
T E C H N O L O G Y I N A C T I O N ™

Samsung ARTIK
Reference

The De� nitive Developers Guide
—
Cliff Wootton

www.allitebooks.com

http://www.allitebooks.org

 Samsung ARTIK Reference

 The Definitive Developers Guide

Cliff Wootton

www.allitebooks.com

http://www.allitebooks.org

Samsung ARTIK Reference

Cliff Wootton
Crowborough, East sussex, United kingdom

ISBN-13 (pbk): 978-1-4842-2321-5 ISBN-13 (electronic): 978-1-4842-2322-2
DOI 10.1007/978-1-4842-2322-2

Library of Congress Control Number: 2016956942

Copyright © 2016 by Cliff Wootton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

ARM® is a registered trademark owned by ARM Ltd

Mali™ is a trademark owned by ARM Ltd

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

All other trademarks are the property of their respective owners.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Fred Patton
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com , or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.allitebooks.org

 To Annie Parker
 Mum, you have always inspired me to do my best.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ..xxiii

Acknowledgments ...xxv

Introduction ...xxvii

 ■Chapter 1: Learning More About ARTIK ... 1

 ■Chapter 2: Hardware ... 9

 ■Chapter 3: Developer Reference Boards .. 25

 ■Chapter 4: About the Operating Systems .. 41

 ■Chapter 5: Operating System Internals ... 45

 ■Chapter 6: Startup, Sleep, and Shutdown .. 57

 ■Chapter 7: File Systems ... 93

 ■Chapter 8: The/sys Virtual File System ... 103

 ■Chapter 9: The/dev Virtual File System ... 115

 ■Chapter 10: The/proc Virtual File System .. 127

 ■Chapter 11: The/run Virtual File System ... 145

 ■Chapter 12: System Administration .. 153

 ■Chapter 13: AXT Module Connectors ... 165

 ■Chapter 14: Hardware I/O Connections ... 197

 ■Chapter 15: Antennas .. 221

 ■Chapter 16: The API Kits .. 229

 ■Chapter 17: General Purpose Input/Output (GPIO)... 235

www.allitebooks.com

http://www.allitebooks.org

vi

■ CONTENTS AT A GLANCE

 ■Chapter 18: Analog Input and IIO .. 289

 ■Chapter 19: Pulse Width Modulated Output... 303

 ■Chapter 20: Inter-Integrated Circuit (I2C) .. 321

 ■Chapter 21: Serial Peripheral Interface (SPI) .. 335

 ■Chapter 22: Audio and Inter-IC Sound (I2S) .. 351

 ■Chapter 23: Graphics and Video .. 369

 ■Chapter 24: Conclusions and Next Steps ... 391

 ■Bibliography .. 399

 ■Index ... 401

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ..xxiii

Acknowledgments ...xxv

Introduction ...xxvii

 ■Chapter 1: Learning More About ARTIK ... 1

Change and Evolution ... 1

Your Journey Through This Book .. 3

Samsung Developer Resources.. 4

Samsung Developer Downloads ... 4

ARTIK OS Source Code ... 4

Samsung Developer Blog ... 6

Samsung Developer Forums .. 6

Get Your Samsung Developer Account Now ... 6

An Even Quicker Start .. 7

 ■Chapter 2: Hardware ... 9

The ARTIK Family .. 9

Provenance... 10

Choose the Right Model ... 12

Introducing the ARTIK 520 .. 12

General Arrangement .. 14

Functional Organization .. 15

Known Firmware Versions .. 16

www.allitebooks.com

http://www.allitebooks.org

viii

■ CONTENTS

Introducing the ARTIK 1020 .. 16

General Arrangement .. 18

Functional Organization .. 19

Known Firmware Versions .. 20

ARTIK Module Connections .. 21

Physical Dimensions .. 22

Buy an ARTIK Development System Now ... 23

Component Suppliers ... 24

Summary .. 24

 ■Chapter 3: Developer Reference Boards .. 25

A Little History .. 25

Connecting External Devices .. 26

Schematic Diagrams .. 27

Reading the Schematic Diagrams .. 28

Type 5 - Version 0.5.0 ... 29

Type 10 - Version 0.5.0 ... 33

Test Points .. 37

Interesting Chip Data Sheets .. 39

Summary .. 40

 ■Chapter 4: About the Operating Systems .. 41

Comparing the ARTIK Operating Systems .. 41

About Fedora OS .. 41

But What Is Yocto? .. 42

Other Operating System Choices ... 43

Tizen Secrets .. 43

Summary .. 44

www.allitebooks.com

http://www.allitebooks.org

ix

 CONTENTS ■

 ■Chapter 5: Operating System Internals ... 45

Under the Hood .. 45

The Component Parts of the ARTIK OS ... 46

U-Boot Loader ... 46

Device Tree ... 47

Kernel ... 47

Fedora Distribution ... 47

Yocto Build Manager ... 48

Additional Software .. 48

Looking Inside the Kernel ... 48

Kernel Versions ... 49

Interacting with the Kernel ... 49

Using the Kernel debugfs Filesystem ... 50

Standard Input/Output Devices .. 50

Peripheral Interfaces .. 53

Programmable I/O Pins .. 54

Accessing the Peripherals .. 55

Summary .. 55

 ■Chapter 6: Startup, Sleep, and Shutdown .. 57

The System Administrator Console .. 57

Power and Reset Buttons ... 57

Setting the Boot Mode Switches .. 59

Cold vs. Warm Boots .. 61

Starting Up the ARTIK ... 62

The Boot Loader ... 62

U-Boot Commands ... 62

Boot Loader Console Messages ... 65

Passing Arguments to the Kernel ... 66

www.allitebooks.com

http://www.allitebooks.org

x

■ CONTENTS

Kernel Boot Options .. 68

Device Tree ... 69

Starting Up the Kernel .. 69

Kernel Startup Messages ... 70

Fedora Startup Messages .. 71

Reconfi guring the Startup .. 74

The /boot Directory ... 75

Login Credentials ... 75

Shutdown Commands .. 76

Shutdown Console Messages .. 77

About Power Management ... 78

Power Management Integrated Circuit (PMIC) ... 79

Monitoring Power Consumption ... 79

Arduino Power-Saving Mode .. 80

Power Management with systemctl ... 80

/sys/power .. 81

Wake Locks .. 82

Relevant Power Management AXT Connections ... 83

/sys/class/power_supply .. 84

Power Management Devices .. 85

BQ2429 - Battery Charger Chip .. 86

CW2015 - Battery Fuel Gauge Chip .. 86

The sec_pmic (S2MPS14-PMIC) Chip ... 87

Saving Power by Slowing Things Down .. 91

Summary .. 91

 ■Chapter 7: File Systems ... 93

About the File System .. 93

Filesystem Hierarchy Standard (FHS) ... 93

File System Inodes ... 93

www.allitebooks.com

http://www.allitebooks.org

xi

 CONTENTS ■

File System Types ... 96

File Types .. 96

File Access Control ... 98

File System Trees ... 99

File System Mapped Properties ... 101

Summary .. 102

 ■Chapter 8: The /sys Virtual File System .. 103

About sysfs ... 103

Inside sysfs .. 104

Kernel Developers Roadmap .. 104

/sys/devices ... 105

Memory-Mapped Base Addresses ... 106

Finding Base Addresses in bash .. 107

Finding Base Addresses in the C Language ... 108

Peripheral Interconnect Buses ... 109

/sys/bus .. 110

/sys/class ... 112

Summary .. 113

 ■Chapter 9: The /dev Virtual File System .. 115

About /dev .. 115

Communicating With Devices ... 115

Listing the Devices ... 117

About Device Numbers ... 119

Device Types ... 122

Block Devices ... 122

Character Devices .. 123

Special Devices .. 126

Summary .. 126

xii

■ CONTENTS

 ■Chapter 10: The /proc Virtual File System ... 127

About /proc ... 127

Inspecting /proc ... 128

Special Locations Within /proc ... 128

Kernel Subsystems as Objects ... 129

System-Wide Properties ... 129

Parent and Child Processes.. 131

Creating New Processes .. 132

Process Identifi er Numbers .. 132

Listing the Running Processes ... 132

Sending Signals to Processes .. 134

Zombies .. 135

Special Locations Within /proc/{pid} .. 135

Process Property Collections .. 137

Process Properties ... 138

Process-Related Objects .. 140

Inspecting the Process Status .. 140

Resource Usage Monitoring ... 142

Altering the Process Priority ... 142

Processes vs. Threads .. 143

Summary .. 143

 ■Chapter 11: The/run Virtual File System ... 145

About /run .. 145

Why /run Was Created .. 145

Kernel Subsystems as Objects ... 146

Runtime System Properties .. 147

Socket Connections .. 148

Process Identifi er Files ... 148

Updating Legacy Applications .. 149

Summary .. 151

xiii

 CONTENTS ■

 ■Chapter 12: System Administration .. 153

How to Be a Sys Admin .. 153

Identifying an ARTIK Module... 154

Detecting the OS Version .. 154

Determining the Kernel Version .. 155

Dynamically Changing the Host Name ... 155

Setting the Correct Date ... 156

Uploading Files ... 157

Downloading Files .. 157

Examining the System Confi guration ... 157

Checking the Memory Usage ... 158

Viewing Process Memory Maps ... 158

Discovering the Process Limits .. 159

Monitoring Service Status .. 159

Quitting and Aborting Processes .. 159

Determining the Available CPUs ... 160

Detecting Current Processor Speed ... 161

Managing Processor Affi nity .. 161

Monitoring Internal Temperature .. 162

Summary .. 163

 ■Chapter 13: AXT Module Connectors ... 165

Physical Connections ... 165

Panasonic AXT Connectors ... 165

Looking More Closely ... 166

AXT 40-Pin Connector ... 166

AXT 60-Pin Connector ... 167

AXT 80-Pin Connector ... 167

Ordering AXT Connectors .. 168

AXT Connections, Pins, and I/O ... 169

xiv

■ CONTENTS

ARTIK 5 - Connectors ... 170

Connector Locations ... 171

Connector J3 .. 172

Connector J4 .. 175

Connector J7 .. 178

ARTIK 10 - Connectors ... 181

Connector Locations ... 182

Connector J1 .. 183

Connector J2 .. 186

Connector J3 .. 190

Connector J4 .. 192

Summary .. 195

 ■Chapter 14: Hardware I/O Connections ... 197

Pins and Programmable I/O.. 197

Hardware I/O Pins and Headers ... 198

Arduino Names vs. Pin Numbers .. 199

Mapping Pins to Connection Headers .. 200

Pinout Diagrams ... 201

J24 - Analog Input .. 201

J25 - Power Supply, Ground, and Reset ... 202

J26 and J27 Arduino Interface ... 204

J510 - Auxiliary Analog ADC input .. 206

J511 - SPI, UART, I2C, and I2S Interfaces ... 208

J512 - GPM and Interrupts ... 210

J513 - PWM and Clock Output ... 212

JTAG Support .. 212

JTAG Connector .. 213

Adding a New J-Link Device ... 214

Testing J-Link Connectivity... 216

xv

 CONTENTS ■

Multi-Core Debugging ... 216

Setting Up a Scan Chain ... 217

How the Scan Chain Works ... 217

Confi guring Multiple Debuggers ... 219

If It Still Does Not Work! .. 219

Summary .. 220

 ■Chapter 15: Antennas .. 221

Antenna Specifi cations... 221

About the Antenna Connections ... 222

SMA Connectors ... 222

Locating the SMA Connectors .. 223

Miniature Coaxial Connectors .. 224

Summary .. 227

 ■Chapter 16: The API Kits .. 229

Samsung-Provided API Support ... 229

Documents to Gather.. 229

Where Are the APIs? ... 230

Compiled Object Code Libraries ... 231

I/O Structure ... 232

Finding Out About Devices ... 233

Temboo ... 234

Where Else to Look ... 234

Summary .. 234

 ■Chapter 17: General Purpose Input/Output (GPIO)... 235

About GPIO in the ARTIK ... 235

Pin Modes ... 235

Digital Input .. 236

Digital Output .. 236

xvi

■ CONTENTS

Exploring GPIO .. 237

Developer Board GPIO Pinouts ... 237

Reserved Pins .. 241

Active Levels .. 241

Slewing Rates .. 242

Resonant Circuits ... 243

Interacting With the Hardware ... 243

Hardware Header Pin Numbers .. 244

Using Arduino Emulation .. 246

GPIO Via sysfs ... 247

Using the sysfs Interface .. 249

GPIO Drivers ... 249

Device Base Addresses .. 250

GPIO Chip Numbers .. 251

Interacting With sysfs ... 253

Using bash With sysfs .. 254

/sys/kernel/debug/gpio .. 255

Accessing GPIO with the C Language ... 256

Using Boolean Data Types in C ... 256

Finding a GPIO Base Address .. 256

Pin Export to the User Domain .. 258

Previously Exported GPIO Pins .. 259

Creating a Dynamic Path to an Exported Pin .. 259

Pin Active LOW Setting ... 259

Pin Direction Setting ... 260

Digital Value Reading .. 261

Digital Value Setting ... 262

Edge Detecting ... 264

Releasing Exported Pins ... 264

xvii

 CONTENTS ■

Continuous Reads and Writes ... 265

Trailing Carriage Returns .. 265

Access Directly Via the Kernel .. 265

GPIO Ports ... 266

Shared Registers .. 269

GPIO Registers .. 269

Mapping the Bits .. 271

Port GPX0 .. 274

Port GPX1 .. 275

Port GPA0 .. 276

Port GPA1 .. 277

Port GPA2 .. 278

Port GPD0 ... 279

Port GPB2 ... 280

Programming Via the Kernel Interface ... 281

Prototype Example Code ... 283

GPIO Pin Multiplexing ... 286

/sys/kernel/debug/pinctrl ... 286

Modifying the GPIO Pin Multiplexed State .. 287

Learn More About pinctrl Multiplexing ... 288

Summary .. 288

 ■Chapter 18: Analog Input and IIO .. 289

Reading Analog Inputs.. 289

Analog ADC Pin Connections .. 289

Analog ADC Input with Arduino IDE .. 291

Using sysfs ... 291

Working Out the Base Address ... 292

Reading a Pin Voltage ... 292

Automatic Base Addresses in bash .. 293

xviii

■ CONTENTS

Automatic Base Addresses in the C Language ... 294

Reading an ADC Value... 297

Scaling the Raw Value .. 298

Using the /sys/bus Devices .. 298

About the New IIO Subsystem .. 300

Summary .. 301

 ■Chapter 19: Pulse Width Modulated Output... 303

What Is Pulse Width Modulation? ... 303

PWM Support in the ARTIK Modules ... 304

PWM Output Connectors .. 304

Using PWM with Arduino Calls ... 305

Accessing PWM via sysfs ... 305

PWM Entities in sysfs ... 306

/sys/class/pwm/pwmchip0 .. 306

PWM Channel Properties .. 307

PWM Timing Control ... 308

Inverting the PWM Waveform ... 309

Confi guring the PWM Interface with bash .. 309

Requesting a Channel Count .. 309

Exporting a Channel to the User Space .. 309

Setting the Timing Properties for a Channel ... 310

Turning On the Output Waveform .. 310

Detecting Whether the PWM Is Running ... 311

Inverting the Waveform .. 311

Turning Off the Output Waveform ... 311

Relinquishing a Channel ... 312

Programming PWM with the C Language... 312

Requesting a Channel Count .. 312

Exporting a Channel to the User Space .. 313

Synthesizing a Path to the PWM Channel Container .. 313

xix

 CONTENTS ■

Setting the Duration Value for a Channel .. 313

Setting the Duty Cycle for a Channel .. 314

Setting the Timing Properties for a Channel ... 315

Turning On the Output Waveform .. 315

Detecting Whether the PWM Is Running ... 316

Inverting the Waveform .. 317

Turning Off the Output Waveform ... 318

Relinquish a Channel .. 318

Utility Helper Function .. 319

PWM-Related AXT Connections .. 319

Summary .. 320

 ■Chapter 20: Inter-Integrated Circuit (I2C) .. 321

What Is I2C? ... 321

How Does I2C Work? .. 323

I2C on the ARTIK Modules .. 326

I2C Tools ... 327

The Device Detector Tool (i2cdetect) .. 327

The Value Reading Tool (i2cget) .. 328

The Value Setting Tool (i2cset) .. 328

The Register Dump Tool (i2cdump) ... 329

Accessing I2C via sysfs .. 329

I2C Device Nodes .. 329

I2C Containers and Properties .. 330

Built-in Drivers .. 330

Instantiating and Removing Devices .. 331

Access I2C from the C Language ... 332

Breakout Connections .. 332

I2C-Related AXT Connectors .. 333

Summary .. 334

xx

■ CONTENTS

 ■Chapter 21: Serial Peripheral Interface (SPI) .. 335

How Does SPI Work? .. 335

Interfacing Signal Lines .. 337

Alternative Naming Conventions .. 337

Transmitting Data ... 339

SPI Internal Architecture .. 339

Control Register (SPCR) .. 340

Status Register (SPSR) ... 341

Clock Rate Setting .. 342

Data Register (SPDR) .. 343

Interacting with an SPI Device ... 343

External Includes .. 344

Global Variables .. 344

Opening an SPI Device.. 344

Initializing the SPI Port ... 344

Reading and Writing Data ... 345

AX88796 Ethernet Controller (ARTIK 520) .. 346

AX88760 USB and Ethernet Controller (ARTIK 1020) .. 346

Arduino and SPI .. 346

Programming via the Arduino SPI Library ... 347

The Arduino SPI library ... 348

Multiplexing Digital Pins for SS Addressing ... 349

Summary .. 349

 ■Chapter 22: Audio and Inter-IC Sound (I2S) .. 351

Audio Capabilities ... 351

Audio Output ... 352

Audio Input ... 352

ALSA Audio Support ... 352

Exploring ALSA ... 353

Confi guring ALSA .. 354

xxi

 CONTENTS ■

Upgrading ALSA .. 355

The Audio Mixer Tool (amixer) .. 355

The Audio Recorder Tool (arecord) .. 356

The Audio Player Tool (aplay) .. 357

The Audio/Visual Player Tool (mPlayer) ... 358

Finding the Sound Card .. 359

Testing the Audio Outputs ... 360

Recording Audio ... 360

Playing Audio Files.. 361

Developing Audio Applications ... 362

Pulse Audio Support ... 363

How Does I2S Work? .. 363

The ARTIK Implementation.. 364

Sample Rates ... 365

Clock Timings ... 365

AK4953A - Stereo Codec Chip .. 366

Find Out More About I2S ... 367

Audio-Related AXT Connections ... 367

Audio Experiments ... 368

Summary .. 368

 ■Chapter 23: Graphics and Video .. 369

About Graphics and Video .. 369

Graphics Support .. 370

Video Support ... 370

Display Connectors... 370

Display Control ... 372

Video4Linux Support .. 373

Video Support in sysfs .. 374

Video Nodes ... 374

Multi-Format Codec ... 375

xxii

■ CONTENTS

Programming Video4Linux ... 376

Connecting Video Cameras... 376
ARTIK 5 - S5K6B2 Camera .. 377

ARTIK 10 - S5K3L2 Camera .. 378

ARTIK 10 - S5K5EA Camera .. 378

Recommended MIPI Camera .. 379
MIPI Camera Interfaces .. 379

USB-Attached Cameras .. 380

Image Capture Tool (fswebcam) ... 380

Video Conversion Tool (ffmpeg) .. 382

Media Streaming Server (ffserver) ... 384

Video Processing Toolkit (gstreamer) ... 385

AXT Connections .. 385

Summary .. 389

 ■Chapter 24: Conclusions and Next Steps ... 391

Forensic Inspection .. 391

Reverse Engineering .. 391

Validating With Multiple Sources .. 392

Coping with Undocumented Features .. 392

Defensive Coding Strategies .. 394

Looking Over the Horizon ... 394

Porting Projects from Other Architectures.. 395

Hardware and Tools .. 395

Creating a Bare-Bones Breakout Board ... 395

Servo-Controlled Camera ... 396

Sample Source Code and Illustrations ... 396

How to Get More Help and Support .. 397

My Challenge to You ... 397

 ■Bibliography .. 399

 ■Index ... 401

xxiii

 About the Author

 Cliff Wootton is an award-winning former Interactive TV systems architect
at the BBC, specializing in Interactive TV, content management systems
and digital video playout with commodity hardware . Previously invited
as a guest speaker on pre-processing for video compression at the Apple
WWDC developer conference, he has also taught about the IoT, real-world
computing with Arduino, video compression, metadata, and how to build
multimedia art installations in an MA course at the University of the Arts,
London. Cliff now concentrates on research and development projects;
building digital media tools for creating audiovisual content; multimedia;
electronic book publishing; writing; teaching; and playing the bass guitar.

xxv

 Acknowledgments

 Huge thanks are due to the following people who created resources online and contributed ideas and
practical help while I was writing this book. Their assistance was truly invaluable and is gratefully
acknowledged.

• Jill Balzano and Jonathan Gennick at Apress for two projects in one year! Amazing.
Great times, as always.

• Glenn Cameron at Samsung, who provided prototype hardware and technical
resources.

• Fred Patton at Samsung for his excellent photographic contributions once again, for
wrangling the ARTIK blogs, and for helping out with the technical review process.

• Kevin Sharp for his helpful contributions to the ARTIK blog.

• Robert Nelson for contributing extremely helpful online advice on how to build a
new OS for ARTIK modules.

• All the artik.io Forum posters whose questions inspired me to cover interesting
topics.

• Gaynor Bromley at Panasonic Electric Works UK Ltd for the AXT connector images.

xxvii

 Introduction

 You are no longer a beginner in the Samsung ARTIK community. It is time to flex your coding muscles and
extend your skills by trying out more advanced techniques.

 The companion book, Beginning Samsung ARTIK - A Guide for Developers , focused on getting you
started. That book concentrated on helping you get your development systems up and running, and showing
you how to use the tools.

 This reference book builds on what you learned earlier and takes you deeper into the ARTIK world. The
narrative is not designed to be a linear reading experience. Reference books need to help you find things in a
random fashion when you need them.

 A lot of material in here was gathered by inspection and reverse engineering, coupled with the analysis
of the schematic diagrams for the developer reference boards. I have presented this information in tables
that are designed to help you as you design and build your own products. The coverage on the Samsung
developer web site is an excellent introduction; if you read that information first, this book builds on what
you find there and describes the foundations that underpin that material. The online sources of reference
that I found are also described here for you to study.

 The posts in the discussion forum suggested topics that readers would like to know more about. These
posts inspired both books. The fruits of my own forensic research for Beginning Samsung ARTIK and further
experimentation are distilled into this book to help you find what you need and quickly move on to more
advanced things.

 Things do not stand still for very long in the Samsung ARTIK world, and just as I was drawing things to
a close, more new developer resources were released. I have incorporated as much of that new material as
I can. Keep a close watch on the Samsung developer web site for more new material because there are still
many new and exciting things to come.

 —Cliff Wootton
 Crowborough UK

 Summer 2016

1© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_1

 CHAPTER 1

 Learning More About ARTIK

 It is time to start stage two of your ARTIK journey. By now, you should have a working ARTIK development
system up and running, and you should have explored the hardware and software. You are ready to move on to
more complex challenges and develop a totally awesome and amazing project. If you don’t have your system
up and running yet, take a look at the companion book, Beginning Samsung ARTIK , for help in getting started.

 This reference book uses the ARTIK command line environment and the GCC compiler to illustrate
coding examples. Your terminal emulator should be set up and your serial connection working so you can
interact with your ARTIK module. If you have access across your Local Area Network (LAN), you can use
 telnet . Experienced UNIX developers will feel at home in this environment. The command line environment
is a powerful tool and it can seem daunting at first. It has a varied and useful collection of small tools and
utilities. Each command does one thing very well. You can learn about them one by one. They are all easy
to understand when looked at individually. The power comes from the way you combine the commands
together to create processing workflows. The learning process is much easier than you might think.

 To fully understand your ARTIK, you must be conversant with the developer reference board circuit
schematics, U-Boot, the kernel, and operating system internals. Then you can begin to work with the
peripheral interfaces such as GPIO and I2C. To get the whole picture, aggregate the knowledge from all of
these resources with what you see by inspection. This is not a trivial task but if you tackle it step by step, it is
possible to learn things quickly and it can be enjoyable as you become more adept.

 Change and Evolution
 The Samsung Developer Conference 2016 (SDC) introduced a lot of useful new technologies to help you with
your ARTIK projects. There are more new things to come. Keeping up with the changes is a challenge in itself.

 Model numbers that describe each different type of ARTIK have changed to accommodate potential
future additions to the range. For now, the Commercial Beta of the ARTIK 5 is a Model 520 and the ARTIK 10
is a Model 1020. Updated versions of the ARTIK modules will use variations of that naming convention. The
ARTIK modules are usually described as an ARTIK 5 or ARTIK 10 to distinguish between the two currently
available products unless it makes sense to describe version-specific details.

 ARTIK Cloud is the new name for the SAMI infrastructure that was documented in Beginning
Samsung ARTIK . Because this forms such a crucial part of the IoT ecosystem, it has been adopted as
part of the ARTIK product family. If you are using the first edition of Beginning Samsung ARTIK to
help you get started, where you see SAMI mentioned, do a global search-and-replace in your mind to
convert that to ARTIK Cloud. Read about developing for ARTIK Cloud at the Samsung developer web
site at https://developer.artik.cloud/ .

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2322-2_1)
contains supplementary material, which is available to authorized users.

https://developer.artik.cloud/
http://dx.doi.org/10.1007/978-1-4842-2322-2_1

CHAPTER 1 ■ LEARNING MORE ABOUT ARTIK

2

 The ARTIK IDE is a specially designed development environment for creating and debugging
applications for your ARTIK. It is based on the Eclipse CHE platform and it supports local and remote
debugging. Consider the ARTIK IDE as an alternative to installing Eclipse and a cross-compiling toolchain
as it might offer some advantages. Samsung will release more documentation for it as it becomes ready for
deployment. Read about the CHE tools at the Eclipse web site at www.eclipse.org/che/artik/ .

 IoTivity is an IoT open source integration platform maintained by the Linux Foundation as a library to
download and use in your own projects. It is designed to help you communicate from device to device. Find
out more at the IoTivity web site at www.iotivity.org/ .

 The Resin•io system provides tools for updating your IoT systems remotely over the air. This can be a
challenging problem to solve if you have to develop your own solution. Find out more at the Resin•io web
site at https://resin.io/ .

 The SDC 2016 developer presentations and tutorials will all be made available on the developer web
site in due course. There is also a YouTube channel that represents the developer support services. Reach the
 samsung_dev home page to access the video resources via one of these routes:

 www.youtube.com/results?search_query=samsung_dev
 www.youtube.com/user/SMInnov8

 More recently, the ARTIK OS source code has been released under an open source license. There are
also new, up-to-date, and complete data sheets for the ARTIK model 520 and 1020 modules that describe all
of the hardware characteristics.

 The open source components used in the ARTIK operating system will change. These all contribute to
a gradual evolution and improvement of the ARTIK. These changes often happen without any fanfare. They
are only discovered when they affect the development process or when something breaks as a consequence.
Table 1-1 summarizes the potential areas you should expect to change and the possible consequences for
technologies aside from the development work that the Samsung engineering team is working on.

 Table 1-1. Changes and Consequences

 Component Consequences

 Kernel The kernel is maintained independently of the OS. There is a lot of work being done on the
inside plumbing. Expect changes to sysfs , procfs , runfs , and udevfs as various driver
items are moved around. Where appropriate, any expected changes are mentioned in this
book when they may affect what you do. There are many components of the kernel that are
maintained as separate projects. The IIO interface for analog inputs is a typical example.

 Fedora OS Fedora has been upgraded from version 20 in the Alpha ARTIK modules to version 22 in
the Commercial Beta modules. The current developer open source code version of Fedora
is somewhat more advanced than that. One of the later revisions will become the dominant
version when the ARTIK OS is upgraded.

 yum vs. dnf One consequence of the latest upgrade is that the yum installer in the ARTIK module
has been completely replaced by a new command called dnf . The yum command is no
longer available. The dnf command is upwards compatible with yum but adds many new
features. This was covered in Beginning Samsung ARTIK but to clarify things further, dnf
is now always used inside the ARTIK module for installing packages directly there. On
your development workstation, the installer depends on the version and revision of Linux.
Your installer there may be dnf , yum , rpm , or apt_get . Be sure that you distinguish between
commands you execute on the ARTIK command line and others that are only appropriate
on your developer workstation command line.

 Yocto Changes to Yocto are generally benign and are concerned with making the OS build easier
to manage.

(continued)

http://www.eclipse.org/che/artik/
http://www.iotivity.org/
https://resin.io/
http://www.youtube.com/results?search_query=samsung_dev
http://www.youtube.com/user/SMInnov8

CHAPTER 1 ■ LEARNING MORE ABOUT ARTIK

3

 Topics that were addressed in Beginning Samsung ARTIK are covered in more detail in this book.
For example, hardware debugging with the JTAG port driven from a Segger J-Link was suggested as a way
forward in Beginning Samsung ARTIK . In Chapter 14 , that topic is revisited in much more depth to cover
scan chains and recommended configurations of the debugger for diagnosing applications running in
multiple cores. It is also possible to run several debug sessions simultaneously when you have factored your
application into several separate processes.

 Peripheral devices are dealt with in much greater detail and all the inner workings are discussed for
GPIO, I2C, I2S, IIO, and SPI. Each interface has a chapter devoted entirely to the inner workings.

 Your Journey Through This Book
 The programming examples in this book are more sophisticated than the ones in Beginning Samsung ARTIK .
They are designed to help you build and maintain reusable code libraries of your own to avoid reinventing
the wheel every time you start a new project. Where Beginning Samsung ARTIK was designed to be a
coherent narrative that took you step by step through the setup process, this reference guide is designed
for random access to in-depth coverage of the topics. However, if you do want to read the whole book, the
content is organized in a logical way, and each chapter builds on the earlier ones.

 The first few chapters talk about the platform internals to help you construct a robust mental map of
where everything is. It is essential to get to know the territory before you go on a quest for individual API
components. Some of the topics that were addressed more simplistically in Beginning Samsung ARTIK are
expanded in this book.

 Understanding how the kernel builds the virtual file systems and maps the hardware devices to them is
valuable knowledge. You can then choose the right approach for developing an application to interface with
GPIO pins or I2C-driven sensors.

 Topics dealt with in this book are occasionally quite deep and complex. I have tried to break them down
into small and easily digested pieces. This makes it easier to assimilate the knowledge. As you read through
the chapters, new concepts are revealed one by one.

 Please do not be daunted by the complexity and scope of the technology inside the ARTIK. The
development process becomes easier as you become more familiar with the technology, and the time
devoted to understanding the internals of your ARTIK is well spent.

 Component Consequences

 U-Boot U-Boot has been stable for a long time; fundamental changes to how it works are rare.

 ALSA The audio tools revolve around the ALSA project and the mPlayer application. These are
likely to be stable until the industry develops new technologies for audio systems. The I2S
support for digital audio is very mature and not prone to changes.

 Video4Linux The video processing uses Video4Linux, which is moving forward as new TV formats are
deployed to the broadcast industry. Most new work is with 4K video; on the horizon, 8K
video may start to become popular from 2020 onwards. Video coding has used the H.264
standard for some years. That is well-supported by the ffmpeg tool, which is actively
maintained as an open source project. The newer HEVC codecs will be more useful as the
4K video format is taken up by the industry. Upgrades to the MIPI standards will affect the
V4L source code as they are incorporated.

 Table 1-1. (continued)

http://dx.doi.org/10.1007/978-1-4842-2322-2_14

CHAPTER 1 ■ LEARNING MORE ABOUT ARTIK

4

 Samsung Developer Resources
 Following SDC 2016, the previously available developer documentation has been updated with new
material, and the Downloads page has new items added from time to time. June 2016 saw the release of the
source code for the ARTIK OS and the ARTIK 10 modules via a Git repository. New firmware for the OS in the
ARTIK 5 and 10 arrived also, and the developer documentation was updated with a lot of new material for
users interested in using audio and video on their ARTIK projects.

 The Samsung developer resources are organized into several categories. The documentation takes you
through a straightforward getting-started process. This is useful if you are using a Windows workstation;
there is some useful material for Linux users, too. For Linux and the Apple Macintosh development
workstations, consult the companion book Beginning Samsung ARTIK for additional material.

 The online developer guide provides some basic instruction on accessing GPIO pins. This is backed up
here with code examples. Chapter 17 illustrates the GPIO internals in some detail. Check out the Samsung
developer support channel on YouTube for video tutorials and presentations. Third-party material is
available at the hackster•io web site or on the Instructables blog. Access more resources via these links:

 https://developer.artik.io/overview
 https://developer.artik.io/documentation/
 https://developer.artik.io/documentation/getting-started-beta/
 https://developer.artik.io/documentation/developer-guide/
 https://developer.artik.io/documentation/tutorials/
 https://developer.artik.io/documentation/tutorials/color-mqtt-client.html
 www.hackster.io/
 www.instructables.com/
 www.youtube.com/channel/UC4rolvSm8ikmnymdbbznNJw

 Samsung Developer Downloads
 Check the Samsung developer downloads page from time to time. Useful resources to help your development
process are added when the Samsung engineers release new features. Look out for new firmware downloads
to install. Installing new firmware wipes out anything that you previously installed in your ARTIK module,
including any configuration or experimental applications you might have written and compiled there. Make
sure that anything important to you is documented and backed up before installing new firmware. The
following is the link to the Downloads page. Sign in with your Samsung developer account to reach it.

 https://developer.artik.io/downloads

 Getting copies of everything on the Downloads page should be a routine activity; once a month you
should check to see if there is anything new. Collect an archive of older versions to track the evolution of the
ARTIK family and to be able to revert back to an earlier configuration if necessary. Download these items
and read them for useful coverage of your ARTIK internals:

• Developer board schematics (Type 5 and Type 10)

• Data sheets (ARTIK models 520 and 1020)

• Software developers guide (not yet released as of July 2016)

 ARTIK OS Source Code
 Now that the Commercial Beta ARTIK 1020 has been released, the new downloadable developer resources
also include Git repositories where the source code for the ARTIK OS is maintained. Check this web page
regularly to see if new components have been introduced at the head of the Samsung ARTIK code repository:
 https://github.com/SamsungARTIK . Table 1-2 describes the items that have been released.

http://dx.doi.org/10.1007/978-1-4842-2322-2_17
https://developer.artik.io/overview
https://developer.artik.io/documentation/
https://developer.artik.io/documentation/getting-started-beta/
https://developer.artik.io/documentation/developer-guide/
https://developer.artik.io/documentation/tutorials/
https://developer.artik.io/documentation/tutorials/color-mqtt-client.html
http://www.hackster.io/
http://www.instructables.com/
http://www.youtube.com/channel/UC4rolvSm8ikmnymdbbznNJw
https://developer.artik.io/downloads
https://github.com/SamsungARTIK

CHAPTER 1 ■ LEARNING MORE ABOUT ARTIK

5

 The following are the links for the repositories containing ARTIK OS components that have already
been released. Put them into your Git client tools to map them into your workspace and replicate the
repository into your developer workstation to have a copy of the source code to work on:

 https://github.com/SamsungARTIK/build-artik
 https://github.com/SamsungARTIK/fedora-spin-kickstarts
 https://github.com/SamsungARTIK/initrd-artik
 https://github.com/SamsungARTIK/linux-artik
 https://github.com/SamsungARTIK/u-boot-artik

 The following repositories contain useful utilities to help you manage your development process; they
are not part of the canonical ARTIK OS source kit:

 https://github.com/SamsungARTIK/slate
 https://github.com/SamsungARTIK/artik-discourse

 Table 1-2. ARTIK Git Source Code Repositories

 Component Description

 build-artik This code helps to create an ARTIK SD Fuse image. This is loaded
onto a micro SD card to install new software into the eMMC
memory of your ARTIK. Due to the long build time of a Fedora
operating system image, the root file system is provided by a pre-
built binary. Download it from the server during the build process.
The binary image of the Fedora OS is built as a separate process.

 fedora-spin-kickstarts Creates an ARTIK Fedora root file system. The ARTIK Fedora OS
is based on Fedora 22 ARM version and is customized for ARTIK 5
and 10 modules.

 initrd-artik Initial boot time RAM disk source for ARTIK 5 and 10. It recovers
the eMMC partitions from the micro SD card Fuse image.

 linux-artik Linux kernel source for ARTIK 5 and 10. The base kernel version
of ARTIK is Linux version 3.10.93 and is conditionally compiled as
the Samsung Exynos kernel.

 u-boot-artik This is the U-Boot source for ARTIK 5 and 10. It is based on the
Samsung Exynos U-Boot variant.

 slate The Slate API documents generator helps you create beautiful,
intelligent, responsive API documentation.

 artik-discourse Discourse is a discussion platform built for the next decade of the
Internet. It works as a mailing list, discussion forum, or a long-
form chat room.

 heroku-buildpack-nodejs-grunt This is a slightly modified version of the official Heroku buildpack
for Node.js applications with added support for the Grunt
notification system.

 nginx-buildpack Runs the NGINX web delivery platform on your application server
that runs Heroku.

 heroku-buildpack-webpack This is a Heroku buildpack for web applications that use webpack.

 heroku-buildpack-php The official PHP buildpack for Heroku.

www.allitebooks.com

https://github.com/SamsungARTIK/build-artik
https://github.com/SamsungARTIK/fedora-spin-kickstarts
https://github.com/SamsungARTIK/initrd-artik
https://github.com/SamsungARTIK/linux-artik
https://github.com/SamsungARTIK/u-boot-artik
https://github.com/SamsungARTIK/slate
https://github.com/SamsungARTIK/artik-discourse
http://www.allitebooks.org

CHAPTER 1 ■ LEARNING MORE ABOUT ARTIK

6

 The following repositories are part of the Heroku cloud platform support and are versions that are
compatible with the ARTIK OS. Use them to enhance your ARTIK when you are experimenting with cloud
based architectural designs:

 https://github.com/SamsungARTIK/heroku-buildpack-nodejs-grunt
 https://github.com/SamsungARTIK/nginx-buildpack
 https://github.com/SamsungARTIK/heroku-buildpack-webpack
 https://github.com/SamsungARTIK/heroku-buildpack-php

 Samsung Developer Blog
 Keep current with the new technical information that Samsung publishes on the Samsung Developer Blog.
All of the Samsung ARTIK developer blog articles have been reorganized. The ARTIK Cloud, ARTIK Module,
and ARTIK Generic materials are all sensibly gathered together in one place. Each category is color coded
to help you navigate the collection. These blogs include press releases, partner profiles, 101 tutorials, and
example projects. Many offer useful links to other helpful resources. This is a magnificent job and it is well
managed by Fred Patton and the ARTIK team at the Samsung Strategy and Innovation Centre.

 Sign up to receive the newsletter mailings, which alert you to important announcements. It may be
useful to capture a PDF copy of the blog articles to read offline but bear in mind that the copy is not updated
automatically if something changes. Read the Samsung ARTIK developer blog at www.artik.io/blog/ .

 Samsung Developer Forums
 There is a lot of useful help at the Samsung Developer Forum. If there is a problem that many users trip over, it
is very likely that another developer will have posted a question on the forum. If they haven’t, post one yourself.
There is a great community spirit; people are ready to help when fellow developers run into difficulties.

 Some questions do not have a definitive answer, such as ones about technology that is not yet
implemented. I found it helpful to survey the Samsung ARTIK Developer Forum for questions that ARTIK
developers wanted help with because I knew that those questions would make great topics for inclusion in these
Apress books. Check out the Samsung ARTIK developer forum at https://developer.artik.io/forums/ .

 Get Your Samsung Developer Account Now
 The developer resources for the ARTIK hardware and the ARTIK Cloud data exchange are only accessible
to you when you are logged on with a developer account, so sign up for one! Then start developing code for
your ARTIK module right away. The sign up process is straightforward and easy to follow. Go to www.artik.
io/developer/users/auth/samsung .

 Once you have signed up, log in with your new ARTIK developer account and explore the resources that
Samsung prepared for you. Having a developer account is not the same as having a Samsung user account
registered for use with your smartphone. Register for both kinds of account. Use a different password for
each one and do not use those passwords for anything else to protect yourself against identity theft. Join a
wider Samsung developers group by signing up for a Samsung developer account at http://developer.
samsung.com/signup .

 This gives you access to SDK libraries for a range of Samsung technologies, including the ARTIK family.
See http://developer.samsung.com/sdk-and-tools .

https://github.com/SamsungARTIK/heroku-buildpack-nodejs-grunt
https://github.com/SamsungARTIK/nginx-buildpack
https://github.com/SamsungARTIK/heroku-buildpack-webpack
https://github.com/SamsungARTIK/heroku-buildpack-php
http://www.artik.io/blog/
https://developer.artik.io/forums/
http://www.artik.io/developer/users/auth/samsung
http://www.artik.io/developer/users/auth/samsung
http://developer.samsung.com/signup
http://developer.samsung.com/signup
http://developer.samsung.com/sdk-and-toolsURL not available

CHAPTER 1 ■ LEARNING MORE ABOUT ARTIK

7

 An Even Quicker Start
 In Beginning Samsung ARTIK , the Quick Start example got things going right away. Assuming you now
have your system up and running, try the following example, which introduces you to the file system inside
your ARTIK. If your system is not yet up and running, put this book to one side, work through the steps in
 Beginning Samsung ARTIK , and then come back here when it is all working.

 1. Open a new session with your terminal emulator, connect to the ARTIK, and log
in when it has booted.

 2. Go to the temporary files directory.

 cd /tmp

 3. Use the vi editor to create a file called file_reader.c :

 vi file_reader.c

 4. Switch to insert mode by pressing the upper case letter [I] key and type this code
into the editor:

 #include <stdio.h>

 int main()
 {
 FILE *fp;
 char str[60];

 /* open a file for reading */
 fp = fopen("/etc/fedora-release" , "r");

 if(fp == NULL)
 {
 perror("Error opening file");
 return(-1);
 }
 if(fgets (str, 60, fp)!= NULL)
 {
 /* write the file content to stdout */
 puts(str);
 }
 fclose(fp);

 return(0);
 }

 5. Type these keystrokes to exit from vi and save the changes to disk:

 [Escape] [:] [w] [q] [Return]

 6. Now compile the source code with GCC:

 gcc -Wall file_reader.c -o file_reader

CHAPTER 1 ■ LEARNING MORE ABOUT ARTIK

8

 7. Run your compiled program with this command:

 ./file_reader

 8. The text “ Fedora release 22 (Twenty Two) ” should be echoed on the screen. If
your ARTIK operating system has been updated, a different version number will
be displayed.

 Congratulations! You just built and ran a native application in your ARTIK module. Your application
interacted with the file system to read the operating system version.

9© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_2

 CHAPTER 2

 Hardware

 The ARTIK module family spans a huge range of capabilities. The ARTIK 1020 is a hugely powerful, media-
processing–capable, eight-core computer with a lot of onboard capabilities and many interfacing possibilities
due to the range of I/O processors integrated with the CPU. For less challenging computational needs, the
ARTIK 520 has media processing playback capabilities but also has a generous complement of inputs and
outputs. Many features are engineered and implemented in a similar way on each of the ARTIK modules. This
helps you develop code that you can reuse on multiple projects running on different hardware.

 The ARTIK Family
 The Samsung ARTIK is all about versatility. Samsung describes it as “The Ultimate Platform Solution for IoT.”
Providing the computing power of a UNIX workstation in a form factor as compact as the ARTIK modules
will revolutionize the way that smartness is engineered into products. With computing power delivered as a
commodity, the ARTIK can make everything smarter.

 The Samsung ARTIK platform is designed to jump-start your development of products that exploit the
diverse potential of what is becoming known as the Internet of Things (IoT). This is a structured way for all
kinds of devices from tiny wearable items to entire homes and factories to communicate with each other and
adjust their behavior to accommodate real-time changes in their interactions with humans and other systems.

 The ARTIK modules are only possible due to the prior success of mobile phone technology. As phones
have become smarter and smaller, the integration of memory and computing power into ever-smaller
packages can be leveraged to create a general-purpose computer in a very compact form. The further
reduction in device sizes results in technologies such as the ARTIK modules. As these modules become
increasingly popular, the economies of scale reduce the unit cost and they can be deployed everywhere.

 The following are the key differentiating features of the ARTIK modules, taken from the Samsung
promotional literature:

• Complete module lineup

• Pre-certified modules with processors, memory, connectivity, and sensors

• Best power, form factor, and performance

• Software compatibility across the family

• Leveraging Samsung economies of scale in quality manufacturing

• Samsung chips, memory, and processors

• Unique ePoP packaging

• Exploits Samsung’s manufacturing expertise and branding

CHAPTER 2 ■ HARDWARE

10

• Best-in-class end-to-end security and privacy

• Advanced security

• Embedded hardware-based secure element

• Trusted Execution Environment (TEE)

• True random number generator

• Crypto accelerator

• Secure memory for keys

• Hybrid cloud solution

• Local and distributed open cloud intelligence

• Data storage

• Analytics

• Ecosystem

• Strong developer community

• Best-in-class partners across the value chain

• Production-ready hardware

• Broad range of connectivity

• Advanced software support

• Open source

• Software development kits

• Increased developer productivity

 Provenance
 This book is based on the Commercial Beta revision of the ARTIK hardware. If you are still working with
prototype Alpha or Early Beta hardware, upgrading to the latest available production model ARTIK module
is a good idea. Doing so will ensure a trouble-free development process going forward, and any future
software upgrades are more likely to be compatible with your prototyping system. Table 2-1 summarizes the
versions of the ARTIK already released to the public.

CHAPTER 2 ■ HARDWARE

11

 The currently shipping model is an ARTIK 520 or 1020 module at version 0.5.0. This is what Samsung
describe as a Commercial Beta product. The Samsung ARTIK is still at an early phase of its product lifecycle.
Many aspects will evolve and change over the next few years. Table 2-2 describes the features of the
Commercial Beta ARTIK 520 and 1020 modules based on the current developer documentation. Basic video
support is present in the June 2016 operating system upgrades running on the ARTIK 1020.

 ■ Note If you are still working with pre 0.5.0 Commercial Beta development systems, be aware of some
differences from the developer boards that were released to early adopters. The PWM0 and PWM1 have been
exchanged so the pin numbers are different. Also the hardware I/O headers have moved to better accommodate
Arduino shields. On very early development systems, the HIGH and LOW values on GPIO pins were reversed.

 Table 2-1. ARTIK Version Number History

 Version Description

 0.1.0 Pioneer edition available in limited numbers when ARTIK was first announced

 0.2.0 Alpha development prototypes

 0.3.0 Early Beta development prototypes

 0.3.1 Updated Beta development prototypes

 0.3.2 Updated Beta development prototypes

 0.5.0 Commercial Beta prototypes. At launch, ARTIK 520 and 1020 modules are this version.

 Table 2-2. Commercial Beta Features

 Beta Features ARTIK 520 ARTIK 1020

 Ethernet External SPI External USB

 Bluetooth √ √

 Bluetooth LE √ √

 ZigBee √ √

 USB device mode 2.0 2.0/3.0

 USB host mode n/a 2.0/3.0

 SD card √ √

 Speaker/microphone √ √

 Video output n/a HDMI

 Video input n/a MIPI

 GPIO analog read 2 Channels 6 Channels

 GPIO analog write √ √

 GPIO digital read √ √

 GPIO digital write √ √

CHAPTER 2 ■ HARDWARE

12

 Choose the Right Model
 Choose an appropriate ARTIK module based on what you are trying to accomplish. Samsung has alternative
configurations with different feature sets and computing power. The ARTIK modules run embedded UNIX
operating systems and accept a variety of input/output sensors and controls to operate other equipment
or systems. Remote operation is possible because the ARTIK modules are equipped with wireless
communications so they can collaborate with one another or via a secure cloud connected ecosystem. The
ARTIK modules in Figure 2-1 are shown at the same scale to compare the sizes. The internal layout of the
ARTIK 520 module is visible because the protective outer shielding has been removed.

 Introducing the ARTIK 520
 The smaller module is called the ARTIK model 520 (as of July 2016). This module has dual ARM CPU
cores. This is powerful enough to create a home media player attached directly to a video monitor. This
creates opportunities to build digital signage systems that can talk to one another and potentially alter their
behavior when somebody approaches while wearing a compatible device. An ARTIK 520 could take over
significant responsibilities in running a wired home or a manufacturing process with the status display being
generated onboard and presented on a view screen.

 The ARTIK 520 has fast and capable CPU cores. The module is carefully screened against radio
frequency interference (RFI) to avoid interfering with nearby equipment. There are several wireless
connection options, plus support for the ZigBee protocol, which is gaining popularity in wired home
installations.

 The 25mm x 29mm form factor is a significant achievement when you consider the capabilities that
Samsung has accommodated in this device. It has a versatile array of multimedia support, analog and digital
input/output, and peripheral interconnect buses.

 The ARTIK 520 module also supports the Samsung Secure Element protocols that afford robust
protection against hacking at the module level. Integrate your distributed systems so they can collaborate by
connecting them together via the ARTIK Cloud-based protocols.

ARTIK 5 ARTIK 10

29mm

39mm

25mm

29mm

 Figure 2-1. Comparing the ARTIK modules

CHAPTER 2 ■ HARDWARE

13

 Find out more about the ARTIK 520 from the Samsung developer documentation. Read the data sheet for
the ARTIK model 520 and examine the Type 5 developer reference board schematics. Together, they will answer
many of your questions about how the ARTIK works; see www.artik.io/modules/overview/artik-5/ for more
details.

 Figure 2-2. The ARTIK 520 module (top view)

 The ARTIK module shown in Figure 2-2 can decode a variety of video playback formats through its
integral hardware codecs and present the output directly on an attached video monitor. The ARTIK 520 is
well suited for building smart home hubs, high-end smart watches, drone flight controllers, and embedded
IP-based camera management systems.

http://www.artik.io/modules/overview/artik-5/

CHAPTER 2 ■ HARDWARE

14

 Figure 2-3. ARTIK 5 general arrangement

 General Arrangement
 Figure 2-3 shows a layout of the components on an ARTIK 520. The three Panasonic AXT connectors are
on the underside of the module but their position is shown in this top view. Use this image file as a starting
point for adding some layout markup to the screen-printed artwork for your own circuit boards. Do not take
measurements from this diagram because it was rotoscoped from a photograph and any positions of items
are merely for guidance.

CHAPTER 2 ■ HARDWARE

15

 The various connectivity and interfacing technologies are covered in detail in later chapters and are
summarized in Table 2-3 .

 Functional Organization
 A simplified functional breakdown of the ARTIK 5 module is shown in Figure 2-4 . This diagram shows the
important subsystems inside an ARTIK 5.

I/O
Interfaces

AXT
Connectors

3 x 60 pins

Bluetooth
Low Energy

(BLE)

WiFi
(802.11)

ZigBee/Thread

Power Management

Buck Convertors

LDO Regulators

CPU 1 - A7
1 GHz

CPU 2 - A7
1 GHz

Processor

LPDDR3 Memory
512 MByte

eMMC Memory
4 GByte

Hardware
Crypto
Engine

USB
Controller

GPU

Audio
Input/Output

Video
Input/Output

Media Subsystem

 Figure 2-4. The ARTIK 520 module block diagram

 Table 2-3. ARTIK 520 Connectivity Cross-Reference

 Topic See also

 Panasonic AXT connectors Chapter 13 describes the pinouts for the ARTIK 520 connectors (J3, J4, and J7)

 GPIO Digital switching and sensing is managed via the GPIO interface. Refer to
Chapter 17 for more details.

 I2C Some sensor devices are connected via I2C bus interfaces. These are
described in Chapter 20 .

 Analog input The analog input circuits and their ADC conversion to a digital value are
covered in Chapter 18 .

 PWM output The pseudo analog PWM outputs are described in Chapter 19

 SPI The SPI interface is only partially implemented at present. Details of how it
works are covered in Chapter 21 .

 Audio The audio capabilities are covered in Chapter 22 .

 Video The Video4Linux support is not yet complete. Examine the online resources
and the connectors in the schematic diagrams to understand how it works.
See Chapter 23 for more details.

 USB The ARTIK 520 supports USB 2.0 connections in device mode.

http://dx.doi.org/10.1007/978-1-4842-2322-2_13
http://dx.doi.org/10.1007/978-1-4842-2322-2_17
http://dx.doi.org/10.1007/978-1-4842-2322-2_20
http://dx.doi.org/10.1007/978-1-4842-2322-2_18
http://dx.doi.org/10.1007/978-1-4842-2322-2_19
http://dx.doi.org/10.1007/978-1-4842-2322-2_21
http://dx.doi.org/10.1007/978-1-4842-2322-2_22
http://dx.doi.org/10.1007/978-1-4842-2322-2_23

CHAPTER 2 ■ HARDWARE

16

 Known Firmware Versions
 Table 2-4 lists the publicly available firmware versions that have been released for the ARTIK 520 via the Samsung
Developer Downloads page. Only download new firmware from a trustworthy source such as the Samsung
Developer Downloads page to ensure you have an authoritative copy. You must be signed on with your developer
account to reach the Downloads page and access the resources at www.artik.io/developer/downloads .

 Introducing the ARTIK 1020
 The most capable module is called the ARTIK model 1020 (as of July 2016). This has significantly more
compute capacity with a pair of quad ARM CPU cores and assistive hardware co-processors for video
coding/decoding, graphics rendering, and a very large number of versatile input/output connections. This
could operate as a centralized server or high-powered media ingest engine.

 The ARTIK 1020 shown in Figure 2-5 is the most capable and powerful of all the modules in this family. It
has more of everything compared with the ARTIK 520. In terms of computing capacity it has eight CPU cores
in all. There are many more connector outputs and it can handle a higher quality HD video output or encoding
throughput. This would make a very capable starting point for building TV set-top boxes with interactive
TV capabilities. It is probably powerful enough to create a home Intranet server or media hub for a digital
entertainment system. If you delegate more of the hard work to a centralized ARTIK 1020, use ARTIK 520
modules in your client players instead of deploying more ARTIK 1020 modules. If you construct a home Intranet
around an ARTIK 1020, it could also provide a personal cloud integration for all the devices around the home
and then gateway access to the Internet via a single interface. If an ARTIK 5 is not powerful enough for your
needs, an ARTIK 1020 is certainly up to the task of managing the throughput for all kinds of smart machines.

 The 29mm x 39mm form factor is astonishing when you consider this is a fully featured UNIX computer
with high-definition video encode/decode capabilities integrated into the ARTIK module. This ARTIK can
decode a variety of video playback formats and present the output directly on an attached video monitor.

 This module is powerful enough to live encode incoming video for onward delivery to a media storage
system. This opens up possibilities for use in security monitoring and personal video recorder products. It could
also find applications in the broadcast industry for building master control and file-based edit/storage systems.

 The ARTIK 1020 module also supports the Samsung Secure Element protocols that afford robust protection
against hacking at the module level. Integrate your distributed systems via the ARTIK Cloud-based protocols.

 Table 2-4. ARTIK 5 Firmware Release History

 Date Notes

 2015-10-17 Only use this on Alpha boards. It’s Alpha firmware built with Yocto from Fedora 20.
Ethernet driver support is unavailable on this version.

 2015-11-09 Only use this on 0.3 version (Beta) boards. It’s Beta firmware built with Yocto from
Fedora 22. It adds support for Ethernet interface, analog write, and I2C device access.
The Temboo library is not available on this version.

 2015-12-09 This is the image delivered on the ARTIK 520 modules shipped with the Version 0.5
(Commercial Beta) developer boards. It is based on Fedora 22. This image may be
flashed to Ver. 3.2 (early Beta) boards. Do not use this image with Ver. 3.0 or 3.1
(early Beta) boards.

 2016-01-21 Revised firmware released for the ARTIK 520 as the ARTIK 1020 Commercial Beta
units start to ship.

http://www.artik.io/developer/downloads

CHAPTER 2 ■ HARDWARE

17

 Find out more about the ARTIK 1020 from the Samsung developer documentation. Read the data
sheet for the ARTIK model 1020 and examine the Type 10 developer reference board schematics. Together,
they answer many of your questions about how the ARTIK works; see www.artik.io/modules/overview/
artik-10/ and http://developer.samsung.com/sdk-and-tools .

 Figure 2-5. The ARTIK 1020 module (top view)

http://www.artik.io/modules/overview/artik-10/
http://www.artik.io/modules/overview/artik-10/
http://developer.samsung.com/sdk-and-tools

CHAPTER 2 ■ HARDWARE

18

 ■ Note Two 40-pin debug connectors are shown in this illustration. The ARTIK 1020 modules can be used
without the second auxiliary debug connector. The version shipped with the Type 10 developer reference board has
the additional connector fitted. It is plugged into the developer reference board to support JTAG hardware debugging.
Chapter 13 describes these AXT connectors in detail and also describes the additional debugging connector.

ARTIK 10

 Figure 2-6. ARTIK 10 general arrangement

 General Arrangement
 Figure 2-6 shows the layout of the ARTIK 1020 module components. The four Panasonic AXT connectors are
on the underside of the module but their position is shown as viewed from the top. Use this image file as a
starting point for adding some layout markup to the screen-printed artwork for your own circuit boards. Do
not take measurements from this diagram because it was rotoscoped from a photograph and any positions
of items are merely for guidance.

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 2 ■ HARDWARE

19

 Functional Organization
 The functional breakdown of the ARTIK 1020 module is shown in Figure 2-7 . This diagram shows the main
internal subsystems in an ARTIK 1020.

 The various connectivity and interfacing technologies are covered in detail in later chapters and are
summarized in Table 2-5 .

I/O
Interfaces

AXT
Connectors

2 x 80 pins
1 x 40 pins

Bluetooth
Low Energy

(BLE)

WiFi
(802.11)

ZigBee/Thread

Power Management

Buck Convertors

LDO Regulators

Quad - A15
1.5 GHz

Quad - A7
1.3 GHz

Processor

LPDDR3 Memory
2 GByte

eMMC Memory
16 GByte

Hardware
Crypto
Engine

USB
Controller

GPU

Audio
Input/Output

Video
Input/Output

Media Subsystem

 Figure 2-7. The ARTIK 1020 module block diagram

CHAPTER 2 ■ HARDWARE

20

 Known Firmware Versions
 Table 2-6 lists the publicly available firmware versions that have been released for the ARTIK 1020 via the
Samsung developer downloads page. Sign on with your developer account to reach the Downloads page at
 www.artik.io/developer/downloads .

 Table 2-6. ARTIK 1020 Firmware Release History

 Date Notes

 2015-10-07 Only use this on Alpha boards. It is Alpha firmware built with Yocto from Fedora 20.

 2015-11-09 Only use this on 0.3 version (Beta) boards. It is Beta firmware built with Yocto from
Fedora 22. It adds USB camera support via the Linux UVC driver, analog write, and I2C
device access. The Temboo library is not available on this version.

 2015-12-17 A firmware image for the ARTIK 10 Ver. 3.2 (early Beta) boards, it is based on Fedora
22. Do not use this image with Ver. 3.0 or 3.1 boards.

 2016-06-21 This is revised firmware released as the ARTIK 10 Commercial Beta devices become
available to purchase.

 Table 2-5. ARTIK 10 Connectivity Cross-Reference

 Topic See also

 Panasonic AXT connectors Chapter 13 describes the pinouts for the ARTIK 1020 connectors
(J1, J2, J3, and J4)

 GPIO Digital switching and sensing is managed via the GPIO interface. Refer to
Chapter 17 for more details.

 I2C Some sensor devices are connected via I2C bus interfaces. These are
described in Chapter 20 .

 Analog input The analog input circuits and their ADC conversion to a digital value are
covered in Chapter 18 .

 PWM output The pseudo analog PWM outputs are described in Chapter 19

 SPI The SPI interface is only partially implemented at present. Details of how it
works are covered in Chapter 21 .

 Audio The audio capabilities are covered in Chapter 22 .

 Video The Video4Linux support is incomplete as yet. Examine the online
resources and the connectors in the schematic diagrams to understand how
it works. See Chapter 23 for more details.

 USB The ARTIK 1020 supports USB connections in host and device modes
running with version 2.0 or 3.0 protocols.

http://www.artik.io/developer/downloads
http://dx.doi.org/10.1007/978-1-4842-2322-2_13
http://dx.doi.org/10.1007/978-1-4842-2322-2_17
http://dx.doi.org/10.1007/978-1-4842-2322-2_20
http://dx.doi.org/10.1007/978-1-4842-2322-2_18
http://dx.doi.org/10.1007/978-1-4842-2322-2_19
http://dx.doi.org/10.1007/978-1-4842-2322-2_21
http://dx.doi.org/10.1007/978-1-4842-2322-2_22
http://dx.doi.org/10.1007/978-1-4842-2322-2_23

CHAPTER 2 ■ HARDWARE

21

 There are several different variants of these sockets. Choose different heights of mating connectors to
allow more space underneath the ARTIK. This might be helpful for ventilation. Trade this off against the
overall height of your base circuit board plus the height of the ARTIK module. You can clearly see this if you
look at your developer reference board with its ARTIK module mounted on top.

 The accuracy of positioning the sockets on your baseboard during manufacture is absolutely critical to
avoid damaging your ARTIK. If you have to force the ARTIK into misaligned AXT sockets, it puts excessive
strain on the ARTIK module printed circuit board and could damage it as a result.

 These connectors are described in more detail in Chapter 13 where the individual pinouts are listed.
The following are the signals that are brought out through these connectors on ARTIK 5 and 10 modules:

• General Purpose Input/Output (GPIO)

• Pulse Width Modulated (PWM) outputs

• Analog inputs (ADC) and IIO kernel support

• UART serial I/O

• I2C bus for sensor devices

• Serial Peripheral Interconnect (SPI) for driving video displays

• I2S bus for audio applications and the ALSA library

• USB 2.0 and 3.0 bus running in device and host mode (module dependent)

• MMC memory support

• MIPI DSI display interfaces

• MIPI CSI camera interfaces

• Clock outputs

• Auxiliary power to peripherals

• Video output

• Accessing the Power Management Integrated Control (PMIC) devices

 Figure 2-8. Panasonic AXT socket (Courtesy of Panasonic Electric Works)

 ARTIK Module Connections
 The connections are all brought out of the ARTIK modules via Panasonic AXT multi-pin headers soldered to
the underside of the ARTIK. The ARTIK stands off from the board where the connectors are fitted. You must
use matching sockets like the one shown in Figure 2-8 on your own main circuit board inside the product
you want to empower with an ARTIK module.

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 2 ■ HARDWARE

22

 Physical Dimensions
 The ARTIK modules are very small when viewed from the top. The height of the module when it is plugged
into the AXT socket determines the size of the product you intend to deploy. The choice of low or high
profile AXT connectors affects the minimum internal size for these products. Figure 2-9 is a cross-section
view showing the important dimensions for your ARTIK modules. The minimum internal space inside your
product is the sum of the height of the mated connector plus the thickness of your PCB and the stand-off
height of any surface mounted ARTIK components. Allowing a little extra space to insulate the ARTIK from
the outer casing and the miniature co-axial connectors for Wi-Fi adds to the overall height. Ensure there is
adequate airflow to allow the ARTIK to remain cool if it needs to carry out compute-intensive tasks. Because
of the density of connections, a multi-layer board may be required. This is slightly thicker than a single or dual
layer PCB. Allowing 1mm for the baseboard thickness should be sufficient space. Allow clearance above the
top of the Wi-Fi antenna miniature co-axial connectors so they are not subjected to vibration; they should
also not come into contact with any conductive surfaces to avoid the risk of short circuits. Underneath the
base printed circuit board there may be some soldered tags protruding through the board. These must have
clearance and very likely some insulating material to prevent more short circuits. The minimum internal
height may be bigger than you first thought. Surface mounting your components on your base printed circuit
board may alleviate the need to solder through to the back of the board and would reduce the height a little.

 When you connect a cable to a miniature co-axial socket, the top of the plug stands off from the
substrate of the ARTIK module a little higher than most other components. The height of these connectors
without an antenna cable plugged in is 1.25mm. Allow a little more space for the plug body. Calculate the
overall dimensions of the ARTIK when plugged into its AXT socket and add the height of the miniature co-
axial connectors with their cables plugged in. Refer to this URL for data sheets with production dimensions
to plan enough space for these connectors inside your product design:

 www.digikey.com/product-detail/en/hirose-electric-co-ltd/U.FL-R-SMT(10)/H9161CT-ND/2135256 .

 Refer to the Samsung data sheets for the ARTIK modules for additional details regarding the physical
characteristics of the AXT implementation replicated in your own product designs. Table 2-7 summarizes
the key dimensions and tolerances.

Base printed circuit board

ARTIK module substrate

Connector
mated
height

Minimum
internal
product

dimension

Protruding coaxial connector

Protruding soldered tags

 Figure 2-9. Cross-sectional view

http://www.digikey.com/product-detail/en/hirose-electric-co-ltd/U.FL-R-SMT(10)/H9161CT-ND/2135256

CHAPTER 2 ■ HARDWARE

23

 Table 2-7. Key Dimensions and Tolerances

 ARTIK Dimension Value Tolerance

 5 Width 25.00mm ± 0.5mm

 5 Length 29.00mm ± 0.5mm

 5 Center line of AXT connector axis See data sheets ± 0.2mm

 5 Middle of AXT connector See data sheets ± 0.3mm

 5 Base PCB thickness 0.72mm ± 0.1mm

 5 Maximum stand-off height of top components
 (not including the plugged in miniature co-axial
connectors)

 1.50mm ± 0.2mm

 5 Maximum stand-off height of bottom components
 (not including AXT headers)

 1.24mm ± 0.2mm

 5 Connector mated height (low profile) 1.50mm n/a

 5 Connector mated height (high profile) 2.50mm n/a

 10 Width 29.00mm ± 0.5mm

 10 Length (without auxiliary debug connector) 39.00mm ± 0.5mm

 10 Length (with auxiliary debug connector) 47.00mm ± 0.5mm

 10 Center line of AXT connector axis See data sheets ± 0.2mm

 10 Middle of AXT connector See data sheets ± 0.2mm

 10 Base PCB thickness 1.10mm ± 0.12mm

 10 Maximum stand-off height of top components
 (not including the plugged in miniature co-axial
connectors)

 1.60mm ± 0.2mm

 10 Maximum stand-off height of bottom components
 (not including AXT headers)

 1.24mm ± 0.2mm

 10 Connector mated height (low profile) 1.50mm n/a

 10 Connector mated height (high profile) 2.50mm n/a

 Buy an ARTIK Development System Now
 The ARTIK 520 Commercial Beta development systems went on sale as the Mobile World Conference
got underway in Barcelona in February 2016. The ARTIK 1020 Commercial Beta modules joined them in
June 2016. The ARTIK 1020 modules are a little bit more expensive than the ARTIK 520 modules but they
are capable of so much more. The primary supplier is Digi-Key. Go their web site and search using the
keyword “ARTIK” to find all the Samsung ARTIK-related products available. Digi-Key has international
representation. Use the correct version of their site to order and pay for products in your local currency. The
international territories are listed at the bottom of the web page.

CHAPTER 2 ■ HARDWARE

24

 Component Suppliers
 There are many suppliers that offer add-on components. Samsung has chosen Digi-Key as a central place to
distribute their recommended accessories and ARTIK-compatible components. Useful components are also
available from Adafruit, Sparkfun, Oomlout, and many other companies worldwide. There is a useful list of
suppliers at the Arduino web site and a few others are listed here:

 http://playground.arduino.cc/Main/Resources
 www.adafruit.com
 www.sparkfun.com
 www.radioshack.com
 http://oomlout.co.uk
 http://uk.farnell.com
 www.hobbytronics.co.uk
 www.coolcomponents.co.uk
 www.bitsbox.co.uk
 www.maplin.co.uk
 www.tandyonline.co.uk
 http://hobbycomponents.com
 www.rs-components.com

 Summary
 Getting to know the ARTIK modules and how the different models compare and contrast helps you to
choose the right one for your product design. If your product does not merit the power of an ARTIK 10, the
ARTIK 5 solution is more cost effective. If you are a developer who experiments with prototyping a range
of ideas, having ARTIK 5 might constrain what you can do, and the ARTIK 10 is a better choice for general
purpose research and development work. Although the specific model numbers are currently the ARTIK 520
and 1020, the rest of this book will refer to them simply as an ARTIK 5 and 10 unless it is necessary to draw
your attention to features that are specific to the 520 and 1020 module versions. These model numbers will
change when new versions start to ship.

http://playground.arduino.cc/Main/Resources
http://www.adafruit.com/
http://www.sparkfun.com/
http://www.radioshack.com/
http://oomlout.co.uk/
http://uk.farnell.com/
http://www.hobbytronics.co.uk/
http://www.coolcomponents.co.uk/
http://www.bitsbox.co.uk/
http://www.maplin.co.uk/
http://www.tandyonline.co.uk/
http://hobbycomponents.com/
http://www.rs-components.com/

25© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_3

 CHAPTER 3

 Developer Reference Boards

 The best way to start learning how the ARTIK modules work is to connect the developer reference board
to your development workstation. This board conveniently extends the connectivity of the ARTIK out to
Arduino-compatible header pins. The developer reference board also provides hardware debugging facilities
via a JTAG connector. The developer reference board is designed to safely mount your ARTIK to work on
your product design without needing to directly handle the module. This protects it from undue wear and
tear and the risk of electrostatic discharge (ESD) damage. Always make sure you have grounded yourself
and the equipment you are handling before touching it in order to dissipate any gradual build-up of static
charges. Avoid handling your ARTIK modules directly because they are small and easily damaged.

 If your ARTIK module has shaken loose from its socket during shipment, watch the following YouTube
video provided by the Samsung support team. It shows you where to carefully apply pressure without
damaging the ARTIK when reseating the module onto the developer reference board:

 http://www.youtube.com/watch?v=FxWXY0NLmzY .

 ■ Note The ARTIK modules are static-sensitive devices. Make sure you ground yourself and observe the
proper safeguards to avoid electrostatic discharge when handling modules and development boards.

 A Little History
 Each kind of ARTIK module has a developer reference board specifically designed for it. The developer
boards and the ARTIK modules are marked with version numbers to identify their provenance. Early
examples are lacking a leading zero so the version number looks like 3.1 when it should be 0.3.1. The ARTIK
520 Commercial Beta version (0.5.0) began shipping in March 2016. Table 3-1 summarizes the different
version numbers and release dates to help you identify the vintages. The Type 5 and 10 developer reference
boards are sometimes referred to as Type V and Type X in the developer documentation.

www.allitebooks.com

http://www.youtube.com/watch?v=FxWXY0NLmzY
http://www.allitebooks.org

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

26

 ■ Note Because Samsung is still developing the ARTIK platform, the developer reference board, version
numbers, ARTIK module features, and the model number designations may change from what is documented here.

 Connecting External Devices
 The developer reference boards provide connectivity for a variety of external hardware. There are camera
connections directly on the ARTIK modules for delivering video. These are brought out to Molex connectors
on the developer reference board. At present, the video support for these boards is still being developed.
This will change as more developers try things out and publish their results. Plug additional hardware into
the USB connector and install suitable drivers for it. Optionally, write new drivers or recompile the existing
ones to be compatible with the ARM CPUs. The USB port provides a way to add large amounts of external
storage for surveillance and video related products such as media servers or video recorder applications. On
the ARTIK 10, the USB connector is also a means of adding a camera. Consult the schematic diagrams for
pinout details of the various connectors on the developer reference board and where they enter the ARTIK
module through the Panasonic AXT multi-pin connectors.

 Controlling those external devices requires programming of GPIO, I2C, I2S, IIO, and SPI interfaces.
Libraries that make it easier to interact with them support a few of these interfaces, and more libraries will
be developed in future, and some interfaces are managed via the kernel. Because of the open standards
nature of the ARTIK, finding out how to control these interfaces is not particularly difficult. Some guidance is
included in later chapters.

 Table 3-1. Developer Reference Board and ARTIK Version Numbers

 Prototype Type Version Revision date Description

 Pioneer 2 0.1.0 2015-05-06 Demonstrated on the Cybercode
Twins video

 Alpha 2 0.2.0 2015-04-20 Universal developer board,
compatible with ARTIK 10. With the
addition of a small mezzanine board,
the ARTIK 5 can be mounted on the
same board.

 Alpha 2 0.2.1 Mid 2015 Revised prototype

 Alpha 2 0.2.2 Mid 2015 GPIO circuits are incorrectly set to
active LOW . Later models are correct
with GPIO active HIGH .

 Beta 5/10 0.3.0 Late 2015 Development prototype

 Beta 5/10 0.3.1 2015-09-02 Compatible with Beta ARTIK modules

 Beta 5/10 0.3.2 2015-10-22 Compatible with Beta ARTIK modules

 Beta 5/10 0.3.3 Late 2015 Compatible with Beta ARTIK modules

 Commercial Beta 5 0.5.0 2015-12-23 At launch, ARTIK 520 modules are this
version.

 Commercial Beta 10 0.5.0 2015-12-23 Pre-launch ARTIK 10 modules

 Commercial Beta 10 0.5.0 2016-02-12 At launch, ARTIK 1020 modules are
this version.

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

27

 Schematic Diagrams
 Samsung released schematic diagrams for the developer reference boards. Get a copy of them from the
Developer Downloads page. You must be logged in with your developer account to access them. These
schematic diagrams help you design and build a basic breakout board for your ARTIK modules. To reduce
your manufacturing costs, construct a much simpler board with only the support needed by your application.

 The developer board schematic diagrams are particularly helpful because they show you the pin numbers
on the connectors underneath the ARTIK module. These are the Panasonic AXT multi-pin connectors to
incorporate into your product when you eventually go into production. The RF circuits on the antenna
connectors are also shown on these schematics. Also, you can find out what the jumper pins and test points are
for. Very often there are small tables of helpful information beside the jumper pins on the schematic diagrams.

 Carefully examining the schematic diagrams can fill in a lot of blanks in your knowledge about how the
ARTIK works. Study the source code in the ARTIK OS repositories and in the Exynos version of the Linux
kernel. Combining this with recursive listings of the file system living under the /sys directory helps you
grasp the details of the hardware subsystems your application needs to talk to. The circuit schematics show
the pin numbers for wiring JTAG test harnesses to connect hardware debuggers.

 Table 3-2 lists the schematic diagrams that have been published. The Type 5 and 10 boards are the most
relevant to the Commercial Beta ARTIK modules but there might be some informative comments and useful
example supporting circuits on the earlier Type 2 developer board schematic for Alpha prototype ARTIK 5
and 10 modules even though the board is now discontinued. Download the schematic diagrams for the Type
5 and 10 developer reference boards from

 https://developer.artik.io/downloads .

 Table 3-2. Schematic Diagram Releases

 Type Version Date Description

 2 0.2.0 2015-04-14 Early Alpha prototype ARTIK 10 devices shipped on this Type 2
developer reference board. Some ARTIK 5 modules shipped with
a small mezzanine board to match them to the ARTIK 10 AXT
connector pinouts.

 5 0.1.0 2015-01-14 First version; hardware not publicly available.

 5 0.2.0 2015-04-14 Second version; Alpha prototypes.

 5 0.3.0 2015-07-28 Third version; Early Beta prototype.

 5 0.3.1 2015-08-26 Minor revision to Beta design

 5 0.3.2 2015-09-14 Z-Wave, LPWA, RJ45, and other pinout changes

 5 0.3.3 2015-10-06 Minor revision

 5 0.5.0 2015-11-05 Commercial Beta goes into production for early adopters to buy.

 5 0.5.0 2015-11-18 Added some test points (current)

 10 0.1.0 2015-01-14 First version; hardware not publicly available.

 10 0.2.0 2015-04-14 Second version; Alpha prototypes.

 10 0.3.0 2015-07-12 Third version; Early Beta prototype.

 10 0.5.0 2015-11-02 Commercial Beta goes into production for early adopters to buy.

 10 0.5.0 2015-11-19 Added some test points (current version)

 10 0.5.0 2015-12-23 Released to developers

https://developer.artik.io/downloads

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

28

 Reading the Schematic Diagrams
 Learning how to read schematics is a worthwhile skill to acquire, especially as IoT projects involve a mix
of hardware and software design. The Samsung developer board schematics tell you all about the pinouts
of the various connectors and components. The schematics and data sheets are the most authoritative
information on those connector pinouts. Each page of the schematics is designed to cover part of the
developer reference board functionality. If you have a large format printer, the diagrams are easier to read if
you print them out on A3 sized paper. Look for the special notes and tables on these diagrams, which reveal
useful information about jumper connections and their purpose.

 Figure 3-1 illustrates how the schematics route connections to other pages. Trace these connections to
see how the AXT connector pins on the ARTIK module are routed to the hardware header I/O connectors.
These schematics and the product data sheets were used as the source material to develop the AXT
connector reference tables in Chapter 13 .

 The connector component types are denoted near the pinout diagram. Figure 3-2 shows the J35 connector
on an ARTIK 10 module. This connector is for the 3L2 Camera interface. All the surrounding circuits are omitted
to keep the illustration simple. The J35 label helps you find this connector on the developer reference board.

Page 2 Page 12

[12]XYZ0 [2] XYZ0

 Figure 3-1. Schematic diagram page jump

MAC 2L3
J35

QG2330421Y-M08-7H

1
1

3
3

5
5

7
7

9
9

11
11

13
13

15
15

17
17

19
19

21
21

23
23

25
25

27
27

29
29

2
2

4
4

6
6

8
8

10
10

12
12

14
14

16
16

18
18

20
20

22
22

24
24

26
26

28
28

30
30

31
31

32
32

33
33

34
34

 Figure 3-2. Interface connector for 3L2 camera (J35)

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

29

 Note the legend underneath. Searching for that component part number online reveals a lot of
suppliers and data sheets that you need to acquire. Switching to an online image search sometimes helps to
find the component you are looking for. Compare the pictures with the board in front of you. Once you have
a description of the component, look for a local supplier or find one online such as Digi-Key, Sparkfun, or
Adafruit. If they do not stock the component you need, try the larger component supplier companies such as
Farnell or RS components.

 The same approach can be used to find out the technical specifications for other devices such as
the connectors for the SD cards. The voltage level convertor chips for the Arduino connectors and other
hardware devices that are connected to the I2C bus for power management, Ethernet, audio, and video
can also be searched for. Gather the data sheets for those and other I2C devices to interact with the correct
registers when you call the I2C read and write functions. These data sheets are the only place to find this
information. This is why it is important to become familiar with the circuit schematics.

 Type 5 - Version 0.5.0
 The Type 5 developer reference board has evolved from the earlier models but now that it is shipping, the
version 0.5.0 product is currently the definitive Type 5 board. Table 3-3 summarizes the release history of the
Type 5 developer reference board for ARTIK 5 modules. Table 3-4 summarizes the various connectors on the
developer board and their purpose.

 Table 3-3. Type 5 Developer Reference Board Revisions

 Board revision Release date Description

 Alpha 0.2.0 - 0.2.2 Mid 2015 This board is now obsolete. The GPIO circuitry uses an active
level that is the inverse of later boards.

 Early Beta 0.3.0 - 0.3.3 Late 2015 To help you identify the board, all antenna connectors run along
the top edge and left side. This system shipped with Fedora OS
version 20.

 Commercial Beta 0.5.0 Feb 2016 This hardware has a fully functional feature set although there
may still be some software drivers added later. The Wi-Fi
antenna connector moves to the bottom edge. This system ships
with Fedora OS version 22.

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

30

 A photograph of the Type 5 Commercial Beta developer reference board for the ARTIK 5 is shown in
Figure 3-3 .

 Figure 3-3. Commercial Beta developer reference board Type 5

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

31

 Inspect the screen-printed component labels on your developer board to locate the various connectors.
Some of the developer board connectors are not labeled with their J number on the screen-printed artwork.
Study the circuit schematics for the developer reference boards to figure this out. The schematics also carry
useful identifying part numbers for the connectors. Purchase matching components for use in your own
projects. Table 3-5 summarizes the various connectors on a Type 5 developer reference board listed with
their identifying label.

 Table 3-4. Developer Reference Board Type 5 Connectors

 Connector Description

 Arduino pins It offers a full complement of Arduino-compatible pins positioned to
accommodate Arduino shields.

 GPIO pins The Arduino-compatible pins can be driven directly as General Purpose
Input/Outputs (GPIO) connections. Chapter 17 discusses GPIO interfacing
in detail.

 I2S, I2C, and other I/O pins Chapter 14 discusses the developer reference board header I/O pinouts.

 Debug USB This is a standard USB port with a built-in serial adapter for your
development workstation to connect to it via a serial terminal application.

 USB A USB interface for connection to auxiliary devices.

 Ethernet The RJ45 Ethernet connector provides for wired networking connections.

 5V power port Connect your power supply here.

 3.5mm audio jack socket This is a standard audio output. Audio capabilities of the ARTIK modules
are discussed in Chapter 22 where the ALSA tools are also described.

 Analog audio inputs The ARTIK 5 supports 2-channel analog audio input. This is covered in
Chapter 18 .

 Display (J17) The Type 5 developer reference board has a Molex ribbon connector socket
to attach a video display. Chapter 23 provides some supporting material on
video related topics.

 Camera (6B2) The Type 5 developer reference board has a Molex ribbon connector socket
to attach a model 6B2 video camera for video input.

 JTAG The JTAG connector on the ARTIK 5 and 10 is specially designed for
debugging ARM processors.

 Jumpers The main source for details about the jumpers is the developer reference
board schematic diagrams that Samsung releases to the developers.

 Antenna connections Chapter 15 describes the antenna connectors on the ARTIK modules and
the developer reference boards.

 SD card holder This is used for loading software into your ARTIK or installing operating
system upgrades.

http://dx.doi.org/10.1007/978-1-4842-2322-2_17
http://dx.doi.org/10.1007/978-1-4842-2322-2_14
http://dx.doi.org/10.1007/978-1-4842-2322-2_22
http://dx.doi.org/10.1007/978-1-4842-2322-2_18
http://dx.doi.org/10.1007/978-1-4842-2322-2_23
http://dx.doi.org/10.1007/978-1-4842-2322-2_15

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

32

 Table 3-5. Type 5 Connectors Listed by Board Label

 Label Description

 BAT1 Coin cell battery backup (MS621F battery available from Digi-Key)

 CON3 Auxiliary battery supply connector (type 12505WS-02A00)

 CON4 USB serial adapter for connection to the development workstation (Type HI05-AG0250)

 CON5 USB accessories connector

 J3 Panasonic AXT connector to the ARTIK 5 module

 J4 Panasonic AXT connector to the ARTIK 5 module

 J5 3.5mm Stereo audio output jack socket

 J7 Panasonic AXT connector to the ARTIK 5 module

 J8 Labeled SD CARD on the board artwork. Receptacle for installing micro SD cards
(Type DM3AT-SF-PEJ).

 J9 5-volt power port

 J10 Molex ribbon connector for attaching a 6B2 video camera

 J12 JTAG hardware debugging connector

 J13 Ethernet RJ45 connector

 J15 SMA-F antenna connector for LPWA wireless communications

 J16 SMA-F antenna connector for Z-Wave wireless communications

 J17 Molex ribbon connector for EH400WV‐25A video display and touch panel connection

 J21 SMA-F antenna connector for wireless communications. Linked to J22, which carries a
coaxial connection from the ARTIK 5 module.

 J22 Miniature coaxial connector to the ARTIK 5 module

 J23 SMA-F antenna connector for wireless communications. Linked to J32, which carries a
coaxial connection from the ARTIK 5 module.

 J24 Analog input pins

 J25 Power supply, ground, and reset lines

 J26 Arduino pins (A)

 J27 Arduino pins (B)

 J28 SMA-F antenna connector for ZigBee wireless communications. Linked to J29, which carries a
coaxial connection from the ARTIK 5 module. There is a J6 label adjacent to this socket on the
Commercial Beta developer reference board.

 J29 Miniature coaxial connector to the ARTIK 5 module

 J32 Miniature coaxial connector to the ARTIK 5 module

 J510 ADC interface

 J511 SPI, UART, I2C, and I2S interfaces

 J512 GPM and interrupt lines

 J513 PWM and clock output

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

33

 Table 3-6 summarizes the jumper pins on the Type 5 developer reference board. These jumpers are
factory configured to the correct settings, so unless you are doing very advanced development they do not
need to be altered.

 Type 10 - Version 0.5.0
 The Type 10 developer reference board has evolved from the earlier models on a parallel path with the Type
5 board. There are a few subtle differences: some components have moved to different locations when you
compare the two side by side. Aside from the need for functional differences due to the more advanced feature
set of an ARTIK 10, the major connectors, switches, and support circuits are much the same. Now that the
Commercial Beta ARTIK is shipping from Digi-Key, the version 0.5.0 product is currently the definitive Type
10 board. Table 3-7 summarizes the release history of the Type 10 developer reference board for ARTIK 10
modules.

 Table 3-6. Type 5 Developer Reference Board Configuration Jumpers

 Label Description

 J6 ZigBee DN configuration header (ZIGBEE DN TOOL). The board labeling is very ambiguous
regarding this and the J28 antenna connector.

 J11 Z-Wave configuration

 J14 ZigBee 2.8 volt power supply isolator

 J20 Controls the selection of power supply from MAIN_BAT vs. battery backup from coin cell

 J28 ZigBee DN tool

 J30 Connect a switch across the two pins on this jumper to control the 5-volt supply to pin J25-8
(VIN). This connector is one of the hardware I/O headers.

 J31 ARTIK 5 power isolation of J3 power input pins from MAIN_BAT power rail. Functional
equivalent to J17 on a Type 10 board.

 J33 Controls the selection of power supply from MAIN_BAT vs. CON3 battery backup from coin cell

 J508 Bus type setting configuration (a.k.a. J8 in the table on page 11 of the schematics)

 J509 Bus type setting configuration (a.k.a. J9 in the table on page 11 of the schematics)

 Table 3-7. Type 10 Developer Reference Board Revisions

 Board revision Release date Description

 Early Beta 0.3.0 Mid 2015 Development prototype. This board is now obsolete.

 Beta 0.3.1 September 2015 Compatible with Beta ARTIK 10. This board is now obsolete.

 Commercial Beta 0.5.0 June 2016 This hardware has a fully functional feature set although
there may still be some software drivers added later. This
system ships with Fedora OS version 22

 Pre-launch Beta 0.5 December 2015 Pre-launch ARTIK 10 modules. Engineering design is
completed.

 Commercial Beta 0.5 June 2016 The Commercial Beta units when the ARTIK 10 first went on
sale to the public.

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

34

 Figure 3-4 shows the Type 10 Commercial Beta developer reference board for the ARTIK 10.

 ■ Note The currently shipping Commercial Beta boards are dated 2016-02-12 but are otherwise identical to
the one in the photograph.

 Table 3-8 summarizes the various connectors on the developer board and their purpose. There are
some slight differences from the Type 5. On this board, there is an additional camera interface and neither
camera is the same kind as the one on the Type 5 developer boards.

 Figure 3-4. Commercial Beta developer reference board Type 10

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

35

 Inspect the screen-printed component labels on your developer board to locate the various connectors.
Some of the developer board connectors are not labeled with their J number on the screen-printed artwork.
Study the circuit schematics for the developer reference boards to figure this out. The schematics also carry
useful identifying part numbers for the connectors. Purchase matching components for use in your own
projects. Table 3-9 summarizes the various connectors on a Type 10 developer reference board listed with
their identifying label.

 Table 3-8. Developer Reference Board Type 10 Connectors

 Connector Description

 Arduino pins It offers a full complement of Arduino-compatible pins positioned to
accommodate Arduino shields.

 GPIO pins The Arduino-compatible pins can be driven directly as General Purpose
Input/Outputs (GPIO) connections. Chapter 17 discusses GPIO interfacing
in detail.

 I2S, I2C, and other I/O pins Chapter 14 discusses the developer reference board header I/O pinouts.

 Debug USB This is a standard USB port with a built-in serial adapter for your
development workstation to connect to it via a serial terminal application.

 USB USB interface for connection to auxiliary devices.

 Ethernet The RJ45 Ethernet connector provides for wired networking connections.

 5V power port Connect your power supply here.

 3.5mm audio jack socket Standard audio output. Audio capabilities of the ARTIK modules are
discussed in Chapter 22 .

 Analog audio inputs The ARTIK 10 supports multi-channel analog audio input. This is covered
in Chapter 18 .

 Display (J17) The Type 10 developer reference board has a Molex ribbon connector
socket to attach a video display. Chapter 23 provides the supporting
material on video topics.

 Camera (5EA) The Type 10 developer reference board has a Molex ribbon connector
socket to attach a model 5EA video camera for video input.

 Camera (3L2) The multi-pin J35 connector is for attaching a model 3L2 camera.

 JTAG The JTAG connector on the ARTIK 10 is specially designed for debugging
ARM processors. This connector is similar to the JTAG connector on the
Type 5 developer reference board.

 Jumpers The main source for details about the jumpers is the developer reference
board schematic diagrams that Samsung releases to the developers.

 Antenna connections Chapter 15 describes the antenna connectors on the ARTIK modules and
the developer reference boards.

 SD card holder This is used for loading software into your ARTIK or installing operating
system upgrades.

http://dx.doi.org/10.1007/978-1-4842-2322-2_17
http://dx.doi.org/10.1007/978-1-4842-2322-2_14
http://dx.doi.org/10.1007/978-1-4842-2322-2_22
http://dx.doi.org/10.1007/978-1-4842-2322-2_18
http://dx.doi.org/10.1007/978-1-4842-2322-2_23
http://dx.doi.org/10.1007/978-1-4842-2322-2_15

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

36

 Table 3-9. Connectors Listed by Board Label

 Label Description

 BAT1 Coin cell battery backup

 CON2 USB accessories connector

 CON3 Auxiliary battery supply connector

 CON4 USB serial adapter for connection to the development workstation (Type HI05-AG0250)

 J1 Panasonic AXT connector to the ARTIK 10 module

 J2 Panasonic AXT connector to the ARTIK 10 module

 J3 Panasonic AXT connector to the ARTIK 10 module

 J4 Panasonic AXT connector to the ARTIK 10 module

 J5 3.5mm stereo audio output jack socket

 J8 Socket labeled as SD CARD for installing SD cards (type DM3AT-SF-PEJ)

 J9 5 -volt power port

 J10 Molex ribbon connector for attaching a 5EA video camera. Note this connector is unlabeled
on the Commercial Beta boards.

 J12 JTAG hardware debugging connector

 J13 Ethernet RJ45 connector

 J15 SMA-F antenna connector for LPWA wireless communications

 J16 SMA-F antenna connector for Z-Wave wireless communications

 J18 HDMI video output

 J21 SMA-F antenna connector for wireless communications. Linked to J22, which carries a
coaxial connection from the ARTIK 10 module.

 J22 Miniature coaxial connector to the ARTIK 10 module

 J24 Analog input pins

 J25 Power supply, ground, and reset lines

 J26 Arduino pins (A)

 J27 Arduino pins (B)

 J28 SMA-F antenna connector for ZigBee wireless communications. Linked to J29, which carries
a coaxial connection from the ARTIK 10 module.

 J29 Miniature coaxial connector to the ARTIK 10 module

 J33 Kyocera multi-pin connector for LCD video display output

 J34 USB 3.0 accessories connector

 J35 Multi-pin connector for attaching a 3L2 video camera

 J510 ADC interface

 J511 SPI, UART, I2C, and I2S interfaces

 J512 GPM and interrupt lines

 J513 PWM and clock output

(continued)

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

37

 Table 3-10 summarizes the jumper pins on the Type 10 developer reference board. These jumpers are
factory configured to the correct settings, so unless you are doing very advanced development they do not
need to be altered.

 Test Points
 The developer reference boards have several test points to probe what is going on in the ARTIK and its
surrounding support hardware. Examine the circuit schematics for your developer reference boards to locate
these test points and then find them on your hardware. They are very small circular pads about 0.5mm in
diameter. Tables 3-11 and 3-12 list the test points for each type of developer reference board.

Table 3-9. (continued)

 Label Description

 J514 SMA-F antenna connector for wireless communications. Linked to J515, which carries a
coaxial connection from the ARTIK 10 module.

 J515 Miniature coaxial connector to the ARTIK 10 module

 Table 3-10. Type 10 Developer Reference Board Configuration Jumpers

 Label Description

 J6 ZigBee DN tool

 J11 Z-Wave configuration

 J14 ZigBee 2.8 volt power supply isolator

 J17 ARTIK 10 power isolation of J1 power input pins from MAIN_BAT power rail. Functional
equivalent to J31 on a Type 5 board.

 J19 Isolates the DC 5-volt power supply input from the VDD_5VB rail

 J20 Controls the selection of power supply from MAIN_BAT vs. battery backup from coin cell

 J30 Connects a switch across the two pins on this jumper to control the 5-volt supply to pin J25-8
(VIN). This connector is one of the hardware I/O headers.

 J36 Controls the selection of power supply from MAIN_BAT vs. CON3 battery backup from coin cell

 Table 3-11. Developer Reference Board Test Points (Type 5)

 TP Description

 TP1 AK4953 audio codec. Speaker output - positive (SPP).

 TP2 AK4953 audio codec. Speaker output - negative (SPN).

 TP5 Port B pin 4 (SPI) on the ATA8520 chip, which manages the SIGFOX RF transceiver. This
indicates the power on status of the chip.

 TP11 Z-Wave memory write protect status

 TP13 Fuel gauge quick start pin

 TP14 Indicates the buffer enable state of the J510 I2C signals controlled by SW2-2

 TP15 Power key value

 TP16 Current power status

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

38

 Tables 3-13 and 3-14 summarize the test point connections available on the AXT connectors
underneath your ARTIK module. The connections for the ARTIK 5 and 10 are each shown in their own
tables. Refer to the data sheets for more information about voltage levels and other detailed specifications
regarding these pins.

 Table 3-12. Developer Reference Board Test Points (Type 10)

 TP Description

 TP1 AK4953 audio codec. Speaker output - positive (SPP).

 TP2 AK4953 audio codec. Speaker output - negative (SPN).

 TP3 AX88760 - USB downstream port 1

 TP4 AX88760 - USB downstream port 1

 TP5 Port C pin 2 on the ATA8520 chip, which manages the SIGFOX RF transceiver

 TP11 Z-Wave memory write protect status

 TP13 Fuel gauge quick start pin

 TP15 Camera type when 5EA camera is attached

 TP17 Camera flash when 5EA camera is attached

 TP18 Indicates the buffer enable state of the J510 I2C signals controlled by SW2-2

 TP19 Power key state

 TP20 Current power status

 TP21 Switch 2 boot mode setting. Indicates whether SD or eMMC boot is selected.

 TP22 Battery connection status

 Table 3-13. ARTIK 5 Test Point AXT Pinouts

 Connector Name Function

 J4-53 Xi2c3_SCL Bus I2C-3 SCL

 J4-55 Xi2c3_SDA Bus I2C-3 SDA

 J5-4 GPM3_1 Not used

 J5-6 GPM3_0 Not used

 J5-22 32768HZ 32 kHz clock

 J5-32 XspiCLK1 Bus SPI-1 CLK

 J5-34 XspiCSn1 Bus SPI-1 CSn

 J5-36 XspiMISO1 Bus SPI-1 MISO

 J5-38 XspiMOSI1 Bus SPI-1 MOSI

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

39

 ■ Note The test points for the ARTIK 10 are not listed in the current version of the data sheet. This table of
information describes the AXT pins on the ARTIK 10 that correspond to similar test points listed for the ARTIK 5.

 Interesting Chip Data Sheets
 Consult the developer reference board schematics and the data sheets for your ARTIK module to identify
the large-scale integrated components. If you plan to build a product based on the reference board, consider
using the same chips as Samsung built into the developer reference boards because the ARTIK is already
configured to interact with them. Some of these chips are controlled via GPIO/I2S/SPI/I2C and other
means. Gather details of how they are programmed, their addressing characteristics, and details of their
internal registers. This information is all readily available online in their data sheets. Just use the component
identifying part number to search for a PDF file to download and read. Some other interesting devices
emerged during the preparation of this book and provided helpful insights even though they are not used in
the ARTIK product. They may be useful for your own projects; see Table 3-15 .

 Table 3-14. ARTIK 10 Test Point AXT Pinouts

 Connector Name Function

 J1-71 Xi2c0_SCL Bus I2C-0 SCL

 J1-73 Xi2c0_SDA Bus I2C-0 SDA

 J4-23 32768HZ 32 kHz clock

 J1-59 XspiCLK1 Bus SPI-1 CLK

 J1-61 XspiCSn1 Bus SPI-1 CSn

 J1-63 XspiMISO1 Bus SPI-1 MISO

 J1-65 XspiMOSI1 Bus SPI-1 MOSI

 Table 3-15. Important Chips and Device Identifying Part Numbers

 Chip Function

 AD5206 Digital potentiometer (controlled by SPI)

 AK4953A Stereo codec chip

 AT93C56B Three-wire serial eeprom

 ATA8520 SigFox transmitter

 AX88760 USB and Ethernet controller used in ARTIK 10

 AX88796C Ethernet controller used in ARTIK 5

 BCM4354 Broadcom Bluetooth and Wi-Fi

 BQ2429x Battery charger

 Cortex-A15 ARM CPU used in the ARTIK 10

 Cortex-A7 ARM CPU used in the ARTIK 5 and 10

 CW2015 Fuel gauge

(continued)

CHAPTER 3 ■ DEVELOPER REFERENCE BOARDS

40

 Summary
 Now that you have looked at the basic hardware layout, the next few chapters will examine the software
architecture inside the ARTIK. Hardware topics must be visited again later to examine all the connectors that
the ARTIK provides but this can wait until the operating system software has been explored.

Table 3-15. (continued)

 Chip Function

 EM3587 ZigBee/80 2.15.4

 Exynos 3250 ARTIK 5 module core

 Exynos 5433 ARTIK 10 module core

 FDV301N Digital FET used for enhancing configuration switches

 FT232RL Future Technologies serial interface UART

 FXMA108 Voltage level shifter

 ICMEF112P900MFR Common mode ESD filter

 KLMAG2GEAC-B002 16GB eMMC flash memory

 M25PE10 Serial flash memory

 MALI ARM MALI graphics processor unit (GPU)

 MMA8452Q Accelerometer

 MOE-C110T42-K1 Solid-state microphone

 NLSX4014 Configurable dual-supply level translator

 PCA9306 I2C bus level convertor/enable switch

 S2ABB01 Buck convertor chip for power regulation

 S2MPS11 ARTIK 10 Power Management IC driver (PMIC)

 S2MPS14 ARTIK 5 Power Management IC driver (PMIC)

 S3FV5RP Secure element crypto co-processor

 SC300 Secure CPU

 SCP1000 Barometric pressure sensor (controlled by SPI)

 SD3503 Z-Wave serial interface

 SE2432L ZigBee front end

 TPD12S016 HDMI companion chip

 TPS65632 Display driver

 TXS0108E Voltage convertor for buffering Arduino pins

 XC6220 LDO voltage regulator

 XR20M1172 Two channel I2C/SPI UART

 74 series The Texas Instruments 74 series is a world standard in digital logic components.
You can choose a variety of voltages and types to suit all kind of designs. They
are the glue that integrates complex hardware systems together and makes
incompatible devices compatible.

41© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_4

 CHAPTER 4

 About the Operating Systems

 The ARTIK 5 and 10 modules run a version of the Linux kernel with the Fedora operating system loaded on
top. To make the best use of this, you should become familiar with UNIX commands, scripts, and how the
file system works. It helps to know about regular expressions and how to pipe the output of one command
into another. There are many other books available to teach you about the UNIX command line shells.

 Comparing the ARTIK Operating Systems
 The ARTIK 5 and 10 modules both use a Yocto configured version of the Fedora Linux operating system.
This is a General Purpose Operating System (GPOS) and it works somewhat differently than the Real Time
Operating Systems (RTOS) normally used in embedded applications. The Yocto process pares down the
Fedora operating system image to remove unnecessary components so it can be embedded into a small
device. The Fedora operating system used as a basis for this process is a full Linux implementation and runs
on the Exynos variant of the Linux kernel.

 About Fedora OS
 The latest Fedora documentation covers the currently-in-progress version upgrade that the Fedora
community is working on. The Fedora web site also has documentation about many previous versions of
Fedora, including the one used to create the ARTIK OS; see https://docs.fedoraproject.org/en-US/
index.html and https://fedoraproject.org/wiki/Overview .

 The documentation includes advice on installation, booting, networking, and system administrator
responsibilities. This link takes you directly to the Fedora 22 system administrator’s guide: https://docs.
fedoraproject.org/en-US/Fedora/22/html/System_Administrators_Guide/index.html .

 Table 4-1 lists the version of Fedora shipping with different vintages of the ARTIK modules as of Spring
2016. Fedora is upgraded from time to time as new releases are developed. The production revision of the
ARTIK modules may be running a later version.

 Table 4-1. Fedora Operating System Versions

 Fedora version ARTIK revision

 20 Alpha prototype

 22 Beta prototype and launch version of the ARTIK 5

 23 Current live version of Fedora. Not yet released for ARTIK.

 24 Planned to be ready for integration mid 2016

 25 Planned to be ready for integration late 2016

https://docs.fedoraproject.org/en-US/index.html
https://docs.fedoraproject.org/en-US/index.html
https://fedoraproject.org/wiki/Overview
https://docs.fedoraproject.org/en-US/Fedora/22/html/System_Administrators_Guide/index.html
https://docs.fedoraproject.org/en-US/Fedora/22/html/System_Administrators_Guide/index.html

CHAPTER 4 ■ ABOUT THE OPERATING SYSTEMS

42

 Fedora focuses on rapid release life cycles with new features added often. Releases arrive approximately
every six months. It is used as the basis of the Red Hat Linux distribution that powers many corporate systems.
CentOS is a community-supported derivative used in many virtual private servers that power the World Wide
Web. Because of this relationship, the Fedora base operating system is well supported by a large community
and there are many resources to support your development activity. The version history is well documented
on the Fedora Wikipedia page at https://en.wikipedia.org/wiki/Fedora_(operating_system) .

 Fedora is greatly appreciated by developers because of its stability. Without getting into arguments
about the relative merits of one Linux distribution over another, a developer needs this stability because
trying to develop code on a system that is not robust and stable is very difficult. The Fedora source code
receives a lot of support from the developer community, which ensures that new features, bug fixes, and
security improvements feed through all the time. Fedora is updated frequently with new features and
patches to existing code.

 ■ Note Interestingly, Linus Torvalds chose Fedora as the operating system of choice for his own
workstations. This is an encouraging endorsement of its reliability as a development foundation.

 But What Is Yocto?
 Samsung uses Yocto to configure and build the embedded version of Fedora, which is installed as the default
operating system on the ARTIK 5 and 10 modules.

 Yocto is a free, community-driven, open-source embedded Linux development environment complete
with tools, metadata, and documentation. The tools are easy to start using even if you have never built an
embedded OS before. Yocto includes emulation environments, debuggers, an Application Toolkit Generator,
and other useful utilities. The Yocto project tools carry your design changes forward from prototype to
production without losing optimizations and design choices made during the early phases of the project.

 The Yocto Project provides resources based on the OpenEmbedded project. Each platform is based
on a Board Support Package (BSP) layer designed around a standard format. Each hardware platform then
creates a compatible BSP, which is then bound into the chosen operating system source code as Yocto builds
an embeddable image. Yocto also provides an Eclipse IDE plug-in and a graphical user interface to the Hob
build system.

 Given the complexity and range of technologies, it is not surprising that confusion can arise when
solutions are chosen for projects such as the Samsung ARTIK modules. It is easy to confuse Yocto with Linux
in general and assume that the ARTIK is running a Yocto operating system, which is not the case.

 The Yocto project is not an operating system itself but a template for taking an existing Linux
distribution and paring it down to be embedded onto a single board computer. The ARTIK modules use the
Fedora Linux distribution as a basis for the Yocto embedding process. There are alternatives to Yocto but
they must all accomplish the same goals of building a coherent boot loader, kernel, and application building
toolkits, which are cross-compiled, to run on the target hardware.

 Here is the home page for the Yocto project: www.yoctoproject.org/about . It is a good place to start
searching for resources. The Wikipedia page also provides some useful background and links to other resources:

 https://en.wikipedia.org/wiki/Yocto_Project .
 Yocto is useful for creating embedded versions of the source operating system for the ARM architectures

(among others). The Yocto build system is constructed on top of the OpenEmbedded architecture:
 https://en.wikipedia.org/wiki/OpenEmbedded .

 Yocto also facilitates the building of cross-compiling toolchains, SDKs, and plug-in integration with the
Eclipse IDE. It does a lot more than just cut down the Fedora OS to fit it into a small space.

https://en.wikipedia.org/wiki/Fedora_(operating_system)
http://www.yoctoproject.org/about
https://en.wikipedia.org/wiki/Yocto_Project
https://en.wikipedia.org/wiki/OpenEmbedded

CHAPTER 4 ■ ABOUT THE OPERATING SYSTEMS

43

 Other Operating System Choices
 Although there are already several alternative operating systems that have been proven to run on the ARTIK
hardware, you are not limited just to using one of them. You really can implement anything you want to;
it just depends how much effort you want to expend. It is always good practice to check whether someone
has already invented the wheel you are about to make. If they have not, you have an opportunity to amaze
the world with your creativity, knowledge, skill, and all-around coolness. Bringing up a new operating
system on an unfamiliar platform is at the very least a big challenge and the risk of failure may deter many
developers from attempting this. For the few brave souls who dare to try, great kudos can be had. Take each
step very carefully and always have a means to back up and undo each step. Experiment first with restoring
the firmware on your ARTIK. Then you know that you have a good chance of recovery when things go wrong.
Table 4-2 summarizes some of the alternatives already deployed onto the ARTIK hardware.

 Tizen Secrets
 The Tizen operating system has been demonstrated running on the Samsung ARTIK hardware at various
consumer electronics conferences. This operating system is designed for creating interactive TV receivers
and could be incorporated into a TV or a set-top box. Some time before the ARTIK OS source code was
published, the Tizen project published their own source code and developers started to explore it and
experiment with it.

 Table 4-2. Alternative Operating Systems

 OS Description

 Snappy Ubuntu Core This is designed to prove that a transactional-based operating system can be
deployed on the ARTIK. The Canonical group that made this possible would
have worked very closely with the Samsung ARTIK engineering team to get this
working.

 Tizen Samsung use Tizen to drive a range of interactive TV set-top boxes. It is also
embedded in consumer TV receivers. One of the long-term goals of Samsung
for the ARTIK is to be able to use it in all manner of consumer products to
save having to re-engineer a controller from scratch when every new product
starts its development lifecycle. This proves that ARTIK is viable for use in
TV products. There is some evidence of Tizen startup support in the U-Boot
environment variables of a Commercial Beta ARTIK 5 module.

 SE Linux This is a special, secure version of Linux. There is some evidence of this in
the Commercial Beta systems and more will come to light as the Samsung
engineering team delivers the Trusted Execution Environment (TEE) and the
Embedded Secure Element (ESE) support via the Crypto hardware.

 Fedora 20 This version of Fedora shipped on early Alpha and Beta prototype ARTIK 5 and
10 modules.

 Fedora 22 This is the current version of Fedora being shipped on the Commercial Beta
hardware available from Digi-Key.

 Android There is evidence in the U-Boot environment variables indicating that an
ARTIK might be booted as an Android-compatible device. There is no official
documentation about how it can be used at the moment but it is interesting to
discover it.

CHAPTER 4 ■ ABOUT THE OPERATING SYSTEMS

44

 Tizen works on the same hardware and is an open source project. Some of that source code is
informative and may have some useful comments that provide insights into how the ARTIK OS source code
works, but it is a distinctly different system.

 Some developer questions can be answered by inspecting the virtual file systems created by the kernel.
Other deductions can be made by seeing what the Tizen OS project is doing on the same ARTIK hardware.
The Tizen source files provide useful clues about power management and system configuration. Now that
Samsung has released the source code for the ARTIK OS, these alternative operating system resources can
provide supplementary help.

 The device tree source code in the Tizen project is particularly interesting to read. Comparing it with the
source code of the Exynos version of the Linux kernel yields insights into the boot process.

 Getting a developer account for the Samsung Tizen operating system project is helpful. There are
unique resources in the Tizen developer documentation that describe ARTIK internals. This knowledge is
a useful cross-reference to help you understand the ARTIK OS source code better. Go to the Tizen project
home page to access the Tizen resources or register an account.

 www.tizen.org
 https://en.wikipedia.org/wiki/Device_file
 https://wiki.tizen.org/wiki/ARTIK_5_for_Tizen_3.0
 https://wiki.tizen.org/wiki/ARTIK_10_for_Tizen_3.0

 Summary
 Early on in the ARTIK development process, it was clear that developers were keen to embrace the ARTIK
and even replace its operating system with one of their own choice. That has been proven to be quite
possible, with several alternative operating systems already working. This should present opportunities to
build any kind of system you want to because there is no barrier to implementing exactly the OS you want. It
might not be easy. In fact, it might be very challenging, but it is possible.

http://www.tizen.org/
https://en.wikipedia.org/wiki/Device_file
https://wiki.tizen.org/wiki/ARTIK_5_for_Tizen_3.0
https://wiki.tizen.org/wiki/ARTIK_10_for_Tizen_3.0

45© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_5

 CHAPTER 5

 Operating System Internals

 As an IoT and ARTIK developer, you need to be capable in many areas. Hardware design is necessary to put
together the electronics that your ARTIK will control and you need to be skilled in that. Your hardware will
not do anything unless your software can control it properly. To do so, you must understand the internals
of the operating system (OS). Knowing about the OS capabilities will also save you wasting time reinventing
something the ARTIK already does for you. Understanding the hardware and software equips you to balance
the trade-off between whether to code something or add a hardware chip to accomplish the same goal.

 Under the Hood
 The OS keeps everything running efficiently and provides services that your applications can exploit to get
their work done. The OS protects you from inadvertently damaging something important and also protects
your system from intrusion by unauthorized parties. Although things are kept under tight control, your
application can gain access when needed if it has the right credentials and uses the correct API calls.

 Source code to use for modifying the operating system internals is publicly available for the Fedora
implementation that is used in the ARTIK 5 and 10 modules. Samsung also released source code to support
developers who want to rebuild the OS installation kit. To alter the way something works, download the
source code for it, modify it, and recompile just that component. Being able to look at the source can teach
you a lot about how the operating system works. Acquire some knowledge of the following internals to help
you understand the operating system and write better applications as a consequence:

• The kernel

• Input/output processes

• Memory and storage

• File systems

• Startup and shutdown behavior

• Code libraries

• UNIX command line

• The alternative API options available

 The operating system manages the hardware and maintains the information you store in files on the
local storage. As the computer starts up, the file system organizes everything for you and the scheduler starts
various processes running. Then the operating system manages your secure login so you can run application
programs.

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

46

 One of the most useful things that the kernel does for you is to create a series of virtual file systems that
make kernel internals available to your applications running in a publicly accessible user space. There are
several of these virtual file systems to learn about:

• /dev is a directory containing references to devices. These are higher-level
abstractions of the hardware mapped to individual drivers.

• /sys is a file system that has regular files that the kernel creates to reflect hardware
interfaces that it manages into user space where your application can access them.

• /proc contains a directory for each running process with internal structures reflected
as regular files.

• /run is a file system maintained while the system is running. It contains volatile
items that may change from one boot to another.

 The Component Parts of the ARTIK OS
 An operating system is composed of many parts and the OS in the ARTIK 5 and 10 comes from a variety
of open source projects. Samsung integrates them to create the system. Because it is open source, you can
potentially alter or replace any part of it. This is now practical because Samsung released the source code
for developers to download and use to modify the ARTIK-specific parts of the OS. Other components must
be obtained from their open source project web sites to complete the build process. You must very careful if
you are delving into this kind of operating system modification because if you break something, your ARTIK
might not boot and recovery may be problematic depending on what you just broke. If the boot loader is still
intact, reinstall the operating system from the standard, Samsung-provided, downloadable firmware. If you
damage the U-Boot code, recovery becomes very difficult without the kind of resources that Samsung has in
the factory. The main parts of the main component of the ARTIK OS are

• U-Boot loader

• Device tree

• Kernel

• Kernel configuration

• Fedora distribution

• Yocto build manager

• Yocto Board Support Packages (BCPs)

• Additional software

 U-Boot Loader
 The U-Boot startup code is described as the boot loader. This is equivalent to the BIOS in a PC or the EFI
firmware in the Apple Macintosh systems. It locates the bootable kernel within the OS, creates a file system,
and mounts the kernel and then starts it. You have an opportunity to modify the instructions that U-Boot
gives to the kernel if you are prepared to interrupt the normal start up and modify the U-Boot environment
variables. Here are some useful links for the U-Boot project web site and Wikipedia pages:

 www.denx.de/wiki/U-Boot
 https://en.wikipedia.org/wiki/Das_U-Boot

http://www.denx.de/wiki/U-Boot
https://en.wikipedia.org/wiki/Das_U-Boot

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

47

 ■ Note Do not alter anything in the U-Boot environment unless you are very clear about what you are
changing and why. Ensure that you can undo any changes that you make so the system can be restored to
normal operation if you break something.

 Device Tree
 The U-Boot start-up process passes a compiled binary device tree to the kernel so it can build its initial device
virtual file system that loads the drivers for the various hardware components in the ARTIK. The official
Linux kernel source repository has been updated recently with a device tree source file for the ARTIK 5; see
 https://github.com/torvalds/linux/blob/4a5219edcdae52bfb5eea0dfc2a7bd575961dad7/arch/arm/
boot/dts/exynos3250-artik5.dtsi .

 Kernel
 The kernel of the Linux operating system in your ARTIK is the piece of software developed by Linus Torvalds.
This kernel defines the Linux operating system. Everything else is built on top of it.

 The kernel is a core part of the operating system that creates an infrastructure for the device drivers to
live in. The initial device driver tree is constructed in the /dev virtual file system. Other devices are added to
this directory by loadable kernel modules. You might introduce drivers for your own proprietary hardware
by creating a loadable module of your own. Here are some useful links to kernel related resources:

 www.kernel.org/
 https://en.wikipedia.org/wiki/Linux_kernel
 https://github.com/torvalds/linux
 www.kroah.com/lkn/

 Fedora Distribution
 The Fedora software is maintained by the Red Hat Linux organization. Early ARTIK prototypes were running
a Fedora 20-based operating system but the Commercial Beta ARTIK modules are now on Fedora version 22.
There are later versions of that Linux distribution, and future OS upgrades from Samsung will track the
progress of the Fedora project. Fedora is released every few months and the oldest versions of the OS are
deprecated as the new ones are introduced. This does not mean your ARTIK will stop working. However,
when your OS is a dozen releases behind, getting updates for bug fixes and security exploits will become
increasingly more difficult.

 The Fedora source code is easy to access and there is a great deal of useful documentation about it if
you want to learn about system administration and configuring your system. Having the source code may
allow you to rebuild portions of the OS to update some of the tools but always be careful to have a back-out
plan to restore the original code in case your changes do not work.

 https://getfedora.org/
 https://en.wikipedia.org/wiki/Fedora_(operating_system)
 https://fedoraproject.org/wiki/Fedora_Project_Wiki

https://github.com/torvalds/linux/blob/4a5219edcdae52bfb5eea0dfc2a7bd575961dad7/arch/arm/boot/dts/exynos3250-artik5.dtsi
https://github.com/torvalds/linux/blob/4a5219edcdae52bfb5eea0dfc2a7bd575961dad7/arch/arm/boot/dts/exynos3250-artik5.dtsi
http://www.kernel.org/
https://en.wikipedia.org/wiki/Linux_kernel
https://github.com/torvalds/linux
http://www.kroah.com/lkn/
https://getfedora.org/
https://en.wikipedia.org/wiki/Fedora_(operating_system)
https://fedoraproject.org/wiki/Fedora_Project_Wiki

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

48

 Yocto Build Manager
 The Yocto project is designed to help migrate an operating system that would normally be used in a desktop
system into a form that works in an embedded scenario. Embedded operating systems run with less memory
and with all of the unnecessary code stripped away. The drivers map onto the hardware in the embedded
system by way of a Board Support Package. Yocto uses that BSP with a configuration file to build the Fedora
operating system from its source code and cross-compile the output to run on the ARM processors in the
ARTIK. Some forum postings have indicated dismay at using Yocto but it is not an operating system in its
own right. It is a configuration tool for deploying Fedora. You are not running Yocto in the ARTIK; you are
running Fedora combined with the code in the Yocto BSP. The ARTIK BSP source code is not yet available to
the developer community. You cannot build a complete replacement for the Fedora operating system with
Yocto for the time being. The documentation in the Samsung source code repositories suggests other ways to
build the OS binary image to create the SD Fuse package for installation.

 www.yoctoproject.org/
 https://en.wikipedia.org/wiki/Yocto_Project

 Additional Software
 Once you have a viable operating system, add useful tools to it such as language compilers, interpreters,
and SDK developer libraries. Apache web servers, Node.js, Python, GCC, dnf / yum , rpm , curl , and wget fall
under this category although some of these tools are already bound into the Fedora distribution. Add other
tools if necessary, but be aware that you are working within a limited memory space. A deployable image
that does not contain development tools helps to defeat the nefarious hacker community in their attempts to
penetrate your system.

 Looking Inside the Kernel
 The kernel is the lowest level and most foundational part of an operating system. It maps the hardware to
all the higher layers of the operating system. If you are bring up a new computer system from scratch, this
is where your engineers will spend a lot of time writing software that interacts directly with your hardware.
The hardware in each kind of computer platform can be radically different but the kernel presents a uniform
API to the rest of the operating system so it can be coded in a more generic way. Read about the kernel on
Wikipedia at https://en.wikipedia.org/wiki/Linux_kernel .

 The kernel manages the devices, maps the hardware to the virtual file system, keeps track of
processes and memory allocation, and manages file storage. The code that runs inside the kernel space
is highly privileged and the operating system needs to provide sufficient access to it so that users can run
applications that exploit it but without giving them the “keys to the kingdom.” Security and permissions
control are critical here because if a user can gain unauthorized access to the kernel, they can completely
subvert the machine. The continual vigilance of the system administrator and the kernel’s own security
countermeasures are the primary protections against unwanted intrusion.

 Sitting above the kernel is the user space. The security privileges here depend on the owning account
that manages the files and running processes. Files can be owned by an account, which can prohibit them
from being seen by other accounts. You can see your own files but you cannot see the ones belonging to
someone else. Likewise, the kernel protects your memory space from being accessed by other processes but
allows your process to access all the assets it owns.

 The kernel exposes the privileged parts of its inner workings to the user applications via the virtual file
systems it constructs. These access points behave like an application programming interface (API), which
your applications can access either as regular files or via libraries of function calls. There are four principal
file system trees to learn about. Historically, a few items have migrated from one file system to another and

http://www.yoctoproject.org/
https://en.wikipedia.org/wiki/Yocto_Project
https://en.wikipedia.org/wiki/Linux_kernel

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

49

although the organization is stable and logical, there are a few places where they overlap. Some device
information and system API interfaces are located in multiple places within the /proc file system and the /
dev and /sys file systems.

• /dev : Devices owned by the kernel and managed with drivers

• /proc : Process-related statistics and controls

• /run : Runtime temporary storage for applications

• /sys : System controls and interfaces to hardware

 Kernel Versions
 The Commercial Beta version of the ARTIK 5 ships with a Yocto-configured Fedora 22 operating system
running on top of the version 3.10 Linux kernel. The kernel versions are well documented on Wikipedia at
 https://en.wikipedia.org/wiki/Linux_kernel .

 Check your kernel version with these commands after you log in to your ARTIK:

 uname -a
 cat /proc/version

 It is very rare for shipping products to be using the very latest version of the kernels and operating
system code. This is because of the extended lead-time required for the engineers to port the operating
system source to the platform hardware and release it through to production and then on to end users.

 Read the available resources and do further research on some topics to find out if there are important
changes. The release notes for each major revision of the Linux kernel are available and provide insights into
its inner workings. Decide whether the features you need for your application development are available or
not. Each documented feature has links to useful supporting documentation:

 http://kernelnewbies.org/LinuxVersions

 This gradual forward progress of kernel development incurs risks when migrating your kernel to a later
version in case something breaks. The cautious approach would leave the kernel well alone and not do any
upgrades. If you have a truly compelling reason to upgrade the kernel, version 3.19 may have moderate risks
associated with it. Run a 3.19 kernel and build Fedora 22 on top of it as a test install on a spare computer
before risking the installation on your ARTIK.

 Version 4 of the kernel is not a major new evolution but merely a reset of the version-numbering
scheme. The release notes describe this as an arbitrary version change. Going to a version 4.5 kernel from a
3.10 kernel might work without any problems but there are increased risks because of new or modified API
calls that the Fedora OS relies on. The more versions you skip, the greater your risk of breakage due to the
compounded changes.

 If you jump forward a long way, you might consider upgrading the Fedora OS at the same time. The
Samsung engineering team needs to release the Yocto BSPs in addition to the OS source code. Then the
developers can create an updated Fedora installer running on top of a new kernel.

 Interacting with the Kernel
 The security of the kernel needs to be maintained at all times. If it is too secure, your applications cannot talk
to it and your options for building useful applications become very limited.

 The kernel exposes those of its own internal structures and values that are safe for users to access via
the /sys and /proc virtual file systems. The /dev virtual file system is also managed by the kernel and some
interaction can take place through it.

https://en.wikipedia.org/wiki/Linux_kernel
http://kernelnewbies.org/LinuxVersions

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

50

 The kernel creates these virtual file systems and constructs a tree of directories in them, which
represent various components within the kernel as if they were objects. The properties of those objects are
then implemented as regular files with protection managed using the usual file system permissions.

 Reading from one of those files passes information out of the kernel and allows your application to see
it. To change the value for an internal property within the kernel or one of its modules, you would write the
new value to one of these regular files.

 The kernel only publishes interfaces for things that it wants to allow you to see or change and the file
permissions control whether you are allowed to do anything at all. It is a rather neat solution to giving user
space applications access to kernel internals.

 If you are writing extensions to the kernel or making your own installable kernel modules, use this
mechanism to export parameters to allow other applications to communicate with your kernel extension.

 Refer to Chapter 10 for a discussion about the /proc virtual file system (procfs). The /sys virtual file
system (sysfs) is discussed in Chapter 8 .

 Using the Kernel debugfs Filesystem
 The computing industry is getting crowded with technologies to the extent that names and acronyms can
mean several things. The term debugfs describes a virtual file system for examining the internals of the
kernel if it has previously been compiled to include the necessary support. Confusingly, there is also an
unrelated debugfs command line tool, which you can use to debug file systems in general and even use to
recover deleted files.

 The debugfs virtual file system is already mounted for you at /sys/kernel/debug . This mount point
is only accessible to the root user account. Read the following advice on accessing your kernel and access
some links to useful resources for debugging:

 https://en.wikipedia.org/wiki/Debugfs
 www.kernel.org/doc/Documentation/filesystems/debugfs.txt

 Listing 5-1 shows you the different kinds of debugging reports that are created by the kernel as it
manages the devices and drivers for the OS.

 Listing 5-1. Kernel Debug Reports

 ls /sys/kernel/debug

 12480000.usb dma_buf iommu mmc1 regmap suspend_stats
 asoc extfrag ion mmc2 regulator suspend_time
 bdi gpio iovmm pd_gpio s2mps14 sync
 bluetooth hid mali pinctrl s3c-fb sysmmu
 clk ieee80211 memblock pm_qos sched_features tracing
 dhd iio mmc0 pwm shrinker wakeup_sources

 Standard Input/Output Devices
 Every process has three important input and output streams associated with it. Sometimes processes
share them; at other times they each maintain their own private I/O channels. It depends how the process
was created. When you log in to your user account, your command line shell has the three file streams
summarized in Table 5-1 opened automatically for you.

http://dx.doi.org/10.1007/978-1-4842-2322-2_10
http://dx.doi.org/10.1007/978-1-4842-2322-2_8
https://en.wikipedia.org/wiki/Debugfs
http://www.kernel.org/doc/Documentation/filesystems/debugfs.txt

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

51

 If you have several network connected sessions open at once, their standard input/output devices each
point at different /dev/tty files when you follow the chain of symbolic links to their end point. This ensures
that the output from a command typed in one session does not show up on the screen of another. It makes
sense for it to work in this manner. If you log in with a second session, perhaps via a telnet or ssh command,
that command line shell will have its own separate standard I/O steams connected to different files.

 Back in your original session, when you type a command or run a shell script, it inherits the standard
I/O channels from its parent or calling process. The relationship between parent and child processes is
obvious when you type the ps -ef command.

 Examining this mapping with an ls command can only get you so far because the ls command itself is
running as a child process. When it lists a Process ID number, it is not the PID for your shell command line
but the PID for the child process running the ls command. Getting an instinctive feel for child processes and
how they affect what is happening pays big dividends later when you are trying to debug your applications.
You can waste a lot of time trying to deduce why something did not get altered in process space for your
application without realizing you are looking at the process space for a completely different application.

 Figure 5-1 shows how the standard I/O channels are mapped to files in the current (self) process space
and how these are then mapped to the serial device that you logged in from. This is all accomplished by
symbolic links in the kernel managed virtual file systems.

 Table 5-1. Standard Input/Output Streams

 File Purpose Path

 Standard input Incoming data arrives through this file, usually from the
keyboard but can be redirected from another process.

 /dev/stdin

 Standard output When your applications write output with a shell echo
command or a C language printf() function, the
characters are sent to this file.

 /dev/stdout

 Standard error When something goes wrong, the error messages are
delivered to this file to keep them separate from the
genuine output stream.

 /dev/stderr

 Figure 5-1. Standard I/O redirections

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

52

 Early on in the boot process, the kernel creates the /dev/ttySAC device. If you are connected via a serial
interface, your session uses this as its base driver. It represents the console where all keystrokes are expected
to come from and where all output is directed. If you log on with a network session, it would be a different
device but things would work the same.

 As your command line shell process is started, the /proc virtual file system is populated with details of
your process that are reflected from the kernel into the user space. The standard I/O in a command line shell
needs somewhere to send normal output and error messages and somewhere to receive input. The very
first file buffer that is opened is used to get keystrokes from your console. The second one is used to manage
normal application output. The third is reserved to keep errors and warning messages separate from normal
output. This makes it very easy to turn them off to declutter the console output. These first three files are
taken from your process resources and reduce the number of available file buffers accordingly. This explains
why you may have a few less file descriptors than you expected if you exhaust the supply.

 Finally, the symbolic devices for standard input, output, and error are connected to the corresponding
file descriptors. Now you are equipped to manage the redirection of your standard I/O from the command
line. Standard input can be taken from an alternative place by constructing a pipe or using < meta-characters
in the shell to take input from a here file. Standard output and standard error can be directed to other files
to spool them into a permanent file or they can be redirected to /dev/null and discarded with the > shell
meta-characters. They can also be redirected by piping commands from one command to another.

 While this redirection takes place, the three nodes in the /proc/self directory remain intact so the
standard I/O can be redirected back to its default targets. Listing 5-2 illustrates the results of exploring these
from an ARTIK command line.

 Listing 5-2. Standard I/O Exploration

 ls -la /dev/stdin

 lrwxrwxrwx 1 root root 15 Apr 8 2014 /dev/stdin -> /proc/self/fd/0

 ls -la /dev/stdout

 lrwxrwxrwx 1 root root 15 Apr 8 2014 /dev/stdout -> /proc/self/fd/1

 ls -la /dev/stderr

 lrwxrwxrwx 1 root root 15 Apr 8 2014 /dev/stderr -> /proc/self/fd/2

 ls -la /proc/self/fd

 lrwx------ 1 root root 64 Feb 16 20:18 0 -> /dev/ttySAC2
 lrwx------ 1 root root 64 Feb 16 20:18 1 -> /dev/ttySAC2
 lrwx------ 1 root root 64 Feb 16 20:18 2 -> /dev/ttySAC2
 lr-x------ 1 root root 64 Feb 16 20:18 3 -> /proc/2665/fd

 ls -la /proc/self

 ls -la > /tmp/xxx.txt 2> /dev/null

 Note how node 3 points back at the directory belonging to the process running the ls command when
you list the contents of the /proc/self/fd directory.

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

53

 The /proc/self virtual file points at an entry in the /proc directory for a PID that no longer exists because
the ls command process has completed and exited. That PID number is not recycled again until the system
is rebooted. The /proc/self entry always points at properties for the currently running process. Because the
command line shell readily spawns sub processes, this is more useful to you as a C Language programmer.

 The last command shows how to redirect standard output to a file and standard error to /dev/null to
discard error messages. The symbolic links change correspondingly. Figure 5-2 shows how those streams are
remapped.

 Figure 5-2. Redirecting standard I/O

 Peripheral Interfaces
 The ARTIK 5 and ARTIK 10 modules support a variety of programmable signal pins. Some of these are
implemented as General Purpose Input/Output (GPIO) digital pins, while others are dedicated to specific
jobs such as analog input, pulse-width-modulated output, and serial communications. A few are used for
controlling peripherals such as sensors using I2C or SPI interfaces.

 There are several kinds of interfaces to access from an application running on your ARTIK module.
These interfaces are provided to interact with or control external and internal peripherals. Table 5-2
summarizes the available interfaces.

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

54

 Programmable I/O Pins
 The ARTIK modules are designed to be a flexible solution to be used as a starting point for controller design
in a wide variety of products. From TV set-top boxes to fridges and other appliances, the ARTIK modules
will sense and control many external devices. Consider a simple fridge-freezer, which needs to have sensors
for temperature in each compartment and also in other parts of the refrigeration hardware. You might
detect leaks by adding a pressure sensor or reservoir level detector to sense the coolant. The pump motor
needs feedback so the controller knows it is running. Door switches can be sensed and timers set up when
a door opens so an audible warning can be generated if the door is left open. The pump motor and interior
lights can be turned on and off as necessary and some kind of indicator display needs to show you the
temperature. You might also need some mode control buttons.

 Table 5-3 summarizes these items and indicates whether they are sensors or controls and which
interface you might use to connect them to your ARTIK module.

 Table 5-2. Available Peripheral Interfaces

 Interface Purpose

 GPIO These general purpose input and output via pins on the developer
reverence board are useful for reading digital switch inputs or controlling
external devices via a hardware pin. See Chapter 17 for more details.

 I2C This interface is used for controlling hardware devices within the ARTIK
such as the UARTs for serial communication. It’s also available for
connecting external sensors. See Chapter 20 for more details.

 SPI This hardware bus is used for driving display outputs. It’s not yet fully
supported as a user space programmable interface. There is a functional
description in Chapter 21 with some practical help based on using the
Arduino IDE. Refer also to Chapter 23 , which describes video toolkits,
cameras, displays, and connectivity that will be enhanced further in a
later release of the ARTIK OS.

 I2S This bus is used for managing audio input/output and is accessed via the
ALSA library. See Chapter 22 .

 IIO This kernel subsystem is a new interface standard for reading analog
inputs. It’s accessed most easily through the sysfs virtual file system. See
Chapter 18 .

 PWM The PWM output is part of the GPIO subsystem and managed via sysfs
files. See Chapter 19 for more details.

http://dx.doi.org/10.1007/978-1-4842-2322-2_17
http://dx.doi.org/10.1007/978-1-4842-2322-2_20
http://dx.doi.org/10.1007/978-1-4842-2322-2_21
http://dx.doi.org/10.1007/978-1-4842-2322-2_23
http://dx.doi.org/10.1007/978-1-4842-2322-2_22
http://dx.doi.org/10.1007/978-1-4842-2322-2_18
http://dx.doi.org/10.1007/978-1-4842-2322-2_19

CHAPTER 5 ■ OPERATING SYSTEM INTERNALS

55

 This project concept requires more analog inputs than an ARTIK 5 could support. More temperature
sensors could be added to the external I2C bus. An ARTIK 10 would have more than enough analog inputs
without needing those extra sensors but is much too powerful a module for this job. In terms of compute
capacity, an Arduino might even be sufficient as a front-end processor to manage the sensors.

 Accessing the Peripherals
 The peripherals are mapped into the ARTIK file system so your application can operate on them as if they were
simple regular files. Just open the relevant virtual file to get a file descriptor. Read or write the value and close
the file. This uses the virtual file system installed as the /sys directory. This is the head of the sysfs virtual file
system. Earlier blog articles and example code generated by the early prototype ARTIK support in Temboo
illustrate how to use the files in the hierarchy to control the GPIO pins and switch LED indicators on and off.

 There are some simple rules about how to access the contents of the /sys directory hierarchy; they
are merely the normal access controls on a regular file that allow your user space application the necessary
permissions to open the file. There are future plans to change some of the organization of this tree structure.
Keep current with the changes so you can be ready to alter your application source code if that happens as a
consequence of an ARTIK OS upgrade later.

 Summary
 Now that the OS internals are becoming clearer, it is time to look at the OS start up process. This involves
a boot loader priming the kernel and giving it instructions about how to start things up. The next chapter
examines that booting process and also looks at power management support.

 Table 5-3. Fridge Freezer Sensors and Controls

 Peripheral device Type Interface

 Fridge door open Switch GPIO in

 Freezer door open Switch GPIO in

 Fridge compartment temperature Temperature sensor Analog input pin

 Freezer compartment
temperature

 Temperature sensor Analog input pin

 Coolant temperature Temperature sensor Analog input pin

 Coolant pressure Pressure sensor Analog input pin

 Coolant level Switch GPIO in

 Pump running Pulse train via a sample-hold
circuit

 GPIO in

 Pump motor control Power transistor driver or relay GPIO out

 Fridge compartment light Lamp driver GPIO out

 LCD display Video or LCD feed SPI or I2C

 Mode button Switch GPIO in

 Setting button (+) Switch GPIO in

 Setting button (-) Switch GPIO in

 Audible warning output A/V ALSA driven I2S

57© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_6

 CHAPTER 6

 Startup, Sleep, and Shutdown

 Your ARTIK does a lot of work behind the scenes as it starts up. Your design may not need to use all of those
facilities but before you start turning things off, you need to know what they are. Introducing new startup
code of your own might be necessary if you are building something more ambitious as a project. Being able
to spot a warning or error message during the startup is only possible if you are already comfortable with
what happens by default. Read this chapter to learn about the startup message, the boot loader, and power
management. It also covers sleep/wake cycles and shutdown issues.

 The System Administrator Console
 When your ARTIK starts up, it displays status messages on the system administrator’s console about each
process or utility as they are initiated. This console output is presented on your terminal emulator screen
if you are connected through the USB serial interface. Start your terminal emulator application first and
connect to the serial port before starting up your ARTIK. Capture the U-Boot startup message stream to a
text file and inspect it. Some messages are a little opaque but with practice you will be able to recognize if
there are any problems with your configuration when you start altering it. Sometimes, the messages convey
a useful identifier for use later when you use the command line to interact with a process.

 Power and Reset Buttons
 The developer reference board has a toggling main power switch. This needs to be turned on before you start
up your ARTIK. This switch is labeled PWR SW on the screen-printed developer reference board artwork.

 Nearby is a momentary action push-button switch labeled SW3 POWER . This is somewhat confusing
because when describing a power switch it is easy to confuse the two. In this book, I try to be consistent and
describe them as the main power switch and the power (boot) button to distinguish the two similarly named
items.

 Adjacent to the power inlet socket is a [Reset] button labeled SW1 RESET . This is connected to the
master reset line on the ARTIK module via the multi-pin AXT connector.

 The power (boot) button restarts the ARTIK when you have just powered it on with the main power
switch. Press and hold the power (boot) button for about half a second. At this time the [Reset] button does
nothing; later it becomes active when the ARTIK is running. The ARTIK continues the normal boot process
until it presents the login prompt.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

58

 Be sparing in your use of the [Reset] button while the ARTIK is running. It forces the ARTIK to halt and
restart but it has no chance to clean up any temporary files. If a file was in the middle of write operation, the
file could be left in a corrupted state. Your application might want to make note of when it is writing to create
a flag to indicate that it was halted abnormally.

 If your ARTIK is seized up as a result of a deadlock or crashed application, shell command, or launch
service, then a forced reset is the only way to recover without power cycling the system.

 Table 6-1. Power and Reset Button Actions

 State Power (boot) button [Reset] button

 Just powered on with main power
switch

 Performs a cold boot Does nothing

 At login prompt Ignored Forced reset followed by a cold boot

 After login Ignored Forced reset followed by a cold boot

 systemctl suspend Resumes instantly Flushes saved state forcing power
(boot) button to cold boot

 echo freeze > /sys/power/state Resumes instantly Flushes saved state forcing power
(boot) button to cold boot

 echo mem > /sys/power/state Resumes instantly Flushes saved state forcing power
(boot) button to cold boot

 systemctl suspend
 followed by [Reset] button

 Performs a cold boot No further observable effect although
this invokes an internal interrupt
handler

 echo freeze > /sys/power/state
 followed by [Reset] button

 Performs a cold boot No further observable effect although
this invokes an internal interrupt
handler

 echo mem > /sys/power/state
 followed by [Reset] button

 Performs a cold boot No further observable effect although
this invokes an internal interrupt
handler

 If the system is in a suspended state after executing a systemctl suspend command, pressing the
power (boot) button instantly wakes it up using the previously saved memory contents. If you pressed the
[Reset] button in the meantime, the ARTIK reboots from scratch and without using the saved memory state.
Table 6-1 summarizes the behavior of the ARTIK when the various buttons are pressed.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

59

 The corresponding SW2 switch on a Type 10 developer reference board is on the left edge adjacent to
the USB 3.0 connector. See Figure 6-2 .

 The functionality of these switches has changed from the original design. The developer documentation
states that both switches should be in the OFF position as shown in Figure 6-3 if you want to boot the
internal firmware stored in the eMMC memory inside your ARTIK module. The boot loader looks for an
EMMC memory image that contains a viable and bootable operating system kernel.

 Figure 6-1. Boot mode switches on a Type 5 developer board

 Figure 6-2. Boot mode switches on a Type 10 developer board

 Setting the Boot Mode Switches
 Alter the way your ARTIK boots when it is running on the developer reference board by setting the boot
mode switches. They are located in different places on the Type 5 and 10 developer reference boards.
Figure 6-1 shows where SW2 is positioned on a Type 5 board—very close to the micro SD card receptacle.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

60

 To boot from a microSD card with a new installable operating system on it, both switches should be set
to the ON position, as shown in Figure 6-4 . The boot loader looks for an installed microSD card containing a
Fuse installer image and runs the firmware update from there.

 If you try to boot an ARTIK with an empty SD card while the boot switches are set to microSD mode,
even the most basic parts of the boot process cannot work. Make sure you install an SD card with a genuinely
bootable image if you set the switches to boot from it.

 The data sheets mention that the boot loader falls back to booting from a secondary device (which is
always the USB interface) if it cannot find a bootable image where it has been told to look. It can only do this
if you have a viable USB device plugged in with a bootable OS stored on it.

 ■ Note The ARTIK 5 data sheet describes pins J3-35 (XOM2) and J3-37 (XOM3) on the AXT connector of an
ARTIK 5 module as the boot mode control pins. Earlier documentation shows only one of the switches being ON
at a time while the other is OFF . The circuit schematic diagrams have a small table showing that setting XOM2
 HIGH and XOM3 LOW boots from the SD card while setting XOM2 LOW and XOM3 HIGH boots from eMMC.
The circuit schematic suggests all of that boot selector logic is controlled from SW2-1 with the complementary
states on XOM2 and XOM3 being managed via a digital FET. SW2-2 appears to be an enable control for I2C
signals on the J510 connector and has nothing to do with controlling boot modes. This may be where the
confusion over switch settings has arisen in the older documentation.

 Figure 6-3. Boot mode configured for eMMC

 Figure 6-4. Boot mode configured for microSD

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

61

 Cold vs. Warm Boots
 There are two fundamentally different kinds of startup: cold boots or warm boots. A cold boot is when the
ARTIK starts by running the U-Boot firmware, followed by the autoloader and the kernel. A warm boot is
when the system comes back from a suspended or hibernated state. The uptime value would be reset for a
cold boot but should remain intact for a suspended or hibernated warm boot.

 There may be some scenarios where a hardware reset is required and just restarting is not sufficient;
you may need to power cycle the ARTIK. The different types of boot are listed in Table 6-2 .

 Read the module reset descriptions in the ARTIK data sheets for more information about sleep states
and wakeup/reset scenarios.

 Table 6-2. Boot Types

 Boot type Description

 Power cycle Complete power off and on again with the main power switch. Removing the
power cable is not necessary as this switch should completely isolate the main
power supply. A small coin cell battery provides some backup power while this
switch is turned off or the power cable is unplugged.

 Cold boot Called by a [Reset] button or shutdown reboot command. Some hardware may
not be reinitialized if the power is not cycled.

 Warm boot Restarting the ARTIK without going all the way back to a complete cold boot.
Perhaps by reloading the memory contents from a cache. Sleep or hibernate are
examples of warm boots.

 Sleep/wake Using the systemctl suspend command stores the processor memory and CPU
state in a battery backed cache to be recalled instantly.

 Hibernate/wake Using the systemctl hibernate command stores the processor memory and
CPU state in a persistent offline cache to be reloaded. This is not currently fully
working in the Commercial Beta ARTIK modules.

 Forced halt and reboot Crash and burn followed by a cold boot. There is some risk of data loss if this
happens. This can be triggered by pressing the [Reset] button or halting without
an orderly shutdown.

 Network boot Download the boot image from a networked server. This might be useful
for multi-processor grids and clusters. Alter the U-Boot defaults to call the
appropriate command and define a server to load it from. You also need the
network up and running first for this to work. There are a variety of different
protocols available to choose from when you call down the boot image. Refer to
the U-Boot command summary for details.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

62

 Starting Up the ARTIK
 Watching the startup messages when you are getting to know the ARTIK can appear very confusing at first.
A long list of messages is presented as individual processes are started. Some of this verbose messaging can
be turned off but since it is only presented on the serial console, leave it as it is. In a development context, it
is useful to see what is running at boot time. Customize this startup process to turn off unwanted services or
add new ones to the boot sequence. The onscreen feedback shows you whether that configuration worked
correctly. Useful and important values are revealed for use in your ARTIK applications. Learn how this part
of the process works to spot unusual behavior as soon as it happens. The booting sequence of an ARTIK is
described in the data sheets available from the Samsung developer web site.

 The Boot Loader
 The U-Boot subsystem exists to configure the way your ARTIK boots up. There are some diagnostic tools to
debug things during that process or inspect and modify memory locations that control things.

 Interfering with the U-Boot kernel startup procedure is an advanced technique. Because it is somewhat
risk-prone, you must be completely confident of what you are doing in the U-Boot environment. The U-Boot
environment is not the same as the command line shell you see when you log in to the root account on your
ARTIK. Inexperienced users may not realize that they should have halted the auto boot process and should
be interacting with the U-Boot command line instead of the ARTIK command line.

 Also be aware that some U-Boot parameters may have a limited number of times that they can ever
be set. If you set one of these incorrectly, you cannot alter it and your system is “toast” unless you have the
capabilities to re-flash the U-Boot software. This can only be done at the Samsung factory, so your ARTIK
module is now broken. Does this frighten you? It should! Altering U-Boot settings needs to be done very
carefully and only after you have found out exactly what they affect.

 Now that Samsung has released the source code for the U-Boot support in your ARTIK, download it
from the Git repository and inspect it to better understand the internals of the boot loader.

 U-Boot Commands
 The U-Boot command line comes with important health and safety warnings. Reading values from the
embedded memory is reasonably safe. Writing changes is very dangerous if you do not know what you are
doing. Changing anything in the configuration of your U-Boot environment should be avoided unless you
get detailed instructions from Samsung about what to do. Developers always like to explore new possibilities
and alter things as an experiment. Just be careful.

 Table 6-3 lists the available U-Boot commands. Read the online U-Boot documentation to learn more
about them before starting to use them. Not all of these commands are supported in the ARTIK U-Boot
image even though the help command lists them.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

63

 Table 6-3. U-Boot Commands

 Command Description

 ? An alias for the help command

 base Displays or sets the address offset. By default the base address is set to 0x00000000 .

 bdinfo Displays the board info structure

 boot Calls for a default boot (i.e., run the bootcmd)

 bootd An alias for calling the default boot to action

 bootm Calls a boot application image from memory

 bootp Calls a boot image via a network connection using BOOTP / TFTP protocol

 cmp Compares memory location contents

 coninfo Displays the console devices and information

 cp Copies memory locations

 crc32 Calculates a checksum

 date Displays, sets, or resets the date and time

 echo Displays the arguments on the console

 editenv Edits an environment variable

 erase Erases the FLASH memory. This is obviously VERY dangerous.

 ext2load Loads a binary file from an Ext2 filesystem

 ext2ls Lists the files in a directory (by default from the root directory at /)

 fatinfo Displays information about the filesystem

 fatload Loads a binary file from a DOS filesystem

 fatls Lists the files in a DOS directory (default /)

 fdt Utility commands for managing a flattened device tree

 flinfo Displays the FLASH memory information

 go Starts running an application at the address passed as a parameter

 help Displays a description of the available commands and usage

 iminfo Displays the header information for an application image

 imls Lists all the application images found in the flash memory

 imxtract Extracts a part from a multi-image file

 itest Compares two integer values and returns true or false

 loadb Loads a binary file over the serial line using KERMIT mode. KERMIT is a legacy file
transfer protocol that predates the Internet.

 loads Loads an S-Record file over the serial line

 loady Loads a binary file over the serial line using YMODEM mode for the transfer.
 YMODEM is a file transfer protocol that was invented in 1985.

 loop Runs an infinite loop on an address range

 md Displays the contents of the memory

(continued)

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

64

 The version request output for a Commercial Beta ARTIK 5 is shown in Listing 6-1 .

 Listing 6-1. U-Boot Version Command Output

 version

 U-Boot 2012.07-00020-g5430e19 (Dec 09 2015 - 11:31:37) for ARTIK5
 arm-linux-gnueabihf-gcc (Linaro GCC 4.9-2015.01-3) 4.9.3 20150113 (prerelease)
 GNU ld (GNU Binutils) Linaro 2014.11-3-git 2.24.0.20141017

 By the time your ARTIK has started and is running its own kernel and command line, you cannot
easily access the U-Boot environment to inspect the ARTIK internals. Interrupt the auto boot to start up the
kernel manually with your own custom instructions and parameters. Listing the environment variables and
inspecting things without changing them can tell you a lot about how your ARTIK works. Read more about
the U-Boot commands at the following links:

 https://en.wikipedia.org/wiki/Das_U-Boot
 www.wiki.xilinx.com/U-boot
 www.denx.de/wiki/U-Boot

Table 6-3. (continued)

 Command Description

 mm Modifies the contents of some memory (auto-incrementing the address each time)

 mmc Accesses the MMC sub system

 mmcinfo Displays information about the MMC sub system

 mtest A simple read/write RAM test

 mw Fills the memory by writing a block of data to it

 nfs Calls up a boot image via a network connection using the NFS protocol

 nm Modifies a memory location (keeping a constant address instead of auto
incrementing each time)

 Ping Sends an ICMP ECHO_REQUEST to a remote network host to test that you can
reach it. Configure your networking support within U-Boot for this work.

 Printenv Displays the whole collection of environment variables

 protect Enables or disables the write protection on the FLASH memory

 rarpboot Calls up a boot image via a network connection using the RARP / TFTP protocol

 reset Performs a hard RESET of the CPU

 run Runs the commands contained in an environment variable

 setenv Sets the value of environment variables

 sf Interacts with the SPI flash subsystem

 sleep Delays the execution for some time

 source Runs a stored script from memory

 sspi Utility commands for the SPI sub system

 tftpboot Calls up a boot image via a network using the TFTP protocol

 version Displays the version of the U-Boot command line monitor application

https://en.wikipedia.org/wiki/Das_U-Boot
http://www.wiki.xilinx.com/U-boot
http://www.denx.de/wiki/U-Boot

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

65

 https://compulab.co.il/workspace/mediawiki/index.php5/U-Boot_quick_reference
 www.denx.de/wiki/U-Boot/Documentation
 www.denx.de/wiki/DULG/Manual

 ■ Note Be wary of modifying anything in the U-Boot command line without understanding it first. Unless
your needs are very advanced and you know exactly what you are doing, leave the U-Boot environment settings
unchanged.

 Boot Loader Console Messages
 These messages are generated by the initialization code when the U-Boot Universal Boot Loader runs. This
U-Boot software presents a description of the hardware and CPU model. In a PC, the equivalent would be
the BIOS; in a Macintosh, it would be the EFI Firmware. This brings up the hardware to a point where it can
look for an operating system kernel and start that running. Press any key to halt the automatic loading of the
operating system and interact with U-Boot to explore your ARTIK hardware. Listing 6-2 shows what happens
when you boot a Beta revision ARTIK 5 module.

 If you press any key at this point, the automatic booting process stops. Interact with the U-Boot
command line provided you are confident and know what you are doing. The U-Boot environment is an
advanced topic and there is nothing to do in there from the perspective of a beginner. Leave it alone to start
the kernel automatically. Listing 6-2 illustrates the U-Boot startup messages.

 Listing 6-2. U-Boot Startup Messages

 U-Boot 2012.07-00020-g5430e19 (Dec 09 2015 - 11:31:37) for ARTIK5

 CPU: Exynos3250 [Samsung SOC on SMP Platform Base on ARM CortexA7]
 APLL = 700MHz, MPLL = 800MHz

 Board: ARTIK5
 DRAM: 504 MiB
 WARNING: Caches not enabled

 TrustZone Enabled BSP
 BL1 version: 20140203

 Checking Boot Mode … EMMC4.41
 MMC: S5P_MSHC0: 0, S5P_MSHC2: 1
 MMC Device 0: 3.6 GiB
 MMC Device 1: [ERROR] response error : 00000006 cmd 8
 [ERROR] response error : 00000006 cmd 55
 [ERROR] response error : 00000006 cmd 2
 In: serial
 Out: serial
 Err: serial
 rst_stat : 0x10000
 Net: AX88796C_SPI
 Hit any key to stop autoboot:

https://compulab.co.il/workspace/mediawiki/index.php5/U-Boot_quick_reference
http://www.denx.de/wiki/U-Boot/Documentation
http://www.denx.de/wiki/DULG/Manual

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

66

 Now that Samsung has released the source code, you can see how it works by studying the code. The
 [ERROR] messages are because U-Boot is attempting to access a non-existent microSD card. If you insert an
empty one into the receptacle, the [ERROR] messages are replaced by the contents of Listing 6-3 . U-Boot is
then able to look for a third MMC device, which it did not previously attempt because it bailed out when the
 [ERROR] happened.

 Listing 6-3. MMC Device Detected

 MMC Device 1: there are pending interrupts 0x00000001
 15.4 GiB
 MMC Device 2: MMC Device 2 not found

 The I/O is then configured to communicate via the serial interface. The AX88796C Ethernet Controller
chip is detected on an SPI bus during the startup. Even without fully booting the ARTIK, it is starting to give
up its secrets. Search online for a device data sheet to understand how the Ethernet controller works.

 Passing Arguments to the Kernel
 Some parameters are compiled into the kernel and others may be loaded from a file that lives in the boot
partition. Pass parameters to the kernel to alter the default behavior at boot time as it starts up. The U-Boot
loader passes parameters to the kernel by combining the values in various environment variables into a boot
command. Before altering any of the environment variables that affect the booting process, look at what
is already there. Document the current value. Then you can restore things back to the default state again.
Listing 6-4 shows the output for a Commercial Beta ARTIK 5 module when you type the printenv command.
Your device may display slightly different values.

 Listing 6-4. U-Boot Environment Variables

 printenv

 android_boot=setenv bootargs ${console} root=/dev/ram0 ${opts};run boot_cmd_initrd

 android_format=gpt write mmc 0 $partitions_android;setenv bootcmd run android_boot;saveenv;
mmc rescan; fastboot

 baudrate=115200

 boot_cmd=fatload mmc 0:1 $kernel_addr $kernel_file;fatload mmc 0:1 $fdtaddr $fdtfile;bootz
$kernel_addr - $fdtaddr

 boot_cmd_initrd=fatload mmc 0:1 $kernel_addr $kernel_file;fatload mmc 0:1 $fdtaddr
$fdtfile;fatload mmc 0:1 $initrd_addr $initrd_file;bootz $kernel_addr $initrd_addr $fdtaddr

 bootcmd=run ramfsboot

 bootdelay=3

 bootpart=1

 console=console=ttySAC2,115200n8

 consoleoff=set console=ram; saveenv; reset

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

67

 consoleon=set console=console=ttySAC2,115200n8

 emmc_dev=0

 ethact=AX88796C_SPI

 factory_load=factory_info load mmc ${emmc_dev} 0x80 0x8

 factory_save=factory_info save mmc ${emmc_dev} 0x80 0x8

 fdtaddr=40800000

 fdtfile=exynos3250-artik5.dtb

 initrd_addr=43000000

 initrd_file=uInitrd

 kernel_addr=40008000

 kernel_file=zImage

 mmcboot=setenv bootargs ${console} root=/dev/mmcblk${rootdev}p${rootpart} ${root_rw}
rootfstype=ext4 ${opts};run boot_cmd

 opts=loglevel=4

 partitions=uuid_disk=${uuid_gpt_disk};name=boot,start=1MiB,size=32MiB,uuid=${uuid_gpt_boot};
name=modules,size=32MiB,uuid=${uuid_gpt_module};name=rootfs,size=-,uuid=${uuid_gpt_rootfs}

 partitions_android=uuid_disk=${uuid_gpt_disk};name=boot,start=1MiB,size=32MiB,uuid=${uu
id_gpt_boot};name=system,size=1024MiB,uuid=${uuid_gpt_system};name=cache,size=128MiB,uuid=${
uuid_gpt_cache};name=userdata,size=-,uuid=${uuid_gpt_userdata}

 partitions_tizen=uuid_disk=${uuid_gpt_disk};name=boot,start=1MiB,size=32MiB,uuid=${uu
id_gpt_boot};name=modules,size=32MiB,uuid=${uuid_gpt_module};name=rootfs,size=2048MiB,uuid=$
{uuid_gpt_rootfs};name=system-data,size=256MiB,uuid=${uuid_gpt_system_data};name=user,size=-
,uuid=${uuid_gpt_user}

 ramfsboot=run factory_load; setenv bootargs ${console} root=/dev/mmcblk${rootdev}
p${rootpart} ${root_rw} rootfstype=ext4 ${opts} ${recoverymode} asix.macaddr=${ethaddr}
bd_addr=${bd_addr};run boot_cmd_initrd

 recoveryboot=run sdrecovery; setenv recoverymode recovery;run ramfsboot

 root_rw=rw

 rootdev=0

 rootfslen=100000

 rootpart=3

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

68

 sdrecovery=sdfuse format; sdfuse flashall 3

 stderr=serial

 stdin=serial

 stdout=serial

 tizen_format=gpt write mmc 0 $partitions_tizen;mmc rescan; fastboot

 Environment size: 2353/16380 bytes

 ■ Note Changing any of the U-Boot environment variables carries the risk of stopping the ARTIK from booting
correctly if you make a mistake. Do not risk compromising your ARTIK unless you completely understand what
you are doing.

 This web page discusses the boot arguments in more detail. Study similar systems to the ARTIK and
synthesize your solution by understanding how things work on other implementations and then transfer that
knowledge carefully step-by-step to the ARTIK world. Go to www.denx.de/wiki/view/DULG/LinuxKernelArgs .

 Studying the environment variables reveals the details of the serial communications on the console.
This line specifies the serial communications speed:

 baudrate=115200

 This line describes the format of the serial communications (8-bit, no parity):

 console=console=ttySAC2,115200n8

 The compiled device tree that the kernel uses as it starts up is defined by this line:

 fdtfile=exynos3250-artik5.dtb

 The fdtfile variable contains the name of a file to locate with the bash command line after logging in.
Reading these values as a learning exercise is safe enough but altering them is most definitely not a good
idea unless you fully understand what you are doing.

 Kernel Boot Options
 Observe the boot options that the U-Boot loader used when it initially started the kernel by inspecting the /
proc/cmdline virtual file with this command. Listing 6-5 shows the results for a Commercial Beta ARTIK 5.
Trace back through the U-Boot environment variables to see which one constructed this set of options in the
 bootargs definition. The values are described in Table 6-4 .

 Listing 6-5. Kernel Command Line Options From U-Boot (Reformatted for Readability)

 cat /proc/cmdline

 console=ttySAC2,115200n8
 root=/dev/mmcblk0p3 rw

http://www.denx.de/wiki/view/DULG/LinuxKernelArgs

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

69

 rootfstype=ext4
 loglevel=4
 asix.macaddr=
 bd_addr=F8:04:2E:EC:D8:A1

 Device Tree
 The Device Tree Blob is created by compiling a .dts source file, installing it onto the boot partition, and then
making sure that the U-Boot environment variables describe the correct file name. The source code for the
 .dts file used by an ARTIK is now included in the source code for the Exynos version of the Linux kernel.
Refer to these pages for other sample Device Tree Source files for the ARTIK 5 and 10 modules. At runtime,
the current device tree is reflected by the kernel into the /proc/device-tree directory for access from user
space applications. If you download these source files for inspection, be sure to also look at the files they
include during compilation. Some features are described generically in files that are shared by several device
tree builders. Go to the following links:

 https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250.dtsi
 https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-artik5.dtsi
 https://en.wikipedia.org/wiki/Device_tree
 http://elinux.org/Device_Tree
 http://devicetree.org/
 www.kernel.org/doc/Documentation/devicetree/bindings/gpio/gpio.txt

 Starting Up the Kernel
 The following online article describes the booting process for ARM Linux. Although it is not describing an
ARTIK, the process is very similar. Go to www.simtec.co.uk/products/SWLINUX/files/booting_article.html .

 If the boot loader was not halted by a keystroke, the OS kernel is started up automatically for you. If
you interrupted the auto boot and now want to start the kernel manually, type the boot command into
the U-Boot command line. The ARTIK only takes a few seconds to boot up to the login prompt. During
this booting process, the autoloader needs to locate some secure file systems containing bootable code.
Then it can look for a viable kernel and start it up. Listing 6-6 illustrates the sequence of messages during a
Commercial Beta ARTIK 5 startup.

 Table 6-4. Kernel Boot Parameters

 Property Description

 console The console serial port is configured for 115200 baud, 8-bit data with no parity.

 root The root file system uses the eMMC partition labeled mmcblk0p3, which is mounted
at the / location to create the head of the filesystem tree. It has the additional flag rw
to control the modes of access.

 rootfstype The root file system type is described as ext4 .

 loglevel The diagnostic message logging level is set to 4 . Altering this value in the boot
arguments string may be a way to silence debugging messages when you create a
deployable product.

 asix.macaddr This value is currently empty. Define the network mac address for this device using
this parameter.

 bd_addr This is the Bluetooth device address.

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-artik5.dtsi
https://en.wikipedia.org/wiki/Device_tree
http://elinux.org/Device_Tree
http://devicetree.org/
http://www.kernel.org/doc/Documentation/devicetree/bindings/gpio/gpio.txt
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

70

 Listing 6-6. Starting the OS Kernel

 boot

 reading zImage
 4375376 bytes read in 22484 ms (189.5 KiB/s)
 reading exynos3250-artik5.dtb
 38601 bytes read in 23426 ms (1000 Bytes/s)
 reading uInitrd
 1353683 bytes read in 24402 ms (53.7 KiB/s)
 ## Loading init Ramdisk from Legacy Image at 43000000 ...
 Image Name: uInitrd
 Image Type: ARM Linux RAMDisk Image (uncompressed)
 Data Size: 1353619 Bytes = 1.3 MiB
 Load Address: 00000000
 Entry Point: 00000000
 ## Flattened Device Tree blob at 40800000
 Booting using the fdt blob at 0x40800000
 Loading Ramdisk to 43eb5000, end 43fff793 ... OK
 Loading Device Tree to 43ea8000, end 43eb46c8 ... OK

 Starting kernel ...

 This process accesses the secure boot images stored in the ARTIK memory by the OS installer. One of
the important files it needs is the compiled device tree. The source for this has been incorporated into the
official sources for the Exynos version of the Linux kernel. The compiled binary device tree file describes
the initial device configuration in a predigested form that the kernel can use as it starts up. These boot
time partitions are only visible after booting because they are mounted as virtual file systems by the kernel.
Having found and mounted all the resources it needs, the autoloader then runs the kernel.

 Kernel Startup Messages
 As the kernel starts up, it reads the configuration details and builds various other virtual file systems. These
are well documented in the Linux Filesystem Hierarchy Standard. Listing 6-7 is an example kernel start up
message log recorded from a Commercial Beta model ARTIK 5 as it starts up. First, the hardware is prepared
and then it locates the Fedora OS and starts that running. There are more references to hardware chips.
Search online to find their data sheets. Because some processes are starting asynchronously, some of these
lines may display later on in the boot process in amongst the Fedora booting messages.

 Listing 6-7. Kernel Startup Message Output

 Starting kernel ...

 [0.059284] /cpus/cpu@0 missing clock-frequency property
 [0.059312] /cpus/cpu@1 missing clock-frequency property
 [0.212586] bq2429x_charger 1-006b: Failed in reading register 0x0a
 [0.282180] cw201x 1-0062: get cw_capacity error; cw_capacity = 255
 [0.606924] (unregistered net_device): timeout waiting for reset completion
 [0.653910] jpeg-hx2 11830000.jpeg: failed to get parent1 clk
 [0.764548] exynos-adc 126c0000.adc: operating without regulator vdd[-19]
 [3.817001] s5p-decon-display 11c00000.fimd_fb: wait for vsync timeout
 [4.911975] dhd_wlan_set_carddetect: notify_func=c041bb74, mmc_host_dev=d8df9810, val=1

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

71

 Fedora Startup Messages
 Once the kernel is running, it locates the operating system (Fedora in this case) and the startup scripts are
executed to bring up the system in an orderly fashion. The Fedora startup messages from a Commercial Beta
ARTIK 5 are shown in Listing 6-8 . This is completed when it presents the login prompt. Study the boot listing
on your own ARTIK and inspect the messages about these services as they start.

 Listing 6-8. Fedora Operating System Startup Messages

 Loading, please wait...

 Welcome to Fedora 22 (Twenty Two)!

 [OK] Created slice Root Slice.
 [OK] Listening on udev Kernel Socket.
 [OK] Created slice User and Session Slice.
 [OK] Listening on Journal Socket (/dev/log).
 [OK] Listening on Journal Socket.
 [OK] Reached target Paths.
 [OK] Listening on udev Control Socket.
 [OK] Reached target Encrypted Volumes.
 [OK] Created slice System Slice.
 Starting Load Kernel Modules...
 Mounting Debug File System...
 Mounting NFSD configuration filesystem...
 [OK] Created slice system-getty.slice.
 [OK] Reached target Slices.
 Mounting Temporary Directory...
 Starting Create list of required st... nodes for the current kernel...
 [OK] Created slice system-serial\x2dgetty.slice.
 [OK] Listening on /dev/initctl Compatibility Named Pipe.
 [OK] Reached target Swap.
 Starting Journal Service...
 Starting Remount Root and Kernel File Systems...
 [OK] Listening on Delayed Shutdown Socket.
 [OK] Mounted NFSD configuration filesystem.
 [OK] Mounted Debug File System.
 [OK] Mounted Temporary Directory.
 [OK] Started Create list of required sta...ce nodes for the current kernel.
 [OK] Started Remount Root and Kernel File Systems.
 Starting Configure read-only root support...
 Starting udev Coldplug all Devices...
 Starting Create Static Device Nodes in /dev...
 [OK] Started Create Static Device Nodes in /dev.
 Starting udev Kernel Device Manager...
 [OK] Reached target Local File Systems (Pre).
 [OK] Started Journal Service.
 Starting Flush Journal to Persistent Storage...
 [OK] Started Configure read-only root support.
 [OK] Started udev Kernel Device Manager.
 Starting Load/Save Random Seed...

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

72

 [OK] Started Flush Journal to Persistent Storage.
 [OK] Started udev Coldplug all Devices.
 [OK] Started Load/Save Random Seed.
 [OK] Found device /dev/ttySAC2.
 [OK] Found device /dev/mmcblk0p1.
 Mounting /boot...
 [OK] Mounted /boot.
 [OK] Reached target Local File Systems.
 Starting Preprocess NFS configuration...
 Starting Create Volatile Files and Directories...
 [OK] Started Preprocess NFS configuration.
 [OK] Started Create Volatile Files and Directories.
 Starting Update UTMP about System Boot/Shutdown...
 Mounting RPC Pipe File System...
 Starting Network Time Synchronization...
 [OK] Mounted RPC Pipe File System.
 [OK] Started Update UTMP about System Boot/Shutdown.
 [OK] Started Load Kernel Modules.
 [OK] Started Network Time Synchronization.
 [OK] Created slice system-systemd\x2drfkill.slice.
 Starting Load/Save RF Kill Switch Status of rfkill1...
 Starting Load/Save RF Kill Switch Status of rfkill2...
 [OK] Reached target System Time Synchronized.
 Mounting Configuration File System...
 Starting Apply Kernel Variables...
 [OK] Reached target Sound Card.
 [OK] Mounted Configuration File System.
 [OK] Started Load/Save RF Kill Switch Status of rfkill1.
 [OK] Started Apply Kernel Variables.
 [OK] Started Load/Save RF Kill Switch Status of rfkill2.
 Starting Load/Save RF Kill Switch Status of rfkill0...
 [OK] Started Load/Save RF Kill Switch Status of rfkill0.
 [OK] Reached target System Initialization.
 [OK] Listening on RPCbind Server Activation Socket.
 [OK] Listening on D-Bus System Message Bus Socket.
 [OK] Listening on Avahi mDNS/DNS-SD Stack Activation Socket.
 [OK] Reached target Sockets.
 [OK] Started Manage Sound Card State (restore and store).
 Starting Manage Sound Card State (restore and store)...
 [OK] Reached target Timers.
 [OK] Reached target Basic System.
 Starting RFKill-Unblock All Devices...
 Starting GSSAPI Proxy Daemon...
 Starting Login Service...
 Starting BCM4354 Bluetooth firmware service...
 Starting Avahi mDNS/DNS-SD Stack...
 Starting Network Manager...
 [OK] Started D-Bus System Message Bus.
 [OK] Started Avahi mDNS/DNS-SD Stack.
 Starting D-Bus System Message Bus...
 [OK] Started pulseaudio service.
 Starting pulseaudio service...

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

73

 [OK] Started RFKill-Unblock All Devices.
 [OK] Started GSSAPI Proxy Daemon.
 [OK] Started Login Service.
 [OK] Started BCM4354 Bluetooth firmware service.
 [OK] Reached target NFS client services.
 [OK] Reached target Remote File Systems (Pre).
 [OK] Reached target Remote File Systems.
 Starting Permit User Sessions...
 [OK] Started Network Manager.
 [OK] Reached target Network.
 Starting Network Name Resolution...
 [OK] Started OpenSSH server daemon.
 Starting OpenSSH server daemon...
 Starting Notify NFS peers of a restart...
 [OK] Started Permit User Sessions.
 [OK] Started Serial Getty on ttySAC2.
 Starting Serial Getty on ttySAC2...
 [OK] Reached target Login Prompts.
 [OK] Started Command Scheduler.
 Starting Command Scheduler...
 [OK] Started Network Name Resolution.
 [OK] Started Notify NFS peers of a restart.
 Starting WPA Supplicant daemon...
 Starting Authorization Manager...
 [OK] Reached target Multi-User System.
 Starting Update UTMP about System Runlevel Changes...
 [OK] Started WPA Supplicant daemon.
 [OK] Started Update UTMP about System Runlevel Changes.
 Starting Bluetooth service...
 [OK] Started Bluetooth service.
 [OK] Started Authorization Manager.

 Fedora release 22 (Twenty Two)
 Kernel 3.10.9-00008-g48685d2 on an armv7l (ttySAC2)

 localhost login:

 Inspecting this listing reveals more useful information about the ARTIK internals. The Broadcom
 BCM4354 Bluetooth firmware is loaded. Search online for technical information about this chip to
understand how it works. Interaction with the Bluetooth networking is managed via the built-in libraries
but reading the data sheets for the hardware in your ARTIK is helpful. Based on Listing 6-7 , the Fedora boot
carries out these steps as it starts up:

• Prepares the hardware

• Locates the operating system image to be booted

• Runs the OS startup scripts

• Encrypted volumes are located

• Memory swap space is set up

• Memory is configured into privileged space and user space

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

74

• Journal logging is started

• File system is set up and volumes are mounted

• Serial TTY is set up

• NFS file system is created for remote file system mounts

• Device virtual file system is created

• Random number seed is initialized

• MMC memory device is located

• Boot file system is mounted

• Sound card is located

• Kernel extension modules are loaded

• Remote Procedure Call support is initialized

• Time synchronizer is started

• Hardware timers are configured

• DNS bind is set up

• D-Bus is set up

• Avahi mDNS is started

• Login service is established

• GSS Proxy daemon is started

• PWM audio services are started

• Bluetooth firmware is initialized

• Network manager is started

• OpenSSH server is started

• NFS peers are notified that a restart has happened

• Presents the login prompt to the user

 Now login and explore your ARTIK from the command line.

 Reconfiguring the Startup
 Reconfigure the startup of your operating system by altering the way that the systemd logic initializes various
processes. You would not normally inhibit any processes from being started. You may introduce some of
your own startup instructions in addition to what is already happening.

 In the past, adding your own startup instructions was done via the /etc/rc configuration files but these
are now deprecated and have been replaced by systemctl commands and the configuration files in the /
etc/systemd/system/ and /lib/systemd/ directories. Read all about systemctl and how it works before
randomly altering things. Consult the following Red Hat guide for details about this subsystem and read the
command line manual pages with the man command: https://access.redhat.com/documentation/en-US/
Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_
systemd-Targets.html and man systemd.special .

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Targets.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Targets.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Targets.html

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

75

 ■ Note You might accidentally compromise your ARTIK if you type the wrong command and render it
unbootable. Reinstall the operating system to enable it to boot again.

 The /boot Directory
 This is the boot partition that your U-Boot loader found and used to start the system with. The /boot
directory contains the boot loader files used by the U-Boot firmware. This directory is mounted by the kernel
as the ARTIK is started up. Table 6-5 describes the contents of this directory.

 Find out more about this directory at the following links. The leading slash character (/) on the topic name
may confuse some web browsers. In that case, access this page via the Filesystem Hierarchy Standard page.

 https://en.wikipedia.org/wiki//boot/
 https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
 https://en.wikipedia.org/wiki/Initrd
 https://en.wikipedia.org/wiki/Vmlinux
 www.informit.com/articles/article.aspx?p=1647051&seqNum=5

 ■ Note Do not remove this directory or your ARTIK will not be able to boot because U-Boot will be unable
to find the kernel.

 Login Credentials
 The system administrator of a UNIX system is described as the “ root” user. This user has sufficient
permission and privileges to completely destroy the operating system and render the ARTIK unbootable.
You must always be very careful when you are logged in as the root user. Always think carefully about what
you are about to type at the command line. The initial login credentials are listed in Table 6-6 .

 Table 6-5. Contents of the /boot Directory

 Filename Description

 exynos3250-artik5.dtb Boot time device tree blob for the kernel to use when it starts up drivers during
the boot process. This was compiled from a .dts source file.

 uInitrd U-Boot Initial Ram Disk. See the Initrd page in Wikipedia for more details. The
source code for this is available in the Samsung open source Git repository.

 zImage A compressed image file containing a version of the kernel in object code
format that might be useful for debugging kernel extensions. See the Wikipedia
page describing vmlinux for more details.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

76

 Earlier prototype versions of the ARTIK firmware have a different initial root account password. This
indicates that you have older firmware, which should be updated. Now that the Commercial Beta ARTIK 5
and 10 modules are available, it is time to retire those older Alpha and Early Beta hardware prototypes.

 For security reasons, change this administrator password if your ARTIK is likely to be accessible to
the general public. It is a very important step when you go into production with your new design that has
an ARTIK embedded within it. Be sure to carefully note the new password because if you lock out the root
account, gaining access to the system again is difficult. Reinstalling the operating system from scratch may
be necessary.

 Use the passwd command on the ARTIK command line to alter the root account password. Enter your
password carefully twice to confirm that you typed it correctly. The ARTIK operating system suggests that
any passwords shorter than eight characters are bad. Remember to note this in a safe place or use one that is
easy to remember. Make sure you change the password before shipping a product to end-users or they will
deduce your root account credentials.

 Shutdown Commands
 If you are reconfiguring your ARTIK or building applications and services to be reconnected at boot time,
shut down the ARTIK and reboot it to test your changes. Be careful not to accidentally shut down your
development workstation instead of your ARTIK module. Power-cycling an ARTIK would also work but it is
never a good idea to just remove the power from a running UNIX system. It is much better to shut it down
in an orderly way. This gives the OS an opportunity to record important information about the system and
restore it again when it restarts. While you are logged into a command line on your ARTIK module, use the
 shutdown command with options to modify its behavior.

 shutdown {control options} {time value} {warning message}

 The most useful command line options are listed in Table 6-7 . Use the man shutdown command to see
all the descriptive help pages.

 Table 6-7. Optional Arguments for the shutdown Command

 Option Description

 --help Displays a brief help message

 -H Halts the ARTIK

 -P Powers off the ARTIK. Restart it again by pressing the power (boot) button.

 -r Shuts down and reboots the ARTIK from the U-Boot as if the power (boot)
button has been pressed

 -c Cancels a pending deferred shutdown command

 Table 6-6. Default Login Credentials

 Account Password Description

 root Root Summer 2015 pioneer edition
ARTIK modules onwards

 root f@s)P!A$RTNER Early firmware Alpha prototype
ARTIK modules

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

77

 The time values can be specified as a specific hh:mm time in 24-hour format. Use the keyword now to
indicate the shutdown must happen right away. Alternatively, use the + {minutes} format to indicate a delay
measured in minutes before the shutdown happens. Without a time value, the shutdown command assumes
a +1 value by default and waits 60 seconds before shutting down. When you indicate a delay, the operating
system inhibits new logins 5 minutes prior to the shutdown. That happens immediately if you indicate a time
that is less than 5 minutes in the future. Table 6-8 illustrates a few example shutdown command variations.

 Modern Linux systems can use the systemctl utility to set the run level to a target that shuts down,
powers off, or reboots the ARTIK. Refer to this Red Hat document for details of the different ways to shut
down or sleep your system: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_
Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Power.html .

 Table 6-9 summarizes the systemctl commands for shutting down the ARTIK. They must all be
executed in the root account.

 Shutdown Console Messages
 When you tell the ARTIK to shut down without specifying a time delay, the default timeout is assumed and
the default message shown in Listing 6-9 appears on the console display.

 Listing 6-9. Default Shutdown Warning Message

 Shutdown scheduled for Tue 2016-06-28 07:00:49 EDT, use 'shutdown -c' to cancel.
 Broadcast message from root@localhost (Tue 2016-06-28 06:59:49 EDT):
 The system is going down for power-off at Tue 2016-06-28 07:00:49 EDT!

 Table 6-8. Example shutdown Commands

 Command Description

 shutdown -r now Shuts down gracefully right away and automatically runs the Universal boot loader
again to restart the ARTIK

 shutdown -P now Shuts down gracefully right away and returns the ARTIK to the initial powered on
but not yet booted state. Press the power (boot) button to reboot.

 shutdown -r +5 Reboots the ARTIK in 5 minutes.

 shutdown -r 11:55 Reboots the ARTIK just before midday. This would be tomorrow if the command is
typed in the afternoon.

 shutdown –c Cancels a pending shutdown.

 shutdown --help Displays the list of commands.

 Table 6-9. Example systemctl Commands

 Command Description

 systemctl halt Brings the system to a halt without powering it off. Press the [Reset] button and
then press the power (boot) button. The ARTIK will reboot. It will not respond to
the power (boot) button alone without the [Reset] button.

 systemctl poweroff Shuts down and powers off the system. Pressing the power (boot) button beside
the main power switch reboots the ARTIK.

 systemctl reboot Reboots the system as if it had just been powered on.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Power.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Power.html

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

78

 Override this message with your own to inform your users about what is happening. Adding a message
for your users makes sense in the context of a delayed shutdown. The warning message is sent to all
currently logged in user sessions. When you add a message, you must specify a time value to avoid the
message being misinterpreted as command line options.

 If you are shutting down now , your users will not have time to take any action, although the message
may still be helpful. At least tell them why the system is shutting down right away and when it will be up
again.

 Use the shutdown -c command to cancel a shutdown. Listing 6-10 shows you the shutdown
cancellation message.

 Listing 6-10. Shutdown Cancelled Warning Message

 Broadcast message from root@localhost (Tue 2016-06-28 07:00:38 EDT):
 The system shutdown has been cancelled at Tue 2016-06-28 07:01:38 EDT!

 The operating system displays a log of what is happening as it closes down processes and returns to a
quiescent state. Execute this command to shut down and see the messages on your console screen as the
operating system tears down all the processes that it started when the system was booted:

 shutdown -P now

 It may be tempting to power off or disconnect your ARTIK without closing your terminal window first.
Shutting down in an orderly manner is always the recommended approach to avoid corrupting your ARTIK
operating system files. Randomly disconnecting a running ARTIK from your development workstation
without an orderly shutdown is also a bad idea. Once the ARTIK has shut down, exit from your terminal
session and quit out of your terminal emulator application in an orderly manner.

 ■ Note Be very careful! I observed on my macOS development system that detaching USB serial interface
hardware from a running serial driver can trigger a kernel panic in the Macintosh workstation. It is extremely
bad if this happens because you may have other applications running that are writing to the hard disk. There
is a risk that this might completely blow away a disk partition. In a worst-case scenario, you might lose all
your files if you did not make backups. Make sure you shut down the ARTIK in an orderly way, exit the serial
communications session, and quit out of the terminal emulator before unplugging or powering off the ARTIK.

 About Power Management
 Contemplate the different ways that the ARTIK modules are going to be applied. Power management is
relevant as your design becomes more mobile. Energy conservation needs may impact many parts of your
design. Running the CPU unnecessarily when there is no work for it to do wastes precious energy. The design
of your code also can consume unnecessary energy reserves. Continuously polling means your CPU is busy
spending most of its time waiting. Setting up some kind of interrupt mechanism that triggers an event that calls
your application to action is more energy efficient. Allowing the CPU to nap or sleeping the ARTIK altogether
via the suspend mechanisms is also good. Slowing the CPU clock speed may be helpful in extreme situations.
Pay careful attention to the power drain by your sensors and other hardware attached to the ARTIK.

 When an ARTIK is embedded into a permanently powered chassis, this becomes less important, but
good design makes good ecological decisions on how it consumes resources regardless of the amount of
power available.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

79

 If you are using Arduino-style coding, then it has a built-in power saving mode. Manage power usage
at the operating system level with the systemctl command. Access the power management circuits in the
ARTIK via the I2C bus and turn off various subsystems. If you intend to shut down parts of your ARTIK via
the PMIC chips, you must make sure you restore the correct values to the Low Drop Out (LDO) regulators
and the Buck voltage convertors. The documentation for these values in the context of an ARTIK 5 or 10
module is the Device Tree Source code in the Exynos version of the Linux kernel.

 Read the ARTIK 5 and 10 data sheets from the Samsung developer resources web site. These documents
contain a lot of very useful information about power management.

 Power Management Integrated Circuit (PMIC)
 Power consumption is reduced to a very low level by incorporating the same embedded power management
controller in all ARTIK modules. This maintains a steady power source for all the chips on the board and the
voltages being supplied to externally connected devices.

 The PMIC is a critically important part of the power management that extends the life of the battery
that provides power to your ARTIK module. The buck convertors step down the incoming power supply to
the correct regulated voltage to deliver power to the onboard processor and other components. The Low-
Dropout (LDO) circuits maintain the supply when the battery runs down.

 The PMIC support in the ARTIK 10 has more buck convertors and LDOs for regulating the power
supply than the ARTIK 5. It has a more complex architecture to control for the extra circuits. Learn more
about PMIC concepts here and study the data sheet for your ARTIK module, which describes the power
management in great detail. See https://en.wikipedia.org/wiki/Low-dropout_regulator .

 Monitoring Power Consumption
 The ARTIK community continues to thrive and publish useful material that all developers can benefit from.
Kevin Sharp has posted a couple of very informative blog articles on the ARTIK developer blog. Check these
articles for insights into how to measure the current drain on your battery with a Hall Effect sensor:

 www.artik.io/2016/03/iot-201-power-management-part-1/
 www.artik.io/2016/03/iot-201-power-management-part-2/

 In part 2, Kevin makes some valuable suggestions about how to eke out your precious energy resources:

• Measure and log a typical day or week or longer period of power consumption and
plat that on a graph against what you were doing with the device. This indicates
where your power is being used the most.

• Slow your code down and do not waste effort being busy waiting. Take the
measurements less often.

• Do not use wireless communication unless you are communicating something
meaningful. Wireless devices expend a lot of energy searching for networks they can
connect to. Turn off auto detection processes to conserve energy.

• Make sure your antenna design is efficient. Poor antenna designs consume much
more energy.

• Consider using directional antennas to focus the energy towards the receiver.

• Delegate power consuming computation tasks to the ecosystem (or cloud servers) so
the minimum of work needs to be done inside the ARTIK.

https://en.wikipedia.org/wiki/Low-dropout_regulator
http://www.artik.io/2016/03/iot-201-power-management-part-1/
http://www.artik.io/2016/03/iot-201-power-management-part-2/

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

80

 If you come up with other good suggestions during your development process, please share them with the
rest of the community either with a blog article or a posting on the developer forums. The data sheets contain a
lot of useful information about the power consumption of the various internal subsystems within the ARTIK.

 Arduino Power-Saving Mode
 If you are writing your applications as Arduino sketches inside the Arduino IDE, use the built-in power
management that the Arduino supports natively. Control whether your CPU is running in power save or
performance mode with these two function calls:

 goPowerSave();
 goPerformance();

 Track the power-saving state by storing a flag value inside the application. Switch these states based on
the flag value and manage that flag value according to the needs of your application. Define the data type of the
 powersave variable to get an unambiguous Boolean test. A fragment of example code is shown in Listing 6-11 .

 Listing 6-11. Example Powersave Programming

 // Test this variable later on in your application code with a conditional branch
 Binary powersave = TRUE;

 ... more code here ...

 if(powersave)
 {
 goPowerSave();
 }
 else
 {
 goPerformance();
 }

 Power Management with systemctl
 The systemctl utility can be used to carry out simple power management tasks in your ARTIK. Refer to
this Red Hat document for details of the different ways to hibernate or sleep your system: https://access.
redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/
sect-Managing_Services_with_systemd-Power.html .

 This article also has some useful guidance on power management commands for hibernating and
suspending the operating system to conserve energy. Table 6-10 summarizes the systemctl commands that
are useful in this context. They must all be executed in the root account. The shutdown command provides
some additional mechanisms for controlling the ARTIK.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Power.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Power.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Power.html

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

81

 ■ Note The systemctl hibernate and systemctl hybrid-sleep commands both throw an error message
due to a problem with dependencies in its target configurations. This may be due to a missing state value
(‘ disk ’) in the /sys/power/state implementation. This may be corrected in a later OS build. Diagnose the
problem with a journalctl -xe command to see the error log. You may attempt to fix the dependency by
modifying and rebuilding the kernel but the problem will regress back again after an OS upgrade unless it is
fixed in the master build of the OS.

 /sys/power
 The sysfs file system collects the power management control together in the /sys/power directory. This directory
provides a unified interface to the power management subsystem. This is described in detail in the kernel
documentation. The foundations and architectural design of power management are described in great detail in
the ACPI specification, which is the basis on which power management is architected. The ACPI specification is
available from the specifications page at the UEFI web site. Consult the following links for more information:

 www.kernel.org/doc/Documentation/power/interface.txt
 www.kernel.org/doc/Documentation/ABI/testing/sysfs-power
 www.kernel.org/doc/Documentation/power/states.txt
 www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-regulator
 www.kernel.org/doc/Documentation/power/basic-pm-debugging.txt
 http://uefi.org/specifications

 Table 6-11 lists the items that live in the /sys/power directory and what they do. Although you could
potentially write to these files from a C language application, the systemctl and shutdown commands are
probably easier to use from bash .

 Table 6-10. Power Management With systemctl

 Command Description

 systemctl poweroff Shuts down and powers off the system. Pressing the power (boot) button
beside the main power switch reboots your ARTIK module.

 systemctl suspend Suspends the system and saves the current state in RAM. Peripheral devices
are powered off to save power. Provided the RAM is backed up by a battery,
starting the machine should be much quicker than a normal cold boot from
a halted or powered off state. Pressing the power (boot) button restarts the
ARTIK instantly.

 systemctl hibernate Hibernates the system in a way similar to the suspend action. Instead of
saving to RAM, the hibernation saves the current system state onto hard
disk. This is more resilient and does not require a battery backup but it is
not as instantaneous when the system wakes.

 systemctl hybrid-sleep Hibernates and suspends the system

http://www.kernel.org/doc/Documentation/power/interface.txt
http://www.kernel.org/doc/Documentation/ABI/testing/sysfs-power
http://www.kernel.org/doc/Documentation/power/states.txt
http://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-regulator
http://www.kernel.org/doc/Documentation/power/basic-pm-debugging.txt
http://uefi.org/specifications

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

82

 When you read the /sys/power/state file, it returns the available states that your ARTIK can be set
into. A Commercial Beta ARTIK 5 returns just two options out of the full set that are available. Others may
be added at later revisions of the operating system. Writing one of these values to the file sets the ARTIK into
that state, which gives you a simple way to access this behavior from a C language application. The systemctl
commands are easier to use from bash scripts. Table 6-12 lists the different state values and indicates the two
that the ARTIK currently supports. The ACPI state labels are commonly used conventions in PC systems.

 Wake Locks
 Wake locks are a feature inherited from the Android operating system for keeping the system awake when
it is attempting to go into a suspended state. They are called wake locks because they lock the device into
an “awake” condition and prevent it going to the S3 low-power state. They can lead to increased power
consumption if you use them inappropriately.

 Table 6-12. Available Low-Power States

 ACPI State Supported Description

 S0 freeze √ Suspend-to-Idle. A lightweight system sleep state, which can be
woken by asserting a HIGH value on the power pin (J3-10 on an
ARTIK 5 and J1-16 on an ARTIK 10). Some peripherals are powered
down and the CPU is able to take short naps.

 S1 standby Power-On Suspend. Not currently supported on the ARTIK.

 S3 mem √ Suspend-to-RAM. The current run state of the CPU is preserved in
battery backed-up memory and everything goes into low-power
mode.

 S4 disk Suspend-to-Disk. This is not currently supported in the ARTIK, which
may explain why systemctl hibernate does not work.

 Table 6-11. Power Management Controls Via /sys/power

 Property Description

 Autosleep This file can be written with one of the strings used by /sys/power/state . When
this happens, it triggers a transition to the requested sleep state.

 pm_freeze_timeout Maximum time in milliseconds to freeze all user space processes or all freezable
kernel threads

 wake_lock Provides user space control of wakeup requests and activates them on demand

 wakeup_count Allows user space to put the system to sleep while managing potential wakeup
events

 pm_async Controls whether user space can enable or disable asynchronous suspend and
resume of devices

 state Controls system sleep states. Reading from this file returns the available sleep
state labels. Writing one of these strings to this file causes the system to transition
into the corresponding state, if it is available. ARTIK supports the “ freeze ” and
“ mem ” states.

 wake_unlock This file allows user space to deactivate wakeup requests created by wake_lock .

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

83

 The kernel debug file system maintains a log of the wakeup sources to inspect. Display the /sys/
kernel/debug/wakeup_sources file with a cat command. The wakeup sources it lists correspond to devices,
GPIO pins, and networking events, which inhibit the sleep state. Table 6-13 lists the available wake locks.

 Relevant Power Management AXT Connections
 Tables 6-14 and 6-15 summarize the power- and reset-related connections available on the AXT connectors
underneath your ARTIK module. The connections for the ARTIK 5 and 10 are each shown in their own
tables. Refer to the data sheets for more information about voltage levels and other detailed specifications
regarding these pins.

 Table 6-13. Wake Locks

 BT_bt_wake
 BT_host_wake
 wlan_wd_wake
 wlan_ctrl_wake
 wlan_rx_wake
 wlan_wake
 gpio_keys.5
 11c00000.fimd_fb
 mmc2_detect

 mmc1_detect
 mmc0_detect
 s2m-rtc
 s3c-hsotg
 alarmtimer
 rk-ac
 rk-bat
 autosleep

 Table 6-14. ARTIK 5 Power and Reset AXT Pinouts

 Connector Name Function

 J3-10 PWR_KEY PMIC power on key, active HIGH

 J3-31 V_ADP_SENSE AC power detect

 J3-35 XOM2 Boot from SD when this pin is HIGH

 J3-37 XOM3 Boot from eMMC when this pin is HIGH

 J3-15 XEINT_17 Charge status interrupt (CHG_IRQ)

 J3-25 XEINT_25 Fuel gauge interrupt

 J4-49 COIN_BAT Auxiliary backup coin battery 3-volt input

 J4-51 AP_NRESET Cold ARTIK 520 Module reset by PMIC. RST signal on connector
J25-3 and J510-7 (a.k.a. RST/MRNRESET)

 J4-48 AP_NWRESET Warm reset from PMIC (for development purposes)

 J7-18 XjTRSTn JTAG debug reset line

 J7-56 ZB_RSTn JTAG debug reset line

 J4-15 Xi2c1_SCL Bus I2C-1 used by FUEL subsystem (PMIC)

 J4-17 Xi2c1_SDA Bus I2C-1 used by FUEL subsystem (PMIC)

 J3-34 XGPIO17/XT_INT163 Power management external IC interrupt (a.k.a. XT_INT163)

 J3-23 XEINT_24 Turn device on

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

84

 /sys/class/power_supply
 A generic approach to monitoring the power supplies is to access the /sys/class/power_supply/rk-ac
directory for power adapter details and the /sys/class/power_supply/rk-bat directory for properties of
the battery. Some useful paths are summarized in Table 6-16 .

 Table 6-15. ARTIK 10 Power and Reset AXT Pinouts

 Connector Name Function

 J1-16 PWR_KEY PMIC power on key, active HIGH

 J1-39 V_ADP_SENSE AC power detect

 J1-43 XOM2 Boot from SD when this pin is HIGH

 J1-45 XOM3 Boot from eMMC when this pin is HIGH

 J1-23 XEINT_17 Charge status interrupt (CHG_IRQ)

 J1-33 XEINT_25 Fuel gauge interrupt

 J2-53 COIN_BAT Auxiliary backup coin battery 3-volt input

 J2-43 AP_NRESET Cold ARTIK 1020 Module reset by PMIC. RST signal on connector
J25-3 and J510-7 (a.k.a. RST/MRNRESET)

 J2-47 AP_NWRESET Warm reset from PMIC (for development purposes)

 J4-13 XjTRSTn JTAG debug reset line

 J4-16 ZB_RSTn JTAG debug reset line

 J1-71 Xi2c0_SCL Bus I2C-0 used by FUEL subsystem (PMIC)

 J1-73 Xi2c0_SDA Bus I2C-0 used by FUEL subsystem (PMIC)

 J2-46 GPIOC40 Power management external IC interrupt

 J2-63 CHG_SDA_1.8V Change I2C SDA lines to 1V8 signaling

 J2-65 CHG_SCL_1.8V Change I2C SCL lines to 1V8 signaling

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

85

 Power Management Devices
 Explore the sysfs file system for details of power management-related components to interact with if you
want to explore specific devices rather than use the generic approach. The /sys/bus/i2c/drivers directory
contains the devices connected to the I2C bus, several of which are used for power management tasks.
The power supply requirements are described in the data sheets, which are available from the developer’s
Downloads page. The Commercial Beta ARTIK 5 reveals the device drivers listed in Table 6-17 , although not
all of these devices are used for power management.

 Table 6-16. Useful Power Supply Status Values

 Path Description

 /sys/class/power_supply/rk-ac/
type

 Indicates that the rk-ac power supply is a “ Mains ” device

 /sys/class/power_supply/rk-ac/
uevent

 Power supply properties list including name and online status.
This value is writable and forwards changes to the kernel when you
want to control the power supply.

 /sys/class/power_supply/rk-bat/
capacity

 Battery charge capacity

 /sys/class/power_supply/rk-bat/
health

 Battery health status

 /sys/class/power_supply/rk-bat/
power

 Wake up controls

 /sys/class/power_supply/rk-bat/
present

 Returns the value 1 if the battery is plugged in

 /sys/class/power_supply/rk-bat/
status

 Indicates the charging status. Will display the message “ Not
charging” when the battery capacity is 100% .

 /sys/class/power_supply/rk-bat/
technology

 Describes the kind of battery that is attached

 /sys/class/power_supply/rk-bat/
time_to_empty_now

 How long the battery will last (measured in seconds). This value
should remain constant while the ARTIK is attached to a mains
power supply.

 /sys/class/power_supply/rk-bat/
type

 Indicates that the rk-bat power supply is a “ Battery” device

 /sys/class/power_supply/rk-bat/
voltage_now

 Current battery power supply voltage measured in microVolts

 /sys/class/power_supply/rk-bat/
uevent

 Power supply properties list. This value is writable and it forwards
changes to the kernel when you want to control the power supply
delivered by the battery.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

86

 BQ2429 - Battery Charger Chip
 The battery charger is listed as a device driver but is not instantiated as an I2C node so it has no address.
This may be because at the time this listing was created, there was no battery charger attached. Deduce the
address by inspecting the contents of the /sys/bus/i2c/devices directory.

 Check out the following URL on the Digi-Key web site for technical information about the BQ2429
chip. Download the data sheet to get the I2C register descriptions to interact with the PMIC battery charger
controller directly from your application. Go to www.digikey.com/product-detail/en/texas-instruments/
BQ24296RGET/296-39592-1-ND/ .

 On the Type 5 developer reference board schematics, this is shown on the power and reset items page.
This page describes it as chip number U30. Find the chip on the developer reference board between the
battery connector and the coin cell backup battery.

 CW2015 - Battery Fuel Gauge Chip
 The CW2015 monitors the state and condition of an attached Lithium-ion or other battery types. The
general state of charge and condition of the battery is monitored and accessible over the I2C bus. The data
sheet for the CellWise 2015 fuel gauge chip is available from this URL. The data sheet contains the I2C
register details for applications to interact with it.

 http://www.lean-chip.com/mc-download.html?id=154

 This code illustrates how to access the CW2015 chip from your own C language application. Go to the
following link: https://github.com/SamsungARTIK/linux-artik/blob/artik-exynos/v3.10.x/drivers/
power/cw2015_battery.c .

 The following is a useful tutorial article hosted by Digi-Key. It describes how an I2C bus connected fuel
gauge chip can work better than sensing values through the generic ADC interface. Go to www.digikey.com/
en/articles/techzone/2014/jan/fuel-gauge-ics-simplify-li-ion-cell-charge-monitoring .

 Inspect the properties of the CW201x fuel gauge device with this command:

 ls -la /sys/bus/i2c/drivers/cw201x

 Table 6-17. ARTIK 5 Power Management I2C Devices

 Device Bus Address Description

 ak4953 I2C-1 0x13 Stereo audio codec

 bq2429x_charger I2C-1 0x6B Battery charger

 cw201x I2C-1 0x62 Battery level fuel gauge

 dummy I2C-0 0x06 Used to map devices that respond to multiple
addresses such as storage devices

 sec_pmic I2C-0 0x66 Power management Integrated Circuit. The device
drivers reveal that this is a S2MPS14-PMIC chip.
Use a search engine to locate useful resources about
it. Read the kernel power regulator documentation
that describes it.

http://www.digikey.com/product-detail/en/texas-instruments/BQ24296RGET/296-39592-1-ND/
http://www.digikey.com/product-detail/en/texas-instruments/BQ24296RGET/296-39592-1-ND/
http://www.lean-chip.com/mc-download.html?id=154
https://github.com/SamsungARTIK/linux-artik/blob/artik-exynos/v3.10.x/drivers/power/cw2015_battery.c
https://github.com/SamsungARTIK/linux-artik/blob/artik-exynos/v3.10.x/drivers/power/cw2015_battery.c
http://www.digikey.com/en/articles/techzone/2014/jan/fuel-gauge-ics-simplify-li-ion-cell-charge-monitoring
http://www.digikey.com/en/articles/techzone/2014/jan/fuel-gauge-ics-simplify-li-ion-cell-charge-monitoring

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

87

 If you trace the symbolic link to its target, it leads you to the device, which also tells you the base address
of the driver:

 ls -la /sys/devices/13870000.i2c/i2c-1/1-0062

 The following bash command displays the battery charge status. Wrap the access to this readable file
in a C language function and then parse the result to integrate it with your application. Although there is no
battery connected, the charger status still presents some output.

 cat /sys/devices/13870000.i2c/i2c-1/1-0062/charger_status
 online(0), change(0), vol(4996815), cap(100) tte(8191)

 According to the kernel documentation here, these voltage values are in microVolts (μV). Take this into
account and scale accordingly when you parse the results. This kernel documentation is very informative
regarding power management through the kernel-supported mechanisms: www.kernel.org/doc/
Documentation/power/power_supply_class.txt .

 On the Type 5 developer reference board schematics, this component is chip number U49 and
positioned next to the battery connector if you want to locate the physical device.

 The sec_pmic (S2MPS14-PMIC) Chip
 The fully integrated PMIC support uses Samsung S2MPS14 chips. Examining the /sys/bus/i2c/drivers/
sec_pmic directory for this device reveals a symbolic link to a device which includes the device base address.
This is not enough on its own because the I2C registers inside the device are used to configure it. The
bindings for this device in the official Linux kernel sources have some helpful information about interfacing
via the I2C bus. Go to https://github.com/torvalds/linux/blob/master/Documentation/devicetree/
bindings/mfd/samsung,sec-core.txt .

 Useful voltage values can be inferred from the device tree source file in the Linux kernel. The ARTIK 5
device tree source has recently been added to the official kernel Git repository:

 https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250.dtsi
 https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-artik5.dtsi

 If you inspect the sysfs file system for this device, eventually you arrive at this directory:

 /sys/devices/13860000.i2c/i2c-0/0-0066/s2mps14-pmic/regulator/

http://www.kernel.org/doc/Documentation/power/power_supply_class.txt
http://www.kernel.org/doc/Documentation/power/power_supply_class.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/mfd/samsung,sec-core.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/mfd/samsung,sec-core.txt
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-artik5.dtsi

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

88

 The properties belonging to these regulators are intended for read only access. Changing their values
from your application is not feasible because you might set the wrong voltages and damage something
inside the ARTIK. You cannot possibly second-guess the Samsung engineers and work out more efficient
power saving strategies. It may be helpful read the values and present them in a power management
monitoring UI for your users. Checking the microvolts property may indicate a fault in the ARTIK module
so they are helpful for diagnosing power supply problems. Table 6-18 lists the properties of the regulator
object and explains what they are for.

 Figure 6-5. PMIC regulator objects

 On a Commercial Beta ARTIK 5, there are 16 subdirectories in this tree, one for each power regulator.
An ARTIK 10 would have more. Inspect them to find out the current power settings. There are also properties
that describe the state of each regulator in its normal running condition and when the system is in a
suspended state. Read these regular file from the bash shell or from a C language application. Figure 6-5
illustrates the internal structure of the directory tree for this I2C device.

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

89

 When regulators are used to control current, the voltage-related properties are replaced by current related
properties whose names are based on the string “ amps ” instead of “ volts.” Table 6-19 lists the configurations
contained in the voltage regulator directories. In this example, several regulators are present but unused.

 Table 6-18. Regulator.1 Object Properties

 Property Description

 device Symbolic link to the device that manages this regulator

 exynos3250-devfreq-mif-vdd_mif Symbolic link to the Dynamic Voltage and Frequency Scaling
(DVFS) for memory controller and peripheral buses as defined in
the device tree loaded by the kernel at boot time

 max_microvolts The maximum safe working regulator output voltage setting for
this domain measured in microVolts

 microvolts The regulator output voltage setting measured in microVolts for
regulators that control voltage. This value is not the current voltage
value, just a configuration for when the regulator is enabled.

 min_microvolts The minimum safe working regulator output voltage setting for
this domain measured in microVolts

 name A string that identifies the regulator for display and debugging
purposes

 num_users The number of consumer devices that have called the regulator_
enable() function on this regulator

 power A directory containing parameters related to the suspend behavior
of this regulator

 state Indicates the current state of the regulator: enabled , disabled, or
 unknown .

 subsystem A symbolic link to the sysfs subsystem that this regulator is
categorized under

 suspend_disk_state The voltage value to be used when the power state is set to “disk”

 suspend_mem_state The voltage value to be used when the power state is set to “ mem”

 suspend_standby_state The voltage value to be used when the power state is set to
“ standby”

 type Indicates what type of regulation is employed: voltage , current,
or unknown .

 uevent Generic kernel device messaging support

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

90

 Ta
bl

e
6-

19
.

 V
ol

ta
ge

 R
eg

u
la

to
r

C
on

fi
gu

ra
ti

on
s

 In
de

x
 N

am
e

 M
ax

 m
ic

ro
Vo

lts

 C
ur

re
nt

 m
ic

ro
Vo

lts

 M
in

 m
ic

ro
Vo

lts

 N
um

 u
se

rs

 St
at

e

 1
 vd
d_
mi
f

 16
00
00
0

 80
00
00

 60
00
00

 0

 en
ab
le
d

 2
 vd

d_
ar
m

 16
00
00
0

 85
00
00

 60
00
00

 0

 en
ab
le
d

 3
 vd
d_
in
t

 16
00
00
0

 85
00
00

 60
00
00

 0

 en
ab
le
d

 4
 vd

d_
zb
_2
.8

 24
00
00
0

 24
00
00
0

 24
00
00
0

 1
 en
ab
le
d

 5
 vd
d_
lc
d_
3.
3

 33
75
00
0

 33
00
00
0

 18
00
00
0

 1
 en
ab
le
d

 6
 vc

c_
pe
ri
_

de
vi
ce
_2
.8

 33
75
00
0

 28
00
00
0

 18
00
00
0

 1
 en
ab
le
d

 7
 vc
c_
av
dd
_1
.8

 23
75
00
0

 18
00
00
0

 80
00
00

 1

 en
ab
le
d

 8
 vc

c_
pe
ri
_

de
vi
ce
_1
.8

 23
75
00
0

 18
00
00
0

 80
00
00

 0

 di
sa
bl
ed

 9
 zb
co
re
_1
.2
5

 12
50
00
0

 12
50
00
0

 12
50
00
0

 1
 en

ab
le
d

 10

 vc
c_
pe
ri
_1
.8

 23
75
00
0

 18
00
00
0

 80
00
00

 0

 en
ab
le
d

 11

 VD
D_
US
B_
AP
_1
.0
V

 10
00
00
0

 10
00
00
0

 10
00
00
0

 0
 en
ab
le
d

 12

 VD
D_
UO
TG
_A
P_
3.
3V

 30
00
00
0

 30
00
00
0

 30
00
00
0

 1
 en
ab
le
d

 13

 LD
O2

 0

 12
00
00
0

 0
 0

 en
ab
le
d

 14

 LD
O4

 0

 18
00
00
0

 0
 0

 en
ab
le
d

 15

 LD
O5

 0

 10
00
00
0

 0
 0

 en
ab
le
d

 16

 LD
O7

 0

 18
00
00
0

 0
 0

 en
ab
le
d

CHAPTER 6 ■ STARTUP, SLEEP, AND SHUTDOWN

91

 These regulators are all managing a voltage value. This is indicated in their type property. Each
maintains a min and max microvolt value and a current (nominal) value. These values are defined in the
device tree source, which is passed to the kernel by U-Boot. The values here differ somewhat from the
examples in the device tree source file that has just been embedded in the Linux master kernel sources.
Be very careful if you are altering the voltage values based on any of the online sources. The values in
Table 6-17 were detected on a running ARTIK 5. The state property indicates whether the regulator is
 enabled or disabled . In the suspended state, the regulators are all set into a disabled state. Read the kernel
documentation that describes these values at the following links:

 www.kernel.org/doc/Documentation/power/regulator/overview.txt
 www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-regulator

 ■ Note All of the available registered regulators are also listed in the /sys/class/regulator directory. You
can use that as an alternative path to reach them if you need to operate on the regulators from your application.

 Saving Power by Slowing Things Down
 One helpful approach to conserving power is to run the CPU more slowly. Your end users may not even
notice you have done this because the CPU probably spends a lot of time waiting for user input. Each CPU
has the same internal structure but only one is described here. Inspect the /sys/devices/system/cpu/cpu0/
cpufreq/ directory where there are properties available to tell you about the current processor performance.
Several scaling properties are writable from your user-space application. These are described as governors
in the kernel documentation. This terminology is derived from the hardware used on ancient steam engines
to control the operating speed of the engine. Altering the values in these files will communicate with the
kernel and request that it adjusts the CPU speed. The /sys/devices/system/cpu/cpu0/cpuidle/ directory
is also worthy of some attention. Inspect the /sys/class/devfreq directory contents for controls you
can operate on the Exynos devices that manage internal clocks and power regulators (bucks). User space
applications can directly control the CPU and bus frequencies through these interfaces to save power. Refer
to these articles for more ideas about power conservation:

 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Power_
Management_Guide/cpufreq_governors.html
 www.kernel.org/doc/Documentation/cpu-freq/user-guide.txt
 www.kernel.org/doc/Documentation/cpu-freq/governors.txt
 https://wiki.archlinux.org/index.php/CPU_frequency_scaling
 www.pantz.org/software/cpufreq/usingcpufreqonlinux.html
 www.ibm.com/developerworks/library/l-cpufreq-1/
 https://lwn.net/Articles/384146/
 www.kernel.org/doc/Documentation/cpuidle/sysfs.txt
 www.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaattunproctop.htm

 Summary
 As you explore more of the ARTIK internals, it gives you a solid foundation on which to learn new things.
Now that the power management, booting, startup, and shutdown procedures are covered, the next chapter
starts to delve more deeply into the OS internals. First, the file system needs to be explored at a high level.
Then a more detailed examination of the kernel managed virtual file systems is possible.

http://www.kernel.org/doc/Documentation/power/regulator/overview.txt
http://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-regulator
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Power_Management_Guide/cpufreq_governors.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Power_Management_Guide/cpufreq_governors.html
http://www.kernel.org/doc/Documentation/cpu-freq/user-guide.txt
http://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
http://www.pantz.org/software/cpufreq/usingcpufreqonlinux.html
http://www.ibm.com/developerworks/library/l-cpufreq-1/
https://lwn.net/Articles/384146/
http://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaattunproctop.htm

93© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_7

 CHAPTER 7

 File Systems

 The file system organizes all the components of the operating system and provides a sensible context for
your applications to live in. Without the file system, you would never be able to find anything or access the
peripheral interfaces by talking to the kernel and driver collection. This chapter introduces the basic file
system components but you also need to read about the virtual file systems in the following few chapters.

 About the File System
 The file system is the scaffolding around which your ARTIK operating system is constructed. It provides a
predictable way to organize and find all the various components. The file system provides an environment
where applications can coexist with the rest of the operating system components. Managing collections of
files in directories and allowing those directories to be nested within one another, the file system builds a tree
of locations that can be navigated very easily. Well-known locations are reserved for storing configuration
files, and other things that are needed during the ARTIK start-up are placed where they can be found easily.

 The file system concept has been extended to include ephemeral or virtual files. These files look like
regular files to be opened for reading and writing but they are hooks for mechanisms inside the kernel. The
kernel uses virtual file systems (VFS) to reflect the internal objects that it manages into user space so your
application can access their properties. The virtual file systems are each covered in their own chapters.

 Think of the file system as one facet of the API your ARTIK makes available to your applications.
Knowing the important locations within the file system enables you to build more sophisticated and efficient
applications without reinventing wheels that are already provided for you.

 Filesystem Hierarchy Standard (FHS)
 Modern Linux file systems conform to a common Filesystem Hierarchy Standard (FHS). This describes
how the file system should be organized and helps developers write portable software that is more likely to
work across a range of different platforms. The current version of FHS is 3.0 and it has the most up-to-date
descriptions of the standardized directories in the ARTIK module. There are a few additional directories
that are discussed separately in their own chapters. The UNIX FHS explains a lot of the fine detail about
the organization of your ARTIK module directory structure and is available for downloading at
 http://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf . Read the Wikipedia page to see the
background and history behind FHS at https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard .

 File System Inodes
 The file system has some metadata that controls its limits and scope. Two important properties are compiled
into your operating system kernel. They describe the maximum number of files that can be open within a
single process and the total number of inodes that can be created on a single storage partition. When the

http://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

CHAPTER 7 ■ FILE SYSTEMS

94

number of files being stored exhausts the total number of inodes, the partition reports an error saying it is
full. This can happen when it still has 50% or more of its blocks free. The number of available inodes must
be tuned to suit what you plan to store on a partition. If you expect to store video clips, you will probably run
out of disk blocks before your inodes are all used up. If your plan to store lots of very small parameter files,
you might consume all your inodes first.

 Each file is associated with an inode within the filesystem. This inode maintains all the metadata that
describes the file, such as the filename and extension, the access controls, and the details of the directory
to which it belongs. The inode can be manipulated independently of the file contents, although the way it is
presented to the user, they can appear to be one single integrated entity.

 Conceptually speaking, all of the inodes in a file system are stored in a table. A directory is a collection
of inodes, which are attached by linking them to an item in the table. Figure 7-1 illustrates this concept.

 A directory is implemented as a virtual file so it can grow to accommodate more inodes. Putting a file
into a directory attaches an inode to that directory. The ls command lists the files attached via their inodes.

 Because inodes are just links, they can be referred to by multiple directory entries. If you make a hard
link to a file, it creates a directory reference to an inode that may already be in use elsewhere. Deleting one
of those directory references merely unlinks the inode from the directory but keeps the file intact via its
alternative link. Removing all the links effectively deletes the file but the space it occupied and the inode
persist for a while until the operating system needs it. You have a small window of opportunity to undelete
files because their inode structures are still intact.

Inode

Inode

Inode

Inode

Inode

Inode

Inode

Inode

File 1

File 2

File 3

File 4

File ...

Inode table

Directory File
metadata

File
body

 Figure 7-1. A file system element

CHAPTER 7 ■ FILE SYSTEMS

95

 Collections of inodes are gathered together into a directory which itself may be implemented as a file
on the disk. These directories are presented as folders in a GUI desktop environment and lists of files in the
command line shell. The terms “directory” and “folder” are generally interchangeable but there may be
some differences in what you can do with them in the two environments. In the command line shell we call
them directories rather than folders.

 The files are contained within directories and directories can be contained within other directories.
This creates a tree structure where the file system has a single root inode at the top. Figure 7-2 shows a
nested directory tree structure.

file1

file2

aaa

Root level
of disk

ccc

/disk/aaa/ccc

/disk/bbb

ddd

/disk/aaa/ddd/file2

eee

/disk/aaa/ddd/eee/file1

bbb

 Figure 7-2. Nested directory tree

CHAPTER 7 ■ FILE SYSTEMS

96

 File System Types
 The file system type describes how the contents of a partition are organized. A partition may live on physical
media or it may be created on a temporary basis. Most of the temporary file systems are created and
managed by the kernel but few might be managed by applications that create disk images. Each kind of file
system is designed for a different purpose. They each have different characteristics and limitations. Some
data loss is possible when moving files from one file system type to another. If you move a file whose name
is spelled with uppercase and lowercase letters to a file system that does not preserve case in its file names,
moving that file back might effectively rename it. File name lengths can also be accidentally truncated in the
same way. Table 7-1 summarizes the different types of file systems used inside the ARTIK module.

 File Types
 The ls command lists the files contained in each directory. The extreme left column of the file listing
describes the access permissions for the file or directory. The first character is called a mode flag and shows
you what kind of entity it is. These are listed in Table 7-2 .

 Table 7-1. File System Types

 Type Existence Description

 cgroup Virtual Process control groups managed in a hierarchy

 configfs Virtual Configuration filesystem where user-created kernel objects live

 debugfs Virtual Kernel internals presented in a debuggable form

 devpts Virtual Pseudo terminals created by ssh and telnet connections

 devtmpfs Virtual A dynamically created device directory maintained by the kernel and
available for modification from user-space applications

 ext4 Real Linux extended file system version 4. Based on the earlier ext3 file
system.

 nfsd Real A Network File System shared from a remote file server

 proc Virtual Linux kernel process spaces mapped into a file system

 rpc_pipefs Virtual Used by the Network File System to resolve IP addresses to shared file
systems

 sysfs Virtual Provided by the kernel for interacting with kernel objects from user
space

 tmpfs Virtual A temporary file system discarded when the system shuts down.
Similar to a RAM disk.

 vfat Real A Virtual File Allocation Table originally introduced by Windows 95 to
support long file names on top of the 8•3 notation supported by the
underlying FAT file system

CHAPTER 7 ■ FILE SYSTEMS

97

 This gives rise to two fundamentally different kinds of files that your applications can operate on:
character files that you can read and write one line at a time and binary files that you might read or write
a block at a time or in one single operation. Character (or text) files sometimes have some transformation
required to clean up control characters, escape sequences, and line breaks whereas binary files are accessed
as raw data.

 The UNIX operating system determines the purpose of a file by its file extension. This is usually a
three or four letter suffix following a single full stop (period) character. Although this appears to be distinct
from the file name, as far as UNIX is concerned, the filename and extension are both considered to be the
identifying text and the file extension is also stored in the directory as part of the filename description. Some
file systems store the file type as a distinctly separate property. A UNIX file type is based on the file name
extension. This is a convention rather than a characteristic of the filesystem.

 Table 7-2. File System Entity Object Types

 Type Mode Description

 Regular file - When these are listed, they have a dash character in the mode
field. Open these files for reading and writing. The files may be
character streams or binary files. UNIX treats both file types the
same. Use appropriate techniques for accessing them from your
application.

 Directory d This is a list of inodes with each one describing a file and where it
is stored.

 Symbolic link l This is a reference to a real file. It contains no information itself
other than a pointer to a target file. The file protections are always
set to 777 (rwxrwxrwx) because the access control of the target file
is used to control whether a user can open the file.

 Named pipe p Used for interprocess communication where the output of one
process is piped to the input of another. This is sometimes called
FIFO (First In, First Out). Two complementary pipes are necessary
for bidirectional communication between processes.

 Socket s A bidirectional duplex connection used for interprocess
communication within the same host. The connection behaves
like a network socket connection with a client and server
exchanging data via a request and response.

 Device file (character) c Character devices such as a TTY are used for unbuffered I/O
access in variable sized units. Although it is an interface to the
hardware, your application can treat it as if it were a normal file.

 Device file (block) b Blocks access devices such as a disk drive. These files are accessed
using fixed length read and write operations to access an entire
block at a time.

 Optimized data file C A high-performance data file optimized by using contiguous
storage blocks.

 Unknown ? A setting for some other kind of file.

CHAPTER 7 ■ FILE SYSTEMS

98

 File Access Control
 There are two main ways to control access to file system entities. The simplest way is to use the properties
belonging to the inode that represents the file or directory. These permission values are shown in a full ls
-la listing. Following the mode descriptor character, there are three groups of three characters. Figure 7-3
shows how these map to individual file access controls.

 The access control flags are grouped into three triads. The first triad controls what the file owner can do.
The second controls what a group member can do. The file needs to be a member of a group and the users
who can access it using group permissions must also be members of that group. The third triad controls
what everyone else in the world can do to the file. The permission character is either a letter to describe the
kind of access allowed or a dash if no access is permitted.

 Each triad can control read access and write access independently of one another. A file can legitimately
be writable but not readable. There are files like this in the sysfs virtual file system that reflect kernel object
properties. In each triad, it is also legal for a file to have no access although there should be some access allowed
that the root user can still use to manage the file. The third character controls the execution disposition. This
is irrelevant for data files but command line shell scripts cannot run unless this value is set, nor can compiled
binary executable applications. The executable flag can be set on the same owner/group/world basis.

 The executable flag can also carry other values to fine-tune the way in which it can be executed. A
lowercase letter s or t indicates that an executable can inherit the user ID or group ID of the file owner when
it is run. A capital letter S or T applies the same logic to non-executable data files when they are opened.
Other characters indicate whether extended attributes are available.

 The permission flags are set with the chmod command. Use the related chown command to set the file
owner and the chgrp command to set the group ownership. Individual flags can be set by adding command
line options. Use a numeric value to define a binary bit mask to set multiple permissions with a single chmod
command. The bit weights are indicated underneath each triad in Figure 7-3 . Table 7-3 shows how those bit
masks map to the symbolic permission flag values.

rm w x

OwnerMode

124

r w x

Group

124

r w x

World

124

 Figure 7-3. Simple access permission flags

CHAPTER 7 ■ FILE SYSTEMS

99

 The alternative to the file permission attributes on an inode is to add an Access Control List (ACL) to the
files. These are much more complex to set up but can provide a more flexible arrangement. ACL implemented
 owner like permissions can be granted to multiple individual user accounts without them needing to be
 group members. Rules for allowing and denying can be defined and the permissions can be propagated to
child directories lower down in the tree. Read more about UNIX file permissions at the following links:

 https://en.wikipedia.org/wiki/File_system_permissions
 https://en.wikipedia.org/wiki/Access_control_list
 https://linux.die.net/man/1/chmod
 https://linux.die.net/man/1/chown
 https://linux.die.net/man/1/chgrp

 File System Trees
 Now that you are logged in to a working command line, inspect the OS internals to get to know your ARTIK
better. There are many interesting places to start looking. Knowing what the top-level directories contain
helps you to find things inside your ARTIK module from the command line. These file system paths are
used to access files and devices from inside your application source code. Table 7-4 describes the important
directories starting at the head of various file systems within your ARTIK module.

 Table 7-3. Symbolic and Numeric Notation for Access Permission Flags

 Symbolic Numeric Description

 ---------- 0000 No permissions

 -rwx------ 0700 Read, write, and execute only for owner

 -rwxrwx--- 0770 Read, write, and execute for owner and group

 -rwxrwxrwx 0777 Read, write, and execute for owner, group, and others

 ---x--x—x 0111 Execute

 --w--w--w- 0222 Write

 --wx-wx-wx 0333 Write and execute

 -r--r--r-- 0444 Read

 -r-xr-xr-x 0555 Read and execute

 -rw-rw-rw- 0666 Read and write

 -rwxr----- 0740 User can read, write, and execute; group can only read; others
have no permissions.

CHAPTER 7 ■ FILE SYSTEMS

100

 Table 7-4. Important Directories

 Directory Content

 / Primary hierarchy root and root directory of the entire file system hierarchy

 /bin OS command line tools (symbolic link to /usr/bin). These are essential command line
tools, which must be available for all user accounts. These commands must also be available
when the system is booted into single user mode.

 /boot Support for the boot process. The static files for the boot loader, kernel, and initial device
tree live here. This is mounted during the auto boot process.

 /dev A virtual file system that mirrors the logical devices. These devices are considered essential
and include things like /dev/null , which is used as a sink for unwanted data. This is
managed with the udev tools.

 /etc Host-specific, system-wide configuration files

 /home Home directories for user accounts

 /lib Libraries of code and kernel extensions (symbolic link to /usr/lib). Libraries essential to
the /bin and /sbin executables must live here.

 /lost+found Files or sometimes only fragments of them recovered by a disk repair

 /media Removable media mount points for CD-ROMs, etc.

 /mnt Temporary file systems and devices mount point. These might be file systems on external
hard drives or network file systems.

 /opt Optional add-on software not part of the default OS

 /proc A virtual file system that mirrors the content of running processes and kernel information,
presented as files. One directory is created dynamically for each process as it is spawned.
The directories are destroyed automatically as processes close down when they quit. The
top level contains some useful runtime information about the system.

 /root System administrator home directory

 /run A virtual file system containing information about the running system since it was last
booted.

 /sbin System administrator tools (symbolic link to /usr/sbin)

 /srv A virtual file system containing site-specific, service-related data

 /sys A virtual file system that mirrors the system hardware via the kernel. In the context of an
ARTIK, this is where your user space applications can access the hardware in an API-like
format that the kernel understands.

 /sys/
kernel/
debug

 A debugging virtual file system that reveals many interesting aspects of the kernel’s internal
structure

 /tmp Temporary working data purged at shutdown/reboot. Only remove the items you created.
There may be severe constraints on how much data you can store here. This will be a
symbolic link to /run/tmp when the planned kernel changes are applied to a later version of
the OS but you can safely continue to use /tmp .

 /usr User-provided binaries, data, and applications. This is also where tools and applications live
when they are only needed in multi-user mode.

 /var System-related variable data storage. Things here are expected to change during the normal
operation of the system.

CHAPTER 7 ■ FILE SYSTEMS

101

 File System Mapped Properties
 Inside your ARTIK module, the Linux operating system does some very smart things to help you interact
with your system. During the startup, the bootstrap loader helps the kernel reflect its internal objects and
properties out to the user space through virtual file systems that are constructed as the ARTIK boots. This
makes it much easier to find and read various operating properties of the system and the processes running
in it. Things that were hard to do before are easier now because you can access them like regular files subject
to the permissions imposed by the file system. The running processes are mirrored into the /proc virtual
file system tree. The /sys and /dev virtual file system trees also provide information about the operating
system and its devices. There has not been very much published information about this aspect of the ARTIK
operating system. The knowledge needs to be reverse engineered from various public sources by a process
of inspection and then assembled forensically. Then it can be proven experimentally by writing a small
application. Read the online documentation and then explore.

 ■ Note At first, make sure you only read things from the file system and be careful not to write data to places you
do not understand. The following is a good proverb to keep in mind: “Take only photos. Leave nothing but footprints. ”

 Table 7-5 lists the virtual file systems created and mounted by default in your ARTIK 5 module. This was
found in a Commercial Beta model and may change in the future.

 Table 7-5. Virtual File Systems in the ARTIK OS

 Type Mount point Description

 udev /dev All the logical devices and the drivers for physical devices are gathered
together in one place here. The VFS type is sometimes called udevfs or
 devfs in some documentation resources.

 procfs /proc Each running process has a directory here where its internals are mirrored.
This is useful for interprocess communication but needs to be maintained
securely. You can only see the internals of processes for which you have
permission. Some items live here which might be better located in the /run
file system.

 tmpfs /run Runtime data for the system is maintained here. Some files look similar to
configuration files in the /etc directory but they are live copies of the data,
which may have been modified by subsequent commands. This is often
called a runfs file system.

 sysfs /sys The sysfs manages the hardware API via the kernel. This is a gateway that
the kernel creates to access each individual endpoint as if it were a simple
file. This is most often called a sysfs file system.

 debugfs /sys/kernel/
debug

 This file system is normally mounted at /sys/kernel/debug and is used for
debugging kernel code. This is present in the Commercial Beta version of
the ARTIK 5 but it may not always be there in future releases.

 tmpfs /dev/shm Used for sharing memory between processes

 tmpfs /sys/fs/
cgroup

 Part of the control group management that aggregates several processes
and devices under the same security regime

 tmpfs /tmp Temporary storage that is cleared when rebooting the ARTIK module

 tmpfs /run/user/0 Temporary storage for processes running under the logged in account

CHAPTER 7 ■ FILE SYSTEMS

102

 The major VFS file systems are dealt with separately in their own chapters because they are functionally
different to one another and used for different purposes.

 Summary
 Now that you have a firm grasp of how the file systems work, it is time to look at the kernel managed virtual
file systems. They are dealt with one by one in their own chapters. Understanding them is an important step
because later on when the peripheral buses (I2C, I2S, SPI, etc.) are explored, they will use these virtual file
systems to interact with the hardware via the kernel. If you have not yet grasped these virtual file systems,
getting your peripheral interfaces to work will be much more challenging.

103© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_8

 CHAPTER 8

 The /sys Virtual File System

 The kernel manages the internals of the operating system and prevents unauthorized access to its internal
structures. Some user space applications need to access and communicate with those internal objects but
the kernel must protect itself from unwanted intrusions. It does this by reflecting its internal objects out to
the user space as regular files and gathers them together in a virtual file system which it mounts as the /
sys directory. This is not the only virtual file system but it is very important that you understand it very well
because it is used as the main interface from your application to all of the peripheral interfaces.

 About sysfs
 The /sys virtual filesystem is created by the kernel to export its internal values out to the user space. Your
applications can then interact with the contents of the /sys file system. Because the kernel can see all file
accesses to this directory tree, it can intercept what your application would see as simple file opens and
read/write operations to regular files. Because it knows that those are virtual files, it can take the values you
write and convert them into changes to its internals. When your application requests data via a read, the
kernel can vend back the contents of one of its internal registers or object properties in a compatible format
that your application can understand. Some files contain formatted versions and lists of internal structures
within the kernel. They can be used to construct dynamic behavior in your application to avoid hard coding
configurations that would only run on a single version of the ARTIK OS installed in a specific model.

 The sysfs file system in the /sys directory greatly simplifies access to the peripheral hardware devices
in a Linux-driven system such as the ARTIK 5 and 10 modules without sacrificing secure access control. The
mapping of kernel internals to user-space–accessible entities is shown in Table 8-1 .

 This mapping is very easy to grasp. To access an object property, locate the directory that represents
that kernel object, find the file that describes the property you want to access, and then open that regular file.
This provides you with a file descriptor that you can use to assign a new value to a property. If you read from
the file descriptor, the kernel transfers the value from the hardware and provides it as a result. Reading and
writing files is very easy to do within your application.

 Table 8-1. Mapping of Kernel Internals to User Space

 Kernel internal item External user space entity

 Kernel object Directory

 Object properties Regular files

 Object relationships Symbolic links

 Kernel register Regular file

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

104

 Where kernel objects are related to one another, a symbolic link provides the reference that describes
the relationship. Resolve that symbolic link back to a concrete directory reference to locate the target object.

 There are some important locations within the sysfs file system. There is not enough space in this book
to cover every single one of them. Explore the contents of the /sys directory tree with the ls command to
view the contents of each kernel object directory and then use the cat command to view the readable files
in there that represent the object properties. The relational symbolic links help you navigate the file system
more conveniently. Download and read these resources to find out more about the sysfs file system:

 www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
 https://en.wikipedia.org/wiki/Sysfs

 Inside sysfs
 The sysfs tree of the virtual file system entities mounted as the /sys directory provides direct access to the
system hardware and attached peripherals. Table 8-2 lists the major subsystems registered with sysfs .

 As the kernel starts up and parses the device tree, it discovers various kernel objects that it maps into
this file system. If you plan to write applications that interact with the peripheral hardware in your ARTIK
module, become familiar with the contents of this file system.

 Document the locations within /sys that you use and check if they are still there after an operating system
upgrade. It saves a lot of time if you have a list of things to check immediately after the upgrade, when things are
expected to move. Then alter your application source code to point at the new locations and recompile it.

 Kernel Developers Roadmap
 The kernel developers have a roadmap that they use to plan and manage the gradual evolution of their
code. They know where they plan to take this technology and can advise how to avoid problems by coding
appropriately. If you follow their guidance, your code is more likely to continue working as the kernel evolves
and the /sys file system changes. These are the key recommendations from the kernel implementers:

• Do not use the deprecated support in libsysfs to access the /sys file system. This
library has been obsoleted now.

 Table 8-2. Inside the /sys Virtual File System

 Path Description

 /sys/block Block structured devices such as disks and memory

 /sys/bus Registered hardware buses

 /sys/class Devices organized to classes

 /sys/dev Devices collated by type (block or character access)

 /sys/devices Devices known by the kernel

 /sys/firmware Embedded firmware images

 /sys/fs User accessible file systems

 /sys/kernel Mount points for other virtual file systems

 /sys/module Currently loaded kernel modules

 /sys/power Power management subsystem

http://www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
https://en.wikipedia.org/wiki/Sysfs

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

105

• The kernel always provides access to the sysfs API at the /sys mount point
automatically.

• Do not try to mount the sysfs virtual file system.

• Everything the kernel exports to user space is a simple device.

• Never try to fix apparently missing items within the /sys file system. If there is not
already a symbolic link to a driver, there is no driver available.

• Eventually, all device directories will be implemented under the /sys/devices tree.
This is the only future-proofed place to look for a specific device. Devices located in
other places are likely to move.

• The organization of subsystems is likely to change. Beware if you use /sys/class , /
sys/block , and /sys/bus.

• No hierarchy is preserved in the /sys/block structure. All devices are maintained in
a flat list regardless of their mount points.

• Avoid using the device symbolic links if possible for interacting directly with devices.
They are there for legacy support and will disappear later. Using them to detect
whether devices exist or to determine where they are is relatively benign provided
you understand the risks.

• The kernel is free to add devices to the tree in any order at any location and at any
time. Use the subsystem paths to navigate to parent devices and then acquire their
children.

• Do not rely on specific error codes as they are defined inside the kernel and may
change.

• The format and contents of the property files should remain consistent from
one version to another unless a change is mandated as a result of adding some
functionality.

 /sys/devices
 This /sys/devices directory contains the physical devices that the kernel knows about. They represent the
hardware in the ARTIK. For memory-mapped devices, the name is formed from the location in memory and
a symbolic device name. These memory locations can change if the kernel startup process or the device tree
is disturbed. Use the symbolic name to locate the memory address to construct an API endpoint path. This is
an authoritative list of devices. You may discover other devices by exploring the file system but if a device is
not listed here, it is not active and is unavailable for use. Listing 8-1 provides an example. The base addresses
are expected to change with each OS release and are different between the ARTIK 5 and ARTIK 10. This
listing is from a Commercial Beta ARTIK 5 running Fedora version 22.

 Listing 8-1. The Contents of /sys/devices

 ls /sys/devices

 10000000.chipid 11e20000.sysmmu 13860000.i2c
 10010000.sysreg_localout 120a0000.fimc_is_sensor 13870000.i2c
 10023c00.pd-cam 12180000.fimc_is 13890000.i2c
 10023c40.pd-mfc 12260000.sysmmu 138d0000.i2c

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

106

 10023c60.pd-g3d 12270000.sysmmu 13920000.spi
 10023c80.pd-lcd0 12280000.sysmmu 13970000.i2s
 10023ca0.pd-isp 122a0000.sysmmu 139d0000.pwm
 10030000.clock-controller 122b0000.sysmmu 205f000.firmware
 10050000.mct 122c0000.sysmmu amba.0
 10060000.watchdog 122d0000.sysmmu artik_zb_power.7
 10070000.rtc 12480000.usb bluetooth.4
 100c0000.tmu 12510000.dwmmc0 breakpoint
 10481000.interrupt-controller 12520000.dwmmc1 gpio_keys.5
 11000000.pinctrl 12530000.dwmmc2 ion.1
 11400000.pinctrl 125b0000.usb2phy mdev_output.2
 11830000.jpeg 126c0000.adc platform
 11850000.gsc 13000000.mali software
 11860000.gsc 13400000.mfc sound.6
 11a20000.sysmmu 13620000.sysmmu system
 11a30000.sysmmu 13800000.serial tracepoint
 11a60000.sysmmu 13810000.serial virtual
 11c00000.fimd_fb 13820000.serial wlan.3
 11c90000.smies 13830000.serial

 Each of these items is an object that behaves as a container with regular files inside. Those regular files
represent properties or parameters of the objects that these items represent. Find out more about /sys/devices
from the following technical article on the Linux Weekly News blog: https://lwn.net/Articles/646617/ .

 The /sys/dev/block and /sys/dev/char directories contain another set of symbolically linked
references to the devices. They are organized into the two major types of device driver.

 ■ Note Make sure you check the use of your symbolic links after an OS upgrade. The sysfs documentation
recommends against using these symbolic links to open files from within your application because they may
disappear in future releases. If you have documented the ones you use, check your list after an OS upgrade
to confirm that they are still where you expect them to be. Preemptive bug fixing is always better than post
deployment correction.

 Memory-Mapped Base Addresses
 The kernel loads devices in an arbitrary order defined by its configuration files and also the placement of
references within its source files. There are no guarantees that devices live at a specific memory address or
that the address will remain the same if anything is altered. Modifications to the kernel source may affect
which drivers are loaded. The configuration can turn drivers on and off and can dynamically load modules
after booting. These configuration options move drivers around within the ARTIK memory. Fortunately, the
kernel manages a table of base addresses. User space applications can obtain these values to dynamically
load portions of the memory. Mapping them into an application provides access to parameters within
the driver. This is how kernel-driven access to GPIO pins works. Figure 8-1 illustrates how the drivers are
mapped into the ARTIK memory.

https://lwn.net/Articles/646617/

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

107

 Finding Base Addresses in bash
 If you know the symbolic name of the device you want to find the base address for, automate the detection
of that value and decouple your application from the changes that happen when you move code from an
ARTIK 5 to an ARTIK 10 or perhaps when the operating system is upgraded. Type the commands at a shell
prompt in your ARTIK to try out the examples. The ADC interface on an ARTIK 5 lives at a different base
address to the ARTIK 10. The following command yields the name of the ADC virtual device and it works in
an ARTIK 5 or 10:

 ls /sys/devices | grep adc$
 126c0000.adc

 Use the grep command and append a dollar sign to the regular expression that matches the search
key. The dollar sign ($) marks the string as the last three characters at the end of a line. The letters “ adc”
appearing anywhere else in the line will not match. You should see a single file listed in a Commercial Beta
ARTIK 5. The base address can be isolated by refining the command to strip off the suffix automatically. Add
a cut command to split every line that is passed to it using a period (.) character. This is not the only way
to remove that trailing portion of the line but it is the least complicated way to do it. It extracts field 1 and
discards the rest of the line. This command line delivers the base address by itself:

 ls /sys/devices | grep adc$ | cut -d'.' -f1
 126c0000

Driver 1

Driver 2

Driver 3

Driver 4

Driver 5

Driver 6

Driver 7

Driver 8

Lo mem

Hi mem

Driver 1 base address

Driver 2 base address

 Figure 8-1. Memory-mapped drivers and base addresses

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

108

 Call this command during the initialization of the application to detect the base address of the chosen
device. You may prefer to add this to your login .profile configuration instead and perhaps even create an
environment variable containing the value. An environment variable can be used from inside any process
because it is inherited as child processes are created.

 Finding Base Addresses in the C Language
 The same mechanism works well from the C language but you must wrap the call in a function for maximum
reuse. Alternatively, build a small command line tool that returns the base address given a symbolic name.
This code needs to be typed into a file in your ARTIK module and compiled there with the built-in GCC
compiler. Use the /tmp directory so it is discarded and garbage collected at the next reboot. Create a source
file called baseaddress.c with your vi editor and type in the code from Listing 8-2 .

 Listing 8-2. Base Address Extraction Tool

 #include <stdio.h>
 #include <stdlib.h>

 int main(int argc, char *argv[])
 {

 FILE *fp;
 char myResult[1035];
 char myCommand[64];

 // Manufacture a command line from the first argument
 sprintf(myCommand, "ls /sys/devices | grep %s$ | cut -d'.' -f1", argv[1]);

 // Open the command for reading
 fp = popen(myCommand, "r");

 if (fp == NULL)
 {
 printf("Failed to run command\n");
 exit(1);
 }

 // Read and output the result
 while (fgets(myResult, sizeof(myResult)-1, fp) != NULL)
 {
 printf("%s", myResult);
 }

 // Close and quit
 pclose(fp);

 return 0;
 }

 Compile the source code with the gcc command. Then run the new tool you just created to see the base
address of the ADC interface. Check that it works with a different symbolic name. In both cases, the base
address is written out. Listing 8-3 illustrates the steps.

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

109

 Listing 8-3. Running the Base Address Tool

 gcc -Wall baseaddress.c -o baseaddress

 ./baseaddress adc
 126c0000

 ./baseaddress usb
 12480000

 If you install this tool somewhere more permanent, you can then invoke it from within a shell script.
Perhaps even enclose it in back ticks to substitute the result and assign it to a variable. By doing so, you
decouple your shell script from any changes that Samsung makes to the base address of your devices
because now you are accessing them symbolically.

 In the UNIX/Linux world, it is traditional to make small powerful tools and use them in many places.
By breaking your design down into components, you benefit by reusing the same code in many projects and
reducing your maintenance overhead. Chaining small components together into larger workflows is very
much the right approach.

 In the Samsung developer documentation, it is suggested that you use a manifest constant to define
the value according to which ARTIK module you are using. That approach works perfectly well, but because
it is a static solution it must be hand edited if the base address ever changes. The dynamic auto-detecting
approach requires less maintenance because it copes with the change automatically.

 Peripheral Interconnect Buses
 The peripherals in a Linux computer system are managed as a collection of similar devices with interfaces
organized as if they were on a bus system. A bus system transmits signals through a single channel that all devices
are listening in on. When they identify a message that is for them, they act on it. They ignore all messages for other
devices. The advantage is the reduced number of routing connections and decisions. The internal architecture
is much simpler to maintain because the responsibility for reacting to a message is delegated to the target
destination. Table 8-3 summarizes the peripheral interconnect buses in your ARTIK modules and their uses.

 Table 8-3. Peripheral Interconnect Bus Types

 Bus type Description

 SPI Not yet implemented for user space applications in the Commercial Beta versions of the
ARTIK 5 and 10. See Chapter 21 for details of how SPI works so you can deploy it in the future.

 I2C If you add external sensors, they probably use this kind of interface. There is a lot of online
knowledge, and many sensor devices are compatible with I2C. See Chapter 20 .

 I2S See Chapter 22 for details of the ALSA-driven audio capabilities, which use this bus.

 GPIO See Chapter 17 for details of how to connect digital input/output devices for single pin
digital controls.

 IIO Used for analog input. See Chapter 18 for more information.

http://dx.doi.org/10.1007/978-1-4842-2322-2_21
http://dx.doi.org/10.1007/978-1-4842-2322-2_20
http://dx.doi.org/10.1007/978-1-4842-2322-2_22
http://dx.doi.org/10.1007/978-1-4842-2322-2_17
http://dx.doi.org/10.1007/978-1-4842-2322-2_18

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

110

 The CPU or the I/O devices can assert a value onto the address bus that can be used to identify either a
memory location or an I/O device. The CPU does not need an address. All devices can assert values on the
control bus. The CPU might tell a memory location that it must write a value to storage. The memory might
assert a value on the control bus to indicate that it is ready to be accessed. The I/O devices can indicate
various status conditions about their readiness. All devices can read and write via the data bus.

 A typical scenario is that the CPU tells the memory to store a value that it asserts onto the data bus in a
location indicated by the value on the address bus. Or perhaps the CPU uses the address bus to select a slave
I/O device that it then reads some data from.

 /sys/bus
 The kernel manages the low-level bus structures via the drivers for each kind of peripheral component. It then
maps a virtual file system into user space to interact with the different bus subsystems. In the command line
of your ARTIK module, type this command to see the available buses that the kernel is managing for you:

 ls -1 /sys/bus

 Because the kernel is designed for general-purpose use, it may implement some buses that have no
meaning or context inside an ARTIK. Others are named for legacy reasons even though their name makes no
sense inside an ARTIK. The /sys/bus/scsi directory would be useful if you had a SCSI disk drive attached,
but even if you don’t, the interface is still there as a placeholder. Table 8-4 describes the uses of each bus.

Control bus

Address bus

Data bus

CPU
Memory

1
I/O
1

Memory
2

I/O
2

 Figure 8-2. Common bus arrangement

 In Figure 8-2 , the CPU, memory, and I/O devices are all shown connected together on a common bus
system.

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

111

 Read about I/O bus structures at the following link to better understand how they work:
 www.karbosguide.com/hardware/module2c1.htm .

 Table 8-4. /sys/bus Structures

 Path to bus Description

 /sys/bus/amba The ARM Advanced Microcontroller Bus Architecture (AMBA) is an open
standard, on-chip interconnect specification for the connection and
management of functional blocks in system-on-a-chip (SoC) designs.

 /sys/bus/clocksource Used for time keeping

 /sys/bus/cpu Properties of your CPU and its bus connections. Useful when writing systems
applications.

 /sys/bus/event_source Used when building and using performance monitoring. Adds
instrumentation to your application to generate statistics for measuring the
performance.

 /sys/bus/exynos-core Details of the Exynos CPU cores in the ARTIK

 /sys/bus/hid Support for the human interface devices

 /sys/bus/i2c The I2C devices and their user-space–mapped interfaces are all managed
under this file system tree.

 /sys/bus/iio The Industrial I/O core provides support for sensor devices and analog-to-
digital Convertors (ADC).

 /sys/bus/mdio_bus Implementation of the physical layer (PHY) in the networking architecture

 /sys/bus/media Support for video media devices

 /sys/bus/mmc SD card management via the MMC driver is controlled via this sysfs entity.

 /sys/bus/platform This pseudo-bus is used to connect devices on buses with minimal
infrastructure, like those used to integrate peripherals on many system-
on-chip processors or some legacy PC interconnects, as opposed to large,
formally specified ones like PCI or USB.

 /sys/bus/scsi Supports the addition of SCSI-compatible devices such as disks. There are
none by default but the kernel support is there in case you want to add them
to your hardware system.

 /sys/bus/sdio Part of the MMC memory support

 /sys/bus/serio Touch screen support and interfacing

 /sys/bus/spi The Serial Peripheral Interface (SPI) is a synchronous, four-wire serial link
used to connect microcontrollers to sensors, memory, and peripherals.
It is a simple, de facto standard, not complicated enough to acquire a
standardization body. SPI uses a master/slave configuration.

 /sys/bus/workqueue Useful for kernel performance tuning and setting the CPU affinity for
processes so they run in the correct CPU core.

http://www.karbosguide.com/hardware/module2c1.htm

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

112

 /sys/class
 The kernel exports a list of devices organized into different categories or classes. This is a collection of
symbolic links to the devices in the /dev virtual file system. Because they are organized according to their
functional use, the devices are easier to find and more resilient to changes as the operating system is
upgraded. This part of the sysfs file system is undergoing some changes and these items may migrate to the
subsystems directory in a future OS upgrade. Table 8-5 summarizes the available device classes.

 Table 8-5. Device Classes in sysfs

 Class Description

 android_usb Android-compatible USB debugging tools

 backlight Screen display backlight control

 bdi Backing device information

 block Block structured storage devices

 bluetooth Bluetooth comms support

 bsg Block structured scatter-gather storage management

 devfreq Speed control for Android debugging support

 dma Direct memory access

 firmware Firmware loading support

 gpio General Purpose Input/Output

 graphics Graphics frame buffer support

 i2c-adapter Each registered I2C adapter gets a number, counting from zero. Examine the /sys/
class/i2c-dev/ directory to see what number corresponds to which adapter.

 i2c-dev Manages the I2C adapters. On the ARTIK 5, there are four of them.

 ieee80211 Wi-Fi support

 input Keyboard input via GPIO

 ion_cma Currently undocumented in the context of the ARTIK but suspected to be the
Android ION memory allocator. Possibly part of the Android debugging support but
also implicated as part of the video display support.

 lcd Display support

 leds System LED control

 mdio_bus Networking support

 mem Memory management support

 misc Miscellaneous devices

 mmc_host MMC memory support

 net Networking support

 power_supply Power management

 pwm PWM audio output

 regulator Power management voltage regulators

 rfkill Wi-Fi disable

(continued)

CHAPTER 8 ■ THE /SYS VIRTUAL FILE SYSTEM

113

 ■ Note This class-based structure is gradually being deprecated in favor of the /sys/devices/*/subsystem
directories. It is useful for now but it might disappear in future OS upgrades. Make sure you check the use of
your symbolic links after an OS upgrade. The sysfs documentation recommends against using these symbolic
links from within your application because they may disappear in future releases.

 Summary
 The sysfs virtual file system is integral to getting your peripheral interface buses to work correctly. A few of
the bus interfaces can be driven via ioctl() function calls directly on the device driver but most of the easier
interactions involve reading and writing to regular files in the sysfs file system.

Table 8-5. (continued)

 Class Description

 rtc Real-time clock

 scsi_device SCSI device interface

 scsi_disk SCSI disk drives

 scsi_generic SCSI generic devices

 scsi_host SCSI host controller

 sec Power management

 sound Audio support for sound cards

 spi_master SPI interfaces

 switch Android switch class for ADBD

 thermal Thermal sensing and cooling device control

 timed_output Android vibrator support

 tty Serial terminal ports

 udc USB gadget device support

 video4linux Video support

 watchdog Watchdog interrupt mechanism

115© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_9

 CHAPTER 9

 The /dev Virtual File System

 Each unique hardware component needs a driver to manage it. Similar hardware components may be
able to share a driver because they have a common interface. Adding your own new hardware may require
that you create a driver for it. Where there are multiple hardware components of the same kind, the kernel
will create an instance of the driver for each. Each driver instance and its associated hardware are called a
device. The kernel collects all of its devices into the /dev directory, which it creates as the ARTIK is booted.
Become familiar with this part of the kernel architecture because there are some hardware interfaces that
can only be operated by talking directly to their device driver.

 About /dev
 The kernel in your ARTIK constructs a virtual file system reflecting the device driver internals to the user
space to access them subject to the normal file access permissions. Like everything else in UNIX-based
operating systems, the end points are presented as files. This /dev hierarchy is constructed by the udev
tools according to the rules in the udev configuration as the ARTIK is booted. Online resources sometimes
describe it as the udevfs or the udev file system.

 Communicating With Devices
 Although the contents of the /dev directory are represented as regular files, you are communicating with a
low-level driver in the kernel and not with a physical file that is stored on your disk. Looking at each driver
in context, some are only used for reading and others only for writing. The kernel driver then communicates
with some hardware in the system or processes your input/output in other ways. There are several ways to
interact with the device drivers. Table 9-1 lists the main techniques to use from your application.

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

116

 Learn about the /proc and /sys file systems and observe how they interact with the /dev directory
because they also access the same hardware or kernel but from a different context. The /sys directory
is used to communicate with the kernel and the /proc directory relates to how a running application is
working with devices. Some helpful resources also exist in the /run directory. They are each dealt with in
their own chapters. The video and audio devices and their drivers are examined in more detail in Chapters
 22 and 23 in order to gather the related material together more coherently. See the following online
reference documentation for more details:

 https://en.wikipedia.org/wiki/Ioctl
 http://man7.org/linux/man-pages/man2/ioctl.2.html
 https://en.wikipedia.org/wiki/Device_file

 Table 9-1. Communicating With Device Drivers

 Technique Description

 Open the device file and read Treat the device as a regular file and read its contents.

 Open the file and write Pass instructions to the kernel via the regular file that it maps to the /
dev file system.

 fcntl() function calls This configures currently open files and lets you operate on them in
more sophisticated ways than reading or writing to them. Create non-
blocking asynchronous I/O mechanisms with this function.

 ioctl() function calls The ioctl() function is also designed to communicate directly
with the drivers. The ioctl() function is discussed in the context of
SPI bus devices in Chapter 21 . If you intend to do multiple, rapidly
repeating ioctl() calls, you may find performance is much better
with a memory-mapped approach.

 Memory mapping Map the kernel memory starting at the base address for the driver
into your user space application’s process memory and operate on it
directly. This requires permissions for your application to be able to
access the device memory. This is a very efficient way to transfer bulk
data in and out of a device. See the coverage of GPIO pin control in
Chapter 17 for an example of how to do this.

 Special purpose system calls These calls make it very easy to interact with the driver but are not
often used because developers do not know that they exist. Having an
enquiring approach to your ARTIK development reveals them if you
search for them diligently. They do not exist for every case but they
may provide a much simpler interface for your code to call. Knowing
things like this greatly improves your developer skills.

 Network sockets Some devices can be used like network end points. These modes
of access are interesting because they help you create stream-like
behaviors. They can be set up as blocking synchronous connections,
which stalls a thread or process until the operation is complete.
Alternatively, use the select() functionality to call something to
action and get a call back when it is done.

 setsockopt() function calls These calls manage socket connections and are helpful if you are
using a networking or messaging interface to a driver.

 Netlink The Netlink mechanism behaves like a socket and is seen as a
successor and replacement for the ioctl() function.

http://dx.doi.org/10.1007/978-1-4842-2322-2_22
http://dx.doi.org/10.1007/978-1-4842-2322-2_23
https://en.wikipedia.org/wiki/Ioctl
http://man7.org/linux/man-pages/man2/ioctl.2.html
https://en.wikipedia.org/wiki/Device_file
http://dx.doi.org/10.1007/978-1-4842-2322-2_21
http://dx.doi.org/10.1007/978-1-4842-2322-2_17

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

117

 https://en.wikipedia.org/wiki/Udev
 www.freedesktop.org/software/systemd/man/udev.html
 https://en.wikipedia.org/wiki/Netlink

 Modify the behavior of the kernel as it constructs the /dev file system by using udev rules. Because this
is managed as an internal kernel-related task, you should not alter it unless you fully understand what you
are doing. The following is a tutorial about how to write udev rules: www.reactivated.net/writing_udev_
rules.html .

 Listing the Devices
 List the devices your operating system supports in the /dev directory. Listing 9-1 shows an abridged extract
of the resulting output.

 Listing 9-1. Device Listing Extract

 ls -la /dev

 A B C D E F G
 crw------- 1 root root 251, 0 Apr 3 2014 iio:device0
 lrwxrwxrwx 1 root root 25 Apr 3 2014 initctl -> /run/systemd/initctl/fifo
 drwxr-xr-x 3 root root 80 Apr 3 2014 input
 crw------- 1 root root 10, 63 Apr 3 2014 ion
 crw------- 1 root root 10, 50 Apr 3 2014 kfc_freq_max
 crw------- 1 root root 10, 51 Apr 3 2014 kfc_freq_min
 crw-r----- 1 root kmem 1, 2 Apr 3 2014 kmem
 crw-r--r-- 1 root root 1, 11 Apr 3 2014 kmsg
 lrwxrwxrwx 1 root root 28 Apr 3 2014 log -> /run/systemd/journal/dev-log
 brw-rw---- 1 root disk 7, 0 Apr 3 2014 loop0
 brw-rw---- 1 root disk 7, 1 Apr 3 2014 loop1

 From this listing there are several useful deductions to make about the devices your ARTIK supports.
At this early Commercial Beta stage of the ARTIK lifecycle, many of them are undocumented and some may
not have complete implementations. Inspecting this list is a first step in reverse engineering your ARTIK
module to understand it better. The columns are marked with letters in the heading of Listing 9-1 and are
summarized in Table 9-2 .

 Table 9-2. Device Listing Details

 Column Description

 A Device type and access permissions

 B Hard links to this device

 C Owning user account

 D Group membership

 E Device ID or file size

 F Modification date

 G Device name

https://en.wikipedia.org/wiki/Udev
http://www.freedesktop.org/software/systemd/man/udev.html
https://en.wikipedia.org/wiki/Netlink
http://www.reactivated.net/writing_udev_rules.html
http://www.reactivated.net/writing_udev_rules.html

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

118

 Column A: The first character on each line of the ls -la listing of the /dev directory indicates what
kind of device is being described. The rest of the characters in this first column describe the access control
permissions. Refer to Chapter 7 for a discussion on file access controls.

 Column B: Indicates how many hard links point at this file. A number larger than one suggests the same
device is available in multiple locations within the file system. This is usually necessary to support legacy
software that might expect the devices to live in certain locations.

 Column C and D: Lists the owner and group membership. This is part of the normal permissions
control in UNIX. All of the devices in the /dev file system are owned by the root user because they are
created and maintained by the kernel. The group membership subdivides them into functional categories
and allows subprocesses running under different user accounts to access them. Your user account must be
a member of a specific group before it is allowed to access the device, although the permissions may allow
access under world (everyone else) flags. As a rule, you use libraries or possibly interact via the /sys virtual
file system.

 Column E: This is a pair of comma-separated values that describe the device number within the driver
catalogue. These numbers are managed by a central registry. This information is important because a device
is recognized primarily by its device number rather than its name. The name is useful for applications to use
to open a file descriptor but the device numbers organize the devices into logical and meaningful categories.
The block and character devices are two separate name spaces. A block device in the major number category
1 is not a member of the same set as the character devices in category 1.

 Column F: The date value is meaningless when describing a device driver. It probably reflects the build
date for the kernel instead of the modification date for a regular file.

 Column G: The filename that forms a component of the device location within the file system.
Constructing a fully qualified path to an end point is considered to be the device name. Refer to /dev/null
rather than just null when describing the data sink.

 This variant of the ls command makes a recursive listing and works down through the directory
hierarchy to list all the end points in the /dev tree because some devices are collated together into sets and
stored in a common directory:

 ls -laR /dev

 Obtain a list of loaded and active devices from the /proc/devices file. Listing 9-2 shows the contents of
that file and has been wrapped into two columns to save space.

 Listing 9-2. The Contents of the /proc/devices Directory

 cat /proc/devices
 Character devices: Block devices:
 1 mem 1 ramdisk
 5 /dev/tty 259 blkext
 5 /dev/console 7 loop
 5 /dev/ptmx 8 sd
 10 misc 65 sd
 13 input 66 sd
 21 sg 67 sd
 29 fb 68 sd
 81 video4linux 69 sd
 89 i2c 70 sd
 116 alsa 71 sd
 128 ptm 128 sd
 136 pts 129 sd
 204 ttySAC 130 sd

http://dx.doi.org/10.1007/978-1-4842-2322-2_7

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

119

 216 rfcomm 131 sd
 248 ttySDIO 132 sd
 249 ttyGS 133 sd
 250 bsg 134 sd
 251 iio 135 sd
 252 watchdog 179 mmc
 253 media 254 device-mapper
 254 rtc

 About Device Numbers
 The kernel recognizes and manages devices internally using their major and minor device numbers. The
device names are convenient for application developers but meaningless to the kernel. The device number
is constructed from two parts. The major and minor numbers group drivers into different categories to help
you understand what they are used for. In earlier versions of UNIX, the major number identified a specific
driver and the minor number denoted an instance of that driver so multiple devices could be driven by one
device driver. This is no longer the case and the major number behaves more like a category with various
special purpose drivers being mapped to the major:minor combination. The standard set of default device
drivers are described by a registry that is maintained by the IANA. Access that registry and download the text
file from www.kernel.org/doc/Documentation/devices.txt .

 The IANA registry has not been updated for some time and there may be proprietary devices
implemented on a Linux platform that are not listed there. So the IANA document may not be the definitive
resource for Linux-oriented developers. A more useful document is maintained and updated often by the
Linux kernel developers who have made many changes to the original IANA document; the latest definitive
version is available on GitHub at https://github.com/torvalds/linux/blob/master/Documentation/
devices.txt .

 The published information should be current, aside from any pending device registrations that have
not yet been incorporated. Their major device number should inform you about their purpose. You may
contemplate registering a new device with IANA or the Linux kernel developers. Look at the sysfs and udev
support first to see if you can accomplish your goal without needing a new device registration. Figure 9-1
illustrates how the device numbering maps to a kernel driver and then to a device.

User space

/dev/{name}

Your application

Device{Minor number}

{Name}

Device driver

{Major number} : {Minor number}

Linux kernel space

 Figure 9-1. Device numbers mapped to kernel drivers

http://www.kernel.org/doc/Documentation/devices.txt
https://github.com/torvalds/linux/blob/master/Documentation/devices.txt
https://github.com/torvalds/linux/blob/master/Documentation/devices.txt

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

120

 The major categories found in a Commercial Beta ARTIK 5 module are summarized in Table 9-3 . Note
that the audio support is implemented by the ALSA project and the video support is implemented by the
 Video4Linux project. There is a lot of online documentation available to guide your experiments with the
A/V capabilities of the ARTIK. Only the subset seen in the Commercial Beta ARTIK 5 module is listed here.
Consult the registry at IANA for a complete listing. Sometimes you may encounter a device whose file name
does not immediately tell you what it does. Checking the device number for that item and comparing it
with the IANA lists can tell you what sort of device it is and from that you can figure out how to interact with
it. Developing this skill for cross-referencing your knowledge of the ARTIK internals will speed up your
development process.

 Table 9-3. Device Number Categories

 Type Major number Description

 Block 1 RAM disks

 Block 7 Loopback devices

 Block 8 Reserved for SD devices

 Block 65 to 71 Reserved for SD devices

 Block 128 to 135 Reserved for SD devices

 Block 179 MMC block devices

 Block 254 Device mapper

 Block 259 Block extended device information. Used dynamically to hold additional
partition minor numbers and allow large numbers of partitions per
device.

 Character 1 Memory devices

 Character 3 Pseudo TTY slave devices

 Character 5 Alternate TTY devices

 Character 10 Non-serial mice, misc features. Obtain a list of these from the /proc/
misc file.

 Character 13 Input core

 Character 21 Reserved for SCSI storage devices

 Character 29 Universal frame buffer support

 Character 81 Support for video4linux

 Character 89 I2C bus interface

 Character 108 Device-independent PPP interface

 Character 116 Advanced Linux Sound Driver (ALSA)

 Character 128 Pseudo terminal master devices (ptm)

 Character 136 Pseudo terminal slave devices (pts)

 Character 204 Low-density serial ports (ttySAC)

 Character 216 Bluetooth interaction via rfcomm

 Character 248 Pseudo terminal ttySDIO

 Character 249 USB serial gadget driver ttyGS

(continued)

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

121

 Observe the device numbers in the size column with an ls directory listing or find other abstracts of the
device listings in the /sys and /proc directories. Table 9-4 shows some example commands for accessing
these lists.

Table 9-3. (continued)

 Type Major number Description

 Character 250 Reserved for bsg SCSI storage devices

 Character 251 iio devices

 Character 252 Watchdog timers

 Character 253 Media devices (video)

 Character 254 Real-time clock (rtc)

 Table 9-4. Example Device Inspection Commands

 Directory Description

 ls -lA /dev Use this command to see the top level of the /dev directory.

 ls -lAR /dev Recursively list all the subdirectories in the /dev hierarchy

 ls -lA /dev/block All block devices listed by number

 ls -lA /dev/char All character devices listed by number

 ls -lA /sys/dev/block A more detailed listing of all block devices

 ls -lA /sys/dev/char A more detailed listing of all character devices

 cat /proc/devices Lists the minor device numbers for devices your current process knows about

 The device lists in the /sys/dev directory contain useful addressing information that may change from
one ARTIK OS release to another and are different between an ARTIK 5 and 10.

 The files you see or the ultimate files at the end of a symbolic link chain are bound to the kernel driver
that handles the device. The major number originally identified a driver and the minor number was an
instance of a device managed by it. This convention has loosened somewhat and no longer applies in
modern Linux systems.

 Download and inspect the entire source code for the Linux kernel from the official Git repository.
Includable files such as major.h tell you more about the device numbers and how to reference them with
manifest constants in your C language application source files. Occasionally you will find a comment in a
source file that will clear up some major ambiguity in how things work.

 https://github.com/torvalds/linux/
 https://github.com/torvalds/linux/blob/master/include/uapi/linux/major.h
 https://github.com/torvalds/linux/blob/master/include/linux/miscdevice.h

 Read about device numbering in the kernel at the following links:

 www.makelinux.net/ldd3/chp-3-sect-2
 http://stackoverflow.com/questions/9835850/allocating-device-numbers
 www.linux-tutorial.info/modules.php?name=MContent&pageid=94
 http://unix.stackexchange.com/questions/124225/are-the-major-minor-number-unique

https://github.com/torvalds/linux/
https://github.com/torvalds/linux/blob/master/include/uapi/linux/major.h
https://github.com/torvalds/linux/blob/master/include/linux/miscdevice.h
http://www.makelinux.net/ldd3/chp-3-sect-2
http://stackoverflow.com/questions/9835850/allocating-device-numbers
http://www.linux-tutorial.info/modules.php?name=MContent&pageid=94
http://unix.stackexchange.com/questions/124225/are-the-major-minor-number-unique

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

122

 ■ Note Make sure you check the use of your symbolic links after an OS upgrade. The sysfs documentation
recommends against using these symbolic links from within your application because they may disappear or
change their target in future releases.

 Device Types
 The first character on each line of the ls -la listing of the /dev directory indicates what kind of device is
being described. Table 9-5 summarizes the range of different device types.

 Table 9-5. Device Type Sentinel Letters

 Type Description

 C Character structured devices

 B Block structured devices

 L Symbolic links to other device end points to alias the names

 D Directories containing collections of devices

 There are two principle types of device nodes: character devices and block devices. This is indicated by
the first character in the output of the ls -a command and is a letter “ c” or “ b” accordingly. The symbolic
links are merely pointers to other devices and the directories are containers for managing collections of
devices. They are not devices at all.

 Within the character device category, some devices are presented by the kernel as regular files. These
are generally for accessing hardware. A few of the character devices are connected to sockets and these are
used for network access. The block devices are mainly used for bulk storage on disk, within RAM, or on
eMMC memory chips and SD cards.

 Block Devices
 Block devices are organized into chunks and represent storage containers such as disks. Accessing them
via the /dev interface makes them appear to be large, fixed-size files. Write some data at a certain offset
within the file and then later read data back from the device at that offset and retrieve the same information.
The files never change size and you cannot append data to them to make them bigger because after all,
they represent a fixed size disk. All of the block devices are collated together using symbolic links in the /
dev/block directory. The names in this directory are the device numbers with the major and minor values
separated by a colon. Type this command to see a map of block structured ID values to physical disk and
memory devices:

 ls -la /dev/block

 This provides a convenient way to access the devices using their device number rather than their name.
The block devices visible after booting a Commercial Beta ARTIK 5 are listed in Table 9-6 .

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

123

 Table 9-6. Block Devices in a Commercial Beta ARTIK 5

 Major Minor Path Description

 1 0 to 15 /dev/ram0 RAM disks

 7 0 to 7 /dev/loop0 Loopback devices for mounting files containing file systems

 179 0 /dev/mmcblk0 MMC memory hardware device

 179 1 /dev/mmcblk0p1 MMC memory partition 1 mounted as /boot

 179 2 /dev/mmcblk0p2 MMC memory partition 2 mounted as /usr/lib/modules

 179 3 /dev/mmcblk0p3 MMC memory partition 3 mounted as the root of the file
system at /

 179 8 /dev/mmcblk0boot0 U-Boot parameters

 179 16 /dev/mmcblk0boot1 U-Boot loader image

 179 24 /dev/mmcblk0rpmb Secure protected partition

 Character Devices
 Character devices represent most non-disk drive hardware that your kernel knows about and a few special
items that are managed within the kernel. Writing some data might be transmitted out through a serial
connection to another system. Reading data might accept input coming in from that same serial port. This is
the basic mechanism for displaying characters on your screen and receiving keystrokes. Other devices might
be associated with hardware pins to which you can attach switches and LED indicators. Writing to these pins
might turn on the LED and reading from them might sense a switch value or measure a resistance connected
between that pin and the ground plane. All of the character devices are collated together using symbolic
links in the /dev/char directory. The names in this directory are the device numbers with the major and
minor values separated by a colon. Type this command to see a map of character structured ID values to
physical I/O hardware and devices:

 ls -la /dev/char

 This provides a convenient way to access the devices using their device number rather than their name.
Table 9-7 lists the character devices visible in a Commercial Beta ARTIK 5 just after booting.

 Table 9-7. Character Devices in a Commercial Beta ARTIK 5

 Major Minor Path See also

 1 1 /dev/mem Memory management

 1 2 /dev/kmem Memory management

 1 3 /dev/null Standard I/O devices

 1 5 /dev/zero Data generators

 1 7 /dev/full Data generators

 1 8 /dev/random Data generators

(continued)

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

124

Table 9-7. (continued)

 Major Minor Path See also

 1 9 /dev/urandom Data generators

 1 11 /dev/kmsg Kernel messaging mechanisms

 3 2 n/a I2C

 5 0 /dev/tty Serial communications

 5 1 /dev/console Standard I/O devices

 5 2 /dev/ptmx Serial communications

 5 4 n/a Serial UART presented on pins
J26-8 (RX<-0) and J26-7 (TX->1)

 10 44 /dev/rfkill Networking

 10 45 /dev/usb_accessory USB interface

 10 46 /dev/mtp_usb USB interface

 10 47 /dev/android_adb Debugging (ADBD)

 10 48 /dev/cam_throughput Debugging (ADBD)

 10 49 /dev/display_throughput Debugging (ADBD)

 10 50 /dev/kfc_freq_max Debugging (ADBD)

 10 51 /dev/kfc_freq_min Debugging (ADBD)

 10 52 /dev/cpu_freq_max Debugging (ADBD)

 10 53 /dev/cpu_freq_min Debugging (ADBD)

 10 54 /dev/network_throughput Debugging (ADBD)

 10 55 /dev/bus_throughput Debugging (ADBD)

 10 56 /dev/device_throughput Debugging (ADBD)

 10 57 /dev/memory_throughput Debugging (ADBD)

 10 58 /dev/network_latency Power management

 10 59 /dev/cpu_dma_latency Power management

 10 60 /dev/sw_sync Memory management

 10 61 /dev/uhid Input devices

 10 62 /dev/mali Graphics

 10 63 /dev/ion Memory management

 10 130 /dev/watchdog Timers

 10 200 /dev/net/tun Networking

 10 223 /dev/uinput Input devices

 10 229 /dev/fuse Disk devices

 10 234 /dev/btrfs-control Disk devices

 10 235 /dev/autofs Disk devices

 10 236 /dev/mapper/control Disk devices

(continued)

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

125

Table 9-7. (continued)

 Major Minor Path See also

 10 237 /dev/loop-control Disk devices

 13 64 /dev/input/event0 Input devices

 29 0 /dev/fb0 Video

 81 0 /dev/video23 Video

 81 1 /dev/video24 Video

 81 2 /dev/video26 Video

 81 3 /dev/video27 Video

 81 4 /dev/video6 Video

 81 5 /dev/video7 Video

 81 6 /dev/video8 Video

 81 7 /dev/video9 Video

 89 0 /dev/i2c-0 Bus I2C-0

 89 1 /dev/i2c-1 Bus I2C-1

 89 3 /dev/i2c-3 Bus I2C-3

 89 7 /dev/i2c-7 Bus I2C-7

 108 0 /dev/ppp Networking

 116 0 /dev/snd/controlC0 Audio

 116 16 /dev/snd/pcmC0D0p Audio

 116 24 /dev/snd/pcmC0D0c Audio

 116 33 /dev/snd/timer Audio

 204 64 /dev/ttySAC0 Serial communications

 204 65 /dev/ttySAC1 Serial communications

 204 66 /dev/ttySAC2 Serial communications

 204 67 /dev/ttySAC3 Serial communications

 249 0 /dev/ttyGS0 Serial communications

 249 1 /dev/ttyGS1 Serial communications

 249 2 /dev/ttyGS2 Serial communications

 249 3 /dev/ttyGS3 Serial communications

 251 0 /dev/iio:device0 ADC

 252 0 /dev/watchdog0 Timers

 253 0 /dev/media0 Video

 254 0 /dev/rtc0 Timers

CHAPTER 9 ■ THE /DEV VIRTUAL FILE SYSTEM

126

 Summary
 Now that you have explored the /dev file system, you can build on that knowledge later when the SPI bus
is better supported. Interacting with SPI requires knowledge of drivers and ioctl() function calls. None of
these subsystems are impossibly complex to work on and you will understand them better by experimenting.

 Table 9-8. Special Devices

 Device Description

 /dev/null A data sink where character streams can be redirected and discarded

 /dev/zero An infinite supply of null bytes that you can read forever and never run out

 /dev/urandom A pseudo random number generator that cycles through the same random data set
when it runs out

 /dev/random A pseudo random number generator that blocks when it exhausts its entropy pool. It
blocks until it has finished refreshing the supply of new random numbers and then
allows your process to continue.

 /dev/full A special device emulating a disk drive that behaves as if it is always full

 Special Devices
 Several devices on your ARTIK are neither storage nor hardware accessors. They are provided for assistance
when debugging or generating special values. The /dev hierarchy not the ideal place for things like this
but history forces us to maintain them here because of legacy applications that expect them to be present.
Table 9-8 lists these special devices.

127© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_10

 CHAPTER 10

 The /proc Virtual File System

 Understanding processes is a very important part of your programming skill set. If you understand how
to communicate with processes, you can factor your design into multiple components that can run
simultaneously but still collaborate with one another. Signal handling and process termination is just as
important because closing things in an orderly fashion keeps your system running efficiently. Understanding
deadlocking and Parent ➤ Child process relationships helps you prevent runaway and zombie processes,
which can quickly bring an entire system down.

 About /proc
 The kernel manages the physical devices on the system and schedules when and how the processes running
in the computer can access the hardware. The current state of the kernel and the running processes is
maintained in the /proc and /run virtual file systems. The kernel creates these file systems as the computer
is started up and maintains them when things change.

 The kernel organizes the CPU capacity so it is sliced up and granted to many separate processes on a
scheduled basis. Without this scheduling mechanism, interactions with a user would spend most of their
time waiting for user input. Since the computer is very fast, it can get a lot of things done between every
keystroke you type.

 The more recent versions of the Linux operating system support the /proc virtual file system. The kernel
manages the /proc file system for you to access details about running processes. This exposes the inner
workings of each running process to your applications that run in the user space subject to the normal UNIX
permissions model. Your application can inspect the inner workings of other processes much more easily
by opening a file in the /proc file system than if it needed to create a communications channel by any other
means.

 Because this is a virtual file system, many of the files appear to have a zero length, but when you open
them for reading or cat them to the screen from the bash command line, they deliver a wealth of useful
information that your applications can use to adjust how they work. There are many useful utilities that can
exploit this information and present it in more attractive forms.

 Most of the files in the /proc file system are read only from user space where your applications run.
Only the kernel can write to them. A few can be used as a command interface to request that the kernel do
something on behalf of a user space application. The contents of the /proc/sys directory are related to the
contents of the sysfs file system. Refer to these links for more information about the /proc filesystem:

 https://en.wikipedia.org/wiki/Procfs
 http://manpages.courier-mta.org/htmlman5/proc.5.html
 www.kernel.org/doc/Documentation/filesystems/proc.txt
 http://man7.org/linux/man-pages/man5/proc.5.html
 http://linux.die.net/man/5/proc
 www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

https://en.wikipedia.org/wiki/Procfs
http://manpages.courier-mta.org/htmlman5/proc.5.html
http://www.kernel.org/doc/Documentation/filesystems/proc.txt
http://man7.org/linux/man-pages/man5/proc.5.html
http://linux.die.net/man/5/proc
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

128

 http://linux.about.com/od/commands/l/blcmdl5_proc.htm
 http://wiki.tldp.org/static/kernel_user_space_howto.html
 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_
Guide/s1-proc-topfiles.html

 Inspecting /proc
 There are two areas to focus your interest on in the /proc file system. The contents of the top-level directory
have some named items that represent objects within the kernel. Using the same analogy as the sysfs
virtual file system, directories reflect kernel objects, files reflect kernel object properties, and symbolic links
reflect relational connections between kernel objects. The other important focus for the /proc file system is
the numbered directories which correspond on a one-to-one basis with currently running processes. These
appear and disappear as the processes are created and destroyed. Inside each of them are objects that reflect
the inner workings of those processes.

 Because the /proc file system exists in the user space, you can use the command line tools to browse
it and examine the content. Listing 10-1 shows the contents of the /proc file system in a Commercial
Beta ARTIK 5 just after booting it. Most of the items listed on the left are processes identified by their PID
numbers. The named items are global properties about the operating system or hardware.

 Listing 10-1. The /proc File System Hierarchy

 ls /proc

 1 1579 1675 307 657 756 buddyinfo ioports self
 10 1581 1677 325 660 768 bus irq slabinfo
 11 1584 1698 368 662 773 cgroups kallsyms softirqs
 12 1590 17 396 667 783 cmdline key-users stat
 13 1592 1705 399 668 786 consoles kmsg swaps
 1348 16 1711 4 669 8 cpu kpagecount sys
 1358 1610 1719 400 684 808 cpuinfo kpageflags sysvipc
 1360 1614 1737 401 686 809 crypto loadavg timer_list
 1361 1625 18 408 688 810 devices locks tty
 14 1626 19 413 691 812 device-tree meminfo uid_stat
 1450 1628 2 461 692 813 diskstats misc uptime
 15 1632 20 474 693 854 driver modules version
 1534 1633 288 481 694 857 execdomains mounts vmallocinfo
 1549 1636 290 5 7 865 fb net vmstat
 1564 1644 292 6 749 871 filesystems pagetypeinfo zoneinfo
 1572 1661 299 627 750 9 fs partitions
 1576 1668 3 628 751 978 interrupts sched_debug
 1578 1674 305 634 752 asound iomem scsi

 Special Locations Within /proc
 The top level of the /proc directory contains useful reference information about the operating system as a
whole. There are three categories that define these items:

• Kernel subsystem objects reflected as directory containers

• System-wide properties reflected as regular files

http://linux.about.com/od/commands/l/blcmdl5_proc.htm
http://wiki.tldp.org/static/kernel_user_space_howto.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s1-proc-topfiles.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s1-proc-topfiles.html

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

129

• Relational links to other objects maintained for the current process reflected as
symbolic links

 Kernel Subsystems as Objects
 Table 10-1 describes the kernel objects that are reflected into the /proc directory. They manage various
subsystems and have many properties of their own to access with the cat command or as regular files from
your C Language application.

 Table 10-1. Kernel Objects Representing Subsystems

 Collection Description

 asound Properties and access to control sound card devices. See the audio discussion in
Chapter 22 .

 bus A collection of directories representing various buses on the computer, such as input/
PCI/USB. This has been largely superseded by sysfs under /sys/bus , which is far more
informative.

 cpu Internal properties of the current CPU the process is running in

 device-tree A runtime structured directory tree with a copy of the information in the boot loader
device tree that was used to start the kernel

 driver A collection of statistics on additional platform-specific drivers

 fs A tree of directories relating to the currently mounted file systems. Each subdirectory
maps to a type and instance of a file system mount.

 irq A map of the interrupt request lines that feed IRQs to the CPUs. This also describes the
affinity mapping of interrupts per CPU. Interrupts can drive either or both CPUs in an
ARTIK 5.

 scsi A list of SCSI and other related disk drives

 self/net A collection of network configuration and debugging data

 sys Dynamically configurable kernel configuration items

 sysvipc Memory sharing and interprocess communication support

 tty Details of TTY devices such as UART transceivers

 uid_stat Statistics collection for network and data usage by applications

 System-Wide Properties
 Table 10-2 summarizes these global objects and their properties. Use the cat command to display the
values contained in the regular files at these special locations. Later, use the C language from within your
application to open and read these files.

 cat /proc/{global_property}

 A few of these files block your terminal output when you use the cat command to read them. Instead,
use the od (Octal Dump) tool to display their contents. The od tool is more flexible and can format the output
to show you binary values in octal, decimal, hexadecimal, and as text characters. The items that require this
approach are noted in the table.

http://dx.doi.org/10.1007/978-1-4842-2322-2_22

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

130

 Table 10-2. The /proc File System Global Properties

 Global property Description

 buddyinfo Information about the buddy algorithm that handles memory
fragmentation

 cgroups A summary of process counts running in different control groups

 cmdline The kernel boot command used by U-Boot to start up your ARTIK. Observe
the boot options here.

 consoles A summary of currently open console sessions

 cpu/alignment Details of the memory alignment used by the current CPU

 cpu/swp_emulation Details about emulation of the deprecated SWP instruction inside the ARM
CPU

 cpuinfo Describes the CPU architecture in this ARTIK module

 crypto Describes a list of available cryptographic modules

 devices A list of devices supported by the ARTIK sorted into block and character
categories with the device number and generic name. Refer to the /dev
virtual filesystem description in Chapter 9 for more information.

 diskstats A description of all the logical disk devices

 driver/rtc Information about the real-time clock settings

 driver/snd-page-alloc Information about the memory allocation for audio devices

 execdomains Contains a list of the execution domains (ABI personalities)

 fb A list of the available frame buffers for video and graphics use

 filesystems A list of the supported filesystems with their device disposition

 interrupts Displays a count of interrupts for devices, hardware, and processes that are
mapped to interrupts on each of the CPUs

 iomem Display the mapping of I/O devices to memory address locations

 ioports A list of currently active I/O ports

 kallsyms An exported list of symbols representing properties inside the loadable
kernel modules

 key-users Summary of user sessions

 kmsg The kernel message log which is displayed with the dmesg command

 kpagecount Related to kernel page map support. Using the cat command to view this
file stalls but the od command works fine.

 kpageflags Related to kernel page map support. Using the cat command to view this
file stalls but the od command works fine.

 loadavg Performance statistics describing load averages

 locks Contains a list of currently active file locks

 meminfo Displays some statistical information about how the kernel is utilizing the
available memory

(continued)

http://dx.doi.org/10.1007/978-1-4842-2322-2_9

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

131

Table 10-2. (continued)

 Global property Description

 misc A list of the minor device numbers and device names associated with /dev
devices whose major number is 10

 modules A list of currently loaded kernel modules. Some information is given about
module dependencies but this is not always accurate.

 pagetypeinfo A description of the different kinds of memory pages in the page zone
tables

 partitions A list of partitions that the kernel has identified

 sched_debug A debug listing of running processes and potentially runnable processes
per CPU

 slabinfo Details of the kernel caches for recently used objects

 softirqs Usage statistics for software interrupt requests (IRQs)

 stat Information about the kernel and various statistics

 swaps Details of the swap file usage. Unless you have set up a swap file to provide
additional virtual memory, this file does not contain anything useful.

 sysvipc/msg Interprocess messaging data

 sysvipc/sem Interprocess semaphore flags

 sysvipc/shm Shared memory sections

 timer_list Displays information about the timers on all CPUs

 uptime The amount of time since the kernel was booted and how much of that time
was spent in an idle state

 version Displays the kernel version information

 vmallocinfo Displays information about virtual memory allocation

 vmstat Describes various virtual memory statistics

 zoneinfo Descriptions of memory zones. This is useful for analyzing virtual memory
behavior.

 scsi/* Files containing properties for various disk drives

 sys/* Directories containing property descriptions for different aspects of the
system. Some of them can be modified.

 Parent and Child Processes
 Tree structures are used a lot in computing to organize resources because they are a simple concept to
understand and manage, and so it is with processes. Parent processes can spawn child processes to do some
work for them. After delegating that task, the parent waits for the child process to complete and hand back
the results.

 This mode of operation is called blocking or synchronous execution where the parent is prevented from
continuing until the child process exits. Blocking may be useful in some cases but usually you want to get
on with something else so the child process can just run in the background and either signal its completion

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

132

to the parent or deposit the output somewhere for later use. This is called asynchronous execution. Set up
signal and event handlers to interlock the processes or monitor a shared data storage area in memory or
a file. This is a little more work than implementing a blocking execution but it’s much more efficient and
interactive.

 Asynchronous processes are less prone to locking up the system. If a child process encounters a
problem and stalls, any parent that is waiting for it stalls too if a synchronous mode is used. If the child
calls back to its parent process and the parent process is waiting for the child to complete, this is a two-way
blocking of any further progress. The parent cannot service the child and cannot continue either, because
the child never completes the task. This is called deadlocking, and once this starts to happen, your system is
on the way to a complete failure if more related processes get into this state. These are problems caused by
design inadequacies. Avoid these problems by carefully designing your architecture before you implement
anything.

 Creating New Processes
 When you type a command in the shell environment, it spawns a child process to run that command in
synchronous mode. That child process inherits a lot of the environment from its parent process and there
is a certain overhead to creating that process context. If you place an ampersand character (&) at the end of
the command line before executing it, the child process is thrown into the background and you can carry on
working. It still inherits an environment from its parent even though it is running independently.

 Processes can be spawned by the launch daemon and configured so they are created automatically
when a connection arrives on a network port. This binding is called a service. It is how FTP and Telnet
processes are started on receipt of a connection request. The kernel creates a process context under
guidance from the launch daemon and the service configuration. Then the network I/O is bound to that new
process’s standard I/O devices.

 Another way to create processes is with the cron scheduler. This can start new processes at scheduled
times or intervals. The processes are created by the kernel in accordance with the configuration you set up in
the crontab (cron table).

 Spawn new processes from inside your application. This is called forking. Make sure that the process is
properly detached from your application so it can run independently if you need it to run asynchronously;
otherwise you will create a synchronous (blocking) child process. Study the documentation on the fork()
and exec() system function calls to see how to manage child processes from within your application.

 Process Identifier Numbers
 As each process is started, it is given a unique process ID number (PID). They are created in ascending order,
and when the maximum PID number is reached, the cycle starts again. The allocation scheme skips any PID
numbers that belong to currently running processes.

 Listing the Running Processes
 List the currently running processes with the ps command. Adding options to the command (ps –ef) shows
additional information. An example of the ps command and the output is shown in Listing 10-2 .

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

133

 Listing 10-2. Full Process Listing ps –ef Command Output

 ps –ef

 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 15:55 ? 00:00:02 /sbin/init
 root 854 1 0 15:55 ? 00:00:02 /usr/lib/systemd/systemd-journal
 root 978 1 0 15:55 ? 00:00:00 /usr/lib/systemd/systemd-udevd
 systemd+ 1534 1 0 15:55 ? 00:00:02 /usr/lib/systemd/systemd-timesyn
 root 1549 1 0 15:55 ? 00:00:00 /usr/sbin/alsactl –s –n 19 –c –E
 dbus 1564 1 0 15:55 ? 00:00:00 /usr/bin/dbus-daemon –system –
 root 1572 1 0 15:55 ? 00:00:00 /usr/lib/systemd/systemd-logind
 root 1576 1 0 15:55 ? 00:00:02 /usr/sbin/NetworkManager –no-da
 root 1578 1 0 15:55 ? 00:00:00 ./brcm_patchram_plus –patchram
 avahi 1579 1 0 15:55 ? 00:00:00 avahi-daemon: running [linux.loc
 pulse 1581 1 0 15:55 ? 00:00:00 /usr/bin/pulseaudio –system –d
 avahi 1590 1579 0 15:55 ? 00:00:00 avahi-daemon: chroot helper
 root 1592 1 0 15:55 ? 00:00:00 /usr/sbin/gssproxy –D
 root 1610 1 0 15:55 ? 00:00:00 /usr/sbin/sshd –D
 systemd+ 1614 1 0 15:55 ? 00:00:00 /usr/lib/systemd/systemd-resolve
 root 1628 1 0 15:55 ? 00:00:00 /usr/sbin/crond –n
 root 1636 1 0 15:55 ? 00:00:00 login – root
 root 1644 1 0 15:55 ? 00:00:00 /usr/libexec/bluetooth/bluetooth
 root 1674 1 0 15:55 ? 00:00:00 /usr/sbin/wpa_supplicant –c /etc
 polkitd 1675 1 0 15:55 ? 00:00:00 /usr/lib/polkit-1/polkitd –no-d
 root 1705 1 0 15:55 ? 00:00:00 /usr/lib/systemd/systemd –user
 root 1719 1636 0 15:55 ttySAC2 00:00:00 –bash
 root 1900 1719 0 16:40 ttySAC2 00:00:00 ps –ef

 Note the PPID column that indicates which process is the parent. Most processes in this listing are
owned by the init process. Note the avahi process running with PID 1590 . It has a parent PID 1579 ,
which identifies a daemon that spawned a child process, both of which were running under the avahi user
account. This shows how the kernel can create processes running under different user accounts, which
makes the permissions model much more flexible. The ps –ef command itself has an entry (PID 1900) and
its parent is the bash shell running as PID 1719 .

 Adding the ww option to the ps command displays in a wide wrapped format to see the command that
initiated the process. Listing 10-3 shows an abridged copy of the resulting display. This reveals the CPU and
memory usage.

 Listing 10-3. Extended ps Command Output With Resource Allocations

 ps –auxww

 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
 root 1 0.1 0.6 24816 3224 ? Ss 15:55 0:03 /sbin/init
 root 854 0.1 0.3 8436 1904 ? Ss 15:55 0:02 /usr/lib/systemd/systemd-
journald
 root 978 0.0 0.3 11220 1540 ? Ss 15:55 0:00 /usr/lib/systemd/systemd-
udevd
 root 1719 0.0 0.3 5320 1884 ttySAC2 Ss 15:55 0:00 –bash
 root 1870 0.0 0.3 8524 1596 ttySAC2 R+ 16:30 0:00 ps –auxww

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

134

 In this example, the ps –auxww command shows resource usage but because the PPID column is
missing this time, the parent process is hidden. Because some of the options are mutually exclusive, you
cannot see all of the information in one listing.

 Sending Signals to Processes
 If you know the PID number for a process, you can send signals to it from the command line with the kill
command. Your application can also send signals to other processes if it can determine their PID number.
The receiving process needs to have a signal handler set up during the initialization phase or these signals
are ignored. The kill -9 signal is a process termination instruction and does not need you to set up a signal
handler first because it calls the exit() function by default. Add a handler for this signal to invoke cleanup
tasks before exiting. Just ensure that you eventually call the exit() function.

 Signal handling has been part of the UNIX and C language toolkit since the very earliest systems were
created, and there is plenty of tutorial and example documentation about it online. The kill command is
misnamed. It ought to be called something more obvious, such as send_signal_to_process , but it has been
called kill since the early days because that was originally all it could do. For a good example with some
experimental code to try out, go to www.thegeekstuff.com/2012/03/catch-signals-sample-c-code/ .

 The simple signal handler from the Geek Stuff discussion is shown in Listing 10-4 . The handler is
attached to the signal management framework because your application starts up by calling the signal()
function, which installs a reference to the signal handler and registers it for the required signal type
identifiers. If that attachment fails, a message is displayed. Otherwise, when the application goes into the
 while() loop, you can then try sending it signals. Pressing [Control] + [C] sends the SIGINT signal to the
process and the “received SIGINT” message is displayed.

 Listing 10-4. A Simple Signal Handler

 #include<stdio.h>
 #include<signal.h>
 #include<unistd.h>

 void sig_handler(int signo)
 {
 if (signo == SIGINT)
 {
 printf("received SIGINT\n");
 }
 }

 int main(void)
 {
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 printf("\nCannot catch SIGINT\n");
 }

 // Allow time to issue a signal to this process
 while(1)
 {
 sleep(1);
 }
 return 0;
 }

http://www.thegeekstuff.com/2012/03/catch-signals-sample-c-code/

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

135

 If you put in handlers that intercept SIGKILL and SIGSTOP , you can prevent applications from being
stopped at all if you never call the exit() function. This is not a good idea because the only way to stop the
application then is to reboot the ARTIK. Those handlers ought to complete their task by calling the exit()
function so the application can return in an orderly fashion. Replace this printf() with an exit() function
call to configure the handler correctly:

 printf("\nCannot catch SIGKILL\n");

 Zombies
 If a parent process ceases execution and the kernel tears it down, any child processes that have not been
detached from it are also torn down whether they have completed their work or not. This might not be a
great idea because if they are halfway through an update it will be left unfinished. Any connections to remote
systems and services are also taken down.

 If child processes are not detached and are allowed to complete on their own as if they were a stand-
alone process, when they eventually complete and post their exit status for the parent to collect, the parent
is no longer running and the child process waits forever to be reaped by a parent that no longer exists. These
are called zombie processes because they cannot die and they are not going to do any further useful work
either. Unfortunately, they use up a process slot. Eventually, when you have enough of them, the computer
stalls because it cannot create any new processes.

 Because a child process does not give up its PID number until its exit state has been collected by its
spawning parent, processes must go into a zombie state before they are reaped. It is the reaping of the exit
status that allows the PID to be reused again later on because the process is now genuinely finished.

 The kill command cannot get rid of zombie processes. Unless the system has a mechanism to detect
and remove them, they can cause a serious resource leak. In an embedded scenario, this brings your product
down and your ARTIK must be power cycled or hard booted to restart it. Read more about processes at the
following link to find out the fine points about zombies: https://en.wikipedia.org/wiki/Zombie_process .

 Coding defensively and implementing a registry of PID numbers as you create child processes allows
you to build an exit() handler into your application. When it receives the quit signal, it can instruct its child
processes to close down in an orderly manner. Trade off the benefits of making sure those child processes
have exited versus the increased time required to shut down your application.

 There are many different ways to create child processes and you may be able to delegate ownership
of them to the main system scheduler and give up your parentage. This would then allow the scheduler to
reap the PID numbers for you when the child process exits. There is no single approach that works for all
scenarios. Design your multiprocess applications to carefully to eliminate these failure modes.

 Special Locations Within /proc/{pid}
 Each running process has its own containing subdirectory within the /proc directory. This container is
identified by the PID number of the process. Working through an example helps to illustrate how to make
use of this process container. Taking the bash shell as an example, the PID number can be identified with
this example ps command shown in Listing 10-5 .

 If you want to avoid seeing the process for your grep command listed (because it contains the same
search key), pipe the result to a second grep command to remove it. The –v on the second grep command
in the pipeline matches the grep keyword and discards lines that contain it, leaving just the single line that
matches the bash shell process.

 Refine this further with the cut command to isolate just the PID number if you are building this into
a shell script to automate the process. There is a variable number of spaces involved and a tr command
squeezes them out first, so the cut commend works more predictably.

https://en.wikipedia.org/wiki/Zombie_process

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

136

 If the whole command pipeline is enclosed in back ticks, add a head command to acquire just the
first item in the list of returned PID numbers because a secondary bash shell is spawned as a child process
and that falls through the filters creating a duplicate entry in the list. This is a prime example of where
process spawning can catch you unawares. Simulate the back tick behavior by using round brackets to see
this happen. You cannot use the back ticks without assigning them to a variable when diagnosing these
problems. The result would be interpreted as a new command because of the way the shell substitution
mechanism works for back ticks. The round brackets simulate the same effect without the command being
substituted and executed by the shell, so it is easier to debug.

 Listing 10-5. Capturing PID Numbers

 # Simple ps command
 ps -ef | grep bash

 root 1744 1622 0 07:46 ttySAC2 00:00:01 -bash
 root 1918 1744 0 07:57 ttySAC2 00:00:00 grep --color=auto bash

 # Suppressing the display of the grep command
 ps -ef | grep bash | grep -v grep

 root 1744 1622 0 07:46 ttySAC2 00:00:01 -bash

 # Adding a tr command to squeeze out multiple space characters
 ps -ef | grep bash | grep -v grep | tr -s ' '

 root 1744 1622 0 07:46 ttySAC2 00:00:01 -bash

 # Adding a cut command to isolate the PID
 ps -ef | grep bash | grep -v grep | tr -s ' ' | cut -d' ' -f2

 1744

 #Simulate the back ticking child process by spawning using round brackets
 (ps -ef | grep bash)

 root 1744 1622 0 07:46 ttySAC2 00:00:02 -bash
 root 1943 1744 0 07:59 ttySAC2 00:00:00 -bash
 root 1945 1943 0 07:59 ttySAC2 00:00:00 grep --color=auto bash

 # Assigning the PID number to a variable using back ticks
 MY_PID=`ps -ef | grep bash | grep -v grep | tr -s ' ' | cut -d' ' -f2 | head -1`

 echo ${MY_PID}

 1744

 In this example, the most interesting PID is 1744 running under the root account. Change the working
directory to the process container path for your own bash shell (which might have a different PID) with a cd
command:

 cd /proc/1744

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

137

 The contents of this directory are a mixture of readable files, subdirectories, and symbolic links. The
symbolic links point at other entities within the file system. These entities are relevant to this process but
they might also be relevant to many other processes. The directories manage collections of properties in a
hierarchical manner so you can find them more easily. Most of the regular files are readable. Inspect them
with a cat command or by opening a file descriptor on them from within your application. A few are writable
but usually only by the root account. Listing 10-6 shows the result of using the ls command piped through
some grep filters to see just the readable files listed. By now, you should start to see the ease with which the
UNIX command line can combine individual commands to create combo commands that are very powerful.

 Listing 10-6. Regular Files Belonging to a Process

 ls -la | grep -v "^l" | grep -v "^d" | grep -v "total 0" | sort

 -r-------- 1 root root 0 Feb 16 16:43 environ
 -r-------- 1 root root 0 Feb 16 17:12 auxv
 -r-------- 1 root root 0 Feb 16 17:12 mountstats
 -r--r--r-- 1 root root 0 Feb 16 16:24 cmdline
 -r--r--r-- 1 root root 0 Feb 16 16:24 stat
 -r--r--r-- 1 root root 0 Feb 16 16:24 status
 -r--r--r-- 1 root root 0 Feb 16 16:45 statm
 -r--r--r-- 1 root root 0 Feb 16 17:12 cgroup
 -r--r--r-- 1 root root 0 Feb 16 17:12 limits
 -r--r--r-- 1 root root 0 Feb 16 17:12 maps
 -r--r--r-- 1 root root 0 Feb 16 17:12 mountinfo
 -r--r--r-- 1 root root 0 Feb 16 17:12 mounts
 -r--r--r-- 1 root root 0 Feb 16 17:12 oom_score
 -r--r--r-- 1 root root 0 Feb 16 17:12 pagemap
 -r--r--r-- 1 root root 0 Feb 16 17:12 personality
 -r--r--r-- 1 root root 0 Feb 16 17:12 smaps
 -r--r--r-- 1 root root 0 Feb 16 17:12 stack
 -r--r--r-- 1 root root 0 Feb 16 17:12 syscall
 -r--r--r-- 1 root root 0 Feb 16 17:12 wchan
 -rw------- 1 root root 0 Feb 16 17:12 mem
 -rw-r--r-- 1 root root 0 Feb 16 17:12 comm
 -rw-r--r-- 1 root root 0 Feb 16 17:12 coredump_filter
 -rw-r--r-- 1 root root 0 Feb 16 17:12 oom_adj
 -rw-r--r-- 1 root root 0 Feb 16 17:12 oom_score_adj
 -rw-r--r-- 1 root root 0 Feb 16 17:12 sched
 --w------- 1 root root 0 Feb 16 17:12 clear_refs

 Process Property Collections
 Table 10-3 summarizes the directories containing collections of properties. List these in the bash command
line shell with an ls command. Import and manage them as arrays of values inside a C language application.

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

138

 Process Properties
 Table 10-4 describes the regular files containing process properties. Access them to read a value given that
you know the PID number for the target process you want to examine. The path to each of these properties
should be formed like this:

 /proc/{PID_value}/{property_name}

 Just like the global properties in the top level of the /proc filesystem, a few of these files block your
terminal output when you use the cat command to read them. Instead, use the od (Octal Dump) tool to
display their contents.

 Table 10-3. Property Collections Belonging to a Process

 Directory Description

 fd A collection of symbolic links to currently open files, one for each file that the process has
open. If you do not have an lsof command installed, looking in here may tell you the same
information. This list also includes the standard I/O files.

 fdinfo A collection of additional metadata about the open files listed in the fd property collection.
You can cat these or open them as regular files to obtain the file read/write position and flags.

 net A collection of network-related properties pertaining to this process

 ns A collection of namespaces being used by the process

 task This contains a subdirectory for each thread in the process. Each one is named with the
thread ID that it manages. This could be useful at quit time when you want to tear everything
down and clean up as you exit from a process.

 Table 10-4. Process Properties Reflected in Regular Files

 Property Description

 auxv Auxiliary vector with information passed by the ELF interpreter when the process
executable was started. This is a binary value so use the od tool to inspect it.

 cgroup A list of the control groups to which the process/task belongs

 clear_refs The clear_refs property within a process container is write only. Reading this
property is of no use because it is intended for your application to send a message
to the kernel to request that it clears some flag bits. This is an advanced memory
management topic.

 cmdline The command line that initiated the process

 comm The name off the process (or thread task). This can be altered from inside the process.

 coredump_filter A bit mask that determines which memory segments are written to a core dump
when the executable crashes

 environ The names and values of environment variables. These are inherited from the parent
process and might have been modified during execution. They are discarded when
the process exits.

(continued)

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

139

Table 10-4. (continued)

 Property Description

 limits This file displays the values and units of measurement for each of the process’s
resource limits.

 maps A text file with information about mapped files and blocks (heap and stack). This
lists the shared libraries that are linked to the application at runtime and where in
memory the various items are located.

 mem A binary image of the process memory for use with the ptrace tools. Because this is a
binary value, you use the od tool to inspect it.

 mountinfo Lists additional information about the mount points propagated into the process
space according to the permissions controlling whether they can be accessed

 mounts A list of mount points propagated into the process space according to the
permissions controlling whether they can be accessed

 mountstats Statistical information about the mounted file systems

 oom_adj This file can be used to adjust the score used to select which process should be killed
in an out-of-memory (OOM) situation.

 oom_score Contains the current score that the kernel gives to this process for the purpose of
selecting a process for the OOM killer

 oom_score_adj This file can be used to adjust the badness heuristic used to select which process gets
killed in OOM conditions.

 pagemap Related to kernel page map support

 personality Exposes the execution domain for the current process. Alter this if necessary with the
 personality() function.

 sched Tells you statistical information about the performance of your executable process or
thread

 smaps Contains statistical information about memory consumption for each of the process’s
mappings

 stack Provides a symbolic trace of the function calls in the kernel stack for a process

 stat Status information about the process that is presented by the ps command

 statm Status information about the process memory space

 status Various properties of the running process which may be useful to examine

 syscall Debugging output from internal system calls

 wchan The symbolic name corresponding to the location in the kernel where the process is
sleeping

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

140

 Process-Related Objects
 Table 10-5 summarizes the symbolic links that point at relevant locations within the file system.

 Table 10-5. Symbolic Links to PID-Related Objects

 Symlink Description

 cwd The current working directory of the process. Updated by the cd command in the bash shell
command line or by calling the POSIX chdir() function from your application.

 exe The executable binary that is running the process

 root The root of the current filesystem. This is normally / but it may be set to another value if the
process is running in a chroot jail to limit its access to the file system. This is sometimes
called sandboxing.

 Table 10-6. Symbolic Links to “self”-Related Properties

 Symbolic link Description

 mounts A symbolic link to /proc/self/mounts , which contains a list of mounted file systems
accessible to the current process

 net A symbolic link to /proc/self/net , which contains a lot of useful debugging information
about the network configuration of your ARTIK module

 self PID identified container inside the /proc directory that corresponds to the current
process being executed. You can write generalized access scripts or commands without
needing to know the process number first.

 self/mounts Displays a list of mounted file systems accessible to this process

 self/net/* A collection of network statistics available individually as files or collectively with a
 netstat command

 The items listed in Table 10-6 are located in the top-level directory of the /proc filesystem and are
directly related to the currently running process. These are provided mainly for convenience when accessing
the environment on its behalf. They do not have a PID prefix but they are only visible to the process they
describe.

 Inspecting the Process Status
 Given that you know the PID for the process you are interested in, examine its status by looking in the /
proc/ {PID} /status file with a cat command or by reading the regular file from the C language. An example
 status file is shown in Listing 10-7 .

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

141

 Listing 10-7. Process Status Information

 cat /proc/1719/status

 Name: bash
 State: S (sleeping)
 Tgid: 1719
 Pid: 1719
 PPid: 1636
 TracerPid: 0
 Uid: 0 0 0 0
 Gid: 0 0 0 0
 FDSize: 256
 Groups:
 VmPeak: 5324 kB
 VmSize: 5324 kB
 VmLck: 0 kB
 VmPin: 0 kB
 VmHWM: 1900 kB
 VmRSS: 1900 kB
 VmData: 188 kB
 VmStk: 136 kB
 VmExe: 900 kB
 VmLib: 1696 kB
 VmPTE: 8 kB
 VmSwap: 0 kB
 Threads: 1
 SigQ: 0/3206
 SigPnd: 0000000000000000
 ShdPnd: 0000000000000000
 SigBlk: 0000000000010000
 SigIgn: 0000000000380004
 SigCgt: 000000004b817efb
 CapInh: 0000000000000000
 CapPrm: 0000001fffffffff
 CapEff: 0000001fffffffff
 CapBnd: 0000001fffffffff
 Cpus_allowed: 3
 Cpus_allowed_list: 0-1
 voluntary_ctxt_switches: 712
 nonvoluntary_ctxt_switches: 642

 Some properties here are obvious. The PPID number tells you the parent process ID that started
this process running. The FDSize value tells you how many files can be open at once. Various memory
performance statistics are also available. This might help you diagnose memory leaks or optimize
your memory usage by changing your strategy for malloc() function calls, etc. The number of process
threads can also tell you about the internal behavior of your process if you have factored your design by
multithreading it.

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

142

 Resource Usage Monitoring
 One of your application processes might be hogging the CPU and denying other processes the opportunity
to do their work. The top command can help find which process is the culprit. If you use the top command
with options, it displays a constantly updating display of processes ranked in order of their resource usage.
Start the monitoring by typing the top command. Add command line options to alter its behavior. Listing
 10-8 shows the example output screen generated by the top command that uses terminal cursor controls to
redraw the status line each time it updates.

 Listing 10-8. Resource Allocation Output From the top Command

 top

 top - 16:50:11 up 55 min, 1 user, load average: 0.01, 0.06, 0.06
 Tasks: 100 total, 1 running, 99 sleeping, 0 stopped, 0 zombie
 %Cpu(s): 0.3 us, 0.7 sy, 0.0 ni, 99.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
 KiB Mem : 502260 total, 386564 free, 26636 used, 89060 buff/cache
 KiB Swap: 0 total, 0 free, 0 used. 459526 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1930 root 20 0 8896 1808 1320 R 1.0 0.4 0:03.06 top
 1842 root 20 0 0 0 0 S 0.7 0.0 0:04.73 kworker/u4+
 307 root 20 0 0 0 0 S 0.3 0.0 0:04.36 spi0
 1904 root 20 0 0 0 0 S 0.3 0.0 0:00.99 kworker/0:0
 1 root 20 0 24816 3224 2228 S 0.0 0.6 0:04.05 systemd
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.01 kthreadd
 3 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/0
 5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:+
 7 root rt 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
 8 root 20 0 0 0 0 S 0.0 0.0 0:00.75 rcu_preempt
 9 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_bh
 10 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_sched
 11 root rt 0 0 0 0 S 0.0 0.0 0:00.22 watchdog/0
 12 root rt 0 0 0 0 S 0.0 0.0 0:00.23 watchdog/1
 13 root rt 0 0 0 0 S 0.0 0.0 0:00.00 migration/1
 14 root 20 0 0 0 0 S 0.0 0.0 0:00.02 ksoftirqd/1
 16 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/1:+

 The top command itself will consume a lot of CPU capacity when it runs. It is a very busy process that
constantly gathers a list of other processes to parse and rank to create its results. Stop the cyclic refresh and
return to the command line prompt by pressing the [Control] + [C] key combination.

 Altering the Process Priority
 Sometimes you may want to increase the priority of a process and decrease the CPU consumed by another.
The nice command is provided for you to adjust these relative priorities. Do this from inside your own C
language applications with the setpriority() function and see the effects it has on process priorities with
the getpriority() function. The nice command is used as a wrapper for a command that you want to run
at a different priority when you start it up. If you were running a non-urgent file compression task with

 tar cvzf archive.tgz largefile

CHAPTER 10 ■ THE /PROC VIRTUAL FILE SYSTEM

143

 you can prefix it with a nice command that runs the archiving process at a lower priority, as in

 nice -n 19 tar cvzf archive.tgz largefile

 This ensures that the task completes with the same result. It consumes less CPU capacity and allows
other normal priority processes to run without being affected by the archiving job. As a non-privileged
user, you can run your own processes at a lower priority but only the root user can elevate the priority so a
process gets more CPU attention.

 The niceness factor is inversely proportional to its value. If you think of this as controlling the latency of
the process, it makes more sense. Negative values are higher priority and positive values are lower priority.
The default niceness of a process is 10 . The most favorable priority is -20 , which elevates the priority to its
maximum. The least favorable priority setting is 19 .

 Use the renice command to adjust the priority of a currently running process; the priority value can be
defined as an absolute or relative value. Read the manual pages for more details.

 Processes vs. Threads
 A process has a limited number of resources available. These resources are determined when the kernel
is configured. One example is the number of simultaneously open files. Each process has its own set of
resources and consuming them in one process does not affect any others.

 An alternative to processes is a technique called thread programming. This subdivides a process into
individual threads of execution but they all run in the context of a single process. Each thread has access to
its parent process’s pool of resources, and in this scenario, the total number of resources consumed by the
threads cannot exceed that configured for a single process. Assume that a process is allowed to open 256 file
buffers. If you create multiple threads and open two file buffers in each one, you cannot have more than 128
threads running unless you close files in the threads that have completed their work. Resource allocation
and recycling within the process is more complex with thread programming.

 The upside of processes is that they have all of their resources available but they take a few moments
to start up. Threads have an advantage that they are faster to create because they do not have a complete
process context built for them each time they start. The downside is that they must share resources with their
sibling threads. Another advantage of thread programming is the ease with which you can communicate
between threads or share memory with multiple threads.

 When you build multiprocess or multithreaded applications, the major area of complexity is
communicating between them and interlocking mutually exclusive execution paths. The thread-
programming model supports a lot of tools to help with this. Interprocess signaling has been supported
since the very earliest C language applications were written. Modern techniques also use sockets and
listeners when the processes are distributed across several separate systems.

 Summary
 Now you have an understanding of processes and how they relate to one another inside the ARTIK. This is a
large and complex topic and you can spend a good deal more time finding out about thread programming
and interprocess messaging. This will be useful knowledge if your design is factored across multiple
processes.

145© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_11

 CHAPTER 11

 The /run Virtual File System

 As the ARTIK runs, the kernel manages its processes via the /proc directory. There are other state-
dependent issues and runtime data structures that need to be maintained but which are not processes.
These data structures, logs, files, and various other components are gathered together into the /run directory
so they avoid cluttering up the rest of the file system. The Linux file system is becoming much better
managed and things are being moved to better locations. You will see the /run directory change as things are
moved around within the virtual file systems in future operating system releases.

 About /run
 The /run virtual filesystem is a recent addition to Linux and is described in version 3.0 of the Filesystem
Hierarchy Standard (FHS). It is created by the init process early on in the boot cycle.

 The /run directory contains variable data that is gathered by the kernel and reflected into user space
for your application to make use of. This directory contains useful reference information about the running
system since it was last booted. It maintains a list of currently logged-in users and details of daemon and
agent processes running in the background.

 The /run directory is implemented as a temporary file storage system (tmpfs). Although there is a
limited capacity for storing bulky data here, your applications can store useful temporary data files in the
 /run directory. Anything stored here is purged during a shutdown/reboot cycle. This is not the place to
keep any persistent configuration data; that should be put in the /etc directory. Historically an application
might have used the /var/run directory for temporary files. If you are writing new applications, use the new
conventions and locate your runtime temporary data in the /run directory tree. Find out more about the /
run directory in the Filesystem Hierarchy Standard at the following links:

 https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
 www.linuxfoundation.org/collaborate/workgroups/lsb/fhs
 http://refspecs.linuxfoundation.org/fhs.shtml

 Why /run Was Created
 Historically, there were several virtual file systems where runtime information about processes and daemons
were stored for access by other processes. Moving these items under the single virtual file system reduces
the complexity of the operating system and makes it easier to find things. Older software needs to have a
small modification to bring it up to date. The need for modification is avoided by creating symbolic links at

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs
http://refspecs.linuxfoundation.org/fhs.shtml

CHAPTER 11 ■ THE /RUN VIRTUAL FILE SYSTEM

146

the locations where the legacy applications expect to file files and directories. The modifications are then
deferred to when the preventive maintenance is carried out. There are several important reasons why
the /run virtual file system is a good idea.

• Fewer temporary file systems are mounted

• Less clutter in the /dev directory

• Removal of the unnecessary /lib/init/rw directory

• Elimination of the suboptimal /var/run directory

• Previously hidden files are now visible to user space

 When the operating system boots, some processes must store their temporary runtime data in a file.
Historically the /dev filesystem was created very early on in the boot process and since it was guaranteed to
be there, some developers would write temporary data there even though it is a bad choice of location for
that sort of thing. The /run directory cleans this up a great deal. Also, because it is also now available early in
the boot process, moving things there has no detrimental effect but it ensures the /dev directory is much less
cluttered with non–device-related data.

 The /lib/init/rw directory was another place that was a less elegant location for these runtime data
files; if your code references it, you should now move those files to the /run directory.

 The /var/run directory was introduced as a temporary filesystem to solve these early boot storage
problems but this needed to be created before its parent /var directory existed and that caused unnecessary
complexity in the boot manager. Moving this to the /run directory and mounting that earlier in the boot
process eliminates some unhelpful work-arounds and makes the mount manager more reliable.

 By eliminating the dot prefix on some file names, previously hidden items now become visible to a plain
 ls command rather than needing to remember to add the list all (-la) options. Systems administrators will
find this much more convenient.

 With these changes, the /var directory now properly contains persistent runtime data and the /run
directory has volatile runtime data. The /etc directory now only contains system configuration information
and the /dev directory is much less cluttered with non–device-related data. The lifetime guarantees for the
content of each of these directories is also more consistent.

 Another benefit of implementing the /run directory is to gradually move to a point where the / root
directory can eventually be locked and write protected. This is very desirable from a security perspective.

 Kernel Subsystems as Objects
 Kernel objects are reflected by the kernel into directory containers within the /run filesystem. Table 11-1
describes briefly what they all do.

CHAPTER 11 ■ THE /RUN VIRTUAL FILE SYSTEM

147

 Runtime System Properties
 These files are rarely needed but they do convey some useful information. They all live in the top level of the
 /run directory and their purpose is described in Table 11-2 .

 Table 11-1. Kernel Objects Reflected into the /run Directory

 Object Description

 avahi-daemon Part of the zero configuration auto-discovery protocol. mDNS is the generic term.
On Apple systems, this is equivalent to Bonjour/Rendezvous support.

 console There is no documentation for this but it may be reserved for later use by the
SELinux support.

 dbus A messaging system for interprocess communication

 faillock Part of the security mechanisms that record unauthorized login attempts

 lirc Infrared remote control support. This would expect some infrared detection
hardware to be present.

 lock Lock files for running processes

 log Logging data should be written here when journaling what happens inside your
application

 mount Part of the auto-mounter support

 netreport Messages pertaining to the network startup are logged here.

 NetworkManager This is a dynamic network control and configuration system that attempts to keep
network devices and connections up and active when they are available.

 ppp Point-to-Point Protocol daemon support

 pulse Part of the pulse width audio support

 sepermit Part of the future SELinux support. Currently undocumented.

 setrans Part of the future SELinux support. Currently undocumented.

 sysconfig System configuration files. At present, the ARTIK only maintains some NFS
configuration values in here.

 systemd Runtime data for the systemctl command to operate on

 tmpfiles.d Configuration for creation, deletion, and cleaning of volatile and temporary files

 udev Runtime data for udev managed device drivers

 user Support for logged-in user accounts managed by systemd

 wpa_supplicant Wi-Fi networking support

 Table 11-2. Runtime System Properties

 Property Description

 agetty.reload Used by the agetty login support when it needs to reload

 cron.reboot Used by the cron scheduler to determine whether a genuine reboot has happened to
run boot-time scheduled tasks

 utmp Records login and logout transactions

CHAPTER 11 ■ THE /RUN VIRTUAL FILE SYSTEM

148

 Socket Connections
 Socket connections are used for interprocess communication or for sending messages to the kernel. The /
run filesystem contains several of these connections. The items described in Table 11-3 are reflected into the
top level /run directory.

 Table 11-3. Socket Connections

 Socket Description

 gssproxy.sock A UNIX socket connection for communicating with the kernel. This is used by the
SELinux support when it is released.

 rpcbind.sock The rpcbind utility is a server that converts RPC program numbers into universal
addresses. This socket is provided to communicate with it from your application.

 Process Identifier Files
 The /run directory is the correct place to store your process identifier (PID) files. These files might have
previously been written to the /etc or /tmp directories. The correct format for a PID file is

 /run/{application_name}.pid

 The internal format of this PID file should be an ASCII coded decimal number representing the process
identifier followed by a newline character.

 Programs that read PID files should ignore extra whitespace and leading zeroes and should be able
to cope with a missing trailing newline. Additional lines in the PID file should be ignored. This forces you
to adopt a more flexible application naming strategy if more than one copy of your application can run
simultaneously. Extend the {application_name} value to describe the multiple instances. This avoids a
namespace collision that would wipe out earlier records of PID numbers when second and subsequent
instances of your application start running and consequently record their PID. Watch for possible
namespace collisions if you are installing applications from other third parties.

 In a shell script, use the $$ internal variable that the bash shell maintains to get the PID number. This
command could be incorporated into a shell script to note the PID while it is running:

 echo $$ > /run/my_application.pid

 There is a built-in variable that was originally intended to serve the same purpose. It is called $BASHPID
but there are problems with this if you use it in a sub-shell that is spawned in a child process that does not
reinitialize the bash command line as it is started up. The child process would inherit a $BASHPID value from
its parent process and use the wrong PID number.

 Listing 11-1 shows how to accomplish the same thing from inside your own C language application.
Wrap this code in a reusable function if you are building a library of useful tools.

CHAPTER 11 ■ THE /RUN VIRTUAL FILE SYSTEM

149

 Listing 11-1. Storing a PID Number with the C Language

 // Open a PID file for writing
 FILE *myPidFd;

 if((myPidFd = fopen("/run/my_application.pid", "w")) == NULL)
 {
 printf("Error: unable to write PID file\n");
 return false;
 }

 // Store the PID value
 fprintf(myPidFd, "%d\n", getpid());

 // Close the PID file
 fclose(myPidFd);

 Some PID files are created by system processes that are started automatically as the ARTIK is booted.
Table 11-4 describes the ones that are already there. This is an important list.

 Use unique names for your own applications to avoid a namespace collision. A neat solution to this problem
is to build the target PID file name with a prefix made by reversing the items in your own Internet domain name.
This makes it very clear who owns the PID file, so a collision is very unlikely because each application developer
has a private namespace. You can then add an optional suffix to identify multiple instances of your application.
This approach avoids the need to keep a register of child processes because the prefix can be used to create a
filtered list of PID files. For example, an Apress application might have a PID file name like this:

 com.apress.example_application.suffix.pid

 Updating Legacy Applications
 If you are planning to recycle some old code from a legacy application and deploy it on your ARTIK,
check that you do not have any hard-coded references to the legacy paths in the file system. If you hard
code references to /var/run , your application will cease to work if that path is eventually deprecated and
removed. Refer to /run instead of /var/run . For the time being, a symbolic link protects you. Update your
code as a routine maintenance task to avoid these issues. Table 11-5 lists some old versus new canonical
paths to be aware of and check for if the OS is upgraded. These are planned changes that the kernel
developers are working on. It would not be a huge task to use the refactoring tools in a modern coding IDE to
seek out these items and fix them once and for all.

 Table 11-4. PID Files for Currently Running Processes

 PID file Description

 alsactl.pid Part of the ALSA audio support

 brcm_patchram_plus.pid Bluetooth support process

 crond.pid Cron scheduler daemon process

 dhclient-p2p0.pid DHCP client support and peer-to-peer networking

 gssproxy.pid Remote procedure call support

 sm-notify.pid Reboot notification to collaborating networked devices

 sshd.pid Secure shell command line support

CHAPTER 11 ■ THE /RUN VIRTUAL FILE SYSTEM

150

 Table 11-5. Old vs. New Canonical Paths

 Old path New path

 /var/run /run

 /var/lock /run/lock

 /dev/shm /run/shm

 /tmp Later this becomes /run/tmp (but continue to use /tmp via
a symlink)

 Various runtime data locations /run

 User temporary data /run/user/{UID}

 /lib/init/rw /run

 /dev/.* /run/*

 /dev/shm/* /run/*

 Any writable files in the /etc directory /run/*

 /etc/lvm/cache/ /run/lvm/cache/

 /etc/mtab /run/mtab

 /etc/network/run/ifstate /run/network/ifstate

 /etc/adjtime /run/adjtime (this is expected to change soon)

 /etc/lvm/cache/ /run and /run/lock

 /etc/mtab /proc/self/mounts

 /etc/network/run/ifstate /run/network/ifstate

 Creating environment variables and defining them in a containing shell script that runs your
application is a good way to solve this problem and make your application more portable. Then your
application can import the environment variables and use their contents without having any hard-coded
paths in them at all. Create an environment variable in the bash shell:

 export VARIABLE=value

 There should not be any space characters between the variable and the equals sign (=) and the value.
If your value has spaces embedded in it, then the whole value should be enclosed in straight quotes (").
Environment variables are accessed by prepending the dollar sign ($) just like other shell variables. When
they are defined in an export command, the dollar sign is omitted.

 Now inside your C language application code you can read that environment variable with the getenv()
function provided by the stdlib library. Listing 11-2 shows an example to test in your ARTIK.

CHAPTER 11 ■ THE /RUN VIRTUAL FILE SYSTEM

151

 Listing 11-2. Reading an Environment Variable From the C Language

 #include <stdio.h>
 #include <stdlib.h>

 int main()
 {
 printf("Reading environment variables\n");
 const char* myEnvVar = getenv("VARIABLE");
 printf("VARIABLE :%s\n", myEnvVar);
 printf("end test\n");
 }

 Compile the code example and run it. The first time it runs, the text string ‘ (null) ’ is presented because
the environment variable has not been exported yet. After exporting that environment variable, the value is
reflected into the application and displayed by the printf() function. Listing 11-3 shows these steps.

 Listing 11-3. Reading an Environment Variable With bash

 gcc -Wall test.c -o test

 ./test

 Reading environment variables
 VARIABLE :(null)
 end test

 $ export VARIABLE=value

 ./test

 Reading environment variables
 VARIABLE :value
 end test

 Summary
 Understanding the runtime environment is important for improving the performance of your user space
applications. The /run file system provides useful resources you can check from inside your application
while it is running. Then you can make informed decisions about how to alter its behavior responsively.

153© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_12

 CHAPTER 12

 System Administration

 Learn how to do systems administration for your development workstation and your ARTIK module in order
to optimize its configuration for your needs. This is a career enhancing skill; it’s also necessary for getting the
best performance from your ARTIK module. There are plenty of online resources to teach you the systems
administration skills you will need, but this chapter offers some initial information.

 How to Be a Sys Admin
 One of the major benefits of running Fedora as your development workstation operating system is the
opportunity to rehearse these tasks before attempting them on your ARTIK. Read through the systems
administrator guide in the Fedora documentation library. There are some items that are particularly relevant
to your ARTIK in the Fedora version 22 sys admin guide. See https://docs.fedoraproject.org/en-US/
Fedora/22/html/System_Administrators_Guide/index.html .

 The available admin tasks may be affected by the operating system configuration that Yocto imposes
as the Fedora OS is built for the ARTIK. For now, assume that all of the capabilities of the Fedora OS are
available until you discover something that you cannot do. These are the sort of things you should learn
about:

• Setting up the system locale so the OS can use the right localization settings

• Setting the right keyboard layout if you are interacting via a terminal emulator

• Configuring the date and time

• Managing user accounts, especially if you are communicating with other systems

• Managing user groups

• Managing packages for installation

• Configuring services (agents and Daemons)

• Configuring OpenSSH to maintain the security

• Configuring VNC if you want to do remote desktop access (only relevant if your
ARTIK is running a GUI)

• Administering the built-in Apache web server

• Administering the built-in e-mail server (you may have already noticed the messages
from SendMail as it starts up during the ARTIK boot process)

• Administering directory servers to run LDAP

https://docs.fedoraproject.org/en-US/Fedora/22/html/System_Administrators_Guide/index.html
https://docs.fedoraproject.org/en-US/Fedora/22/html/System_Administrators_Guide/index.html

CHAPTER 12 ■ SYSTEM ADMINISTRATION

154

• Administering file servers for sharing with Samba and FTP

• Configuring printers

• Setting up automatic time synchronization with NTP

• Monitoring and analyzing the system performance

• Automating system tasks

• Configuring kernel modules, devices, and drivers

• Installing software with dnf

 Here are some systems administration tricks and tips to save you time. Most systems administration
work is very simple, often only needing a one-line command unless you are installing major new software
items. System administrators often only need to check something occasionally or turn it on and off.

 Identifying an ARTIK Module
 There are a variety of different ways to discover what kind of ARTIK your application is running in. The /proc
filesystem provides at least two regular files whose contents you can cat to the screen in the bash command
line. Access them from a C language application instead by opening and reading the file. Listing 12-1 shows
the results of inspecting these files.

 Listing 12-1. Determining the ARTIK Model

 cat /proc/device-tree/compatible

 samsung,artik5samsung,exynos3250

 cat /proc/device-tree/model

 Samsung ARTIK5 board based on EXYNOS3250

 Check out the following links for more about the kernel support for your Samsung ARTIK hardware.
These links document the source code used to build the kernel. There may be new documents introduced in
this library as the ARTIK engineers roll out more open source material. Download and study the rest of the
ARTIK OS source code now that Samsung has made it available to the developer community.

 https://github.com/SamsungARTIK
 https://github.com/torvalds/linux/blob/master/Documentation/arm/Samsung-S3C24XX/Overview.txt
 https://github.com/torvalds/linux/blob/master/Documentation/arm/Samsung-S3C24XX/S3C2412.txt
 https://github.com/torvalds/linux/blob/master/Documentation/arm/Samsung-S3C24XX/S3C2413.txt

 Detecting the OS Version
 Knowing what version of the operating system you are running is useful, especially when you are looking for
additional software to install. Some packages have dependencies based on your operating system version.
Make sure you download the right one. The uname command tells you what kind of Linux you are running and
something about the CPU cores you have available. The output shown in Listing 12-2 illustrates this, but the

https://github.com/SamsungARTIK
https://github.com/torvalds/linux/blob/master/Documentation/arm/Samsung-S3C24XX/Overview.txt
https://github.com/torvalds/linux/blob/master/Documentation/arm/Samsung-S3C24XX/S3C2412.txt
https://github.com/torvalds/linux/blob/master/Documentation/arm/Samsung-S3C24XX/S3C2413.txt

CHAPTER 12 ■ SYSTEM ADMINISTRATION

155

results may be different for your system depending on the kind of ARTIK you have and its vintage.
The /proc/version file describes the version of the operating system and some additional properties.
Although the ARTIK runs a Fedora-based OS, the GCC compiler is reported as being Ubuntu compatible. Your
system may display a different GCC compiler version. The contents of the /boot directory are also interesting.

 Listing 12-2. Identifying the OS Version

 uname -a
 Linux dhcppc1 3.10.9 #1 SMP PREEMPT Mon Nov 9 13:34:01 KST 2015 armv7l armv7l armv7l GNU/
Linux

 cat /proc/version
 Linux version 3.10.9 (linuxpark@mozart) (gcc version 4.8.2 (Ubuntu/Linaro 4.8.2-16ubuntu4))
#1 SMP PREEMPT Mon Nov 9 13:34:01 KST 2015

 ls /boot
 exynos3250-artik5.dtb uInitrd zImage

 Determining the Kernel Version
 It is useful to know what version of the kernel you are running. This command tells you:

 uname -r

 On a Commercial Beta ARTIK 5, this displays the value 3.10.9 , which corresponds to the name of a
directory inside the /lib/modules directory. Inside that directory are the modules that are built in to the
currently installed kernel. Installing the latest ARTIK firmware from Samsung would affect this value unless
it is released to deploy a minor patch update without updating the kernel version.

 Dynamically Changing the Host Name
 By default the host name in your ARTIK 5 is localhost . You can see this if you type the hostname command.
To alter the host name, write a new value to the /proc/sys/kernel/hostname virtual file location. It makes
sense to constrain your host names to just using the following characters:

• Uppercase letters (A-Z)

• Lowercase letters (a-z)

• Numbers (0-9)

• Dashes (-)

• Underscores (_)

• Periods (.)

 You might be able to use other characters but they can be misinterpreted as meta-characters if you use
the host name as a command line parameter. The hostname command displays the current value. Listing 12-3
illustrates how to change the host name from a shell command line. This is just a temporary change. Modify
your network configuration to make it permanent and persistent after a reboot.

CHAPTER 12 ■ SYSTEM ADMINISTRATION

156

 Listing 12-3. Changing the hostname Property From the Command Line

 hostname [Return]

 localhost

 echo "ARTIK-5" > /proc/sys/kernel/hostname [Return]

 hostname [Return]

 ARTIK-5

 This approach might be useful if you have a collection of ARTIK modules that collaborate in a grid,
mesh, or cluster but are based on the same OS installation image. They could register with a central
controlling node and take on a name that is granted by the central system. This would allow your entire herd
of ARTIK modules to deploy themselves to distributed tasks in an entirely dynamic fashion. It would be
interesting to see a large grid of ARTIK modules clustered together as a massively parallel computer.

 Listing 12-4 provides the source of a small application that does the same thing in C language. Open
a new source file, call it rename_host.c , save the file, and compile it with GCC. Now use the hostname
command to check the current host name. Run your new compiled application and check that the name was
changed by using the hostname command again.

 Listing 12-4. Altering the hostname Property From the C Language

 #include <string.h>
 #include <unistd.h>

 int main()
 {
 char myHostname[] = "MY-ARTIK";

 sethostname(myHostname, strlen(myHostname));

 return 0;
 }

 ■ Note This technique for changing the host name only works for the current session. The host name reverts
to the original value when the ARTIK is rebooted unless you permanently reconfigure it in the conventional way.

 Setting the Correct Date
 Your ARTIK module may display the wrong date when it is booted. Unless it has a battery backup or you
configure your ARTIK to call a timeserver to set the time automatically, you must set the date and time
manually every time it boots. Use the date command with the -s option to set the date. Substitute the right
date and time values instead of the placeholders shown here when you type it on the ARTIK command line.

 date -s '2016-M-D HH:MM:SS'

CHAPTER 12 ■ SYSTEM ADMINISTRATION

157

 Uploading Files
 Once you have your ARTIK configured for IP networking, use the IP address to send files to it from your
desktop workstation. The scp command is specifically designed for that task. You use it from the UNIX
command line on your desktop system. Use the Cygwin terminal application to use the scp command on a
Windows workstation.

 The source file to copy can be anywhere on your local workstation but you need a UNIX path to reach
it. The account name needs to have sufficient privileges to write to the destination directory where you are
copying the files. In most ARTIK-based examples, the root account is used. The IP address is where your
ARTIK is configured to exist on your Local Area Network (LAN). The destination directory indicates where to
deposit the file inside the ARTIK module. The format of an scp command is

 scp {source_file_to_copy} {account}@{IP address}:/{destination_directory}

 Use the scp command to copy the hello.c source file from a development workstation to the /tmp
directory in a target ARTIK module:

 scp /my_files/hello.c root@192.168.1.57:/tmp

 Downloading Files
 Use the scp tool to bring files back from an ARTIK module to your hosting development workstation. Just
switch the parameters around the other way. The remote directory is described as a source rather than a
destination:

 scp {account}@{IP_address}:/{source_file_path} {local_directory}

 Use scp to copy the hello.c source file back to a development workstation from a target ARTIK module
where it was living in the /tmp directory:

 scp root@192.168.1.57:/tmp/hello.c /my_files

 Examining the System Configuration
 The getconf command can be used to display all of the system configuration variables that are currently
defined. The kernel configuration file is not available from /proc/config.gz on an ARTIK because the
kernel was compiled with that option turned OFF . The getconf tool may reveal what would have been in
that file. Adding the -a option displays all the configuration parameters. Because there are so many lines of
output, pipe the results through the more utility to see them one page at a time. Type this command to view
the configuration:

 getconf -a | more

 The getconf tool is useful in other ways. Read the manual page at www.unix.com/man-page/linux/1/
getconf/ for more details.

http://www.unix.com/man-page/linux/1/getconf/
http://www.unix.com/man-page/linux/1/getconf/

CHAPTER 12 ■ SYSTEM ADMINISTRATION

158

 Checking the Memory Usage
 Your application code may use significant amounts of the available memory. Configuring additional
services in the OS core may increase this memory usage. Use the free command when you are logged in
to your ARTIK to see how much memory is being used. Listing 12-5 illustrates the memory usage captured
immediately after booting an ARTIK 5 module.

 Listing 12-5. Free Memory Report

 free -m

 total used free shared buff/cache available
 Mem: 490 33 388 0 68 442
 Swap: 0 0 0

 Viewing Process Memory Maps
 If you know the Process ID (PID) number for a process, the memory allocation map for that process is available
in the /proc/ {PID} directory in the procfs virtual file system. This example assumes the bash shell is running
as PID 1719 . This example command displays the memory map for the running process. Listing 12-6 shows
how to deduce which shared libraries are linked to an application, where in memory its various components
are located, and some information about permissions and flags.

 Listing 12-6. Memory Map for a Process

 cat /prod/1719/maps

 b6a88000-b6c88000 r--p 00000000 b3:03 5710 /usr/lib/locale/locale-archive
 b6c88000-b6c94000 r-xp 00000000 b3:03 996 /usr/lib/libnss_files-2.21.so
 b6c94000-b6ca3000 ---p 0000c000 b3:03 996 /usr/lib/libnss_files-2.21.so
 b6ca3000-b6ca4000 r--p 0000b000 b3:03 996 /usr/lib/libnss_files-2.21.so
 b6ca4000-b6ca5000 rw-p 0000c000 b3:03 996 /usr/lib/libnss_files-2.21.so
 b6ca5000-b6de5000 r-xp 00000000 b3:03 5411 /usr/lib/libc-2.21.so
 b6de5000-b6de7000 r--p 00140000 b3:03 5411 /usr/lib/libc-2.21.so
 b6de7000-b6de8000 rw-p 00142000 b3:03 5411 /usr/lib/libc-2.21.so
 b6de8000-b6deb000 rw-p 00000000 00:00 0
 b6deb000-b6e08000 r-xp 00000000 b3:03 866 /usr/lib/libgcc_s-5.1.1-20150618.so.1
 b6e08000-b6e17000 ---p 0001d000 b3:03 866 /usr/lib/libgcc_s-5.1.1-20150618.so.1
 b6e17000-b6e18000 rw-p 0001c000 b3:03 866 /usr/lib/libgcc_s-5.1.1-20150618.so.1
 b6e18000-b6e1c000 r-xp 00000000 b3:03 5232 /usr/lib/libdl-2.21.so
 b6e1c000-b6e2b000 ---p 00004000 b3:03 5232 /usr/lib/libdl-2.21.so
 b6e2b000-b6e2c000 r--p 00003000 b3:03 5232 /usr/lib/libdl-2.21.so
 b6e2c000-b6e2d000 rw-p 00004000 b3:03 5232 /usr/lib/libdl-2.21.so
 b6e2d000-b6e49000 r-xp 00000000 b3:03 2147 /usr/lib/libtinfo.so.5.9
 b6e49000-b6e59000 ---p 0001c000 b3:03 2147 /usr/lib/libtinfo.so.5.9
 b6e59000-b6e5b000 r--p 0001c000 b3:03 2147 /usr/lib/libtinfo.so.5.9
 b6e5b000-b6e5c000 rw-p 0001e000 b3:03 2147 /usr/lib/libtinfo.so.5.9
 b6e5c000-b6e7b000 r-xp 00000000 b3:03 2378 /usr/lib/ld-2.21.so
 b6e7d000-b6e81000 rw-p 00000000 00:00 0
 b6e81000-b6e88000 r--s 00000000 b3:03 1943 /usr/lib/gconv/gconv-modules.cache
 b6e88000-b6e89000 rw-p 00000000 00:00 0

CHAPTER 12 ■ SYSTEM ADMINISTRATION

159

 b6e89000-b6e8a000 r-xp 00000000 00:00 0 [sigpage]
 b6e8a000-b6e8b000 r--p 0001e000 b3:03 2378 /usr/lib/ld-2.21.so
 b6e8b000-b6e8c000 rw-p 0001f000 b3:03 2378 /usr/lib/ld-2.21.so
 b6e8c000-b6f6d000 r-xp 00000000 b3:03 11982 /usr/bin/bash
 b6f7c000-b6f7f000 r--p 000e0000 b3:03 11982 /usr/bin/bash
 b6f7f000-b6f84000 rw-p 000e3000 b3:03 11982 /usr/bin/bash
 b6f84000-b6faa000 rw-p 00000000 00:00 0 [heap]
 be912000-be933000 rw-p 00000000 00:00 0 [stack]
 ffff0000-ffff1000 r-xp 00000000 00:00 0 [vectors]

 Discovering the Process Limits
 Use the ulimit tool to display the current limits for resources available to your processes. This tells you
about the maximum number of open files and other useful values that help you with capacity planning. Type
this command to see the resource limits in your ARTIK module:

 ulimit -a

 Monitoring Service Status
 The system runs various services and background processes to keep things managed and under control.
These are called units. View the current disposition and status with systemctl utility. List the unit files with
this command. The output shows a list of approximately 230 services and pages the results for you as they
are displayed.

 systemctl list-unit-files

 Quitting and Aborting Processes
 When you initiate UNIX commands, some of them continue running until you explicitly tell them to stop.
Sometimes you do so with a [Control] + [C] key combination or a [Control] + [D] combination. If the
command spawns a sub-shell, try the exit command to leave that shell and bounce back up to the calling
parent shell. Some utilities expect you to type quit or bye to exit . Kill a process by checking for the process
ID and using the kill -9 command on it. This sends a signal to the process that halts it right away. This is
not an ideal way to stop something but it may be necessary. Here is how:

 1. Find the PID:

 ps -ef | grep {your_application_name}

 2. This should display a matching process:

 501 1185 1 0 2:47pm xxxxxx 0:01.16 /xxx/yyyy

 3. Note the second number (1185 in this example). This is the PID for your
application process. The first number is the parent PID. This may describe your
command line shell. This is repeated a few times. The application PID you are
interested in is only listed once.

CHAPTER 12 ■ SYSTEM ADMINISTRATION

160

 4. Now kill the process by sending a quit signal. Substitute the correct PID value in
this command:

 kill -9 1185

 5. Check that it has gone by listing the processes again.

 ■ Note DO NOT ACCIDENTALLY KILL THE PARENT PROCESS. If you do, your session might be forcibly
aborted. This is a bad thing because it can corrupt files. In extreme cases, it can blow away the partition map
and destroy the storage device where the main file system is kept. Rebooting your system is now the only
solution unless your application was running in a sub-shell. Run a disk repair with the fsck tool immediately in
case something was broken. Make sure that you are killing processes in the correct command line shell. Your
ARTIK and development workstation may look very similar unless you take steps to ensure that the differences
between terminal sessions are obvious.

 Determining the Available CPUs
 Find out about the current CPU configuration of your ARTIK module from the /proc/cpuinfo file. This
is useful when you are setting up processor affinities to run applications on specific CPU cores. It is also
useful when debugging because the processor numbers help you understand scan chains if you use the
JTAG debugging tools. The example shown in Listing 12-7 was run on a Type 5 Commercial Beta developer
reference board with an ARTIK 520 mounted on it. Your output may be different but will contain similar
information.

 Listing 12-7. Processor Info Virtual File Listing

 cat /proc/cpuinfo

 processor : 0
 model name : ARMv7 Processor rev 3 (v7l)
 BogoMIPS : 68.57
 Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt
 CPU implementer : 0x41
 CPU architecture: 7
 CPU variant : 0x0
 CPU part : 0xc07
 CPU revision : 3

 processor : 1
 model name : ARMv7 Processor rev 3 (v7l)
 BogoMIPS : 68.57
 Features : swp half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt
 CPU implementer : 0x41
 CPU architecture: 7

CHAPTER 12 ■ SYSTEM ADMINISTRATION

161

 CPU variant : 0x0
 CPU part : 0xc07
 CPU revision : 3

 Hardware : Exynos3
 Revision : 0000
 Serial : 0000000000000000

 Detecting Current Processor Speed
 Use this command to detect the current processor speed for the primary CPU:

 cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

 This example refers to cpu0 . The secondary CPU on an ARTIK 5 is identified as cpu1; it has a different
set of properties. An ARTIK 10 would list even more CPUs. There is much more for you to learn regarding the
internals of your ARTIK module, so go explore!

 Managing Processor Affinity
 In a multiple CPU scenario, it is technically possible to ensure a process runs in a specific CPU. The advice in
some online articles is that you are unlikely to be able to outsmart the scheduler, which decides where your
applications and threads execute.

 On the other hand, some developers must manage this carefully and the scheduler may not know
enough about your intent to do the best job. The Linux operating system provides the taskset command
that you can use from the bash shell to control which of the available CPU cores is used. With the taskset
command, view the current CPU affinity of a running process or instruct a new process to run on the
specified CPU. The example in Listing 12-8 shows how the ps command lists the processes running under
the logged-in user. The taskset command then examines the bash shell to see its processor affinity by using
the PID value.

 Listing 12-8. Example taskset Command Inspection

 ps

 PID TTY TIME CMD
 1765 ttySAC2 00:00:01 bash
 2225 ttySAC2 00:00:00 ps

 taskset -p 1765

 pid 1765's current affinity mask: 3

 Processor affinity is defined as a bit mask with each bit representing a single CPU. Setting more bits
allows the application process to run on more CPUs at the discretion of the scheduler. Setting a single bit
forces processes to only run on the indicated CPU, thereby defeating the scheduler. The mask value 3 (binary
 0011) shown in Listing 12-8 has two bits set because on the Commercial Beta ARTIK 520 module, there are
two CPUs. The bash shell can run on either processor. Setting the mask value to 1 (binary 0001) or 2 (binary
 0010) forces bash to run on only one of the processors. Listing 12-9 shows how to force bash onto one CPU
and then reset the affinity back to normal with a bit mask value 3 (binary 0011).

CHAPTER 12 ■ SYSTEM ADMINISTRATION

162

 Listing 12-9. Altering the CPU Affinity of a Process

 taskset -p 02 1765
 pid 1765's current affinity mask: 3
 pid 1765's new affinity mask: 2

 taskset -p 03 1765
 pid 1765's current affinity mask: 2
 pid 1765's new affinity mask: 3

 C language application programmers can use the sched_setaffinity() function to control process-
based CPU affinities or the pthread_setaffinity_np() and pthread_attr_setaffinity_np() functions to
manage thread-based CPU affinities. Set a process up so it is forced to run on a single dedicated CPU. Then it
runs at its maximum execution speed. Calling the sched_setaffinity() function and migrating a process to
a CPU it is not currently running on asks the scheduler to move it to the specified CPU when it next has the
opportunity to intervene. Read these online reference materials for more details:

 https://en.wikipedia.org/wiki/Processor_affinity
 https://technolinchpin.wordpress.com/2015/11/06/linux-smp-cpu-affinity-settings/
 http://linux.die.net/man/2/sched_setaffinity
 http://linux.die.net/man/3/pthread_setaffinity_np
 http://linux.die.net/man/3/pthread_attr_setaffinity_np

 Monitoring Internal Temperature
 There is no documentation currently available that describes how to monitor the temperature inside the
ARTIK module, so it is necessary to inspect the /sys virtual file system to discover a temperature monitoring
value. Type this command to find the temperature sensor devices:

 find /sys -name temp*

 A Commercial Beta ARTIK 5 lists only one temperature-sensing device:

 /sys/devices/virtual/thermal/thermal_zone0/temp

 Now cat this file to read the temperature:

 cat /sys/devices/virtual/thermal/thermal_zone0/temp

 My ARTIK module reported a value of 32000 . In a room where the ambient temperature was about 25
degrees C, my ARTIK CPU felt only slightly warm to the touch. As a result, I think this must be a reading of 32
degrees Celsius. This suggests that the temperature is measured in degrees Celsius and scaled by 1000:1 so it
is always an integer.

 Construct a simple C language application to read the temperature of the CPU and scale the result, as
shown in Listing 12-10 . A cooling fan can be triggered via a GPIO pin to switch on when the temperature
rises above a certain limit.

 Listing 12-10. C Language Temperature Measurement

 #include <stdio.h>
 #include <stdbool.h>
 #include <stdlib.h>

https://en.wikipedia.org/wiki/Processor_affinity
https://technolinchpin.wordpress.com/2015/11/06/linux-smp-cpu-affinity-settings/
http://linux.die.net/man/2/sched_setaffinity
http://linux.die.net/man/3/pthread_setaffinity_np
http://linux.die.net/man/3/pthread_attr_setaffinity_np

CHAPTER 12 ■ SYSTEM ADMINISTRATION

163

 int main()
 {
 FILE *myTempFd;
 char myResult[10];

 // Open the thermometer file
 if((myTempFd = fopen("/sys/devices/virtual/thermal/thermal_zone0/temp", "r")) == NULL)
 {
 printf("Error: cannot open thermometer for reading\n");
 return false;
 }

 // Read the temperature value
 fgets(myResult, 6, myTempFd);

 // Close the thermometer
 fclose(myTempFd);

 // Convert the value to an integer before returning it to your application:
 printf("Temperature is: %2.2f\n", atof(myResult)/1000.0);
 }

 Summary
 There are many more systems administration skills you should learn. The few examples here were inspired
by exploring the /proc and /run virtual filesystems. The feedback that the kernel writes into these directories
is very informative. You need to know what is there and where it lives. Building useful tools once you know
these facts becomes very easy.

165© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_13

 CHAPTER 13

 AXT Module Connectors

 Your ARTIK module has hundreds of input and output pins for connecting to the outside world. The
Samsung engineers have chosen a very robust and compact connector format for this: the Panasonic AXT
connectors are very high quality and very reliable. You need to know about their physical characteristics and
where to buy them if you plan on making your own baseboards for the ARTIK to plug into. This chapter also
summarizes all of the pin descriptions for these connectors and it covers the connections to the Commercial
Beta ARTIK 5 and 10 modules.

 Physical Connections
 The connections are all brought out of the ARTIK modules via several Panasonic AXT multi-pin connectors
on the underside. This avoids soldering connections directly onto the ARTIK modules. Build receptacles
for these connectors on your interface inside the product you want to empower with the ARTIK. Allow
sufficient vertical space in your mechanical design to accommodate these connectors and the ARTIK when
it is plugged into them. Look at the developer reference boards to see the connectors underneath your
ARTIK module; the configuration of these connectors is different for each version of the ARTIK module.
The placement of these connectors is very critical and you must ensure your manufacturing processes are
accurate to avoid damaging your ARTIK module when you plug it in.

 The latest data sheets for the model 520 and 1020 ARTIK modules provide current information about
the physical dimensions of the modules and their connectivity. A summary is provided here for reference.
Download the data sheets here after signing on with your Samsung developer account at
 https://developer.artik.io/downloads .

 Panasonic AXT Connectors
 The ARTIK modules themselves have a lot of connections delivered via the Panasonic AXT connectors on
the underside of the module. When you want to build a product and embed an ARTIK into your hardware,
make sure you manufacture your boards with very precise positioning of these sockets and ensure that the
correct signals are connected to the pins.

 Because the Panasonic AXT connectors are not keyed, they can be inserted the wrong way when
they are used on their own. This is unlikely with the ARTIK 5 and 10 module configurations because the
connectors only mate properly when you have the ARTIK module oriented correctly. Include an outline of
the ARTIK module on your circuit board artwork to indicate the correct orientation.

 The Panasonic AXT connectors have been developed for high-density connections with surface
mounted components. The developer board schematics and the data sheets have complete details of the
pinouts for these connectors.

https://developer.artik.io/downloads

CHAPTER 13 ■ AXT MODULE CONNECTORS

166

 Looking More Closely
 Gaynor Bromley at Panasonic kindly gave me the 3D image of the AXT connector shown in Figure 13-1 to
illustrate the two parts more clearly. The header is surface mounted to the underside of your ARTIK when it
is manufactured. The receptacle is the part to incorporate into your product design. Soldering them onto a
surface mount printed circuit board by hand is very challenging.

 Figure 13-1. AXT header and socket (Courtesy of Panasonic Electric Works)

 AXT 40-Pin Connector
 A pair of 40-pin AXT connectors (AXT340124/AXT440124) is used as a debug interface on the ARTIK
10 modules. They are mounted at right angles to the other two larger connectors. See Figure 13-2 . The
combination of these four connectors makes it very clear which way the ARTIK 10 should be plugged in.
One of the connectors is optional and the data sheets suggest that ARTIK 10 modules may be supplied with
only one of these connectors. Doing so will sacrifice the JTAG debugging connections, which you may want
on a development system but which should be removed from production devices to prevent people reverse
engineering your code.

CHAPTER 13 ■ AXT MODULE CONNECTORS

167

 Figure 13-2. AXT 40-pin connector

 Figure 13-3. AXT 60-pin connector

 AXT 60-Pin Connector
 Three 60-pin connectors (AXT360124/AXT460124) are used on an ARTIK 5 for the main connections. Their layout
makes it impossible to plug the ARTIK 5 into the developer reference board the wrong way. See Figure 13-3 .

 Figure 13-4. AXT 80-pin connector

 AXT 80-Pin Connector
 There is a pair of 80-pin AXT connectors (AXT380124/AXT480124) on the underside of the ARTIK 10
module. This ARTIK module also has two 40-pin debugging connectors arranged so the module cannot be
plugged in the wrong way. See Figure 13-4 .

CHAPTER 13 ■ AXT MODULE CONNECTORS

168

 The recommended mating height in the ARTIK data sheets is 1.5mm or 2.5mm. This is because
a type 1 header is used when the ARTIK modules are manufactured. Choosing the low-profile option
allows your design to fit into a thinner container. There may be important constraints on how thin your
container can be and still allow sufficient airflow around the ARTIK to keep the operating temperature
at an optimum level. This is difficult to predict because it is a function of how hard your application
software is working the CPU. The more CPU effort, the hotter your ARTIK runs and the more airflow
is needed to keep it cool. Your industrial engineers should run tests to ascertain the optimum height
profile for these connectors.

 Table 13-1. Alternative Mated Height AXT Connector Choices

 Height Socket selector Header selector Notes

 1.5 mm 1 1 Recommended low profile

 2.0 mm 1 2 Not possible with ARTIK headers as supplied

 2.5 mm 2 1 High profile

 3.0 mm 2 3 Not possible with ARTIK headers as supplied

 Ordering AXT Connectors
 Order the right kind of receptacles to plug your ARTIK into. Obtain these from Digi-Key, where you bought
your ARTIK module. Make sure you purchase the right kind of connector. They each have a part number that
is constructed from the connector specification. See Figure 13-5 .

AXT 4

Socket/Header

Pin count Design

Mated height

PlatingPrefix

 Figure 13-5. AXT part number construction

 To construct a part number, select the right values for each digit. The socket/header value is 3 for the
socket for your circuit board and 4 for the header that is soldered to the underside of the ARTIK. Choose 40,
60, or 80 for the pin count, depending on which ARTIK you are working with. The pin spacing is always on a
pitch of 0.4mm. The next value indicates the mated height of the header and socket when plugged together.
The socket part number can have the value 1 or 2. The value 1 indicates the lowest profile. The header can
be 1, 2, or 3 but the values are different for the socket and the header. Make sure you use the correct one.
See Table 13-1 for a summary of the mated heights available. The design value describes whether there is a
pickup cover. This is always the value 2. The last digit is always 4 and indicates that the pins should be nickel
plated for good connectivity.

CHAPTER 13 ■ AXT MODULE CONNECTORS

169

 Table 13-2. Example AXT Part Numbers

 Module Pins Height Socket Header

 ARTIK 5 40 Low profile AXT340124 AXT440124

 ARTIK 5 60 Low profile AXT360124 AXT460124

 ARTIK 10 40 Low profile AXT340124 AXT440124

 ARTIK 10 80 Low profile AXT380124 AXT480124

 ARTIK 5 40 High profile AXT340224 AXT440124

 ARTIK 5 60 High profile AXT360224 AXT460124

 ARTIK 10 40 High profile AXT340224 AXT440124

 ARTIK 10 80 High profile AXT380224 AXT480124

 Table 13-2 lists the part number for the sockets and headers for each ARTIK to save having to work
out the part numbers. These are very good quality sockets and you may have other uses for them in your
projects. The schematic diagrams are labeled with the AXT part numbers for high-profile sockets.

 Download the Panasonic P4S data sheet that describes the AXT connectors from www3.panasonic.biz/
ac/e_download/control/connector/base-fpc/catalog/con_eng_p4s.pdf .

 The link to the Digi-Key catalogue pages for purchasing the Panasonic AXT sockets and headers is
 www.digikey.com/product-search/en/connectors-interconnects/rectangular-board-to-board-
connectors-arrays-edge-type-mezzanine/1442154?k=panasonic+axt .

 AXT Connections, Pins, and I/O
 Most of the connections to the ARTIK modules are made via the Panasonic AXT multi-pin surface mounted
connectors. These connectors are on the underside of the ARTIK. On top are some miniature co-axial
sockets for wireless antenna connections.

 The developer reference boards bring the signals from the AXT connections out to a variety of other different
kinds of headers and sockets for video, audio, and GPIO (Arduino services). Knowing what sort of connector
they are is not always easy if you are unfamiliar with the range of connectors in use. There are some clues on
the developer board schematics, and a little forensic research yields the necessary information and connection
details. Not all of the AXT connector pins on the ARTIK are available on the hardware I/O header connectors.

 Some helpful Illustrator files of some of the connectors, pinouts, and general arrangements of the
ARTIK modules are provided in the source kit for this book. They may help you when you are designing your
own circuit boards.

 On top of the ARTIK modules, the wireless antenna connections use miniature co-axial connections
and jumper cables to the antenna mount points that use SMA connectors. Provide a connection from these
miniature co-axial connectors if you want to use wireless antennas in your own hardware product designs.
They are described in more detail in Chapter 15 .

 In the AXT pinout tables, some pins have notes that indicate the pin has an alias and is known as
something else. This reflects the different GPIO functions that pins can be set into. GPIO supports eight
different multiplexed function states and pins can be configured to be in any one of these states, which
causes them to operate in a completely different way. Do not arbitrarily alter these states unless you are
working with pins that will be used for public access. Altering the function state of a GPIO from I2C to Input
could stop the audio codec chip or Ethernet controller chip from working because they have GPIO pins
reserved for managing their behavior. Refer to the data sheets for tables that show these different GPIO
functions and how they are mapped to the AXT pins.

http://www3.panasonic.biz/ac/e_download/control/connector/base-fpc/catalog/con_eng_p4s.pdf
http://www3.panasonic.biz/ac/e_download/control/connector/base-fpc/catalog/con_eng_p4s.pdf
http://www.digikey.com/product-search/en/connectors-interconnects/rectangular-board-to-board-connectors-arrays-edge-type-mezzanine/1442154?k=panasonic+axt
http://www.digikey.com/product-search/en/connectors-interconnects/rectangular-board-to-board-connectors-arrays-edge-type-mezzanine/1442154?k=panasonic+axt
http://dx.doi.org/10.1007/978-1-4842-2322-2_15

CHAPTER 13 ■ AXT MODULE CONNECTORS

170

 ■ Note There is a subtle warning note in the data sheet suggesting that activating wireless communications
in your ARTIK without having the antennas installed first may damage your ARTIK.

 ARTIK 5 - Connectors
 The ARTIK 5 has three 60-pin Panasonic AXT connectors on the underside of the module, which is
illustrated in Figure 13-6 . Your design needs to have three matching AXT sockets that these connectors can
plug into. Take special care to connect the right circuits to each pin. All three connectors have 60 pins but
they are oriented so it impossible to plug the ARTIK module into the sockets the wrong way. Make sure
you provide sufficient clearance for the module to sit securely inside your product. Add retaining clips
for environments that are subject to vibration but be careful that they do not damage the ARTIK or create
short circuits on the ARTIK module. Visit the developer downloads page to obtain the data sheets, which
contain mechanical drawings that show the layout of these connectors when you incorporate them into your
product.

 Figure 13-6. The ARTIK 5 AXT base connectors

CHAPTER 13 ■ AXT MODULE CONNECTORS

171

 Connector Locations
 The sources of information on pinouts for the AXT connectors on an ARTIK 5 are the data sheet, the product
briefing, and the schematic diagrams for the Type 5 developer reference board. The illustrations in the data
sheet show which end of the connectors is the reference or key location that determines where pin 1 is.
Figure 13-7 shows the position of the connectors on an ARTIK 5 with the reference pin indicated by a small
triangle as viewed from the top of the ARTIK module. The J numbers that denote each connector are printed
on the developer reference board.

J4

J3

J7

ARTIK 5
Viewed from the top

 Figure 13-7. AXT connectors on Type 5 developer reference boards

 The tables in the product data sheet describe the pinouts for these connectors in more detail. Consult
the second page of the Type 5 developer board schematic diagram for additional connection details. This
page is labeled Module Interface and shows the three AXT connector pin assignments. Those pinout
diagrams are shown here. Always check your reference information against the latest version of the
schematics, data sheets, and the information provided by Samsung.

 The ARTIK model 520 data sheet renumbers one of these connector labels and uses a value that is
inconsistent with all the other published sources of information. The developer reference board schematics
are consistent with the screen-printed labels on the Commercial Beta Type 5 board but the data sheet is
not. This book is consistent with the circuit schematics and board artwork as observed on a Commercial
Beta Type 5 board shipped from Digi-Key. The ARTIK 520 data sheet uses a different connector numbering
scheme from an uncertain source. Table 13-3 shows how these connector labels are mapped from the two
conflicting sources.

CHAPTER 13 ■ AXT MODULE CONNECTORS

172

 Connector J3
 Connector J3 is one of the two main connectors for delivering signals in and out of the ARTIK 5 module and
onwards to the hosting environment. Most of its signals are related to GPIO controls. The Arduino pins are
driven from here. Figure 13-8 shows the signals on the J3 pins and has been replicated from the developer
reference board schematic diagrams.

 Table 13-3. ARTIK 5 AXT Connector Labeling Conflicts

 Consistent Data sheet Description

 J3 J3 Main connector A

 J4 J4 Main connector B

 J7 J5 Debug connector

MAIN_BAT

XUART_SCLK

XUART_CS

XUART_MOSI
XUART_MISO

XEINT_14

XEINT_18

XEINT_16

XEINT_21
XEINT_20

XEINT_24

XEINT_27
XEINT_28

VTCAM_PDN

XOM3

PWR_KEY

Xu3_TXD
Xu3_RXD

XOM2

Xadc0AIN0
Xadc0AIN1

XEINT_22

XEINT_2
XEINT_3

XEINT_0
XEINT_1

XEINT_4
XEINT_5
XEINT_6

XEINT_8
XEINT_7/DRD_VBUS_SENSE_0

XEINT_12
XEINT_13

XCLKOUT

V_ADP_SENSE

XAudi2s2SCLK

XAudi2s2CDCLK

XAudi2s2SDI
XAudi2s2SDO

XAudi2s2LRCK

XGPIO6

XGPIO15

XEINT_17

XEINT_25

XEINT_9

XGPIO17/XT_INT163

CODEC_PDN

J31
HEADER_2

12

J3

AXT360224_H

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
83
84

81
82

 Figure 13-8. ARTIK 5 - J3 pinout assignments

 The AXT connector J3 pinouts are listed and described in Table 13-4 . Although this is a 60-pin
connector, there is a stabilizing solder tag on each corner, which is also accessible as a connector pin. To
number these consistently when the 80-pin connectors are described, the four extra pins are numbered
81-84 so they do not interfere with the other pin numbers. These pinout values are taken from the board
schematic and cross-checked against the data sheets. The Arduino connections are buffered via a voltage
translation chip but are otherwise directly connected.

CHAPTER 13 ■ AXT MODULE CONNECTORS

173

 Table 13-4. AXT Connector J3 Pinouts

 Pin Name Notes

 J3-1 MAIN_BAT Main battery supply; switched via Jumper J31 HEADER_2

 J3-2 MAIN_BAT Main battery supply; switched via Jumper J31 HEADER_2

 J3-3 MAIN_BAT Main battery supply; switched via Jumper J31 HEADER_2

 J3-4 MAIN_BAT Main battery supply; switched via Jumper J31 HEADER_2

 J3-5 GND Ground

 J3-6 GND Ground

 J3-7 GND Ground

 J3-8 GND Ground

 J3-9 XGPIO15 External GPIO1 operation of the Ethernet controller chip

 J3-10 PWR_KEY PMIC power on key. This pin is connected to the power (boot) button, which
triggers a reboot of the ARTIK if it is in the pre-boot state. Assert an active
 HIGH value on this pin to boot the ARTIK.

 J3-11 XEINT_14 GPIO or Arduino pin 13 on connector J27-5

 J3-12 XEINT_13 GPIO or Arduino pin 12 on connector J27-6

 J3-13 XEINT_16 Ethernet chip IRQ to CPU

 J3-14 XEINT_12 SigFox low-power wireless transmitter reset

 J3-15 XEINT_17 Charge status interrupt (CHG_IRQ)

 J3-16 XEINT_8 GPIO or Arduino pin 11 on connector J27-7

 J3-17 XEINT_18 SPI-TO-UART IC for SPI bus emulation RESET

 J3-18 XEINT_7 USB device select (a.k.a. DRD_VBUS_SENSE_0)

 J3-19 XEINT_20 SPI-TO-UART IC for SPI bus emulation IRQ

 J3-20 XEINT_6 GPIO or Arduino pin 10 on connector J27-8. This pin is 3.3v tolerant in input
mode.

 J3-21 XEINT_21 LCD backlight enable

 J3-22 XEINT_5 GPIO or Arduino pin 9 on connector J27-9. This pin is 3.3v tolerant in input
mode.

 J3-23 XEINT_24 Turns device on

 J3-24 XEINT_4 GPIO or Arduino pin 8 on connector J27-10. This pin is 3.3v tolerant in input
mode.

 J3-25 XEINT_25 Fuel gauge interrupt

 J3-26 XEINT_3 GPIO or Arduino pin 7 on connector J26-1. This pin is 3.3v tolerant in input
mode.

 J3-27 XEINT_27 Stereo jack insert detection (a.k.a. JACK_DET)

 J3-28 XEINT_2 GPIO or Arduino pin 4 on connector J26-4 and J512-4. This pin is 3.3v
tolerant in input mode.

 J3-29 XEINT_28 Ethernet controller chip select (CS) line

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

174

Table 13-4. (continued)

 Pin Name Notes

 J3-30 XEINT_1 GPIO or Arduino pin 3 on connector J26-5 and J512-3. This pin is 3.3v
tolerant in input mode.

 J3-31 V_ADP_SENSE AC power detect

 J3-32 XEINT_0 GPIO or Arduino pin 2 on connector J26-6 and J512-2. This pin is 3.3v
tolerant in input mode.

 J3-33 GND Ground

 J3-34 XGPIO17 Power management external IC interrupt (a.k.a. XT_INT163)

 J3-35 XOM2 Boot from SD when this pin is HIGH

 J3-36 GND Ground

 J3-37 XOM3 Boot from eMMC when this pin is HIGH

 J3-38 Xu3_RXD GPIO or Arduino pin RX<-0 on connector J26-8 and J511-11. Also known as
GPIO port GPA1. UART 3 received data input.

 J3-39 XGPIO6 SD3503 Z-Wave serial interface chip reset

 J3-40 Xu3_TXD GPIO or Arduino pin TX->1 on connector J26-7 and J511-10. Also known as
GPIO port GPA1. UART 3 transmitted data output.

 J3-41 XEINT_22 27MHz oscillator enable

 J3-42 GND Ground

 J3-43 XUART_SCLK SPI-TO-UART IC for SPI bus emulation of serial clock

 J3-44 Xadc0AIN0 Analog ADC input A0 on connector J24-1 and J510-2

 J3-45 XUART_MOSI SPI-TO-UART IC for SPI bus emulation of master out, slave in

 J3-46 Xadc0AIN1 Analog ADC input A1 on connector J24-2 and J510-3

 J3-47 XUART_MISO SPI-TO-UART IC for SPI bus emulation of master in, slave out

 J3-48 XAudi2s2SDO Bus I2S-2 audio serial data output on connector J511-6

 J3-49 XUART_CS SPI-TO-UART IC for SPI bus emulation of chip select

 J3-50 XAudi2S2SDI Bus I2S-2 audio serial data input on connector J511-3

 J3-51 GND Ground

 J3-52 XAudi2S2SCLK Bus I2S-2 audio serial clock on connector J511-1

 J3-53 XCLKOUT I2S audio clock

 J3-54 XAudi2S2LRCK Bus I2S-2 audio left right sample clock on connector J511-2

 J3-55 GND Ground

 J3-56 XAudi2S2CDCLK Bus I2S-2 audio CD clock on connector J511-7

 J3-57 XEINT_9 GPIO configuration of Ethernet controller chip

 J3-58 GND Ground

 J3-59 VTCAM_PDN Video camera power down

 J3-60 CODEC_PDN AK4953EQ audio codec IC power down

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

175

 Connector J4
 Connector J4 is one of the two main connectors for delivering signals in and out of the ARTIK 5 module and
onwards to the hosting environment. The camera interface is driven by this connector. Micro SD cards are
also controlled from here. Figure 13-9 shows the signals on the J4 pins connected to the base of the ARTIK 5
module.

Table 13-4. (continued)

 Pin Name Notes

 J3-81 GND Ground

 J3-82 GND Ground

 J3-83 GND Ground

 J3-84 GND Ground

COIN_BATT

AP_OTG_DM
AP_OTG_DP

MRNRESET

VTCAM_CLK_P
VTCAM_CLK_N

VTCAM_D1_N
VTCAM_D1_P

VTCAM_RESET

TFLASH_CLK/XMMC2CLK

TFLASH_D0/XMMC2DATA0

TFLASH_CDN/XMMC2CDN

TFLASH_CMD/XMMC2CMD

TFLASH_D1/XMMC2DATA1
TFLASH_D2/XMMC2DATA2
TFLASH_D3/XMMC2DATA3

GPM0_0

Xpwmo_0
Xpwmo_1

Xi2c3_SDA
Xi2c3_SCL

XGPIO3 XGPIO2

Xi2c1_SCL
Xi2c1_SDA

XISP2_SCL0
XISP2_SDA0

Xi2c7_SDA
Xi2c7_SCL

LCD_RST

XspiMISO0

XspiCLK0
XspiCSn0

XspiMOSI0

GPC0_4

VTCAM_D0_P
VTCAM_D0_N

AP_OTG_VBUS
USB_ID
GPM4_4
GPM4_5
GPM4_6
GPM4_7

DISP_MIPI_D1_N
DISP_MIPI_D1_P

DISP_MIPI_D0_N
DISP_MIPI_D0_P

DISP_MIPI_CLK_N
DISP_MIPI_CLK_P

AP_NWRESET

J4

AXT360224_H

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
83
84

81
82

 Figure 13-9. ARTIK 5 - J4 pinout assignments

 The AXT connector J4 pinouts are listed in Table 13-5 . These values are also taken from the board
schematic and cross-checked against the data sheets. Always check an authoritative and up-to-date source
when you are developing hardware board designs.

CHAPTER 13 ■ AXT MODULE CONNECTORS

176

 Table 13-5. AXT Connector J4 Pinouts

 Pin Name Notes

 J4-1 XspiCLK0 Bus SPI-0 clock

 J4-2 AP_OTG_DM USB 2.0 interface DM line (a.k.a. AP_USB_DM)

 J4-3 XspiCSn0 Bus SPI-0 chip select

 J4-4 AP_OTG_DP USB 2.0 interface DP line (a.k.a AP_USB_DP)

 J4-5 XspiMISO0 Bus SPI-0 master in, slave out

 J4-6 GND Ground

 J4-7 XspiMOSI0 Bus SPI-0 master out, slave in

 J4-8 AP_OTG_VBUS USB 2.0 interface VBUS line (a.k.a AP_USB_VBUS)

 J4-9 GPM0_0 LCD data clock (a.k.a. PSR_TE)

 J4-10 USB_ID USB 2.0 interface ID line

 J4-11 Xi2c7_SDA Bus I2C-7 Arduino serial data line (SDA). GPD0 connected to connector
J27-2.

 J4-12 GPM4_4 SigFox ATA8520 SPI bus emulation

 J4-13 Xi2c7_SCL Bus I2C-7 Arduino serial clock line (SCL). GPD0 connected to connector
J27-1.

 J4-14 GPM4_5 SigFox ATA8520 SPI bus emulation

 J4-15 Xi2c1_SCL Bus I2C-1 serial clock line on connector J511-5

 J4-16 GPM4_6 SigFox ATA8520 SPI bus emulation

 J4-17 Xi2c1_SDA Bus I2C-1 serial data line on connector J511-4

 J4-18 GPM4_7 SigFox ATA8520 SPI bus emulation

 J4-19 VTCAM_RESET Video camera reset

 J4-20 GND Ground

 J4-21 XISP2_SCL0 Bus I2C-2 serial clock line

 J4-22 DISP_MIPI_D0_N MIPI display DO_N line

 J4-23 XISP2_SDA0 Bus I2C-2 serial data line

 J4-24 DISP_MIPI_D0_P MIPI display DO_P line

 J4-25 GND Ground

 J4-26 GND Ground

 J4-27 VTCAM_D0_N MIPI video camera DO_N line

 J4-28 DISP_MIPI_D1_N MIPI display D1_P line

 J4-29 VTCAM_D0_P MIPI video camera D0_P line

 J4-30 DISP_MIPI_D1_P MIPI display D1_P line

 J4-31 GND Ground

 J4-32 GND Ground

 J4-33 VTCAM_D1_N MIPI video camera D1_N line

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

177

 Pin Name Notes

 J4-34 DISP_MIPI_CLK_N MIPI display clock N line

 J4-35 VTCAM_D1_P MIPI video camera D1_P line

 J4-36 DISP_MIPI_CLK_P MIPI display clock P line

 J4-37 GND Ground

 J4-38 GND Ground

 J4-39 VTCAM_CLK_N MIPI video camera clock N line

 J4-40 XMMC2CDN SD card CDN line (a.k.a TFLASH_CDN)

 J4-41 VTCAM_CLK_P MIPI video camera clock P line

 J4-42 XMMC2CLK SD card data clock (a.k.a TFLASH_CLK)

 J4-43 GND Ground

 J4-44 XMMC2CMD SD card CMD line (a.k.a TFLASH_CMD)

 J4-45 Xpwmo_0 Pulse width modulated output channel 0. Arduino pin ~5 on header pin
J26-3 and J513-4.

 J4-46 XMMC2DATA0 SD card data bit 0 (a.k.a TFLASH_D0)

 J4-47 Xpwmo_1 Pulse width modulated output channel 1. Arduino pin ~6 on header pin
J26-2 and J513-3.

 J4-48 XMMC2DATA1 SD card data bit 1 (a.k.a. TFLASH_D1)

 J4-49 COIN_BATT Auxiliary backup coin battery 3-volt input

 J4-50 XMMC2DATA2 SD card data bit 2 (a.k.a. TFLASH_D2)

 J4-51 AP_NRESET Cold ARTIK 520 module reset by PMIC. RST signal on connector J25-3 and
J510-7 (a.k.a. RST/MRNRESET).

 J4-52 XMMC2DATA3 SD card data bit 3 (a.k.a. TFLASH_D3)

 J4-53 Xi2c3_SCL Bus I2C-3 serial clock line on connector J510-6

 J4-54 GND Ground

 J4-55 Xi2c3_SDA Bus I2C-3 serial data line on connector J510-5

 J4-56 GPC0_4 LCD display identification

 J4-57 LCD_RST LCD display reset

 J4-58 AP_NWRESET Warm reset from PMIC (for development purposes)

 J4-59 XGPIO3 GPIO configuration of Ethernet controller chip

 J4-60 XGPIO2 GPIO reset of Ethernet controller chip

 J4-81 GND Ground

 J4-82 GND Ground

 J4-83 GND Ground

 J4-84 GND Ground

Table 13-5. (continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

178

 Connector J7
 Connector J7 is mainly concerned with driving the Ethernet controller chip. The data lines and GPIO control
signals come from here for the networking chip. The JTAG debugging interface is also driven from here,
although some of the JTAG signals appear to have a prefix suggesting they are part of the ZigBee support.
Future documentation releases may clarify whether these are dual mode pins or not. Figure 13-10 shows the
signals on the J7 pins on the base of the ARTIK 5 module.

ZB_2V8

XspiCLK1
XspiCSn1
XspiMISO1
XspiMOSI1

DEBUG_TXD
DEBUG_RXD

ZB_PC2
ZB_PC0
ZB_PC3
ZB_JTCK
ZB_PC4
ZB_RSTn
ZB_PA4
ZB_PA5

GPM3_0
GPM3_1

EBI_ADDR0
EBI_ADDR1
EBI_ADDR2
EBI_ADDR3
EBI_ADDR4
EBI_ADDR5

EBI_OEn
EBI_WEn
EBI_CSn

EBI_DAT0
EBI_DAT1
EBI_DAT2
EBI_DAT3
EBI_DAT4
EBI_DAT5
EBI_DAT6
EBI_DAT7
EBI_DAT8
EBI_DAT9

EBI_DAT10
EBI_DAT11
EBI_DAT12
EBI_DAT13
EBI_DAT14
EBI_DAT15

EBI_ADDR6

XjTRSTn
XjTMS

XjTCK
XjTDI
XjTDO

BT32K_PM

J7

AXT360224_H

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
83
84

81
82

 Figure 13-10. ARTIK 5 - J7 pinout assignments

 The AXT connector J7 pinouts are listed in Table 13-6 . These values are taken from the board schematic
and cross-checked against the data sheets. Be sure to check an authoritative and up-to-date source for the
latest values and check that they correspond to the same revision of the ARTIK module you are deploying.

CHAPTER 13 ■ AXT MODULE CONNECTORS

179

 Table 13-6. AXT Connector J7 Pinouts

 Pin Name Notes

 J7-1 GND Ground

 J7-2 GND Ground

 J7-3 EBI_OEn Ethernet chip RDN line

 J7-4 GPM3_1 Test point on connector J512-6

 J7-5 EBI_Wen Ethernet chip WRN line

 J7-6 GPM3_0 Test point on connector J512-5

 J7-7 EBI_CSn Ethernet chip select line

 J7-8 GND Ground

 J7-9 GND Ground

 J7-10 XjTCK JTAG debug clock

 J7-11 EBI_ADDR0 Ethernet controller address bus bit 0

 J7-12 XjTDI JTAG debug TDI line

 J7-13 EBI_ADDR1 Ethernet controller address bus bit 1

 J7-14 XjTDO JTAG debug TDO line

 J7-15 EBI_ADDR2 Ethernet controller address bus bit 2

 J7-16 XjTMS JTAG debug TMS line

 J7-17 EBI_ADDR3 Ethernet controller address bus bit 3

 J7-18 XjTRSTn JTAG debug reset line

 J7-19 EBI_ADDR4 Ethernet controller address bus bit 4

 J7-20 GND Ground

 J7-21 EBI_ADDR5 Ethernet controller address bus bit 5

 J7-22 BT32K_PM 32 kHz clock for Bluetooth controller on connector J513-1

 J7-23 EBI_ADDR6 Ethernet controller address bus bit 6 (Not used)

 J7-24 GND Ground

 J7-25 GND Ground

 J7-26 DEBUG_RXD AP debug UART received data (RxD)

 J7-27 EBI_DAT0 Ethernet controller data bus bit 0

 J7-28 DEBUG_TXD AP debug UART transmitted data (TxD)

 J7-29 EBI_DAT1 Ethernet controller data bus bit 1

 J7-30 GND Ground

 J7-31 EBI_DAT2 Ethernet controller data bus bit 2

 J7-32 XspiCLK1 Bus SPI-1 test point for clock line on connector J511-14

 J7-33 EBI_DAT3 Ethernet controller data bus bit 3

 J7-34 XspiCSn1 Bus SPI-1 test point for control select line on connector J511-15

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

180

Table 13-6. (continued)

 Pin Name Notes

 J7-35 EBI_DAT4 Ethernet controller data bus bit 4

 J7-36 XspiMISO1 Bus SPI-1 test point for master in, slave output on connector J511-12

 J7-37 EBI_DAT5 Ethernet controller data bus bit 5

 J7-38 XspiMOSI1 Bus SPI-1 test point for master out, slave input on connector J511-13

 J7-39 EBI_DAT6 Ethernet controller data bus bit 6

 J7-40 GND Ground

 J7-41 EBI_DAT7 Ethernet controller data bus bit 7

 J7-42 ZB_2V8 ZigBee 2.8v/300mA ref. Shorted to pin J7-44 (a.k.a VLDO18).

 J7-43 EBI_DAT8 Ethernet controller data bus bit 8

 J7-44 ZB_2V8 ZigBee 2.8v/300mA ref. Shorted to pin J7-42 (a.k.a VLDO18).

 J7-45 EBI_DAT9 Ethernet controller data bus bit 9

 J7-46 ZB_PC2 JTAG debug data out

 J7-47 EBI_DAT10 Ethernet controller data bus bit 10

 J7-48 ZB_PC0 JTAG debug reset

 J7-49 EBI_DAT11 Ethernet controller data bus bit 11

 J7-50 ZB_PC3 JTAG debug data in

 J7-51 EBI_DAT12 Ethernet controller data bus bit 12

 J7-52 ZB_JTCK JTAG debug clock line

 J7-53 EBI_DAT13 Ethernet controller data bus bit 13

 J7-54 ZB_PC4 JTAG debug mode select

 J7-55 EBI_DAT14 Ethernet controller data bus bit 14

 J7-56 ZB_RSTn JTAG debug reset line

 J7-57 EBI_DAT15 Ethernet controller data bus bit 15

 J7-58 ZB_PA4 JTAG debug GPIO control

 J7-59 GND Ground

 J7-60 ZB_PA5 JTAG debug GPIO control

 J7-81 GND Ground

 J7-82 GND Ground

 J7-83 GND Ground

 J7-84 GND Ground

 ■ Note The ARTIK 520 data sheet incorrectly describes this as connector J5. This is inconsistent with the
developer reference board schematic diagrams and the labels printed on the Commercial Beta Type 5 board.

CHAPTER 13 ■ AXT MODULE CONNECTORS

181

 ARTIK 10 - Connectors
 The ARTIK 10 has four Panasonic AXT connectors on the underside of the module that is illustrated in
Figure 13-11 . Your design needs to have matching AXT sockets that these connectors can plug into. Take
special care to connect the right circuits to each pin. Two of the connectors have 80 pins and the smaller
ones have 40 pins. They are oriented so it impossible to plug the ARTIK module into the sockets the wrong
way. Make sure you provide sufficient clearance for the module to sit securely inside your product. Add
retaining clips for environments that are subject to vibration but be careful they do not damage the ARTIK
or create short circuits on the ARTIK module. Visit the developer downloads page to obtain the data sheets,
which contain mechanical drawings that show the layout of these connectors when you incorporate them
into your product.

 Figure 13-11. The ARTIK 10 AXT base connectors

CHAPTER 13 ■ AXT MODULE CONNECTORS

182

 Connector Locations
 The ARTIK 10 data sheet is the most authoritative document on connector pinouts. Refer also to the
schematic diagrams for the Type 10 developer reference board. Some additional information can also be
deduced from the product illustrations that Samsung released as part of the developer documentation.
Figure 13-12 shows the position of the connectors on an ARTIK 10 with the reference pin indicated by a
small triangle as viewed from the top of the ARTIK module. The J numbers that denote each connector are
printed on developer reference board.

J1

J2

J3

J4

ARTIK 10
Viewed from the top

 Figure 13-12. AXT connectors on the Type 10 developer reference boards

 The tables in the product data sheet describe the pinouts for these connectors in more detail. Consult
the second page of the Type 10 developer board schematic diagram for connection details. This page is
labeled Module Interface and shows the three AXT connector pin assignments. Those pinout diagrams
are shown here. Always check your reference information against the latest version of the schematics, data
sheets, and the information provided by Samsung.

CHAPTER 13 ■ AXT MODULE CONNECTORS

183

 The ARTIK model 1020 data sheet renumbers these connector labels and uses values that are
inconsistent with all of the other published sources of information. The developer reference board
schematics are consistent with the silkscreen-printed labels on the Commercial Beta Type 10 board but
the data sheet is not. This book is consistent with the circuit schematics and board artwork as observed
on a Commercial Beta Type 10 board shipped from Digi-Key. The ARTIK 1020 data sheet uses a different
connector numbering scheme from an uncertain source. Table 13-7 shows how these connector labels are
mapped from the two conflicting sources.

 Table 13-7. ARTIK 10 AXT Connector Labeling Conflicts

 Consistent Data sheet Description

 J1 J3 Main connector A

 J2 J4 Main connector B

 J3 J1 Debug connector

 J4 J9 Optional auxiliary debug connector

 Connector J1
 Connector J1 is one of the two main connectors for delivering signals in and out of the ARTIK 10 module
and onwards to the hosting environment. This connector carries a lot of GPIO and other peripheral interface
signals. Figure 13-13 shows the signals on the J1 pins on the ARTIK 10 module.

MAIN_BAT

XEINT_14

XEINT_18

XEINT_16
XEINT_17

XEINT_21
XEINT_20

XEINT_25
XEINT_24

XEINT_27
XEINT_28

XAudi2s0SCLK

XAudi2s0CDCLK

XAudi2s0SDI
XAudi2s0SDO

XAudi2s0LRCK

XEINT_12
XEINT_13

XAUDIO_SCL
XAUDIO_SDA

Xi2c0_SDA
Xi2c0_SCL

XCLKOUT

XspiCLK1
XspiCSn1

XspiMISO1
XspiMOSI1

XUART_SCLK

XUART_CS

XUART_MOSI
XUART_MISO

XGPIO1
XOM3
XOM2

V_ADP_SENSE

XUSB3DM0_0
XUSB3DP0_0

XUSB3VBUS0_0
XUSB3ID0_0

Xadc0AIN2

Xadc0AIN0
Xadc0AIN1

Xadc0AIN5
Xadc0AIN6
Xadc0AIN7

Xu1_TXD
Xu1_RXD
XGPIO6/XT_INT156
XCIS_MCLK

PWR_KEY

XEINT_2
XEINT_3

XEINT_0
XEINT_1

XEINT_4
XEINT_5
XEINT_6

XEINT_8
XEINT_7/DRD_VBUS_SENSE_0

J17

HEADER_1x2

12

J1

AXT380224_H

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80

82
84

81
83

 Figure 13-13. ARTIK 10 - J1 pinout assignments

CHAPTER 13 ■ AXT MODULE CONNECTORS

184

 The AXT connector J1 pinouts are listed in Table 13-8 . Although this is an 80-pin connector, on each
corner there is a solder tag, which is also accessible as a connector pin. The four extra pins are numbered
81-84 so they do not interfere with the other pin numbers. The sense indicates whether the pin is an input or
an output. These values are taken from the board schematic and cross-checked against the data sheets.

 Table 13-8. AXT Connector J1 Pinouts

 Pin Name Notes

 J1-1 MAIN_BAT Main battery supply; switched via jumper J17 HEADER_1x2

 J1-2 MAIN_BAT Main battery supply; switched via jumper J17 HEADER_1x2

 J1-3 MAIN_BAT Main battery supply; switched via jumper J17 HEADER_1x2

 J1-4 MAIN_BAT Main battery supply; witched via jumper J17 HEADER_1x2

 J1-5 MAIN_BAT Main battery supply; switched via jumper J17 HEADER_1x2

 J1-6 MAIN_BAT Main battery supply; switched via jumper J17 HEADER_1x2

 J1-7 MAIN_BAT Main battery supply; switched via jumper J17 HEADER_1x2

 J1-8 MAIN_BAT Main battery supply; witched via jumper J17 HEADER_1x2

 J1-9 GND Ground

 J1-10 MAIN_BAT Main battery supply; switched via jumper J17 HEADER_1x2

 J1-11 GND Ground

 J1-12 GND Ground

 J1-13 GND Ground

 J1-14 GND Ground

 J1-15 XEINT_12 MIPI LCD error detect

 J1-16 PWR_KEY PMIC power on key. This pin is connected to the power (boot) button, which
triggers a reboot of the ARTIK if it is in the pre-boot state. Assert an active
 HIGH value on this pin to boot the ARTIK.

 J1-17 XEINT_13 GPIO or Arduino pin 12 on connector J27-6

 J1-18 XEINT_8 GPIO or Arduino pin 11 on connector J27-7

 J1-19 XEINT_14 GPIO or Arduino pin 13 on connector J27-5

 J1-20 XEINT_7 USB 3.0 VBUS line (a.k.a. DRD_VBUS_SENSE_0 and EXT_INT40))

 J1-21 XEINT_16 GPIO interface on connector J512-5

 J1-22 XEINT_6 GPIO or Arduino pin 10 on connector J27-8

 J1-23 XEINT_17 Charge status interrupt (CHG_IRQ)

 J1-24 XEINT_5 GPIO or Arduino pin 9 on connector J27-9

 J1-25 XEINT_18 UART reset (a.k.a. XUART_RST)

 J1-26 XEINT_4 GPIO or Arduino pin 8 on connector J27-10

 J1-27 XEINT_20 UART IRQ (a.k.a. XUART_IRQ)

 J1-28 XEINT_3 GPIO or Arduino pin 7 on connector J26-1

 J1-29 XEINT_21 LCD display TP reset (a.k.a. TP_RST)

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

185

Table 13-8. (continued)

 Pin Name Notes

 J1-30 XEINT_2 GPIO or Arduino pin 4 on connector J26-4 and J512-4

 J1-31 XEINT_24 LCD display TP interrupt (a.k.a. TP_INT)

 J1-32 XEINT_1 GPIO or Arduino pin 3 on connector J26-5 and J512-3

 J1-33 XEINT_25 Fuel gauge interrupt (a.k.a. EXT_INT43, FG_INT, and UHOST_ID)

 J1-34 XEINT_0 GPIO or Arduino pin 2 on connector J26-6 and J512-2

 J1-35 XEINT_27 Stereo jack insert detection (a.k.a. JACK_DET)

 J1-36 GND Ground

 J1-37 XEINT_28 Wi-Fi/Bluetooth LVDS reset (a.k.a LVDS_RST)

 J1-38 XCIS_MCLK Rear camera (3L2) MCLK

 J1-39 V_ADP_SENSE AC power detect

 J1-40 XGPIO6 Front camera (6B2) MCLK (a.k.a. XT_INT156)

 J1-41 GND Ground

 J1-42 Xu1_RXD GPIO or Arduino pin RX<-0 on connector J26-8 and J511-11. Also known as
GPIO port GPA0. UART 1 received data input.

 J1-43 XOM2 Boot from SD when this pin is HIGH

 J1-44 Xu1_TXD GPIO or Arduino pin TX->1 on connector J26-7 and J511-10. Also known as
GPIO port GPA0. UART 1 transmitted data output.

 J1-45 XOM3 Boot from eMMC when this pin is HIGH

 J1-46 GND Ground

 J1-47 XGPIO1 Front camera (6B2) power down (a.k.a. FRONT CAM_PD)

 J1-48 Xadc0AIN0 Analog input A0 on connector J24-1 and J510-2

 J1-49 XUART_SCLK General purpose UART, serial clock

 J1-50 Xadc0AIN1 Analog input A1 on connector J24-2 and J510-3

 J1-51 XUART_MOSI General purpose UART, master out, slave in

 J1-52 Xadc0AIN2 Analog input A2 on connector J24-3

 J1-53 XUART_MISO General purpose UART, master in, slave out

 J1-54 Xadc0AIN5 Analog input A3 on connector J24-4

 J1-55 XUART_CS General purpose UART, control select

 J1-56 Xadc0AIN6 Analog input A4 on connector J24-5

 J1-57 GND Ground

 J1-58 Xadc0AIN7 Analog input A5 on connector J24-6

 J1-59 XspiCLK1 Bus SPI 1 clock line used for LPWR/Wi-Fi/Bluetooth/SigFox on connector
J511-14

 J1-60 XUSB3VBUS0_0 USB 3.0 DRD channel 0

 J1-61 XspiCSn1 Bus SPI-1 control select line used for LPWR/Wi-Fi/Bluetooth/SigFox on
connector J511-15

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

186

Table 13-8. (continued)

 Pin Name Notes

 J1-62 XUSB3ID0_0 USB 3.0 Identification for DRD channel 0

 J1-63 XspiMISO1 Bus SPI-1 master in, slave out used for LPWR/Wi-Fi/Bluetooth/SigFox on
connector J511-12

 J3-64 GND Ground

 J1-65 XspiMOSI1 Bus SPI-1 master out, slave in used for LPWR/Wi-Fi/Bluetooth/SigFox on
connector J511-13

 J1-66 XUSB3DP0_0 USB2.0 backward-compatible P channel in USB3.0

 J1-67 XCLKOUT 24MHz Audio CDCLK output

 J1-68 XUSB3DM0_0 USB2.0 backward-compatible M channel in USB3.0

 J1-69 GND Ground

 J1-70 GND Ground

 J1-71 Xi2c0_SCL Bus I2C-0 used by FUEL subsystem (PMIC)

 J1-72 Audi2s0SDO Bus I2S-0 audio serial data output on connector J511-6

 J1-73 Xi2c0_SDA Bus I2C-0 used by FUEL subsystem (PMIC)

 J1-74 Audi2s0SDI Bus I2S-0 audio serial data input on connector J511-3

 J1-75 Xi2c1_SCL Bus I2C-1 serial clock line used by audio subsystem (a.k.a. XAUDIO_SCL) on
connector J511-5

 J1-76 Audi2s0SCLK Bus I2S-0 audio serial data clock line on connector J511-1

 J1-77 Xi2C1_SDA Bus I2C-1 serial data line used by audio subsystem (a.k.a. AUDIO_SDA) on
connector J511-4

 J1-78 Audi2s0LRCLK Bus I2S-0 audio left/right clock line on connector J511-2

 J1-79 GND Ground

 J1-80 Audi2s0CDCLK Bus I2S-0 audio CD clock line on connector J511-7

 J1-81 GND Ground

 J1-82 GND Ground

 J1-83 GND Ground

 J1-84 GND Ground

 ■ Note The ARTIK 1020 data sheet incorrectly describes this as connector J3, which is inconsistent with the
developer reference board schematic diagrams and the labels printed on the Commercial Beta Type 10 board.

 Connector J2
 Connector J2 is one of the two main connectors for delivering signals in and out of the ARTIK 10 module
and onwards to the hosting environment. This connector carries a lot of A/V signals. Figure 13-14 shows the
signals on the J2 pins.

CHAPTER 13 ■ AXT MODULE CONNECTORS

187

COIN_BATT

Xpwmo_0
Xpwmo_1

XUHOSTOVERCUR
XUHOSTPWREN

UDRD3_0_OVERCUR_U2
UDRD3_0_VBUSCTRL_U2

BOOST5V_EN
LCD_RST

MRNRESET

XMIPI0SDN3
XMIPI0SDP3

XMIPI0SDPCLK
XMIPI0SDNCLK

XTCH_SDA
XTCH_SCL

XHDMI_SDA
XHDMI_SCL

MAINCAM_RESET
CAM_FLASH_EN

XGPIO17/XT_INT163
CODEC_PDN

CAM_FLASH_TORCH

PSR_TE

VTCAM_RESET

XISP2_SCL
XISP2_SDA

XMIPI1SDP0
XMIPI1SDN0

XMIPI1SDN1
XMIPI1SDP1

XMIPI1SDPCLK
XMIPI1SDNCLK

XLPWA_WKUP
AP_NWRESET

XCHG_SCL
XCHG_SDA

XMIPI1MDN0
XMIPI1MDP0

XISP0_SCL
XISP0_SDA

XMIPI1MDN1
XMIPI1MDP1

XMIPI1MDP2
XMIPI1MDN2

XMIPI1MDN3
XMIPI1MDP3

XMIPI1MDNCLK
XMIPI1MDPCLK

GPIOC40

XMMC2CLK

XMMC2DATA0

XMMC2CDN

XMMC2CMD

XMMC2DATA1
XMMC2DATA2
XMMC2DATA3

XMIPI0SDN0
XMIPI0SDP0

XMIPI0SDN1
XMIPI0SDP1

XMIPI0SDN2
XMIPI0SDP2

SEQ_SDA
SEQ_SCL

J2

AXT380224_H

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80

82
84

81
83

 Figure 13-14. ARTIK 10 - J2 pinout assignments

 The AXT connector J2 pinouts are listed in Table 13-9 . These values are also taken from the board
schematic and cross-checked against the data sheets. Always check an authoritative and up-to-date source
when you are developing hardware board designs.

 Table 13-9. AXT Connector J2 Pinouts

 Pin Name Notes

 J2-1 MAINCAM_RESET Camera reset

 J2-2 XMIPI1MDN0 Used for MIPI DSI

 J2-3 CAM_FLASH_EN Camera flash enable

 J2-4 XMIPI1MDP0 Used for MIPI DSI

 J2-5 CAM_FLASH_TORCH Camera flash bulb use as torch

 J2-6 GND Ground

 J2-7 CODEC_PDN Audio codec power down

 J2-8 XMIPI1MDN1 LCD display MIPI DSI1 DN1 channel 1

 J2-9 XGPIO17 SigFox low-power control on connector J512-6. LPWA INT (a.k.a
XT_INT163).

 J2-10 XMIPI1MDP1 LCD display MIPI DSI1 DN1 channel 1

 J2-11 PSR_TE Display synchronization

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

188

Table 13-9. (continued)

 Pin Name Notes

 J2-12 GND Ground

 J2-13 SEQ_I2C_SCL Bus I2C-5 Serial Clock Line

 J2-14 XMIPI1MDN2 LCD display MIPI DSI1 DN2 channel 2

 J2-15 SEQ_I2C_SDA Bus I2C-5 Serial Data Line

 J2-16 XMIPI1MDP2 LCD display MIPI DSI1 DN2 channel 2

 J2-17 VTCAM_RESET Video camera reset

 J2-18 GND Ground

 J2-19 XISP2_SDA Bus I2C-2 camera Serial Data Line

 J2-20 XMIPI1MDN3 LCD display MIPI DSI1 DN3 channel 3

 J2-21 XISP2_SCL Bus I2C-2 camera Serial Clock Line

 J2-22 XMIPI1MDP3 LCD display MIPI DSI1 DN3 channel 3

 J2-23 GND Ground

 J2-24 GND Ground

 J2-25 XMIPI1SDN0 MIPI camera CSI1 SDN0 channel 0

 J2-26 XMIPI1MDNCLK LCD display MIPI DSI1 DNCLK

 J2-27 XMIPI1SDP0 MIPI camera CSI1 SDP0 channel 0

 J2-28 XMIPI1MDPCLK LCD display MIPI DSI1 DPCLK

 J2-29 GND Ground

 J2-30 GND Ground

 J2-31 XMIPI1SDN1 MIPI camera CSI1 SDN1 channel 1

 J2-32 XMMC2CDN SD card CDN card detect (a.k.a. TFLASH_CDN)

 J2-33 XMIPI1SDP1 MIPI camera CSI1 SDP1 channel 1

 J2-34 XMMC2CLK SD card clock line (a.k.a. TFLASH_CLK)

 J2-35 GND Ground

 J2-36 XMMC2CMD SD card CMD line (a.k.a. TFLASH_CMD)

 J2-37 XMIPI1SDNCLK MIPI camera CSI1 SDN clock

 J2-38 XMMC2DATA0 SD card data bit 0 (a.k.a. TFLASH_D0)

 J2-39 XMIPI1SDPCLK MIPI camera CSI1 SDP clock

 J2-40 XMMC2DATA1 SD card data bit 1 (a.k.a. TFLASH_D1)

 J2-41 GND Ground

 J2-42 XMMC2DATA2 SD card data bit 2 (a.k.a. TFLASH_D2)

 J2-43 AP_NRESET Cold ARTIK 1020 Module reset by PMIC. RST signal on
connector J25-3 and J510-7 (a.k.a. RST/MRNRESET)

 J2-44 XMMC2DATA3 SD card data bit 3 (a.k.a. TFLASH_D3)

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

189

Table 13-9. (continued)

 Pin Name Notes

 J2-45 XLPWA_WKUP SigFox LPWA WAKEUP. The data sheet describes this as an LCD_
ID or Vsync line, which is contradictory.

 J2-46 GPIOC40 Power management GPIO

 J2-47 AP_NWRESET Warm reset from PMIC (for development purposes)

 J2-48 Xi2c7_SDA Bus I2C-7 Serial Data Line used for HDMI (a.k.a XHDMI_SDA)

 J2-49 XISP0_SCL Bus I2C-0 camera Serial Clock Line

 J2-50 Xi2C7_SCL Bus I2C-7 Serial Clock Line used for HDMI (a.k.a. XHDMI_SCL)

 J2-51 XISP0_SDA Bus I2C-0 camera Serial Data Line

 J2-52 GND Ground

 J2-53 COIN_BATT Auxiliary backup coin battery 3-volt input

 J2-54 XMIPI0SDN0 MIPI CSI0 DN0 channel 0 used for 3L2 CAM

 J2-55 BOOST5V_EN USB 3.0 booster 5v power supply enable

 J2-56 XMIPI0SDP0 MIPI CSI0 DP0 channel 0 used for 3L2 CAM

 J2-57 LCD_RST LCD display reset

 J2-58 GND Ground

 J2-59 Xi2c8_SDA Bus I2C-8 Serial Data Line used for touch interface
(a.k.a. XTCH_SDA)

 J2-60 XMIPI0SDN1 MIPI CSI0 DN1 channel 1 used for 3L2 CAM

 J2-61 Xi2C8_SCL Bus I2C-8 Serial Clock Line used for touch interface (a.k.a.
XTCH_SCL)

 J2-62 XMIPI0SDP1 MIPI CSI0 DP1 channel 1 used for 3L2 CAM

 J2-63 XCHG_SDA Change I2C SDA lines to 1V8 signaling

 J3-64 GND Ground

 J2-65 XCHG_SCL Change I2C SCL lines to 1V8 signaling

 J2-66 XMIPI0SDN2 MIPI CSI0 DN2 channel 2 used for 3L2 CAM

 J2-67 Xpwmo_1 Pulse width modulated output channel 1. Arduino pin ~6 on
header pin J26-2 and J513-3.

 J2-68 XMIPI0SDP2 MIPI CSI0 DP2 channel 2 used for 3L2 CAM

 J2-69 Xpwmo_0 Pulse width modulated output channel 0. Arduino pin ~5 on
header pin J26-3 and J513-4.

 J2-70 GND Ground

 J2-71 GND Ground

 J2-72 XMIPI0SDN3 MIPI CSI0 DN3 channel 3 used for 3L2 CAM

 J2-73 XUHOSTOVERCUR USB host over current detection

 J2-74 XMIPI0SDP3 MIPI CSI0 DP3 channel 3 used for 3L2 CAM

 J2-75 XUHOSTPWREN Used for resetting the AX88760 Ethernet and USB controller

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

190

XEINT_30/HDMI_CEC
XEINT_31/HDMI_HPD

HDMI_LS_EN
HDMI_DCDC_EN

GPD1_4
GPD1_5
GPD1_6
GPD1_7
TA_nCONNECTED

XhdmiTX2N
XhdmiTX2P

XGPIO8
XGPIO9 XGPIO2

XGPIO3

XhdmiTXCN
XhdmiTXCP

XhdmiTX0N
XhdmiTX0P

XhdmiTX1N
XhdmiTX1P

XUHOSTDM
XUHOSTDP

XUSB3TX0M_0
XUSB3TX0P_0

XUSB3RX0M_0
XUSB3RX0P_0

XUHOSTVBUS

Xi2c9_SCL
Xi2c9_SDA

J3

AXT340224_H

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

82
84

81
83

 Figure 13-15. ARTIK 10 - J3 pinout assignments

 ■ Note The ARTIK 1020 data sheet incorrectly describes this as connector J4, which is inconsistent with the
developer reference board schematic diagrams and the labels printed on the Commercial Beta Type 10 board.

 Connector J3
 Connector J3 is mainly concerned with delivering HDMI video and a few miscellaneous GPIO outputs.
Figure 13-15 shows the signals on the J3 pins.

 Pin Name Notes

 J2-76 GND Ground

 J2-77 UDRD3_0_OVERCUR_U2 USB 3.0 over current detection and control

 J2-78 XMIPI0SDPCLK MIPI CSI0 DPCLK used for 3L2 CAM

 J2-79 UDRD3_0_VBUSCTRL_U2 USB 3.0 VBUS control

 J2-80 XMIPI0SDNCLK MIPI CSI0 DNCLK used for 3L2 CAM

 J2-81 GND Ground

 J2-82 GND Ground

 J2-83 GND Ground

 J2-84 GND Ground

Table 13-9. (continued)

 The AXT connector J3 pinouts are listed in Table 13-10 . These values are taken from the board schematic
and cross-checked against the data sheets. Be sure to check an authoritative and up-to-date source for the
latest values and check that they correspond to the same revision of the ARTIK module you are deploying.

CHAPTER 13 ■ AXT MODULE CONNECTORS

191

 Table 13-10. AXT Connector J3 Pinouts

 Pin Name Notes

 J3-1 XhdmiTXCN HDMI transmit clock minus signal

 J3-2 XEINT_30 HDMI Consumer Electronics Control signal for controlling the TV
display remotely using AV.link messages (a.k.a HDMI_CEC)

 J3-3 XhdmiTXCP HDMI transmit clock plus signal

 J3-4 XEINT_31 HDMI hot plug detection (a.k.a. HDMI_HPD)

 J3-5 GND Ground

 J3-6 GND Ground

 J3-7 XhdmiTX2N HDMI TMDS channel 2 minus signal

 J3-8 HDMI_LS_EN HDMI load switch enable control via GPIO

 J3-9 XhdmiTX2P HDMI TMDS channel 2 plus signal

 J3-10 HDMI_DCDC_EN HDMI DC to DC step up control via GPIO

 J3-11 GND Ground

 J3-12 GND Ground

 J3-13 XhdmiTX1N HDMI TMDS channel 1 minus signal

 J3-14 GPD1_4 Generic data bit 0

 J3-15 XhdmiTX1P HDMI TMDS channel 1 plus signal

 J3-16 GPD1_5 Generic data bit 1

 J3-17 GND Ground

 J3-18 GPD1_6 Generic data bit 2

 J3-19 XhdmiTX0N HDMI TMDS channel 0 minus signal

 J3-20 GPD1_7 Generic data bit 3

 J3-21 XhdmiTX0P HDMI TMDS channel 0 plus signal

 J3-22 TA_nCONNECTED PMIC generated power up event signal

 J3-23 GND Ground

 J3-24 XGPIO3 Generic GPIO interface

 J3-25 XGPIO9 SigFox power enable (a.k.a. SPI CS)

 J3-26 XGPIO2 Generic GPIO interface

 J3-27 XGPIO8 Z-Wave reset

 J3-28 Xi2c9_SCL Bus I2C-9 Arduino compatible external bus on connector J27-1 and
J510-6

 J3-29 GND Ground

 J3-30 Xi2c9_SDA Bus I2C-9 Arduino compatible external bus

 J3-31 XUSB3RX0P_0 USB3.0 DRD channel 0 receive plus on connector J27-2 and J510-5

 J3-32 GND Ground

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

192

Table 13-10. (continued)

 Pin Name Notes

 J3-33 XUSB3RX0M_0 USB3.0 DRD channel 0 receive minus

 J3-34 XUHOSTDP USB differential data plus for driving the AX88760 Ethernet and USB
controller

 J3-35 GND Ground

 J3-36 XUHOSTDM USB differential data minus for driving the AX88760 Ethernet and
USB controller

 J3-37 XUSB3TX0P_0 USB3.0 DRD channel 0 transmit plus

 J3-38 GND Ground

 J3-39 XUSB3TX0M_0 USB3.0 DRD channel 0 transmit minus

 J3-40 XUHOSTVBUS USB VBUS

 J3-81 GND Ground

 J3-82 GND Ground

 J3-83 GND Ground

 J3-84 GND Ground

 ■ Note The ARTIK 1020 data sheet incorrectly describes this as connector J1, which is inconsistent with the
developer reference board schematic diagrams and the labels printed on the Commercial Beta Type 10 board.

 Connector J4
 Connector J4 carries all the JTAG debugging signals. This connector can be omitted to save money by
removing the need for a second 40-pin AXT connector. It sacrifices JTAG support as a consequence. This
will enhance the security of your shipping product because your competitors will find it harder to reverse
engineer your code design by attaching a JTAG debugger. The pin labeling prefixes on the schematic
diagram seems to indicate that some ZigBee signals are delivered from this connector. The signal names tally
with JTAG pinouts as documented by Segger J-Link reference materials and the ZigBee naming conventions
may not be relevant. Figure 13-16 shows the signals on the J4 pins.

CHAPTER 13 ■ AXT MODULE CONNECTORS

193

ZB_2V8
ZB_PC2

ZB_PC3
ZB_PC0

ZB_RSTn

ZB_JTCK

ZB_PC4
ZB_PA5

ZB_PA4XjTRSTn
XjTMS

XjTCK
XjTDI
XjTDO

DEBUG_TXD
DEBUG_RXD

BT32K_PM

HOST_BOOST5V_EN
HOST_BOOST5V_PG

BOOST5V_PG

J4

AXT340224_H

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

82
84

81
83

 Figure 13-16. ARTIK 10 - J4 pinout assignments

 The auxiliary AXT connector J4 pinouts are listed in Table 13-11 . These values are also taken from the
board schematic and cross-checked against the data sheets. Check an authoritative and up-to-date source
for the latest values.

 Table 13-11. AXT Connector J4 Pinouts

 Pin Name Notes

 J4-1 GND Ground

 J4-2 ZB_2V8 ZigBee 2.8v/300mA ref. Shorted to pin J4-4. (a.k.a. PVDD_LDO28_2V8).

 J4-3 GND Ground

 J4-4 ZB_2V8 ZigBee 2.8v/300mA ref. Shorted to pin J4-2. (a.k.a. PVDD_LDO28_2V8).

 J4-5 XjTCK JTAG debug clock

 J4-6 ZB_PC2 JTAG debug data out

 J4-7 XjTDI JTAG debug TDI line

 J4-8 ZB_PC0 JTAG debug reset

 J4-9 XjTDO JTAG debug TDO line

 J4-10 ZB_PC3 JTAG debug data in

 J4-11 XjTMS JTAG debug TMS line

 J4-12 ZB_JTCK JTAG debug clock line

 J4-13 XjTRSTn JTAG debug reset line

 J4-14 ZB_PA4 JTAG debug GPIO control

 J4-15 GND Ground

(continued)

CHAPTER 13 ■ AXT MODULE CONNECTORS

194

Table 13-11. (continued)

 Pin Name Notes

 J4-16 ZB_RSTn JTAG debug reset line

 J4-17 DEBUG_RXD AP debug UART received data (RxD)

 J4-18 ZB_PC4 JTAG debug mode select

 J4-19 DEBUG_TXD AP debug UART transmitted data (TxD)

 J4-20 ZB_PA5 JTAG debug GPIO control

 J4-21 GND Ground

 J4-22 GND Ground

 J4-23 BT32K_PM 32 kHz clock for Bluetooth controller (a.k.a. AP_32.768) on connector
J513-1

 J4-24 GND Ground

 J4-25 HOST_BOOST5V_PG Host boost PG

 J4-26 N/C Not connected

 J4-27 HOST_BOOST5V_EN Host boost enable control

 J4-28 N/C Not connected

 J4-29 BOOST5V_PG Boost PG

 J4-30 N/C Not connected

 J4-31 N/C Not connected

 J4-32 N/C Not connected

 J4-33 N/C Not connected

 J4-34 N/C Not connected

 J4-35 N/C Not connected

 J4-36 N/C Not connected

 J4-37 N/C Not connected

 J4-38 N/C Not connected

 J4-39 GND Ground

 J4-40 GND Ground

 J4-81 GND Ground

 J4-82 GND Ground

 J4-83 GND Ground

 J4-84 GND Ground

 ■ Note The ARTIK model 1020 data sheet mentions that the J4 debug connector is optional. It not always
present in product photographs and is not described in the main introductory paragraphs of the data sheet. It
carries JTAG signals to support a serial hardware debug mechanism. The data sheet also incorrectly describes
this as connector J9.

CHAPTER 13 ■ AXT MODULE CONNECTORS

195

 Summary
 This information was collated by examining the data sheets and developer reference board schematics.
While no reference resource is ever perfect and complete from every reader’s point of view, the information
here may save you a little time. Always refer back to the Samsung-provided resources since they are the
authoritative fount of all knowledge regarding the ARTIK. Your principle reference sources should be the
Samsung published ARTIK product data sheets and developer reference board schematics. There are some
minor caveats and discrepancies to bear in mind as you read them, which are mentioned in this book where
it is relevant.

197© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_14

 CHAPTER 14

 Hardware I/O Connections

 The ARTIK embodies an Arduino-compatible support architecture for running sketches and driving external
hardware. This is presented by implementing Arduino-compatible headers on the developer reference
boards. These headers are positioned so you can install Arduino shields on them to extend the hardware
capabilities. This chapter describes the pinouts on these hardware I/O headers. There is also some extended
coverage about JTAG debugging that builds on what was described in Beginning Samsung ARTIK .

 Pins and Programmable I/O
 The ARTIK 5 and ARTIK 10 modules and their developer reference boards provide a range of programmable
signal pins to access directly from your application. Some of them are reconfigurable for different purposes
while others are dedicated pins for interacting with the built-in hardware. The various input/output pin
types are listed with cross-references to detailed coverage elsewhere in this book:

• GPIO: These single bit digital input and output pins can be programmed in a
variety of different ways, which are discussed in Chapter 17 . Some are dedicated to
controlling peripheral hardware chips such as the Ethernet controller or audio and
video codecs.

• Analog input: Uses IIO conventions for reading variable voltage values. This is
covered in Chapter 18 .

• PWM output: Variable frequency and duty cycle pulse trains are output by these
pins. Pulse width modulated output is discussed in Chapter 19 .

• Serial communications with UART and other complex highly integrated chips.

• I2C: Interfaces for managing peripheral devices discussed in Chapter 20 .

• I2S: These interfaces for exchanging audio data with a built-in hardware audio codec
chip are discussed in Chapter 22 .

• SPI: For controlling peripheral devices and displays. This is discussed in Chapter 21 .

• MIPI: For managing displays and cameras. This is discussed in Chapter 23 .

 The layout of these connection headers is designed to be compatible with the Arduino standard design.
This should facilitate the attachment of special-purpose Arduino shields.

 The pins on these headers are buffered from the ARTIK pinouts on the AXT connectors with voltage
level converter chips. Refer to the developer board schematics and design these same level-converting
components into your own boards. They protect the ARTIK while converting the voltage from your ARTIK to
Arduino-compatible levels.

http://dx.doi.org/10.1007/978-1-4842-2322-2_17
http://dx.doi.org/10.1007/978-1-4842-2322-2_18
http://dx.doi.org/10.1007/978-1-4842-2322-2_19
http://dx.doi.org/10.1007/978-1-4842-2322-2_20
http://dx.doi.org/10.1007/978-1-4842-2322-2_22
http://dx.doi.org/10.1007/978-1-4842-2322-2_21
http://dx.doi.org/10.1007/978-1-4842-2322-2_23

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

198

 Hardware I/O Pins and Headers
 The Type 5 and 10 developer reference boards have a group of headers that are very similar to the ones on
an Arduino board. They are a superset of the Arduino headers and many additional I/O connections are
brought out from the ARTIK modules via their Panasonic AXT connectors and presented here for you to
access them more easily. This is where you can interact with I2C peripherals.

 There are eight headers in all. Some are mounted close enough together that they appear to be one
component. Indeed, they may even be implemented using one single longer header component, as is the
case with connectors J511 and J513.

 Figure 14-1 shows the general arrangement of these connectors with their physical pin numbering
indicated for a Commercial Beta developer reference board. Although the Type 5 and Type 10 boards have
some differences regarding the locations of other connectors, switches, and jumpers, this group of
Arduino-compatible headers is located consistently on both types of boards.

J26 J24

J27

J25

J511

J513J512

J510

1

1
1

1

1

1

1

1

8

6 4
6

8

15

10 12

 Figure 14-1. Hardware I/O headers (physical numbering)

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

199

 Each header has a small triangle that indicates which end is the reference pin. This is always physical
pin number 1. Pin 1 of connector J24 is described as J24-1 and is counted from the reference pin marked
with the small triangle at the end of the connector. The developer reference board schematic diagrams label
the pins, and the board artwork has similar but not identical names printed beside each connector.

 ■ Note The position of these headers was different on the earlier versions of the developer reference boards
and they were not physically compatible with Arduino shields.

 Arduino Names vs. Pin Numbers
 A symbolic name is usually assigned to the pins and printed on the artwork of the developer reference
board. Because the Arduino pin names are composed of simple numeric values, describing the pins can be
ambiguous. For example, if you refer to Arduino pin 6 on connector J26, the physical pin number is J26-2. In
this book, the convention is to indicate the physical pin location and the symbolic name together when there
is a chance of confusion. The physical connector label and its pin number is first, followed by the symbolic
name/label in brackets:

 {connector_label} - {pin_number} ({symbolic_name})

 The Arduino serial data receive connection named as Arduino RX<-0 is presented on pin 8 of connector
J26. The RST line is connected to pin 3 of connector J25. They are described like this so the physical and
symbolic names are described at the same time and you can use either according to your preferences.
Table 14-1 provides a useful cross-reference list. The small infinity symbol is similar to the Arduino logo and
indicates that an integer number is an Arduino label and not a physical pin number:

• J26-8 (RX<-0)

• J25-3 (RST)

• J26-2 (~6)

• J26-5 (∞3)

 Table 14-1. Arduino Pin Names vs. ARTIK Header Pin Numbers

 Arduino name Header pin

 RX<-0 J26-8

 TX->1 J26-7

 ∞2 J26-6

 ∞3 J26-5

 ∞4 J26-4

 ~5 J26-3

 ~6 J26-2

 ∞7 J26-1

 ∞8 J27-10

 ∞9 J27-9

(continued)

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

200

 ■ Note The VREF signal on connector J27-3 is sometimes labeled AREF on Arduino boards and circuit
diagrams because it is a reference voltage for the analog inputs.

 Mapping Pins to Connection Headers
 The ARTIK 5 and 10 modules are mounted on the Type 5 and Type 10 developer reference boards and their
connection headers are organized in a very similar layout. Groups of pins are wired using multi-pin headers
that are identical to the type used on an Arduino. Table 14-2 summarizes these header connectors although
there are a few minor differences between the two models.

 Arduino name Header pin

 ∞10 J27-8

 ∞11 J27-7

 ∞12 J27-6

 ∞13 J27-5

 GND J27-4

 VREF J27-3

 SDA J27-2

 SCL J27-1

 A0 J24-1

 A1 J24-2

 A2 (ARTIK 10 only) J24-3

 A3 (ARTIK 10 only) J24-4

 A4 (ARTIK 10 only) J24-5

 A5 (ARTIK 10 only) J24-6

 VIN J25-8

 GND J25-7

 GND J25-6

 5v J25-5

 3v3 J25-4

 RESET J25-3

 IOREF J25-2

 N/C (No connection) J25-1

Table 14-1. (continued)

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

201

 Pinout Diagrams
 The physical pin numbers are shown on the left of the connector and the printed labels are shown on the
right. The labels are similar to the names of the signals coming out of the Panasonic AXT connectors on the
underside of the ARTIK modules.

 The tables following the pinout diagrams list the connections with useful supplementary information.
The pins are listed in numerical order, which is the reverse of how they appear on the developer reverence
board if you rotate it so the headers are on the left and nearest to you and power cable is at the bottom. This
is the natural orientation for reading the labels printed on the board artwork.

 Most of these headers are connected directly to pins on the Panasonic AXT connectors underneath the
ARTIK modules. The pin numbers are listed for the ARTIK 5 and ARTIK 10 modules accordingly. There may
be a voltage level converter chip between these connectors and the ARTIK itself. They also serve to protect
the ARTIK against accidental damage. This information is available from the schematic diagrams but it helps
to draw it together in a tabular form.

 Refer to the schematic diagrams to see how these level converters are deployed to incorporate them
into your own hardware designs. The developer reference boards have many useful ideas for additional
circuits that augment the ARTIK modules. Since you have the schematics available, adapt them for use in
your own hardware.

 The tables in this chapter also have a few items of commentary or useful notes as they pertain to
each circuit. The Panasonic AXT connector pinouts are listed in Chapter 13 with extracts from the circuit
schematics.

 J24 - Analog Input
 The J24 hardware I/O header groups all the analog input pins together. The ARTIK 5 has just two channels
while the ARTIK 10 supports six. The pinout names on the ARTIK 10 AXT connectors suggest that more
channels might be available because the connections are numbered 0 to 7 with two missing items in
between. There are only six channels accessible for use. Figure 14-2 illustrates the layout of the J24 header
and Table 14-3 lists the pinout details. The label column refers to the screen-printing on the developer
reference board. The AXT columns list the Panasonic connectors that these signals are derived from.

 Table 14-2. Hardware I/O Header Connectors

 Connector Pin count Purpose

 J24 6 Analog input pins

 J25 8 Power supply, ground, and reset lines

 J26 8 Arduino pins (0 to 7)

 J27 10 Arduino pins (8 to 13) and some additional GPIO functionality

 J510 12 ADC interface

 J511 15 SPI, UART, I2C, and I2S interfaces

 J512 6 GPM and interrupt lines

 J513 4 PWM and clock output

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

202

J24

A0

A1

A2

A3

A4

A5

1

2

3

4

5

6

 Figure 14-2. Location of J24 header pins

 Table 14-3. Pinouts for Header J24

 Pin Label AXT (A5) AXT (A10) Description

 J24-1 A0 J3-44 J1-48 Analog input channel 0. Also connected to J510-2.

 J24-2 A1 J3-46 J1-50 Analog input channel 1. Also connected to J510-3.

 J24-3 A2 J1-52 Analog input channel 2 (ARTIK 10 only)

 J24-4 A3 J1-54 Analog input channel 5 (ARTIK 10 only)

 J24-5 A4 J1-56 Analog input channel 6 (ARTIK 10 only)

 J24-6 A5 J1-58 Analog input channel 7 (ARTIK 10 only)

 J25 - Power Supply, Ground, and Reset
 Figure 14-3 shows the layout and position of connector J25 on the developer reference board and Table 14-4
describes the connections. Only one of these connections is routed back to the ARTIK module via the AXT
connectors to implement a reset line.

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

203

J25

n/c

VIN

GND

GND

5V

3.3V

RST

VREF

1

8

7

6

5

4

3

2

 Figure 14-3. Location of J25 header pins

 Table 14-4. Pinouts for Header J25

 Pin Label AXT (A5) AXT (A10) Description

 J25-1 n/c No connection

 J25-2 VREF Externally supplied reference voltage (not labeled on
board and also called IOREF in some documentation)

 J25-3 RST J4-51 J2-43 Reset line into the ARTIK AP_NRESET/MRNRESET pin.
Also connected to J510-7.

 J25-4 3.3V Main 3.3-volt supply

 J25-5 5V Main 5-volt supply always on

 J25-6 GND Ground

 J25-7 GND Ground

 J25-8 VIN DC 5-volt supply switched by jumper J30. Connect a
switch to these two pins to control the 5-volt supply to this
connector.

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

204

J26

∞ 7

∞ RX<-0

∞ TX->1

∞ 2

∞ 3

∞ 4

∞ ~5

∞ ~6

1

8

7

6

5

4

3

2

J27
SCL

∞ 8

∞ 9

∞ 10

∞ 11

∞ 12

∞ 13

GND

VREF

SDA

1

10

9

8

7

6

5

4

3

2

 Figure 14-4. Location of J26 and 27 header pins

 J26 and J27 Arduino Interface
 The pins shown in Figure 14-4 on the J26 and J27 headers are mainly concerned with Arduino-compatible
interfacing or for direct manipulation via the sysfs virtual file system as GPIO pins. When you access them
using the Arduino IDE to create a sketch that runs in the Arduino emulation, the mapping of the pins to
their symbolic names is done in a portable way that manages the differences between ARTIK 5 and ARTIK
10 modules. This is also resilient to operating system upgrades. If you use the sysfs approach, carefully
map these differences because your code is then interacting via the kernel-provided base address of each
interface. This base address is prone to change from one OS release to another and is often different in
ARTIK 5 and 10 modules.

 These pins are driven directly from the ARTIK module via a voltage level converter/buffering chip
(TXS0108EPWR). Refer to Chapter 13 to see how they map to the ARTIK module connections via the
Panasonic AXT connectors. The Arduino compatible pins on J26 and J27 in the illustration are prefixed
with a small infinity symbol because this is similar to the Arduino logo and helps to remove any ambiguity
regarding pin numbers. By convention in this book, the pin numbers are shown on the left of the connector
and the labels on the right. Table 14-5 lists the connections on headers J26 and J27 and also cross references
to the AXT connector pins.

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

205

 Table 14-5. Pinouts for Headers J26 and J27

 Pin Label AXT (A5) AXT (A10) Description

 J26-1 ∞7 J3-26 J1-28 Arduino pin 7 (XEINT_3). This pin is 3.3v tolerant in
input mode.

 J26-2 ~6 J4-47 J2-67 Arduino pin ~ 6 (Xpwmo_1). Also presented on J513-3.

 J26-3 ~5 J4-45 J2-69 Arduino pin ~ 5 (Xpwmo_0). Also presented on J513-4.

 J26-4 ∞4 J3-28 J1-30 Arduino pin 4 (XEINT_2). This pin is 3.3v tolerant in
input mode. Also presented on J512-4 as INT2.

 J26-5 ∞3 J3-30 J1-32 Arduino pin 3 (XEINT_1). This pin is 3.3v tolerant in
input mode. Also presented on J512-3 as INT1.

 J26-6 ∞2 J3-32 J1-34 Arduino pin 2 (XEINT_0). This pin is 3.3v tolerant in
input mode. Also presented on J512-2 as INT0.

 J26-7 TX->1 J3-40 J1-44 Arduino pin TX->1. Connected to UART3 (Xu3_TXD)
on an ARTIK 5 and UART1 (Xu1_TXD) on an ARTIK 10.
Controlled via the Serial object in Arduino IDE. Also
presented on J511-10.

 J26-8 RX<-0 J3-38 J1-42 Arduino pin RX<-0. Connected to UART3 (Xu3_RXD)
on an ARTIK 5 and UART1 (Xu1_RXD) on an ARTIK 10.
Controlled via the Serial object in Arduino IDE. Also
presented on J511-11.

 J27-1 SCL J4-13 J3-28 Bus I2C-7/I2C-9 Serial Clock Line (Xi2c7_SCL on
ARTIK 5, Xi2c9_SCL on ARTIK 10). This pin is also
connected to J510-6 on an ARTIK 10.

 J27-2 SDA J4-11 J3-30 Bus I2C-7/I2C-9 Serial Data Line (Xi2c7_SDA on
ARTIK 5, Xi2c9_SDA on ARTIK 10). This pin is also
connected to J510-5 on an ARTIK 10.

 J27-3 VREF External reference voltage input

 J27-4 GND Ground

 J27-5 ∞13 J3-11 J1-19 Arduino pin 13 (XEINT_14). Can be used as the SCLK
line when using the Arduino SPI library.

 J27-6 ∞12 J3-12 J1-17 Arduino pin 12 (XEINT_13). Can be used as the MISO
line when using the Arduino SPI library.

 J27-7 ∞11 J3-16 J1-18 Arduino pin 11 (XEINT_8). Can be used as the MOSI
line when using the Arduino SPI library.

 J27-8 ∞10 J3-20 J1-22 Arduino pin 10 (XEINT_6). This pin is 3.3v tolerant in
input mode. Can be used as the Slave Select (SS) line
when using the Arduino SPI library.

 J27-9 ∞9 J3-22 J1-24 Arduino pin 9 (XEINT_5). This pin is 3.3v tolerant in
input mode.

 J27-10 ∞8 J3-24 J1-26 Arduino pin 8 (XEINT_4). This pin is 3.3v tolerant in
input mode.

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

206

 There are four important caveats regarding the connections on this header:

• If you are writing software to interact with the RX<-0 and TX->1 serial lines, the UART
names are different on the ARTIK 5 and 10 modules. UART3 is used on an ARTIK
5 and UART1 is used on an ARTIK 10. These are differently named UARTs within
the ARTIK OS. They live at different base addresses for access to the driver and are
managed on different peripheral buses.

• Similarly, the SCL and SDA lines use different I2C devices on the two ARTIK
modules. On the ARTIK 5, bus I2C-7 is used; on the ARTIK 10, bus I2C-9 is used.
Program your application to talk to the correct one if you are sharing the same code
across both ARTIK module types.

• The ARTIK 5 presents two different I2C bus signals on connectors J27 and J510.
The ARTIK 10 uses the same I2C bus on both connectors. On an ARTIK 10, you
might mistakenly assume you can connect a separate set of peripherals on J510 but
they are affected by changes you make to J27. The ARTIK 5 lets you control them
independently.

• Be aware of the reversed ordering of Arduino pin numbers vs. connector physical pin
numbers.

 J510 - Auxiliary Analog ADC input
 Figure 14-5 shows the layout and position of connector J510 on the developer reference board. The pinouts
for this connector are detailed in Table 14-6 . The ADC signals are connected to the same source as the ones
on connector J24. You can connect your circuits to either of them.

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

207

J510
MAIN_BAT

3.3V

GND

n/c

n/c

n/c

MRNRESET

SCL3

SDA3

GND

ADC1

ADC0

1

12

11

10

9

8

7

6

5

4

3

2

 Figure 14-5. Location of J510 header pins

 Table 14-6. Pinouts for Header J510

 Pin Label AXT (A5) AXT (A10) Description

 J510-1 MAIN_BAT Main power supply (3.8v)

 J510-2 ADC0 J3-44 J1-48 ADC input channel 0. Also connected to J24-1.

 J510-3 ADC1 J3-46 J1-50 ADC input channel 1. Also connected to J24-2.

 J510-4 GND Ground

 J510-5 SDA3 J4-55 J3-30 Bus I2C-3/I2C-9 Serial Data line (Xi2c3_SDA on
ARTIK 5, duplicate connection to Xi2c9_SCL on
ARTIK 10)

 J510-6 SCL3 J4-53 J3-28 Bus I2C-3/I2C-9 Serial Clock Line (Xi2c3_SCL on
ARTIK 5, duplicate connection to Xi2c9_SDA on
ARTIK 10)

 J510-7 AP_NRESET J4-51 J2-43 Reset line into the ARTIK RST/MRNRESET pin.
Also connected to J25-3

 J510-8 N/C No connection

 J510-9 N/C No connection

(continued)

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

208

 There are three important caveats regarding the connections on this header:

• The SDA3 and SCL3 connections are mapped to an otherwise unused I2C3 on an ARTIK
5. On the ARTIK 10, they are mapped to I2C9, which is also connected to the J27 header.
This connection model is different between the ARTIK 5 and 10 developer boards. The
artwork labels on a Type 10 board imply that this is bus I2C-3, which it is not.

• If you are driving the I2C interface on J510-6/J510-7, then on an ARTIK 5 it will not affect
the I2C interface on connector J27. On an ARTIK 10, you will affect any peripherals
connected to J27 as well as J510 because the pins are electrically one and the same.

• The naming of the reset lines is context dependent. Arduino conventions call it the
RST pin. ARTIK calls it the AP_NRESET or MRNRESET depending on whether you
are reading a data sheet for the ARTIK 5 or ARTIK 10 or consulting the reference
board schematics.

 J511 - SPI, UART, I2C, and I2S Interfaces
 There are a few minor typographical errors on the artwork of the Commercial Beta developer reference boards.
They are not of any great consequence and have been corrected on these illustrations. They are also due in part
to the placement of some surface mounted components that hide the label text. Figure 14-6 shows the layout of
the J511 connector on the developer reference board while Table 14-7 lists the pinouts for it.

 Pin Label AXT (A5) AXT (A10) Description

 J510-10 N/C No connection

 J510-11 GND Ground

 J510-12 DC 3.3V Reference voltage (3.3v)

Table 14-6. (continued)

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

209

 Figure 14-6. Location of J511 header pins

 Table 14-7. Pinouts for Header J511

 Pin Label AXT (A5) AXT (A10) Description

 J511-1 I2S2_SCLK J3-52 J1-76 Bus I2S-2/I2S-0 audio Serial Clock Line
(XAudi2s2SCLK on ARTIK 5, XAudi2s0SCLK on ARTIK
10)

 J511-2 I2S2_LRCK J3-54 J1-78 Bus I2S-2/I2S-0 audio Left-Right Clock Line
(XAudi2s2LRCK on ARTIK 5, XAudi2s0LRCK on ARTIK
10)

 J511-3 I2S2_SDI J3-50 J1-74 Bus I2S-2/I2S-0 audio Serial Data Input (XAudi2s2SDI
on ARTIK 5, XAudi2s0SDI on ARTIK 10)

 J511-4 I2C1_SDA J4-17 J1-77 Bus I2C-1 Serial Data Line (Xi2c1_SDA). Controls the
Audio codec hardware codec chip.

 J511-5 I2C1_SCL J4-15 J1-75 Bus I2C-1 Serial Clock Line (Xi2c1_SCL). Controls the
Audio codec hardware codec chip.

 J511-6 I2S2_SDO J3-48 J1-72 Bus I2S-2/I2S-0 Serial Data Out (XAudi2s2SDO on
ARTIK 5, XAudi2s0SDO on ARTIK 10)

(continued)

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

210

 There are two important caveats regarding the connections on this header:

• The I2S-2 audio connections on an ARTIK 5 are connected to I2S-0 on an ARTIK
10 according to the circuit schematics for the developer reference boards. All of
the photographs currently available show the labeling on the Type 10 developer
reference board to be identical to that on the Type 5. Therefore the labels shown in
Figure 14-6 and Table 14-7 are still relevant although the internal connections are
different.

• The naming of bus I2C-1 on J511-4/J511-5 is different between the ARTIK 5 and 10
schematic diagrams. According to the data sheets, they seem to go to the same bus
I2C-1 connection via the AXT connectors on both ARTIK modules.

 J512 - GPM and Interrupts
 This connector groups the GPM and interrupt connections together. Figure 14-7 shows the layout of
connector J512 on the developer reference board while Table 14-8 describes the pinouts.

 Pin Label AXT (A5) AXT (A10) Description

 J511-7 I2S2_CDCLK J3-56 J1-80 Bus I2S-2/I2S-0 audio CD Clock Line (XAudi2s2CDCLK
on ARTIK 5, XAudi2s0CDCLK on ARTIK 10)

 J511-8 N/C No connection

 J511-9 N/C No connection

 J511-10 UART_TXD J3-40 J1-44 Arduino pin TX->1. Connected to UART3 (Xu3_TXD)
on an ARTIK 5 and UART1 (Xu1_TXD) on an ARTIK 10.
Controlled via the Serial object in Arduino IDE. Also
presented on J26-7.

 J511-11 UART_RXD J3-38 J1-42 Arduino pin RX<-0. Connected to UART3 (Xu3_RXD)
on an ARTIK 5 and UART1 (Xu1_RXD) on an ARTIK 10.
Controlled via the Serial object in Arduino IDE. Also
presented on J26-8.

 J511-12 SPI_MISO1 J7-36 J1-63 Bus SPI-1 Master in, slave out (XspiMISO1)

 J511-13 SPI_MOSI1 J7-38 J1-65 Bus SPI-1 Master out, slave in (XspiMOSI1)

 J511-14 SPI_CLK1 J7-32 J1-59 Bus SPI-1 Clock Line (XspiCLK1)

 J511-15 SPI_CSN1 J7-34 J1-61 Bus SPI-1 Clock Select Line(XspiCSn1)

Table 14-7. (continued)

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

211

J512

GND

GPM3_1

GPM3_0

INT2

INT1

INT0

1

6

5

4

3

2

 Figure 14-7. Location of J512 header pins

 Table 14-8. Pinouts for Header J512

 Pin Label AXT (A5) AXT (A10) Description

 J512-1 GND Ground

 J512-2 INT0 J3-32 J1-34 Arduino pin 2 (XEINT_0). Also presented on J26-6.

 J512-3 INT1 J3-30 J1-32 Arduino pin 3 (XEINT_1). Also presented on J26-5.

 J512-4 INT2 J3-28 J1-30 Arduino pin 4 (XEINT_2). Also presented on J26-4.

 J512-5 GPM3_0 J7-6 J1-21 Connected to GPM3_0 on ARTIK 5 and XEINT_16 on ARTIK 10.

 J512-6 GPM3_1 J7-4 J2-9 Connected to GPM3_1 on ARTIK 5 and XGPIO_17/XT_
INT163 on ARTIK 10.

 There is one important caveat regarding this header connector:

• The interrupt signals on pins J512-2, J512-3, and J512-4 are the same as some of the
Arduino pins. Be aware of these duplicated connections in case you inadvertently
drive the wrong lines. You may be interacting with the Arduino pins but not realizing
that equipment connected to these interrupt pins via connector J512 is also being
affected.

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

212

 J513 - PWM and Clock Output
 Connector J513 carries the PWM and clock outputs. The position and layout of the connector is shown in
Figure 14-8 and Table 14-9 lists the pinouts.

J513

32768Hz

PWM0

PWM1

GND

1

4

3

2

 Figure 14-8. Location of J513 header pins

 Table 14-9. Pinouts for Header J513

 Pin Label AXT (A5) AXT (A10) Description

 J513-4 PWM0 J4-45 J2-69 Arduino pin ~ 5 (Xpwmo_0). Also presented on J26-3.

 J513-3 PWM1 J4-47 J2-67 Arduino pin ~ 6 (Xpwmo_1). Also presented on J26-2.

 J513-2 GND Ground

 J513-1 32768Hz J7-22 J4-23 32 kHz clock output (BT32K_PM)

 There is one important caveat regarding this header connector:

• Older versions of the developer reference boards used for the Alpha and Beta
prototypes have their PWM connections reversed compared with the Commercial
Beta versions. The Commercial Beta PWM pin connections are considered to be the
definitive configuration.

 JTAG Support
 Beginning Samsung ARTIK briefly describes the Segger J-Link tools for hardware debugging. They can be
connected to the JTAG connector on your developer reference board. As that book was being completed, the
Commercial Beta of the ARTIK 5 modules had just gone on sale and the ARTIK 10 was still to be launched.
Some months later, now that the ARTIK 10 is released, a few developers are beginning to use J-Link

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

213

debuggers and they find that the ARTIK 10 devices are not listed in the Eclipse IDE. The Eclipse support for
the Segger J-Link debugger is documented in great detail at the following links:

 http://gnuarmeclipse.github.io/debug/jlink/
 http://gnuarmeclipse.github.io/debug/jlink/install/

 This is not the complete story, and if your device is not listed, you cannot select it when you configure a
debugging session. Developers have reported that the generic devices do not work either. Because the ARTIK
modules have multiple cores, targeting the right CPU requires a little extra configuration to set up a scan
chain. Segger has published useful guidance on GDB techniques and other helpful documentation here
and there are other useful resources to check out. There is no single source of reference for this debugging
approach. Various pieces of information are collated together here to paint a more complete picture of how
JTAG works in a multi-core setting:

 www.segger.com/IDE_Integration_Eclipse.html
 www.segger.com/j-link-software.html
 www.segger.com/ozone.html
 www.segger.com/jlink-gdb-server.html
 https://en.wikipedia.org/wiki/JTAG

 JTAG Connector
 The JTAG support in the ARTIK is compatible with the JTAG interface protocol. Your J-Link may not work
correctly if you try to use the SWO interface protocol. Make sure that you deactivate any SWO settings and
checkboxes in case they are interfering with the JTAG configuration in your IDE debugger. Figure 14-9 illustrates
the J12 connector on both the Type 5 and Type 10 developer reference boards. This is where the JTAG interface
connects to a hardware debugger such as the Segger J-Link. The pinouts are summarized in Table 14-10 and are
pin-for-pin correct when checked against the pinout documentation in the J-Link user manual.

VDDEXT_18

MRNRESET

XjTRSTn

XjTMS
XjTCK

XjTDI

XjTDO

J12

BH03-020-G1

1
3
5
7
9

11
13
15
17
19

2
4
6
8
10
12
14
16
18
20

 Figure 14-9. Developer board AXT connector J12

http://gnuarmeclipse.github.io/debug/jlink/
http://gnuarmeclipse.github.io/debug/jlink/install/
http://www.segger.com/IDE_Integration_Eclipse.html
http://www.segger.com/j-link-software.html
http://www.segger.com/ozone.html
http://www.segger.com/jlink-gdb-server.html
https://en.wikipedia.org/wiki/JTAG

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

214

 Table 14-10. AXT Connector J12 Pinouts

 Pin Label Description

 J12-1 VDDEXT_18 Target reference voltage used to check whether the device is powered up

 J12-2 VDDEXT_18 Target reference voltage the same as J12-1. The Segger J-Link does not
connect anything to this pin.

 J12-3 XjTRSTn Reset signal asserted by the J-Link to reset the target CPU

 J12-4 GND Ground

 J12-5 XjTDI Serial data input to the target CPU

 J12-6 GND Ground

 J12-7 XjTMS Sets the JTAG mode on the target CPU

 J12-8 GND Ground

 J12-9 XjTCK Serial Clock Line providing timing synchronization from the J-Link to the
target CPU

 J12-10 GND Ground

 J12-11 RTCK Return clock handshake, which is not implemented on the ARTIK. Grounded
via a pull-down resistor to indicate that return clock pulses are not echoed
back to the J-Link.

 J12-12 GND Ground

 J12-13 XjTDO Serial data output from the target CPU back to the J-Link

 J12-14 GND Ground

 J12-15 AP_NRESET Cold reset. This RST/MRNRESET signal also appears on connector J25-3 and
J510-7. The J-Link can use this to assert a reset on the target CPU.

 J12-16 GND Ground

 J12-17 DBGRQ Not connected in the ARTIK or at the J-Link. Reserved for sending a debug
request signal but not currently used.

 J12-18 GND Ground

 J12-19 5V_IN Some J-Link devices can provide a 5v power supply to the target hardware
but this is not connected in an ARTIK, which has its own independent power
supply.

 J12-20 GND Ground

 These pinout labels conform to the JTAG interface protocol. They are not compatible with the SWO
interface setting in your J-Link command line.

 Adding a New J-Link Device
 Segger is aware that new devices may not be supported initially. They provide instructions for manually
adding new devices to the database. Once the devices become more popular, their support will be added
to a later version of the Eclipse J-Link plug-ins. Check the online resources periodically to see if the J-Link
supports your ARTIK modules and deprecate your custom modifications when there is official support for
them. The list of currently supported devices is available on the Segger web site at www.segger.com/jlink_
supported_devices.html .

http://www.segger.com/jlink_supported_devices.html
http://www.segger.com/jlink_supported_devices.html

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

215

 Although there are many Samsung devices in the list, the ARTIK models are not included, nor are the
Exynos processors on which they are based. Because of the Commercial Beta state of the ARTIK 5 and 10,
this is not a surprise. The Samsung support team and the engineers in the Research and Development labs
are aware of the need for this support to be added.

 If you visit the Segger downloads page, there are some useful manuals describing how J-Link debuggers
work. The J-Link Manual (UM08001_JLinkARM.pdf) is particularly helpful because it describes how to add
a new item to the devices database XML file that the Eclipse IDE uses to build the device selection menus.
Download a copy from www.segger.com/downloads/jlink .

 To add a new device to the database currently used by the J-Link tools, you need locate the XML file
called JLinkDevices.xml , which is located in the same directory as your J-Link settings file. The location of
these items depends on how you installed your IDE and what platform you are using it on as a development
workstation. This article may help: http://stackoverflow.com/questions/17431989/where-does-
eclipse-store-preferences .

 When you find the JLinkDevices.xml file, the internal structure should look similar to Listing 14-1 .
If <device> tags are there already, create a new one at the same level so it becomes a sibling. This device
corresponds to a single chip that might contain several CPU cores.

 Listing 14-1. Adding Content to the JLinkDevices.xml File

 <Database>
 <Device>
 <ChipInfo Vendor="..."
 Name="..."
 WorkRAMAddr="..."
 WorkRAMSize="..."
 Core="..." />
 <FlashBankInfo Name="..."
 BaseAddr="..."
 MaxSize="..."
 Loader="..."
 LoaderType="..." />
 </Device>
 </Database>

 You must provide Vendor , Name , and Core values. These are mandatory properties for all devices.
The <FlashBankInfo> tag is optional but if it is included, you must also provide the WorkRAMAddr and
 WorkRAMSize properties inside the <ChipInfo> tag and populate your <FlashBankInfo> tag with the Name ,
 BaseAddr , MaxSize , Loader , and LoaderType properties. Table 14-11 lists the important tags in this file and
what they are used for.

 Table 14-11. Important J-Link Configuration Tags

 Tag Description

 <Database> The main outer container object for the whole database

 <Device> One of these objects per device in the database. All devices are considered equal. There
is no nesting to create groups.

 <ChipInfo> Describes basic information about the device

 <FlashBankInfo> Describes an optional flash memory store for bulk transfer of settings and memory contents

http://www.segger.com/downloads/jlink
http://stackoverflow.com/questions/17431989/where-does-eclipse-store-preferences
http://stackoverflow.com/questions/17431989/where-does-eclipse-store-preferences

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

216

 Table 14-12 lists some potential values for creating your own configuration. This needs to be officially
sanctioned as the right solution after the Samsung and Segger engineers have collaborated to prove that it
works.

 Table 14-12. Example Properties for an ARTIK 10

 Tag Property Value

 <ChipInfo> Vendor Samsung

 <ChipInfo> Name Exynos5433

 <ChipInfo> Core JLINK_CORE_CORTEX_A15

 <ChipInfo> WorkRAMAddr Base address of where in memory the J-Link should read and write

 <ChipInfo> WorkRAMSize The extent of the working memory starting at WorkRAMAddr that the J-Link
can access

 Because the ARTIK 10 has a mix of processors, it may be necessary to create configuration profiles for
A7 and A15 as separate items. The Core value is set differently in each case. Then as you create the scan
chains for the debugging server processes, call up the right profile for your target CPU.

 ■ Note The Cortex-A15 is not listed in the Segger user manual as a supported type but that document may
not have been updated to include it because it is listed as an available configuration on the supported devices
page on the Segger web site.

 Testing J-Link Connectivity
 There are two interface protocols that J-Link uses to communicate with the target device. The command
line interface parameter (-if) can select either JTAG or SWD mode when starting the debugging session.
The pin labeling on the J12 connector on the developer reference boards suggest the ARTIK expects to
be driven with the -if JTAG parameter value. Make sure you select this in the Eclipse Debugger setup UI
panels.

 If after creating a new device in your device database you still cannot get your Segger J-Link to work
with the ARTIK, contact the Segger support engineers at mailto:support@segger.com .

 The Segger discussion forum also carries a lot of useful help regarding the J-Link devices.
Access it here to see if your questions have already been covered: http://forum.segger.com/index.
php?page=Index .

 Multi-Core Debugging
 Debugging a single CPU may work without any problems. The ARTIK 10 has a quad-core Cortex-A15
and a quad-core Cortex-A7 while the ARTIK 5 has a dual-core Cortex-A7 . Debugging multi-core targets
would seem to be an impossibly difficult task but the J-Link guidelines suggest that it is not very
hard to do.

 Before attempting to debug a multi-processor scenario, you may also want to read about processor
affinity in Chapter 12 , which describes how applications can be assigned to run on specific CPUs.

http://forum.segger.com/index.php?page=Index
http://forum.segger.com/index.php?page=Index
http://dx.doi.org/10.1007/978-1-4842-2322-2_12

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

217

 Setting Up a Scan Chain
 The J-Link ARM user guide available from the Segger web site describes multi-core debugging techniques
that are only slightly more complex than debugging a single core. Accomplish them with one single Segger
J-Link connected to your target system. The scan chain needs to be configured to include the CPU cores you
want to debug. The default configuration expects only one CPU core. Multiple CPU cores are daisy chained
using their TDI and TDO connections and are configured as a scan chain by the client debugging system.
Figure 14-10 shows how the CPU cores are coupled in a scan chain.

JTAG
Connector

TDI TDITDI

TDO

TDOTDO

TCK

TCKTCK

TMS

TMSTMS

TRST

TRSTTRST

Core 0 Core 1

 Figure 14-10. Scan chain coupling

 How the Scan Chain Works
 The scan chain works in a similar way to the SPI shift register technique described in Chapter 21 . The bits
are pushed into the TDI input and come out of the TDO output with one bit moved each clock cycle. If the
internal register is 8 bits wide, it needs eight clock cycles to shift all the bits to the correct destination. Data
input and output happen simultaneously.

 A scan chain with multiple devices attaches the TDO output of the first CPU core to the TDI input of
the second. To shift the bits into the register inside the second core, they must be shifted through the first
core to arrive in the correct register in the target core. Therefore, extra clock cycles are needed to move the
data down the chain until it reaches the target register. The length of that chain is passed as a parameter so
the J-Link can execute the right number of clock cycles. The target device is then alerted that the data has
arrived. It is critical that you specify exactly the right number of instruction register bits prior to each target
device or this cannot work. The default mode with a single device has zero prior bits and the target device is
zero. Unless the scan chain is described in the GDBServer command line, you can only reach the first CPU
for debugging. Figure 14-10 shows a simple case with just two devices in the scan chain.

 The JTAG clock, mode, and reset lines are shared in parallel. The same value goes to all cores and they
must all run in the same mode and be reset at the same time. The data is delivered via the TDI line to the first
core as would be case for the single CPU model. The first CPU forwards messages via the TDO line to the TDI
of the next processor in the chain. The last CPU delivers an aggregated message flow from the TDO line back
to the JTAG connector. This all still appears to be one CPU to the J-Link debugging tools.

 To correctly configure the debugging session, the position of the target device in the scan chain and
the total number of bits in the Instruction Registers (IR) prior to the target device must be defined. The
ARM document linked here says that the IR is 4 bits long. This value is important because the data is shifted
serially through the scan chain. The right number of shift cycles must be executed to move information from

http://dx.doi.org/10.1007/978-1-4842-2322-2_21

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

218

the JTAG connector to the instruction register in the target CPU core. The scan chain can accommodate
different devices. If there is a mixed architecture, some of the IR values may be different. Describe the sum of
the IR bits between the JTAG connector TDI pin and the TDI input pin of your target device. Then the J-Link
will know how many shift cycles to execute to move the data to the intended target before triggering it to
read them.

 If you have not ensured that your application is running in the expected target CPU, you may not be
debugging the code you expect to. See the discussion on processor affinities in Chapter 12 to see how to attach
processes to specific CPU cores using the taskset command from the bash command line. Alternatively, call
the sched_setaffinity() function in your application to control the processor affinity from there. Also,
see http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0413c/Babeagge.html .

 The scan chain is configured using a dialog called up under the project settings or on the command line
when the GDB server is started. Use the Segger version of the GDB server, which is installed as part of their kit. If
the dialog in the project settings does have the necessary UI elements to configure the scan chain, include this
additional command line option for the GDB server start up instructions on the debugger configuration page:

 jtagconf {IR_Pre} {core_number}

 where {IR_Pre} is the sum of the IR bits to the left of the target device and the {core_number} is the
number of cores to the left of the device, which is coincidentally the same as the core number shown in
Figure 14-10 . This is covered in the UM08001_JLink.pdf manual on the Segger Downloads page and the
GDB Server manual (UM08005_JLinkGDBServer.pdf). Table 14-13 lists the potential values for the two cores
shown in Figure 14-10 .

 Table 14-13. Scan Chain Configuration Values

 Target GDB Server conf

 Core 0 jtagconf 0 0

 Core 1 jtagconf 4 1

 Without being able to test this, an informed guess suggests that the ARTIK 5 and 10 CPU cores could
be addressed with the scan chain configuration shown in Table 14-14 . This assumes that the two quad-core
CPUs are chained together internally but it is uncertain whether the ARTIK 10 A15 core is placed before the
A7 or vice versa. The scan chain in an ARTIK 5 is easier to deduce because it only has a pair of A7 cores.

 Table 14-14. Assumed ARTIK Scan Chain Values

 ARTIK Target GDB Server conf

 5 Core 0 jtagconf 0 0

 5 Core 1 jtagconf 4 1

 10 CPU 0 - Core 0 jtagconf 0 0

 10 CPU 0 - Core 1 jtagconf 4 1

 10 CPU 0 - Core 2 jtagconf 8 2

 10 CPU 0 - Core 3 jtagconf 12 3

 10 CPU 1 - Core 0 jtagconf 16 4

 10 CPU 1 - Core 1 jtagconf 20 5

 10 CPU 1 - Core 2 jtagconf 24 6

 10 CPU 1 - Core 3 jtagconf 28 7

http://dx.doi.org/10.1007/978-1-4842-2322-2_12
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0413c/Babeagge.html

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

219

 ■ Note You can obtain the topology manually by inspecting the whole /sys/devices/system/cpu directory
tree and displaying the contents of the /proc/cpuinfo file. The contents of these resources are somewhat
arcane and not well documented online. There may be some clues regarding the organization of the cores if
you inspect the /sys/devices/system/cpu/cpu0/topology directory (there is also one for cpu1). The Portable
Hardware Locality tools (hwloc) may also provide some help. The lstop command in that toolkit should list the
cores and organization of your CPUs but you will need to download the source code and build the tools first.

 Also, see these links:

 http://stackoverflow.com/questions/4284898/how-do-i-find-information-about-the-parallel-
architecture-of-my-cpu
 www.open-mpi.org/projects/hwloc/
 www.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaattunproctop.htm

 Configuring Multiple Debuggers
 Each debugging session needs its own GDB server running in the development workstation. They can all
connect via the same J-Link device but they must have unique port numbers, which should be configured in
the Debug configuration page in the Eclipse IDE. These GDB servers normally run on a local development
machine. They can be run remotely provided you can resolve the IP address and port numbers for the
remote instance.

 As you create each GDB Server, add the jtagconf value to the additional parameters UI input cell to
define the scan chain settings.

 If you run multiple debug sessions at the same time, they are all gathered together in the Eclipse IDE
Debug view. They are all visible at once and you can choose the one you want to view.

 Another approach to distributed debugging that might be relevant if you have a multi-ARTIK
configuration is to have several J-Link devices, one for each ARTIK, and connect them to the same
development workstation. Eclipse is not able to cope with this without running multiple instances of the
IDE. You need one for each J-Link. Ensure that the GDB Server port addresses do not collide. Then define
which J-Link is associated with each IDE instance by inputting the serial number or IP address to identify it.

 If It Still Does Not Work!
 If you have tried everything, here are some possible issues to check:

• Have you installed the J-Link server and documentation pack available from the
Segger Downloads page?

• Have you set up your scan chain correctly with the jtagconf parameters added to
the GDB server startup commands?

• Have you checked to see if there any spurious SWO interface configuration items are
still turned on?

• Have you tried the CDT plug-in with its built-in GDB server support?

• Can CDT be remapped to use the Segger GDB Server to get the benefits of both
packages?

• Debugging need not be done inside Eclipse IDE at all. Have you considered using the
Segger Ozone J-Link debugger, which runs as a standalone application?

http://stackoverflow.com/questions/4284898/how-do-i-find-information-about-the-parallel-architecture-of-my-cpu
http://stackoverflow.com/questions/4284898/how-do-i-find-information-about-the-parallel-architecture-of-my-cpu
http://www.open-mpi.org/projects/hwloc/
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaattunproctop.htm

CHAPTER 14 ■ HARDWARE I/O CONNECTIONS

220

• Using J-Link with Eclipse is currently supported via GDB but a new technology
is emerging that make embedded debugging easier to do. The TCF framework is
designed from the ground up for embedded systems. There are plug-ins for this
already available and development of this technology is moving forward quite
rapidly. Experiment with this approach to see if you get better results.

 Summary
 Chapter 13 examined the Panasonic AXT connectors on your ARTIK modules. This chapter looks outward
via the hardware I/O headers and JTAG debugging features. You need to understand both aspects of the
ARTIK connectivity to make the best design decisions.

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

221© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_15

 CHAPTER 15

 Antennas

 If your project needs to operate a wireless communications system, you need to attach antennas to it.
There are two important factors to consider. Firstly, the ARTIK boards need the mini-coaxial connectors
to be coupled to approved antennas for broadcasting a wireless signal. Secondly, the SMA connectors on
the developer board must have the correct kind of antennas installed. This chapter covers the relevant
information regarding antennas.

 Antenna Specifications
 The antennas that you fit must comply with FCC regulations on antenna design. This is important for the
USA market, and other national standards bodies take this seriously too. The correct specifications for the
antennas supplied with your ARTIK are summarized in Table 15-1 .

 The FCC regulatory compliance statement relevant to the USA is as follows:

 Replacement antennas must be of the same type, must be of equal or less gain than an
antenna previously authorized under the same grant of certification (A3LATKM052000
for ARTIK 5), and must have similar in-band and out-of-band characteristics (consult
specification sheet for cutoff frequencies). Any new antenna type, or higher gain antenna,
approved under Part 15 requires a Class II permissive change, and the requirements of
paragraph 15.203 must be met.

 Table 15-1. Antenna Specifications

 Property Specification

 Antenna type Dipole antenna

 Antenna peak gain 2.7 dBi

 Frequency 2.4GHz, 5GHz (for Wi-Fi, BT, ZigBee)

 Connector type SMA-M

CHAPTER 15 ■ ANTENNAS

222

 The Canadian IC compliance statement has a slightly different text but has the same constraints
regarding the prohibition of more powerful antenna usage:

 This radio transmitter (649E-ATKM052000 for ARTIK 5) has been approved by Industry
Canada to operate with the antenna types listed above with the maximum permissible
gain indicated. Antenna types not included in this list, having a gain greater than the
maximum gain indicated for that type, are strictly prohibited for use with this device.
(RSS-GEN clause 8.3)

 The UK position on wireless transmissions is managed by the HM Government department known as
Ofcom (Office of Communications). They have published a range of documents regarding IoT broadcasting.
Go to their web site at www.ofcom.org.uk and use the search tools to find documents that match the string
“Internet of Things.”

 About the Antenna Connections
 The ARTIK modules have a lot of the wireless networking capabilities built-in but they lack enough real
estate to create a large enough antenna to increase the range to a useful distance. This is easily solved by
attaching external antennas.

 The ARTIK 5 and 10 modules have small miniature coaxial connectors on the top of the module. These
are for connecting to external antennas to ensure good signal quality. Implement them in your own product
designs if you need Wi-Fi connectivity. The schematics show a resistor in the circuit between the ARTIK and
the SMA-F antenna mount.

 ■ Note There is a subtle warning note in the data sheet suggesting that activating wireless communications
in your ARTIK without having the antennas installed first may damage your ARTIK.

 SMA Connectors
 The SMA connectors are a standard antenna connection profile. Make sure that you purchase the correct
kind of connector to attach antennas or extension cables. The FCC Part 15 regulations state that it must be
impossible to fit a non-compliant antenna if end users replace broken components. You must operate the
equipment in compliance with the FCC regulations in those territories that they regulate. Other territories
may have their own compliance regulations, which are likely to be very similar.

 The coupling is a screw-on type but the mating connection might be an internal (nut) or external (bolt)
thread. To make things more complex, the central connection may be a pin (male) or socket (female). This
gives rise to four possible variations. The connectors on the board are SMA-F external (bolt) threads with
female sockets for the center pin. Buy antennas with an SMA-M internal (nut) thread and a male pin for the
center connector. Figure 15-1 shows one of the connectors on the developer reference board.

http://www.ofcom.org.uk/

CHAPTER 15 ■ ANTENNAS

223

 Study the FCC regulations if you are manufacturing equipment for sale in the USA that has built-in
antennas or ones that are attached externally as part of the design. Study part 15 of the regulations. There are
severe penalties for manufacturing and shipping non-compliant products. If you are only working on this
as a hobbyist, you are permitted to experiment without regulatory approval. Find out more about the FCC
regulations that may apply to you at https://en.wikipedia.org/wiki/Title_47_CFR_Part_15 .

 Other countries also have regulations about radio frequency emissions and they may be slightly
different than the FCC regulations regarding frequencies and signal strengths. Always endeavor to keep
within these regulations to avoid the expense of having to recall or rework your products after they are
shipped to customers.

 Locating the SMA Connectors
 Although the Type 5 and 10 developer reference boards are laid out slightly differently and have a few
component differences, the SMA antenna connections are in approximately the same place. Figure 15-2
shows the location of each SMA connector.

 Figure 15-1. SMA connector on a developer reference board

ANT 3Z-WaveLPWA

ANT 2

ANT 1

 Figure 15-2. Antenna locations on developer reference boards

https://en.wikipedia.org/wiki/Title_47_CFR_Part_15

CHAPTER 15 ■ ANTENNAS

224

 Table 15-2 lists the connector J numbers for each board, which are slightly different. There are also
some minor caveats to take into consideration; note that there may also be some minor labeling errors on
the developer reference board artwork.

 Miniature Coaxial Connectors
 The radio frequency (RF) signals for Wi-Fi must be taken off the ARTIK modules separately to the Panasonic
AXT multi-pin connectors mounted on the base of the module. This is to avoid interference between the
RF and the sensitive high-speed digital signals on the multi-pin connectors. It is impractical to mount the
SMA-F antenna sockets directly onto the ARTIK modules so these connections are made via short coaxial

 Table 15-2. Antenna Connector Numbers

 Label Type 5 Type 10 Description

 ANT 1 J28 J514 This is a 5 GHz Wi-Fi antenna connector. The Type
5 circuit schematic describes this as a second CPU
ZIGBEE ANT whilst on the Type 10 it is described as
CPU WIFI ANT. The printing on the Type 5 developer
reference board is confusing because there is a
spurious J6 label closest to this connector and the
J28 label is nearer to another component. The circuit
schematics are taken to be the definitive description.

 ANT 2 J23 J28 This is a combo 25 GHz Wi-Fi and Bluetooth antenna
connection. The circuit schematic describes this as
CPU WIFI ANT.

 ANT 3 J21 J21 This antenna supports the ZigBee transmissions. The
circuit schematic describes this as CPU ZIGBEE ANT.

 Z-WAVE J16 J16 This is for connecting a Z-Wave antenna. The Z-Wave
functionality is implemented on the developer
reference board. Reproduce this in your product design
if you need it. The Type 5 and 10 designs are very
similar when you compare the circuit schematics.

 LPWA J15 J15 This is for connecting an LPWA antenna. Use the
small antenna on this SMA connector. It correctly
matches the wavelength of the LPWA broadcasts. The
LPWA functionality is implemented on the developer
reference board. Reproduce this in your product design
if you need it. The design is slightly different when you
compare the Type 5 and Type 10 circuit schematics.

CHAPTER 15 ■ ANTENNAS

225

 Refer to the following URLs for data sheets to find out more about these connectors to incorporate them
into your product design:

 www.farnell.com/datasheets/307202.pdf
 www.wellshow.com/
 www.rfcoaxcable.com/
 www.digikey.com/product-detail/en/hirose-electric-co-ltd/U.FL-R-SMT(10)/H9161CT-ND/2135256

 The antenna connectors are named the same on the ARTIK 5 and 10 modules. Table 15-3 lists the
names and purpose of each miniature coaxial connector.

1.25 mm

GND

Signal

GND

 Figure 15-3. Miniature coaxial connector

 Table 15-3. ARTIK Module Antenna Connectors

 Antenna Used for

 ANT1 5 GHz Wi-Fi

 ANT2 Combo 2.5 GHz Wi-Fi and Bluetooth

 ANT3 ZigBee transmissions

cables from miniature connectors on the top surface of the ARTIK modules. The coaxial cable provides RF
screening for compliance with the FCC regulations and noise immunity. The connections are made via a
 U.FL-R-SMT Hirose connector. Obtain them from the usual suppliers. Figure 15-3 shows the top and side
views of the miniature co-axial connector.

http://www.farnell.com/datasheets/307202.pdf
http://www.wellshow.com/
http://www.rfcoaxcable.com/
http://www.digikey.com/product-detail/en/hirose-electric-co-ltd/U.FL-R-SMT(10)/H9161CT-ND/2135256

CHAPTER 15 ■ ANTENNAS

226

ANT 3

ANT 2

ANT 1

 Figure 15-4. ARTIK 5 miniature coaxial connectors

 The locations of the miniature coaxial connectors on an ARTIK 5 module are shown in Figure 15-4 and the
ARTIK 10 in Figure 15-5 . They are arranged differently on each ARTIK module but they serve the same purpose.

CHAPTER 15 ■ ANTENNAS

227

 Summary
 Although this chapter is small and may appear trivial, the penalties for shipping non-compliant products
are quite severe and expensive to remedy. You owe it to yourself to make sure the radio frequency emissions
from your ARTIK-based product are compliant with all the government regulations in the territories where
you intend to sell your designs.

ANT 3

ANT 2

ANT 1

 Figure 15-5. ARTIK 10 miniature coaxial connectors

229© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_16

 CHAPTER 16

 The API Kits

 There is no single Application Programming Interface (API) in the ARTIK operating system. In fact, there are
many. What you want to accomplish with your ARTIK dictates which of the available API tools, SDKs, and
libraries you should use to build your application. Most of the API support comes in the form of well-known
open source libraries that have been used by developers for years. The major benefit of this is the scope of
online resources that are already available. Samsung has accomplished a major achievement by condensing
an entire Linux workstation into something the size of a large postage stamp. You can exploit this power by
using the API kits that are already built-in to the ARTIK, or you can add more.

 Samsung-Provided API Support
 A lot of new software components are being made available to support the release of the Commercial Beta
ARTIK 520 and 1020 modules. Although at the time of writing the API support for proprietary Samsung
technologies is not yet released, the engineers are hard at work getting it ready; by the time you read this, the
API support should start to be delivered via the developer web site. Combining the Samsung API support
with the open source components should provide you with everything you need to build powerful and
sophisticated solutions.

 Documents to Gather
 Before you commence any serious development work, it is a good idea to gather the technical resources
from the Samsung developer web site. Find the technical specification data sheets and product briefing
documents on the Samsung developer web site. They contain useful information. The developer board
schematic diagrams also tell you about the connectivity of your ARTIK and provide prototype designs of
auxiliary circuits you can add around an ARTIK and incorporate into your own designs. The operating
system source code is now available on the Git repository, which you can map into your development
workstation and download.

 Other useful information can be found in the most unexpected places. There are third-party web
sites with details of alternative operating systems for the ARTIK. They often have useful details about the
internals, although they are described in the context of a different OS. When they relate to the hardware, the
information is likely to be close to what to expect when running the ARTIK OS. The home web sites for the
main operating system components also have useful material that helps you better understand your ARTIK
internals. After all, a great deal of the ARTIK design is based on open source projects.

 The available documentation varies from one ARTIK model to another. The following links take you to
useful starting points within the Samsung developer documentation web site. You must be logged in via a
developer account to access them. Registering for one is very easy. Explore these resources thoroughly and
get to know what is available. Check from time to time to collect new items as they are added.

CHAPTER 16 ■ THE API KITS

230

 https://developer.artik.io/
 www.artik.io/gettingstarted
 www.artik.io/developer/documentation
 https://developer.artik.io/downloads

 Where Are the APIs?
 With a product as versatile and complex as an ARTIK, the APIs come in a variety of different forms. Often
they are not described as an API. Your task as an application programmer is to use any of them to interact
with the ARTIK while adding your unique functionality into the mix. They are the handles and levers your
application can operate to control the ARTIK module. Some of them let your application listen for messages
from the ARTIK to tell you what it is doing. Table 16-1 describes the important interfacing mechanisms.

 Table 16-1. Application Programming Interface Mechanisms

 Interface Description

 Configuration files Alter the parameters in these files to control the behavior of the system.

 Compiled object code
libraries

 Link the object files, libraries, and frameworks to your application when you
compile it. Object files result from compiling a single file. Libraries are collections
of those object files in a single container, and a framework is a more structured set
of code that manages a subsystem within the ARTIK OS.

 Arduino sketch
source code

 Run this code natively inside the ARTIK via the Arduino emulator.

 Physical files These are files in the physically manifested parts of the file system to open and
read or write to. Typically they live in the /etc or /var directories, but there may be
other places to look for them if you have installed additional software.

 Virtual regular files The kernel creates these virtual files within the virtual file systems that it builds as
the ARTIK is started up. They map to objects inside the kernel so your application
can access them from user space. The virtual file systems are mounted as the
 /sys , /run , /proc , and /dev directories. Additionally, the kernel debug support is
mounted as the /sys/kernel/debug directory.

 Compiled Arduino
sketches

 Cross-compile these sketches inside the Arduino IDE using the ARTIK board
manager and the libArduino plug-in.

 Temboo (via Arduino
IDE)

 Build your code on the Temboo web site and then download it to your
development workstation. Load it into the Arduino IDE, which you will already
have configured with the ARTIK libArduino plug-in. Cross- compile it and install
the executable binary on your ARTIK module.

 Temboo (Native) Build your code on the Temboo web site and then download it to your ARTIK,
compile it natively, and link it against the Temboo libraries when they are
supported.

 Node.js Interact with regular files inside the /sys directory (sysfs virtual file system)

 Python Interact with regular files inside the /sys directory (sysfs virtual file system)

 GPIO Interact with regular files inside the /sys directory (sysfs virtual file system). Or
map the GPIO kernel memory into your application and operate on it directly.

(continued)

https://developer.artik.io/
http://www.artik.io/gettingstarted
http://www.artik.io/developer/documentation
https://developer.artik.io/downloads

CHAPTER 16 ■ THE API KITS

231

 Compiled Object Code Libraries
 There are supporting object code libraries to bind into a compiled application written in the C language or
one of its derivatives. If you are using an interpreted language such as Python or Node, these libraries are
accessible via a language binding. The Fortran library expects all parameters passed to function calls to be
delivered by reference rather than value. If you want to pass literal constants, they must be converted to an
indirect reference to the value. Fortran needs a very thin layer of glue code inserted as a shim to convert
the function arguments to the correct format to reuse libraries that were originally written for C language
programmers. Your C language applications can be natively coupled to the library more directly. Figure 16-1
shows how the different kinds of language bindings fit together.

Table 16-1. (continued)

 Interface Description

 Analog input Use the sysfs regular files from bash shells or the C language. The same
techniques work for Node.js and Python. It is possible to interact directly
via the kernel but the complexity usually outweighs the advantage. The new
IIO subsystem may also come into play when using ADC to measure
sensor inputs.

 PWM Output Use the Arduino interface or access the individual PWM channels via sysfs .

 I2C Use the I2C tools to manipulate the I2C interface or reverse engineer the
source code of those tools to interact directly with the kernel from the C
language using ioctl() function calls on the /dev device for the I2C bus you
want to interact with.

 SPI The user space support for SPI is not yet implemented in the ARTIK modules.
Later you can interact with video-related subsystems via the ioctl() functions.
There may also be some sysfs support added later for accessing the ARM
MALI GPU.

 Power management There are opportunities to access the power management capabilities with
the systemctl command, Arduino functions, and also via the GPIO and I2C
interfaces.

 I2S audio The audio facilities are best managed via the ALSA library. Since that is an open
source kit and well supported, audio interaction from your application should be
straightforward.

 Video The video support is managed via the Video4Linux open source project. The built-
in support is not yet complete as of the Commercial Beta but more features will be
implemented in later releases.

CHAPTER 16 ■ THE API KITS

232

 I/O Structure
 Your application code relies on libraries of pre-written software to provide fundamental capabilities that
themselves are built on foundations lower down in the operating system. When you print a single character
to console, it translates eventually to a series of bits being sent out on a serial interface or a packet being
transmitted via a network connection. If you had to be concerned with the minutiae of that, you would never
finish writing your application. The parts of the library toolkit that you care about live in the user space
with your application code. The lower levels of those libraries have conduits that talk to the kernel, where
more privileged actions occur. To simplify things a lot, the activity in the kernel can be subdivided into three
categories:

• Character streams

• Block read/write

• Hardware interactions

 Character streams can be incoming keystrokes from your keyboard or outgoing characters to a console
screen. There are other variations on this where characters are read from a file or written out to another. The
streams may be connected to remote systems via a network and presented to your application as a regular file
for access. Character streams are also used when you interact with the regular files in the virtual file systems.

Your
Fortran

app

Value
passing
shims

Object
code

library

Kernel

Your
C Language

app

Your
Python

app

Python
interperter

Language
binding

 Figure 16-1. Language bindings

CHAPTER 16 ■ THE API KITS

233

 Block read/write is for bulk transfer of data to and from storage devices. This includes virtual disks,
network-mounted storage, removable disks, and physically attached devices. By making them all look
like regular files, your application code is greatly simplified. It can do many more things without needing
specialized code to support them.

 Hardware interactions manifest your calls to a library as a voltage level on a pin being raised to a logical
 HIGH value or grounded to zero volts to represent a logical LOW . You may be outputting a variable analog
voltage but even this is described digitally inside your application. Reading the input-sensed values from
the hardware is managed here too. Hardware interaction also includes the control of peripheral devices
attached to the CPU such as the audio and video subsystems and the graphics processing unit (GPU).
There are a variety of alternatives for this, such as I2C, I2S, IIO, and SPI. Figure 16-2 illustrates a simplified
structural organization of these I/O interfaces; the hardware-interfacing mechanisms are covered in their
own chapters.

Application

Library functions (e.g. libc)

User space

Kernel space

Virtual file system (VFS)ioctl() functions

Internal kernel objects

Regular file system

Hardware interface

Generic block layerCharacter I/O

Standard I/O

Device driver Device driver

Character devices
(TTY etc)

GPIO pins,
sensors,

SPI/I2C/I2S
controlled chips

Flash memory,
disk drives

and SD cards

 Figure 16-2. I/O interface organization

 Finding Out About Devices
 Using your forensic and reverse engineering skills, consult the Device Tree Source code and kernel
configuration files in the Exynos version of the Linux kernel and compare them against what you find inside
the ARTIK. Go to https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-
artik5.dtsi . They describe the device configuration that the kernel uses at boot time to build the /dev file
system. Later, the kernel loads additional modules. Make sure you look at the included files that are cited
in the main source file for the device tree. Some shared functionality is defined in the files that applies to
several similar Exynos architectures.

https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-artik5.dtsi
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-artik5.dtsi

CHAPTER 16 ■ THE API KITS

234

 Temboo
 The Temboo tools are a huge help because they generate working code that you can learn from. This code
shows you how to access the Arduino-compatible pins in your ARTIK module directly from the C Language
or Node.js and other languages. The early prototype ARTIK support in the Temboo tools was covered in the
companion book, Beginning Samsung ARTIK . Access more detailed information at the Temboo web site at
 www.temboo.com/ .

 ■ Note The Temboo library is not yet included in the Commercial Beta operating system for the ARTIK
modules. Until that support is complete and working by default, you can use Temboo to generate Arduino-
compatible code that you can load into the Arduino IDE and cross-compile ARTIK compatible apps using the
libArduino plug-in available from the Samsung ARTIK developer resources web page.

 Where Else to Look
 Because the ARTIK operating system is based on Linux, there are a lot of publicly accessible resources on
the World Wide Web with lots of helpful advice. Some open source technologies are well documented and
others less so. Search for related topics and inspect the internals of your ARTIK once you know what to look
for. After you assimilate that knowledge and understand the technology, you are ready to experiment with an
idea. It is not always easy but it is very satisfying when you get something to work as a result of the learning
experience. If you are the first one to explore that technology, post your findings for the benefit of the rest of
the ARTIK community.

 Summary
 This chapter looked at the overall API support that is built into the ARTIK. In the next few chapters, the
peripheral interface buses will be explored one at a time. You may not need to know about all of them at
first, but it is very likely you will eventually need to interact with them as your design goals become more
ambitious.

http://www.temboo.com/

235© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_17

 CHAPTER 17

 General Purpose Input/Output
(GPIO)

 The General Purpose Input/Output (GPIO) interfaces supported by the ARTIK modules have evolved out
of a simple need to sense an input pin value or set an output pin value from within your application. This
is expanded to include a variety of peripheral bus systems for controlling external devices and much more
sophisticated ways to manage input and output. The term GPIO has itself evolved to mean much more
than it used to. Hardware engineers use the term to describe a simple 1-bit input/output pin. The kernel
developers see GPIO as being much broader than that. The latest innovations in pin multiplexing inside the
kernel allow GPIO pins to be highly configurable and properties such as drive voltage, bias, and debouncing
control are becoming accessible to the application developer. Pin multiplexing is dealt with at the end of this
chapter because it is such an advanced topic.

 About GPIO in the ARTIK
 This chapter also examines the inner workings of the pinctrl driver to help you understand the
foundations. This explains why base address values are important. It also explains how to interact with the
GPIO pins from your own application.

 The GPIO interface provides digital I/O channels to use for reading data from external hardware or
writing values out to it. The data you write could be simple digital information setting the state of an output
 HIGH or LOW . When you read a value, the digital inputs tell you the binary state of a connection.

 The GPIO interface is used for controlling strictly digital outputs or reading digital inputs. The kernel
controls this interface via the pinctrl device described in the sysfs virtual file system. Because the ARTIK is
based in part on the Arduino specification, the GPIO may appear to have some analog capabilities but GPIO
interfaces are simple binary switching pins whose value can only be HIGH or LOW . Pseudo analog output
is accomplished using a pulse width modulated (PWM) output whose duty cycle is modified to change the
perceived brightness of an LED. The PWM output is described in detail in Chapter 19 .

 The Samsung ARTIK data sheets describe type A and B GPIO pins. The Type A GPIO pins in an ARTIK
expect the input voltage to be no greater than 1.8v to indicate a HIGH value. The Type B pins can cope with
a 3.3v input to indicate a HIGH value. This is a purely Samsung convention described only in the data sheets
for each ARTIK module. Find out more about GPIO at the electronics stack exchange at
 http://electronics.stackexchange.com/questions/104456/

 Pin Modes
 After you have exported the GPIO hardware pins to the user space, they can be set into input or output
mode. You use input mode to read a switch or sensor and output mode to control a light or motor. Table 17-1
summarizes the sort of things you might control or manage with GPIO.

http://dx.doi.org/10.1007/978-1-4842-2322-2_19
http://electronics.stackexchange.com/questions/104456/

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

236

 Choosing whether to switch things HIGH or LOW when you are sensing may affect the current drain on your
design. What percentage of the time is a high voltage asserted and what are the implications for battery capacity?

 GPIO controls can be used to switch the operation of peripheral hardware chips whose values are
driven by other interface types such as I2C or I2S. Complex chips such as the Ethernet controller or the audio
codec on the developer reference board use these hybrid combinations of interface controls.

 Digital Input
 Define the GPIO pin you want to control as an input and then read the value. There are two possible values
when you are sensing a digital input:

• LOW : Pulled down to Ground (0v)

• HIGH : Pulled up to Vcc level

 ■ Note On some earlier prototype boards, these values were reversed and HIGH was 0v and LOW was Vcc.
The Commercial Beta developer reference boards work correctly.

 See this Samsung developer tutorial for a working example of how to read a digital input connected to a
button: https://developer.artik.io/documentation/tutorials/read-a-button.html .

 If a pin has its operating mode set to input, writing a value to it has no effect. Internally, the kernel
discards the bits that map to an input pin. If you have a mixture of input and output pins in a GPIO port
register, you may be able to condense your code and possibly even avoid a Read ➤ Modify ➤ Write
operation in favor of a simple write. To do this, you must know the correct values for all the output pins so
some caching logic inside your application may be necessary. Caching presents problems because the pin
state or value may change, which would invalidate your cache. Caching data in this context is always risky.
Consider each individual case on its own merits.

 You might observe that your digital read only ever reports a 1 value. Reading a digital input pin should return
a binary 1 or 0 depending on the state of the sensor or switch that is connected to it. Internally, the pins are pulled
up to a 3.3v level with a 10KΩ resistance. Your hardware needs to defeat this and ground the pin to ensure that
it returns a zero value. Then the GPIO value and the Arduino digitalRead() function should return the correct
result. This behavior may also occur when you read the digital inputs in other contexts.

 Digital Output
 Define the GPIO pin you want to control as an output and then write the value. The same LOW and HIGH
values apply to digital input and output. When you assert a LOW value on a GPIO output pin, it is pulled down

 Table 17-1. Example Use of GPIO by Signal Type and Direction

 Description Mode Value

 Is a window or door open? Input A switch pulls the GPIO pin up to Vcc when the window is
closed.

 Is it day or night? Input Measure the voltage drop across a light-dependent resistor.

 Turning a light on or off Output Drive a lighting controller via a transistor or thyristor circuit.

 Set the brightness of an LED Output PWM pseudo analog strobed output with higher duty cycle
indicating a brighter LED.

https://developer.artik.io/documentation/tutorials/read-a-button.html

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

237

to 0v as if it had been shorted to ground. Asserting a HIGH value pulls it up to Vcc. Your code design affects how
fast you can cycle the changes. Refer to these Samsung developer articles relating to digital outputs:

 https://developer.artik.io/documentation/tutorials/blink-an-led.html
 www.artik.io/2015/09/artik-gpio-using-digital-outputs/

 Exploring GPIO
 The GPIO functionality is implemented via two instances of the pinctrl kernel driver module. These are
loaded during the ARTIK boot process. Although Samsung gives them names, only the base address of these
drivers is visible from the user space. That base address is sufficient to identify each driver and the interfaces
it is responsible for managing. Each driver is a container for a set of GPIO ports. Those ports have names,
which can be used as keys to navigate the GPIO hierarchy in the sysfs file system and kernel.

 Each port contains several registers, each containing a bitmap that corresponds to GPIO pins to which
you can connect hardware. Port GPX0 bit 1 is connected to header J26 pin 3 and delivers the XEINT_1
interface from your ARTIK module through a voltage level convertor/buffer to the connector. Bit 1 in all
of the associated registers within GPX0 manages different aspects of that GPIO. Usually you only access a
MODE and DATA register but in some hardware implementations, GPIO offers several other registers within
the named port. Figure 17-1 shows how this is all integrated together inside the ARTIK.

GPIO
pin

logic

Mode
control

Data
values

6 5 4 3 2 1 07 6 5 4 3 2 1 07

Mode register

msb lsb lsbmsb

Data register

Register A Register B Register C Register G

Port 1 Port 2 Port 3

Pinctrl driver

 Figure 17-1. GPIO organization

 Developer Board GPIO Pinouts
 Program the GPIO interfaces from a language that accesses sysfs as if it were regular files. Use the
appropriate pin export numbers, signal names, and kernel level I/O port addresses for the individual pins.

 Although the pins are arranged in the same physical layout on the Type 5 and Type 10 developer reference
boards, the pin addresses are exported to different locations in the virtual file system when viewed as sysfs -
accessible GPIO pins. Modify your application source code to cope with this. Figure 17-2 illustrates the pin layout

https://developer.artik.io/documentation/tutorials/blink-an-led.html
http://www.artik.io/2015/09/artik-gpio-using-digital-outputs/

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

238

of the Arduino compatible pins on J26 and J27 while Figure 17-3 shows the analog input pins on J24. The analog
input pins are described in Chapter 18 . The labels on the board are the Arduino-compatible names for the pins.
Your application accesses the pins using I/O port addresses through the sysfs interface or directly via the kernel.

J26

∞ 7

∞ RX<-0

∞ TX->1

∞ 2

∞ 3

∞ 4

∞ ~5

∞ ~6

1

8

7

6

5

4

3

2

J27
SCL

∞ 8

∞ 9

∞ 10

∞ 11

∞ 12

∞ 13

GND

VREF

SDA

1

10

9

8

7

6

5

4

3

2

 Figure 17-2. Type 5 and 10 Arduino pins (J26 and J27)

J24

A0

A1

A2

A3

A4

A5

1

2

3

4

5

6

 Figure 17-3. Analog input pins (J24)

http://dx.doi.org/10.1007/978-1-4842-2322-2_18

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

239

 Table 17-2. Arduino-Compatible Header Pins on a Developer Reference Board

 Header Label Description

 J26-8 RX<-0 Arduino serial RX input via the Serial object

 J26-7 TX->1 Arduino serial TX output via the Serial object

 J26-6 ∞2 Arduino-compatible pin 2

 J26-5 ∞3 Arduino-compatible pin 3. Some Arduino devices implement an additional
PWM here but the ARTIK does not.

 J26-4 ∞4 Arduino-compatible pin 4

 J26-3 ~5 Use for PWM output with the analogWrite() function.

 J26-2 ~6 Use for PWM output with the analogWrite() function.

 J26-1 ∞7 Arduino-compatible pin 7

 J27-10 ∞8 Arduino-compatible pin 8

 J27-9 ∞9 Arduino-compatible pin 9. Some Arduino devices implement an additional
PWM here but the ARTIK does not.

 J27-8 ∞10 Arduino-compatible pin 10. Some Arduino devices implement an additional
PWM here but the ARTIK does not.

 J27-7 ∞11 Arduino-compatible pin 11. Some Arduino devices implement an additional
PWM here but the ARTIK does not.

 J27-6 ∞12 Arduino-compatible pin 12

 J27-5 ∞13 Arduino-compatible pin 13

 J27-4 GND Ground

 J27-3 VREF Reference voltage for ADC converters

 J27-2 SDA Bus I2C-7 SDA

 J27-1 SCL Bus I2C-7 SCL

 J24-1 A0 Analog input channel 0

 J24-2 A1 Analog input channel 1

 J24-3 A2 Analog input channel 2 (ARTIK 10 only)

 J24-4 A3 Analog input channel 3 (ARTIK 10 only)

 J24-5 A4 Analog input channel 4 (ARTIK 10 only)

 J24-6 A5 Analog input channel 5 (ARTIK 10 only)

 J25-8 Vin Reference voltage for analog inputs

 J25-7 GND Ground

 J25-6 GND Ground

 J25-5 5V 5v supply

 J25-4 3.3V 3.3v supply

 J25-3 RESET External reset pin

 J25-2 IOREF Reference voltage for I/O signals (a.k.a VREF)

 J25-1 N/C No connection

 Table 17-2 lists the available Arduino-compatible GPIO and I2S/I2C pin connections on a Type 5 or 10
developer reference board.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

240

 In addition to the Arduino-compatible header pins, the developer reference boards also have some
auxiliary GPIO and peripheral interfacing pins, which are listed in Table 17-3 . The circuit schematics
describe these as test points and debugging connectors.

 Table 17-3. Auxiliary Test and Debugging Header Pins

 Header Label Description

 J510-1 MAIN_BAT Main battery voltage output

 J510-2 ADC0 Analog to digital converter 0

 J510-3 ADC1 Analog to digital converter 1

 J510-4 GND Ground

 J510-5 SDA3 Bus I2C-3 SDA

 J510-6 SCL3 Bus I2C-3 SCL

 J510-7 AP_NRESET Master reset pin (a.k.a. RST/MRNRESET)

 J510-8 N/C No connection

 J510-9 N/C No connection

 J510-10 N/C No connection

 J510-11 GND Ground

 J510-12 3.3V 3.3v supply

 J511-1 I2S2_SCLK Bus I2S-2 SCLK Serial Clock line

 J511-2 I2S2_LRCK Bus I2S-2 LRCK Left-Right Clock line

 J511-3 I2S2_SDI Bus I2S-2 SDI Serial data in line

 J511-4 I2C1_SDA Bus I2C-1 SDA

 J511-5 I2C1_SCL Bus I2C-1 SCL

 J511-6 I2S2_SDO Bus I2S-2 SDO Serial data out line

 J511-7 I2S2_CDCLK Bus I2S-2 CDCLK CD clock line

 J511-8 N/C No connection

 J511-9 N/C No connection

 J511-10 UART_TXD Serial interface out

 J511-11 UART_RXD Serial interface in

 J511-12 SPIMISO1 Bus SPI-1 MISO

 J511-13 SPIMOSI1 Bus SPI-1 MOSI

 J511-14 SPICLK1 Bus SPI-1 CLK

 J511-15 SPICSN1 Bus SPI-1 CSN

 J512-1 GND Ground

 J512-2 INT0 Interrupt 0

 J512-3 INT1 Interrupt 1

 J512-4 INT2 Interrupt 2

(continued)

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

241

 Reserved Pins
 Although there are many programmable pins on the ARTIK modules, some pins are reserved for dedicated
functionality. These may be connected to other hardware inside the module or devices on the developer reference
board that extend the capabilities of the ARTIK. A few are not connected to anything although they may be used
later. The Audio codec chip is controlled by reserved GPIO pin numbers. They configure the codec to receive
audio samples delivered via a separate I2S interface. This hybrid mode of operation is not unusual in embedded
systems. A combination of control mechanisms is often used to manage complex peripheral hardware.

 Download a copy of the schematic diagrams and the data sheets for your developer reference board
and study them carefully to identify the various connectors. Get to know these diagrams and data sheets well
because they have a lot of useful knowledge embedded within them. They are the most reliable source of
pinout descriptions for each of the connectors. There are currently only schematic diagrams for the Type 5
and Type 10 boards: https://developer.artik.io/downloads .

 Samsung make a special point about some of these pins not being tampered with. If they are predefined
as input or output pins, modifying their behavior is dangerous and according to Samsung, you may damage
your ARTIK module or deactivate critical components such as the Ethernet controller or the audio and video
codec hardware. This is particularly of concern if you are writing kernel level code. Samsung also mentions
shared control registers as an area where you can cause problems when you write your own kernel level code.
Shared registers are where a specific bit is reserved for special functionality. The implications of this are that
not only are there reserved pins but there are reserved values that can be asserted onto some pins. Writing the
wrong value may contain a binary digit (bit) value, which is incorrect for that port. You could repurpose them
if for example your product does not need the audio codec. That frees up some useful GPIO and I2C lines.

 Always use a Read ➤ Modify ➤ Write approach when setting values on these registers. This way you
preserve the current values on the registers and only alter the ones you intend. Do not cache your values
because they may be changed by other processes and your cached value would then be incorrect and would
undo the change made by the other party. These kinds of bugs are notoriously difficult to trace and fix.

 Active Levels
 The general-purpose physical I/O pins on an ARTIK module can be programmed dynamically to become
either an input or a driven output by setting their MODE before you try to read or set their value.

 When pins are used for output, the ARTIK drives them HIGH or LOW . A LOW value is considered to be
equivalent to grounding the pin and setting it to 0v. A HIGH value is equivalent to Vcc, hence it is not a fixed
value but relative to a supplied voltage. This designation is fixed by the Samsung engineering design and
cannot be altered or reprogrammed. A HIGH value is anything greater than 66% of the Vcc reference voltage.
If you need it to work the opposite way, invert the value using external hardware 74 series logic circuits.

 Most of the pins work with a Vcc value of 1.8v (GPIO Type A). They do not like being driven with a
higher voltage. You must be careful that any sensors you attach do not try to exceed that value without
adding protective buffer circuits before connecting to the pins.

Table 17-3. (continued)

 Header Label Description

 J512-5 GPM3_0 GPIO I/O pin 0

 J512-6 GPM3_1 GPIO I/O pin 1

 J513-1 32763 Hz 32 kHz clock output (BT32K_PM)

 J513-2 GND Ground

 J513-3 PWM1 Pulse Width Modulated output 1

 J513-4 PWM0 Pulse Width Modulated output 0

https://developer.artik.io/downloads

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

242

 A small group of pins (GPIO Type B) can cope with a 3.3v input without requiring protective buffer
circuits. These are managed via kernel port GPX0 and are attached to ARTIK pins XEINT0 to XEINT6. When
programmed as an output, they still only assert 1.8v on the pin when it is driven active HIGH . You still need
protective buffers if you want to exceed 3.3v as an input level.

 Internally, a pull-up or pull-down resistor is wired to the pin so it assumes the default value when it is
not being driven HIGH or LOW . A pull-down resistor needs to be driven HIGH to change the state of a pin
and a pull-up resistor needs to be driven LOW to change the state of the pin. This is described as being active
 HIGH or active LOW .

 The active HIGH or LOW designation does not affect the values of data that are read from the pins when
they are set to input mode; the correct signal state is always returned (never an inverted one).

 All of the GPIO pins on ARTIK are active- HIGH unless otherwise stated. Other programmable pins may
operate differently and are noted in the ARTIK data sheets for each module type.

 You may consider adding your own pull-up or pull-down resistors to stop the inputs from floating when
you design your hardware and to assist the internal ones. These define a default value for the input which
your sensor or switch needs to override. The stabilizing resistors must be a value of around 50KΩ to avoid
too high a current drain and to allow driving circuits to override them without imposing an excessive load on
the ARTIK. Depending on your sensors, you may need to use a different value.

 ■ Note Earlier Alpha prototype developer reference boards had an active LOW output on their Arduino pins.
Setting the pin value to HIGH forced the output voltage to zero instead and setting it to LOW raised the pin
voltage to 3.3v.

 Slewing Rates
 It is natural to assume the switching signals have an instantaneous change in value. In the real world, this
transition takes a finite amount of time. The value of the resistors chosen may affect the signal rise or fall
time of the GPIO pins when the value is changed. Signals may rise more quickly than when they fall if the
pins are driven HIGH from a default pulled-down LOW state. Figure 17-4 shows how these transitions may
not be as steep in both cases. The slope of these rise and fall times is called the slewing rate of the circuit.
This determines how fast you can drive the signals because the slewing rate takes a finite time. You may want
to observe these waveforms with an oscilloscope if timing becomes critical to your design.

Rise
time

Fall
time

Value change

 Figure 17-4. Slewing rates

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

243

 Resonant Circuits
 Take into account resonant frequencies when you design switching circuits. The physics of waveforms is well
understood and covered under the general topic of the Fourier series. Jean-Baptiste Joseph Fourier was a
French mathematician who deduced that a complex waveform can be deconstructed into the component
sine wave harmonics. When a signal changes from LOW to HIGH or vice versa, a square wave edge is created
by combining an infinite number of harmonics of a fundamental Sine wave. If the design of your hardware
has any resonant qualities, some of those frequencies may coincide leading to problems. If you try to
improve the slewing rate of the circuit by switching faster, it introduces more frequency coefficients into the
switching signal. If the circuit becomes resonant, a ringing effect can occur, which causes overshoots and
instabilities in the edge detection. In extreme cases, this can lead to multiple triggers of the edge detecting
logic. It is akin to debouncing keyboard inputs although that is a mechanical artifact. Figure 17-5 shows a
transition with a high degree of resonant coupling.

Overshoot

Undershoot

 Figure 17-5. Ringing artifact with resonant circuits

 If you want to understand the mathematics behind the Fourier analysis, these articles tell you how the
algorithms work in detail:

 https://en.wikipedia.org/wiki/Fourier_series
 https://en.wikipedia.org/wiki/Fourier_transform
 https://en.wikipedia.org/wiki/Fourier_analysis

 Interacting With the Hardware
 There are several ways to interact with the GPIO interface. When you run an Arduino sketch inside the
ARTIK, it interacts with the kernel via the Arduino interpreter. Compiled applications and bash shell
command scripts can use the regular files in the sysfs virtual file system. Use a memory-mapped approach
to interact more closely with the kernel. The speed advantages are minimal but the code may be more
compact. Figure 17-6 shows how these different mechanisms relate to one another.

https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_analysis

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

244

• Implement your application as an Arduino sketch using Arduino IDE and run it in
the Arduino emulator.

• Cross-compile your Arduino sketch using libArduino and the Arduino IDE.

• Use the C language to link to the GPIO utility functions inside the ARTIK library.

• Use any language that can read or write to regular files and interface via the sysfs
virtual file system.

• Talk directly to the kernel-level I/O using device driver and port addresses.

• Use Temboo to generate your source code and then compile it natively inside the
ARTIK when the library support is added to the OS. Alternatively, build an Arduino-
compatible sketch with Temboo and cross-compile it in the Arduino IDE. Temboo
uses the above methods so it is not really an alternative way of programming but it is
a much easier way to write prototype code.

 Start your project design by using the Arduino IDE with its built-in GPIO functions. Then migrate your
design to use sysfs calls. When you have the project debugged and working with sysfs , introduce kernel-
level efficiency improvements. Attempting to do this too early can sometimes cause unforeseen difficulties
during development because you cannot tell whether any problems arise from flaws in your design or
mistakes you have made in the kernel-level programming. By keeping things simple at first and then moving
steadily forward, the complexity introduced at each step is incremental and much easier to manage.

 This chapter focuses on accessing the GPIO pins via the sysfs interface first and then illustrates how to
use kernel-level I/O ports.

 Hardware Header Pin Numbers
 Programming via the sysfs interface uses the GPIO export numbers. See Tables 17-4 and 17-5 for a
summary of the export numbers mapped to pins. This is based on the contents of the /sys/kernel/debug/
gpio file. Inspect it in your own ARTIK to check whether the pin numbers are the same or not. Use the values
you find in that debugging file if they are different to the ones listed here; these are for a Commercial Beta
ARTIK 5.

Hardware

Kernel driver

Kernel

sysfs regular filesArduino emulator Memory mapped port base address

Arduino sketch Your application

 Figure 17-6. GPIO interfacing hierarchy

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

245

 Table 17-4. ARTIK 5 GPIO Export Numbers

 Pin number Label (Arduino
pin names)

 ARTIK 5 GPIO
Export number

 J26-1 ∞7 124

 J26-2 ~6 33

 J26-3 ~5 32

 J26-4 ∞4 123

 J26-5 ∞3 122

 J26-6 ∞2 121

 J26-7 TX->1 13

 J26-8 RX<-0 12

 J27-1 SCL 35

 J27-2 SDA 34

 J27-3 VREF Not a GPIO pin

 J27-4 GND Not a GPIO pin

 J27-5 ∞13 135

 J27-6 ∞12 134

 J27-7 ∞11 129

 J27-8 ∞10 127

 J27-9 ∞9 126

 J27-10 ∞8 125

 Table 17-5. ARTIK 10 GPIO Export Numbers

 Pin number Label (Arduino
pin names)

 ARTIK 10 GPIO
Export number

 J26-1 ∞7 11

 J26-2 ~6 204

 J26-3 ~5 203

 J26-4 ∞4 10

 J26-5 ∞3 9

 J26-6 ∞2 8

 J26-7 TX->1 176

 J26-8 RX<-0 175

 J27-1 SCL 188

 J27-2 SDA 187

 J27-3 VREF Not a GPIO pin

 J27-4 GND Not a GPIO pin

(continued)

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

246

 Using Arduino Emulation
 Possibly the most simple approach to accessing the pins on your developer reference board is to use the
Arduino emulation. Avoid the complexities of device address mapping and use the same source code
across both the ARTIK 5 and 10 modules. The GPIO pins can be configured as digital inputs or outputs.
They are equivalent to Arduino named pins 2 to 4 and 7 to 13. These are not pin numbers but symbolic
Arduino-compatible names. Be careful not to confuse these pin names with the pin numbers on the header
connectors because they are in reverse order with respect to each other. To interact with a GPIO pin, define
whether it is an input or output and then read or write to it accordingly. This technique is well documented
in the Arduino resources available online. Later, convert your designs from this approach to use the sysfs
interfaces when your project becomes more advanced.

 Tables 17-6 and 17-7 summarize the GPIO- and Arduino-related connections available on the AXT
connectors underneath your ARTIK module. The connections for the ARTIK 5 and 10 are each shown in
their own tables. Refer to the data sheets for more information about voltage levels and other detailed
specifications regarding these pins.

 Pin number Label (Arduino
pin names)

 ARTIK 10 GPIO
Export number

 J27-5 ∞13 22

 J27-6 ∞12 21

 J27-7 ∞11 16

 J27-8 ∞10 14

 J27-9 ∞9 13

 J27-10 ∞8 12

Table 17-5. (continued)

 Table 17-6. ARTIK 5 GPIO and Arduino AXT Pinouts

 AXT pin Name Function

 J3-11 XEINT_14 General-purpose interrupt or IO/Arduino pin 13

 J3-12 XEINT_13 General-purpose interrupt or IO/Arduino pin 12

 J3-16 XEINT_8 General-purpose interrupt or IO/Arduino pin 11

 J3-20 XEINT_6 General-purpose interrupt or IO/Arduino pin 10

 J3-22 XEINT_5 General-purpose interrupt or IO/Arduino pin 9

 J3-24 XEINT_4 General-purpose interrupt or IO/Arduino pin 8

 J3-26 XEINT_3 General-purpose interrupt or IO/Arduino pin 7

 J3-28 XEINT_2 General-purpose interrupt or IO/Arduino pin 4

 J3-30 XEINT_1 General-purpose interrupt or IO/Arduino pin 3

 J3-32 XEINT_0 General-purpose interrupt or IO/Arduino pin 2

 J3-38 Xu3_RXD Arduino pin 0 (RX<-0)

 J3-40 Xu3_TXD Arduino pin 1 (TX->1)

(continued)

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

247

Table 17-6. (continued)

 AXT pin Name Function

 J3-44 Xadc0AIN0 Analog ADC Input 0

 J3-46 Xadc0AIN1 Analog ADC Input 1

 J4-11 Xi2c7_SDA Bus I2C-7 SDA

 J4-13 Xi2c7_SCL Bus I2C-7 SCL

 J4-45 Xpwmo_1 General purpose interrupt or IO or PWM output/Arduino pin 6

 J4-47 Xpwmo_0 General purpose interrupt or IO or PWM output/Arduino pin 5

 Table 17-7. ARTIK 10 GPIO and Arduino AXT Pinouts

 AXT pin Name Function

 J1-17 XEINT_13 General-purpose interrupt or IO/Arduino pin 12

 J1-19 XEINT_14 General-purpose interrupt or IO/Arduino pin 13

 J1-18 XEINT_8 General-purpose interrupt or IO/Arduino pin 11

 J1-22 XEINT_6 General-purpose interrupt or IO/Arduino pin 10

 J1-24 XEINT_5 General-purpose interrupt or IO/Arduino pin 9

 J1-26 XEINT_4 General-purpose interrupt or IO/Arduino pin 8

 J1-28 XEINT_3 General-purpose interrupt or IO/Arduino pin 7

 J1-30 XEINT_2 General-purpose interrupt or IO/Arduino pin 4

 J1-32 XEINT_1 General-purpose interrupt or IO/Arduino pin 3

 J1-34 XEINT_0 General-purpose interrupt or IO/Arduino pin 2

 J1-42 Xu1_RXD Arduino pin 0 (RX<-0)

 J1-44 Xu1_TXD Arduino pin 1 (TX->1)

 J1-48 Xadc0AIN0 Analog ADC input

 J1-50 Xadc0AIN1 Analog ADC input

 J1-52 Xadc0AIN2 Analog ADC input

 J1-54 Xadc0AIN5 Analog ADC input

 J1-56 Xadc0AIN6 Analog ADC input

 J1-58 Xadc0AIN7 Analog ADC input

 J2-67 Xpwmo_1 General purpose interrupt or IO or PWM output/Arduino pin 6

 J2-69 Xpwmo_0 General purpose interrupt or IO or PWM output/Arduino pin 5

 GPIO Via sysfs
 A more sophisticated alternative to the Arduino solution is to drive the GPIO via the sysfs virtual file system
that the kernel builds when the ARTIK OS is started up. This makes the GPIO interface objects inside the
kernel available to your own applications as a collection of regular files that are accessible from the user
space. Your code must take into account platform differences. The GPIO pin mapping base addresses may
also change if the OS is upgraded and the kernel maps the devices differently.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

248

 The generic Linux sysfs functionality is very easy to use for many application scenarios. Translating
to sysfs -style access from an Arduino-style approach is not very complicated if you built an earlier
prototype using the Arduino IDE. Later, refactor your design to use the kernel-based memory mapped GPIO
technique. There are two key benefits to using the sysfs virtual file system interface:

• Access to each GPIO pin is via a simple regular file read or write. Determine the
correct path for the GPIO you want to access.

• There are many useful symbolic links and reference files you can inspect to
connect the various components together. Building a map of pins to device drivers
is not complex, although it may take a few steps. This helps you build a dynamic
mechanism to figure out where things are.

 ■ Note The Linux kernel uses the term pinctrl in place of GPIO. When you are searching for useful entities
in sysfs , look out for files whose name contains the strings pinctrl and gpio .

 The kernel reflects the GPIO from a secure, protected, kernel-controlled environment and presents
them to you as a virtual file system containing regular files. Those files have properties that control whether
you can read or write to them. The existence of a virtual file tells you whether a feature is present on the
board. Virtual file systems respond in ways that normal files do not. Writing a value to a virtual file is
intercepted by the file system manager. It sends a message to the kernel rather than storing the value in a
physical file within the file system. Read this document first to understand some basic concepts and then try
experimenting: www.kernel.org/doc/Documentation/gpio/sysfs.txt .

 Read it again after experimenting to reinforce the learning experience. Each time you go through a read-
and-experiment cycle, you build a more complete mental model of the technology you are learning about.
Practice and repetition works for engineering just as effectively as for learning a musical instrument. The
GPIO related entities are shown in Figure 17-7 .

/sys

/sys/bus /sys/class /sys/kernel

/sys/kernel/debug
/sys/bus/gpio /sys/class/gpio

/sys/kernel/debug/gpio

 Figure 17-7. GPIO entity map

http://www.kernel.org/doc/Documentation/gpio/sysfs.txt

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

249

 Using the sysfs Interface
 Configure various properties of the GPIO pins via the sysfs virtual file system. The GPIO ports must be
registered (exported) to user space, which reserves them for your application. Then define the input/
output mode to read or write data. Once you have a working solution using sysfs , make performance
improvements by aggregating the calls more efficiently.

 If your application loads the CPU down so it is spending all its time servicing your needs, the system as
a whole suffers from lower performance. You may choose to build kernel-level extension modules to apply
changes to groups of pins. Attach a logic matrix to several pins and use various combinations of pin values
(binary 1 and 0) to map an address space so the matrix can control a larger number of devices. Operating on
those shared addressing lines should be done collectively. A kernel extension would certainly improve CPU
performance over the alternative of controlling each wire singly. You would also solve some awkward race
hazard timing issues at the same time. The performance improvements over accessing sysfs directly from a
compiled C language application are less noticeable when you interact with dedicated pins.

 Get it to work first using simple techniques. Make it faster later. Kernel programming is challenging
and you must know what you are doing first or you may render your ARTIK unbootable. Recovery may be
possible by reinstalling the OS but this puts everything back to the factory defaults. Table 17-8 lists some
useful GPIO related locations within the sysfs virtual file system.

 Table 17-8. Useful GPIO Locations in the sysfs File System

 Location Description

 /sys/class/gpio Control interface for programming GPIO via sysfs . Contains a list of
chips, which is a superset of the chips across all drivers.

 /sys/devices/*pinctrl The kernel device driver objects for each of the GPIO drivers

 /sys/devices/11400000.
pinctrl/gpio

 A list of chip objects for this driver. Each driver has a different collection
and the drivers are named differently on ARTIK 5 and 10 because their
base address are different. The driver base address might move if the OS
is upgraded.

 /sys/kernel/debug/gpio A regular file containing a map of exportable GPIO numbers vs. port
names

 /sys/kernel/debug/pinctrl Readable files with lists of pins showing how they map to the GPIO ports
and their function

 GPIO Drivers
 In the ARTIK 5 and 10, the kernel installs two instances of the pinctrl driver, each of which manages a
different group of ports. The GPIO drivers are named differently between the ARTIK 5 and 10 modules types.
They are listed in the /sys/devices directory with the pinctrl suffix. Use this command to list the GPIO
drivers in your ARTIK. This command works regardless of your model or OS vintage:

 ls -1 /sys/devices/ | grep pinctrl

 Table 17-9 summarizes the base addresses and GPIO driver names. These driver names do not show up
in the file system so the find command cannot locate them.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

250

 Table 17-9. GPIO Driver Base Addresses

 GPIO driver ARTIK 5 base address ARTIK 10 base address

 gpio0 0x11400000 0x13400000

 gpio1 0x11000000 Not used

 gpio2 Not used Not used

 gpio3 Not used 0x14010000

 The mapping in this table is probably best managed by creating manifest constants and including them
within your application. The downside of this approach is that it is static and gives rise to a maintenance
overhead that you must document and check with every upgrade. Several code examples are given in this
book that show you how to generate base addresses dynamically for an algorithmic approach.

 Device Base Addresses
 When the kernel loads device drivers, it allocates an area of memory for them to work in. The order and number of
kernel drivers is a variable quantity and there are no guarantees about drivers being installed at a specific address
when the OS is upgraded. Therefore, the kernel publishes a list of base addresses in the sysfs file system for your
application to reference. Listing 17-1 shows the contents of the /sys/devices directory from a Commercial Beta
ARTIK 5. Other models and revisions list something similar, but the base addresses are different.

 Listing 17-1. Driver Base Addresses in the /sys/devices Directory

 ls /sys/devices

 10000000.chipid 11e20000.sysmmu 13860000.i2c
 10010000.sysreg_localout 120a0000.fimc_is_sensor 13870000.i2c
 10023c00.pd-cam 12180000.fimc_is 13890000.i2c
 10023c40.pd-mfc 12260000.sysmmu 138d0000.i2c
 10023c60.pd-g3d 12270000.sysmmu 13920000.spi
 10023c80.pd-lcd0 12280000.sysmmu 13970000.i2s
 10023ca0.pd-isp 122a0000.sysmmu 139d0000.pwm
 10030000.clock-controller 122b0000.sysmmu 205f000.firmware
 10050000.mct 122c0000.sysmmu amba.0
 10060000.watchdog 122d0000.sysmmu artik_zb_power.7
 10070000.rtc 12480000.usb bluetooth.4
 100c0000.tmu 12510000.dwmmc0 breakpoint
 10481000.interrupt-controller 12520000.dwmmc1 gpio_keys.5
 11000000.pinctrl 12530000.dwmmc2 ion.1
 11400000.pinctrl 125b0000.usb2phy mdev_output.2
 11830000.jpeg 126c0000.adc platform
 11850000.gsc 13000000.mali software
 11860000.gsc 13400000.mfc sound.6
 11a20000.sysmmu 13620000.sysmmu system
 11a30000.sysmmu 13800000.serial tracepoint
 11a60000.sysmmu 13810000.serial virtual
 11c00000.fimd_fb 13820000.serial wlan.3
 11c90000.smies 13830000.serial

 The GPIO devices have a symbolic name of pinctrl . There are two of them visible in the device listings.
These are certainly different for ARTIK 5 and 10 modules. They could potentially change if the operating
system is upgraded, which is very likely because Fedora is always evolving.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

251

 If your application is going to be deployed on ARTIK 5 and 10 modules, the effort of creating a dynamic
mechanism to generate the physical paths to the GPIO channels may be worthwhile. Work out a way to auto
discover their paths without building any static dependencies into the code by exploiting the device naming
conventions. There are no devices with the GPIO port identifiers in their names. The base address can be
generated from a search for the pinctrl drivers. This command lists the /sys/devices directory and filters
out the two interesting items in a Commercial Beta ARTIK 5:

 ls /sys/devices | grep pinctrl

 11000000.pinctrl
 11400000.pinctrl

 These represent the two GPIO drivers gpio0 (11400000) and gpio1 (11000000). The numbering of the
devices is reversed with respect to the ordering of the base address values. This illustrates an important caveat
that you should never assume that things are presented in the same order or in a consistent manner within an
operating system. Their positions are usually dictated by the order in which the kernel creates things at boot
time, and if there is any predictability in that ordering, it would come from the kernel configuration files and
device tree. It is always better to check things before making assumptions. Working things out dynamically at
runtime is not particularly hard, provided you know where to look for the information. Another place to look for
informative help is in the drivers directory. The following command lists the contents of the Samsung pinctrl
driver container. The same two items are listed as symbolic links with several kernel driver interface controls.

 ls /sys/bus/platform/drivers/samsung-pinctrl

 GPIO Chip Numbers
 Tracing the GPIO pin numbers that the kernel can control involves a few steps to inspect and reverse
engineer what the kernel has mapped into the sysfs virtual file system. In the /sys/class/gpio directory,
there is an item representing each of the GPIO control chips. These are mapped to the port names. The GPIO
pin numbers, base addresses, and offsets are then deduced from this basis. Each item in /sys/class/gpio is
structured in the same way as shown for gpiochio0 in Figure 17-8 .

base device label ngpio power subsystem uevent

/sys/class/gpio

gpiochip0

driver gpio modalias power subsystem uevent

 Figure 17-8. GPIO chip object internal structure

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

252

 Get a list of chip numbers with this command:

 ls -1 /sys/class/gpio/

 Finding out how the chips map to the rest of the GPIO architecture helps you to develop a dynamic
approach to GPIO interfacing, which should be robust enough to be portable across ARTIK modules and OS
upgrades. Define a chip number in a shell variable:

 MY_CHIP=0

 Or define a wildcard match to generate output listings for all chips by setting the variable to this value:

 MY_CHIP=*

 Given a chip number or wild card, this shell command line instruction finds the port name each chip
controls. The kernel documentation suggests this is just for diagnostic use and may not always be unique,
but on inspection, it seems to behave consistently in a Commercial Beta ARTIK 5.

 cat /sys/class/gpio/gpiochip${MY_CHIP}/label

 This variant of the same command tells you the base GPIO export number for each chip:

 cat /sys/class/gpio/gpiochip${MY_CHIP}/base

 The range of GPIO export numbers for a chip is described by the ngpio value. This is how many
GPIO pins the controller manages. For chip 0 , whose base GPIO number is 0 , there are eight GPIO signals
associated with that chip. By adding ngpio to the base value, the base value for the next chip in the GPIO
hierarchy is calculated in a relative fashion. This command shows you the ngpio values:

 cat /sys/class/gpio/gpiochip${MY_CHIP}/ngpio

 If you need the GPIO driver, the modalias value in the device directory displays the driver base address
to use as a key to locate a driver description or just use the base address in your application. This command
shows you the pinctrl device name containing the driver base address:

 cat /sys/class/gpio/gpiochip${MY_CHIP}/device/modalias

 Add a little post processing to deliver only the base address:

 cat /sys/class/gpio/gpiochip${MY_CHIP}/device/modalias | cut -c10-17

 Table 17-10 summarizes the results of using these commands to show how the chip numbers map to
other properties.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

253

 Build a table of these values inside your application to do a reverse lookup from the label containing a
port name to yield a GPIO base number or driver base address.

 Interacting With sysfs
 The code to interact with the GPIO interfaces is not very complicated. All of the interactions involve reading
and writing to regular files. Table 17-11 summarizes the directory structure for sysfs managed GPIO pins.

 Table 17-10. Mapping GPIO Chip Numbers to Labels and Base Addresses

 GPIO chip Label Base N-GPIO Modalias

 gpiochip0 gpa0 0 8 platform:11400000.pinctrl

 gpiochip85 gpa1 8 6 platform:11400000.pinctrl

 gpiochip145 gpb 14 8 platform:11400000.pinctrl

 gpiochip22 gpc0 22 5 platform:11400000.pinctrl

 gpiochip27 gpc1 27 5 platform:11400000.pinctrl

 gpiochip32 gpd0 32 4 platform:11400000.pinctrl

 gpiochip36 gpd1 36 4 platform:11400000.pinctrl

 gpiochip40 gpe0 40 8 platform:11000000.pinctrl

 gpiochip48 gpe1 48 8 platform:11000000.pinctrl

 gpiochip56 gpe2 56 3 platform:11000000.pinctrl

 gpiochip59 gpk0 59 8 platform:11000000.pinctrl

 gpiochip67 gpk1 67 7 platform:11000000.pinctrl

 gpiochip74 gpk2 74 7 platform:11000000.pinctrl

 gpiochip8 gpl0 81 4 platform:11000000.pinctrl

 gpiochip81 gpm0 85 8 platform:11000000.pinctrl

 gpiochip93 gpm1 93 7 platform:11000000.pinctrl

 gpiochip100 gpm2 100 5 platform:11000000.pinctrl

 gpiochip105 gpm3 105 8 platform:11000000.pinctrl

 gpiochip113 gpm4 113 8 platform:11000000.pinctrl

 gpiochip121 gpx0 121 8 platform:11000000.pinctrl

 gpiochip129 gpx1 129 8 platform:11000000.pinctrl

 gpiochip137 gpx2 137 8 platform:11000000.pinctrl

 gpiochip14 gpx3 145 8 platform:11000000.pinctrl

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

254

 Table 17-11. Managed GPIO Pins

 Path Description

 /sys/class/gpio This is where the export and unexport hooks live. There are
also objects here that represent the GPIO chips that control the
hardware. Any exported GPIO pins are also placed here.

 /sys/class/gpio/export Write a pin number to this file to export that GPIO pin to user
space.

 /sys/class/gpio/unexport Write a pin number to this file to relinquish that GPIO pin from
user space and hand it back to the kernel for another process to
use.

 /sys/class/gpio/gpio* Exported pin numbers appear at this location where the asterisk
represents the pin number.

 /sys/class/gpio/gpio*/direction Write the value of in or out to this location to determine the kind
of access you want to use the GPIO pin for.

 /sys/class/gpio/gpio*/value Read or write the value for a GPIO pin.

 /sys/class/gpio/gpio*/edge Define the kind of edge triggering to use or view the current
value.

 /sys/class/gpio/gpio*/active_low Manage whether the GPIO is active_low or active_high .

 /sys/class/gpio/gpiochip* One directory per hardware chip that implements the GPIO
interface

 /sys/class/gpio/gpiochip*/label A diagnostic value that describes what port the chip is allocated
to.

 /sys/class/gpio/gpiochip*/base The starting GPIO index number managed by this chip.

 /sys/class/gpio/gpiochip*/ngpio The number of GPIO pins managed by this chip.

 Using bash With sysfs
 In the command line shell, use the echo command to generate the value you want to send and then use I/O
redirection to send the output to the target regular file. This example tells the kernel to export pin 19 to the
user space:

 echo 19 > /sys/class/gpio/export

 In fact, any command line tool, sequence of commands, or shell functions that can generate the
required output can be used. The sysfs interface is easy enough to use that many developers never
contemplate memory mapped I/O via the kernel.

 If you want to acquire the value of a pin, read the regular file using a C language application or perhaps
use the command line cat command to take the file contents and display them on the screen:

 cat /sys/class/gpio/gpio19/value

 Any command line tool that can read from a regular file can be used, depending on what you are trying
to accomplish.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

255

 /sys/kernel/debug/gpio
 The kernel debugging tables can be a great help when you are working out the mapping of devices in
your ARTIK. Although this book is based around a Commercial Beta ARTIK 5 for its examples, the same
techniques should work for an ARTIK 10. Becoming familiar with these resources helps you find the
differences when you write code for each ARTIK or if things change after an OS upgrade.

 The /sys/kernel/debug/gpio file is a read-only file containing a debugging table of how the GPIO
interfaces are all allocated inside the ARTIK kernel. The output of this is slightly different for the ARTIK 5
and 10 modules. This tells you a lot of hidden information about the GPIO internals. Deduce the pin export
numbers vs. the GPIO port names. Listing 17-2 shows the content of the file.

 Listing 17-2. Kernel Debug GPIO Listing

 cat /sys/kernel/debug/gpio

 GPIOs 0-7, platform/11400000.pinctrl, gpa0:
 GPIOs 8-13, platform/11400000.pinctrl, gpa1:
 GPIOs 14-21, platform/11400000.pinctrl, gpb:
 GPIOs 22-26, platform/11400000.pinctrl, gpc0:
 gpio-25 (PDNA) out hi

 GPIOs 27-31, platform/11400000.pinctrl, gpc1:
 GPIOs 32-35, platform/11400000.pinctrl, gpd0:
 GPIOs 36-39, platform/11400000.pinctrl, gpd1:
 GPIOs 40-47, platform/11000000.pinctrl, gpe0:
 GPIOs 48-55, platform/11000000.pinctrl, gpe1:
 GPIOs 56-58, platform/11000000.pinctrl, gpe2:

 GPIOs 59-66, platform/11000000.pinctrl, gpk0:
 gpio-61 (dev-pwr) out hi

 GPIOs 67-73, platform/11000000.pinctrl, gpk1:
 GPIOs 74-80, platform/11000000.pinctrl, gpk2:
 GPIOs 81-84, platform/11000000.pinctrl, gpl0:
 GPIOs 85-92, platform/11000000.pinctrl, gpm0:
 GPIOs 93-99, platform/11000000.pinctrl, gpm1:
 GPIOs 100-104, platform/11000000.pinctrl, gpm2:
 GPIOs 105-112, platform/11000000.pinctrl, gpm3:
 GPIOs 113-120, platform/11000000.pinctrl, gpm4:
 GPIOs 121-128, platform/11000000.pinctrl, gpx0:

 GPIOs 129-136, platform/11000000.pinctrl, gpx1:
 gpio-136 (bten_gpio) out hi

 GPIOs 137-144, platform/11000000.pinctrl, gpx2:
 gpio-140 (WLAN_REG_ON) out hi
 gpio-144 (power key) in hi

 GPIOs 145-152, platform/11000000.pinctrl, gpx3:
 gpio-147 (WLAN_HOST_WAKE) in lo
 gpio-149 (spi0.0) out hi
 gpio-151 (bthostwake_gpio) in hi
 gpio-152 (btwake_gpio) out lo

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

256

 Accessing GPIO with the C Language
 All of the interactions involve reading and writing to regular files. In the C language, you do this by opening
a file and retaining a handle to the file buffer. The file can be opened in read, write, or read/write combined
mode. These are character files rather than the binary format alternative.

 To save space, only the fundamental working parts of some of these example listings are shown here.
Take the functional aspects of the code and embed it inline into your own applications or place a function
wrapper around it to make something reusable and call it whenever you need it.

 Using Boolean Data Types in C
 Some of the examples in Samsung developer documentation show functions returning a Boolean value of
 true or false and a function prototype with a return value specified as a bool data type. For this to work
properly, add this line at the top of your source files where you define the rest of the system includes:

 #include <stdbool.h>

 Without this include file you cannot use lines such as

 bool myBinaryVariable;
 myBinaryVariable = true;
 bool myTestFunction() { ...function body... }

 This Boolean support may also be particularly helpful if you decide to use the kernel memory-mapped
approach to driving your GPIO pins.

 Finding a GPIO Base Address
 According to the Linux kernel development team plans, the /sys/class/gpio directory is expected to
disappear eventually. For now, it is a useful place to look for GPIO device mapping. This directory contains
symbolic links to the devices to examine from a shell script. The script in Listing 17-3 yields a base address
given a GPIO chip number.

 Listing 17-3. Finding a Base Address From a Chip Number in bash

 CHIPNUM=145

 ls -la /sys/class/gpio |
 grep ${CHIPNUM} |
 sed 's/\.pinctrl.*$//' |
 sed 's/^.*devices.//'

 The ls command and its piped counterparts are split over several lines so they are easier to read. They
should be typed on a single line when you execute the command. The CHIPNUM variable is used to define it in
a variety of ways.

 Use the same mechanism from the C language that worked in bash but wrap the call in a function to
reuse it in a variety of different ways. If you embed the bash solution inside a C language function, hard-
code the complete command or pass the port number in from outside and generate the bash command
dynamically.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

257

 This small command line tool needs to be typed into a file in your ARTIK module and compiled there
with the built-in GCC compiler. Go to the temporary directory and work there unless you have a more
permanent place you want to test this example:

 cd /tmp

 Now create a source file called gpiobaseaddress.c with your vi editor and type in the code shown in
Listing 17-4 .

 Listing 17-4. GPIO Base Address Extraction Tool

 #include <stdio.h>
 #include <stdlib.h>
 #include <string>

 int main(int argc, char *argv[])
 {

 FILE *fp;
 char myResult[16];
 char myFormat[96];
 char myCommand[96];

 // Build the format string
 // You can do this with a single literal but this method
 // avoids confusing line wraps in the book listing
 strcpy(myFormat, "ls -la /sys/class/gpio");
 strcat(myFormat, " | grep %s");
 strcat(myFormat, " | sed 's/..pinctrl.*$//'");
 strcat(myFormat, " | sed 's/^.*devices.//'");

 // Manufacture a command line from the first argument
 sprintf(myCommand, myFormat, argv[1]);

 // Open the command for reading
 fp = popen(myCommand, "r");

 if (fp == NULL)
 {
 printf("Failed to run command\n");
 exit(1);
 }

 // Read and output the result
 while (fgets(myResult, sizeof(myResult)-1, fp) != NULL)
 {
 printf("%s", myResult);
 }

 // Close and quit
 pclose(fp);

 return 0;
 }

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

258

 Now compile the source and run the tool to see the base address of the ADC interface and then test to
see that it works for other chip addresses (see Listing 17-5).

 Listing 17-5. Running the Base Address Tool

 gcc -Wall gpiobaseaddress.c -o gpiobaseaddress

 ./gpiobaseaddress 145
 1100000

 ./gpiobaseaddress 27
 1140000

 In both cases, the base address is written out. These test values have been chosen to display both of the
base addresses in a Commercial Beta ARTIK 5. Check your listing for other values.

 Install this tool somewhere more permanent and invoke it from within a shell script. Perhaps even
enclose the call to action in back ticks to substitute the result and assign it to a variable. By doing so, you
have just decoupled your shell script from any changes that Samsung make to the base address of your
devices because now you are accessing them symbolically.

 Pin Export to the User Domain
 Before you can use an interface, you need to tell the kernel to export it into your user space. While you
have it exported, nobody else can grab it and take control. This is neat because it provides a kind of locking
mechanism that avoids contention between two opposing processes. Once the GPIO is exported, a new
directory is created with that GPIO number. When you unexport the GPIO after you have finished with it, the
directory is removed and the GPIO is then available for other processes to acquire. Make sure you relinquish
it when you are done.

 The file system permissions conditionally allow you to do these operations on the GPIO pins it
manages. Open the /sys/class/gpio/export file and write a GPIO pin number to it. Listing 17-6 is an
example bash script fragment that writes to a GPIO pin.

 Listing 17-6. Exporting a GPIO Pin Using bash

 MY_PIN_NUMBER=19
 echo ${MY_PIN_NUMBER} > /sys/class/gpio/export

 To accomplish the same thing in the C language, open a file and write the export instruction to it.
Listing 17-7 shows you how.

 Listing 17-7. Writing to a GPIO Pin With C Language

 #include <stdio.h>
 #include <stdbool.h>

 // Declare the variables
 FILE *myGPIoExportFd;

 // Define the target pin number
 myGPIOPinNumber = 19;

 // Open a messaging channel to the kernel

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

259

 if((myGPIoExportFd = fopen("/sys/class/gpio/export", "w")) == NULL)
 {
 printf("Error: unable to export GPIO pin\n");
 return false;
 }

 // Tell the kernel which pin to use
 fprintf(myGPIoExportFd, "%d\n", myGPIOPinNumber);

 // Close the kernel messaging channel
 fclose(myGPIoExportFd);

 Previously Exported GPIO Pins
 There are couple of GPIO interfaces that are already exported by the time your application is able to make
use of them. These reserved GPIO interfaces are part of the Wi-Fi support, which is accessed through other
mechanisms if it needs to be reconfigured. Because they have already been exported, your application
cannot interfere with them. They are listed in Table 17-12 .

 Table 17-12. Previously Exported GPIO Pins

 GPIO Reserved by

 /sys/class/gpio/gpio140 WLAN_REG_ON

 /sys/class/gpio/gpio147 WLAN_HOST_WAKE

 Creating a Dynamic Path to an Exported Pin
 Exporting a GPIO into the user-accessible domain creates a new node within the sysfs virtual file system
that represents that pin. Write to that node to send messages to the kernel to configure the pin direction or
send a value to it on your behalf. The path to the new node is

 /sys/class/gpio/gpio{pin_number}

 Use the built-in bash string concatenation tools to manufacture a path and store it in a variable:

 MY_PIN_NUMBER=19
 MY_PIN_PATH="/sys/class/gpio/gpio${MY_PIN_NUMBER}"

 Use this fragment of C language code to dynamically create a path to an exported pin container. The
 sprintf() function can manufacture a path name from the pin number:

 myGPIOPinNumber = 19;
 sprintf(myGPIOPinPath, "/sys/class/gpio/gpio%d", myGPIOPinNumber);

 Pin Active LOW Setting
 Give that GPIO pin some instructions by writing to subdirectories within it. The pin mode or direction (for
this node) is controlled by this virtual file system location. Write the values shown in Table 17-13 to the
 active_low property:

 /sys/class/gpio/gpio{pin_number}/active_low

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

260

 Pin Direction Setting
 Give that GPIO pin some instructions by writing to subdirectories within it. The pin mode or direction (for
this node) is controlled by this virtual file system location:

 /sys/class/gpio/gpio{pin_number}/direction

 When you write the out value to the direction setting, it asserts a default value on the pin as if you
had written to the value property at the same time. This default value sets the pin LOW ; it might not be the
default that you want. Optionally, write the values low or high to set the pin into output mode and at the
same time set the default value. The values listed in Table 17-14 can be written to this regular file to indicate
the pin direction.

 Table 17-13. Active LOW Parameter Settings

 Value Behavior

 0 Configures the GPIO to be active LOW , pulled down to ground unless a HIGH value is asserted
to drive it.

 1 Configures the GPIO to be active HIGH , pulled up to Vcc unless a LOW value is asserted to
drive it. Any non-zero value selects this behavior.

 Table 17-14. GPIO Direction Parameter Values

 Direction value Action

 in Defines the GPIO pin as an input to read values from it

 out Defines the GPIO as an output to write values to it. By default, the pin is set LOW (0).

 low Defines the GPIO as an output and at the same time force set the value LOW (0)

 high Defines the GPIO as an output and at the same time force set the value HIGH (1)

 ■ Note This property does not exist if the kernel cannot support changing the direction of a GPIO. The
property is also not available if the GPIO was exported by kernel code that does not explicitly allow user space
applications to reconfigure the direction of this GPIO interface.

 Write the message ‘ out ’ or ‘ in ’ depending on whether the code controls something or reads a sensor
value. Write the required mode value to the direction virtual file, as shown in Listing 17-8 . Save this as a shell
script if you need it often.

 Listing 17-8. Setting the GPIO Mode From bash

 MY_PIN_NUMBER=19
 MY_PIN_MODE_PATH="/sys/class/gpio/gpio${MY_PIN_NUMBER}/direction"

 MY_PIN_DIRECTION="out"
 echo ${MY_PIN_DIRECTION} > ${MY_PIN_MODE_PATH}

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

261

 The same thing can be implemented in the C language by accessing a regular file. Write the message
 out or in as shown in Listing 17-9 .

 Listing 17-9. Setting a GPIO Pin Mode from the C Language

 #include <stdio.h>
 #include <stdbool.h>

 // Declare variables
 FILE *myGPIOPinModeFd;

 // Manufacture a path
 myGPIOPinNumber = 19;
 sprintf(myGPIOPinModePath, "/sys/class/gpio/gpio%d/direction", myGPIOPinNumber);

 // Select one of these values to choose a mode
 // Uncomment the one you want to use
 myGPIOPinMode = "out";
 //myGPIOPinMode = "in";
 //myGPIOPinMode = "high";
 //myGPIOPinMode = "low";

 // Open the direction configuration for the GPIO node
 if((myGPIOPinModeFd = fopen(myGPIOPinModePath, "w")) == NULL)
 {
 printf("Error: cannot open pin direction\n");
 return false;
 }

 // Set the pin mode with the passed in direction
 fprintf(myGPIOPinModeFd, "%s\n", myGPIOPinMode);

 // Close the direction configurator
 fclose(myGPIOPinModeFd);

 Digital Value Reading
 If you want to acquire the value of a pin, read the regular file using a C language application or perhaps use
the command line cat command to take the file contents and display them on the screen.

 To read the value of the GPIO pin, just set the pin mode for input, open the path to the value
configurator, and read in the value from the virtual file. The following values are available from an input
GPIO pin:

• 0 : LOW

• 1 : HIGH

 When you set the pin mode for a GPIO to be an input, the value can be acquired by reading from a
special path within the GPIO node in the virtual file system:

 /sys/class/gpio/gpio{pin_number}/value

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

262

 Use a cat command to acquire the value and enclose it in back ticks (̀) to assign the result to a bash
shell variable. Listing 17-10 shows you the sequence of bash commands.

 Listing 17-10. Reading a Digital Value From bash

 MY_PIN_NUMBER=19
 MY_PIN_VALUE_PATH="/sys/class/gpio/gpio${MY_PIN_NUMBER}/value"

 MY_RESULT=`cat ${MY_PIN_VALUE_PATH}`

 echo ${MY_RESULT}

 In the C language, the same thing is accomplished by opening and reading the virtual file directly.
Acquire the value from the GPIO pin with an fgets() function that is configured to read just two characters
at a time. Listing 17-11 provides an example code fragment to read a GPIO pin.

 Listing 17-11. Reading a GPIO pin Value With the C Language

 #include <stdio.h>
 #include <stdbool.h>

 // Declare the variables
 FILE *myGPIOPinValueFd;
 char myResult[6];

 // Manufacture a path to the pin value
 sprintf(myGPIOPinValuePath, "/sys/class/gpio/gpio%d/value", myGPIOPinNumber);

 // Open the value configuration for the GPIO node
 if((myGPIOPinValueFd = fopen(myGPIOPinValuePath, "r")) == NULL)
 {
 printf("Error: cannot open pin value for reading\n");
 return false;
 }

 // Read the pin value
 fgets(myResult, 2, myGPIOPinValueFd);

 // Close the value configurator
 fclose(myGPIOPinValueFd);

 // Convert the value to an integer before returning it to your application:
 myIntegerResult = atoi(myResult);

 Digital Value Setting
 When you set the pin mode for a GPIO to be an output, the value can be set by writing to a special path
within the GPIO node in the virtual file system. The same path is used for reading inputs and writing
outputs. Set the output to one of the values listed in Table 17-15 .

 /sys/class/gpio/gpio{pin_number}/value

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

263

 Use the echo command in bash (as shown in Listing 17-12) to set the pin to the required value.

 Listing 17-12. Setting an Output Pin Value From bash

 MY_PIN_NUMBER=19
 MY_PIN_VALUE_PATH="/sys/class/gpio/gpio${MY_PIN_NUMBER}/value"

 MY_NEW_PIN_VALUE="1"
 echo ${MY_NEW_PIN_VALUE} > ${MY_PIN_VALUE_PATH}

 Listing 17-13 shows how to set the value on that GPIO with the C language having already synthesized
the path to reach it.

 Listing 17-13. Setting a GPIO Pin Value in the C Language

 #include <stdio.h>
 #include <stdbool.h>

 // Declare variables
 FILE *myGPIOPinValueFd;

 // Manufacture a path to the pin value
 sprintf(myGPIOPinValuePath, "/sys/class/gpio/gpio%d/value", myGPIOPinNumber);

 // Select one of these values to set on the pin
 // Uncomment the one you want to use
 myNewGPIOPinValue = 1; // Represents HIGH
 //myNewGPIOPinValue = 0; // Represents LOW

 // Open the value configuration for the GPIO node
 if((myGPIOPinValueFd = fopen(myGPIOPinValuePath, "w")) == NULL)
 {
 printf("Error: cannot open pin value for writing\n");
 return false;
 }

 // Set the pin value with the passed in setting
 fprintf(myGPIOPinValueFd, "%d\n", myNewGPIOPinValue);

 // Close the value configurator
 fclose(myGPIOPinValueFd);

 Table 17-15. Output Pin Values

 Value Meaning

 0 LOW

 1 HIGH

 Any other non zero value HIGH

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

264

 Edge Detecting
 Taking the value-reading example further, the virtual file edge can be used instead of the value file to detect
rising or falling edges. Detecting button press or button release actions becomes much easier because state
management and button changes become atomic functions. Atomic functionality encapsulates things so
only a single line of code is necessary where an entire function was required before. Atomic functions are
less likely to be interrupted by other things happening in the system.

 This mechanism could be used to detect and trigger different behavior when a button is pressed or
released. This is analogous to a mouseDown and mouseUp event in a web browser event handler.

 This virtual file path only exists if the driver for the GPIO supports this functionality. Inspect the file
system embedded in your ARTIK to see if this feature is available. The read path for detecting an edge on the
same example {pin_number} is /sys/class/gpio/gpio {pin_number} /edge.

 The values listed in Table 17-16 can be set to define the behavior of the edge detection when the pol()
function is called. Read back the values to see what was previously set.

 Table 17-16. Edge-Detecting Behavior Settings

 Edge detect type Description

 none Edge detection is inactive.

 rising The poll() function returns when the value changes from a 0 to a 1 .

 falling The poll() function returns when the value changes from a 1 to a 0 .

 both The poll() function returns when the value changes in either direction. Be careful
not to get a double trigger since you are now looking for both edges.

 If the pin can be configured to generate an interrupt and has been set up that way by default. Use the
 poll() function on the value file. The poll() function blocks until the value changes and then returns
whenever the interrupt was triggered. If you use the poll() function, set the events POLLPRI and POLLERR .
If you use the select() function to create a non-blocking interrupt listener, set the file descriptor in the
 exceptfds property. After the poll() function returns, either use lseek() to reset the file pointer to the
beginning of the sysfs file and read the new value or close the file and reopen it to read the value. If you
omit the call to lseek() , your file reading end position will prevent your read call from seeing the new value.

 Releasing Exported Pins
 When you are done with using a GPIO, release it for use by other applications by writing the pin number to
the unexport file location. Listing 17-14 shows you how to do this from a bash command line.

 Listing 17-14. Releasing a GPIO Pin Using bash

 MY_PIN_NUMBER=19
 echo ${MY_PIN_NUMBER} > /sys/class/gpio/unexport

 In the C language, this is very similar to the earlier example where the GPIO was exported. Listing 17-15
shows the modified version of the code.

 Listing 17-15. Releasing GPIO Pin Using the C Language

 #include <stdio.h>
 #include <stdbool.h>

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

265

 // Declare the variables
 FILE *myGPIoUnexportFd;

 // Define the target pin number
 myGPIOPinNumber = 19;

 // Open a messaging channel to the kernel
 if((myGPIoUnexportFd = fopen("/sys/class/gpio/unexport", "w")) == NULL)
 {
 printf("Error: unable to unexport GPIO pin\n");
 return false;
 }

 // Tell the kernel which pin to relinquish
 fprintf(myGPIoUnexportFd, "%d\n", myGPIOPinNumber);

 // Close the kernel messaging channel
 fclose(myGPIoUnexportFd);

 Continuous Reads and Writes
 If your application loops to set or get the value of a in a continuous fashion, reset the file pointer after each
operation. This would normally be set to the beginning of the file when you open the file. If your reading
and writing cycle opens and closes the file each time, this is not a problem. This is somewhat inefficient and
keeping the file open makes more sense in a loop.

 If you open the value file for get the current GPIO status (1 or 0), after the first read operation, the file
pointer moves to the next position in the file. The subsequent read carries on where it left off because the file
pointer has not been moved. After all, you want a file to spool out some new data each time you read some
of it into your applications. When reading a GPIO interface, it must always read or write from the start of the
file. Reset the file pointer to the beginning of the file before each read by using the lseek() function:

 lseek(fp, 0, SEEK_SET);

 If you open and close GPIO value file every time read it, this additional lseek() function call is
unnecessary. Opening and closing the file introduces an unwanted delay if you do so on a continuous basis.

 Trailing Carriage Returns
 When you read data from the GPIO interface, the returned string is terminated by the newline character (\n).
Make sure you trim off that trailing newline character if it is there because the code you pass the result to
may not expect it.

 Access Directly Via the Kernel
 Your application interacts with the GPIO internal registers to control the mode of operation and read or write
values. The kernel captures your calls and returns status information on the hardware managed by each
module. The kernel can also pass your values to the hardware on your behalf. The GPIO internal registers
are accessed through addressable ports. When the GPIO interface is accessed via the kernel, the registers are
grouped into collections called ports. Each port group is discussed separately in this section. These ports are

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

266

only of consequence when accessing GPIO via the kernel. The other modes of access (sysfs and Arduino)
organize the collection of GPIO pins differently. There are several ports of interest for the programmable
pins. The tables below provide programming information arranged by internal port groupings.

 Implement low-level coding to reduce GPIO handling times, which helps to reduce the amount of CPU
time spent on those tasks. This should lead to significant improvements in system efficiency. Fixed-purpose
pins whose functionality is reserved can also be programmed at the kernel level. This may not yield any
performance benefits and using the simpler sysfs method might be fast enough for your needs.

 The amount of CPU time your application code uses for handling GPIO pins affects the performance
of the platform as a whole. You may find it is worth the additional effort of writing kernel-based drivers to
optimize performance for a particular kind of GPIO usage. Custom driver code may be able to set a group of
related pins in a single write operation, instead of acting on each pin change individually. This will make the
pin access more atomic. When the driver function is called, all pins are operated on together and the delay
between configuring each one would be minimized.

 Figure 17-9 illustrates the basic components of the GPIO drivers and ports and how they relate to one
another inside the kernel.

Driver
GPIO0

Port
GPA1

Port
GPD0

Driver

Driver

Driver

Driver

Driver

Driver

Lo memory

Hi memory

Kernel memory

Driver base address

6 5 4 3 2 1 07

6 5 4 3 2 1 07

Mode register bits

msb

lsbmsb

lsb

Data register bits

 Figure 17-9. GPIO drivers and ports

 The driver and port naming can be confusing because there are GPIO drivers with very similar names to the
GPIO ports. Become familiar with the structure of these drivers, ports, and the registers associated with them.

 GPIO Ports
 The Samsung developer documentation lists only a few ports, but by inspecting the debugfs virtual file
system that the kernel creates, it is possible to discover others. Knowing that they exist answers some of the
questions already posed on the ARTIK developer forums about where things are.

 This may be useful later for exploiting the graphics and video support. Talking to the ARM MALI GPU
graphics chip or the video camera and display/HDMI ports is not yet fully supported from the user space in
the Commercial Beta and there is no ARTIK-specific documentation available at the moment.

 Use the following commands to display a list of port names mapped to each driver (gpio0 and gpio1 in
an ARTIK 5) with a list of pin numbers associated with them. Substitute the appropriate driver base address
values for an ARTIK 10.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

267

 cat /sys/kernel/debug/pinctrl/11400000.pinctrl/gpio-ranges
 cat /sys/kernel/debug/pinctrl/11000000.pinctrl/gpio-ranges

 The kernel and operating system are prepared to manage many more GPIO pins than the ARTIK 5
implements. To interact with the GPIO interfaces owned by a port, first calculate the port address. The
results for a Commercial Beta ARTIK 5 are aggregated and summarized in Table 17-17 . Only the documented
port addresses are listed. Given that ports GPA1 and GPD0 are documented, the rest of the offsets can be
deduced for the remaining ports supported by driver GPIO0 . The undocumented address offsets are less
certain for driver GPIO1 .

 Table 17-17. GPIO Port Names and Ranges (ARTIK 5)

 Driver Port GPIOs Pins Offset

 gpio0 gpa0 0 - 7 0 - 7

 gpio0 gpa1 8 - 13 8 - 13 0x0008

 gpio0 gpb 14 - 21 14 - 21

 gpio0 gpc0 22 - 26 22 - 26

 gpio0 gpc1 27 - 31 27 - 31

 gpio0 gpd0 32 - 35 32 - 35 0x0028

 gpio0 gpd1 36 - 39 36 - 39

 gpio1 gpe0 40 - 47 0 - 7

 gpio1 gpe1 48 - 55 8 - 15

 gpio1 gpe2 56 - 58 16 - 18

 gpio1 gpk0 59 - 66 19 - 26

 gpio1 gpk1 67 - 73 27 - 33

 gpio1 gpk2 74 - 80 34 - 40

 gpio1 gpl0 81 - 84 41 - 44

 gpio1 gpm0 85 - 92 45 - 52

 gpio1 gpm1 93 - 99 53 - 59

 gpio1 gpm2 100 - 104 60 - 64

 gpio1 gpm3 105 - 112 65 - 72

 gpio1 gpm4 113 - 120 73 - 80

 gpio1 gpx0 121 - 128 81 - 88 0x0300

 gpio1 gpx1 129 - 136 89 - 96 0x0308

 gpio1 gpx2 137 - 144 97 - 104

 gpio1 gpx3 145 - 152 105 - 112

 To develop a dynamic solution, work out the driver base address and use the correct offset value based
on the port name to work out the port address using a simple formula:

 {port_address} = {driver_base_address} + {port_offset}

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

268

 Table 17-18 summarizes the port offsets that have been described by Samsung in the developer
documentation. They are different for the ARTIK 5 and 10. Combining the offset and base address yields the
port address to access the correct register.

 Table 17-18. Computing the Port Address

 ARTIK Port name Driver Base addr Offset Port addr

 5 GPX0 gpio1 0x11000000 0x0300 0x11000300

 5 GPX2 gpio1 0x11000000 0x0308 0x11000308

 5 GPA1 gpio0 0x11400000 0x0008 0x11400008

 5 GPD0 gpio0 0x11400000 0x0028 0x11400028

 10 GPX0 gpio0 0x13400000 0x0300 0x13400300

 10 GPX1 gpio0 0x13400000 0x0308 0x13400308

 10 GPA0 gpio3 0x14010000 0x0000 0x14010000

 10 GPA2 gpio3 0x14010000 0x0010 0x14010010

 10 GPB2 gpio3 0x14010000 0x0028 0x14010028

 Figure 17-10 shows how these port addresses are mapped into the driver’s memory space inside the kernel.

Driver
GPIO0

Port
GPA1

Port
GPD0

Driver

Driver
Lo memory

Hi memory

Kernel memory

Driver base address

Port GPA1 base address

Port GPD0 base address

Port GPA1 address offset

Port GPD0 address offset

 Figure 17-10. Mapping the port addresses into the driver memory

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

269

 Shared Registers
 Within each port base address block are a collection of different registers. Only the MODE and DATA
register addresses have been published in the Samsung developer documentation. Reading about GPIO
programming in the online resources suggests there is much more to GPIO programming than this. Knowing
about MODE and DATA is sufficient to work out the base address and the values for reading and writing to
it. The gpio.h include file documents the registers in more detail. This header file is part of the kernel source
code for the ARTIK OS.

 Because the GPIO pins convey a simple binary value to indicate whether they are on or off, each pin can
be represented internally by a single bit in a control or data register. Figure 17-11 shows how a GPIO pin is
mapped to a bit within a shared register at a port address.

Driver
GPIO0

Port
GPD0

Lo memory

Hi memory

Kernel memory

Driver base address

Port GPD0 base address
Control reg

Data reg
6 5 4 3 2 1 07

6 5 4 3 2 1 07

1

6

Read or
write control

Data in
or out

msb lsb

 Figure 17-11. Mapping GPIO pins to port address registers

 Because the pins are mapped onto specific bits within the value written to each port address, you
cannot write a value for the pin you are setting. Instead, use Read ➤ Modify ➤ Write coding to acquire the
current value, set the bit you want to, and then write it back.

 In a few rare cases, the pins are mapped so you can safely write to the pins without needing to read
the others first to preserve their state. Reading inputs is benign and does not change any pin values.
Consequently, reading cycles can repeat faster than write cycles. This might be important if you are trying to
sample a rapidly changing pin value and then play it back out again. In that case, adjust your read cycles so
they are slow enough to be played back within a Read ➤ Modify ➤ Write timing throughput capacity.

 GPIO Registers
 The GPIO control registers are maintained separately to the ones you read or write values to. The port addresses
are similar. At the most fundamental level, kernel drivers access the hardware pin MODE and DATA ports directly
to control the GPIO behavior. You would set the MODE first and then access the DATA. In some cases, the MODE
value can be assumed to be a default and the corresponding data value can be written directly.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

270

 Table 17-19 shows the port names for ARTIK 5 and 10 modules with the corresponding MODE and
DATA registers. The MODE register address is the port base address with a zero offset so they are the same
value. The DATA register is offset by 0x0001 . The corresponding bits in each register are mapped to the same
pins on the GPIO interface.

 Table 17-19. MODE and DATA Register Addresses

 ARTIK Port name MODE addr DATA addr

 5 GPX0 0x11000300 0x11000301

 5 GPX1 0x11000308 0x11000309

 5 GPA1 0x11400008 0x11400009

 5 GPD0 0x11400028 0x11400029

 10 GPX0 0x13400300 0x13400301

 10 GPX1 0x13400308 0x13400309

 10 GPA0 0x14010000 0x14010001

 10 GPA2 0x14010010 0x14010011

 10 GPB2 0x14010028 0x14010029

 According to the documentation on generic GPIO access, there may be other port addresses for
different functionality. The offset of eight memory locations between each port base address suggests that
there can be eight different registers associated with each port. The data sheets describe GPIO ports as
having one of eight possible functional states. These registers may be used to facilitate that behavior but
there is no documentation about it at present. Inspect the kernel source code to deduce what the other
registers are from the kernel configuration. Figure 17-12 shows how the registers are mapped into the block
of memory managed as a port within the driver inside the kernel.

Driver
GPIO0

Port
GPD0

Lo memory

Hi memory

Kernel memory

Driver base address

Port GPD0 base address

Control register base address

Data register base address
Control reg

Data reg
6 5 4 3 2 1 07

6 5 4 3 2 1 07

Read or write control (corresponding 1 bit per pin)

Data in or out (1 bit per pin)

msb lsb

 Figure 17-12. Mapping registers to ports

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

271

 Mapping the Bits
 The port registers expect an 8-bit value to be used to set a mode or read/write values. It helps to have some
manifest constants defined for the pins. It might also be useful to include this line at the top of your source
files to use the Boolean data types in the C language:

 #include <stdbool.h>

 Knowing how to perform simple decimal-to-hexadecimal and binary arithmetic is a skill worth
knowing. There are times when you can exploit simple mathematical tricks to perform binary operations.
Table 17-20 lists the 16 hexadecimal digits and their equivalent binary values.

 Table 17-20. Hexadecimal Digits vs. Binary Values

 0 - 0000 8 - 1000

 1 - 0001 9 - 1001

 2 - 0010 A - 1010

 3 - 0011 B - 1011

 4 - 0100 C - 1100

 5 - 0101 D - 1101

 6 - 0110 E - 1110

 7 - 0111 F - 1111

 Compare the binary equivalent values for 1, 2, 4, and 8. By multiplying the decimal equivalent by 2, the
binary value performs a leftwards shift towards the most significant bit. Dividing by 2 performs a rightwards
shift towards the least significant bit. Adding values together performs a Boolean OR operation. Knowing
these tricks lets you write very concise code, which performs well. The C language also has mechanisms for
operating on bit-fields to directly manipulate each bit in the value. Figure 17-13 shows two registers being
combined through a bitwise Boolean operator with the result being placed in a third register.

6 5 4 3 2 1 07

6 5 4 3 2 1 07

6 5 4 3 2 1 07

msb lsb

? ? ? ? ? ? ? ?

 Figure 17-13. Bit-wise operators

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

272

 Table 17-21 lists the C language bitwise operators. Getting to know these binary operators can
significantly help your application code design. There are some neat tricks you can do by adding or
subtracting one integer value from another to invert bits or multiplying and dividing by 2 to accomplish
simple bit-shifting tasks.

 Table 17-21. Bitwise Operators

 Operator Example Description

 & c = a & b This operator yields the Boolean result of evaluating a AND b. The bit patterns
in both variables are compared bit by bit. Where there is a 1 bit in both, the
result has a 1-bit value. Where either or both bits are zero, the corresponding
bit in the result is zero too. In this example, the result is assigned to variable c
and variables a and b are unchanged.

 | c = a | b This operator yields the Boolean result of evaluating a OR b. The same bit-by-
bit test is applied but in this case, a 1 bit results if there is a 1 in either a or b.
The result only has a zero in the corresponding bit if neither a or b has a 1 in
the bit value. The result is stored in variable c, leaving a and b unchanged.

 ̂ c = a ^ b This operator yields the Boolean result of evaluating a XOR b. This is similar
to the a OR b case except that only one of them can be set to 1. If both are
zero or if both are 1, the result in the corresponding bit in variable c is zero.

 << c = a << b The bit pattern in variable a is shifted leftwards towards the most significant
bit by a count specified in variable b. The result is stored in variable c. If
you shift by too many steps, the values fall out of the left hand end and your
register contains zero. Shifting left by 1 step is equivalent to multiplying the
value by 2 in the decimal domain.

 >> c = a >> b The bit pattern in variable a is shifted rightwards towards the least significant
bit by a count specified in variable b. The result is stored in variable c. If you
shift by too many steps, the values fall out of the right hand end and your
register contains zero. Shifting right by 1 step is equivalent to dividing the
value by 2 in the decimal domain.

 &= a &= b The compound operators apply an expression using both values but replace
the contents of the leftmost variable with the result. This is a destructive
form of evaluation because the original values for the left most item are not
retained. This operator performs the a AND b expression and stores the result
in variable a. Variable b is left unchanged. The value on the left must be a
variable.

 |= a |= b The result of evaluating a OR b is stored in variable a.

 ̂ = a ^= b The result of evaluating a XOR b is stored in variable a.

 <<= a <<= b Variable a is shifted leftwards by the number of steps in variable b.

 >>= a >>= b Variable a is shifted rightwards by the number of steps in variable b.

 invert all
bits

 a ^= 0xFF Use the XOR operator with an all 1’s bit mask to invert every bit in variable a.

 clear all
bits

 a = 0 Assign a zero value to set all bits to 0 in variable a.

 set all bits a = 0xFF Assign the value 0xFF (decimal 255) to set all bits to 1 in variable a.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

273

 Incorporate the fragment of code in Listing 17-16 to define masks for pins which you can use with an
 AND operator to extract the pin value for a single header pin. Any non-zero result after masking with these
values means the pin has a HIGH value. A zero result means it is LOW .

 Listing 17-16. Bit-Mask Manifest Constants

 // Define 1-bit masks for filtering each individual bit
 #define MASK_BIT_0 0x01
 #define MASK_BIT_1 0x02
 #define MASK_BIT_2 0x04
 #define MASK_BIT_3 0x08
 #define MASK_BIT_4 0x10
 #define MASK_BIT_5 0x20
 #define MASK_BIT_6 0x40
 #define MASK_BIT_7 0x80

 // Define masks to exclude each individual bit
 #define EXCLUDE_BIT_0 0xFE
 #define EXCLUDE_BIT_1 0xFD
 #define EXCLUDE_BIT_2 0xFB
 #define EXCLUDE_BIT_3 0xF7
 #define EXCLUDE_BIT_4 0xEF
 #define EXCLUDE_BIT_5 0xDF
 #define EXCLUDE_BIT_6 0xBF
 #define EXCLUDE_BIT_7 0x7F

 // Combo masks
 #define MASK_NO_BITS 0x00
 #define MASK_ALL_BITS 0xFF

 // Binary values
 #define ARTIK_PIN_TRUE 1
 #define ARTIK_PIN_FALSE 0

 Use the code in Listing 17-17 to return a true (HIGH) value or false (LOW) value for a specific pin. In
the C language, a false result is represented by an integer having a zero value. A true result is any non-zero
integer. This is convenient because the bits can be masked using a simple Boolean AND operator to get a
 true or false result. This does work but it leads to multiple values for true and avoiding any potential errors
later is best done at source. Wrap the test inside a function that returns a fixed, consistent, and known value
for true . Creating a manifest constant helps to make the code somewhat self-documenting.

 Listing 17-17. Example Bit Testing Function

 #include <stdbool.h>

 #define ARTIK_PIN_TRUE true
 #define ARTIK_PIN_FALSE false

 int pinState(port_value, pin_mask)
 {
 if(port_value & pin_mask)
 {

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

274

 return ARTIK_PIN_TRUE;
 }
 return ARTIK_PIN_FALSE;
 }

 Extend this function wrapping to pass in port names or symbolic identifiers based on the header names
and then map them inside the function with switch() / case mechanisms to further abstract your code and
decouple it from the hardware.

 Port GPX0
 The GPX0 port has a single reserved signal allocated to bit 7. This bit is reserved for internal use as a USB
status sense function by the ARTIK 10 module. It is not used at all in an ARTIK 5 module. Do not change the
functionality of bit 7. Because the default state of the remaining bits is set to be output, they are ready to have
values written to them. Writing a value to a bit that is configured for input ignores any value that attempts
to change the setting. Therefore, as long as a GPIO device driver leaves MODE bit 7 set as INPUT, it could
set any remaining GPIO output pin values with a single DATA write. This has a helpful performance benefit
because a Read ➤ Modify ➤ Write cycle is replaced with a single write.

 Table 17-22 lists the mapping of the bits to the header pins and also lists the signal names from the
Panasonic AXT connectors on the underside of the ARTIK modules. Refer to Chapter 13 for details of the
AXT connector pinouts. Some of those pins drive the Arduino digital pins on the J26 and J27 headers.
The small infinity symbol (∞) denotes an Arduino pin name because they have a numeric label that could
be confused with the physical pin number.

 Table 17-22. GPX0 Pins and Signals Mapped to Bits

 BIT MODE Signal name Header pin Mask

 7 Input DRD_VBUS_SENSE_0 (ARTIK 10) - 0x80

 6 In/Out XEINT_6 J27-8 (∞10) 0x40

 5 In/Out XEINT_5 J27-9 (∞9) 0x20

 4 In/Out XEINT_4 J27-10 (∞8) 0x10

 3 In/Out XEINT_3 J26-1 (∞7) 0x08

 2 In/Out XEINT_2 J26-4 (∞4) 0x04

 1 In/Out XEINT_1 J26-5 (∞3) 0x02

 0 In/Out XEINT_0 J26-6 (∞2) 0x01

 If you use the bitwise AND expression with the 0x7F value to mask your read and write values, it will
exclude any spurious values from bit 7. Use the manifest constants you defined earlier for the pin masks
to set or clear the bits in the value you want to read or write. Although it is somewhat risky, if you have
internally cached the values you are writing out to the pins, write to the DATA register to set new values.
Make sure you know if the cached value has been invalidated or you may introduce a hard-to-find bug. If
you want to preserve existing values and you have not cached them, a Read ➤ Modify ➤ Write is called for.
The relevant addresses for GPX0 are different in the ARTIK 5 and 10 modules and are listed in Table 17-23 .

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

275

 Port GPX1
 The GPX1 port has multiple reserved signals, mixed with some other pins that you may want to configure for
input and output use. Be careful to mask out some of the pins when you are defining the modes or setting
output values on the GPIO pins. Always use Read ➤ Modify ➤ Write actions when changing the MODE or
DATA port settings on this register to preserve the existing values. The modify part of this process involves
some bit masking to protect the current values of the pins so they do not get changed inadvertently.

 Table 17-24 lists the mapping of the bits to the header pins and also lists the signal names from the
Panasonic AXT connectors on the underside of the ARTIK modules. Refer to Chapter 13 for details of the
AXT connector pinouts. Some of those pins drive the Arduino digital pins on the J26 and J27 headers. The
small infinity symbol (∞) denotes an Arduino pin name because they have a numeric label that could be
confused with the physical pin number.

 Table 17-23. Base Addresses for Port GPX0

 Module Address Description

 ARTIK 5 0x11000300 Port base address

 ARTIK 5 0x11000300 MODE control register

 ARTIK 5 0x11000301 DATA value register

 ARTIK 10 0x13400300 Port base address

 ARTIK 10 0x13400300 MODE control register

 ARTIK 10 0x13400301 DATA value register

 Table 17-24. GPX1 Pins and Signals Mapped to Bits

 Bit MODE Signal name Header pin Mask

 7 Output BT_REG_ON - 0x80

 6 In/Out XEINT_14 J27-5 (∞13) 0x40

 5 In/Out XEINT_13 J27-6 (∞12) 0x20

 4 N/C XEINT_12 - 0x10

 3 Output XGPIO17/XT_INT163 - 0x08

 2 Input V_ADP_SENSE - 0x04

 1 N/C XEINT_9 - 0x02

 0 In/Out XEINT_8 J27-7 (∞11) 0x01

 If you use the bitwise AND expression with the 0x73 value to mask your read and write values, it will
exclude any spurious values that affect bits 7, 3 and 2. Use the manifest constants you defined earlier for the
pin masks to set or clear the bits in the value you want to read or write. The relevant addresses for GPX1 are
different in the ARTIK 5 and 10 modules and are listed in Table 17-25 .

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

276

 Table 17-25. Base Addresses for Port GPX1

 Module Address Description

 ARTIK 5 0x11000308 Port base address

 ARTIK 5 0x11000308 MODE control register

 ARTIK 5 0x11000309 DATA value register

 ARTIK 10 0x13400308 Port base address

 ARTIK 10 0x13400308 MODE control register

 ARTIK 10 0x13400309 DATA value register

 Port GPA0
 The GPA0 port is only used on an ARTIK 10 and provides access to control a Universal Asynchronous
Receiver Transmitter (UART). This is mapped to the Arduino RX and TX serial pins. Table 17-26 summarizes
the four connections on this UART.

 Table 17-26. UART Signal Names

 Signal Description

 RTS Request to send

 CTS Clear to send

 TXD Outgoing transmitted data stream

 RXD Incoming received data stream

 The RTS and CTS lines are for hardware handshaking between the two participating serial devices.
In the case of UART1 in an ARTIK 10, the RTS and CTS connections are not brought out to a header
pin so you cannot implement hardware handshaking. Serial interfaces perform very well with software
handshaking. The receiving system can send an XOFF message to the other end, which suspends
transmission until it is told to resume with an XON message. The XOFF and XON messages are only
sent when the receiving data buffers are full and the processing is unable to keep up with the data being
received. Design your serial protocols to be efficient and economical so software flow control is less likely
to be needed.

 If a hardware handshake on the serial interface is necessary, use spare GPIO pins on the header that are
not used for anything else. Then read their data values and use them to set the RTS and CTS lines. However,
this is not a particularly neat solution.

 Four pins are reserved for UART Xu1 and the other four are reserved to control the internal onboard
Bluetooth UART.

 Avoid interfering with the Bluetooth UART as it is managed very well via the Bluetooth drivers and
networking software configuration.

 Table 17-27 lists the mapping of the bits to the header pins and also lists the signal names from
the Panasonic AXT connectors on the underside of the ARTIK modules. Refer to Chapter 13 for details
of the AXT connector pinouts. Some of these pins drive the Arduino digital pins on the J26 and J27
headers.

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

277

 If you use the bitwise AND expression with the 0x0F or 0xF0 values to mask your read and write values, it
will separate your operations so they only apply to one of the UARTS. Use the manifest constants you defined
earlier for the pin masks to set or clear the bits in the value you want to read or write. If you have internally
cached the values you are writing out to the pins, write to the DATA register to set new values. If you want to
preserve existing values and you have not cached them, a Read ➤ Modify ➤ Write is called for. The relevant
addresses for GPA0 in the ARTIK 10 modules are listed in Table 17-28 .

 Table 17-27. GPA0 Pins and Signals Mapped to Bits

 BIT MODE Signal name Header pin Mask

 7 Output Xu1_RTS - 0x80

 6 Input Xu1_CTS - 0x40

 5 Output Xu1_TXD J26-7 (TX->1) 0x20

 4 Input Xu1_RXD J26-8 (RX<-0) 0x10

 3 Output BT_UART_RTSn - 0x08

 2 Input BT_UART_CTSn - 0x04

 1 Output BT_UART_TXD - 0x02

 0 Input BT_UART_RXD - 0x01

 Table 17-28. Base Addresses for ARTIK 10 Port GPA0

 Address Description

 0x14010000 Port base address

 0x14010000 MODE control register

 0x14010001 DATA value register

 Port GPA1
 The GPA1 port is only used on the ARTIK 5 and not on the ARTIK 10 module. The ARTIK 5 module has a
simpler UART interface than the ARTIK 10 and the pins that are not needed for UART control are used for
other purposes. This is mapped to the Arduino RX and TX serial pins.

 Two of the pins are reserved for controlling bus I2C-3 and two others are reserved for serial input/
output for debugging. Because the debugging serial interface is not documented, other than being
listed for this GPIO port, it is not clear where this debugging serial interface is physically connected and
accessible.

 Table 17-29 lists the mapping of the bits to the header pins and also lists the signal names from
the Panasonic AXT connectors on the underside of the ARTIK modules. Refer to Chapter 13 for details
on the AXT connector pinouts. Some of these pins drive the Arduino digital pins on the J26 and J27
headers.

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

278

 A bitwise AND expression with the 0x30 value to mask your read and write values will only access the J26
UART pins. Use the manifest constants you defined earlier for the pin masks to set or clear the bits in the value
you want to read or write. If you have internally cached the values you are writing out to the pins, write to the
DATA register to set new values. If you want to preserve existing values and you have not cached them, a Read ➤
Modify ➤ Write is called for. The relevant addresses for GPA1 in the ARTIK 5 modules are listed in Table 17-30 .

 Table 17-29. GPA1 Pins and Signals Mapped to Bits

 BIT MODE Signal name Header pin Mask

 7 - Not used - 0x80

 6 - Not used - 0x40

 5 Output Xu3_TXD J26-7 (TX->1) 0x20

 4 Input Xu3_RXD J26-8 (RX<-0) 0x10

 3 Output Xi2c3_SCL - 0x08

 2 In/Out Xi2c3_SDA - 0x04

 1 Output DEBUG_TXD - 0x02

 0 Input DEBUG_RXD - 0x01

 Table 17-30. Base Addresses for ARTIK 5 Port GPA1

 Address Description

 0x11400008 Port base address

 0x11400008 MODE control register

 0x11400009 DATA value register

 Port GPA2
 The GPA2 port is used to manage bus I2C-9 on an ARTIK 10. This is an external I2C bus that is brought out to a pair
of Arduino-compatible pins on header J27. There you have access to the SCL and SDA lines for this interface. This
port also has an addition mode of use as an SPI interface. This port is not used on an ARTIK 5 module.

 Table 17-31 lists the mapping of the bits to the header pins and also lists the signal names from the
Panasonic AXT connectors on the underside of the ARTIK modules. Refer to Chapter 13 for details on the
AXT connector pinouts. Some of these pins drive the Arduino digital pins on the J26 and J27 headers.

 Table 17-31. GPA2 Pins and Signals Mapped to Bits

 BIT MODE Signal name Header pin Mask

 7 Output XspiMOSI1 - 0x80

 6 Input XspiMISO1 - 0x40

 5 Output XspiCSn1 - 0x20

 4 Output XspiCLK1 - 0x10

 3 Output XspiMOSI0/XEXT_SCL J27-1 (SCL) 0x08

 2 Input XspiMISO0/XEXT_SDA J27-2 (SDA) 0x04

 1 Output XspiCSn0 - 0x02

 0 Output XspiCLK0 - 0x01

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

279

 A bitwise AND expression with the 0x0C value to mask your read and write values will only operate on
pins J27-1 and J27-2. These pins have several possible modes of operation and can be configured as an SPI
or I2C interface depending on the GPIO pin multiplex mode. Use the manifest constants you defined earlier
for the pin masks to set or clear the bits in the value you want to read or write. If you have internally cached
the values you are writing out to the pins, write to the DATA register to set new values. If you want to preserve
existing values and you have not cached them, a Read ➤ Modify ➤ Write is called for. The relevant addresses
for GPA2 in the ARTIK 10 modules are listed in Table 17-32 .

 Table 17-32. Base Addresses for ARTIK 10 Port GPA2

 Address Description

 0x14010010 Port base address

 0x14010010 MODE control register

 0x14010011 DATA value register

 Port GPD0
 The GPD0 port provides access to the I2C-7 bus interface and the PWM pins on an ARTIK 5. This is known as
the external I2C bus and is brought out to a pair of Arduino-compatible pins on the J27 header. The ARTIK
10 maps the corresponding external interface to bus I2C-9 and supports that via GPA2 . The other pins on
this port are for managing the PWM outputs. The ARTIK 10 maps them to a different port so this discussion
is only relevant to an ARTIK 5 module. Inspecting the device tree source code indicates that bus I2C-7 is
related to the HDMI video output on an ARTIK 10.

 Table 17-33 lists the mapping of the bits to the header pins and also lists the signal names from the
Panasonic AXT connectors on the underside of the ARTIK modules. Refer to Chapter 13 for details on the
AXT connector pinouts. Some of those pins drive the Arduino digital pins on the J26 and J27 headers. The
small tilde symbol (~) denotes a PWM Arduino pin name because they have a numeric label that could be
confused with the physical pin number.

 Table 17-33. GPD0 Pins and Signals Mapped to Bits

 BIT MODE Signal name Header pin Mask

 7 - N/C - 0x80

 6 - N/C - 0x40

 5 - N/C - 0x20

 4 - N/C - 0x10

 3 Output Xi2c7_SCL J27-1 (SCL) 0x08

 2 In/Out Xi2c7_SDA J27-2 (SDA) 0x04

 1 Output Xpwmo_1 J26-2 (~6) 0x02

 0 Output Xpwmo_0 J26-3 (~5) 0x01

 If you use the bitwise AND expression with the 0x0C value to mask your read and write values, it will only
operate on pins J27-1 and J27-2. A mask of 0x03 only operates on the PWM pins. Use the manifest constants
you defined earlier for the pin masks to set or clear the bits in the value you want to read or write. If you have
internally cached the values you are writing out to the pins, write to the DATA register to set new values. If
you want to preserve existing values and you have not cached them, a Read ➤ Modify ➤ Write is called for.
The relevant addresses for GPD0 in the ARTIK 5 modules are listed in Table 17-34 .

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

280

 Port GPB2
 The GPB2 port is allocated to an Arduino-compatible PWM control on an ARTIK 10 module. This
functionality is mapped to GPD0 on an ARTIK 5 and so GPB2 is not used on that module.

 Table 17-35 lists the mapping of the bits to the header pins and also lists the signal names from the
Panasonic AXT connectors on the underside of the ARTIK modules. Refer to Chapter 13 for details of the
AXT connector pinouts. Some of these pins drive the Arduino digital pins on the J26 and J27 headers. The
small tilde symbol (~) denotes a PWM Arduino pin name because they have a numeric label that could be
confused with the physical pin number.

 Table 17-34. Base Addresses for ARTIK 5 Port GPD0

 Address Description

 0x11400028 Port base address

 0x11400028 MODE control register

 0x11400029 DATA value register

 Table 17-35. GPB2 Pins and Signals Mapped to Bits

 BIT MODE Signal name Header pin Mask

 7 - N/C - 0x80

 6 - N/C - 0x40

 5 - N/C - 0x20

 4 - N/C - 0x10

 3 - N/C - 0x08

 2 - N/C - 0x04

 1 output Xpwmo_1 J26-2 (~6) 0x02

 0 output Xpwmo_0 J26-3 (~5) 0x01

 If you use the bitwise AND expression with the 0x03 value to mask your read and write values, you will
only operate on the PWM pins. Use the manifest constants you defined earlier for the pin masks to set or
clear the bits in the value you want to read or write. If you have internally cached the values you are writing
out to the pins, write to the DATA register to set new values. If you want to preserve existing values and you
have not cached them, a Read ➤ Modify ➤ Write is called for. The relevant addresses for GPB2 in the ARTIK
10 modules are listed in Table 17-36 .

 Table 17-36. Base Addresses for ARTIK 10 Port GPB2

 Address Description

 0x14010028 Port base address

 0x14010028 MODE control register

 0x14010029 DATA value register

http://dx.doi.org/10.1007/978-1-4842-2322-2_13

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

281

 Programming Via the Kernel Interface
 An alternative to accessing the GPIO pins via sysfs is to communicate directly with the kernel and use
I/O port addresses. Compared with the user space access via the sysfs regular files, this is a complex
scenario to set up and get working. For a start, it involves direct access to memory, allocation, and reading/
writing binary data. It is sufficiently challenging that there are almost no clear examples of how to do this
in the online resources for GPIO programming. Most of them open a file descriptor on a sysfs regular file.
This is right out there on the so-called “bleeding edge” of technology. There are almost no resources that
cover this kind of programming and so a solution must be synthesized by a process of deduction. A good
understanding of the internal memory architecture of the Linux operating system is helpful. It is fortunate
that the ARTIK OS is based on Linux so the conversion from examples on other platforms is simple. The
inspiration for this example was presented on the eLinux web site and developed by Dom and Gert (Gert van
Loo): http://elinux.org/RPi_Low-level_peripherals .

 The performance gains might be minimal by going down this path. Experienced systems programmers
insist that this is the right approach because there are fewer layers between your application and the bare
metal. There may be a few edge cases where runtime performance is so critical that this technique is better
than using sysfs files. Before assembling the complete example, the individual steps are discussed to
explain how this works.

 These include files are needed to resolve the calls made to the Linux libraries:

 #include <stdio.h>
 #include <stdlib.h>
 #include <fcntl.h>
 #include <sys/mman.h>

 These manifest constants must be defined so the memory allocation can map the memory correctly:

 #define PAGE_SIZE (4*1024)
 #define BLOCK_SIZE (4*1024)

 Confirm the memory page size value with this command:

 getconf PAGE_SIZE

 According to the online resources, the disk block size is 4096. Confirm this by carefully inspecting the
kernel source code or just use the default and assume that it is the right value.

 Decide on a value to use for the GPIO_BASE manifest constant. This should point at a reference location
relative to the virtual memory storage position of the GPIO registers. Use the base address defined for each
of the drivers, which is different for each group of GPIO registers (according to their driver parentage). The
address is also different between the ARTIK 5 and 10 modules. This value is appropriate for an ARTIK 5 to
access ports belonging to the gpi0 driver:

 #define GPIO_BASE 0x11400000

 These examples require a few global variables to be defined to hold handles to resources as they are
created. Storing them in global variables makes the code easier to manage. Define these global variables
near the top of your source file:

 FILE *mem_fd;
 char *gpio_mem;
 unsigned char *gpio_map;
 volatile unsigned *gpio;

http://elinux.org/RPi_Low-level_peripherals

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

282

 The memory in your ARTIK is presented to user space applications via the /dev/mem virtual file. This is
a character access file. Open it to get a file descriptor. Then read and write to it provided your process has the
necessary permissions from the kernel.

 if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC)) < 0)
 {
 printf("cannot open /dev/mem \n");
 exit (-1);
 }

 This uses the open() function, which is a system call rather than the traditional fopen() that user space
applications might normally use on a regular file. After the target file path, the flags are a combination bit-
mask that defines the file that should be opened for reading and writing and that synchronous I/O should be
used to block any further action until the written data has been flushed to the destination.

 The file needs to be mapped into your application memory space. This might seem odd but it is
necessary to fix the location to remove any offsets due to virtual memory management or kernel virtual file
system creation. The location in memory is unpredictable otherwise. It must be in a predictable place so
the hardware registers are mapped correctly. These fragments of code allocate sufficient space, map the
memory and retain a handle to it:

 if ((gpio_mem = malloc(BLOCK_SIZE + (PAGE_SIZE-1))) == NULL)
 {
 printf("allocation error \n");
 exit (-1);
 }

 The next step in the example code is to confirm that the pointer is located on a 4K boundary. This uses
the PAGE_SIZE constant to check it and applies a modulo operator to force it to change if necessary:

 if ((unsigned long)gpio_mem % PAGE_SIZE)
 {
 gpio_mem += PAGE_SIZE - ((unsigned long)gpio_mem % PAGE_SIZE);
 }

 Now that the pointer has been relocated, the memory contents can be mapped to a physical location:

 gpio_map = (unsigned char *)mmap((caddr_t)gpio_mem,
 BLOCK_SIZE,
 PROT_READ|PROT_WRITE,
 MAP_SHARED|MAP_FIXED,
 mem_fd,
 GPIO_BASE);

 The mapping process is then checked and an early exit called if it did not work properly:

 if ((long)gpio_map < 0)
 {
 printf("mmap error %d\n", (int)gpio_map);
 exit (-1);
 }

 Now that everything works, the pointer is stored as a volatile value in the gpio global variable:

 gpio = (volatile unsigned *)gpio_map;

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

283

 Perform a memory dump of the gpio allocated space. This should be a benign process because it only
reads the memory locations and nothing is written at this stage:

 int i;
 printf("Memory dump\n");
 for(i=0; i<10;i++)
 {
 printf("GPIO memory address=0x%08x: 0x%08x\n",
 (unsigned int)gpio+i,
 *(gpio+i));
 }

 There are no published examples for the next step. The port address comes into play at this point. This
must be relative to the address that has been stored in the gpio global variable. If this assumption is wrong, an
offset needs to be added or subtracted to align that base address with the memory image that was just mapped.

 If port address is wrong, any reads and writes go to the incorrect location. Since this approach directly
alters the memory contents in the ARTIK, the results are unpredictable.

 The memory dump displays the address where the GPIO memory has been mapped into your
application. The start of that address range corresponds to the value you defined in the GPIO_BASE manifest
constant because one is mapped onto the other. This could have been defined in a variable that you
dynamically generated based on detecting the ARTIK model or inside a function body with it defined as
a passed-in parameter. In this code, expect to see the memory mapped to 0x00022000 which does yield a
value that looks like a MODE control register value. The next address location at 0x00022001 looks like it might
be values read back from a DATA port. Exactly where it is expected, another MODE register appears at address
 0x00022008 . As an exercise, calculate an offset and modify the formatter in the printf() function so it
displays the same base address as GPIO_BASE .

 When the example is run, the values returned by the MODE address appear to be 64 bits long. This might
be a simple formatting issue with the output.

 Based on the same pointer to the driver base address, use the port and register offsets to compute a
location to read the GPIO value from. Using the volatile pointer as a reference, this C language expression
returns the value of a GPIO register:

 result = *(gpio + {port_base_address_offset} + {port_register_offset});

 To store a value into a GPIO register, use the pointer and compute the offset in the same way, then
assign the new value to that location:

 *(gpio + {port_base_address_offset} + {port_register_offset}) = {new value};

 A Read ➤ Modify ➤ Write would work like this:

 result = *(gpio + {port_base_address_offset} + {port_register_offset});
 result = {some bit manipulated variant of the current value};
 *(gpio + {port_base_address_offset} + {port_register_offset}) = result;

 Prototype Example Code
 The example code that was just explained can be typed in as a single application and compiled for testing.
Build this example in your working directory where you try out code examples. Build test examples in the /
tmp directory where they are cleaned up automatically. You may want to keep them somewhere else so they
can survive after rebooting your ARTIK. Open a new source code file called kernel_gpio.c with your editor.
Then type in the code in Listing 17-18 and save the file.

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

284

 Listing 17-18. Kernel Access to Mapped GPIO Registers

 // Based on an example found at http://elinux.org/

 // Define access to the operating system library functions
 #include <stdio.h>
 #include <stdlib.h>
 #include <fcntl.h>
 #include <sys/mman.h>

 // Define some manifest constants to describe the memory layout
 #define PAGE_SIZE (4*1024)
 #define BLOCK_SIZE (4*1024)

 // Define the base address for the GPIO registers in virtual memory
 #define GPIO_BASE 0x11400000

 // Define the global variables
 int mem_fd;
 char *gpio_mem
 unsigned char *gpio_map;
 volatile unsigned *gpio;

 // Main application body
 int main(int argc, char* argv[])
 {

 // Open the kernel provided memory image
 if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC)) < 0)
 {
 printf("cannot open /dev/mem \n");
 exit (-1);
 }

 // Allocate some space to map the memory into
 if ((gpio_mem = malloc(BLOCK_SIZE + (PAGE_SIZE-1))) == NULL)
 {
 printf("allocation error \n");
 exit (-1);
 }

 // Adjust the pointer to locate it on a 4K boundary
 if ((unsigned long)gpio_mem % PAGE_SIZE)
 {
 gpio_mem += PAGE_SIZE - ((unsigned long)gpio_mem % PAGE_SIZE);
 }

 // Map the kernel memory image into application memory space
 gpio_map = (unsigned char *)mmap((caddr_t)gpio_mem,
 BLOCK_SIZE,
 PROT_READ|PROT_WRITE,
 MAP_SHARED|MAP_FIXED,

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

285

 mem_fd,
 GPIO_BASE);

 // Now check that the mapping worked
 if ((long)gpio_map < 0)
 {
 printf("mmap error %d\n", (int)gpio_map);
 exit (-1);
 }

 // Preserve the mapped GPIO pointer
 gpio = (volatile unsigned *)gpio_map;

 // Dump out the contents of the mapped GPIO memory
 int i;
 printf("Memory dump\n");
 for(i=0; i<10;i++)
 {
 printf("GPIO memory address=0x%08x: 0x%08x\n",
 (unsigned int)gpio+i,
 *(gpio+i));
 }

 // Return a result code
 return 0;
 }

 Compile and run your test application with these commands. You should see some output from your
application that looks like Listing 17-19 . Expect it to be different between an ARTIK 5 and 10 because their
GPIO structure is not the same.

 Listing 17-19. Example Output From the Kernel GPIO Test Application

 gcc -Wall kernel_gpio.c -o kernel_gpio
 ./kernel_gpio

 Memory dump
 GPIO memory address=0x00022000: 0x22222222
 GPIO memory address=0x00022001: 0x000000b3
 GPIO memory address=0x00022002: 0x00000000
 GPIO memory address=0x00022003: 0x00000000
 GPIO memory address=0x00022004: 0x00000000
 GPIO memory address=0x00022005: 0x00000000
 GPIO memory address=0x00022006: 0x00000000
 GPIO memory address=0x00022007: 0x00000000
 GPIO memory address=0x00022008: 0x00223322
 GPIO memory address=0x00022009: 0x0000003d

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

286

 GPIO Pin Multiplexing
 GPIO pin multiplexing allows the GPIO interfaces to be reconfigured for a variety of different purposes. This
helps the system designers when they create the chips because now they can make generic GPIO hardware
that can be reconfigured at startup. The support for this is relatively new, incomplete, and somewhat
primitive but extremely powerful. Even at this early stage, useful functionality is already available via the
kernel debugging virtual file system. Read the kernel documentation for details of how this all works inside
the ARTIK.

 GPIO pins can be set into one of eight possible multiplexed function states. This is managed by a
pin-multiplexing chip that is deeply integrated into the SoC core of your ARTIK module. Reading the contents
of the /proc/device-tree/compatible file on a Commercial Beta ARTIK 5 module reveals that it is a samsun
g,artik5samsung,exynos3250 device. Searching the online kernel sources reveals the exynos3250-pinctrl.
dtsi file, which the kernel uses to build the pin-multiplexing configuration at boot time from the device tree.

 Each multiplexed function causes the GPIO pin behavior to be reconfigured as it is selected. A lot of the
possible combinations are unused at present. The pin behaviors are grouped logically under each function.
The ARTIK 5 and 10 data sheets describe eight alternative multiplexed function states with the default being
normal GPIO operation. Table 17-37 lists the different functions that the GPIO pins can be configured to.

 Table 17-37. Multiplexed GPIO Pin Functions

 Function Pin behavior

 F0 Input mode for detecting switches and sensors

 F1 Output mode for setting control pins in peripherals, turning on lights, starting motors

 F2 Wakeup interrupts and I2C bus signals

 F3 Mostly reserved for future use but some pins used for PCM audio output

 F4 Mostly reserved for future use but some pins used for debug tracing

 F5 Mainly used for debugging

 F6 Mainly used to control the Multi-Function-Codec

 F7 External interrupts

 /sys/kernel/debug/pinctrl
 There are three useful directories in the debugfs file system relevant to GPIO pin multiplexing. They are mounted
at /sys/kernel/debug/pinctrl on each of the ARTIK modules. They are global property files and containers for
the two devices instantiated by the pinctrl driver to manage GPIO pins. User space applications can access all of
them via the sysfs virtual file system. They are not named exactly the same for an ARTIK 5 and 10 because they
are located at different memory base addresses in each module. Table 17-38 lists the directories for both modules.

 Table 17-38. Kernel Debug Support for pinctrl Devices

 ARTIK module Path

 5/10 /sys/kernel/debug/pinctrl/

 5 /sys/kernel/debug/pinctrl/11400000.pinctrl

 5 /sys/kernel/debug/pinctrl/11000000.pinctrl

 10 /sys/kernel/debug/pinctrl/13400000.pinctrl

 10 /sys/kernel/debug/pinctrl/14010000.pinctrl

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

287

 Each of these directories contains a collection of readable files with useful configuration data about
the GPIO structure. Use the cat command to view their contents. You may be able to exploit them to
dynamically configure the behavior of your application as it uses the GPIO ports.

 If you inspect the contents of the /sys/kernel/debug/pinctrl directory, there are some files that describe
the current mapping of the GPIO pins and a pair of directories that reflect the two pinctrl devices. If you cat
the files to your screen, the current state of the GPIO pins and what they are used for becomes much clearer.
The pinctrl-devices , pinctrl-handles , and pinctrl-maps property files tell you a great deal.

 The pinctrl devices in /sys/kernel/debug/pinctrl reflect the internal properties for each pinctrl
kernel object. They contain the files listed in Table 17-39 .

 Table 17-39. GPIO Configuration Interface

 Property Purpose

 gpio-ranges Describes which GPIO pin numbers are managed by each GPIO port owned by that
driver. Aggregate the contents this file in both device objects to see the entire range.
These port numbers become important of you want to find the registers that control
each pin when you program GPIO pins via the kernel.

 pinconf-config Displays the most recent change to GPIO pin states. Write to this property to set the
state of a pin. Identify the device, pin, and state that you want to set.

 pinconf-groups Lists the grouping of GPIO pin configurations, which related to the port names used
in kernel programming

 pinconf-pins List the pins by index number and shows various group membership and other
properties

 pingroups Lists the groups with the pins that are members of each one

 pinmux-functions Debug list of pin multiplex functions as currently configured

 pinmux-pins Lists the pins in numbered index order and describes what they are currently
allocated to

 pins Lists the pins with their state and value properties

 Modifying the GPIO Pin Multiplexed State
 The only one of the regular files in the pinctrl device container that is writable is the pinconf-config file.
This is part of the GPIO configuration support, which lets you change the configuration of a GPIO interface.
The user space interface to this via sysfs is at a very early stage of development, so for now access it via the
 debugfs virtual file system mounted at /sys/kernel/debug . This is likely to change in subsequent kernel
releases and at some point the control files will be placed in a more suitable location. The current behavior
is outlined here for you to start learning about it but arbitrarily altering GPIO pin configurations is likely to
cause severe problems. You might make some important internal devices inoperable if you alter the GPIO
that controls them. To alter the contents of this file, echo a very specific command format to it. Refer to this
kernel source file for details in the comments for the pinconf_dbg_config_write() function: https://
github.com/torvalds/linux/blob/master/drivers/pinctrl/pinconf.c .

 Only the modify command is supported at this time. Later, the kernel developers plan to implement the
 add and delete tools. The format of your configuration requests would be based on an echo command:

 echo "modify {target} {device-name} {state} {name}" > /sys/kernel/debug/pinctrl/{device}/
pinconf-config

https://github.com/torvalds/linux/blob/master/drivers/pinctrl/pinconf.c
https://github.com/torvalds/linux/blob/master/drivers/pinctrl/pinconf.c

CHAPTER 17 ■ GENERAL PURPOSE INPUT/OUTPUT (GPIO)

288

 where {target} is config_pin or config_group . The {device-name} {state} {name} values should be
consistent with the pinctrl maps you can obtain by inspecting other files in this part of the tree. Later
 config_mux and other options will be supported. The file path where this is written needs to identify the
device (A or B).

 Learn More About pinctrl Multiplexing
 Read the following kernel documentation files for more insight into this advanced GPIO pin multiplexing
configuration technique. The bindings document is particularly interesting as it lists the generic properties
that expose very sophisticated GPIO configuration opportunities. The DTSI source file for the Exynos3250
device tree describes the pinctrl values for the GPIO pins that the kernel establishes at boot time.

 https://developer.artik.io/documentation/developer-guide/gpio-mapping.html
 https://developer.artik.io/documentation/developer-guide/kernel-gpio.html
 www.artik.io/developer/documentation/tutorials/using-gpio-on-artik-10.html
 www.kernel.org/doc/Documentation/devicetree/bindings/gpio/gpio.txt
 www.kernel.org/doc/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
 www.kernel.org/doc/Documentation/gpio/gpio.txt
 www.kernel.org/doc/Documentation/gpio/sysfs.txt
 www.kernel.org/doc/Documentation/pinctrl.txt
 www.kernel.org/doc/man-pages/online/pages/man2/mmap.2.html
 https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-pinctrl.dtsi
 https://github.com/torvalds/linux/tree/master/Documentation/arm/Samsung-S3C24XX
 http://falsinsoft.blogspot.co.uk/2012/11/access-gpio-from-linux-user-space.html
 http://free-electrons.com/kerneldoc/latest/devicetree/bindings/pinctrl/samsung-pinctrl.txt

 Explore the contents of the /sys/kernel/debug/pinctrl directory with the cat command. It tells you
how the pinctrl driver maps to the GPIO hardware chips.

 Read the ARTIK documentation about using GPIO and the programmable I/O pins. Also check out
the links to the kernel documentation and the memory-mapping functions. Read the Samsung ARTIK data
sheets, developer board schematics, and product briefs for other insights into the GPIO behavior. The ARTIK
OS source code may also provide some helpful insight, although the most useful material is in the kernel
source code. Because the audio codec chip is controlled by GPIO, there may also be some interesting clues
in the publicly available ALSA library and SDK toolkit source code.

 Summary
 Understanding GPIO and pin control interfaces immediately gives your application the means to interact
with the real world. Even though GPIO is a simple on/off control of a pin, you can accomplish some amazing
things with it.

https://developer.artik.io/documentation/developer-guide/gpio-mapping.html
https://developer.artik.io/documentation/developer-guide/kernel-gpio.html
http://www.artik.io/developer/documentation/tutorials/using-gpio-on-artik-10.html
http://www.kernel.org/doc/Documentation/devicetree/bindings/gpio/gpio.txt
http://www.kernel.org/doc/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
http://www.kernel.org/doc/Documentation/gpio/gpio.txt
http://www.kernel.org/doc/Documentation/gpio/sysfs.txt
http://www.kernel.org/doc/Documentation/pinctrl.txt
http://www.kernel.org/doc/man-pages/online/pages/man2/mmap.2.html
https://github.com/torvalds/linux/blob/master/arch/arm/boot/dts/exynos3250-pinctrl.dtsi
https://github.com/torvalds/linux/tree/master/Documentation/arm/Samsung-S3C24XX
http://falsinsoft.blogspot.co.uk/2012/11/access-gpio-from-linux-user-space.html
http://free-electrons.com/kerneldoc/latest/devicetree/bindings/pinctrl/samsung-pinctrl.txt

289© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_18

 CHAPTER 18

 Analog Input and IIO

 Analog input is used to read a varying signal level from a sensor, which is processed through an analog-to-
digital converter (ADC) to generate a raw numeric value. This raw value needs to be scaled to the correct
units of measure. Analog input is taken through the ADC pins on the J24 header. ARTIK 5 modules support
only two channels of ADC input while the ARTIK 10 supports six.

 Reading Analog Inputs
 The analog inputs are managed under the general class of IIO devices. There is an emerging and important
subsystem gradually being developed around the management of analog values. The IIO subsystem started out
as a prototype developed by Jonathan Cameron but it has now been adopted into the main Linux kernel project.

 When you interact with sensors, everything comes down to measuring a value or detecting a binary
state. For simple binary on/off states, use the GPIO pins because they are intended for single bit switching
tasks. However, GPIO cannot read varying analog voltages so the IIO subsystem has been developed to help
make things easier to implement.

 Your application can read the incoming values on the analog inputs with simple IIO function calls.
These inputs are completely separate to the digital pins. The input is connected to a 12-bit analog-to-digital
converter (ADC) which yields a numeric value between 0 and 4096. This is the granularity or resolution of
the analog input. The value is measured relative to a reference voltage, which is 1.8v in an ARTIK module.
Apply a scaling factor to convert the incoming sample value to the correct units of measure that you need.

 The analog value is determined by a valuator control or sensor. Physical sensors are often based around
changes in electrical resistance, which translates to your application being able to measure a voltage on an
analog input pin. The modern sensor components have a lot of input intelligence and present meaningful
values mapped into a range the Arduino and ARTIK modules can easily understand.

 ■ Note Arduino devices typically use a 10-bit ADC resolution (1024 steps) and the ARTIK uses a 12-bit ADC
resolution (4096 steps). If you are porting code from an earlier Arduino project, check that the scaling factor is
correct before you build the application. Determining the correct algorithm for working out scaling factors is
covered later in this chapter.

 Analog ADC Pin Connections
 The ARTIK 5 supports two 12-bit ADC input pins. This is enough to use the ARTIK to make a stereo
recording, but more channels are needed to build a surround sound-compatible solution. The ARTIK 10 is
better suited to that scenario. Figure 18-1 shows the J24 connector for a Type 5 and 10 developer reference

CHAPTER 18 ■ ANALOG INPUT AND IIO

290

boards. Although the pins are reserved for six ADC inputs on a Type 5 board, you can see that the signal
conditioning components are only present for the two channels that the ARTIK 5 supports.

J24

A0

A1

A2

A3

A4

A5

1

2

3

4

5

6

 Figure 18-1. Analog input pins (J24)

 Table 18-1. ADC Pins on Developer Reference Board Jumpers

 ARTIK Name Label Type 5 Type 10 Aux

 ADC0 A0 J24-1 J24-1 J510-2

 ADC1 A1 J24-2 J24-2 J510-3

 ADC2 A2 N/A J24-3

 ADC3 (non-existent) N/A N/A N/A

 ADC4 (non-existent) N/A N/A N/A

 ADC5 A3 N/A J24-4

 ADC6 A4 N/A J24-5

 ADC7 A5 N/A J24-6

 The ARTIK 10 supports six 12-bit analog input channels. This is fine for a 5•1 surround system design
to record the audio. Interestingly, the pin names in the Samsung documentation suggest that there may be
other inputs that are not yet brought out to an accessible connector. Table 18-1 summarizes the pins on the
Type 5 and Type 10 developer reference boards. The label column is the symbolic name of the connectors.
The physical pin numbers on each connector are described in the other columns.

CHAPTER 18 ■ ANALOG INPUT AND IIO

291

 According to the developer board schematic diagrams, physical pins J24-1 and J24-2 are connected to
auxiliary test points on connector J510. Connect to either of these locations for ADC0 and ADC1.

 ■ Note The labeling of A0 to A5 on the developer reference boards should not be confused with the ADC
numbers used internally by the ARTIK. This is not a one-to-one mapping. Refer to Table 18-1 to see how the two
environments are reflected.

 Analog ADC Input with Arduino IDE
 On the Type 5 and Type 10 developer reference boards, header pins J24-1 and J24-2 are available. On the Type 10,
J24-3, J24-4, J24-5, and J24-6 can also be used as analog inputs with the Arduino IDE. The analogRead() function,
explained in the “ADC Interface” section of the Samsung GPIO Programming Guide , makes it very easy to use.

 Use the code shown in Listing 18-1 to collect temperature sensor data every second using the
 analogRead() function. Install a TMP36 temperature sensor and wire it to your ADC input (analog data
comes from the middle pin.)

 Listing 18-1. Example ADC Input With Arduino IDE

 #include <stdio.h>

 // Declare and initialisevariables
 int inputPin = 1;
 int currentRun = 0;
 const int MAX_RUNS = 10;

 int main(void)
 {

 while(currentRun < MAX_RUNS){

 int sensorVal = analogRead(inputPin);

 printf("current sensor is %f\n", sensorVal);

 /* Convert sensor data to temperature */

 currentRun++;

 sleep(1);

 }
 }

 Using sysfs
 Notwithstanding the fact that Samsung intend to release a developer library to make the API connection
easier, you can still use the sysfs virtual file system to access the ADC pins directly. The kernel presents
these pins as regular files to access either from the command line shell or with a high-level language. Open
and read or write to the files. Kernel-level monitoring of the ADC pins is also possible, but may not provide a
significant advantage over using the standard Linux virtual files provided by sysfs .

CHAPTER 18 ■ ANALOG INPUT AND IIO

292

 Working Out the Base Address
 The sysfs virtual file system base address for analog pins is different for the ARTIK 5 and 10 modules. This is
important if you plan to use the same code on ARTIK 5 and 10 modules because your application crashes if you
attempt to use the wrong one. Modify your shell scripts and C language application source code when you move
between platforms. Alternatively, use a more dynamic automatic detection method. Samsung recommends
using a manifest constant in C language applications in their developer resources on this web page:

 https://developer.artik.io/documentation/developer-guide/kernel-gpio.html .

 A manifest constant does work well enough for many scenarios. However, because it is a static
approach, it must be modified when the base address changes. This may happen when the OS is upgraded,
at which point your application will cease to work. For an ARTIK 5, define your manifest constant with this
line of pre-processor code and use this as a basis to build the path to the raw voltage input file path name:

 #define SYSFS_ADC_PATH "/sys/devices/126c0000.adc/iio:device0/"

 The equivalent line for an ARTIK 10 would be this:

 #define SYSFS_ADC_PATH "/sys/devices/12d10000.adc/iio:device0/"

 Note the different hexadecimal-coded hardware address. Because this value is accessible as a virtual
file, it can be exploited very easily with any language that can open regular files for reading and writing.
Modify the file path to accommodate the different base path for an ARTIK 10 and use write values to the
virtual file to set pin values. Table 18-2 shows the alternative file system locations.

 Reading a Pin Voltage
 To read a pin voltage, locate the address of the ADC for the pin you want to read. Include the pin number
within the virtual file system path you compose. This illustration is based on an ARTIK 5 module; alter the
address to use this example on an ARTIK 10:

 /sys/devices/126c0000.adc/iio:device0/in_voltage{pin_number}_raw

 The complete path to the input for pin 1 is this:

 /sys/devices/126c0000.adc/iio:device0/in_voltage1_raw

 Listing 18-2 shows how to acquire the raw voltage value from the bash command line.

 Listing 18-2. Reading an ADC Pin Voltage with bash

 MY_ADC_PATH="/sys/devices/126c0000.adc/iio:device0/in_voltage1_raw"

 MY_ADC_VALUE=`cat ${MY_ADC_PATH}`

 Table 18-2. Analog Pin Base Addresses

 Module Virtual file system address

 ARTIK 5 /sys/devices/126c0000.adc/iio:device0/in_voltageX_raw

 ARTIK 10 /sys/devices/12d10000.adc/iio:device0/in_voltageX_raw

https://developer.artik.io/documentation/developer-guide/kernel-gpio.html

CHAPTER 18 ■ ANALOG INPUT AND IIO

293

 echo "ADC channel 1 has value: ${MY_ADC_VALUE}"

 ADC channel 1 has value: 0

 Taking this very simple example and translating it to the C language is shown in Listing 18-3 . Type it in,
compile it, and run the application to prove it works. This version uses the base address for an ARTIK 5 module. If
you have an ARTIK 10, change the base address to the correct value or your application will throw a segmentation
fault. Put some avoidance code around the fopen() call to exit with an error status to make it more robust.

 Listing 18-3. Reading an ADC Pin Voltage with the C Language

 #include <stdio.h>

 int main(int argc, char *argv[])
 {
 char myResult[6];
 FILE *myFp;

 myFp = fopen("/sys/devices/126c0000.adc/iio:device0/in_voltage1_raw", "r");

 if(fgets(myResult, 6, myFp) == NULL)
 {
 return(2);
 }

 fclose(myFp);

 printf("ADC channel 0 has value: %s\n", myResult);

 return(0);
 }

 Automatic Base Addresses in bash
 If you know the symbolic name of the device you want to find the base address for, automatically detect the
value and decouple your application from the changes that happen when you move code from an ARTIK
5 to an ARTIK 10 or perhaps when the operating system is upgraded. This fragment of bash command line
code tells you the base address for the ADC device driver on your ARTIK. A single hexadecimal number is
displayed (this example is from an ARTIK 5).

 ls /sys/devices | grep adc$ | cut -d'.' -f1
 126c0000

 Call this command during the initialization of bash -scripted applications to detect the base address of the
chosen device. One useful feature of the bash shells lets you call a sequence of commands and substitute the
resulting value in a variable assignment. This variable is an indirect reference to the base address throughout
the rest of the script. The technique is called back ticking. It encloses the command in back tick quotes (̀) and
evaluates the command at runtime. Then it substitutes the result in place of the back-ticked code.

 MY_ADC_BASE_ADDRESS=`ls /sys/devices | grep adc$ | cut -d'.' -f1`

CHAPTER 18 ■ ANALOG INPUT AND IIO

294

 Use the echo command to display the variable on the screen to check that it was assigned, like so:

 echo $MY_ADC_BASE_ADDRESS

 Now substitute this variable whenever the base address where the iio:device0 lives is required. This
command lists the contents of the base addressed ADC object container, revealing the accessible properties.
The variable is expanded by the shell as it parses the command you typed. The contents of the variable are
substituted in its place before evaluating the command for execution.

 ls -l /sys/devices/$MY_ADC_BASE_ADDRESS*

 lrwxrwxrwx 1 root root 0 May 25 05:45 driver -> ../../bus/platform/drivers/exynos-adc
 drwxr-xr-x 3 root root 0 May 25 05:42 iio:device0
 -r--r--r-- 1 root root 4096 May 25 05:45 modalias
 drwxr-xr-x 2 root root 0 May 25 05:45 power
 lrwxrwxrwx 1 root root 0 May 25 05:42 subsystem -> ../../bus/platform
 -rw-r--r-- 1 root root 4096 May 25 05:42 uevent

 ■ Note If you use variable substitution, it is sometimes useful to enclose the variable name in curly braces
({ }) to give the bash parser a bit more help in understanding the syntax of your command. Be careful if you
nest expressions containing quote characters. If the different kinds of quotes are nested properly, everything
works, but be aware of the different way that bash sometimes treats single and double quoted strings. It may
affect the order in which things are evaluated. You may need multiple layers of escape characters to deliver a
command intact to its destination.

 Construct the path to the voltage pins and store it in a variable. The pin numbers can also be managed
as variables. Assign the result to another variable for use elsewhere in the script by using the back tick
technique. Listing 18-4 shows an example script to demonstrate the principle.

 Listing 18-4. Reading a Voltage With a Shell Script

 MY_ADC_BASE_ADDRESS=`ls /sys/devices | grep adc$ | cut -d'.' -f1`
 ADC_CHANNEL=0
 RAW_VOLTAGE="/sys/devices/${MY_ADC_BASE_ADDRESS}.adc/iio:device0/in_voltage${ADC_CHANNEL}_raw"

 MY_RESULT=`cat ${RAW_VOLTAGE}`

 echo $MY_RESULT

 For an ARTIK 5, the ADC_CHANNEL value can be set to 0 or 1 . For an ARTIK 10, the value can be 0 , 1 , 2 , 5 ,
 6 , or 7 . There are no ADC3 and ADC4 channels. This numbering is different from the conventions used when
programming in the Arduino IDE.

 Automatic Base Addresses in the C Language
 Creating a small function for dynamically generating base addresses is helpful in a variety of ways inside
your application. Create a framework or library from these small component functions. Then include it in all
your ARTIK projects to save having to write the same code every time.

CHAPTER 18 ■ ANALOG INPUT AND IIO

295

 Listing 18-5 provides the source code for the testing application and the function body. It returns the base
address in a string buffer that is passed by reference. A successful result is indicated by a return value of zero
(0). A return value of 1 indicates that the process file failed to open. If this happens, it might indicate a problem
with your account privileges because this should work without any problems. A return value of 2 indicates that
the process generated no resulting data. At the top of the source file containing your function you must include
the header files for the standard library calls you intend to use. Define the function prototype first in a header
file when building a library. The compiler can then correctly determine the function prototype. The buffer
length is defined with a manifest constant so it can be used in several places but only modified in one when it
needs to change. Open a new source file called testbaseaddress.c with your vi editor and type in the code.

 Listing 18-5. Function Example - getBaseAddress()

 // Include standard library header files
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 // Declare the function prototype
 int getBaseAddress(char* aSymbolicName, char *aResultString);

 // Declare the manifest constants
 #define BUFFER_LENGTH 16

 // Main body of the test application that calls the helper function
 int main(int argc, char *argv[])
 {

 char myBaseAddress[BUFFER_LENGTH];
 int myResult;
 int ii;

 myResult = getBaseAddress("adc", myBaseAddress);

 printf("Base address for ADC is: %s with result %d:\n\n",
 myBaseAddress,
 myResult);

 // Display a character by character dump of the result
 printf("------\n");
 for(ii=0; ii<strlen(myBaseAddress); ii++)
 {
 printf("%d - %d\n", ii, myBaseAddress[ii]);
 }
 printf("------\n");

 return 0;
 }

 // Helper function to get a base address
 int getBaseAddress(char* aSymbolicName, char *aResultString)
 {

CHAPTER 18 ■ ANALOG INPUT AND IIO

296

 FILE *fp;
 char myCommand[64];

 // Manufacture a command line from the first argument
 sprintf(myCommand,
 "ls /sys/devices | grep %s$ | cut -d'.' -f1",
 aSymbolicName);

 // Open the command for reading
 fp = popen(myCommand, "r");

 if (fp == NULL)
 {
 return(1);
 }

 // Read and output the result
 if(fgets(aResultString, BUFFER_LENGTH, fp) == NULL)
 {
 return(2);
 }

 // Close and quit
 pclose(fp);

 // Clean off the trailing line feed character
 // by shortening the string by one character
 aResultString[strlen(aResultString)-1] = 0;

 return(0);
 }

 A for() loop is included to dump the characters out to see whether there are any spurious meta-
characters included. With this debugging output, it was apparent that the child process was adding a line feed
to the result being returned. Adding a line at the end of the function to strip this off solved the problem. Always
check the values you are getting back from your functions and clean them up before returning them to the
caller. Now compile and run the example with these commands to see the base address of the ADC interface:

 gcc -Wall testbaseaddress.c -o testbaseaddress

 ./testbaseaddress

 ■ Note When you use the printf() function to output a line of text in the ARTIK, be sure to use \n to create
your newline breaks because \r does not work in the UNIX command line environment and the output from the
 printf() function will be suppressed.

 Now that you have a useful function to get the base address, you may choose to store it in a local
variable if you plan to exploit it more than once. This saves the time penalty of frequently accessing the
command line to retrieve the same information repetitively.

CHAPTER 18 ■ ANALOG INPUT AND IIO

297

 Another strategy is to store the value in a global variable. There are advantages and disadvantages to
using global variables. Provided they are managed carefully, they can be very useful. Storing the values
in named properties in a struct , which is referenced from a single global variable, creates the smallest
footprint in the global namespace.

 Reading an ADC Value
 Use that base address value to construct a path to the target ADC channel. Taking the example code from the
Samsung developer web page and adding an auto-detecting mechanism leads to the code in Listing 18-6 .

 Listing 18-6. Reading the ADC Raw Voltage Value

 #include <stdio.h>

 int analogRawRead(int aPinNumber)
 {
 FILE *fd;
 char fName[64];
 char val[8];
 int myResult;
 char myBaseAddress[BUFFER_LENGTH];

 myResult = getBaseAddress("adc", myBaseAddress);

 // Open value file
 sprintf(fName,
 "/sys/devices/%s.adc/iio:device0/in_voltage%d_raw",
 myBaseAddress,
 aPinNumber);

 if((fd = fopen(fName, "r")) == NULL)
 {
 printf("Error: cannot open analog voltage value\n");
 return 0;
 }

 fgets(val, 8, fd);
 fclose(fd);

 return atoi(val);
 }

 ■ Note The data sheets suggest that the ARTIK modules continuously sample these inputs and cache the readings.
When you request the readings, you are picking up the most recent sample and not triggering a fresh sampling action.
This is a neat way to decouple the performance of your application code from the sampling process.

CHAPTER 18 ■ ANALOG INPUT AND IIO

298

 Scaling the Raw Value
 This raw value that is read from the pin must be scaled to yield a useful voltage value. There are
several factors that can affect how you scale that value. The reference voltage and the resolution of the
measurements calibrate the conversion factor. The basic formula is based on the relationship between the
measured voltage and the reference. The number of discrete values is determined by the resolution, which
depends on the number of bits in your sample values.

 SampleValue = (Vin/VRef) * Resolution

 The data sheets for the ARTIK 520 and 1020 describe the pinouts as a 1.8v circuit, which we can
substitute into the formula as VRef . The accuracy of the samples is measured to 12 bits, so the resolution is 2
raised to the power 12 (4096). Divide the reference voltage by the resolution to determine the value of each
increment. This value can then be used to multiply the sampled value to arrive back at the measured voltage.
To arrive at a usable value for Vin , the formula needs to be transposed to yield the correct result. Substituting
the right values yields this. Multiply the scale factor by 1000 to calculate a value in milliVolts instead of Volts.

 Vin = SampleValue * (VRef / Resolution)
 Vin = SampleValue * (1.8 / 4096)
 Vin = SampleValue * 0.000439453125
 mVin = SampleValue * 0.439453125

 Encapsulate that conversion in another function to call the earlier one to obtain either value elsewhere
in your application. Listing 18-7 returns a pre-scaled result in milliVolts.

 Listing 18-7. Reading the Scaled ADC Input Voltage

 float analogRead(int aPinNumber)
 {
 int myRawVoltage;

 myRawVoltage = analogRawRead(int aPinNumber);

 return (myRawVoltage * 0.439453125);
 }

 Read the following useful PDF files and web pages for a full explanation of how the ADC sample
value scaling factors work and refer to the descriptions of the ADC circuits in the ARTIK data sheets for the
electrical properties and sampling rates, which are different in the ARTIK 520 and 1020 modules:

 http://tayloredge.com/reference/Electronics/ADCDAC/adcscaler.pdf
 www.infoplc.net/files/descargas/rockwell/infoplc_net_plc_analog.pdf
 www.ni.com/white-paper/4806/en/
 https://en.wikipedia.org/wiki/Analog-to-digital_converter

 Using the /sys/bus Devices
 An alternative and as yet undocumented approach to reading these ADC inputs is possible by accessing
them through a different path. Studying the internals of the kernel and how it maps devices into user space
can sometimes reveal useful hidden knowledge. Occasionally, you may get some inspiration for a new
approach to coding your application. The sysfs virtual file system built by the kernel places copies of the
ADC devices at this location in the bus hierarchy:

 /sys/bus/iio/devices/iio:device0

http://tayloredge.com/reference/Electronics/ADCDAC/adcscaler.pdf
http://www.infoplc.net/files/descargas/rockwell/infoplc_net_plc_analog.pdf
http://www.ni.com/white-paper/4806/en/
https://en.wikipedia.org/wiki/Analog-to-digital_converter

CHAPTER 18 ■ ANALOG INPUT AND IIO

299

 Because this is a symbolic link to the path described in the Samsung developer documentation, it is the
same device. So you can access the same device via the bus hierarchy without needing to decode the base
address. All of the maintenance overheads required to cope with managing base addresses can be avoided if
this works in a consistent manner in all ARTIK modules and is stable from one release of Fedora to another.
The shell script for reading voltages becomes much more compact. Monitor the evolution of the sysfs
virtual file system as the OS is upgraded because the kernel maintainers are still planning some important
changes to it. See the alternative coding in Listing 18-8 .

 Listing 18-8. Reading a Voltage From a Shell Script

 ADC_CHANNEL=0
 RAW_VOLTAGE="/sys/bus/iio/devices/iio:device0/in_voltage${ADC_CHANNEL}_raw"

 MY_RESULT=`cat ${RAW_VOLTAGE}`

 echo "ADC channel 0 has value: ${MY_RESULT}"

 The C Language solution becomes correspondingly simpler. This is shown in Listing 18-9 and should
work on the ARTIK 5 and 10 modules unchanged.

 Listing 18-9. Reading an ADC Raw Voltage Value Via the Bus Address

 #include <stdio.h>

 int analogRawRead(int aPinNumber)
 {
 FILE *fd;
 char fName[64];
 char val[8];

 // Open value file
 sprintf(fName,
 "/sys/bus/iio/devices/iio:device0/in_voltage%d_raw",
 aPinNumber);

 if((fd = fopen(fName, "r")) == NULL)
 {
 printf("Error: cannot open analog voltage value\n");
 return 0;
 }

 fgets(val, 8, fd);
 fclose(fd);

 return atoi(val);
 }

 Accessing ADC without needing to know the base address leads to the name property within the
 iio:device0 object. The base address is there in case it is needed. This command displays the base address
for the current ADC interface. According to the official IIO documentation, this property should describe the
chip being used. Check that it has not moved after upgrading the OS:

 cat /sys/bus/iio/devices/iio:device0/name
 126c0000.adc

CHAPTER 18 ■ ANALOG INPUT AND IIO

300

 About the New IIO Subsystem
 The ADC support is being evolved as part of a subsystem in Linux. The IIO subsystem is being developed
by Jonathan Cameron. This work started in 2009 and is adding new and more advanced features with each
release. It became part of the Linux kernel core in 2012.

 IIO is designed from the ground up to be a powerful ADC support tool. Devices such as accelerometers,
light sensors, and gyroscopes all present their measurements as analog values. The measurement must be
acquired and scaled from the raw values to the correct units of measurement.

 IIO is intended to abstract the differences between sensors manufactured by various manufacturers
and currently supports nearly 200 devices. The intention is to create a consistent interface for developers to
access hardware sensors like the following:

• Accelerometers

• Magnetometers

• Gyroscopes

• Pressure

• Humidity

• Temperature

• Light

• Proximity

• Activity

• Chemicals

• Heart rate monitors

• Potentiometers and rheostats

 Each IIO device knows how many channels are supported, what modes it can operate in, and what hooks
are available for the driver. Your application can access all this information through the C language structs .

 The currently defined modes are managed through manifest constants, which define whether the
device supports triggers and whether they are hardware or software implemented. The configuration can
also include a buffer for streamed data. The driver hooks include these features:

• Raw one-shot reads

• Raw continuous reads of streamed values

• Scaled value reads

• State change triggered functions

• Time scheduled functions

 There are currently two kinds of buffering strategies. One is a First In, First Out (FIFO) buffer, which
may become full and unable to process more incoming data. This can either lead to blocking or data loss.
The other kind of buffer is a ring buffer. This has infinite capacity and cannot block, but old data may be
overwritten by newer incoming values.

CHAPTER 18 ■ ANALOG INPUT AND IIO

301

 Switching on these advanced buffering capabilities introduces new entities into the device container. Those
are regular files just like all the other sysfs properties and you interact with them with a read or write operation.

 This is still a work in progress within the Linux kernel and the ARTIK engineers are still working on
driver implementations in their own labs. The IIO project documentation describes an ideal world where
everything is already working. See the following links for more information:

 http://events.linuxfoundation.org/sites/events/files/slides/lceu15_baluta.pdf
 https://archive.fosdem.org/2012/schedule/event/693/127_iio-a-new-subsystem.pdf
 www.ohwr.org/projects/zio/wiki/Iio
 www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-iio
 https://lwn.net/Articles/463338/
 www.kernel.org/doc/Documentation/iio/

 At the time of writing, only the one-shot mode of voltage reading is supported. The continuous
buffering mode is not yet implemented. Additional IIO parameters are planned for later support as the IIO
kernel support is upgraded.

 ■ Note Because the IIO subsystem manages analog inputs and needs to respond quickly, some of the kernel-
related safety net protection is not implemented because it would slow things down. You may get an error when
you try to open the same device twice from your application. Your code should not be trying to do this in any case,
but some applications are designed with multiple threads and processes and may be unable to interlock against
one another. This suggests the application design needs to be reconsidered, so it is not possible to attempt to open
your IIO devices a second time until the previous client has closed its session and relinquished the device.

 Summary
 Now you have extended your knowledge about interfaces to include analog value inputs. Your project could
output analog values by using multiple GPIO pins to drive a digital-to-analog convertor (DAC). Reading
analog inputs is easier because the ADC interface is already present courtesy of the IIO support built into the
kernel. Move on to the next chapter where you will learn about PWM output.

http://events.linuxfoundation.org/sites/events/files/slides/lceu15_baluta.pdf
https://archive.fosdem.org/2012/schedule/event/693/127_iio-a-new-subsystem.pdf
http://www.ohwr.org/projects/zio/wiki/Iio
http://www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-iio
https://lwn.net/Articles/463338/
http://www.kernel.org/doc/Documentation/iio/

303© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_19

 CHAPTER 19

 Pulse Width Modulated Output

 The PWM support in the ARTIK is a direct benefit from implementing the Arduino architecture inside a
powerful Linux architecture. The ARTIK PWM works very similarly to the Arduino feature but there are
some additional capabilities that a Linux kernel offers in addition to the standard Arduino support. This
chapter explores the PWM interface in detail and examines what you can do from your own application by
interacting with the sysfs virtual file system to configure the PWM output.

 What Is Pulse Width Modulation?
 Pulse width modulation (PWM) is not an analog output at all. It can be described as pulse width strobing
when it is used to drive an LED to control the apparent brightness. The human eye has persistence of vision,
which this PWM approach exploits. If the retina worked instantaneously and humans had no persistence of
vision at all, the individual flashes would be visible. Persistence of vision aggregates the LED illumination
and averages it out over time to perceive an apparent dimming effect at lower duty cycles. The pulse width
varies according to the value, as shown in Figure 19-1 .

 Once you set the value, the pin outputs a continuous stream of pulses whose width is proportional to
the value. If you want a genuinely analog varying voltage output, use the digital pins to control the inputs to a
digital-to-analog converter (DAC). Adjust the DC voltage output precisely or generate other waveform shapes
by converting a stream of digital sample values to voltages. Alternatively, use the audio outputs to generate a
control voltage rather than a sound. Read the following online resources to learn more about PWM:

 https://developer.artik.io/documentation/tutorials/using-gpio-on-artik-10.html
 https://developer.artik.io/documentation/developer-guide/kernel-gpio.html#pwm-interface
 www.kernel.org/doc/Documentation/pwm.txt

High PWM value

Low PWM value

 Figure 19-1. Pulse width modulation

https://developer.artik.io/documentation/tutorials/using-gpio-on-artik-10.html
https://developer.artik.io/documentation/developer-guide/kernel-gpio.html#pwm-interface
http://www.kernel.org/doc/Documentation/pwm.txt

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

304

 PWM Support in the ARTIK Modules
 The ARTIK-5 and ARTIK-10 modules both support two active-high PWM signals to generate periodic
waveforms. Internally, the ARTIK supports four PWM outputs but only two are accessible via hardware pin
connections. Table 19-1 summarizes the available information on the PWM ports.

 Table 19-1. PWM Channels

 PWM Signal name Notes

 0 Xpwmo_0 Brought out of the ARTIK module via the AXT connector and made available
on pin J26-3 (~5) and J513-4 (PWM0)

 1 Xpwmo_1 Brought out of the ARTIK module via the AXT connector and made available
on pin J26-2 (~6) and J513-3 (PWM1)

 2 Xpwmo_2 No connection from inside the ARTIK module to the outside world

 3 Xpwmo_3 No connection from inside the ARTIK module to the outside world

J26

∞ 7

∞ RX<-0

∞ TX->1

∞ 2

∞ 3

∞ 4

∞ ~5

∞ ~6

1

8

7

6

5

4

3

2

J513

32768Hz

PWM0

PWM1

GND

1

4

3

2

 Figure 19-2. PWM pinout connections (J26 and J513)

 Older versions of the developer reference boards used for the Alpha and Beta prototypes have their
PWM connections reversed compared with the Commercial Beta versions. The Commercial Beta PWM pin
connections should be considered to be the definitive configuration. See this web page for more details:
 http://developer.artik.io/documentation/developer-guide/gpio/kernel-gpio.html#pwm-interface .

 PWM Output Connectors
 Connector pins J26-3 (~5) and J26-2 (~6) provide programmable PWM outputs compatible with standard
Arduino practice. These pins are also duplicated on J513-4 (PWM0) and J513-3 (PWM1). Figure 19-2 shows
the connections on a Commercial Beta developer reference board. They are in the same place on the Type 5
and Type 10 developer reference boards. Table 19-2 summarizes the relevant pins on these headers.

http://developer.artik.io/documentation/developer-guide/gpio/kernel-gpio.html#pwm-interface

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

305

 Using PWM with Arduino Calls
 In the Arduino IDE, after you have set the digital pin mode to OUTPUT , set the value of that pin to an analog
value. Similarly to an Arduino, the ARTIK is not setting a continuously variable analog value but defining the
duty cycle of a PWM square wave. This is still strictly speaking a digital output.

 Set the pin value with the analogWrite() function. The pulse train runs at a constant rate but the width
of the pulses is adjusted to a value proportional to the input value. This pulse train operates at different
frequencies according to the kind of device it runs on. The implementation of the ARTIK module hardware
is different to the Arduino. Clocks and timers in an ARTIK module run at a different frequency. Check the
timings if it is important to your implementation. The same current-limiting concepts that apply in the
Arduino environment also apply here. The analogWrite() function syntax is

 analogWrite({pin_number}, {pin_value});

 The {pin_number} value is in the range of 0 to 13 and the {pin_value} is between 0 (always off) and 255
(always on):

 analogWrite(13, 150);

 The pulse width varies according to the value, as shown in Figure 19-1 . When you use the Arduino IDE
to code a sketch that you run in the ARTIK, the pin outputs a continuous stream of pulses until you tell it
otherwise. Subsequently calling the analogWrite() , digitalRead() , or digitalWrite() functions on that
pin halt the output of the PWM pulse train.

 Accessing PWM via sysfs
 If you are writing your code outside of the Arduino IDE context, accessing the PWM outputs via sysfs is a
useful mechanism when your application is written in the C language or you are working things out with
a shell script to experiment with it. This approach works in any language that can access regular files in
the sysfs virtual file system. The same techniques for accessing the pins that were used in Chapter 17 for
controlling GPIO pinouts also work for PWM programming. The pins are mapped to a different directory in
the sysfs virtual file system to keep them separate from the strictly binary GPIO digital pins. Because there
is only one PWM chip in the ARTIK, define the base address as a manifest constant in the C language source
code or use a dynamic base address discovery technique.

 Table 19-2. PWM Header Pins

 Header pin Label Notes

 J26-2 ~6 Arduino compatible pin 5. Connected to the Xpwmo_1
output on the ARTIK module. Equivalent to pin J513-3.
Mapped to Xpwmo_0 on older boards.

 J26-3 ~5 Arduino compatible pin 6. Connected to the Xpwmo_0
output on the ARTIK module. Equivalent to pin J513-4.
Mapped to Xpwmo_1 on older boards.

 J513-3 PWM1 Connected to the Xpwmo_1 output on the ARTIK module.
Equivalent to pin J26-2. Mapped to Xpwmo_0 on older boards.

 J513-4 PWM0 Connected to the Xpwmo_0 output on the ARTIK module.
Equivalent to pin J26-3. Mapped to Xpwmo_1 on older boards.

http://dx.doi.org/10.1007/978-1-4842-2322-2_17

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

306

 PWM Entities in sysfs
 The PWM interfaces are all grouped together by the kernel and their sysfs files are managed under the
PWM class in the /sys/class/pwm directory. Find the PWM device by searching the /sys/devices directory.
Longer term, this may be a more reliable solution as /sys/class is gradually being absorbed into the sysfs
subsystem support. Use this bash command to extract the base address from the PWM driver:

 ls /sys/devices/ | grep pwm | cut -d\. -f1

 The organization of the PWM devices in the sysfs file system is shown in Figure 19-3 . There are several
paths to PWM-related entities, some of which are symbolic links to the same thing.

 /sys/class/pwm/pwmchip0
 The PWM chip is reflected into the sysfs file system so your application can operate on it to configure the
PWM behavior. This directory contains some important properties. Table 19-3 lists the most interesting
items in the top level of the /sys/class/pwm/pwmchip0 directory. Some of these properties are only visible
after the channels have been exported to the user space. There are several paths to the same place because
of the symbolic linking within sysfs .

/sys/devices/139d0000.pwm/pwm

/sys/devices/139d0000.pwm

/sys

/sys/devices /sys/class /sys/kernel

/sys/kernel/debug/sys/class/pwm

/sys/kernel/debug/pwm

/sys/devices/139d0000.pwm/pwm/pwmchip0

 Figure 19-3. PWM sysfs directory structure

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

307

 Type the following command to see a count of how many PWM channels are supported by the ARTIK.
Although it presents the value 4, only two of them are available on output pins that you can use. The other
two exist inside the ARTIK module but are not connected to an output pin.

 cat /sys/devices/139d0000.pwm/pwm/pwmchip0/npwm

 The kernel debug directory contains a file containing the current disposition of the PWM circuits. Type
the command in Listing 19-1 to see the contents. The output shows (null) status values while all PWMs are
quiescent.

 Listing 19-1. PWM Channel Status Values

 cat /sys/kernel/debug/pwm

 platform/139d0000.pwm, 4 PWM devices
 pwm-0 ((null)):
 pwm-1 ((null)):
 pwm-2 ((null)):
 pwm-3 ((null)):

 PWM Channel Properties
 Once you have exported a PWM device, it shows up in the /sys/class/pwm/pwmchip0 directory in a directory
named pwm0 to pwm3 . These directories represent each individual PWM channel object. Each channel has a
set of properties for controlling the PWM wave train. The properties are described in Table 19-4 .

 Table 19-3. PWM Chip Object Properties

 Property Notes

 device This is a symbolic link to the device object in /sys/devices although the
link does not display the target path correctly.

 export A writable location where you can request PWM interfaces to be exported
to user space

 npwm A property that describes how many PWM channels this chip can support

 power Power management hooks

 pwm0 Connected to the pin labeled Xpwmo_0 on the ARTIK AXT multi-pin
interface

 pwm1 Connected to the pin labeled Xpwmo_1 on the ARTIK AXT multi-pin
interface

 pwm2 Programmable but not connected to the outside world

 pwm3 Programmable but not connected to the outside world

 subsystem A symbolic link to the pwm object in the /sys/class directory

 uevent A messaging interface to UDEV to tell it about new devices

 unexport A writable location where you can request PWM interfaces to be
relinquished from user space

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

308

 PWM Timing Control
 The timing values describe the period of the waveform and the duty cycle. Because it is a simple alternating
high/low value, the waveform is a square wave. If you just feed this to an amplifier, the square wave sounds
somewhat harsh. To do something musical with this output, feed it through wave shaping circuits or just use
it as a timing clock for a synthesizer. If you program the PWM channels via sysfs calls, control the frequency
by adjusting the period. Figure 19-4 shows the three values that define the pulse train.

 To set a frequency measured in Hz, divide that frequency into 1 billion (1,000,000,000) to get a period
duration in nanoseconds (nS).

 The duty cycle value must always be less than the period value. If they are the same, it represents a
100% duty cycle and the PWM output is a permanently HIGH value. A duty cycle of 0 nS would output
a permanently LOW value. Because the period is variable, the duty cycle needs to be calculated as a
percentage of that period duration. Multiply the period value by the duty cycle percentage to arrive at the
right value. Increasing the period value without changing the duty cycle duration alters the percentage and
the perceived effect is to dim an LED that is connected and strobed with the PWM waveform.

 ■ Note In an Arduino, the frequency of the PWM outputs shares its timers with the millis() and delay()
functions in the Arduino IDE. There may be some effects on the timing of PWM pulses if those functions are used.
The ARTIK hardware is somewhat different to that of an Arduino and the effects may not be as pronounced.

 Table 19-4. PWM Channel Object Properties

 Property Notes

 duty_cycle The duration of the on time versus the off time. This value must not be greater
than the period duration.

 enable Setting this value to 1 turns on the PWM waveform output. Setting it to 0 turns it
off again.

 period The frequency of a PWM waveform is controlled by setting the period value.

 polarity Write the value "normal" or "inversed" to switch the polarity of the PWM
waveform. This can only be altered while the PWM is disabled. Write a zero (0)
value to the enable the property to halt the output before setting this property if
the PWM is already running.

 power Power management control hooks

 uevent A messaging interface to the UDEV driver support when new devices are added

Magnitude

Duty cyclePeriod

 Figure 19-4. Defining the PWM period

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

309

 Inverting the PWM Waveform
 If you program the PWM channels via sysfs calls, invert the waveform via the polarity property. Set it
to "inversed" to turn the waveform upside down and "normal" to put things back the way they were by
default. Figure 19-5 shows a normal and inverted pulse train.

 This inverting functionality suggests some interesting ideas for running two PWM output signals cross
phased and fed through a summing circuit to generate interesting musical effects. At present, there is no
feasible way to ensure they are synchronized but if they are configured correctly and started at the same
time, they should be stable enough to coincide.

 Configuring the PWM Interface with bash
 The easiest way to experiment with PWM programming is to use the bash command line shell. Everything
can be accomplished with the echo command. If necessary, read property values to check things with the
 cat command.

 Requesting a Channel Count
 Use the cat command to see how many PWM channels are available. The value 4 indicates that the PWM
chip can manage four channels but only two of them are brought out from inside the ARTIK module.

 cat /sys/class/pwm/pwmchip0/npwm

 Exporting a Channel to the User Space
 The first thing to do is to export a channel from the PWM interface into the user space. Use the commands in
Listing 19-2 to see the effect of exporting a channel. Note the appearance of /sys/class/pwm/pwmchip0/pwm0
after executing the commands. The kernel debug display shows it has changed its status. After this, the PWM
channel can be configured by altering its properties to set up the wave train.

25% Duty cycle

75% Duty cycle

Normal

Inverted Magnitude remains the same

 Figure 19-5. Inverting the PWM waveform

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

310

 Listing 19-2. Exporting a PWM Channel

 ls /sys/class/pwm/pwmchip0/
 device export npwm power subsystem uevent unexport

 MY_PWM_CHANNEL=0
 echo ${MY_PWM_CHANNEL} > /sys/class/pwm/pwmchip0/export

 ls /sys/class/pwm/pwmchip0/
 device export npwm power pwm0 subsystem uevent unexport

 cat /sys/kernel/debug/pwm
 platform/139d0000.pwm, 4 PWM devices
 pwm-0 (sysfs): requested
 pwm-1 ((null)):
 pwm-2 ((null)):
 pwm-3 ((null)):

 Setting the Timing Properties for a Channel
 The timing control is measured in nS multiples. You must make sure the duration of the duty cycle is always
less than the period of the waveform. If you reduce the period value, be careful not to make it less than
the duty cycle. Use a function that calculates the duty cycle as a percentage of the duration and set both
properties at the same time.

 The instructions in Listing 19-3 set the period to a 100th of a second (100 Hz) and a duty cycle of 25%.
Use the built-in bc calculator in the bash command line to calculate the value. Enclose that calculation in
back ticks to assign the result to a variable. Because the built-in bc command line tool only handles integer
values, multiplying by a value of 0.25 will not work. Instead, multiply by 25 and divide by 100 to do an
equivalent calculation. The result will be an integer that is rounded down automatically.

 Listing 19-3. Setting the PWM Timing Controls

 MY_PWM_CHANNEL=0
 MY_DURATION=10000000
 MY_DUTY_CYCLE=`echo $((${MY_DURATION} * 25 / 100))`

 echo ${MY_DURATION} > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/period
 echo ${MY_DUTY_CYCLE} > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/duty_cycle

 Turning On the Output Waveform
 Switch the PWM output on by enabling it. The instructions in Listing 19-4 turn it on and the waveform
should now be visible on the corresponding output pin. Use the kernel debug output to see the result.

 Listing 19-4. Turning On the PWM Waveform

 MY_PWM_CHANNEL=0

 echo 1 > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/enable

 cat /sys/kernel/debug/pwm

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

311

 platform/139d0000.pwm, 4 PWM devices
 pwm-0 (sysfs): requested enabled
 pwm-1 ((null)):
 pwm-2 ((null)):
 pwm-3 ((null)):

 Detecting Whether the PWM Is Running
 Find out if the PWM is running to invoke the correct logic when you want to invert the waveform. This
command line instruction reports a 0 or 1 to indicate whether the PWM is enabled or not:

 cat /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/enable

 Inverting the Waveform
 Invert the waveform so the duty cycle describes the OFF time rather than the ON time. The inverting control
can only applied while the PWM is halted. The example in Listing 19-5 can be used before the waveform is
enabled.

 Listing 19-5. Inverting a PWM Waveform

 MY_PWM_CHANNEL=0

 echo "inversed" > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/polarity

 Use this variation to return things to the normal non-inverted condition:

 echo "normal" > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/polarity

 Once you have started the PWM running, Listing 19-6 illustrates how to wrap some disable/enable
controls around it so the invert setting can be applied while it is in the correct state.

 Listing 19-6. Wrapping PWM Invert Commands Within Enable Calls

 MY_PWM_CHANNEL=0

 echo 0 > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/enable
 echo "inverse" > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/polarity
 echo 1 > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/enable

 Add more code to automatically test whether the PWM is running or not and then invoke the
appropriate logic.

 Turning Off the Output Waveform
 Switch the PWM output off again by disabling it. These instructions turn it off and the waveform should be
silenced:

 MY_PWM_CHANNEL=0

 echo 0 > /sys/class/pwm/pwmchip0/pwm${MY_PWM_CHANNEL}/enable

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

312

 Relinquishing a Channel
 When you are finished with the PWM channel, release it back to the pool for other processes to use with this
command:

 MY_PWM_CHANNEL=0

 echo ${MY_PWM_CHANNEL} > /sys/class/pwm/pwmchip0/unexport

 Programming PWM with the C Language
 Accessing the sysfs file system from the C language to control the PWM output is very straightforward. The
same techniques you use for the bash command line will work. Wrapping them in C language functions
is very straightforward. C language applications retain the input values more easily and percentage
calculations use floating point values. Conditional handling and code reuse with function wrappers is also
more sophisticated.

 Requesting a Channel Count
 Use the example function in Listing 19-7 to see how many PWM channels are available.

 Listing 19-7. Requesting a PWM Channel Count

 int pwmChannelCount()
 {
 char myResult[6];
 int myIntegerResult;
 FILE *myPWMCountFd;

 // Open the PWM channel count property
 if((myPWMCountFd = fopen("/sys/class/pwm/pwmchip0/npwm", "r")) == NULL)
 {
 printf("Error: cannot open PWM channel count (npwm) for reading\n");
 return false;
 }

 // Read the pin value
 fgets(myResult, 2, myPWMCountFd);

 // Close the PWM channel count property
 fclose(myPWMCountFd);

 // Convert the value to an integer before returning it to your application:
 myIntegerResult = atoi(myResult);

 return myIntegerResult;
 }

 The value 4 is returned to your application when it calls this function. This indicates that the PWM chip
can manage four channels but only two of them are brought out from inside the ARTIK module.

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

313

 Exporting a Channel to the User Space
 The first thing to do is to export the PWM interface into user space. Use the example function in Listing 19-8
to create a new item in the sysfs directory tree that contains the control properties for the channel.

 Listing 19-8. Exporting a PWM Channel to the User Space

 bool initialisePWMChannel(int anId)
 {
 FILE *myPWMExportFd;

 // Open the PWM export property
 if((myPWMExportFd = fopen("/sys/class/pwm/pwmchip0/export", "w")) == NULL)
 {
 printf("Error: cannot open PWM exporter for writing\n");
 return false;
 }

 // Activate the required PWM channel
 fprintf(myPWMExportFd, "%d\n", anId);

 // Close the PWM export property
 fclose(myPWMExportFd);

 return true;
 }

 After calling this function, operate on that PWM channel by altering its properties to set up the wave train.

 Synthesizing a Path to the PWM Channel Container
 Generate a path to the PWM channel container to operate on the properties contained within it. Embed the
path generator inside each function that works on the PWM channel or create a utility function to return the
path each time you need it. Listing 19-9 shows how to create a path dynamically with the sprintf() function.

 Listing 19-9. Creating a Dynamic Path to a PWM Channel

 char myPath[256];
 int myChannel;

 myChannel = 0;

 sprintf(myPath, "/sys/class/pwm/pwmchip0/pwm%d/", myChannel);

 Use the strcat() function to append the property name or modify the format string each time you use
it inside a PWM utility function.

 Setting the Duration Value for a Channel
 The period duration control is measured in nS multiples. The example function in Listing 19-10 sets the
duration value for a channel.

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

314

 Listing 19-10. Setting the Duration Value for a PWM Channel

 bool setPWMDuration(int anId, long int aDuration)
 {
 FILE *myPWMDurationFd;
 char myPath[256];

 // Manufacture a path to the PWM period property
 sprintf(myPath, "/sys/class/pwm/pwmchip0/pwm%d/period", anId);

 // Open the PWM period property
 if((myPWMDurationFd = fopen(myPath, "w")) == NULL)
 {
 printf("Error: cannot open PWM period duration for writing\n");
 return false;
 }

 // Activate the required PWM channel
 fprintf(myPWMDurationFd, "%d\n", aDuration);

 // Close the PWM period property
 fclose(myPWMDurationFd);

 return true;
 }

 Setting the Duty Cycle for a Channel
 The duty cycle control is measured in nS multiples. The example function in Listing 19-11 sets the duty cycle
for a channel.

 Listing 19-11. Setting the Duty Cycle of a PWM Channel

 bool setPWMDutyCycle(int anId, long int aDutyCycle)
 {
 FILE *myPWMDutyCycleFd;
 char myPath[256];

 // Manufacture a path to the PWM duty cycle property
 sprintf(myPath, "/sys/class/pwm/pwmchip0/pwm%d/duty_cycle", anId);

 // Open the PWM duty cycle property
 if((myPWMDutyCycleFd = fopen(myPath, "w")) == NULL)
 {
 printf("Error: cannot open PWM duty cycle for writing\n");
 return false;
 }

 // Activate the required PWM channel
 fprintf(myPWMDutyCycleFd, "%d\n", aDutyCycle);

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

315

 // Close the PWM duty cycle property
 fclose(myPWMDutyCycleFd);

 return true;
 }

 Setting the Timing Properties for a Channel
 You must make sure that the duration of the duty cycle is always less than the period of the waveform. If
you reduce the period value, be careful not to make it less than the duty cycle or contrive to set both using a
function that calculates the percentage. The example function in Listing 19-12 sets the period to the passed-
in value in nanoseconds and calculates an appropriate duty cycle value to use based on the passed-in
percentage as a proportion of the duration. This ensures that the duty cycle is always less than the duration
and it keeps the values coherent with one another.

 Listing 19-12. Setting the PWM Channel Timing Values

 bool setCoherentTimingProperties(int anId, long int aDuration, int aPercentage)
 {
 long int myDutyCycle;

 if(!setPWMDuration(anId, aDuration))
 {
 printf("Duration setting failed");
 return false;
 }

 // Calculate the duty cycle as a proportion of the duration period
 myDutyCycle = (aDuration * aPercentage)/100;

 if(setPWMDutyCycle(anId, myDutyCycle))
 {
 printf("Duty cycle setting failed");
 return false;
 }

 return true;
 }

 Turning On the Output Waveform
 Switch the PWM output on by enabling it. The example function in Listing 19-13 turns it on and the
waveform should now be visible on the corresponding output pin.

 Listing 19-13. Turning On the PWM Channel

 bool enablePWM(int anId)
 {
 FILE *myPWMControlFd;
 char myPath[256];

 // Manufacture a path to the PWM enable property
 sprintf(myPath, "/sys/class/pwm/pwmchip0/pwm%d/enable", anId);

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

316

 // Open the PWM enable property
 if((myPWMControlFd = fopen(myPath, "w")) == NULL)
 {
 printf("Error: cannot open PWM enable for writing\n");
 return false;
 }

 // Enable the required PWM channel
 fprintf(myPWMControlFd, "1\n");

 // Close the PWM enable property
 fclose(myPWMControlFd);

 return true;
 }

 Detecting Whether the PWM Is Running
 This is a useful convenience feature, which is exploited with the inverting function example. This function
intelligently calls a Disable ➤ Enable cycle in a wrapper around the polarity invert setting. The example
function in Listing 19-14 checks the running state of the PWM channel when inverting.

 Listing 19-14. Detecting the PWM Channel Enable State

 bool isPWMRunning(int anId)
 {
 char myResult[6];
 int myIntegerResult;
 FILE *myPWMStatusFd;
 char myPath[256];

 // Manufacture a path to the property
 sprintf(myPath, "/sys/class/pwm/pwmchip0/pwm%d/enable", anId);

 // Open the PWM enable property
 if((myPWMStatusFd = fopen(myPath, "r")) == NULL)
 {
 printf("Error: cannot open PWM enable for reading\n");
 return false;
 }

 // Read the pin value
 fgets(myResult, 2, myPWMStatusFd);

 // Close the property file
 fclose(myPWMStatusFd);

 // Convert the value to an integer before returning it to your application:
 myIntegerResult = atoi(myResult);

 return myIntegerResult;
 }

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

317

 Inverting the Waveform
 Invert the waveform so the duty cycle describes the OFF time rather than the ON time. The inverting control
can only be applied while the PWM is halted. Testing the current status of the PWM to see if it is running
makes this function smart enough to avoid knowing beforehand if the PWM output is stopped. The example
function in Listing 19-15 interlocks the polarity invert calls against the enabled state.

 Listing 19-15. Inverting the PWM Waveform

 bool invertPWM(int anId, bool anInvertFlag)
 {
 FILE *myPWMPolarityFd;
 char myPath[256];
 bool myPWMStatusFlag;

 myPWMStatusFlag = bool isPWMRunning(int anId);

 // Conditionally switch off the PWM channel
 if(myPWMStatusFlag)
 {
 disablePWM(int anId);
 }

 // Manufacture a path to the PWM polarity property
 sprintf(myPath, "/sys/class/pwm/pwmchip0/pwm%d/polarity", anId);

 // Open the PWM polarity property
 if((myPWMPolarityFd = fopen(myPath, "w")) == NULL)
 {
 printf("Error: cannot open PWM polarity for writing\n");
 return false;
 }

 // Set the required PWM invert value
 if(anInvertFlag)
 {
 fprintf(myPWMPolarityFd, "inversed\n");
 }
 else
 {
 fprintf(myPWMPolarityFd, "normal\n");
 }

 // Close the PWM polarity property
 fclose(myPWMPolarityFd);

 // Conditionally turn the PWM back on
 if(myPWMStatusFlag)
 {
 enablePWM(int anId);
 }

 return true;
 }

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

318

 Turning Off the Output Waveform
 Switch the PWM output off again by disabling it. The example function in Listing 19-16 turns it off to silence
the waveform.

 Listing 19-16. Turning Off the PWM Waveform

 bool disablePWM(int anId)
 {
 FILE *myPWMControlFd;
 char myPath[256];

 // Manufacture a path to the PWM enable property
 sprintf(myPath, "/sys/class/pwm/pwmchip0/pwm%d/enable", anId);

 // Open the PWM enble property
 if((myPWMControlFd = fopen(myPath, "w")) == NULL)
 {
 printf("Error: cannot open PWM enable for writing\n");
 return false;
 }

 // Disable the required PWM channel
 fprintf(myPWMControlFd, "0\n");

 // Close the PWM enable property
 fclose(myPWMControlFd);

 return true;
 }

 Relinquish a Channel
 When you are finished with the PWM channel, release it back to the pool for other processes to use with the
example function in Listing 19-17 .

 Listing 19-17. Giving up the PWM Channel

 bool destroyPWMChannel(int anId)
 {
 FILE *myPWMUnexportFd;

 // Open the PWM unexport property
 if((myPWMUnexportFd = fopen("/sys/class/pwm/pwmchip0/unexport", "w")) == NULL)
 {
 printf("Error: cannot open PWM unexporter for writing\n");
 return false;
 }

 // Deactivate the required PWM channel
 fprintf(myPWMUnexportFd, "%d\n", anId);

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

319

 // Close the PWM enexport property
 fclose(myPWMUnexportFd);

 return true;
 }

 Utility Helper Function
 The example function in Listing 19-18 takes a frequency value measured in Hz and uses it to work out a
duration value in nS. This may be more convenient. It also calls the coherent property setting function to
ensure the duty cycle is set as a proportion of the computed duration.

 Listing 19-18. Frequency Convertor Function

 bool setPWMFrequency(int anId, int aHzValue, int aPercentage)
 {
 long int myDuration;

 // Convert the frequency into a duration
 myDuration = 1000000000/aHzValue;

 // Call the property setting function to set things up
 setCoherentTimingProperties(anId, myDuration, aPercentage);

 }

 PWM-Related AXT Connections
 Tables 19-5 and 19-6 summarize the PWM-related connections available on the AXT connectors underneath
your ARTIK module. The connections for the ARTIK 5 and 10 are each shown in their own tables. Refer to the
data sheets for more information about voltage levels and other detailed specifications regarding these pins.

 Table 19-5. ARTIK 5 PWM AXT Pinouts

 AXT pin Name Function

 J4-45 Xpwmo_0 PWM output channel 0. Arduino pin ~5 on header pin J26-3

 J4-47 Xpwmo_1 PWM output channel 1. Arduino pin ~6 on header pin J26-2

 Table 19-6. ARTIK 10 PWM AXT Pinouts

 AXT pin Name Function

 J2-67 Xpwmo_1 PWM output channel 1. Arduino pin ~6 on header pin J26-2

 J2-69 Xpwmo_0 PWM output channel 0. Arduino pin ~5 on header pin J26-3

CHAPTER 19 ■ PULSE WIDTH MODULATED OUTPUT

320

 Summary
 Adding PWM to your catalog of skills opens more opportunities for driving external hardware. Although it is
not truly analog, the PWM output can be used to manage lighting systems and dimming controls. You will need
to attach suitable power transistors or thyristors to control high current apparatus using the PWM signals to
gate control the current. Added to the GPIO controls, which can turn entire circuits on and off, plus the analog
input sending capabilities, your potential for cool, capable, and smart designs is growing all the time.

321© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_20

 CHAPTER 20

 Inter-Integrated Circuit (I2C)

 There are some interesting serial communications technologies for adding peripheral devices. The I2C bus
interface is one of the most capable, and there are many sensors and other devices that you can control and
monitor with it. This chapter explores the Inter-Integrated Circuit (I2C) support in the ARTIK and extends
the published coverage of it to show you the inner workings.

 What Is I2C?
 The Inter-Integrated Circuit (I2C) standard was designed to simplify communications between individual
chips in highly integrated hardware designs. The original concept and design was by Philips Semiconductor,
now known as NXP.

 The documentation describes the nodes on an I2C bus as devices but sometimes calls them chips. It
makes sense to describe them as devices from a software point of view, but when discussing the hardware,
they can be described as chips.

 The I2C bus is used inside the ARTIK module for the ARM CPU to talk with the peripheral chips that
support the hardware I/O. Some of those chips are implemented on the developer reference board. The
taxonomy of the I2C architecture (as found in a Commercial Beta ARTIK 5) is shown in Figure 20-1 . This
illustrates how the various parts of an I2C implementation relate to one another.

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

322

 The top level I2C device driver owns the whole hierarchy. Within it are a number of separate I2C buses.
Each of them has an SCL and SDA pinout from the ARTIK module. Within each bus is a sparsely populated
7-bit address space with devices mapped to the addresses. Usually only a few devices are allocated per bus
because the hardware chips themselves only have a limited number of address pins. A chip with only three
pins can only exist at one of eight possible addresses. Within each device, the data registers are accessible
within an 8-bit range. The lowest numbered register is 0x00 and the highest is 0xFF .

 Use the i2cdetect command to see the chips mapped onto a bus as I2C devices. The i2cget command
yields the value of a register and the i2cset command sets it to a new value.

 Read these online resources for more in depth information about the I2C bus and how it works:

 https://en.wikipedia.org/wiki/NXP_Semiconductors
 https://en.wikipedia.org/wiki/I2C
 www.kernel.org/doc/Documentation/i2c/instantiating-devices

 The data sheets for the model 520 and 1020 ARTIK modules have a lot of detailed specifications of the
I2C timings and levels that is useful to know when you drive them from your own applications.

I2C0 I2C1 I2C3 I2C7

I2C

0x7FAddress
space

Device

0x00

0xFF

0x00

Register
space

 Figure 20-1. Taxonomy of an I2C interface

https://en.wikipedia.org/wiki/NXP_Semiconductors
https://en.wikipedia.org/wiki/I2C
http://www.kernel.org/doc/Documentation/i2c/instantiating-devices

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

323

 There are two wires in the I2C bus, both pulled up to the power supply voltage rail which makes
them HIGH by default, so to assert a LOW value, the I2C master device needs to drive them to an
active-low state.

 The Serial Data Line (SDA) carries the information and the Serial Clock Line (SCL) tells the slave
devices when it is safe to read it. The I2C master pulls the SCL bus line down while it asserts a value
on the SDA bus line. Then the SCL is raised, telling the slaves to collect the data bit that has just been
transmitted. The data is mapped to a 7-bit or 10-bit address space of the design. The ARTIK modules
use a 7-bit addressing scheme, which allows for 128 distinct chip addresses in the range 0x00 to 0x7F .
Typical bus data transfers can take place at 100 Kbits per second in standard mode. Alternatively,
a slower 10 Kbits per second data rate can be used to economize the power consumption. The bus
can operate at arbitrarily slow speeds, and recent innovations have raised the upper speed limit and
allowed for larger address space when I2C is used in an embedded design such as the ARTIK. These
performance improvements are possible because the tightly integrated design of embedded systems
keeps the signal paths short.

 The master node generates the clock signals on the SCL line and initiates the communication. The
slave nodes listen for clock signals and respond when addressed by the master. Multiple master nodes
can be present and the nodes can change their role from master to slave and back again as determined
by the engineering design of the system. Each kind of node can be in transmit or receive mode.
See Table 20-1 .

Pull up resistors
V(high)

SDA

SCL

µC
Master

µC
Slave

ADC
Slave

DAC
Slave

 Figure 20-2. I2C bus layout

 Table 20-1. I2C Node Types and Modes of Operation

 Node type Mode Description

 Master Transmit The master node is sending data to a slave node.

 Master Receive The master node is receiving data from a slave node.

 Slave Transmit The slave node is sending data to the master node.

 Slave Receive The slave node is receiving data from the master node.

 How Does I2C Work?
 The I2C communications are designed to support multiple master nodes connected to a single bus. They
automatically sense each other’s activity and avoid collisions when they all contend for access at the same
time. Multiple slave destinations are supported so a single master can dispatch a message to multiple
destinations in one transaction. The bus carries a serial data stream, which reduces the number of wires
needed to implement the functionality. Figure 20-2 shows a simplified view of how the bus is implemented.

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

324

 Messages are transmitted on the bus by sending the most significant bits first. These are framed by start
and stop bits. A start bit is indicated by holding the SCL line HIGH and transitioning SDA from HIGH to
 LOW . See Figure 20-3 .

 At the end of a message, a stop bit is signified in a similar way but with an SDA transition from
 LOW to HIGH . All other transitions of SDA that carry serial data happen while SCL is held LOW .
See Figure 20-4 .

 Initially, a master node is in transmit mode and initiates transactions with the slaves when it chooses to.
After sending a start bit, the master transmits the target address value of the slave it wants to communicate
with. A final bit to indicate whether it wants to write (0) to the slave or read (1) data from it is followed by a
stop bit. The write is signified by a 0 value bit and a read by a 1 value bit. See Figure 20-5 for an illustration of
the relative timings between SDA and SCL.

SDA

SCL

Start bit indicated by SDA line
going low while SCL is high

 Figure 20-3. I2C start bit indication

SDA

SCL

Stop bit indicated by SDA line
going high while SCL is high

 Figure 20-4. I2C stop bit indication

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

325

• Data transfer is initiated with a Start bit signaled by SDA being pulled LOW while
SCL stays HIGH .

• SDA sets the first data bit level while keeping SCL LOW .

• The data is sampled when SCL rises to a HIGH value for Bit 1 .

• This process repeats: SDA transitioning while SCL is LOW , and the data being read
while SCL is HIGH (Bit 2 to Bit n).

• A Stop bit is signaled when SDA is pulled HIGH while SCL is HIGH .

 Because these are electrical signals, they may take a finite time to transition from low to high or vice
versa. The voltage change vs. the time it takes is called the slewing rate. The longer the bus line, the lower the
slewing rate and consequently the slower the bus must operate. To avoid inadvertent value detection, SDA is
changed on the SCL falling edge and is sampled and captured on the rising edge of SCL.

 Because the protocol is single-ended, it is possible to send out messages that do not correspond to any
slaves on the bus. If there is a matching slave, it responds to the message with an ACK signal. The master
knows that a slave is present and, depending on whether a read or write is indicated in the initial message,
the two nodes communicate. If the master indicates it wants to read data, the slave transmits information
while the master listens. Alternatively, if the master wants to write to the slave, it transmits the message while
the slave receives the incoming data.

 The handshaking happens as each byte is completed. The receiving node transmits an ACK signal to
indicate that it received the data. If necessary, the master can assert its authority and send another start bit
to seize control of the bus when it wants to interrupt the proceedings. Slave devices can hold the SCL line
down to indicate they are busy and cannot yet receive more data. This is called clock stretching.

 If there are multiple masters, they will not interrupt one another’s transactions while they are engaged
in communicating with a slave. It is possible for two masters to initiate a new transaction at the same time.
Such collisions are arbitrated automatically by the master nodes detecting that the SDA line has changed
state from what it expects as a consequence of another master asserting a value on it. The first master to
detect that the SDA does not have the value it expects to see relinquishes control and waits until it sees a
Stop bit before attempting to transmit again.

 Read the I2C Wikipedia article to find out more about the finer points of this communication protocol:
 https://en.wikipedia.org/wiki/I2C . There is a pseudo code example of how to program I2C communications.

Start bit Stop bit

SDA

SCL

SCL is low while SDA changes value

SCL is high when SDA value is valid for use

Bit 1 Bit 2 Bit n

 Figure 20-5. I2C bus timings

https://en.wikipedia.org/wiki/I2C

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

326

 I2C on the ARTIK Modules
 The data sheets for the model 520 and 1020 ARTIK modules and the Type 5/10 developer reference board
schematics have a lot of detailed specifications on the I2C timings and voltage levels. There is some variance in
the naming conventions. Study both together very carefully to deduce what I2C bus connections are available.

 The ARTIK 10 supports four high-speed I2C buses and four conventional I2C buses internally but not all
of these are brought to the outside world via the AXT connectors. Some of them are used for internal control
of chips on the ARTIK modules. The ARTIK 5 supports six conventional I2C buses and one additional I2C
bus dedicated for use as a camera control interface.

 Tables 20-2 and 20-3 list the I2C interfaces for each of the ARTIK 5 and 10 modules based on what is
documented in the data sheets and schematic diagrams. The i2cdetect command line tool tells a slightly
different story and lists an I2C-0 bus on an ARTIK 5, which is not described in the data sheets or schematics.

 Table 20-3. ARTIK 10 I2C Bus Connections

 Bus Notes

 I2C-0 Used for fuel gauge chip control. Also controls the dummy device and other PMIC
functions.

 I2C-1 Audio Codec chip control and some power management functionality

 I2C-2 Used to control the 5EA camera. Labeled as ISP2.

 I2C-5 Appears to not be connected to anything in the developer board according to the schematic.
The data sheet describes multiple GPIO functionality for this pin.

 I2C-7 Controls the HDMI display

 I2C-8 Controls the LCD display

 I2C-9 Arduino-compatible I2C external bus

 ISP0 Used to control the 3L2 camera. Documented in the data sheet as a second I2C-0 bus but
this numbering may not be correct.

 Table 20-2. ARTIK I2C Bus Connections

 Bus Notes

 I2C-0 Used internally for the dummy device and power management. No external connection,
nor is it described in the data sheet, but it does show up when the i2cdetect tool is used.

 I2C-1 Audio Codec chip control and some power management functionality

 I2C-2 Used to control the 6B2 camera

 I2C-3 External developer accessible bus

 I2C-4 Multi-purpose pins also used for SPI, Ethernet, and LPWA

 I2C-5 Multi-purpose pins also used for SPI, Ethernet, and LPWA

 I2C-6 Multi-purpose pins also used for Audio I2S

 I2C-7 Arduino-compatible I2C external bus

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

327

 I2C Tools
 There is a small suite of I2C utilities provided with the ARTIK OS by default. They make it very easy to
interact with the I2C bus from the bash command line.

 i2cdetect : Probes an I2C bus and lists the devices (chips)
 i2cget : Gets a register value from an I2C device
 i2cset : Sets a register value in an I2C device
 i2cdump : Dumps all registers from a I2C device
 Read the manual pages about these tools from your bash command line with the man command.

 The Device Detector Tool (i2cdetect)
 Use the i2cdetect tool to detect devices on your I2C buses. The simplest variant of this command lists the
active I2C buses on your system. Listing 20-1 illustrates how i2cdetect works.

 Listing 20-1. Using the i2cdetect Tool on an ARTIK 5

 i2cdetect -l

 i2c-0 i2c s3c2410-i2c I2C adapter
 i2c-1 i2c s3c2410-i2c I2C adapter
 i2c-3 i2c s3c2410-i2c I2C adapter
 i2c-7 i2c s3c2410-i2c I2C adapter

 A variation of the i2cdetect command lists the functionalities supported on each bus. The example in
Listing 20-2 examines bus I2C-0 and displays the current disposition.

 Listing 20-2. Using the i2cdetect Tool to Display a Bus

 i2cdetect -F 0

 Functionalities implemented by /dev/i2c-0:
 I2C yes
 SMBus Quick Command yes
 SMBus Send Byte yes
 SMBus Receive Byte yes
 SMBus Write Byte yes
 SMBus Read Byte yes
 SMBus Write Word yes
 SMBus Read Word yes
 SMBus Process Call yes
 SMBus Block Write yes
 SMBus Block Read no
 SMBus Block Process Call no
 SMBus PEC yes
 I2C Block Write yes
 I2C Block Read yes

 The third variant of the i2cdetect command scans the named bus for devices and if they are correctly
addressed and powered up, they are displayed in a 16 x 16 address grid. The example command in Listing 20-3
scans bus I2C-0 for recognizable devices. The two devices are indicated by the UU symbols at addresses 0x06
and 0x66 .

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

328

 Listing 20-3. Listing the Devices on an I2C Bus

 i2cdetect -y 0

 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: -- -- -- UU -- -- -- -- -- -- -- -- --
 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 60: -- -- -- -- -- -- UU -- -- -- -- -- -- -- -- --
 70: -- -- -- -- -- -- -- --

 The Value Reading Tool (i2cget)
 The i2cget tool reads the values of registers in devices that are visible on the I2C bus. Specify a valid bus
number, chip address, and register index with the command. An optional mode parameter can be added to
alter the way that i2cget operates on the data it accesses. The basic i2cget command format is

 i2cget {bus_number} {chip_address} {data_register}

 Download and read the data sheet for any sensors you are adding to your ARTIK. Somewhere in that
data sheet is a list of registers and their values. Look for manufacturer ID codes and test that you get the
correct value back for them. This assures you that the sensor chip is working.

 The following command reads the byte value from the embedded PMIC (S2MPS14) ID register of the
ARTIK 5 at register number 0x00 of chip address 0x66 on bus I2C-0:

 i2cget -f -y 0 0x66 0x0

 The Value Setting Tool (i2cset)
 The i2cset tool writes values to the registers that are visible on the I2C bus. Specify one of the valid bus
numbers, chip addresses, and registers with this command. The command format is

 i2cset {bus_number} {chip_address} {data_register} {value} ...

 A single value can be written or multiple values in a sequence. An optional mode parameter can be added
to alter the way that i2cset operates on the data it accesses. Additionally, the -m option flag indicates a protective
mask, which can be applied to the write so the tool internally performs a Read ➤ Modify ➤ Write operation.

 Download and read the data sheet for any sensors you are adding to your ARTIK. Somewhere in that data
sheet is a list of registers and their values. Look for manufacturer ID codes and test that you get the correct
value back for them. This reassures you that the sensor chip is working. Then you can write values to it.

 The following command writes a zero value to an imaginary location at register number 0x10 of chip
address 0x50 on bus I2C-0:

 i2cset -f -y 0 0x50 0x10 0x00

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

329

 The Register Dump Tool (i2cdump)
 The i2cdump tool displays all of the registers belonging to a chip address on an IC bus. The example
command in Listing 20-4 forces the i2cdump command to display all 256 registers on chip address 0x06 of
bus I2C-0. This is mapped to the dummy device.

 Listing 20-4. Example i2cdump Tool Usage

 i2cdump -y -f 0 0x06

 No size specified (using byte-data access)
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
 00: 02 c3 00 f8 2e 2c 4c 20 0a 06 10 00 00 0c 01 01 ??.?.,L ???..???
 10: 01 00 00 00 0c 01 01 01 00 00 00 00 00 00 00 00 ?...????........
 20: 02 c3 00 f8 2e 2c 4c 20 0a 06 10 00 00 0c 01 01 ??.?.,L ???..???
 30: 01 00 00 00 0c 01 01 01 00 00 00 00 00 00 00 00 ?...????........
 40: 02 c3 00 f8 2e 2c 4c 20 0a 06 10 00 00 0c 01 01 ??.?.,L ???..???
 50: 01 00 00 00 0c 01 01 01 00 00 00 00 00 00 00 00 ?...????........
 60: 02 c3 00 f8 2e 2c 4c 20 0a 06 10 00 00 0c 01 01 ??.?.,L ???..???
 70: 01 00 00 00 0c 01 01 01 00 00 00 00 00 00 00 00 ?...????........
 80: 02 c3 00 f8 2e 2c 4c 20 0a 06 10 00 00 0c 01 01 ??.?.,L ???..???
 90: 01 00 00 00 0c 01 01 01 00 00 00 00 00 00 00 00 ?...????........
 a0: 02 c3 00 f8 2e 2c 4c 20 0a 06 10 00 00 0c 01 01 ??.?.,L ???..???
 b0: 01 00 00 00 0c 01 01 01 00 00 00 00 00 00 00 00 ?...????........
 c0: 02 c3 00 f8 2e 2c 4c 20 0a 06 10 00 00 0c 01 01 ??.?.,L ???..???
 d0: 01 00 00 00 0c 01 01 01 00 00 00 00 00 00 00 00 ?...????........
 e0: 02 c3 00 f8 2e 2c 4c 20 0a 06 10 00 00 0c 01 01 ??.?.,L ???..???
 f0: 01 00 00 00 0c 01 01 01 00 00 00 00 00 00 00 00 ?...????........

 Accessing I2C via sysfs
 The Samsung documentation states that the I2C bus cannot be accessed via the sysfs virtual file system in the
same way that user space applications could use it to control GPIO pins. Nevertheless, many of the properties
of the I2C bus structures can be inspected by exploring the sysfs directories. Use the Samsung recommended
tools to set or get I2C values. You will learn a lot more about I2C by inspecting the values that the kernel reflects
into sysfs .

 There are a lot of useful locations within the /sys virtual file system. Others are located in the /proc
virtual file system. Knowing where they are suggests how to build dynamic self-configuring applications that
are resilient to OS upgrades, which is when base addresses are likely to move.

 According to the kernel documentation, it is possible to add or delete devices from an I2C bus using
 sysfs file locations. This is covered shortly under the heading of “Instantiating and Removing Devices.”

 I2C Device Nodes
 Listing the /sys/bus/i2c/devices directory in the Commercial Beta ARTIK 5 module reveals the currently
active I2C devices within each bus system. The built-in chips are accessed within a 7-bit address space. The
addresses can range from 0x00 to 0x7F . They are summarized in Table 20-4 . Other devices may be visible
when you add your own peripherals and sensors or check out this directory on an ARTIK 10 module.

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

330

 I2C Containers and Properties
 Each I2C bus is represented in the sysfs virtual file system by a container or object. The properties of that
object provide some limited capabilities for interacting with the bus. Look inside the directory to view the
properties for one of the bus containers. All the other usual kernel-provided properties are present, such as
 name , power , and uevent . Table 20-5 enumerates the properties displayed by this command:

 ls -la /sys/bus/i2c/devices/i2c-3/

 Table 20-5. I2C Object Properties

 Property Description

 new_device Writes a space-separated symbolic name and chip address to create a new
device within the I2C bus

 delete_device Writes a chip address here to remove a device from the I2C bus

 Device This is a symbolic link to the device directory. It can be used to discern the base
address for an I2C bus if you need it to memory map the kernel space into your
application.

 Table 20-4. I2c Device Nodes

 Node Bus Address

 0-0006 I2C-0 0x06 Dummy device

 0-0066 I2C-0 0x66 Power management IC

 1-0013 I2C-1 0x13 Stereo audio codec

 1-0062 I2C-1 0x62 Battery level fuel gauge

 1-006B I2C-1 0x6B Battery charger

 Built-in Drivers
 The /sys/bus/i2c/drivers directory reveals drivers for very specific built-in hardware chips. Use these
device part numbers in a web search engine to find data sheets and other resources for them. On an ARTIK,
this reveals that the AK4953 device driver is for a hardware-implemented stereo audio codec. Searching for
that chip online reveals a data sheet with much useful information about how it works. Refer to Chapter 22
where that codec chip and other audio-related topics are discussed.

 Inside the device driver directories are properties that reveal which I2C bus is used and the chip
address. Although this is undocumented material, the address can be deduced by a process of inspection.
The Commercial Beta ARTIK 5 reveals the devices listed in Table 20-6 .

http://dx.doi.org/10.1007/978-1-4842-2322-2_22

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

331

 The battery charger is listed as a device but is not allocated an address because it is not plugged in. An
address is reserved for it to use when it comes online.

 Instantiating and Removing Devices
 If you add new external I2C-compatible chips to your ARTIK, tell the ARTIK about them so it can
communicate with them. This kernel reference document shows how to instantiate new devices in several
different ways: www.kernel.org/doc/Documentation/i2c/instantiating-devices .

 Instantiate a new device from user space with this command line instruction:

 echo test_device 0x50 > /sys/bus/i2c/devices/i2c-3/new_device

 The example creates a new device on bus I2C-3 at address 0x50 with a symbolic name of test_device
and it manufactures a new container for the device. Verify that it exists with this command, which shows you
that a new directory named 3-0050 has been created:

 ls -la /sys/bus/i2c/devices/i2c-3/

 For this to be useful there must be some hardware connected to the specified bus. This hardware must
also have its address configured to match the address you just used to create the device. If that hardware is
not present, then this address will not show up as being activated with the i2cdetect command. If there
is a directory present for the device but i2cdetect does not show it as active, perhaps you connected your
hardware to the wrong address, or accidentally switched the SDA and SCL connections round or perhaps
the device is broken or unpowered. Learning about diagnostic techniques is a useful skill to have at your
disposal. Remove the device again later with this command:

 echo 0x50 > /sys/bus/i2c/devices/i2c-3/delete_device

 An error message is presented if the device does not exist. This may indicate you typed the device
address incorrectly or chose the wrong bus.

 Table 20-6. Built-in I2C Devices

 Device Bus Address Description

 ak4953 I2C1 0x13 Stereo audio codec

 bq2429x_charger - - Battery charger

 cw201x I2C1 0x62 Battery level fuel gauge

 Dummy I2C0 0x06 Used to map devices that respond to multiple
addresses

 sec_pmic I2C0 0x66 Power management IC

http://www.kernel.org/doc/Documentation/i2c/instantiating-devices

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

332

 Access I2C from the C Language
 The i2ctools are a useful command line solution to access the I2C bus from the bash shell and they simplify
things a lot. You can learn how to access the I2C bus from the C language by inspecting the source code for
the i2ctools . Make a copy of the open source files, and dismantle the i2cget and i2cset tools to find out
how to read and write directly to the I2C bus architecture inside the kernel via the ioctl() function.

 This approach works by opening files in the /dev/i2c file system tree. The i2ctools package all this
accessibility into a couple of useful files with useful functions. Download the i2ctools package from
 https://fossies.org/dox/i2c-tools-3.1.2/index.html .

 Here is another set of source code archives that contains older versions for comparison:
 http://i2c-tools.sourcearchive.com .

 Breakout Connections
 Tables 20-7 and 20-8 list the I2C interfaces that are presented via breakout connectors on the developer
reference boards for the ARTIK 5 and 10 modules based on what is documented in the data sheets and
schematic diagrams.

 Table 20-8. ARTIK 10 - I2C Bus Breakout Connections

 Bus Header (SCL) Header (SDA) Notes

 I2C-1 J511-5 J511-4 Audio Codec chip control and some power management
functionality

 I2C-2 J10-18 J10-17 Used to control the 5EA camera. Labeled as ISP2.

 I2C-9 J27-1 J27-2 Arduino-compatible I2C external bus

 I2C-9 J510-6 J510-5 Duplicate connection for Arduino-compatible I2C external
bus. This is different on an ARTIK 10 because the ARTIK 5
presents a separate bus on this connector.

 ISP0 J35-18 J35-20 Used to control the 3L2 camera. Documented in the data
sheet as a second I2C-0 bus but this naming may not be
correct.

 Table 20-7. ARTIK 5 - I2C Bus Breakout Connections

 Bus Header (SCL) Header (SDA) Notes

 I2C-1 J511-5 J511-4 Audio Codec chip control and some power management
functionality

 I2C-2 J10-17 J10-18 Used to control the 6B2 camera

 I2C-3 J510-6 J510-5 External developer accessible bus

 I2C-7 J27-1 J27-2 Arduino-compatible I2C external bus

https://fossies.org/dox/i2c-tools-3.1.2/index.html
http://i2c-tools.sourcearchive.com/

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

333

 The so-called boot mode switch on the developer reference board (SW2-2) appears to be dedicated
to enabling a voltage level convertor that couples the internal bus I2C-3 SDA/SCL lines coming out of the
ARTIK 5 to the SDA/SCL lines on the J510 external connector where a higher voltage is needed. When SW2-2
is on, the I2C signals are enabled on J510; otherwise they are not driven.

 I2C-Related AXT Connectors
 Tables 20-9 and 20-10 summarize the I2C-related connections available on the AXT connectors underneath
your ARTIK module. The connections for the ARTIK 5 and 10 are each shown in their own tables. Refer to the
data sheets for more information about voltage levels and other detailed specifications regarding these pins.

 Table 20-9. ARTIK 5 - I2C AXT Pinouts

 Bus AXT (SCL) AXT (SDA) Notes

 I2C-1 J4-15 J4-17 Audio Codec chip control and some power management
functionality for fuel gauge

 I2C-2 J4-21 J4-23 Used to control the 6B2 camera

 I2C-3 J4-53 J4-55 External developer accessible bus

 I2C-4 J4-3 J4-1 Multi-purpose pins also used for SPI, Ethernet, and LPWA

 I2C-5 J4-7 J4-5 Multi-purpose pins also used for SPI, Ethernet, and LPWA

 I2C-6 J3-48 J3-50 Multi-purpose pins also used for Audio I2S

 I2C-7 J4-13 J4-11 Arduino-compatible I2C external bus

 Table 20-10. ARTIK 10 - I2C AXT Pinouts

 Bus AXT (SCL) AXT (SDA) Notes

 I2C-0 J1-71 J1-73 Used for fuel gauge chip control. Also controls the dummy
device and other PMIC functions.

 I2C-1 J1-75 J1-77 Audio Codec chip control

 I2C-2 J2-21 J2-19 Used to control the 5EA camera. Labeled as ISP2.

 I2C-5 J2-13 J2-15 Appears to not be connected to anything in the developer
board according to the schematic. The data sheet describes
multiple GPIO functionality for this pin.

 I2C-7 J2-50 J2-48 Controls the HDMI display

 I2C-8 J2-61 J2-59 Controls the LCD display and touch interface

 I2C-9 J3-28 J3-30 Arduino-compatible I2C external bus

 ISP0 J2-49 J2-51 Used to control the 3L2 camera. Documented in the data
sheet as a second I2C-0 bus but this naming may not be
correct because there is another I2C-0 bus on a different pin.

CHAPTER 20 ■ INTER-INTEGRATED CIRCUIT (I2C)

334

 In addition to the SDA and SCL lines for each I2C bus, there are two pins that can control the voltage level
for the SDA and SCL lines. Refer to the data for more details about this. The pins are summarized in Table 20-11 .

 Table 20-11. ARTIK 10 - I2C Management and Control

 AXT Pin Name Notes

 J2-63 XCHG_SDA Change I2C SD lines to 1v8 signaling

 J2-65 XCHG_SCL Change I2C SCL lines to 1v8 signaling

 Summary
 The I2C bus control of peripheral sensor devices rounds out your interfacing skills very usefully. Now you
can interact with some very powerful chips. You may only want to read a temperature value, but you now
have all the controls at your disposal to manage complex chips. You only need to add the SPI and I2S buses
to have all peripheral interconnect and control options covered.

335© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_21

 CHAPTER 21

 Serial Peripheral Interface (SPI)

 The Serial Peripheral Interface Bus (SPI) is a means of communicating between the CPU and the peripheral
devices. It is very simple to operate and is used for a variety of devices that connect to the physical world. SD
cards, touch screens, liquid crystal displays (LCDs), and analog-to-digital convertors (ADCs) are commonly
connected to an SPI bus for extending embedded systems.

 A private SPI bus is used for managing the AX88796C Ethernet controller chip on the ARTIK 520, and
SPI is also used to drive the video display outputs. The programming interface support is not yet available
to develop your own user space applications. It is still important to learn about how SPI works so you are
equipped to use it later. The data sheets for the model 520 and 1020 ARTIK modules describe the SPI timings.

 How Does SPI Work?
 The SPI specification describes a synchronous communication over four wires. The configuration can
either be a direct connection between a single master and a single slave or one master and multiple slaves.
Figure 21-1 shows the one-to-one configuration.

SPI
Master

SPI
Slave

Serial clock (SCLK) SCLK

Master out, slave in (MOSI) MOSI

Master in, slave out (MISO) MISO

Slave select (SS) SS

 Figure 21-1. SPI single master, single slave configuration

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

336

 The SPI bus works best over very short distances. It is ideally suited for use in embedded systems where
the components are packed very closely together or even integrated onto a single chip.

SPI
Master

SPI
Slave 1

Serial clock (SCLK) SCLK

Master out, slave in (MOSI) MOSI

Master in, slave out (MISO) MISO

Slave select 1 (SS1)

Slave select 2 (SS2)

Slave select 3 (SS3)

SS

SPI
Slave 2

SCLK

MOSI

MISO

SS

SPI
Slave 3

SCLK

MOSI

MISO

SS

 Figure 21-2. SPI single master, multiple slaves configuration

 A more complex arrangement can be built with one single master and multiple slaves. Figure 21-2
shows this arrangement. Three of the four wires are connected in a bus-like manner to all of the slaves and
the slave select line is then extended so each slave can be selected individually.

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

337

 Interfacing Signal Lines
 There are four wires connecting the master device to the slave devices. Table 21-1 summarizes the signals
they carry.

• The serial clock line is driven by the master. This maintains the synchronous nature
of the communications protocol.

• The master output, slave input line transfers instructions and data from the master
node to the slave.

• The master input, slave output line transfers responses from the slave node back to
the master.

• The slave select line activates the required slave devices so they will see and respond
to the messages from the master node. In a simple configuration where there is just
one master and one slave, the SS line is hard wired with no selection logic involved
because there is only one slave available. This pin can be permanently connected to
ground so the single slave is always active. This line is driven active LOW by the master.
When it is not driven, it is floating HIGH via a pull-up resistor. This hardware slave
selection technique replaces the chip-addressing techniques used on other kinds of
buses.

 Alternative Naming Conventions
 The SPI peripheral devices are slaves and may be repurposed from other buses such as I2C. In such an
adaption, not all of the connections may have been renamed. There are many manufacturers all over the
world and many of them use their own conventions when naming the pins on their SPI-compatible devices.
Table 21-2 lists a dictionary of the alternative names you might encounter and maps them to the conventions
used by the ARTIK engineering team when they labeled the schematics for the developer reference boards.

 Table 21-1. SPI Four Wire Signaling

 Signal Description

 SCLK Serial clock

 MOSI Master output, slave input

 MISO Master input, slave output

 SS Slave select

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

338

 If you use these alternative naming conventions, the SDI on the master should be connected to SDO on
the slaves and vice versa. Most devices are selected when the slave select line or the equivalent named pin is
pulled LOW . In a very few rare cases, you may encounter an active HIGH device. A hardware level inverter
chip must be introduced between the master and the slave. You may be able to reprogram the driving code,
but driving a pin constantly is a waste of energy and is a less-than-ideal choice for battery-driven designs.
For very fast signaling, the propagation delays through that inverter become important. Factor them into the
design.

 Table 21-2. Alternative SPI Signal Naming Conventions

 Alternative name ARTIK name

 CD SS

 CLK SCLK

 CSB SS

 CSN SS

 DI MOSI

 DIN MOSI

 DO MISO

 DOUT MISO

 EN SS

 Master input, Slave output MISO

 Master output, slave input MOSI

 MRSR MISO

 MTST MOSI

 nCS SS

 nSS SS

 SCK SCLK

 SDI (on slave devices) MOSI

 SDO (on slave devices) MISO

 Serial clock SCLK

 SI MOSI

 SIMO MOSI

 Slave Select SS

 SO MISO

 SOMI MISO

 SSn SS

 SSQ SS

 STE SS

 SYNC SS

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

339

 Transmitting Data
 The process of communicating between the master and slave is very simple. The master selects a
clock frequency that is compatible with the slave devices. This ensures that all devices are operating in
synchronization with the master. Initially, though, the clock signal is paused.

 The master then uses the slave select (SS) line corresponding to the desired slave device and drives it
 LOW to select that slave. Some devices require a short time to settle. The master may wait until it thinks the
slave is ready for a conversation. Then the master can commence transmitting clock pulses on the SCLK line.

 During each clock cycle, the master transmits a single bit on the MOSI line to the slave. At the same
time, the slave transmits a single bit on the MISO line to the master. The master and slave are simultaneously
sending and receiving data in a full duplex fashion. This happens even when data is transmitted only in one
direction.

 This is usually implemented around a pair of 8-bit shift registers that are coupled end to end to make a
16-bit cyclic buffer with 8 bits in each device. Figure 21-3 shows how this is constructed.

 After eight clock cycles, the data has been fully exchanged between the master and the slave. Internally,
the master writes eight bits of data into its shift register and performs eight clocked shifts, after which the
slave can read its shift register to recover the data. At the same time, the data that the slave wrote into its
buffer can now be read by the master. This is a compact and simple data transmission technique. Although
this example uses 8-bit data registers, touchscreen controllers may use 16-bit values to address a large
enough canvas, and ADC inputs might use 12-bit values to resolve the analog waveform to sufficient
accuracy. When slaves are not active, they must ignore the clock pulses and must never place data on the
MISO line unless they have been asked to by the master. Read this Wikipedia article to find out more about
SPI: https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus .

 This kernel documentation outlines how the internals work from a technical standpoint: www.kernel.
org/doc/Documentation/spi/spidev .

 SPI Internal Architecture
 Table 21-3 lists the three registers inside the SPI devices that the CPU can interact with to drive the SPI
transmissions.

SCLK

MOSI
6 5 4 3 2 1 07 6 5 4 3 2 1 07

Data register

msb

lsb msb

lsb

Data register

SPI
Master

SPI
Slave

MISO

 Figure 21-3. SPI ring buffer arrangement

 Table 21-3. Internal SPI Registers

 Register Name

 Data register SPDR

 Control register SPCR

 Status register SPSR

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://www.kernel.org/doc/Documentation/spi/spidev
http://www.kernel.org/doc/Documentation/spi/spidev

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

340

 The CPU can read and write data to the SPDR data register. This data is clocked out to the slave devices
during a data transmission cycle. The communications process is governed by what the CPU writes to the
SPCR control register. One bit of the SPSR status register is also writable when setting the clock frequency.
Any feedback from the SPI interface is accessible to the CPU by reading the SPSR status register. Study the
ARM documentation for more information about ARM processor internals: http://infocenter.arm.com/ .

 Control Register (SPCR)
 The control register maintains eight bits of information that the CPU can alter to control the way that the
SPI interface operates. All bits can be written, and they can also be read back so a Read ➤ Modify ➤ Write
approach can be used. All the bits in this register are set to zero to begin with. Figure 21-4 illustrates how the
bits are mapped to the control register. The purpose of each bit in the control register is described in Table 21-4 .

• When the individual interrupt enable bit for this SPI interface (SPIE) is set to 1 , an
interrupt occurs when the SPI interrupt flag is set in the SPI status register. This can
be inhibited if the Global Interrupt Enable flag is not set. This flag is managed by the
SREG control register in an AVR micro-controller as found in an Arduino. The ARM
CPU in an ARTIK has a similar mechanism that performs the same function.

• The SPE bit controls whether the SPI interface is enabled for use. If this bit is not set
to 1 , you cannot use the SPI interface.

0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01Bit mask

7 6 5 4 3 2 1 0Bit number

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0Label

R/W R/W R/W R/W R/W R/W R/W R/WAccess

0 0 0 0 0 0 0 0Default value

 Figure 21-4. Control register SPCR bits

 Table 21-4. SPCR Register Bit Functionality

 Label Name Bit mask

 SPIE Interrupt enable 0x80

 SPE SPI enable 0x40

 DORD Data order 0x20

 MSTR Master/slave select 0x10

 CPOL Clock polarity 0x08

 CPHA Clock phase 0x04

 SPR1 Clock rate (bit 1) 0x02

 SPR0 Clock rate (bit 0) 0x01

http://infocenter.arm.com/

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

341

• The DORD bit controls which direction the shift register is clocked out. If this bit
is set to 1 , the least significant bit (LSB) is transmitted first. Otherwise, the most
significant bit (MSB) is delivered first. Clearly, your master and slave must both be
expecting the bits to arrive in the same order unless you intend to use this as a bit
order reversal process.

• The MSTR bit determines whether this SPI interface is going to operate as a master
or slave device. Although this functionality is dynamic, one would expect the SPI
component in the ARTIK CPU to be the master.

• The CPOL bit indicates whether the clock line is held HIGH or LOW during idle
time. When there is no activity, the clock line must be maintained in a safe and
inactive state. This indicates whether SCLK is held LOW (0) or HIGH (1).

• The CPHA bit controls how the clock phase is interpreted. A 0 value indicates that
the leading edge when the clock line goes from inactive to active should cause the
slave to sample the data. The trailing edge is then be used to set up for the next data
arrival. Setting this bit to 1 reverses the meaning of the leading and trailing edges of
the clock pulses. In this case, the leading edge triggers the setup and the trailing edge
triggers a sample.

• The SPR1 and SPR0 bits are used with an additional bit on the status register to
define the clock rate for the SPI bus.

 Status Register (SPSR)
 The status register contains two bits of information that the CPU can read to find out the current status of the
SPI interface. One bit is used to extend the range of available clock rate divider values and the remaining bits
are unused and reserved for future use. Although there is only one writable bit, because all the others are
set to read only, it may be safe to just write a 0x00 or 0x01 value to clear or set the SP1X2 bit instead of using
a Read ➤ Modify ➤ Write technique. The default state of all the bits in this register is zero to begin with.
Figure 21-5 illustrates how the bits are mapped to the status register. The purpose of each bit in the control
register is described in Table 21-5 .

0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01Bit mask

7 6 5 4 3 2 1 0Bit number

SPIF WCOL - - - - - SPI2XLabel

R R R R R R R R/WAccess

0 0 0 0 0 0 0 0Default value

 Figure 21-5. Status register SPSR bits

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

342

• The SPIF bit carries an Interrupt flag that is set to a 1 value when the serial transfer is
completed.

• The WCOL bit contains a write collision flag that is set HIGH if the SPI interface
detects that the SPDR data register was written to while the previous data value was
still being transferred. A premature overwrite of the SPDR could cause corruption of
the transmitted data and have unintended consequences when it arrives in the slave.
If you detect that this bit is set, then the data should be transmitted again. Whether
you are able to tell the slave to abort or disregard the corrupted data depends on the
features of the slave device.

• The SPIX2 bit can be set to 1 to halve the clock divider ratio and hence double the
currently defined clock rate that is set by the SPR0 and SPR1 bits in the control register.

• All the remaining bits in the status register are unused.

 Clock Rate Setting
 The clock rate is set by combining the SPR0 , SPR1 , and SPI2X bits and using the value as an index into a
table of clock rate values. The SPI2X bit is contained in the status register and is the only writable bit in that
register. The clock rate frequency depends on the attached crystal oscillator. This set of bits controls a clock
divider value. See Figure 21-6 . The clock rate is determined by this formula:

 {oscillator_frequency} / {clock_rate_value}

7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

SPCR

7 6 5 4 3 2 1 0

2 1 0

SPIF WCOL - - - - - SPI2X

SPSR

Clock rate control register

 Figure 21-6. SPI clock rate control

 Table 21-5. SPSR Register Bit Functionality

 Label Name Bit mask

 SPIF Interrupt flag 0x80

 WCOL Write collision occurred 0x40

 Unused N/A 0x20

 Unused N/A 0x10

 Unused N/A 0x08

 Unused N/A 0x04

 Unused N/A 0x02

 SPIX2 Clock rate extension (bit 2) 0x01

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

343

 If the status register is never written to, the SPI2X value will always be zero. A useful range of values
can still be achieved with SPR0 and SPR1 on their own. Adding a 1 bit in SPI2X halves the division value,
thereby doubling the clock rate defined by SPR0 and SPR1 . The clock rate settings for all the possible bit
value combinations are summarized in Table 21-6 .

 Data Register (SPDR)
 The data register is where CPU puts the data it wants to send to a slave or where it can read the data that
a slave device has sent back. The initial default state of the bits in this register is uncertain. They probably
contain the most recently transmitted value but there is no guarantee of that. Assume that the results are
garbage and are not to be relied on until after a successful transfer has happened. Figure 21-7 illustrates the
data register showing where the significant bits are located.

 Access to the data values happens in the master. The meaning of the values in this register should be
interpreted in the context of the slave device after the data has been transferred to it. Slave devices may treat the
data differently. Read the data sheets carefully for the peripheral devices that you are connecting to the SPI bus.

 Reading values back from the register is only meaningful after a transfer cycle has moved all of the
bits from the slave device back to the master. Sense the interrupt pin on the status register to see when it is
appropriate to read that data.

 Interacting with an SPI Device
 Although the software support is not yet complete, here is an outline of the programming steps that will be
required when it is available.

 Table 21-6. SPI Clock Rate Settings

 SPI2X SPR1 SPR0 Divide clock rate by

 0 0 0 4

 0 0 1 16

 0 1 0 64

 0 1 1 128

 1 0 0 2

 1 0 1 8

 1 1 0 32

 1 1 1 64

0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01Bit mask

7 6 5 4 3 2 1 0Bit number

MSB - - - - - - LSBLabel

R/W R/W R/W R/W R/W R/W R/W R/WAccess

X X X X X X X XDefault value undefined

 Figure 21-7. Data register bits

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

344

 External Includes
 Include these header files to start with. They provide access to all of the library calls needed to interact with SPI.

 #include <fcntl.h>
 #include <unistd.h>
 #include <sys/ioctl.h>
 #include <linux/types.h>
 #include <linux/spi/spidev.h>

 Inspecting the contents of the /user/include/linux/spi/spidev.h header file tells you about the
struct data passed to the kernel to communicate with the SPI driver.

 Global Variables
 The next step is to create some global variables for use by the open, close, read, and write function calls:

 int spi_cs_fd;
 unsigned char spi_mode;
 unsigned char spi_bitsPerWord;
 unsigned int spi_speed;

 Initialize these here or set them via functions in your SPI toolkit once you have constructed it.

 Opening an SPI Device
 Open a device and create a file handle on it. Recall that the open() function was used earlier as opposed to
the fopen() function when the GPIO device was opened via the kernel. SPI device control works in a similar
way. Create a function that initializes your SPIO port and open an ioctrl device at the same time.

 FILE *spi_cs_fd;
 spi_cs_fd = open("/dev/spidev0.1", O_RDWR)

 Make sure you have a corresponding close() function call for this file descriptor at the end of your SPI
interaction.

 Initializing the SPI Port
 Once the SPI device is opened, check to see if you have write access to the SPI with this call. A non-zero
result indicates that you do not have access.

 ioctl(*spi_cs_fd, SPI_IOC_WR_MODE, &spi_mode)

 Check to see if you have read access. Zero indicates success.

 ioctl(*spi_cs_fd, SPI_IOC_RD_MODE, &spi_mode)

 Set the word size for write requests with this call:

 ioctl(*spi_cs_fd, SPI_IOC_WR_BITS_PER_WORD, &spi_bitsPerWord)

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

345

 Set the word size for read requests with this call:

 ioctl(*spi_cs_fd, SPI_IOC_RD_BITS_PER_WORD, &spi_bitsPerWord)

 Set the transfer speed (clock rate) for write requests with this call:

 ioctl(*spi_cs_fd, SPI_IOC_WR_MAX_SPEED_HZ, &spi_speed)

 Set the transfer speed for read requests with this call:

 ioctl(*spi_cs_fd, SPI_IOC_RD_MAX_SPEED_HZ, &spi_speed)

 Reading and Writing Data
 The SPI interface expects to use one transfer operation for each byte that is exchanged between the master
and slave. For handling multi-byte messages, use a for() loop to call one write for each byte. An array of SPI
 struct entities is created so there is one available for each byte in the data. The data buffer is overwritten
with the data that is received back from the slave. Listing 21-1 shows the prototype for a function that writes
a multi-byte transfer out via SPI.

 Listing 21-1. Multi-Byte Transfer to SPI

 int SpiWriteAndRead (unsigned char *data, int length)
 {
 struct spi_ioc_transfer spi[length];
 int i;
 int retVal;

 //One SPI transfer for each byte
 for (i = 0 ; i < length ; i++)
 {
 memset(&spi[i], 0, sizeof (spi[i]));
 spi[i].tx_buf = (unsigned long)(data + i); // transmit from "data"
 spi[i].rx_buf = (unsigned long)(data + i) ; // receive into "data"
 spi[i].len = sizeof(*(data + i)) ;
 spi[i].delay_usecs = 0 ;
 spi[i].speed_hz = spi_speed ;
 spi[i].bits_per_word = spi_bitsPerWord ;
 spi[i].cs_change = 0;
 }

 retVal = -1;
 retVal = ioctl(*spi_cs_fd, SPI_IOC_MESSAGE(length), &spi) ;

 if(retVal < 0)
 {
 perror("Error - Problem transmitting spi data..ioctl");
 exit(1);
 }

 return retVal;
 }

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

346

 On returning from this function, the data array that you passed the transmit data in with contains the
received data. The data buffer length will not change because for every byte that was written, another one is
received. The input and output data are always exactly the same length.

 This example function is based on an original C++ program written by Hussam Al-Hertani for the
Raspberry PI. It was subsequently modified by Adam at IBEX UK Ltd. See www.raspberry-projects.com/
pi/programming-in-c/spi/using-the-spi-interface .

 AX88796 Ethernet Controller (ARTIK 520)
 The U-Boot messages on an ARTIK 5 reveal that SPI is being used for controlling the Ethernet interface
via an AX88796C chip. Searching for information about this device reveals that it is an Ethernet controller.
These Ethernet services are made available to the ARTIK 520 by the developer board because they are not
built into the module. Inspecting the developer reference board schematics reveals that this is controlled
via a private SPI interface on the ARTIK module. It feeds back its interrupts and status values via dedicated
GPIO pins. The SPI and GPIO support for this is all managed via the EBI data pins on the Panasonic AXT
connector J7 on the underside of the ARTIK 5 module. This Ethernet controller chip is located on the
developer reference board. If you want to replicate this interface, study the schematic diagrams to help you
implement your own Ethernet support in your product design. If you follow the Samsung design very closely,
you may be able to avoid the need for writing kernel-level driver code.

 AX88760 USB and Ethernet Controller (ARTIK 1020)
 The strategy for driving the Ethernet interface in an ARTIK 1020 is different. The Ethernet support is external
but a different controller is used. The AX88760 controller chip is more sophisticated and also implements
the USB interfaces for the ARTIK 1020. Whereas the ARTIK 520 uses a lot of EBI data pins to drive the
Ethernet controller chip using address and data lines, the ARTIK 1020 controls the Ethernet controller
chip via a USB connection instead of using SPI. The networking support is similar to the way you can add
an Ethernet port by plugging in a USB/Ethernet adaptor on a laptop. Refer to the Type 10 developer board
schematics to trace the connections back to the relevant AXT connectors for that module. The data sheets
also provide some relevant information about the pins on the AXT connectors.

 Arduino and SPI
 The ARTIK emulates an Arduino SPI connection on pins J27-8 (∞10), J27-7 (∞11), J27-6 (∞12), and
J27-5 (∞13), as shown in Table 21-7 . This implementation is compatible with the connections on an
Arduino UNO board. Refer to the Arduino documentation regarding the SPI library. Including this into
your Arduino sketches is by far the simplest way to experiment with SPI. You can at least exercise your
hardware and know that it is working. Then you have something reliable to test your own software against.
Developing C language software tests when you are uncertain about the hardware makes the debugging
process very ambiguous because the problem could be in either the hardware or the software. Debug
your hardware first using this technique to eliminate a major unknown when debugging your C language
application. Refer to the Arduino web site for reference information on the SPI control function provided
by the SPI library: www.arduino.cc/en/Reference/SPI .

http://www.raspberry-projects.com/pi/programming-in-c/spi/using-the-spi-interface
http://www.raspberry-projects.com/pi/programming-in-c/spi/using-the-spi-interface
http://www.arduino.cc/en/Reference/SPI

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

347

 Programming via the Arduino SPI Library
 Add this line to your Arduino sketches in order to call any of the functions summarized in Table 21-8 .

 #include <SPI.h>

 Define a pin for slave selection at the start of your sketch:

 const int slaveSelectPin = 10;

 Then populate the Arduino setup() function with the necessary initializer code. This sets the slave
select pin as an output and initialize the SPI library by calling the begin() function:

 void setup()
 {
 pinMode(slaveSelectPin, OUTPUT);
 SPI.begin();
 }

 Now select the target device connected to the slave select pin by asserting a LOW value on the digital
output pin:

 digitalWrite(slaveSelectPin, LOW);

 While the slave is selected, you can make two transactions with the SPI device. The first defines an
address inside the target device where some data is going to be written, and the second sends the data value
to be stored there:

 SPI.transfer(address);
 SPI.transfer(value);

 At the end of the process, deselect the device by asserting a HIGH value on the slave select line:

 digitalWrite(slaveSelectPin, HIGH);

 Table 21-7. Arduino SPI Emulation in an ARTIK

 Header pin SPI signal Description

 J27-7 (∞11) MOSI Serial data delivered by the master out
pin on the ARTIK to the slave input pin of
a peripheral

 J27-6 (∞12) MISO Serial data delivered by the slave out pin
on a peripheral to the master input pin on
an ARTIK

 J27-5 (∞13) SCLK SPI serial clock line

 J27-8 (∞10) SS Slave select

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

348

 The Arduino SPI library
 The SPI interface is programmed by instantiating an SPI object and sending messages to it to control the
interface. Table 21-8 summarizes the functions available in the SPI library. Refer to the Arduino web site for
complete descriptions of these functions and their parameters.

 ■ Note Some older functions are deprecated and should not be used for new projects. They still work fine
but the SPISettings object is a much-improved way to control these configuration details. Because they are
deprecated, they may be removed in a later version of the SPI library.

 Table 21-8. Arduino SPI Functions

 Function Purpose

 SPISettings A helpful auxiliary object to manage settings when calling SPI transaction()
functions

 begin() Initializes the SPI bus by setting SCLK, MOSI, and SS to outputs, pulling SCLK
and MOSI LOW , and SS HIGH .

 end() Disables the SPI bus (leaving the pin modes unchanged)

 beginTransaction() Initializes the SPI bus using the passed in SPISettings object

 endTransaction() Stops using the SPI bus. Normally this is called after deasserting the chip select
in order to allow other libraries to use the SPI bus.

 setBitOrder() A deprecated function that sets the order of the bits shifted out of and into the
SPI bus

 setClockDivider() A deprecated function that sets the SPI clock divider relative to the system clock

 setDataMode() A deprecated function that sets the SPI data mode

 transfer() SPI transfer is based on a simultaneous send and receive. This delivers new data
and returns the data that has been sent back.

 transfer16() A 16-bit variant of the 8-bit transfer() function

 usingInterrupt() Register interrupts to be called when SPI devices are ready for access

 shiftOut() Shifts out a byte of data one bit at a time via the indicated pin. This is a built-in
function that is not part of the SPI library.

 shiftIn() Shifts in a byte of data one bit at a time via the indicated pin. This is a built-in
function that is not part of the SPI library.

CHAPTER 21 ■ SERIAL PERIPHERAL INTERFACE (SPI)

349

 Multiplexing Digital Pins for SS Addressing
 The Arduino documentation suggests that slave select (SS) is available on pin 10 although you can use any
available digital pin. Alternatively, the slave device select lines can be emulated using multiple digital pins
to select the target peripheral device when you have more than one. Use one GPIO pin per device (which is
inefficient) or use them as an address multiplex to extend the number of reachable devices. Add an address
decoder chip for that implementation. A 4-to-16 line decoder/demultiplexer (74154) will select one of 16
devices in return for only using 4 pins. There are other variants of this decoder with two or three input lines.
You can choose exactly the part you need. Understanding the 74 series digital chips will help you solve many
problems with an inexpensive chip instead of writing many lines of code. See https://en.wikipedia.org/
wiki/List_of_7400_series_integrated_circuits for more information.

 Summary
 The ARTIK uses the SPI bus internally to control and manage the Ethernet interfaces that it uses for
networking. Theoretically, these SPI buses can be made available to user space applications. The SPI
interfaces have been listed in the product specifications and it is just a matter of time before they are
released for developers to use in a later operating system upgrade. For now, the coverage in this chapter is
based on publicly available knowledge of how generic SPI interfaces work.

https://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits
https://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits

351© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_22

 CHAPTER 22

 Audio and Inter-IC Sound (I2S)

 The ARTIK modules are designed for a variety of purposes. From the outset, the Samsung engineers knew
that many developers would want to integrate them into some kind of Audio product or infrastructure. The
ARTIK is equipped with Inter-IC Sound (I2S) serial buses for delivering audio samples to a stereo audio
codec chip on the developer reference board. You can implement this same chip in your own hardware
designs. Layered on top of the kernel support for I2S are the ALSA SDK, library, and toolkit for managing
sound recording and playback.

 Audio Capabilities
 The ARTIK modules are equipped to manage audio recording and playback. A monaural solid-state
microphone is built in to the developer reference board as a default sound source. Connect headphones or a
small loudspeaker to the 3.5mm jack socket to hear the audio output. Figure 22-1 shows the location of these
components, which are in the same place on the Type 5 and 10 developer reference boards.

 Figure 22-1. Solid-state microphone and jack socket

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

352

 The ARTIK modules are well suited for designs that involve simple sound applications and playing music,
perhaps in portable devices. The audio support in the ARTIK 10 has more channels available than the ARTIK 5.
The ALSA toolkit is already installed by default and can be upgraded when a new version is available.

 The audio in the ARTIK modules is built on an I2S bus architecture. Layering the ALSA toolkit on
top of the operating system avoids you having to get involved with the internals of the I2S bus at all. The
 mPlayer tools are also available. The ffmpeg utility is also installed as a built-in toolkit. Even though ffmpeg
is oriented more towards video processing, it is useful for extracting and converting audio files. Consult
Wikipedia and download the I2S specification from SparkFun from the following links:

 https://en.wikipedia.org/wiki/I2S
 www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf

 Audio Output
 Both the ARTIK 5 and 10 modules drive their stereo audio output via a 3.5mm stereo jack socket mounted
on the developer reference board. In both cases, this socket is labeled J5. The ARTIK does not output stereo
audio directly. Rather, it controls an audio codec chip (AK4953), which is located just behind the stereo jack
socket and labeled U2. The I2S bus standard is used to communicate audio sample data between the ARTIK
CPU and this codec chip. There is also some I2C bus control involved to allow the ARTIK CPU to manage
and configure the chip. All of this is evident on the circuit schematics, which are very similar for the Type 5
and 10 developer reference boards. The pages are titled differently in the schematics PDF file. In the ARTIK 5
schematics, the page is called AUDIO-AK4593 while the ARTIK 10 schematic describes it as the CODEC page.

 The AK4593 drives the 3.5mm headphone jack but can also drive a small loudspeaker. The connections
for the loudspeaker are brought out to a pair of unlabeled test points on the developer reference board. These
test points are a pair of small, circular, metallic pads near the corner of the codec chip. Attaching a loudspeaker
to them might be difficult without a surface mounted connector that connects to the test points somehow.

 The audio is driven through the AK4593 chip by delivering raw digital data to it at the correct sample
rate. Any compression and decompression from MP3 or AAC formats must be done in software inside the
ARTIK CPU. There is hardware assistance for audio digital-to-analog conversion, filtering, and mixing to
create the output signal and analog recording input that is converted to digital samples.

 Audio Input
 To record incoming multi-channel analog audio, use the analog inputs. The developer reference board has
a built-in miniature solid-state analog MEMS microphone connected to one of the inputs of the AK4953
codec chip. This delivers a mono signal to the codec. The other inputs of the codec are shorted to ground
to inhibit noise induced by floating pins. If you implement this codec chip in your own product designs,
exploit more of its input channels with additional microphones and line input connections. The part
number for this microphone is MOE-C110T42-K1 and an online search reveals the data sheet at http://
richwellgroup.com/Private/Files/6355797373201562502005514315.pdf .

 ALSA Audio Support
 The foundation of the audio support is built on the Advanced Linux Sound Architecture (ALSA) project. This
is a standard set of tools for audio processing in Linux. ALSA provides support for MIDI in addition to the
sampled audio support. The MIDI support is not turned on by default in the ARTIK. Adding the necessary
connectors and software drivers is necessary first. Access the ALSA project and explore the source code and
guidance on using the SDK and tools at the following links:

https://en.wikipedia.org/wiki/I2S
http://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
http://richwellgroup.com/Private/Files/6355797373201562502005514315.pdf
http://richwellgroup.com/Private/Files/6355797373201562502005514315.pdf

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

353

 https://wiki.archlinux.org/index.php/Advanced_Linux_Sound_Architecture
 www.alsa-project.org/main/index.php/Main_Page
 http://alsa.opensrc.org/
 www.kernel.org/doc/Documentation/sound/alsa/
 http://equalarea.com/paul/alsa-audio.html
 www.linuxjournal.com/article/6735
 www.alsa-project.org/main/index.php/Asoundrc
 http://alsa.opensrc.org/Asoundrc

 The ALSA API supports several interfaces, which are managed separately:

• Control interface: Manages multiple sound cards

• PCM interface: Controls digital audio capture and playback

• Raw MIDI interface: A standard for electronic musical instruments, which supports
Musical Instrument Digital Interface (MIDI). The raw interface works directly with
the MIDI events, and the programmer is responsible for managing the protocol and
timing. This is not yet configured on the ARTIK.

• Timer interface: Manages timing hardware on sound cards for synchronizing sound
events

• Sequencer interface: A high-level interface for MIDI support built on top of the raw
MIDI interface, it manages MIDI protocols and timing.

• Mixer interface: Used to route signals and control volume levels.

 Exploring ALSA
 The /proc/asound directory contains some useful files that your application can read to find things out about
the ALSA library you have installed. Listing 22-1 displays the hardware sound card devices in the ARTIK.

 Listing 22-1. Listing Your Sound Cards

 $ cat /proc/asound/cards

 0 [artikak4953]: artik-ak4953 - artik-ak4953
 artik-ak4953

 Discover the version of the ALSA library you have installed with the command in Listing 22-2 .

 Listing 22-2. ALSA Version

 cat /proc/asound/version

 Advanced Linux Sound Architecture Driver Version k3.10.9-00008-g48685d2.

 The available ALSA devices are shown in Listing 22-3 . There are four in an ARTIK 5 by default.

 Listing 22-3. ALSA Devices

 $ cat /proc/asound/devices

 0: [0] : control

https://wiki.archlinux.org/index.php/Advanced_Linux_Sound_Architecture
http://www.alsa-project.org/main/index.php/Main_Page
http://alsa.opensrc.org/
http://www.kernel.org/doc/Documentation/sound/alsa/
http://equalarea.com/paul/alsa-audio.html
http://www.linuxjournal.com/article/6735
http://www.alsa-project.org/main/index.php/Asoundrc
http://alsa.opensrc.org/Asoundrc

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

354

 16: [0- 0]: digital audio playback
 24: [0- 0]: digital audio capture
 33: : timer

 The /proc/asound/pcm and /proc/asound/timers files tell you about the current configuration of your
ALSA devices.

 Configuring ALSA
 The pre-installed ALSA kit has already been configured and is ready to use. If you download a new ALSA
installation, there are references to default sound cards that are not present on an ARTIK. They are for supporting
multi-channel surround sound. When ALSA attempts to initialize them, it displays warning messages. If you see
the messages in Listing 22-4 , modify the ALSA configuration file to comment out the unwanted sound cards.

 Listing 22-4. Installing the ALSA Software Library

 ALSA lib pcm.c:2267:(snd_pcm_open_noupdate) …
 ... Unknown PCM cards.pcm.front
 ... Unknown PCM cards.pcm.rear
 ... Unknown PCM cards.pcm.center_lfe
 ...

 Use your vi editor to open the ALSA configuration file /usr/share/alsa/alsa.conf and then comment
out the references to the unsupported sound cards by adding a hash character (#) at the start of the line.
Listing 22-5 shows what this looks like after editing the file.

 Listing 22-5. Commented Out Sound Cards

 #pcm.front cards.pcm.front
 #pcm.rear cards.pcm.rear
 #pcm.center_lfe cards.pcm.center_lfe
 ...

 You may see other warning messages about unreachable sound servers. These can be ignored because
there is no configuration setting to suppress them.

 There is also a global ALSA library configuration file called /etc/asound.conf which by default is empty.
This configures things for all user accounts on the system. Individual user accounts can customize their own
settings via the .asoundrc file in their home directory. Neither needs to be altered to use ALSA and the defaults
should work just fine. You can modify the /etc/asound.conf file to define a different default device. List your
devices, then choose one and edit it into the file. The ALSA tools use that configuration the next time they are
called to action. The ARTIK only contains a single sound card numbered zero (0). If you add more sound cards
to implement a more complex audio/music product, they are listed here if ALSA recognizes them.

 If you had more devices (and for the purposes of an example), assume the one you want to make the
default is device 1. Edit your /etc/asound.conf file to define a system-wide default. Add the lines shown in
Listing 22-6 to your configuration file.

 Listing 22-6. Adding a Default Selector for Device 1

 defaults.pcm.card 1
 defaults.ctl.card 1

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

355

 Upgrading ALSA
 The current state of the ALSA system inside your ARTIK is stored in the /var/lib/alsa/asound.state file.
Type this command to see the details:

 cat /var/lib/alsa/asound.state | more

 To reinstall or upgrade the ALSA library, use the dnf command to download and install the complete
ALSA developer kit: dnf install alsa-lib-devel

 The Audio Mixer Tool (amixer)
 The amixer command has some basic help built in. Use the command in Listing 22-7 to display it. Access
more descriptive help with the man amixer command.

 Listing 22-7. Audio Mixer Commands

 amixer -h

 Usage: amixer <options> [command]

 Available options:
 -h,--help this help
 -c,--card N select the card
 -D,--device N select the device, default 'default'
 -d,--debug debug mode
 -n,--nocheck do not perform range checking
 -v,--version print version of this program
 -q,--quiet be quiet
 -i,--inactive show also inactive controls
 -a,--abstract L select abstraction level (none or basic)
 -s,--stdin read and execute commands from stdin sequentially
 -R,--raw-volume use the raw value (default)
 -M,--mapped-volume use the mapped volume

 Available commands:
 scontrols show all mixer simple controls
 scontents show contents of all mixer simple controls (default command)
 sset sID P set contents for one mixer simple control
 sget sID get contents for one mixer simple control
 controls show all controls for given card
 contents show contents of all controls for given card
 cset cID P set control contents for one control
 cget cID get control contents for one control

 The mixer has some initial configuration which was done during the ARTIK OS build. If the anaconda-
ks.cfg file is still present, you can see where it created those defaults and stored them in a script. Restore
those mixer defaults by running the /usr/bin/audio_setting.sh script if your mixer configuration gets out
of control. Listing 22-8 shows the contents of that file to show the default settings. Set them individually by
executing each line in the bash shell.

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

356

 Listing 22-8. Audio Mixer Default Settings

 amixer sset "Digital Output Volume1 L (Manual Mode)" 120
 amixer sset "Digital Output Volume1 R (Manual Mode)" 120
 amixer sset "Mic Gain Control" 3
 amixer sset "Mic Bias MUX" "IN1"
 amixer sset "IN1 MUX" "Mic Bias"
 amixer sset "Input Select MUX" "LIN1/RIN1"
 amixer sset "ADC MUX1" "Mono"
 amixer sset "MIC MUX" "AMIC"
 amixer sset "ADCPF MUX" "ADC"
 amixer sset "DACHP" "ON"

 The Audio Recorder Tool (arecord)
 Use the arecord application to check out your sound card where it looks for incoming audio. The arecord
application has some basic help built-in. Use the command in Listing 22-9 to display it. Access more
descriptive help with the man arecord command.

 Listing 22-9. Help Display for the arecord Tool

 arecord -h

 Usage: arecord [OPTION]... [FILE]...

 -h, --help help
 --version print current version
 -l, --list-devices list all soundcards and digital audio devices
 -L, --list-pcms list device names
 -D, --device=NAME select PCM by name
 -q, --quiet quiet mode
 -t, --file-type TYPE file type (voc, wav, raw or au)
 -c, --channels=# channels
 -f, --format=FORMAT sample format (case insensitive)
 -r, --rate=# sample rate
 -d, --duration=# interrupt after # seconds
 -M, --mmap mmap stream
 -N, --nonblock nonblocking mode
 -F, --period-time=# distance between interrupts is # microseconds
 -B, --buffer-time=# buffer duration is # microseconds
 --period-size=# distance between interrupts is # frames
 --buffer-size=# buffer duration is # frames
 -A, --avail-min=# min available space for wakeup is # microseconds
 -R, --start-delay=# delay for automatic PCM start is # microseconds
 (relative to buffer size if <= 0)
 -T, --stop-delay=# delay for automatic PCM stop is # microseconds from xrun
 -v, --verbose show PCM structure and setup (accumulative)
 -V, --vumeter=TYPE enable VU meter (TYPE: mono or stereo)
 -I, --separate-channels one file for each channel
 -i, --interactive allow interactive operation from stdin
 -m, --chmap=ch1,ch2,.. give the channel map to override or follow
 --disable-resample disable automatic rate resample

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

357

 --disable-channels disable automatic channel conversions
 --disable-format disable automatic format conversions
 --disable-softvol disable software volume control (softvol)
 --test-position test ring buffer position
 --test-coef=# test coefficient for ring buffer position (default 8)
 expression for validation is: coef * (buffer_size / 2)
 --test-nowait do not wait for ring buffer - eats whole CPU
 --max-file-time=# start another output file when the old file has recorded
 for this many seconds
 --process-id-file write the process ID here
 --use-strftime apply the strftime facility to the output file name
 --dump-hw-params dump hw_params of the device
 --fatal-errors treat all errors as fatal
 Recognized sample formats are: S8 U8 S16_LE S16_BE U16_LE U16_BE S24_LE S24_BE U24_LE U24_BE
S32_LE S32_BE U32_LE U32_BE FLOAT_LE FLOAT_BE FLOAT64_LE FLOAT64_BE IEC958_SUBFRAME_LE
IEC958_SUBFRAME_BE MU_LAW A_LAW IMA_ADPCM MPEG GSM SPECIAL S24_3LE S24_3BE U24_3LE U24_3BE
S20_3LE S20_3BE U20_3LE U20_3BE S18_3LE S18_3BE U18_3LE U18_3BE G723_24 G723_24_1B G723_40
G723_40_1B DSD_U8
 Some of these may not be available on selected hardware
 The available format shortcuts are:
 -f cd (16 bit little endian, 44100, stereo)
 -f cdr (16 bit big endian, 44100, stereo)
 -f dat (16 bit little endian, 48000, stereo)

 The Audio Player Tool (aplay)
 Use the aplay application to check out your sound card where it looks for incoming audio. The aplay tool
has some basic built-in help. Use the command in Listing 22-10 to display it. Access more descriptive help
with the man aplay command.

 Listing 22-10. Help Display for the aplay Tool

 aplay -h

 Usage: aplay [OPTION]... [FILE]...

 -h, --help help
 --version print current version
 -l, --list-devices list all soundcards and digital audio devices
 -L, --list-pcms list device names
 -D, --device=NAME select PCM by name
 -q, --quiet quiet mode
 -t, --file-type TYPE file type (voc, wav, raw or au)
 -c, --channels=# channels
 -f, --format=FORMAT sample format (case insensitive)
 -r, --rate=# sample rate
 -d, --duration=# interrupt after # seconds
 -M, --mmap mmap stream
 -N, --nonblock nonblocking mode
 -F, --period-time=# distance between interrupts is # microseconds
 -B, --buffer-time=# buffer duration is # microseconds

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

358

 --period-size=# distance between interrupts is # frames
 --buffer-size=# buffer duration is # frames
 -A, --avail-min=# min available space for wakeup is # microseconds
 -R, --start-delay=# delay for automatic PCM start is # microseconds
 (relative to buffer size if <= 0)
 -T, --stop-delay=# delay for automatic PCM stop is # microseconds from xrun
 -v, --verbose show PCM structure and setup (accumulative)
 -V, --vumeter=TYPE enable VU meter (TYPE: mono or stereo)
 -I, --separate-channels one file for each channel
 -i, --interactive allow interactive operation from stdin
 -m, --chmap=ch1,ch2,.. give the channel map to override or follow
 --disable-resample disable automatic rate resample
 --disable-channels disable automatic channel conversions
 --disable-format disable automatic format conversions
 --disable-softvol disable software volume control (softvol)
 --test-position test ring buffer position
 --test-coef=# test coefficient for ring buffer position (default 8)
 expression for validation is: coef * (buffer_size / 2)
 --test-nowait do not wait for ring buffer - eats whole CPU
 --max-file-time=# start another output file when the old file has recorded
 for this many seconds
 --process-id-file write the process ID here
 --use-strftime apply the strftime facility to the output file name
 --dump-hw-params dump hw_params of the device
 --fatal-errors treat all errors as fatal
 Recognized sample formats are: S8 U8 S16_LE S16_BE U16_LE U16_BE S24_LE S24_BE U24_LE U24_BE
S32_LE S32_BE U32_LE U32_BE FLOAT_LE FLOAT_BE FLOAT64_LE FLOAT64_BE IEC958_SUBFRAME_LE
IEC958_SUBFRAME_BE MU_LAW A_LAW IMA_ADPCM MPEG GSM SPECIAL S24_3LE S24_3BE U24_3LE U24_3BE
S20_3LE S20_3BE U20_3LE U20_3BE S18_3LE S18_3BE U18_3LE U18_3BE G723_24 G723_24_1B G723_40
G723_40_1B DSD_U8
 Some of these may not be available on selected hardware
 The available format shortcuts are:
 -f cd (16 bit little endian, 44100, stereo)
 -f cdr (16 bit big endian, 44100, stereo)
 -f dat (16 bit little endian, 48000, stereo)

 The Audio/Visual Player Tool (mPlayer)
 Use the mPlayer tool on your ARTIK to play audio or video files. Refer to the mPlayer and Wikipedia web
sites for details. Go to

 https://mplayerhq.hu/
 https://en.wikipedia.org/wiki/MPlayer

 Type the mplayer command with no options to see the onscreen help display. Listing 22-11 shows the
available command options and more information is available on the manual page.

 Listing 22-11. Help Display for the mPlayer Tool

 mplayer

 MPlayer 1.2-5.1.1 (C) 2000-2015 MPlayer Team

https://mplayerhq.hu/
https://en.wikipedia.org/wiki/MPlayer

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

359

 Usage: mplayer [options] [url|path/]filename

 Basic options: (complete list in the man page)
 -vo <drv> select video output driver ('-vo help' for a list)
 -ao <drv> select audio output driver ('-ao help' for a list)
 vcd://<trackno> play (S)VCD (Super Video CD) track (raw device, no mount)
 dvd://<titleno> play DVD title from device instead of plain file
 -alang/-slang select DVD audio/subtitle language (by 2-char country code)
 -ss <position> seek to given (seconds or hh:mm:ss) position
 -nosound do not play sound
 -fs fullscreen playback (or -vm, -zoom, details in the man page)
 -x <x> -y <y> set display resolution (for use with -vm or -zoom)
 -sub <file> specify subtitle file to use (also see -subfps, -subdelay)
 -playlist <file> specify playlist file
 -vid x -aid y select video (x) and audio (y) stream to play
 -fps x -srate y change video (x fps) and audio (y Hz) rate
 -pp <quality> enable postprocessing filter (details in the man page)
 -framedrop enable frame dropping (for slow machines)

 Basic keys: (complete list in the man page, also check input.conf)
 <- or -> seek backward/forward 10 seconds
 down or up seek backward/forward 1 minute
 pgdown or pgup seek backward/forward 10 minutes
 < or > step backward/forward in playlist
 p or SPACE pause movie (press any key to continue)
 q or ESC stop playing and quit program
 + or - adjust audio delay by +/- 0.1 second
 o cycle OSD mode: none / seekbar / seekbar + timer
 * or / increase or decrease PCM volume
 x or z adjust subtitle delay by +/- 0.1 second
 r or t adjust subtitle position up/down, also see -vf expand

 * * * SEE THE MAN PAGE FOR DETAILS, FURTHER (ADVANCED) OPTIONS AND KEYS * * *

 Finding the Sound Card
 The ALSA tools tell you about the audio capabilities of your ARTIK. Type the command in Listing 22-12 to
see your available sound cards. The report may change with upgrades to the OS or underlying hardware.
This report describes the AK4953 audio codec chip as your sound card.

 Listing 22-12. Playback Hardware Devices on an ARTIK 5

 aplay -l

 **** List of PLAYBACK Hardware Devices ****
 card 0: artikak4953 [artik-ak4953], device 0: Playback ak4953-AIF1-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

 Check for available sound cards with the aplay -l or arecord -l command. They will both display the
same result.

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

360

 Testing the Audio Outputs
 Test your audio output with the speaker-test tool, as shown in Listing 22-13 . Press [Control]-[C] when you
are done to stop the pink noise being played through the audio outputs.

 Listing 22-13. Running a Speaker Test

 speaker-test

 speaker-test 1.0.29

 Playback device is default
 Stream parameters are 48000Hz, S16_LE, 1 channels
 Using 16 octaves of pink noise
 Rate set to 48000Hz (requested 48000Hz)
 Buffer size range from 64 to 65536
 Period size range from 32 to 8192
 Using max buffer size 65536
 Periods = 4
 was set period_size = 8192
 was set buffer_size = 65536
 0 - Front Left

 Recording Audio
 To record audio, first you need connect your audio source to the ARTIK inputs. The developer reference
boards all have a built-in solid-state microphone connected directly to the audio input of the AK4953 codec
chip. The Type 5 and 10 developer kits can use the Arduino-compatible analog inputs for multi-channel
recording or just one of them for mono and two of them for stereo. The ARTIK 5 supports only two inputs
and the ARTIK 10 supports all six. Configure the input mixer to route the incoming audio to the right place
and set the recording levels. Run a software audio recorder to capture the incoming steams of audio samples.

 Before starting to record, plug your audio source into analog input 0 . Then apply the settings in Listing 22-14
to the mixer with the amixer command.

 Listing 22-14. Audio Mixer Settings for Recording

 amixer sset "Digital Output Volume1 L (Manual Mode)" 120
 amixer sset "Digital Output Volume1 R (Manual Mode)" 120
 amixer sset "Mic Gain Control" 3
 amixer sset "Mic Bias MUX" "IN1"
 amixer sset "IN1 MUX" "Mic Bias"
 amixer sset "Input Select MUX" "LIN1/RIN1"
 amixer sset "ADC MUX1" "Mono"
 amixer sset "MIC MUX" "AMIC"
 amixer sset "ADCPF MUX" "ADC"
 amixer sset "DACHP" "ON"
 amixer sset "MIC MUX" "AMIC"
 amixer sset "ADCPF MUX" "ADC"
 amixer sset "DACHP" "ON"

 Now you are ready to set the software recorder running with this command:

 arecord -f dat test.wav

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

361

 Once the recorder has started, start the playback on your audio source if you are dubbing from another
medium. When you are done recording, press [Control]-[C] to stop the recorder. Your finished recording is
stored in the test.wav file. Now play the recorded audio with the aplay or mplayer tools.

 The -vv option tells the recording tool to display much more information about the recording. The example
in Listing 22-15 shows how the file is recorded and stored in the /tmp directory. While the recording is running,
the ALSA recording tool shows audio levels at the bottom of the screen. Press [Control]-[C] to stop the recording.

 Listing 22-15. Verbose Recording Command Output

 arecord -vv -fdat /tmp/foo.wav

 Recording WAVE '/tmp/foo.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo
 Plug PCM: Hardware PCM card 0 'artik-ak4953' device 0 subdevice 0
 Its setup is:
 stream : CAPTURE
 access : RW_INTERLEAVED
 format : S16_LE
 subformat : STD
 channels : 2
 rate : 48000
 exact rate : 48000 (48000/1)
 msbits : 16
 buffer_size : 24000
 period_size : 6000
 period_time : 125000
 tstamp_mode : NONE
 tstamp_type : MONOTONIC
 period_step : 1
 avail_min : 6000
 period_event : 0
 start_threshold : 1
 stop_threshold : 24000
 silence_threshold: 0
 silence_size : 0
 boundary : 1572864000
 appl_ptr : 0
 hw_ptr : 0

 Playing Audio Files
 Use the aplay tool, which is part of the ALSA project built into the ARTIK. Prepare an audio file (foo.wav)
and transfer it to the /tmp directory in your ARTIK or record one into the /tmp/foo.wav file with the arecord
tool. Then connect an earphone or speaker to the 3.5mm audio jack socket on the developer board. Prepare
the ARTIK and set the volume by adjusting the mixer settings as shown in Listing 22-16 .

 Listing 22-16. Mixer Settings for Playback

 amixer sset "PFDAC MUX" "SDTI"
 amixer sset "DACHP" "ON"
 amixer sset "Digital Output Volume1 L (Manual Mode)" 240
 amixer sset "Digital Output Volume1 R (Manual Mode)" 240

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

362

 Now you are ready to play the wav file with the aplay tool:

 aplay /tmp/foo.wav

 Playing WAVE '/tmp/foo.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo

 Add the -vv options so the aplay tool displays verbose debugging information about the PCM interface
as it plays the sound file. Listing 22-17 shows an example of verbose playback reporting.

 Listing 22-17. Verbose Audio Playback Command Output

 aplay -vv /tmp/foo.wav

 Playing WAVE '/tmp/foo.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo
 Plug PCM: Hardware PCM card 0 'artik-ak4953' device 0 subdevice 0
 Its setup is:
 stream : PLAYBACK
 access : RW_INTERLEAVED
 format : S16_LE
 subformat : STD
 channels : 2
 rate : 48000
 exact rate : 48000 (48000/1)
 msbits : 16
 buffer_size : 24000
 period_size : 6000
 period_time : 125000
 tstamp_mode : NONE
 tstamp_type : MONOTONIC
 period_step : 1
 avail_min : 6000
 period_event : 0
 start_threshold : 24000
 stop_threshold : 24000
 silence_threshold: 0
 silence_size : 0
 boundary : 1572864000
 appl_ptr : 0
 hw_ptr : 0

 Developing Audio Applications
 The Samsung developer support team has published some useful help in the developer guide. It shows how
to record and play back audio directly with the Python and C language applications. If you want to move on
from using the bash command line and do more complex things with audio, refer to the developer page at
 https://developer.artik.io/documentation/developer-guide/multimedia/audio-guide.html#using-c .

 Download the source code for the ALSA libraries and dismantle them to understand how to interact
with the I2S bus if you want to directly control your audio input/output from a C language application. You
can find more interesting advice and tutorials on audio programming on the Web. Some of the information
is very ancient because ALSA has been around for quite a while. Check out these links for more help:

https://developer.artik.io/documentation/developer-guide/multimedia/audio-guide.html#using-c

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

363

 http://equalarea.com/paul/alsa-audio.html
 http://tldp.org/HOWTO/Alsa-sound-1.html
 http://voices.canonical.com/david.henningsson/2012/07/13/top-five-wrong-ways-to-fix-your-audio/

 Pulse Audio Support
 The ALSA toolkit is an important subsystem but there are other alternatives for audio work (OSS, ESD, aRts,
JACK, and GStreamer, to name a few). The built-in PulseAudio tools are also well worth investigating to see
what they can add to your audio capabilities.

 PulseAudio is a useful proxy for your sound applications. It allows you to do advanced operations on
your sound data as it passes between your application and hardware. Things like transferring the audio to
a different machine, changing the sample format or channel count, and mixing several sounds into one are
easily achieved using a PulseAudio sound server.

 www.freedesktop.org/wiki/Software/PulseAudio/
 https://en.wikipedia.org/wiki/PulseAudio
 https://wiki.archlinux.org/index.php/PulseAudio

 Type the following command to list your pulse audio device configuration. It produces a very long
listing. Pass the output through the more command to display it one page at a time.

 pactl list | more

 How Does I2S Work?
 Inter-IC Sound (I2S) is a bus system for transferring digital audio data from one device to another. Like some
of the other technology in this category, it was also developed by Phillips (now known as NXP) although it is
unrelated to the I2C project that they also sponsored. The design was developed in the 1980s as the CD industry
emerged. It stabilized in 1996 and has not needed any major revisions since then. Software for driving this
interface is mature and reliable, as is the supporting hardware for implementing it. The audio data is transferred
as pulse code modulation (PCM) samples as you would find on a CD. These samples, taken at regular intervals,
are converted back into analog audio signals by passing them through a digital-to-analog converter (DAC).
The data and clock lines are separated so the data streams can be delivered without any jitter in the recovered
waveform. This is important because the samples are driven by the transmitter and must arrive in time to be
played out when the timing of the sample conversion demands it to avoid clicks and pauses in the outgoing
analog audio. The bus design is very simple and is organized as the three-wire system shown in Figure 22-2 .

 The master clock line pulses once for each bit being transferred from the transmitter to the receiver
device via the data line. All bits for all channels are transmitted as a single stream. Lower resolution data
with only 8 bits per sample takes fewer clock pulses than 24-bit high-resolution sample data.

Transmitter

Clock

Word select

Data

Receiver

 Figure 22-2. Simple I2S connections

http://equalarea.com/paul/alsa-audio.html
http://tldp.org/HOWTO/Alsa-sound-1.html
http://voices.canonical.com/david.henningsson/2012/07/13/top-five-wrong-ways-to-fix-your-audio/
http://www.freedesktop.org/wiki/Software/PulseAudio/
https://en.wikipedia.org/wiki/PulseAudio
https://wiki.archlinux.org/index.php/PulseAudio

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

364

 The word select line is toggled to route the sample data to the left or right side registers when stereo
data is being delivered. This is often called the left-right clock. This is the main differentiator between the I2S
and SPI architectural designs. Chip selection is another difference and it has to be done outside of the I2S
bus, most likely using GPIO or I2C controls. The word select clock switches once for each sample to marshal
the bits left or right. The frequency is the same as the sample rate. Because the samples are the same size for
both channels, it has a duty cycle of 50%.

 The I2S interface is designed to handle just two channels. To implement a multi-channel solution, your
design must incorporate multiple I2S buses, each with their own dedicated decoder. The complexity comes from
scaling things up but fundamentally the operation is the same. Your CPU will have to work harder to load the
sample data into the transmit ends of the I2S pipelines to maintain the throughput in a multi-channel scenario.

 The ARTIK Implementation
 The ARTIK adds a little sophistication to this so it can support a separate playback and record data line,
which allows for bidirectional data transfer between the ARTIK and the Audio codec chip. The architecture
also adds some I2C and GPIO logic so the ARTIK can control the stereo codec chip. Figure 22-3 shows the
main parts of the I2S-related implementation.

 This implementation allows the ARTIK or the codec chip to assume the role of master in the I2S
data transfer process. Consequently, some of the connections are bidirectional. In the case of the MCKI
and MCK0 pins on the codec chip, they are unidirectional pins but they are mapped to a bidirectional
connection on the ARTIK by a small piece of glue logic that switches the connection one way or the other
according to which end is the master. The switching is controlled by the CODEC_PDN GPIO output from
the ARTIK. The Left-Right Clock and the Serial Data Clock lines are genuinely bidirectional. The serial data
transfers are unidirectional and managed separately. This makes the connection between the ARTIK and
codec look somewhat like an SPI connection but because of the left-right switching for stereo samples it is a
genuine I2S implementation.

I2C and GPIO controls

Audio data clock

Word select

Playback data

Serial data clock

Recording data

ARTIK Audio Codec

xAudi2s0SDO

xAudi2s0SDI

MCKI/MCK0

LRCK

BICK

SDTI

SDTO

xAudi2s0SCLK

xAudi2s0LRCK

xAudi2s0CDCLK

 Figure 22-3. ARTIK I2S implementation

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

365

 Sample Rates
 Digital audio is a series of samples taken at regular intervals. The analog waveform is measured and
converted to a digital value. The value may recorded with only 8 bits of data or it can use up to 24 bits for
studio quality recordings. This is described as the resolution and it controls how faithfully the original
waveform can be reproduced. Using high-resolution data on low-resolution players is accomplished by
discarding the least significant bits to arrive at the correct target word size. There are various different
sample rates deployed in digital audio systems. This may be important if you repurpose digital audio from
other platforms. Table 22-1 summarizes the most common rates.

 The ARTIK can control the sample rates by sending a message to the audio codec chip via the I2C
interface. A 4-bit selection value is used to choose the sample rate from the 16 alternatives that the codec chip
can support. Refer to the data sheet for the codec to see the available sample rates and I2C register details.

 The sample rate indicates how fast the master clock must run to keep up with the delivery of samples to
the codec to play them back at the right speed. Read more about sampling at the Wikipedia site at https://
en.wikipedia.org/wiki/Sampling_(signal_processing) .

 ■ Note There is an important and subtle difference between CD audio and the audio on digital video
systems. CD audio is sampled at 44.1 kHz and TV audio is sampled at 48 kHz. The difference is 4 kHZ. If sample
rate conversion is not performed to enough accuracy, an aliasing effect is created at approximately 4 kHz. This
is right in the middle of the human hearing range and is extremely disturbing for the listener. Convert the audio
to a larger word size first. Then the sample rate conversion can operate at a higher resolution to avoid rounding
errors. Down convert afterwards to arrive back at the target word size.

 Clock Timings
 Choosing the sample rate determines the target clock rate. Because the data is delivered via a serial
connection, the resolution of the samples, the sample rate, and the number of channels all affect the master
bit clock frequency. The formula in Figure 22-4 illustrates how this is calculated.

 Table 22-1. Digital Audio Sample Rates

 Sample rate Description

 22.05 kHz Half CD quality for low data rate scenarios

 44.1 kHz CD quality. Two channels are needed for stereo. More for multi-channel
sound systems.

 48 kHz DVD and broadcast TV standard. Two channels are needed for stereo.
More for surround sound designs.

 96 kHz Studio quality

 192 kHz Premium studio quality

https://en.wikipedia.org/wiki/Sampling_(signal_processing
https://en.wikipedia.org/wiki/Sampling_(signal_processing

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

366

 AK4953A - Stereo Codec Chip
 The Commercial Beta ARTIK 5 and 10 developer reference boards implement a hardware 24-bit stereo audio
codec with the AK4953A chip, which is controlled via bus I2C-1. The i2cdetect command reveals that the
ARTIK 5 module uses bus I2C-1 at a node address of 0x0013 . The signal names are different on the Type 10
developer board schematic. Tracing them back to the AXT connector and checking the data sheets indicates
they are functionally the same. Table 22-2 summarizes these names from the schematics.

 Table 22-2. I2C Bus Control of the Audio Codec Chip

 AK4953A pin ARTIK 5 ARTIK 10

 CCLK/SCL Xi2c1_SCL XAUDIO_SCL

 CSN/SDA Xi2c1_SDA XAUDIO_SDA

 SDTI XAudi2s2SDO XAUDI2S0SDO

 SDTO XAudi2s2SDI Audi2s0SDI

 LRCK XAudi2s2LRCK XAUDI2S0LRCK

 BICK XAudi2s2SCLK XAUDI2S0SCLK

 MCKI XAudi2s2CDCLK XAUDI2S0CDCLK

 PDN CODEC_PDN CODEC_PDN

Sample rate 44.1 kHz=

Bits per channel (resolution) 16=

Channel count (stereo) 2=

Clock rate 44100 x 16 x 2=

1411200=

1.4112 MHz=

 Figure 22-4. Bit rate calculation

 Download the data sheet for the codec chip. It is very comprehensive and contains nearly 100 pages
of deeply technical information about the stereo audio codec. The specification describes signal levels
and timings that ALSA controls. The data sheet also describes the register addresses used by the I2C
configuration and control signals from the ARTIK. The I2C interface is used to set the sample rate via
the four bits FS0 - FS3 in register 0x06 of the codec chip. See www.digchip.com/datasheets/download_
datasheet.php?id=3264775&part-number=AK4953A .

 The control registers for this device are visible on the I2C bus with this command:

 i2cdetect -y 1

http://www.digchip.com/datasheets/download_datasheet.php?id=3264775&part-number=AK4953A
http://www.digchip.com/datasheets/download_datasheet.php?id=3264775&part-number=AK4953A

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

367

 Find Out More About I2S
 The data sheets for the model 520 and 1020 ARTIK modules have detailed specifications of the I2S signals.
The ALSA library is a higher-level abstraction and saves you a lot of time, but you can still interact directly
with the I2S bus if necessary. Read the online resources for more in-depth information about the I2S bus
and how it works. The Wikipedia article discusses data rates and the S/PDIF interconnections for integrating
digital audio hardware components in a Hi-Fi system. See the following links:

 https://en.wikipedia.org/wiki/NXP_Semiconductors
 https://en.wikipedia.org/wiki/I2S
 https://en.wikipedia.org/wiki/Pulse-code_modulation
 https://en.wikipedia.org/wiki/Jitter

 Audio-Related AXT Connections
 Tables 22-3 and 22-4 summarize the audio-related connections available on the AXT connectors underneath
your ARTIK module. The connections for the ARTIK 5 and 10 are each shown in their own tables. Refer to
the Samsung ARTIK data sheets for more information about voltage levels and other detailed specifications
regarding these pins.

 Table 22-3. ARTIK 5 Audio AXT Pinouts

 AXT pin Name Function

 J3-27 XEINT_27 Earphone plugged in detect (JACKDETECT)

 J3-53 XCLKOUT Clock output (24MHz CDCLK)

 J3-48 XAudi2s2SDO SDO

 J3-50 XAudi2s2SDI SDI

 J3-52 XAudi2s2SCLK SCLK

 J3-54 XAudi2s2LRCK LRCLK

 J3-56 XAudi2s2CDCLK CDCLK

 J3-60 CODEC_PDN AK4953EQ audio codec IC power down

 J4-15 Xi2c1_SCL Bus I2C-1 Serial Clock Line

 J4-17 Xi2c1_SDA Bus I2C-1 Serial Data Line

https://en.wikipedia.org/wiki/NXP_Semiconductors
https://en.wikipedia.org/wiki/I2S
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Jitter

CHAPTER 22 ■ AUDIO AND INTER-IC SOUND (I2S)

368

 Audio Experiments
 Refer to Chapter 21 , which describes the SPI interface, and read about the Arduino emulation. Read the
online Arduino tutorial about controlling a digital potentiometer. You can find it with the other tutorials on
the Arduino web site. A bank of digitally controlled potentiometers is the basic hardware necessary to create
a sound mixer. Build some interesting audio projects around that. Adding sound playback from digital files
would enable a theatrical sound effects system to be created, and a digital potentiometers could be used to
pan the sound to various speakers to create a soundscape. Add some analog oscillators controlled by I2C
and you have the basis of a simple music synthesizer. The details are on the tutorial page at www.arduino.
cc/en/Tutorial/DigitalPotControl .

 Summary
 The I2S interface was a major part of the CD revolution in the 1980s. Every CD player must have an I2S
system or something similar at its heart, and now your ARTIK has all of this available for your applications to
exploit too. Most developers will accomplish what they need with the ALSA tools. A few more adventurous
developers may implement more sophisticated products by directly interacting with the I2S devices.

 Table 22-4. ARTIK 10 Audio AXT Pinouts

 AXT Pin Name Function

 J1-35 XEINT_27 Earphone plugged in detect (JACKDETECT)

 J1-67 XCLKOUT Clock output (24MHz CDCLK)

 J1-72 xAudi2s0SDO Audio SDO

 J1-74 xAudi2s0SDI Audio SDI

 J1-76 xAudi2s0SCLK Audio SCLK

 J1-78 xAudi2s0LRCK Audio LRCK

 J1-80 xAudi2s0CDCLK Audio DCLK

 J2-7 CODEC_PDN AK4953EQ audio codec IC power down

 J1-75 Xi2c1_SCL Bus I2C-1 Serial Clock Line

 J1-77 Xi2c1_SDA Bus I2C-1 Serial Data Line

http://dx.doi.org/10.1007/978-1-4842-2322-2_21
http://www.arduino.cc/en/Tutorial/DigitalPotControl
http://www.arduino.cc/en/Tutorial/DigitalPotControl

369© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_23

 CHAPTER 23

 Graphics and Video

 With the introduction of the ARTIK 10, Samsung has extended the video capabilities of the ARTIK. There is
still plenty of work to be done to make it more capable but attaching a basic video display or camera is now
feasible. Consult the Samsung developer resources for more details and check the online resource for new
advancements. This chapter provides some supporting material to aid your audio-visual development process.

 About Graphics and Video
 With the introduction of the Commercial Beta ARTIK 10, the Samsung developer support team has published
some guidance on connecting video cameras and displays to the ARTIK modules. That is a great place to start
learning about video on the ARTIK. The material in this chapter is designed to support it with helpful reference
information and explanations of the underlying technologies with links to places where you can find out more.
Read the Samsung developer guidelines first and then read the rest of this chapter for additional background
information. Go to https://developer.artik.io/documentation/developer-guide/multimedia/ .

 According to the current list of Beta features in the Samsung ARTIK developer web site, only the ARTIK 10
supports video although many of the tools are present on the Commercial Beta ARTIK 5. For now, ARTIK 10 video
output is delivered via the HDMI connector (J18). Video input is currently supported via MIPI-compatible or
USB-attached cameras. Table 23-1 lists the tools for capturing, converting, and playing back your moving images.

 You may want to add other tools. The open source ImageMagik and Gimp projects may be useful for
processing images under control of bash shell command scripts.

 Table 23-1. Basic Video Toolkit

 Tool Function

 aplay Playing audio and video files

 mplayer Playing audio and video files

 Fswebcam Capturing still or moving images

 ffmpeg Converting video from one format to another, extracting tracks,
trimming, splicing and joining clips.

 ffserver Streaming video to other client players

 gstreamer Previewing images and processing video through effects plugins

https://developer.artik.io/documentation/developer-guide/multimedia/

CHAPTER 23 ■ GRAPHICS AND VIDEO

370

 Graphics Support
 The graphics are all implemented using the built-in ARM MALI GPU chips. There is some information
online about these devices and there is more to learn by exploring the sysfs file system. The AMBA support
is a proprietary way that ARM has developed for communication between their CPU designs and locally
attached GPU chips. The MALI support becomes more sophisticated as new OS versions are released. The
graphics support that the GPU provides is fundamental to getting video output to work because it provides
a canvas on which to paint the moving video images. Exploit the GPU to draw vectors with OpenVG, render
pixels with OpenGL, and provide compute assistance with OpenCL. The Samsung developer documentation
describes some entry level OpenVG support. Other SDKs will be released later.

 Video Support
 Digital video is a complex topic. The ARTIK 10 has sufficient computing power to encode video ingested via a
camera or digital video interface. The ARTIK 5 is powerful enough to play back high-quality video. It may be
able to compress video also, perhaps not as quickly as an ARTIK 10 because it has fewer hardware resources
and runs at a lower CPU clock rate. The ARTIK OS has the popular ffmpeg video coding tool built in. The aplay
and mPlayer tools should get you started with playing video clips once you have a viable display connected.

 Display Connectors
 There are several connectors for video displays. These connectors are different because the displays that are
supported have different resolutions. Additionally, the ARTIK 10 can display video on a Hi-Definition TV via
the HDMI connector. Connect the displays and power on your ARTIK. The console output should appear on
the display driven directly from the ARTIK. Table 23-2 lists the display options available.

 The ARTIK 5 and 10 modules can both drive a MIPI display connected to the display connector on the
developer reference board. Drive this with the MIPI DSI protocol. The MIPI DSI standards are documented
online. See the following links:

 http://mipi.org/specifications/display-interface
 https://en.wikipedia.org/wiki/Display_Serial_Interface
 www.ti.com/cn/lit/pdf/swpa225
 http://electronicdesign.com/communications/understanding-mipi-alliance-interface-specifications

 The Type 5 developer reference board has a 25-pin Molex ribbon connector for displays (J17), as shown
in Figure 23-1 .

 Table 23-2. Video Display Choices

 ARTIK Type Display Connector Resolution

 5 MIPI EH400WV J17 800 x 480

 10 MIPI AMS499QP84 J33 1920 x 1080

 10 HDMI HDMI 1.4a J18 1920 x 1080p

http://mipi.org/specifications/display-interface
https://en.wikipedia.org/wiki/Display_Serial_Interface
http://www.ti.com/cn/lit/pdf/swpa225
http://electronicdesign.com/communications/understanding-mipi-alliance-interface-specifications

CHAPTER 23 ■ GRAPHICS AND VIDEO

371

 The Type 10 display connector (J33) is shown in Figure 23-2 .

 This is an AVX/Kyocera Super Microleaf - 5804 Series connector with 40 pins. The matching connector
part number is 24-5804-040-500-829. The data sheet for this connector is available from the Kyocera web site
at www.kyocera-connector.com/jp/wp-content/uploads/2016/05/5804.pdf .

 The HDMI version 1.4 signals are delivered via the AXT connector J3, which is routed to the standard
mini-HDMI socket on the developer reference board. Each signal is composed of a differential pair of minus
and plus signals that work together to improve the noise immunity, rather like using balanced cables in
audio studios. The TPD12S016 companion chip does most of the hard work of managing the HDMI signals.
This is driven by various AXT connector pins. The HDMI connector is illustrated in Figure 23-3 . The various
signals and details of how HDMI operates can be found on the Wikipedia page to start with. It leads you to
other resources if you want to dig deeper into the HDMI standard.

 Figure 23-1. Type 5 display connector (J17)

 Figure 23-2. Type 10 display connector (J33)

 Figure 23-3. Type 10 HDMI connector (J18)

http://www.kyocera-connector.com/jp/wp-content/uploads/2016/05/5804.pdf

CHAPTER 23 ■ GRAPHICS AND VIDEO

372

 Download the data sheet for the TPD12S016 chip and find out more about the HDMI standard from the
following links:

 https://en.wikipedia.org/wiki/HDMI
 http://electronics.howstuffworks.com/hdmi1.htm

 ■ Note Although the ARTIK 10 has two separate video output connectors (MIPI on J33 and HDMI on J18),
you can only use one of them at a time.

 Display Control
 The ARTIK operating system already has the basic display management tools and utilities installed. These
commands download and install the necessary components if an upgrade is called for:

 dnf install libdrm drm-utils
 dnf install fbida

 Control the LCD display via the properties in the object container in the /sys/class/graphics/fb0
directory. The kernel exposes the internal controls as regular files that you can access from the bash shell
with an echo or by opening and writing to a regular file from C Language.

 Turn on the LCD display with this bash command:

 echo 0 > /sys/class/graphics/fb0/blank

 Turn the display off again with this command:

 echo 1 > /sys/class/graphics/fb0/blank

 Make the screen cursor blink with this command:

 echo 1 > /sys/class/graphics/fbcon/cursor_blink

 Switch the cursor back to non-blinking mode with this command:

 echo 0 > /sys/class/graphics/fbcon/cursor_blink

 Use the fbi command to present the contents of a JPEG file on the display with this command:

 fbi -T 2 test.jpg

 Clear the LCD screen by copying the special /dev/zero device to the frame buffer (fb0) with this
command:

 cat /dev/zero > /dev/fb0

 Play a movie on the ARTIK 5 with this mplayer command:

 mplayer -vo fbdev2 -framedrop -vf rotate=2 sample.mp4

https://en.wikipedia.org/wiki/HDMI
http://electronics.howstuffworks.com/hdmi1.htm

CHAPTER 23 ■ GRAPHICS AND VIDEO

373

 Play a movie on the ARTIK 10 via the MIPI DSI display with this mplayer command:

 mplayer -vo fbdev2 -framedrop -vf rotate=1 sample.mp4

 Play the same file via the HDMI display on an ARTIK 10 with this mplayer command:

 mplayer -vo fbdev2 -framedrop sample.mp4

 Video4Linux Support
 The Video4Linux support was embedded into the kernel more than 10 years ago as version 1. It was known
as V4L at that time. It has been replaced by version 2 and is now known as V4L2; V4L1 now describes the
older architecture. Some earlier code that was written for V4L1 is still usable but new projects should adopt
the V4L2 API and architecture design.

 The LinuxTV project is closely related and is based on innovative work done by a company called
Convergence, which is no longer in existence. Convergence’s important contribution of developing core TV
applications architectures for Linux lives on today as an open source project.

 The LinuxTV web site also hosts the DVB knowledge base Wiki, which is an authoritative source of
information about the DVB television standards. Digital TV all over the world is based on DVB standards.
These standards are freely available, and a new set is released at least once a year. In Europe, the European
Broadcasting Union (EBU) is a forum for TV companies to share standards work. In the USA, the Advanced
Television Standards Committee (ATSC) has a similar role. Table 23-3 lists it and other organizations to
follow for news of TV-related developments.

 Table 23-3. Video and Broadcast Knowledge Sources

 Organization Description

 DVB Develops foundation standards for digital TV services on cable, satellite TV, and
terrestrial broadcast

 ETSI A European standards body that hosts several important telecommunications standards

 ECMA The European Computer Manufacturers Association standardizes some useful IT-
related technologies. The most important is probably the core JavaScript standard.

 NAB The National Association of Broadcasters is a USA-based broadcasting industry body
that covers TV, radio, and internet technologies. The annual convention in Las Vegas
every April is an important event for learning about new technologies.

 IBC The International Broadcasting Convention is an important annual exhibition and
conference for broadcasters every September in Amsterdam.

 EBU The European TV companies meet and collaborate under this banner. This is home of
Eurovision.

 ATSC Industry standards for USA television services

 ISO Video codec standards for MPEG, JPEG, and other related technologies are managed
through ISO with contributions from national standards bodies

 HbbTV Develops standards for Hybrid Broadband TV solutions. It has absorbed the OpenIPTV
Forum and incorporates that work into its standards.

 FCC Telecommunications, wireless, and broadcast issues are governed by regulations
created by the FCC in the USA.

CHAPTER 23 ■ GRAPHICS AND VIDEO

374

 Understanding how the DVB standards work, learning about digital video and audio codecs, and using
V4L2 as a foundation for your video applications will help you build some great audiovisual products. Find out
more about the Video4Linux project, DVB, EBU, LinuxTV, and other relevant organizations at the following links:

 https://en.wikipedia.org/wiki/Video4Linux
 www.linuxtv.org
 www.linuxtv.org/docs.php
 www.linuxtv.org/downloads/
 https://linuxtv.org/wiki/index.php/Main_Page
 www.dvb.org
 www.dvb.org/standards
 www.dvb.org/standards/factsheets
 www.ebu.ch/home
 https://en.wikipedia.org/wiki/European_Broadcasting_Union
 https://en.wikipedia.org/wiki/ATSC_standards
 http://atsc.org
 http://atsc.org/standards/
 www.etsi.org
 www.hbbtv.org
 https://en.wikipedia.org/wiki/Hybrid_Broadcast_Broadband_TV

 Video Support in sysfs
 The /sys file system created by the kernel contains some video resources that are used by the Video4Linux
tools. You may want to explore them to add features to your video application. These locations in sysfs are
all candidates for you to explore in more depth to find out more about the multimedia capabilities of your
ARTIK. The list in Table 23-4 was found on a Commercial Beta ARTIK 520. The ARTIK 10 introduces a few
more items.

 Video Nodes
 Acquire a list of currently active video nodes from the /dev directory. Some of them only appear when you
attach a camera. Listing 23-1 shows you some video related devices on a Commercial Beta ARTIK 520.

 Table 23-4. Interesting Locations in the sysfs File System

 /sys/bus/amba
 /sys/bus/media
 /sys/class/backlight
 /sys/class/graphics
 /sys/class/sound
 /sys/class/video4linux
 /sys/devices/10023c00.pd-cam
 /sys/devices/10023c40.pd-mfc
 /sys/devices/10023c60.pd-g3d
 /sys/devices/10023c80.pd-lcd0
 /sys/devices/10023ca0.pd-isp
 /sys/devices/11830000.jpeg
 /sys/devices/11850000.gsc
 /sys/devices/11860000.gsc

 /sys/devices/11c00000.fimd_fb
 /sys/devices/13000000.mali
 /sys/devices/13400000.mfc
 /sys/devices/amba.0
 /sys/devices/sound.6
 /sys/kernel/debug/mali
 /sys/module/gsc
 /sys/module/mali
 /sys/module/snd
 /sys/module/snd_pcm
 /sys/module/snd_timer
 /sys/module/v4l2_mem2mem
 /sys/module/videobuf2_core

https://en.wikipedia.org/wiki/Video4Linux
http://www.linuxtv.org/
http://www.linuxtv.org/docs.php
http://www.linuxtv.org/downloads/
https://linuxtv.org/wiki/index.php/Main_Page
http://www.dvb.org/
http://www.dvb.org/standards
http://www.dvb.org/standards/factsheets
http://www.ebu.ch/home
https://en.wikipedia.org/wiki/European_Broadcasting_Union
https://en.wikipedia.org/wiki/ATSC_standards
http://atsc.org/
http://atsc.org/standards/
http://www.etsi.org/
http://www.hbbtv.org/
https://en.wikipedia.org/wiki/Hybrid_Broadcast_Broadband_TV

CHAPTER 23 ■ GRAPHICS AND VIDEO

375

 Listing 23-1. ARTIK 5 Video Nodes

 ls -la /dev/video*

 crw-rw---- 1 root video 81, 4 Jul 8 04:40 /dev/video6
 crw-rw---- 1 root video 81, 5 Jul 8 04:40 /dev/video7
 crw-rw---- 1 root video 81, 6 Jul 8 04:40 /dev/video8
 crw-rw---- 1 root video 81, 7 Jul 8 04:40 /dev/video9
 crw-rw---- 1 root video 81, 0 Jul 8 04:40 /dev/video23
 crw-rw---- 1 root video 81, 1 Jul 8 04:40 /dev/video24
 crw-rw---- 1 root video 81, 2 Jul 8 04:40 /dev/video26
 crw-rw---- 1 root video 81, 3 Jul 8 04:40 /dev/video27

 The /dev/video100 node appears in the ARTIK 5 file system when you attach a MIPI camera to the
connector on the Type 5 developer reference board. On an ARTIK 10, the /dev/video101 node is the
equivalent. The input nodes are reflected into the /sys/class/video4linux directory, which contains
symbolic links to the relevant device drivers where you can also see base addresses and deduce what kind
of device is being managed. The GSC drivers support a pair of graphics scalers, which are used to reformat
video or still images to different resolutions. Tracing these devices through sysfs and examining their
properties in a Commercial Beta ARTIK 5 leads to Table 23-5 , which explains their purpose in more detail.
Explore your own ARTIK to find out more from the sysfs file system.

 Multi-Format Codec
 The Samsung Multi-Format Codec (MFC) built into the Video4Linux support can be accessed in a secure or
nonsecure mode depending on which video node is used to reach it. The encoder and decoder are provided
as separate nodes. Consequently, there are four V4L nodes concerned with video conversion. The following
video formats are supported:

 Table 23-5. Video Nodes

 Node Name Description

 Video 0 N/A First USB-attached video camera on ARTIK 10

 Video 1 N/A Second USB-attached video camera on ARTIK 10

 Video 5 N/A Sixth and last USB-attached video camera on ARTIK 10

 Video 6 s5p-mfc-dec0 Samsung Multi Format Codec (Decoder)

 Video 7 s5p-mfc-enc0 Samsung Multi Format Codec (Encoder)

 Video 8 s5p-mfc-dec-secure0 Secure Samsung Multi Format Codec (Decoder)

 Video 9 s5p-mfc-enc-secure0 Secure Samsung Multi-Format Codec (Encoder)

 Video 23 11850000.gsc:m2m Graphics scaler 1 memory to memory transfer

 Video 24 11850000.gsc.output Graphics scaler 1 output

 Video 26 11860000.gsc:m2m Graphics scaler 2 memory to memory transfer

 Video 27 11860000.gsc.output Graphics scaler 2 output

 Video 100 N/A MIPI camera on ARTIK 5

 Video 101 N/A MIPI camera on ARTIK 10

CHAPTER 23 ■ GRAPHICS AND VIDEO

376

• MPEG-2

• MPEG-4

• H.263

• H.264

• VC-1

• VP8

 Some experimental source code to use this codec from the C language is available online at http://
git.infradead.org/users/kmpark/public-apps/tree .

 Read about the Samsung Multi-Format Codec (MFC) at the Linux Kernel web site at www.kernel.org/
doc/Documentation/devicetree/bindings/media/s5p-mfc.txt .

 Programming Video4Linux
 Read the API specification for V4L2 and its related projects. It contains some examples of how to
communicate with V4L2 through the API. Image scaling is driven by creating a C language struct to pass
the parameters to the hardware. That scaler is accessed via the kernel ioctl() functions, which you can use
to talk directly to the kernel’s gsc drivers for one of the built-in graphics scalers.

 Connecting Video Cameras
 The ARTIK 5 and 10 developer reference boards have connectors for different cameras available. Purchase
suitable cameras from the usual suppliers that support the Maker community. All of the cameras described
in the developer documentation are Samsung products. Compatible devices should work just as well.
Table 23-6 summarizes the cameras and their connectors. The Samsung specifications describe the sensors
without any additional supporting circuitry. It may be more convenient to purchase these camera sensors
via other companies that embed them into a more practical connector assembly to apply them more easily.

 Table 23-6. Cameras for the Type 5 and 10 Developer Reference Boards

 ARTIK Label Camera type Connector Details

 5 6B2 S5K6B2 J10 Cameras with the 5M OV5640 CMOS sensor
should be compatible because they have
a ribbon connector and MIPI CSI support.
Use a 25-pin Molex 500797-2594 ribbon
connector to attach other cameras to the
Type 5 developer reference board.

 10 5EA S5K5EA J10 The Samsung S5K5EA is a compatible CMOS
camera. Use a 25-pin Molex 500797-2594
ribbon connector to attach other cameras to
the Type 10 developer reference board.

 10 3L2 S5K3L2 J35 Use a Foxcon or Kai Lap Technologies
QG2330421Y-M08-7H connector to attach a
S5K3L2 camera.

 10 N/A UVC USB Use the downstream USB connector.

http://git.infradead.org/users/kmpark/public-apps/tree
http://git.infradead.org/users/kmpark/public-apps/tree
http://www.kernel.org/doc/Documentation/devicetree/bindings/media/s5p-mfc.txt
http://www.kernel.org/doc/Documentation/devicetree/bindings/media/s5p-mfc.txt

CHAPTER 23 ■ GRAPHICS AND VIDEO

377

 The ideal solution is to find the right sort of camera with a compatible connector already attached.
Because the ARTIK is a Samsung product based on its extensive mobile phone and tablet expertise, the parts
you need may be available from Samsung component distributors. The QG2330421Y-M08-7H connector
is a specialized part that you may only be able to source from Foxcon or Kai Lap Technologies if you want
to implement this camera connection on your own hardware design. Find more details of the Molex
500797-2594 ribbon connector at the Digi-Key web site at www.digikey.co.uk/product-detail/en/molex-
connector-corporation/500797-2594/WM2193-ND/1989388 .

 ARTIK 5 - S5K6B2 Camera
 The Samsung S5K6B2 camera is a Full HD CMOS image sensor designed for applications where the device it
is embedded into needs to be as thin as possible. The maximum resolution is 1936 x 1096 and it can capture
images at up to 30 FPS. The camera is attached to a 25-pin Molex 500797-2594 connector (J10), which is
compatible with the ribbon cable attached to the camera. The J10 connector is very near to the coin cell
backup battery on the Type 5 developer reference board. Lift the small retaining tab on the connector, insert
the ribbon the correct way up, and press the retaining tab down to secure it. Your camera should now power
up and be accessible via the MIPI software. The J10 connector is shown in Figure 23-4 .

 There are several alternative suppliers for this kind of camera because it is already popular with the Maker
community for attaching to Arduino and Raspberry Pi devices. There are contact details for the sales department
on the Samsung web page where you can find out about suppliers and availability of the 6B2 compatible
cameras. The normal suppliers for the Maker community may also have compatible devices available.

 www.samsung.com/semiconductor/products/cmos-image-sensor/mobile-cis/S5K6B2?ia=217
 www.kr4.us/Camera-Module-pcDuino-V3-5MP.html
 www.sparkfun.com/products/13100

 ■ Note Monitor the Samsung developer pages for news of when MIPI support is released for the ARTIK 5 modules.

 Figure 23-4. Connector for the 6B2 camera (J10)

http://www.digikey.co.uk/product-detail/en/molex-connector-corporation/500797-2594/WM2193-ND/1989388
http://www.digikey.co.uk/product-detail/en/molex-connector-corporation/500797-2594/WM2193-ND/1989388
http://www.samsung.com/semiconductor/products/cmos-image-sensor/mobile-cis/S5K6B2?ia=217
http://www.kr4.us/Camera-Module-pcDuino-V3-5MP.html
http://www.sparkfun.com/products/13100

CHAPTER 23 ■ GRAPHICS AND VIDEO

378

 ARTIK 10 - S5K3L2 Camera
 The Samsung S5K3L2 camera is a 13 megapixel CMOS image sensor designed to consume very little power
when in use. The maximum resolution is 4208 x 3120 and it can capture images at up to 30 FPS. The camera
is attached to a 30-pin Foxcon QG2330421Y-M08-7H micro-connector (J35). This is similar to the Panasonic
AXT connectors on the base of the ARTIK modules but much smaller and with more closely spaced pins.
The J35 connector is very near to the Arduino hardware I/O headers on the Type 10 developer reference
board. The camera should be supplied with a compatible connector. Press this carefully into the socket
on the developer reference board. Removing the camera needs to be done gently to avoid damaging the
connector or your developer board. Use a plastic tool to avoid scratches. Your camera should now power up
and be accessible via the MIPI software. The J35 connector is shown in Figure 23-5 .

 The technical details of the S5K3L2 camera are available at the Samsung product page. There are contact
details for the sales department where you can find out about suppliers and availability. This camera is less
widely used by the Maker community. A compatible device may be available from Kai Lap Technologies. See
 www.samsung.com/semiconductor/products/cmos-image-sensor/mobile-cis/S5K3L2?ia=217 .

 ARTIK 10 - S5K5EA Camera
 The Samsung developer documentation describes how to attach a S5K5EA CMOS camera to your Type
10 developer board. This camera is a Samsung device so the configuration and use should be trouble free.
The Samsung S5K5EA camera is a 5 megapixel CMOS image sensor designed for applications where the
device it is embedded into needs to be as thin as possible. The maximum resolution is 2560 x 1920 and it
can capture images at up to 15 FPS. The camera is attached to a 25-pin Molex 500797-2594 connector (J10),
which is compatible with the ribbon cable attached to the camera. The J10 connector is very near to the coin
cell backup battery on the Type 10 developer reference board. Lift the small retaining tab on the connector,
insert the ribbon the correct way up, and press the retaining tab down to secure it. Your camera should now
power up and be accessible via the MIPI software. The J10 connector is shown in Figure 23-6 .

 Figure 23-5. Connector for the 3L2 camera (J35)

http://www.samsung.com/semiconductor/products/cmos-image-sensor/mobile-cis/S5K3L2?ia=217

CHAPTER 23 ■ GRAPHICS AND VIDEO

379

 The technical details of the S5K5EA are available at the Samsung product page. There are contact
details for the sales department where you can find out about suppliers and availability: see www.samsung.
com/semiconductor/products/cmos-image-sensor/mobile-cis/S5K5EA?ia=217 .

 Recommended MIPI Camera
 The Samsung support team recommends the Namuga NSM-5005A camera, which will be available via the Digi-
Key web site along with other ARTIK-compatible items. This camera uses MIPI CSI for communication and is
compatible with ARTIK 5 and 10 modules. The specifications for this camera are summarized in Table 23-7 .

 MIPI Camera Interfaces
 If you are planning to work with the compatible camera, study the MIPI Alliance interface standard. There
was an early version of the MIPI camera interface standard called CSI. It has been replaced by CSI-2 and
CSI-3, both of which continue to evolve and add new features and capabilities. You will need to register and
pay membership fees to join the MIPI Alliance in order to get official copies of the standards documents.
Find out more at the MIPI Org web site at the following links:

 http://mipi.org/specifications/camera-interface
 http://mipi.org/about-mipi/frequently-asked-questions

 Figure 23-6. Connector for the 5EA camera (J10)

 Table 23-7. Recommended MIPI Camera

 Vendor NAMUGA

 Product number NSM-5005A

 Image sensor S5K4ECGA/S.LSI

 Camera type 5MP auto-focus

 Active pixels 2560 x 1920

 Interface MIPI CSI 2-lane

http://www.samsung.com/semiconductor/products/cmos-image-sensor/mobile-cis/S5K5EA?ia=217
http://www.samsung.com/semiconductor/products/cmos-image-sensor/mobile-cis/S5K5EA?ia=217
http://mipi.org/specifications/camera-interface
http://mipi.org/about-mipi/frequently-asked-questions

CHAPTER 23 ■ GRAPHICS AND VIDEO

380

 Modern Linux kernels have a MIPI driver built in. There is some evidence that this is in existence
inside the ARTIK kernel because it shows up in the kernel debug file system. There is no ARTIK-specific
documentation on programming the interface directly at present. You may be able to combine the MIPI
specifications and publicly accessible kernel programming guidelines for MIPI to get a working interface. It
may be more straightforward to use the UVC camera driver kit instead. The Linux kernel repository has some
interesting source code here that may be useful to examine; go to

 https://github.com/torvalds/linux/blob/master/drivers/media/platform/soc_camera/sh_mobile_csi2.c
 https://github.com/torvalds/linux/tree/master/drivers/media/i2c
 https://github.com/torvalds/linux/blob/master/drivers/media/i2c/s5k4ecgx.c

 USB-Attached Cameras
 If you are using an ARTIK 10, the UVC driver is installed by default. The driver is activated and visible after
you plug your camera into the USB port. Check this with the command shown in Listing 23-2 .

 Listing 23-2. Checking for the Existence of a UVC-Driven Camera

 dmesg | grep uvc

 [839.428875] [c1] uvcvideo: Found UVC 1.00 device< unnamed >(046d:0825)
 [839.523992] [c2] usbcore: registered new interface driver uvcvideo

 There is some documentation relating to UVC camera drivers for Linux that lists various cameras that
you might attach and how to interact with them. Find out more about UVC at the Ideas On Board web site at
 www.ideasonboard.org/uvc/ .

 Your USB cameras are numbered starting at /dev/video0 followed by /dev/video1 . There is a /dev/
video6 node already defined as a multi-format codec. Therefore, a maximum of six USB cameras can be
attached before a namespace collision occurs.

 The Samsung developer guidelines show you how to use the built-in OpenCV (Computer Vision) SDK
to manage the camera. OpenCV can do much more than just capture an image, and there are several books
available that cover it in great depth. Use the OpenCV library and SDK from a variety of languages to capture
images. Read the Samsung documentation here to see how to develop applications that use the USB camera:
 https://developer.artik.io/documentation/developer-guide/multimedia/usb-camera.html .

 Image Capture Tool (fswebcam)
 The fswebcam utility is used to capture an image from a webcam. It is designed to capture single images
but moving content is possible by capturing an image sequence. Store the captured frames as PNG or JPEG
image files. Recombine them into a movie later by processing them through ffmpeg and telling it what the
frame rate needs to be set to for playback. This tool supports a range of image resolutions, some of which are
recommended by Samsung. They are illustrated in Figure 23-8 for comparison and listed in Table 23-8 .

 Table 23-8. Image Resolutions Recommended by Samsung

 Type Dimensions

 VGA 640 x 480

 HD 1280 x 720

 5MP 2560 x 1920

https://github.com/torvalds/linux/blob/master/drivers/media/platform/soc_camera/sh_mobile_csi2.c
https://github.com/torvalds/linux/tree/master/drivers/media/i2c
https://github.com/torvalds/linux/blob/master/drivers/media/i2c/s5k4ecgx.c
http://www.ideasonboard.org/uvc/
https://developer.artik.io/documentation/developer-guide/multimedia/usb-camera.html

CHAPTER 23 ■ GRAPHICS AND VIDEO

381

 The Full HD format of 1920 x 1080 is not supported natively by the recommended resolutions, nor is
the 4K TV format. For best results at Full HD size, use the 5MP format and scale down or crop the resulting
image to arrive at a 1920 x 1080 format. Content delivered in 4K format can be scaled up from the 5MP
images. Alternatively, implement different camera technologies other than those described by Samsung in
the developer resources.

 The images are coded using the YUYV color difference format. The pixels are composed of a luminance
value and two additional color difference channels. The color information is normally coded at lower
resolution because the human eye is more sensitive to brightness. Convert these images to the RGB color
space to work on them more easily in a photo editor. Find out more about YUV formats, color spaces, and
limitations of color gamuts with different formats at https://en.wikipedia.org/wiki/YUV .

 If your ARTIK does not currently have the fswebcam tool installed or if you want to upgrade to a newer
version, type this command in the bash command line to install it:

 dnf install fswebcam

 Some of the more relevant command line options are listed in Table 23-9 . This utility supports a useful
pre-capture delay because a camera usually needs a little time to focus the image, set the exposure, and
calculate the white balance. Define at least a 1-second pre-capture delay to capture a better quality image.

 Figure 23-7. Image formats compared

https://en.wikipedia.org/wiki/YUV

CHAPTER 23 ■ GRAPHICS AND VIDEO

382

 Use this command on an ARTIK 5 to capture a still frame from a MIPI camera loaded as /dev/video100 :

 fswebcam -d /dev/video100 -r 2560x1920 -p YUYV -D 1 --no-banner image.jpg

 Video Conversion Tool (ffmpeg)
 The ffmpeg toolkit is built into the ARTIK OS ready for when you can record video and want to process it into
another format. This tool has been around for a long time and is very mature and well supported. It has been
deployed in some major video projects such as the BBC Redux video archive system. Every recording that
is ingested into BBC Redux is parsed by the ffmpeg tools to extract the broadcast TV programmes from the
off-air DVB transport stream. Because ffmpeg is an open source project, you can take advantage of the latest
changes and build a new version when the source code is updated.

 The ffmpeg tool kit is supported via its own web site, which offers everything you need. See the
following links:

 https://ffmpeg.org/
 https://ffmpeg.org/download.html

 Use ffmpeg to ingest video from devices managed by the Video4Linux2 services. Table 23-10 lists the
Samsung recommended formats that are supported by that ingest method, although ffmpeg is flexible
enough to support many other alternative formats. These recommendations stem from the limitations of the
suggested camera modules rather than limitations in ffmpeg .

 Table 23-9. Important Command Line Options

 Option Description

 -d /dev/video100 Defines the name of the device node for the MIPI camera in an ARTIK 5.
Use the /dev/video101 node in an ARTIK 10.

 -r 2560x1920 Sets the capture resolution

 -p YUYV Defines the format of the source image

 -D 1 Sets a pre-capture delay time in seconds

 --no-banner Hides the banner on the JPEG image

CHAPTER 23 ■ GRAPHICS AND VIDEO

383

 The UK and European frame rate of 25 FPS is not listed. If you record at 24 FPS, the video can be played
back slightly faster to match the correct frame rate. You may be able to define a 25 FPS frame rate without
any problems, provided the camera can deliver or exceed that rate.

 If your ARTIK does not currently have the ffmpeg tool installed or if you want to upgrade to a newer
version, type this command in the bash command line to install it:

 dnf install ffmepeg

 Table 23-11 lists the most popular command line options used with the ffmpeg command. Consult the
project web site and read the ffmpeg manual for complete coverage of what it can do.

 Table 23-10. Ingest With the ffmpeg tool From a Video4Linux2 Device

 Format Type Dimensions FPS

 YUYV VGA 640 x 480 5

 YUYV VGA 640 x 480 10

 YUYV VGA 640 x 480 15

 YUV HD 1280 x 720 5

 YUV HD 1280 x 720 7

 Motion JPEG VGA 640 x 480 5

 Motion JPEG VGA 640 x 480 10

 Motion JPEG VGA 640 x 480 15

 Motion JPEG VGA 640 x 480 24

 Motion JPEG VGA 640 x 480 30

 Motion JPEG HD 1280 x 720 5

 Motion JPEG HD 1280 x 720 10

 Motion JPEG HD 1280 x 720 15

 Motion JPEG HD 1280 x 720 24

 Motion JPEG HD 1280 x 720 30

 Table 23-11. Important Command Line Options

 Option Description

 -f v4l2 Uses the Video4Linux2 capture device for input

 -s 640x480 Defines the resolution. Be careful to specify as width x height for the correct aspect
ratio.

 -r 30 Sets the capture frame rate. Although recommended frame rates are listed,
experiment with others to resolve the potentially missing European 25 FPS format.

 -i /dev/video100 Describes the correct capture device. This would be correct for an ARTIK 5 and
you would use video101 on an ARTIK 10.

 -pix_fmt bgra Describes the pixel format of the LCD screen. Consult the ffmpeg documentation
for other formats.

 -f fbdev /dev/fb0 Describes the frame buffer as the output device for previewing and monitoring.

CHAPTER 23 ■ GRAPHICS AND VIDEO

384

 Using these parameters, this command uses ffmpeg to display a preview of a video clip on the LCD
screen of an ARTIK 5. If your video screen is not connected or you type the wrong device name, ffmpeg
displays an error message.

 ffmpeg -f v4l2 -s 640x480 -r 30 -i /dev/video100 -pix_fmt bgra -f fbdev /dev/fb0

 This ffmpeg command records video without an accompanying sound track:

 ffmpeg -y -f v4l2 -s 640x480 -r 15 -i /dev/video100 -b:v 2048k -vcodec mpeg4 test.avi

 This more advanced ffmpeg command integrates with the ALSA audio tools to record incoming audio:

 ffmpeg -y -thread_queue_size 2048 -f alsa -ac 1 -i hw:0 -f v4l2 -s 1280x720 -r 7 -i /dev/
video100 -b:v 3072k -vcodec mpeg4 -t 20 test.avi

 This variation of the ffmpeg command bypasses the video codec to achieve better performance in real time:

 ffmpeg -y -thread_queue_size 2048 -f alsa -ac 1 -i hw:0 -f v4l2 -s 1280x720 -vcodec mjpeg -r
30 -i /dev/video100 -vcodec copy -t 20 -loglevel error test.avi

 Media Streaming Server (ffserver)
 By combining the ffserver tool with ffmpeg, you can stream video content to remote locations using the
RTSP protocol. RTSP has been in existence for many years and is well known, with much available online
documentation. Since it was introduced, several newer protocols have emerged. Some of them provide
more sophisticated content negotiation. Develop a more complex streaming strategy if necessary to tunnel
through corporate firewalls via HTTP port 80. RTSP is often blocked by the boundary router to enhance
corporate security.

 If your ARTIK does not currently have the ffserver tool installed or if you want to upgrade to a newer
version, type this command in the bash command line to install it:

 dnf install ffserver

 Streaming servers generally expect to have a file or stream available to read as a source. ffstreamer
expects ffmpeg to be playing a video file for it to use as a source for streaming. The Samsung developer
guidelines show you how to configure a stream with the ffserver.conf file. Then launch the ffserver
process as a background task. Determine the PID value and use a kill -9 command on it to halt it later.
Once that streaming server is running, the ffmpeg playback can use it as a destination instead of playing the
video on an attached LCD screen.

 Use a conventional media player such as mplayer , VLC, or QuickTime to play the incoming stream on a
remote PC with the stream being supplied by the ARTIK.

CHAPTER 23 ■ GRAPHICS AND VIDEO

385

 Video Processing Toolkit (gstreamer)
 The gstreamer framework is not a media player; it is a toolkit for creating media players. Construct a workflow
pipeline for processing and converting a variety of multimedia formats. The gstreamer framework supports a
collection of plug in modules for processing video, audio, and media metadata. Table 23-12 summarizes the
Samsung recommended frame rates that gstreamer supports. The gstreamer tool is not limited to these sizes
and frame rates and you can convert video from any arbitrary size and frame rate to any other.

 The UK and European frame rates are omitted from this list by Samsung. If you need 25 FPS capabilities,
choose 24 FPS and speed up the playback when the video is output or experiment with setting a 25 FPS
frame rate in gstreamer .

 If your ARTIK does not currently have the gstreamer plug-ins installed or if you want to upgrade to a
newer version, type the following command in the bash command line to install it. Note the trailing asterisk
(*); this is a wildcard that matches multiple installer packages.

 dnf install gstreamer*

 When you use gstreamer , there is a collection of plug-ins to invoke in a chain to process the video as it
is being sourced and then presented. The gstreamer plug-ins are listed at the project web site.

 https://gstreamer.freedesktop.org/documentation/plugins.html

 There are resources and instructions for writing your own plug-ins. If you cannot find the one you need,
create it by combining existing plug-ins. If neither is a practical solution, write your own plug-in and submit
it for other gstreamer users to enjoy. Here is a useful list of practical example conversions and tricks that
 gstreamer can help you with: http://wiki.oz9aec.net/index.php/Gstreamer_cheat_sheet .

 AXT Connections
 Tables 23-13 to 23-17 summarize the camera and LCD-related connections available on the AXT connectors
underneath your ARTIK module. The connections for the ARTIK 5 and 10 are each shown in their own
tables. Refer to the data sheets for more information about voltage levels and other detailed specifications
regarding these pins.

 Table 23-12. Samsung Recommended gstreamer Supported Resolutions

 Type Dimensions FPS

 VGA 640 x 480 5

 VGA 640 x 480 10

 VGA 640 x 480 15

 VGA 640 x 480 24

 VGA 640 x 480 30

https://gstreamer.freedesktop.org/documentation/plugins.html
http://wiki.oz9aec.net/index.php/Gstreamer_cheat_sheet

CHAPTER 23 ■ GRAPHICS AND VIDEO

386

 Table 23-13. ARTIK 5 Camera-Related AXT Pinouts

 AXT Pin Name Function

 J3-41 XEINT_22 27MHz osc enable

 J3-59 VTCAM_PDN Camera power down

 J4-19 VTCAM_RESET Camera reset

 J4-21 XISP2_SCL0 Bus I2C-2 SCL

 J4-23 XISP2_SDA0 Bus I2C-2 SDA

 J4-27 VTCAM_D0_N MIPI D0_N

 J4-29 VTCAM_D0_P MIPI D0_P

 J4-33 VTCAM_D1_N MIPI D1_N

 J4-35 VTCAM_D1_P MIPI D1_P

 J4-39 VTCAM_CLK_N MIPI CLK_N

 J4-41 VTCAM_CLK_P MIPI CLK_P

 Table 23-14. ARTIK 10 Camera-Related AXT Pinouts

 AXT Pin Name Function

 J1-47 XGPIO1 Power down

 J1-38 XCIS_MCLK MCLK

 J1-40 GPIO6/XT_INT156 MCLK

 J2-1 MAINCAM_RESET Camera reset

 J2-3 CAM_FLASH_EN Flash

 J2-5 CAM_FLASH_TORCH Flash torch

 J2-17 VTCAM_RESET Camera reset

 J2-19 XISP2_SDA Bus I2C-2 SDA

 J2-21 XISP2_SCL Bus I2C-2 SCL

 J2-25 XMIPI1SDN0 MIPI CSI1 SDN0 channel 0

 J2-27 XMIPI1SDP0 MIPI CSI1 SDP0 channel 0

 J2-31 XMIPI1SDN1 MIPI CSI1 SDN1 channel 1

 J2-33 XMIPI1SDP1 MIPI CSI1 SDP1 channel 1

 J2-37 XMIPI1SDNCLK MIPI CSI1 SDNCLK

 J2-39 XMIPI1SDPCLK MIPI CSI1 SDPCLK

 J2-49 XISP0_SCL Bus I2C-0 SCL

 J2-51 XISP0_SDA Bus I2C-0 SDA

 J2-54 XMIPI0SDN0 MIPI CSI0 DN0 channel 0

 J2-56 XMIPI0SDP0 MIPI CSI0 DP0 channel 0

(continued)

CHAPTER 23 ■ GRAPHICS AND VIDEO

387

 AXT Pin Name Function

 J2-60 XMIPI0SDN1 MIPI CSI0 DN1 channel 1

 J2-62 XMIPI0SDP1 MIPI CSI0 DP1 channel 1

 J2-66 XMIPI0SDN2 MIPI CSI0 DN2 channel 2

 J2-68 XMIPI0SDP2 MIPI CSI0 DP2 channel 2

 J2-72 XMIPI0SDN3 MIPI CSI0 DN3 channel 3

 J2-74 XMIPI0SDP3 MIPI CSI0 DP3 channel 3

 J2-78 XMIPI0SDPCLK MIPI CSI0 PCLK

 J2-80 XMIPI0SDNCLK MIPI CSI0 NCLK

 J3-26 XGPIO2 Generic GPIO

 Table 23-14. (continued)

 Table 23-15. ARTIK 5 LCD-Related AXT Pinouts

 AXT Pin Name Function

 J3-21 XEINT_21 LCD backlight enable

 J4-9 PSR_TE CLK

 J4-57 LCD_RST LCD reset

 J4-22 DISP_MIPI_D0_N MIPI D0_N

 J4-24 DISP_MIPI_D0_P MIPI D0_P

 J4-28 DISP_MIPI_D1_N MIPI D1_N

 J4-30 DISP_MIPI_D1_P MIPI D1_P

 J4-34 DISP_MIPI_CLK_N MIPI CLK_N

 J4-36 DISP_MIPI_CLK_P MIPI CLK_P

 J4-56 GPC0_4 Identification (ID)

CHAPTER 23 ■ GRAPHICS AND VIDEO

388

 Table 23-16. ARTIK 10 LCD-Related AXT Pinouts

 AXT Pin Name Function

 J1-15 XEINT_12 MIPI error detection

 J1-29 XEINT_21 TP_RST

 J1-31 XEINT_24 TP_INT

 J2-57 LCD_RST Reset

 J2-59 Xi2c8_SDA Bus I2C-8 SCL

 J2-61 Xi2c8_SCL Bus I2C-8 SDA

 J2-2 XMIPI1MDN0 MIPI DSI1 DN0 channel 0

 J2-4 XMIPI1MDP0 MIPI DSI1 DP0 channel 0

 J2-8 XMIPI1MDN1 MIPI DSI1 DN1 channel 1

 J2-10 XMIPI1MDP1 MIPI DSI1 DP1 channel 1

 J2-14 XMIPI1MDP2 MIPI DSI1 DP2 channel 2

 J2-16 XMIPI1MDN2 MIPI DSI1 DN2 channel 2

 J2-20 XMIPI1MDN3 MIPI DSI1 DN3 channel 3

 J2-22 XMIPI1MDP3 MIPI DSI1 DP3 channel 3

 J2-26 XMIPI1MDNCLK MIPI DSI1 NCLK

 J2-28 XMIPI1MDPCLK MIPI DSI1 PCLK

 Table 23-17. ARTIK 10 HDMI-Related AXT Pinouts

 AXT in Name Function

 J2-48 Xi2c7_SDA Bus I2C-7 SCL

 J2-50 Xi2c7_SCL Bus I2C-7 SDA

 J3-1 XhdmiTXCN HDMI TXCN

 J3-3 XhdmiTXCP HDMI TXCP

 J3-7 XhdmiTX2N HDMI TX2N

 J3-9 XhdmiTX2P HDMI TX2P

 J3-13 XhdmiTX1N HDMI TX1N

 J3-15 XhdmiTX1P HDMI TX1P

 J3-19 XhdmiTX0N HDMI TXON

 J3-21 XhdmiTX0P HDMI TXOP

 J3-2 HDMI_CEC HDMI_CEC

 J3-4 HDMI_HPD HDMI_HPD

 J3-8 HDMI_LS_EN HDMI_LS_EN

 J3-10 HDMI_DCDC_EN HDMI_DCDC_EN

CHAPTER 23 ■ GRAPHICS AND VIDEO

389

 Summary
 The current state of the art with regard to video in the ARTIK is useful for recording and playing back images
and videos. Later, when the OpenGL support comes on stream, some amazing things will be possible. In
terms of computing power, OpenCL will allow your applications to delegate programming tasks to the MALI
GPU when it is not busy drawing amazing 3D images. The future for audio-visual work inside the ARTIK is
very bright indeed.

391© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2_24

 CHAPTER 24

 Conclusions and Next Steps

 It is amazing to think that the ARTIK was announced just a little over a year ago (as this is being written). The
journey has been amazing so far and yet we have just started it. The ARTIK is poised to make a big difference
to the IoT industry and is a great place to start when you are embarking on a new product design. It saves
you so much time and effort compared with the old way of creating a unique controller for every product
from scratch. The ARTIK design benefits from all the latest work on mobile devices and presents sophisticate
functionality in a very accessible way for you to build a world-beating product on top of it.

 Forensic Inspection
 Occasionally, you will work on a project for which there is little or no documentation. If you develop some
forensic and reverse engineering skills, they can help you discover what you need by a process of inspection.
The virtual file systems in the ARTIK are constructed from ephemeral files created by the kernel and a lot of
symbolic links that connect various different views of the operating system. Devices are listed in different
ways and with different names but point symbolically back to a common parent. Using the ls command to
inspect directory contents and the cat command to display the contents of readable files helps to build a
mental map of the ARTIK file system.

 Combine the inspection of the virtual file systems with the reference information that Samsung has
already published to fill in the missing parts. The developer reference board circuit schematic diagrams
contain many subtle reference items. Component labels tell you the part numbers for connectors and
integrated circuits. Searching online for these part numbers will lead to data sheets for external hardware
that may be compatible and ready to integrate with your own product designs. Chip data sheets offer details
about register indexes and values needed to program I2C sensor interfaces.

 If you cultivate the art of reverse engineering, forensic inspection, and deductive reasoning, you
can find out many undocumented features of the platforms when you work on new technology. This is a
competency that is valuable outside of the ARTIK world. It is a rare skill and career-enhancing too.

 Reverse Engineering
 Because software constantly changes, knowing how to find things future-proofs your development process
against possible device movements when an operating system is upgraded. There is no substitute for the
learning experience of exploring the internals of your ARTIK. Some commands in the UNIX command line
are especially useful:

• The strings command displays all the readable strings in a binary file. Sometimes
this is very useful, and it might provide clues about what to look for deeper in the
operating system. If you use the strings command on the exynos3250-artik5.
dtb file in the /boot directory, it reveals what looks like names of peripheral devices
inside the /sys virtual file system.

CHAPTER 24 ■ CONCLUSIONS AND NEXT STEPS

392

• The find command helps you locate the candidate files in the file system whose
names contain these critical keywords.

• The od command dumps binary data in a variety of decoded formats. This is an
alternative to the strings command if you know something about the structure of a
data file.

• You can write C language applications to deconstruct more complex file structures.
Other languages may also be useful, but for reverse engineering, the C language is
probably the most capable.

• Just examining a recursive ls listing of the /sys directory helps you understand
the organization of the sysfs virtual file system, which then leads you to creating
valid paths to GPIO, I2C, and I2S devices. Then your application can interact with
them. To the extent that ARTIK has anything resembling an API, the sysfs tree of
directories and file end points are important things to know about.

• Once you have discovered this file system, you can interact with it from any
programming language that can open files for reading and writing. Getting the value
of an input pin is then no more difficult than reading a value from a file. You just
need to know which file to access.

• Because this sysfs should conform to accepted practices, you can easily deduce
the locations of all the peripheral interface files. Read the reference documents and
inspect the file system in your ARTIK to locate the corresponding items.

 Validating With Multiple Sources
 Reading several sources of information that apparently cover the same thing reinforces your knowledge.
Sometimes they document slightly different versions of the system, and some topics are only covered in one
document and not the others. The Samsung data sheets help to resolve ambiguous items illustrated in the
developer reference board circuit schematics and vice versa. Consulting the kernel sources obtained from
the master Git repository maintained by Linus Torvalds also helps you to understand the inner workings
better. Taking those source files and combining them with the Git repositories that Samsung has released,
their API tools and documentation, schematic diagrams, data sheets, and some time exploring the file
system in your ARTIK helps you to build a clear mental model of what happens inside your system.

 Coping with Undocumented Features
 The Samsung team is doing a fantastic job of developing the ARTIK modules very quickly and they are no
doubt hard at work on the next big thing. It is very often the case with high-technology products that the
hardware reaches the developers some time before the documentation is complete. Naturally the developers
and end users want the products as soon as they can but the official and definitive documentation cannot
be finalized until the product design is completed and released. Inevitably, this takes some time. The Apress
books are designed to fill that gap and deliver additional background and supporting knowledge to facilitate
your development process.

 One of the truly great ideas Samsung had was to use as much open source technology and standards-
based implementations. This is helpful because the open source community has documented their software
very well. Finding out about a generic feature is easy. Other standards-based technology in the ARTIK should
conform to an accepted model of behavior, which is also well documented in the official standards. Samsung
also adds proprietary libraries and toolkits to support their own technology that is built into the ARTIK.

CHAPTER 24 ■ CONCLUSIONS AND NEXT STEPS

393

 Combine publicly available documentation, inspection techniques, and what the Samsung support
team has already published on the developer web site to extrapolate new knowledge. Then experiment with
application code to make the technology work. This is much easier now that the source code for the ARTIK
OS has been published as a Git repository.

 The published information on GPIO pin controls illustrates how to operate the hardware by reading and
writing to the files inside the /sys file system. Inspect the rest of the /sys file system to discover the features
of power management, GPU, SPI, I2S, and I2C support. By studying the online reference material about each
of these topics, synthesizing a solution is possible. In this book, I have done the hard work of collating the
reference resources and I added some commentary about what you can do to exploit the undocumented
features. The /sys virtual file system is examined in much more detail in Chapter 8 . The following are the
primary sources of information that were used to research the content of this book:

• Samsung blog articles written with tutorials on how to develop projects for the
ARTIK modules

• Example projects on the Hackster•IO blog

• Example projects on the Instructables blog

• Example projects and generated code in the Temboo development system. This is
particularly useful for understanding the GPIO structures. The ARTIK support is
being developed for later release following the prototype Beta trials.

• Linux kernel org technical notes

• Linux kernel, Fedora, and Red Hat project web sites, which may also cover slightly
newer OS versions than the current ARTIK OS

• Wikipedia articles about specific topics, which are weighed for relevance to generic
features that are described for all UNIX/Linux systems and relevance to the ARTIK
internals

• Reverse engineering the kernel with the strings command to get a (long) list of
device references

• Reading the source code for the device tree that the boot loader passes to the kernel

• Recursively listing the virtual file systems under /sys to create a candidate list of
hardware devices. This reveals where the I2S, I2C, SPI, and PCI control files are
located. This list is different between the ARTIK 5 and 10 and may change with
different releases of the ARTIK hardware. The sysfs file system is described in this
book but your ARTIK may vary somewhat.

• Examining the contents of the other virtual filesystems (/dev , /proc , and /run).

• The ALSA project is the basis for the audio subsystem in the ARTIK OS. It interacts
with the hardware. Look for references to the I2S hardware in the ALSA source code.

• The Video4Linux project documentation points to where the video support is
headed.

 ■ Note Be version aware in your research. When you are gathering research input in preparation for a
reverse engineering job, be aware that a lot of information on the Internet may describe obsolete or prototype
versions of the software. Check the version numbers imprinted in the OS and use the corresponding reference
resources that are correct for the version you are using. Coverage of later OS versions will describe features you
do not yet have available.

http://dx.doi.org/10.1007/978-1-4842-2322-2_8

CHAPTER 24 ■ CONCLUSIONS AND NEXT STEPS

394

 Defensive Coding Strategies
 One of the major headaches for developers is when the underlying infrastructure changes; it’s unfortunate
when your application ceases to work because the resources it was accessing have moved. Or perhaps
features are present in one revision of the OS and not in others. The same issues crop up when you are trying
to write code that is portable across the range of ARTIK modules you are working with.

 UNIX (and hence Linux) is designed to be flexible and dynamic. The kernel can be configured to switch
features on and off at boot time or it may be compiled with or without features. After the computer has
booted, additional devices can be turned on by loading extra modules. Each of these devices is located in the
main memory and has a base address that your application must discover to interact with the device. If that
base address changes, then the application will break if it is hard-coded.

 Avoid that problem entirely by dynamically configuring your application and inspecting the file system
to find the devices and determine their base addresses. Now your application is no longer tied to a specific
implementation. It should now be resilient to most changes that OS deployment imposes. Provided devices
are not withdrawn altogether, your application should be able to find them. It can now cope with an OS
upgrade or write code that runs on different ARTIK models because it automatically detects the differences
between an ARTIK 5 and 10 at runtime.

 Looking Over the Horizon
 Samsung has plans to introduce new API support libraries to interact with the hardware from within your
own applications. As these are released they will be documented in the developer online resources. They
are not yet available to be covered here. This book is intended to support those libraries and API kits and
equip you with knowledge of the underlying technologies. This helps to exploit the libraries more effectively
when they are released. Knowing about the low-level interfaces is key to making the best use of the ARTIK
modules. In addition to covering those hardware interfaces, the forensic and diagnostic techniques that
helped uncover them are explained so you can stay up-to-date with the inevitable changes that happen as
new versions of the operating system are released.

 Even after writing two books about the ARTIK family, there still is not enough space to cover everything.
Some technology is still being developed and it will unfold in due course—no doubt with more books
covering the continuous evolution of the platform.

 The developer resources contain a table of Beta features that are supported by each revision of the
ARTIK modules. This table will be updated as features are added to the ARTIK OS; see https://developer.
artik.io/documentation/beta-features/ .

 Video is a very complex topic, and requires audio and graphics support to be fully working first. The
ARTIK OS internals reveal some clues to the strategy for future video support, which helps prepare for later
when the video support is completed. Some support is already present and working, but there is more to come.

 The Commercial Beta versions of the ARTIK 5 and 10 are the current baseline for documenting the
internals. They are both now shipping and viable for developing a lot of useful applications. A few topics
remain to be implemented when the final versions of these ARTIK modules are released. The anticipated
technologies are summarized in Table 24-1 .

https://developer.artik.io/documentation/beta-features/
https://developer.artik.io/documentation/beta-features/

CHAPTER 24 ■ CONCLUSIONS AND NEXT STEPS

395

 Some preliminary material on these topics is documented here after inspecting the Commercial Beta
ARTIK modules and their developer reference board circuit schematics.

 Porting Projects from Other Architectures
 Almost every example and library from the Arduino resources is usable, apart from anything that is tagged as
architecture or Arduino board-specific. Modify anything that uses the SPI/I2C/PWM interfaces to make the
pin mapping and values you use in your code compatible with their virtual filesystem locations in your target
ARTIK module.

 Hardware and Tools
 If you plan to integrate any external hardware devices, sensors, or other peripherals with your ARTIK,
setting up a place to work with good quality tools is important. In Beginning Samsung ARTIK , I suggested
you get at least a multimeter and possibly an oscilloscope. The Tektronix company makes high-quality test
instrumentation. They also provide a lot of support materials for educational purposes.

 One PDF document in particular is a very useful guide to inspecting and diagnosing the peripheral
interconnect buses such as I2C, I2S, and SPI with an oscilloscope. This guide explains what you might see
when you probe these interfaces. View the download page for a helpful PDF file covering the low-speed
serial data interfaces found in an ARTIK: http://www.tek.com/document/primer/low-speed-serial-data-
fundamentals .

 Creating a Bare-Bones Breakout Board
 You may want to create a very simple board to run your ARTIK on. For some tasks, the developer reference
board is much more than you need but the ARTIK cannot be wired into a product design without creating
the equivalent of this reference board.

 Table 24-1. Future Feature Support

 Topic Notes

 Video The video support is different in the ARTIK 5 and 10 modules. The ARTIK OS uses
the popular Video4Linux tools. Support for MIPI cameras, USB cameras, and HDMI
displays are working in the ARTIK 10, with more support expected soon for both ARTIK
modules. The OpenCV library is also in a usable state.

 Audio The audio support is a little more advanced and uses the ALSA toolkit. There are
already built-in audio players and more will come later. This is also a well-known
technology and more details are available online at the project home pages.

 SPI This is clearly intended to be an important interfacing technology inside the ARTIK.
The modules have several SPI bus connections. There is no published Samsung
developer documentation about this as yet. Some SPI support is already working
internally because it is needed for the Ethernet controller in the ARTIK 5, although SPI
is not yet viable for user space applications.

http://www.tek.com/document/primer/low-speed-serial-data-fundamentals
http://www.tek.com/document/primer/low-speed-serial-data-fundamentals

CHAPTER 24 ■ CONCLUSIONS AND NEXT STEPS

396

 The data sheets describe the minimum power supply requirements and the circuit schematics for the
developer reference boards show you how to implement various subsystems. Build a simple board and
start by adding the AXT connectors for your ARTIK. Then add the minimum power supply requirements to
your design. Then incorporate only those subsystems you need from the developer reference schematics.
Manufacture circuit boards that allow for surface mounted components. To achieve the necessary density,
these boards must be multi-layer composites. Once you have a design worked out, you may be able to find a
specialist company that can make the boards for you.

 Servo-Controlled Camera
 In common with the Maker community, the most intriguing IoT technology solutions should be inexpensive
and based on lateral thinking. A steerable video camera can be attached with a ribbon cable to the connector
on the developer reference board. This will provide a flexible-enough connection that the camera can be
moved to point in different directions.

 Adding a pan and tilt mechanism to the camera is possible by using radio-control servos from model
boating projects. These servos are controlled by a pulse width modulated signal. The length of the duty cycle
of the pulse controls the position of the servo. Two servos are mounted so that one rotates vertically up and
down and the other rotates horizontally. This is a very cheap and usable two-axis camera positioning system.

 Since the servos are controlled by pulse width modulation, you may be able to use the two PWM
channels on an ARTIK to control their position.

 Sample Source Code and Illustrations
 The Apress web site contains the sample source code for the examples in this book for you to download.
Additionally, I have provided some Adobe Illustrator PDF files that you can use to create your own diagrams.
These diagrams will help you design breakout boards or document the wiring of your breadboard, sensor,
and control electronics when you connect them to the hardware I/O header pins. The diagrams are listed in
Table 24-2 .

 Table 24-2. Useful Illustration Artwork Files

 ARTIK_5_co_ax_connectors.ai
 ARTIK_5_connectors.ai
 ARTIK_5_general_arrangement.ai
 ARTIK_5_J3_connector_pinouts.ai
 ARTIK_5_J4_connector_pinouts.ai
 ARTIK_5_J7_connector_pinouts.ai
 ARTIK_10_co_ax_connectors.ai
 ARTIK_10_connectors.ai
 ARTIK_10_general_arrangement.ai
 ARTIK_10_J1_connector_pinouts.ai
 ARTIK_10_J2_connector_pinouts.ai
 ARTIK_10_J3_connector_pinouts.ai
 ARTIK_10_J4_connector_pinouts.ai

 AXT_40_pins.ai
 AXT_60_pins.ai
 AXT_80_pins.ai
 Hardware_input_output_headers.ai
 J12_JTAG_connector_pinouts.pdf
 J24_header_pinout.ai
 J25_header_pinout.ai
 J26_J27_header_pinout.ai
 J510_header_pinout.ai
 J511_header_pinout.ai
 J512_header_pinout.ai
 J513_header_pinout.ai
 Miniature_coax_connector.ai
 SMA_antenna_connectors.ai

CHAPTER 24 ■ CONCLUSIONS AND NEXT STEPS

397

 The source code package contains the larger C language listings. Small, single-line code examples are
not packaged; they can be typed in easily enough. The command line shell commands are also not packaged
as listings because it will encourage you to type them into the bash command line, where you will see them
working as you progress line by line through the example. They tend to be very compact and short in any
case, usually no more than three or four lines.

 How to Get More Help and Support
 While I was writing this book, a few readers of my first ARTIK book, Beginning Samsung ARTIK , contacted me
to share what they were doing with the ARTIK modules and to ask for help. I am always happy to hear from
readers, especially if they are developing something really interesting based on the ARTIK. However, if you need
in-depth help and support from the experts, the best place to look for it is on the developer forum. The forum is
monitored by the ARTIK support team at Samsung and they have answered many questions. Other developers
may also have solved the same issue. Many topics in my two ARTIK books are prompted by questions asked on
the forum, but it is impossible to answer every question in advance. I always study the online forum and use the
questions there to help me plan new books, so it really is the best place to start when you need help.

 I have distilled everything I have learned about the ARTIK modules into these two books. I was
continually discovering new things about the ARTIK modules as I composed each chapter. I learned a great
deal by experimenting and inspecting the files inside my ARTIK and then researching online to discover
what they were for. The fruits of that process yielded the many web links I have included for your benefit. It
is important that you also develop and enhance your investigative skills because this facilitates the learning-
by-doing approach to education. Become familiar with the operation of the kernel by studying the publicly
available source code. Try interacting with the I2C bus to add a new sensor. Without doubt, there is sufficient
material to fill many more books. I would encourage you to study the internals of your ARTIK to get to know
it better and discover new secrets; then you can tell the rest of the community what you find.

 My Challenge to You
 I put this challenge to the readers at the end of Beginning Samsung ARTIK and I think it is still valid. Writing
this second book about the ARTIK has been a profound learning experience for me. There are technologies
I have studied that have intrigued me for many years. Learning about them in the context of the ARTIK will
significantly alter how I view some ideas for project designs in the future. As you complete your first ARTIK-
based project, you should have significantly expanded what you know. This will make you a much better
engineer in the process.

 Your journey will be different than mine, and you will discover things that I missed. Your challenge is to
find topics that interest you within the context of ARTIK development and become an expert on them. When
you discover new things about the ARTIK, get in touch with Apress and talk to them about writing a book
based on your newfound area of expertise.

 When your ARTIK-based product is ready for the public to see it, contact the ARTIK support people to
discuss the possibility of writing a blog article for them to describe your development experience and any
useful insights you learned along the way.

 There is so much still to be covered in the ARTIK world and the developer community is only just
beginning to discover what it can do. The Internet of Things is going to bring a disruptive change to
everyone’s lifestyles. The ARTIK community is at the vanguard of this, and it is going to be an exciting ride.

399© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2

 Bibliography

 Following is a list of helpful books on useful related topics related to IoT and the various operating system
and programming topics in this book.

 Title Author ISBN

 AMBA: Enabling Reusable On-Chip
Designs

 David Flynn July 1997 edition of IEEE
Micro magazine

 Arduino Internals Dale Wheat 978-1430238829

 ARM Assembly Language: Fundamentals
and Techniques

 William Hohl and Christopher
Hinds

 978-1482229851

 The Designer's Guide to the Cortex-M
Processor Family

 Trevor Martin 978-0081006290

 Practical Micro-controller Engineering
with ARM Technology

 Ying Bai 978-1119052371

 Embedded Systems with ARM Cortex-M
Micro-controllers in Assembly Language
and C

 Yifeng Zhu 978-0982692639

 ARM System Developer’s Guide Andrew Sloss, Dominic Symes,
and Chris Wright

 978-1493303748

 Embedded Linux Primer Christopher Hallinan 978-0137017836

 Linux Device Drivers Alessandro Rubini and Jonathan
Corbet

 978-0596000080

 Linux Kernel Architecture Wolfgang Mauerer 978-1118079911

 Learning OpenCV Gary Bradski and Adrian Kaehler 978-1449314651

 OpenStack Swift Joe Arnold 978-1491900826

 Advanced Programming in the UNIX
Environment

 W. Richard Stevens 978-0321637734

 The Linux Programmer's Toolbox John Fusco 978-0132198578

 Power and Performance: Software
Analysis and Optimization

 Jim Kukunas 978-0128007266

 Mastering the Shell Ray Swartz 978-0672227158

(continued)

 ■ BIBLIOGRAPHY

400

 Title Author ISBN

 Classic Shell Scripting Arnold Robbins and Nelson H. F.
Beebe

 978-0596005955

 Wicked Cool Shell Scripts: 101 Scripts for
Linux, OS X, and UNIX Systems

 Dave Taylor and Brandon Perry 978-1593276027

 The Linux Command Line William E Schotts Jr 978-1593273897

 Correct-by-Construction Approaches for
SoC Design

 Roopak Sinha and Parthasarathi
Roop

 978-1461478638

 Learning the VI Editor Arnold Robbins, Elbert Elbert, and
Linda Lamb

 978-0596529833

 As well, Juan-Mariano de Goyeneche provides a list of recommend books as valuable sources
of reference for anyone interested in understanding kernel internals. Find Juan-Mariano’s list at the
following URL:

 https://github.com/torvalds/linux/blob/master/Documentation/kernel-docs.txt .

https://github.com/torvalds/linux/blob/master/Documentation/kernel-docs.txt

401

 A
 Accelerometer , 40, 300
 Access Control List (ACL) , 99
 ACPI , 81, 82
 Active-high , 26, 83, 84, 173, 184, 242,

254, 260, 304, 338
 Active-low , 26, 242, 254, 259–260, 323, 337
 AD5206 , 39
 Adafruit , 24, 29
 ADBD , 113, 124
 Advanced Linux Sound Architecture (ALSA) , 3, 21,

31, 54, 55, 109, 120, 149, 231, 288, 351–355,
359, 361–363, 366–368, 384, 393, 395

 Advances Television Standards
Committee (ATSC) , 373, 374

 Affi nities , 111, 129, 160–162, 216, 218
 AK4593 , 352
 AK4953 , 37, 38, 86, 330, 331, 352, 359, 360, 366
 AK4953A , 39, 366
 Amixer , 355–356, 360, 361
 AMS499QP84 , 370
 anaconda-ks.cfg , 355
 Analog-to-digital , 111, 240, 289, 335
 Analog-to-digital convertor (ADC) , 15, 20, 21,

32, 36, 86, 107, 108, 111, 125, 174, 201,
206–208, 231, 239, 240, 247, 258,
289–301, 335, 339, 356, 360

 analogWrite() , 239, 305
 Android , 43, 66, 82, 112, 113
 Antenna , 22, 27, 29, 31–33, 35–37,

79, 169, 170, 221–227
 aplay , 357–359, 361, 362, 369, 370
 Arduino , 11, 24, 25, 29, 31, 32, 35, 36, 40, 54, 55,

79, 80, 169, 172–174, 176, 177, 184, 185,
189, 191, 197–201, 204–206, 208, 210–212,
230, 231, 234–236, 238–240, 242–248, 266,
274–280, 289, 291, 294, 303–305, 308, 319,
326, 332, 333, 340, 346–349, 360, 368, 377,
378, 395

 Arduino emulator , 230, 244

 ARM , 5, 12, 16, 26, 31, 35, 39, 40, 42, 48, 69,
111, 130, 217, 231, 266, 321, 340, 370

 Th e ARM Advanced Microcontroller Bus
Architecture (AMBA) , 111, 370

 ARTIK Cloud , 1, 6, 12, 16
 ARTIK IDE , 2
 .asoundrc , 354
 ATA8520 , 37–39, 176
 AT93C56B , 39
 avahi-daemon , 133, 147
 AVR , 340
 AX88760 , 38, 39, 189, 192, 346
 AX88796 , 346
 AX88796C , 39, 66, 335, 346
 AXT Connector , 14, 15, 18–20, 22, 23, 27, 28, 32,

36, 38, 57, 60, 83, 165–194, 197, 198, 201,
202, 204, 210, 213, 214, 246, 274–280, 304,
319, 326, 333–334, 346, 366, 367, 371, 378,
385–388, 396

 B
 6B2 , 31, 32, 185, 326, 333, 376, 377
 Base address , 63, 87, 105–109, 116, 204, 206,

216, 235, 237, 244, 247, 249–253, 256–258,
266–270, 275–281, 283, 284, 286, 292–297,
299, 305, 306, 329, 330, 375, 394

 BCM4354 , 39, 72, 73
 /bin , 100
 Bit-fi elds , 271
 Bitmap , 237
 Bit-mask , 98, 138, 161, 272, 273, 275, 282, 340, 342
 Bits , 23, 68, 98, 138, 161, 177, 197, 232,

235, 289, 323, 339, 357
 Bitwise , 271, 272, 274, 275, 277–280
 Blog , 4, 6, 55, 79, 80, 106, 393, 397
 Bluetooth , 11, 39, 69, 72–74, 106, 112, 120,

149, 179, 185, 186, 194, 224, 225, 276
 Bonjour , 147
 Boolean , 80, 256, 271–273
 /boot , 75, 100, 123, 155, 391

 Index

© Cliff Wootton 2016
C. Wootton, Samsung ARTIK Reference, DOI 10.1007/978-1-4842-2322-2

■ INDEX

402

 bootargs , 66–68
 bootcmd , 55, 63
 BQ2429 , 39, 86
 BQ2429x , 39, 86, 331
 Broadband , 373
 Buck , 40, 79, 91

 C
 Camera , 13, 20, 21, 26, 28, 31, 32, 34–36, 38, 54,

174–177, 185, 187–189, 197, 266, 326, 332,
333, 369, 370, 374–383, 385, 386, 395, 396

 cat command , 83, 104, 127, 129, 130, 137,
138, 140, 154, 162, 252, 254, 261, 262,
287, 288, 309, 391

 CHE , 2
 chgrp command , 98, 99
 <ChipInfo> , 215, 216
 chown command , 98, 99
 chroot command , 133, 140
 C language , 51, 53, 81, 82, 86, 87, 108–109, 129, 134,

137, 140, 142, 143, 148, 150, 151, 154, 156,
162, 231, 234, 244, 249, 253, 254, 256–265,
271–273, 283, 292–300, 305, 312–319, 332,
346, 362, 372, 376, 392, 396

 Clock , 21, 32, 36, 38, 39, 78, 91, 113, 121, 130, 174,
176, 177, 179, 185, 186, 188, 189, 191, 193,
194, 201, 205, 207, 209, 210, 212, 214, 217,
240, 241, 305, 308, 323, 325, 337–343, 345,
347, 348, 363–368, 370

 CMOS , 376–378
 Codec , 3, 12, 37–39, 96, 169, 172, 174, 187, 197, 209,

236, 241, 286, 288, 326, 330–333, 351, 352,
359, 360, 364–368, 373–376, 380, 384

 Collision , 148, 149, 323, 325, 342, 380
 Commercial Beta , 1, 2, 4, 10, 11, 16, 20, 23, 25–27,

29, 30, 32–34, 36, 43, 47, 49, 61, 64, 66,
68–71, 76, 82, 85, 87, 101, 105, 107, 109,
117, 120, 122, 123, 128, 155, 160–162, 165,
171, 180, 183, 186, 190, 192, 198, 208, 212,
215, 229, 231, 234, 236, 244, 250–252, 255,
258, 266, 267, 286, 304, 321, 329, 330, 366,
369, 374, 375, 394, 395

 Compiler , 1, 48, 108, 155, 257, 295
 Connector , 14, 25, 57, 165, 197, 221, 237, 289, 304,

326, 346, 352, 369, 391
 Co-processor , 16, 40
 Core , 3, 9, 12, 16, 40, 43, 47, 111, 120, 138, 154, 158,

160, 161, 213, 215–219, 286, 300, 373
 Cortex-A7 , 39, 216
 Cortex-A15 , 39, 216
 CPU , 9, 12, 16, 26, 39, 61, 64, 65, 78, 80, 82, 91,

109–111, 127, 129–131, 142, 143, 154,
160–162, 168, 173, 213–219, 224, 233, 249,
266, 321, 335, 339–341, 343, 352, 364, 370

 Cross-compile , 42, 48, 230, 234, 244
 CSI , 21, 376, 379
 cut command , 107, 135, 136
 CW2015 , 39, 86–87

 D
 Daemon , 72–74, 132, 133, 145, 147,

149, 153
 <Database> , 215
 Data sheet , 2, 4, 13, 17, 22, 23, 28, 29, 38–40,

60–62, 66, 70, 73, 79, 80, 83, 85, 86, 165,
166, 168–172, 175, 178, 180–184, 186,
187, 189, 190, 192–194, 208, 210, 222, 225,
229, 235, 241, 242, 246, 270, 286, 288, 297,
298, 319, 322, 326, 328, 330, 332, 333, 335,
343, 346, 352, 365–367, 371, 372, 385, 391,
392, 396

 Debug , 2, 18, 25, 42, 50, 62, 96, 112, 124, 129, 160,
166, 167, 230, 240, 296, 307, 346, 362, 380

 Debug connector , 18, 23, 172, 183, 194
 debugfs , 50, 96, 101, 266, 286, 287
 /dev , 46, 47, 49, 71, 100, 101, 112, 115–126,

130, 131, 146, 150, 230, 231, 233, 374
 /dev/android_adb , 124
 /dev/autofs , 124
 /dev/btrfs-control , 124
 /dev/bus_throughput , 124
 /dev/cam_throughput , 124
 /dev/console , 118, 124
 /dev/cpu_dma_latency , 124
 /dev/cpu_freq_max , 124
 /dev/cpu_freq_min , 124
 /dev/device_throughput , 124
 /dev/display_throughput , 124
 Developer reference board , 1, 13, 17, 18, 21, 25–40,

57, 59, 86, 87, 160, 165, 167, 169, 171, 172,
180, 182, 183, 186, 190, 192, 197–202, 206,
208, 210, 212, 213, 216, 222–224, 236, 237,
239–242, 246, 290, 291, 304, 321, 326, 332,
333, 337, 346, 351, 352, 360, 366, 370, 371,
375–378, 391, 392, 395, 396

 /dev/fb0 , 125, 372, 383, 384
 devfs , 101
 /dev/full , 123, 126
 /dev/fuse , 124
 /dev/i2c-0 , 125, 327
 /dev/i2c-1 , 125
 /dev/i2c-3 , 125
 /dev/i2c-7 , 125
 <device> , 215
 Device tree , 44, 46, 47, 63, 68–70, 75, 79,

87, 89, 91, 100, 104, 105, 129, 233,
251, 279, 286, 288, 393

 /dev/iio:device0 , 125

■ INDEX

403

 /dev/input/event0 , 125
 /dev/ion , 124
 /dev/kfc_freq_max , 124
 /dev/kfc_freq_min , 124
 /dev/kmem , 123
 /dev/kmsg , 124
 /dev/loop-control , 125
 /dev/mali , 124
 /dev/mapper/control , 124
 /dev/media0 , 125
 /dev/mem , 123, 282
 /dev/memory_throughput , 124
 /dev/mtp_usb , 124
 /dev/net/tun , 124
 /dev/network_latency , 124
 /dev/network_throughput , 124
 /dev/null , 52, 53, 100, 118, 123, 126
 /dev/ppp , 125
 /dev/ptmx , 118, 124
 /dev/random , 123, 126
 /dev/rfkill , 124
 /dev/rtc0 , 125
 /dev/shm , 101, 150
 /dev/snd/controlC0 , 125
 /dev/snd/pcmC0D0c , 125
 /dev/snd/pcmC0D0p , 125
 /dev/snd/timer , 125
 /dev/stdin , 51, 52
 /dev/stdout , 51, 52
 /dev/sw_sync , 124
 /dev/tty , 51, 118, 124
 /dev/ttyGS0 , 125
 /dev/ttyGS1 , 125
 /dev/ttyGS2 , 125
 /dev/ttyGS3 , 125
 /dev/ttySAC0 , 125
 /dev/ttySAC1 , 125
 /dev/ttySAC2 , 52, 72, 125
 /dev/ttySAC3 , 125
 /dev/uhid , 124
 /dev/uinput , 124
 /dev/urandom , 124, 126
 /dev/usb_accessory , 124
 /dev/video , 375, 380
 /dev/video6 , 125, 375, 380
 /dev/video7 , 125, 375
 /dev/video8 , 125, 375
 /dev/video9 , 125, 375
 /dev/video23 , 125, 375
 /dev/video24 , 125, 375
 /dev/video26 , 125, 375
 /dev/video27 , 125, 375
 /dev/watchdog , 124, 125
 /dev/watchdog0 , 125
 /dev/zero , 123, 126, 372

 Directory , 7, 27, 46, 47, 50, 52, 53, 55, 63, 69, 71, 72,
74, 75, 81, 84–87, 89, 91, 93–101, 103–106,
108, 110, 112, 113, 115–118, 121–123,
127–129, 131, 135–138, 140, 145–148, 150,
153, 155, 157, 158, 163, 215, 219, 230,
249–254, 256–258, 283, 286–288, 305–307,
313, 329–331, 353, 354, 361, 372, 374, 375,
391, 392

 Display , 8, 12, 21, 31, 32, 35, 36, 40, 54, 55, 57, 63, 64,
66, 70, 76–78, 83, 85, 87, 89, 112, 123,
129–131, 133, 134, 136, 138–140, 142, 151,
155–159, 176, 177, 185, 187–189, 191, 197,
219, 252, 254, 258, 261, 266, 283, 287,
293–295, 299, 307, 309, 326, 327, 329, 330,
333, 335, 353–359, 361–363, 369–373, 384,
391, 395

 DM3AT-SF-PEJ , 32, 36
 dnf command , 2, 48, 154, 355
 DSI , 21, 187, 188, 370, 373, 388
 .dts , 69, 75
 Duty cycle , 197, 235, 236, 303, 305, 308, 310, 311,

314–315, 317, 319, 364, 396
 DVB , 373, 374, 382

 E
 5EA , 35, 36, 38, 326, 332, 333, 376, 379
 Eclipse , 2, 42, 213–216, 219, 220
 ECMA , 373
 EH400WV , 370
 EH400WV-25A , 32
 EM3587 , 40
 eMMC , 5, 38, 40, 59, 60, 67, 69, 83, 84, 122, 174, 185
 Endian , 357, 358, 361, 362
 /etc , 7, 74, 100, 101, 133, 145, 146, 148, 150, 230, 354
 /etc/rc , 74
 Ethernet , 11, 16, 29, 31, 32, 35, 36, 39, 66, 169, 173,

174, 177–180, 189, 192, 197, 236, 241, 326,
333, 335, 346, 349, 395

 ETSI , 373
 European Broadcasting Union (EBU) , 373, 374
 exec , 132
 ext2 , 63
 ext3 , 96
 ext4 , 67, 69, 96
 Exynos 3250
 Exynos3250 , 40, 47, 65, 67–70, 75, 87, 89, 154, 155,

233, 286, 288, 391
 Exynos5433 , 40, 216

 F
 FCC , 221–224, 373
 fcntl() , 116
 FDV301N , 40

■ INDEX

404

 Fedora , 2, 5, 7, 8, 29, 33, 41–43, 45–49,
70–74, 105, 153, 155, 250, 299, 393

 Fedora 20 , 16, 20, 43, 47
 Fedora 22 , 5, 16, 20, 41, 43, 49, 71, 153
 ff mpeg , 3, 352, 369, 370, 380, 382–384
 ff server , 369, 384
 ff streamer , 384
 fgets() , 7, 108, 163, 257, 262, 293, 296,

297, 299, 312, 316
 Filesystem Hierarchy

Standard (FHS) , 70, 75, 93, 145
 Firmware , 4, 16, 20, 43, 46, 59–61, 65, 72–76, 104,

106, 112, 155, 250
 First In, First Out (FIFO) , 97, 300
 <FlashBankInfo> , 215
 folder , 95
 fopen() , 7, 149, 163, 259, 261–263, 265, 282,

293, 297, 299, 312–314, 316–318, 344
 fork , 132
 Fortran , 231
 Forum , 5, 6, 48, 80, 216, 266, 373, 397
 framework , 134, 220, 230, 294, 345, 385
 free command , 158
 FT232RL , 40
 Fuse image , 5
 FXMA108 , 40

 G
 GCC , 1, 7, 48, 64, 108, 109, 151, 155, 156,

257, 258, 285, 296
 GDB , 213, 217–220
 General Purpose Input/Output (GPIO) , 1, 11, 26, 53,

83, 106, 116, 162, 169, 197, 230, 235, 289,
305, 326, 344, 364, 387, 392

 General Purpose Operating
System (GPOS) , 41

 Gimp , 369
 Git , 5, 64, 376
 Git repository , 4, 62, 75, 87, 121, 229, 392, 393
 GNU , 64, 155
 gpa0 , 185, 253, 255, 267, 268, 270, 276–277
 gpa1 , 174, 253, 255, 267, 268, 270, 277–278
 gpb , 253, 255, 267
 gpc0 , 177, 253, 255, 267, 387
 gpc1 , 253, 255, 267
 gpd0 , 176, 253, 255, 267, 268, 270, 279–280
 gpd1 , 191, 253, 255, 267
 gpe0 , 253, 255, 267
 gpe1 , 253, 255, 267
 gpe2 , 253, 255, 267
 gpk0 , 253, 255, 267
 gpk1 , 253, 255, 267
 gpk2 , 253, 255, 267
 gpl0 , 253, 255, 267

 GPM , 32, 36, 201, 210–211
 gpm0 , 253, 255, 267
 gpm1 , 253, 255, 267
 gpm2 , 253, 255, 267
 gpm3 , 253, 255, 267
 gpm4 , 253, 255, 267
 gpx0 , 237, 242, 253, 255, 267, 268, 270, 274–275
 gpx1 , 253, 255, 267, 268, 270, 275–276
 gpx2 , 253, 255, 267, 268
 gpx3 , 253, 255, 267
 Graphics processing unit (GPU) , 40, 231,

233, 266, 370, 389, 393

 H
 H.263 , 376
 H.264 , 3, 376
 hackster.io , 4
 HbbTV , 373
 HD , 16, 377, 380, 381, 383
 HDMI , 11, 36, 40, 189–191, 266, 279, 326, 333,

369–373, 388, 395
 HDMI 1.4a , 370
 Header , 11, 25, 63, 166, 197, 237, 289, 304, 332, 344,

378, 396
 Heroku , 5, 6
 /home , 100, 374
 hostname , 155, 156

 I
 IANA , 119, 120
 IBC , 373
 I2C , 1, 15, 26, 53, 60, 102, 105, 118, 169, 197, 231,

236, 321, 337, 352, 380, 391
 ICMEF112P900MFR , 40
 IIO , 2, 3, 21, 26, 50, 54, 109, 111, 117, 119, 121, 125,

197, 231, 233, 289–301
 Imagemagik , 369
 Instructables , 4, 393
 Interface , 1, 15, 26, 42, 46, 57, 93, 103, 115,

127, 165, 197, 230, 235, 291, 303, 321,
335, 353, 370, 391

 Inter-IC Sound (I2S) , 3, 21, 26, 31, 32, 35, 36, 39, 54,
55, 102, 106, 109, 174, 186, 197, 201,
208–210, 231, 233, 236, 239–241, 250, 326,
333, 334, 351, 352, 362–368, 392, 393, 395

 Interrupt , 32, 36, 46, 58, 64, 66, 69, 78, 83, 84, 106,
113, 128–131, 173, 174, 184, 185, 201,
210–211, 240, 246, 247, 250, 264, 286, 325,
340, 342, 343, 346, 348, 356–358

 Invert , 241, 272, 309, 311, 316, 317
 ioctl() , 113, 116, 126, 231, 332, 344, 345, 376
 IoTivity , 2
 ISO , 373

■ INDEX

405

 J
 J1 , 20, 36, 37, 39, 82, 84, 175, 183–186, 192,

202, 205, 207, 209–211, 247, 333, 368,
386, 388, 396

 J2 , 20, 36, 84, 183, 186–190, 203, 205, 207, 211, 212,
247, 319, 333, 334, 368, 386–388, 396

 J3, 15, 20, 32, 33 36 , 60, 82, 83, 172–175, 183, 186,
189–192, 202, 205, 207, 209–211, 246, 247,
333, 367, 371, 386–388, 396

 J4 , 15, 20, 32, 36, 38, 39, 83, 84, 172, 175–177, 183,
190, 192–194, 203, 205, 207, 209, 212, 247,
319, 333, 367, 386, 387, 396

 J7 , 15, 32, 83, 172, 178–180, 210–212, 346, 396
 J10 , 32, 36, 376–379
 J12 , 32, 36, 213, 214, 216, 396
 J17 , 31–33, 35, 37, 184, 370, 371
 J26 , 32, 36, 124, 173, 174, 177, 184, 185, 189, 199,

201, 204, 205, 210–212, 237–239, 245,
274–280, 304, 305, 319, 396

 J27 , 32, 36, 173, 176, 184, 199, 200, 204–206,
208, 238, 239, 245, 246, 274–280, 332,
346, 347, 396

 J35 , 28, 35, 36, 332, 376, 378
 J510 , 32, 36–38, 60, 83, 84, 174, 177, 185, 188,

201–203, 205–208, 214, 240, 290, 291,
332, 333, 396

 J511 , 32, 36, 198, 201, 205, 208–210, 240, 332, 396
 J512 , 32, 36, 201, 205, 210–211, 240, 241, 396
 J513 , 32, 36, 198, 201, 205, 212, 241, 304, 305, 396
 JavaScript , 373
 J-Link , 3, 192, 212–220
 JPEG , 70, 106, 250, 372–374, 380, 382, 383
 JTAG , 3, 18, 25, 27, 31, 32, 35, 36, 83, 84, 160, 166,

178–180, 192–194, 197, 212–214, 216–218,
220, 396

 Jumpers , 27, 28, 31, 33, 35, 37, 169, 173,
184, 198, 203, 290

 K
 Kernel , 1, 21, 26, 41, 45, 59, 93, 103, 115, 127, 145,

154, 204, 230, 235, 289, 303, 322, 339, 351,
372, 391

 kill , 72, 134, 135, 159, 160, 384
 KLMAG2GEAC-B002 , 40

 L
 3L2 , 28, 35, 36, 185, 189, 190, 326, 332, 333, 376, 378
 LCD , 36, 55, 90, 112, 173, 176, 177, 184, 185,

187–189, 326, 333, 335, 372, 383–385,
387, 388

 /lib , 74, 100, 146, 150, 155
 libArduino , 230, 234, 244

 Library , 2, 16, 20, 21, 54, 104, 148, 150, 153, 154, 205,
231–234, 244, 284, 288, 291, 294, 295, 344,
346–348, 351, 353–355, 367, 380, 395

 Linux , 2, 4, 5, 20, 27, 41–44, 47, 49, 69, 70, 74, 77, 79,
80, 86, 87, 91, 93, 96, 101, 103, 104, 106,
109, 116, 119, 121, 127, 128, 133, 145, 154,
155, 157, 161, 162, 229, 233, 234, 248, 256,
281, 287, 288, 291, 300, 301, 303, 344, 352,
353, 373, 376, 380, 393, 394

 Local Area Network (LAN) , 1, 157
 /lost+found , 100
 Low Drop Out (LDO) , 40, 79, 90
 LPWA , 27, 32, 36, 187, 189, 224, 326, 333
 ls command , 50–53, 86, 87, 94, 96, 98, 104, 105, 107,

108, 110, 117, 118, 121–123, 128, 137, 146,
155, 249–252, 256, 257, 293, 294, 296, 306,
310, 330, 331, 375, 391, 392

 M
 MALI , 40, 231, 266, 370, 374, 389
 /media , 100, 111, 374, 376, 380
 microSD , 60, 66
 MIPI , 3, 11, 21, 176, 177, 184, 187–190, 197, 369, 370,

372, 373, 375–380, 382, 386–388, 395
 MISO , 38, 39, 174, 205, 240, 337–339, 347
 MMA8452Q , 40
 3.5mm Jack Socket , 31, 32, 35, 36, 351, 352, 361
 /mnt , 100
 MOE-C110T42-K1 , 40, 352
 Molex , 26, 31, 32, 35, 36, 370, 376–378
 MOSI , 38, 39, 205, 337–339, 347, 348
 Motion JPEG , 383
 MP3 , 352
 5MP , 377, 379–381
 M25PE10 , 40
 MPEG , 357, 358, 373
 MPEG-2 , 376
 MPEG-4 , 376, 384
 mplayer , 3, 352, 358–359, 361, 369, 370, 372, 373, 384

 N
 NAB , 373
 NGINX , 5, 6
 nice command , 142, 143
 NLSX4014 , 40
 Node.js , 5, 48, 230, 231, 234
 NSM-5005A , 379

 O
 Oomlout , 24
 OpenCL , 370, 389
 OpenCV , 380, 395

■ INDEX

406

 OpenEmbedded , 42
 OpenGL , 370, 389
 OpenSSH , 73, 74, 153
 /opt , 100
 <options> , 355
 oscilloscope , 242, 395
 os command , 100
 Out-of-memory (OOM) , 137, 139
 OV5640 , 376

 P, Q
 PCA9306 , 40
 PHP , 5, 6, 65, 91, 121, 216, 353, 363, 366, 374, 385
 PPID , 133, 134, 141
 printf() , 51, 108, 134, 135, 149, 151, 163, 257,

259, 261–263, 265, 282–285, 291, 293,
295–297, 299, 312–318

 /proc , 46, 49, 50, 52, 53, 100, 101, 116, 121, 127–143,
145, 154, 163, 230, 329, 393

 /proc/asound , 353, 354
 /proc/buddyinfo , 128, 130
 /proc/bus , 128
 /proc/cgroups , 128, 130
 /proc/cmdline , 68, 128, 130
 /proc/confi g.gz , 157
 /proc/consoles , 128, 130
 /proc/cpu , 128
 /proc/cpu/alignment , 130
 /proc/cpuinfo , 128, 130, 160, 219
 /proc/cpu/swp_emulation , 130
 /proc/crypto , 128, 130
 /proc/devices , 118, 121, 128, 130
 /proc/device-tree , 128, 154, 286
 /proc/diskstats , 128, 130
 /proc/driver , 128
 /proc/driver/rtc , 130
 /proc/driver/snd-page-alloc , 130
 Process , 1, 9, 41, 45, 57, 93, 105, 115, 127,

145, 153, 165, 216, 237, 289, 312, 325,
339, 352, 369, 391

 Process identifi er numbers (PID) , 51, 53,
128, 132–136, 138, 140–142, 148, 149,
158–162, 384

 Processor affi nity , 161–162, 216, 218
 /proc/execdomains , 128, 130
 /proc/fb , 128, 130
 /proc/fi lesystems , 128, 130
 procfs , 2, 50, 101, 127, 158
 /proc/fs , 128
 /proc/interrupts , 128, 130
 /proc/iomem , 128, 130
 /proc/ioports , 128, 130
 /proc/irq , 128
 /proc/kallsyms , 128, 130

 /proc/key-users , 128, 130
 /proc/kmsg , 128, 130
 /proc/kpagecount , 128, 130
 /proc/kpagefl ags , 128, 130
 /proc/loadavg , 128, 130
 /proc/locks , 128, 130
 /proc/meminfo , 128, 130
 /proc/misc , 128, 131
 /proc/modules , 128, 131
 /proc/pagetypeinfo , 128, 131
 /proc/partitions , 128, 131
 /proc/ , 135–137, 140, 158
 /proc/sched_debug , 128, 131
 /proc/scsi , 128
 /proc/scsi/* , 131
 /proc/self , 52, 53, 128, 140
 /proc/self/net , 140
 /proc/slabinfo , 128, 131
 /proc/softirqs , 128, 131
 /proc/stat , 128, 131
 /proc/swaps , 128, 131
 /proc/sys , 127, 128, 155, 156
 /proc/sys/* , 131
 /proc/sysvipc , 128
 /proc/sysvipc/msg , 131
 /proc/sysvipc/sem , 131
 /proc/sysvipc/shm , 131
 /proc/timer_list , 128, 131
 /proc/tty , 128
 /proc/uid_stat , 128
 /proc/uptime , 128, 131
 /proc/version , 49, 128, 131, 155
 /proc/vmallocinfo , 128, 131
 /proc/vmstat , 128, 131
 /proc/zoneinfo , 128, 131
 .profi le , 108
 ps command , 51, 132–137, 139, 159, 161
 Pulse audio , 363
 Pulse width modulated (PWM) , 15, 32, 50,

74, 106, 197, 231, 235, 301, 303, 395
 Python , 48, 230, 231, 362

 R
 Real Time Operating Systems (RTOS) , 41
 Rendezvous , 147
 renice command , 143
 Resin.io , 2
 RJ45 , 27, 31, 32, 35, 36
 rk-ac , 83–85
 rk-bat , 83–85
 root , 5, 50, 52, 62, 63, 66–69, 71, 75–77, 80, 95, 98,

100, 117, 118, 123, 133, 136, 137, 140, 142,
143, 157, 294, 375

 /root , 100, 146

■ INDEX

407

 /run , 46, 49, 100, 101, 116, 117, 127,
145–151, 163, 230, 393

 runfs , 2, 101
 /run/user/0 , 101
 RX<-0 , 124, 174, 185, 199, 205, 206, 210,

239, 245–247, 277, 278

 S
 S2ABB01 , 40
 SAMI , 1
 Sample rates , 352, 356, 357, 364–366
 Samsung Developer Conference (SDC) , 1, 2, 4
 /sbin , 100, 133
 SC300 , 40
 Scan chain , 3, 160, 213, 216–219
 Schematic diagram , 15, 20, 26–28, 31, 35, 60, 169,

171, 172, 180, 182, 186, 190, 192, 199, 201,
210, 229, 241, 291, 326, 332, 346, 391, 392

 SCP1000 , 40
 SD3503 , 40, 174
 SD Card , 5, 11, 29, 31, 32, 35, 36, 59, 60, 66, 111, 122,

175, 177, 188, 335
 Secure element , 10, 12, 16, 40
 Segger , 3, 192, 212–219
 SE2432L , 40
 SELinux , 43, 147, 148
 Sensor , 3, 9, 12, 15, 20, 21, 40, 53–55, 78, 79, 109,

111, 162, 231, 235, 236, 241, 242, 250, 260,
286, 289, 291, 300, 321, 328, 329, 334,
376–379, 391, 395–397

 Serial clock line (SCL), 38, 39, 83, 84, 176, 177, 186,
188, 189, 191, 200, 205–207, 209 239 , 240,
245, 247, 278, 279, 322–325, 331–334,
366–368, 386, 388

 Serial data line (SDA) , 38, 39, 83, 84, 176, 177, 186,
188, 189, 191, 200, 205–207, 209, 239, 240,
245, 247, 278, 279, 322–325, 331–334,
366–368, 386, 388

 Serial Peripheral Interface Bus (SPI) , 3, 11, 26, 53,
64, 102, 106, 116, 173, 197, 231, 240, 326,
335, 364, 393

 74 series , 40, 241, 349
 setsockopt() , 116
 S3FV5RP , 40
 shutdown command , 61, 76–78, 80, 81, 100, 145
 SigFox , 37–39, 173, 176, 185–187, 189, 191
 Signal , 21, 37, 53, 60, 109, 127, 159, 165, 197, 221,

236, 289, 304, 323, 337, 352, 371, 396
 S5K6B2 , 376, 377
 S5K5EA , 376–379
 S5K3L2 , 376, 378
 SMA connector , 169, 221–224
 S2MPS11 , 40

 S2MPS14 , 40, 50, 87, 328
 Snappy Ubuntu Core , 43
 SparkFun , 24, 29, 352, 377
 sprintf() , 108, 257, 259, 261–263, 296,

297, 299, 313–318
 /srv , 100
 Stereo Codec Chip , 39, 364, 366
 strcat() , 257, 313
 strings command , 391–393
 /sys , 27, 46, 49, 50, 55, 101, 103–113, 116, 118,

121, 162, 230, 374, 391–393
 /sys/block , 104, 105
 /sys/bus , 104, 105, 110–111, 129, 298–300
 /sys/bus/amba , 111, 374
 /sys/bus/clocksource , 111
 /sys/bus/cpu , 111
 /sys/bus/event_source , 111
 /sys/bus/exynos-core , 111
 /sys/bus/hid , 111
 /sys/bus/i2c , 85–87, 111, 329–331
 /sys/bus/iio , 111, 299, 300
 /sys/bus/mdio_bus , 111
 /sys/bus/media , 111, 374
 /sys/bus/mmc , 111
 /sys/bus/platform , 111, 251, 294
 /sys/bus/scsi , 110, 111
 /sys/bus/sdio , 111
 /sys/bus/serio , 111
 /sys/bus/spi , 111
 /sys/bus/workqueue , 111
 /sys/class , 104, 105, 112–113, 306, 307
 /sys/class/android_usb , 112
 /sys/class/backlight , 112, 374
 /sys/class/bdi , 112
 /sys/class/block , 112
 /sys/class/bluetooth , 112
 /sys/class/bsg , 112
 /sys/class/devfreq , 91, 112
 /sys/class/dma , 112
 /sys/class/fi rmware , 112
 /sys/class/gpio , 112, 249, 251, 252, 254, 256–265
 /sys/class/graphics , 112, 372, 374
 /sys/class/i2c-adapter , 112
 /sys/class/i2c-dev , 112
 /sys/class/ieee80211 , 112
 /sys/class/input , 112
 /sys/class/ion_cma , 112
 /sys/class/lcd , 112
 /sys/class/leds , 112
 /sys/class/mdio_bus , 112
 /sys/class/mem , 112
 /sys/class/misc , 112
 /sys/class/mmc_host , 112
 /sys/class/net , 112

■ INDEX

408

 /sys/class/power_supply , 84–85, 112
 /sys/class/pwm , 112, 306–307, 309–318
 /sys/class/regulator , 91, 112
 /sys/class/rfkill , 112
 /sys/class/rtc , 113
 /sys/class/scsi_device , 113
 /sys/class/scsi_disk , 113
 /sys/class/scsi_generic , 113
 /sys/class/scsi_host , 113
 /sys/class/sec , 113
 /sys/class/sound , 113, 374
 /sys/class/spi_master , 113
 /sys/class/switch , 113
 /sys/class/thermal , 113
 /sys/class/timed_output , 113
 /sys/class/tty , 113
 /sys/class/udc , 113
 /sys/class/video4linux , 113, 374, 375
 /sys/class/watchdog , 113
 sysctl , 58, 61, 74, 77, 79–82, 147, 159, 231
 /sys/dev , 104, 106, 121
 /sys/devices , 87, 91, 104–108, 113, 161, 162, 219,

249–251, 292–294, 296, 306, 307, 374
 /sys/fi rmware , 104
 sysfs , 2, 50, 54, 55, 81, 85, 87, 89, 96, 98, 101,

103–106, 111–113, 119, 122, 127–129, 204,
230, 231, 235, 237, 238, 243, 244, 246–251,
253–254, 259, 264, 266, 281, 286, 287, 291,
292, 298, 299, 301, 303, 305, 306, 308, 309,
312, 313, 329–331, 370, 374, 375, 392, 393

 /sys/fs , 104
 /sys/fs/cgroup , 101
 /sys/kernel , 104, 155, 156
 /sys/kernel/debug , 50, 83, 100, 101, 230, 244,

249, 255, 267, 286–288, 307, 310, 374
 /sys/module , 104, 374
 /sys/power , 58, 81–82, 104

 T
 Temboo , 16, 20, 55, 230, 234, 244, 393
 Test points , 27, 37–39, 179, 180, 240, 291, 352
 Th read , 82, 116, 138, 139, 141, 143, 161,

162, 222, 301
 Tizen , 43–44
 /tmp , 7, 52, 100, 101, 108, 148, 150, 157,

257, 283, 361, 362
 tmpfs , 96, 101, 145
 top command , 142
 TPD12S016 , 40, 371, 372
 TPS65632 , 40
 tr command , 135, 136
 Trusted Execution Environment (TEE) , 10, 43
 TrustZone , 65

 tty , 74, 97, 113, 120, 128, 129, 133, 161
 TX->1 , 124, 174, 185, 199, 205, 206, 210, 239,

245–247, 277, 278
 TXS0108E , 40
 Type 5 , 4, 13, 25, 27, 29–35, 37, 59, 86, 87, 160, 171,

180, 198, 200, 210, 213, 223, 224, 237–239,
241, 289–291, 304, 326, 351, 352, 360, 370,
371, 375–377

 Type 10 , 4, 17, 18, 33–38, 59, 182, 183, 186, 190, 192,
198, 200, 208, 210, 213, 224, 237–239, 241,
289–291, 304, 326, 346, 351, 352, 360, 366,
371, 376, 378

 U
 U-Boot , 1, 3, 5, 43, 46–47, 57, 61–66, 68, 69, 75, 76,

91, 123, 130, 346
 udev , 71, 72, 100, 101, 115, 117, 119, 147, 307, 308
 udevfs , 2, 101, 115
 ulimit command , 159
 uname command , 49, 154, 155
 Universal Asynchronous Receiver Transmitter

(UART) , 21, 32, 36, 40, 54, 124, 129, 173,
174, 179, 184, 185, 194, 197, 201, 206, 208,
210, 276–278

 USB , 11, 15, 20, 21, 26, 31, 32, 35, 36, 38, 39, 57, 59,
60, 78, 90, 111–113, 120, 124, 129, 173,
176, 184–186, 189–192, 274, 346, 369,
375, 376, 380, 395

 /usr , 100, 354
 /usr/bin , 100, 133, 159, 355
 /usr/lib , 100, 123, 133, 158, 159
 /usr/sbin , 100, 133
 UVC , 20, 376, 380

 V
 /var , 100, 145, 146, 149, 150, 230, 355
 VC-1 , 376
 VGA , 380, 383, 385
 Video4Linux , 3, 15, 20, 113, 118, 120, 231,

373–376, 393, 395
 vi editor , 7, 108, 257, 295, 354
 Virtual fi le system (VFS) , 3, 44, 46–52, 54, 55, 70, 74,

91, 93, 98, 100–113, 115–143, 145–151, 158,
162, 204, 230, 232, 235, 237, 243, 244,
247–249, 251, 259–262, 266, 282, 286, 287,
291, 292, 298, 299, 303, 305, 329, 330,
391–393

 V4L , 3, 373
 V4L2 , 373, 374, 376, 383, 384
 VLC , 384
 VP8 , 376

■ INDEX

409

 W
 wake_lock , 82
 WAV , 356, 357, 360–362
 Wi-Fi , 22, 29, 39, 112, 147, 185, 186,

221, 222, 224, 225, 259
 12505WS-02A00 , 32

 X
 XC6220 , 40
 XML , 215
 XR20M1172 , 40

 Y
 Yocto , 2, 16, 20, 41, 42, 46, 48, 49, 153
 yum command , 2, 48
 YUV , 381, 383

 Z
 ZigBee , 11, 12, 32, 33, 36, 37, 40, 178,

180, 192, 193, 221, 224, 225
 Zombie , 127, 135

	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Learning More About ARTIK
	Change and Evolution
	Your Journey Through This Book
	Samsung Developer Resources
	Samsung Developer Downloads
	ARTIK OS Source Code
	Samsung Developer Blog
	Samsung Developer Forums
	Get Your Samsung Developer Account Now
	An Even Quicker Start

	Chapter 2: Hardware
	The ARTIK Family
	Provenance
	Choose the Right Model
	Introducing the ARTIK 520
	General Arrangement
	Functional Organization
	Known Firmware Versions

	Introducing the ARTIK 1020
	General Arrangement
	Functional Organization
	Known Firmware Versions

	ARTIK Module Connections
	Physical Dimensions
	Buy an ARTIK Development System Now
	Component Suppliers
	Summary

	Chapter 3: Developer Reference Boards
	A Little History
	Connecting External Devices
	Schematic Diagrams
	Reading the Schematic Diagrams
	Type 5 - Version 0.5.0
	Type 10 - Version 0.5.0
	Test Points
	Interesting Chip Data Sheets
	Summary

	Chapter 4: About the Operating Systems
	Comparing the ARTIK Operating Systems
	About Fedora OS
	But What Is Yocto?
	Other Operating System Choices
	Tizen Secrets
	Summary

	Chapter 5: Operating System Internals
	Under the Hood
	The Component Parts of the ARTIK OS
	U-Boot Loader
	Device Tree
	Kernel
	Fedora Distribution
	Yocto Build Manager
	Additional Software

	Looking Inside the Kernel
	Kernel Versions
	Interacting with the Kernel
	Using the Kernel debugfs Filesystem

	Standard Input/Output Devices
	Peripheral Interfaces
	Programmable I/O Pins
	Accessing the Peripherals
	Summary

	Chapter 6: Startup, Sleep, and Shutdown
	The System Administrator Console
	Power and Reset Buttons
	Setting the Boot Mode Switches
	Cold vs. Warm Boots
	Starting Up the ARTIK
	The Boot Loader
	U-Boot Commands
	Boot Loader Console Messages
	Passing Arguments to the Kernel
	Kernel Boot Options
	Device Tree
	Starting Up the Kernel
	Kernel Startup Messages
	Fedora Startup Messages
	Reconfiguring the Startup
	The /boot Directory
	Login Credentials
	Shutdown Commands
	Shutdown Console Messages
	About Power Management
	Power Management Integrated Circuit (PMIC)
	Monitoring Power Consumption
	Arduino Power-Saving Mode
	Power Management with systemctl
	/sys/power
	Wake Locks
	Relevant Power Management AXT Connections
	/sys/class/power_supply
	Power Management Devices
	BQ2429 - Battery Charger Chip
	CW2015 - Battery Fuel Gauge Chip
	The sec_pmic (S2MPS14-PMIC) Chip
	Saving Power by Slowing Things Down

	Summary

	Chapter 7: File Systems
	About the File System
	Filesystem Hierarchy Standard (FHS)
	File System Inodes
	File System Types
	File Types
	File Access Control
	File System Trees
	File System Mapped Properties
	Summary

	Chapter 8: The /sys Virtual File System
	About sysfs
	Inside sysfs
	Kernel Developers Roadmap
	/sys/devices
	Memory-Mapped Base Addresses
	Finding Base Addresses in bash
	Finding Base Addresses in the C Language
	Peripheral Interconnect Buses
	/sys/bus
	/sys/class
	Summary

	Chapter 9: The /dev Virtual File System
	About /dev
	Communicating With Devices
	Listing the Devices
	About Device Numbers
	Device Types
	Block Devices
	Character Devices
	Special Devices
	Summary

	Chapter 10: The /proc Virtual File System
	About /proc
	Inspecting /proc
	Special Locations Within /proc
	Kernel Subsystems as Objects
	System-Wide Properties
	Parent and Child Processes
	Creating New Processes
	Process Identifier Numbers
	Listing the Running Processes
	Sending Signals to Processes
	Zombies
	Special Locations Within /proc/{pid}
	Process Property Collections
	Process Properties
	Process-Related Objects
	Inspecting the Process Status
	Resource Usage Monitoring
	Altering the Process Priority
	Processes vs. Threads
	Summary

	Chapter 11: The /run Virtual File System
	About /run
	Why /run Was Created
	Kernel Subsystems as Objects
	Runtime System Properties
	Socket Connections
	Process Identifier Files
	Updating Legacy Applications
	Summary

	Chapter 12: System Administration
	How to Be a Sys Admin
	Identifying an ARTIK Module
	Detecting the OS Version
	Determining the Kernel Version
	Dynamically Changing the Host Name
	Setting the Correct Date
	Uploading Files
	Downloading Files
	Examining the System Configuration
	Checking the Memory Usage
	Viewing Process Memory Maps
	Discovering the Process Limits
	Monitoring Service Status
	Quitting and Aborting Processes
	Determining the Available CPUs
	Detecting Current Processor Speed
	Managing Processor Affinity
	Monitoring Internal Temperature
	Summary

	Chapter 13: AXT Module Connectors
	Physical Connections
	Panasonic AXT Connectors
	Looking More Closely
	AXT 40-Pin Connector
	AXT 60-Pin Connector
	AXT 80-Pin Connector
	Ordering AXT Connectors
	AXT Connections, Pins, and I/O

	ARTIK 5 - Connectors
	Connector Locations
	Connector J3
	Connector J4
	Connector J7

	ARTIK 10 - Connectors
	Connector Locations
	Connector J1
	Connector J2
	Connector J3
	Connector J4

	Summary

	Chapter 14: Hardware I/O Connections
	Pins and Programmable I/O
	Hardware I/O Pins and Headers
	Arduino Names vs. Pin Numbers
	Mapping Pins to Connection Headers
	Pinout Diagrams
	J24 - Analog Input
	J25 - Power Supply, Ground, and Reset
	J26 and J27 Arduino Interface
	J510 - Auxiliary Analog ADC input
	J511 - SPI, UART, I2C, and I2S Interfaces
	J512 - GPM and Interrupts
	J513 - PWM and Clock Output
	JTAG Support
	JTAG Connector
	Adding a New J-Link Device
	Testing J-Link Connectivity
	Multi-Core Debugging
	Setting Up a Scan Chain
	How the Scan Chain Works
	Configuring Multiple Debuggers
	If It Still Does Not Work!

	Summary

	Chapter 15: Antennas
	Antenna Specifications
	About the Antenna Connections
	SMA Connectors
	Locating the SMA Connectors
	Miniature Coaxial Connectors
	Summary

	Chapter 16: The API Kits
	Samsung-Provided API Support
	Documents to Gather
	Where Are the APIs?
	Compiled Object Code Libraries
	I/O Structure
	Finding Out About Devices
	Temboo
	Where Else to Look
	Summary

	Chapter 17: General Purpose Input/Output (GPIO)
	About GPIO in the ARTIK
	Pin Modes
	Digital Input
	Digital Output

	Exploring GPIO
	Developer Board GPIO Pinouts
	Reserved Pins
	Active Levels
	Slewing Rates
	Resonant Circuits
	Interacting With the Hardware
	Hardware Header Pin Numbers
	Using Arduino Emulation
	GPIO Via sysfs
	Using the sysfs Interface
	GPIO Drivers
	Device Base Addresses
	GPIO Chip Numbers
	Interacting With sysfs
	Using bash With sysfs
	/sys/kernel/debug/gpio
	Accessing GPIO with the C Language
	Using Boolean Data Types in C
	Finding a GPIO Base Address
	Pin Export to the User Domain
	Previously Exported GPIO Pins
	Creating a Dynamic Path to an Exported Pin
	Pin Active LOW Setting
	Pin Direction Setting
	Digital Value Reading
	Digital Value Setting
	Edge Detecting
	Releasing Exported Pins
	Continuous Reads and Writes
	Trailing Carriage Returns

	Access Directly Via the Kernel
	GPIO Ports
	Shared Registers
	GPIO Registers
	Mapping the Bits
	Port GPX0
	Port GPX1
	Port GPA0
	Port GPA1
	Port GPA2
	Port GPD0
	Port GPB2

	Programming Via the Kernel Interface
	Prototype Example Code

	GPIO Pin Multiplexing
	/sys/kernel/debug/pinctrl
	Modifying the GPIO Pin Multiplexed State
	Learn More About pinctrl Multiplexing

	Summary

	Chapter 18: Analog Input and IIO
	Reading Analog Inputs
	Analog ADC Pin Connections
	Analog ADC Input with Arduino IDE
	Using sysfs
	Working Out the Base Address
	Reading a Pin Voltage
	Automatic Base Addresses in bash
	Automatic Base Addresses in the C Language
	Reading an ADC Value
	Scaling the Raw Value

	Using the /sys/bus Devices
	About the New IIO Subsystem
	Summary

	Chapter 19: Pulse Width Modulated Output
	What Is Pulse Width Modulation?
	PWM Support in the ARTIK Modules
	PWM Output Connectors
	Using PWM with Arduino Calls
	Accessing PWM via sysfs
	PWM Entities in sysfs
	/sys/class/pwm/pwmchip0
	PWM Channel Properties
	PWM Timing Control
	Inverting the PWM Waveform

	Configuring the PWM Interface with bash
	Requesting a Channel Count
	Exporting a Channel to the User Space
	Setting the Timing Properties for a Channel
	Turning On the Output Waveform
	Detecting Whether the PWM Is Running
	Inverting the Waveform
	Turning Off the Output Waveform
	Relinquishing a Channel

	Programming PWM with the C Language
	Requesting a Channel Count
	Exporting a Channel to the User Space
	Synthesizing a Path to the PWM Channel Container
	Setting the Duration Value for a Channel
	Setting the Duty Cycle for a Channel
	Setting the Timing Properties for a Channel
	Turning On the Output Waveform
	Detecting Whether the PWM Is Running
	Inverting the Waveform
	Turning Off the Output Waveform
	Relinquish a Channel
	Utility Helper Function

	PWM-Related AXT Connections
	Summary

	Chapter 20: Inter-Integrated Circuit (I2C)
	What Is I2C?
	How Does I2C Work?
	I2C on the ARTIK Modules
	I2C Tools
	The Device Detector Tool (i2cdetect)
	The Value Reading Tool (i2cget)
	The Value Setting Tool (i2cset)
	The Register Dump Tool (i2cdump)

	Accessing I2C via sysfs
	I2C Device Nodes
	I2C Containers and Properties
	Built-in Drivers
	Instantiating and Removing Devices

	Access I2C from the C Language
	Breakout Connections
	I2C-Related AXT Connectors
	Summary

	Chapter 21: Serial Peripheral Interface (SPI)
	How Does SPI Work?
	Interfacing Signal Lines
	Alternative Naming Conventions
	Transmitting Data
	SPI Internal Architecture
	Control Register (SPCR)
	Status Register (SPSR)
	Clock Rate Setting
	Data Register (SPDR)

	Interacting with an SPI Device
	External Includes
	Global Variables
	Opening an SPI Device
	Initializing the SPI Port
	Reading and Writing Data

	AX88796 Ethernet Controller (ARTIK 520)
	AX88760 USB and Ethernet Controller (ARTIK 1020)
	Arduino and SPI
	Programming via the Arduino SPI Library
	The Arduino SPI library

	Multiplexing Digital Pins for SS Addressing
	Summary

	Chapter 22: Audio and Inter-IC Sound (I2S)
	Audio Capabilities
	Audio Output
	Audio Input
	ALSA Audio Support
	Exploring ALSA
	Configuring ALSA
	Upgrading ALSA
	The Audio Mixer Tool (amixer)
	The Audio Recorder Tool (arecord)
	The Audio Player Tool (aplay)
	The Audio/Visual Player Tool (mPlayer)
	Finding the Sound Card
	Testing the Audio Outputs
	Recording Audio
	Playing Audio Files

	Developing Audio Applications
	Pulse Audio Support
	How Does I2S Work?
	The ARTIK Implementation
	Sample Rates
	Clock Timings
	AK4953A - Stereo Codec Chip
	Find Out More About I2S

	Audio-Related AXT Connections
	Audio Experiments
	Summary

	Chapter 23: Graphics and Video
	About Graphics and Video
	Graphics Support
	Video Support
	Display Connectors
	Display Control
	Video4Linux Support
	Video Support in sysfs
	Video Nodes
	Multi-Format Codec
	Programming Video4Linux
	Connecting Video Cameras
	ARTIK 5 - S5K6B2 Camera
	ARTIK 10 - S5K3L2 Camera
	ARTIK 10 - S5K5EA Camera

	Recommended MIPI Camera
	MIPI Camera Interfaces
	USB-Attached Cameras

	Image Capture Tool (fswebcam)
	Video Conversion Tool (ffmpeg)
	Media Streaming Server (ffserver)
	Video Processing Toolkit (gstreamer)
	AXT Connections
	Summary

	Chapter 24: Conclusions and Next Steps
	Forensic Inspection
	Reverse Engineering
	Validating With Multiple Sources
	Coping with Undocumented Features
	Defensive Coding Strategies
	Looking Over the Horizon
	Porting Projects from Other Architectures
	Hardware and Tools
	Creating a Bare-Bones Breakout Board
	Servo-Controlled Camera
	Sample Source Code and Illustrations
	How to Get More Help and Support
	My Challenge to You

	Bibliography
	Index

