
the beginning and one at the end, that are storing the same position and rotation transform
data at different times.

12. Move the play head to the middle of the Timeline, 1.5 seconds, and with the Matinee Editor
window still open, select the placed cube in the Level Viewport and move it up on the Z axis
about 500 units.

13. Select the movement track again and add a third key by clicking the Add Key icon or
 pressing Enter. A yellow spline appears in the Level Viewport, showing the path of the cube
over the length of the sequence, which in this case is a straight line.

14. Scrub the play head back and forth, and you see the cube animate up and down. Click Play

or Looping on the Matinee toolbar to preview the animation (see Figure 12.5).

ptg18222824

212 HOUR 12: Matinee and Cinematics

Curve Editor
The Curve Editor in Matinee gives you the ability to micromanage interpolation data

 represented as a spline. A spline, in this case, is a visual representation of the interpolated data

over time. Just about every type of a track’s keyframe data can be displayed and modified in the

Curve Editor. The Curve Editor has its own toolbar for working with curves. To display a track’s

keyframe data in the Curve Editor, you need to toggle on the Show on Curve Editor box, which

is the tiny box farthest to the right of the name of the track (see Figure 12.6). By default, when

this box is dark gray, it is off; and when it’s yellow, it is on. The following areas are identified in

Figure 12.6 with numbers: 1) Lock View toggle; 2) Toggle Track on or off; 3) Show on Curve Editor

toggle; 4) Show Spline path in Level Viewport.

FIGURE 12.6
Toggle on the Show on Curve Editor box.

▼
15. To set the properties on the Matinee Actor, close the Matinee Editor and select the

Matinee Actor in the Level Viewport. Then, in the Details panel of the main Editor, toggle on
Play on Level Load and Looping.

16. Preview the level.

FIGURE 12.5
Groups and Tracks with red keyframes.

ptg18222824

Curve Editor 213

Once you have toggled on Show on Curve Editor to display a track in the Curve Editor, the

group and track name show up on the left side of the Curve Editor. You can have many tracks

displaying curve data in the Curve Editor at one time if needed. You also most likely need to

 center the view. Press the A key to fit and display all active curves. Depending on the type of

data a track is storing, you may have one or multiple curves associated with the track. For

instance, a fade track used in a Director group uses only a float value, whereas a movement

track has six curves: three for position (X, Y, and Z) and three for rotation (pitch, yaw, and

roll). You can turn the visibility of each individual curve on or off in the Matinee Details panel

with the track selected (see Figure 12.7). The following toggles are identified in Figure 12.7 with

 numbers: 1) Toggle visibility of X transition on Curve; 2) Toggle visibility of Y transition on

Curve; 3) Toggle visibility of Z transition on Curve.

FIGURE 12.7
Display curve toggles in the Curve Editor.

NOTE

Movement Track
The movement track only displays curves for position by default. To show rotation data, you need to
select the movement track, and in the Matinee Details panel, turn on Show Rotation on Curve Editor.
You also might have noticed that position and rotation are stored in the same key. If you need to
separate them, you can right-click the movement track and select Split Translation and Rotation, but
once you make changes, you cannot go back without deleting the movement track and starting over.

ptg18222824

214 HOUR 12: Matinee and Cinematics

Interpolation Modes
Interpolation (interp) modes, which are assigned to individual keys, determine how the spline

transitions from one keyframe to the next. There are five types of interpolation modes, but for

now we focus on three:

 Curve (red): This type of mode is used to control ease-in and ease-out effects. This is the

mode to use when you want to edit a curve in the Curve Editor.

 Linear (Green): This type of mode stratifies the change in values between keyframes

 evenly over time.

 Constant (Black): This type of mode holds the last keyframes value for all the in-between

frames until the next keyframe.

To change the interpolation of a key, right-click a keyframe in the Tracks panel and select Interp

Mode and then the desired mode.

▼ TRY IT YOURSELF

Use the Curve Editor to Refine Animation Interpolations

Follow these steps to use the Curve Editor to control the rotation of an animated mesh:

1. Open the Matinee Editor for the Matinee Actor (MoveCube) from the previous Try It Yourself
exercise.

2. In the Tracks panel, add another group and name it Cube_B.

3. Place another cube next to the first cube and assign it to the Cube_B group.

4. Add a movement track to the Cube_B group.

5. Add a key to frame 0 on the newly created movement track for group Cube_B.

6. In the Tracks panel move the play head to the end of the Matinee (3 seconds, in this case).

7. In the Viewport, rotate the new cube approximately 300 degrees on the Z axis.

8. Set a key. Now if you scrub the play head or press Looping on the Matinee toolbar, you see
that the cube rotates the shortest distance. You could add more keyframes, but that would
get messy, take more time, and be harder to edit later.

9. Display the Cube_B group’s movement track on the Curve Editor and click the gray box on
the right side of the movement track. At the moment, the Curve Editor is displaying only
positional data.

10. With the movement track selected, in the Details panel toggle off Show Translation on Curve

Ed and toggle on Show Rotation on Curve Ed.

ptg18222824

Working with Other Tracks 215

Working with Other Tracks
Thus far this hour you have been working with the Movement track, one of the most common

tracks in the Matinee Editor. However, there are many more tracks you can work with, such as

the Event track used to call events in Blueprint with a Matinee Controller node or an Animation

track used to play animation sequences on a Skeletal Mesh Actor. For now, you will use a Sound

track to play a sound through Matinee.

Sound Track
A Sound track in Matinee allows you to play a Sound Wave asset or a Sound Cue asset at a

 specific time in the Matinee sequences. The sound asset does not need to be an Actor in the level

with its own group. You can just add a Sound track to an existing group.

When you set a keyframe on a Sound track, you need to have a Sound Wave or Sound Cue

asset selected in the Content Browser. This sets a key and adds the sound asset to the track. The

Selected Sound asset’s name is displayed on the track along with a visual representation of its

length. After you have a sound asset keyed, you can change the volume and pitch of the sound

by right-clicking the key and selecting Set Sound Volume or Sound Pitch.

▼11. In the Curve Editor toolbar, click the Fit icon to center and fit the curve data for the Cube_B
movement track. Because only the Z axis has a change in rotation, you can turn off the
 display of the X and Y axes. In the Curve Editor window, under the Cube_B movement, click
the red and green boxes so they are grayed out. Red is the X axis, green is the Y axis, and
blue is the Z axis.

12. In the Curve Editor, right-click the first keyframe and set its value to 0.

13. Right-click the second key and set its value to 359.

14. Preview the level, and you see the cube now rotates 360 degrees and is looping, but
because the default interpolation curve settings are set to CurveAutoClamp, there is ease
in and ease out, which causes the cube to slow down and speed up. To change this, find
the movement track for the Cube_B group in the Tracks panel, hold down Ctrl, and click the
first and last keys so they are both selected.

15. Right-click one of the selected keys and choose Interp Mode Linear to straighten the curve
so the rotation data will be evenly interpolated over the length of the animation.

16. Preview the level, and you should see that the cube rotates smoothly and continuously
around the Z axis.

ptg18222824

216 HOUR 12: Matinee and Cinematics

NOTE

Sound Asset Lengths
Sound assets already have set lengths determined by the original imported Sound Wave. If you need
a shorter or longer sound, you can edit the asset in a sound editing program such as Audacity, or
use a different sound asset.

▼ TRY IT YOURSELF

Add a Sound Track to an Existing Group

Follow these steps to play a sound in Matinee at a specific time during the sequence.

1. Open the Matinee Editor for the Matinee Actor (MoveCube) from the previous Try It Yourself
exercises.

2. In the group and track list on the right side of the Tracks panel, right-click group Cube_A and
select Add a New Sound Track.

3. In the Content Browser or Starter Content, click the Explosion01 Sound Wave asset.

4. Move the play head to frame 0.

5. With the Sound track selected, add a key. Once the key is placed, you see a visual
 representation and the name of the Sound Wave in the Sound track.

6. Preview the Matinee by clicking Play on the Matinee toolbar.

Working with Cameras in Matinee
The real power in Matinee lies in working with cameras to create in-game cut scenes. For this

last part of the hour, you look at working with Camera Actors and Camera groups in Matinee

and using the Director group to switch between cameras.

Camera Groups and Actors
The Camera group places a Camera Actor automatically. The Camera group already has a

FOVAngle and movement track for animating a Camera Actor. There are, however, many more

properties of a camera that can be animated with a Camera Actor assigned to the Camera

group. For example, if you add a float property track to a Camera group you get a huge list of

properties that can be keyframes.

ptg18222824

Working with Cameras in Matinee 217

NOTE

Camera Actors
The Camera group places a Camera Actor automatically, but if you already have a Camera Actor, you
can just use any empty group and assign movement and/or an FOVAngle track, as needed. If you add a
track and decide you don’t need it, you can simply select the track and press Delete to remove it.

▼TRY IT YOURSELF

Add and Animate Two Cameras

Follow these steps to create a new 10-second Matinee sequence and animate two cameras.

1. Add a new Matinee Actor and name it Camera_anims.

2. In the Tracks panel, add a new Camera group and name it Cam_1. Matinee automatically
adds a Camera Actor to the level and adds a field of view (FOVAngle) track and a movement
track to the Camera group. It even creates the first keyframe on frame 0 for you. (You don’t
have to animate the FOVAngle if you don’t want. You can leave it, or you can select the track
and press Delete to remove it. If you change your mind later, you can simply add a new
FOVAngle track back to the group.)

3. In the Tracks panel, set the Matinee time by dragging the red triangle on the right side to
5 seconds.

4. Turn on the Lock view camera icon to the right of the Cam_1 group to change the view
in the Viewport so it looks through the camera assigned to this group. Then, if you move
around the level with the Matinee Editor still open, you will be moving this camera around.
Don’t worry—the camera position will not be recorded until you set a key. If you scrub the
play head, the camera resets to its last keyframe.

5. While looking through the camera, move the play head to 2.5 seconds, and then move the
camera by navigating in the Viewport.

6. To set a key for the camera, ensure that the camera is placed where you want it, select the
Cam_1 movement track in the Matinee Editor, and set a keyframe.

7. Move the play head to 5 seconds and move the camera to a new position. Set the last
 keyframe.

8. To add a second camera, move to a new location in the Level Viewport, add another
Camera group, and name the group Cam_2. Because the first camera is set up to animate
over the first 5 seconds, you need to animate the second camera for the last 5 seconds.
Remember that the first keyframe is automatically created when you add the Camera group.
Move the play head to 5 seconds without moving the new camera and add a keyframe.

ptg18222824

218 HOUR 12: Matinee and Cinematics

 Director Group
The Director group is a unique group that allows you to work like a film editor. When added, the

Director group shows up at the top of the Tracks panel. You can have only one Director group

per Matinee. A Director group with a Director track that has a Camera group assigned to it takes

over the player’s view while the Matinee sequence plays. The Director group gives you the ability

to switch between cameras through the use of a director track and add cinematic effect such as

fade-ins and fade-outs and slow motion.

Director Group Tracks
Some tracks are unique to the Director group, such as fade and slomo tracks. Director group

tracks affect an entire sequence, regardless of the camera that is being used. Setting a keyframe

on a track in a Director group works the same as for any other track: Move the play head to the

desired frame, select the track, and add a key. Keyframes for most of the director tracks can be

 displayed and edited in the Curve Editor for further refinement.

Here is a list the Director group tracks and what they are used for:

 Director: This track switches the current view between Camera groups throughout the

sequence.

 Fade: This track allows you to set fade-ins/fade-outs over the sequence on the active

 camera, as determined by the director track. A keyframe value of 0 is visible and the

 keyframe value 1 is black.

 Slomo: This track uses keys to temporarily change the playback speed of the sequence.

 Audio master: This track controls the volume and pitch of all the audio tracks in the

sequence.

 Color scale: This track changes the color tinting of the rendered frame while the Matinee

sequence is playing. RGB values must be set in the Curve Editor.

To add a track to the Director group, right-click the Director group in your Matinee and add the

desired track from the list, as shown in Figure 12.8.

▼
9. To create a simple camera pan, make sure the camera view icon is not selected and move

the play head to the last 10 seconds. (Making sure the camera view icon is not selected
allows you to move and rotate the camera without looking through it.)

10. Move the second camera on one of its axes for about 200 units and set a key.

11. Scrub the play head or click Looping, and you see the cameras animate. The first camera
moves for the first 5 seconds, and the second camera moves for the last 5 seconds.

ptg18222824

Working with Cameras in Matinee 219

FIGURE 12.8
Director Group with a Director track and a Fade track.

NOTE

Camera Groups
If you are going to loop a Matinee, do not use a Director track in the Director group. Because the
Director track tells the Matinee to take over the player’s view, the player will be stuck watching the
Matinee forever.

▼TRY IT YOURSELF

Use the Director Group to Cut between Cameras

Use a Director group to change which camera the player sees through:

1. Right-click on a blank location on the left side of the Tracks panel and select Add New

Director Group. Matinee splits the Tracks panel into two sections, with the Director group at
the top. The Director group already has a director track, which is unique to a Director group.

2. Move the play head to frame 0, and with the Director track selected, add a keyframe. In the
dialog that appears, choose Cam_1 and click OK.

3. Move the play head to 5 seconds and add another keyframe to the Director track, only
this time pick Cam_2 and click OK. Now when the Matinee is played, it switches the view
between the two Camera groups.

4. Toggle on the camera icon for the Director group so you are looking through the Director
group’s view, and scrub the animation or click Looping on the Matinee toolbar. You should
be able to see from both cameras’ points of view as the Matinee plays.

5. To prep the Matinee Actor so it plays when the level loads, close the Matinee Editor, select
the Matinee Actor, and in the Details panel turn on Play on Level Load.

6. Preview the Level.

ptg18222824

220 HOUR 12: Matinee and Cinematics

 Working with Matinee Data Assets
By default, every time you place a new Matinee Actor, you create a Matinee asset that is embedded

in the Matinee Actor. Most of the time this is all you need. If, however, your project needs to reuse

the same cinematics and animation repeatedly, you can benefit by creating a Matinee Data asset.

A Matinee Data asset stores group, track, folder, and keyframe data and is accessible through the

Content Browser, which means you can also use it with Matinee Actors in other levels as well.

Here are the steps to take to create your own Matinee Data asset:

1. Create a folder called MatineeData for your project in the Content Browser.

2. Right-click in the folder select Create Advanced Asset > Miscellaneous, and click on

Matinee Data.

3. Give the new Matinee Data asset a name and save it.

4. Place a Matinee Actor in the level. In the Details panel for the Matinee Actor, click the Matinee

Data Properties drop-down and select the Matinee Data asset you created in steps 2 and 3.

You can now assign this data asset to as many Matinee Actors as needed. If you edit this data, it

updates across all the Matinee Actors that reference the Matinee Data asset.

Summary
This hour you learned about working with the Matinee Editor to animate Static meshes and

Camera Actors. The Matinee workflow is primarily for creating passive cut scenes and controlling

looped ambient environment animated sequences. If you want to create animated assets that the

player can interact with, you should use Blueprints and the Timeline, as discussed in Hour 16,

“Working with Blueprint Classes.”

Q&A
Q. The player still has control of the pawn while a cinematic is playing. How can I turn this off?

A. In the Details panel for the placed Matinee Actor, go to the Cinematic section. Here you can
turn off player movement and hide the player pawn or HUD while the Matinee is playing.

Q. Is it possible to select multiple keyframes at one time?

A. Yes, in the Tracks panel or the Curve Editor, you can Ctrl+Alt+click+drag to create a drag
selection or you can Ctrl+click to add to the current selection.

Q. How do I change the position of an individual keyframe?

A. Select the key, hold down Ctrl, and drag the key to a new location in the Timeline.

ptg18222824

Q&A 221

Q. How do I delete a group, a track, or a keyframe?

A. Simply select any of these and press the Delete key.

Q. I created a great animation, but it plays too fast. Can I change the spacing of the keyframes

in order to change the timing of the animation?

A. Yes. You can manually select and move each keyframe, which could take forever, depending
on the number of keyframes. A better way is to drag a selection to select the keys you want
to change and then select Edit > Stretch Selected Keyframes. In the dialog that appears,
you can set new timing for the selected keyframes.

Q. I am trying to animate a door opening and closing, but the pivot point of the mesh is in the

wrong location. How do I change the pivot point of a Static Mesh Actor that I am trying to

animate?

A. The best way is to edit the mesh in a 3D application and reimport it. But as a workaround,
you can also attach the door mesh to a parent Actor and then animate the parent Actor.
The parent Actor effectively becomes the pivot point. You can set the parent Actor’s render
properties in the Level Details so it is hidden in game and only the door mesh will be seen.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: It is possible to change the Actor that is being controlled by a group in a

Matinee.

2. True or false: Cameras have to be animated in a separate Matinee from other Actors.

3. True or false: The scale of a Static Mesh cannot be animated.

4. True or false: A Matinee Data asset can be used across multiple levels.

Answers
1. True. You can assign and reassign Actors to existing groups in Matinee.

2. False. Cameras and other assets can be animated in a single Matinee Actor.

3. False. The scale of Static Mesh can be animated with a Vector Property track.

4. True. Matinee Data assets are stored in the Content Browser and can be used across
 multiple Matinee Actors in different levels.

ptg18222824

222 HOUR 12: Matinee and Cinematics

Exercise
Create a 15-second cinematic of an epic door opening. The cinematic should use several
 cameras and fade in on the first camera and fade out on the last camera.

1. Create a new default map.

2. Add a Matinee Actor to the level.

3. In the Level Details panel under Play, set the Matinee Actor’s Play on Level Load property to
On. Do not turn on looping.

4. In the Level Details panel under Cinematic, set the Matinee Actor Disable Movement Input,

Disable Look at Inputs, Hide Player, and Hide Hud properties to On.

5. Block out the level with only the Actors that you will need to animate, such as the door and
the door frame.

6. Open the Matinee Editor and add the necessary groups and movement track to animate the
pieces of the door as it opens.

7. Use sound tracks in each group as necessary.

8. Add three Camera groups and animate each camera.

9. Add a Director group with a Director track to switch between the cameras.

10. Add a fade track to the Director group and set keys for a fade-in on the first camera and a
fade-out on the last camera.

ptg18222824

HOUR 13
Learning to Work with Physics

What You’ll Learn in This Hour:

 Making a Static Mesh Actor simulate physics

 Creating and assigning Physical Materials

 Using Physics Constraint Actors

 Using Physics Thruster and Radial Force Actors

This hour introduces physics in UE4. You start off learning how to set up a simple rigid physics

body from a Static Mesh Actor. Then you look at working with Physical Materials and Constraint

Actors. You finish up the hour creating and using Force Actors. Physics simulation is a large

topic, so establishing a framework and a basic understanding of working with physics to build

on is the goal of this hour.

NOTE

Hour 13 Project Setup
For this Hour, you use the Hour_13 project from the book’s companion website at www.sty-ue4.com.
The provided project has a Game Mode that uses a First person character with a physics gun that
can be used to interact with Actors simulating physics.

Using Physics in UE4
A physics body is an Actor that responds to external forces and collisions. Physics in UE4 is

 handled by the NVIDIAs PhysX physics Engine. The PhysX Engine uses the CPU or GPU,

 depending on the system, to process rigid bodies, soft bodies, cloth, destructibles, and particles.

The UE4 Editor has interface tools for setting up and modifying physics properties. This hour

focuses on working with rigid bodies. A rigid body is a solid, non-deformable objects, such as a

2×4 piece of wood or a beach ball.

http://www.sty-ue4.com

ptg18222824

224 HOUR 13: Learning to Work with Physics

Common Physics Terms
When you start working with physics, it is a good idea to familiarize yourself with some of the

terms:

 Physics body is a generic term used to describe any object that is set to simulate physics.

 A rigid body is solid non-deformable objects.

 A soft body is a deformable object that conforms to the world around it when it collides

with something.

 Cloth is a type of soft body.

 Destructible is a term that applies to a rigid body that fractures and crumbles when enough

force has been applied.

 Linear refers to directional force that changes the position of an Actor in a level.

 Angular refers to rotational forces that change the orientation of an Actor.

 Mass refers to the amount of a matter in a given body, regardless of the amount of gravity

applied.

 Density is the amount of mass by volume in a given physics body.

 Damping refers to how quickly a physics body comes to a rest after a force has been

applied. It is the dissipation of energy over time.

 Friction is the amount of resistance applied to a sliding or rolling body.

 Restitution refers to the amount of bounce a physics body has and how quickly the body

comes to rest.

 Force is applied to a mass for a duration.

 Impulse is an instantaneous hit.

Assigning the Physics Game Mode to a Level
To test out physics simulation, you need a Pawn with a physics gun so you can interact with phys-

ics bodies. Open the provided project for this hour, Hour_13 project. This project contains a Game

Mode set up with a physics gun for you to use, along with some sample maps. Create a new level

and open the World Settings panel for the level by clicking the Settings icon on the main Editor

toolbar above the Viewport window and selecting Project Settings (see Figure 13.1).

ptg18222824

Using Physics in UE4 225

FIGURE 13.1
Opening the project settings.

Under Game Mode in the World Settings panel, set GameMode Override to

SimplePhysicsGameMode, as shown in Figure 13.2. Playtest the level, and you should see a

simple red crosshair.

FIGURE 13.2
Setting GameMode Override.

Project and World Physics Settings
Now that the Game Mode has been set for the level, you can focus on locating the default

 project settings for physics. You need to do this in several areas. First, you set a default setting for

the entire project. To do this, select Settings > Project Settings (refer to Figure 13.1). The Project

Settings tab that appears allows you to set many attributes related to physics for a project, but

ptg18222824

226 HOUR 13: Learning to Work with Physics

you only need to look at two for now. As shown in Figure 13.3, you can set Default Gravity,

which is roughly the rate of acceleration per second squared on a body as it falls due to the force

of gravity. The default value is −980 cm on the Z-axis. You can also set Default Terminal Velocity,

which is the top speed a physics body will be allowed to move. The default value is 4000. These

settings apply to all levels in the project, unless you override them in a level’s World Settings

panel or on individual Actors.

FIGURE 13.3
Project Settings panel.

Next, you can set default physics attributes on an individual level. With a level open, select the

World Settings tab and look for the Physics section, which shows the default settings for the level

(see Figure 13.4). Here you can override the project’s default gravity settings just for the current

level. You might do this, for example, if you are working on a physics-based game and certain

levels need different gravity settings from the rest of the project.

ptg18222824

Simulating Physics 227

FIGURE 13.4
Overriding a project’s default gravity settings for a level in World Settings.

Simulating Physics
A basic physics body in UE4 is nothing more than a Static Mesh that has been set to simulate

physics. To make a Static Mesh Actor simulate physics, simply place one in your level. Then on

the Details panel, go to the Physics section, where you can toggle on and off Simulate Physics,

as shown in Figure 13.5. Toggling it on automatically changes the mobility of the placed Static

Mesh Actor to movable and changes the Collision preset to Physics Actor. If you preview the

level, the Static Mesh Actor now simulates physics, though it might not be moving if it’s already

on the ground and force has not yet been applied. Placing the Actor 500 units above the ground

plane allows the default gravity settings to affect the object. Also on the Level Details panel, you

can see that the Actor has a default mass based on its size in kilograms (kg). If you scale the

Actor up or down, you can see the mass of the Actor change relative to its size. As you can see,

you can override this setting and put in any value you like.

Two other properties to look at right now are Enable Gravity and Start Awake. If you turn off

Enable Gravity, you override the project or level default gravity settings for the Actor, effectively

making it respond like an asteroid in space. Toggling off Start Awake tells the Actor not to start

simulating physics until it is influenced by an external force other than gravity.

ptg18222824

228 HOUR 13: Learning to Work with Physics

FIGURE 13.5
Physics properties for a Static Mesh Actor.

TIP

No Collision Hull
If a Static Mesh Actor does not allow you to set Simulate Physics, it is most likely because the
Static Mesh asset that has been assigned to the Actor does not have a collision hull. In that case,
locate the Static Mesh asset in the Content Browser, open it in the Static Mesh Editor, and assign a
collision hull. Remember to save it.

ptg18222824

Simulating Physics 229

Now that you have placed a Static Mesh Actor set to simulate physics, you can preview your

level and interact with it using the simple physics gun. Move close to the physics body and point

the HUD crosshairs on it. Click to grab the object and pick it up; right-click to release the object.

If you right-click an object when you are not holding anything, you poke it.

Table 13.1 lists the key physics properties you can set for a Static Mesh Actor.

TABLE 13.1 Physics Properties for a Static Mesh Actor

Property Description

Simulate Physics Toggles physics simulation on and off for the Actor.

Mass in KG Mass of the body, in kilograms, based on the Actor’s size in the
world. This property can be set manually by turning on Override.

Linear Damping Drag force added to reduce linear movement.

Angular Damping Drag force added to reduce angular movement.

Enable Gravity Whether the object should have the force of gravity applied.

Constraints Controls which axises the Actor can move and rotate on when
 simulating physics.

Modes Presets for constraint assignments.

Start Awake Whether the object should start awake or initially be sleeping.

Center of Mass Offset Specifies the offset for the center of the mass of this object from the
calculated location.

Mass Scale Per-instance scaling of mass.

Max Angular Velocity Limits the amount of angular velocity that can applied.

Use Async Scene If this is selected, the body is put into the asynchronous physics
scene. If it is not selected, the body is put into the synchronous
 physics scene. If the body is static, it is placed into both scenes,
whether Use Async Scene is selected or not.

Sleep Family The set of values used in considering when to put this body to sleep.

Position Solver Iteration
Count

The physics body’s solver iteration count for position. Increasing this
setting is more CPU-intensive but yields better stabilization.

Velocity Solver Iteration
Count

The physics body’s solver iteration count for velocity. Increasing this
setting is more CPU-intensive but yields better stabilization.

TIP

Details Panel
Just about every subeditor in UE4 has a Details panel, and every Details panel has a search bar. If
you can’t find a particular property, type its name in the search bar of the ac-tive Details panel, and
it will show up.

ptg18222824

230 HOUR 13: Learning to Work with Physics

Using Physical Materials
Physical Materials enable you to modify the behavior of a physics body. The term Physical

Materials can be a bit misleading because these are not actually rendering materials at all, but

rather materials in the substance sense. They can be applied to individual Static Mesh Actors

in your level, or they can be assigned to regular materials that, when assigned to a Static Mesh

Actor simulating physics, will also affect the Actor’s physics simulations behavior.

Creating a Physical Material Asset
Physical Material assets can be created in the Content Browser. They allow you to set properties

such as Friction, Density, and Restitution on a physics body (see Figure 13.6).

FIGURE 13.6
Physical Material properties.

ptg18222824

Using Physical Materials 231

To create new Physical Material in the Editor, go to the Content Browser and create a new

folder. In the asset management area, right-click and select Physics > Physical Material

(see Figure 13.7). Give the newly created asset a name and then double-click it to open its

 properties. After you modify any values, remember to save the changes by right-clicking the

modified asset in the Content Browser and selecting Save.

FIGURE 13.7
Creating a Physical Material asset.

Assigning a Physical Material to a Static Mesh Actor
To assign a Physical Material to a Static Mesh Actor, select the Actor in the level and go to the

Collision section in the Levels Details panel. You will see the Phys Material Override property

(see Figure 13.8). Drag the Physical Material asset from the Content Browser next to this property

to set it.

ptg18222824

232 HOUR 13: Learning to Work with Physics

FIGURE 13.8
Assigning a Physical Material to a Static Mesh asset in the Collision section of the Details panel.

Assigning a Physical Material to a Material
The advantage of assigning a Physical Material to a regular material is that every time you

assign the material to a Static Mesh Actor, it will have the visual surface properties of the regular

material, and it will also use the Physical Material properties if the Actor ever has its state

changed to simulate physics at runtime.

ptg18222824

Using Physical Materials 233

Assigning Physical Materials to Static Mesh Actors

This is a good time to practice creating and assigning Physical Materials to Static Mesh Actors,
so follow these steps:

1. Drag out three Static Mesh Actors—one cube and two spheres—from the Place tab in the
Modes panel. Set them all to simulate physics.

2. Create a folder in the Content Browser to store your Physical Materials.

3. Create three Physical Materials.

4. Name the first Physical Material Slippery and set its Friction property to -1. Assign this to
the placed Cube Static Mesh Actor’s Phy Material Override property.

5. Name the second Physical Material Bouncy and set its Restitution property to 1.6. Assign
this to one of the placed Sphere Static Mesh Actor’s Phy Material Override property.

6. Name the third Physical Material Heavy and set its Density property to 10.

7. Create a new regular material and in the Material Editor and Name it Heavy_Mat. Assign it a
color and link the constant vector 3 material expression to the Base Color.

8. In the Material Editor, select the Primary material node and in the Material Editor’s Details
panel, assign the Heavy Physical Material Asset created in step 6 to the Phys Material
 property, as shown in Figure 13.9.

9. Save and close the material.

10. Drag the Heavy_Mat material onto the last placed Static Mesh Actor in the level.

11. Preview the level and interact with each of the physics bodies.

▼TRY IT YOURSELF

To assign a Physical Material to a regular material, simply open the desired material in the

Material Editor, select the final material node, and look for the Phys Material Override property

in the Material Editor’s Details panel. Drag the Physical Material asset onto the property, save,

and close the Material Editor.

The Following Try it Yourself walks you through creating Physical Material assets and assigning

them to Static Mesh Actors and a Regular material.

ptg18222824

234 HOUR 13: Learning to Work with Physics

 Working with Constraints
Constraints allow you to control the movement of a physics body by locking movement and

rotation on a specific axis. You set properties for a constraint in the Constraint section of the

Level Details panel for the Static Mesh Actor. Here you find properties that allow you to lock

the physics body to specific positional and rotational axes (see Figure 13.10). There is even a

mode property with presets, which is great when working with an individual physics body that

has specific needs. For example, you can lock the X and Y movement so the physics body can

move only along the Z-axis; or you can lock the rotation only, so the physics body can move but

not rotate.

▼

FIGURE 13.9
Assigning a Physical Material to a material.

ptg18222824

Working with Constraints 235

FIGURE 13.10
Actor Constraints.

Attaching Physics Actors
In previous hours, you learned about parent/child relationships and attaching Actors together.

Unfortunately, because physics objects dynamically respond to the world around them in real

time, through collision and external forces, attaching them together has no effect. A physics

body can be a parent to another movable Actor, but attaching a physics body as a child to a

parent Actor has no effect at runtime, and the attaching relationship is ignored.

NOTE

Attaching Physics Bodies
The Editor allows you to attach a Physics Actor. If a Static Mesh has been set to simulate
 physics and the child Actor is movable, the child will follow the position and rotation of the parent
Physics Actor.

Physics Constraint Actors
Due to the limitations of attaching physics bodies, Epic has provided a Physics Constraint Actor

that allows you to link Physics Actors to any other Actor, as shown in Figure 13.11. You use a

Constraint Actor to create a joint, or a hinge, between two physics bodies. A Constraint Actor

differs from standard attaching method, in that the movement of both the parent (Constraint

Actor 1) and the child (Constraint Actor 2) have effects on each other’s movement and rotation.

Since the Physics Constraint Actor works like a joint, there are presets for the type of joint to

use. Choosing the preset automatically adjusts the linear and angular settings between Free,

 meaning no constraint at all, Lock, meaning no movement at all, and Limited, which allows

you set a range of movement.

ptg18222824

236 HOUR 13: Learning to Work with Physics

FIGURE 13.11
Physics Constraint Actor properties.

▼ TRY IT YOURSELF

Create a Swinging Lamp Using a Constraint Chain

Follow these steps to set up your own constraint chain by creating a hanging lamp:

1. Place a Static Mesh Cube Actor in your level, 400 units above the floor. Leave it static; that
is, do not select Simulate Physics.

2. Place a Static Mesh Sphere directly under the cube. Set its X, Y, and Z scaled to 0.4 and
select Simulate Physics.

3. Place a second Static Mesh Sphere directly under the first sphere. Set its X, Y, and Z
scaled to 0.4 and select Simulate Physics.

4. Place a Static Mesh Cone Actor just underneath the bottom sphere and select Simulate

Physics.

ptg18222824

Working with Constraints 237

▼5. Drag out a Spot Light Actor so it is directly under the cone. Set its color to red and
increase its intensity to 40,000.

6. Attach the spotlight to the Cone Actor in the World Outliner panel.

7. Drag out a Physics Constraint Actor and place it in between the cube and the top sphere.

8. On the Details panel for the Constraint Actor, look for the Constraint tab. For Constraint
Actor 1, click the eye dropper icon to the right and then click the cube in the Viewport. This
assigns the Cube Static Mesh Actor to the Constraint Actor 1 property. If you have done it
correctly, you should see the cube surrounded by a red wireframe box.

9. Repeat step 8 for the Constraint Actor 2 property, but this time choose the top sphere. If
you have done it correctly, you should see the sphere surrounded by a blue wireframe box.

10. Repeat steps 7 through 9 twice, and each time place the new Constraint Actor between
the next two Static Mesh Actors and assign the mesh just above the newly placed Physics
Constraint to Constraint Actor 1 and the bottom mesh to Constraint Actor 2. You should
have a total of three Physics Constraint Actors when you are done. See Figure 13.12 for
proper placement and arrangement of the Actors.

11. Preview the level and use the physics gun to interact with the constraint chain to make the
light swing.

FIGURE 13.12
Lamp constraint chain.

ptg18222824

238 HOUR 13: Learning to Work with Physics

 Instead of using presets, you can micromanage linear or angular movement limits on a joint.

If you select Limited on any of the axes under Angular Limits on the Details panel, more

 properties show up that allow you to set the stiffness and damping, as well as limit the swing

and twist angles of the joint, as shown in Figure 13.13. You can even set linear and angular

breakable thresholds that break the joint constraints when enough linear or angular force is

applied.

FIGURE 13.13
Physics constraint Actor Angular Limits properties.

Now that you have a constraint chain set up, play around with these properties and see what

happens. Make small adjustments and playtest often until you get a good sense of what all the

properties are doing and how they work.

NOTE

Simulating Metal Chains and Ropes
You might be tempted to use the method described here to make an actual chain, and while that
may technically be possible, it is not the best way to go about it. If you want to simulate a chain, or
even a rope, that is best done in the Physics Asset Tool (PhAT) Editor, using a Skeletal Mesh Actor
that relies on bone and joint hierarchies.

ptg18222824

Using Force Actors 239

Using Force Actors
You can do a lot with physics bodies through Blueprint. However, Epic provides a few Classes to

work with, including the Physics Thruster and Radial Force Actors.

Physics Thruster Actors
You can find a Physics Thruster Class in the Place tab in the Modes panel. Simply type physics

in the Modes panel search box and then find the Physics Thruster Actor in the list. To use it,

place it under the Physics Actor you want to affect in your level and rotate it in the direction you

would like the force to be applied. Then, in the World Outliner panel, attach it to the Static Mesh

Actor simulating physics. Set the amount of force you would like to apply under Thrust Strength

in the level Details panel. Toggle on Auto Activate in the Activation section of the Level Details

panel. The amount of force needed to move a physics body depends on the body’s mass. So you

may need a high value for thrust strength to have an effect, depending on the physics body.

TIP

Controlling Mass
Remember that scaling a physics body up or down changes its mass. You can also override the Mass
setting of the Static Mesh in the Level Details panel and apply your own values. Select the Actor,
go to the Level Details panel, and in the Physics section, look for the Mass In Kg property. Turn on
Override and set the amount.

▼TRY IT YOURSELF

Create a Cone Rocket

Follow these steps to create a simple cone rocket and use a linked Physics Thruster Actor to
 propel it into the air:

1. Drag out a Cone Static Mesh Actor from the Place tab in the Modes panel. Place it
 approximately 50 to 150 units above the floor.

2. Select Simulate Physics for the Cone Static Mesh Actor.

3. Drag out a Physics Thruster Actor from the Place tab in the Modes panel.

4. With the Physics Thruster selected, set its location under Transforms in the Details panel
so that it has the same X and Y locations as the Cone Static Mesh Actor.

5. Rotate the Physics Thruster Actor so its yellow direction arrow is pointing straight down.

6. Attach the Physics Thruster to the cone in the World Outliner panel.

7. In the Details panel for the Physics Thruster Actor, set Thrust Strength to about 65,000 and
select Auto Activate.

ptg18222824

240 HOUR 13: Learning to Work with Physics

 NOTE

Copying and Pasting Actor Transforms
You can copy and paste the transforms of an Actor by right-clicking its Location, Rotation, or Scale
property under Transforms in the Level Details panel and selecting Copy. Then apply it to another
Actor by right-clicking on the second Actor’s transforms and select Paste.

Radial Force Actors
A Radial Force Actor applies force in all directions from a single point of influence, so its

 orientation does not matter. A Radial Force Actor only affects Physics Actors that fall within its

area of influence, and you can adjust the area of influence by scaling the Actor. The influence

has a falloff value, so the applied force on a physics body is greater the closer it is to the center

of the Radial Force Actor. To place a Radial Force Actor, locate it by using the search bar in the

Modes panel. Drag it into your level; with the Actor selected, set the Force Strength properties.

▼
8. Preview the level; the cone should fly up in the air.

9. If the physics body is not moving, make sure the Physics Thruster direction is facing the cor-
rect direction. You can also reduce the mass of the Static Mesh Actor or increase the thrust
strength of the Physics Thruster Actor. If the cone is flying erratically, make adjustments
to the position of the Thruster Actor or set the constraints on the Static Mesh Cone to be
locked on the X- and Y-axes under the Actor’s Physics properties (refer to Figure 13.5).

▼ TRY IT YOURSELF

Use Radial Force Push

Follow these steps to set up a Radial Force Actor so that it pushes an Actor set to simulate
 physics:

1. Drag out a Cube Static Mesh Actor from the Place tab in the Modes panel. Place it 500
units above the floor.

2. With the placed Static Mesh selected, in the Level Details panel select Simulate Physics for
the Static Mesh Actor and override its Mass in Kg property; set Mass to 10.

3. Set the Linear Damping property of the cube to 1.

4. Drag out a Radial Force Actor and place it on the floor, directly under the cube.

5. In the Details panel for the Radial Force Actor, set Force Strength to about 10,000.

6. Preview the level. The cube should fall slowly toward the floor and get pushed to the side
when it hits the floor.

ptg18222824

241Q&A

 Summary
This past hour you were introduced to working with physics in UE4. Having only the basic

knowledge you now have, you can implement a large number of design possibilities in a

 project. There is, of course, always more to learn. Now that you are comfortable working with

simple Physics Actors and properties, the next step you should be looking into is working with

 destructible Actors and the Physics Asset Tool (PhAT) Editor, which allows you to assign physical

properties to skeletal meshes on the individual bones. You can use it for setting up anything

from ropes to rag dolls to characters that respond differently each time they get hit. Remember to

check out the Content Examples project from Epic. You can download the project from the Learn

section of the Launcher. Just launch the project and open the physics and destructible level and

preview them to see examples.

Q&A
Q. I don’t see the crosshairs on the HUD when I preview my level. Why?

A. Make sure to set the current level’s GameMode Override property to
SimplePhysicsGameMode in the World Settings panel. You can also apply this setting
to the entire project in the Project Settings panel of Maps & Modes.

Q. Why is the Simulate Physics property grayed out for my Static Mesh in the level?

A. Make sure the Static Mesh asset used has a collision hull. If it doesn’t, open it in the
Static Mesh Editor and assign one.

Q. I placed a Force Thruster Actor in a level, but it does not affect any of the physics bodies I

have created. Why?

A. The Force Thruster Actor must be attached to the Static Mesh that you want to affect. Also,
the Auto Activate property in the Details panel for the Force Thruster Actor needs to be
selected.

Q. How do I change the force direction of a Force Thruster Actor?

A. Simply rotate the attached Force Thruster Actor using its transform gizmo so that the arrow
points in the direction you want the force to be applied.

Q. When I use a Radial Force Actor and place a Static Mesh physics body on it, nothing

 happens. Why?

A. Make sure you are setting the Force value and not Impulse on the Radial Force Actor; be
sure to apply a high Force value or reduce the mass of the physics bodies you are trying to
affect.

ptg18222824

242 HOUR 13: Learning to Work with Physics

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: In the World Outliner panel, if you attach a Static Mesh Actor simulating phys-

ics to a Static Mesh Actor that has Mobility set to Static, the Physics Actor will not move.

2. True or false: Rigid bodies deform when they collide with other Actors.

3. True or false: Setting Linear Damping to a high value for a physics body will reduce its
velocity over time.

4. True or false: A Physics material may not be a material, but they can be assigned to a
 material.

5. True or false: A Physics Thruster can move a physics body without the two Actors being
attached.

Answers
1. False. Because the Static Mesh Actor is simulating physics attaching it to another Actor will

not have an effect. If you want to attach an Actor simulating physic to another Actor you will
need to use a Physics Constraint Actor.

2. False. Soft bodies deform when they collide with other Actors.

3. True. Linear Damping reduces the velocity of a physics body over time.

4. True. Physic Materials can be assign to either a Static Mesh Actors or a regular Materials.

5. False. For the Physic thruster to work it must be attached as the child to the Static Mesh
simulating physic.

Exercise
Multiple Constraint Actors can affect a single Static Mesh Actor at the same time. Using Physics
Constraint and Static Mesh Actors, create a platform that is suspended by four separate con-
straint chains in each corner.

1. Create a new level and set the GameMode Override setting to SimplePhysicsGameMode in
the World Settings panel.

2. Create a constraint chain similar to the swinging lamp chain you made in a Try It Yourself
exercise this hour but don’t include the light. Add one more Physics Constraint Actor to the
bottom of the chain and assign the last mesh to the Constraint Actor 1 property.

ptg18222824

Exercise 243

3. Once the chain has been made, select all the Actors that make up the chain at once and
duplicate it three times. Position each copy so you have four separate constraint chains
forming a square. You can do this duplication by using the Move transform gizmo and
 holding the Alt key as you move the selection.

4. Add a Static Mesh box and scale it so it makes a platform the player can stand on. Select
Simulate Physics for this Actor and place it underneath the four constraint chains.

5. Assign the platform to the Constraint Actor 2 property to the last Physics Constraint Actor in
each of the chains.

6. Preview the level and interact with the platform either with the physics gun or by jumping on
the platform (see Figure 13.14).

FIGURE 13.14
Platform suspended by four separate constraint chains.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 14
Introducing Blueprint Visual

Scripting System

What You’ll Learn in This Hour:

 Learning the Blueprint Editor interface

 How to use events, functions, and variables

 Adding an event

 Declaring a variable

Just about every game engine has a scripting language that allows developers to add or modify

functionality in their games. Some engines make use of existing scripting environments,

such as LUA, and some have proprietary scripting environments. UE4 provides two methods

for creating content: C++ and Blueprint. The Blueprint visual scripting system is a powerful

and fully functional scripting environment that is used throughout the Editor. It gives artists

and designers the ability to create entire games, prototype ideas, and modify existing gameplay

elements. This hour introduces the Blueprint Editor and basic scripting concepts.

NOTE

Hour 14 Setup
For this hour, create a new Blank project without Starter Content.

Visual Scripting Basics
Developing in C++ requires an Integrated Development Environment (IDE), such as Microsoft

Visual Studio, and can be used to script anything from new classes and gameplay to

modifications of the Core Engine Components. Blueprint, on the other hand is a visual scripting

environment. Although you can’t use Blueprint to write a Rendering Engine, you can use it to

create your own classes and gameplay functionality. A visual scripting environment, such as

Blueprint, does not use a traditional text-based environment but instead offers nodes and wires.

Nodes are visual representations of functions (pieces of code that perform specific operations),

ptg18222824

246 HOUR 14: Introducing Blueprint Visual Scripting System

variables (which are used to store data), operators (which perform mathematical operations),

and conditionals (which allow you to check and compare variables). In Blueprint you use wires

to establish relationships between nodes to create and set the flow of your Blueprint; that is, you

use wires to establish the order of operations. The Blueprint Editor is the interface that allows you

to make and compile these sequences of nodes and wires.

NOTE

When to Use C++
You only need to work in C++ if your game demands 100% efficiency or requires some modification
to the Core Rendering, Physics, Audio, or Networking Engine Components. Epic has even provided
full access to all the source code used to create all the Core Engine Components. Some people
 simply prefer using a text-based scripting and programming environment, such as C++. If you are
new to scripting, working in a visual scripting environment like Blueprint is a great way to learn
 fundamental programming concepts without having to worry about syntax.

Visual scripting allows artists and designers to script gameplay functionality, leaving programmers

to work on more complicated tasks. A large percentage of most games can be created entirely in

Blueprint, and because it compiles to the bytecode level, Blueprint scripts are very efficient. You can

use Blueprint to make complete games for all the platforms that UE4 supports.

NOTE

Compiling Blueprint Scripts
Even though Blueprint is a visual environment, Blueprint scripts still need to be compiled. Blueprint
scripts compile to the bytecode level. It’s important to understand the following terms:

 Compiler: Software used to compile instructions (source code) written in a programming
 language.

 Compiling: The process of turning instructions into machine language (code) that can be
executed by the CPU. Compiling requirements differ depending on the hardware and operating
system.

 Bytecode: Compiled source code that is processed by a virtual machine instead of hardware.
This means the source code can be compiled once and run on any hardware that has a virtual
machine to process the bytecode.

 Virtual machine: Software that translates bytecode into instructions the hardware can
 understand and process.

ptg18222824

Understanding the Blueprint Editor 247

Understanding the Blueprint Editor
The Blueprint visual scripting system is a key Component of the UE4 Editor and even in C++-

based projects, you will most likely be utilizing Blueprints to some degree. There are five types of

Blueprints to work with in UE4.

 Level Blueprint: This is used to manage global events for a level. There is only one Level

Blueprint for each level, and it is automatically saved when the level is saved.

 Blueprint class: This is a class derived from an existing class that has been made in C++

or from another Blueprint class. It is used to code functionality for Actors placed in a level.

 Data-Only Blueprint: This only stores the modified properties of an inherited Blueprint.

 Blueprint Interface: Blueprint Interfaces (BPI) are used to store a collection of user-defined

functions that can be assigned to other Blueprints. BPIs allow other Blueprints to share and

pass data among each other.

 Blueprint Macros: These are self-contained node graphs of a commonly used sequence

of nodes that can be reused throughout other Blueprints. Blueprint Macros are stored in a

Blueprint Macro Library.

Level Blueprint and Blueprint classes are the two most common types of Blueprints you will use.

In this hour, you focus on becoming familiar with the Blueprint Editor. Later hours show you

more about how to work with Blueprint classes.

NOTE

Working with Blueprints
The following are some basic terms that are good to know when talking about Blueprint and
 programming in general:

 Blueprint: A Blueprint Class asset stored in the Content Browser.

 Blueprint Actor: An instance of a Blueprint Class asset placed in a level.

 Object: A variable or a collection of variables such as a data structures and functions that are
stored in memory.

 Class: A code template for creating objects, which stores initial values assigned to variables
along with functions and operations that fundamentally define the class.

 Syntax: In traditional programming and scripting environments, syntax refers to the spelling
and grammatical structure that is expected by the language compiler in order to be able to
compile code into machine language.

ptg18222824

248 HOUR 14: Introducing Blueprint Visual Scripting System

Blueprint Editor Interface
To open a level Blueprint and see the Blueprint Editor interface, from the Level Editor toolbar

select Blueprints > Open Level Blueprint (see Figure 14.1). The Blueprint Editor’s interface and

workflow are easy to learn, but scripting is difficult to master. Even though you don’t have to

worry about syntax in a visual scripting environment, you still need to deal with logic and order

of operations. This takes practice in any coding environment.

FIGURE 14.1
Opening the Level Blueprint in the Blueprint Editor for the current level.

The Blueprint Editor interface has a menu bar, a toolbar for quick access to common tools

and operations, the Event Graph for building scripts, a Details panel for showing properties

of whatever is currently selected in the Blueprint Editor, and a My Blueprint panel that is

used to manage and keep track of node graphs, functions, macros, and variables used in the

selected Blueprint. The features of the Blueprint Editor interface are indicated in Figure 14.2 and

described in the following list:

 1) Toolbar: The toolbar provides a number of buttons, described shortly, for controlling the

Blueprint Editor.

 2) My Blueprint panel: Is used to manage graphs, functions, macros, and variables that

are in your Blueprint.

 3) Details panel: Once a component, variable, or function is added to a Blueprint, you

can edit its properties in the Details panel.

 4) Event Graph: You use the Event Graph to script the core functionality of the Blueprint.

ptg18222824

Understanding the Blueprint Editor 249

4

1

3

2

FIGURE 14.2
The Blueprint Editor interface.

NOTE

Blueprint Toolbar
When working with Level Blueprints, the Blueprint Editor toolbar does not have a save or find
in Content Browser function because the Level Blueprint is tied to the level. To save the Level
Blueprint, just save the Level.

Blueprint Editor Toolbar
The Blueprint Editor toolbar has only five tools on it. The two tools to focus on now are the

Compile button and the Play button. You click the Compile button to compile script and see

any issues in the compiler result window at the bottom of the Event Graph. The Play button

here is the same as the Level Editor Play button for previewing a level. Notice that there is no

Save button; this is because the Level Blueprint is tied to the level, so if you need to save a Level

Blueprint, just save the level.

The Blueprint Editor’s toolbar has a number of buttons for managing a Blueprints:

 Compile: Compiles a Blueprint

 Search: Opens a Find Results panel with a search box for locating nodes in a Blueprint

ptg18222824

250 HOUR 14: Introducing Blueprint Visual Scripting System

 Class Settings: Shows the options for the Blueprint in the Details panel

 Class Defaults: Displays the properties for the Blueprint in the Details panel

 Play: Previews the level

My Blueprint Panel
The My Blueprint panel keeps track of all the node graphs, functions, macros, and variables that

your Blueprint uses. Each category is separated by title, and to the right of each title is a + sym-

bol you can click to add to each section, as needed. You can use the My Blueprint panel to add,

rename, and delete all these elements.

Event Graph
The Event Graph is the default node graph used to code your Blueprints. It is where you do most

of your work when using the Blueprint Editor. You can add more node graphs to an existing

Blueprint as needed. A node graph is like a sheet of graph paper. You can add as many graphs

as you need to a Blueprint to help keep it organized. Table 14.1 lists the shortcuts used when

working with nodes in the Event Graph.

TABLE 14.1 Blueprint Editor Shortcuts

Shortcut Command or Action

Right-click an empty space Opens the Blueprint Context Menu.

Right-drag an empty space Moves the Event Graph to the clicked location.

Right-click a node Brings up the node and pin actions.

Click a node Selects the node.

Drag a node Moves the node.

Drag an empty space Selects the area.

Ctrl+click Adds and removes the currently selected node to a selection
of nodes.

Roll mouse wheel Zooms the Event Graph in and out.

Home Centers the Event Graph.

Delete Deletes the selected nodes.

Ctrl+X Cuts the selected nodes.

Ctrl+C Copies the selected nodes.

Ctrl+V Pastes the selected nodes.

Ctrl+W Copies and pastes the selected nodes.

ptg18222824

Understanding the Blueprint Editor 251

Blueprint Context Menu
The Blueprint Context Menu is one of the menus you use most often when working in the

Blueprint Editor. You add events, functions, variables, and conditionals to a graph by right-clicking

an empty area or dragging a pin. Either way allows you to open the Blueprint Context Menu (see

Figure 14.3). This menu is context sensitive by default, which means it shows only actions that are

relevant to what you currently have selected and/or the pin you are dragging from.

FIGURE 14.3
Blueprint Context Menu.

Nodes, Wires, Execs, and Pins
It can help to think of the flow of a visual script as electricity. A red event node sends out a

signal that travels along wires and executes whatever node it passes through. When a node

receives the signal, it retrieves any data it needs through data pins on the left side. It then

performs its operation, passes the event signal along, and returns any results through data pins

on the right side. Here’s what you need to know about this process:

 Nodes are visual representations of events, functions, and variables and are color-coded

to represent their use. A red node is an event node used to initiate the execution of a

sequence of nodes. Blue nodes are functions to perform specific operations. Multicolored

oval nodes, each with a single data pin, represent variables.

ptg18222824

252 HOUR 14: Introducing Blueprint Visual Scripting System

 “In” and “out” execution pins (execs) are the white right-facing triangles at the top of a

node that denote sequence flow. A red event node has only an “out” exec pin because it is

used to initiate a sequence, while blue nodes have both “in” and “out” exec pins (most of

the time) to pass the signal along.

 Data pins are color-coded based on the type of data they need. Data pins on the left side of

a node retrieve data, while data pins on the right side of a node return data.

 Wires connect nodes; white wires connect “in” and “out” exec pins, and colored wires

 connect data pins. The color of each wire represents the type of data it is passing.

To establish a connection between an exec pin or a data pin and with a wire, click the pin and

drag to another pin of the same type. To break a wire going in or out of a pin, Alt+click on the

pin. Ctrl+click+drag a pin or wire to move it to a new pin.

Fundamental Concepts in Scripting
All coding environments make use of events, functions, variables, and conditional operators. The

following pages briefly introduce you to these core concepts.

Events
Blueprints in UE4 are based on events. An event is something that happens during gameplay and

can be anything from the player pressing a key on the keyboard or a pawn entering a specific

room in a level to an Actor colliding with another Actor or the game starting. Most events fall

into common categories, which are described in Table 14.2. Events are used to initiate a sequence

in Blueprint. When an event is fired, a signal is sent out from the event’s execute out pin that

travels along a wire and processes any functions it encounters along the way. When the signal

comes to the end of a sequence of nodes, its signal is lost.

TABLE 14.2 Common Events

Event Name Event Description

BeginOverlap Fires when the collision hulls of two Actors overlap. (Assigned to an
Actor or a Component.)

EndOverlap Fires when the collision hulls of two Actors stop overlapping. (Assigned
to an Actor or a Component.)

Hit Fires when the collision hulls of two Actors touch but don’t overlap.
(Assigned to an Actor or a Component.)

BeginPlay Fires every time a level is loaded into memory and played.

EndPlay Fires when the level is over.

ptg18222824

Fundamental Concepts in Scripting 253

Event Name Event Description

Destroyed Fires when an Actor has been removed from memory.

Tick Fires with every tick of the CPU.

Custom Acts as the user has defined it to work, based on specific needs.

Some events need specific Actors or Components assigned to them, such as Collision Events—it

is likely that more than one Collision Event is being broadcasted at a time. For example, if you

have a Box Trigger Actor and a Sphere Trigger Actor in your level and you need each of them

to respond when other Actors overlap with either of them, you need to assign each to their own

OnActorBeginOverlap Collision Event. Being able to have events assigned to specific Actors

allows you to script each Actor’s individual responses. To assign an Actor in a level to a Collision

Event, you select the Actor in the level and then right-click in an empty location in the Event

Graph of the Level Blueprint. Then, in the Blueprint Context Menu search box, type on Actor

begin and select OnActorBeginOverlap from the list to place the event node. Once the Collision

Event node is placed, you can see the Actor’s name assigned to the event node, so you know that

the Actor has been assigned. Now when the Actor’s collision hull is overlapped, this Collision

Event node executes.

NOTE

Components
Components in UE4 are subobject elements found in Blueprint classes and are covered in Hour 16,
“Working with Blueprint Classes.”

While the Blueprint Editor provides predefined event nodes, you can also create your own

 custom events that can be called at any point in a Blueprint sequence. Creating a custom event

allows you to define the name of the event and any data that is passed when the event is called.

Figure 14.4 shows two preexisting events (EventBeginPlay and OnActorBeginOverlap) that call

a custom event and pass a string variable. The custom event receives the signal and uses a Print

String function to display the received string data to the screen. Custom events can help you

manage and organize your Blueprints.

ptg18222824

254 HOUR 14: Introducing Blueprint Visual Scripting System

FIGURE 14.4
Blueprint custom events.

To make a custom event, right-click in the Event Graph, and in the Blueprint Context Menu

search box, type custom. Then select Custom Event from the list to place a custom event node.

Rename the event by clicking the default name. To assign a variable to the event, select the node

and in the Details panel, add a variable. After you have made a custom event, you can call the

event from another sequence by opening the Context Menu and typing in the search box the

name you assigned to the event. You select the custom event from the list to place the node, and

then you can wire it in a sequence.

Functions
A function is a piece of code that performs specific operations. It takes in data stored in variables,

processes the information, and in most cases returns a result. The Blueprint Editor has a full suite

of predefined functions that are similar to those in any other programming environment. When

a function is placed in the Event Graph, you typically see a target data pin on the left side of the

function’s node. In a Blueprint, a target is typically a variable that stores a reference to an Actor

or a Component of an Actor in the level on which the function operations will be performed. In

the function example shown in Figure 14.5, you can see a SetActorLocation function that is used

to change the location of an Actor in the level.

ptg18222824

Fundamental Concepts in Scripting 255

FIGURE 14.5
Blueprint function.

While Blueprint already has an extensive list of functions to work with, you can also make your

own custom functions in the Blueprint Editor for individual Blueprints, or you can make your own

Blueprint Functions Library, which allows you to make a collection of functions that can be reused

in any Blueprint throughout a project. Figure 14.6 shows an example of a custom function created

in the Blueprint Editor. This custom function, called Get Percentage, takes in two float variables

(A and B), where A is a total value and B is the current value. The function divides the current value

(B) by the total value (A) and then multiplies the result by 100 and returns the percentage as a float.

FIGURE 14.6
Blueprint custom function.

ptg18222824

256 HOUR 14: Introducing Blueprint Visual Scripting System

After you create a custom function, you can reuse it as many times as needed simply by dragging

out the function from the My Blueprint panel to a node graph. To create a custom function in a

Blueprint, simply click the + symbol next to Functions in the My Blueprint panel. You then have

a node graph specific to the function. In the node graph you can see two purple nodes to assign

input variables and output variables. You can define the input/output variable for a function by

selecting the input or output nodes in the custom function graph and in the Details panel, you

can create variables of different data types as needed. After you create input and output variables

for the function, you can script the sequence as you would in any other node graph, but you

need to wire the sequence up to the input and output nodes when you’re finished.

NOTE

Custom Functions
You can also create a custom function by selecting a sequence of already-placed nodes and right-
clicking on one of the nodes and selecting Collapse to Function from the menu. You get a new func-
tion that you can rename. If you often repeat a sequence of three or more predefined functions in a
Blueprint, there is a good chance you would benefit from collapsing the sequence to a custom function.

▼ TRY IT YOURSELF

Add an Event

Follow these steps to add an event, BeginPlay, and use a Print String function to display text on
the screen:

1. On the Level Editor menu, select File > New to create a new default level.

2. On the Level Editor toolbar, select Blueprints > Open Level Blueprint.

3. Select the BeginPlay and Event Tick events that have already been added and press Delete.

4. Right-click in the Event Graph and select BeginPlay. (Use the search box if you have trouble
finding it.)

5. Click the exec on the BeginPlay event, drag to the right, and release.

6. Right-click in the Event Graph and in the Context Menu’s search box type print string.

7. Select the Print String function to place a node for it.

8. To the right of the String data pin, where it says hello, type Hello level.

9. Click the Compile button on the Blueprint Editor toolbar and preview the level.

10. Every time you preview the level, you see Hello level in the upper-left corner of the Level
Viewport for a few seconds, and then it disappears.

ptg18222824

Fundamental Concepts in Scripting 257

NOTE

The Print String Function
Using the Print String function is not the proper way to communicate with players. This function is
typically used in development as a debugging tool to communicate what is happening in a Blueprint.
If you want to send messages to the player, you need to use a Blueprint HUD class or learn to use
the Unreal Motion Graphics Editor. See Hour 22, “Working with UMG.”

Variables
Variables store different types of data. When a variable is declared (created), the computer sets

aside a certain amount of memory, depending on the data type. That memory is then used to

store or retrieve the information at that memory location. Different variable types use different

amounts of memory. Some variables store as little information as a bit, and some store as much

as an entire Actor. In the Blueprint Editor, variables are color coded so that you can quickly

 identify what variable type you need when working with functions.

Table 14.3 lists the most common variable types, their color assignment, and the type of data

they store.

TABLE 14.3 Common Scripting Variable Types

Variable Type Color Description

Boolean (bool) Red Stores a value of 0 (off or false) or 1 (on or true).

Integer (int) Cyan Stores any whole round number, such as 1, 0, -100, or 376.

Float Green Stores any value with a decimal, such as 1.0, -64.12, or 3.14159.

String Magenta Stores text.

Vector Gold Stores three floats, X, Y, and Z, such as 100.5, 32.90, 100.0.

Rotator Purple Is a vector that stores three floats, where X is roll, Y is pitch, and
Z is yaw.

Transform Orange Is a struct that stores a vector for location, a rotator for
 orientation, and a vector for scale.

Object Blue Refers to an Actor in the level and stores all its properties in
memory.

ptg18222824

258 HOUR 14: Introducing Blueprint Visual Scripting System

NOTE

What Is a Struct?
Short for structure, a struct is a collection of variables of any type represented as a single variable.
The Vector and Rotator variables are technically structs because they store three separate Float vari-
ables. You can create your own structs in the UE4, but it is an advanced topic you should look into
after you are more comfortable using the Blueprint Editor.

To declare a variable, click the + symbol next to Variables in the My Blueprint panel and give

the new variable a name. Then, in the Details panel, you can set what type of variable it is

and set its default values. To set the default values, you need to compile the Blueprint once, just

after declaring the variable. After you have declared a variable, named it, and assigned a value,

the most common operations performed on it are setting and getting the data for the variable.

Getting retrieves the value stored in the variable, and setting stores a values. Figure 14.7 shows

Get and Set nodes for common variable types.

FIGURE 14.7
Get and set variable nodes.

ptg18222824

Fundamental Concepts in Scripting 259

NOTE

Variable Lists
Every variable type in Blueprint can store a single value or an array. A variable converted to an array
stores a list of its data type. You can use a group of functions to manage variable arrays—to set,
get, remove, or add to spots in the array.

▼TRY IT YOURSELF

Declare Variables

Using the same Level Blueprint from the previous Try It Yourself, follow these steps to declare
an integer variable, give it a name, and give it an initial value:

1. In the My Blueprint panel, click the + symbol next to Variables to add a new variable.
Name this variable MyInteger. In the Details panel, set the variable type to integer.

2. To set the default value of the new MyInteger variable, click the Compile button on the
Blueprint Editor toolbar. Then in the Details panel, under Default Value, set the variable’s
initial value to 100.

3. To add an event called Event Tick, right-click in the Event Graph and, in the Blueprint
Context Menu, select Event Tick to add the event node.

4. Press Ctrl+W to copy and paste the Print String function from the previous Try It Yourself,
and wire it up to the Event Tick exec out pin.

5. In the My Blueprint panel, under Variables, click+drag the MyInteger variable into the
Event Graph. Release the mouse, and you are asked if you want to set or get the variable.
Choose get to place the variable on the graph.

6. Click the integer variable’s data pin and drag it to the in string data pin on the Print String
function. The Editor automatically adds a conversion node to convert the integer variable to
a string variable. When finished, your Level Blueprint should look as shown in Figure 14.8.

7. Compile the script and preview the level. You see the default integer value repeatedly
 displayed on the left-hand side of the Level Viewport.

ptg18222824

260 HOUR 14: Introducing Blueprint Visual Scripting System

NOTE

Event Tick
By default, Event Tick executes after every frame render (Tick Interval 0). The Delta Seconds data
pin on the Event Tick node returns the amount of time it has taken to render each frame during that
tick. If you are coming from a coding environment that uses game loops, you might recognize Event
Tick as the Unreal equivalent to those loops. You can change Event Tick update intervals by click-
ing the Class Settings icon on the Blueprint toolbar. You can then change the settings in the Details
panel, under Actors Tick/Tick Interval (Sec).

Operators and Conditionals
Operators and conditionals are found in the Blueprint Context Menu under Flow Control.

Operators are mathematical operation such as addition, subtraction, multiplication, and division.

Operators allow you to modify the value of numerical variables such as floats, integers, and

 vectors. Conditional expressions allow you to check or compare the state of a variable and then

respond accordingly. For example, you can check whether one variable is equal to another, or

you can check whether one is greater than another.

▼ TRY IT YOURSELF

FIGURE 14.8
Event BeginPlay and Event Tick added to level Blueprint Event Graph.

ptg18222824

Fundamental Concepts in Scripting 261

▼TRY IT YOURSELF

Use Conditionals and Operators and Set a Variable

Using the same level Blueprint from the previous Try It Yourself, follow these steps to use math
operators and set a variable to increase the MyInteger variable:

1. Disconnect MyInteger from the conversion node by pressing Alt+click on the MyInteger data pin.

2. Click the MyInteger data pin, drag to the right, and release. In the Blueprint Context Menu’s
search box, type +. Under Math/Integer, select Integer + Integer to add an integer addi-
tion operation node. The + operation node is placed with a wired connection. Set the lower
 integer pin to 1.

3. From My Blueprint panel, drag the MyInteger variable onto the graph and choose Set to
place a set variable function.

4. Wire the exec out pin from Event Tick to the exec in pin on the Set MyInteger node.

5. Wire the exec out pin from the Set MyInteger node to the exec in on the Print String function.

6. From the Set function node, wire the integer data pin out to the Convert to String node that
is already connected to the Print String function. When finished, your level Blueprint should
look similar to Figure 14.9.

7. Compile and preview the level. You see the MyInteger value on the left-hand side of the
Viewport incrementally increasing by 1.

FIGURE 14.9
Level Blueprint example of getting an integer variable, adding a value of 1, and storing the result in the variable.

ptg18222824

262 HOUR 14: Introducing Blueprint Visual Scripting System

 Script Organization and Commenting
In any scripting environment, organization and commenting are important, both when you are

revisiting a script you wrote a month earlier and when other people on the development team

need to make adjustments to something you scripted. Well-organized and commented scripts

speed up development time. As described in the following sections, the Blueprint Editor has a few

tools to help you keep things organized.

Node Comments
Node comments allow you to make notes on any node. Simply right-click the name of a placed

node and look for the node comment box to pop up (see Figure 14.10) or hover the cursor over

the node until the node comment box appears.

FIGURE 14.10
Example of a node comment.

Comment Box
Comment boxes (see Figure 14.11) allow you to wrap a selection of nodes inside a box and add

a text comment. Another advantage to a comment box is that when you move a comment box,

all the nodes inside the comment box move with it. To add a comment box to a selection of

nodes, press the C key.

ptg18222824

Fundamental Concepts in Scripting 263

FIGURE 14.11
Example of a comment box.

Reroute Nodes
As your scripts get more complicated, you get more and more wires cluttering things up.

A reroute node can help you control the placement of a wire, as shown in Figure 14.12. To add

a reroute node, right-click an empty location on the Event Graph and in the Context Menu’s

search box, type reroute and select reroute from the list to place the node.

ptg18222824

264 HOUR 14: Introducing Blueprint Visual Scripting System

FIGURE 14.12
Reroute node used to control a wire.

Summary
This hour introduced you to the two methods used for coding in UE4, the fundamental concepts

of scripting, and the Blueprint Editor interface. You learned to add events and functions, and

you learned how to declare, get, and set variables. These core skills are needed to work in any

Blueprint in UE4.

Q&A
Q. When I try to add a second event node, BeginPlay, the Editor shows me the first one already

placed in the Event Graph. Why does this happen?

A. Some events, such as Event Tick and the BeginPlay event, can have only one instance per
Blueprint. This might seem like it would be a problem when you start using multiple Event
Graphs in a single Blueprint, but it’s not. If you want to pass an event from one graph to
another, you can create a custom event that Event Tick or BeginPlay calls every time it
sends a signal.

Q. How do you determine a name for a variable?

A. You can give a variable any name you like. Try to choose a short, descriptive name that
makes it easily identifiable. It is also best to establish a naming convention that can be
applied across all the Blueprints in a project for consistency.

ptg18222824

Workshop 265

Q. Can I change the name of a variable after it has already been given one?

A. Yes, you can change the name of a variable in the My Blueprint window, or you can do it
in the Blueprint Details panel with the variable selected. Changing the name updates all
instances of the variable throughout the Blueprint.

Q. Can a variable type be changed after it has been created and used in the Event Graph?

A. Yes, you can change the variable type of an already-declared and used variable, but doing
so affects the Blueprint. Remember that the data pins on functions are looking for specific
data types, and if you change a variable type, you break any of the wires connecting the
variable to data pins. You have to go back and adjust to the script manually.

Q. Can I reuse level Blueprint scripts from one level in another level?

A. No. Although, you can copy and paste event sequences from one Blueprint to another,
the variables all need to be re-created in the new Blueprint’s script. Also, many event
sequences and actions in a Level Blueprint are tied to specific Actors in that level that do
not exist in the new level. This is the advantage to using Blueprint Class Actors, which you
learn about in later hours.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: Blueprint can be used to rewrite the Core Rendering Engine used in UE4.

2. True or false: Using the Print String function is not a good way to communicate with players.

3. True or false: Blueprint scripts compile to the bytecode level.

4. True or false: You can have more than one BeginPlay event in a single Blueprint script.

5. What is an array?

6. True or false: Commenting your scripts is a waste of time.

Answers
1. False. If you need to modify the Core Engine Components for your game, you need to work

in C++.

2. True. The Print String function should only be used for debugging purposes.

3. True. Blueprints are compiled to the bytecode level.

4. False. You can only have a BeginPlay event in a Blueprint, but you can use a custom event
to pass the signal or a Sequence node to split the signal.

ptg18222824

266 HOUR 14: Introducing Blueprint Visual Scripting System

5. An array is a variable that stores a list of values based on its type.

6. False. You should always comment your scripts.

Exercise
Building from the last Try It Yourself exercise in this hour, add a second integer variable that
changes how much you increment the MyInteger integer variable for every tick. Then use a
 condition in the Event Tick sequence that checks the value of the MyInteger integer variable and
resets MyInteger to 0 when it reaches a value of 2000 or above. Then finish the sequence with a
custom event that when called, plays the print string. Figure 14.13 shows an example.

1. Open the Level Blueprint you have been working on this hour.

2. Declare a new variable, name it MyIntCounter, change its type to integer, and give it a
default value of 5.

3. Add MyIntCounter to the Event Graph and wire it up to the addition + node.

4. After the SET My Integer node, check whether it is greater than or equal to (>=) 2000. In
the Blueprint Context Menu search box, type integer >=, and select integer >= integer to
place the node. This node returns a value of 0 (false) or 1 (true).

5. Set the B integer data pin on the >= node to 2000.

6. Check whether the condition is true or false by using a Branch node. Click and drag from
the red Boolean data pin on the >= node to bring up the Blueprint Context Menu. In the
Context Menu search box, type Branch and select it from the list to place the node.

7. Wire the exec out on the SET MyInteger node to the exec in on the Branch node.

8. Click and drag from the Branch True exec out pin to bring up the Blueprint Context Menu.
In the search box, type set myinteger and select Set MyInteger to place the node.

9. On the SET my Integer, type 0 in the text box next to the My Integer Data pin.

10. Now create a custom event. Below the sequence in the Event Graph, right-click in the empty
area to bring up the Blueprint Context Menu. In the Search box, type custom and select Add

Custom Event from the list to place the event node. Rename the event MyCustomEvent.

11. Click-drag from the MyCustomEvent event node exec out pin, and in the Blueprint Context
Menu search box type print. Select Print String from the list to place the node.

12. From the My Blueprint Panel, drag out the MyInteger variable onto the In String variable
data pin on the Print String node. Blueprint automatically places the variable and adds a
 conversion node.

ptg18222824

Exercise 267

13. From the False exec, pin on the Branch node at the end of the first sequence. Click-
drag to bring up the Context Menu. In the search box, type mycustomevent and select
MyCustomEvent from the list to place the function.

14. Drag a wire from the exec out pin on the SET My Integer node wired to the branch and
link it to the blue MyCustomEvent function. When finished, your Level Blueprint should look
 similar to Figure 14.13.

15. Save and preview the level.

FIGURE 14.13
Exercise script example.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 15
Working with Level Blueprints

What You’ll Learn in This Hour:

 Assigning Actors to events in a Level Blueprint

 Assigning an Actor as a Reference variable in a Level Blueprint

 Getting and setting the properties of an Actor in a Level Blueprint

 Using the Activate function

 Using the Play Sound at Location function

Every level has a Level Blueprint associated with it, although it may not be used. Although a

level already stores a reference for every Actor placed in the level, the Level’s Blueprint does not

know about the Actors in the level unless you tell it. This hour teaches you how to assign placed

Actors to Collision Events and how to add them as reference variables in a Level Blueprint.

Then you learn to change an Actor’s properties through the Level Blueprint Editor when an event

is fired.

NOTE

Hour 15 Project Setup
Before you begin this hour, create a new project with the First Person template with Starter Content
and create a default level.

In order to practice assigning Actors to events and reference variables this hour, you learn to

 create a simple event sequence. When the player moves into a defined area in the level, an

Overlap Event executes and changes the Material assigned to a Static Mesh Actor, activates a

particle system, and plays a sound.

To assign an Actor to an event, you need an Actor placed in the level. For this discussion, you

can use a Trigger Actor.

There a few ways to define an area in a level where the player can interact. Epic has provided

three common shape trigger classes (Box Trigger, Capsule Trigger, and Sphere Trigger) and a

ptg18222824

270 HOUR 15: Working with Level Blueprints

Trigger Volume class that works with Collision Events (see Figure 15.1). This hour focuses on

 working with the Box Trigger, Capsule Trigger, and Sphere Trigger classes.

FIGURE 15.1
Placed Trigger Volumes.

All these classes can be found on the Place tab in the Modes panel. Search for a Trigger class

by using the search box in the Place tab or select the Volumes category and drag out a Box

Trigger and place it in your level. Before assigning the placed Box Trigger to an event, you need

to modify some of its properties. With the Box Trigger placed and selected, change its name to

MyTriggerBox in the Details panel, and in the Shape section, adjust the size by setting the Box

Extent setting to 100 units on the X-, Y-, and Z-axes. You can adjust the shape settings at any

time, but for now, you just need to make sure it is easy to enter the area defined by the Box

Trigger Actor. Next, it is a good idea to change the rendering setting of the Box Trigger, so in the

Rendering section of the Details panel, uncheck Actor Hidden in Game. This displays the Box

Trigger’s defined area when previewing and playtesting the level.

TIP

Rendering and Actor Visibility
Just about every placed Actor has rendering properties that can turn the visibility of the Actor on and off
both in the Editor and in the level during gameplay. Typically, you do not want players to see the Trigger
Actor because it might break immersion, depending on the visual style of the game. However, turning
on visibility by unchecking Actor Hidden in Game temporarily helps you set up, playtest, and debug your
Blueprint. Just remember to turn visibility off when you have everything working. Visibility settings for an
Actor are found in the Rendering section of the Level Details panel when the Actor is selected.

ptg18222824

Actor Collision Settings 271

Actor Collision Settings
With a default level created, the Game Mode set, and a Box Trigger Actor placed in your level,

you can now create a Collision Event in the Level Blueprint. Collison-based events are directly

related to the assigned Actor’s collision properties—in this case, the Box Trigger Actor’s collision

properties. With the Box Trigger Actor selected, in the Level Blueprint Editor’s Details panel, you

can see several relevant properties (see Figure 15.2): Simulation Generate Hit Events, Generate

Overlap Events, and Collision Responses.

GO TO HOUR 4, WORKING WITH STATIC MESH ACTORS, discusses collision responses types.

When Simulation Generates Hit Events and Generate Overlap Events are selected, they allow the

Actor to broadcast Collision Events to the Level Blueprint. Hit Events happen when Actor collision

hulls are touching but not intersecting. Overlap Events happen the moment two Actor collision hulls

overlap or stop overlapping. Hit and Overlap Events are directly related to each Actor’s collision

 presets. If two Actors are set to block each other, they will never overlap.

FIGURE 15.2
Trigger Actor Collision properties.

ptg18222824

272 HOUR 15: Working with Level Blueprints

In Blueprint, the Event nodes responsible for receiving hit and overlap signals from Actors are as

follows:

 OnActorBeginOverlap event: Fires once every time the assigned Actor’s collision hull

 overlaps with another Actor’s collision hull that meets the required collision response type. If

the Actor leaves the collision area of the Event Actor and then reenters, the event fires again.

 OnActorEndOverlap event: Works the same way as the OnActorBeginOverlap event, but

only when the other Actor leaves the area.

 OnActorHit event: Does not require the Actor’s collision hulls to overlap but to touch.

This event type is especially useful when you’re working with Actors simulating physics.

If a Physics Actor has a Hit Event assigned to it and is resting on the ground, this event

 continues to fire.

Assigning Actors to Events
Assigning an Actor to an event in the Level Blueprint is a straightforward process. It requires

the Actor to be selected in the level and the event to be assigned in the Level Blueprint

with the Blueprint Context Menu. Select the Actor in the level and right-click in the Level

Blueprint Editor Event Graph to bring up the Context Menu. In the Context Menu, ensure that

Context Sensitive is selected, expand the category Add Event for MyTriggerBox, and in the

Collision subcategory, pick the Collision Event node type you need (see Figure 15.3).

FIGURE 15.3
Blueprint Context Menu with Context Sensitive turned on.

ptg18222824

Assigning Actors to Events 273

NOTE

Context Sensitive
In the upper-right corner of the Blueprint Context Menu is the Context Sensitive setting. Selecting
this option organizes the content in the Context Menu based on your current selection, showing only
events and functions that work with the selected Actor, component, or variable type.

▼TRY IT YOURSELF

Assign an Actor to an OnActorBeginOverlap Event

Follow these steps to assign the Box Trigger Actor to the OnActorBeginOverlap event:

1. Open the Level Blueprint Editor.

2. Select the placed Box Trigger Actor in the level.

3. In the Level Blueprint Event Graph, right-click to bring up the Blueprint Context Menu.
Make sure Context Sensitive is selected in the upper-right corner.

4. At the top of the list of actions in the Context Menu, expand the MyTriggerBox list by
 clicking the triangle to the left of the category.

5. Expand Collision and select Add OnActorBeginOverlap to add the Event node with the
 selected Actor assigned to it, designated by the Actor’s name in parentheses after the
event type name.

6. Click and drag off the exec out pin for the OnActorBeginOverlap Event. Releasing the
mouse brings up the Context Menu again. Add a Print String (which you find under
Utilities > String). Your event sequence should now look as shown in Figure 15.4.

7. In the Print String function, type Hello Level.

8. Preview the level by walking to and entering the Box Trigger area.

FIGURE 15.4
OnActorBeginOverlap event node with Actor assignment.

ptg18222824

274 HOUR 15: Working with Level Blueprints

The OnActorBeginOverlap event node has an exec pin that passes the event signal, and it has

a data out pin that returns a reference to the Actor that initiated the Overlap Event. If you

drag the data out pin to the In String data pin on the Print String function, the Level Blueprint

Editor automatically adds a Get Display Name function that returns the name of the Actor

that instigated the event and passes it to the Print String function, as shown in Figure 15.5.

Make these changes, preview the level, and walk into the area again. This time, the Print String

 function returns the name of the Pawn.

FIGURE 15.5
OnActorBeginOverlap event sequence that displays the name of the Other Actor—the Actor that initiates
the event.

Assigning Actors to Reference Variables
In Blueprint, you can modify just about any properties you see in the Level Details panel for an

Actor. An Actor Reference variable points to an assigned Actor in the level and gives the Level

Blueprint access to the Actor’s properties.

Assigning an Actor to an Actor Reference variable is a similar process to assigning an Actor to

an event. With the Level Blueprint Editor open, select the desired Actor in the level (see Figure 15.6).

In the Event Graph, right-click to open the Blueprint Context Menu and choose Add Actor as

Reference Variable to place a variable with the selected Actor assigned to it into the Blueprint.

FIGURE 15.6
Actor Reference variable.

ptg18222824

Assigning Actors to Reference Variables 275

Actor Components
All Actors placed in a level have common settings found on every Actor, such as transform and

rendering settings. These properties are on the Actor level, while other properties affect the Actor

on the component level. A component is a subobject element of an Actor, and most (if not all)

Actors have at least one component (see Figure 15.7). For example, Static Mesh Actors have a

Static Mesh component, while Emitter Actors have a Particle System component, and Trigger

Actors have a Collision component.

FIGURE 15.7
Component list of Static Mesh Actors in the Details panel.

NOTE

Components
There are many types of components. Some Actors have only one component, while others may have
many components.

GO TO HOUR 16, WORKING WITH BLUEPRINT CLASSES, to learn more about working with components in Blueprint.

Getting and Setting Actor Properties
Much as when you work with any other variable types, you can get or set the properties of an

Actor. Getting the property of an Actor creates a variable node that returns the data type of that

property. For example, getting the location of an Actor returns a vector, as shown in Figure 15.8.

ptg18222824

276 HOUR 15: Working with Level Blueprints

FIGURE 15.8
Getting an Actor’s properties on the Actor level and the Component level.

Setting the properties of an Actor or its components requires a function that targets the Actor or

the Actor’s components, as shown in Figure 15.9.

FIGURE 15.9
Setting an Actor’s properties on the Actor level and Component level.

ptg18222824

Assigning Actors to Reference Variables 277

Function Targets
In many cases, for a function to execute properly, it needs to know what to affect. This is

 determined by a target data in pin. The blue Target pin tells a function which Actor or which

component of the Actor the function should affect. Some functions work on the Actor level,

while others work on the Component level. If you need to change a property of an Actor on the

Actor level, you need a function that targets an Actor, but if you need to change a property of

a component on the Actor, you need a function that targets a component. For example,

if you want to change the location of an Actor, you work on the Actor level, but if you want

to change the Static Mesh asset assigned to a Static Mesh Actor, you work on the Static Mesh

Component level.

If you are changing a property on the Actor level, you need a function that works on the Actor

level, and if you are changing a property on the Component level, you need a function that

works on the Component level. Under the name of a function is a description that tells you if the

function targets an Actor or a Component.

▼TRY IT YOURSELF

Change the Material Properties of an Actor

Follow these steps to use a Box Trigger with an OnActorBeginOverlap event to change the material
assigned to a Static Mesh Actor:

1. Add a Box Trigger Actor to the level. In the Level Detail panel, under Shapes, set Box
Extents to 100 unit for the X-, Y-, and Z-axes.

2. In the Level Blueprint Editor Event Graph, add an OnActorBeginOverlap event with the Box
Trigger Actor assigned to it.

3. Place a cone Static Mesh Actor in the center of the Box Trigger Actor and change its name
to MyCone.

4. Find a material in the Content Browser under Starter Content in the Materials folder and
drag it onto the placed cone Static Mesh Actor.

5. In the Level Blueprint Editor, with the Cone Static Mesh Actor selected, right-click in the
Event Graph. In the Blueprint Context Menu, select Create a Reference to for the MyCone
Static Mesh Actor.

6. With the Actor Reference variable placed, click the blue data out pin. Drag and release it to
bring up the Context Menu. In the search box, type set Material.

7. Select Set Material from the list to add the Set Material function and Component Reference
variable.

8. Link the OnActorBeginOverlap event exec out pin to Set Material’s exec in pin.

ptg18222824

278 HOUR 15: Working with Level Blueprints

As you walk over to the cone in the level you worked with in the preceding Try It Yourself and

the Pawn Actor’s collision hull overlaps with the Box Trigger Actor, the event fires and changes

the material. But when the pawn moves away, the new material stays. In the next Try It

Yourself, you will reset the material back to the originally assigned material when the Pawn

leaves the Trigger Actor’s area.

▼
9. Under the Set Material function, assign a new material from the material properties in the

Content Browser. When you’re finished, your event sequence should look similar to the one
shown in Figure 15.10.

10. Preview the Level and move the pawn over to the cone.

FIGURE 15.10
The OnActorBeginOverlap event sequence changes the material assigned to a Static Mesh Actor.

▼ TRY IT YOURSELF

Reset the Material Properties of an Actor

Follow these steps to use an OnActorBeginOverlap event to change the material back to the
 originally assigned material:

1. In the Level Blueprint Editor Event Graph, add an OnActorBeginOverlap event with the Box
Trigger Actor assigned to it.

2. In the Level Blueprint Editor, with the cone Static Mesh Actor selected, right-click in the
Event Graph. In the Blueprint Context Menu, select Create a Reference to MyCone to add a
second reference variable for the MyCone Actor to the Level Blueprint.

3. With the new Actor Reference variable placed, click the blue data out pin. Drag and release
to bring up the BP Context Menu. In the Search Box, type set Material.

ptg18222824

Assigning Actors to Reference Variables 279

Activate Property
For a few Actors, such as the Emitter Actor and the Ambient Sound Actor, an activate property

tells the Actor to start playing the Particle Emitter or sound the moment the level is loaded. This

property is on by default. Deactivating this property in the Levels Details panel for the Actor

stops the Actor from playing until the property is changed. This property can be set, changed,

or retrieved in Blueprint with several functions: Activate, Deactivate, IsActive, SetActivate, and

▼4. Select Set Material from the list to add another Set Material function.

5. Link the OnActorBeginOverlap event and exec out pin to the Set Material’s exec in pin.

6. Under the new Set Material function, assign to the material property the original material
you placed on the MyCone Static Mesh Actor in step 4 of the previous Try It Yourself. When
you’re finished, your event sequence should look similar to the one shown in Figure 15.11.

7. Preview the Level and move the pawn in and out of the Box Trigger to see the material
change.

FIGURE 15.11
Overlap Collision events.

ptg18222824

280 HOUR 15: Working with Level Blueprints

ToggleActive. In the next Try It Yourself exercise, you will place a Particle Emitter Actor into the

level. You will also have the OnActorBeginOverlap sequence activate the Emitter Actor and an

OnActorEndOverlap sequence deactivate the Actor.

▼ TRY IT YOURSELF

Activating and Deactivating a Particle Emitter Actor

Follow these steps to extend the previous Try It Yourself exercises and build off the
OnActorBeginOverlap sequence:

1. Get a P_Explosion Particle System asset from the Starter Content Particles folder in the
Content Browser and place it the in the center or near the Box Trigger Actor so you can see
it when you interact with the trigger.

2. With the placed Emitter Actor selected in the level, right-click in the Level Blueprint Event
Graph to open the Context Menu and select Create a Reference to P_Explosion.

3. With the P_Explosion Actor reference created, click and drag off of the blue data out pin of
the variable node and release. In the Context Menu search box, type activate and select
Activate (ParticleSystemComponent) this adds two nodes: an Activate function and a
Component Reference variable that points to the Particle System assigned to the Emitter
Actor.

4. Link the Set Material exec out pin to the Activate exec in pin.

5. Press Ctrl+W to copy and paste the P_Explosion reference variable. Drag out a Deactivate
function and wire it to the end of the OnActorEndOverlap event sequence by linking it to the
exec out pin of the Set Material function. When you’re finished, your event sequence should
look similar to the one shown in Figure 15.12.

6. Preview the level and walk in and out of the volume. Each time the Pawn Actor overlaps the
sphere triggers, the event fires and activates the Particle Emitter.

ptg18222824

Assigning Actors to Reference Variables 281

Play Sound at Location Function
In the previous examples, you have been using the Level Blueprint Editor to modify or control

placed Actors. For the next example, you will use the Play Sound at Location function to play a

Sound Cue asset on the fly. This function needs to know what Sound asset you want to play and

the location in the level where it should play. The Sound asset to play can be assigned from the

Content Browser or the function’s drop-down list. You need to get the location from one of the

already-placed Actors.

In the following Try It Yourself, you learn to add a Play Sound at Location function and get the

location of a placed Actor.

▼

FIGURE 15.12
Toggle Particle Emitter Blueprint.

ptg18222824

282 HOUR 15: Working with Level Blueprints

▼ TRY IT YOURSELF

Add a Play Sound at Location Function

Continuing from the previous Try It Yourself, follow these steps to use a Play Sound at Location
function to play a Sound Cue or Sound Wave asset when the OnActorBeginOverlap function fires:

1. Open the Level Blueprint for your level from the previous Try It Yourself.
2. In the Event Graph locate the OnActorBeginOverlap event sequence from the previous Try It

Yourself.
3. Click the Activate function’s exec out pin at the end of the sequence. Drag off and release

so the Blueprint Context Menu opens. Type Play Sound at Location in the Search Box and
select the Play Sound at Location function from the list.

4. Locate the Explosion_Cue Sound Cue asset in the Audio folder of the Starter Content in the
Content Browser or use the drop-down menu on the function’s node. Click+drag the Explosion_
Cue Sound Cue asset to the Sound property on the Play Sound at Location function.

5. Select the Trigger Actor and add it as a reference variable to the Level Blueprint.
6. Click the blue data pin of the reference variable node and drag and release. In the Context

Menu’s search box, type get Actor location and select Get Actor Location Function from the list.
7. Click the yellow vector data out pin on the Get Actor function and drag a wire to the yellow

vector data in pin on the Play Sound at Location function. When you’re finished, your event
sequence should look similar to the one shown in Figure 15.13.

8. Preview the level and walk the Pawn in and out of the Trigger Actor’s defined area to hear
the sound play.

FIGURE 15.13
Placed Trigger Volumes.

ptg18222824

Assigning Actors to Reference Variables 283

NOTE

Ambient Sound Actor
If you prefer, you can use an Ambient Sound Actor and a ToggleActivate function to play a sound
when the event fires. Just place a non-looping Sound Wave or Sound Cue in the level and follow the
steps of the previous Try It Yourself. Replace the Particle Emitter Actor with an Ambient Sound Actor.

Using Physics Actors to Activate Events
So far, you have only been using the pawn to initiate Collision Events. Next you will set an event

to fire when either a Static Mesh Actor that is set to Simulate Physics or a projectile overlaps

with the Trigger Actor. You don’t have to do any more scripting; you can just make some minor

changes to the Collision properties in the Details panels of the Actors involved.

▼TRY IT YOURSELF

Use a Physics Actor to Trigger Events

Continuing from the previous Try It Yourself, follow these steps to make the OnActorBeginOverlap
event fire when a Static Mesh Actor that is set to simulate physics overlaps the volume:

1. From the Props folder in the Starter Content folder in the Content Browser, select a Static
Mesh asset and place it above the Box Trigger from the previous exercises.

2. Under the placed Static Mesh Actor’s Physics properties in the Details panel, select
Simulate Physics.

3. Under the placed Static Mesh Actor’s Collision properties in the Details panel, set Generate

Overlap Events.

4. Preview the Level. As the Static Mesh Actor falls into the area defined by the Trigger Actor,
the overlapped event is fired, and the material is changed.

NOTE

Using Projectile Actors to Activate Events
If you are using version 4.8 or earlier, the Trigger Actor’s default Collision Presets setting is Overlap

with Everything but Projectiles. To modify this, change Collision Presets to Custom. This unlocks the
Object Response types, and you can set the Projectile category to Overlap. Preview the level again
and shoot the Box Trigger. The Projectile category has been removed in later versions.

ptg18222824

284 HOUR 15: Working with Level Blueprints

Summary
This hour, you learned to assign Actors to events and add them to a Level Blueprint as a

 reference variable. You were introduced to working with Trigger Actors and to modifying the

properties of an Actor in the Level Blueprint Editor. You learned to activate and deactivate a

Particle Emitter to play a Sound asset at a specified location when an event sequence fires. All

these things are common event sequences found in many games. Remember to select the Actor

Hidden in Game property for the placed Trigger Actors when you’re done with everything else.

Q&A
Q. When I assign an Actor to a Collision Event in Level Blueprint, the event does not

 execute, Why?

A. When this happens, there are a few areas to check. First, look at the collision properties for
the Actor assigned to the event and make sure Generate Overlap Events is selected. Then
check the Collision Presets and Object Response types settings to make sure the Actor
class type you need to instigate the event with is set to Overlap. Then check the Collision
Presets and Object Response types settings for any of instigator Actors. If the instigators
are Static Mesh Actors, check the Static Mesh assets to verify that they have collision hulls
assigned to them.

Q. I assigned the wrong Actor to an event. Can I change it, or do I need to delete the event

and start over?

A. Although you can easily delete the Event node and start over, you can also change which
Actor is assigned to an already-created Event node. Select the new Actor in the level and
then in the Level Blueprint Editor, right-click the title of the already-placed event node and
select Assign Selected Actor. This will change which Actor the Event node is assigned to in
the level.

Q. Why do the Particle Emitter and Sound Actors activate immediately when the level is played?

A. This has to do with the Auto Activate property on each of the Actors. By default, this
 property is set. To correct this for an Actor, select the Actor and in the Level Details panel,
go to the Activate section and turn off the Auto Activate property.

Q. When I overlap the Trigger Actor in the level rapidly in succession, the Emitter does not

always activate. Why?

A. The event is executing every time there is an overlap, but the Particle Emitter has a
 predetermined lifetime that must finish before it can be activated again.

ptg18222824

Workshop 285

Q. What is the difference between the Box Trigger, Sphere Trigger, and Capsule Trigger classes

and the Trigger Volume class?

A. While all these classes can be used to trigger Collision Events, the primary difference is
that the Trigger Volume class is based on BSPs and can be used to define more complex
volume beyond simple primitive shapes. Since Trigger Volume Actors are based on BSPs,
they are static, meaning they cannot move during gameplay.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: Trigger classes are found in the Place tab in the Modes panel.

2. True or false: If a Trigger Actor is not broadcasting an Overlap Event to its assigned
OnActorBeginOverlap event node in the Level Blueprint, it’s because Simulate Generate Hit
Events has not been turned on for the Actor in the level.

3. A ____________ is a subobject element of an Actor.

4. In order for a function to change the property of an Actor or a component, you need to
assign an Actor or a component to the function’s ___________ data in pin.

5. True or false: If an Emitter Actor starts emitting particles immediately after the level is
 previewed, it is because the Auto Activate property is turned on for the Actor.

Answers
1. True. All the Trigger classes are located in the Place tab in the Modes panel.

2. False. Generate Overlap Events must be turned on for Overlap Events to work, and Simulate
Generate Hit Events must be turned on for Hit events to work.

3. Components are subobject elements of Actors, and all Actors should have at least
one component.

4. Target. The Target property on a function tells the function which Actor or component the
function will affect when executed.

5. True. The Auto Activate property tells the Actor to play when turned on.

ptg18222824

286 HOUR 15: Working with Level Blueprints

Exercise
For this hour’s exercise, practice assigning Actors to events, adding Actors as reference variables,
and modifying their properties. In a new default level, create three more OnActorBeginOverlap
events, using different Trigger Actor types, and change the material property for each of three
 different Static Mesh Actors.

1. In the same project you’ve been working on this hour, create a new default level.

2. Place three Trigger Actors into the level: a Box Trigger, a Sphere Trigger, and
a Capsule Trigger.

3. Resize each of the Trigger Actors and turn off Actor Hidden in Game in the Level Details
panel for each of the Trigger Actors.

4. Place three Static Mesh Actors inside each Trigger Volume in the level and assign a unique
material to each of them.

5. Open the Level Blueprint Editor and assign each Actor an OnActorBeginOverlap event.

6. Add each of the placed Static Mesh Actors as a reference variable to the Level Blueprint.

7. Use a Set Material function in each of the OnActorBeginOverlap event sequences for each
of the Static Mesh Actors to change their material when the player shoots the Trigger
Volume.

8. Use a Delay function to wait 1 second and another Set Material function in each of the
OnActorBeginOverlap event sequences to change each Static Mesh back to its original
material.

ptg18222824

HOUR 16
Working with Blueprint

Classes

What You’ll Learn in This Hour:

 Creating a simple pickup class

 Adding and modifying components

 Working with Timelines

 Deriving a Blueprint class from an existing class

This hour introduces you to working with Blueprint classes. You start by learning to derive a

Blueprint class from an Actor class and make a simple pickup class that bobs up and down and

disappears when the character walks over it. Then you move on to learning how to derive a

Blueprint class from the Point Light class and extend its functionality.

NOTE

Hour 16 Project Setup
Before you begin this hour, create a new project with the Third Person template and Starter Content.
Then create two new folders in the Content Browser and name one MyBlueprints and the other
Maps. Finally, create a new Default level and save it to the Maps folder.

Using Blueprint Classes
While Level Blueprints are great for creating event sequences, they are tied to the level that you

are currently working on. Blueprint classes, on the other hand, allow you to script new Actors

that can be reused in any level. This reuse speeds up production time because you only need

to script the functionality of a Blueprint class once, but you can use it as many times and in

as many levels as you like. When working with Blueprint classes, the Blueprint Editor has a

few features specifically for working with Blueprint classes. You are introduced to some of these

 differences over the next hour.

ptg18222824

288 HOUR 16: Working with Blueprint Classes

Adding a Blueprint Class
In the Content Browser, navigate to the MyBlueprints folder you created earlier. With the folder

selected, right-click in the Asset Management Area, and in the Context Menu that appears,

select Blueprint Class. This opens the Pick Parent Class window, which allows you to create a

Blueprint class asset. At the top is a Common Classes section that has quick links for commonly

used class types (see Figure 16.1). Under this is the All Classes section, which lists all the existing

classes from which you can derive a new Blueprint. For now, focus on creating a basic Actor class

to learn how to add and position components. But later in this hour, you learn to create a new

Blueprint from the Point Light class.

FIGURE 16.1
Pick Parent Class window.

ptg18222824

The Blueprint Editor Interface 289

All Blueprint classes are derived from existing classes, either classes originally created in C++ or

other Blueprint classes. As you create new Blueprint classes, you will see them show up in the All

Classes list. The Actor class is commonly used for deriving new Blueprints because it contains the

base functionality needed for an Actor to be placed and rendered in a level.

In the next few Try It Yourself exercises, you create a simple pickup class that bobs up and down

continually and, when a Pawn passes over the placed Actor of the class, it plays a sound, spawns

a particle effect, and disappears. Then after a few seconds, the Actor plays another sound,

 another particle effect spawns, and the Pickup Mesh reappears, ready to be picked up again.

To begin, you need to derive a Blueprint class from the Actor class.

The Blueprint Editor Interface
Now that you have a Blueprint class created, look at the Blueprint Editor. The Blueprint Editor

has a few windows and tools that are not found when working with Level Blueprints. These

 windows are identified in Figure 16.2 and described in the following list:

▼TRY IT YOURSELF

Create a Blueprint Class

Follow these steps to create a new Blueprint class:

1. In the Content Browser, in the MyBlueprints folder you created earlier, right-click an empty
location in the Asset Management Area and select Blueprint Class from the Context Menu.
The Pick Parent Class window appears.

2. In the Common Classes section of the Pick Parent Class window, click Actor and then
click Select at the bottom of the window to create a Blueprint class. You now have a new
Blueprint class asset in the Content Browser.

3. Rename the new asset MyFirstPickup.

4. Double-click MyFirstPickup to open the Blueprint Editor.

ptg18222824

290 HOUR 16: Working with Blueprint Classes

FIGURE 16.2
Blueprint Editor interface when working with a Blueprint class.

When working with a Blueprint class, the Blueprint Editor has a few features not found when

working with Level Blueprints:

 1) Components panel: The Components panel lists all the components in the Blueprint

and is used to manage them.

 2) Viewport panel: The Viewport panel displays the components in the Blueprint and is

used to set up the spatial relationships of the component in the Actor.

 3) Construction Script: The Construction Script is a unique function that runs when an

instance of the Blueprint (an Actor) is placed in a level. It is a node graph that, when

 executed, modifies each instance independently of the original Blueprint.

GO TO CHAPTER 17, USING EDITABLE VARIABLES AND THE CONSTRUCTION SCRIPT, to learn more about working with
the Construction Script function in the Blueprint Editor.

When working with Blueprint classes, the Blueprint Editor’s toolbar also has a few more buttons

for managing a Blueprint class:

 Save: Saves changes made to a Blueprint as you work

 Find in CB: Locates the Blueprint in the Content Browser

 Simulation: Executes the Blueprint and displays the results in the Viewport of the

Blueprint Editor

ptg18222824

Working with the Components 291

GO TO CHAPTER 14, INTRODUCING BLUEPRINT VISUAL SCRIPT SYSTEM, for a refresher on the core features found in
the Blueprint Editor interface.

Working with the Components
One of the key concepts when working with Blueprint classes is components. A component is

a subobject element of a Blueprint. Many different types of components can be added to a

Blueprint, and a Blueprint can have many components at one time. You use the Components

panel of the Blueprint Editor to manage all the components in a Blueprint. You can add, delete,

rename, and organize components into hierarchical relationships by dragging one component

onto another.

When a basic Blueprint class is first created, it already has a DefaultScene component assigned

as the root component. While a Blueprint can have many components, there can be only

one root component. The root component of the Blueprint is the only component that has

 transform limitations. It is the parent of all the other components in the Blueprint. It is the

only component that cannot be moved or rotated, but it can be scaled. The root component’s

 position and rotation are determined once the Actor is place in the level. All other components’

transforms are relative to the root component by default. Just about any component type can be

assigned as the root component.

Adding Components
The Components panel allows you to add components to an Actor in two different ways. If you

click the green +Add Components button, you see an extensive list of components, organized

in categories, that you can add to a Blueprint. To add a component from the Content Browser,

click+drag the asset from the Content Browser into the Components panel in the Blueprint

Editor. If there is a component type for that asset, it is automatically added to the Blueprint. You

can easily do this for Static Meshes, Particle Systems, and Audio assets.

When a component is first added to a Blueprint, its parent is the DefaultScene root component.

By dragging one component onto another, you can attach components, making one the

 parent and the other the child. They are both still subobject elements of the Actor, but the child

 component’s transforms are relative to its parent component, and the parent component’s

 transforms are relative to the root component, whose transforms are ultimately defined by the

Actor’s position in the world (the level).

Once a component is added to a Blueprint, you can edit its properties in the Details panel of the

Blueprint Editor.

Many of the component types have properties that look familiar because they are similar to

those of many of the Actors you have already been working with. For example, in a level you

can place a Static Mesh Actor, but when working on the Blueprint class, you use a Static Mesh

ptg18222824

292 HOUR 16: Working with Blueprint Classes

component. Both have the same properties used to modify a Static Mesh, but the component is a

subobject element in Blueprint.

NOTE

Special Components
Some components, such as movement components, behave differently than a standard component.
Movement components affect the entire Actor as a whole. They also do not have a physical
 representation in the Blueprint Viewport.

Viewport Panel
The Viewport panel allows you to see the spatial relationships of all the components added to

an Actor. Much as in the Level Viewport, you can use transform gizmos to adjust the location,

rotation, and scale of each of the components in the Blueprint. Select a component either in

the Components panel or in the Viewport, and use the spacebar to cycle through the transform

 gizmos. There are also snap settings for all the transforms that you can turn on and off and

adjust to help with the placement of each component.

TIP

Location Types: Relative and World
By default, added components’ transforms are relative to their parent component and ultimately the
root component of the Actor. You can change this separately for location, rotation, or scale. Select
the component in the Blueprint Editor’s Details panel, and in the Transforms category, click the
 triangle to the right of Location, Rotation, or Scale to change to relative or world based.

▼ TRY IT YOURSELF

Add Components

Now that you have created a Blueprint class, you need to add components. Follow these steps
to add a Box Collision component and a Static Mesh component and to make the Static Mesh
 component a child of the Box Collision component:

1. Click the green +Add Component button at the top of the Components panel and click Box

Collision in the drop-down to add this component to the Blueprint.

2. Right-click the newly added Box Collision component and rename it PickupRoot.

3. Click+drag the PickupRoot component onto DefaultSceneRoot to replace the
DefaultSceneRoot component with the PickupRoot component.

ptg18222824

Working with the Components 293

4. In the Starter Content folder in the Content Browser, locate the Shap_Quad pyramid Static
Mesh asset and drag it into the Components panel in the Blueprint Editor. You have now
added a Static Mesh component to the Blueprint that references the pyramid Static Mesh
asset.

5. Right-click the Shap_Quad in the Components panel and rename it PickupMesh.

6. Click the Viewport panel in the Blueprint Editor to see the components.

7. Select the Box Collision component either in the Components panel or in the Viewport
panel. Then, in the Details panel, under Shape, set the Box Extent property to 60 for the X,
Y, and Z categories.

8. Select the Static Mesh component in the Viewport panel and use the Move transform gizmo
to reposition the Static Mesh component so it is inside the box collision.

9. Compile and save the Blueprint by clicking Compile and then Save on the Blueprint Editor
toolbar. When you’re finished, your Blueprint should look similar to the one in Figure 16.3.

10. On the Blueprint Editor toolbar, click Find in CB and locate your MyFirstPickup Blueprint
class in the Content Browser.

11. From the Content Browser, click+drag an instance of the MyFirstPickup Blueprint class into
your level.

FIGURE 16.3
Components panel and Viewport in the Blueprint Editor.

▼

ptg18222824

294 HOUR 16: Working with Blueprint Classes

Blueprint Scripting with Components
When you’re scripting a Blueprint class, you have functions that target the Actor and functions

that target individual components in the Actor, but because you are working inside the Actor,

you see/use the term self when referring to the Actor. So if you need to use a function that

 modifies the entire Actor, the target of the function is self. This also affects any events you

might use. For example, you might have an event that is assigned to the Actor or an event that

is assigned to individual component in the Actor. For example, there is an ActorBeginOverlap

 collision event that is assigned to Actors, and there is an OnComponentBeginOverlap collision

event that is assigned to components in an Actor.

You can add any component in the Components panel to the Blueprint class Event Graph as a

component reference variable by clicking and dragging the component into the Event Graph. In

addition, every component you add to a Blueprint shows up in the Variables section of the My

Blueprint panel. Once a component has been added as a component reference variable, you can

use it as a target for functions that can modify the component’s properties or behaviors.

In the following Try It Yourself, you script the main functionality of the pickup class so the player

can walk over the Actor and make it disappear.

▼ TRY IT YOURSELF

Script the Functionality of a Simple Pickup

Now that you have components added to the Actor, the next step is to create a component
 overlap event, as described here:

1. In the Components panel select PickupRoot(Box Collision). Then, in the Event Graph,
 right-click to bring up the Blueprint Context Menu. In the Context Menu’s search box, type
on component begin overlap and select the OnBeginComponentOverlap event to add it to
the Event Graph.

2. Click+drag from the exec out pin on the OnBeginComponentOverlap node and release to
bring up the Context Menu. Search for a DoOnce flow node and add it to the graph.

3. Click+drag from the completed exec out pin on the DoOnce node and release to bring up
the Context Menu. Search for a Set Hidden mesh function and add it. This places the Set

Hidden in Game node and a component reference variable that refers to the pickup mesh
component. Click the New Hidden Data Pin check box to set it to true.

4. Click+drag off of the Set Hidden in Game function node’s exec out pin and release to add a
Play Sound at Location function. Assign a Sound Wave or Sound Cue asset (one that does
not loop) to the Sound Data pin in by clicking the drop-down next to it.

ptg18222824

Working with the Components 295

5. Click+drag from the Play Sound at Location function node’s exec out pin and add a Spawn
Emitter at Location function node. Assign a Particle System to the Emitter Template data in
pin by clicking on the drop-down next to the pin.

6. To set a location for Play Sound at Location and Spawn Emitter at Location, from the
Components panel, drag PickupRoot(Box Collision) to the Event Graph to add a component
reference variable for the component.

7. Click+drag from the blue data out pin on the placed component reference variable and
add GetWorldLocation (PickupRoot). Connect the Return Value Vector data out pin to the
Location Vector data in pins on the Play Sound at Location and Spawn Emitter at Location
function nodes.

8. To add a delay before the pickup reappears, click+drag and release and add a Delay
 function node. Set Duration to 3 (seconds).

9. Copy and paste all the nodes from the Set Hidden in Game function node to the Spawn
Emitter at Location function node. Click+drag in an empty area in the Event Graph for a drag
selection. Then press Ctrl+C to copy and Ctrl+V to paste duplicates of the selected nodes in
to the Event Graph.

10. Move the pasted nodes so they are after the Delay function and link the Delay exec out pin
to the pasted New Hidden in Game function.

11. Link the Pasted Spawn Emitter at Location exec out pin to the DoOnce Function Reset exec
in pin all the way back at the beginning of the sequence.

12. When you are finished, your Blueprint sequence should look similar to the one shown in
Figure 16.4. On the Blueprint toolbar, click Compile and then Save.

13. From the Content Browser, place a few copies of the MyFirstPickup Blueprint into the level.

14. Preview the level and walk over the pickup.

▼

ptg18222824

296 HOUR 16: Working with Blueprint Classes

TIP

Blueprint Communication
Actors are self-contained, meaning they know information about themselves and their
 components. However, they do not know about other Actors in a level until an event fires—such
as OnActorBeginOverlap or OnComponentBeginOverlap, which returns the Actor that initiated the
event. There are a few ways around this, such as using event dispatchers, Blueprint interfaces, and
casting. You can look further into these concepts when you are more comfortable with scripting
basic Blueprint classes: https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/
BlueprintCommsUsage/index.html

Working with the Timeline
A Timeline node allows you to create spline curve data that can be used in a Blueprint to change

values over time. It can be used to animate the position of an Actor and/or its components or

to change the intensity of the light component. To add a Timeline node to your Event Graph,

right-click in the Event Graph to bring up the Blueprint Context Menu and in the search box

▼

FIGURE 16.4
Pickup event sequence.

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/BlueprintCommsUsage/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/BlueprintCommsUsage/index.html

ptg18222824

Working with the Timeline 297

type Timeline. Select Add Timeline from the list to place a Timeline node on the graph. You

can have as many Timeline nodes as you need in a Blueprint, so it is good practice to rename

each one you add with a descriptive name. To rename a Timeline, right-click it, choose Rename,

and type in a new name. Once a Timeline has been add to an Event Graph, it also shows up in

the My Blueprint panel, under Variables (or Components), and you can add a variable reference

to the Timeline in other sequences in your Blueprint. Once you have a variable reference to a

Timeline, you can change its properties through Blueprint.

A Timeline node has many exec in pins for playing, pausing, and rewinding the Timeline. It has

an update exec out pin for running a sequence while the Timeline is playing and a finished exec

out pin that executes when the Timeline is done (see Figure 16.5). If the Timeline is set to loop,

the Finished exec out pin will not fire.

FIGURE 16.5
Timeline node.

Timelines have their own editor window that automatically opens when you double-click the

node. With the Timeline Editor open, you see a toolbar for setting the properties of the Timeline

and changing how it functions. You can set the length of the Timeline in seconds. You can set it

to automatically play when the game begins, and you can set it to loop (see Figure 16.6).

FIGURE 16.6
Timeline Editor toolbar.

Timeline Tracks and Curves
On the Timeline Editor, you see buttons for adding different types of tracks. There are four types

of tracks to work with in a Timeline: Float Track, Vector Track, Color Track, and an Event Track.

Each of the track types is used to edit curve data with set keys and will create a data out pin on

ptg18222824

298 HOUR 16: Working with Blueprint Classes

the Timeline node that returns the value of the specified variable type over the length of time the

Timeline plays the track. The Event Track, however, adds an exec out pin to the Particle System

node that fires at set times based on key placement.

A Timeline can have many tracks assigned to it. To add a track, simply click the track type you

want, and Timeline adds it. You can rename a track by clicking the track title and typing in a

new name. When you rename a track, the corresponding data pin on the Timeline node updates

to reflect the new name. As you add tracks to a Timeline, new exec out and data pins are cre-

ated, depending on the type of track added (see Figure 16.7).

Once a track has been added and renamed, you can start adding and editing keys along the

curves in the track simply by Shift+clicking the curve. You can move an already-placed key

manually by click+dragging the key. When a place key is selected, you can enter the precise

time and value at the top of the track.

In the following Try It Yourself, you use a Timeline to animate the mesh component of the

 pickup Actor to bob up and down continually while the level is being played.

▼ TRY IT YOURSELF

Set Up the Timeline

Follow these steps to add a Timeline node to your Event Graph and edit a Float Track that will be
used to animate your pickup Static Mesh component:

1. Add a Particle System node to your Blueprint if you have not already.

2. Rename the Particle System PickupAnim.

3. Double-click the Particle System node to open the Timeline Editor.

4. Set the Timeline length to 1 (second).

5. Select Auto Play.

6. Select Loop.

7. Add a Float Track to the Particle System by clicking the f+ button in the Timeline Editor.

8. Right-click NewTrack_1 in the upper-left corner of the track and rename the track bounce.

9. Edit the curve in the track. To add a key, Shift+click the curve in the track. Add a key at
Time 0 seconds with Value set to 0.

10. Add a second key to the curve at Time 0.5 seconds with a Value setting of 1. If the curve is
off the track, use the left and right arrow buttons and the up and down buttons next to the
Time input at the top of the track to fit the view of the track.

ptg18222824

Working with the Timeline 299

Once you have a Timeline set up, the next set is to use the float curve data to move the pickup

Static Mesh component. You do this back in the Event Graph of the Blueprint. As the Particle

System plays, it returns values ranging from 0 to 1 over 1 second. so you need to multiply the

float values by the distance you want the pickup to move. Then you can apply the result to the

Z-axis of the component to move it up and down.

▼11. Add a final key at Time 1 second with Value set to 0.

12. To change the interpolation of each key to Auto, right-click each key and choose Auto from
the list. When you’re finished, your curve should look like the one shown in Figure 16.7.

FIGURE 16.7
Timeline node with float data pin (left) and float curve track (right).

▼TRY IT YOURSELF

Animate the Pickup with the Timeline

Follow these steps to animate the mesh component of your Blueprint with Timeline by making the
mesh component bounce up and down rapidly:

1. From the Components panel, click+drag the PickupMesh component to the Event Graph to
add it as a Reference variable.

2. Click+drag from the blue data pin on the PickupMesh Reference variable to open the
Context Menu. In the search box, type set relative location and select SetRelativeLocation to
add the function to the Event Graph.

3. Wire the Particle System update exec pin to the exec in on the SetRelativeLocation node.

4. Click+drag the green float data pin on the Particle System to open the Context Menu. In the
search box, type multiply and select Float * Float to add it as a node.

ptg18222824

300 HOUR 16: Working with Blueprint Classes

Scripting a Pulsating Light
Now that you have some experience creating a Blueprint class and working with components,

for the second half of this hour, you’re ready to learn to create a Blueprint class that extends the

functionality of an existing class.

Over the next few Try It Yourself exercises, you create a pulsating light Blueprint derived from

an existing class that randomly generates a light intensity within a specified range and then

changes the Point Light intensity over time to meet that new value. Every time the light intensity

equals the new intensity, the Blueprint randomly generates a new intensity. The Blueprint

 continues this process as long as the level is being played, so it needs an Event Tick event to

 constantly run the sequence.

▼
5. In the text box next to the second float data pin on the Multiply node, type 10 to indicate

the distance the component will move.

6. On the SetRelativeLocation node added in step 2, right-click the yellow vector data pin and
choose Split Struct Pin from the list to split the vector to three green float data pins for X,
Y, and Z locations.

7. Wire the green data pin out from the Multiply node to the green New Location Z float pin in
on the SetRelativeLocation node.

8. Compile and save the Blueprint by clicking Compile and then Save on the Blueprint Editor
toolbar. When you’re finished, your Blueprint sequence should look similar to the one
shown in Figure 16.8.

9. Preview the level. Your pickup Actors should now be moving up and down continuously.

FIGURE 16.8
Animation sequence with a Particle System.

ptg18222824

Scripting a Pulsating Light 301

Deriving a Blueprint from an Existing Class
In this section, you first create a new Blueprint class derived from a Point Light class

(see Figure 16.9). This new class inherits the properties and components of the parent class.

Then you can use the Blueprint Editor to create new functionality.

FIGURE 16.9
The All Classes section of the Pick Parent Class window.

 Now you have a new Blueprint class derived. The next step is to create the variable types

you need.

▼TRY IT YOURSELF

Derive a Blueprint Class from the Point Light Class

Follow these steps to create a new Blueprint Actor from the Point Light class:

1. In the Content Browser, in the MyBlueprints folder you created earlier, right-click in an empty
space in the Asset Management Area and select Blueprint Class from the dialog. The Pick
Parent Class window appears.

2. In the All Classes section, type pointlight and select Point Light. Click Select at the bottom
of the Pick Parent Class window.

3. In the Content Browser, rename the new asset MyPulseLight_BP.

4. Double-click MyPulseLight_BP to open it in the Blueprint Editor.

5. Drag MyPulseLight_BP from the Content Browser into your level and look at its properties in
the level’s Details panel. You see that it has the same Actor properties as the regular Point
Light Actor.

ptg18222824

302 HOUR 16: Working with Blueprint Classes

▼ TRY IT YOURSELF

Set Up a Variable

Follow these steps to create the variable you need for the Blueprint:

1. Open the MyPulseLight_BP asset from the previous Try It Yourself exercise by
 double-clicking it in the Content Browser.

2. In the My Blueprint panel, under Variables, click the + symbol to add a new variable.

3. With the new variable selected in the Details panel, name the variable Target_Intensity and
set the Variable Type drop-down to Float.

4. Repeat steps 2 and 3 three more times to add the float variables Max_Intensity,
Min_Intensity, and Pulse_Rate to your script. When you’re finished with this, click the
Compile button on the Blueprint Editor toolbar.

5. To set default values for some of the newly created variables, in the Details panel, set the
Max_Intensity float variable’s default to 10,000 and the Pulse_Rate float variable’s default
value to 100,000.

NOTE

Point Light Component
You do not need to add a Point Light component to the Actor; one already exists because this
Blueprint was derived from the original Point Light class.

The Max_Intensity float variable stores the maximum intensity that the light will ever be,

and the Min_Intensity float variable stores the lowest intensity value, in this case 0, which is no

intensity at all. The Pulse_Rate float variable is used to set the speed at which the intensity

changes from one to another. Now that you have the variables you need set up, you can start

to script. The next step is to randomly generate a new intensity value and store it in the

Target_Intensity float variable so you can use it to change the Point Light component’s

light intensity.

ptg18222824

Scripting a Pulsating Light 303

▼TRY IT YOURSELF

Generate a Random-Intensity Value and Set the Light Intensity

Follow these steps to create a script that randomly generates a float value between the minimum
and maximum intensity values, store it in the target value, and use it to set the intensity of the
light component:

1. Drag out the Target _Intensity float variable from the My Blueprint panel’s Variables section
to the Event Graph and select Set.

2. For now, link the exec out pin from the Event Tick event to the exec in on the Set node for
Target_Intensity.

3. Click+drag from the green data in pin on Set and in the Context Menu that appears, search
for random float in range and add Random Float in Range it to the Event Graph.

4. Drag the Min_Intensity float variable from the My Blueprint panel’s Variables section to the
Event Graph and select Get. Link its data out pin to the min data in pin on the Random
Float in Range function.

5. Drag the Max_Intensity float variable from the My Blueprint panel’s Variables section to the
Event Graph and select Get. Link its data out pin to the max data in pin on the Random
Float in Range function.

6. From the Components panel, click+drag PointLightComponent(Inherited) to the Event Graph
to add a component reference variable that references the Point Light component.

7. Click+drag from the PointLightComponent(Inherited) variable’s data pin, and in the search
box of the Context Menu, type set intensity. Select the Set Intensity from the list to add this
function.

8. Link the exec out pin from the set Target_Intensity node to the exec in on the Set Intensity
node.

9. Drag the Target_Intensity float variable from the My Blueprint panel’s Variables section to
the Event Graph. Select Get to place a float variable reference for target intensity and link
it to the new intensity on the Set Intensity function. When you’re finished, your Blueprint
sequence should look similar to the one shown in Figure 16.10.

10. Compile the script and make sure an instance of the Blueprint Actor is placed in your level.
Preview the level. The New Point Light Actor should flicker rapidly.

ptg18222824

304 HOUR 16: Working with Blueprint Classes

CAUTION

Event Tick
The Event Tick event, by default, executes with every frame render during gameplay, which means it
runs often. Therefore, it has the potential to affect performance.

At the moment, the light is generating a target intensity value within a range determined by the

Min_Intensity and Max_Intensity float variables and setting the intensity to a new target value.

The next step is to make the light blend smoothly between its current value and the target value.

You do this by using the FInterp to Constant function. You also need to check whether the light’s

current intensity is equal to the target value and whether it generates a new target value, and

then you need to repeat the interpolation function again.

▼

FIGURE 16.10
Event Tick event sequence that randomly sets light component intensity.

▼ TRY IT YOURSELF

Make the Light Pulse Smoothly

Building on the previous Try It Yourself, follow these steps to make the light blend between its
 current intensity and the target intensity:

1. From the Components panel, click+drag PointLightComponent(Inherited) to the Event Graph
to add a component reference variable that references the Point Light component.

2. Click+drag from the PointLightComponent(Inherited) reference variable’s data out pin, and in
the Context Menu search box type get intensity. Select Get Intensity from the list to add the
node to the Event Graph.

3. Click+drag from the green float data out pin of the Intensity variable node, and in the
Context Menu search box type finterp to constant and select FInterp to Constant from the
list to add the node to the Event Graph.

ptg18222824

Scripting a Pulsating Light 305

 The light is pulsating, but the script is not yet finished. Although the light is flashing, the Event

Tick event is continually generating a new target value every tick, so the light never reaches the

target intensity value. You can fix this in the next Try It Yourself.

▼
4. Populate the data pin in on the FInterp to Constant function. Press Alt+ click to break the

link from the already-placed Target_Intensity float variable connected to the Set Intensity
function, added in the previous Try It Yourself, and connect it to the target data pin in on
FInterp to Constant.

5. From the Event Tick event, drag the Delta Seconds data pin out to the Delta Time data pin
in on FInterp to Constant node.

6. From the Variables section of the My Blueprint panel, drag out the Pulse_Rate floatvv
 variable and add it to the Event Graph. Link it up to the Interp Speed data pin on the
FInterp to Constant function.

7. Take the return value data pin out from FInterp to Constant and link it to the Set Intensity
function’s new intensity data pin in.

8. On the Blueprint Editor toolbar, click Compile and then Save. When you’re finished, your
Blueprint sequence should look similar to the one shown in Figure 16.11.

9. Preview the level. You will see the light already pulsing and flickering.

FIGURE 16.11
Pulsating light event sequence.

ptg18222824

306 HOUR 16: Working with Blueprint Classes

▼ TRY IT YOURSELF

Compare the Point Light Component’s Current Intensity

The script needs to generate a new target intensity when the light component’s current intensity
is equal to the target intensity. For the final part of this script, you need to compare the light’s
current intensity to the new target value when they are equal and then repeat the process. Follow
these steps:

1. From the Components panel, click+drag PointLightComponent(Inherited) to the Event Graph
to add another component reference variable that references the Point Light component.

2. Click+drag from the PointLightComponent(Inherited) reference variable’s data out pin, and
in the Context Menu search box type get intensity. Select Get Intensity from the list to add
the node.

3. Click+drag from the green float data pin out from the PointLightComponent(Inherited) node,
and in the Context Menu search box type equals. Select Equals (float) from the list to add
it. This node compares two float values and returns 1 (true) if they are equal and 0 (false)
if they are not equal.

4. From the Variables section of the My Blueprint panel, drag out and add the Target_Intensity

variable. Link it to the second float data in pin on the Equals node.

5. Click+drag from the Equal node’s red data pin out, and in the Context Menu search box type
branch to add the Branch node, which changes the flow of the sequence, depending on the
state of a Boolean variable. If the Boolean is true, it passes the signal to the true exec out.
If it’s false, it passes the signal to the false exec out pin.

6. Link the exec out pin from Event Tick to the exec in on Branch.

7. Link the true exec out pin from the Branch node to the Set Target Intensity function node
exec in pin.

8. Link the false exec out pin from the Branch node to the Set Intensity function’s exec in pin.

9. Set the Pulse_Rate float variable’s default value to 5,000.

10. On the Blueprint Editor toolbar, click Compile and then Save. When you are finished, your
Blueprint sequence should look similar to the one shown in Figure 16.12.

11. Preview the level. The light is still flickering, but it is a little less chaotic.

ptg18222824

Summary 307

Now when the Blueprint runs, the first thing it does is compare the Point Light component’s

 current intensity to the target intensity, and if they are not equal, it continues to set the intensity

based on the result of the FInterp to Constant function. As soon as the two values are equal, it

randomly generates a new value for the target intensity within the min and max range, which

makes the equals node return false again, causing the Set Intensity function to run again.

Summary
This hour, you learned to create Blueprint classes and to use the Blueprint Editor. You created two

Blueprint classes: one derived from the Actor class and the other derived from the Point Light

class. You scripted a simple pickup and pulsating Point Light Actor. You learned to use Timeline

to animate a Static Mesh component. Blueprint classes are used to create just about any

 gameplay element you need. Although scripting gameplay functionality in a Level Blueprint

is good, Blueprint classes are more powerful because they can be reused throughout a project.

The more comfortable you become working with Blueprint classes, the more complexity you

will be able to add to your own games.

FIGURE 16.12
Comparing Point Light intensity.

▼

ptg18222824

308 HOUR 16: Working with Blueprint Classes

Q&A
Q. The pickup Blueprint is animating, but the animation looks mechanical. Why?

A. As with keys on spline curves in Matinee, you can set the curve type. Right-click a key and
set it to Auto to create a smooth transition out of the key.

Q. When I shoot the pickup Actor with a projectile, the projectile bounces off. Why?

A. By default, the box collision component of your pickup class has its collision set to block
projectiles. In the Blueprint Editor, select the box trigger in the Components panel and in
the Details panel, set Collision Presets to Custom. Then set Collision Response to Ignore

so it ignores everything and set Pawn to Overlap so the box trigger only responds to the
Pawn.

Q. When I walk the Pawn though the pickup, the Pawn gets hung up on the Static Mesh’s

 collision. How can I fix it?

A. In the Blueprint Editor for the pickup Blueprint, select the Static Mesh component in the
Components panel. Then set Collision Presets to Custom. Set Collision Response to Ignore

to turn off collision for the Static Mesh component and allow the Pawn to run straight
through the pickup.

Q. Animation plays once and then stops. How can I correct this?

A. Make sure Loop is selected in the Timeline Editor.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: Some functions target Actors, and some functions target components.

2. True or false: Timeline must be set to Auto Play all the time.

3. True or false: Timeline can only animate values between 0 and 1.

4. True or false: Blueprint classes can have multiple root components.

5. True or false: The root component position and rotation can be edited in a Blueprint class.

Answers
1. True. Depending on what you are trying to affect in your Blueprint, you need to use the

correct function type. On a function node, underneath the name it says “Target is Scene
Component” or “Target is Actor.”

ptg18222824

Exercise 309

2. False. Auto Play only needs to be set if you want Timeline to start playing when the level is
run; otherwise, you can use an Event to play the Timeline when needed.

3. False. Timeline can be used to animate any range of values.

4. False. Although a Blueprint class can have many components, it can only have one root
component.

5. False. You can only modify the root component’s scale.

Exercise
Go back to the pickup Actor from this hour’s first set of Try It Yourself exercises and add
 continued rotation and make the respawn delay time a variable that can be edited when the Actor
has been placed.

1. Add a new Float Track to the Timeline and rename the Float Track Rotator.

2. Add two keys to the new Rotator Float Track—one at time 0 seconds with a value of 0 and
a second key at time 1 second with a value of 1.

3. Use a setRelativeRotation function node that targets the Static Mesh component.

4. Right-click on the New Rotation Data pin on the SetRelativeRotation and select Split
Struct Pin.

5. Multiply the Rotator float data pin out on the Timeline by 360.

6. Connect the result of the multiplication to the New Rotation Z (Yaw) pin in on the
SetRelativeRotation node. When finished, it should look similar to Figure 16.13.

FIGURE 16.13
Rotating Pickup with Timeline.

7. Place a bunch of copies of your Blueprint pickup class into a level and preview the level.
They should be bobbing up and down and rotating continuously.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 17
Using Editable Variables and

the Construction Script

What You’ll Learn in This Hour:

 Making variables editable outside Blueprint

 Using the Construction Script

 Setting a variable value range

This hour teaches you how to make editable variables and to use the Construction Script in

Blueprint. When you use editable variables and the Construction Script, each placed instance of

a Blueprint can be modified independently of the original Blueprint class. The core functionality

of the class is the same during gameplay, but the initial setup of the Actor can be unique for

each instance. This hour walks you through the process of setting up editable variables and

using the Construction Script.

NOTE

Hour 17 Setup
Create a new project with the First Person template and Starter Content and then create a new
folder in the Content Browser called Hour17Blueprints.

Setting Up
Suppose you write a pickup Blueprint class like the one from Hour 16, “Working with Blueprint

Classes.” It would be nice to be able to change the Static Mesh or the rotation speed or the bob

height of the pickup every time the pickup is placed in a level. In this hour, you will make

a Blueprint class that creates a user defined number of Static Mesh components that can be

positioned and rotated as needed. First, you set up the editable variable, and then you create a

Blueprint sequence in the Construction Script.

ptg18222824

312 HOUR 17: Using Editable Variables and the Construction Script

Making Editable Variables
With the Blueprint Actor you created in Hour 16, you can place a few Light Actors throughout

a level and have them pulse independently of each other. However, you may want some of the

lights to be brighter than others, or maybe you want to be able to change the range from which

the script generates the target intensity value. At the moment, these values are the same for

every instance of the Blueprint placed in your level. You could duplicate the Blueprint asset and

change the default variable’s values, but doing so would increase the number of assets you have

to work with—and in a large project that could become disorganized.

The Blueprint Editor allows you to make variables in a Blueprint editable, meaning that they

can be modified outside the Blueprint Editor. Making variables editable causes them to show

up in the level’s Details panel when the Actor is placed in a level and selected. When making a

variable editable, you should give it tooltip and define a category to store it. A tooltip pops up

when the cursor rolls over the variable property, so if someone else uses your Blueprint, he or she

will know what it’s used for. Categories are used to organize variables, and this is important if

you have to make many variables editable.

▼ TRY IT YOURSELF

MAKE BLUEPRINT VARIABLES EDITABLE

Follow these steps to create a Blueprint from an Actor class and make variables editable so that
every placed instance of a Blueprint Actor can be modified independently:

1. In the Hour17Blueprints folder in the Content Browser, right-click and select Blueprint Class.

2. In the Pick Parent Class window that appears, select Actor. In the Content Browser, rename
Blueprint to whatever you want and open it the Blueprint Editor by double-clicking it.

3. In the My Blueprint panel, under Variables, Click the + symbol to declare a new variable.

4. In the Variable Name property text box, type NumComp and set Variable Type to Integer.

5. Select the Editable Variable check box.

6. In the Tooltip text box type Set the number of Components to Add.

7. In the Category text box, type Actor_Setup.

8. Click Compile on the Blueprint Editor toolbar.

9. In the Details panel, under Default Value, set Default Value to 10.

10. Create six more variables based on the information shown in Table 17.1. When you’re
 finished, your My Blueprint panel’s Variables category should look as shown in Figure 17.1.

11. Click Compile and then Save on the Blueprint Editor toolbar.

ptg18222824

Making Editable Variables 313

▼TABLE 17.1 Editable Variables to Add in the Try It Yourself

Variable Name Variable Type Tooltip Category Default Value

PivCompLocation Vector Sets the arrow
 component’s location.

Actor_Setup 0,0,20

PivCompRotation Rotator Sets the arrow
 component’s rotation.

Actor_Setup 0,0,15

MeshCompLocation Vector Sets the Static Mesh
component’s location.

Mesh_Setup 100,0,0

MeshCompRotation Rotator Sets the Static Mesh
component’s rotation.

Mesh_Setup 0,0,0

MeshCompScale Vector Sets the Static Mesh
component’s scale.

Mesh_Setup 1,1,1

SM_MeshAsset Static Mesh
(Reference)

Assigns a mesh asset
to the mesh component.

Mesh_Setup SM_CornerFrame

FIGURE 17.1
My Blueprint and Blueprint Details panels, showing declared editable variables.

ptg18222824

314 HOUR 17: Using Editable Variables and the Construction Script

Now that you have created all the variables you need, from the Content Browser drag your

Blueprint into the level. With it selected, go the level’s Details panel and look for the Actor_

Setup and the Mesh_Setup categories you created. Under each category you should see all the

variables you made, and if you hover the mouse cursor over each of the variables, the tooltips

should show up. You can adjust the values for the variables, but your adjustments won’t have an

effect because you have not set up the Construction Script to utilize them yet.

Using the Construction Script
The Construction Script is available for every Blueprint class. It updates every time an Actor’s

properties or transforms change in the Blueprint Editor or when you compile the Blueprint.

While editable variables allow you to modify each placed instance of an Actor, you don’t see the

changes until the game is run. The Construction Script, however, processes changes to an Actor

while you are working in the Editor.

NOTE

Construction Script Execution
By default, the Construction Script is run every time a variable is changed in the level’s Details panel
for an Actor, every time an Actor transform is updated, when an Actor is spawned, and when the
Blueprint is compiled.

Inside the Blueprint Editor you can see the Construction Script tab next to Event Graph. If it is

not present, you can find Construction Script under the Functions tab in the My Blueprint panel,

as shown in Figure 17.2. Double-clicking it opens the Construction Script. In the Construction

Script, you can see an event node called Construction Script. This node executes a signal and

processes the nodes that are wired to it.

FIGURE 17.2
My Blueprint Construction Script.

ptg18222824

Using the Construction Script 315

If you click Class Settings on the Blueprint Editor toolbar, as shown in Figure 17.3, you see the

Blueprint Options section in the in Details panel of the Blueprint Editor (see Figure 17.4). The

first option here is Run Construction Script on Drag. With this set, when the Actor position,

 rotation, or scale is changed, the Construction Script of the Blueprint is called.

FIGURE 17.3
Blueprint Editor toolbar.

FIGURE 17.4
Blueprint Options section of the Details panel.

Because the Construction Script runs in the Editor and updates often, there are some limitations;

some functions are not accessible in the Construction Script. For example, you can add com-

ponents to the Blueprint on the fly, but you cannot spawn new Actors. Using the Construction

Script is a great way to see the results of modified, editable variables on an Actor; the artist and

level designer can use it to get feedback about your Blueprints.

Adding Static Mesh Components
Now that you have an understanding of how the Construction Script works, in the next Try It

Yourself you will use the Construction Script and create a sequence that uses a ForLoop node and

add arrow components to your Blueprint.

ptg18222824

316 HOUR 17: Using Editable Variables and the Construction Script

▼ TRY IT YOURSELF

ADD ARROW COMPONENTS TO A BLUEPRINT

Follow these steps to use the Construction Script and a For loop to add multiple arrow compo-
nents to a Blueprint:

1. Open the Blueprint you created in the previous Try it Yourself (if it’s not already open).

2. Select the Construction Script under the toolbar.

3. Click+drag the already-placed Construction Script node exec out pin and release it. In the
Context Menu search box, type forloop and select ForLoop from the list to add the node.

4. In the ForLoop node’s First Index text box type 0.

5. Click+drag the NumComp integer variable from the My Blueprint panel to the last index on
the ForLoop node to automatically select Get for the variable and add it to the Event Graph.

6. Click+drag from the ForLoop node’s exec out pin and in the Context Menu search box type
add arrow. Select the Add Arrow component to add it to the graph.

7. Right-click the orange Relative Transform data pin and select Split Struct Pin.

8. Click+drag from the integer data pin on the ForLoop node and in the Context Menu search
box type vector. Select Vector * Int to place the node.

9. Click+drag the PivCompLocation Integer variable from the My Blueprint panel onto the
Multiplies Vector Data pin in to select Get for the variable. Wire the Multiplies vector data
pin out to the Relative Transform Location data pin in on the Add Arrow Component node.

10. Repeat steps 8–9, but this time use a Rotate * Int and PivCompRotation and wire it to the
Relative Transform Rotation.

11. Right-click the Return Value data pin on the Add Arrow Component node and select Promote

to Local Variable. In the My Blueprint panel, under Local Variables, rename the variable
TempArrowComp. When you’re finished, your Blueprint’s Construction Script should look
similar to the one shown in Figure 17.5.

12. Click Compile and Save on the Blueprint Editor toolbar.

ptg18222824

Using the Construction Script 317

▼

FIGURE 17.5
Your Construction Script should look similar to this.

So what did you just do? You set a ForLoop event to execute a set number of times based

on its first and last index values. For example, if the first value is 0 and last value is 10, the

ForLoop event executes 11 times. The add arrow component simply adds an arrow component

to the Blueprint at a specified relative transform. In this case, it adds 11 arrow components,

and each time, it offsets the position and rotation by multiplying the PivCompLocation and

the PivCompRotation variables by the index count of the ForLoop event. The local variable

 temporarily holds the arrow component added to the Blueprint during that execution. (You will

use it later in the hour.)

NOTE

Local Variables
Local variables are temporary variables created in a function. They are accessible only to that
 function. Once a function is finished executing, the variable is no longer used.

So far, you have used only three of the variables you created earlier, but now that you have

the first half of your Construction Script set up, you can test it in the Blueprint Editor. Select the

Viewport panel so you can see the components and then click Class Defaults on the Blueprint

ptg18222824

318 HOUR 17: Using Editable Variables and the Construction Script

Editor toolbar. In the Blueprint Details panel, you see your categories and all the variables you

created. If you adjust the NumComp property, you see arrow components added and removed

from the Viewport.

CAUTION

Class Defaults
Changing variable properties in the Blueprint Details panel changes their default values. When
you are finished, make sure you set all the variables back to their original settings, as shown in
Table 17.1.

Adding Static Mesh Components
Now that you have arrow components added to the Blueprint, you need to add Static Mesh

 components. After you add a Static Mesh component, you can assign a Static Mesh asset to the

component so you can see it. Finally, you attach it to the arrow component. The arrow compo-

nents will serve as a pivot point for the Static Mesh components.

▼ TRY IT YOURSELF

ADD STATIC MESH COMPONENTS

Follow these steps to add Static Mesh components and assign a Static Mesh asset to each
 component and attach them to the already-made arrow components:

1. In the Construction Script, click+drag from the TempArrowComp exec out and in the Context
Menu search box type add static. Select Add Static Mesh Component from the list.

2. On the Add Static Mesh Component node, right-click the Orange Relative Transform data pin
and select Split Struct Pin.

3. From the My Blueprint panel’s Variables section, drag the vector MeshCompLocation variable
onto the Relative Transform Location data pin on the Add Static Mesh Component node to
select Get for the variable.

4. Repeat step 3 for MeshCompRotation but assign it to the Relative Transform Rotation data
pin. Also repeat step 3 for MeshCompScale but assign it to the Relative Transform Scale
data pin.

5. Right-click the Return Value data pin on the Add Static Mesh Component node and select
Promote to Local Variable. In the My Blueprint panel, under Local Variables, rename the
 variable TempMeshComp to select Set for the node.

6. Click+drag from the exec out pin on the Set node and in the Context Menu search box, type
set static. Select Set Static Mesh from the list to add the node.

ptg18222824

Using the Construction Script 319

▼7. Wire the blue data out pin from the Set node to the blue target in pin on the Set Static
Mesh node.

8. From the My Blueprint panel’s Variables section, drag the Static Mesh reference variable
SM_MeshAsset onto the blue New Mesh data in pin on the Set Static Mesh node to select
Get for the variable.

9. Click+drag from the exec out pin on the Set Static Mesh node and in the Context Menu
search box, type attach. Select AttachTo from the list to place the node.

10. From the My Blueprint panel’s Local Variables section, drag the TempMeshComp variable
created in step 5 onto the blue target in pin on the AttachTo node to Get the variable.

11. From the My Blueprint panel’s Local Variables section, drag the TempArrowComp variable
onto the In Parent blue data in pin on the AttachTo node to select Get for the variable.
When you’re finished, your Blueprint should look similar to the one shown in Figure 17.6.

12. Click Compile and Save on the Blueprint Editor toolbar.

FIGURE 17.6
The second half of the final Construction Script.

Now that you have finished the Construction Script, from the Content Browser drag your

Blueprint into the level. With the Blueprint selected, go the level’s Details panel and look for

the Actor_Setup and Mesh_Setup categories you created. Play around with the variables’ values

until you get something you like. Then drag out a second Actor onto your Blueprint and give it

different settings and assign a different mesh to it. Both of your Actors are instances of the same

Blueprint class but can modified independently of each other.

ptg18222824

320 HOUR 17: Using Editable Variables and the Construction Script

Limiting Editable Variables
You will notice that as you increase the NumComp variable, there may be a delay as the

Blueprint Editor updates the Construction Script. When using editable variables, it is a good

ideas to set limitations so anyone using your script can’t choose extreme values. Back in the

Blueprint Editor, select your NumComp variable and in the Blueprint Details panel, look for

the Slider Range and Value Range properties. Slider Range lets you control the values other

 developers can choose when using your Blueprint, but users can still type in any value they

want. The Value Range property locks the value down so users can only pick values within your

defined range. In the first text box for both properties, type 1 and in the second text box type

100 (see Figure 17.7). After you set these properties, compile and save your Blueprint. Then select

the Actor in the level and in the level’s Details panel, adjust the NumComp property to see the

changes.

FIGURE 17.7
Slider Range and Value Range variable properties.

Show 3D Widget
Some editable variables can be displayed in the Level Viewport so you can interact with

them directly by using the transform gizmo. Back in the Blueprint Editor, select the vector

PivCompLocation variable and in the Blueprint Details panel, select Show 3D Widget. Compile

and save your Blueprint. Then, in the Level Viewport, look for a wireframe diamond widget

at the base of your Actor. The name of the variable should also be visible. Click the diamond

 widget and move it up and down, and you see each component’s position update in real time;

ptg18222824

Q&A 321

also, the PivCompLocation values in the level’s Details panel also change accordingly (see

Figure 17.8). When you get a chance, do the same thing for the MeshCompLocation variable in

your Blueprints as well.

FIGURE 17.8
Selecting Show 3D Widget.

Summary
This hour you learned how to use the Construction Script to update changes made to Actors

with editable variables in the Blueprint Editor. As you can see, using editable variables and the

Construction Script can be extremely powerful. Other people on your project will be able to use

your Blueprint without ever having to open up the Blueprint Editor to make changes. The more

comfortable you become with using the Construction Script, the more effective you can make

Blueprint Actors for other people on a development team to use.

Q&A
Q. What are the green and yellow eyes next to the variable in the My Blueprint panel?

A. You can use the green and yellow eyes to quickly make a variable editable. A closed eye
means the variable is not editable, and a yellow eye means it’s editable but does not have
a tooltip. A green eye means it is editable and has a tooltip.

Q. I can’t edit the names of my local variables in the Blueprint Details panel. How can I rename

them?

A. You have to rename local variables in the My Blueprint panel. Locate a variable in the
Local Variables section in the My Blueprint panel, right-click it, select Rename, and type a
new name.

ptg18222824

322 HOUR 17: Using Editable Variables and the Construction Script

Q. Why can’t I see the Static Mesh components?

A. There are two likely reasons for this. The first is that you may not have assigned a Static
Mesh asset to the SM_MeshAsset variable you created in the first Try It Yourself. The
 second is that the MeshCompScale variable has values of 0,0,0. Change it to 1,1,1.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: While it is possible to add different components to a Blueprint in the

Construction Script, you cannot spawn new Actors from the Construction Script.

2. True or false: A local variable is accessible outside the function in which it is created.

3. True or false: The Add Arrow component adds a Static Mesh component.

4. True or false: If you want to be able to interact with a vector variable in the Level Viewport,
you need to set the Show 3D widget variable property.

5. True or false: The Construction Script updates every time an Actor’s properties or
 transforms change.

Answers
1. True. While you can spawn new Actors into a level during runtime from the Event Graph in a

Blueprint, You cannot spawn Actors into the level from the Construction Script.

2. False. Local variables are only accessible to the function they are declared in.

3. False. The Add Arrow adds an arrow.

4. True. Some variable types, such as vector variables, have a Show property that displays a
visual representation of the variable in the level when an instance of the Blueprint has been
placed in the level.

5. True. Under Class settings in the Blueprint Editor, the Run Construction Script on Drag

 property is set to True.

ptg18222824

Exercise 323

Exercise
For this exercise, use a Set Material node and editable material interface reference variable to
change the materials of all the added Static Mesh components.

1. Open your Blueprint and go to the Construction Script.

2. Click+drag the local TempMeshComp variable from the My Blueprint panel to the end of the
sequences in the Construction Script and select Get for the variable and add it to the Event
Graph.

3. Click+drag from the TempMeshComp variable and in the Context Menu search box, type set

material. Select Set Material from the list to add the node to the Event Graph.

4. Wire the Set Material exec pin to the end of the AttachTo node.

5. Create a variable in the My Blueprint panel.

6. Set Variable Type to Material Instance, rename the variable, make it editable, give it a
tooltip, and assign it to the Mesh_Setup category.

7. Click Compile and Save on Blueprint Editor toolbar.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 18
Making Key Input Events

and Spawning Actors

What You’ll Learn in This Hour:

 Setting variables to be exposed on spawn

 Spawning an Actor from a Blueprint class

 Scripting a keyboard input event

In the previous hour, you learned to make variables editable and use the Construction Script.

This hour teaches you how to set up key input events in a Blueprint and how to spawn one Actor

from another at runtime.

NOTE

Hour 18 Setup
Create a new project with the First Person template and Starter Content, and then create a new
folder in the Content Browser called MyBlueprints.

Why Spawning Is Important
Most games require more than just Collision Events to respond to player actions. In this hour,

you create a Blueprint class that will spawn a new Actor every time the player walks up to it

and presses a key. Being able to spawn new Actors on the fly opens the door to creating more

dynamic and interactive experiences, whether it’s pickups being randomly spawned throughout

a level or waves of enemies increasing in number based on player skill. Without spawning, level

designers would have to manually place every single Actor for every single scenario that might

unfold during gameplay, and that, of course, is not feasible. To spawn an Actor during gameplay

through Blueprint, you use the Spawn Actor function, and you need to create two new Blueprint

classes: a spawner class and a spawned class. The spawner spawns an Actor of another class by

adding it to the level during gameplay. The spawned is the Actor that is created.

ptg18222824

326 HOUR 18: Making Key Input Events and Spawning Actors

Creating a Blueprint Class to Spawn
Before you can make one Actor spawn another from a class, you need to make the Blueprint

class to spawn. In the first part of the hour you make a Blueprint class that has a Static Mesh

component set to simulate physics. You will use the Construction Script to change properties of

each spawned instance of the Physics Actor. Then you create the UseKeySpawner Blueprint class

to spawn an instance of the physics Blueprint class.

Using the Construction Script
You have created a Blueprint class that will be spawned, and you need to now use the

Construction Script so the mesh and materials assigned to the Static Mesh component can be

changed. Later on, this will allow you to change the appearance of the Actors being spawned

and take advantage of the Expose on Spawn variable property. First, you set up the Construction

Script and create a Static Mesh and material reference variables. Then you can set each variable

to be exposed on spawn.

▼ TRY IT YOURSELF

Set Up the Physics Blueprint Class

Follow these steps to create the physics Blueprint class that you will spawn at runtime:

1. To create a new Blueprint class, right-click the MyBlueprints folder in the Content Browser
and select Blueprint Class from the Context Menu. Then select Actor from the Common
Classes tab.

2. Name your new Blueprint class PhysicsActor_BP and then open this Actor in the Blueprint
Editor by double-clicking it in the Content Browser.

3. In the Component tab, click the green +Add Component button and select Cube to add a
cube Static Mesh component.

4. Rename the new component PhysicsMeshComp and assign it to the root component of the
Blueprint by dragging it onto the default scene component and selecting Make Root.

5. With PhysicsMeshComp selected in the Blueprint Details panel, under Physics, select
Simulate Physics.

6. Click Compile and Save on the Blueprint Editor toolbar and place your Blueprint in a Default
level.

7. Preview the level and shoot the box; it should move.

ptg18222824

Creating a Blueprint Class to Spawn 327

TIP

The Sequence Node
The Sequence node splits the event signal into as many signals as you need. Because the results
of the branch comparison are unknown, you should make sure other signals are processed. You can
add more exec out nodes to the Sequence node by clicking Add Pin, and you can remove them by
right-clicking an exec out pin you want to remove and selecting Remove.

▼TRY IT YOURSELF

Swap Out the Static Mesh Assigned to the Mesh Component

Follow these steps to use the Construction Script to change the Static Mesh and Material assets
that are assigned to the Static Mesh component of the PhysicsActor_BP Blueprint:

1. Open the PhysicsActor_BP Blueprint.

2. Open the Construction Script by selecting its tab or clicking Construction Script in the
Functions tab in My Blueprint panel.

3. Click+drag the already-placed Construction Script node exec out pin and release. In the
Context Menu search box, type sequence and select Sequence from the list to add the
node.

4. Click+drag the Sequence node’s then 0 exec out pin and release. In the Context Menu
search box, type set Static Mesh. Select Set Static Mesh (PhysicsMeshComp) to place a Set
Static Mesh function node that targets the Static Mesh component.

5. On the Set Static Mesh function node, right-click the blue data in pin to the left of the
NewMesh property and choose Promote to Variable.

6. Rename the new variable NewMesh and then compile the Blueprint. Because the Set Static
Mesh variable you created does not have a mesh assigned to it, the component’s mesh
 disappears from the Blueprint Viewport when the Construction Script runs.

7. To check whether a mesh has been assigned to the variable before the Set Static Mesh
function is executed, click+drag from the NewMesh variable data out pin. In the Context
Menu search box, type isvalid and select ?IsValid from the list to place the node.

8. Click+drag from the ?IsValid exec out pin and wire it to the Set Static Mesh node
exec in pin.

9. Link the then 0 exec out pin to the ?IsValid node’s exec in pin.

10. Repeat steps 4–9 but this time use the then 1 exec out on the Sequence node to change
the material of the PhysicsMeshComp using a Set Material function node and a material
reference variable named NewMaterial. When you’re finished, your Blueprint should look
similar to the one shown in Figure 18.1.

11. Compile and save the Blueprint.

ptg18222824

328 HOUR 18: Making Key Input Events and Spawning Actors

Using the Expose on Spawn Variable Property
Just as the Editable Variable property makes a variable accessible in a level’s Details panel for

an Actor, the Expose on Spawn property exposes the variable to whichever Blueprint is spawning

the new Actor. When a class is assigned to the Spawn Actor from Class function, any variable in

the class that has Expose on Spawn turned on shows up as a data pin in on the spawn function.

Every variable created in a Blueprint can be set to Exposed on Spawn.

Before you move on to creating the spawner Blueprint that will spawn the Physics Actor, you

need to prepare the two variables created in the previous Try It Yourself.

▼

FIGURE 18.1
Your Construction Script should look similar to this.

▼ TRY IT YOURSELF

Prepare Variables to Be Exposed on Spawn

Follow these steps to edit the properties of the variables you have created so far this hour:

1. Open the PhysicsActor_BP Blueprint.

2. Locate and select the NewMesh variable in the Variables section of the My Blueprint tab.

ptg18222824

Setting Up the Spawner Blueprint 329

▼3. In the Blueprint Details panel, turn on the Editable property, as shown in Figure 18.2.

4. In the Tooltip text box, give an informative description, such as This will change the mesh of

the physics Actor.

5. Turn on Expose on Spawn, as shown in Figure 18.2.

6. In the Category text box, type Mesh Setup to create a new property category called Mesh
Setup.

7. Repeat steps 3–5 for the NewMaterial variable and under Category pick the already-made
Mesh Setup category from the list.

8. Compile and save the Blueprint.

FIGURE 18.2
The My Blueprint and Details panels in the Blueprint Editor.

Setting Up the Spawner Blueprint
Scripting an input event that requires the player to press a key to initiate a Blueprint sequence is

a fairly easy process. You need an input event that is assigned to a specific key, such as the E key.

You also need to tell the Actor to temporarily enable input for a specific player controller. If you

simply enable input for an Actor and place multiple instances of the Actor in your level, they

will all execute at the same time when the input key is pressed. So you need to enable inputs

only on the Actor the player is trying to interact with directly. This can be done with an overlap

event that enables input for the Actor when the pawn overlaps with a collision component and

disables the input when the player moves away and ends the overlap.

ptg18222824

330 HOUR 18: Making Key Input Events and Spawning Actors

This method is fine for a single-key input that has a very specific function, such as spawning

an Actor or opening a door. For Actors that require more robust input systems such as pawns,

 characters, and vehicles, it is best to set up key mapping.

GO TO CHAPTER 20, CREATING AN ARCADE SHOOTER: INPUT SYSTEM AND PAWNS, to learn more on input mappings.

For the setup of this Blueprint, you need a box collision component for the Overlap event,

a Static Mesh for a visual representation of the Actor location in the level, and an arrow

 component to define the spawn location of the Physics Actor when the user presses the key.

▼ TRY IT YOURSELF

Set Up and Use a Key Spawner Blueprint Class

Now that the Physics Actor is ready, it’s time to set up the UseKeySpawner Actor, so follow these
steps:

1. Create a new Blueprint class, Select the MyBlueprints folder in the Content Browser,
 right-click in the Asset Management Area, and select Blueprint Class from the Context
Menu. Then select Actor from the Common Classes tab.

2. Name your new Blueprint class UseKeySpawner_BP and open it in the Blueprint Editor
(see Figure 18.3).

3. Add a box collision component and set the relative Z location to 100. Then set the box
extents to 100 for X, 100 for Y, and 100 for Z.

4. Add a cylinder Static Mesh component under Basic Shapes and set its relative Z location
to 50.

5. Compile and save the Blueprint.

FIGURE 18.3
Component setup.

ptg18222824

Setting Up the Spawner Blueprint 331

With the necessary components in place, you now need to script an overlap event sequence for

the box collision component that enables the Actor to receive input from the player controller

and disable input when the overlap has ended.

▼TRY IT YOURSELF

Script Overlap Events to Enable and Disable Player Inputs

Follow these steps to use the Construction Script to modify the properties of the Actor:

1. Open the UseKeySpawner_BP Blueprint.

2. Select the box collision component from the Components tab. In the Event Graph, add an
OnComponentBeginOverlap event node.

3. Add an Enable Input Function node and wire the OnComponentBeginOverlap(Box) exec out
pin to the enable input exec in pin.

4. Add a player controller with Get selected and wire its blue data pin out to the blue player
controller pin in on the Enable Input node.

5. Select the box collision component from the Components tab, and in the Event Graph add
an OnComponentEndOverlap event node.

6. Add a Disable Input function node and wire the OnComponentEndOverlap(Box) exec out pin
to the Disable Input exec in pin.

7. Wire the blue data out pin from the player controller you added in step 4 to the blue player

controller pin in on the Disable Input node. When you’re finished, your Blueprint should look
similar to the one shown in Figure 18.4.

8. Compile and save the Blueprint.

ptg18222824

332 HOUR 18: Making Key Input Events and Spawning Actors

▼

FIGURE 18.4
The Event Graph in Blueprint for showing overlap event sequences.

Spawning an Actor from a Class
Actors are added during gameplay via spawning. If you couldn’t spawn Actors, you would have

to pre-place every Actor you would ever need, which would limit the type of gameplay events

and encounters you could create. Spawning allows you to script dynamic experiences. There

are spawn functions for adding specific common types of Actors. For example, there is a spawn

 emitter for spawning Particle Effects, and there is a spawn sound for adding Sound Actors to a

ptg18222824

Spawning an Actor from a Class 333

level when needed. Actors can be spawned with specific transforms, or they can be attached to

other Actors. When spawning an Actor, you need to consider the location because you don’t

 typically want the Actor to spawn inside the collision hull of another Actor or component.

For this demonstration, you use a Spawn Actor from Class function that can spawn any

Blueprint class you create.

▼TRY IT YOURSELF

Add the Keyboard Input Event and Spawn an Actor from a Class

Now that you have the enable and disable input events set up, you need to add a keyboard input
event that executes when the player presses the E key. Follow these steps:

1. Open the UseKeySpawner_BP Blueprint.

2. In the Event Graph, right-click in an empty location to bring up the Context Menu. In the
search box type e and select E from the list to add it to the graph.

3. Add a Spawn Actor from Class function, and wire its exec in to the E key event’s released
exec out pin.

4. To the right of the purple data in pin, click to select a class and use the search box to
search for the PhysicsActor_BP Blueprint you scripted earlier.

5. Add a world transform to define the location in the world to add the spawned Actor. Select
the arrow component from the Components panel and drag it to the Event Graph.

6. Click+drag from the blue data out pin of the component reference. In the Context Menu
search box, type get world transform and select GetWorldTransform to add it to the Event
Graph.

7. Wire the GetWorldTransform orange data out pin to the orange spawn transform data in pin
on the Spawn Actor From Class function node. When you’re finished, your Blueprint should
look similar to the one shown in Figure 18.5.

8. Compile and save the Blueprint. Then place an instance of it into your level.

9. Preview the level, move the pawn over to the placed instance of the UseKeySpawner_BP
Actor, and press the E key. The Physics Actor should be added to the level.

ptg18222824

334 HOUR 18: Making Key Input Events and Spawning Actors

▼

FIGURE 18.5
Keyboard input event sequence.

NOTE

Keyboard Inputs
You could also use the keyboard input event setup done here to play or stop a timeline that
 animates a mesh component, such as a door opening or closing.

The last thing you need to do is make use of the variables you exposed on spawn in the

PhysicsActor_BP. When you added PhysicsActor_BP to the class property of the Spawn Actor from

Class function, the exposed variables were added to the function as well because of the Expose

on Spawn property. Now you need to add those as variables to the UseKeySpawner_BP Actor and

make them editable so that when you place an instance in the level, you will be able to pick a

new mesh and material for the spawned Physics Actor.

ptg18222824

Spawning an Actor from a Class 335

▼TRY IT YOURSELF

Promoting Variables and Making Them Editable

In order to change the exposed on spawn variables that are displayed on the Spawn Actor from
Class function node, you need to create two new variables in the Blueprint and make them
 editable. Follow these steps:

1. Open the UseKeySpawner_BP in the Blueprint Editor.

2. On the Spawn Actor from Class function node, right-click the blue data in pin to the left of
the NewMesh property and choose Promote to Variable.

3. Now select the variable and in the Blueprint Details panel make the variable Editable.

4. Repeat steps 2–3 for the NewMaterial property as well.

5. Compile and save the Blueprint.

6. In the level, select the placed instance of the UseKeySpawner_BP Actor, and in the Details
panel, assign a new mesh and material.

7. Preview the level and interact with the UseKeySpawner_BP.

8. Place multiple instances of the UseKeySpawner_BP Actor and assign different meshes and
materials. When you’re finished, your Blueprint should look similar to the one shown in
Figure 18.6.

9. Preview the level again and interact with each of the placed Actors.

FIGURE 18.6
Promoted editable variables added to the sequence.

ptg18222824

336 HOUR 18: Making Key Input Events and Spawning Actors

Summary
This hour, you learned how to make one Actor spawn another with modified properties. You

also learned how to use the Expose Variable on Spawn property and how to enable and disable

 player controller input on an Actor. Now you can start to build on these skills to make more

dynamic Actors that your player can interact with.

Q&A
Q. Will the keyboard input method described this hour work in a multiplayer game?

A. No, because the input is enabled only for Player Controller 0, which is the default controller
for a single-player game.

Q. How do I change the scale of a spawned Actor?

A. You can do this in the spawn transform. Disconnect the orange wire from the arrow
 component’s GetWorldTransform and right-click the orange transform node and select Split

Struct Pin to separate the transform struct into its individual location, rotation, and scale
properties.

Q. Every time my Physics Actor spawns into the level it flies off. Why?

A. The spawned Physics Actor may be colliding with another Actor or component in the level.
Because the spawn location is determined by the arrow component in the UseKeySpawner_
BP Blueprint class, adjusting the arrow components location in the Blueprint will fix the
issue.

Q. After the second spawned Actor, the input event stops working. Why does this happen?

A. The box collision component’s OnComponentEndOverlap event is being triggered by one of
the spawned Actors. In the UseKeySpawner_BP, edit the box collision component’s collision
properties so that it responds only to the pawn.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: The Key input event works only with the E key.

2. True or false: Turning on the Expose on Spawn property for a variable in a Blueprint makes
the variable show up in the Spawn Actor from Class function node.

ptg18222824

Exercise 337

3. If you want to spawn an Actor through Blueprint, which function do you need?

A. GetWorldTransform

B. Spawn Actor from Class

C. OnComponentBeginOverlap

D. Enable Input

4. True or false: If you Enable input for a Blueprint Class and place multiple instances of the
Actor in a level, they will all execute at the same time when the input key is pressed.

Answers
1. False. There are input events for every key on your keyboard.

2. True. The Expose on Spawn property for variables makes them accessible through the
Spawn Actor from Class function.

3. B. While there are several spawn functions, the Spawn Actor from Class function allows you
to spawn your own Blueprint classes.

4. True. You need to use events to enable and disable input in the Blueprint class when
 needed.

Exercise
Spawning the Physics Actor when the player press the E key functions is not very exciting. It also
does not provide any feedback for the player when he or she interacts with it other than showing
the spawned Actor. In this exercise you create a lever in your UseKeySpawner Blueprint that
 animates and spawns a Particle Effect and plays a sound when the Physics Actor spawns in.

1. In the UseKeySpawner_BP Blueprint add the Shape_Cylinder Static Mesh asset from the
Starter Content Folder as a component and rename it LeverMesh.

2. Scale the LeverMesh Static Mesh component so it looks like a lever. Set 0.1 for X and Y
and 2.0 for Z.

3. Position the LeverMesh component at 0,70,0 to the right of the cylinder mesh component
that you added in the Set Up and Use a Key Spawner Blueprint Class Try It Yourself
 exercise.

4. In the UseKeySpawner_BP Event Graph, add a timeline with Auto Play and Loop unselected
and Time set to 1 (second).

5. Add a float curve and name it LeverRotation.

6. Add three keyframes to the float curve: Keyframe 1 (with Time set to 0 and Value set to 0),
Keyframe 2 (with Time set to 0 and Value set to 1), and Keyframe 3 (with Time set to 1 and
Value set to 0).

ptg18222824

338 HOUR 18: Making Key Input Events and Spawning Actors

7. From the E Input event node wire the Released exec out pin to the Play from Start exec in
pin on the timeline.

8. Click+drag LeverMesh and select Get for it to add it as reference variable to the Event
Graph.

9. Click+drag from the LeverMesh blue data pin and in the Context Menu search box, type Set

relative rotation. Select SetRelativeRotation from the list to place the node.

10. Wire the Timeline Update exec out pin to the exec in pin on the SetRelativeRotation node.

11. Click+drag from the green LeverRotation pin created in step 5 and in the Context Menu
search box, type multiply. Select Float * Float to add the node. In the text box type 60 as
the number of degrees the lever will rotate when animating.

12. On the SetRelativeRotation function node, right-click the rotation data pin and select Split
Pin and wire the float data pin out from the multiplication node to the New Rotation Y
(Pitch) on the SetRelativeRotation node.

13. Click+drag from the timeline node’s Finished exec out pin and in the Context Menu search
box, type spawn emitter. Select Spawn Emitter at Location to add the node. Under Emitter
Template, assign P_Explosion.

14. Click+drag from the Spawn Emitter at Location exec out pin and in the Context Menu search
box, type play sound. Select Play Sound at Location to add the node. Next to the Sound
property, assign the Explosion01 Sound asset.

15. Wire the Timeline Finished exec out pin to the exec in pin on the Spawn node.

16. Use the arrow component’s transform to set the Location and Rotation properties of the
Spawn Emitters at Location and Play Sound at Location nodes.

17. Wire the Play Sound at Location exec out pin to the Spawn Actor node you placed in the
Add the Keyboard Input Event and Spawn an Actor from a Class Try It Yourself earlier
in the hour.

ptg18222824

Exercise 339

18. When you’re finished, your Blueprint should look similar to the one shown in Figure 18.7.
Compile and save the Blueprint.

FIGURE 18.7
Blueprint Sequence that animates a lever and spawns an Actor when the player presses the E key.

19. Preview the level and interact with the spawned Actor. When you press the E key, the lever
animates, the explosion particle plays, you hear the explosion sound, and you see Physics
Actor spawn.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 19
Making an Action

Encounter

What You’ll Learn in This Hour:

 Working with an existing Blueprint class to make an obstacle course

 Modifying character movement properties

 Assigning a Game Mode to a level

 Assigning an Actor tag

In earlier hours, you were introduced to Blueprint. In this hour, you use existing Blueprints

 classes to build your own action-based encounter. Using one of the provided Game Modes, you

will place and modify existing Blueprint classes to create a time-based obstacle course.

NOTE

Hour 19 Setup
For this hour, you need to open the Hour_19 project, available on the book’s companion website at
www.sty-ue4.com. Here, you will find everything you need to complete the hour and create a simple
 encounter for First person shooter and/or Third Person Game Mode. In the Content Browser of
the Hour_19 project, you will see a folder called BasicFPSGame, and in it is a Game Mode called
BasicFPSGameMode. In the Content Browser of the project, you will also see another folder called
Basic3rdPGame. In this folder is a Game Mode called Basic3rdPGameMode. You will also find a
 collection of Blueprint classes organized in folders based on functionality.

Project Game Modes
For this hour, we have provide two Game Modes to work with: a first-person shooter (FPS) Game

Mode called BasicFPSGameMode and a third-person Game Mode called Basic3rdPGameMode.

The FPS Game Mode uses a character Blueprint called BasicFPSCharacter, and the third-person

Game Mode uses a character Blueprint called Basic3rdPCharacter.

http://www.sty-ue4.com

ptg18222824

342 HOUR 19: Making an Action Encounter

Heads-Up Displays (HUDs)
Both of the Game Modes for this hour have simple Unreal Motion Graphics (UMG) HUDs. The

HUDs for both Game Modes display the health of the character, the number of pickup items

 collected, and the time since the level was started. In both Game Modes, the characters can be

killed by falling off a ledge or by taking damage.

GO TO HOUR 22, WORKING WITH UMG, to learn more about creating interfaces and working with Unreal Motion
Graphics (UMG) UI Designer.

Game Timer and Respawn System
Both Game Modes for this hour already have respawn and timer systems scripted into their

Game Mode Blueprints. The timer starts counting when a level is started and is displayed on

the HUD. The respawn system works in conjunction with the CheckPoint_BP and KillVolume_BP

Blueprint Actors, which you can find in the BP_Respawn folder in the Content Browser.

Knowing Characters’ Abilities
When creating a level encounter, it is a good idea to know everything about the characters’

 abilities. How fast do they move? How high and far can they jump? What weapons do they

have? The more you know about the characters’ abilities, the better you can design encounters

in your levels.

The FPS Game Mode character you are using this hour has common weapons scripted in the

character Blueprint class. There is a trace weapon, a projectile weapon, and a physics gun.

Pressing the 1, 2, or 3 number keys switches between weapons. You can fire the trace weapon

and the projectile weapon by pressing the left mouse button. When the physics gun is active, you

can click to pick up Physics Actors and right-click to throw a picked-up Actor or poke a physics

item if it is on the ground.

In the Content Browser, go to Hour_19/Basic3rdPGame/Blueprints/Basic3rdPCharacter

and open up the Blueprint in the Blueprint Editor. On the Components panel, select the

CharacterMovement Component and look through the properties on the Blueprint Details panel

for this component. Here you will find most of the information you need. Most of the character

movement is based on acceleration and velocity. With a little bit of testing, you can get a better

idea of how this equates to world units.

In the following Try It Yourself, you will become familiar with the CharacterMovement

Component’s settings.

ptg18222824

Knowing Characters’ Abilities 343

▼TRY IT YOURSELF

Establish Third-Person Player Abilities

Follow these steps to use the JumpTest level to establish the player jump height and distance:

1. In the Content Browser, go to Hour_19/Maps and open the JumpTest level. In this level you
see several BSP Actors set to different sizes. You will use these to get an idea of how fast,
high, and far the character can run and jump.

2. Preview the level and practice jumping from one end to the other. Try jumping from a
 standstill and then try jumping from a run. You should see some slight variation in distance
based on player speed and acceleration. From these tests, you can get an estimate of the
third-person player jump height and distance. With the default values, the player can jump
roughly a distance of 600 units and a height of 200 units.

3. In the Content Browser, search for the Basic3rdPCharacter Blueprint and open it.

4. In the Blueprint Editor, in the Components panel, select the CharacterMovement

Component.

5. In the Details panel, locate the Max Walk Speed property in the Character Movement:
Walking section (see Figure 19.1). Change its value to 300.

6. Compile the Blueprint and then preview the level and interact with the BSP Actors again.

7. In the Details panel, locate the Jump Z Velocity property under Character Movement:
Jumping/Falling (see Figure 19.1). Set it to 1000.

8. Compile the Blueprint and then preview the level and interact with the BSP Actors again.

9. Play around with some of the other character properties. You can always reset a property
back to its default value simply by clicking the yellow arrow to the right of a property value.

ptg18222824

344 HOUR 19: Making an Action Encounter

NOTE

Basic First-Person Game Mode
The steps you took in the preceding Try It Yourself also work for the basic first-person Game Mode
(BasicFPSCharacter), but you need to change the Game Mode Override setting for the JumpTest level
to BasicFPSGameMode in order to test it.

Using Blueprint Classes
All the Blueprint classes you can use to build your obstacle course encounter level are organized

into folders based on functionality. There is a folder for moving platforms and obstacles that

cause damage to the player. Another folder contains turret and projectile Actor Blueprints.

Another folder contains levers and switches, and yet others have pickups and spawn checkpoints

and kill volumes.

▼

FIGURE 19.1
CharacterMovement Component properties.

ptg18222824

Using Blueprint Classes 345

Each of the Actors makes use of Construction Script and editable variables so that each

placed Actor can be modified as needed. All the Actors have properties relative to their core

 functionality that can be modified using the level’s Details panel. Some have mesh, material,

and particle properties that can be swapped out with your own assets.

TIP

Grids and Snaps
When placing many of the Blueprints used in this hour, it can help to turn on grid snaps and set the
units to 100, as shown in Figure 19.2.

FIGURE 19.2
Grids and snaps.

The following sections describe the folders provided with this hour and their contents.

BP_Common Folder
The BP_Common folder contains Blueprint classes that can be used with either of the provided

Game Modes. This folder contains a sample map called ActorGallery that demonstrates the basic

functionality of all the Blueprint classes. In the Content Browser, go to Hour_19/BP_Common,

open the ActorGallery map, and preview the level.

There are six Actors in this folder that you can use to create an obstacle course:

 Launcher_BP: This Actor launches the player’s character in the air, using a specified

 distance and height. To change the direction, simply rotate the placed Actor.

 Mover_BP: This Blueprint animates a Mesh Component between two locations. You can

set the Move Speed and the Delay time before it changes direction. You can also set wheth-

er it starts at the ending location or the beginning location. You set the destination by

selecting the Destination transform and moving and rotating it to any desired transform.

 Pendulum_BP: This Actor swings back and forth and causes a specified damage amount

to the player character if it hits them. You can set the swing speed and the start direction.

This Actor can be rotated and uniformly scaled.

 Smasher_BP: This Actor animates two spiked pistons back and forth and causes damage

to the player if caught in the middle. You can change the end location, return and attack

speed, hit and attack delay, and damage amount. This Actor can be rotated and scaled.

ptg18222824

346 HOUR 19: Making an Action Encounter

 Stomper_BP: This Actor animates a Mesh Component between two locations based on the

distance from where it is placed. It causes a specified damage to the player character. This

Actor can be rotated and uniformly scaled.

 SpikeTrap_BP: This Actor releases spikes out of the floor when the character walks over it.

You can change the speed, damage amount, and sound effects for this Actor.

In the next Try It Yourself, you practice creating a level, setting the Game Mode for the level, and

working with one of the provided Blueprint Actors. To bring up the World Settings panel for the

current level, on the Level Editor toolbar select Settings > World Settings (see Figure 19.3).

FIGURE 19.3
Opening the World Settings panel.

The World Settings panel opens next to the Details panel in the Level Editor interface. The World

Settings panel allows you to set properties such as Lightmass, Physics, and Game Mode for the

level you are currently working on. If you assign the Game Mode class, all the Blueprint classes

assigned to the Game Mode are added automatically. The next Try It Yourself walks you through

this process.

▼ TRY IT YOURSELF

Work with the Provided Blueprints Classes

Follow these steps to create a default level and practice using the Mover_BP class:

1. Create a new default map and save it to the Hour_19/Maps folder.

2. On the World Settings panel, set Game Mode Override to Basic 3rdPGameMode

(see Figure 19.4).

3. Select the Mover_BP Actor from the Content Browser and place it in the level.

4. Select the placed Mover_BP and then select the blue diamond (called a Destination
 transform) and move it to a new location.

ptg18222824

Using Blueprint Classes 347

▼5. Preview the level and notice how it moves. Then move the character onto the platform to
ride it.

6. Stop the preview and, with the Actor selected, go the Details panel and change the Move
Speed. Larger values add more time and slow down the movement; smaller values reduce
the time and speed up the movement of the platform.

7. When you have a movement speed you like, change the Return and Destination Delay times
to make the platform pause before each movement.

8. Make a copy of the Mover_BP Actor. With the Actor selected, hold the Alt key and move the
Actor or press Ctrl+W to duplicate the Actor.

9. Move the duplicated Actor to a new location and then drag its Destination transform so that
it lines up with the Destination transform of the first Actor.

10. Preview the level and have the character ride the first mover to the second mover.

11. Make adjustments to both Actors’ Start and Destination transforms, Move Speed, and
Delay times to refine movement.

FIGURE 19.4
Setting the Game Mode.

ptg18222824

348 HOUR 19: Making an Action Encounter

 BP_Turrets Folder
The BP_Turrets folder contains three types of turret Blueprints and their projectile Blueprints.

There are two tracking turrets that track the character when it is in a specified distance from

their position. There is also a pattern-based turret that spawns projectiles in a set direction in a

specific pattern. All the turrets work with both of the provided Game Modes.

In the Content Browser, go to Hour_19/BP_Turrets/, open the TurretGallery map, and preview the

level.

These are the Blueprints in this folder:

 Pattern_Projectile_BP: This is a projectile Blueprint that is spawned by the PatternTurret_

BP Blueprint. It causes damage to the player when hit.

 PatternTurret_BP: This Blueprint spawns the Pattern_Projectile_BP Blueprint in a pattern

based on specified properties. It can be placed, rotated, and uniformly scaled as needed.

 ProjectileTurret_BP: This turret tracks the player character and fires a projectile

(TurretProjectile_BP) at the character when he or she moves within a specified range. The

Turret Range, Track Speed, and Fire Rate can be adjusted as needed. This Blueprint can be

placed, rotated, and uniformly scaled as needed.

 TraceTurret_BP: This turret tracks the player character and fires a trace weapon at the

character when he or she moves within a specified range. The Turret Range, Track Speed,

and Fire Rate can be adjusted as needed. This Blueprint can be placed, rotated, and

 uniformly scaled as needed.

 TurretProjectile_BP: This Blueprint is spawned by the ProjectileTurret_BP Blueprint. It

causes damage to the player when hit.

BP_Respawn Folder
In the BP_Respawn folder are two Blueprint classes that can be used to respawn at checkpoints

or to destroy the player when he or she falls off a ledge.

In the Content Browser, go to Hour_19/BP_Respawn, open the Respawn_Gallery map, and

 preview the level.

These are the Blueprints in this folder:

 Checkpoint_BP: This Blueprint class works with the respawn system in the provided Game

Modes. When the character walks over this Actor, it sends its location to the Game Mode.

Then when the player dies, he or she respawns to the Actor’s location. If there are multiple

Actors of this class in a level, the last one to be interacted with is the character’s respawn

location.

ptg18222824

Using Blueprint Classes 349

 KillVolume_BP: This Blueprint class destroys the player character when touched, forcing

the destroy event in the provided Game Modes to fire and respawn the player at the last

touched checkpoint Actor.

BP_Pickup Folder
In the BP_Pickup folder are three pickup Blueprint classes. One is a health pickup that gives the

player health. Another is a collection pickup that the player can collect while playing the level.

The third is a physics-based pickup that can be picked up with a physics gun, so the player can

pick up the Actor and move it from one location to another. This Blueprint works only with the

provided basic first-person Game Mode when the player uses the physics gun.

In the Content Browser, go to Hour_19/BP_Pickup, open the Pickup_Gallery map, and preview

the level.

These are the Blueprints in this folder:

 CollectionPickup_BP: For this Blueprint, you can change the mesh, material, and point

assignment. It works with both the provided first- and third-person Game Modes. This

Blueprint can be scaled and placed anywhere.

 HealthPickup_BP: For this Blueprint, you can change the mesh, material, and health

amount. This Blueprint works with both the provided first- and third-person Game Modes.

It can be scaled and placed anywhere.

 PhysicsPickup_BP: For this Blueprint, you can change the mesh material. It works only

with the physics gun in the first-person Game Mode. It has an Actor tag already assigned

to it so that it works with the physics gun.

BP_Levers Folder
The BP_Levers folder contains a collection of Blueprint classes used to activate or turn on and off

other Blueprints. There is a Blueprint that requires the player to press the E key to use the lever,

and there is a touch-based Blueprint that requires the character or a tagged Physics Actor to be

placed on it to activate another Actor.

Lever and switch plate Blueprints can be used to open and close the Door_BP Blueprint and the

Stomper_BP Blueprint class found in the BP_Common folder.

In the Content Browser, go to Hour_19/BP_Levers, open the Lever_Gallery map, and preview

the level.

ptg18222824

350 HOUR 19: Making an Action Encounter

This folder contains the following Actors:

 UseKeyLever_BP: This Actor works when the player character walks up to it and presses

the E key. It animates the lever and sends a signal to any Actor in the level that has been

assigned to its list of Actors to activate.

 Door_BP: This touch trigger door opens when the player walks up to it. It can be

set to a locked state that requires another Actor, such as the UseKeyLever_BP or the

TouchActivation_BP Actor, to unlock the door before it can be used by the player.

 PhysicSpawner_BP: When placed in the level, the player can walk up to this Actor and

press the E key to spawn a physics pickup (found in the BP_Pickup folder). There is a

 property that lets you assign the tags that are spawned to the Physics Actor.

 TouchActivation_BP: This Blueprint class works when either the character or a physics

Pickup_BP Actor with Actor tag set to Key interacts with it. It can unlock Door_BP or turn

on ActivateStomper_BP. You can manually assign other Actors in the level you want to be

activated by using TouchActivation_BP when it is interacted with.

 ActivateStomper_BP: This stomper Actor can be turned on when it receives a signal from

UseKeyLever_BP or TouchActor_BP.

All these Actors use Blueprint Interface (BPI) to communicate. When placing these Actors, you

need to assign which placed Actor they should affect.

Actor and Component Tags
For the physics gun to work with a Physics Actor, the Physics Actor must have an Actor tag. A tag

is name that can be assigned to either an Actor or a Component of an Actor, and it can be used

to differentiate between two or more of the same Actor or Component types in Blueprint. In this

case, the physics gun sequence in the FPS character Blueprint only looks for Physics Actors with

the assigned Actor tag of Pickup. For example, you may have two Static Mesh Actors simulating

physics but want only one of them to be usable with the physics gun. In this case, you would

need to assign the Pickup tag to the Physics Actor you want the player to be able to pick up.

In the Content Browser, go to Hour_19/BP_Pickups, open the ActorTagExample map, and

 preview the level. Press the 3 key to switch to the physics gun.

There are two Static Mesh Actors here, both simulating physics. Both Actors can be pushed

around when you walk into them, but the Static Mesh Actor on the right has been assigned an

Actor tag called Pickup and can therefore be picked up, dropped, poked, and thrown. With the

physics gun selected, try to pick up both Actors.

Figure 19.5 shows the level’s Details panel properties for the tagged Static Mesh Actor.

ptg18222824

Q&A 351

FIGURE 19.5
Actor and Component tags.

Because the PhysicsPickup_BP Actor already has the Pickup tag assigned, it already works with

the physics gun when placed or spawned into the level.

Summary
This hour you learned about a collection of Blueprint classes you can place and modify to

 create obstacle-based level encounters for first- or third-person Game Modes. You learned how to

change the players’ default movement abilities and were introduced to the concepts of Actor and

Component tags.

Q&A
Q. When I play the level I made in this hour, I don’t have a first- or third-person character to

control. Why?

A. Remember to set Game Mode Override to BasicFPSGameMode or Basic3rdPGame for the
level on the World Settings panel.

ptg18222824

352 HOUR 19: Making an Action Encounter

Q. When I assign Actors to the Actor Activate List property of TouchActivation_BP, they don’t

turn on. Why?

A. While the TouchActivation_BP Actor broadcasts a signal to any Actor in the list through a
Blueprint Interface (BPI), not all the Actors in the list know how to receive the signal. Only
the Door_BP and ActivateStomper_BP Blueprint classes are set up to respond to the signal.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. To change the player’s default movement properties, which component do you need to edit

in the character Blueprint class assigned to the Game Mode?

2. If you want to be able to pick up a Static Mesh Actor simulating physics with the physics
gun, what do you need to assign for it?

3. If you need more control or accuracy when placing Actors in the level, it helps to turn on
___________ for grid, rotation, and scale transforms.

Answers
1. Character Movement Component contains the character’s default movement properties.

2. Actor tag. The Physics gun in the First Person Game Mode only interacts with Static Mesh
Actors simulating physics that have been given an Actor tag of Pickup.

3. Snapping. Turning on snapping allows you to control the number of grid Units, rotation
Degrees, and scale percentage.

Exercise
For this exercise, you create an obstacle course level in the Hour_19 project, using the provided
Blueprint classes and one of the Game Modes. When you are finished creating the obstacle
course, you can download one of the free Infinity Blade environment asset packs and the free
Infinity Blade FX pack from the marketplace and add them to the project so you can set dress
your level.

1. In the Hour_19 project, create a new default level, give it a name, and save it to the Maps
folder.

2. Open the World Settings panel for the level and set the Game Mode Override property of
the level to the first-person (BasicFPSGameMode) or third-person (Basic3rdPGameMode)
Game Mode.

3. Block out the level using primitive Static Mesh Actors and/or BSP Actors.

ptg18222824

Exercise 353

4. Using the Blueprint classes in the BP_Common, BP_Pickups, and BP_Respawn folders,
design an obstacle course for the player.

5. Make adjustments to Actor properties and preview and refine the level as needed.

6. When you are happy with the level, download one of the free Infinity Blade asset packs from
the marketplace in the Unreal Launcher and add the content to the project.

7. Download the free Infinity Blade FX pack from the marketplace in the Unreal Launcher and
add it to the project.

8. Using the Infinity Blade assets, set dress the level, and place lights and the Ambient Sound
Actor throughout as needed.

9. Build lighting and play the level.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 20
Creating an Arcade Shooter:

Input Systems and Pawns

What You’ll Learn in This Hour:

 Identifying requirements with a design summary

 Creating a new project

 Making a custom Game Mode

 Creating a custom Pawn and Player Controller

 Controlling a Pawn’s movement

 Setting up a fixed camera

When making a new video game, you almost always have the player take control of something

in the game world. This can mean a full character or a simple object. What is important is

that the player does something, like press a key or pull a trigger, and something in the game

responds. In UE4, you use Player Controllers to interpret those physical actions and Pawns to act

them out. This hour explores these concepts and helps you create your first game—a simple

arcade shooter. You will learn how to determine requirements from a design brief, how to create

and set up a new project, how to spawn and use a Pawn, and how to set up a game camera.

NOTE

Hour 20 Setup
In this hour, you begin to create a game from scratch. You will create a Blank project with Starter
Content. In the Hour_20 folder (available on the book’s companion website at www.sty-ue4.com),
you will find the assets that you need to work with along with a version of the game called
H20_AcradeShooter that you can use to compare your results.

http://www.sty-ue4.com

ptg18222824

356 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

Identifying Requirements with a Design
Summary
No two games are exactly alike. It is important to focus on the fundamental elements you want

to include in a game. In this hour, you will make a simple arcade shooter, similar to Space

Invaders or Asteroids. Before you can create the game, you need to determine the requirements

and features.

Your design in this case is simple: The player controls a spaceship that can move left or right and

has to either dodge or destroy asteroids that are in the way.

Identifying Requirements
It is crucially important to take some time when starting a project to determine what types of

interactions are necessary to make the design a reality. Understanding the requirements for a

game helps you focus production. For the game you create in this hour, you can break down the

design summary into the following component parts:

 The player controls a spaceship.

 The spaceship can move left or right.

 Asteroids are in the player’s way, moving downward.

 The spaceship can shoot the asteroids to destroy them.

Breaking down the summary brings up some things you need to keep in mind. The design tells

you that you will need an Actor in the game that the player can control; in UE4, these are called

Pawns. The design also tells you that the movement of the spaceship is limited to one axis. This

requirement means you need to set up input bindings for that one axis. Because you know the

player is constrained, you can also assume that the camera is fixed and that the player does

not control it. You also see what obstacles the player will face and that another type of input is

needed to fire a projectile.

Creating a Game Project
The first thing you always need to do when creating a new game is create a new project in UE4.

UE4 provides a lot of great starting content and templates for new projects. You can also create

fantastic experiences from scratch by using the Blank Project template during project creation.

ptg18222824

Creating a Game Project 357

TIP

Setting Your Startup Level
You can change the default start level that the game and the Editor use by selecting Project Settings >

Maps & Modes. Changing Editor Default Map to the map you are currently working on can speed up
your process, and changing Game Default Map changes the map the game uses to start (when play-
ing in Standalone).

In the following Try It Yourself, you create a new blank project and an empty map to use as a

blank canvas to build your game-creation experience.

▼TRY IT YOURSELF

Create a New Project and Default Level

Follow these steps to create a new blank project and replace the default level with a new empty
level as the foundation for your arcade shooter:

1. Launch the UE4 Project Browser and go to the New Project tab, as shown in Figure 20.1.

2. Select the Blank Project template.

3. Target the project to Desktop/Console.

4. Set the Quality setting to Maximum Quality.

5. Set the folder location for your project to be stored.

6. Name the new project ArcadeShooter.

7. Click the Create Project button to create your new project.

8. When your new project loads, select File > New Level (or press Ctrl+N).

9. Choose the Default template from the New Level dialog.

10. Select File > Save As (or press Ctrl+Shift+S).

11. In the Save Level As dialog, right-click the Content directory and select New Folder. Rename
the new folder Maps.

12. Make sure the Maps directory is selected and in the Name field, name the map Level_0.

13. Click Save.

14. In the Project Settings panel, click Maps & Modes.

15. Set both Game Default Map and Editor Startup Map to Level_0.

ptg18222824

358 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

TIP

The Maps Folder
While you can store level UAssets in any directory inside the Content directory, it is highly
 recommended that you store all levels in a directory named Maps. As long as your level is within a
folder named Maps, it will show up in drop-down lists like the ones for the game default map. It will
also make using the UE4 Front End executable for distribution and cooking slightly simpler by finding
your levels automatically.

Now that you have created a basically empty level, you can move on to setting up the game’s

logic and systems.

▼

FIGURE 20.1
The New Project tab in the UE4 Project Browser.

ptg18222824

Creating a Custom Game Mode 359

Creating a Custom Game Mode
You need a place to store your game’s logic and behaviors. In UE4, each level has its own

Blueprint, which is one place to store game logic, but putting too much scripting in the Level

Blueprint means a lot of copying and pasting down the road to transfer that logic to new levels

and maps. Instead, UE4 has the concept of a Game Mode. Like Level Blueprints, Game Modes

can store complex behaviors related to a game, but unlike with Level Blueprints, that behavior

can be shared between multiple levels.

The Game Mode is responsible for defining the behavior of the game being played and enforcing

rules. The Game Mode holds information about items a player begins the game with, what

 happens when the player dies or the game ends, game time limits, and scores.

Game modes are the glue between many of the different systems in a game. Game mode

Blueprints hold the characters or Pawns you are using and also reference which HUD class to

use, which spectator class to used, and the game state and player state classes that control the

information necessary for multiplayer experiences.

At the most basic level, the Game Mode sets the rules of the current game—for example, how

many players can join, how level transitions are handled, information about when the game is

paused or active, and game-specific behaviors like win and loss conditions.

Creating a new Game Mode is easy. In the Content Browser, right-click and select Blueprint

Class to open the Pick Parent Class window, which is where you can select Game Mode, as

shown in Figure 20.2.

ptg18222824

360 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

FIGURE 20.2
The Pick Parent Class window. This commonly used window offers several class options, including the Game
Mode option you need now.

▼ TRY IT YOURSELF

Create a New Game Mode Blueprint Class

Follow these steps to create a new Game Mode Blueprint class to store the game’s logic:

1. In the Content Browser, right-click and select Folder.

2. Name this folder Blueprints.

3. Double-click the Blueprints folder to open into it.

4. In the Content Browser, right-click and select Blueprint Class.

5. In the Pick Parent Class window that appears, select Game Mode.

6. Name your new Game Mode ArcadeShooter_GameMode.

7. Select File > Save All (or press Ctrl+S).

ptg18222824

Creating a Custom Pawn and Player Controller 361

Now that you have a new Game Mode, you need to tell UE4 to load it instead of the default

Game Mode. You do this in the Project Settings panel.

TIP

Level Overrides
Sometimes it is necessary to use different Game Modes during different parts of a game. Each level
can also override the Game Mode and class settings. To change these settings on a per-level basis,
select Window > World Settings and find the Game Mode Override property. This property works
exactly as it does in the Project Settings panel. Also, when you add a Game Mode Override setting,
you can override other properties, such as those for Pawns or HUD classes, which can be especially
useful when you’re prototyping new features.

There is only ever one Game Mode present per level—either the default Game Mode set in

the Project Settings panel or the Game Mode set on a per-level basis. In a multiplayer game,

the Game Mode only ever runs on the server, and the results of the rules and state are sent

 (replicated) to each client.

▼TRY IT YOURSELF

Set the New Default Game Mode

Follow these steps to use the Maps & Modes section of the Project Settings panel to set the
default Game Mode for your game:

1. Select Edit > Project Settings.

2. In the Project Settings panel, click the Maps & Modes section.

3. In the Default Modes section, click the Default GameMode field to open the search box for
all Game Modes.

4. Select your newly created ArcadeShooter_GameMode Game Mode.

Creating a Custom Pawn and Player
Controller
In UE4, Actors that are controlled directly by players or artificial intelligence (AI) are called

Pawns. These Pawns can be practically anything: dinosaurs, humans, monsters, vehicles, bouncy

balls, spaceships, even animate food. Any player- or AI-controlled entity in a game is a Pawn.

Some games may not have physical or visible representations of players, but Pawns are still used

to represent the physical locations of players in the game world.

ptg18222824

362 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

Pawns define the visible appearance of the controlled objects and also can control movement,

physics, and abilities. It is often useful to think of them as the physical bodies of the player in

the game world.

The non-physical representation of a player is a Controller. Controllers are the interface between

a Pawn and the player or AI controlling it.

Controllers are Actors that can possess and control Pawns. Again, Controllers are non-physical

and usually do not directly determine physical properties (e.g., appearance, movement, physics)

of the possessed Pawn. Instead, they are more the representation of the will or intent of the player.

There is a one-to-one relationship between Controllers and Pawns—in other words, one

Controller per Pawn and one Pawn per Controller. With this in mind, Pawns can be possessed

(i.e., controlled) by AI through an AI Controller or by a player through a Player Controller.

The default Player Controller handles most behavior you need for your game, but you should

create your own Pawn.

Inheriting from the Default Pawn
To create a Pawn, you can create a new Blueprint class. This time, however, you start with a

class from the All Classes section of the Pick Parent Class window that has a few more features

already premade for you. When you create a Blueprint class, you expand the All Classes to get

access to all the classes in the project. As shown in Figure 20.3, you can look through this list for

specific classes. In this case, you want to use the DefaultPawn class because it automatically sets

up some of the behaviors that you are going to need in your game.

FIGURE 20.3
In the Pick Parent Class window, expand the All Classes subsection and search for the Pawn you want, such
as DefaultPawn.

TIP

Class Inheritance
Inheriting from an existing class allows generalized behaviors to be shared with extreme ease.
By inheriting from the DefaultPawn class, for example, you create a class that is a clone of several
generalized behaviors but that has the ability to make specific changes. If improvements are
made to the DefaultPawn class (or any of its parents), your Pawn will automatically receive those
 improvements as well.

Using inheritance throughout a project helps you avoid repetition and inconsistent work.

ptg18222824

Creating a Custom Pawn and Player Controller 363

 You now have a new Pawn class, and you need to understand the different parts that make up

the class. Double-click your new Hero_Spaceship class in the Content Browser to open it in the

Blueprint Class Editor.

Look at the component hierarchy. By default, there are three components in a DefaultPawn

class: CollisionComponent, MeshComponent, and MovementComponent (see Figure 20.4).

These three components handle the major types of behaviors a Pawn is responsible for.

FIGURE 20.4
The component hierarchy in the Blueprint Class Editor for a DefaultPawn class.

▼TRY IT YOURSELF

Create Custom Pawn and Player Controller Classes

Follow these steps to create a new Blueprint class that inherits from the DefaultPawn class and
create a new Blueprint class that inherits from the Player-Controller class:

1. In the Content Browser, navigate to the Blueprints folder.

2. Right-click in the Content Browser and select Blueprint Class.

3. In the Pick Parent Class window that appears, expand the All Classes category.

4. In the Search field, type defaultPawn and select the DefaultPawn class from the results.
Click Select at the bottom of the window.

5. Rename the new Pawn Blueprint class Hero_Spaceship.

6. Right-click in the Content Browser and select Blueprint Class.

7. In the Pick Parent Class window that appears, expand the Common Classes category and
select Player Controller.

8. Rename the new Player Controller Blueprint class Hero_PC.

ptg18222824

364 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

CollisionComponent handles both physics collisions of the Pawn and trigger overlaps of the

Pawn with volumes or Actors in the level. It represents the physical volume of the Pawn and can

be shaped to fit the Pawn’s simplified form. CollisionComponent does not show up in a game

and is not part of the Pawn’s visual representation.

MeshComponent controls the visuals in a game. Right now for your game, this MeshComponent

class is a sphere, meaning that the visual representation of your Pawn is a sphere. You can

replace or modify MeshComponent to make your Pawn look like anything you desire. You can

add other types of components here to change the visuals, including Particle Emitters, Skeletal

Meshes, 2d Sprites, and complex hierarchies of Static Meshes.

MovementComponent controls your Pawn’s movement. Using MovementComponent is a

 convenient way of handling player movement. Complex tasks (such as checking for collision

and handling velocity) are simplified through the convenient interface of MovementComponent.

Because you haven’t changed it yet, your Pawn is currently just a simple sphere. You can change

this by replacing MeshComponent completely or by changing its Static Mesh reference. In the

next Try It Yourself, you will import the UFO mesh used by many of the UE4 content examples

and then replace the current Pawn’s mesh with it.

▼ TRY IT YOURSELF

Make the Spaceship Look Good

Your new Pawn is pretty drab as a sphere. Follow these steps to improve its looks:

1. In the root folder in the Content Browser, right-click and select New Folder to create a new
folder.

2. Rename this new folder Vehicles.

3. Open the Vehicles folder and click the Import button.

4. In the Import dialog, navigate to the Hour_20/RawAssets/Models folder that comes with the
book.

5. Select the UFO.FBX file and click Open.

6. In the FBX Import Options dialog that appears, leave all the settings at their defaults and
click Import All.

7. In the Content Browser click Save All (or press Ctrl+S).

8. In the Content Browser, navigate to the Blueprints folder and double-click the
Hero_Spaceship Blueprint class UAsset to open it in the Blueprint Class Editor.

9. If the Editor shows only the Class Defaults panel, then in the note beneath the panel title,
click the Open Full Blueprint Editor link.

ptg18222824

Controlling a Pawn’s Movement 365

Controlling a Pawn’s Movement
UE4 makes controlling a Pawn’s movement very easy. Because you inherited your Pawn from

the DefaultPawn class, all the heavy lifting has already been done. To see just how simple it is to

control your Pawn’s movement, you can test your work.

First, you need to tell the Game Mode to spawn the player using your new Hero_Spaceship

Pawn by default. You set this in the class Defaults panel in the Game Mode’s Blueprint Class

Editor or in the Maps & Modes section of the Project Settings panel.

In the next Try It Yourself, you set the Hero_Spaceship Pawn class as the default Pawn class in

ArcadeShooter_GameMode. You also set the Player Controller class to Hero_PC.

▼10. In the Components panel, select MeshComponent; in the Details panel, select the Static
Mesh drop-down, type UFO in the search box, and select the UFO UAsset from the search
results.

11. In the Details panel, set the transform’s Scale property to 0.75, 0.75, 0.75 to fit the UFO’s
bulk inside the CollisionComponent’s radius.

12. In the toolbar, click Compile and then click Save.

▼TRY IT YOURSELF

Set the DefaultPawn and PlayerController Classes

The Game Mode needs to know which Pawn and Player Controller you want to be spawned when
the game starts. Follow these steps to set these things now:

1. In the Content Browser, navigate to the Blueprints folder and double-click the
ArcadeShooter_GameMode Blueprint class UAsset.

2. In the class Defaults panel, in the Classes category, find the Default Pawn Class property
and click its down arrow.

3. Select the Hero_Spaceship Blueprint class.

4. Also in the class Defaults panel, click the down arrow next to the Player Controller property
and select the Hero_PC Blueprint class.

5. In the toolbar, click Compile and then click Save.

ptg18222824

366 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

With Hero_Spaceship set up to be the Game Mode’s default Pawn, you are ready to test your

Pawn’s movement. In the Level Editor toolbar, click Play, as shown in Figure 20.5. When the

game starts, use the arrow keys or WSAD to move around. You can also use the mouse to look

around. When you are done, press the Esc key to stop.

CAUTION

Using a Player Start
If things don’t seem to be working, it may be because there is no Player Start Actor in the scene.
If you don’t see Player Start in your World Outliner panel, you can easily add a new one by going to
Modes > Basic > Player Start and dragging it into the world. Remember to rotate the Player Start
Actor to the direction in which you want your Pawn to come out looking!

FIGURE 20.5
Click the Play button on the toolbar to instantly test your game while staying in the Editor.

Although your Pawn can move freely, a couple things don’t seem to match your design brief.

First, the camera is first person instead of top-down and fixed. Second, your Pawn is moving

forward and backward as well as side to side. In this case, you want to pull back from all the

features that UE4 has provided you and put in some logic to lock things down.

Disabling the Default Movement
The DefaultPawn class does a lot automatically, but in this case, you want to more manual

control. Luckily, it’s pretty simple to get that control. The DefaultPawn class’s Defaults panel

contains a property called Add Default Movement Bindings, which is selected by default. By

unselecting this property, you can disable the DefaultPawn class’s basic movement and overwrite

its behavior and bindings with your own (see Figure 20.6).

FIGURE 20.6
In the Class Defaults of the Pawn, disable the Add Default Movement Bindings check box.

ptg18222824

Controlling a Pawn’s Movement 367

 Setting Up Input Action and Axis Mappings
A locked spaceship isn’t exactly what you want. It looks like you quickly swung from too much

freedom to none at all, and you need to add back some user control. One part of this is binding

different keypresses to different actions. Taking an input—like a joystick movement, a keypress,

or a trigger pull—and registering a specific action with that input is called input binding, and you

do this at the Project level.

To set input binding, select Settings > Project Settings and then open the Input section of the

Project Settings panel. At the top of this section are two lists in the Bindings section: Action

Mappings and Axis Mappings. The difference between these two sections is subtle but important.

Action mappings are for single keypress and release inputs. These are usually used for jumping,

shooting, and other discrete events. Axis mappings are for continuous input, such as movement,

turning, and camera control. Both types of mappings can be used simultaneously and

 picking the right type of binding for your actions will make creating complex and rich player

 interactions easier.

Axis mappings work slightly differently depending on the hardware generating an input. Some

hardware (such as mice, joysticks, or gamepads) return input values to UE4 in a range from −1

to 1. UE4 can scale that value, depending on how much the user wants to let the input influence

the game. Keyboards, however, separate up and down and left and right to different keys and

don’t provide a continuous range of input. A key is either pressed or it isn’t, so when you’re

 binding a key as an axis mapping, UE4 needs to be able to interpret that pressed key as a value

on that same −1 to 1 scale.

▼TRY IT YOURSELF

Disable Default Movement

In the game you are creating, the default Pawn is doing more than you need. Follow these steps
to disable this behavior through the Hero_Spaceship Pawn’s Blueprint class defaults:

1. In the Content Browser, navigate to the Blueprints folder and double-click the
Hero_Spaceship Blueprint class.

2. In the Class Defaults panel, in the Pawn category, ensure that the Add Default Movement

Bindings property’s check box is unchecked to disable this feature.

3. In the toolbar, click Compile and then click Save.

4. Play again and notice that you can no longer move around. The camera is still in first
 person, but your spaceship is now locked where it was spawned.

ptg18222824

368 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

For movement, you use axis mappings, and in your arcade shooter, you are limiting the player’s

movement to a single axis, so the player can move either left or right. In the next Try It Yourself,

you set up the input bindings to support left and right movement for your Pawn.

▼ TRY IT YOURSELF

Create the MoveRight Set of Mappings

In the following steps, you set up the game to be prepared for user input. Bind all the appropriate
keys and the left gamepad thumbstick to left and right movement. Any bindings that will cause
the user to move left instead of right should have a value of −1.0 set for their scale.

1. Select Edit > Project Settings.

2. In the Project Settings panel, select the Input category.

3. Under the Bindings category, find the Axis Mappings property, click the + icon beside it.

4. Expand the Axis Mappings field by clicking the arrow to the left of it, and rename the
 mapping MoveRight.

5. Click the arrow to the left of the MoveRight binding to expand the key binding list.

6. Click the + icon beside the MoveRight field four times to create five None mappings.

7. Click the down arrow next to each None field and replace each field to match Figure 20.7.

8. Ensure that each Scale property is set to match Figure 20.7.

FIGURE 20.7
The Axis Mappings settings for MoveRight, which have three parts each: the name of the mapping, the key
or axis that is being bound, and the amount positive or negative of the input that should be accumulated
each second.

At the top of the Axis Mappings properties in the Project Settings panel is a field where you input

the name for the action that is to be performed. You click the + symbol beside the action name

to add a new binding. Each binding has two parts: the input that is being bound and a scale

next to it that modulates the result.

ptg18222824

Controlling a Pawn’s Movement 369

You want the game to treat keypresses, like A and D, as a continuous axis. To do this, you need

to have some of those keys be negative; in other words, when you press left, you want the axis to

go down, and when you press right, you want the axis to go up.

For thumbstick axes (e.g., Gamepad Left Thumbstick X-Axis), the negative values are already

calculated, so the scale should usually just be 1.0.

In this example, the keys A and D, the left arrow and right arrow keys, and the Gamepad

Left Thumbstick are all being bound to the MoveRight action. This brings up an important

 distinction: By using Action Mappings and Axis Mappings, you can bind multiple different

input methods to the same event. This means less testing and duplication of Blueprint scripts

in your project, and it means everything becomes more readable. Instead of having Blueprint

scripts checking whether the A key is pressed, the Blueprint can just update movement when

the MoveRight event is triggered.

But just creating an input binding doesn’t make things move. Now you need to actually use

the MoveRight action.

Using Input Events to Move a Pawn
You are now ready to set up movement again. You have a fancy input axis called MoveRight

and a Pawn that is just itching to move again. First, you need to open the Blueprint Class Editor

of your Pawn and go to the Event Graph. Here, you can begin to lay down behaviors that will

fire when your MoveRight action is triggered.

In the Event Graph, right-clicking and searching for your action by name, MoveRight, brings

up the InputAxis MoveRight event into the graph, as shown in Figure 20.8.

FIGURE 20.8
Axis mappings show up by name under Axis Events. There are also Axis Values functions and Pawn functions,
but these functions are not what you are looking for in this case.

ptg18222824

370 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

Once you have an axis event, you can query the axis value and convert it into movement.

To do this you need a few more Blueprint nodes, starting with Add Movement Input.

This function works with MovementComponent to interpret a value and a world space direction

to move the Pawn in.

By hooking up the InputAxis MoveRight event’s execution pin and the value that is returned

in Axis Value to Add Movement Input, MovementComponent can take the player’s inputs and

move the Pawn in a world direction.

Since you want the spaceship to move left or right on input, you need to take the vector coming

from the Pawn’s right axis. You can get this vector by using the Get Actor Right Vector node

and plugging its Return Value into the Add Movement Input’s World Direction (see Figure 20.9).

FIGURE 20.9
The finished graph of the Add Movement Input.

▼ TRY IT YOURSELF

Hook Up the MoveRight Axis Mapping to the Pawn’s Movement

With the MoveRight axis mapping, the Pawn needs to know how to interpret the values that come
from the mapping. Follow these steps to hook up the simple graph required to tell the Pawn how
to move on player input:

1. In the Content Browser, navigate to the Blueprints folder and double-click the
Hero_Spaceship Pawn’s Blueprint class to open the Blueprint Class Editor.

2. Right-click in an open space in the Event Graph and enter moveright in the search box.

3. Select Axis Events > MoveRight from the search results.

4. Click+drag from the InputAxis MoveRight event node’s exec out pin and place an
Add Movement input node.

ptg18222824

Setting Up a Fixed Camera 371

 TIP

Default Pawn Goodness
In your game, you use Add Movement Input, which takes a world direction. This powerful function
can move the Pawn in any direction. The DefaultPawn class, however, gives you some convenience
 functions for this exact use case. Try replacing the Add Movement Input and Get Actor Right Vector
with the DefaultPawn class’s MoveRight function. This will have exactly the same result, but it keeps
the graph a little bit cleaner, as shown in Figure 20.10.

FIGURE 20.10
Alternative setup, showing the DefaultPawn class’s MoveRight function instead of the Add Movement
Input node.

Setting Up a Fixed Camera
Right now, your game has a camera that follows your Pawn around. This is the default, but

for the game you want to make, it isn’t quite right. Instead, you want a camera to stay fixed,

 looking down at the spaceship from above. You also don’t want it to move when the Pawn does.

▼5. Hook the InputAxis MoveRight event node’s Axis Value output pin to the Add Movement
Input node’s Scale Value input pin.

6. Click+drag from the Add Movement Input node’s World Direction input pin and place a
Get Actor Right Vector node.

7. On the toolbar, click Compile and then click Save.

8. When this graph is all hooked up, test the game again. Pressing any of the input keys
(A, D, left arrow, right arrow) or using a compatible gamepad’s left thumbstick should move
the camera either right or left.

ptg18222824

372 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

To solve this quandary, you can use Camera Actors and view targets and the built-in

PlayerController class to set the view that a player sees. This setup could be done in the Level

Blueprint, but it would then be more difficult to port your game logic to a new level. Instead,

you are going to bundle this camera logic into a Game Mode. When the game begins, the Game

Mode will spawn a camera for your game and then tell the PlayerController class to use that

new camera.

In the next Try It Yourself, you use the BeginPlay event and the SPawn Actor from Class node

to create a new camera and position it with a Make Transform node before setting it as the

PlayerController class’s view target.

▼ TRY IT YOURSELF

Create and Set a Fixed-Position Camera

Follow these steps to use the ArcadeShooter_GameMode to spawn a new camera and set it as
the PlayerController class’s view target:

1. In the Content Browser, navigate to the Blueprints folder and double-click the
ArcadeShooter_GameMode Blueprint class to open the Blueprint Class Editor.

2. If the Editor shows only the Class Defaults panel, then in the note beneath the panel title,
click the Open Full Blueprint Editor link.

3. In the EventGraph, locate the Event BeginPlay node, and if it doesn’t exist, create it by
 right-clicking and searching for begin play.

4. Click+drag from the Event BeginPlay node’s exec out pin and place a SPawn Actor from

Class node.

5. On the SPawn Actor from Class node, click the down arrow in the Select Class field, and
select CameraActor.

6. Click+drag from the SPawnActor CameraActor node’s SPawn Transform property and place a
Make Transform node.

7. Set the Make Transform node’s Location property to 0.0, 0.0, 1000.0.

8. Set the Make Transform node’s Rotation property to 0.0, −90.0, 0.0.

9. To the right of the SPawnActor CameraActor node place a new Get Player Controller node.

10. Click+drag from the Get Player Controller node’s Return Value output pin and place a Set

View Target with Blend node.

11. Hook the SPawnActor CameraActor node’s Return Value output pin into the Set View Target
with Blend node’s New View Target input pin.

12. Hook the SPawnActor CameraActor node’s Exec Out pin to the Set View Target with Blend
node’s exec in pin. Figure 20.11 shows the completed GameMode Event Graph.

ptg18222824

Q&A 373

▼13. On the toolbar, click Compile and then click Save.

14. Give the game another test run. At this point the camera should be looking straight down at
your Pawn, which moves left or right when its input keys are pressed.

FIGURE 20.11
The finished Event Graph to set up a fixed camera in the Game Mode.

Summary
In this hour, you learned how to make a new UE4 project from scratch and how to get it set up

with a custom level and a new Game Mode. You learned what Pawns and Player Controllers are

and how to use them. You also learned how to disable the default movement of the DefaultPawn

class and how to hook up your own movement and inputs through the Project Settings panel.

Finally, you explored one way of setting up a fixed camera in a game.

Q&A
Q. Why should I put all the game logic in a Game Mode instead of in a Level Blueprint?

A. There is no requirement that game logic be put in one place or the other. Instead, it helps
to think of the separation as a way to reduce repeated work later. All the logic that is
shared between multiple levels should probably be put in a Game Mode or individual Actors,
while level-specific logic (like triggers that cause doors to open or lights to turn on) should
usually be put in Level Blueprints. You can choose to put everything in Level Blueprints, but
if you decide to make a new level, you will have a harder time making sure everything works
there and stays up to date than if you primarily use a Game Mode.

ptg18222824

374 HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns

Q. Does a Pawn need to inherit from the default Pawn?

A. Not at all! DefaultPawn is just a convenience class, but all its features can be replicated
with a bit of work. UE4 also comes with some other convenient Pawn classes, such as the
Character class, which contains a Skeletal Mesh component and some logic dedicated to
locomotion.

Q. Positioning a camera by inserting raw numbers is difficult. Do I have to spawn a camera this

way?

A. No. Another option is to place a camera in a level and then reference it in level script when
calling Set View Target with Blend. This brings the logic out of the Game Mode and makes it
level specific, allowing easier artistic control of the camera.

Q. I don’t like the speed at which my Pawn moves. Can I change it?

A. Absolutely. To change the Pawn’s movement speed, open up the Pawn’s Blueprint Class
Editor and select MovementComponent. In the Details panel, set the three float values that
control the Pawn’s max speed, acceleration, and deceleration.

Q. Do I have to use only the single MeshComponent in the Hero_Spaceship Pawn Blueprint

class?

A. No, you can use any number of components to define the visuals of a Pawn. If you are
adding several components (or even if you are sticking with the single one), you might want
to disable the physics simulation of your Static Mesh components. You can change the
collision presets by clicking on the individual component and finding the Collision Presets

property in the Details panel. Setting Collision Presets to No Collision ensures that it incurs
the lowest physics cost possible. Make sure CollisionComponent has Pawn Preset and
Generate Overlap Events enabled; if you don’t do this, in the next hour nothing will work.
Also, if you disable collision of any individual Static Mesh or visual components, make sure
the CollisionComponent’s sphere encapsulates your visuals.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: Pawns are Actors that players or AI control directly.

2. True or false: UE4 automatically knows which Game Mode to use by detecting it in the
Content Browser.

3. True or false: Action bindings and axis bindings only work with fixed names such as
MoveRight.

4. True or false: Axis bindings are for continuously pressed inputs like holding down a key or
moving a joystick.

ptg18222824

Exercise 375

Answers
1. True. Any Actors in the scene that AI or players directly control are called Pawns.

2. False. The Game Mode must be set either in the Project Settings panel or the level’s World
Settings panel.

3. False. Any string can be put into the input binding’s Name field and work. For example, you
could replace MoveRight with Strafe.

4. True. Any time you need more input information than a simple on or off switch, an axis
 binding is what you should map your actions to.

Exercise
In this hour’s exercise, practice setting up new input bindings to control your Pawn, modifying your
Pawn, and customizing your level. Hook the left and right movement of your Pawn to your mouse
input, and add walls or other affectations to your level. Then make the floors and walls invisible.
The following steps should be done in the same Project and Level made for this hour.

1. Select Project Settings > Input and in the Move Right binding found, add a new axis.

2. Set the new axis to Mouse X and the Scale property to 1.0.

3. Preview your game to see the mouse affect your Pawn’s location.

4. Select the MovementComponent of your Pawn in the Pawn’s Blueprint Class Editor.

5. Modify the Max Speed and Acceleration settings of MovementComponent to change how
fast the Pawn moves.

6. Select the floor of your level and duplicate it several times by pressing Ctrl+W.

7. Position the duplicated floors to box out the left and right sides of your level and stop your
Pawn from being able to leave the camera’s view.

8. Select all the duplicate floors and enable the Actor Hidden in Game property in the
Rendering category to make all the floors invisible while the game is running.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 21
Creating an Arcade Shooter:

Obstacles and Pickups

What You’ll Learn in This Hour:

 Creating an obstacle base class

 Making an obstacle move

 Damaging the Pawn

 Restarting the game on player death

 Creating a health pickup

 Creating a Blueprint that spawns other Actors

 Cleaning up old obstacles

In the previous hour, you made a new Game Mode and created a spaceship that can move back

and forth. Currently, however, your game isn’t really much of a game. To change this, in this

hour, you add some challenges to the game by introducing obstacles that can hurt and destroy

your spaceship. You also create new ways for the player to heal from damage. In this hour, you

learn how to create an Obstacle Blueprint class that your obstacles will inherit from, how to set

up your Pawn to receive damage, how to create a pickup Blueprint class to heal that damage,

and how to create a spawner Blueprint class that can automate the creation of your various

Actors.

NOTE

Hour 21 Setup
This hour you will continue working on the ArcadeShooter project you started in Hour 20, “Creating
an Arcade Shooter: Input System and Pawns.” If you prefer, as a starting point you can also use
the provided H20_ArcadeShooter project found in the Hour_20 folder that comes with the book
(available on the book’s companion website at www.sty-ue4.com).

After you finish this lesson, compare your results to the H21_ArcadeShooter Project found in the
Hour_21 folder that comes with the book.

http://www.sty-ue4.com

ptg18222824

378 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

Creating an Obstacle Base Class
Your game needs something to challenge the player. Obstacles come in many shapes and forms;

some are Actors that simply act as blockers for player progression, and others can cause damage

or a change of behavioral states in the player. You are making a spaceship game, so an asteroid

would be a good first obstacle. You need to create a new Actor in the world that has a Static

Mesh component to show what it is, a collision component to interact with the player’s Pawn,

and the ability to move down toward and past the player.

Since you may want to create several variations on this theme, you should take advantage

of Blueprint class inheritance to avoid rewriting the same logic over and over again. Because

directional movement is one of the primary features of the obstacles and pickups that you need,

you should create a base class that consolidates that movement ability. In the following Try It

Yourself, you set up a new Blueprint class that has all the requisite components that you will

inherit when you make your Obstacle classes.

▼ TRY IT YOURSELF

Set Up Your Obstacle Base Class

An obstacle can be as simple as a single Static Mesh or as complicated as a homing missile
launcher. There are a variety of options that all require similar base features, so you can create
the basic features necessary for movement and collision and later add custom logic. Follow these
steps to set up your Obstacle base class:

1. In the Content Browser, navigate to the Blueprints folder.

2. Right-click in the Content Browser and select Blueprint Class.

3. In the Pick Parent Class window that appears, select Actor from the Common Classes
 category.

4. Rename the new Actor Blueprint class Obstacle. Save it and open it in the Blueprint Class
Editor.

5. In the Components panel, add a new sphere collision component.

6. Make the sphere collision component the Actor’s root by dragging and dropping it on
DefaultSceneRoot.

7. In the Details panel for the sphere collision component, set the Sphere Radius property to
50.0 and set the Collision Presets property to Overlap All Dynamic.

8. In the Components panel, add a new sphere Static Mesh component.

9. Select the new Static Mesh component, which is currently named Sphere1, and rename it
StaticMesh.

10. In the Details panel for the StaticMesh, set the Collision Presets property to No Collision.

11. In the Components panel, and a new rotating movement component.

ptg18222824

Creating an Obstacle Base Class 379

Let’s take a moment to go over everything you did in this Try It Yourself. First, you made several

components (shown in Figure 21.1), but not all of them have obvious purposes.

The Static Mesh component is pretty self-explanatory; you need to be able to see obstacles, so

you need a mesh to represent it. You use UE4’s default Sphere Mesh for now, but you can import

and use any Static Mesh to fill this role.

FIGURE 21.1
The Obstacle Blueprint class’s components.

The sphere collision component is what you are going to use to handle all the game collision

and overlap information you need. When you added it, you changed the Collision Presets

 property to Overlap All Dynamic. You want the Actor to know when it has overlapped your

Pawn, and later you’ll want it to know when it has overlapped other obstacles. Because you

want to test against the sphere instead of the Static Mesh, you also set the Static Mesh compo-

nent’s Collision Presets property to No Collision.

GO TO HOUR 4, WORKING WITH STATIC MESH ACTORS, to learn more about the Collision Presets property.

Finally, you added a rotating movement component, which is similar to the floating Pawn move-

ment component you added to your Pawn in the previous hour. It is a component that contains

the behaviors necessary to cause an Actor to rotate in an arbitrary direction. You use it and the

Construction Script to cause an obstacle to rotate in a random direction each time it is created.

ptg18222824

380 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

▼ TRY IT YOURSELF

Make Each Obstacle Unique

If you place your obstacle in the level right now, nothing happens. If you place many copies of it in
the level, they all look and act exactly the same. Follow these steps to use the rotating movement
component and the power of Construction Script to change that:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Obstacle Blueprint class to open it in the Blueprint Editor.

3. Drag the rotating movement component from the Components panel and drop it into the
Construction Script to create a reference to the component.

4. Click+drag from the Rotating Movement reference node’s output pin and place a
Set Rotation Rate node.

5. Hook the Construction Script node’s exec out pin to the Set Rotation Rate node’s exec
in pin.

6. Place a Random Rotator node underneath the Set Rotation Rate node.

7. Hook the Random Rotator node’s Return Value output pin into the Set Rotation Rate node’s
Rotation Rate input pin.

8. In the My Blueprint panel, create a new float variable and name it Random Scale Min.

9. In the My Blueprint panel, create a new float variable and name it Random Scale Max.

10. On the toolbar, click Compile.

11. In the Class Defaults panel, set Random Scale Min to 0.7.

12. In the Class Defaults panel, set Random Scale Max to 1.5.

13. Click+drag from the Set Rotation Rate node’s exec out pin and place a Set Actor Scale

3D node.

14. Place a Random Float in Range node underneath the Set Actor Scale 3D node.

15. From the My Blueprint panel, drag and drop the Random Scale Min variable onto the
Random Float in Range node’s Min input pin.

16. Drag and drop the Random Scale Max variable onto the Random Float in Range node’s Max
input pin.

17. Hook the Random Float in Range node’s output pin into the Set Actor Scale 3D node’s New
Scale 3D input pin. A Float to Vector conversion node is automatically placed in between
the two nodes.

ptg18222824

Making Your Obstacle Move 381

You’ve now modified your rotating movement component to pick a random rotation at the

 creation of each Obstacle Actor, and you have made the Obstacle Actor range from 70% to

150% of the default size (see Figure 21.2).

FIGURE 21.2
The Obstacle Blueprint class’s Construction Script, setting the random rotation rate and random scale of each
Obstacle class instance.

Making Your Obstacle Move
You can’t really make a difficult game from a set of spinning but stationary asteroids. You need

to make these obstacles move. Since your game is locked to a single axis, the requirements are

rather simple, but you still need to put in a small bit of effort to get everything moving smoothly.

NOTE

Moving the World
This hour, you are constraining the player to a set axis and moving the world (or elements in the
world) past the player. In a fully fleshed-out version of the game, you would create the illusion of the
player’s Pawn moving through panning background elements and particle effects. It would also be
possible to make this game by having the character move forward instead of moving the world.

There is no right or wrong answer, although sometimes “faking it” and moving the world makes
behaviors and interactions easier to handle. Other times, actually moving the Pawn can make level
building easier and, depending on how complex the world is, potentially more efficient.

For your Pawn, you used a Flying Pawn Movement component to handle its motion. Your obsta-

cles and pickups aren’t Pawns, and you only want really simple movement. Instead of adding

a component, you use your Event Tick event to move the obstacle down past the player each

frame. Also, because you don’t want all the obstacles to move at exactly the same speed, you

give each asteroid a different velocity through the Construction Script.

ptg18222824

382 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

In the following Try It Yourself, you use an Event Tick event, a Random Float in Range node, and

the AddActorWorldOffset node to get the obstacle moving along.

▼ TRY IT YOURSELF

Move Your Obstacle

Your Obstacle Actors are stationary, so follow these steps to use the Blueprint Event Graph and
Construction Script to make them move:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Obstacle Blueprint class to open it in the Blueprint Class Editor.

3. Click on the Event Graph.

4. In the My Blueprint panel, create a new Float variable and name it Speed Min.

5. In the My Blueprint panel, create a new Float variable and name it Speed Max.

6. In the My Blueprint panel, create a new Float variable and name it Current Speed.

7. In the My Blueprint panel, create a new Vector variable and name it Movement Direction.

8. On the toolbar, click Compile.

9. In the Class Defaults panel, set Speed Min to 200.

10. In the Class Defaults panel, set Speed Max to 500.

11. In the Class Defaults panel. set Movement Direction to -1.0, 0.0, 0.0.

12. Click+drag from the Event Tick node’s Delta Seconds output pin and place a Float * Float

node.

13. Drag the Current Speed variable and drop it onto the Float ∗ Float node’s second input pin.

14. Click+drag from the Float ∗ Float node’s output pin and place a Vector * Float node.

15. Drag the Movement Direction variable and drop it onto the Vector * Float node’s vector
input pin.

16. Click+drag from the Event Tick node’s exec out pin and place an AddActorWorldOffset node.

17. Hook the Vector * Float node’s output pin into the AddActorWorldOffset node’s Delta
Location pin.

18. Click on the Construction Script.

19. Click+drag from the Set Actor Scale 3D node and place a Set Current Speed node.

20. Place a Random Float in Range node underneath the Set Current Speed node.

21. Drag the Speed Min variable and drop it onto the Random Float in Range node’s Min
input pin.

ptg18222824

Making Your Obstacle Move 383

▼22. Drag the Speed Max variable and drop it onto the Random Float in Range node’s Max
input pin.

23. Hook the Random Float in Range node’s Return Value output pin into the Set Current Speed
node’s Current Speed input pin.

FIGURE 21.3
Here the Event Graph and Construction Script together cause your Obstacle Actor to move at a random speed in
the negative X direction every frame. This random speed is calculated only once, during each Actor’s construction.
This means each Actor will have a unique speed but that individual Actors’ speeds will remain consistent.

So now, each obstacle will have a different speed, but the obstacles will all move in the same

direction, down the X-axis. Place several Obstacle Actors into the level and try the game in Play

in Viewport, and all the obstacles should move down the screen.

You may notice that you can fly your spaceship right into the obstacles, and nothing happens.

This is because even though the ship and the obstacles have collision, you haven’t hooked up

any overlap behaviors.

Now that you have implemented the majority of the sharable behaviors in your Obstacle class,

you can now create an asteroid class. In the following Try It Yourself, you create a new Blueprint

class that inherits from your Obstacle Blueprint class.

ptg18222824

384 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

▼ TRY IT YOURSELF

Create the Asteroid Child Class

With the majority of behaviors defined in the base Obstacle class, you can create variations
through inheritance. Follow these steps to create an Asteroid version of the Obstacle class and
change the Static Mesh to match:

1. In the Content Browser, navigate to the Blueprints folder.

2. Right-click in the Content Browser and select Blueprint Class.

3. In the Pick Parent Class window that appears, expand the All Classes Category and in the
search field, type obstacle.

4. Select Obstacle from the list and click Select at the bottom of the window.

5. Rename the new Obstacle Blueprint class Asteroid.

6. Double-click the Asteroid Blueprint class to open it in the Blueprint Class Editor.

7. In the Components panel, select the Static Mesh component.

8. In the Details panel, click the Static Mesh property field’s down arrow and then search for
sm_rock and select SM_Rock.

9. Reset the Element 0 Material property to the defaults assigned on the Static Mesh by
 clicking the yellow Reset to Base Material arrow next to the property.

10. Set the Static Mesh component’s Location property to 0.0, 0.0, -30.0.

11. Set the Static Mesh component’s Scale property to 0.5, 0.5, 0.3.

Now you have created a new Blueprint based on your original Obstacle Blueprint class. You’ve

given it a rocky Static Mesh and a simple sphere for collision. Because you want to use the

sphere component for all collision testing, in the preceding Try It Yourself, you needed to make

sure it encompassed your rock entirely. Instead of resizing the collision sphere to fit the rock

mesh, you scaled the rock down to fit inside its collision bounds. By doing this, you have made

sure that the asteroid’s collision and Static Mesh aren’t vastly different.

Damaging the Pawn
Taking damage or reducing health is a common concept in video games. Some games have

 complex systems for regenerating health that show the character’s health through a moving

scale of effects and visuals and user interfaces. Other games are “one hit kill” games, often

with the player getting multiple lives, or chances to try again. Some games are a mix of these

 concepts, with state-based damage.

ptg18222824

Damaging the Pawn 385

For this game, you want to allow the player to be damaged once, but if he or she is damaged

again, the player dies. You will later introduce a healing option that allows the player to regen-

erate health. Because you will use your Obstacle class as the base for both your health pickups

and the asteroids, you need to have a way to differentiate between the two. To set up the

 damage state, you need a property on your Pawn to monitor whether the player is damaged,

and you need something to show that to the player. In the following two Try It Yourself sections,

you’ll set up the Pawn to have a damage state, and you’ll teach the Asteroid class to know when

it has hit the Pawn.

▼TRY IT YOURSELF

Prep a Damage State and a Take Damage Function

Space is a dangerous place. Your Pawn needs to know when it is hurt and needs to be able to
communicate that damage to the player. Follow these steps to prepare the Event Graph so it
looks like the one shown in Figure 21.4:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Hero_Spaceship Blueprint class.

3. In the My Blueprint panel, create a new Boolean variable and name it Is Damaged.

4. On the toolbar, click Compile.

5. Ensure that Is Damaged defaults to False.

6. In the Components panel, add a new Particle System component and name it Damage

Particle System to create the Particle System you use to show when your spaceship is
 damaged.

7. Set Damage Particle System’s Template property to P_Fire.

8. Set Damage Particle System’s Auto Activate property to False.

9. In the My Blueprint panel, create a new function by clicking the Add New button and name
the new function Take Damage.

10. In the My Blueprint panel, double-click the Take Damage function to open the function’s
Event Graph.

11. Click+drag from the Take Damage node’s exec out pin and place a Branch node.

12. Drag the Is Damaged variable onto the Condition input pin of the Branch node.

13. Click+drag from the Branch node’s False pin and place a Set Is Damaged node.

14. Set the Set Is Damaged node’s input pin to True.

15. Drag the Damage Particle System and place it to the right of the Set Is Damaged node.

ptg18222824

386 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

▼ 16. Click+drag from the Damage Particle System reference node’s output pin and place an
Activate node.

17. Hook the Set Is Damaged node’s exec out pin into the Activate node’s exec in pin.

18. On the toolbar, click Compile and then click Save.

FIGURE 21.4
The Take Damage function. Whenever the Pawn receives damage and this function is called, the Pawn tests to
see if it is already damaged, and if it’s not, sets the Is Damage variable to True before activating the damage
Particle System.

You have finished the prep work for your damage state. Right now, if you click Play, nothing new

happens. So you need to begin hooking up the asteroid Actors to cause the Pawn to receive dam-

age. To do this, you can use two nodes: Event ActorBeginOverlap and Cast To. These events will

let the asteroid determine when it touches the hero. Event ActorBeginOverlap works like an Event

Begin Play or Event Tick, only it fires whenever an Actor overlaps another Actor. It provides a ref-

erence to the Actor it overlaps, but you need a good way to make sure it is one of your asteroids.

That is where the Cast To node comes in.

Using the Cast To Node
The Cast To set of nodes turns a targeted object into the specific class you are attempting to

access. When placing a Cast To node, you must pick a specific class, such as Cast To Pawn

or Cast To Game Mode. The Cast To node then attempts to convert the target object to that

 particular type. It is successful if the object is (or inherits from) the specified class.

If the target object can be interpreted as the specified class (that is, the condition is True), the

Cast To node continues execution through the Success exec pin and returns the object as the

requested class. At this point, variables and functions that are exclusive to the requested class

can be used.

ptg18222824

Damaging the Pawn 387

If the target object cannot be interpreted by the specified class, the Cast To node continues execu-

tion through the Failed exec pin instead, and the returned object is a null reference pointer.

It is important to note that no extra data is converted with a Cast To node. It may be helpful

to think of the Cast To node as providing you the same object but interpreted differently. The

targeted object is still exactly the same as it was before it was cast into a different class, only the

reference that was returned may know more or less about that object.

For example, the Hero_Spaceship class inherits from the Actor class, but the Actor class doesn’t

have a function called Take Damage. Because Event ActorBeginOverlap returns the overlapping

Actor as an Actor reference, you need to use the Cast To Hero_Spaceship node to interpret it as

the Hero_Spaceship that it really is. Once you have a reference to the Pawn as a Hero_Spaceship,

you can call the Take Damage function on it. Any Actors that are being overlapped that aren’t

your spaceship are then safely ignored.

In the following Try It Yourself, you use the Event ActorBeginOverlap and Cast To Hero_

Spaceship nodes to trigger the Take Damage function on Hero_Spaceship.

▼TRY IT YOURSELF

Handle Overlaps

The Asteroid Actors need to call the Take Damage function whenever they overlap with the Pawn,
and they also need to be able to destroy themselves. Follow these steps to prepare your Event
Graph so it looks like the one shown in Figure 21.5:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Asteroid Blueprint class.

3. Click the Event Graph.

4. Click+drag from the Event Actor Begin Overlap node’s Other Actor output pin and place a
Cast To Hero_Spaceship node.

5. Ensure that the Event ActorBeginOverlap node’s exec out pin is hooked into the Cast To
Hero_Spaceship node’s exec in pin.

6. Click+drag from the Cast To Hero_Spaceship node’s As Hero Spaceship output pin and
place a Take Damage node.

7. Ensure that the Cast To Hero_Spaceship node’s exec out pin is hooked into the Take
Damage node’s exec in pin.

8. Click+drag from the Take Damage node’s exec out pin and place a Spawn Emitter at

Location node.

9. Set the Spawn Emitter at Location node’s Emitter Template input pin to P_Explosion.

10. Place a GetActorLocation node underneath the Spawn Emitter at Location node.

ptg18222824

388 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

▼ 11. Hook the GetActorLocation node’s Return Value output pin into the Spawn Emitter at
Location node’s Location pin.

12. Click+drag from the Spawn Emitter at Location node’s exec out pin and place a
DestroyActor node.

13. On the toolbar, click Compile and then click Save.

14. Place several Asteroid Actors into the level in front of the player start.

15. In the level toolbar click the Play in Viewport button to test your work. When the asteroids
collide with the Hero_Spaceship Pawn, they should explode and disappear, and the
 spaceship should catch on fire.

FIGUE 21.5
The Asteroid Blueprint class’s Event ActorBeginOverlap node. Whenever another Actor overlaps the asteroid,
it is first cast into the Hero_Spaceship Blueprint class. If it turns out to be the Hero_Spaceship class, Hero_
Spaceship takes damage through the Take Damage function, and the asteroid spawns a explosion particle
emitter before destroying itself.

CAUTION

Obstacle Placement Height
If asteroids aren’t colliding with the ship, it could be because they aren’t at the same vertical level
as the Pawn. The easiest way to fix this is to just raise your Asteroid Actor up in the Z-axis so it is at
the same level as your Pawn.

Restarting the Game on Death
Currently in your game, damage is only cosmetic. No matter how many obstacles the player

blindly collides with, the spaceship will never be destroyed. To rectify this design flaw, you need

to modify the Take Damage function to create a death state. You can then restart the level using

a timer and the Game Mode’s Restart Game function.

ptg18222824

Restarting the Game on Death 389

NOTE

Timers
Sometimes it is necessary to have a function or an event fire after a specifiable interval. Using a
timer is a convenient way to trigger actions at specified times. For example, after blowing up the
spaceship, you will want to wait a short time before restarting the game. By using a timer, you can
ensure that the player has time to watch your particle effect and realize what has happened before
triggering the Restart Game function.

In Blueprints, you can set timers a couple ways. You can, for example, trigger specific functions by name
with the Set Timer by Function node. Or you can connect a custom event to the Set Timer by Event
node. A timer takes a set float time that controls how long the timer waits before triggering its action.

Timers can also be set to loop through a Boolean on either function.

In the following Try It Yourself, you create a new On Death function to call whenever the

 spaceship has taken too much damage, and you use a timer to wait a few seconds before

 restarting the game through the Game Mode.

▼TRY IT YOURSELF

Create a Death State

After the spaceship has hit two asteroids, you want the spaceship to explode and the game to
restart. Follow these steps to prepare your Event Graph to look like the one shown in Figure 21.6:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Hero_Spaceship Blueprint class.

3. In the My Blueprint panel, create a new function by clicking the Add New button and name
the new function On Death.

4. In the My Blueprint panel, double-click the On Death function to open the function’s
Event Graph.

5. Click+drag from the On Death node’s exec out pin and place a Spawn Emitter at Location

node.

6. Place a GetActorLocation node underneath the Spawn Emitter at Location node.

7. Hook the GetActorLocation node’s Return Value output pin into the Spawn Emitter at
Location node’s Location input pin.

8. Click+drag from the Spawn Emitter at Location node’s exec out pin and place a Set Actor

Hidden In Game node.

9. Set the Set Actor Hidden In Game node’s New Hidden input pin to True.

10. Click+drag from the Set Actor Hidden In Game node’s exec out pin and place a Set Actor

Enable Collision node.

11. Click+drag from the Set Actor Enable Collision node’s exec out pin and place a Set Timer by
Function Name node.

ptg18222824

390 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

▼ 12. Place a Get Game Mode node underneath the Set Timer by Function Name node.

13. Hook the Get Game Mode node’s Return Value pin into the Set Timer by Function Name
node’s Object input pin.

14. Set the Set Timer by Function Name node’s Function Name input to RestartGame.

15. Set the Set Timer by Function Name node’s Time input to 3.0.

16. In the My Blueprint panel, double-click the Take Damage function to open the function’s
Event Graph.

17. Click+drag from the Branch node’s True exec pin and place an On Death node.

18. In the Level toolbar, click the Play In Viewport button to test your work. When the Asteroid
Actors collide with Hero_Spaceship, they should explode and disappear, and the spaceship
should catch on fire. After the second collision, the ship should explode and disappear, and
three seconds later, the game should restart.

FIGURE 21.6
The Hero_Spaceship Blueprint class’s On Death and Take Damage functions. The On Death function uses a
timer to call the Game Mode’s built-in RestartGame function. In the Take Damage function, the On Death node
is placed after the Branch node’s True pin. This means Take Damage first checks whether the Pawn is already
damaged, and if it is, calls the On Death function.

ptg18222824

Creating a Health Pickup 391

Creating a Health Pickup
You’ve created a way for your player to take damage, but you haven’t done anything to heal the

player after damage. In this section, you’ll duplicate your Asteroid class and quickly make some

subtle modifications to it to make it a healing pickup instead.

The primary difference between the Asteroid class you’ve made before and a health pickup is

how it reacts to touching a Pawn. The motion, rotation, and collision can all stay the same.

Therefore, instead of remaking everything from scratch, you can start by inheriting from the

Obstacle class you created earlier in this hour.

In the next few Try It Yourself sections, you create a new Health_Pickup class that inherits

from the Obstacle class and then you make changes to the visuals and the Construction Script

 variables.

▼TRY IT YOURSELF

Add a Health Pickup

Your Pawn is having a hard time staying alive. Make a repair pack pickup to extinguish flames.
Follow these steps to start by creating a new Blueprint class and creating a cross shape inside of
a sphere:

1. In the Content Browser, navigate to the Blueprints folder.

2. Right-click in the Content Browser and select Blueprint Class.

3. In the Pick Parent Class window that appears, expand the All Classes Category, and in the
search field type obstacle. Select Obstacle from the list of classes and click Select at the
bottom of the window.

4. Rename the new Obstacle Blueprint class Health_Pickup.

5. In the Class Defaults panel, set Random Scale Min default to 1.0.

6. In the Class Defaults panel, set Random Scale Max default to 1.0.

7. If the editor shows only the Class Defaults panel, then in the note beneath the panel title,
click the Open Full Blueprint Editor link.

8. In the Components panel, add two cube Static Meshes through the Add Component

 drop-down.

9. Select the first cube Static Mesh component and set its Transform Scale property to 0.2,

0.2, 0.6.

10. Select the second cube Static Mesh component and set its Transform Scale property to
0.6, 0.2, 0.2.

ptg18222824

392 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

The Health_Pickup class now exists, but it won’t be recognizable to the user because it looks like

a plain sphere. You need to create some special materials to better communicate the pickup’s

purpose.

▼ TRY IT YOURSELF

Create Materials for the Pickup

It isn’t yet visually obvious to the user what the Health_Pickup pickup does. You can create two
new materials to change that—one for the sphere boundaries and one for the Cross Mesh inside.
Follow these steps to prepare your material Event Graph so they look like the ones shown in
Figure 21.7:

1. In the Content Browser, create a new folder at the root level and name it Pickups.

2. Right-click in the Content Browser and select Material.

3. Rename the new material M_Pickup_Orb.

4. Double-click M_Pickup_Orb to open it in the Material Editor.

5. In the Details panel, set the Blend Mode property to Translucent.

6. In the Details panel, set the Shading Model property to Unlit.

7. In the material Event Graph, right-click and place a Constant3Vector node.

8. Hook the Constant3Vector node’s output pin into the M_Pickup_Orb output node’s Emissive
Color pin.

9. In the Details panel, set the Constant3Vector node’s Constant property to 0.0, 10.0, 0.0.

10. In the material Event Graph, right-click and place a Fresnel node.

11. Hook the Fresnel node’s output pin into the M_Pickup_Orb output node’s Opacity pin.

12. On the toolbar, click Save.

13. Right-click in the Content Browser and select Material.

14. Rename the new material M_Pickup_Cross.

15. Double-click M_Pickup_Cross to open it in the Material Editor.

16. In the material Event Graph, right-click and place a Constant3Vector node.

17. Hook the Constant3Vector node’s output pin into the M_Pickup_Cross output node’s Base
Color pin.

18. In the Details panel, set the Constant3Vector node’s Constant property to 0.0, 1.0, 0.0.

19. On the toolbar, click Save.

ptg18222824

Creating a Health Pickup 393

▼

FIGURE 21.7
The M_Pickup_Orb and M_Pickup_Cross material Event Graphs and properties.

ptg18222824

394 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

You have created the new materials created but still need to assign them to the Health_Pickup

Blueprint class’s Static Mesh components.

▼ TRY IT YOURSELF

Apply the Pickup Materials

The materials have been created, but they need to be applied to the different Static Mesh
 components in the Health_Pickup Blueprint class to create the visuals shown in Figure 21.8.
Follow these steps:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Health_Pickup Blueprint class.

3. In the Components panel, select the StaticMesh component.

4. Set Element 0 Material to M_Pickup_Orb.

5. In the Components panel, select the first Cube component.

6. Set Element 0 Material to M_Pickup_Cross.

7. In the Components panel, select the Cube1 component.

8. Set Element 0 Material to M_Pickup_Cross.

9. On the toolbar, click Compile and then click Save.

FIGURE 21.8
The health pickup with the appropriate materials assigned to each Static Mesh component.

ptg18222824

Creating a Health Pickup 395

Now that the visuals are handled, the next step is to add the game logic that allows the Health_

Pickup to change the Is Damaged state of the Pawn. You can follow the same pattern you used

with the asteroid for dealing with damage, only this time you will create a Heal Damage func-

tion that sets the Is Damaged variable to False and deactivates the Damage Particle System

 component.

In the following two Try It Yourself sections, you create the Heal Damage function the Pawn

needs to heal itself and deactivate the fire particles, then you use the Event ActorBeginOverlap

even of the Health_Pickup Blueprint class to call that Heal Damage function.

▼TRY IT YOURSELF

Create the Heal Damage Function

With your new Health_Pickup created and moving appropriately, you need to set up the function to
fix the spaceship. Follow these steps to prepare your Event Graph so it looks like the one shown
in Figure 21.9:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Hero_Spaceship Blueprint class.

3. In the My Blueprint panel, create a new function by clicking Add New and name the new
function Heal Damage.

4. In the My Blueprint panel, double-click the Heal Damage function to open the function’s
graph.

5. Click+drag from the Heal Damage node’s exec out pin and place a Set Is Damaged node.

6. Ensure that the Set Is Damaged node’s Is Damaged input pin is set to False.

7. Drag the Damage Particle System component and drop it to the right of the Set Is Damaged
node.

8. Click+drag from the Damage Particle System reference node’s output pin and place a
Deactivate node.

9. Hook the Set Is Damaged node’s exec out pin into the Deactivate node’s exec in pin.

10. On the toolbar, click Compile and then click Save.

ptg18222824

396 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

▼

FIGURE 21.9
The Heal Damage function Event Graph of the Hero_Spaceship Blueprint class.

With the Heal Damage function in place, the pickup now needs to know when to call the Heal

Damage function on the Pawn.

▼ TRY IT YOURSELF

Call the Health Damage Function on Overlap

The Pawn is now capable of healing itself, and the Health_Pickup Blueprint class needs to be able
to tell the Pawn when it should be healed. Follow these steps to prepare your Event Graph so it
looks like the one shown in Figure 21.10:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Health_Pickup Blueprint class.

3. Click the Event Graph.

4. Click+drag from the Event Actor Begin Overlap node’s Other Actor pin and place a Cast To

Hero_Spaceship node.

5. Ensure that the Event ActorBeginOverlap node’s exec out pin is hooked into the Cast To
Hero_Spaceship node’s exec in pin.

6. Click+drag from the Cast To Hero_Spaceship node’s As Hero Spaceship output pin and
place a Heal Damage node.

7. Ensure that the Cast To Hero_Spaceship node’s exec out pin is hooked into the Heal
Damage node’s exec in pin.

8. Click+drag from the Heal Damage node’s exec out pin and place a DestroyActor node.

9. On the toolbar, click Compile and then click Save.

ptg18222824

Creating an Actor Spawner 397

▼10. Place an Asteroid Actor in the level in front of the player start and then place a Health_

Pickup Actor further away.

11. In the Level toolbar, click the Play In Viewport button to test your work. When the Asteroid
Actor overlaps Hero_Spaceship, the spaceship catches fire, and then when Health_Pickup
collides with Hero_Spaceship, that fire goes out.

FIGURE 21.10
The Health_Pickup class’s Event ActorBeginOverlap Event Graph, triggering the Heal Damage function when
the Actor overlaps the Hero_Spaceship Pawn.

Creating an Actor Spawner
At this point, you could create a game just by placing a set of asteroids and pickups in a fixed

level. This is a valid way to build levels, and a lot of great games use hand-placed elements to

create a heavily crafted player experience. In this case, though, you want a less labor-intensive

way to build out a level.

One simple way to do this is to create a Blueprint class that is dedicated to spawning other

Actors. This “spawner” Blueprint handles how often new Actors are introduced as well as when

to randomly select different types of elements. In your game, you need to randomly spawn

 asteroids or health pickups.

Creating a system that waits a random (but controlled) amount of time between spawning new

Actors and does so continually can be a bit of a difficult concept to deal with. There are multiple

solutions, such as using timers and events or functions or using functions with recursion. One sim-

ple but discouraged method is to build your own countdown timer and use the Event Tick event

to check whether you need to spawn a new object. The concept is that a float variable stores a

randomly created countdown time, and every tick, the frame’s time is subtracted from it. Once the

variable hits zero, it spawns an Actor and sets the countdown back to a new random time. This

continues indefinitely. The problem with this system is that it is performance intensive and when

used frequently can cause real performance issues in a game. It can also be difficult to maintain.

One tick-based countdown can be simple to deal with, but as the rules of the game get more

 complex, it can be hard to manage the game flow if everything is done in a single Event Tick.

ptg18222824

398 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

Instead of building a tick-based pattern, you can use the Set Timer by Function Name node

and a custom function to create an endless stream of Actors. In the following two Try It Yourself

 sections, you create a Blueprint class that spawns other Actors and randomly decides which

Actor to spawn. You create a new function that uses Set Timer by Function Name to continually

spawn new Actors.

▼ TRY IT YOURSELF

Prepare the Spawn Function

Your game has Actors to avoid and Actors to aim for, but hand-placing them can be a pain. You
can have UE4 do the heavy lifting for you. Follow these steps to prepare your Event Graph so it
looks like the one shown in Figure 21.11:

1. In the Content Browser, navigate to the Blueprints folder.

2. Right-click and create a new Blueprint class whose parent class is Actor. Name your new
class Obstacle_Spawner.

3. Double-click the Obstacle_Spawner Blueprint class.

4. In the My Blueprint panel, create a new float variable and name it Spawn Time Min.

5. In the My Blueprint panel, create a new float variable and name it Spawn Time Max.

6. In the My Blueprint panel, create a new float variable and name it Health Pickup Probability.

7. On the toolbar, click Compile.

8. In the Class Defaults panel, set Spawn Time Min to 5.0.

9. In the Class Defaults panel, set Spawn Time Max to 10.0.

10. In the Class Defaults panel, set Health Pickup Probability to 0.1.

11. In the My Blueprint panel, create a new function by clicking Add New and name the new
function Spawn.

12. In the Event Graph, click+drag from the Event BeginPlay node’s exec out pin and place a
Set Timer by Function Name node.

13. Set the Set Timer by Function Name node’s Function Name input pin to Spawn.

14. Place a Random Float in Range node beneath the Set Time by Function Name node.

15. Drag the Spawn Time Min float variable onto the Random Float in Range node’s Min
input pin.

16. Drag the Spawn Time Max float variable onto the Random Float in Range node’s Max
input pin.

ptg18222824

Creating an Actor Spawner 399

▼17. Hook the Random Float in Range node’s Return Value output pin into the Set Timer by
Function Name node’s Time input pin.

18. On the toolbar, click Compile and then click Save.

FIGURE 21.11
The Obstacle_Spawner Blueprint class’s Event BeginPlay event, calling the Spawn function with a random time
between specified minimum and maximum values.

At this point the Spawn function doesn’t contain any logic, so nothing happens if you test the

game. You need to fill out the Spawn function to create new Actors and continue indefinitely.

▼TRY IT YOURSELF

Pick Which Class to Spawn

The Spawn function doesn’t do anything yet, but you can use a Branch node to determine which
Blueprint class to spawn, and then you can set a timer to create a recursive pattern. Follow these
steps to prepare your Event Graph so it looks like the one shown in Figure 21.12:

1. In the Content Browser, navigate to the Blueprints folder.

2. Double-click the Obstacle_Spawner Blueprint class.

3. In the My Blueprint panel, double-click the Spawn function to open the function’s Event
Graph.

4. Click+drag from the Spawn node’s exec out pin and place a Branch node.

5. Place a Random Float node underneath the Branch node.

6. Click+drag from the Random Float node’s Return Value output pin and place a Float < Float

node.

ptg18222824

400 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

▼ 7. Drag the Health Pickup Probability variable onto the second input of the Float < Float node.

8. Hook the Float < Float node’s Boolean output pin into the Branch node’s Condition
input pin.

9. Click+drag from the Branch node’s True exec pin and place a Spawn Actor by Class node.

10. Set the Spawn Actor by Class node’s Class input to Health_Pickup.

11. Place a GetActorTransform node underneath the SpawnActor Health Pickup node.

12. Hook the GetActorTransform node’s Return Value output pin into the SpawnActor Health
Pickup node’s Spawn Transform input.

13. Click+drag from the Branch node’s False exec pin and place a Spawn Actor by Class node.

14. Set the Spawn Actor by Class node’s Class input pin to Asteroid.

15. Place a GetActorTransform node underneath the SpawnActor Asteroid node.

16. Hook the GetActorTransform node’s Return Value output pin into the SpawnActor Asteroid
node’s Spawn Transform input.

17. Click+drag from the SpawnActor Health Pickup node’s exec out pin and place a Set Timer by

Function Name node.

18. Hook the SpawnActor Asteroid node’s exec out pin into the Set Timer by Function Name’s
exec in pin.

19. Set the Set Timer by Function Name node’s Function Name input pin to Spawn.

20. Place a Random Float in Range node beneath the Set Time by Function Name node.

21. Drag the Spawn Time Min float variable onto the Random Float in Range node’s Min
input pin.

22. Drag the Spawn Time Max float variable onto the Random Float in Range node’s Max
input pin.

23. Hook the Random Float in Range node’s Return Value output pin into the Set Timer by
Function Name node’s Time input pin.

24. On the toolbar, click Compile and then click Save.

25. Remove any Asteroid Actors or Health_Pickup Actors from the level.

26. Place a few Obstacle_Spawner Actors into the scene.

ptg18222824

Creating an Actor Spawner 401

▼27. In the level toolbar, click the Play In Viewport button to test your work. After approximately
five seconds, the Obstacle_Spawner Actors should begin spawning Asteroid or Health_
Pickup Actors.

FIGURE 21.12
The Obstacle_Spawner Blueprint class’s Spawn function, which determines which Blueprint class to spawn
by comparing a random float value to a set threshold. When the random float is less than the probability
threshold, the Health_Pickup Blueprint class is spawned; otherwise, the Asteroid Blueprint class is spawned.
Regardless of which Blueprint class is created, the function then sets a timer to call itself with a randomly
generated time.

 With your Obstacle_Spawner complete, you no longer have to hand place your asteroids and

health pickups. Instead, off camera, you can place multiple Obstacle_Spawner Actors to create

a variety of places for either of your obstacles to spawn. Figure 21.13 and Figure 21.14 show

 examples of potential spawner placement and what the results in game look like.

ptg18222824

402 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

FIGURE 21.13
An example of placement of Obstacle_Spawner Actors where they are spread out across the play space.

FIGURE 21.14
An in-game screenshot from the placement of Obstacle_Spawner Actors shown in Figure 21.13.

ptg18222824

Summary 403

Give it a try by placing some Obstacle_Spawner Actors of your own and giving the

game a run.

Cleaning Up Old Obstacles
Now that you are spawning a potentially infinite number of asteroids and pickups, you may

start running out of memory or having performance problems due to having too many asteroids

and pickups in your scene. Luckily, Unreal Engine makes such a situation easy to fix.

From the Modes panel, place a new Kill ZVolume at the bottom edge of the screen so it spans the

entire play area. Whenever an Actor enters a Kill ZVolume, that Actor is destroyed and cleaned

up (see Figure 21.15).

FIGURE 21.15
An example of level placement for a Kill ZVolume used to clean up asteroids as they exit the screen.

After you place a Kill ZVolume, click Simulate to make sure your asteroids get cleaned up

 properly as they enter this Kill ZVolume.

Summary
In this hour, you learned how to make a set of Blueprint classes that interact with your Pawn.

You created a damage state and a healing mechanism for your game. You learned how to spawn

Actors in a controlled random fashion and destroy Actors when interacting with them. At this

point, you have a mostly functioning game and a decent framework to build on.

ptg18222824

404 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

Q&A
Q. My asteroids and pickups aren’t interacting with my Pawn. Why?

A. There could be a couple of issues. First, make sure that each of your obstacles and
 pickups has a sphere collision and that its Collision Presets property is set to OverlapAll.
Then also make sure that your Pawn has collision. Finally, check to make sure that the
Pawns and the obstacles are at the same height and that they are actually touching. It can
be hard to tell from a top-down point of view.

Q. I want to add some more specific behavior to the Construction Script of the Health_Pickup

Actor, but I don’t want the Asteroid Actor to be affected. How do I do this?

A. There are two primary ways to achieve this sort of separation between multiple children of
the same parent class. The first way is similar to the way you disabled the scale random-
ization of the Health_Pickup. The scaling behavior was implemented in the parent class’s
Construction Script, but variables were set up to allow the different child classes to scale
themselves separately.

Alternatively, in the Health_Pickup class’s Construction Script graph, right-click on the
Construction Script node and select Add Call to Parent Function. This will create a special
Parent: Construction Script node. This node will run all of the parent class’s (for example,
the Obstacle class) construction behavior before running any child-specific behavior that you
add afterward.

Q. Why do you test for overlaps inside the obstacles instead of inside the Hero_Spaceship

Blueprint?

A. Although all the overlap interactions could be done in the Hero_Spaceship Blueprint class,
that approach is discouraged. The problem is that when you follow the pattern of the Pawn
testing to see what affects it, the logic can become very difficult to maintain. To handle
the same two interactions from the Pawn’s point of view would require creating a much
longer and slightly more complicated single graph with several branch nodes to handle the
 different behaviors.

As the game becomes even more complete and complicated, such a monolithic graph
would become much harder to maintain. Instead, it helps to keep the applicable behaviors
close to their logical units. For example, an asteroid doesn’t know what it means to dam-
age Hero_Spaceship; all it knows is that when it touches Hero_Spaceship, it should call the
Take Damage function. Meanwhile, Hero_Spaceship doesn’t know what might cause it to
call Take Damage, but it is aware of what to do when that function is called on it.

Q. Why do you use another timer in the Spawn function instead of using the looping Boolean on

the timer itself in the Event Graph on Begin Play?

A. You can use the looping Boolean input on the Set Timer by Function Name node instead of
calling the timer again in the function itself. This does, however, result in slightly different
behavior, where each instance of the spawner has a different interval between spawning
new obstacles but those intervals are consistent. By setting a new random time with every
Spawn function call, you ensure that the Obstacle_Spawner Actors are always creating new
obstacles at random intervals, creating a more chaotic game.

ptg18222824

Exercise 405

Workshop
Take a few moments to review and see if you can answer the following questions.

Quiz
1. True or false: The rotating movement component rotates the Actor it is attached to around

an axis at a set velocity.

2. True or false: The DefaultPawn class contains logic to handle damage and health
 information about itself.

3. True or false: The Cast To node only works for casting Actors to other Actors.

4. True or false: The Set Timer by Function Name node needs the exact name of the function
you are trying to call.

Answers
1. True. However, the component is able to do even more than that. It is definitely worth

 playing around with the component to unlock all its abilities.

2. False. The DefaultPawn class does a lot, but it leaves health and damage behaviors up to
you.

3. False. The Cast To node works with all types. Any type (such as textures, materials, particle
effects) can be cast to other types as long as they share a common class hierarchy.

4. True. The Set Timer by Function Name node can’t guess what function you mean if it isn’t
spelled properly; even whitespace in the function name matters here.

Exercise
On your own, consider other types of pickups and simple collision-based behavior Actors you
could introduce into the game. Then use what you have learned in Hour 20 and this hour to
 create an obstacle that can destroy asteroids, which the player shoots with a keypress. If you are
feeling especially adventurous, on your own, consider changing the lighting and the environment
to better fit the theme of the game.

1. Create a new Blueprint class that inherits from the Obstacle class, and name it Plasma_

Bolt.

2. Give the StaticMesh component a custom material. Since this is supposed to be a weapon
blast, consider going with a highly emissive red or electric blue material.

3. In the Class Defaults panel for your new Plasma_Bolt class, change the Movement Direction
Vector from −1.0, 0.0, 0.0 to 1.0, 0.0, 0.0.

4. Set both Random Scale Min and Random Scale Max to 0.2.

ptg18222824

406 HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups

5. Set both Speed Min and Speed Max to 1000.

6. Add a new Event ActorBeginOverlap node in the obstacle’s Event Graph and use a Cast To
Asteroid node to detect when it overlaps with an asteroid.

7. When Plasma_Bolt overlaps with an asteroid, spawn an explosion particle emitter and use
DestroyActor to destroy both the asteroid and the Plasma_Bolt Actor.

8. Create a new input action binding for a shoot action and bind the spacebar and another key
or gamepad button to it.

9. In your pawn’s Event Graph, create a new event for your action binding.

10. From the Pressed exec pin, use SpawnActor to spawn the Plasma_Bolt Actor at your pawn’s
location.

11. Test your game and use the bound key or gamepad button from step 8 to shoot those
pesky asteroids!

ptg18222824

HOUR 22
Working with UMG

What You’ll Learn in This Hour:

 Using the Unreal Motion Graphics (UMG) UI designer

 Creating a Widget Blueprint

 Making a Start menu Game Mode

 Making a menu interface

Unreal Motion Graphics UI Designer (UMG) is an Editor in UE4 that is used to design, animate,

and script user interfaces and HUD functionality. This hour introduces you to UMG and how

to create a Start menu.

NOTE

Hour 22 Setup
For this hour, create a new project with the Flying template and include Starter Content. Then, after
the project is made, in the Content Browser create a folder called StartMenuGame.

Creating a Widget Blueprint
There are two common methods to create interfaces and HUDs in Blueprint. One is to code in

the Blueprint HUD class assigned to a Game mode. The second, and more artist-friendly, way is

to use the UMG UI designer. UMG allows you to interactively place interface assets called widgets

and code functionality with Blueprint. When you understand the basics of UMG, creating an

interface is fairly easy.

Before you can start to use UMG, you need to create a Widget Blueprint, as described in the

 following Try It Yourself.

ptg18222824

408 HOUR 22: Working with UMG

Navigating the UMG Interface
The UMG interface has two modes, as shown in Figure 22.1: Designer mode for placing widgets

such as images and text and Graph mode for adding functionality in Blueprint. UMG defaults to

Designer mode when it’s first opened.

FIGURE 22.1
UMG modes.

Designer Mode
The Designer mode has a Palette panel that lists all the widgets you can use, organized by

 functionality (see Figure 22.2). The Hierarchy panel shows all the placed widgets in your

 interface. You can attach widgets to one another and detach them from each other in the

Hierarchy panel as needed. The root of the Widget Blueprint is the Canvas panel, and all placed

widgets are attached to it. There is also a Details panel that shows the properties of any selected

placed widgets in the interface. This mode also has an Animations panel and a Timeline for

creating, managing, and editing the animations of your widgets. In the center is the Designer

panel, which is where you create your interface layout by dragging elements from the Palette

panel and placing them in the Designer panel.

The following areas are identified in Figure 22.2 with numbers: 1) Toolbar; 2) Palette panel;

3) Hierarchy panel; 4) Designer panel; 5) Details panel; 6) Animation panels.

▼ TRY IT YOURSELF

Create a Widget Blueprint Asset

To see the UMG interface, follow these steps to create a Widget Blueprint asset:

1. Right-click in the StartMenuGame folder you created for this chapter and select Widget

Blueprint to add a new Widget Blueprint to the Content folder.

2. Name the new Widget Blueprint StartMenuWidget_BP.

3. Double-click StartMenuWidget_BP to open it in UMG.

ptg18222824

Navigating the UMG Interface 409

4

5

1

3

6

2

FIGURE 22.2
UMG Designer mode interface.

NOTE

Default Root Widget
On a new Widget Blueprint, the Canvas panel is the default root widget to which widgets can be
attached. You can, however, delete the Canvas panel and place any other widget to make it the
root. Typically you do this when that Widget Blueprint is going to be used as part of another Widget
Blueprint.

Graph Mode
The Graph mode is the Blueprint Editor for Widget Blueprints (see Figure 22.3). This is where you

code functionality for placed widgets, either as functions or event sequences. The Graph mode

Blueprint Editor has a My Blueprint panel for managing graphs, functions, macros, variables,

and event dispatchers; a Details panel that shows properties of selected nodes; and an Event

Graph for scripting. Typically widgets placed in the Designer mode show up here as variables.

ptg18222824

410 HOUR 22: Working with UMG

NOTE

Widget Reference Variables
If a placed widget in the Designer mode does not show up as a variable in Graph mode but you
need it to do so, you can go back to the Designer mode, select the widget, and then in the Designer
mode’s Details panel, select the IsVariable property.

FIGURE 22.3
UMG Graph mode interface.

Setting the Resolution
The Designer mode allows you to set the resolution for which you are creating an interface or a

HUD. Although UE4 scales your game to whatever resolution the target platform can support,

interfaces should be designed around common resolutions and aspect ratio settings.

To pick a resolution setting for your interface in Designer mode, select the Screen Size drop-down

in the upper-right corner and pick a resolution from the common resolution presets list (see

Figure 22.4).

ptg18222824

Navigating the UMG Interface 411

FIGURE 22.4
Screen Size presets.

When developing a game for a target platform such as a PC or a game console, you can never

be certain about the monitor the end user will have, so you should build your interface to be

adaptable to different screen resolutions and aspect ratios. Table 22.1 shows common preview

resolutions—not actual settings for the Widget Blueprint or the project—because the resolution

will ultimately be determined by the end user’s hardware. Preview settings give you a “working

scale” to author your UIs.

ptg18222824

412 HOUR 22: Working with UMG

NOTE

Resolution Setting
Regardless of platform resolution and aspect ratio, the upper-left corner on any screen is
the 0,0 coordinate, where X is horizontal and Y is vertical. HD and UHD refer to the pixel density,
which is total pixels across multiplied by the total number of pixels down. For example,
1280 × 720 = 921,600 pixels.

TABLE 22.1 Common Aspect Ratios and Screen Resolutions

Aspect Ratio Common Resolutions

4:3 (1.33) 320 × 240, 640 × 480, 1024 × 768, 2048 × 1536 (HD)

16:10 (1.6) 1280 × 800, 1440 × 900, 2560 × 1600 (UHD)

16:9 (1.77) 1280 × 720 (HD), 1920 × 1080 (HD), 3840 × 2160 (4K UHD)

NOTE

Aspect Ratios
The aspect ratio determines whether you are working in wide screen (16:9) or 4:3 (NTSC/PAL).
The aspect ratio refers to the number of pixels across to the number of pixels down on the monitor.
For example, 16:9 means that for every 16 pixels across, you have 9 pixels down.

You could build an interface for each resolution you want your game to support, but doing so

requires more art assets and Widget Blueprints, which increase the memory size of the project

and adds complexity.

A good rule of thumb is to design one interface at the highest target resolution and the most

common aspect ratio you want your game to support. Then scale down the interface to lower

resolutions and different aspect ratios. Epic has provided tools to do this: anchor points and

DPI scaling.

Anchor Points and DPI Scaling
You use anchors when working with Widget Blueprints with a Canvas panel as the root. Every

widget placed has an anchor point, which establishes a normalized reference point for widget

placement onscreen. An anchor point’s position onscreen is percentage based, not pixel based.

This means that anchor points are resolution and aspect ratio independent. For example, an

anchor point with an X,Y position of .5,.5 will always be in the center of the screen, regardless

of resolution and aspect ratio, and an anchor point with a position of 1,1 will always be in

the lower-right corner, regardless of screen resolution and aspect ratio. However, a widget’s

 relationship to its anchor point is pixel based, meaning it will always be a set distance away

from the anchor point, no matter what the resolution or aspect ratio of the interface is.

ptg18222824

Creating a Start Menu 413

This is where DPI scaling comes in. DPI scaling scales the interface resolution up or down,

depending on the target platform resolution and aspect ratio so that all the anchor points adjust

accordingly and, in turn, adjust the positions of their widgets onscreen. To adjust the DPI Scaling

settings, you select Edit > Project Settings > Engine > User Interface.

While you can micromanage DPI Curve as shown in Figure 22.5, the defaults are already good;

the only thing you may need to change is the DPI Scale Rule property, which sets what axis will

be used to determine how the interface should be scaled. Horizontal is always the X, and vertical

is always the Y. The shortest and longest sides change depending on whether the game is in

 portrait or landscape mode.

FIGURE 22.5
DPI Scaling settings.

Creating a Start Menu
For the rest of this hour, you create a Start menu. To do this, you will create a new Game Mode

and Player Controller Blueprint, as well as an empty level. The Player Controller will be set to

display the mouse cursor, and the Game Mode will be assigned to the level so every time the

level is loaded, it will automatically display the Start menu. Finally, you will set level to be the

game default map so that the level will be the first level to load every time the game executable

is run.

Importing Assets
Before you can create an interface, you need images and audio files to work with.

In the Hour_22 folder that comes with this book, find the folder called InterfaceAssets, which

contains all the assets you need to make a basic Start menu interface. The images will import as

textures, and the audio files will import as sound waves.

When importing images for interfaces, the three main things you have to worry about are

 mipmap generation, texture streaming, and assigning the texture to a texture group.

ptg18222824

414 HOUR 22: Working with UMG

When you create and import images that will be used in an interface, the powers of 2 rule does

not apply. While using images that follow the powers of 2 guideline is important for textures

that are being used in materials that may need to be tiled or assigned to Static Meshes, textures

used in interfaces do not have these constraints.

GO TO CHAPTER 6, USING MATERIALS, to learn more about working with textures, materials, and powers of 2.

When you import images, UE4 wants them to be assigned to texture groups so that the Editor

knows how to process them. To open a Texture asset in the Texture Editor, locate it in the Content

Browser and double-click the Texture asset. With textures that are going to be used for an

 interface, you should set the Texture Group property in the Texture Editor to UI (see Figure 22.6).

FIGURE 22.6
Texture Editor showing texture Mip Gen Settings and Texture group assignment.

The mip in mipmap stands for multum in parvo (“a great deal in a small space”), and mipmapping

is the process of generating a sequence of lower-resolution images from a larger one. In UE4,

mipmaps are generated automatically when an image that adheres to the powers of 2 guideline

is imported. This is an efficiency technique in 3D graphics. As an object moves farther and

 farther away from the camera, its resolution becomes smaller and smaller, and therefore the

object can use lower resolution textures. Images used in an interface, however, do not typically

need mips because they are displayed in the foreground, usually in front of everything else.

ptg18222824

Creating a Start Menu 415

Texture streaming refers to the process of loading textures into memory at runtime. This

is noticeable when game levels load on the fly. The lower-resolution images created with

 mipmapping load into memory and are displayed on the surfaces of models first. The low-

resolution textures are eventually replaced as the higher-resolution textures are loaded. The

t ransition from a low to high resolution can cause texture popping. This is one reason many

games make you watch a load screen first, before displaying the level. Texture popping is

 something you don’t want players to see on interfaces. Each texture can be set to Never Stream.

CAUTION

Texture Streaming
It is good practice to turn on Never Stream only for textures you are using in interfaces. The Never
Stream setting for a texture is found in the Texture Editor Details panel, under the Texture category.
You need to expand the category to locate this setting.

When a texture that is not a power of 2 is imported, it is automatically set to Never Stream, and

its Mip Gen setting is automatically set to NoMipmaps. You should still to set Texture Group to

UI in the Texture Editor.

The provided InterfaceAsset folder contains a background texture, a title texture, a button

 texture, and two audio files—Mouse Hover and Mouse Pressed. Import all the provided assets.

When the images are added to the Content Browser, open each texture in the Texture Editor,

switch their Texture Group setting to UI, and turn on Never Stream.

TIP

Texture Resolution
If you need to know the resolution of an image after it’s imported, in the Content Browser, hover the
mouse over the imported asset to see relevant information, or open it in the Texture Editor.

In the StartMenuGame folder in the Content Browser of the project you created earlier, you

should now create a new folder and import all the imported project assets into it.

Placing Widgets on the Canvas
With the assets imported, it’s time to start setting up the interface in the Widget Blueprint. First

you need to place a background image and the game title image using Image widgets in UMG.

ptg18222824

416 HOUR 22: Working with UMG

▼ TRY IT YOURSELF

Place an Image Widget

Follow these steps to add an image widget and assign a texture.

1. Double-click StartMenuWidget_BP to open it in UMG.

2. In Designer mode, set Screen Size to 1080p(HDTV,Blu-ray).

3. Drag an Image widget from the Palette panel to the [Canvas Panel] of the Hierarchy panel in
the Designer mode window.

4. With the placed Image widget selected, in the Slot section of the Details panel, set the
anchor point to the center of the screen either by using the presets or manually setting
Minimum X,Y to .5,.5 and Maximum X,Y to .5,.5 (see Figure 22.7).

5. Drag the Background Image Texture asset from the Content Browser to the Image property
of the Appearance section of the Details panel.

6. In the Slot section of the Details panel, set the Size X property to 1920 and the Size Y
property to 1080.

7. In the Designer Viewport, position the image so it fills the entire Canvas panel.

8. Drag out another image widget and repeat steps 3–6 to place the Title Image Texture asset.
The anchor point for this widget should also be in the center, but the Size X and Size Y
properties should match the new image size 641 ë 548.

9. Save the Widget Blueprint. At this point, your Start menu should look like the one shown in
Figure 22.7.

FIGURE 22.7
UMG Designer panel displaying background image and title image.

ptg18222824

Creating a Start Menu 417

Next, you need to use a button and a text widget to create a Play button and a Quit button. A

button widget is already set up with basic button functionality for dealing with mouse interac-

tions, such as MouseOver and MouseDown events. All you need to do is place it on the Canvas

panel and assign the correct assets. The following Try It Yourself describes this process, and

Table 22.2 shows button states for mouse interaction with a button widget.

TABLE 22.2 Button Widget Style Properties

Button State Description

Normal The image that will be displayed when there is no mouse interaction

Hovered The image that will be displayed when the mouse cursor rolls over the button

Pressed The image that will be displayed when the mouse cursor is over the image
when the mouse button has been pressed

Disabled The image that will be displayed if the button is deactivated in Blueprint

▼TRY IT YOURSELF

Place a Button and Text Widget

Now you are going to create Play and Quit buttons for your Start menu. A button widget will hold
the images that represent the button, and a text widget will display the text for the button. The
text widget should be attached to the button widget so that if you decide to reposition the button,
the text widget will follow. Here are the steps:

1. Open UMG (if it’s not already open) by double-clicking StartMenuWidget_BP.

2. Drag a button widget from the Palette panel and place it in the Canvas Panel section of the
Hierarchy panel.

3. With the placed button widget selected at the top of the Details panel, rename the widget
PlayButton.

4. With the placed button widget selected in the Details panel, in the Slot section, set the
anchor point to the center of the screen either by using the presets or manually setting
Minimum X,Y to .5,.5 and Maximum X,Y to .5,.5.

5. Set the size of the widget to match the button texture in the Slot section of the Details
pane, set the Size X property to 256 and the Size Y property to 64.

6. In the Details panel, go to the Appearance section and assign the NormalButton texture to
the Normal Image property.

7. In the Details panel, go to the Appearance section and assign the HoverButton texture to
the Hovered Image property.

ptg18222824

418 HOUR 22: Working with UMG

▼
8. In the Details panel, go to the Appearance section and assign the PressedButton texture to

the Pressed Image property.

9. To set up sound for the button, in the Details panel go to the Appearance section and
assign the MPressed_sw sound wave to the Pressed Sound Property.

10. In the Details panel in the Appearance section, assign the MHover_sw sound wave to the
Hovered Sound property.

11. Add text to the button; drag a text widget from the Palette panel onto the PlayButton widget
in the Designer Viewport.

12. With the text widget selected, in the Details panel, go to the Content section and set
Default Text to PLAY.

13. To create the Quit button, repeat steps 2–11 but this time set the name of the button
 widget to QuitButton and set Default Text to QUIT.

When you’re finished, the Start menu should look like the one shown in Figure 22.8.

FIGURE 22.8
UMG Designer panel displaying button widget Appearance properties in the Details panel.

Scripting Functionality
Now you need to script some basic Blueprint functionality for each of the buttons you have

 created. There are three common event types you can assign to a button: OnClicked, OnPressed,

and OnReleased.

ptg18222824

Creating a Start Menu 419

▼TRY IT YOURSELF

Script Events for Your Button

With the PlayButton widget selected in Designer mode, in the Events section of the Details panel
you can see three event types that you can add to your button. Follow these steps to script a
simple OnReleased event for the Play and Quit buttons:

1. In Designer mode in the Designer Viewport, select the PlayButton widget.

2. In the Details panel, navigate to the Events section and click the + symbol next to
OnReleased, as shown in Figure 22.9. This switches UMG to Graph mode and places an
OnReleased event in the Event Graph.

FIGURE 22.9
Button widget Events properties in the Details panel.

ptg18222824

420 HOUR 22: Working with UMG

▼ 3. Click+drag from the exec out of the OnReleased event node and in the context menu search
box, type open and select Open Level to place the node.

4. With the Open Level function node placed, set Level Name to FlyingExampleMap.

5. In Designer mode in the Designer Viewport, select the QuitButton widget, and in the Details
panel navigate to the Events section and click the + symbol next to OnReleased to add an
OnReleased event node for QuitButton in the Event Graph.

6. Click+drag from the exec out of the OnReleased event node and then, in the Context Menu
search box, type quit and select Quit to place this function. When you’re finished, the
Widget Blueprint should look like the one shown in Figure 22.10.

7. Compile and save the Widget Blueprint.

FIGURE 22.10
UMG Event Graph showing button widget assigned to OnReleased events.

ptg18222824

Creating a Start Menu 421

The ability to toggle the display of the mouse cursor is handled by the Player Controller Blueprints.

Now that your Start Menu widget is finished, you need to add the Widget Blueprint to the Viewport

when the game begins. To do this, you need to create a new Game Mode and controller class that

will be assigned to the level that will be the first level to load when the game is started.

With the Start Menu Widget Blueprint set up and ready to go, you need to create a simple Game

Mode that uses a Player Controller to display the mouse cursor.

▼TRY IT YOURSELF

Create a Simple Game Mode and Display the Mouse Cursor

Follow these steps to create a Game Mode and Controller Blueprint that shows the mouse cursor.

1. To create a new Game Mode Blueprint, in the Content Browser navigate to the
StartMenuGame folder.

2. Right-click in the Content Browser Asset Management area and select Blueprint Class from
the Dialog menu.

3. In the Pick Parent Class window that appears, select Game Mode from the Common
Classes category.

4. Name the Game mode StartMenuGameMode.

5. To create a new Player Controller, in the Content Browser navigate to the StartMenuGame

folder.

6. Right-click in the Content Browser and select Blueprint Class.

7. In the Pick Parent Class window that appears, select Player Controller from the Common
Classes category.

8. Name the Player Controller StartMenuController.

9. Assign the Player Controller to the Game Mode, open the StartMenuGameMode Blueprint,
and select Class Defaults on the Blueprint Editor toolbar. In the Details panel under the
Classes section, assign the StartMenuController Blueprint to the Player Controller Class
property (see Figure 22.11).

ptg18222824

422 HOUR 22: Working with UMG

▼

FIGURE 22.11
StartMenuGameMode Class Default properties in the Blueprint Details panel.

10. Compile, save, and close the StartMenuGameMode Blueprint.

11. Next, you need to tell the Player Controller Blueprint to show the mouse cursor. Open the
StartMenuController Blueprint. With Class Defaults selected in the Blueprint Editor toolbar,
in the Details panel, under Mouse Interface turn on Show Mouse Cursor, Enable Click

Events, and Enable Mouse Over Events. See Figure 22.12.

ptg18222824

Creating a Start Menu 423

▼

FIGURE 22.12
StartMenuController Class Default properties in the Blueprint Details panel.

12. Compile and save the StartMenuController Blueprint.

ptg18222824

424 HOUR 22: Working with UMG

NOTE

Resolution Setting
While the ability to toggle the display of the mouse cursor is handled by the Player Controller,
you can set it from any Blueprint—not just inside the Player Controller. Click+drag from the
GetPlayerController node in any Blueprint class, and use the SetShowMouseCursor node to toggle
the cursor’s visibility.

With the Game Mode set up, you need to create a Blueprint sequence that adds the Widget

Blueprint to the player’s Viewport during gameplay.

▼ TRY IT YOURSELF

Add a Widget Blueprint to the Player’s Viewport

Follow these steps to add a Widget Blueprint to the Viewport.

1. Open the StartMenuController Blueprint in the Blueprint Editor and navigate to the Event
Graph.

2. In the Event Graph, locate the Event BeginPlay event node.

3. Left-click and drag from the Event BeginPlay event node exec out pin; in the context menu
search box, type create widget and select Create Widget from the list to place the node.

4. On the newly placed Create Widget function node next to the Class property, select the
StartMenuWidget_BP you created at the start of the hour from the drop-down menu.

5. Left-click and drag from the Create Widget nodes exec out pin, and in the context menu
search box type add to Viewport and select Add to Viewport from the list to place the node.

6. Link the Return Value from the Create Widget to the target of the Add to Viewport node.
When you’re finished, the Blueprint should look like the one shown in Figure 22.13.

7. Compile and save the StartMenuController Blueprint.

FIGURE 22.13
Start menu Player Controller Blueprint sequence that adds a Widget Blueprint to the player Viewport.

ptg18222824

Sample Menu System 425

The last thing you need to do is create a new level that will be the first level to load when the

game is played. You need to assign the level to the game default map in the Project Settings

panel, under Maps & Modes. After you do this, when the game is first launched, this level and

Game Mode are loaded and the Start menu is displayed.

▼TRY IT YOURSELF

Add a Game Default Map

Follow these steps to assign a Game Mode to a level and then set the level as the Game
Default Map.

1. In the Content Browser, create a new folder and name it Maps.

2. Create a new empty level and save it to the Maps folder. Name the map StartLevel.

3. Open the World Settings panel by going to the Setting button on the Level Editor’s toolbar
and selecting World Settings.

4. In the World Settings panel, under Game Mode assign the StartMenuGameMode Blueprint
to the GameMode Override property.

5. Save the Level again to save the changes.

6. Open the Project Setting panel by going to Settings on the Level Editor’s toolbar and
 selecting Project Settings.

7. In Project Setting panel, under Maps & Modes/Default Maps assign the StartLevel to the
Game Default Map.

8. Preview the level. The Start menu should appear, and the cursor should stay. Roll over the
buttons to see if they change and whether the audio plays.

9. Click and release the Play button. The FlyingExampleMap level should load.

Sample Menu System
The Hour_22 folder contains a sample project that has a complete menu system for you to look

at and deconstruct. The system has been set up using the Flying template. This project has a

Start menu that was created using the method shown earlier—along with two other Widget

Blueprints used to create a pause menu and a simple HUD. The Pause menu Widget Blueprint

has been added to the Viewport in the FlyingController Blueprint in the Flying Game Mode

 template, and a HUD Widget Blueprint has been added to the Viewport in the FlyingPawn

Blueprint of the Flying Game Mode template.

ptg18222824

426 HOUR 22: Working with UMG

If you open up the FlyingController Blueprint, you can see that the Pause menu Widget Blueprint

is added to the Viewport when the player presses the Q or Esc key. This is because the Esc key in

preview mode is controlled by the Editor. When the game is ready to be packaged and made into

an executable, you can disconnect the Q key input event, and the Esc key will function properly.

The PawnHud Widget Blueprint gets variable data from the FlyingPawn Blueprint by casting to

the flying pawn. This is done in two functions—one for the speed and one for the health of the

pawn. Both of the text widget text properties have been bound to functions that cast to the flying

pawn and retrieve the variables that store the pawn health and speed.

Summary
This hour, you learned how to create a Widget Blueprint, use UMG, and place image, button,

and text widgets. You learned about prepping textures for use in an interface and how to set up

a Game Mode for mouse interaction. As always, there is more to learn; for example, you can

embed a Widget Blueprint in other Widget Blueprints to add complexity to your menus. For now,

you know how to create a basic menu system that’s found in every game.

Q&A
Q. Why is my interface texture pixelated when the level first loads?

A. You have not set Texture Group to UI in the Texture Editor, so your texture is still generating
mipmaps.

Q. Why does UE4 warn me when I import a texture that is not powers of 2?

A. Depending on the version of the Editor you are using, you may get a warning. The majority
of textures are typically used in materials assigned to Static Meshes and should be powers
of 2. Interface textures are not bound by this constraint.

Q. What is Blueprint casting?

A. In a traditional programming or scripting environment, casting allows you to convert one
variable type to another. But Blueprint casting also allows one Actor to reference another
Actor in a game and call functions or get and set variables in the Cast Actor.

Q. When I bring in my own textures into UE4, I want to be able to see through an image. What

do I need to do?

A. If you want a texture to be transparent or masked, you need to create an alpha for the
image in your image editing application. Then save the image as a 32-bit image so that
transparency or masked data will import with the image. File types .tga and .psd both store
alpha channels and import into UE4.

ptg18222824

Exercise 427

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: Interface textures must be powers of 2.

2. ________ is the process of generating multiple resolutions of an image when it is imported.

3. True or false: When importing a texture to be used in an interface, you want to assign the
texture to the World Texture group.

4. What is mip short for?

5. What are the four style properties of a button widget?

Answers
1. False. Textures for interfaces do not need to be powers of 2.

2. Mipmapping is the process of generating multiple resolutions of an image when it is
 imported.

3. False. You should assign texture for interface to the UI Texture group.

4. Mip stands for Multum in parvo.

5. Normal, Hovered, Pressed, and Disabled are the four style properties of a button widget.

Exercise
For this exercise, use the provided images and audio assets to create a Start menu for the
arcade shooter project you created in Hours 20, “Creating an Arcade Shooter: Input System and
Pawns,” and 21, “Creating an Arcade Shooter: Obstacles and Pickups.” If you have not worked
through those hours yet, use the arcade shooter project provided with this hour.

1. Open the arcade shooter project you created during Hours 20 and 21, or use the version
provided with this hour, ArcadeShooter22.

2. Create a Start Menu Game Mode and Widget Blueprint and make the Start menu interface,
using the provided assets. Follow the process outlined in all the “Try It Yourself” sections in
this hour.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 23
Making an Executable

What You’ll Learn in This Hour:

 Contrasting cooked and uncooked content

 Packaging a project for Windows

 Resources for Android and iOS packaging

 Accessing advanced packaging settings

After having done the heavy lifting for making a unique mind-blowing user experience, the next

step is to get your creation into the hands of users. With many game engines, this can be a long,

convoluted process fraught with many pitfalls and traps. Thankfully, Unreal Engine 4 makes

 creating packaged builds a painless process. In this hour, you learn about cooked content and

how to use UE4 to create an executable with the shipping configuration.

NOTE

Hour 23 Setup
The process used in this hour can be done with any Windows or OSX-compatible UE4 projects.

This hour you continue working on the ArcadeShooter project you started in Hour 20 and continued
in Hours 21 and 22. If you prefer, as a starting point for this hour you can also use the provided
H22_ArcadeShooter project found in the Hour_22 folder (available on the book’s companion website
at www.sty-ue4.com).

After you have finished this lesson, compare your results to the H23_ArcadeShooter Project found in
the Hour_23 folder that comes with the book.

Cooking Content
Unreal Engine 4 stores content in formats for internal use inside UAsset files. These formats are guar-

anteed to work with the UE4 Editor, but they aren’t necessarily available on all platforms or when

the Editor is not installed. Instead of requiring a developer to prepare different versions of assets for

different platforms, UE4 uses a cooking stage to ensure that content is usable on the target device.

http://www.sty-ue4.com

ptg18222824

430 HOUR 23: Making an Executable

The cooking step in a development process is functionally a conversion step. It involves

performing the necessary data handling to convert editor-specific data assets into assets that are

ready for use on a myriad of platforms. This stage also involves other tasks, like stripping away

unnecessary or redundant information.

Cooking also ensures that a game project is ready and that it isn’t missing information that may

cause problems later. The cooking process involves a number of steps that help prevent bugs,

such as compiling Blueprints and checking for errors, ensuring that all shaders are completely

compiled, and checking for missing assets in levels that are being cooked.

The amount of time the cooking process takes depends on how much content you are cooking at

one time. By default, UE4 cooks all the content required to make a game playable, starting from

your default game level. Luckily, UE4 also knows what information has changed since the last

time you cooked, and usually the process is faster after you cook the first time.

TIP

Cooking for Windows
Even if you are targeting the same platform that you develop on, you need to cook content. Unreal
Engine does not support standalone projects working with uncooked content at this time. Because
cooking can take a while, it can sometimes be a good idea to give it a head start. You can start
cooking before going to packaging by selecting File > Cook Content for Windows.

Packaging a Project for Windows
Prepping your content is only one step in the process of getting your project out to users. The next

step is taking all that cooked content and packaging it up in a nice bundle with an executable

your users can run. How packaging happens depends on the platform you choose to target. If

you use a Windows operating system and are targeting your game for play on Microsoft systems,

Unreal Engine 4 makes creating distribution-ready packages of your content and code simple.

While the UE4 Editor requires a 64-bit process to run, UE4 supports packaging projects for both

32-bit and 64-bit processors. For many projects, the difference will be unnoticeable. In addition,

64-bit processors are capable of running 32-bit projects. Today 64-bit processors are adopted more

heavily with modern hardware, and the need to support 32-bit computers continues to decrease.

Developing for 64-bit allows you to utilize more of the features of modern-day hardware.

Generally, you should develop for 32-bit only if you are particularly targeting older hardware or

have some other explicit reason to.

Packaging your project is exceptionally simple thanks to two menu options under the File menu:

Shipping and Windows (64-bit) (see Figure 23.1).

ptg18222824

Packaging a Project for W
indow

s
4

3
1

FIGURE 23.1
The two menu options needed to quickly package a project for Windows. The left image sets the build configuration to
Shipping, and the right image shows the Windows (64-bit) option.

ptg18222824

432 HOUR 23: Making an Executable

NOTE

Shipping Configuration
The first image in Figure 23.1 shows the project’s build configuration being set to Shipping. With
this option, many debug commands are disabled. Some of the debug features enabled with the
Development setting can be used improperly and may create game-breaking bugs for you users.
Therefore, any distributed packages should probably be created using the Shipping configuration.

When you’re testing locally, however, Development is a good selection.

Selecting File > Package Project > Windows > Windows (64-bit) brings up the Browse For Folder

dialog, shown in Figure 23.2, which you use to specify where you want the package to live. It is

important to place the package on a hard drive that has enough space to potentially store your

entire project a second time and to give the folder a project-specific name.

FIGURE 23.2
The Browse For Folder dialog box, where you specify where to place the new project.

ptg18222824

Packaging a Project for Windows 433

After you click OK, a processing message appears in the bottom-right corner of the screen, not-

ing the progress of the packaging step (see Figure 23.3).

FIGURE 23.3
The progress message that appears while the project is being packaged.

The packaging process can take a while, especially if content needs to be cooked. Detailed infor-

mation about the process is presented in the Output Log panel, although this can sometimes be

hard to visually read through because of the sheer volume of logs that are printed to the screen.

A simplified (and categorized) version of the output is also available through the message

log, which you can open by selecting Window > Developer Tools > Message Log. Figure 23.4

shows the Message Log panel, set to the Packaging Results category when an error arises, and

Figure 23.5 shows the same error in more detail in the Output Log panel.

FIGURE 23.4
The Message Log panel, presenting an error in the packaging results due to an unknown cook failure.

ptg18222824

434 HOUR 23: Making an Executable

FIGURE 23.5
The cook failure mentioned in Figure 23.4, shown in the Output Log panel. This error is due to a broken
Blueprint network that cannot compile properly.

Once the cooking and packaging are complete, the content is placed in the location you

specified in the Browse For Folder dialog. If you navigate to that folder in File Explorer, you

can now see the available packages. By default, the folder contains a new directory called

WindowsNoEditor, which contains the entire packaged project necessary to run the project on

Windows.

In the WindowsNoEditor folder, double-clicking ProjectName.exe starts the project. as shown

in Figure 23.6.

FIGURE 23.6
The Hour 23 project, running from a standalone version.

ptg18222824

Resources for Android and iOS Packaging 435

Resources for Android and iOS Packaging
The two primary mobile platforms, iOS and Android, handle packaging and deployment slightly

differently. The process for getting a project onto Android or iOS can be daunting and does

require a certain amount of setup beforehand.

The process requires that you first set up your environment with either the Android Works

SDK or iTunes. To ensure that you are getting the most up-to-date information, check out the

excellent UE4 documentation at https://docs.unrealengine.com/latest/INT/Platforms/Android/

GettingStarted/ and https://docs.unrealengine.com/latest/INT/Platforms/iOS/QuickStart/.

Reading these living documents is the best way to be certain you are following the most accurate

steps for working with mobile in Unreal Engine 4.

Keep in mind that to submit and develop for iOS’s App Store or Android’s Google Play Store, you

first need to become a registered developer for each service. Both services require one-time regis-

tration fees to get a game onto their stores. At this writing, you do not need to pay the App Store

or Google Play Store fees until you want to deploy your game to their services. However, to test

your app on iOS without first registering, you can use Xcode 7 or later on an OSX machine to

deploy the project directly. If you are developing from Windows, you need to first become a part

of the developer program and pay a registration fee.

▼TRY IT YOURSELF

Package Your Project

Follow these steps on a Windows machine to practice packaging your project in Windows:

1. Open the Hour 23 project (or a project of your choosing).

2. Select File > Package Project > Build Configuration > Shipping.

3. Select File > Package Project > Windows > Windows (32-bit).

4. In the Browse For Folder dialog that appears, create a new folder in a location of your
choosing and rename it something relevant, such as Hour23_packaged.

5. Select this new folder and click OK.

6. Wait for the notification in the bottom-right corner to say Package Success and then disap-
pear.

7. Open File Explorer and navigate to the folder created in step 4.

8. Open the WindowsNoEditor folder inside your package folder.

9. Double-click the .exe file in this folder, which should follow the pattern ProjectName.exe (for
example, it should be Hour23.exe).

10. Enjoy your new standalone game!

https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/
https://docs.unrealengine.com/latest/INT/Platforms/iOS/QuickStart/

ptg18222824

436 HOUR 23: Making an Executable

In addition, both services provide certification steps for your apps that you must follow before

distributing a project. When you have supplied all the appropriate information detailed in

the UE4 Quick Start documentation, you need to set your app to be in Distribution mode. To

switch to Distribution mode, select File > Package Project > Packaging Settings, then select

the Packaging category, and toggle the For Distribution option. By doing this, you tell UE4 to

 package all the necessary certificates and packaging signing that the respective stores require.

Accessing Advanced Packaging Settings
Although the steps mentioned in the previous sections are often sufficient to package most

 projects, occasionally you need more control over the process. UE4’s packaging settings allow

you to easily modify a number of advanced package configurations. Using these configuration

options is the key to a smooth packaging process, especially when you’re preparing a game for

multiple platforms.

To access the packaging settings, select File > Package Project > Packaging Settings and then

select the Packaging category (see Figure 23.7).

FIGURE 23.7
The Packaging tab’s common properties.

ptg18222824

Summary 437

The Packaging tab allows you to set properties such as the following:

 Build Configuration: You can specify the build configuration for which to compile your

code-based project. If you are using Blueprint projects, there isn’t much difference here

between testing using the Development configuration and testing for the final release

using the Shipping configuration.

 Staging Directory: You can specify the directory for storing the packaged build. Whenever

you pick a new directory by using File > Package Project in the File Browser dialog, this

field will update automatically to match.

 Full Rebuild: For code-based projects, this property determines whether to rebuild all code

or only modified code. In Blueprint projects, it is safe to leave this unchecked.

 For Distribution: This option determines whether your game is in Distribution mode.

Packaging with this option enabled is a requirement for submitting a game to the Apple

App Store or the Google Play Store.

 Use Pak File: This option determines whether to package all assets in the project as

 individual files or a single package. When it is enabled, all the assets are bundled together

in a single .pak file. If a project has a large number of files, enabling this option may

make distribution much easier.

 Include Prerequisites: When this option is enabled, all the required prerequisites for a

packaged game are included in the package itself. This is important for distributing to

unknown systems, where you cannot guarantee that the target systems already have all

the prerequisites installed.

Summary
In this hour, you learned how to free your UE4 projects from the Editor and get them into the

wild. You learned what it means to cook content and how to preemptively cook your content for

Windows, as well as how to package content into a standalone folder, ready for distribution.

ptg18222824

438 HOUR 23: Making an Executable

Q&A
Q. When I run the standalone game, the wrong map loads. How do I fix this?

A. Select Edit > Project Settings and then select the Maps & Modes tab and change the Default

Game Level property to whichever map you want your game to start up with.

Q. When I copy the packaged directory onto a new computer, I get an error, but it works fine on

my machine. What is happening?

A. Although this could be a number of problems. depending on what the error is, one of
the most common reasons this might happen is because the target computer is missing
required prerequisites that Unreal Engine 4 projects need to run. You should bundle
 prerequisites with your packaged game; to do so, in the Packaging window, ensure that the
Include Prerequisites property is selected.

Q. The cooking process is throwing an unknown error in the message log. What is going on?

A. A huge number of problems can occur when you’re cooking a project. If you get an unknown
error in the message log, take some time to look through the output log instead. The output
log color codes errors using red, so scroll through the log looking for red text. Often the
problem might be as simple as a deleted object or file, so checking the output log first for
any obvious fixes is a great way to go.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. What is the name of the process that involves converting content in Editor-specific formats

to work on target platforms:

2. True or false: 64-bit processors can run 32-bit executables made in Unreal Engine 4.

3. True or false: When you package a project from the Editor, the currently open level is the
one that loads first.

Answers
1. Cooking. This is distinct from staging, which is the process that stores the cooked data in a

local location before deploying to a target device.

2. True. 64-bit processors can run 32-bit programs, but 32-bit processors cannot run 64-bit
programs.

3. False. The level that is loaded when a standalone package is created is the level
 designated in the Maps & Modes tab of the Project Settings dialog.

ptg18222824

Exercise 439

Exercise
Create and package a brand-new project to thoroughly practice packaging.

1. In the Launcher, create a new UE4 project with the template of your choice. For speediness,
do not include the Starter Content.

2. Open the new project.

3. Select File > Package Project > Build Configuration > Shipping.

4. Select File > Package Project > Windows > Windows (32-bit) to package the project for
Windows.

5. Choose a good location for the project to live.

6. When the project is done packaging, in the File Explorer, navigate to the folder and find the
project’s .exe file. Double-click the .exe file to complete this exercise.

ptg18222824

This page intentionally left blank

ptg18222824

HOUR 24
Working with Mobile

What You’ll Learn in This Hour:

 Developing for mobile devices

 Using touch

 Using a device’s motion data

The largest and fastest-growing market in video games isn’t console or PC games; it is mobile

games. The mobile phone market has exploded in recent years, and the number of games being

made (and profiting) on the various mobile platforms is incredible. Mobile devices are less

 powerful than consoles and PCs, however, so you need to exercise a fair amount of care to make

sure your games will run on mobile. In this hour, you will learn the limitations of most mobile

platforms, how to have touch events interact in a game, how to use virtual joysticks to control a

Pawn, and how to use the gyroscope to create a unique mobile-only control scheme.

NOTE

Hour 24 Setup
This hour you will continue working on the ArcadeShooter project you started in Hour 20 and
 continued in Hours 21, 22, and 23. If you prefer, as a starting point you can also use the provided
H23_ArcadeShooter project found in the Hour_23 folder that comes with the book (available on the
book’s companion website at www.sty-ue4.com).

After you have finished this lesson, compare your results to the H24_ArcadeShooter Project found in
the Hour_24 folder that comes with the book.

NOTE

Testing on Mobile
When you’re creating mobile games, you need to do extra testing on actual hardware. This process
can be convoluted and is constantly changing, and the various operating systems and devices
 handle the process slightly differently.

http://www.sty-ue4.com

ptg18222824

442 HOUR 24: Working with Mobile

To ensure that you are able to set up an Android device properly, go to
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/.

To ensure that an iOS device is ready for deployment, go to
https://docs.unrealengine.com/ latest/INT/Platforms/iOS/QuickStart/index.html.

Developing for Mobile Devices
In general, mobile devices are inferior to consoles and PCs in many respects. They are slower,

and they have weaker graphics abilities, less memory, less storage space, and smaller screens.

However, computer hardware devices are advancing more and more each year, so the limitations

in one year will be greatly reduced in the next.

In some ways, the year-over-year advances in the mobile hardware space exceed the same yearly

improvements in consoles and PCs. This makes the mobile arena harder to track, although

device adoption is still important. The most recent iPhone or Samsung device may be able to

handle high-end graphics and features, but the broad adoption of the newest hardware isn’t

immediate, and the vast majority of potential users may be working with two- or three-year-old

technology. To make matters more confusing, the rise of tablet and touch-enabled laptops means

some devices will rival full desktops but still fall in the category of mobile.

Because these devices are improving at such a rapid rate, it is important to figure out the

 minimum requirements for a project. Unreal Engine 4 allows for variable quality and features,

so it is possible to take advantage of the latest graphical techniques on a Microsoft Surface or

iPad but have those same features disabled for a mobile phone.

With the knowledge that the requirements of the mobile space are rapidly changing, this section

covers some of the best practices when dealing with mobile devices (at this writing).

Previewing for Mobile
When developing for mobile devices, several best practices should be kept in mind. It can be

 difficult, however, to know how the constraints of your device will affect the visual appearance of

a project while working in the Editor. Luckily, Unreal Engine 4 allows you to preview the material

feature set and rendering levels of your mobile device.

To enable this visualization feature, in the Viewport toolbar, select Settings > Preview Rendering

Level > Mobile/HTML 5 > Default Mobile/HTML5 Preview (see Figure 24.1).

https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/
https://docs.unrealengine.com/latest/INT/Platforms/iOS/QuickStart/index.html

ptg18222824

Developing for Mobile Devices 443

FIGURE 24.1
Setting the preview rendering level causes all materials and shaders to recompile with stricter display settings
that are similar to those used on actual mobile devices.

When you choose the HTML5 Preview option, the visual preview of your level is likely to

change to a more accurate representation of what your project will look like on a mobile device.

However, the rendering level is not completely indicative of the final result on your device, and

you should always strive to test on the actual hardware.

Since mobile hardware varies so wildly, sometimes the automatic material optimizations on each

device are not enough. In these cases, for expensive materials you should use the Quality Switch

node to remove the costlier operations from the material. Figure 24.2 shows an example of an

expensive material feature being removed except from the highest-end configurations.

ptg18222824

444 HOUR 24: Working with Mobile

FIGURE 24.2
The Quality Switch node is used here to remove the expensive Noise node from the material when the
 material quality level is set to medium or low. The Fresnel node is then removed when the material quality
level is set to low.

When you have Quality Switch nodes placed throughout the materials in a project to remove

 expensive operations, you can set the material quality level for the project by selecting

Settings > Material Quality Level, as shown in Figure 24.3. The three options here—Low, Medium,

and High—make a difference only when you have used Quality Switch nodes for the materials in the

project.

ptg18222824

Developing for Mobile Devices 445

FIGURE 24.3
You can use the Settings menu to set the project’s material quality level to one of three options: Low,
Medium, or High.

Different devices have unique aspect ratios and resolutions. It is important to test your project at

the same resolutions you expect to use when you ship a project.

Figure 24.4 shows how to set the mobile resolution in the Play section of the Editor Preferences panel,

under Play in Standalone Game. Common device resolutions are available through the Common

Window Sizes drop-down. You can then use the toolbar to select Play > Mobile Preview.

ptg18222824

446 HOUR 24: Working with Mobile

FIGURE 24.4
Using Play > Mobile Preview creates a standalone process version of your game running in a mobile-ready
resolution.

ptg18222824

Developing for Mobile Devices 447

Optimizing for Mobile
There are a number of best practices you should consider when developing for mobile.

Sometimes the design of a project requires you to disregard one of these recommendations, but

be extremely wary about doing so as ignoring these optimizations may significantly reduce your

project’s performance:

 Always bake lighting. Dynamic lighting can greatly affect the cost of rendering on any

platform, and most mobile devices are especially slow when processing dynamic lights.

Whenever possible, set your lights to static and at most use only one dynamic Directional

Light set to Stationary. However, higher-end mobile devices can use more dynamic Point

Lights, thanks to a feature called Max Dynamic Point Lights, which is available via the

Rendering section of the Project Settings panel. Max Dynamic Point Lights can help make

dynamic lights in a scene much cheaper by limiting the number of Point Lights that can

affect a pixel at a single time.

 Avoid using movable lights when working on mobile devices. Even with the Max

Dynamic Point Lights setting, movable lights are always more expensive than stationary

or static lights.

 Disable most post-processes. You can leave Temporal AA, Vignettes, and Film post-process

settings on, but even these cause performance loss. Make especially sure to disable Bloom,

Depth of Field, and Ambient Occlusion.

 Use masked and translucent materials sparingly. Overdraw is the process that occurs

when the hardware has to shade the same pixel more than once, and it is extremely

expensive. When you use translucent or masked materials, make sure only small parts of

the screen are covered by them. You can use the Shader Complexity view mode

(see Figure 24.5) to identify when you have too much overdraw or materials that are too

complex. Alternatively, you can use the console command viewmode shadercomplexity

in the mobile preview.

The Shader Complexity view mode shows the per-pixel instruction cost of the view.

The view is color coded from bright green (very cheap), through red (expensive), to white

(extremely expensive). Because with translucent and masked materials, the same pixel has

to be evaluated multiple times, overdraw can cause great expense and often shows up as

hot white.

ptg18222824

448 HOUR 24: Working with Mobile

FIGURE 24.5
The Shader Complexity view mode is very helpful for finding expensive materials and overdraw in a project.

 Keep your materials extremely simple, with low instruction counts and very few

 textures. On most mobile devices you have only five texture samplers available, but on

any platform, it is a good idea to use as few texture samplers as possible.

 Make sure lit opaque materials use only two textures. With UE4’s physically based

 shading model, there is a simple way to achieve this optimization with some texture

 packing. In the first texture, the RGB channels should be the Base Color pin, and the

Alpha should hold the Roughness pin. For this first texture, TC_Default compression

should be used. The second texture should hold the Normal Map in RGB and use

TC_NormalMap Compression, and Alpha should be empty. This means that there are no

texture samplers for Specular and Metallic, so instead constants should be used in place of

these pins. Figure 24.6 shows an example of a material that follows this format.

Because the rock in this example is not metallic and in a physically based shading model

specularity is primarily controlled by roughness, the Metallic and Specular input pins can

be replaced with constants. Meanwhile, the Roughness input can be packed into the same

texture that holds the RGB base color. Finally, the Normal input needs its own RGB texture

to describe the normal variation of the rock’s surface.

This technique does not work as well for objects that have mixed metal and nonmetal

parts. In those cases, another Texture Sampler may be needed to control the metalness of

the material.

ptg18222824

Developing for Mobile Devices 449

FIGURE 24.6
For most materials, this simple two-texture sample setup can create efficient yet high quality physically
based materials.

 Do not plug UV modifications (like scaling) into texture samplers in the material

graph. Instead, enable the Num Customized UVs option for a material to do UV scaling

on the vertex (see Figure 24.7). You can enable customized vertex UVs through the Details

panel when nothing is selected in the material graph. This makes UV calculations per

vertex instead of per pixel, which is important for mobile graphics processors. When you

plug scaled texture coordinates into a customized UV input, the vertex shader processes

the graph and replaces the texture coordinates on each vertex with the scaled (or

 modified) result.

This process allows you to scale UVs without the expense of scaling them when each pixel

is rendered and without the inconvenience of scaling them in the source 3D package (for

example, Maya, Max, Houdini, Blender).

ptg18222824

450 HOUR 24: Working with Mobile

FIGURE 24.7
Both of the graphs in this figure produce the same visual result, but the second graph is much cheaper on
many devices.

 Keep the triangle count of any view as low as possible for a project. Using simplified

art styles is one way to lower the triangle count in a project. If this is not possible for a

project and you need high poly count meshes, take care to reduce the number of Actors

and Mesh components in each view. Using the Stat RHI console command in the mobile

ptg18222824

Developing for Mobile Devices 451

preview can help you determine the number of triangles in a scene. In the Counters

 section, the Triangle Drawn line shows the number of triangles in the current view

(see Figure 24.8).

Draw calls (the number of objects that are being rendered to the screen in a single frame)

should be kept as low as possible for any view. The number of DrawPrimitive calls can be

seen by typing Stat RHI in the mobile preview console (see Figure 24.8).

The maximum number of draw calls in each project differs depending on the hardware

you are targeting. No matter the device, however, keeping the number of draw calls as

small as possible will always help ensure a stable framerate.

FIGURE 24.8
Using Stat RHI to view the current number of triangles and draw calls being processed in any frame. Bring up
the console by pressing }.

 Always use square textures that are power of 2 dimensions (for example, 32 ë 32,

64 ë 64, 128 ë 128, 256 ë 256, 512 ë 512, 1024 ë 1024). Doing this ensures that you have the

lowest amount of memory waste possible. You can use the command listtextures in the

mobile preview console to see where you are using your texture memory.

Setting Editor Targets
Unreal Engine 4 contains general presets for projects, depending on whether the project is

 targeted at the console/PC market or the mobile/tablet market. These presets touch several

ptg18222824

452 HOUR 24: Working with Mobile

 rendering and input features, and by informing Unreal Engine what platform you are

 developing for, you can save yourself some headache down the line.

When you first create a project, you may select Console/PC. If you later determine that you

should make a mobile/tablet focused project, you can change your setting to Mobile/Target.

To do this, go to the Project Settings panel, and in the Target Hardware category, set Optimize

Project Settings For to Mobile/Tablet and Scalable 3D or 2D. Some changes then appear in

the Pending Changes section of this window, and you need to restart the Editor to see all the

 modifications (see Figure 24.9).

FIGURE 24.9
The Project Settings panel target hardware after you change the Optimize Project Settings For settings to
Mobile/Tablet and Scalable 3D or 2D.

The Pending Changes section shows all the project settings that will automatically be set. Click

the Restart Editor button to confirm these changes. Making these changes causes every lit

 material in your Content Browser to need to be recompiled, which can take a while but should

happen only once.

The Mobile/Tablet preset disables a few rendering features and post-process effects:

 Separate Transparency: This is the ability to render some translucent materials after the

post-process passes happen. It is commonly used for rendering glass in combination with

depth of field, and is a very expensive feature that is not included on mobile devices.

ptg18222824

Developing for Mobile Devices 453

 Motion Blur: This is a post-process that blurs the screen and Actors based on relative

movement. This feature has a fair amount of overhead that is too expensive for mobile,

and it is therefore not available on mobile devices.

 Lens Flares (Image Based): This is a post-process feature to render lens flare

 approximations based on the high dynamic range light values in the scene. This

 evaluative full-screen post-process is relatively expensive and is not included on mobile

devices.

 Auto Exposure: This post-process feature evaluates the light values in the current scene

and adjusts the exposure to help with visibility. Like the other post-process effects, this

 feature is not available on mobile devices. As a side note, the Auto Exposure Bias setting is

supported.

 Ambient Occlusion: This is another expensive post-process feature. It disables the

 screen-space ambient occlusion process, which requires that the rendering sample the

depth buffer multiple times to generate contact shadows. This type of effect is prohibitively

expensive on most mobile devices and is therefore not available for mobile devices.

 Anti-Aliasing Method: This is a post-process that attempts to remove jagged edges and

remove sub-pixel artifacts. Anti-aliasing is not included on mobile hardware. Temporal

anti-aliasing is available for use on mobile but may result in small jittering artifacts on

moving objects.

In addition to disabling various high-cost features, the Mobile/Tablet preset enables the input

feature Mouse for Touch, which lets the mouse emulate a finger touch.

Setting the Scalable 3D or 2D preset disables two more high-cost features:

 Mobile HDR: This core feature lets a mobile device render high dynamic range buffers.

This is the feature that allows for all lighting effects to function. These HDR render buffers

are used in a variety of rendering features and effects, and removing this option substan-

tially reduces the memory used by the renderer. As a side effect, all rendering features that

rely on those HDR buffers no longer work the same way.

 Bloom: This post-process feature takes a blurred form of the highlights present in the scene

and lays them on top of the render. This feature allows heavily emissive features or bright-

ly lit objects to seem to glow, and it heavily relies on mobile HDR rendering being enabled,

since in many cases only pixels with values greater than 1.0 are expected to bloom.

CAUTION

Scalable 3D or 2D and Lighting on Mobile
When you select the Scalable 3D or 2D preset, the Mobile HDR rendering feature is disabled.
This results in all lighting features being disabled on mobile devices, including static baked lighting.

ptg18222824

454 HOUR 24: Working with Mobile

The mobile preview in the Editor does not show this change, so the visual result of your project may
change considerably from the mobile preview to use on an actual device. To emulate the effect while
working in the Editor, you should delete or disable all lights in the scene.

Again, if you require lighting effects in a mobile project, you should not switch to the Scalable 3D or
2D preset.

Using Touch
One of the major innovations of mobile devices has been the rise of touch input. The one-to-one

relationship between a finger press and an onscreen action is definitely a huge drawing point for

mobile devices.

The nature of touch allows you to create a myriad of interaction styles based on the same input.

Some interaction styles mimic those of hardware inputs, virtual keyboards, and virtual joysticks,

while other uses of touch are entirely new.

Virtual Joysticks
When you switch a project to a mobile project, UE4 handles one of the more complicated input

styles for you by creating a set of virtual joysticks for you. These joysticks (shown in Figure 24.10)

are two digital representations of axis input. The inner circle is the joystick’s representation,

while the outer circle shows how far the joystick can be moved.

FIGURE 24.10
A mobile version of the Hour 23 project. The two sets of white circles are the left and right virtual joysticks
created by UE4. The left joystick is currently bound to movement.

ptg18222824

Using Touch 455

These virtual joysticks can be especially convenient when you’re creating twin-stick control

scheme games. You can disable the joysticks on the Project Settings panel by going to the

Input category and selecting the Default Touch Interface dropdown and selecting Clear

(see Figure 24.11).

FIGURE 24.11
The Input category in the Project Settings panel, with the Clear option highlighted for the touch interface.

A touch interface is a UAsset that allows you to build and display a touch-enabled user interface.

These interfaces allow you to create virtual joysticks and buttons.

In your arcade shooter game, for example, you use only one directional input to control

 movement, so you do not need the right joystick. You can easily remove the right joystick by

setting Default Touch Interface to LeftVirtualJoystickOnly in the Input category of the Project

Settings panel.

ptg18222824

456 HOUR 24: Working with Mobile

Touch Events
While the touch interface is great for setting up virtual joysticks, some inputs are better handled

directly through Blueprints. Throughout this book, when you have added new inputs, you have

simply hooked up the input with Action Mappings in the Input category of the Project Settings

panel. Touch events are a little different, in that they are handled directly in Blueprints.

TIP

Using a Touch Interface for a Button Press
You can use a touch interface to emulate controller buttons, but only for axis mappings. If you are
making your own touch interface, all the inputs should be axis mappings not action mappings.

For the most fine-tuned control, set up touch events with the InputTouch node in the Event

Graph. Figure 24.12 shows the InputTouch node and properties.

▼ TRY IT YOURSELF

Remove the Right Joystick

Your game needs only one virtual joystick. You can use the default available settings to replace
the dual joystick with a single one:

1. In the Hour 23 project, open the Project Settings panel.

2. Navigate to the Input category.

3. Locate the Default Touch Interface field.

4. Click the down arrow in the property field.

5. In the bottom-right corner of the selection dropdown, click the View Options eye icon.

6. Ensure that Show Engine Content is selected. This enables you to find and select the
default engine Touch Interfaces provided by UE4.

7. In the selection dropdown, find the LeftVirtualJoystickOnly Interface UAsset.

8. Use the toolbar to preview your changes and ensure that only one joystick appears.

ptg18222824

Using Touch 457

FIGURE 24.12

The InputTouch event node can be found by searching for touch in the Blueprint Context Menu; the inputs and
the details work much like those for any other event node.

The InputTouch event node has three execution pins and two property pins:

 Pressed: Fires once for each finger each time that finger touches down.

 Released: Fires once whenever a finger is lifted from the sensor.

 Moved: Fires every tick while a finger is down and the current location is changing.

 Location: The current location of the finger in screen space, with [0,0] being the top-left

corner and the units being pixels. This location can be converted to world space by using

the Deproject Screen to World node.

 Finger Index: A unique index that identifies which finger’s input is currently being han-

dled. This is based on touch order, not on the user’s actual physical fingers. You can use

this in conjunction with branch and comparison nodes to handle multiple inputs.

There is one property on this node worth mentioning:

 Consume Input: Whenever more than one Actor is bound to the touch, the first Actor

that has this flag checked is the only Actor to process the touch event. If you want multiple

different Actors to be able to handle the touch event, all InputTouch nodes on each Actor

should have the Consume Input flag disabled.

ptg18222824

458 HOUR 24: Working with Mobile

NOTE

Touch Interactions with UMG
From the project from Hour 22, “Working with UMG,” you have a UMG start screen. Luckily, UMG
 handles touch events as if they were mouse clicks, so you are still capable of using your main menu.

▼ TRY IT YOURSELF

Set Up Tap to Shoot

Because a mobile device doesn’t have a mouse or trigger, in the arcade shooter, you need to set
up your Pawn to shoot a projectile whenever the user taps the device. Here’s how you make that
happen:

1. In the Content Browser for the Hour 23 project, double-click Hero_Spaceship in the
Blueprints folder.

2. Below the InputAction Shoot node, search for touch and place a new InputTouch event.

3. Click+drag the Released pin from the InputTouch event node and connect it to the same
SpawnActor node used by InputAction Shoot. Both events should hook up to the same
node. Figure 24.13 shows how the Event Graph should look. You can compare your results
to those in the Hour 24 project.

FIGURE 24.13
Both the InputAction Shoot and InputTouch Released events are hooked up to the same spawn behaviors.

ptg18222824

Using a Device’s Motion Data 459

Using a Device’s Motion Data
Most handheld devices ship with built-in gyroscopes and accelerometers. These small sensors

allow the mobile device to detect changes in orientation. This experience differentiator is another

strength of mobile devices.

Unreal Engine 4 makes using these sensors exceptionally simple through the Inputs section of

the Project Settings panel. By adding the Tilt option to an existing axis mapping, you can offer

another way to use the input controls you’ve already built.

Figure 24.14 shows the Tilt option added to the MoveRight axis mapping. In this case, you want

to invert the value that comes out of Tilt and scale it down so the movement is easier to control.

FIGURE 24.14
The Tilt axis mapping added to the existing MoveRight axis mapping.

ptg18222824

460 HOUR 24: Working with Mobile

Although axis inputs can be extremely convenient, sometimes you want to access the values of

the gyroscope or accelerometer in another place. As with the InputTouch event node, you can

access the values currently being processed by the gyroscope directly through the Event Graph.

Unlike with the InputTouch event, however, the device’s motion data is accessed not as an event.

Instead, the data can be accessed from a Player Controller, in the form of the Get Input Motion

State function. These nodes are shown in Figure 24.15.

FIGURE 24.15
The Get Input Motion State node pulled off the default Player Controller.

The Get Input Motion State function node offers four motion states:

 Tilt: The rotation around the device’s X- and Z-axes.

 Rotation Rate: The speed, or change in rotation per second, of each axis.

 Gravity: A non-normalized vector pointing toward the earth from the Player Controller’s

point of view.

 Acceleration: The change in speed of the device’s rotation per second of each axis. For

example, a consistently spinning device would have zero acceleration but a nonzero

 rotation rate.

Using the input mappings, while functional, may not give you all the control you need. The

primary issue is that the input mappings versions do not have dead zones, which means if the

mobile device isn’t perfectly calibrated and you hook the tilt up to your character’s movement,

it will always be moving, even when the device is lying flat on a table. Instead, by using an

Event Tick node and the Get Input Motion State, you can create your own gravity-based control

scheme for the ship.

ptg18222824

Using a Device’s Motion Data 461

▼TRY IT YOURSELF

Use Your Device’s Gravity

Here you use Get Input Motion State and Event Tick in your Pawn to create a control scheme
that works when the player tilts the device left or right. You need a compatible mobile device to
test this behavior. Follow these steps to hook up the gravity vector to your device’s movement
 controls:

1. In the Content Browser for the Hour 23 project, open Hero_Spaceship in the
Blueprints folder.

2. Add a new Event Tick node (or use the existing one, if there already is an Event Tick
node).

3. Near the Event Tick node, place new Get Actor Right Vector and Get Player Controller nodes.

4. Click+drag from the Get Player Controller node’s Return Value pin and place a new Get Input

Motion State node.

5. Click+drag from the Gravity pin and place a new Normalize node.

6. Create a new Vector * Vector node and hook up the Return Values of the Get Actor Right
Vector and Normalize nodes.

7. Create a new variable of type Vector and name it Internal Gravity Vector.

8. Set the Internal Gravity Vector to the result of the Vector ∗ Vector node and hook it up to
the exec out pin of the Event Tick node.

9. Create a new Branch node and hook it up to the exec out pin of the Internal Gravity Vector’s
Set node.

10. From the Internal Gravity Vector’s Set node, pull off the yellow Vector pin and drop a new
VectorLength node.

11. Click+drag from the Return Value of the VectorLength node and place a Float > Float node.
Set the B float value to 0.1.

12. Hook the Boolean output of the Float > Float node to the Branch node’s Condition input.

13. From the Branch node’s True exec out pin, create a new Add Movement Input node.

14. Place an Internal Gravity Vector get into the World Direction input of the Add Movement
Input node.

15. To increase the acceleration speed of your Pawn when tilting the device, put the value 2.0

into the Add Movement Input node’s Scale Value input. Figure 24.16 shows the resultant
node network in Hero_Spaceship.

16. Deploy your application to your personal mobile device to test the new behavior. You can
compare your results to those in the Hour 24 project.

ptg18222824

462 HOUR 24: Working with Mobile

▼

FIGURE 24.16
The required Event Graph to hook a mobile device’s motion inputs up to a Pawn’s left and right movements.

The math you are using in this Event Graph is simple. The Get Input Motion State Gravity pin

returns a non-normalized vector in the world space direction of real-world gravity. You want

your Pawn to slide toward the real-world earth, wherever that may be. However, because you

don’t want the Pawn to ever move forward, backward, upward, or downward, you multiply that

gravity vector by the Pawn’s right vector. This removes the impact from any gravity that is not

aligned with the Pawn’s right axis.

Checking the length of the resultant vector allows you to set a dead zone, but whenever the

 vector’s length is greater than 0.1, you add a Movement Input node in that direction.

Summary
Mobile project development is a burgeoning field, and using Unreal Engine 4 is an excellent way

to begin quick mobile development. This hour you’ve learned about the current hardware limita-

tions of mobile devices and how to hook up touch, virtual joysticks, and gyroscopic inputs. These

core input models are key to making a touch-enabled mobile-ready experience.

Q&A
Q. I have converted a previous project to mobile, but several of my materials are now gray

checkerboards when I test on a mobile device. What happened?

A. Although this could be a number of potential problems, one of the most likely is that the
reduction of texture samplers has caused your materials to fail to compile. Opening the
 broken materials in the Editor and clicking the Mobile Stats button in the toolbar will display
any compilation errors your material has on mobile.

ptg18222824

Workshop 463

Q. I’m using the Gravity pin from the Get Input Motion State, but it is causing my Pawn to move

really fast and become hard to control. What is the problem?

A. You most likely have not normalized the value that comes out of the Gravity pin. If
the Gravity vector isn’t normalized, its values can be way over 1 in length resulting in
 uncontrollable acceleration.

Q. I’m having trouble using the input bindings with the motion controls, like tilt. How do I get

them to map properly to the behavior I want?

A. Whenever you encounter difficulties with the input bindings with motion states, it is best
to switch to the method shown in Figure 24.14. By moving the input into an Event Graph,
you can more carefully and accurately map the behavior in your own way. You can use the
Print String node to print the outputs of the Get Input Motion State results to debug what is
 happening with your device.

Q. I’m trying to set up multi-touch input using the InputTouch event on my Windows device, but

it isn’t working. What is wrong?

A. Unfortunately, at this writing, UE4 does not support multi-touch on Windows devices, and
there is not yet a good workaround.

Q. Several of my materials render fine in the Editor but are just checkerboards on my device.

What is wrong?

A. If you are seeing default material checkerboard, then you may be using a node that is not
supported at the target level. Find the material that is rendering incorrectly in the Content
Browser and double-click on it to open its Editor. Next, click the Mobile Stats icon in the
Material’s toolbar. A Stats panel should appear, showing any compilation errors for mobile
devices.

Workshop
Now that you have finished the hour, see if you can answer the following questions.

Quiz
1. True or false: Mobile devices are phones only.

2. True or false: Unreal Engine 4 can work only for iOS mobile devices.

3. True or false: You can handle touch inputs only directly in the Event Graph, not through the
Input Binding category in the Project Settings panel.

4. True or false: The Finger Index property of the InputTouch event node is the user’s finger,
starting with 0 being the thumb and 4 being the little finger.

ptg18222824

464 HOUR 24: Working with Mobile

Answers
1. False. Tablets and many new laptops have touch inputs, broadening the definition of mobile

devices to include more than just phones. In terms of graphics limitations, however, you
usually are targeting smart phones or lower-end tablets.

2. False. Unreal Engine 4 supports Android, iOS, and Windows 10 devices.

3. True. Touch inputs (tapping or dragging) cannot be utilized through the Input Bindings
 category.

4. False. The Finger Index property doesn’t identify which finger is being used; rather, it identi-
fies different finger taps based on order. For example, the first finger to touch the screen is
given the index 0, and if another finger touches the screen before the first one is removed,
that new finger is given the index 1.

Exercise
Now use what you have learned about Action Bindings and mobile to modify your Hero_Spaceship
Pawn’s Event Graph to allow the user to fire a constant stream of projectiles without having to
tap each time.

1. Open the Hero_Spaceship Blueprint class’s Event Graph.

2. Find the InputAction Shoot event and move all of its outputs into a new function called
Shoot.

3. Place the new Shoot function beside the InputAction Shoot event and hook up their exec pins.

4. Detach any outputs for the Event Touch node.

5. Click+drag from the Event Touch node’s Pressed exec pin and place a Set Timer by Function

Name node.

6. Set the Function Name input to Shoot.

7. Set the Time input to 0.1.

8. Set the Looping input to True.

9. Click+drag from the Set Timer by Function Name node’s Return Value output pin and select
the Promote to Variable option.

10. Rename the new variable ShootTimerHandle.

11. Click+drag from the Event Touch node’s Released exec pin and place a Clear Timer by

Handle node.

12. Drag the ShootTimerHandle variable and drop it onto the Clear Timer by Handle node’s
Handle input pin.

ptg18222824

ActivateStomper_BP, 350

activating. See also triggering

Actors

events, 283

properties, 273–281

particles, 176–177

Actors

Ambient Sound Actor, 110,

112–113

attaching, 49–50

BSP (binary space

 partitioning), 144

Camera group, 216–218

classes, spawning, 332–335

collisions, configuring,

271–272

combining, 148–150

components, 275

events

activating, 283

assigning, 272–274

fog, 155

grouping, 47, 208

layers, applying, 48–49

Light Actors, 76

materials

modifying, 277

resetting properties, 278

Symbols

3D

coordinate systems, 37–38

transformation tools, 39

A

abilities, characters, 342–344

action encounters, 341

Actor/Component tags,

350–351

Blueprint classes, 344–345,

346

BP_Common folders, 345–346

BP_Levers folder, 349–350

BP_Pickup folder, 349

BP_Respawn folder, 348

BP_Turrets folder, 341–348

character abilities, 342–344

HUDs (heads-up displays), 342

project Game modes, 341

respawn systems, 342

timers, 342

actions, configuring input,

367–369

Index

ptg18222824

466 Actors

Matinee, 203–204

moving, 46–47

physics

attaching, 235

constraints, 235–239

radial force, 240

thrusters, 239

post processing volume,

155–156

properties, 273–281,

275–276

reference variables, assigning

to, 274

reflection capture, 155

selecting, 48

Skeletal Mesh Actors, 181.

See also Skeletal Mesh

Actors

applying, 199–201

defining, 181–186

importing, 186–191

Persona Editor, 191–199

sound, applying, 112–113

spawners, creating, 397–403

Static Mesh, 8, 66–70

Static Mesh Actors

animation, 211

properties, 228

tags, 350–351

transformation tools, 41.

See also transformations

visibility, rendering, 270

adding

Actors, 203–204

arrows, 279–281

Blueprint class, 288–289

components (Blueprint class),

291–292

curves, 297

default maps, 425

Directional Lights, 80–81

events, 256

GameMode class, 32–33

health pickups, 391

lighting, 153

multiple cameras, 217

multiple collision hulls, 61

Point Lights, 76–77

Sky Lights, 79–80

Spot Lights, 78

Static Mesh components,

279–283

tracks, 297

Widget Blueprint, 424

AIController class, 31

albedo. See base colors

Ambient Sound Actor, 110,

112–113

anchor points, 412–413

Android, packaging, 435

angular, 224

animation

Blueprints, 185

editing, 206. See also Matinee

interpolation, 214–215

sequences, 185

Static Mesh Actors, 211

Animation mode (Persona Editor),

194–199

applying

assets (Matinee), 220

audio volumes, 119–120

Blueprint class, 287

Cast To Node, 386–388

collision hulls, 62

constraints, 234

Construction Script, 277–278,

326–328

Curve Editor, 166–168

foliage, 133–134

landscapes, 123, 130–133

layers, 48–49

materials, 89

Matinee Editor, 207

modular assets, 148

modulation properties, 115

motion data, 459–462

particle emitters, 164

physics, 223

Skeletal Mesh Actors,

199–201

Sound Actors, 112–113

Sound Track, 215–216

Static Mesh Editor, 54

SubUV textures, 174–176

Timeline, 296–300

World Outliner, 45

arcade shooter games, 355

Actor spawners, creating,

397–403

axis mappings, 367–369

Cast To Node, applying,

386–388

controllers, customizing,

361–362

creating, 356–358

default Pawns, inheriting

from, 362

fixed cameras, configuring,

371–373

Game modes, customizing,

359–361

health pickups, creating,

391–397

input

actions, 367–369

events, 369–371

Obstacle classes, 378–381

obstacles, 377

cleaning up old, 403

moving, 381–384

ptg18222824

bounced lighting 467

Pawns

damaging, 384–386

disabling movement,

366–367

moving, 365–366

pickups, 377

requirements

design, 356

identifying, 356

arrows, adding, 279–281

aspect ratios, 412

Asset dialog box, 27

assets

icons, 27

importing, 413–415

Matinee, applying, 220

modular, applying, 148

Physical Materials, 230–234

Physics, 185

placing, 147

references, 29

Sound Attenuation, 110

Sound Cue, 110, 115–119

Sound Wave, 110, 111

Static Mesh, 8, 53. See also

Static Mesh assets

types of, 29–32

assigning

Actors

to events, 272–274

to existing groups, 208

to reference variables, 274

materials to Static Mesh

assets, 59

physics to levels, 224–225

attaching Actors, 49–50, 235

attenuation, configuring, 113–114

Attenuation Radius property, 82

Audacity, 110

audio

attenuation, configuring,

113–114

components, 109–110

importing, 110–112

modulation properties,

 applying, 115

overview, 109–110

Sound Actors, applying,

112–113

Sound Cue assets, formatting,

115–119

Sound Track, 215–216

volumes, applying, 119–120

world building, 154–155

Auto Activate setting, 176

auto-generating collision hulls, 64

axis mappings, configuring,

367–369

B

base colors, 91

beam data, 162

binary space partitioning. See

BSP (binary space partitioning)

bind poses, missing bones, 190

blank projects, formatting, 24

blocking world building, 145–147

Blueprint, 5

animation, 185

Level Blueprints, 269–270.

See also Level Blueprints

particles, activating, 176–177

projects, formatting, 23

scripts

Blueprint Context menu,

251

comment boxes, 262

compiling, 246

components, 253

concepts, 252–254

conditionals, 260–261

Event Graph, 250

events, 252

functions, 254–256

managing, 262

My Blueprint panel, 250

node comments, 262

operators, 260–261

overview of, 245–246

reroute nodes, 263

structs, 258

types of, 247

variables, 257–258

Widget Blueprint, creating,

407–408

Blueprint class, 247, 287

action encounters, 344–345,

346

Actors, combining, 148–150

adding, 288–289

applying, 287

components, 291–292

existing classes, deriving

from, 301

pulsing lights, creating, 300

scripting, 294–296

spawning, 326, 329

Timeline, applying, 296–300

Blueprint Context Menu, 251

Blueprint Editor, 247–249,

289–291

Blueprint Interfaces. See BPIs

Blueprint Macros, 247

bones, missing, 190

bounced lighting, 76

ptg18222824

468 boxes, comments

boxes, comments, 262

BP_Common folders, 345–346

BPIs (Blueprint Interfaces), 247

BP_Levers folder, 349–350

BP_Pickup folder, 349

BP_Respawn folder, 348

BP_Turrets folder, 348

Brush menu, 129

BSP (binary space partitioning),

144

building

lighting, 83–85

world building, 139–140.

See also world building

buttons

Create, 123

events, scripting, 419

Fill World, 123

Play Cue, 115

Play Node, 115

Selection, 127

widgets, 417

bytecode, 246

C

C++, 245–246

Camera group, 216–218

cameras, configuring fixed,

371–373

Cartesian coordinates, 37

Cascade interfaces, 162–164

Cast Shadows property, 82

Cast To Node, applying, 386–388

channels

green, 92

visualizers, 167

Character classes, 32

characters. See also Actors

abilities, 342–344

movement, 345

Skeletal Mesh Actors, 186.

See also Skeletal Mesh

Actors

Checkpoint_BP, 348

classes

Actors, spawning, 332–335

AIController, 31

Blueprint, 247. See also

Blueprint class

Character, 32

controller, 31

DefaultPawn, 365

defaults, 281

GameMode, 31, 32–33

HUD, 32

inheriting, 362

Obstacle, 378–381

Pawn, 32

PlayerController, 31, 365

Vehicle, 32

cleaning up old obstacles, 403

cloth, 224

CollectionPickup_BP, 349

Collision Enabled setting, 72

collisions

Actors, configuring, 271–272

hulls, 53, 59–63

auto-generating, 64

Convex Decomposition

panel, 64

per-poly, 64–65

presets, 71

responses, flags, 72

Static Mesh Actors, editing,

70

Color Over Life module, 170

colors

base, 91

particles, formatting, 173

shadows, 153

combining Actors, 148–150

comments

boxes, 262

nodes, 262

scripts, 262

common modules, particles,

168–172

communities, 21

compilers, 246

compiling scripts (Blueprint), 246

components

Actors, 275

audio, 109–110

Blueprint class, 291–292

scripting, 253, 294–296

Static Mesh, adding, 279–283

tags, 350–351

conditionals, Blueprint scripts,

260–261

Config folders, 23

configuring

Actor collisions, 271–272

attenuation, 113–114

axis mappings, 367–369

Collision Enabled setting, 72

Default Game Mode, 34

editor targets, 451–454

fixed cameras, 371–373

input

actions, 367–369

events, 369–371

keyframes, 210

Lightmass Importance Volume

setting, 153

mobility, Static Mesh Actors, 67

ptg18222824

editable variables 469

Object Type setting, 72

packaging, 436–437

particles, materials, 172

projects, modifying, 6

resolution, 410–412, 424

sequence length, 207

shipping configurations, 432

spawning (Blueprint class), 329

start levels, 357

Timeline, 296–300

touch input, 454

variables, 302

connecting textures to layers, 131

Const Acceleration module, 171

constraints

Actors, physics, 235–239

applying, 234

Construction Script, applying,

277–278, 314, 326–328

content. See also projects

cooking, 429–430

importing, 25–26

migrating, 27–29

Content Browser panel, 11

filters, 29

Content Example Project,

 downloading, 22

Content folders, 23, 25–26

content packs, 140

context, units and

measurements, 42

continuity, units and

 measurements, 42

controllers

classes, 31

customizing, 361–362

controlling mass, 239

controls

Curve Editor, 168

landscapes, 125

Convert Scene property, 189

Convex Decomposition panel, 64

cooking content, 429–430

coordinates, Cartesian, 37

copying, 11

Static Mesh Actors, 67

Copy tool, 129

C++ projects, 5

Create button, 123

creating. See formatting

Curve Editor, 166–168, 212–213

curves, adding, 297

customizing

collision presets, 71

controllers, 361–362

functions, 256

Game Mode, 359–361

snap tools, 45

D

damaging Pawns, 384–386

damping, 224

Data-Only Blueprint, 247

data types, overview of, 161–162

death states, creating, 389

declaring variables, 259

default classes, 281

Default Game Mode,

configuring, 34

default Game Modes, 361

default levels

creating, 357

formatting, 141

default maps, adding, 425

DefaultPawn class, 365

default Pawns, inheriting from, 362

default root widgets, 409

defining Skeletal Mesh Actors,

181–186

density, 224

deriving classes, 301

Designer mode (UMG UI Designer),

408–409

design requirements, arcade

shooter games, 356

destructible, 224

Details panel, 9–10, 97, 164, 291

developing for mobile devices,

441, 442

dialog boxes

Asset, 27

FBX Import, 187

FBX Import Options, 189

diffuse. See base colors

Directional Lights, 80–81, 141

direct lighting, 75

distribution modules, 165

Door_BP, 350

downloading. See also installing

Content Example Project, 22

Launcher, 2–3

Unreal Engine, 3–4

DPI scaling, 412–413

dragging and dropping textures,

95–96

Drag Grids, 44

duplicating. See also copying

Static Mesh Actors, 67

dynamic lighting, 76

E

edges, 53

editable variables

Construction Script, applying,

277–278

formatting, 312–314

limiting, 283

ptg18222824

470 editable variables

Show 3D Widget, 320

Static Mesh components,

 adding, 279–283

editing

animation, 206. See also

Matinee

collisions

hulls, 60

Static Mesh Actors, 70

landscapes, 123–124

Editors

Audacity, 110

Blueprint Editor, 248–249,

289–291

Curve Editor, 164, 166–168,

212–213

Level Editor. See Level Editor

Material Editor, 91, 130

Matinee, 203. See also

Matinee

modes, 9

particles, Cascade interfaces,

162–164

Persona Editor, 191–199

PIE (Play in Editor), 22

Sound Cue Editor, 110

Static Mesh Editor, 54.

See also Static Mesh assets

targets, configuring, 451–454

unit scales, 187

effects

Reverb Effects, 119

SubUV textures, 174–176

emitters, particles, 162, 164.

See also particles

Emitters panel, 163

Enable Gravity property, 227

environmental narratives, 140–141

Erosion tool, 128

Event Graph (Blueprint), 250

events

Actors, assigning, 272–274

adding, 256

Blueprint scripts, 252

buttons, scripting, 419

ForLoop, 281

input, configuring, 369–371

OnActorBeginOverlap,

272, 273

OnActorHit, 272

touch input, 456–458

Event Tick, 260, 304

execs, 251

executables

Android, packaging, 435

content, cooking, 429–430

formatting, 429

IOS, packaging, 435

packaging, configuring,

436–437

projects, packaging for

Windows, 430–435

existing projects, migrating

 content, 27–29

F

Falloff menu, 129

.fbx files, 186

FBX Import dialog box, 187

FBX Import Options dialog box,

189

files

audio, importing, 110–112

.fbx, 186

textures, 95

types, 26

Fill World button, 123

filters, Content Browser panel, 29

first-person shooter games.

See FPS games

fixed cameras, configuring,

371–373

flags

collision responses, 72

show. See show flags

Flatten tool, 128

float distributions, 165

Fog Actors, 155

folders

BP_Common, 345–346

BP_Levers, 349–350

BP_Pickup, 349

BP_Respawn, 348

BP_Turrets, 341–348

Config, 23

Content, 23, 25–26

creating, 26, 46–47

formatting, 23

InterfaceAssets, 413

Intermediate, 23

Maps, 358

raw asset, creating, 29

Saved, 23, 30

World Outliner, 46

foliage

applying, 133–134

placing, 135

force, 224

ForLoop events, 281

formatting

Actors, spawners, 397–403

arcade shooter games,

356–358

Blueprint class, spawning,

326

characters, 187

Content folders, 25–26

ptg18222824

Initial Rotation module 471

death states, 389

default levels, 141, 357

editable variables, 312–314

executables, 429. See also

executables

folders, 46–47

creating, 26

raw asset, 29

health pickups, 391–397

instances, materials, 101–104

landscapes, 125–126,

130–133

levels, world building,

141–142

materials, 91–93, 96–98

particle colors, 173

projects, 4–7, 357

blank, 24

Blueprint, 23

folders, 23

pulsing lights, 300

Sound Cue assets, 115–119

textures, 94–95

Widget Blueprint, 407–408

world beyond, 150–152

FPS (frames per second), 204

FPS (first-person shooter) games,

341

frames per second. See FPS

frameworks (Gameplay

Framework), 30

framing, 147

friction, 224

functions

Blueprint scripts, 254–256

Heal Damage, 395

Play Sound at Location,

281–283

Print String, 257

Spawn Actor from Class, 328

targets, 277

G

Game Mode

customizing, 359–361

defaults, 361

GameMode class, 31, 32–33

Game modes, assigning, 224

Gameplay Framework, 30

games

arcade shooter, 355. See also

arcade shooter games

default maps, adding, 425

project modes, 341

timers, 342

game-style navigation, 16

gloss. See roughness

GPU sprites, 162

Graph mode

Persona Editor, 198–199

UMG UI Designer, 409

Graph panel, 98, 115

gravity, applying, 459–462

green channels, 92

grids, 345

snapping to, 43–45

units, 42

groups, 47

Camera, 216–218

Director, 218–219

Matinee, 208

H

hard drives, space requirements, 3

hardware requirements, 2

heads, shaking, 196

heads-up displays. See HUDs

Heal Damage function, 395

HealthPickup_BP, 349

health pickups, creating,

391–397

height

maps, 124

obstacles, placing, 388

help, 21

HUD class, 32

HUDs (heads-up displays), 342

hulls, collision, 53, 59–63

Hydro Erosion tool, 128

I

icons, assets, 27

IDES (Integrated Development

Environments), 245–246

images, placing widgets, 416, 417

Import Animations property, 189

Import as Skeletal property, 189

importing

assets, 413–415

audio, 110–112

content, 25–26

Skeletal Mesh Actors,

186–191

Static Mesh assets, 56–57

textures, 95–96

Import Materials property, 189

Import Mesh property, 189

impulse, 224

indirect lighting, 76

Inherent Parent Velocity module,

171

inheriting from default Pawns,

362

Initial Color module, 170

Initial distributions, 166

Initial Location module, 172

Initial Rotation module, 172

ptg18222824

472 Initial Size module

Initial Size module, 170

Initial Velocity module, 171

input

actions, configuring, 367–369

materials, 98

touch

configuring, 454

events, 456–458

types, 91

Inside Cone Angle property, 82

installing

Launcher, 2–3

Unreal Engine, 2–4

instances, 11. See also copying

materials, 101–104

Integrated Development

Environments. See IDEs

Intensity property, 82

interactive transformations, 41

InterfaceAssets folders, 413

interfaces. See also Blueprint

Editor

Blueprint Editor, 248–249

BPIs (Blueprint Interfaces),

247

Cascade, 162–164

Content Browser panel, 11

Details panel, 9–10

menu bars, 8

Modes panel, 8–9

modifying, 7

navigating, 7–12

Project Browser, navigating, 5

UMG (Unreal Motion Graphics)

UI Designer, navigating, 408

Viewport panel, 12

World Outliner panel, 9

Intermediate folders, 23

interpolation, 214–215

IOS, packaging, 435

IsVariable property, 410

J

joysticks, virtual, 454–456

K

keyframes, 210

keys, 167

KillVolume_BP, 349

L

Landscape button, 123

Landscape panel, 124

landscapes

applying, 123

creating, 125–126

height maps, 124

Manage tab, 124

managing, 127

materials, 130–133

painting, 130

shapes, 127

tools, 123–124, 128–129

volumes, 127

Launcher, installing, 2–3

Launcher_BP, 345

layers

applying, 48–49

textures, connecting, 131

layouts

interfaces, navigating, 7–12

UV, 53, 57–58

Viewport panel, 12

Learn section, 21

length, configuring sequences,

207

Level Blueprints, 247, 269–270

Actors

activating events, 283

activating properties,

273–281

assigning events,

272–274

assigning to reference

 variables, 274

collision settings,

271–272

components, 275

properties, 275–276

function targets, 277

Play Sound at Location

 function, 281–283

Level Editor. See also interfaces

navigating, 7–12

toolbars, 16

levels

Blueprints, activating particles,

176–177

default

creating, 357

formatting, 141

Level Editor, 7. See also Level

Editor

overriding, 361

physics, assigning to,

224–225

playing, 16–17

previewing, 22

start, configuring, 357

Static Mesh Actors, placing

into, 66

world building, formatting,

141–142

levels of detail. See LODs

Lifetime module, 170

Light Actors, 76

Light Color property, 82

ptg18222824

mobile devices 473

lighting

adding, 153

building, 83–85

Directional Lights, 80–81, 141

Mobility, 85–86

Point Lights, adding, 76–77

properties, 82

pulsing lights, formatting, 300

Sky Lights, adding, 79–80

Spot Lights, adding, 78

Swarm Agent, 83

terminology, 75

types of, 76

world building, 152–153

lightmaps, 53

UV channels, 58

Lightmass Importance Volume

setting, 153

Lightmass tool, 83

limiting editable variables, 283

linear, 224

lists, variables, 259

loading options (Matinee), 204

local axis, 53

local transformations, 41

local variables, 281

locations, particles. See particles

LODs (levels of detail), 53, 125

looping, 117

M

Mac requirements, 2

macros (Blueprint Macros), 247

Manage tab, 124

managing

Blueprint scripts, 262

landscapes, 127

manual transformations, 41

maps

axis mappings, configuring,

367–369

default, adding, 425

height, 124

mipmapping, 414

Maps folder, 358

markers, time, 208

mass, 224

controlling, 239

Material Editor, 91, 130

materials, 53, 89

Actors

modifying, 277

resetting properties, 278

base colors, 91

creating, 91–93, 96–98

green channels, 92

inputs, 91, 98

instances, 101–104

landscapes, 130–133

metalness, 91

normal input, 92

outputs, 98

particles, configuring, 172

PBR, 90–91

Physical Materials, 230–234

pickups, creating, 392

roughness, 92

Static Mesh Actors,

replacing, 69

Static Mesh assets,

 assigning, 59

value nodes, 99–101

Matinee, 203

Actors, 203–204

assets, applying, 220

Camera group, 216–218

Curve Editor, 212–213

Director group, 218–219

groups, 208

interpolation, 214–215

Matinee Editor, 206–207

Sound Track, 215–216

tracks, 209–210

measurements, units and, 42

menus

bars, 8

Blueprint Context, 251

Brush, 129

Falloff, 129

Start (UMG UI Designer), 413

systems, 425

Tool, 128–129

meshes

data, 162

references, modifying, 68

Skeletal Mesh, 181–186.

See also Skeletal Mesh

Actors

skinning, 183

Static Mesh components,

 adding, 279–283

Mesh mode (Persona Editor),

193–199

metalness, 91

mipmapping, 94, 414

missing bones, 190

mixing sound cues, 117

mobile devices

developing for, 441, 442

editor targets, configuring,

451–454

motion data, applying,

459–462

optimizing, 447–451

previewing, 442–446

testing, 441

touch input, 454, 456–458

virtual joysticks, 454–456

ptg18222824

474 Mobility

Mobility, 85–86

mobility, configuring Static Mesh

Actors, 67

models, viewing UV layouts, 57–58

modes

Default Game Mode,

 configuring, 34

Designer, 408–409

editors, 9

game, assigning, 224

Game Mode, customizing,

359–361

GameMode class, adding,

32–33

Graph, 409

interpolation, 214–215

projects, 341

views, 14–15

Modes panel, 8–9

modifying

Actors, materials, 277

interfaces, 7

landscapes, 125

mesh references, 68

projects, configuring, 6

Static Mesh assets, 54

modular assets, applying, 148

modulation properties, applying,

115

modules

Color Over Life, 170

Const Acceleration, 171

distributions, 165

Inherent Parent Velocity, 171

Initial Color, 170

Initial Location, 172

Initial Rotation, 172

Initial Size, 170

Initial Velocity, 171

Lifetime, 170

particles, 164

common, 168–172

Curve Editor, 166–168

properties, 165–166

requirements, 164–165

Required, 168–169

Rotation Rate, 172

Scale Color/Life, 170

Size by Life, 170

Spawn, 169–170

Sphere, 172

Modules panel, 164

motion data, applying, 459–462

movable lighting, 86

movement, characters, 345

Mover_BP, 345

Move transformations, 40

moving

Actors, 46–47

obstacles, 380, 381–384

Pawns, 365–366

disabling, 366–367

input events, 369–371

Static Mesh assets, 56–57

textures, 95–96

multiple cameras, adding, 217

My Blueprint panel, 250

N

narratives, environmental,

140–141

navigating

game-style navigation, 16

interfaces, 7–12

Landscape panel, 124

Level Editor toolbars, 16

Matinee Editor, 206–207

Project Browser, 5

scenes, 15–16

Static Mesh Editor, 54

UMG (Unreal Motion Graphics)

UI Designer, 408

nodes, 251

comments, 262

reroute, 263

value, materials, 99–101

Noise tool, 129

normal input, materials, 92

O

Object Type setting, 72

Obstacle classes, 378–381

obstacles

arcade shooter games, 377

cleaning up old, 403

moving, 380, 381–384

placing, 388

old obstacles, cleaning up, 403

OnActorBeginOverlap event,

272, 273

OnActorHit event, 272

operating system requirements, 2

operators, Blueprint scripts,

260–261

optimizing

mobile devices, 447–451

Pawns, 364

options

Mobility, 85–86

PIE (Play in Editor), 22

Orthographics Viewports, 12

outputs, materials, 98

Outside Cone Angle property, 82

overlaps, handling, 387

ptg18222824

475Point Lights, adding

Over Life distributions, 166

overriding

attenuation, 114

levels, 361

P

packaging

Android, 435

configuring, 436–437

IOS, 435

projects for Windows,

430–435

painting landscapes, 130

Palette panel, 98, 115

panels

Content Browser, 11, 29

Convex Decomposition, 64

Details, 9–10, 97, 164, 291

Emitters, 163

Graph, 98, 115

Landscape, 124

Modes, 8–9

Modules, 164

My Blueprint, 250

Palette, 98, 115

Tracks, 207

Viewport, 12, 97, 163, 292

World Outliner, 9, 141

World Settings, 225–227

particles

activating, 176–177

Auto Activate setting, 176

Cascade interfaces, 162–164

colors, formatting, 173

emitters, applying, 164

materials, configuring, 172

modules, 164

common, 168–172

Curve Editor, 166–168

properties, 165–166

requirements, 164–165

overview of, 161–162

SubUV textures, 174–176

triggering, 176

Paste tool, 129

Pattern_Projectile_BP, 348

PatternTurret_BP, 348

Pawn classes, 32

Pawns

controllers, customizing,

361–362

damaging, 384–386

default, inheriting from, 362

disabling movement, 366–367

input events, 369–371

moving, 365–366

optimizing, 364

PBR (physically based rendering),

90–91

Pendulum_BP, 345

per-poly collisions, 64–65

Persona Editor, 191–199

Perspective Viewports, 12

physically based rendering. See

PBR

Physical Materials, 230–234

physics, 223

Actors

attaching, 235

constraints, 235–239

radial force, 240

thrusters, 239

applying, 223

assets, 185

body, 224

constraints, applying, 234

levels, assigning to, 224–225

Physical Materials, 230–234

properties for Static Mesh

Actors, 229

simulating, 227–229

terminology, 224

World Settings panel,

225–227

PhysicSpawner_BP, 350

PhysicsPickup_BP, 349

pickups

arcade shooter games, 377

health, creating, 391–397

PIE (Play in Editor), 22

pins, 251

pivot points, 53

placing

Ambient Sound Actors, 113

assets, 147

button widgets, 417

foliage, 135

image widgets, 416, 417

obstacles, 388

props, 147

references, scale, 142–143

Skeletal Mesh Actors,

199–201

placing Static Mesh Actors into

levels, 66

Play Cue button, 115

PlayerController class, 31, 365

players, customizing controllers,

361–362

Player Start, 366

play head, 208

Play in Editor. See PIE

playing levels, 16–17

previewing, 22

Play Node button, 115

Play Sound at Location function,

281–283

playtesting, 154

Point Lights, adding, 76–77

ptg18222824

476 polygons

polygons, 53

positioning lighting, 86

post processing volume Actors,

155–156

presets, collisions, 71

previewing

mobile devices, 442–446

PIE (Play in Editor), 22

Print String function, 257

Project Browser, navigating, 5

ProjectileTurret_BP, 348

projects

blank, formatting, 24

Blueprint, formatting, 23

C++, 5

configuring, modifying, 6

content, migrating from

 existing, 27–29

Content Example Project,

downloading, 22

creating, 4–7

Default Game Mode,

 configuring, 34

folders, 23

formatting, 357

GameMode class, adding,

32–33

modes, 341

Windows, packaging for,

430–435

properties

Actors, 275–276

activating, 273–281

Matinee, 204

character movement, 345

IsVariable, 410

lighting, 82

modulation, applying, 115

particle modules, 165–166

Required module, 168

Sound Wave, 112

Spawn module, 169–170

Static Mesh Actors, 228

visualizers, 167

proportions, measurement of, 42

props, placing, 147

pulsing lights, creating, 300

R

Radial Force Actors, physics, 240

Ramp tool, 128

raw asset folders, creating, 29

references

assets, 29

meshes, modifying, 68

scale, placing, 142–143

reference variables, assigning

Actors, 274

Reference Viewer, 29

Reflection Capture Actors, 155

rendering

Actor visibility, 270

PBR, 90–91

replacing materials, Static Mesh

Actors, 69

representation, adding without

lighting, 153

Required module, 164–165,

168–169

requirements

arcade shooter games

design, 356

identifying, 356

hardware/operating systems, 2

particle modules, 164–165

reroute nodes, 263

resolution

configuring, 410–412, 424

textures, 415

resources, 21

respawn systems, 342

responses, collisions

editing, 70

flags, 72

restitution, 224

Retopologize tool, 129

Reverb Effects, 119

ribbon data, 162

rigid body, 224

Rotate transformations, 40

Rotation Grids, 44

Rotation Rate module, 172

roughness, 92

S

Saved folders, 23, 30

scale, 42, 142–143

Scale Color/Life module, 170

Scale Grids, 44

Scale transformations, 40

scaling DPI, 412–413

scenes

foliage, placing, 135

navigating, 15–16

organizing, 45

Point Lights, adding, 77

scope, establishing, 143–144

screen resolutions, 412

scripts

Blueprint

Blueprint Context menu,

251

comment boxes, 262

compiling, 246

components, 253,

294–296

concepts, 252–254

ptg18222824

Swarm Agent 477

conditionals, 260–261

Event Graph, 250

events, 252

functions, 254–256

managing, 262

My Blueprint panel, 250

node comments, 262

operators, 260–261

reroute nodes, 263

structs, 258

types of, 247

variables, 257–258

Blueprint Editor interface,

248–249

Construction Script, 277–278,

326–328

overview of, 245–246

UMG (Unreal Motion Graphics)

UI Designer, 418–426

sculpting

shapes, 127

volumes, 127

Sculpt tool, 128

Section Size, 123

selecting Actors, 48

Selection button, 127

Selection tool, 129

sequences

animation, 185

length, configuring, 207

settings. See configuring

shaders, 89

shadows, 76, 153. See also

 lighting

shaking heads, 196

shapes, 127

sharing attenuation, 114

shelling, world building, 145–147

shipping configurations, 432

Show 3D Widget, 320

show flags, 15

simulating physics, 227–229

Size by Life modules, 170

sizing textures, 94

Skeletal Mesh Actors, 181

applying, 199–201

defining, 181–186

importing, 186–191

Persona Editor, 191–199

Skeleton mode (Persona Editor),

192–199

Skeleton property, 189

skeletons, 184

skinning, 183

Sky Lights, adding, 79–80

Smasher_BP, 345

Smooth tool, 128

snapping, 146

to grids, 43–45

snaps, 345

tools, customizing, 45

sockets, 53

soft body, 224

sound, 109, 112–113. See also

audio

Sound Attenuation assets, 110

Sound Cue assets, 110

formatting, 115–119

Sound Cue Editor, 110

Sound Track, 215–216

Sound Wave assets, 110, 111

Spawn Actor from Class function,

328

spawners, creating Actors,

397–403

spawning, 325

Actors from classes, 332–335

Blueprint class, configuring,

329

Spawn module, 169–170

Sphere module, 172

SpikeTrap_BP, 346

splines, 127, 212

Spot Lights, adding, 78

sprites, 162

Start Awake property, 227

Starter Content, 5

start levels, configuring, 357

Start menus (UMG UI Designer),

413

static lighting, 76, 85

Static Mesh Actors, 8, 66–70

animation, 211

collisions, editing, 70

duplicating, 67

levels, placing into, 66

materials, replacing, 69

mesh references, modifying,

68

mobility, configuring, 67

Physical Materials, assigning,

231

properties, 228

Static Mesh assets, 8, 53

importing, 56–57

materials, assigning, 59

viewing, 55

Static Mesh components, adding,

279–283

Static Mesh Editor, 54. See also

Static Mesh assets

stationary lighting, 86

Stomper_BP, 346

streaming textures, 415

structs, Blueprint scripts, 258

style, units and measurements,

42

SubUV textures,

174–176

Swarm Agent, 83

ptg18222824

478 tabs, Manage

T

tabs, Manage, 124

tags

Actors, 350–351

components, 350–351

targets

editors, configuring, 451–454

functions, 277

Temperature property, 82

testing, 432

mobile devices, 441

physics, 224

playtesting, 154

textures, 53. See also materials

file types, 95

formatting, 94–95

importing, 95–96

layers, connecting, 131

resolution, 415

sizing, 94

streaming, 415

SubUV, 174–176

thrusters, 239

Timeline, applying, 296–300

time markers, 208

timers, 389

toolbars

Blueprint Editor interface,

163, 249

Level Editor, 16

Tool menu, 128–129

tools

Copy, 129

Erosion, 128

Flatten, 128

Hydro Erosion, 128

landscapes, 123–124,

128–129

Lightmass, 83

Noise, 129

Paste, 129

Ramp, 128

Retopologize, 129

Sculpt, 128

Selection, 129

Skinning, 183

Smooth, 128

Snap, customizing, 45

transformations, 39

Move, 40

Rotate, 40

Scale, 40

Visibility, 129

visualization, 15

World Outliner, applying, 45

TouchActivation_BP, 350

touch input

configuring, 454

events, 456–458

TraceTurret_BP, 348

tracks

adding, 297

Director group, 218–219

Matinee, 209–210

Sound Track, 215–216

Tracks panel, 207

transformations

interactive/manual, 41

local/world, 41

Move, 40

Rotate, 40

Scale, 40

tools, 39

types of, 41

Transform property, 189

triggering

collisions, 271

particles, 176

TurretProjectile_BP, 348

types

of assets, 29–32

of data, overview of, 161–162

of files, 26

of files, textures, 95

of grids, 44

of input materials, 91

of lighting, 75–76

Object Type setting, 72

of scripts, 247

of transformations, 39, 41

of Viewports, 12–17

U

UMG (Unreal Motion Graphics) UI

Designer, 407

anchor points, 412–413

assets, importing, 413–415

Designer mode, 408–409

DPI scaling, 412–413

Graph mode, 409

navigating, 408

resolution, configuring,

410–412, 424

scripts, 418–426

Start menus, 413

Widget Blueprint, creating,

407–408

units

grid, 42

and measurements, 42

scales, editors, 187

Unreal Engine, installing, 2–4

Unreal Motion Graphics UI

Designer. See UMG UI Designer

UseKeyLever_BP, 350

Use To as Ref Pose option, 190

UV layouts, 53, 57–58

ptg18222824

world transformations 479

V

value nodes, materials, 99–101

variables

Blueprint scripts, 257–258

configuring, 302

declaring, 259

editable. See also editable

variables

exposing, 328

formatting, 312–314

lists, 259

local, 281

vector distributions, 165

Vehicle classes, 32

vertices, 53

skinning, 183

viewing

collision hulls, 59

curves, 213

Reference Viewer, 29

Static Mesh assets, 55

UV layouts, 57–58

Viewport panel, 12, 97, 163, 292

Viewports

scenes, 15–16

types of, 12–17

views, modes, 14–15

virtual joysticks, 454–456

virtual machines, 246

visibility, rendering Actors, 270

Visibility tool, 129

visual attributes, particles. See

particles

visual complexity, 147

visual scripting, Blueprint, 245

visualization tools, 15

visualizers, 14–15

channels, 167

properties, 167

Visual Studio 2013, 5

volume, applying audio, 119–120

W

Widget Blueprint

adding, 424

creating, 407–408

widgets

buttons, 417

images, placing, 416–417

Show 3D Widget, 320

Windows

projects, packaging for,

430–435

requirements, 2

wires, 251

world building, 139–140

Actors, combining, 148–150

assets, placing, 147

audio, 154–155

blocking, 145–147

environmental narratives,

140–141

Fog Actors, 155

framing, 147

Level Editor, 7. See also Level

Editor

levels, formatting, 141–142

lighting, 152–153

Lightmass Importance Volume

setting, 153

modular assets, applying, 148

post processing volume

Actors, 155–156

props, placing, 147

Reflection Capture Actors, 155

scale, placing references for,

142–143

scope, establishing, 143–144

shadow colors, 153

shelling, 145–147

visual complexity, 147

world beyond, creating,

150–152

World Outliner, 141

applying, 45

folders, 46

panels, 9

World Settings panel, 225–227

world transformations, 41

ptg18222824

Addison-Wesley Cisco Press IBM Press Microsoft Press Pearson IT Certif ication Prentice Hall Que Sams VMware Press

REGISTER YOUR PRODUCT at informit.com/register

 Download available product updates.

 Access bonus material when applicable.

 Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

 Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com–The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

 Shop our books, eBooks, software, and video training.
 Take advantage of our special offers and promotions (informit.com/promotions).
 Sign up for special offers and content newsletters (informit.com/newsletters).
 Read free articles and blogs by information technology experts.
 Access thousands of free chapters and video lessons.

Connect with InformIT–Visit informit.com/community
Learn about InformIT community events and programs.

http://www.informit.com/register
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informit.com
http://www.informit.com
http://www.informit.com

	Cover
	Title Page
	Copyright Page
	Preface
	About the Author
	Acknowledgment
	Table of Contents
	HOUR 1: Introducing Unreal Engine 4
	Installing Unreal
	Creating Your First Project
	Learning the Interface
	View Modes and Visualizers
	Playing a Level
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 2: Understanding the Gameplay Framework
	Available Resources
	Asset References and the Reference Viewer
	Gameplay Framework
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 3: Coordinates, Transforms, Units, and Organization
	Understanding Cartesian Coordinates
	Working with Transforms
	Assessing Units and Measurements
	Organizing a Scene
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 4: Working with Static Mesh Actors
	Static Mesh Assets
	Static Mesh Editor
	Viewing UV Layouts
	Collision Hulls
	Static Mesh Actors
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 5: Applying Lighting and Rendering
	Learning Light Terminology
	Understanding Light Types
	Using Light Properties
	Building Lighting
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 6: Using Materials
	Understanding Materials
	Physically Based Rendering (PBR)
	Material Input Types
	Creating Textures
	Making a Material
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 7: Using Audio System Elements
	Introducing Audio Basics
	Using Sound Actors
	Controlling Sounds with Audio Volumes
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 8: Creating Landscapes and Foliage
	Working with Landscapes
	Sculpting Shapes and Volumes
	Using Foliage
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 9: World Building
	Building Worlds
	World Building Process
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 10: Crafting Effects with Particle Systems
	Understanding Particles and Data Types
	Working with Cascade
	Using Common Modules
	Setting Up Materials for Particles
	Triggering Particle Systems
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 11: Using Skeletal Mesh Actors
	Defining Skeletal Meshes
	Importing Skeletal Meshes
	Learning Persona
	Using Skeletal Mesh Actors
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 12: Matinee and Cinematics
	Matinee Actors
	Matinee Editor
	Curve Editor
	Working with Other Tracks
	Working with Cameras in Matinee
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 13: Learning to Work with Physics
	Using Physics in UE4
	Simulating Physics
	Using Physical Materials
	Working with Constraints
	Using Force Actors
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 14: Introducing Blueprint Visual Scripting System
	Visual Scripting Basics
	Understanding the Blueprint Editor
	Fundamental Concepts in Scripting
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 15: Working with Level Blueprints
	Actor Collision Settings
	Assigning Actors to Events
	Assigning Actors to Reference Variables
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 16: Working with Blueprint Classes
	Using Blueprint Classes
	The Blueprint Editor Interface
	Working with the Components
	Working with the Timeline
	Scripting a Pulsating Light
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 17: Using Editable Variables and the Construction Script
	Setting Up
	Making Editable Variables
	Using the Construction Script
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 18: Making Key Input Events and Spawning Actors
	Why Spawning Is Important
	Creating a Blueprint Class to Spawn
	Setting Up the Spawner Blueprint
	Spawning an Actor from a Class
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 19: Making an Action Encounter
	Project Game Modes
	Knowing Characters’ Abilities
	Using Blueprint Classes
	Actor and Component Tags
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 20: Creating an Arcade Shooter: Input Systems and Pawns
	Identifying Requirements with a Design Summary
	Creating a Game Project
	Creating a Custom Game Mode
	Creating a Custom Pawn and Player Controller
	Controlling a Pawn’s Movement
	Setting Up a Fixed Camera
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 21: Creating an Arcade Shooter: Obstacles and Pickups
	Creating an Obstacle Base Class
	Making Your Obstacle Move
	Damaging the Pawn
	Restarting the Game on Death
	Creating a Health Pickup
	Creating an Actor Spawner
	Cleaning Up Old Obstacles
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 22: Working with UMG
	Creating a Widget Blueprint
	Navigating the UMG Interface
	Creating a Start Menu
	Sample Menu System
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 23: Making an Executable
	Cooking Content
	Packaging a Project for Windows
	Resources for Android and iOS Packaging
	Accessing Advanced Packaging Settings
	Summary
	Q&A
	Workshop
	Exercise

	HOUR 24: Working with Mobile
	Developing for Mobile Devices
	Using Touch
	Using a Device’s Motion Data
	Summary
	Q&A
	Workshop
	Exercise

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

