
M A N N I N G

John Resig
Bear Bibeault

Josip Maras

SECOND EDITION

www.allitebooks.com

http://www.allitebooks.org


ES6 cheat sheet

Template literals embed expressions into strings: `${ninja}`.

Function parameters:

■ Rest parameters create an array from arguments that weren’t matched to parameters:

function multiMax(first, ...remaining){ /*...*/}multiMax(2, 3, 4, 5); //first: 2; 
remaining: [3, 4, 5]

■ Default parameters specify default parameter values that are used if no value is supplied dur-
ing invocation:

function do(ninja, action = "skulk"){ return ninja + " " + action;}
do("Fuma"); //"Fuma skulk"

Arrow functions let us create functions with less syntactic clutter. They don’t have their own
this parameter. Instead, they inherit it from the context in which they were created:

const values = [0, 3, 2, 5, 7, 4, 8, 1];
values.sort((v1,v2) => v1  - v2); /*OR*/ values.sort((v1,v2) => { return v1  - v2;});
value.forEach(value => console.log(value));

Promises are placeholders for the result of a computation. A promise is a guarantee that even-
tually we’ll know the result of some computation. The promise can either succeed or fail, and
once it has done so, there will be no more changes:

■ Create a new promise with new Promise((resolve, reject) => {});.
■ Call the resolve function to explicitly resolve a promise. Call the reject function to

explicitly reject a promise. A promise is implicitly rejected if an error occurs.
■ The promise object has a then method that returns a promise and takes in two callbacks, a

success callback and a failure callback:

myPromise.then(val => console.log("Success"), err => console.log("Error"));

■ Chain in a catch method to catch promise failures: myPromise.catch(e => alert(e));.

(continued on inside back cover)

Block-scoped variables:

■ Use the new let keyword to create block-level variables: let ninja = "Yoshi".
■ Use the new const keyword to create block-level constant variables whose value can’t be

reassigned to a completely new value: const ninja = "Yoshi".

Spread operators expand an expression where multiple items are needed: [...items, 3, 4, 5].

Generators generate sequences of values on a per-request basis. Once a value is generated, the
generator suspends its execution without blocking. Use yield to generate values:

function *IdGenerator(){
  let id = 0;
  while(true){ yield ++id; }
}

www.allitebooks.com

http://www.allitebooks.org


Praise for the First Edition

Finally, from a master, a book that delivers what an aspiring JavaScript developer
requires to learn the art of crafting effective cross-browser JavaScript.

—Glenn Stokol, Senior Principal Curriculum Developer,
Oracle Corporation

Consistent with the jQuery motto, “Write less, do more.”
—André Roberge, Université Saint-Anne

Interesting and original techniques.
—Scott Sauyet, Four Winds Software

Read this book, and you’ll no longer blindly plug in a snippet of code and marvel at
how it works—you’ll understand “why” it works.

—Joe Litton, Collaborative Software Developer, JoeLitton.net

Will help you raise your JavaScript to the realm of the masters.
—Christopher Haupt, greenstack.com

The stuff ninjas need to know.
—Chad Davis, author of Struts 2 in Action

Required reading for any JavaScript Master.
—John J. Ryan III, Princigration LLC

This book is a must-have for any serious JS coder. Your knowledge of the language
will dramatically expand.

—S., Amazon reader

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Secrets of the JavaScript Ninja,
Second Edition

JOHN RESIG
BEAR BIBEAULT

and JOSIP MARAS

M A N N I N G
Shelter Island

www.allitebooks.com

http://www.allitebooks.org


For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are 
printed on paper that is at least 15 percent recycled and processed without the use of elemental 
chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor: Gregor Zurowski
PO Box 761 Review editor: Ozren Harlovic 
Shelter Island, NY 11964 Project editor: Tiffany Taylor

Copy editor: Sharon Wilkey
Proofreader: Alyson Brener

Technical proofreaders: Mathias Bynens,
Jon Borgman

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617292859
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.allitebooks.com

http://www.allitebooks.org


v

contents
author’s introduction xi
acknowledgments xiii
about this book xv
about the cover illustration xxi

PART 1 WARMING UP .........................................................1

1 JavaScript is everywhere 3
1.1 Understanding the JavaScript language 4

How will JavaScript evolve? 6 ■ Transpilers give us access to 
tomorrow’s JavaScript today 6

1.2 Understanding the browser 7

1.3 Using current best practices 8
Debugging 9 ■ Testing 9 ■ Performance analysis 10

1.4 Boosting skill transferability 10

1.5 Summary 11

2 Building the page at runtime 13
2.1 The lifecycle overview 14

www.allitebooks.com

http://www.allitebooks.org


CONTENTSvi

2.2 The page-building phase 17
Parsing the HTML and building the DOM 18 ■ Executing 
JavaScript code 20

2.3 Event handling 23
Event-handling overview 24 ■ Registering event handlers 25
Handling events 27

2.4 Summary 29

2.5 Exercises 29

PART 2 UNDERSTANDING FUNCTIONS ..................................31

3 First-class functions for the novice: definitions and arguments 33
3.1 What’s with the functional difference? 34

Functions as first-class objects 35 ■ Callback functions 36

3.2 Fun with functions as objects 40
Storing functions 40 ■ Self-memoizing functions 42

3.3 Defining functions 44
Function declarations and function expressions 45 ■ Arrow 
functions 50

3.4 Arguments and function parameters 52
Rest parameters 54 ■ Default parameters 55

3.5 Summary 58

3.6 Exercises 59

4 Functions for the journeyman: understanding function 
invocation 61

4.1 Using implicit function parameters 62
The arguments parameter 62 ■ The this parameter: introducing 
the function context 67

4.2 Invoking functions 67
Invocation as a function 68 ■ Invocation as a method 69
Invocation as a constructor 72 ■ Invocation with the apply and 
call methods 77

4.3 Fixing the problem of function contexts 83
Using arrow functions to get around function contexts 83
Using the bind method 86

www.allitebooks.com

http://www.allitebooks.org


CONTENTS vii

4.4 Summary 88

4.5 Exercises 88

5 Functions for the master: closures and scopes 91
5.1 Understanding closures 92

5.2 Putting closures to work 95
Mimicking private variables 95 ■ Using closures with 
callbacks 96

5.3 Tracking code execution with execution contexts 99

5.4 Keeping track of identifiers with lexical environments 103
Code nesting 103 ■ Code nesting and lexical environments 104

5.5 Understanding types of JavaScript variables 106
Variable mutability 107 ■ Variable definition keywords and lexical 
environments 109 ■ Registering identifiers within lexical 
environments 113

5.6 Exploring how closures work 117
Revisiting mimicking private variables with closures 117 ■ Private 
variables caveat 121 ■ Revisiting the closures and callbacks 
example 122

5.7 Summary 124

5.8 Exercises 124

6 Functions for the future: generators and promises 126
6.1 Making our async code elegant with generators and 

promises 127

6.2 Working with generator functions 129
Controlling the generator through the iterator object 130 ■ Using 
generators 133 ■ Communicating with a generator 136
Exploring generators under the hood 139

6.3 Working with promises 146
Understanding the problems with simple callbacks 147 ■ Diving 
into promises 149 ■ Rejecting promises 152 ■ Creating our first 
real-world promise 154 ■ Chaining promises 155
Waiting for a number of promises 156

6.4 Combining generators and promises 158
Looking forward—the async function 161

6.5 Summary 162
6.6 Exercises 163

www.allitebooks.com

http://www.allitebooks.org


CONTENTSviii

PART 3 DIGGING INTO OBJECTS AND FORTIFYING 
YOUR CODE .....................................................165

7 Object orientation with prototypes 167
7.1 Understanding prototypes 168

7.2 Object construction and prototypes 171
Instance properties 173 ■ Side effects of the dynamic nature of 
JavaScript 176 ■ Object typing via constructors 179

7.3 Achieving inheritance 181
The problem of overriding the constructor property 184 ■ The 
instanceof operator 187

7.4 Using JavaScript “classes” in ES6 190
Using the class keyword 190 ■ Implementing inheritance 193

7.5 Summary 195

7.6 Exercises 196

8 Controlling access to objects 199
8.1 Controlling access to properties with getters and setters 200

Defining getters and setters 202 ■ Using getters and setters to 
validate property values 207 ■ Using getters and setters to define 
computed properties 208

8.2 Using proxies to control access 210
Using proxies for logging 214 ■ Using proxies for measuring 
performance 215 ■ Using proxies to autopopulate properties 217
Using proxies to implement negative array indexes 218
Performance costs of proxies 220

8.3 Summary 221

8.4 Exercises 222

9 Dealing with collections 224
9.1 Arrays 225

Creating arrays 225 ■ Adding and removing items at either end of 
an array 227 ■ Adding and removing items at any array 
location 230 ■ Common operations on arrays 232 ■ Reusing 
built-in array functions 242

9.2 Maps 244
Don’t use objects as maps 245 ■ Creating our first map 247
Iterating over maps 250

www.allitebooks.com

http://www.allitebooks.org


CONTENTS ix

9.3 Sets 251
Creating our first set 252 ■ Union of sets 253 ■ Intersection of 
sets 255 ■ Difference of sets 255

9.4 Summary 256

9.5 Exercises 256

10 Wrangling regular expressions 259
10.1 Why regular expressions rock 260

10.2 A regular expression refresher 261
Regular expressions explained 261 ■ Terms and operators 263

10.3 Compiling regular expressions 267

10.4 Capturing matching segments 269
Performing simple captures 269 ■ Matching using global 
expressions 271 ■ Referencing captures 272 ■ Noncapturing 
groups 273

10.5 Replacing using functions 274

10.6 Solving common problems with regular expressions 276
Matching newlines 277 ■ Matching Unicode 277 ■ Matching 
escaped characters 278

10.7 Summary 279

10.8 Exercises 280

11 Code modularization techniques 282
11.1 Modularizing code in pre-ES6 JavaScript 283

Using objects, closures, and immediate functions to specify modules 284
Modularizing JavaScript applications with AMD and CommonJS 290

11.2 ES6 modules 294
Exporting and importing functionality 294

11.3 Summary 300

11.4 Exercises 301

PART 4 BROWSER RECONNAISSANCE ..................................303

12 Working the DOM 305
12.1 Injecting HTML into the DOM 306

Converting HTML to DOM 307 ■ Inserting elements into the 
document 311



CONTENTSx

12.2 Using DOM attributes and properties 313

12.3 Styling attribute headaches 315
Where are my styles? 315 ■ Style property naming 318
Fetching computed styles 319 ■ Converting pixel values 322
Measuring heights and widths 323

12.4 Minimizing layout thrashing 327

12.5 Summary 330

12.6 Exercises 330

13 Surviving events 332
13.1 Diving into the event loop 333

An example with only macrotasks 336 ■ An example with both 
macro- and microtasks 339

13.2 Taming timers: time-outs and intervals 344
Timer execution within the event loop 345 ■ Dealing with 
computationally expensive processing 350

13.3 Working with events 353
Propagating events through the DOM 354 ■ Custom events 360

13.4 Summary 364

13.5 Exercises 364

14 Developing cross-browser strategies 367
14.1 Cross-browser considerations 368

14.2 The five major development concerns 370
Browser bugs and differences 371 ■ Browser bug fixes 371
External code and markup 373 ■ Regressions 376

14.3 Implementation strategies 378
Safe cross-browser fixes 378 ■ Feature detection and polyfills 379
Untestable browser issues 381

14.4 Reducing assumptions 383

14.5 Summary 384

14.6 Exercises 385

appendix A Additional ES6 features 387
appendix B Arming with testing and debugging 392
appendix C Exercise answers 411

index 433



xi

author’s introduction
It’s incredible to think of how much the world of JavaScript has changed since I first
started writing Secrets of the JavaScript Ninja back in 2008. The world in which we write
JavaScript now, while still being largely centered around the browser, is nearly
unrecognizable.

 The popularity of JavaScript as a full-featured, cross-platform language has
exploded. Node.js is a formidable platform against which countless production appli-
cations are developed. Developers are actually writing applications in one language—
JavaScript—that are capable of running in a browser, on a server, and even in a native
app on a mobile device.

 It’s more important now, than ever before, that a developer’s knowledge of the
JavaScript language be at its absolute peak. Having a fundamental understanding of
the language and the ways in which it can be best written will allow you to create appli-
cations that can work on virtually any platform, which is a claim that few other lan-
guages can legitimately boast.

 Unlike previous eras in the growth of JavaScript, there hasn’t been equal growth in
platform incompatibilities. It used to be that you would salivate over the thought of
using the most basic new browser features and yet be stymied by outdated browsers that
had far too much market share. We’ve entered a harmonious time in which most users
are on rapidly updated browsers that compete to be the most standards-compliant
platform around. Browser vendors even go out of their way to develop features
specifically targeted at developers, hoping to make their lives easier.



AUTHOR’S INTRODUCTIONxii

 The tools that we have now, provided by browsers and the open source community,
are light years ahead of old practices. We have a plethora of testing frameworks to
choose from, the ability to do continuous integration testing, generate code-coverage
reports, performance-test on real mobile devices around the globe, and even automat-
ically load up virtual browsers on any platform to test from.

 The first edition of the book benefited tremendously from the development insight
that Bear Bibeault provided. This edition has received substantial help from Josip
Maras to explore the concepts behind ECMAScript 6 and 7, dive into testing best prac-
tices, and understand the techniques employed by popular JavaScript frameworks.

 All of this is a long way of saying: how we write JavaScript has changed substantially.
Fortunately, this book is here to help you keep on top of the current best practices. Not
only that, but it’ll help you improve how you think about your development practices
as a whole to ensure that you’ll be ready for writing JavaScript well into the future.

 JOHN RESIG



xiii

acknowledgments
The number of people involved in writing a book would surprise most people. It took
a collaborative effort on the part of many contributors with a variety of talents to bring
the volume you are holding (or ebook that you are reading onscreen) to fruition.

 The staff at Manning worked tirelessly with us to make sure this book attained the
level of quality we hoped for, and we thank them for their efforts. Without them, this
book would not have been possible. The “end credits” for this book include not only
our publisher, Marjan Bace, and editor Dan Maharry, but also the following contribu-
tors: Ozren Harlovic, Gregor Zurowski, Kevin Sullivan, Janet Vail, Tiffany Taylor, Sha-
ron Wilkey, Alyson Brener, and Gordan Salinovic.

 Enough cannot be said to thank our peer reviewers who helped mold the final form
of the book, from catching simple typos to correcting errors in terminology and code,
and helping to organize the chapters in the book. Each pass through a review cycle ended
up vastly improving the final product. For taking the time to review the book, we’d like
to thank Jacob Andresen, Tidjani Belmansour, Francesco Bianchi, Matthew Halverson,
Becky Huett, Daniel Lamb, Michael Lund, Kariem Ali Elkoush, Elyse Kolker Gordon,
Christopher Haupt, Mike Hatfield, Gerd Klevesaat, Alex Lucas, Arun Noronha, Adam
Scheller, David Starkey, and Gregor Zurowski. 

 Special thanks go to Mathias Bynens and Jon Borgman, who served as the book’s
technical proofreaders. In addition to checking each and every sample of example
code in multiple environments, they also offered invaluable contributions to the tech-
nical accuracy of the text, located information that was originally missing, and kept
abreast of the rapid changes to JavaScript and HTML5 support in the browsers.



ACKNOWLEDGMENTSxiv

John Resig
I would like to thank my parents for their constant support and encouragement over
the years. They provided me with the resources and tools that I needed to spark my
initial interest in programming—and they have been encouraging me ever since.

Bear Bibeault
The cast of characters I’d like to thank for this seventh go-around has a long list of
“usual suspects,” including, once again, the membership and staff at coderanch.com
(formerly JavaRanch). Without my involvement in CodeRanch, I’d never have gotten
the opportunity to begin writing in the first place, and so I sincerely thank Paul
Wheaton and Kathy Sierra for starting the whole thing, as well as fellow staffers who
gave me encouragement and support, including (but certainly not limited to) Eric
Pascarello, Ernest Friedman-Hill, Andrew Monkhouse, Jeanne Boyarsky, Bert Bates,
and Max Habibi.

 My husband, Jay, and my dogs, Little Bear and Cozmo, get the usual warm thanks
for putting up with the shadowy presence who shared their home and rarely looked
up from his keyboard except to curse Word, the browsers, my fat-fingered lack of typ-
ing skills, or anything else that attracted my ire while I was working on this project.

 And finally, I’d like to thank my coauthors, John Resig and Josip Maras, without
whom this project would not exist. 

Josip Maras
The biggest thanks go to my wife, Josipa, for putting up with all the hours that went
into writing this book. 

 I would also like to thank Maja Stula, Darko Stipanicev, Ivica Crnkovic, Jan Carlson,
and Bert Bates: all of them for guidance and useful advice, and some of them for
being lenient on my “day job” assignments as book deadlines were approaching.

 Finally, I would like to thank the rest of my family—Jere, two Marijas, Vitomir, and
Zdenka—for always being there for me.



xv

about this book
JavaScript is important. That wasn’t always so, but it’s true now. JavaScript has become
one of the most important and most widely used programming languages today.

 Web applications are expected to give users a rich user interface experience, and
without JavaScript, you might as well just be showing pictures of kittens. More than
ever, web developers need to have a sound grasp of the language that brings life to
web applications.

 And like orange juice and breakfast, JavaScript isn’t just for browsers anymore. The
language has long ago knocked down the walls of the browser and is being used on
the server thanks to Node.js, on desktop devices and mobiles through platforms such
as Apache Cordova, and even on embedded devices with Espruino and Tessel.

 Although this book is primarily focused on JavaScript executed in the browser, the
fundamentals of the language presented in this book are applicable across the board.
Truly understanding the concepts and learning various tips and tricks will make you a
better all-around JavaScript developer.

 With more and more developers using JavaScript in an increasingly JavaScript
world, it’s more important than ever to grasp its fundamentals so you can become an
expert ninja of the language.

Audience
If you aren’t at all familiar with JavaScript, this probably shouldn’t be your first book.
Even if it is, don’t worry too much; we try to present fundamental JavaScript concepts
in a way that should be understandable even for relative beginners. But, to be honest,



ABOUT THIS BOOKxvi

this book will probably best fit people who already know some JavaScript and who wish
to deepen their understanding of JavaScript as a language, as well as the browser as
the environment in which JavaScript code is executed. 

Roadmap
This book is organized to take you from an apprentice to a ninja in four parts.

 Part 1 introduces the topic and sets the stage so that you can easily progress
through the rest of the book:

■ Chapter 1 introduces JavaScript the language and its most important features,
while suggesting current best practices we should follow when developing appli-
cations, including testing and performance analysis.

■ Because our exploration of JavaScript is made in the context of browsers, in
chapter 2 we’ll set the stage by introducing the lifecycle of client-side web appli-
cations. That will help us understand JavaScript’s role in the process of develop-
ing web applications.

Part 2 focuses on one of the pillars of JavaScript: functions. We’ll study why functions
are so important in JavaScript, the different kinds of functions, as well as the nitty-
gritty details of defining and invoking functions. We’ll put a special focus on a new
type of function—generator functions—which are especially helpful when dealing
with asynchronous code:

■ Chapter 3 begins our foray into the fundamentals of the language, starting, per-
haps to your surprise, with a thorough examination of the function as defined by
JavaScript. Although you may have expected the object to be the target of our
first focus, a solid understanding of the function, and JavaScript as a functional
language, begins our transformation from run-of-the-mill JavaScript coders to
JavaScript ninjas!

■ We continue this functional thread in chapter 4, by exploring the exact mecha-
nism of invoking functions, as well as the ins and outs of implicit function
parameters. 

■ Not being done with functions quite yet, in chapter 5 we take our discussion to
the next level by studying two closely related concepts: scopes and closures. A key
concept in functional programming, closures allow us to exert fine-grained
control over the scope of objects that we declare and create in our programs.
The control of these scopes is the key factor in writing code worthy of a ninja.
Even if you stop reading after this chapter (but we hope you don’t), you’ll be a
far better JavaScript developer than when you started.

■ We conclude our exploration of functions in chapter 6, by taking a look at a
completely new type of function (generator functions) and a new type of object
(promises) that help us deal with asynchronous values. We’ll also show you how
to combine generators and promises to achieve elegance when dealing with
asynchronous code.



ABOUT THIS BOOK xvii

Part 3 deals with the second pillar of JavaScript: objects. We’ll thoroughly explore
object orientation in JavaScript, and we’ll study how to guard access to objects and
how to deal with collections and regular expressions:

■ Objects are finally addressed in chapter 7, where we learn exactly how
JavaScript’s slightly strange flavor of object orientation works. We’ll also intro-
duce a new addition to JavaScript: classes, which, deep under the hood, may not
be exactly what you expect.

■ We’ll continue our exploration of objects in chapter 8, where we’ll study differ-
ent techniques for guarding access to our objects.

■ In chapter 9, we’ll put a special focus on different types of collections that exist
in JavaScript; on arrays, which have been a part of JavaScript since its begin-
nings; and on maps and sets, which are recent addition to JavaScript.

■ Chapter 10 focuses on regular expressions, an often-overlooked feature of the
language that can do the work of scores of lines of code when used correctly.
We’ll learn how to construct and use regular expressions and how to solve some
recurring problems elegantly, using regular expressions and the methods that
work with them.

■ In chapter 11, we’ll learn different techniques for organizing our code into
modules: smaller, relatively loosely coupled segments that improve the struc-
ture and organization of our code. 

Finally, part 4 wraps up the book by studying how JavaScript interacts with our web
pages and how events are processed by the browser. We’ll finish the book by looking at
an important topic, cross-browser development:

■ Chapter 12 explores how we can dynamically modify our pages through DOM-
manipulation APIs, and how we can handle element attributes, properties, and
styles, as well as some important performance considerations.

■ Chapter 13 discusses the importance of JavaScript’s single-threaded execution
model and the consequences this model has on the event loop. We’ll also learn
how timers and intervals work and how we can use them to improve the per-
ceived performance of our web applications.

■ Chapter 14 concludes the book by examining the five key development con-
cerns with regard to these cross-browser issues: browser differences, bugs and
bug fixes, external code and markup, missing features, and regressions. Strate-
gies such as feature simulation and object detection are discussed at length to
help us deal with these cross-browser challenges.

Code conventions
All source code in listings or in the text is in a fixed-width font like this to separate
it from ordinary text. Method and function names, properties, XML elements, and
attributes in the text are also presented in this same font.



ABOUT THIS BOOKxviii

 In some cases, the original source code has been reformatted to fit on the pages.
In general, the original code was written with page-width limitations in mind, but
sometimes you may find a slight formatting difference between the code in the book
and that provided in the source download. In a few rare cases, where long lines could
not be reformatted without changing their meaning, the book listings contain line-
continuation markers.

 Code annotations accompany many of the listings; these highlight important
concepts.

Code downloads
Source code for all the working examples in this book (along with some extras that
never made it into the text) is available for download from the book’s web page at
https://manning.com/books/secrets-of-the-javascript-ninja-second-edition.

 The code examples for this book are organized by chapter, with separate folders
for each chapter. The layout is ready to be served by a local web server, such as the
Apache HTTP Server. Unzip the downloaded code into a folder of your choice, and
make that folder the document root of the application.

 With a few exceptions, most of the examples don’t require the presence of a web
server and can be loaded directly into a browser for execution, if you so desire.

Author Online
The authors and Manning Publications invite you to the book’s forum, run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and other users. To access and subscribe to
the forum, point your browser to https://manning.com/books/secrets-of-the-
javascript-ninja-second-edition and click the Author Online link. This page provides
information on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

https://manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://manning.com/books/secrets-of-the-javascript-ninja-second-edition


ABOUT THIS BOOK xix

About the authors
John Resig is a staff engineer at Khan Academy and the creator of
the jQuery JavaScript library. In addition to the first edition of
Secrets of the JavaScript Ninja, he’s also the author of the book Pro
JavaScript Techniques.
 John has developed a comprehensive Japanese woodblock print
database and image search engine: Ukiyo-e.org. He’s a board
member of the Japanese Art Society of America and is a Visiting

Researcher at Ritsumeikan University working on the study of Ukiyo-e.
 John is located in Brooklyn, NY.

Bear Bibeault has been writing software for well over three
decades, starting with a Tic-Tac-Toe program written on a Control
Data Cyber supercomputer via a 100-baud teletype. Having two
degrees in electrical engineering, Bear should be designing anten-
nas or something like that, but since his first job with Digital
Equipment Corporation, he has always been much more fasci-
nated with programming.

 Bear has also served stints with companies such as Dragon Systems, Works.com,
Spredfast, Logitech, Caringo, and more than a handful of others. Bear even served in
the U.S. military, leading and training a platoon of anti-tank infantry soldiers—skills
that come in handy during scrum meetings. “That’s Sergeant Bear to you, trainee!”

 Bear is currently a senior front-end developer for a leading provider of object stor-
age software that provides massive storage scalability and content protection.

 In addition to the first edition of this book, Bear is also the author of a number of
other Manning books, including jQuery in Action (first, second, and third editions),
Ajax in Practice, and Prototype and Scriptaculous in Action; and he has been a technical
reviewer for many of the web-focused “Head First” books by O’Reilly Publishing, such
as Head First Ajax, Head Rush Ajax, and Head First Servlets and JSP.

 In addition to his day job, Bear also writes books (duh!), runs a small business that
creates web applications and offers other media services (but not wedding videogra-
phy—never, ever wedding videography), and helps out at CodeRanch.com as a “mar-
shal” (uber moderator).

 When not planted in front of a computer, Bear likes to cook big food (which
accounts for his jeans size), dabble in photography and video, ride his Yamaha V-Star,
and wear tropical print shirts.

 He works and resides in Austin, Texas, a city he loves, except for the completely
insane traffic and drivers.

https://ukiyo-e.org/
http://CodeRanch.com


ABOUT THIS BOOKxx

Josip Maras is a post-doctoral researcher in the faculty of electrical
engineering, mechanical engineering, and naval architecture, Uni-
versity of Split, Croatia. He has a PhD in software engineering, with
the thesis “Automating Reuse in Web Application Development,”
which among other things included implementing a JavaScript
interpreter in JavaScript. During his research, he has published
more than a dozen scientific conference and journal papers, mostly
dealing with program analysis of client-side web applications. 

 When not doing research, Josip spends his time teaching web development, sys-
tems analysis and design, and Windows development (a couple hundred students over
the last six years). He also owns a small software development business. 

 In his spare time, Josip enjoys reading, long runs, and, if the weather allows, swim-
ming in the Adriatic.



xxi

about the cover illustration
The figure on the cover of Secrets of the JavaScript Ninja, Second Edition is captioned
“Noh Actor, Samurai,” from a woodblock print by an unknown Japanese artist of the
mid-19th century. Derived from the Japanese word for talent or skill, Noh is a form of
classical Japanese musical drama that has been performed since the 14th century.
Many characters are masked, with men playing male and female roles. The samurai, a
hero figure in Japan for hundreds of years, was often featured in the performances,
and in this print the artist renders with great skill the beauty of the costume and the
ferocity of the samurai.

 Samurai and ninjas were both warriors excelling in the Japanese art of war, known
for their bravery and cunning. Samurai were elite soldiers, well-educated men who
knew how to read and write as well as fight, and they were bound by a strict code of
honor called Bushido (The Way of the Warrior), which was passed down orally from
generation to generation, starting in the 10th century. Recruited from the aristocracy
and upper classes, analogous to European knights, samurai went into battle in large
formations, wearing elaborate armor and colorful dress meant to impress and intimi-
date. Ninjas were chosen for their martial arts skills rather than their social standing
or education. Dressed in black and with their faces covered, they were sent on mis-
sions alone or in small groups to attack the enemy with subterfuge and stealth, using
any tactics to assure success; their only code was one of secrecy.

 The cover illustration is from a set of three Japanese prints owned for many years by
a Manning editor, and when we were looking for a ninja for the cover of this book, the



ABOUT THE COVER ILLUSTRATIONxxii

striking samurai print came to our attention and was selected for its intricate details,
vibrant colors, and vivid depiction of a ferocious warrior ready to strike—and win.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on two-hundred-year-old illustrations that depict the rich diversity of traditional
costumes from around the world, brought back to life by prints such as this one.



Part 1

Warming up

This part of the book will set the stage for your JavaScript ninja training. In
chapter 1, we’ll look at the current state of JavaScript and explore some of the
environments in which JavaScript code can be executed. We’ll put a special
focus on the environment where it all began—the browser—and we’ll discuss
some of the best practices when developing JavaScript applications. 

 Because our exploration of JavaScript will be done in the context of brows-
ers, in chapter 2 we’ll teach you about the lifecycle of client-side web applica-
tions and how executing JavaScript code fits into this lifecycle.

 When you’re finished with this part of the book, you’ll be ready to embark on
your training as a JavaScript ninja!





3

JavaScript is everywhere

Let’s talk about Bob. After spending a few years learning how to create desktop appli-
cations in C++, he graduated as a software developer in the early 2000s and then went
out into the wide world. At that point, the web had just hit its stride, and everybody
wanted to be the next Amazon. So the first thing he did was learn web development. 

 He learned some PHP so that he could dynamically generate web pages, which
he usually sprinkled with JavaScript in order to achieve complex functionality such
as form validation and even dynamic on-page clocks! Fast-forward a couple of years,
and smartphones had become a thing, so anticipating a large new market opening
up, Bob went ahead and learned Objective-C and Java to develop mobile apps that
run on iOS and Android. 

 Over the years, Bob has created many successful applications that all have to be
maintained and extended. Unfortunately, jumping daily between all these different
programming languages and application frameworks has really started to wear
down poor Bob. 

This chapter covers
■ The core language features of JavaScript
■ The core items of a JavaScript engine
■ Three best practices in JavaScript development



4 CHAPTER 1 JavaScript is everywhere

 Now let’s talk about Ann.Two years ago, Ann graduated with a degree in software
development, specializing in web- and cloud-based applications. She has created a few
medium-sized web applications based on modern Model–view–controller (MVC)
frameworks, along with accompanying mobile applications that run on iOS and
Android. She has created a desktop application that runs on Linux, Windows, and OS
X, and has even started building a serverless version of that application entirely based
in the cloud. And everything she has done has been written in JavaScript.

 That’s extraordinary! What took Bob 10 years and 5 languages to do, Ann has
achieved in 2 years and in just one language. Throughout the history of computing, it
has been rare for a particular knowledge set to be so easily transferable and useful
across so many different domains.

 What started as a humble 10-day project back in 1995 is now one of the most widely
used programming languages in the world. JavaScript is quite literally everywhere,
thanks to more-powerful JavaScript engines and the introduction of frameworks such
as Node, Apache Cordova, Ionic, and Electron, which have taken the language
beyond the humble web page. And, like HTML, the language itself is now getting long
overdue upgrades intended to make JavaScript even more suitable for modern appli-
cation development.

 In this book, we’re going to make sure you know all you need to know about
JavaScript so that, whether you’re like Ann or like Bob, you can develop all sorts of
applications on a green field or a brown field.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What are Babel and Traceur, and why are they important
to today’s JavaScript developers?

What are the core parts of any web browser’s JavaScript
API used by web applications?

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 Understanding the JavaScript language
As they advance through their careers, many JavaScript coders like Bob and Ann
reach the point where they’re actively using the vast number of elements that form
the language. In many cases, however, those skills may not be taken beyond funda-
mental levels. Our guess is that this is often because JavaScript, using a C-like syntax,
bears a surface resemblance to other widespread C-like languages (such as C# and
Java), and thus leaves the impression of familiarity. 

 People often feel that if they know C# or Java, they already have a pretty solid
understanding of how JavaScript works. But it’s a trap! When compared to other
mainstream languages, JavaScript is much more functionally oriented. Some JavaScript
concepts differ fundamentally from those of most other languages.

Do you know? 



5Understanding the JavaScript language

 These differences include the following:

■ Functions are first-class objects—In JavaScript, functions coexist with, and can be
treated like, any other JavaScript object. They can be created through literals,
referenced by variables, passed around as function arguments, and even
returned as function return values. We devote much of chapter 3 to exploring
some of the wonderful benefits that functions as first-class objects bring to our
JavaScript code.

■ Function closures—The concept of function closures is generally poorly under-
stood, but at the same time it fundamentally and irrevocably exemplifies the
importance of functions to JavaScript. For now, it’s enough to know that a func-
tion is a closure when it actively maintains (“closes over”) the external variables used in
its body. Don’t worry for now if you don’t see the many benefits of closures; we’ll
make sure all is crystal clear in chapter 5. In addition to closures, we’ll thor-
oughly explore the many aspects of functions themselves in chapters 3 and 4, as
well as identifier scopes in chapter 5. 

■ Scopes—Until recently, JavaScript didn’t have block-level variables (as in other
C-like languages); instead, we had to rely only on global variables and function-
level variables.

■ Prototype-based object orientation—Unlike other mainstream programming lan-
guages (such as C#, Java, and Ruby), which use class-based object orientation,
JavaScript uses prototypes. Often, when developers come to JavaScript from
class-based languages (such as Java), they try to use JavaScript as if it were Java,
essentially writing Java’s class-based code using the syntax of JavaScript. Then,
for some reason, they’re surprised when the results differ from what they
expect. This is why we’ll go deep into prototypes, how prototype-based object-
orientation works, and how it’s implemented in JavaScript.

JavaScript consists of a close relationship between objects and prototypes, and func-
tions and closures. Understanding the strong relationships between these concepts can
vastly improve your JavaScript programming ability, giving you a strong foundation for
any type of application development, regardless of whether your JavaScript code will be
executed in a web page, in a desktop app, in a mobile app, or on the server.

 In addition to these fundamental concepts, other JavaScript features can help you
write more elegant and more efficient code. Some of these are features that seasoned
developers like Bob will recognize from other languages, such as Java and C++. In par-
ticular, we focus on the following:

■ Generators, which are functions that can generate multiple values on a per-
request basis and can suspend their execution between requests

■ Promises, which give us better control over asynchronous code
■ Proxies, which allow us to control access to certain objects
■ Advanced array methods, which make array-handling code much more elegant



6 CHAPTER 1 JavaScript is everywhere

■ Maps, which we can use to create dictionary collections; and sets, which allow us
to deal with collections of unique items

■ Regular expressions, which let us simplify what would otherwise be complicated
pieces of code

■ Modules, which we can use to break code into smaller, relatively self-contained
pieces that make projects more manageable

Having a deep understanding of the fundamentals and learning how to use
advanced language features to their best advantage can elevate your code to higher
levels. Honing your skills to tie these concepts and features together will give you a
level of understanding that puts the creation of any type of JavaScript application
within your reach.

1.1.1 How will JavaScript evolve?

The ECMAScript committee, in charge of standardizing the language, has just finished
the ES7/ES2016 version of JavaScript. The ES7 version is a relatively small upgrade to
JavaScript (at least, when compared to ES6), because the committee’s goal going for-
ward is to focus on smaller, yearly incremental changes to the language.

 In this book we thoroughly explore ES6 but also focus on ES7 features, such as the
new async function, which will help you deal with asynchronous code (discussed in
chapter 6).

Yearly incremental updates to the language specification are excellent news, but this
doesn’t mean that web developers will instantly have access to the new features after
the specification has been released. JavaScript code has to be executed by a Java-
Script engine, so we’re often left waiting impatiently for updates to our favorite
JavaScript engines that incorporate these new and exciting features. 

 Unfortunately, although the JavaScript engine developers are trying to keep up
and are doing better all the time, there’s always a chance that you’ll run into features
that you are dying to use but that are yet to be supported.

 Luckily, you can keep up with the state of feature support in the various browsers via
the lists at https://kangax.github.io/compat-table/es6/,  http://kangax.github.io/
compat-table/es2016plus/, and https://kangax.github.io/compat-table/esnext/.

1.1.2 Transpilers give us access to tomorrow’s JavaScript today

Because of the rapid release cycles of browsers, we usually don’t have to wait long for a
JavaScript feature to be supported. But what happens if we want to take advantage of

NOTE When we cover features of JavaScript defined in
ES6/ES2015 or ES7/ES2016, you’ll see these icons alongside
a link to information about whether they’re supported by
your browser.

www.allitebooks.com

https://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es2016plus/
http://kangax.github.io/compat-table/es2016plus/
https://kangax.github.io/compat-table/esnext/
http://www.allitebooks.org


7Understanding the browser

all the benefits of the newest JavaScript features but are taken hostage by a harsh real-
ity: The users of our web applications may still be using older browsers?

 One answer to this problem is to use transpilers (“transformation + compiling”),
tools that take cutting-edge JavaScript code and transform it into equivalent (or, if
that’s not possible, similar) code that works properly in most current browsers. 

 Today’s most popular transpilers are Traceur (https://github.com/google/
traceur-compiler) and Babel (https://babeljs.io/). Setting them up is easy; just follow
one of the tutorials, such as https://github.com/google/traceur-compiler/wiki/
Getting-Started or http://babeljs.io/docs/setup/.

 In this book, we put a special focus on running JavaScript code in the browser. To
effectively use the browser platform, you have to get your hands dirty and study the
inner workings of browsers. Let’s get started!

1.2 Understanding the browser
These days, JavaScript applications can be executed in many environments. But the
environment from which it all began, the environment from which all other environ-
ments have taken ideas, and the environment on which we’ll focus, is the browser. The
browser provides various concepts and APIs to thoroughly explore; see figure 1.1.

We’ll concentrate on the following:

■ The Document Object Model (DOM)—The DOM is a structured representation of
the UI of a client-side web application that is, at least initially, built from the
HTML code of a web application. To develop great applications, you need to not
only have a deep understanding of the core JavaScript mechanics, but also
study how the DOM is constructed (chapter 2) and how to write effective code
that manipulates the DOM (chapter 12). This will put the creation of advanced,
highly dynamic UIs at your fingertips.

Browser API

DOM Events Timers

JS

Browser infrastructure Node.js infrastructure

Node API

IO Events Timers

JSCSS HTML

Figure 1.1 Client-side web applications rely on the infrastructure provided by the brows-
er. We’ll particularly focus on the DOM, events, timers, and browser APIs.

https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://babeljs.io/
https://github.com/google/traceur-compiler/wiki/Getting-Started
https://github.com/google/traceur-compiler/wiki/Getting-Started
http://babeljs.io/docs/setup/


8 CHAPTER 1 JavaScript is everywhere

■ Events—A huge majority of JavaScript applications are event-driven applica-
tions, meaning that most of the code is executed in the context of a response
to a particular event. Examples of events include network events, timers, and
user-generated events such as clicks, mouse moves, keyboard presses, and so
on. For this reason, we’ll thoroughly explore the mechanisms behind events in
chapter 13. We’ll pay special attention to timers, which are frequently a mystery
but let us tackle complex coding tasks such as long-running computations and
smooth animations.

■ Browser API—To help us interact with the world, the browser offers an API that
allows us to access information about devices, store data locally, or communicate
with remote servers. We’ll explore some of these APIs throughout the book.

Perfecting your JavaScript programming skills and achieving deep understanding of
APIs offered by the browser will take you far. But sooner, rather than later, you’ll run
face first into the browsers and their various issues and inconsistencies. In a perfect
world, all browsers would be bug-free and would support web standards in a consistent
fashion; unfortunately, we don’t live in that world.

 The quality of browsers has improved greatly as of late, but they all still have some
bugs, missing APIs, and browser-specific quirks that we need to deal with. Developing a
comprehensive strategy for tackling these browser issues, and becoming intimately
familiar with their differences and quirks, can be almost as important as proficiency in
JavaScript itself.

 When we’re writing browser applications or JavaScript libraries to be used in them,
choosing which browsers to support is an important consideration. We’d like to sup-
port them all, but limitations on development and testing resources dictate otherwise.
For this reason, we’ll thoroughly explore strategies for cross-browser development in
chapter 14.

 Developing effective, cross-browser code can depend significantly on the skill and
experience of the developers. This book is intended to boost that skill level, so let’s get
to it by looking at current best practices.

1.3 Using current best practices
Mastery of the JavaScript language and a grasp of cross-browser coding issues are
important parts of becoming an expert web application developer, but they’re not the
complete picture. To enter the big leagues, you also need to exhibit the traits that
scores of previous developers have proven are beneficial to the development of quality
code. These traits are known as best practices, and in addition to mastery of the lan-
guage, they include such elements as

■ Debugging skills 
■ Testing
■ Performance analysis



9Using current best practices

It’s vitally important to adhere to these practices when coding, and we’ll use them
throughout the book. Let’s examine some of them next.

1.3.1 Debugging

Debugging JavaScript used to mean using alert to verify the value of variables. Fortu-
nately, the ability to debug JavaScript code has dramatically improved, in no small part
because of the popularity of the Firebug developer extension for Firefox. Similar tools
have been developed for all major browsers:

■ Firebug—The popular developer extension for Firefox that got the ball rolling
(http://getfirebug.com/)

■ Chrome DevTools—Developed by the Chrome team and used in Chrome and
Opera

■ Firefox Developer Tools—A tool included in Firefox, built by the Firefox team
■ F12 Developer Tools—Included in Internet Explorer and Microsoft Edge
■ WebKit Inspector—Used by Safari

As you can see, every major browser offers developer tools that we can use to debug
our web applications. The days of using JavaScript alerts for debugging are long gone!

 All of these tools are based on similar ideas, which were mostly introduced by Fire-
bug, so they offer similar functionality: exploring the DOM, debugging JavaScript,
editing CSS styles, tracking network events, and so on. Any of them will do a fine job;
use the one offered by your browser of choice, or in the browser in which you’re inves-
tigating bugs. 

 In addition, you can use some of them, such as Chrome Dev Tools, to debug other
kinds of applications, like Node.js apps. (We’ll introduce you to some debugging tech-
niques in appendix B.)

1.3.2 Testing

Throughout this book, we’ll apply testing techniques to ensure that the example code
operates as intended and to serve as examples of how to test code in general. The pri-
mary tool we’ll use for testing is an assert function, whose purpose is to assert that a
premise is either true or false. By specifying assertions, we can check whether the code
is behaving as expected.

 The general form of this function is as follows:

assert(condition, message);

The first parameter is a condition that should be true, and the second is a message
that will be displayed if it’s not.

 Consider this, for example:

assert(a === 1, "Disaster! a is not 1!");

http://getfirebug.com/


10 CHAPTER 1 JavaScript is everywhere

If the value of variable a isn’t equal to 1, the assertion fails, and the somewhat overly
dramatic message is displayed.

NOTE The assert function isn’t a standard feature of the language, so we’ll
implement it ourselves in appendix B.

1.3.3 Performance analysis

Another important practice is performance analysis. The JavaScript engines have
made astounding strides in the performance of JavaScript, but that’s no excuse for
writing sloppy and inefficient code. 

 We’ll use code such as the following later in this book to collect performance infor-
mation:

console.time("My operation");

for(var n = 0; n < maxCount; n++){         
  /*perform the operation to be measured*/ 
}                                          

console.timeEnd("My operation");

Here, we bracket the execution of the code to be measured with two calls to the time
and timeEnd methods of the built-in console object. 

 Before the operation begins executing, the call to console.time starts a timer with
a name (in this case, My operation). Then we run the code in the for loop a certain
number of times (in this case, maxCount times). Because a single operation of the
code happens much too quickly to measure reliably, we need to perform the code
many times to get a measurable value. Frequently, this count can be in the tens of
thousands, or even millions, depending on the nature of the code being measured.
A little trial and error lets us choose a reasonable value. 

 When the operation ends, we call the console.timeEnd method with the same
name. This causes the browser to output the time that elapsed since the timer was
started.

 These best-practice techniques, along with others you’ll learn along the way, will
greatly enhance your JavaScript development. Developing applications with the
restricted resources that a browser provides, coupled with the increasingly complex
world of browser capability and compatibility, requires a robust and complete set
of skills.

1.4 Boosting skill transferability
When Bob was first learning web development, each browser had its own way of inter-
preting script and UI styles, preaching that their way was the best way and making every
developer grind their teeth in frustration. Fortunately, the browser wars ended with
HTML, CSS, the DOM API, and JavaScript all being standardized, and developer focus
turning toward effective cross-browser JavaScript applications. Indeed, this focus on

Starts the timer

Performs 
the operation 
multiple times

Stops the timer



11Summary

treating websites as applications led to many ideas, tools, and techniques crossing over
from desktop applications to web applications. And now, that knowledge and tools
transfer has happened again as ideas, tools, and techniques that originated in client-
side web development have also permeated other application domains. 

 Achieving a deep understanding of fundamental JavaScript principles with the
knowledge of core APIs can therefore make you a more versatile developer. By using
the browsers and Node.js (an environment derived from the browser), you can
develop almost any type of application imaginable: 

■ Desktop applications, by using, for example, NW.js (http://nwjs.io/) or Electron
(http://electron.atom.io/). These technologies usually wrap the browser so
that we can build desktop UIs with standard HTML, CSS, and JavaScript (that
way, we can rely on our core JavaScript and browser knowledge), with addi-
tional support that makes it possible to interact with the filesystem. We can
build truly platform-independent desktop applications that have the same look
and feel on Windows, Mac, and Linux.

■ Mobile apps with frameworks, such as Apache Cordova (https://cordova
.apache.org/). Similar to desktop apps built with web technologies, frameworks
for mobile apps use a wrapped browser but with additional platform-specific
APIs that let us interact with the mobile platform.

■ Server-side applications and applications for embedded devices with Node.js, an environ-
ment derived from the browser that uses many of the same underlying princi-
ples as the browser. For example, Node.js executes JavaScript code and relies on
events.

Ann doesn’t know how lucky she is (although Bob has a pretty good idea). It doesn’t
matter whether she needs to build a standard desktop application, a mobile applica-
tion, a server-side application, or even an embedded application—all these types of
applications share some of the same underlying principles of standard client-side web
applications. By understanding how the core mechanics of JavaScript work, and by
understanding the core APIs provided by browsers (such as events, which also have a
lot in common with mechanisms provided by Node.js), she can boost her develop-
ment skills across the board. As can you. In the process, you’ll become a more versatile
developer and gain the knowledge and understanding to tackle a wide variety of prob-
lems. You’ll even be able to build your own serverless applications based in the cloud
by using JavaScript APIs for services such as AWS Lambda to deploy, maintain, and con-
trol your application’s cloud components. 

1.5 Summary
■ Client-side web applications are among the most popular today, and the con-

cepts, tools, and techniques once used only for their development have perme-
ated other application domains. Understanding the foundations of client-side
web applications will help you develop applications for a wide variety of domains. 

http://nwjs.io/
http://electron.atom.io/
http://electron.atom.io/
http://electron.atom.io/


12 CHAPTER 1 JavaScript is everywhere

■ To improve your development skills, you have to gain a deep understanding of
the core mechanics of JavaScript, as well as the infrastructure provided by the
browsers.

■ This book focuses on core JavaScript mechanisms such as functions, function
closures, and prototypes, as well as on new JavaScript features such as genera-
tors, promises, proxies, maps, sets, and modules.

■ JavaScript can be executed in a large number of environments, but the environ-
ment where it all began, and the environment we’ll concentrate on, is the
browser.

■ In addition to JavaScript, we’ll explore browser internals such as the DOM (a
structured representation of the web page UI) and events, because client-side
web applications are event-driven applications.

■ We’ll do this exploration with best practices in mind: debugging, testing, and
performance analysis.



13

Building
 the page at runtime

Our exploration of JavaScript is performed in the context of client-side web appli-
cations and the browser as the engine that executes JavaScript code. In order to
have a strong base from which to continue exploring JavaScript as a language and
the browser as a platform, first we have to understand the complete web applica-
tion lifecycle, and especially how our JavaScript code fits into this lifecycle.

 In this chapter, we’ll thoroughly explore the lifecycle of client-side web applica-
tions from the moment the page is requested, through various interactions per-
formed by the user, all the way until the page is closed down. First we’ll explore how
the page is built by processing the HTML code. Then we’ll focus on the execution
of JavaScript code, which adds much-needed dynamicity to our pages. And finally

This chapter covers
■ Steps in the lifecycle of a web application
■ Processing HTML code to produce a web page
■ Order of executing JavaScript code 
■ Achieving interactivity with events
■ The event loop



14 CHAPTER 2 Building the page at runtime

we’ll look into how events are handled in order to develop interactive applications
that respond to users’ actions.

 During this process, we’ll explore some fundamental web application concepts
such as the DOM (a structured representation of a web page) and the event loop
(determines how events are handled by applications). Let’s dive in!

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Does the browser always build the page exactly according
to the given HTML?

How many events can a web application handle at once?
Why must browsers use an event queue to process events?

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1 The lifecycle overview
The lifecycle of a typical client-side web application begins with the user typing a URL
into the browser’s address bar or clicking a link. Let’s say we want to look up a term
and go to Google’s homepage. We type in the URL www.google.com, as shown at
upper left in figure 2.1. 

Do you know? 

Page building

Event handling

App lifecycle ends

User actions Browser actions Server actions
    Enters URL
    (or clicks link)

    Interacts with
    page elements

    Closes web app

    Generates a
    request and sends
    it to the server

    Processes HTML,
    CSS, and JavaScript,
    and builds resulting
    page

    Monitors event queue,
    processing any events
    one at a time

    Performs actions
    or gets a resource;
    sends response
    to client 

</>

Figure 2.1 The lifecycle of a client-
side web application starts with the 
user specifying a website address (or 
clicking a link) and ends when the 
user leaves the web page. It’s com-
posed of two steps: page building and 
event handling.

http://www.google.com


15The lifecycle overview

On behalf of the user, the browser formulates a request that is sent to a server C,
which processes the request D and formulates a response that is usually composed of
HTML, CSS, and JavaScript code. The moment the browser receives this response E is
when our client-side web application truly starts coming to life. 

 Because client-side web applications are Graphical User Interface (GUI) applications,
their lifecycle follows similar phases as other GUI applications (think standard desktop
applications or mobile applications) and is carried out in the following two steps:

1 Page building—Set up the user interface. 
2 Event handling—Enter a loop F waiting for events to occur G, and start invok-

ing event handlers.

The lifecycle of the application ends when the user closes or leaves the web page H. 
 Now let’s look at an example web application with a simple UI that reacts to user

actions: Every time a user moves a mouse or clicks the page, a message is displayed.
We’ll use this application throughout the chapter. 

<!DOCTYPE html>
<html>
  <head>
    <title>Web app lifecycle</title>
    <style>
      #first { color: green;}                    
      #second { color: red;}                
    </style>
  </head>
  <body>
    <ul id="first"></ul>    
    
    <script>
      function addMessage(element, message){              
        var messageElement = document.createElement("li");
        messageElement.textContent = message;             
        element.appendChild(messageElement);              
      }                                                   

      var first = document.getElementById("first");        
      addMessage(first, "Page loading");                
    </script>
    
    <ul id="second"></ul>
    
    <script>
      document.body.addEventListener("mousemove", function() {
        var second = document.getElementById("second");        
        addMessage(second, "Event: mousemove");            
      });

      document.body.addEventListener("click", function(){

Listing 2.1 Small web application with a GUI reacting to events

Defines a function 
that adds a message 
to an element

Attaches mousemove
event handler to body

Attaches click event 
handler to body



16 CHAPTER 2 Building the page at runtime

        var second = document.getElementById("second");        
        addMessage(second, "Event: click");            
      });
    </script>
  </body>
</html>

Listing 2.1 first defines two CSS rules, #first and #second, that specify the text color
for the elements with the IDs first and second (so that we can easily distinguish
between them). We continue by defining a list element with the id first:

<ul id="first"></ul>

Then we define an addMessage function that, when invoked, creates a new list item
element, sets its text content, and appends it to an existing element: 

function addMessage(element, message){            
  var messageElement = document.createElement("li");    
  messageElement.textContent = message;            
  element.appendChild(messageElement);            
}

We follow this by using the built-in getElementById method to fetch an element with
the ID first from the document, and adding a message to it that notifies us that the
page is loading: 

var first = document.getElementById("first");
addMessage(first, "Page loading");

Next we define another list element, now with the attribute ID second: 

<ul id="second"></ul>

Finally we attach two event handlers to the body of the web page. We start with the
mousemove event handler, which is executed every time the user moves the mouse, and
adds a message "Event: mousemove" to the second list element by calling the addMes-
sage function:

document.body.addEventListener("mousemove", function() {
  var second = document.getElementById("second");        
  addMessage(second, "Event: mousemove");            
});

We also register a click event handler, which, whenever the user clicks the page, logs
a message "Event: click", also to the second list element:

document.body.addEventListener("click", function(){
  var second = document.getElementById("second");
  addMessage(second, "Event: click");    
});



17The page-building phase

The result of running and interacting with
this application is shown in figure 2.2.

 We’ll use this example application to
explore and illustrate the differences
between different phases of the web appli-
cation lifecycle. Let’s start with the page-
building phase. 

2.2 The page-building phase
Before a web application can be interacted
with or even displayed, the page must be
built from the information in the response received from the server (usually HTML, CSS, and
JavaScript code). The goal of this page-building phase is to set up the UI of a web application,
and this is done in two distinct steps:

1 Parsing the HTML and building the Document Object Model (DOM)
2 Executing JavaScript code

Step 1 is performed when the browser is processing HTML nodes, and step 2 is per-
formed whenever a special type of HTML element—the script element (that contains or
refers to JavaScript code)—is encountered. During the page-building phase, the browser
can switch between these two steps as many times as necessary, as shown in figure 2.3. 

Page building

User actions Browser actions Server actions

    Enters URL
    (or clicks link)     Generates a

    request and sends
    it to the server

    Processes HTML,
    CSS, and
    JavaScript, and
    builds resulting
    page

    Performs actions
    or gets a resource;
    sends response
    to client 

Parse
HTML and
build the

DOM

Execute
JavaScript

code

JS

Figure 2.3 The page-building phase 
starts when the browser receives the 
code of the page. It’s performed in 
two steps: parsing the HTML and 
building the DOM, and executing 
JavaScript code.

Figure 2.2 When the code from listing 2.1 runs, 
messages are logged depending on user actions.



18 CHAPTER 2 Building the page at runtime

2.2.1 Parsing the HTML and building the DOM

The page-building phase starts with the browser receiving the HTML code, which is
used as a base on top of which the browser builds the page’s UI. The browser does this
by parsing the HTML code, one HTML element at a time, and building a DOM, a struc-
tured representation of the HTML page in which every HTML element is represented
as a node. For example, figure 2.4 shows the DOM of the example page that’s built
until the first script element is reached.

 Notice how the nodes in figure 2.4 are organized such that each node except the
first one (the root html node B) has exactly one parent. For example, the head node
C has the html node B as its parent. At the same time, a node can have any number
of children. For example, the html node B has two children: the head node C and
the body node H. Children of the same element are called siblings. (The head node C
and the body node H are siblings.)

 It’s important to emphasize that, although the HTML and the DOM are closely
linked, with the DOM being constructed from HTML, they aren’t one and the same.
You should think of the HTML code as a blueprint the browser follows when construct-
ing the initial DOM—the UI—of the page. The browser can even fix problems that it

A is parent to B, C, D
B, C, D are children of A
B, C, D are siblings

<!DOCTYPE html>
<html>
  <head>
    <title> Web app lifecycle </title>
    <style>
      #first { color: green;}
      #second { color: red;}
    </style>
  </head>
  <body>
    <ul id="first"></ul>
    <script>
      function addMessage(element, message){
        var messageElement = document.createElement("li");
        messageElement.textContent = message;
        element.appendChild(messageElement);
      }
      …

html

head

HTML code DOM: built from the HTML code!

A

B C D

styletitle

Web app
lifecycle

#first{…
#second{…

function addMessage(…

body

scriptul

Figure 2.4 By the time the browser encounters the first script element, it has already created a DOM with mul-
tiple HTML elements (the nodes on the right).



19The page-building phase

finds with this blueprint in order to create a valid DOM. Let’s consider the example
shown in figure 2.5.

 Figure 2.5 gives a simple example of erroneous HTML code in which a paragraph
element is placed in the head element. The intention of the head element is that it is
used for providing general page information: for example, the page title, character
encodings, and external styles and scripts. It isn’t intended for defining page content,
as in this example. Because this is an error, the browser silently fixes it by constructing
the correct DOM (at right in figure 2.5), in which the paragraph element is placed in
the body element, where the page content ought to be.

The DOM as
specified by
the HTML code

Error: Content elements
such as paragraphs (p)
should be descendents
of the body element, not
of the head element!

The produced
DOM, fixed by
the browser

<html>
  <head>
    <p>
      Hello 
    </p>
  </head>

  <body>
  </body>
</html>

html

head

Invalid HTML

body

p p

html

head body

Figure 2.5 An example of invalid HTML that is fixed by the browser

HTML specification and DOM specification
The current version of HTML is HTML5, whose specification is available at https://
html.spec.whatwg.org/. If you need something more readable, we recommend Mozil-
la’s HTML5 guide, available at https://developer.mozilla.org/en-US/docs/Web/
Guide/HTML/HTML5. 

The DOM, on the other hand, is evolving a bit more slowly. The current version is
DOM3, whose specification is available at https://dom.spec.whatwg.org/. Again,
Mozilla has prepared a report that can be found at https://developer.mozilla.org/
en-US/docs/Web/API/Document_Object_Model.

https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://dom.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model


20 CHAPTER 2 Building the page at runtime

During page construction, the browser can encounter a special type of HTML ele-
ment, the script element, which is used for including JavaScript code. When this
happens, the browser pauses the DOM construction from HTML code and starts exe-
cuting JavaScript code.

2.2.2 Executing JavaScript code

All JavaScript code contained in the script element is executed by the browser’s
JavaScript engine; for example, Firefox’s Spidermonkey, Chrome and Opera’s V8, or
Edge’s (IE’s) Chakra. Because the primary purpose of JavaScript code is to provide
dynamicity to the page, the browser provides an API through a global object that can
be used by the JavaScript engine to interact with and modify the page.

GLOBAL OBJECTS IN JAVASCRIPT

The primary global object that the browser exposes to the JavaScript engine is the
window object, which represents the window in which a page is contained. The window
object is the global object through which all other global objects, global variables
(even user-defined ones), and browser APIs are accessible. One of the most important
properties of the global window object is the document, which represents the DOM of
the current page. By using this object, the JavaScript code can alter the DOM of the
page to any degree, by modifying or removing existing elements, and even by creating
and inserting new ones. 

 Let’s look at a snippet of code from listing 2.1:

var first = document.getElementById("first");

This example uses the global document object to select an element with the ID first
from the DOM and assign it to a variable first. We can then use JavaScript code to
make all sorts of modifications to that element, such as changing its textual content,
modifying its attributes, dynamically creating and adding new children to it, and even
removing the element from the DOM.

With this basic understanding of the global objects provided by the browser, let’s look
at two different types of JavaScript code that define exactly when that code is
executed.

Browser APIs
Throughout the book, we use a number of browser built-in objects and functions (for
example, window and document). Unfortunately, covering everything supported by the
browser lies beyond the scope of a JavaScript book. Luckily, Mozilla again has our
backs with https://developer.mozilla.org/en-US/docs/Web/API, where you can find
the current status of the Web API Interfaces.

https://developer.mozilla.org/en-US/docs/Web/API


21The page-building phase

DIFFERENT TYPES OF JAVASCRIPT CODE

We broadly differentiate between two different types of JavaScript code: global code and
function code. The following listing will help you understand the differences between
these two types of code.

<script>
  function addMessage(element, message){            
    var messageElement = document.createElement("li");
    messageElement.textContent = message;             
    element.appendChild(messageElement);              
  }

  var first = document.getElementById("first");
  addMessage(first, "Page loading");           
</script>

The main difference between these two types of code is their placement: the code
contained in a function is called function code, whereas the code placed outside all
functions is called global code.

 These two code types also differ in their execution (you’ll see some additional dif-
ferences later on, especially in chapter 5). Global code is executed automatically by
the JavaScript engine (more on that soon) in a straightforward fashion, line by line, as
it’s encountered. For example, in listing 2.2, the pieces of global code that define the
addMessage function use the built-in getElementById method to fetch the element
with ID first and call the addMessage function; they are executed one after another
as they’re encountered, as shown in figure 2.6. 

 On the other hand, function code, in order to be executed, has to be called by
something else: either by global code (for example, the addMessage function call in
the global code causes the execution of the addMessage function code), by some
other function, or by the browser (more on this soon).

EXECUTING JAVASCRIPT CODE IN THE PAGE-BUILDING PHASE

When the browser reaches the script node in the page-building phase, it pauses the
DOM construction based on HTML code and starts executing JavaScript code instead.

Listing 2.2 Global and function JavaScript code

Function code is the 
code contained in a 
function.

Global code is the code 
outside functions.

<script>
function addMessage(element, message){   
  var messageElement = document.createElement("li");
  messageElement.textContent = message;
  element.appendChild(messageElement);
}

var first = document.getElementById("first");
addMessage(first, "Page loading");
</script>

Figure 2.6 Program execution flow when executing JavaScript code



22 CHAPTER 2 Building the page at runtime

This means executing the global JavaScript code contained in the script element
(and functions called by the global code are also executed). Let’s go back to the
example from listing 2.1.

 Figure 2.7 shows the state of the DOM after the global JavaScript code has been
executed. Let’s walk slowly through its execution. First a function addMessage is
defined:

function addMessage(element, message){            
  var messageElement = document.createElement("li");    
  messageElement.textContent = message;            
  element.appendChild(messageElement);            
 }        

Then an existing element is fetched from the DOM by using the global document
object and its getElementById method:

var first = document.getElementById("first");

addMessage(first, "Page loading");
creates the following node and
adds it to the DOM.

document.getElementById("first")
returns this node from the DOM.

<!DOCTYPE html>
<html>
 <head>
   <title> Web app lifecycle </title>
   <style>
     #first { color: green;}
     #second { color: red;}
   </style>
 </head>
 <body>
   <ul id="first"></ul>
   <script>
     function addMessage(element, message){
       var messageElement = document.createElement("li");
       messageElement.textContent = message;
       element.appendChild(messageElement);
     }
    
     
     var first = document.getElementById("first");
     addMessage(first, "Page loading"); 
   </script>
   <ul id="second"></ul>
   …

html

head

styletitle

Web app
lifecycle

Page
loading

#first{…
#second{…

function
addMessage(…

body

scriptul

li

Figure 2.7 The DOM of the page after executing the JavaScript code contained in the script element



23Event handling

This is followed by a call to the addMessage function

addMessage(first, "Page loading"); 

which causes the creation of a new li element, the modification of its text content,
and finally its insertion into the DOM.

 In this example, the JavaScript code modifies the current DOM by creating a new
element and inserting it into the DOM. But in general, JavaScript code can modify the
DOM to any degree: It can create new nodes and modify or remove existing DOM
nodes. But there are also some things it can’t do, such as select and modify elements
that haven’t yet been created. For example, we can’t select and modify the ul element
with the ID second, because that element is found after the current script node and
hasn’t yet been reached and created. That’s one of the reasons people tend to put
their script elements at the bottom of the page. That way, we don’t have to worry
about whether a particular HTML element has been reached.

 Once the JavaScript engine executes the last line of JavaScript code in the script
element (in figure 2.5, this means returning from the addMessage function), the
browser exits the JavaScript execution mode and continues building DOM nodes by
processing the remaining HTML code. If, during that processing, the browser again
encounters a script element, the DOM creation from HTML code is again paused,
and the JavaScript runtime starts executing the contained JavaScript code. It’s impor-
tant to note that the global state of the JavaScript application persists in the mean-
time. All user-defined global variables created during the execution of JavaScript code
in one script element are normally accessible to JavaScript code in other script ele-
ments. This happens because the global window object, which stores all global
JavaScript variables, is alive and accessible during the entire lifecycle of the page.

 These two steps

1 Building the DOM from HTML

2 Executing JavaScript code 

are repeated as long as there are HTML elements to process and JavaScript code to execute. 
 Finally, when the browser runs out of HTML elements to process, the page-building

phase is complete. The browser then moves on to the second part of the web applica-
tion lifecycle: event handling.

2.3 Event handling
Client-side web applications are GUI applications, which means they react to different
kinds of events: mouse moves, clicks, keyboard presses, and so on. For this reason, the
JavaScript code executed during the page-building phase, in addition to influencing the
global application state and modifying the DOM, can also register event listeners (or han-
dlers): functions that are executed by the browser when an event occurs. With these event
handlers, we provide interactivity to our applications. But before taking a closer look at
registering event handlers, let’s go through the general ideas behind event handling.



24 CHAPTER 2 Building the page at runtime

2.3.1 Event-handling overview

The browser execution environment is, at its core, based on the idea that only a single
piece of code can be executed at once: the so-called single-threaded execution model.
Think of a line at the bank. Everyone gets into a single line and has to wait their turn
to be “processed” by the tellers. But with JavaScript, only one teller window is open! Cus-
tomers (events) are processed only one at a time, as their turn comes. All it takes is one
person who thinks it’s appropriate to do their financial planning for the entire fiscal year
while they’re at the teller’s window (we’ve all run into them!) to gum up the works.

 Whenever an event occurs, the browser should execute the associated event-handler
function. But there’s no guarantee that we have extremely patient users who will always
wait an appropriate amount of time before triggering another event. For this reason,
the browser needs a way to keep track of the events that have occurred but have yet to
be processed. To do this, the browser uses an event queue, as shown in figure 2.8.

Page building

Event handling

    Interacts with
    page elements

Event queue

User actions Browser actions Server actions

    Enters URL
    (or clicks link)     Generates a

    request and sends
    it to the server

    Processes HTML,
    CSS, and JavaScript,
    and builds resulting
    page

Check for
event at head

of queue

Process event
Server
event

    Monitors event queue,
    processing any events
    one at a time

    Performs actions
    or gets a resource;
    sends response
    to client 

</>

Is there
one?

No

Yes

Figure 2.8 In the event-han-
dling phase, all events 
(whether coming from the us-
er, such as mouse clicks and 
key presses, or coming from 
the server, such as Ajax 
events) are queued up as they 
occur and are processed as 
the single thread of execution 
allows.



25Event handling

All generated events (it doesn’t matter if they’re user-generated, like mouse moves or
key presses, or server-generated, such as Ajax events) are placed in the same event
queue, in the order in which they’re detected by the browser. As shown in the middle
of figure 2.8, the event-handling process can then be described with a simple flowchart:

■ The browser checks the head of the event queue.
■ If there are no events, the browser keeps checking.
■ If there’s an event at the head of the event queue, the browser takes it and exe-

cutes the associated handler (if one exists). During this execution, the rest of
the events patiently wait in the event queue for their turn to be processed.

Because only one event is handled at a time, we have to be extra careful about the
amount of time needed for handling events; writing event handlers that take a lot of
time to execute leads to unresponsive web applications! (Don’t worry if this sounds a
bit vague; we’ll come back to the event loop in chapter 13 and see exactly how it
impacts the perceived performance of web applications).

 It’s important to note that the browser mechanism that puts events onto the queue
is external to the page-building and event-handling phases. The processing that’s nec-
essary to determine when events have occurred and that pushes them onto the event
queue doesn’t participate in the thread that’s handling the events.

EVENTS ARE ASYNCHRONOUS

Events, when they happen, can occur at unpredictable times and in an unpredictable
order (it’s tricky to force users to press keys or click in some particular order). We say
that the handling of events, and therefore the invocation of their handling functions,
is asynchronous.

 The following types of events can occur, among others:

■ Browser events, such as when a page is finished loading or when it’s to be unloaded
■ Network events, such as responses coming from the server (Ajax events, server-

side events)
■ User events, such as mouse clicks, mouse moves, and key presses
■ Timer events, such as when a timeout expires or an interval fires

The vast majority of code executes as a result of such events!
 The concept of event handling is central to web applications, and it’s something

you’ll see again and again throughout the examples in this book: Code is set up in
advance in order to be executed at a later time. Except for global code, the vast major-
ity of the code we place on a page will execute as the result of some event. 

 Before events can be handled, our code has to notify the browser that we’re inter-
ested in handling particular events. Let’s look at how to register event handlers.

2.3.2 Registering event handlers

As we’ve already mentioned, event handlers are functions that we want executed when-
ever a particular event occurs. In order for this to happen, we have to notify the browser



26 CHAPTER 2 Building the page at runtime

that we’re interested in an event. This is called event-handler registration. In client-side
web applications, there are two ways to register events:

■ By assigning functions to special properties
■ By using the built-in addEventListener method 

For example, writing the following code assigns a function to the special onload prop-
erty of the window object:

window.onload = function(){};

An event handler for the load event (when the DOM is ready and fully built) is regis-
tered. (Don’t worry if the notation on the right side of the assignment operator looks
a bit funky; we’ll talk at great length about functions in later chapters.) Similarly, if we
want to register a handler for the click event on the document’s body, we can write
something along these lines:

document.body.onclick = function(){};

Assigning functions to special properties is an easy and straightforward way of register-
ing event handlers, and you’ve probably run into it already. But we don’t recommend
that you register event handlers this way, because doing so comes with a drawback: It’s
only possible to register one function handler for a particular event. This means it’s
easy to overwrite previous event-handler functions, which can be a little frustrating.
Luckily, there’s an alternative: The addEventListener method enables us to register
as many event-handler functions as we need. To show you an example, the following
listing goes back to an excerpt of the example from listing 2.1.

<script>
  document.body.addEventListener("mousemove", function() { 
    var second = document.getElementById("second");        
    addMessage(second, "Event: mousemove");            
  });

  document.body.addEventListener("click", function(){ 
    var second = document.getElementById("second");        
    addmessage(second, "Event: click");            
  });
</script>

This example uses the built-in addEventListener method on an HTML element to
specify the type of event (mousemove or click) and the event-handler function. This
means whenever the mouse is moved over the page, the browser calls a function that
adds a message, "Event: mousemove", to the list element with the ID second (a similar
message, "Event: click", is added to the same element whenever the body is clicked).

 Now that you know how to set up event handlers, let’s recall the simple flowchart
you saw earlier and take a closer look at how events are handled.

Listing 2.3 Registering event handlers

Registers a handler 
for the mousemove 
event

Registers a handler 
for the click event

www.allitebooks.com

http://www.allitebooks.org


27Event handling

2.3.3 Handling events

The main idea behind event handling is that when an event occurs, the browser calls the
associated event handler. As we’ve already mentioned, due to the single-threaded exe-
cution model, only a single event handler can be executed at once. Any following events
are processed only after the execution of the current event handler is fully complete!

 Let’s go back to the application from listing 2.1. Figure 2.9 shows an example exe-
cution in which a quick user has moved and clicked a mouse.

User actions Browser actions

    After the page was
    fully built, the user has,
    very quickly, moved and
    clicked the mouse. Two
    events are added to
    the event queue.

Check for
event at head

of queue

Process event

</>

The event loop takes
the event at the top of the
queue, the mouse move
event, and executes the
associated event handler.

Is there
one?

No

Yes

After the mouse move event
handler is fully processed,
the mouse move event is taken
off the queue, and the next event
at the top of the queue is the 
mouse click event.

Page building

Event handling

Event queue

Event queue

Figure 2.9 Example of an event-handling phase in which two events—mousemove and click—
are handled



28 CHAPTER 2 Building the page at runtime

Let’s examine what’s going on here. As a response to these user actions, the browser
puts the mousemove and click events onto the event queue in the order in which they
have occurred: first the mousemove event and then the click event B. 

 In the event-handling phase, the event loop then checks the queue, sees that
there’s a mousemove event at the front of the queue, and executes the associated event
handler C. While the mousemove handler is being processed, the click event waits in
the queue for its turn. When the last line of the mousemove handler function has fin-
ished executing and the JavaScript engine exits the handler function, the mousemove
event is fully processed D, and the event loop again checks the queue. This time, at
the front of the queue, the event loop finds the click event and processes it. Once
the click handler has finished executing, there are no new events in the queue, and
the event loop keeps looping, waiting for new events to handle. This loop will con-
tinue executing until the user closes the web application.

 Now that we have a sense of the overall steps that happen in the event-handling
phase, let’s see how this execution influences the DOM (figure 2.10). The execution of

<ul id="first"></ul>

<script>
 function addMessage(element, message){
   var messageElement = document.createElement('li');
   messageElement.textContent = message;
   element.appendChild(messageElement);
 }

</script>

function 
addMessage(…

Event:
mousemove

Event:
click

<ul id="second"></ul>

<script>
 document.body.addEventListener('mousemove',function(){
   var second = document.getElementById('second');
   addMessage(second, 'Event: mousemove');
 });

 document.body.addEventListener('click',function(){
   var second = document.getElementById('second');
   addMessage(second, 'Event: click');
 });

</script>

On mouse
move

On click

Page
loading

#first #second
body

scriptul scriptul

li

document.body.
addEventListener(...

lili

Figure 2.10 The DOM of the exam-
ple application after handling the 
mousemove and click events



29Exercises

the mousemove handler selects the second list element with ID second and, by using
the addMessage function, adds a new list item element B with the text "Event:
mousemove". Once the execution of the mousemove handler is finished, the event loop
executes the click handler, which leads to the creation of another list item element
C, which is also appended to the second list element with the ID second.

 Armed with this solid understanding of the lifecycle of client-side web applications,
in the next part of the book, we’ll start focusing on JavaScript the language, by learn-
ing the ins and outs of functions.

2.4 Summary
■ The HTML code received by the browser is used as a blueprint for creating the

DOM, an internal representation of the structure of a client-side web application.
■ We use JavaScript code to dynamically modify the DOM to bring dynamic behav-

ior to web applications.
■ The execution of client-side web applications is performed in two phases:

– Page building—HTML code is processed to create the DOM, and global
JavaScript code is executed when script nodes are encountered. During this
execution, the JavaScript code can modify the current DOM to any degree and
can even register event handlers—functions that are executed when a partic-
ular event occurs (for example, a mouse click or a keyboard press). Register-
ing event handlers is easy: Use the built-in addEventListener method.

– Event handling—Various events are processed one at a time, in the order in
which they were generated. The event-handling phase relies heavily on the
event queue, in which all events are stored in the order in which they
occurred. The event loop always checks the top of the queue for events, and
if an event is found, the matching event-handler function is invoked. 

2.5 Exercises
1 What are the two phases in the lifecycle of a client-side web application?
2 What is the main advantage of using the addEventListener method to register

an event handler versus assigning a handler to a specific element property?
3 How many events can be processed at once?
4 In what order are events from the event queue processed?





Part 2

Understanding functions

Now that you’re mentally prepared and you understand the environment
in which JavaScript code is executed, you’re ready to learn the fundamentals of
the JavaScript features available to you.

 In chapter 3, you’ll learn all about the most important basic concept of
JavaScript: no, not the object, but the function. This chapter will teach you why
understanding JavaScript functions is the key to unlocking the secrets of the
language.

 Chapter 4 continues our in-depth exploration of functions by studying how
functions are invoked, alongside all the ins and outs of implicit parameters that
are accessible when executing function code.

 Chapter 5 takes functions to the next level with closures—probably one of the
most misunderstood (and even unknown) aspects of the JavaScript language. As
you’ll soon see, closures are closely tied to scopes. In this chapter, in addition to
closures, we put a special focus on the scoping mechanisms in JavaScript.

 Our exploration of functions will be completed in chapter 6, where we dis-
cuss a completely new type of function—the generator function—that has some
special properties and is especially useful when dealing with asynchronous code.





33

First-class
 functions for the novice:

 definitions and arguments

You might be surprised, upon turning to this part of the book dedicated to
JavaScript fundamentals, to see that the first topic of discussion is functions rather
than objects. We’ll certainly be paying plenty of attention to objects in part 3 of the
book, but when it comes down to brass tacks, the main difference between writing
JavaScript code like the average Jill (or Joe) and writing it like a JavaScript ninja is
understanding JavaScript as a functional language. The level of sophistication of all
the code you’ll ever write in JavaScript hinges on this realization.

 If you’re reading this book, you’re not a rank beginner. We’re assuming that
you know enough object fundamentals to get by (and we’ll be taking a look at

This chapter covers
■ Why understanding functions is so crucial
■ How functions are first-class objects
■ The ways to define a function
■ The secrets of how parameters are assigned



34 CHAPTER 3 First-class functions for the novice: definitions and arguments

more-advanced object concepts in chapter 7), but really understanding functions in
JavaScript is the single most important weapon you can wield. So important, in fact,
that this and the following three chapters are devoted to thoroughly understanding
functions in JavaScript.

 Most important, in JavaScript, functions are first-class objects, or first-class citizens as
they’re often called. They coexist with, and can be treated like, any other JavaScript
object. Just like the more mundane JavaScript data types, they can be referenced by
variables, declared with literals, and even passed as function parameters. In this chap-
ter, we’ll first take a look at the difference that this orientation to functions brings,
and you’ll see how this can help us write more compact and easy-to-understand code,
by allowing us to define functions right where we need them. We’ll also explore how
to take advantage of functions as first-class objects in order to write better-performing
functions. You’ll see various ways of defining functions, even including some new
types, such as arrow functions, which will help you write more elegant code. Finally,
we’ll look at the difference between function parameters and function arguments,
with a special focus on ES6 additions, such as the rest and default parameters. 

 Let’s start by going through some of the benefits of functional programming.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In what situations might callback functions be used syn-
chronously? Asynchronously? 

What’s the difference between an arrow function and a
function expression? 

Why might you need to use default parameter values in a
function? 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 What’s with the functional difference?
One of the reasons that functions and functional concepts are so important in
JavaScript is that functions are primary modular units of execution. Except for the
global JavaScript code executed in the page-building phase, all of the script code that
we’ll write for our pages will be within a function.

 Because most of our code will run as the result of a function invocation, you’ll see
that having functions that are versatile and powerful constructs gives us a great deal of
flexibility and sway when writing code. Significant chunks of this book explain just
how the nature of functions as first-class objects can be exploited to our great benefit.
But first, let’s take a look at some of the actions we can take with objects. In JavaScript,
objects enjoy certain capabilities:

■ They can be created via literals: {}
■ They can be assigned to variables, array entries, and properties of other objects:

Do you know? 



35What’s with the functional difference?

var ninja = {};   
ninjaArray.push({});  
ninja.data = {};    

■ They can be passed as arguments to functions:

function hide(ninja){
   ninja.visibility = false;
}
hide({});   

■ They can be returned as values from functions:

function returnNewNinja() {
  return {};   
}

■ They can possess properties that can be dynamically created and assigned:

var ninja = {};
ninja.name = "Hanzo";   

It turns out that, unlike in many other programming languages, in JavaScript we can
do almost the exact same things with functions also.

3.1.1 Functions as first-class objects

Functions in JavaScript possess all the capabilities of objects and are thus treated like
any other object in the language. We say that functions are first-class objects, which can
also be

■ Created via literals

function ninjaFunction() {}

■ Assigned to variables, array entries, and properties of other objects

var ninjaFunction = function() {}; 
ninjaArray.push(function(){});     
ninja.data = function(){};   

Assigns a new object
to a variable

Adds a new object 
to an array

Assigns a new object as a 
property of another object

A newly created object 
passed as an argument 
to a function

Returns a new object 
from a function

Creates a new property 
on an object

Assigns a new
function to a variable

Adds a new function 
to an array

Assigns a new function as a 
property of another object



36 CHAPTER 3 First-class functions for the novice: definitions and arguments

■ Passed as arguments to other functions

function call(ninjaFunction){
  ninjaFunction();
}
call(function(){}); 

■ Returned as values from functions

function returnNewNinjaFunction() {
  return function(){}; 
}

■ They can possess properties that can be dynamically created and assigned:

var ninjaFunction = function(){};
ninjaFunction.name = "Hanzo"; 

Whatever we can do with objects, we can do with functions as well. Functions are
objects, just with an additional, special capability of being invokable: Functions can be
called or invoked in order to perform an action.

One of the characteristics of first-class objects is that they can be passed to functions as
arguments. In the case of functions, this means that we pass a function as an argument
to another function that might, at a later point in application execution, call the
passed-in function. This is an example of a more general concept known as a callback
function. Let’s explore this important concept.

3.1.2 Callback functions

Whenever we set up a function to be called at a later time, whether by the browser in
the event-handling phase or by other code, we’re setting up a callback. The term stems
from the fact that we’re establishing a function that other code will later “call back” at
an appropriate point of execution.

A newly created function 
passed as an argument 
to a function

Returns a new 
function

Adds a new property 
to a function

Functional programming in JavaScript
Having functions as first-class objects is the first step toward functional program-
ming, a style of programming that’s focused on solving problems by composing func-
tions (instead of specifying sequences of steps, as in more mainstream, imperative
programming). Functional programming can help us write code that’s easier to test,
extend, and modularize. But it’s a big topic, and in this book we only give it a nod (for
example, in chapter 9). If you’re interested in learning how to take advantage of func-
tional programming concepts and apply them to your JavaScript programs, we recom-
mend Functional Programming in JavaScript by Luis Atencio (Manning, 2016),
available at www.manning.com/books/functional-programming-in-javascript.

www.manning.com/books/functional-programming-in-javascript


37What’s with the functional difference?

 Callbacks are an essential part of using JavaScript effectively, and we’re willing to
bet that you already use them in your code a lot—whether executing code on a button
click, receiving data from a server, or animating parts of your UI. 

 In this section, we’re about to look at how to use callbacks to handle events or to
easily sort collections—typical real-world examples of how callbacks are used. But it’s a
tad complex, so before diving in, let’s strip the callback concept completely naked and
examine it in its simplest form. We’ll start with an illuminating example of a com-
pletely useless function that accepts a reference to another function as a parameter
and calls that function as a callback:

function useless(ninjaCallback) { 
  return ninjaCallback(); 
}

As useless as this function is, it demonstrates the ability to pass a function as an argu-
ment to another function, and to subsequently invoke that function through the
passed parameter.

 We can test this useless function with the code in the following listing.

var text = "Domo arigato!";
report("Before defining functions");

function useless(ninjaCallback) {    
  report("In useless function");     
  return ninjaCallback();            
}                                    

function getText() {               
  report("In getText function");   
  return text;                     
}                                  

report("Before making all the calls");

assert(useless(getText) === text,             
       "The useless function works! " + text);

report("After the calls have been made");

In this listing, we use a custom report function to output several messages as our code
is being executed, so that we can track the execution of our program. We also use the
assert testing function that we mentioned in chapter 1. The assert function usually
takes two arguments. The first argument is an expression whose premise is asserted. In
this case, we want to establish whether the result of invoking our useless function
with the argument getText returns a value that’s equal to the value of the variable
text (useless(getText) === text). If the first argument evaluates to true, the asser-
tion passes; otherwise, it’s considered a failure. The second argument is the associated
message, which is usually logged with an appropriate pass/fail indicator. (Appendix C

Listing 3.1 A simple callback example

Defines a function that takes 
a callback function and 
immediately invokes it

Defines a simple 
function that returns 
a global variable

Calls our useless function with 
the getText function as a callback



38 CHAPTER 3 First-class functions for the novice: definitions and arguments

discusses testing in general, as well as our own little implementation of the assert and
report functions).

 When we run this code, we end up
with the result shown in figure 3.1. As you
can see, calling the useless function
with our getText callback function as an
argument returns the expected value.

 We can also take a look at how
exactly this simple callback example is
executed. As figure 3.2 shows, we pass in
the getText function to the useless
function as an argument. This means
that within the body of the useless
function, the getText function can be
referenced through the callback

parameter. Then, by making the call-
back() call, we cause the execution of the getText function; the getText function,
which we passed in as an argument, is called back by the useless function.

This is easy, because JavaScript’s functional nature lets us deal with functions as first-
class objects. We can even take the whole thing a step further, by rewriting our code in
the following manner:

var text = 'Domo arigato!';

function useless(ninjaCallback) {
  return ninjaCallback();
}

assert(useless(function () { return text;}) === text,
       "The useless function works! " + text);

var text = 'Domo arigato!';

function useless(ninjaCallback) { 
  return ninjaCallback();  
}     

function getText() {  
  return text;   
}     

assert(useless(getText) === text,              
       "The useless function works! " + text);

Calling useless(getText)
will trigger the execution
of the useless function,
which will, in turn, trigger
the execution of the
getText function.

getText is the
argument to the
useless function.

Figure 3.2 The flow of execution when making the useless(getText) call. The useless function 
is called with getText as an argument. In the body of the useless function is a call to the passed-in 
function, which in this case triggers the execution of the getText function (we’ve “called back” to the 
getText function).

Defines a callback 
function directly 
as an argument

Figure 3.1 The result of running the code from list-
ing 3.1



39What’s with the functional difference?

One of the most important features of JavaScript is the ability to create functions in
the code anywhere an expression can appear. In addition to making the code more
compact and easy to understand (by putting function definitions near where they’re
used), this feature can also eliminate the need to pollute the global namespace with
unnecessary names when a function isn’t going to be referenced from multiple places
within the code.

 In the preceding example of a callback, we called our own callback. But callbacks
can also be called by the browser. Think back to chapter 2, which has an example with
the following snippet:

document.body.addEventListener("mousemove", function() {
  var second = document.getElementById("second");
  addMessage(second, "Event: mousemove");
});

That’s also a callback function, one that’s defined as an event handler to the mouse-
move event, and that will be called by the browser when that event occurs.

NOTE This section introduces callbacks as functions that other code will later
“call back” at an appropriate point of execution. You’ve seen an example in
which our own code immediately calls the provided callback (the useless
function example), as well as an example in which the browser makes the call
(the mousemove example) whenever a particular event happens. It’s impor-
tant to note that, unlike us, some people believe that a callback has to be
called asynchronously, and therefore that the first example isn’t really a call-
back. We mention this just in case you stumble upon some heated discussion.

Now let’s consider a use of callbacks that will greatly simplify how we sort collections.

SORTING WITH A COMPARATOR

Almost as soon as we have a collection of data, odds are we’re going to need to sort it.
Let’s say that we have an array of numbers in a random order: 0, 3, 2, 5, 7, 4, 8, 1. That
order might be just fine, but chances are that, sooner or later, we’ll want to rearrange it. 

 Usually, implementing sorting algorithms isn’t the most trivial of programming
tasks; we have to select the best algorithm for the job at hand, implement it, adapt it to
our current need (so that the items are sorted in a particular order), and be careful
not to introduce bugs. Out of these tasks, the only one that’s application specific is the
sorting order. Luckily, all JavaScript arrays have access to the sort method that
requires us only to define a comparison algorithm that tells the sort algorithm how
the values should be ordered.

 This is where callbacks jump in! Instead of letting the sort algorithm decide what
values go before other values, we’ll provide a function that performs the comparison.
We’ll give the sort algorithm access to this function as a callback, and the algorithm
will call the callback whenever it needs to make a comparison. The callback is
expected to return a positive number if the order of the passed values should be



40 CHAPTER 3 First-class functions for the novice: definitions and arguments

reversed, a negative number if not, and zero if the values are equal; subtracting the
compared values produces the desired return value to sort the array:

var values = [0, 3, 2, 5, 7, 4, 8, 1];

values.sort(function(value1, value2){ 
  return value1 - value2; 
});

There’s no need to think about the low-level details of a sorting algorithm (or even
which sorting algorithm to choose). We provide a callback that the JavaScript engine
will call every time it needs to compare two items. 

 The functional approach allows us to create a function as a standalone entity, just as
we can any other object type, and to pass it as an argument to a method, just like any
other object type, which can accept it as a parameter, just like any other object type.
It’s that first-class status coming into play.

3.2 Fun with functions as objects
In this section, we’ll examine ways to exploit the similarities that functions share with
other object types. One capability that might be surprising is that there’s nothing stop-
ping us from attaching properties to functions:

var ninja = {};               
ninja.name = "hitsuke";       

var wieldSword = function(){};     
wieldSword.swordType = "katana";   

Let’s look at a couple of the more interesting things that can be done with this capability:

■ Storing functions in a collection allows us to easily manage related functions—for
example, callbacks that have to be invoked when something of interest occurs.

■ Memoization allows the function to remember previously computed values,
thereby improving the performance of subsequent invocations.

Let’s get cracking.

3.2.1 Storing functions

In certain cases (for example, when we need to manage collections of callbacks that
should be invoked when a certain event occurs), we want to store collections of
unique functions. When adding functions to such a collection, a challenge we can
face is determining which functions are new to the collection and should be added,
and which are already resident and shouldn’t be added. In general, when managing
callback collections, we don’t want any duplicates, because a single event would result
in multiple calls to the same callback. 

Creates an object and assigns 
a new property to it

Creates a function and 
assigns a new property to it



41Fun with functions as objects

 An obvious, but naïve, technique is to store all the functions in an array and loop
through the array, checking for duplicate functions. Unfortunately, this performs
poorly, and as a ninja, we want to make things work well, not merely work. We can use
function properties to achieve this with an appropriate level of sophistication, as
shown in the next listing.

  var store = {
    nextId: 1,      
    cache: {},              
    add: function(fn) {           
      if (!fn.id) {               
        fn.id = this.nextId++;    
        this.cache[fn.id] = fn;   
        return true;              
      }                           
    }                             
  };
  function ninja(){}
  assert(store.add(ninja),               
         "Function was safely added.");  
  assert(!store.add(ninja),              
         "But it was only added once."); 

In this listing, we create an object assigned to the variable store, in which we’ll store a
unique set of functions. This object has two data properties: one that stores a next
available id value, and one within which we’ll cache the stored functions. Functions
are added to this cache via the add() method:

add: function(fn) { 
  if (!fn.id) {
    fn.id = this.nextId++;
    this.cache[fn.id] = fn;
    return true;
  }
 ...

Within add, we first check to see whether the function has already been added to the
collection by looking for the existence of the id property. If the current function has an
id property, we assume that the function has already been processed and we ignore it.
Otherwise, we assign an id property to the function (incrementing the nextId property
along the way) and add the function as a property of the cache, using the id value as
the property name. We then return the value true, so that we can tell when the function
was added after a call to add().

Listing 3.2 Storing a collection of unique functions 

Keeps track of the next
available ID to be assigned

Creates an object to serve 
as a cache in which we’ll 
store functions

Adds functions to 
the cache, but only 
if they’re unique

Tests that all 
works as planned



42 CHAPTER 3 First-class functions for the novice: definitions and arguments

 Running the page in the browser
shows that when our tests try to add the
ninja() function twice, the function is
added only once, as shown in figure 3.3.
Chapter 9 shows an even better tech-
nique for working with collections of
unique items that utilize sets, a new type
of object available in ES6.

 Another useful trick to pull out of our
sleeves when using function properties is
giving a function the ability to modify
itself. This technique can be used to
remember previously computed values,
saving time during future computations.

3.2.2 Self-memoizing functions

As noted earlier, memoization (no, that’s not a typo) is the process of building a func-
tion that’s capable of remembering its previously computed values. In a nutshell,
whenever a function computes its result, we store that result alongside the function
arguments. In this way, when another invocation occurs for the same set of arguments,
we can return the previously stored result, instead of calculating it anew. This can
markedly increase performance by avoiding needless complex computations that
have already been performed. Memoization is particularly useful when performing
calculations for animations, searching data that doesn’t change that often, or any
time-consuming math. 

 As an example, let’s look at a simplistic (and certainly not particularly efficient)
algorithm for computing prime numbers. Although this is a simple example of a com-
plex calculation, this technique is readily applicable to other expensive computations
(such as deriving the MD5 hash for a string) that are too complex to present here.

 From the outside, the function appears to be just like any normal function, but
we’ll surreptitiously build in an answer cache in which the function will save the
answers to the computations it performs. Look over the following code.

function isPrime(value){
  if (!isPrime.answers){                 
    isPrime.answers = {};                
  }                                      

  if (isPrime.answers[value] !== undefined) { 
    return isPrime.answers[value];            
  }                                           
  
  var prime = value !== 1; // 1 is not a prime

Listing 3.3 Memoizing previously computed values

Creates the cache

Checks for cached values

Figure 3.3 By tacking a property onto a function, 
we can keep track of it. In that way, we can be sure 
that our function has been added only once.



43Fun with functions as objects

  for (var i = 2; i < value; i++) {
    if (value % i === 0) {
      prime = false;
      break;
    }
  }
  return isPrime.answers[value] = prime;  
}

assert(isPrime(5), "5 is prime!" );                   
assert(isPrime.answers[5], "The answer was cached!" );

Within the isPrime function, we start by checking whether the answers property that
we’ll use as a cache has been created, and if not, we create it: 

if (!isPrime.answers) { 
    isPrime.answers = {};
}

The creation of this initially empty object will occur only on the first call to the func-
tion; after that, the cache will exist.

 Then we check whether the result for the passed value has already been cached in
answers: 

  if (isPrime.answers[value] !== undefined) {
    return isPrime.answers[value]; 
  }    

Within this cache, we’ll store the computed answer (true or false) using the argu-
ment value as the property key. If we find a cached answer, we return it.

 If no cached value is found, we go ahead and perform the calculations needed to
determine whether the value is prime (which can be an expensive operation for larger
values) and store the result in the cache as we return it:

return isPrime.answers[value] = prime;

Our cache is a property of the function itself, so it’s kept alive for as long as the func-
tion itself is alive.

 Finally, we test that the memoization is working!

assert(isPrime(5), "5 is prime!" );
assert(isPrime.answers[5], "The answer was cached!" );

This approach has two major advantages:
■ The end user enjoys performance benefits for function calls asking for a previ-

ously computed value.
■ It happens seamlessly and behind the scenes; neither the end user nor the page

author needs to perform any special requests or do any extra initialization in
order to make it all work.

Stores the computed value

Tests that it 
all works



44 CHAPTER 3 First-class functions for the novice: definitions and arguments

But it’s not all roses and violins; its disadvantages may need to be weighed against its
advantages: 

■ Any sort of caching will certainly sacrifice memory in favor of performance.
■ Purists may consider that caching is a concern that shouldn’t be mixed with the

business logic; a function or a method should do one thing and do it well. But
don’t worry; in chapter 8, you’ll see how to tackle this complaint.

■ It’s difficult to load-test or measure the performance of an algorithm such as
this one, because our results depend on the previous inputs to the function.

Now that you’ve seen some of the practical use cases of first-class functions, let’s
explore the various ways of defining functions.

3.3 Defining functions
JavaScript functions are usually defined by using a function literal that creates a func-
tion value in the same way that, for example, a numeric literal creates a numeric value.
Remember that as first-class objects, functions are values that can be used in the lan-
guage just like other values, such as strings and numbers. And whether you realize it
or not, you’ve been doing that all along. 

 JavaScript provides a couple of ways to define functions, which can be divided into
four groups:

■ Function declarations and function expressions—The two most common, yet subtly
different ways of defining functions. Often people don’t even consider them as
separate, but as you’ll see, being aware of their differences can help us under-
stand when our functions are available for invocation:

function myFun(){ return 1;}

■ Arrow functions (often called lambda functions)—A recent, ES6 addition to the
JavaScript standard that enables us to define functions with far less syntactic
clutter. They even solve one common problem with callback functions, but
more on that later:

myArg => myArg*2

■ Function constructors—A not-so-often used way of defining functions that enables
us to dynamically construct a new function from a string that can also be
dynamically generated. This example dynamically creates a function with two
parameters, a and b, that returns the sum of those two parameters: 

new Function('a', 'b', 'return a + b')

■ Generator functions—This ES6 addition to JavaScript enable us to create func-
tions that, unlike normal functions, can be exited and reentered later in the
application execution, while keeping the values of their variables across these
re-entrances. We can define generator versions of function declarations, function
expressions, and function constructors:

function* myGen(){ yield 1; }



45Defining functions

It’s important that you understand these differences, because the way in which a func-
tion is defined significantly influences when the function is available to be invoked
and how it behaves, as well as on which object the function can be invoked. 

 In this chapter, we’ll explore function declarations, function expressions, and
arrow functions. You’ll learn their syntax and how they work, and we’ll come back to
them multiple times throughout the book to explore their specifics. Generator func-
tions, on the other hand, are rather peculiar and are significantly different from the
standard functions. We’ll revisit them in detail in chapter 6.

 That leaves us with function constructors, a JavaScript feature that we’ll skip entirely.
Although it has some interesting applications, especially when dynamically creating and
evaluating code, we consider it a corner feature of the JavaScript language. If you want
to know more about function constructors, visit http://mng.bz/ZN8e. 

 Let’s start with the simplest, most traditional ways of defining functions: function
declarations and function expressions.

3.3.1 Function declarations and function expressions

The two most common ways of defining functions in JavaScript are by using function
declarations and function expressions. These two techniques are so similar that often
we don’t even make a distinction between them, but as you’ll see in the following
chapters, subtle differences exist.

FUNCTION DECLARATIONS

The most basic way of defining a function in JavaScript is by using function declara-
tions (see figure 3.4). As you can see, every function declaration starts with a manda-
tory function keyword, followed by a mandatory function name and a list of
optional comma-separated parameter names enclosed within mandatory parenthe-
ses. The function body, which is a potentially empty list of statements, must be
enclosed within an opening and a closing brace. In addition to this form, which
every function declaration must satisfy, there’s one more condition: A function dec-
laration must be placed on its own, as a separate JavaScript statement (but can be

function myFunctionName ( myFirstArg, mySecondArg ) {

  myStatement1;
  myStatement2;
}

Mandatory
function
keyword

Function body: 
optional function
statements

Mandatory
closing brace

Mandatory
function
name  

Mandatory
opening 
parenthesis

Mandatory
closing parenthesis

Optional comma-
separated list of
parameter names

Mandatory
opening
brace

Figure 3.4 The function declaration stands on its own, as a separate block of JavaScript code! 
(It can be contained within other functions.)

http://mng.bz/ZN8e


46 CHAPTER 3 First-class functions for the novice: definitions and arguments

contained within another function or a block of code; you’ll see exactly what we
mean by that in the next section). 

 A couple of function declaration examples are shown in the following listing.

function samurai() {           
  return "samurai here";       
}

function ninja() {             

  function hiddenNinja() {           
    return "ninja here";            
  }                                  

  return hiddenNinja();
} 

If you take a closer look, you’ll see something that you might not be accustomed to, if
you haven’t had much exposure to functional languages: a function defined within
another function!

function ninja() { 
  function hiddenNinja() { 
    return "ninja here";
  }
  return hiddenNinja(); 
} 

In JavaScript, this is perfectly normal, and we’ve used it here to again emphasize the
importance of functions in JavaScript. 

NOTE Having functions contained in other functions might raise some tricky
questions regarding scope and identifier resolution, but save them for now,
because we’ll revisit this case in detail in chapter 5. 

FUNCTION EXPRESSIONS

As we’ve already mentioned multiple times, functions in JavaScript are first-class
objects, which, among other things, means that they can be created via literals,
assigned to variables and properties, and used as arguments and return values to and
from other functions. Because functions are such fundamental constructs, JavaScript
enables us to treat them as any other expressions. So, just as we can use number liter-
als, for example

var a = 3;
myFunction(4);

Listing 3.4 Examples of function declarations

Defines function samurai 
in the global code

Defines function ninja 
in the global code

Defines function 
hiddenNinja within 
the ninja function



47Defining functions

so too we can use function literals, in the same locations

var a = function() {};
myFunction(function(){});

Such functions that are always a part of another statement (for example, as the right
side of an assignment expression, or as an argument to another function) are called
function expressions. Function expressions are great because they allow us to define
functions exactly where we need them, in the process making our code easier to
understand.

 The following listing shows the differences between function declarations and
function expressions.

function myFunctionDeclaration(){
  function innerFunction() {}            
}

var myFunc = function(){};
myFunc(function(){            
  return function(){};
});

(function namedFunctionExpression () { 
})();                                  

+function(){}();    
-function(){}();    
!function(){}();    
~function(){}();    

This example code begins with a standard function declaration that contains another
inner function declaration:

function myFunctionDeclaration(){ 
  function innerFunction() {} 
}

Here you can see how function declarations are separate statements of JavaScript
code, but can be contained within the body of other functions. 

 In contrast are function expressions, which are always a part of another statement.
They’re placed on the expression level, as the right side of a variable declaration (or
an assignment): 

var myFunc = function(){}; 

Listing 3.5 Function declarations and function expressions

Standalone function declaration

Inner function 
declaration

Function
expression as a

part of a variable
declaration
assignment

Function expression 
as an argument of a 
function call

Function
expression

as a function
return value

Named function expression as 
part of a function call that will 
be immediately invoked

Function expressions 
that will be immediately 
invoked, as arguments 
to unary operators



48 CHAPTER 3 First-class functions for the novice: definitions and arguments

Or as an argument to another function call, or as a function return value:

myFunc(function() {
  return function(){}; 
});

Besides the position in code where they’re placed, there’s one more difference
between function declarations and function expressions: For function declarations,
the function name is mandatory, whereas for function expressions it’s completely
optional. 

 Function declarations must have a name defined because they stand on their own.
Because one of the basic requirements for a function is that it has to be invokable, we
have to have a way to reference it, and the only way to do this is through its name.

 Function expressions, on the other hand, are parts of other JavaScript expressions,
so we have alternative ways to invoke them. For example, if a function expression is
assigned to a variable, we can use that variable to invoke the function: 

var doNothing = function(){};
doNothing();

Or, if it’s an argument to another function, we can invoke it within that function
through the matching parameter name:

function doSomething(action) { 
  action();
}

IMMEDIATE FUNCTIONS

Function expressions can even be placed in positions where they look a bit weird at
first, such as at a location where we’d normally expect a function identifier. Let’s stop
and take a closer look at that construct (see figure 3.5).

myFunctionName(3); (function(){})(3);

An expression that evaluates 
to a function, in this case
a function expression

    Standard function call Immediate call to a 
function expression

An expression that evaluates 
to a function, in this case
an identifier

Figure 3.5 A comparison of a standard function call and an immediate call to 
a function expression



49Defining functions

When we want to make a function call, we use an expression that evaluates to a func-
tion, followed by a pair of function call parentheses, which might contain arguments.
In the most basic function call, we put an identifier that evaluates to a function, as on
the left side of figure 3.5. But the expression to the left of the calling parenthesis
doesn’t have to be a simple identifier; it can be any expression that evaluates to a func-
tion. For example, a simple way to specify an expression that evaluates to a function is
to use a function expression. So on the right side of figure 3.5, we first create a func-
tion, and then we immediately invoke that newly created function. This, by the way, is
called an immediately invoked function expression (IIFE), or immediate function for short,
and is an important concept in JavaScript development because it allows us to mimic
modules in JavaScript. We’ll focus on this application of IIFEs in chapter 11.

The last four expressions in listing 3.5 are variations of the same theme of immedi-
ately invoked function expressions often found in various JavaScript libraries:

+function(){}();
-function(){}();
!function(){}();
~function(){}();

This time, instead of using parentheses around the function expressions to differentiate
them from function declarations, we can use unary operators: +, -, !, and ~. We do this
to signal to the JavaScript engine that it’s dealing with expressions and not statements.
Notice how the results of applying these unary operators aren’t stored anywhere; from
a computational perspective, they don’t really matter; only the calls to our IIFEs matter.

Parentheses around function expressions
One more thing might be nagging you about the way we’ve immediately called our func-
tion expression: the parentheses around the function expression itself. Why do we
even need those? The reason is purely syntactical. The JavaScript parser has to be
able to easily differentiate between function declarations and function expressions.
If we leave out the parentheses around the function expression, and put our immediate
call as a separate statement function(){}(3), the JavaScript parser will start pro-
cessing it, and will conclude, because it’s a separate statement starting with the key-
word function, that it’s dealing with a function declaration. Because every function
declaration has to have a name (and here we didn’t specify one), an error will be thrown.
To avoid this, we place the function expression within parentheses, signaling to the
JavaScript parser that it’s dealing with an expression, and not a statement. 

There’s also an alternative, even simpler way (yet, strangely, a little less often used)
of achieving the same goal: (function(){}(3)). By wrapping the immediate func-
tion definition and call within parentheses, you can also notify the JavaScript parser
that it’s dealing with an expression.



50 CHAPTER 3 First-class functions for the novice: definitions and arguments

 Now that we’ve studied the ins and outs of the two most basic ways of defining
functions in JavaScript (function declarations and function expressions), let’s explore
a new addition to the JavaScript standard: arrow functions.

3.3.2 Arrow functions

Because in our JavaScript we use a lot of functions, it makes sense to add some syntac-
tic sugar that enables us to create functions in a shorter, more succinct way, thus mak-
ing our lives as developers more pleasant.

 In a lot of ways, arrow functions are a simplification of function expressions. Let’s
revisit our sorting example from the first section of this chapter:

var values = [0, 3, 2, 5, 7, 4, 8, 1];
values.sort(function(value1,value2){ 
  return value1 – value2; 
});

This example uses a callback function expression sent to the sort method of the array
object; this callback will be invoked by the JavaScript engine to sort the values of the
array in descending order.

 Now let’s see how to do the exact same thing with arrow functions:

var values = [0, 3, 2, 5, 7, 4, 8, 1];
values.sort((value1,value2) => value1 – value2);

See how much more succinct this is? 
 There’s no clutter caused by the function keyword, the braces, or the return

statement. In a much simpler way than a function expression can, the arrow func-
tion states: here’s a function that takes two arguments and returns their difference.
Notice the introduction of a new operator, =>, the so-called fat-arrow operator (an
equals sign immediately followed by a greater-than sign), that’s at the core of defin-
ing an arrow function.

 Now let’s deconstruct the syntax of an arrow function, starting with the simplest
possible way:

param => expression

This arrow function takes a parameter and returns the value of an expression. We can
use this syntax as shown in the following listing.

NOTE Arrow functions are an ES6 addition to the JavaScript stan-
dard (for browser compatibility, see http://mng.bz/8bnH). 

http://mng.bz/8bnH


51Defining functions

var greet = name => "Greetings " + name;   
assert(greet("Oishi") === "Greetings Oishi", "Oishi is properly greeted"); 

var anotherGreet = function(name){     
  return "Greetings " + name;          
};                                     
assert(anotherGreet("Oishi") === "Greetings Oishi",  
       "Again, Oishi is properly greeted"); 

Take a while to appreciate how arrow functions make code more succinct, without sac-
rificing clarity. That’s the simplest version of the arrow function syntax, but in general,
the arrow function can be defined in two ways, as shown in figure 3.6.

 As you can see, the arrow function definition starts with an optional comma-
separated list of parameter names. If there are no parameters, or more than one
parameter, this list must be enclosed within parentheses. But if we have only a single
parameter, the parentheses are optional. This list of parameters is followed by a
mandatory fat-arrow operator, which tells us and the JavaScript engine that we’re
dealing with an arrow function. 

 After the fat-arrow operator, we have two options. If it’s a simple function, we put
an expression there (a mathematical operation, another function invocation, what-
ever), and the result of the function invocation will be the value of that expression.
For instance, our first arrow function example has the following arrow function:

var greet = name => "Greetings " + name;

Listing 3.6 Comparing an arrow function and a function expression

Defines an arrow function

Defines a function 
expression

(param1, param2) => expression
                    {
                      myStatement1;
                      myStatement2;
                    }

Mandatory parentheses
for 0 or more than 1
parameter; optional
for 1 parameter. 

Mandatory
fat-arrow
operator (equals
and greater than).

If the body of the arrow function
is an expression, the return
value of the function will be
the value of that expression.

If the body of the arrow function
is a block of code, the return
value is as it would be in a standard
function (undefined if there is no
return statement, and the value of
the return expression if there is).

Optional comma-separated
list of parameter names.

Figure 3.6 The syntax of an arrow function



52 CHAPTER 3 First-class functions for the novice: definitions and arguments

The return value of the function is a concatenation of the string "Greetings " with the
value of the name parameter.

 In other cases, when our arrow functions aren’t that simple and require more
code, we can include a block of code after the arrow operator. For example:

var greet = name => {
  var helloString = 'Greetings ';
  return helloString + name;
};

In this case, the return value of the arrow function behaves as in a standard function.
If there’s no return statement, the result of the function invocation will be undefined,
and if there is, the result will be the value of the return expression.

 We’ll revisit arrow functions multiple times throughout this book. Among other
things, we’ll present additional features of arrow functions that will help us evade sub-
tle bugs that can occur with more standard functions. 

 Arrow functions, like all other functions, can receive arguments in order to use
them to perform their task. Let’s see what happens with the values that we pass to a
function.

3.4 Arguments and function parameters
When discussing functions, we often use the terms argument and parameter almost inter-
changeably, as if they were more or less the same thing. But now, let’s be more formal:

■ A parameter is a variable that we list as part of a function definition.
■ An argument is a value that we pass to the function when we invoke it. 

Figure 3.7 illustrates the difference. 

function skulk(ninja) {
return performAction(ninja, "skulking");

}

var performAction = function (person, action){
return person + " - " + action;

};

var rule = daimyo => performAction(daimyo, "ruling");

skulk("Hattori");
rule("Oda Nobunaga");

Function
parameter

Function
arguments

Function
parameters

Function
arguments

Figure 3.7 The difference between function 
parameters and function arguments



53Arguments and function parameters

As you can see, a function parameter is specified with the definition of the function,
and all types of functions can have parameters:

■ Function declarations (the ninja parameter to the skulk function)
■ Function expressions (the person and action parameters to the perform-

Action function)
■ Arrow functions (the daimyo parameter) 

Arguments, on the other hand, are linked with the invocation of the function; they’re
values passed to a function at the time of its invocation: 

■ The string Hattori is passed as an argument to the skulk function.
■ The string Oda Nobunaga is passed as an argument to the rule function.
■ The parameter ninja of the skulk function is passed as an argument to the

performAction function.

When a list of arguments is supplied as a part of a function invocation, these argu-
ments are assigned to the parameters in the function definition in the order specified.
The first argument gets assigned to the first parameter, the second argument to the
second parameter, and so on.

 If we have a different number of arguments than parameters, no error is raised.
JavaScript is perfectly fine with this situation and deals with it in the following way. If
more arguments are supplied than there are parameters, the “excess” arguments
aren’t assigned to parameter names. For example, see figure 3.8.

 Figure 3.8 shows that if we were to call the practice function with prac-
tice("Yoshi", "sword", "shadow sword", "katana"), the arguments Yoshi, sword,
and shadow sword would be assigned to the parameters ninja, weapon, and technique,

practice ("Yoshi", "sword", "shadow sword", "katana");

function practice (ninja, weapon, technique) { … }

practice ("Yoshi");

Argument "Yoshi" is assigned to parameter ninja.
Argument "sword" is assigned to parameter weapon.
Argument "shadow sword" is assigned to parameter technique.

Excess arguments
aren’t assigned to
parameters.

Argument "Yoshi" is assigned to parameter ninja.
undefined is assigned to parameter weapon.
undefined is assigned to parameter technique.

Figure 3.8 Arguments are assigned to function parameters in the order specified. Ex-
cess arguments aren’t assigned to any parameters.



54 CHAPTER 3 First-class functions for the novice: definitions and arguments

respectively. The argument katana is an excess argument, and wouldn’t be assigned to
any parameter. In the next chapter, you’ll see that even though some arguments aren’t
assigned to parameter names, we still have a way to access them.

 On the other hand, if we have more parameters than arguments, the parameters
that have no corresponding argument are set to undefined. For example, if we were
to make the call practice("Yoshi"), the parameter ninja would be assigned the
value Yoshi, while the parameters weapon and technique would be set to undefined.

 Dealing with function arguments and parameters is as old as JavaScript itself, but
now let’s explore two new features of JavaScript bestowed by ES6: rest and default
parameters.

3.4.1 Rest parameters

For our next example, we’ll build a function that multiplies the first argument with
the largest of the remaining arguments. This probably isn’t something that’s particu-
larly applicable in our applications, but it’s an example of yet more techniques for
dealing with arguments within a function.

 This might seem simple enough: We’ll grab the first argument and multiply it by
the biggest of the remaining argument values. In the old versions of JavaScript, this
would require some workarounds (which we’ll look at in the next chapter). Luckily, in
ES6, we don’t need to jump through any hoops. We can use rest parameters, as shown in
the following listing.

  function multiMax(first, ...remainingNumbers){     
    var sorted = remainingNumbers.sort(function(a, b){
       return b – a;              
    });
    return first * sorted[0];
  }
  assert(multiMax(3, 1, 2, 3) == 9,        
        "3*3=9 (First arg, by largest.)"); 

By prefixing the last-named argument of a function with an ellipsis (...), we turn it into
an array called the rest parameters, which contains the remaining passed-in arguments. 

function multiMax(first, ...remainingNumbers){
  ...
}

NOTE Rest parameters are added by the ES6 standard (for browser
compatibility, see http://mng.bz/3go1).

Listing 3.7 Using rest parameters

Rest parameters are 
prefixed with …

Sort the remaining 
numbers, descending.

The function is called just 
like any other function.

http://mng.bz/3go1


55Arguments and function parameters

For example, in this case, the multiMax function is called with four arguments: multi-
Max(3, 1, 2, 3). In the body of the multiMax function, the value of the first argument, 3,
is assigned to the first multiMax function parameter, first. Because the second parameter
of the function is the rest parameter, all remaining arguments (1, 2, 3) are placed in a
new array: remainingNumbers. We then obtain the biggest number by sorting the array in
descending order (notice how it’s simple to change the sorting order) and picking the
largest number, which is in the first place of our sorted array. (This is far from the most
efficient way of determining the largest number, but why not take advantage of the skills
we gained earlier in the chapter?)

NOTE Only the last function parameter can be a rest parameter. Trying to
put the ellipsis in front of any parameter that isn’t last will bring us only sor-
row, in the form of SyntaxError: parameter after rest parameter.

In the next section, we’ll continue adding to our JavaScript tool belt with additional
ES6 functionality: default parameters. 

3.4.2 Default parameters

Many web UI components (especially jQuery plugins) can be configured. For exam-
ple, if we’re developing a slider component, we might want to give our users an option
to specify a timer interval after which one item is replaced with another, as well as an
animation that will be used as the change occurs. At the same time, maybe some users
don’t care and are happy to use whatever settings we offer. Default parameters are
ideal for such situations! 

 Our little example with slider component settings is just a specific case of a situa-
tion in which almost all function calls use the same value for a particular parameter
(notice the emphasis on almost). Consider a simpler case in which most of our ninjas
are used to skulking around, but not Yagyu, who cares only about simple sneaking:

function  performAction(ninja, action) {
  return ninja + " " + action;
}
performAction("Fuma", "skulking");
performAction("Yoshi", "skulking");
performAction("Hattori", "skulking");
performAction("Yagyu", "sneaking");

Doesn’t it seem tedious to always have to repeat the same argument, skulking, simply
because Yagyu is obstinate and refuses to act like a proper ninja?

NOTE Default parameters are added by the ES6 standard (for
browser compatibility, see http://mng.bz/wI8w).

http://mng.bz/wI8w


56 CHAPTER 3 First-class functions for the novice: definitions and arguments

 In other programming languages, this problem is most often solved with function
overloading (specifying additional functions with the same name but a different set of
parameters). Unfortunately, JavaScript doesn’t support function overloading, so when
faced with this situation in the past, developers often resorted to something like the
following listing.

  function performAction(ninja, action){
     action = typeof action === "undefined" ? "skulking" : action;  
     return ninja + " " + action;
  }
  
  assert(performAction("Fuma") === "Fuma skulking",      
         "The default value is used for Fuma");          

  assert(performAction("Yoshi") === "Yoshi skulking",    
         "The default value is used for Yoshi");         
  assert(performAction("Hattori") === "Hattori skulking",
         "The default value is used for Hattori");       

  assert(performAction("Yagyu", "sneaking") === "Yagyu sneaking", 
         "Yagyu can do whatever he pleases, even sneak!");        

Here we define a performAction function, which checks whether the value of the
action parameter is undefined (by using the typeof operator), and if it is, the func-
tion sets the value of the action variable to skulking. If the action parameter is sent
through a function call (it’s not undefined), we keep the value.

NOTE The typeof operator returns a string indicating the type of the oper-
and. If the operand isn’t defined (for example, if we haven’t supplied a
matching argument for a function parameter), the return value is the string
undefined. 

This is a commonly occurring pattern that’s tedious to write, so the ES6 standard has
added support for default parameters, as shown in the following listing.

Listing 3.8 Tackling default parameters before ES6

If the action parameter is undefined, we
use a default value, skulking, and if it’s

defined, we keep the passed-in value.

We haven’t passed in a 
second argument, the 
value of the action 
parameter; after executing 
the first function, the body 
statement will default to 
skulking.

Pass a string as the value of the
action parameter; that value will be
used throughout the function body.



57Arguments and function parameters

  function performAction(ninja, action = "skulking"){ 
     return ninja + " " + action;
  }

   assert(performAction("Fuma") === "Fuma skulking",      
         "The default value is used for Fuma");           

   assert(performAction("Yoshi") === "Yoshi skulking",    
         "The default value is used for Yoshi");          

   assert(performAction("Hattori") === "Hattori skulking",
         "The default value is used for Hattori");        

   assert(performAction("Yagyu", "sneaking") === "Yagyu sneaking",
         "Yagyu can do whatever he pleases, even sneak!");       

Here you can see the syntax of default function parameters in JavaScript. To create a
default parameter, we assign a value to a function parameter: 

  function performAction(ninja, action = "skulking"){
     return ninja + " " + action;
  }

Then, when we make a function call and the matching argument value is left out, as
with Fuma, Yoshi, and Hattori, the default value (in this case, skulking), is used:

   assert(performAction("Fuma") === "Fuma skulking",
         "The default value is used for Fuma");

   assert(performAction("Yoshi") === "Yoshi skulking",
         "The default value is used for Yoshi");

   assert(performAction("Hattori") === "Hattori skulking",
         "The default value is used for Hattori");

If, on the other hand, we specify the value, the default value is overridden:

  assert(performAction("Yagyu", "sneaking") === "Yagyu sneaking",
         "Yagyu can do whatever he pleases, even sneak!");

We can assign any values to default parameters: simple, primitive values such as numbers
or strings, but also complex types such as objects, arrays, and even functions. The values
are evaluated on each function call, from left to right, and when assigning values to later
default parameters, we can reference previous parameters, as in the following listing.

Listing 3.9 Tackling default parameters in ES6

In ES6, it’s possible 
to assign a value to a 
function parameter.

If the value isn’t 
passed in, the default 
value is used.

The passed value is used.



58 CHAPTER 3 First-class functions for the novice: definitions and arguments

function performAction(ninja, action = "skulking", 
                       message = ninja + " " + action) {
  return message;
}

assert(performAction("Yoshi") === "Yoshi skulking", "Yoshi is skulking");

Even though JavaScript allows you to do something like this, we urge caution. In our
opinion, this doesn’t enhance code readability and should be avoided, whenever pos-
sible. But moderate use of default parameters—as a means of avoiding null values, or
as relatively simple flags that configure the behaviors of our functions—can lead to
much simpler and more elegant code.

3.5 Summary
■ Writing sophisticated code hinges upon learning JavaScript as a functional

language.
■ Functions are first-class objects that are treated just like any other objects within

JavaScript. Similar to any other object type, they can be
– Created via literals
– Assigned to variables or properties
– Passed as parameters
– Returned as function results
– Assigned properties and methods

■ Callback functions are functions that other code will later “call back,” and are
often used, especially with event handling.

■ We can take advantage of the fact that functions can have properties and that
those properties can be used to store any information; for example
– We can store functions in function properties for later reference and invocation.
– We can use function properties to create a cache (memoization), thereby

avoiding unnecessary computations.
■ There are different types of functions: function declarations, function expres-

sions, arrow functions, and function generators.
■ Function declarations and function expressions are the two most common

types of functions. Function declarations must have a name, and must be
placed as separate statements in our code. Function expressions don’t have to
be named, but do have to be a part of another code statement.

■ Arrow functions are a new addition to JavaScript, enabling us to define func-
tions in a much more succinct way than with standard functions.

■ A parameter is a variable that we list as a part of a function definition, whereas
an argument is a value that we pass to the function when we invoke it.

Listing 3.10 Referencing previous default parameters

We can place arbitrary 
expressions as default 
parameter values, in 
the process even 
referencing previous 
function parameters.



59Exercises

■ A function’s parameter list and its argument list can be different lengths:
– Unassigned parameters evaluate as undefined.
– Extra arguments aren’t bound to parameter names.

■ Rest parameters and default parameters are new additions to JavaScript:
– Rest parameters enable us to reference the remaining arguments that don’t

have matching parameter names.
– Default parameters enable us to specify default parameter values that will be

used if no value is supplied during function invocation.

3.6 Exercises
1 In the following code snippet, which functions are callback functions?

numbers.sort(function sortAsc(a,b){
  return a – b;
});

function ninja(){}
ninja();

var myButton = document.getElementById("myButton");
myButton.addEventListener("click", function handleClick(){
  alert("Clicked");
});

2 In the following snippet, categorize functions according to their type (function
declaration, function expression, or arrow function).

numbers.sort(function sortAsc(a,b){ 
  return a – b;
});

numbers.sort((a,b) => b – a);

(function(){})();

function outer(){
  function inner(){}
  return inner;
}

(function(){}());

(()=>"Yoshi")();

3 After executing the following code snippet, what are the values of variables
samurai and ninja?

var samurai = (() => "Tomoe")();
var ninja = (() => {"Yoshi"})();



60 CHAPTER 3 First-class functions for the novice: definitions and arguments

4 Within the body of the test function, what are the values of parameters a, b,
and c for the two function calls?

function test(a, b, ...c){ /*a, b, c*/}

test(1, 2, 3, 4, 5);
test();

5 After executing the following code snippet, what are the values of the message1
and message2 variables?

function getNinjaWieldingWeapon(ninja, weapon = "katana"){
  return ninja + " " + katana;
}

var message1 = getNinjaWieldingWeapon("Yoshi");
var message2 = getNinjaWieldingWeapon("Yoshi", "wakizashi");



61

Functions for the journeyman:
 understanding function

invocation

In the previous chapter, you saw that JavaScript is a programming language with sig-
nificant functionally oriented characteristics. We explored the differences between
function call arguments and function parameters, and how the values are transferred
from call arguments to function parameters. 

 This chapter continues in a similar vein, by first discussing something that we
kept from you in the previous chapter: the implicit function parameters this and
arguments. These are silently passed to functions and can be accessed just like any
other explicitly named function parameter within the function’s body.

This chapter covers
■ Two implicit function parameters: arguments 

and this
■ Ways of invoking functions
■ Dealing with problems of function contexts



62 CHAPTER 4 Functions for the journeyman: understanding function invocation

 The this parameter represents the function context, the object on which our
function is invoked, whereas the arguments parameter represents all arguments that
are passed in through a function call. Both parameters are vital in JavaScript code.
The this parameter is one of the fundamental ingredients of object-oriented
JavaScript, and the arguments parameter allows us to be creative with the arguments
that are accepted by our functions. For this reason, we’ll explore some of the common
pitfalls related to these implicit arguments.

 We’ll then continue by exploring ways of invoking functions in JavaScript. The way
in which we invoke a function has a great influence on how the implicit function
parameters are determined.

 Finally, we’ll conclude the chapter by learning about common gotchas related to
the function context, the this parameter. Without further ado, let’s start exploring!

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Why is the this parameter known as the function context? 
What’s the difference between a function and a method? 
What would happen if a constructor function explicitly

returned an object?
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 Using implicit function parameters
In the preceding chapter, we explored the differences between function parameters
(variables listed as part of a function definition) and function arguments (values passed
to the function when we invoke it). But we didn’t mention that in addition to the
parameters that we’ve explicitly stated in the function definition, function invocations
are usually passed two implicit parameters: arguments and this.

 By implicit, we mean that these parameters aren’t explicitly listed in the function
signature, but are silently passed to the function and accessible within the function.
They can be referenced within the function just like any other explicitly named
parameter. Let’s take a look at each of these implicit parameters in turn.

4.1.1 The arguments parameter 

The arguments parameter is a collection of all arguments passed to a function. It’s
useful because it allows us to access all function arguments, regardless of whether the
matching parameter is explicitly defined. This allows us to implement function over-
loading, a feature that JavaScript doesn’t natively support, and variadic functions that
accept a variable number of arguments. To be honest, with rest parameters, intro-
duced in the preceding chapter, the need for the arguments parameter has been
greatly reduced. Still, it’s important to understand how the arguments parameter
works, because you’re bound to run into it when dealing with legacy code.

Do you know? 



63Using implicit function parameters

 The arguments object has a property named length that indicates the exact num-
ber of arguments. The individual argument values can be obtained by using array
indexing notation; for example, arguments[2] would fetch the third parameter. Take
a look at the following listing.

function whatever(a, b, c){                  
  
  assert(a === 1, 'The value of a is 1');    
  assert(b === 2, 'The value of b is 2');    
  assert(c === 3, 'The value of c is 3');    

  assert(arguments.length === 5,             
    'We’ve passed in 5 parameters');         

  assert(arguments[0] === a,                 
    'The first argument is assigned to a');  
  assert(arguments[1] === b,                 
    'The second argument is assigned to b'); 
  assert(arguments[2] === c,                 
    'The third argument is assigned to c');  

  assert(arguments[3] === 4,                 
    'We can access the fourth argument');    
  assert(arguments[4] === 5,                 
    'We can access the fifth argument');     
}

whatever(1,2,3,4,5);

Here we have a whatever function that gets called with five arguments, whatever
(1,2,3,4,5), even though it has only three declared parameters, a, b, c: 

function whatever(a, b, c){
  ...
}Listing 4.15 Binding a specific context to an event handler

We can access the first three arguments through their respective function parameters,
a, b, and c: 

assert(a === 1, 'The value of a is 1');
assert(b === 2, 'The value of b is 2');
assert(c === 3, 'The value of c is 3');

We can also check how many arguments in total were passed to the function by using
the arguments.length property. 

 The arguments parameter can also be used to access each individual argument
through array notation. It’s important to note that this also includes the excess argu-
ments that aren’t associated with any function parameters:

Listing 4.1 Using the arguments parameter

Declares a function with three 
parameters: a, b, and c

Tests for correct values

In all, the function is 
passed five arguments.

Checks that the first 
three arguments match 
the function parameters

Checks that the excess arguments 
can be accessed through the 
arguments parameter

Calls a function with five arguments



64 CHAPTER 4 Functions for the journeyman: understanding function invocation

assert(arguments[0] === a, 'The first argument is assigned to a');
assert(arguments[1] === b, 'The second argument is assigned to b');
assert(arguments[2] === c, 'The third argument is assigned to c');
assert(arguments[3] === 4, 'We can access the fourth argument');
assert(arguments[4] === 5, 'We can access the fifth argument');

Throughout this section, we go out of our way to avoid calling the arguments parame-
ter an array. You may be fooled into thinking that it’s an array; after all, it has a length
parameter and its entries can be fetched using array notation. But it’s not a JavaScript
array, and if you try to use array methods on arguments (for example, the sort
method used in the previous chapter), you’ll find nothing but heartbreak and disap-
pointment. Just think of arguments as an array-like construct, and exhibit restraint in
its use.

 As we’ve already mentioned, the main point of the arguments object is to allow
us to access all arguments that were passed to the function, regardless of whether
a particular argument is associated with a function parameter. Let’s see how to do
this by implementing a function that can calculate the sum of an arbitrary number
of arguments.

    function sum() {
      var sum = 0;
      for(var i = 0; i < arguments.length; i++){  
        sum += arguments[i];                      
      }                                           
      return sum;
    }

    assert(sum(1, 2) === 3, "We can add two numbers");        
    assert(sum(1, 2, 3) === 6, "We can add three numbers");   
    assert(sum(1, 2, 3, 4) === 10, "We can add four numbers");

Here we first define a sum function that doesn’t explicitly list any parameters. Regard-
less of this, we can still access all function arguments through the arguments object.
We iterate through all the arguments and calculate their sum.

 Now comes the payoff. We can call the function with any number of arguments, so
we test a couple of cases to see if everything works. This is the true power of the argu-
ments object. It allows us to write more versatile and flexible functions that can easily
deal with different situations.

NOTE We mentioned earlier that in a lot of cases we can use the rest param-
eter instead of the arguments parameter. The rest parameter is a real array,
which means that we can use all our favorite array methods on it. This gives it
a certain advantage over the arguments object. As an exercise, rewrite listing 4.2
to use the rest parameter instead of the arguments parameter.

Listing 4.2 Using the arguments object to perform operations on all function arguments

A function without any explicitly defined parameters

Iterates through all arguments 
passed, and accesses individual 
items through index notation

Calls the function 
with any number 
of arguments



65Using implicit function parameters

Now that we understand how the arguments object works, let’s explore some of its
gotchas. 

ARGUMENTS OBJECT AS AN ALIAS TO FUNCTION PARAMETERS

The arguments parameter has one curious feature: It aliases function parameters. If
we set a new value to, for example, arguments[0], the value of the first parameter will
also be changed. Take a look at the following listing.

function infiltrate(person) {
  assert(person === 'gardener',         
    'The person is a gardener');        
  assert(arguments[0] === 'gardener',   
    'The first argument is a gardener');

  arguments[0] = 'ninja';                

  assert(person === 'ninja',
    'The person is a ninja now');        
  assert(arguments[0] === 'ninja',       
    'The first argument is a ninja');    

  person = 'gardener';                        

  assert(person === 'gardener',
    'The person is a gardener once more');    
  assert(arguments[0] === 'gardener',         
    'The first argument is a gardener again');
}

infiltrate("gardener"); 

You can see how the arguments object is an alias for the function parameters. We
define a function, infiltrate, that takes a single parameter, person, and we invoke it
with the argument gardener. We can access the value gardener through the function
parameter person and through the arguments object:

assert(person === 'gardener', 'The person is a gardener'); 
assert(arguments[0] === 'gardener', 'The first argument is a gardener');

Because the arguments object is an alias for the function parameters, if we change the
arguments object, the change is also reflected in the matching function parameter:

arguments[0] = 'ninja';

assert(person === 'ninja', 'The person is a ninja now');
assert(arguments[0] === 'ninja', 'The first argument is a ninja');

The same holds true in the other direction. If we change a parameter, the change can
be observed in both the parameter and the arguments object:

Listing 4.3 The arguments object aliases function parameters

The person parameter has 
the value “gardener” sent 
as a first argument.

Changing the arguments 
object will also change 
the matching parameter.

The alias works 
both ways.



66 CHAPTER 4 Functions for the journeyman: understanding function invocation

person = 'gardener';

assert(person === 'gardener',
    'The person is a gardener once more');
assert(arguments[0] === 'gardener',
    'The first argument is a gardener again');

AVOIDING ALIASES

The concept of aliasing function parameters through the arguments object can be
confusing, so JavaScript provides a way to opt out of it by using strict mode.

As always, let’s take a look at a simple example.

"use strict";          

function infiltrate(person){
  assert(person === 'gardener',          
    'The person is a gardener');         
  assert(arguments[0] === 'gardener',    
    'The first argument is a gardener'); 

  arguments[0] = 'ninja';             

  assert(arguments[0] === 'ninja',         
    'The first argument is now a ninja');  

  assert(person === 'gardener',            
    'The person is still a gardener');     
}

infiltrate("gardener");                             

Here we start by placing the simple string use strict as the first line of code. This
tells the JavaScript engine that we want to execute the following code in strict mode.
In this example, strict mode changes the semantics of our program in a way that the
person parameter and the first argument start with the same value:

  assert(person === 'gardener', 'The person is a gardener');
  assert(arguments[0] === 'gardener', 'The first argument is a gardener');

Listing 4.4 Using strict mode to avoid arguments aliasing

Strict mode
Strict mode is an ES5 addition to JavaScript that changes the behavior of JavaScript
engines so that errors are thrown instead of silently picked up. The behavior of some
language features is changed, and some unsafe language features are even com-
pletely banned (more on this later). One of the things that strict mode changes is that
it disables arguments aliasing.

Enables strict mode

The person argument and 
the first argument start 
with the same value.

Changes the first argument

The first argument 
is changed.

The value of the person 
parameter hasn’t changed.



67Invoking functions

But, unlike in nonstrict mode, this time around the arguments object doesn’t alias the
parameters. If we change the value of the first argument, arguments[0] = 'ninja',
the first argument is changed, but the person parameter isn’t:

assert(arguments[0] === 'ninja', 'The first argument is now a ninja');
assert(person === 'gardener', 'The person is still a gardener');

We’ll revisit the arguments object later in this book, but for now, let’s focus on another
implicit parameter: this, which is in some ways even more interesting.

4.1.2 The this parameter: introducing the function context

When a function is invoked, in addition to the parameters that represent the explicit
arguments provided in the function call, an implicit parameter named this is passed
to the function. The this parameter, a vital ingredient in object-oriented JavaScript,
refers to an object that’s associated with the function invocation. For this reason, it’s
often termed the function context.

 The function context is a notion that those coming from object-oriented lan-
guages such as Java might think that they understand. In such languages, this usually
points to an instance of the class within which the method is defined. 

 But beware! As we’ll soon see, in JavaScript, invoking a function as a method is
only one way that a function can be invoked. And as it turns out, what the this
parameter points to isn’t (as in Java or C#) defined only by how and where the func-
tion is defined; it can also be heavily influenced by how the function is invoked.
Because understanding the exact nature of the this parameter is one of the most
important pillars of object-oriented JavaScript, we’re about to look at various ways of
invoking functions. You’ll see that one of the primary differences between them is
how the value of this is determined. And then we’ll take a long and hard look at
function contexts again in several following chapters, so don’t worry if things don’t
gel right away.

 Now let’s see, in great detail, how functions can be invoked.

4.2 Invoking functions
We’ve all called JavaScript functions, but have you ever stopped to wonder what really
happens when a function is called? As it turns out, the manner in which a function is
invoked has a huge impact on how the code within it operates, primarily in how the
this parameter, the function context, is established. This difference is much more
important than it might seem at first. We’ll examine it within this section and exploit
it throughout the rest of this book to help elevate our code to the ninja level.

 We can invoke a function in four ways, each with its own nuances:

■ As a function—skulk(), in which the function is invoked in a straightforward
manner

■ As a method—ninja.skulk(), which ties the invocation to an object, enabling
object-oriented programming



68 CHAPTER 4 Functions for the journeyman: understanding function invocation

■ As a constructor—new Ninja(), in which a new object is brought into being
■ Via the function’s apply or call methods—skulk.call(ninja)or skulk.apply(ninja)

Here are examples:

function skulk(name) {}
function Ninja(name) {}

skulk('Hattori');                          
(function(who){ return who; })('Hattori'); 

var ninja = {
  skulk: function(){}
};

ninja.skulk('Hattori');      

ninja = new Ninja('Hattori');      

skulk.call(ninja, 'Hattori');      

skulk.apply(ninja, ['Hattori']);   

For all but the call and apply approaches, the function invocation operator is a set of
parentheses following any expression that evaluates to a function reference. 

 Let’s start our exploration with the simplest form, invoking functions as functions.

4.2.1 Invocation as a function

Invocation as a function? Well, of course functions are invoked as functions. How silly
to think otherwise. But in reality, we say that a function is invoked “as a function” to
distinguish it from the other invocation mechanisms: methods, constructors, and
apply/call. If a function isn’t invoked as a method, as a constructor, or via apply or
call, it’s invoked as a function.

 This type of invocation occurs when a function is invoked using the () operator,
and the expression to which the () operator is applied doesn’t reference the function
as a property of an object. (In that case, we’d have a method invocation, but we discuss
that next.) Here are some simple examples:

function ninja(){};      
ninja();                 

var samurai = function(){};  
samurai();                   
(function(){})()

When invoked in this manner, the function context (the value of the this keyword)
can be two things: In nonstrict mode, it will be the global context (the window object),
whereas in strict mode, it will be undefined. 

Invoked as a function

Invoked as a method of ninja

Invoked as a constructor

Invoked via the call method

Invoked via the apply method

Function declaration 
invoked as a function

Function expression 
invoked as a function

Immediately invoked
function expression,

invoked as a function



69Invoking functions

 The following listing illustrates the difference in behavior between strict and non-
strict modes.

function ninja() {         
  return this;             
}                          

function samurai() {        
  "use strict";             
  return this;              
}                           

assert(ninja() === window,                   
  "In a 'nonstrict' ninja function, " +      
  "the context is the global window object");

assert(samurai() === undefined,         
  "In a 'strict' samurai function, " +  
  "the context is undefined");          

NOTE As you can see, strict mode is, in most cases, much more straightfor-
ward than nonstrict mode. For example, when listing 4.5 invokes a function as
a function (as opposed to as a method), it hasn’t specified an object on which
the function should be invoked. So, in our opinion, it makes more sense that
the this keyword should be set to undefined (as in strict mode), as opposed
to the global window object (as in nonstrict mode). In general, strict mode
fixes a lot of these small JavaScript oddities. (Remember arguments aliasing
from the beginning of the chapter?)

You’ve likely written code such as this many times without giving it much thought.
Now let’s step it up a notch by looking at how functions are invoked as methods.

4.2.2 Invocation as a method

When a function is assigned to a property of an object and the invocation occurs by
referencing the function using that property, then the function is invoked as a method
of that object. Here’s an example:

var ninja = {};
ninja.skulk = function(){};
ninja.skulk();

Okay; so what? The function is called a method in this case, but what makes that inter-
esting or useful? Well, if you come from an object-oriented background, you’ll
remember that the object to which a method belongs is available within the body of
the method as this. The same thing happens here. When we invoke a function as a
method of an object, that object becomes the function context and is available within

Listing 4.5 Invocation as a function

A function in 
nonstrict mode

A function in 
strict mode

As expected, a nonstrict 
function has window as 
the function context.

The strict function, on 
the other hand, has an 
undefined context.



70 CHAPTER 4 Functions for the journeyman: understanding function invocation

the function via the this parameter. This is one of the primary means by which
JavaScript allows object-oriented code to be written. (Constructors are another, and
we’ll get to them in short order.)

 Let’s consider some test code in the next listing to illustrate the differences and
similarities between invocation as a function and invocation as a method.

function whatsMyContext() {     
  return this;                  
}                               

assert(whatsMyContext() === window,
  "Function call on window");      

var getMyThis = whatsMyContext;

assert(getMyThis() === window,         
  "Another function call in window");  

var ninja1 = {                      
  getMyThis: whatsMyContext         
};                                  

assert(ninja1.getMyThis() === ninja1, 
  "Working with 1st ninja");          

var ninja2 = {              
  getMyThis: whatsMyContext 
};                          

assert(ninja2.getMyThis() === ninja2,
  "Working with 2nd ninja");         

This test sets up a function named whatsMyContext that we’ll use throughout the rest
of the listing. The only thing that this function does is to return its function context so
that we can see, from outside the function, what the function context for the invoca-
tion is. (Otherwise, we’d have a hard time knowing.)

function whatsMyContext() {
  return this;
}

When we call the function directly by name, this is a case of invoking the function as a
function, so we expect that the function context will be the global context (window),
because we’re in nonstrict mode. We assert that this is so:

assert(whatsMyContext() === window, ...)

Listing 4.6 The differences between function and method invocations

Returns the function context 
that will allow us to examine 
the context from outside

Invoking as a function sets the 
context to the window object.

getMyThis gets a
reference to the
whatsMyContext

function.

Invokes the function using the 
getMyThis variable. Even 
though we use a variable, the 
function is still invoked as a 
function, and the function 
context is the window object.

A ninja1 object
 is created with

 a getMyThis
property that

references the
whatsMyContext

function.

Invoking the functions through 
getMyThis calls it as a method of 
ninja1. The function context is now 
ninja1. That’s object orientation!Another object,

ninja2, also has a
getMyThis property

referencing
whatsMyContext. Invoking the function as a method 

of ninja2 shows that the function 
context is now ninja2.



71Invoking functions

Then we create a reference to the function whatsMyContext in a variable named get-
MyThis: var getMyThis = whatsMyContext. This doesn’t create a second instance of
the function; it merely creates a reference to the same function (you know, first-class
object and all).

 When we invoke the function via the variable—something we can do because the
function invocation operator can be applied to any expression that evaluates to a
function—we’re once again invoking the function as a function. As such, we again
expect that the function context is window, and it is:

assert(getMyThis() === window, 
       "Another function call in window"); 

Now, we get a bit trickier and define an object in variable ninja1 with a property named
getMyThis that receives a reference to the whatsMyContext function. By doing so, we say
that we’ve created a method named getMyThis on the object. We don’t say that whats-
MyContext has become a method of ninja1; it hasn’t. You’ve already seen that whatsMy-
Context is its own independent function that can be invoked in numerous ways:

var ninja1 = {
  getMyThis: whatsMyContext
};

According to what we stated earlier, when we invoke the function via a method refer-
ence, we expect the function context to be the method’s object (in this case, ninja1)
and we assert as much:

assert(ninja1.getMyThis() === ninja1,
      "Working with 1st ninja"); 

NOTE Invoking functions as methods is crucial to writing JavaScript in an
object-oriented manner. Doing so enables you to use this within any method
to reference the method’s “owning” object—a fundamental concept in
object-oriented programming.

To drive that point home, we continue testing by creating yet another object, ninja2,
also with a property named getMyThis that references the whatsMyContext function.
Upon invoking this function through the ninja2 object, we correctly assert that its
function context is ninja2:

var ninja2 = { 
  getMyThis: whatsMyContext
};      

assert(ninja2.getMyThis() === ninja2,
  "Working with 2nd ninja"); 

Even though the same function—whatsMyContext—is used throughout the example,
the function context returned by this changes depending on how whatsMyContext is
invoked. For example, the exact same function is shared by both ninja1 and ninja2,



72 CHAPTER 4 Functions for the journeyman: understanding function invocation

yet when it’s executed, the function has access to, and can perform operations on, the
object through which the method was invoked. We don’t need to create separate cop-
ies of a function to perform the exact same processing on different objects. This is a
tenet of object-oriented programming.

 Though a powerful capability, the manner in which it’s used in this example has
limitations. Foremost, when we create the two ninja objects, we’re able to share the
same function to be used as a method in each, but we have to use a bit of repeated
code to set up the separate objects and their methods.

 But that’s nothing to despair over—JavaScript provides mechanisms to make creat-
ing objects from a single pattern much easier than in this example. We’ll explore
those capabilities in depth in chapter 7. But for now, let’s consider a part of that mech-
anism that relates to function invocations: the constructor.

4.2.3 Invocation as a constructor

There’s nothing special about a function that’s going to be used as a constructor. Con-
structor functions are declared just like any other functions, and we can easily use func-
tion declarations and function expressions for constructing new objects. The only
exception is the arrow function, which as you’ll see later in the chapter, works a bit dif-
ferently. But, in any case, the main difference is in how the function is invoked.

 To invoke the function as a constructor, we precede the function invocation with the
keyword new. For example, recall the whatsMyContext function from the previous section:

function whatsMyContext(){ return this; }

If we want to invoke the whatsMyContext function as a constructor, we write this:

new whatsMyContext();

But even though we can invoke whatsMyContext as a constructor, that function isn’t a
particularly useful constructor. Let’s find out why by discussing what makes construc-
tors special.

NOTE Remember in chapter 3, when we discussed ways of defining func-
tions? Among function declarations, function expressions, arrow functions,
and generator functions, we also mentioned function constructors, which
enable us to construct new functions from strings. For example: new Func-
tion('a', 'b', 'return a + b') creates a new function with two parameters,
a and b, that returns their sum. Be careful not to confuse these function con-
structors with constructor functions! The difference is subtle, yet significant. A
function constructor enables us to create functions from dynamically created
strings. On the other hand, constructor functions, the topic of this section, are
functions that we use to create and initialize object instances.

THE SUPERPOWERS OF CONSTRUCTORS

Invoking a function as a constructor is a powerful feature of JavaScript that we’ll
explore in the following listing.



73Invoking functions

function Ninja() {          
  this.skulk = function() { 
    return this;            
  };                        
}                           

var ninja1 = new Ninja(); 
var ninja2 = new Ninja(); 

assert(ninja1.skulk() === ninja1,
  "The 1st ninja is skulking");  
assert(ninja2.skulk() === ninja2,
  "The 2nd ninja is skulking");  

In this example, we create a function named Ninja that we’ll use to construct, well,
ninjas. When invoked with the keyword new, an empty object instance is created and
passed to the function as its function context, the this parameter. The constructor
creates a property named skulk on this object, which is assigned a function, making
that function a method of the newly created object.

 In general, when a constructor is invoked, a couple of special actions take place, as
shown in figure 4.1. Calling a function with the keyword new triggers the following steps:

1 A new empty object is created.
2 This object is passed to the constructor as the this parameter, and thus

becomes the constructor’s function context.
3 The newly constructed object is returned as the new operator’s value (with an

exception that we’ll get to in short order).

Listing 4.7 Using a constructor to set up common objects

A constructor that creates a skulk 
property on whatever object is the 
function context. The method once 
again returns the function context 
so that we can test it externally.

Creates two objects
by invoking the

constructor with
new. The newly
created objects

 are referenced by
ninja1 and ninja2.

Tests the skulk method of 
the constructed objects. 
Each should return its 
own constructed object.

function Ninja() {
  this.skulk = function() {
    return this;
  };
}

var ninja1 = new Ninja(); 

skulk: 
function(){}

Calling a function
with the keyword
new creates a new
empty object.

The new empty
object is set as
the function
context (this).

Add properties to
the new object: here,
the skulk method.

The newly
constructed
object is the
return value.

ninjaninja

ninja1

Figure 4.1 When calling a function with a keyword new, a new empty object is created and set 
as the context of the constructor function, the this parameter.



74 CHAPTER 4 Functions for the journeyman: understanding function invocation

The last two points touch on why whatsMyContext in new whatsMyContext() makes
for a lousy constructor. The purpose of a constructor is to cause a new object to be cre-
ated, to set it up, and to return it as the constructor value. Anything that interferes
with that intent isn’t appropriate for constructors.

 Let’s consider a more appropriate constructor, Ninja, that sets up skulking ninjas,
as shown in listing 4.7:

function Ninja() {
  this.skulk = function() {
    return this;
  };
}

The skulk method performs the same operation as whatsMyContext in the previous
sections, returning the function context so that we can test it externally.

 With the constructor defined, we create two new Ninja objects by invoking the
constructor twice. Note that the returned values from the invocations are stored in
variables that become references to the newly created Ninjas:

var ninja1 = new Ninja();
var ninja2 = new Ninja();

Then we run the tests that ensure that each invocation of the method operates on the
expected object:

assert(ninja1.skulk() === ninja1,
  "The 1st ninja is skulking");
assert(ninja2.skulk() === ninja2,
  "The 2nd ninja is skulking");

That’s it! Now you know how to create and initialize new objects with constructor
functions. Calling a function with the keyword new returns the newly created object.
But let’s check whether that’s always exactly true.

CONSTRUCTOR RETURN VALUES

We mentioned earlier that constructors are intended to initialize newly created
objects, and that the newly constructed object is returned as a result of a constructor
invocation (via the new operator). But what happens when the constructor returns a
value of its own? Let’s explore that situation in the following listing.

function Ninja() {            
  this.skulk = function () {
    return true;
  };
  
  return 1;           

Listing 4.8 Constructors returning primitive values

Defines a constructor function named Ninja

The constructor returns a specific 
primitive value, the number 1.



75Invoking functions

}
assert(Ninja() === 1,                                       
  "Return value honored when not called as a constructor"); 

var ninja = new Ninja();

assert(typeof ninja === "object",                 
  "Object returned when called as a constructor");
assert(typeof ninja.skulk === "function",         
  "ninja object has a skulk method");             

If we run this listing, we’ll see that all is fine and well. The fact that this Ninja function
returns a simple number 1 has no significant influence on how the code behaves. If
we call the Ninja function as a function, it returns 1 (just as we’d expect); and if we
call it as a constructor, with the keyword new, a new ninja object is constructed and
returned. So far, so good.

 But now let’s try something different, a constructor function that returns another
object, as shown in the following listing.

var puppet = {       
  rules: false       
};                   

function Emperor() {      
  this.rules = true;      
  return puppet;          
}

var emperor = new Emperor();

assert(emperor === puppet,                 
  "The emperor is merely a puppet!");      
assert(emperor.rules === false,            
  "The puppet does not know how to rule!");

This listing takes a slightly different approach. We start by creating a puppet object
with the property rules set to false: 

var puppet = {
  rules: false
};

Then we define an Emperor function that adds a rules property to the newly con-
structed object and sets it to true. In addition, the Emperor function has one quirk; it
returns the global puppet object:

Listing 4.9 Constructors explicitly returning object values

The function is
called as a

function and its
return value is
1, as expected.

The function is called as a constructor 
via the new operator.

Tests verify that the 
return value of 1 is 
ignored, and that a 
new, initialized 
object has been 
returned from new.

Creates our own 
object with a 
known property

Returns that object 
despite initializing the 
object passed as this

Invokes the function as a constructor

Tests show that the object returned 
by the constructor is assigned to the 
variable emperor (and not the object 
created by the new expression).



76 CHAPTER 4 Functions for the journeyman: understanding function invocation

function Emperor() {
  this.rules = true;
  return puppet;
}

Later, we call the Emperor function as a constructor, with the keyword new: 

var emperor = new Emperor();

With this, we’ve set up an ambiguous situation: We get one object passed to the con-
structor as the function context in this, which we initialize, but then we return a com-
pletely different puppet object. Which object will reign supreme? 

 Let’s test it:

assert(emperor === puppet, "The emperor is merely a puppet!");
assert(emperor.rules === false, 
      "The puppet does not know how to rule!"); 

It turns out that our tests indicate that the puppet object is returned as the value of
constructor invocation, and that the initialization that we performed on the function
context in the constructor was all for naught. The puppet has been exposed!

 Now that we’ve gone through some tests, let’s summarize our findings: 

■ If the constructor returns an object, that object is returned as the value of the
whole new expression, and the newly constructed object passed as this to the
constructor is discarded. 

■ If, however, a nonobject is returned from the constructor, the returned value is
ignored, and the newly created object is returned.

Because of these peculiarities, functions intended for use as constructors are generally
coded differently from other functions. Let’s explore that in greater detail.

CODING CONSIDERATIONS FOR CONSTRUCTORS

The intent of constructors is to initialize the new object that will be created by the
function invocation to initial conditions. And although such functions can be called as
“normal” functions, or even assigned to object properties in order to be invoked
as methods, they’re generally not useful as such. For example

function Ninja() {    
    this.skulk = function() { 
      return this; 
    }; 
} 
var whatever = Ninja();

We can call Ninja as a simple function, but the skulk property would be created on
window in nonstrict mode—not a particularly useful operation. Things go even more
awry in strict mode, as this would be undefined and our JavaScript application would
crash. But this is a good thing; if we make this mistake in nonstrict mode, it might

www.allitebooks.com

http://www.allitebooks.org


77Invoking functions

escape our notice (unless we had good tests), but there’s no missing the mistake in
strict mode. This is a good example of why strict mode was introduced. 

 Because constructors are generally coded and used in a manner that’s different
from other functions, and aren’t all that useful unless invoked as constructors, a nam-
ing convention has arisen to distinguish constructors from run-of-the-mill functions
and methods. If you’ve been paying attention, you may have already noticed it.

 Functions and methods are generally named starting with a verb that describes
what they do (skulk, creep, sneak, doSomethingWonderful, and so on) and start with
a lowercase letter. Constructors, on the other hand, are usually named as a noun that
describes the object that’s being constructed and start with an uppercase character:
Ninja, Samurai, Emperor, Ronin, and so on.

 It’s easy to see how a constructor makes it more elegant to create multiple objects
that conform to the same pattern without having to repeat the same code over and over.
The common code is written just once, as the body of the constructor. In chapter 7,
you’ll see more about using constructors and about the other object-oriented mecha-
nisms that JavaScript provides to make it even easier to set up object patterns.

 But we’re not finished with function invocations yet. There’s still another way that
JavaScript lets us invoke functions that provides a great deal of control over the invo-
cation details.

4.2.4 Invocation with the apply and call methods

So far, you’ve seen that one of the major differences between the types of function invo-
cation is what object ends up as the function context referenced by the implicit this
parameter that’s passed to the executing function. For methods, it’s the method’s own-
ing object; for top-level functions, it’s either window or undefined (depending on the
current strictness); for constructors, it’s a newly created object instance. 

 But what if we want to make the function context whatever we want? What if we
want to set it explicitly? What if...well, why would we want to do such a thing?

 To get a glimpse of why we’d care about this ability, we’ll look at a practical exam-
ple that illustrates a surprisingly common bug related to event handling. For now, con-
sider that when an event handler is called, the function context is set to the object to
which the event was bound. (Don’t worry if this seems vague; you’ll learn about event
handling in great detail in chapter 13.) Take a look at the following listing.

<button id="test">Click Me!</button>
<script>
  function Button(){
    this.clicked = false;
    this.click = function(){

Listing 4.10 Binding a specific context to a function

A button element to which 
we’ll assign an event handlerA constructor function that creates objects that 

retain state regarding our button. With it, we’ll 
track whether the button has been clicked.

Declares the method that we’ll use 
as the click handler. Because it’s a 
method of the object, we use this 
within the function to get a 
reference to the object.



78 CHAPTER 4 Functions for the journeyman: understanding function invocation

      this.clicked = true;
      assert(button.clicked, "The button has been clicked");
    };
  }
  var button = new Button();
  var elem = document.getElementById("test");
  elem.addEventListener("click", button.click);
</script>

In this example, we have a button, <button id="test">Click Me!</button>, and we
want to know whether it has ever been clicked. To retain that state information, we use
a constructor function to create a backing object named button, in which we’ll store
the clicked state:

  function Button(){
    this.clicked = false;
    this.click = function(){
      this.clicked = true;
      assert(button.clicked, "The button has been clicked");
    };
  }
  var button = new Button();

In that object, we also define a click method that will serve as an event handler that
fires when the button is clicked. The method sets the clicked property to true and
then tests that the state was properly recorded in the backing object (we’ve intention-
ally used the button identifier instead of the this keyword—after all, they should
refer to the same thing, or should they?). Finally, we establish the button.click
method as a click handler for the button:

var elem = document.getElementById("test");
elem.addEventListener("click", button.click);

When we load the example into a
browser and click the button, we see by
the display of figure 4.2 that something
is amiss; the stricken text indicates that
the test has failed. The code in listing
4.10 fails because the context of the
click function isn’t referring to the but-
ton object as we intended. 

 Recalling the lessons of earlier in the
chapter, if we had called the function via
button.click(), the context would have
been the button, because the function
would be invoked as a method on the

Within the method,
we test that the
button state has

been correctly
changed after a click.

Creates an instance
that will track

whether the button
was clicked

Establishes the
click handler

on the button

Figure 4.2 Why did our test fail? Where did the 
change of state go? Usually, the event callback’s 
context is the object raising the event (in this case, 
the HTML button, and not the button object).



79Invoking functions

button object. But in this example, the event-handling system of the browser defines
the context of the invocation to be the target element of the event, which causes the
context to be the <button> element, not the button object. So we set our click state
on the wrong object!

 This is a surprisingly common problem, and later in the chapter, you’ll see tech-
niques for completely evading it. For now, let’s explore how to tackle it by examining
how to explicitly set the function context by using the apply and call methods.

USING THE APPLY AND CALL METHODS

JavaScript provides a means for us to invoke a function and to explicitly specify any
object we want as the function context. We do this through the use of one of two
methods that exist for every function: apply and call.

 Yes, we said methods of functions. As first-class objects (created, by the way, by the
built-in Function constructor), functions can have properties just like any other
object type, including methods.

 To invoke a function by using its apply method, we pass two parameters to apply:
the object to be used as the function context, and an array of values to be used as the
invocation arguments. The call method is used in a similar manner, except that the
arguments are passed directly in the argument list rather than as an array.

 The following listing shows both of these methods in action.

function juggle() {                            
  var result = 0;                              
  for (var n = 0; n < arguments.length; n++) { 
    result += arguments[n];                    
  }                                            
  this.result = result;                        
}                                              

var ninja1 = {};    
var ninja2 = {};    

juggle.apply(ninja1,[1,2,3,4]);
juggle.call(ninja2, 5,6,7,8); 

assert(ninja1.result === 10, "juggled via apply"); 
assert(ninja2.result === 26, "juggled via call");  

In this example, we set up a function named juggle, in which we define juggling as
adding up all the arguments and storing them as a property named result on the
function context (referenced by the this keyword). That may be a rather lame defini-
tion of juggling, but it will allow us to determine whether arguments were passed to
the function correctly, and which object ended up as the function context.

Listing 4.11 Using the apply and call methods to supply the function context

The function “juggles” 
the arguments and 
puts the result onto 
whatever object is the 
function context.

These objects
are initially

empty and will
serve as our

test subjects.
Uses the apply method, 
passing ninja1 and an 
array of arguments

Uses the call
method, passing
ninja2 and a list

of arguments

The tests show how the juggle result is placed
on the objects passed to the methods.



80 CHAPTER 4 Functions for the journeyman: understanding function invocation

 We then set up two objects, ninja1 and ninja2, that we’ll use as function contexts,
passing the first to the function’s apply method, along with an array of arguments, and
passing the second to the function’s call method, along with a list of other arguments:

juggle.apply(ninja1,[1,2,3,4]);
juggle.call(ninja2, 5,6,7,8);

Notice that the only difference between apply and call is how the arguments are sup-
plied. In the case of apply, we use an array of arguments, and in the case of call, we
list them as call arguments, after the function context. See figure 4.3.

After we’ve supplied our function contexts and arguments, we continue by testing!
First, we check that ninja1, which was called via apply, received a result property
that’s the result of adding up all the argument values (1, 2, 3, 4) in the passed array.
Then we do the same for ninja2, which was called via call, where we check the result
for arguments 5, 6, 7, and 8:

assert(ninja1.result === 10, "juggled via apply");
assert(ninja2.result === 26, "juggled via call");

Figure 4.4 provides a closer look at what’s going on in listing 4.11.
 These two methods, call and apply, can come in handy whenever it’s expedient

to usurp what would normally be the function context with an object of our own
choosing—something that can be particularly useful when invoking callback
functions.

FORCING THE FUNCTION CONTEXT IN CALLBACKS

Let’s consider a concrete example of forcing the function context to be an object of
our own choosing. We’ll use a simple function to perform an operation on every entry
of an array. 

juggle.apply(ninja1,[1,2,3,4]);

juggle.call(ninja2, 5,6,7,8);

The object that
will serve as the
function context

The second argument to apply
is an array of items that will be
used as function arguments.

A sequence of arguments
that will be used as
function arguments

Figure 4.3 As the first argument, both the 
call and apply methods take the object 
that will be used as the function context. The 
difference is in the following arguments. 
apply takes only one additional argument, an 
array of argument values; call takes any 
number of arguments, which will be used as 
function arguments.



81Invoking functions

In imperative programming, it’s common to pass the array to a method and use a for
loop to iterate over every entry, performing the operation on each entry:

function(collection) {
  for (var n = 0; n < collection.length; n++) {
    /* do something to collection[n] */
  }
}

In contrast, the functional approach is to create a function that operates on a single
element and passes each entry to that function:

function(item){
  /* do something to item */
}

The difference lies in thinking at a level where functions are the main building blocks
of the program. You might think that it’s moot, and that all you’re doing is moving the
for loop out one level, but we’re not done massaging this example yet.

 To facilitate a more functional style, all array objects have access to a forEach func-
tion that invokes a callback on each element within an array. This is often more suc-
cinct, and this style is preferred over the traditional for statement by those familiar
with functional programming. Its organizational benefits will become even more evi-
dent (cough, code reuse, cough) after covering closures in chapter 5. Such an iteration

function juggle() {
  var result = 0;
  for (var n = 0; n < arguments.length; n++){
    result += arguments[n];
  }
  this.result = result;
}

var ninja1 = {};                     
var ninja2 = {};

juggle

this: ninja1
arguments[0]:1
arguments[1]:2
arguments[2]:3
arguments[3]:4

juggle.apply(ninja1, [1, 2, 3, 4]);

result:10

ninja1ninja1 juggle

this: ninja2
arguments[0]:5
arguments[1]:6
arguments[2]:7
arguments[3]:8

juggle.call(ninja2, 5, 6, 7, 8);

result:26

ninja2ninja2

Figure 4.4 Manually setting a function context by using built-in call and apply from listing 4.11 
results in these combinations of function contexts (the this parameter) and arguments.



82 CHAPTER 4 Functions for the journeyman: understanding function invocation

function could pass the current element to the callback as a parameter, but most make
the current element the function context of the callback.

 Even though all modern JavaScript engines now support a forEach method on
arrays, we’ll build our own (simplified) version of such a function in the next listing.

    function forEach(list, callback) {        
      for (var n = 0; n < list.length; n++) {
        callback.call(list[n], n);
      }
    }

    var weapons = [ { type: 'shuriken' },
                    { type: 'katana' },
                    { type:'nunchucks' }];

    forEach(weapons, function(index){                             
        assert(this === weapons[index],                           
              "Got the expected value of " + weapons[index].type);
    });                                                           

The iteration function sports a simple signature that expects the array of objects to be
iterated over as the first argument, and a callback function as the second. The func-
tion iterates over the array entries, invoking the callback function for each entry:

function forEach(list,callback) {
  for (var n = 0; n < list.length; n++) {
    callback.call(list[n], n);
  }
}

We use the call method of the callback function, passing the current iteration entry
as the first parameter and the loop index as the second. This should cause the current
entry to become the function context, and the index to be passed as the single param-
eter to the callback.

 Now to test that! We set up a simple weapons array. Then we call the forEach func-
tion, passing the test array and a callback within which we test that the expected entry
is set as the function context for each invocation of the callback:

forEach(weapons, function(index){
  assert(this === weapons[index],
        "Got the expected value of " + weapons[index].type);
});

Figure 4.5 shows that our function works splendidly.
 In a production-ready implementation of such a function, there’d be a lot more

work to do. For example, what if the first argument isn’t an array? What if the second

Listing 4.12 Building a forEach function to demonstrate setting a function context

Our iteration function accepts 
the collection to be iterated 
over and a callback function.

The callback
is invoked

such that the
current

iteration item
is the function

context.

Our test subject

Calls the iteration function
and ensures that the function

context is correct for each
invocation of the callback



83Fixing the problem of function contexts

argument isn’t a function? How would you allow the page author to terminate the
loop at any point? As an exercise, you can augment the function to handle these situa-
tions. Another exercise you could task yourself with is to enhance the function so that
the page author can pass an arbitrary number of arguments to the callback in addi-
tion to the iteration index.

 Given that apply and call do pretty much the same thing, here’s something you
might be asking yourself at this point: How do we decide which to use? The high-level
answer is the same as for many such questions: We use whichever one improves code
clarity. A more practical answer is to use the one that best matches the arguments we
have handy. If we have a bunch of unrelated values in variables or specified as literals,
call lets us list them directly in its argument list. But if we already have the argument
values in an array, or if it’s convenient to collect them as such, apply could be the bet-
ter choice.

4.3 Fixing the problem of function contexts
In the preceding section, you saw some of the problems that can happen when deal-
ing with function context in JavaScript. In callback functions (such as event handlers),
the function context might not be exactly what we expect, but we can use the call
and apply methods to get around it. In this section, you’ll see two other options:
arrow functions and the bind method, which can, in certain cases, achieve the same
effect, but in a much more elegant way.

4.3.1 Using arrow functions to get around function contexts

Besides allowing us to create functions in a more elegant way than standard function
declarations and function expressions, the arrow functions introduced in the previous
chapter have one feature that makes them particularly good as callback functions:
Arrow functions don’t have their own this value. Instead, they remember the value of
the this parameter at the time of their definition. Let’s revisit our problem with button-
click callbacks in the following listing.

Figure 4.5 The test results show that we 
have the ability to make any object we 
please the function context of a callback 
invocation.



84 CHAPTER 4 Functions for the journeyman: understanding function invocation

<button id="test">Click Me!</button>
<script>
  function Button(){             
    this.clicked = false;
    this.click = () => {             
      this.clicked = true;
      assert(button.clicked,"The button has been clicked");//
    };
  }
  var button = new Button(); 
  var elem = document.getElementById("test");  
  elem.addEventListener("click", button.click);
</script>

The only change, when compared to listing 4.10, is that listing 4.13 uses an arrow
function:

this.click = () = > {
  this.clicked = true;
  assert(button.clicked, "The button has been clicked");
};

Now, if we run the code, we’ll get the output shown in figure 4.6.
 As you can see, all is well now. The button object keeps track of the clicked state.

What happened is that our click handler was created inside the Button constructor as
an arrow function:

function Button(){
    this.clicked = false;
    this.click = () => {
      this.clicked = true;
      assert(button.clicked, "The button has been clicked");
    };
}

Listing 4.13 Using arrow functions to work around callback function contexts

A button element
to which we’ll

assign an event
handler

A constructor function that creates objects that
retain state regarding our button. With it, we’ll

track whether the button has been clicked. Declares the arrow 
function that we’ll use as 
the click handler. Because 
it’s a method of the object, 
we use this within the 
function to get a reference 
to the object.

Within the
method, we test
that the button
state has been

correctly changed
after a click.

Establishes the 
click handler 
on the button

Figure 4.6 Arrow functions don't have their 
own context. Instead, the context is inherited 
from the function in which they’re defined. The 
this parameter in our arrow function callback 
refers to the button object.



85Fixing the problem of function contexts

As we already mentioned, arrow functions don’t get their own implicit this parameter
when we call them; instead they remember the value of the this parameter at the
time they were created. In our case, the click arrow function was created inside a
constructor function, where the this parameter is the newly constructed object, so
whenever we (or the browser) call the click function, the value of the this parame-
ter will always be bound to the newly constructed button object.

CAVEAT: ARROW FUNCTIONS AND OBJECT LITERALS

Because the value of the this parameter is picked up at the moment that the arrow
function is created, some seemingly strange behaviors can result. Let’s go back to our
button-click handler example. Let’s say we’ve come to the conclusion that we don’t
need a constructor function, because we have only one button. We replace it with a
simple object literal, in the following way.

<button id="test">Click Me!</button>
<script>
  assert(this === window, "this === window");
  var button = {
    clicked: false,
    click: () => {                
      this.clicked = true;
      assert(button.clicked,"The button has been clicked");
      assert(this === window, "In arrow function this === window");
      assert(window.clicked, "clicked is stored in window");
    }
  }
  
  var elem = document.getElementById("test");
  elem.addEventListener("click", button.click);
</script>

If we run listing 4.14, we’ll again be disappointed, because the button object has once
more failed to track the clicked state. See figure 4.7.

Listing 4.14 Arrow functions and object literals

The value of the this 
parameter in global 
code is the global 
window object.

The button
object is

defined as an
object literal.

Our arrow function is a 
property of an object literal.

Test whether the
button was clicked.

The value of
this in our

arrow function
is the global

window object.

clicked is stored
on window.

Figure 4.7 If an arrow function is defined 
within an object literal that’s defined in 
global code, the value of the this param-
eter associated with the arrow function is 
the global window object.



86 CHAPTER 4 Functions for the journeyman: understanding function invocation

Luckily, we’ve scattered a couple of assertions throughout our code that will help. For
example, we’ve placed the following directly in global code, in order to check the
value of the this parameter: 

assert(this === window, "this === window");

Because the assertion passes, we can be sure that in global code this refers to the
global window object. 

 We follow this by specifying that the button object literal has a click arrow func-
tion property:

var button = {
  clicked: false,
  click: () => {
    this.clicked = true;
    assert(button.clicked,"The button has been clicked");
    assert(this === window, "In arrow function this === window");
    assert(window.clicked, "Clicked is stored in window");
  };
}

Now, we’ll again revisit our little rule: Arrow functions pick up the value of the this param-
eter at the moment of their creation. Because the click arrow function is created as a prop-
erty value on an object literal, and the object literal is created in global code, the this
value of the arrow function will be the this value of the global code. And, as we’ve
seen from the first assertion placed in our global code

assert(this === window, "this === window");

the value of the this parameter in global code is the global window object. Therefore,
our clicked property will be defined on the global window object, and not on our
button object. Just to be sure, in the end, we check that the window object has been
assigned a clicked property:

assert(window.clicked, "Clicked is stored in window");

As you can see, failing to keep in mind all the consequences of arrow functions can
lead to some subtle bugs, so be careful!

 Now that we’ve explored how arrow functions can be used to circumvent the prob-
lem of function contexts, let’s continue with another method for fixing the same
problem. 

4.3.2 Using the bind method

In this chapter, you’ve already met two methods that every function has access to, call
and apply, and you’ve seen how to use them for greater control over the context and
arguments of our function invocations.



87Fixing the problem of function contexts

 In addition to these methods, every function has access to the bind method that, in
short, creates a new function. This function has the same body, but its context is always
bound to a certain object, regardless of the way we invoke it. 

 Let’s revisit our little problem with button-click handlers one last time.

<button id="test">Click Me!</button>
<script>
  var button = {
    clicked: false,
    click: function(){
      this.clicked = true;
      assert(button.clicked,"The button has been clicked");
    }
  };
  var elem = document.getElementById("test");
  elem.addEventListener("click", button.click.bind(button));

  var boundFunction = button.click.bind(button);
  assert(boundFunction != button.click, 
         "Calling bind creates a completly new function");
</script>

The secret sauce added here is the bind() method: 

elem.addEventListener("click", button.click.bind(button));

The bind method is available to all functions, and is designed to create and return a
new function that’s bound to the passed-in object (in this case, the button object).
The value of the this parameter is always set to that object, regardless of the way the
bound function was invoked. Apart from that, the bound function behaves like the
originating function, because it has the same code in its body. 

 Whenever the button is clicked, that bound function will be invoked with the
button object as its context, because we’ve used that button object as an argument to
bind.

 Note that calling the bind method doesn’t modify the original function. It creates
a completely new function, a fact asserted at the end of the example:

var boundFunction = button.click.bind(button);
assert(boundFunction != button.click, 

      "Calling bind creates a completly new function");

With this, we’ll end our exploration of the function context. Rest for now, because in
the next chapter, we’ll be dealing with one of the most important concepts in
JavaScript: closures.

Listing 4.15 Binding a specific context to an event handler

Uses the bind function to
create a new function

bound to the button object



88 CHAPTER 4 Functions for the journeyman: understanding function invocation

4.4 Summary
■ When invoking a function, in addition to the parameters explicitly stated in the

function definition, function invocations are passed in two implicit parameters:
arguments and this:
– The arguments parameter is a collection of arguments passed to the func-

tion. It has a length property that indicates how many arguments were
passed in, and it enables us to access the values of arguments that don’t have
matching parameters. In nonstrict mode, the arguments object aliases the
function parameters (changing the argument changes the value of the
parameter, and vice versa). This can be avoided by using strict mode.

– The this parameter represents the function context, an object to which the
function invocation is associated. How this is determined can depend on
the way a function is defined as well as on how it’s invoked.

■ A function can be invoked in four ways: 
– As a function: skulk()
– As a method: ninja.skulk()
– As a constructor: new Ninja()
– Via its apply and call methods: skulk.call(ninja) or skulk.apply(ninja)

■ The way a function is invoked influences the value of the this parameter:
– If a function is invoked as a function, the value of the this parameter is usually

the global window object in nonstrict mode, and undefined in strict mode.
– If a function is invoked as a method, the value of the this parameter is usu-

ally the object on which the function was invoked.
– If a function is invoked as a constructor, the value of the this parameter is

the newly constructed object.
– If a function is invoked through call and apply, the value of the this

parameter is the first argument supplied to call and apply.
■ Arrow functions don’t have their own value of the this parameter. Instead, they

pick it up at the moment of their creation.
■ Use the bind method, available to all functions, to create a new function that’s

always bound to the argument of the bind method. In all other aspects, the
bound function behaves as the original function.

4.5 Exercises
1 The following function calculates the sum of the passed-in arguments by using

the arguments object:

function sum(){
  var sum = 0;
  for(var i = 0; i < arguments.length; i++){
     sum += arguments[i];
  }



89Exercises

  return sum;
}

assert(sum(1, 2, 3) === 6, 'Sum of first three numbers is 6');
assert(sum(1, 2, 3, 4) === 10, 'Sum of first four numbers is 10');

By using the rest parameters introduced in the previous chapter, rewrite the sum
function so that it doesn’t use the arguments object. 

2 After running the following code, what are the values of variables ninja and
samurai? 

function getSamurai(samurai){
  "use strict"

  arguments[0] = "Ishida";
  
  return samurai;
}

function getNinja(ninja){
  arguments[0] = "Fuma";
  return ninja;
}

var samurai = getSamurai("Toyotomi");
var ninja = getNinja("Yoshi");

3 When running the following code, which of the assertions will pass?

function whoAmI1(){
  "use strict";
  return this;
}

function whoAmI2(){
  return this;
}

assert(whoAmI1() === window, "Window?");
assert(whoAmI2() === window, "Window?");

4 When running the following code, which of the assertions will pass?

var ninja1 = {
   whoAmI: function(){
     return this;
   }
};

var ninja2 = {
  whoAmI: ninja1.whoAmI
};



90 CHAPTER 4 Functions for the journeyman: understanding function invocation

var identify = ninja2.whoAmI;

assert(ninja1.whoAmI() === ninja1, "ninja1?");
assert(ninja2.whoAmI() === ninja1, " ninja1 again?");

assert(identify() === ninja1, "ninja1 again?");

assert(ninja1.whoAmI.call(ninja2) === ninja2, "ninja2 here?");

5 When running the following code, which of the assertions will pass?

function Ninja(){
  this.whoAmI = () => this;
}

var ninja1 = new Ninja();
var ninja2 = {
  whoAmI: ninja1.whoAmI
};

assert(ninja1.whoAmI() === ninja1, "ninja1 here?");
assert(ninja2.whoAmI() === ninja2, "ninja2 here?");

6 Which of the following assertions will pass?

function Ninja(){
  this.whoAmI = function(){
    return this;
  }.bind(this);
}

var ninja1 = new Ninja();
var ninja2 = {
  whoAmI: ninja1.whoAmI
};

assert(ninja1.whoAmI() === ninja1, "ninja1 here?");
assert(ninja2.whoAmI() === ninja2, "ninja2 here?");



91

Functions for the master:
 closures and scopes

Closely tied to the functions we learned about in previous chapters, closures are a
defining feature of JavaScript. Although scores of JavaScript developers can write
code without understanding the benefits of closures, their use can not only help us
reduce the amount and complexity of code needed to add advanced features, but
also enable us to do things that otherwise wouldn’t be possible, or would be too
complex to be feasible. For example, any tasks involving callbacks, such as event
handling or animations, would be significantly more complex without closures.
Others, such as providing support for private object variables, would be outright

This chapter covers
■ Using closures to simplify development
■ Tracking the execution of JavaScript programs 

with execution contexts
■ Tracking variable scopes with lexical 

environments
■ Understanding types of variables
■ Exploring how closures work



92 CHAPTER 5 Functions for the master: closures and scopes

impossible. The landscape of the language and the way we write our code is forever
shaped by the inclusion of closures.

 Traditionally, closures have been a feature of purely functional programming lan-
guages. Seeing them cross over into mainstream development is encouraging. It’s
common to find closures permeating JavaScript libraries, along with other advanced
code bases, because of their ability to drastically simplify complex operations.

 Closures are a side effect of how scopes work in JavaScript. For this reason, we’ll
explore the scoping rules of JavaScript, with a special focus on recent additions. This
will help you understand how closures work behind the scenes. Let’s jump right in!

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

How many different scopes can a variable or method
have, and what are they?

Do you know? How are identifiers and their values tracked?
What is a mutable variable, and how do you define one in

JavaScript? 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1 Understanding closures
A closure allows a function to access and manipulate variables that are external to that
function. Closures allow a function to access all the variables, as well as other func-
tions, that are in scope when the function itself is defined.

NOTE You’re probably familiar with the concept of scopes, but just in case, a
scope refers to the visibility of identifiers in certain parts of a program. A
scope is a part of the program in which a certain name is bound to a certain
variable. 

That may seem intuitive until you remember that a declared function can be called at
any later time, even after the scope in which it was declared has gone away. This con-
cept is probably best explained through code. But before we get into concrete exam-
ples that will help you develop more elegant animations in code or to define private
object properties, let’s start small, with the following listing.

  var outerValue = "ninja";         
  function outerFunction(){
    assert(outerValue === "ninja","I can see the ninja.");
  }
  outerFunction();

In this code example, we declare a variable outerValue and a function outerFunction
in the same scope—in this case, the global scope. Afterward, we call outerFunction. 

Listing 5.1 A simple closure

Defines a value in global scope

Declares a function 
in global scope

Executes the function



93Understanding closures

 As you can see in figure 5.1, the
function is able to “see” and access the
outerValue variable. You’ve likely writ-
ten code such as this hundreds of times
without realizing that you were creat-
ing a closure!

 Not impressed? Guess that’s not sur-
prising. Because both outerValue and
outerFunction are declared in global
scope, that scope (which is a closure)
never goes away (as long as our applica-
tion is running). It’s not surprising that
the function can access the variable,
because it’s still in scope and viable. 

 Even though the closure exists, its benefits aren’t yet clear. Let’s spice it up in the
next listing.

var outerValue = "samurai";
var later;               
  
function outerFunction(){
  var innerValue = "ninja";
    
  function innerFunction(){                                    
    assert(outerValue === "samurai", "I can see the samurai.");
    assert(innerValue === "ninja", "I can see the ninja.")     
  }                                                            
    
  later = innerFunction;
}
  
outerFunction();
  
later();  

Let’s overanalyze the code in innerFunction and see whether we can predict what
might happen: 

■ The first assert is certain to pass; outerValue is in the global scope and is visi-
ble to everything. But what about the second assert?

■ We’re executing innerFunction after outerFunction has been executed via the
trick of copying a reference to the function to the global variable later. 

Listing 5.2 Another closure example

An empty variable 
that we’ll use later

Declares a
value inside the

function. This
variable’s scope

is limited to
 the function
and can’t be

accessed from
outside the

function.

Declares an inner function within the
outerFunction. innerValue is in scope

when we create this function.

Stores a reference to innerFunction in the 
later variable. Because later is in the global 
scope, it’ll allow us to call the function later.

Invokes
outerFunction,

which causes
innerFunction to

be created and
its reference

assigned
 to later

Invokes innerFunction through later. We can’t 
invoke it directly because its scope (along with 
innerValue) is limited to within outerFunction.

Figure 5.1 Our function has found the ninja, who 
was hiding in plain sight.



94 CHAPTER 5 Functions for the master: closures and scopes

■ When innerFunction executes, the scope inside the outer function is long
gone and not visible at the point at which we’re invoking the function through
later.

■ So we could very well expect assert to fail, as innerValue is sure to be unde-
fined. Right?

But when we run the test, we see the
display in figure 5.2.

 How can that be? What magic allows
the innerValue variable to still be “alive”
when we execute the inner function, long
after the scope in which it was created has
gone away? The answer is closures.

 When we declare innerFunction
inside the outer function, not only is
the function declaration defined, but a
closure is created that encompasses
the function definition as well as all
variables in scope at the point of function
definition. When innerFunction even-
tually executes, even if it’s executed after the scope in which it was declared goes away,
it has access to the original scope in which it was declared through its closure, as
shown in figure 5.3.

 That’s what closures are all about. They create a “safety bubble” of the function
and the variables in scope at the point
of the function’s definition, so that the
function has all it needs to execute.
This bubble, containing the function
and its variables, stays around as long as
the function does.

 Although all this structure isn’t
readily visible (there’s no “closure”
object holding all of this information
that you can inspect), storing and refer-
encing information in this way has a
direct cost. It’s important to remember
that each function that accesses infor-
mation via a closure has a “ball and
chain” attached to it, carrying this
information around. So although clo-
sures are incredibly useful, they aren’t
free of overhead. All that information
needs to be held in memory until it’s

Figure 5.2 Despite trying to hide inside a function, 
the ninja has been detected!

function
innerFunction()

{...}

function outerFunction

var outerValue

var later

var innerValue

Figure 5.3 Like a protective bubble, the closure for 
innerFunction keeps the variables in the func-
tion’s scope alive for as long as the function exists.



95Putting closures to work

absolutely clear to the JavaScript engine that it’s no longer needed (and is safe to
garbage-collect), or until the page unloads.

 Don’t worry; this isn’t all that we have to say about how closures work. But before
exploring the mechanisms that enable closures, let’s look at their practical uses.

5.2 Putting closures to work
Now that we have a high-level understanding of closures, let’s see how to put them to
work in our JavaScript applications. For now, we’ll focus on their practical aspects and
benefits. Later in the chapter, we’ll revisit the same examples to see exactly what’s
going on behind the scenes.

5.2.1 Mimicking private variables

Many programming languages use private variables—properties of an object that are
hidden from outside parties. This is a useful feature, because we don’t want to over-
burden the users of our objects with unnecessary implementation details when access-
ing those objects from other parts of the code. Unfortunately, JavaScript doesn’t have
native support for private variables. But by using a closure, we can achieve an accept-
able approximation, as demonstrated by the following code.

 function Ninja() {
  var feints = 0;
  this.getFeints = function(){         
    return feints;                     
  };                                   
  this.feint = function(){
    feints++;             
  };                      
 }

 var ninja1 = new Ninja();
 ninja1.feint();                

 assert(ninja1.feints === undefined,                   
        "And the private data is inaccessible to us.");
 assert(ninja1.getFeints()=== 1,                         
       "We're able to access the internal feint count.");
  
 var ninja2 = new Ninja();                                       
 assert(ninja2.getFeints()=== 0,                                 
        "The second ninja object gets its own feints variable.");

Listing 5.3 Using closures to approximate private variables

Defines the
constructor
for a Ninja

Declares a variable inside the constructor function.
Because the scope of the variable is limited to inside
the constructor, it’s a “private” variable. We’ll use it

to count how many times the ninja has feinted.
Creates an accessor method 
for the feints counter. Because 
the variable isn’t accessible to 
code outside the constructor, 
this is a common way to give 
read-only access to the value.

Declares the increment method for the value. 
Because the value is private, no one can screw 
it up behind our backs; they’re limited to the 
access that we give them via methods.

Now for
testing—first
we construct

an instance
of Ninja.

Calls the feint method, which 
increments the count of the number 
of times that our ninja has feinted

Verifies that
we can’t get at

the variable
directly

We were able to change the "private" variable,
even though we had no direct access to it.

When we create a
new ninja2 object

with the Ninja
constructor, the

ninja2 object gets its
own feints variable.



96 CHAPTER 5 Functions for the master: closures and scopes

Here we create a function, Ninja, to serve as a constructor. We introduced using a
function as a constructor in chapter 3 (and we’ll take an in-depth look in chapter 7).
For now, recall that when using the new keyword on a function, a new object
instance is created, and the function is called with that new object as its context, to
serve as a constructor to that object. So this within the function refers to a newly
instantiated object. 

 Within the constructor, we define a variable to hold state, feints. The JavaScript
scoping rules for this variable limit its accessibility to within the constructor. To give
access to the value of the variable from code that’s outside the scope, we define an
accessor method: getFeints, which can be used to read the private variable. (Accessor
methods are frequently called getters.)

function Ninja() { 
  var feints = 0;
  this.getFeints = function(){ 
    return feints; 
  }; 
  this.feint = function(){ 
    feints++; 
  };
 }

An implementation method, feint, is then created to give us control over the value of
the variable. In a real-world application, this might be a business method, but in this
example, it merely increments the value of feints.

 After the constructor has done its duty, we can call the feint method on the newly
created ninja1 object:

var ninja1 = new Ninja(); 
ninja1.feint(); 

Our tests show that we can use the accessor method to obtain the value of the private
variable but that we can’t access it directly. This prevents us from being able to make
uncontrolled changes to the value of the variable, just as if it were a true private vari-
able. This situation is depicted in figure 5.4.

 Using closures allows the state of the ninja to be maintained within a method, with-
out letting it be directly accessed by a user of the method—because the variable is
available to the inner methods via their closures, but not to code that lies outside the
constructor.

 This is a glimpse into the world of object-oriented JavaScript, which we’ll explore
in greater depth in chapter 7. For now, let’s focus on another common use of closures.

5.2.2 Using closures with callbacks

Another common use of closures occurs when dealing with callbacks—when a func-
tion is called at an unspecified later time. Often, within such functions, we frequently



97Putting closures to work

need to access outside data. The following listing shows an example that creates a sim-
ple animation with callback timers.

<div id="box1">First Box</div>
<script>
  function animateIt(elementId) {
    var elem = document.getElementById(elementId);
    var tick = 0;
    var timer = setInterval(function(){         
      if (tick < 100) {                                
        elem.style.left = elem.style.top = tick + "px";
        tick++;                                        
      }                                                
      else {
        clearInterval(timer);

Listing 5.4 Using a closure in a timer interval callback

var ninja  

var feints

The object instance
is visible via the
ninja variable. 

In the outer scope,
we have no access
to feints.

The feints method has
access to the feints variable,
as it’s within the closure.

Ninja instance

feint function(){}

Figure 5.4 Hiding the variable inside the constructor keeps it invisible to the outer 
scope, but where it counts, the variable is alive and well, protected by the closure.

Creates the element 
that we’re going to 
animate

Inside the 
animateIt 
function, 
we get a 
reference to 
that element.

Establishes a
counter to keep

track of
animation ticks

(steps)

A built-in function that
creates and starts an

interval timer, given a
callback

The timer callback is
invoked every 10

milliseconds. For 100
ticks, it adjusts the

position of the element.



98 CHAPTER 5 Functions for the master: closures and scopes

        assert(tick === 100,
               "Tick accessed via a closure.");
        assert(elem,
               "Element also accessed via a closure.");
        assert(timer,
               "Timer reference also obtained via a closure." );
      }
    }, 10);           
  }
  animateIt("box1");
</script>

What’s especially important about this code is that it uses a single anonymous func-
tion, placed as a setInterval argument, to accomplish the animation of the target
div element. That function accesses three variables: elem, tick, and timer, via a clo-
sure, to control the animation process. The three variables (the reference to the DOM
element, elem; the tick counter, tick; and the timer reference, timer) all must be
maintained across the steps of the animation. And we need to keep them out of the
global scope.

 But the example will still work fine if we move the variables out of the animateIt
function and into the global scope. So why all the arm flailing about not polluting the
global scope?

 Go ahead and move the variables into the global scope and verify that the example
still works. Now modify the example to animate two elements: Add another element
with a unique ID, and call the animateIt function with that ID right after the original
call.

 The problem immediately becomes obvious. If we keep the variables in the global
scope, we need a set of three variables for each animation. Otherwise, they’ll step all
over each other, trying to use the same set of variables to keep track of multiple states.

 By defining the variables inside the function, and by relying on closures to make
them available to the timer callback invocations, each animation gets its own private
“bubble” of variables, as shown in figure 5.5.

 Without closures, doing multiple things at once, whether event handling, anima-
tions, or even server requests, would be incredibly difficult. If you’ve been waiting for
a reason to care about closures, this is it!

 This example is a particularly good one for demonstrating how closures are capa-
ble of producing some surprisingly intuitive and concise code. By including the vari-
ables in the animateIt function, we create an implied closure without needing any
complex syntax.

 There’s another important concept that this example makes clear. Not only can we
see the values that these variables had at the time the closure was created, but we can
update them within the closure while the function within the closure executes. The
closure isn’t just a snapshot of the state of the scope at the time of creation, but an
active encapsulation of that state that we can modify as long as the closure exists.

After 100 ticks, we stop
the timer and perform
tests to assert that we

can see all relevant
variables needed to

perform the animation.

The setInterval duration—
the callback will be called 
every 10ms.Now that it’s all 

set up, we set it 
in motion!



99Tracking code execution with execution contexts 

Closures are closely related to scopes, so we’ll spend a good deal of this chapter
exploring scoping rules in JavaScript. But first, we’ll start with the details of how code
execution is tracked in JavaScript.

5.3 Tracking code execution with execution contexts 
In JavaScript, the fundamental unit of execution is a function. We use them all the
time, to calculate something, to perform side effects such as changing the UI, to
achieve code reuse, or to make our code easier to understand. To fulfill its purpose, a
function can call another function, which in turn can call another function, and so
on. And when a function does its thing, our program execution has to return to the
position from which the function was called. But have you ever wondered how the
JavaScript engine keeps track of all these executing functions and return positions?

 As we mentioned in chapter 2, there are two main types of JavaScript code: global
code, placed outside all functions, and function code, contained in functions. When our
code is being executed by the JavaScript engine, each statement is executed in a cer-
tain execution context.

 And just as we have two types of code, we have two types of execution contexts: a
global execution context and a function execution context. Here’s the significant difference:

var elem;

var tick;

var timer;

function(){...}

var elem;

var tick;

var timer;

function(){...}

var elem;

var tick;

var timer;

function(){…}

var elem;

var tick;

var timer;

function(){…}

var elem;

var tick;

var timer;

function(){…}

var elem;

var tick;

var timer;

function(){…}

var elem;

var tick;

var timer;

function(){...}

Each animation gets its
own private little bubble
of variables within the
closures for the handler.

This instance has no
access to variables in
the other closures.

Neither does
this one.

Figure 5.5 By keeping the variables for multiple 
instances of the function separate, we can do 
many things at once.



100 CHAPTER 5 Functions for the master: closures and scopes

There’s only one global execution context, created when our JavaScript program starts
executing, whereas a new function execution context is created on each func-
tion invocation. 

NOTE You may recall from chapter 4 that function context is the object on
which our function is invoked, which can be accessed through the this key-
word. An execution context, although it has a similar name, is a completely
different thing. It’s an internal JavaScript concept that the JavaScript engine
uses to track the execution of our functions.

As we mentioned in chapter 2, JavaScript is based on a single-threaded execution
model: Only one piece of code can be executed at a time. Every time a function is
invoked, the current execution context has to be stopped, and a new function execu-
tion context, in which the function code will be evaluated, has to be created. After the
function performs its task, its function execution context is usually discarded, and the
caller execution context restored. So there’s a need to keep track of all these execu-
tion contexts—both the one that’s executing and the ones that are patiently waiting.
The easiest way to do this is by using a stack, called the execution context stack (or often
called a call stack). 

NOTE A stack is a fundamental data structure in which you can put new items
only to the top and can take existing items only from the top. Think of a stack
of trays in a cafeteria. When you want to take one, you pick one from the top.
And a cafeteria worker who has a new clean one also puts it on the top. 

This might seem vague, so let’s look at the following code, which reports the activity of
two skulking ninjas.

  function skulk(ninja) {         
    report(ninja + " skulking");  
  }                               

  function report(message) {     
    console.log(message);        
  }                              

  skulk("Kuma");      
  skulk("Yoshi");     

This code is straightforward; we define the skulk function, which calls the report
function, which outputs a message. Then, from global code, we make two separate
calls to the skulk function: skulk("Kuma") and skulk("Yoshi"). By using this code as
a basis, we’ll explore the creation of execution contexts, as shown in figure 5.6.

Listing 5.5 The creation of execution contexts

A function that calls 
another function

A function that reports a message 
through the built-in console.log 
function

Two function calls 
from global code



101Tracking code execution with execution contexts 

When executing the example code, the execution context behaves as follows: 

1 The execution context stack starts with the global execution context that’s cre-
ated only once per JavaScript program (once per page in the case of web
pages). The global execution context is the active execution context when exe-
cuting global code. 

2 In global code, the program first defines two functions: skulk and report, and
then calls the skulk function with skulk("Kuma"). Because only one piece of
code can be executed at once, the JavaScript engine pauses the execution of
the global code, and goes to execute the skulk function code with Kuma as an
argument. This is done by creating a new function execution context and push-
ing it on top of the stack. 

3 The skulk function, in turn, calls the report function with the argument Kuma
skulking. Again, because only one piece of code can be executed at a time, the
skulk execution context is paused, and a new function execution context for
the report function, with the argument Kuma skulking, is created and pushed
onto the stack. 

Global
execution context

skulk("Kuma")
execution context

The program starts
executing with the
global execution
context on the
stack.

function skulk(ninja) {  
    report(ninja + " skulking");   
}     

  function report(message) {  
    console.log(message);  
}     

  skulk("Kuma");   
  skulk("Yoshi");

    When the skulk function
    is called, a new function
    context is pushed onto
    the stack, and the global
    execution context is
    paused.

    A new function context
    for the report function is
    pushed onto the stack
    when it is called. The
    skulk execution context
    is paused.

    When the report function
    finishes executing, its
    function context is popped
    off of the stack. The skulk
    execution context resumes
    execution.    

    The skulk execution
    context is popped off
    of the stack when the
    skulk function finishes
    execution. The global
    execution context
    resumes execution.   

Global
execution context

Global
execution context

Global
execution context

Global
execution context

skulk("Kuma")
execution context

report
("Kuma skulking")

execution context

skulk("Kuma")
execution context

Figure 5.6 The behavior of the execution context stack



102 CHAPTER 5 Functions for the master: closures and scopes

4 After the report function logs the message by using the built-in console.log
function (see appendix C) and finishes its execution, we have to go back to the
skulk function. This is done by popping the report function execution context
from the stack. The skulk function execution context is then reactivated, and
the execution of the skulk function continues.

5 A similar thing happens when the skulk function finishes its execution: The
function execution context of the skulk function is removed from the stack,
and the global execution context, which has been patiently waiting this whole
time, is restored as the active execution context. The execution of global
JavaScript code is restored.

This whole process is repeated in a similar way for the second call to the skulk func-
tion, now with the argument Yoshi. Two new function execution contexts are created
and pushed to the stack, skulk("Yoshi") and report("Yoshi skulking"), when the
respective functions are called. These execution contexts are also popped off the stack
when the program returns from the matching function. 

 Even though the execution context stack is an internal JavaScript concept, you can
explore it in any JavaScript debugger, where it’s referred to as a call stack. Figure 5.7
shows the call stack in Chrome DevTools.

NOTE Appendix C gives a closer look at the debugging tools available in vari-
ous browsers.

Besides keeping track of the position in the application execution, the execution con-
text is vital in identifier resolution, the process of figuring out which variable a certain
identifier refers to. The execution context does this via the lexical environment.

The execution context
stack (call stack)

Figure 5.7 The current state of the execution context stack in Chrome DevTools



103Keeping track of identifiers with lexical environments

5.4 Keeping track of identifiers with lexical environments
A lexical environment is an internal JavaScript engine construct used to keep track of
the mapping from identifiers to specific variables. For example, consider the follow-
ing code:

  var ninja = "Hattori";
  console.log(ninja);

The lexical environment is consulted when the ninja variable is accessed in the
console.log statement. 

NOTE Lexical environments are an internal implementation of the JavaScript
scoping mechanism, and people often colloquially refer to them as scopes.

Usually, a lexical environment is associated with a specific structure of JavaScript code.
It can be associated with a function, a block of code, or the catch part of a try-catch
statement. Each of these structures (functions, blocks, and catch parts) can have its
own separate identifier mappings.

5.4.1 Code nesting

Lexical environments are heavily based on code nesting, which enables one code struc-
ture to be contained within another. Figure 5.8 shows various types of code nesting.

NOTE In pre-ES6 versions of JavaScript, a lexical environment
could be associated with only a function. Variables could be
only function scoped. This caused a lot of confusion. Because
JavaScript is a C-like language, people coming from other C-like
languages (such as C++, C#, or Java) naturally expected some
low-level concepts, such as the existence of block scopes, to be
the same. With ES6, this is finally fixed.

<script>
  var ninja = "Muneyoshi";
  function skulk() {
    var action = "skulking";
    function report() {
      var reportNum = 3; 
      
      for(var i = 0; i < reportNum; i++) {
        console.log(ninja + " " + action + " " + i);
      }
    }
    report();
  }
  skulk();
</script>

The skulk function
is contained within
global code.

The report function
is nested within the
skulk function.

The for loop is
nested within the
report function.

Figure 5.8 Types of code nesting



104 CHAPTER 5 Functions for the master: closures and scopes

In this example, we can see the following: 

■ The for loop is nested within the report function.
■ The report function is nested within the skulk function.
■ The skulk function is nested within global code. 

In terms of scopes, each of these code structures gets an associated lexical environ-
ment every time the code is evaluated. For example, on every invocation of the skulk
function, a new function lexical environment is created.

 In addition, it’s important to emphasize that an inner code structure has access to
the variables defined in outer code structures; for example, the for loop can access
variables from the report function, the skulk function, and the global code; the
report function can access variables from the skulk function and the global code;
and the skulk function can access only additional variables from the global code.

 There’s nothing special about this way of accessing variables; all of us have proba-
bly done it many times. But how does the JavaScript engine keep track of all these vari-
ables, and what’s accessible from where? This is where lexical environments jump in.

5.4.2 Code nesting and lexical environments

In addition to keeping track of local variables, function declarations, and function
parameters, each lexical environment has to keep track of its outer (parent) lexical envi-
ronment. This is necessary because we have to be able to access variables defined in
outer code structures; if an identifier can’t be found in the current environment, the
outer environment is searched. This stops either when the matching variable is found,
or with a reference error if we’ve reached the global environment and there’s no sign
of the searched-for identifier. Figure 5.9 shows an example; you can see how the iden-
tifiers intro, action, and ninja are resolved when executing the report function. 

 In this example, the report function is called by the skulk function, which in turn
is called by global code. Each execution context has a lexical environment associated
with it that contains the mapping for all identifiers defined directly in that context.
For example, the global environment holds the mapping for identifiers ninja and
skulk, the skulk environment holds the mapping for the identifiers action and
report, and the report environment holds the mapping for the intro identifier (the
right side of figure 5.9). 

 In a particular execution context, besides accessing identifiers defined directly in
the matching lexical environment, our programs often access other variables defined
in outer environments. For example, in the body of the report function, we access the
variable action of the outer skulk function, as well as the global ninja variable. To do
this, we have to somehow keep track of these outer environments. JavaScript does this
by taking advantage of functions as first-class objects. 

 Whenever a function is created, a reference to the lexical environment in which the
function was created is stored in an internal (meaning that you can’t access or manip-
ulate it directly) property named [[Environment]]; double brackets is the notation
that we’ll use to mark these internal properties. In our case, the skulk function will



105Keeping track of identifiers with lexical environments

keep a reference to the global environment, and the report function will keep a refer-
ence to the skulk environment, because these were the environments in which the
functions were created.

NOTE This might seem odd at first. Why don’t we just traverse the whole
stack of execution contexts and search their matching environments for iden-
tifier mappings? Technically, this would work in our example. But remember,
a JavaScript function can be passed around as any other object, so the posi-
tion of the function definition and the position from where the function is
called generally aren’t related (remember closures).

1. Check report environment -> found

Find intro

1. Check report environment -> not found
2. Check report’s outer environment: skulk
    Check skulk environment -> not found
3. Check skulk’s outer environment: global
    Check global environment -> found

Find ninja

1. Check report environment -> not found
2. Check report’s outer environment: skulk
    Check skulk environment -> found

Find action

<script>
  var ninja = "Muneyoshi";

  function skulk() {
    var action = "Skulking";

    function report() {
      var intro = "Aha!";
      assert(intro === "Aha!", "Local");
      assert(action === "Skulking", "Outer");
      assert(ninja === "Muneyoshi", "Global");
    }

    report();
  }

  skulk();
</script>

Execution stack

Global
execution context

skulk
execution context

report
execution context

report
environment

Outer

[[Environment]]

intro: "Aha!"

skulk
environment

action: "Skulking"
report:

Global
environment

ninja: "Muneyoshi"
skulk:

[[Environment]]

Outer function report(){}

function skulk(){}

Figure 5.9 How JavaScript engines resolve the values of variables



106 CHAPTER 5 Functions for the master: closures and scopes

Whenever a function is called, a new function execution context is created and
pushed onto the execution context stack. In addition, a new associated lexical envi-
ronment is created. Now comes the crucial part: For the outer environment of the
newly created lexical environment, the JavaScript engine puts the environment refer-
enced by the called function’s internal [[Environment]] property, the environment
in which the now-called function was created! 

 In our case, when the skulk function is called, the outer environment of the newly
created skulk environment becomes the global environment (because it’s the envi-
ronment in which the skulk function was created). Similarly, when calling the report
function, the outer environment of the newly created report environment is set to
the skulk environment.

 Now let’s take a look at the report function: 

function report() {
  var intro = "Aha!";
  assert(intro === "Aha!", "Local");
  assert(action === "Skulking", "Outer");
  assert(action === "Muneyoshi", "Global");
}

When the first assert statement is being evaluated, we have to resolve the intro iden-
tifier. To do this, the JavaScript engine starts by checking the environment of the cur-
rently running execution context, the report environment. Because the report
environment contains a reference to intro, the identifier is resolved. 

 Next, the second assert statement has to resolve the action identifier. Again, the
environment of the currently running execution context is checked. But the report
environment doesn’t contain a reference to the action identifier, so the JavaScript
engine has to check the outer environment of the report environment: the skulk
environment. Luckily, the skulk environment contains a reference to the action
identifier, and the identifier is resolved. A similar process is followed when trying
to resolve the ninja identifier (a little hint: the identifier can be found in the
global environment).

 Now that you understand the fundamentals of identifier resolution, let’s look at
the various ways a variable can be declared. 

5.5 Understanding types of JavaScript variables
In JavaScript, we can use three keywords for defining variables: var, let, and const. They
differ in two aspects: mutability and their relationship toward the lexical environment.

NOTE The keyword var has been part of JavaScript since its begin-
ning, whereas let and const are ES6 additions. You can check
whether your browser supports let and const at the following links:
http://mng.bz/CGJ6 and http://mng.bz/uUIT.

http://mng.bz/CGJ6
http://mng.bz/uUIT


107Understanding types of JavaScript variables

5.5.1 Variable mutability

If we were to divide variable declaration keywords by mutability, we’d put const on
one side and var and let on the other side. All variables defined with const are
immutable, meaning that their value can be set only once. On the other hand, vari-
ables defined with keywords var and let are typical run-of-the-mill variables, whose
value we can change as many times as necessary. 

 Now, let’s delve into how const variables work and behave.

CONST VARIABLES

A const “variable” is similar to a normal variable, with the exception that we have to
provide an initialization value when it’s declared, and we can’t assign a completely
new value to it afterward. Hmmm, not very variable, is it?

Const variables are often used for two slightly different purposes:

■ Specifying variables that shouldn’t be reassigned (and in the rest of the book,
we use them mostly in this regard). 

■ Referencing a fixed value, for example, the maximum number of ronin in a
squad, MAX_RONIN_COUNT, by name, instead of using a literal number such as 234.
This makes our programs easier to understand and maintain. Our code isn’t
filled with seemingly arbitrary literals (234), but with meaningful names
(MAX_RONIN_COUNT) whose values are specified in only one place. 

In either case, because const variables aren’t meant to be reassigned during program
execution, we’ve safeguarded our code against unwanted or accidental modifications
and we’ve even made it possible for the JavaScript engine to do some performance
optimizations.

 The following listing illustrates the behavior of const variables. 

const firstConst = "samurai";                               
assert(firstConst === "samurai", "firstConst is a samurai");

try{                                 
  firstConst = "ninja";              
  fail("Shouldn't be here");         
} catch(e){                          
  pass("An exception has occurred");  
}                                    

assert(firstConst === "samurai",       
      "firstConst is still a samurai!");

const secondConst = {};                 

secondConst.weapon = "wakizashi";         
assert(secondConst.weapon === "wakizashi",
       "We can add new properties");      

Listing 5.6 The behavior of const variables

Defines a const 
variable and 
verifies that 
the value was 
assignedAttempting to 

assign a new 
value to a const 
variable throws 
an exception.

Creates a new const 
variable and assigns a 
new object to it

We can’t assign a completely new object to the 
secondConst variable, but there’s nothing stopping 
us from modifying the one we already have.



108 CHAPTER 5 Functions for the master: closures and scopes

const thirdConst = [];                                   
assert(thirdConst.length === 0, "No items in our array");

thirdConst.push("Yoshi");                                

assert(thirdConst.length === 1, "The array has changed");

Here we first define a const variable named firstConst with a value samurai and test
that the variable has been initialized, as expected:

const firstConst = "samurai";
assert(firstConst === "samurai", "firstConst is a samurai");

We continue by trying to assign a completely new value, ninja, to our firstConst
variable:

try{
  firstConst = "ninja";
  fail("Shouldn't be here");
} catch(e){
  pass("An exception has occurred");
}

Because the firstConst variable is, well, a constant, we can’t assign a new value to it, so
the JavaScript engine throws an exception without modifying the variable’s value.
Notice that we’re using two functions that we haven’t used so far: fail and pass. These
two methods behave similarly to the assert method, except fail always fails and pass
always passes. Here we use them to check whether an exception has occurred: If an
exception occurs, the catch statement is activated and the pass method is executed. If
there’s no exception, the fail method is executed, and we’ll be notified that something
isn’t as it should be. We can check to ver-
ify that the exception happens, as
shown in figure 5.10.

 Next, we define another const vari-
able, this time initializing it to an
empty object:

const secondConst = {};

Now we’ll discuss an important feature
of const variables. As you’ve already
seen, we can’t assign a completely new
value to a const variable. But there’s
nothing stopping us from modifying the
current one. For example, we can add
new properites to the current object:

The exact same 
thing holds for 
arrays.

Figure 5.10 Checking the behavior of const vari-
ables. An exception occurs when we try to assign a 
completely new value to a const variable.



109Understanding types of JavaScript variables

secondConst.weapon = "wakizashi";
assert(secondConst.weapon === "wakizashi",
       "We can add new properties");

Or, if our const variable refers to an array, we can modify that array to any degree:

const thirdConst = [];
assert(thirdConst.length === 0, "No items in our array");

thirdConst.push("Yoshi");

assert(thirdConst.length === 1, "The array has changed");

And that’s about it. const variables aren’t that complicated to begin with. You only
have to remember that a value of a const variable can be set only on initialization and
that we can’t assign a completely new value later. We can still modify the existing
value; we just can’t completely override it.

 Now that we’ve explored variable mutability, let’s consider the details of the rela-
tionships between various types of variables and lexical environments.

5.5.2 Variable definition keywords and lexical environments

The three types of variable definitions—var, let, and const—can also be categorized
by their relationship with the lexical environment (in other words, by their scope). In
that case, we can put var on one side, and let and const on the other. 

USING THE VAR KEYWORD

When we use the var keyword, the variable is defined in the closest function or global
lexical environment. (Note that blocks are ignored!) This is a long-standing detail of
JavaScript that has tripped up many developers coming from other languages.

 Consider the following listing.

var globalNinja = "Yoshi";       

function reportActivity(){
  var functionActivity = "jumping"; 
  
  for(var i = 1; i < 3; i++) {                              
      var forMessage = globalNinja + " " + functionActivity;
      assert(forMessage === "Yoshi jumping",              
             "Yoshi is jumping within the for block");    
      assert(i, "Current loop counter:" + i);             
  } 
  
  assert(i === 3 && forMessage === "Yoshi jumping",      
        "Loop variables accessible outside of the loop");
  }

reportActivity();

Listing 5.7 Using the var keyword

Defines a global 
variable, using var

Defines a function local 
variable, using var

Defines two 
variables in the for 
loop, using var

Within the for 
loop, we can 
access the block 
variables, function 
variables, and 
global variables—
nothing surprising 
there.But the variables of the for loop are

also accessible outside the for loop.



110 CHAPTER 5 Functions for the master: closures and scopes

assert(typeof functionActivity === "undefined"                       
    && typeof i === "undefined" && typeof forMessage === "undefined",
    "We cannot see function variables outside of a function");       

We start by defining a global variable, globalNinja, which is followed by defining a
reportActivity function that loops two times and notifies us about the jumping activ-
ity of our globalNinja. As you can see, within the body of the for loop, we can nor-
mally access both the block variables (i and forMessage), the function variables
(functionActivity), and the global variables (globalNinja).

 But what’s strange with JavaScript, and what confuses a lot of developers coming
from other languages, is that we can access the variables defined with code blocks
even outside those blocks:

assert(i === 3 && forMessage === "Yoshi jumping",
       "Loop variables accessible outside of the loop");

This stems from the fact that variables declared with the keyword var are always regis-
tered in the closest function or global lexical environment, without paying any attention
to blocks. Figure 5.11 depicts this situation, by showing the state of lexical environments
after the second iteration of the for loop in the reportActivity function. 

Normally, none of the function variables
are accessible outside of the function.

var globalNinja = "Yoshi";

function reportActivity() {
 var functionActivity = "jumping";

 for(var i = 1; i < 3; i++) {
    var forMessage = globalNinja + " " + functionActivity;
    assert(forMessage = "Yoshi jumping",
           "Yoshi is jumping within the for block");
    assert(i, "Current loop counter:" + i);
  }
   assert(i == 3 && forMessage == "Yoshi jumping", 
         "Loop variables accessible outside of the loop");
 }

 reportActivity();
  ...

The state of lexical environments
when finishing the second iteration
of the for loop

Global
environment

Function
environment

Block
environment

Outer

reportActivity
environment

functionActivity: "jumping"
i: 3
forMessage: "Yoshi jumping"

Global
environment

reportActivity: function(){}
globalNinja: "Yoshi"

Outer

for block
environment

Figure 5.11 When defining variables with the keyword 
var, a variable is defined in the closest function or global 
environment (while ignoring block environments). In our 
case, the variables forMessage and i are registered in the 
reportActivity environment (the closest functional en-
vironment), even though they’re contained within a for
loop.



111Understanding types of JavaScript variables

Here we have three lexical environments: 

■ The global environment in which the globalNinja variable is registered
(because this is the closest function or global lexical environment) 

■ The reportActivity environment, created on the reportActivity function
invocation, which contains the functionActivity, i, and forMessage variables,
because they’re defined with the keyword var, and this is their closest function
environment 

■ The for block environment, which is empty, because var-defined variables
ignore blocks (even when contained within them)

Because this behavior is a bit strange, the ES6 version of JavaScript offers two new vari-
able declaration keywords: let and const.

USING LET AND CONST TO SPECIFY BLOCK-SCOPED VARIABLES

Unlike var, which defines the variable in the closest function or global lexical environ-
ment, the let and const keywords are more straightforward. They define variables in
the closest lexical environment (which can be a block environment, a loop environ-
ment, a function environment, or even the global environment). We can use let and
const to define block-scoped, function-scoped, and global-scoped variables.

 Let’s rewrite our previous example to use const and let.

const GLOBAL_NINJA = "Yoshi";

function reportActivity(){
  const functionActivity = "jumping";
  
  for(let i = 1; i < 3; i++) {                               
      let forMessage = GLOBAL_NINJA + " " + functionActivity;
      assert(forMessage === "Yoshi jumping",                   
             "Yoshi is jumping within the for block");         
      assert(i, "Current loop counter:" + i);                  
  } 
  
  assert(typeof i === "undefined" && typeof forMessage === "undefined",
        "Loop variables not accessible outside the loop");           
}

reportActivity();
assert(typeof functionActivity === "undefined"                       
    && typeof i === "undefined" && typeof forMessage === "undefined",
    "We cannot see function variables outside of a function");       

Listing 5.8 Using const and let keywords

Defines a global variable, using
const. Global const variables are

usually written in uppercase.

Defines a
function local

variable, using
const

Defines two
variables in

the for loop,
using let

Within the for loop, we can access
the block variables, function

variables, and global variables—
nothing surprising there.

Now, the
variables of
the for loop

aren’t
accessible

outside the
for loop.

Normally, none of the function variables are
accessible outside the function.



112 CHAPTER 5 Functions for the master: closures and scopes

Figure 5.12 illustrates the current situation, when finishing the execution of the sec-
ond iteration of the for loop in the reportActivity function. We again have three
lexical environments: the global environment (for global code outside all functions
and blocks), the reportActivity environment bound to the reportActivity func-
tion, and the block environment for the for loop body. But because we’re using let
and const keywords, the variables are defined in their closest lexical environment; the
GLOBAL_NINJA variable is defined in the global environment, the functionActivity
variable in the reportActivity environment, and the i and forMessage variables in
the for block environment.

 Now that const and let have been introduced, scores of new JavaScript developers
who have recently come from other programming languages can be at peace. JavaScript

Outer

Outer

const GLOBAL_NINJA = "Yoshi";

function reportActivity() {
 const functionActivity = "jumping";

 for(let i = 1; i < 3; i++) {
    let forMessage = GLOBAL_NINJA + " " + functionActivity;
    assert(forMessage = "Yoshi jumping",
          "Yoshi is jumping within the for block");
    assert(i, "Current loop counter:" + i);
 }
  assert(typeof i == "undefined" 
      && typeof forMessage == "undefined", 
        "Loop variables not accessible outside the loop");
}

reportActivity();
...

Global
environment

Function
environment

The state of lexical environments
when finishing the second iteration
of the for loop

Block
environment

for block
environment

reportActivity
environment

functionActivity: "jumping"

i: 3
forMessage: "Yoshi jumping"

Global
environment

reportActivity: function(){}
GLOBAL_NINJA: "Yoshi"

Figure 5.12 When defining variables with keywords let and const, a variable is defined in the clos-
est environment. In our case, variables forMessage and i are registered in the for block environ-
ment, the variable functionActivity in the reportActivity environment, and the 
GLOBAL_NINJA variable in the global environment (in every case, the closest environment to the 
respective variable).



113Understanding types of JavaScript variables

finally supports the same scoping rules as other C-like languages. For this reason, from
this point in this book, we almost always use const and let instead of var.

 Now that we understand how identifier mappings are kept within lexical environ-
ments and how lexical environments are linked to program execution, let’s discuss
the exact process by which identifiers are defined within lexical environments. This
will help us better understand some commonly occurring bugs.

5.5.3 Registering identifiers within lexical environments

One of the driving principles behind the design of JavaScript as a programming lan-
guage was its ease of use. That’s one of the main reasons for not specifying function
return types, function parameter types, variable types, and so on. And you already
know that JavaScript code is executed line by line, in a straightforward fashion. Con-
sider the following:

firstRonin = "Kiyokawa";
secondRonin = "Kondo";

The value Kiyokawa is assigned to the identifier firstRonin, and then the value Kondo
is assigned to the identifier secondRonin. There’s nothing weird about that, right? But
take a look at another example:

const firstRonin = "Kiyokawa";
check(firstRonin);
function check(ronin) {
  assert(ronin === "Kiyokawa", "The ronin was checked! ");
}

In this case, we assign the value Kiyokawa to the identifier firstRonin, and then we
call the check function with the identifier firstRonin as a parameter. But hold on a
second—if the code is executed line by line, should we be able to call the check func-
tion? Our program execution hasn’t reached its declaration, so the JavaScript engine
shouldn’t even know about it.

 But if we check, as shown in fig-
ure 5.13, you see that all is fine and well.
JavaScript isn’t too picky about where we
define our functions. We can choose to
place function declarations before or
even after their respective calls. This isn’t
something that the developer should
need to fuss about.

THE PROCESS OF REGISTERING IDENTIFIERS

But ease of use aside, if code is executed
line by line, how did the JavaScript
engine know that a function named

Figure 5.13 The function is indeed visible, even be-
fore the execution reaches its definition.



114 CHAPTER 5 Functions for the master: closures and scopes

Function
environment?

Block
environment?

Function
or global

environment?

Create the arguments
object and function

parameters.

Yes

No

Register function
declarations outside

other functions.

Register variables
with let and const
in the current block.

Register variables with
var outside functions,
and variables with let,
const outside blocks.

Yes

No

YesNo

check exists? It turns out that the JavaScript engine “cheats” a little, and that execution
of JavaScript code occurs in two phases. 

 The first phase is activated whenever a new lexical environment is created. In this
phase, the code isn’t executed, but the JavaScript engine visits and registers all
declared variables and functions within the current lexical environment. The second
phase, JavaScript execution, starts after this has been accomplished; the exact behav-
ior depends on the type of variable (let, var, const, function declaration) and the
type of environment (global, function, or block).

 The process is as follows:

1 If we’re creating a function environment, the implicit arguments identifier is
created, along with all formal function parameters and their argument values.
If we’re dealing with a nonfunction environment, this step is skipped.

2 If we’re creating a global or a function environment, the current code is scanned
(without going into the body of other functions) for function declarations (but
not function expressions or arrow functions!). For each discovered function dec-
laration, a new function is created and bound to an identifier in the environment
with the function’s name. If that identifier name already exists, its value is over-
written. If we’re dealing with block environments, this step is skipped.

3 The current code is scanned for variable declarations. In function and global
environments, all variables declared with the keyword var and defined outside
other functions (but they can be placed within
blocks!) are found, and all variables declared
with the keywords let and const

defined outside other functions and
blocks are found. In block environ-
ments, the code is scanned only for
variables declared with the keywords
let and const, directly in the current
block. For each discovered variable, if the
identifier doesn’t exist in the environ-
ment, the identifier is registered and its
value initialized to undefined. But if the
identifier exists, it’s left with its value. 

These steps are summa-
rized in figure 5.14.

 Now we’ll go through
the implications of these
rules. You’ll see some com-
mon JavaScript conun-
drums that can lead to
weird bugs that are easy to

Figure 5.14 The process of registering identifiers, depending on the 
type of environment



115Understanding types of JavaScript variables

create but tricky to understand. Let’s start with why we’re able to call a function before
it’s even declared. 

CALLING FUNCTIONS BEFORE THEIR DECLARATIONS

One of the features that makes JavaScript pleasant to use is that the order of function
definitions doesn’t matter. Those who have used Pascal may not remember its rigid
structural requirements fondly. In JavaScript, we can call a function even before it’s
formally declared. Check out the following listing.

assert(typeof fun === "function",
  "fun is a function even though its definition isn't reached yet!");

assert(typeof myFunExp === "undefined",           
  "But we cannot access function expressions");   

assert(typeof myArrow === "undefined",            
  "Nor arrow functions");                         

function fun(){} 

var myFunExpr = function(){};      
var myArrow = (x) => x;            

We can access the function fun even before we’ve defined it. We can do this because
fun is defined as a function declaration, and the second step (listed previously in this
section) indicates that functions created with function declarations are created and
their identifiers registered when the current lexical environment is created, before any
JavaScript code is executed. So even before we start executing our assert call, the fun
function already exists. 

 The JavaScript engine does this to make things easier for us as developers, allowing
us to forward-reference functions and not burdening us with an exact order for plac-
ing functions. Functions already exist at the time our code starts executing. 

 Notice that this holds only for function declarations. Function expressions and
arrow functions aren’t part of this process, and are created when the program execu-
tion reaches their definitions. This is why we can’t access the myFunExp and myArrow
functions.

OVERRIDING FUNCTIONS

The next conundrum to tackle is the problem of overriding function identifiers. Let’s
take a look at another example.

Listing 5.9 Accessing a function before its declaration

We can access a function that isn’t yet
defined, if the function is defined as a

function declaration.

We can’t access functions that 
are defined as function 
expressions or arrow functions.

The fun function is defined 
as a function declaration.

myFunExpr points to a function expression, 
and myArrow to an arrow function.



116 CHAPTER 5 Functions for the master: closures and scopes

assert(typeof fun === "function", "We access the function"); 

var fun = 3;

assert(typeof fun === "number", "Now we access the number");

function fun(){} 

assert(typeof fun === "number", "Still a number"); 

In this example, a variable declaration and a function declaration have the same
name: fun. If you run this code, you’ll see that both asserts pass. In the first assert,
the identifier fun refers to a function; and in the second and third, fun refers to a
number. 

 This behavior follows as a direct consequence of the steps taken when registering
identifiers. In the second step of the outlined process, functions defined with function
declarations are created and associated to their identifiers before any code is evaluated;
and in the third step, variable declarations are processed, and the value undefined is
associated to identifiers that haven’t yet been encountered in the current environment.

 In this case, because the identifier fun has been encountered in the second step
when function declarations are registered, the value undefined isn’t assigned to the vari-
able fun. This is why the first assertion, testing whether fun is a function, passes. After
that, we have an assignment statement, var fun = 3, which assigns the number 3 to the
identifier fun. By doing this, we lose the reference to the function, and from then on,
the identifier fun refers to a number. 

 During the actual program execution, function declarations are skipped, so the def-
inition of the fun function doesn’t have any impact on the value of the fun identifier.

In the next section, all the concepts that we’ve explored so far in this chapter will help
you better understand closures.

Listing 5.10 Overriding function identifiers

fun refers to 
a function.

Defines a variable fun and assigns a number to it

fun refers to 
a number.

A fun function declaration

fun still refers to a number.

Variable hoisting
If you’ve read a bunch of JavaScript blogs or books explaining identifier resolution,
you’ve probably run into the term hoisting—for example, variable and function decla-
rations are hoisted, or lifted, to the top of a function or global scope. 

As you’ve seen, though, that’s a simplistic view. Variables and function declarations
are technically not “moved” anywhere. They’re visited and registered in lexical envi-
ronments before any code is executed. Although hoisting, as it’s most often defined,
is enough to provide a basic understanding of how JavaScript scoping works, we’ve
gone much deeper than that by looking at lexical environments, taking another step
on the path of becoming a true JavaScript ninja.



117Exploring how closures work

5.6 Exploring how closures work
We started this chapter with closures, a mechanism that allows a function to access all
variables that are in scope when the function itself is created. You’ve also seen some of
the ways closures can help you—for example, by allowing us to mimic private object
variables or by making our code more elegant when dealing with callbacks.

 Closures are irrevocably tightly coupled with scopes. Closures are a straightforward
side effect of the way scoping rules work in JavaScript. So in this section, we’ll revisit
the closure examples from the beginning of the chapter. But this time you’ll take
advantage of execution contexts and lexical environments that will enable you to
grasp how closures work under the hood.

5.6.1 Revisiting mimicking private variables with closures

As you’ve already seen, closures can help us mimic private variables. Now that we have
a solid understanding of how scoping rules work in JavaScript, let’s revisit the private
variables example. This time, we’ll focus on execution contexts and lexical environ-
ments. Just to make things easier, let’s repeat the listing.

function Ninja() { 
  var feints = 0;  
  this.getFeints = function(){  
    return feints;              
  };                            
  this.feint = function(){          
    feints++;                       
  };                                
}
var ninja1 = new Ninja();  
assert(ninja1.feints === undefined,                   
       "And the private data is inaccessible to us.");
ninja1.feint();
assert(ninja1.getFeints()=== 1,                          
       "We're able to access the internal feint count.");
  
var ninja2 = new Ninja();                                      
assert(ninja2.getFeints()=== 0, 
       "The second ninja object gets its own feints variable.");

Listing 5.11 Approximate private variables with closures

Declares a variable inside the
constructor. Because the scope of the

variable is limited to inside the
constructor, it’s a “private” variable.

An accessor
method for

the feints
counter

The increment method for the 
value. Because the value is 
private, no one can screw it up 
behind our backs; they’re 
limited to the access that we 
give them via methods.

Verifies that we
can’t get at the

variable directly

Calls the feint
method, which
increments the

count of the
number of times

that our ninja
has feinted

Tests that the
increment was

performed

When we create a new ninja2 object with
the Ninja constructor, the ninja2 object

gets its own feints variable.



118 CHAPTER 5 Functions for the master: closures and scopes

Now we’ll analyze the state of the application after the first Ninja object has been cre-
ated, as shown in figure 5.15. We can use our knowledge of the intricacies of identifier
resolution to better understand how closures come into play in this situation.
JavaScript constructors are functions invoked with the keyword new. Therefore, every
time we invoke a constructor function, we create a new lexical environment, which
keeps track of variables local to the constructor. In this example, a new Ninja environ-
ment that keeps track of the feints variable is created.

 In addition, whenever a function is created, it keeps a reference to the lexical envi-
ronment in which it was created (through an internal [[Environment]] property). In
this case, within the Ninja constructor function, we create two new functions: get-
Feints and feint, which get a reference to the Ninja environment, because this is
the environment in which they were created.

 The getFeints and feint functions are assigned as methods of the newly created
ninja object (which, if you remember from the previous chapter, is accessible
through the this keyword). Therefore, getFeints and feint will be accessible from
outside the Ninja constructor function, which in turn leads to the fact that you’ve
effectively created a closure around the feints variable.

function Ninja() {
  var feints = 0;
  this.getFeints = function(){
    return feints;
  };
  this.feint = function(){
    feints++;                  
  };                                                 
}
var ninja1 = new Ninja(); 

ninja1

getFeints

feint

function(){}

function(){}

Ninja
environment

feints: 0

2. When the constructor function is
    entered, a new lexical environment
    is created. It keeps track of all local
    variables created in this scope. In this
    case, it keeps a reference to the
    feints variable.

3. During the execution of the constructor,
    two functions are created and assigned
    as properties of the newly created object
    (getFeints and feint). As with any function,
    these two functions keep a reference to
    the environment in which they were
    created (the Ninja environment).

1. When the keyword new
   is used, a new object
   is instantiated.

Figure 5.15 Private variables are realized as closures that are created by object methods 
defined in the constructor.



119Exploring how closures work

When we create another Ninja object, the ninja2 object, the whole process is
repeated. Figure 5.16 shows the state of the application after creating the second
Ninja object.

 Every object created with the Ninja constructor gets its own methods (the
ninja1.getFeints method is different from the ninja2.getFeints method) that
close around the variables defined when the constructor was invoked. These “private”
variables are accessible only through object methods created within the constructor,
and not directly! 

 Now let’s see how things play out when making the ninja2.getFeints() call. Fig-
ure 5.17 shows the details.

 Before making the ninja2.getFeints() call, our JavaScript engine is executing
global code. Our program execution is in the global execution context, which is also
the only context in the execution stack. At the same time, the only active lexical envi-
ronment is the global environment, the environment associated with the global exe-
cution context.

 When making the ninja2.getFeints() call, we’re calling the getFeints method
of the ninja2 object. Because every function call causes the creation of a new execu-
tion context, a new getFeints execution context is created and pushed to the execu-
tion stack. This also leads to the creation of a new getFeints lexical environment,
which is normally used to keep track of variables defined in this function. In addition,
the getFeints lexical environment, as its outer environment, gets the environment in
which the getFeints function was created, the Ninja environment that was active
when the ninja2 object was constructed.

var ninja1 = new Ninja();
ninja1.feint()

ninja1

getFeints

feint

function(){}
function(){}

Ninja
environment

[[Environment]]

feints: 1

var ninja2 = new Ninja();

ninja2

getFeints

feint

function(){}
function(){}

Ninja
environment

[[Environment]]

feints: 0

The methods keep alive the environments in
which they were created, thus keeping alive
the “private” variables of each instance.

Figure 5.16 The methods of each instance create closures around the "private" instance variables.



120 CHAPTER 5 Functions for the master: closures and scopes

Now let’s see how things play out when we try to get the value of the feints variable.
First, the currently active getFeints lexical environment is consulted. Because we
haven’t defined any variables in the getFeints function, this lexical environment is
empty and our targeted feints variable won’t be found in there. Next, the search
continues in the outer environment of the current lexical environment—in our case,
the Ninja environment is active when constructing the ninja2 object. This time
around, the Ninja environment has a reference to the feints variable, and the search
is done. It’s as simple as that.

 Now that we understand the role that execution contexts and lexical environments
play when dealing with closures, we’d like to turn our attention to “private” variables

function Ninja() {
  var feints = 0;
  this.getFeints = function(){
    return feints;
  };
  this.feint = function(){
    feints++;
  };
}

var ninja1 = new Ninja();
var ninja1.feint(); 

var ninja2 = new Ninja();
ninja2.getFeints();

Execution stack

Global
execution context

getFeints
context

getFeints
environment Outer

[[Environment]]Global
environment

Ninja:

Outer

ninja2

getFeints

feint

function(){}

function(){}

Ninja
environment

[[Environment]]

feints: 0

function(){}

Figure 5.17 The state of execution contexts and lexical environments when performing the 
ninja2.getFeints() call. A new getFeints environment is created that has the environment of 
the constructor function in which ninja2 was created as its outer environment. getFeints can access 
the “private” feints variable.



121Exploring how closures work

and why we keep putting quotes around them. As you might have figured out by now,
these “private” variables aren’t private properties of the object, but are variables kept
alive by the object methods created in the constructor. Let’s take a look at one inter-
esting side effect of this.

5.6.2 Private variables caveat

In JavaScript, there’s nothing stopping us from assigning properties created on one
object to another object. For example, we can easily rewrite the code from listing 5.11
into something like the following.

  function Ninja() { 
    var feints = 0;
    this.getFeints = function(){ 
      return feints;
    };  
    this.feint = function(){ 
      feints++; 
    };    
  }
  var ninja1 = new Ninja();
  ninja1.feint();

  var imposter = {};
  imposter.getFeints = ninja1.getFeints;
  
  assert(imposter.getFeints() === 1,                       
        "The imposter has access to the feints variable!");

This listing modifies the source code in a way
that it assigns the ninja1.getFeints

method to a completely new imposter
object. Then, when we call the getFeints
function on the imposter object, we test that
we can access the value of the variable feints
created when ninja1 was instantiated, thus
proving that we’re faking this whole “pri-
vate” variable thing. See figure 5.18.

 This example illustrates that there aren’t
any private object variables in JavaScript, but
that we can use closures created by object
methods to have a “good enough” alterna-
tive. Still, even though it isn’t the real thing,
lots of developers find this way of hiding
information useful.

Listing 5.12 Private variables are accessed through functions, not through objects!

Makes the getFeints function of ninja1 
accessible through the imposter

Verifies that we can
access the supposedly

private variable of ninja1

imposter

getFeints

ninja1

getFeints

feint

function(){}
function(){}

Ninja
environment

feints: 1

Figure 5.18 We can access the “private” vari-
ables through functions, even if that function is 
attached to another object!



122 CHAPTER 5 Functions for the master: closures and scopes

5.6.3 Revisiting the closures and callbacks example

Let’s go back to our simple animations example with callback timers. This time, we’ll
animate two objects, as shown in the following listing.

<div id="box1">First Box</div>
<div id="box2">Second Box</div> 
<script>
  function animateIt(elementId) {
    var elem = document.getElementById(elementId);
    var tick = 0;
    var timer = setInterval(function(){
      if (tick < 100) {
        elem.style.left = elem.style.top = tick + "px";
        tick++;
      }
      else {
        clearInterval(timer);
        assert(tick === 100,
               "Tick accessed via a closure.");
        assert(elem,
               "Element also accessed via a closure.");
        assert(timer,
               "Timer reference also obtained via a closure." );
      }
    }, 10);
  }
  animateIt("box1"); 
  animateIt("box2");
</script>

As you saw earlier in the chapter, we use closures to simplify animating multiple objects
on our pages. But now we’ll consider lexical environments, as shown in figure 5.19.

 Every time we call the animateIt function, a new function lexical environment is
created B C that keeps track of the set of variables important for that animation
(the elementId; elem, the element that’s being animated; tick, the current number
of ticks; and timer, the ID of the timer doing the animation). That environment will
be kept alive as long as there’s at least one function that works with its variables
through closures. In this case, the browser will keep alive the setInterval callback
until we call the clearInterval function. Later, when an interval expires, the
browser calls the matching callback—and with it, through closures, come the vari-
ables defined when the callback was created. This enables us to avoid the trouble of
manually mapping the callback and the active variables D E F, thereby significantly
simplifying our code.

 That’s all we have to say about closures and scopes. Now recap this chapter and
meet us in the next one, where we’ll explore two completely new ES6 concepts, gener-
ators and promises, that can help when writing asynchronous code.

Listing 5.13 Using a closure in a timer interval callback



123Exploring how closures work

animateIt("box1");
environment

elementId: "box1"
elem: <div id="box1">
tick: 0
timer: 1

<div id="box1">First box</div>
<div id="box2">Second box</div>
<script>
function animateIt(elementId) {
   var elem = document.getElementById(elementId);
   var tick = 0;
    var timer = setInterval(function (){
     if (tick < 100) {
       var position = tick + "px";
       elem.style.left = position;
       elem.style.top = position; 
       tick++;
     }
     else {
      clearInterval(timer);
     }
   }, 10);
}
animateIt("box1");
animateIt("box2");
</script>

function(){}

function(){}

Set as interval callbacks, one for
each call to the animateIt function

The states of the
environments after
a callback function
has been executed

A function lexical
environment is
created on the
second animateIt
call.

The setInterval registered
on the animateIt("box1") 
expires.

animateIt("box2");
environment

Time

elementId: "box2"
elem: <div id="box2">
tick: 1
timer: 2

animateIt("box2");
environment

elementId: "box2"
elem: <div id="box2">
tick: 0
timer: 2

function(){}

function(){}

animateIt("box1");
environment

elementId: "box1"
elem: <div id="box1">
tick: 1
timer: 1

The setInterval registered
on the animateIt("box2") 
expires.

The setInterval registered
on the animateIt("box1") 
expires for the second time.

function(){}

animateIt("box1");
environment

elementId: "box1"
elem: <div id="box1">
tick: 2
timer: 1

A function lexical
environment is
created on the first
animateIt call.

Figure 5.19 By creating multiple closures, we can do many things at once. Every time an interval expires, 
the callback function reactivates the environment that was active at the time of callback creation. The 
closure of each callback automatically keeps track of its own set of variables.



124 CHAPTER 5 Functions for the master: closures and scopes

5.7 Summary
■ Closures allow a function to access all variables that are in scope when the func-

tion itself was defined. They create a “safety bubble” of the function and the
variables that are in scope at the point of the function’s definition. This way, the
function has all it needs to execute, even if the scope in which the function was
created is long gone.

■ We can use function closures for these advanced uses: 
– Mimic private object variables, by closing over constructor variables through

method closures
– Deal with callbacks, in a way that significantly simplifies our code

■ JavaScript engines track function execution through an execution context stack
(or a call stack). Every time a function is called, a new function execution con-
text is created and placed on the stack. When a function is done executing, the
matching execution context is popped from the stack.

■ JavaScript engines track identifiers with lexical environments (or colloquially,
scopes).

■ In JavaScript, we can define globally-scoped, function-scoped, and even-block
scoped variables. 

■ To define variables, we use var, let, and const keywords:
– The var keyword defines a variable in the closest function or global scope

(while ignoring blocks).
– let and const keywords define a variable in the closest scope (including

blocks), allowing us to create block-scoped variables, something that wasn’t
possible in pre-ES6 JavaScript. In addition, the keyword const allows us to
define “variables” whose value can be assigned only once.

■ Closures are merely a side effect of JavaScript scoping rules. A function can be
called even when the scope in which it was created is long gone.

5.8 Exercises
1 Closures allow functions to

a Access external variables that are in scope when the function is defined
b Access external variables that are in scope when the function is called

2 Closures come with

a Code-size costs
b Memory costs
c Processing costs

3 In the following code example, mark the identifiers accessed through closures:

function Samurai(name) { 
  var weapon = "katana";
  



125Exercises

  this.getWeapon = function(){ 
    return weapon;  
  };
  
  this.getName = function(){
    return name; 
  }

  this.message = name + " wielding a " + weapon;

  this.getMessage = function(){
    return this.message;
  }
}

var samurai = new Samurai("Hattori");

samurai.getWeapon();
samurai.getName();
samurai.getMessage();

4 In the following code, how many execution contexts are created, and what’s the
largest size of the execution context stack?

  function perform(ninja) {
    sneak(ninja);
    infiltrate(ninja);
  }

  function sneak(ninja) {
    return ninja + " skulking";
  }
  
  function infiltrate(ninja) {
    return ninja + " infiltrating";
  }

  perfom("Kuma");

5 Which keyword in JavaScript allows us to define variables that can’t be reas-
signed to a completely new value?

6 What’s the difference between var and let?
7 Where and why will the following code throw an exception?

getNinja();
getSamurai();

function getNinja() {
  return "Yoshi";
}

var getSamurai = () => "Hattori";



126

Functions for the future:
generators and promises

In the previous three chapters, we focused on functions, specifically on how to
define functions and how to use them to great effect. Although we’ve introduced
some ES6 features, such as arrow functions and block scopes, we’ve mostly been
exploring features that have been part of JavaScript for quite some time. This chap-
ter tackles the cutting edge of ES6 by presenting generators and promises, two com-
pletely new JavaScript features.

This chapter covers
■ Continuing function execution with generators
■ Handling asynchronous tasks with promises
■ Achieving elegant asynchronous code by 

combining generators and promises

NOTE Generators and promises are both introduced by ES6. You can
check out current browser support at http://mng.bz/sOs4 and
http://mng.bz/Du38.

http://mng.bz/sOs4
http://mng.bz/Du38


127Making our async code elegant with generators and promises

Generators are a special type of function. Whereas a standard function produces at
most a single value while running its code from start to finish, generators produce
multiple values, on a per request basis, while suspending their execution between
these requests. Although new in JavaScript, generators have existed for quite some
time in Python, PHP, and C#.

 Generators are often considered an almost weird or fringe language feature not
often used by the average programmer. Though most of this chapter’s examples are
designed to teach you how generator functions work, we’ll also explore some practical
aspects of generators. You’ll see how to use generators to simplify convoluted loops and
how to take advantage of generators’ capability to suspend and resume their execution,
which can help you write simpler and more elegant asynchronous code.

Promises, on the other hand, are a new, built-in type of object that help you work with
asynchronous code. A promise is a placeholder for a value that we don’t have yet but will
at some later point. They’re especially good for working with multiple asynchronous steps.

 In this chapter, you’ll see how both generators and promises work, and we’ll finish
off by exploring how to combine them to greatly simplify our dealings with asynchro-
nous code. But before going into the specifics, let’s take a sneak peek into how much
more elegant our asynchronous code can be.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What are some common uses for a generator function? 
Why are promises better than simple callbacks for asyn-

chronous code? 
You start a number of long-running tasks with Promise

.race. When does the promise resolve? When would it
fail to resolve? 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1 Making our async code elegant with generators and promises
Imagine that you’re a developer working at freelanceninja.com, a popular freelance
ninja recruitment site enabling customers to hire ninjas for stealth missions. Your task
is to implement a functionality that lets users get details about the highest-rated mis-
sion done by the most popular ninja. The data representing the ninjas, the summaries
of their missions, as well as the details of the missions are stored on a remote server,
encoded in JSON. You might write something like this:

try {
   var ninjas = syncGetJSON("ninjas.json");
   var missions = syncGetJSON(ninjas[0].missionsUrl);
   var missionDetails = syncGetJSON(missions[0].detailsUrl);  
   //Study the mission description
}
catch(e){
  //Oh no, we weren't able to get the mission details
}

Do you know? 



128 CHAPTER 6 Functions for the future: generators and promises

This code is relatively easy to understand, and if an error occurs in any of the steps, we
can easily catch it in the catch block. But unfortunately, this code has a big problem.
Getting data from a server is a long-running operation, and because JavaScript relies on
a single-threaded execution model, we’ve just blocked our UI until the long-running
operations finish. This leads to unresponsive applications and disappointed users. To
solve this problem, we can rewrite it with callbacks, which will be invoked when a task
finishes, without blocking the UI:

getJSON("ninjas.json", function(err, ninjas){
  if(err) { 
    console.log("Error fetching list of ninjas", err); 
    return; 
  }
  getJSON(ninjas[0].missionsUrl, function(err, missions) {
    if(err) { 
      console.log("Error locating ninja missions", err); 
      return; 
    } 
  getJSON(missions[0].detailsUrl, function(err, missionDetails){
    if(err) {
      console.log("Error locating mission details", err); 
      return;
    }
    //Study the intel plan
    });
  });
});

Although this code will be much better received by our users, you’ll probably agree
that it’s messy, it adds a lot of boilerplate error-handling code, and it’s plain ugly. This
is where generators and promises jump in. By combining them, we can turn the non-
blocking but awkward callback code into something much more elegant:

async(function*(){ 
  try {
    const ninjas = yield getJSON("ninjas.json");                      
    const missions = yield getJSON(ninjas[0].missionsUrl);            
    const missionDescription = yield getJSON(missions[0].detailsUrl); 
     //Study the mission details
  }
  catch(e) {
    //Oh no, we weren't able to get the mission details
  }
});

Don’t worry if this example doesn’t make much sense or if you find some of the syntax
(such as function* or yield) unfamiliar. By the end of this chapter, you’ll meet all

A generator function is defined by putting an
asterisk right after the function keyword. We can
use the new yield keyword in generator functions. The promises are hidden

within the getJSON method.



129Working with generator functions

the necessary ingredients. For now, it’s enough that you compare the elegance (or the
lack thereof) of the nonblocking callback code and the nonblocking generators and
promises code.

 Let’s start slowly by exploring generator functions, the first stepping stone toward
elegant asynchronous code.

6.2 Working with generator functions
Generators are a completely new type of function and are significantly different from
standard, run-of-the-mill functions. A generator is a function that generates a sequence
of values, but not all at once, as a standard function would, but on a per request basis.
We have to explicitly ask the generator for a new value, and the generator will either
respond with a value or notify us that it has no more values to produce. What’s even
more curious is that after a value is produced, a generator function doesn’t end its exe-
cution, as a normal function would. Instead, a generator is merely suspended. Then,
when a request for another value comes along, the generator resumes where it left off.

 The following listing provides a simple example of using a generator to generate a
sequence of weapons.

function* WeaponGenerator(){
  yield "Katana";                        
  yield "Wakizashi";                  
  yield "Kusarigama";                 
}

for(let weapon of WeaponGenerator()) {     
  assert(weapon !== undefined, weapon);    
}                                          

We start by defining a generator that will produce a sequence of weapons. Creating a
generator function is simple: We append an asterisk (*) after the function keyword.
This enables us to use the new yield keyword within the body of the generator to pro-
duce individual values. Figure 6.1 illustrates the syntax.

 In this example, we create a generator called WeaponGenerator that produces a
sequence of weapons: Katana, Wakizashi, and Kusarigama. One way of consuming
that sequence of weapons is by using a new kind of loop, the for-of loop:

for(let weapon of WeaponGenerator()) {
  assert(weapon, weapon);
}

The result of invoking this for-of loop is shown in figure 6.2. (For now, don’t worry
much about the for-of loop, as we’ll explore it later.)

Listing 6.1 Using a generator function to generate a sequence of values

Defines a generator function by putting * 
after the function keyword

Generates individual values by 
using the new yield keyword

Consumes the generated 
sequence with the new 
for-of loop



130 CHAPTER 6 Functions for the future: generators and promises

On the right side of the for-of loop, we’ve placed the result of invoking our genera-
tor. But if you take a closer look at the body of the WeaponGenerator function, you’ll
see that there’s no return statement. What’s up with that? In this case, shouldn’t the
right side of the for-of loop evaluate to undefined, as would be the case if we were
dealing with a standard function?

 The truth is that generators are quite unlike standard functions. For starters, call-
ing a generator doesn’t execute the generator function; instead it creates an object
called an iterator. Let’s explore that object.

6.2.1 Controlling the generator through the iterator object

Making a call to a generator doesn’t mean that the body of the generator function will
be executed. Instead, an iterator object is created, an object through which we can com-
municate with the generator. For example, we can use the iterator to request additional
values. Let’s adjust our previous example to explore how the iterator object works.

function* WeaponGenerator(){ 
  yield "Katana";            
  yield "Wakizashi";         
}

const weaponsIterator = WeaponGenerator();

const result1 = weaponsIterator.next();
assert(typeof result1 === "object"       
    && result1.value === "Katana"        
    && !result1.done,                    
    "Katana received!");                 

Listing 6.2 Controlling a generator through an iterator object

function* WeaponGenerator() {
  ...
  yield "Katana";
  ...
}

Place an * after the function keyword
to define a generator function.

Within generator functions, use
yield to produce individual values.

Figure 6.1 Add an asterisk (*) after the 
function keyword to define a generator.

Figure 6.2 The result of iterating 
over our WeaponGenerator()

Defines a generator that will produce
a sequence of two weapons

Calling a generator 
creates an iterator 
through which we 
control the 
generator’s 
execution.

Calling the
iterator’s next

method requests
a new value from

the generator.
The result is an object with a 
returned value and an 
indicator that tells us whether 
the generator has more values.



131Working with generator functions

const result2 = weaponsIterator.next(); 
assert(typeof result2 === "object"      
    && result2.value === "Wakizashi"    
    && !result2.done,                   
    "Wakizashi received!");             

const result3 = weaponsIterator.next(); 
assert(typeof result3 === "object"      
    && result3.value === undefined      
    && result3.done,                    
    "There are no more results!");      

As you can see, when we call a generator, a new iterator is created: 

const weaponsIterator = WeaponGenerator();

The iterator is used to control the execution of the generator. One of the fundamen-
tal things that the iterator object exposes is the next method, which we can use to con-
trol the generator by requesting a value from it:

const result1 = weaponsIterator.next();

As a response to that call, the generator executes its code until it reaches a yield key-
word that produces an intermediary result (one item in the generated sequence of
items), and returns a new object that encapsulates that result and tells us whether its
work is done. 

 As soon as the current value is produced, the generator suspends its execution
without blocking and patiently waits for another value request. This is an incredibly
powerful feature that standard functions don’t have, a feature that we’ll use later to
great effect. 

 In this case, the first call to the iterator’s next method executes the generator code
to the first yield expression, yield "Katana", and returns an object with the prop-
erty value set to Katana and the property done set to false, signaling that there are
more values to produce. 

 Later, we request another value from the generator, by making another call to the
weaponIterator’s next method: 

const result2 = weaponsIterator.next();

This wakes up the generator from suspension, and the generator continues where it
left off, executing its code until another intermediary value is reached: yield "Wak-
izashi". This suspends the generator and produces an object carrying Wakizashi.

 Finally, when we call the next method for the third time, the generator resumes its exe-
cution. But this time there’s no more code to execute, so the generator returns an object
with value set to undefined, and done set to true, signaling that it’s done with its work.

 Now that you’ve seen how to control generators through iterators, you’re ready to
learn how to iterate over the produced values.

Calling next again 
gets another value 
from the generator.

When there’s no more code 
to execute, the generator 
returns “undefined” and 
indicates that it’s done.



132 CHAPTER 6 Functions for the future: generators and promises

ITERATING THE ITERATOR

The iterator, created by calling a generator, exposes a next method through which we
can request a new value from the generator. The next method returns an object that
carries the value produced by the generator, as well as the information stored in the
done property that tells us whether the generator has additional values to produce.

 Now we’ll take advantage of these facts to use a plain old while loop to iterate over
values produced by a generator. See the following listing.

function* WeaponGenerator(){
  yield "Katana";
  yield "Wakizashi";
}

const weaponsIterator = WeaponGenerator();
let item;
while(!(item = weaponsIterator.next()).done) {
  assert(item !== null, item.value);          
}                                             

Here we again create an iterator object by calling a generator function:

const weaponsIterator = WeaponGenerator();

We also create an item variable in which we’ll store individual values produced by the
generator. We continue by specifying a while loop with a slightly complicated looping
condition, which we’ll break down a bit:

while(!(item = weaponsIterator.next()).done) {
  assert(item !== null, item.value)
}

On each loop iteration, we fetch a value from the generator by calling the next
method of our weaponsIterator, and we store that value in the item variable. Like all
such objects, the object referenced by the item variable has a value property that
stores the value returned from the generator, and a done property that signals
whether the generator is finished producing values. If the generator isn’t done with its
work, we go into another iteration of the loop; and if it is, we stop looping.

 And that’s how the for-of loop, from our first generator example, works. The
for-of loop is syntactic sugar for iterating over iterators:

for(var item of WeaponGenerator ()){
  assert(item !== null, item);
}

Instead of manually calling the next method of the matching iterator and always
checking whether we’re finished, we can use the for-of loop to do the exact same
thing, only behind the scenes.

Listing 6.3 Iterating over generator results with a while loop

Creates an
iterator

Creates a
variable in
which we’ll

store items of
the generated

sequence

On each loop iteration, 
fetches one value from 
the generator and 
outputs its value. Stops 
iterating when the 
generator has no more 
values to produce.



133Working with generator functions

YIELDING TO ANOTHER GENERATOR

Just as we often call one standard function from another standard function, in certain
cases we want to be able to delegate the execution of one generator to another. Let’s
take a look at an example that generates both warriors and ninjas.

function* WarriorGenerator(){
  yield "Sun Tzu";
  yield* NinjaGenerator();       
  yield "Genghis Khan";
}

function* NinjaGenerator(){
  yield "Hattori";
  yield "Yoshi";
}

for(let warrior of WarriorGenerator()){
  assert(warrior !== null, warrior);
}

If you run this code, you’ll see that the output is Sun Tzu, Hattori, Yoshi, Genghis Khan.
Generating Sun Tzu probably doesn’t catch you off guard; it’s the first value yielded by
the WarriorGenerator. But the second output, Hattori, deserves an explanation. 

 By using the yield* operator on an iterator, we yield to another generator. In this
example, from a WarriorGenerator we’re yielding to a new NinjaGenerator; all calls to
the current WarriorGenerator iterator’s next method are rerouted to the Ninja-
Generator. This holds until the NinjaGenerator has no work left to do. So in our exam-
ple, after Sun Tzu, the program generates Hattori and Yoshi. Only when the Ninja-
Generator is done with its work will the execution of the original iterator continue by
outputting Genghis Khan. Notice that this is happening transparently to the code that
calls the original generator. The for-of loop doesn’t care that the WarriorGenerator
yields to another generator; it keeps calling next until it’s done.

 Now that you have a grasp of how generators work in general and how delegating
to another generator works, let’s look at a couple of practical examples.

6.2.2 Using generators

Generating sequences of items is all nice and dandy, but let’s get more practical, start-
ing with a simple case of generating unique IDs.

USING GENERATORS TO GENERATE IDS

When creating certain objects, often we need to assign a unique ID to each object.
The easiest way to do this is through a global counter variable, but that’s kind of ugly
because the variable can be accidently messed up from anywhere in our code.
Another option is to use a generator, as shown in the following listing.

Listing 6.4 Using yield* to delegate to another generator

yield* delegates to another generator.



134 CHAPTER 6 Functions for the future: generators and promises

function *IdGenerator(){
  let id = 0;            
  while(true){ 
    yield ++id;
  }            
}

const idIterator = IdGenerator();

const ninja1 = { id: idIterator.next().value };
const ninja2 = { id: idIterator.next().value };
const ninja3 = { id: idIterator.next().value };

assert(ninja1.id === 1, "First ninja has id 1"); 
assert(ninja2.id === 2, "Second ninja has id 2");
assert(ninja3.id === 3, "Third ninja has id 3"); 

This example starts with a generator that has one local variable, id, which represents
our ID counter. The id variable is local to our generator; there’s no fear that someone
will accidently modify it from somewhere else in the code. This is followed by an infi-
nite while loop, which at each iteration yields a new id value and suspends its execu-
tion until a request for another ID comes along:

function *IdGenerator(){
  let id = 0;
  while(true){
    yield ++id;
  }
}

NOTE Writing infinite loops isn’t something that we generally want to do in a
standard function. But with generators, everything is fine! Whenever the gen-
erator encounters a yield statement, the generator execution is suspended
until the next method is called again. So every next call executes only one
iteration of our infinite while loop and sends back the next ID value.

After defining the generator, we create an iterator object:

const idIterator = IdGenerator();

This allows us to control the generator with calls to the idIterator.next() method.
This executes the generator until a yield is encountered, returning a new ID value
that we can use for our objects: 

const ninja1 = { id: idIterator.next().value };

See how simple this is? No messy global variables whose value can be accidentally
changed. Instead, we use an iterator to request values from a generator. In addition, if

Listing 6.5 Using generators for generating IDs

Defines an
IdGenerator

generator
function

A variable that keeps track of IDs. 
This variable can’t be modified 
from outside our generator.

A loop that 
generates an infinite 
sequence of IDs

An iterator
through

which we’ll
request new
IDs from the

generator

Requests three 
new IDs

Tests that all 
went OK



135Working with generator functions

later we need another iterator for tracking the IDs of, for example, samurai, we can
initialize a new generator for that.

USING GENERATORS TO TRAVERSE THE DOM

As you saw in chapter 2, the layout of a web page is based on the DOM, a tree-like
structure of HTML nodes, in which every node, except the root one, has exactly one
parent, and can have zero or more children. Because the DOM is such a fundamental
structure in web development, a lot of our code is based around traversing it. One rel-
atively easy way to do this is by implementing a recursive function that will be executed
for each visited node. See the following code.

<div id="subTree">
  <form>
    <input type="text"/>
  </form>
  <p>Paragraph</p>
  <span>Span</span>
</div>
<script>
  function traverseDOM(element, callback) {
    callback(element);                        
    element = element.firstElementChild;
    while (element) {                       
      traverseDOM(element, callback);       
      element = element.nextElementSibling; 
    }                                       
  }
  const subTree = document.getElementById("subTree");
  traverseDOM(subTree, function(element) {        
    assert(element !== null, element.nodeName);   
  });                                             
</script>

In this example, we use a recursive function to traverse all descendants of the element
with the id subtree, in the process logging each type of node that we visit. In this
case, the code outputs DIV, FORM, INPUT, P, and SPAN.

 We’ve been writing such DOM traversal code for a while now, and it has served us
perfectly fine. But now that we have generators at our disposal, we can do it differ-
ently; see the following code. 

function* DomTraversal(element){
  yield element;
  element = element.firstElementChild;
  while (element) {
    yield* DomTraversal(element);              
    element = element.nextElementSibling;

Listing 6.6 Recursive DOM traversal

Listing 6.7 Iterating over a DOM tree with generators

Processes the current 
node with a callback

Traverses the DOM of 
each child element

Starts the whole process by 
calling the traverseDOM 
function for our root element

Uses yield* to transfer the 
iteration control to another 
instance of the DomTraversal 
generator



136 CHAPTER 6 Functions for the future: generators and promises

  }
}

const subTree = document.getElementById("subTree");
for(let element of DomTraversal(subTree)) {          
  assert(element !== null, element.nodeName);        
}                                                    

This listing shows that we can achieve DOM traversals with generators, just as easily as
with standard recursion, but with the aditional benefit of not having to use the slightly
awkward syntax of callbacks. Instead of processing the subtree of each visited node by
recursing another level, we create one generator function for each visited node and
yield to it. This enables us to write what’s conceptually recursive code in iterable fash-
ion. The benefit is that we can consume the generated sequence of nodes with a sim-
ple for-of loop, without resorting to nasty callbacks. 

 This example is a particulary good one, because it also shows how to use genera-
tors in order to separate the code that’s producing values (in this case, HTML nodes)
from the code that’s consuming the sequence of generated values (in this case, the
for-of loop that logs the visited nodes), without having to resort to callbacks. In addi-
tion, using iterations is, in certain cases, much more natural than recursion, so it’s
always good to have our options open.

 Now that we’ve explored some practical aspects of generators, let’s go back to a
slighty more theoretical topic and see how to exchange data with a running generator.

6.2.3 Communicating with a generator

In the examples presented so far, you’ve seen how to return multiple values from a gen-
erator by using yield expressions. But generators are even more powerful than that! We
can also send data to a generator, thereby achieving two-way communication! With a gen-
erator, we can produce an intermediary result, use that result to calculate something else
from outside the generator, and then, whenever we’re ready, send completely new data
back to the generator and resume its execution. We’ll use this feature to great effect at
the end of the chapter to deal with asynchronous code, but for now, let’s keep it simple.

SENDING VALUES AS GENERATOR FUNCTION ARGUMENTS

The easiest way to send data to a generator is by treating it like any other function and
using function call arguments. Take a look at the following listing.

function* NinjaGenerator(action) {
  const imposter = yield ("Hattori " + action);
        
  assert(imposter === "Hanzo",                
        "The generator has been infiltrated");
        

Listing 6.8 Sending data to and receiving data from a generator

Iterates over the nodes 
by using the for-of loop

A generator can receive standard
arguments, like any other function. The magic happens. By 

yielding a value, the 
generator returns an 
intermediary calculation. 
By calling the iterator’s 
next method with an 
argument, we send data 
back to the generator.

The value sent over
next becomes the

value of the yielded
expression, so our
imposter is Hanzo.



137Working with generator functions

  yield ("Yoshi (" + imposter + ") " + action);
}

const ninjaIterator = NinjaGenerator("skulk");
       
const result1 = ninjaIterator.next();                            
assert(result1.value === "Hattori skulk", "Hattori is skulking");

const result2 = ninjaIterator.next("Hanzo");   
assert(result2.value === "Yoshi (Hanzo) skulk",
       "We have an imposter!");                

A function receiving data is nothing special; plain old functions do it all the time. But
remember, generators have this amazing power; they can be suspended and resumed.
And it turns out that, unlike standard functions, generators can even receive data after
their execution has started, whenever we resume them by requesting the next value.

USING THE NEXT METHOD TO SEND VALUES INTO A GENERATOR

In addition to providing data when first invoking the generator, we can send data into
a generator by passing arguments to the next method. In the process, we wake up the
generator from suspension and resume its execution. This passed-in value is used by
the generator as the value of the whole yield expression, in which the generator was
currently suspended, as shown in figure 6.3.

 In this example, we have two calls to the ninjaIterator’s next method. The first
call, ninjaIterator.next(), requests the first value from the generator. Because our
generator hasn’t started executing, this call starts the generator, which calculates the

Normal
argument

passing

Triggers the execution
of the generator and

checks that we get the
correct value

Sends data to the generator as an argument to the next method
and checks whether the value was correctly transferred

function* NinjaGenerator(action) {
  const imposter = yield ("Hattori " + action);
  ...
}

const ninjaIterator = NinjaGenerator("skulk"); 

const result1 = ninjaIterator.next();
...
const result2 = ninjaIterator.next("Hanzo");

The first call stores 
“Hattori skulk” 
into result1.

"Hattori skulk"

imposter = "Hanzo"

The second call
sends “Hanzo” into
the generator.

“Hanzo” is set
as the value of the
yield expression, so
imposter has the
value “Hanzo”.

Figure 6.3 The first call to ninjaIterator.next() requests a new value from the generator, which 
returns Hattori skulk and suspends the execution of the generator at the yield expression. The 
second call to ninjaIterator.next("Hanzo") requests a new value, but also sends the argument 
Hanzo into the generator. This value will be used as the value of the whole yield expression, and the 
variable imposter will now carry the value Hanzo.



138 CHAPTER 6 Functions for the future: generators and promises

value of the expression "Hattori " + action, yields the Hattori skulk value, and sus-
pends the generator’s execution. There’s nothing special about this; we’ve done
something similar multiple times throughout this chapter.

 The interesting thing happens on the second call to the ninjaIterator’s next
method: ninjaIterator.next("Hanzo"). This time, we’re using the next method to
pass data back to the generator. Our generator function is patiently waiting, sus-
pended at the expression yield ("Hattori " + action), so the value Hanzo, passed as
the argument to next(), is used as the value of the whole yield expression. In our
case, this means that the variable imposter in imposter = yield ("Hattori " +
action) will end up with the value Hanzo. 

 That’s how we achieve two-way communication with a generator. We use yield to
return data from a generator, and the iterator’s next() method to pass data back to
the generator.

NOTE The next method supplies the value to the waiting yield expression, so
if there’s no yield expression waiting, there’s nothing to supply the value to.
For this reason, we can’t supply values over the first call to the next method. But
remember, if you need to supply an initial value to the generator, you can do
so when calling the generator itself, as we did with NinjaGenerator("skulk").

THROWING EXCEPTIONS

There’s another, slightly less orthodox, way to supply a value to a generator: by throw-
ing an exception. Each iterator, in addition to having a next method, has a throw
method that we can use to throw an exception back to the generator. Again, let’s look
at a simple example.

function* NinjaGenerator() {
  try{
    yield "Hattori";
    fail("The expected exception didn't occur");
  }
  catch(e){                                                      
    assert(e === "Catch this!", "Aha! We caught an exception");  
  }                                                              
}

const ninjaIterator = NinjaGenerator();
       
const result1 = ninjaIterator.next();                 
assert(result1.value === "Hattori", "We got Hattori");

ninjaIterator.throw("Catch this!");

Listing 6.9 starts similarly to listing 6.8, by specifying a generator called NinjaGenerator.
But this time, the body of the generator is slightly different. We’ve surrounded the whole
function body code with a try-catch block:

Listing 6.9 Throwing exceptions to generators

This fail shouldn’t
be reached.

Catches exceptions
and tests whether
we’ve received the

expected exception

Pulls one 
value from 
the generator

Throws an exception to the generator



139Working with generator functions

function* NinjaGenerator() {
  try{
    yield "Hattori";
    fail("The expected exception didn't occur");
  }
  catch(e){
    assert(e === "Catch this!", "Aha! We caught an exception");
  }
}

We then continue by creating an iterator, and getting one value from the generator:

const ninjaIterator = NinjaGenerator();
const result1 = ninjaIterator.next();

Finally, we use the throw method, available on all iterators, to throw an exception
back to the generator:

ninjaIterator.throw("Catch this!");

By running this listing, we can see that
our exception throwing works as
expected, as shown in figure 6.4.

 This feature that enables us to
throw exceptions back to generators
might feel a bit strange at first. Why
would we even want to do that? Don’t
worry; we won’t keep you in the dark
for long. At the end of this chapter,
we’ll use this feature to improve asyn-
chronous server-side communication.
Just be patient a bit longer.

 Now that you’ve seen several
aspects of generators, we’re ready to take a look under the hood to see how genera-
tors work.

6.2.4 Exploring generators under the hood

So far we know that calling a generator doesn’t execute it. Instead, it creates a new
iterator that we can use to request values from the generator. After a generator pro-
duces (or yields) a value, it suspends its execution and waits for the next request. So in
a way, a generator works almost like a small program, a state machine that moves
between states:

■ Suspended start—When the generator is created, it starts in this state. None of
the generator’s code is executed.

■ Executing—The state in which the code of the generator is executed. The execu-
tion continues either from the beginning or from where the generator was last

Figure 6.4 We can throw exceptions to generators 
from outside a generator.



140 CHAPTER 6 Functions for the future: generators and promises

suspended. A generator moves to this state when the matching iterator’s next
method is called, and there exists code to be executed.

■ Suspended yield—During execution, when a generator reaches a yield expres-
sion, it creates a new object carrying the return value, yields it, and suspends its
execution. This is the state in which the generator is paused and is waiting to
continue its execution.

■ Completed—If during execution the generator either runs into a return state-
ment or runs out of code to execute, the generator moves into this state.

Figure 6.5 illustrates these states.
 Now let’s supplement this on an even deeper level, by seeing how the execution of

generators is tracked with execution contexts.

function* NinjaGenerator(){  
    yield "Hattori";  
    yield "Yoshi";    
}

iterator.next()

iterator.next()

Return
reached or
no more

code

Yield
reached

Suspended
start

Executing

Suspended
yield

Completed

const ninjaIterator = NinjaGenerator();
Create a new generator in the Suspended
start state.

const result1 = ninjaIterator.next();
Activate generator. Move from Suspended
start to Executing. Execute up to yield "Hattori"
and pause. Move to the Suspended yield state.
Return a new object: {value: "Hattori",
done: false}.

const result2 = ninjaIterator.next();
Reactivate generator. Move from Suspended
yield to Executing. Execute up to yield "Yoshi"
and pause. Move to the Suspended yield state.
Return a new object: {value: "Yoshi",
done: false}.

const result3 = ninjaIterator.next();
Reactivate generator. Move from Suspended
yield to Executing. No more code to execute.
Move to the Completed state. Return a new
object: {value: undefined, done: true}.

Figure 6.5 During execution, a generator moves between states triggered by calls to the matching 
iterator’s next method.



141Working with generator functions

TRACKING GENERATORS WITH EXECUTION CONTEXTS

In the previous chapter, we introduced the execution context, an internal JavaScript
mechanism used to track the execution of functions. Although somewhat special,
generators are still functions, so let’s take a closer look by exploring the relationship
between them and execution contexts. We’ll start with a simple code fragment:

function* NinjaGenerator(action) {
  yield "Hattori " + action;
  return "Yoshi " + action;
}

const ninjaIterator = NinjaGenerator("skulk");
const result1 = ninjaIterator.next();
const result2 = ninjaIterator.next();

Here we reuse our generator that produces two values: Hattori skulk and Yoshi
skulk.

 Now, we’ll explore the state of the application, the execution context stack at var-
ious points in the application execution. Figure 6.6 gives a snapshot at two positions
in the application execution. The first snapshot shows the state of the application
execution before calling the NinjaGenerator function B. Because we’re executing
global code, the execution context stack contains only the global execution context,
which references the global environment in which our identifiers are kept. Only the
NinjaGenerator identifier references a function, while the values of all other identi-
fiers are undefined. 

 When we make the call to the NinjaGenerator function C 

const ninjaIterator = NinjaGenerator("skulk");

the control flow enters the generator and, as it happens when we enter any other
function, a new NinjaGenerator execution context item is created (alongside the
matching lexical environment) and pushed onto the stack. But because generators
are special, none of the function code is executed. Instead, a new iterator, which we’ll
refer to in the code as ninjaIterator, is created and returned. Because the iterator is
used to control the execution of the generator, the iterator gets a reference to the exe-
cution context in which it was created. 

 An interesting thing happens when the program execution leaves the generator, as
shown in figure 6.7. Typically, when program execution returns from a standard func-
tion, the matching execution context is popped from the stack and completely dis-
carded. But this isn’t the case with generators. 



142 CHAPTER 6 Functions for the future: generators and promises

function* NinjaGenerator(action) {
  yield "Hattori " + action;
  return "Yoshi " + action;
}

const ninjaIterator = NinjaGenerator("skulk");

const result1 = ninjaIterator.next();
const result2 = ninjaIterator.next();

Suspended
start

Executing

Suspended
yield

Completed

The state of the application before
calling the NinjaGenerator function

The state of the application when
calling the NinjaGenerator function

The generator starts
in the Suspended
start state.

When entering a generator
function, a new stack item is
created and placed at the
top of the stack. 

A new ninjaIterator object
is created, with a reference
to the current generator
context stack item.

Global
execution context

Global
environment

NinjaGenerator:
ninjaIterator: undefined
result1: undefined
result2: undefined

function*(){}

Global
environment

NinjaGenerator:
ninjaIterator: undefined
result1: undefined
result2: undefined

function*(){}

NinjaGenerator
environment

action: "skulk"

Global
execution context

ninjaIterator NinjaGenerator
context

Figure 6.6 The state of the execution context stack before calling the NinjaGenerator function B, and when
calling the NinjaGenerator function C



143Working with generator functions

The matching NinjaGenerator stack item is popped from the stack, but it’s not dis-
carded, because the ninjaIterator keeps a reference to it. You can see it as an ana-
logue to closures. In closures, we need to keep alive the variables that are alive at the
moment the function closure is created, so our functions keep a reference to the envi-
ronment in which they were created. In this way, we make sure that the environment
and its variables are alive as long as the function itself. Generators, on the other hand,
have to be able to resume their execution. Because the execution of all functions is
handled by execution contexts, the iterator keeps a reference to its execution context,
so that it’s alive for as long as the iterator needs it. 

 Another interesting thing happens when we call the next method on the iterator: 

const result1 = ninjaIterator.next();

function* NinjaGenerator(action) {
  yield "Hattori " + action;
  return "Yoshi " + action;
}

const ninjaIterator = NinjaGenerator("skulk");

const result1 = ninjaIterator.next();
const result2 = ninjaIterator.next();

Suspended
start

Executing

Suspended
yield

Completed

The generator is still
in the Suspended
start state. The NinjaGenerator context is popped from

the stack, but it is kept alive through the
ninjaIterator object!

Global
environment

NinjaGenerator:
ninjaIterator:
result1: undefined
result2: undefined

function*(){}

NinjaGenerator
environment

action: "skulk"

NinjaGenerator
context

Global
execution context

ninjaIterator

Figure 6.7 The state of the application when returning from the NinjaGenerator call



144 CHAPTER 6 Functions for the future: generators and promises

If this was a standard straightforward function call, this would cause the creation of a
new next() execution context item, which would be placed on the stack. But as you
might have noticed, generators are anything but standard, and a call to the next
method of an iterator behaves a lot differently. It reactivates the matching execution
context, in this case, the NinjaGenerator context, and places it on top of the stack,
continuing the execution where it left off, as shown in figure 6.8.

 Figure 6.8 illustrates a crucial difference between standard functions and generators.
Standard functions can only be called anew, and each call creates a new execution
context. In contrast, the execution context of a generator can be temporarily suspended
and resumed at will.

 In our example, because this is the first call to the next method, and the generator
hasn’t started executing, the generator starts its execution and moves to the Executing
state. The next interesting thing happens when our generator function reaches this point:

yield "Hattori " + action

Suspended
start

Executing

Suspended
yield

Completed

The generator moves
to the Executing state. When calling and entering the next()

method on the iterator, the existing
NinjaGenerator context is reactivated
and pushed onto the stack. 

Global
environment

NinjaGenerator:
ninjaIterator:
result1: undefined
result2: undefined

function*(){}

NinjaGenerator
environment

action: "skulk"

Global
execution context

NinjaGenerator
context

ninjaIterator

const result1 = ninjaIterator.next();
const result2 = ninjaIterator.next();

const ninjaIterator = NinjaGenerator("skulk");

function* NinjaGenerator(action) {
  yield "Hattori " + action;
  return "Yoshi " + action;
}

Figure 6.8 Calling the iterator’s next method reactivates the execution context stack item of the matching gen-
erator, pushes it on the stack, and continues where it left off the last time.



145Working with generator functions

The generator determines that the expression equals Hattori skulk, and the evalua-
tion reaches the yield keyword. This means that Hattori skulk is the first interme-
diary result of our generator and that we want to suspend the execution of the
generator and return that value. In terms of the application state, a similar thing hap-
pens as before: the NinjaGenerator context is taken off the stack, but it’s not com-
pletely discarded, because ninjaIterator keeps a reference to it. The generator is
now suspended, and has moved to the Suspended Yield state, without blocking. The
program execution resumes in global code, by storing the yielded value to result1.
The current state of the application is shown in figure 6.9.

 The code continues by reaching another iterator call:

const result2 = ninjaIterator.next();

function* NinjaGenerator(action) {
  yield "Hattori " + action;
  return "Yoshi " + action;
}

const ninjaIterator = NinjaGenerator("skulk");

const result1 = ninjaIterator.next();
const result2 = ninjaIterator.next();

Suspended
start

Executing

Suspended
yield

Completed

The generator is
in the Suspended
yield state.

The NinjaGenerator context is popped
from the stack, but it is kept alive
through the ninjaIterator object!

Global
environment

NinjaGenerator:
ninjaIterator:
result1: {value: hattori}
result2: undefined

function*(){}

NinjaGenerator
environment

action: "skulk"

NinjaGenerator
context

Global
execution context

ninjaIterator

Figure 6.9 After yielding a value, the generator’s execution context is popped from the stack (but isn’t discarded, 
because ninjaIterator keeps a reference to it), and the generator execution is suspended (the generator moves 
to the Suspended yield state).



146 CHAPTER 6 Functions for the future: generators and promises

At this point, we go through the whole procedure once again: we reactivate the Ninja-
Generator context referenced by ninjaIterator, push it onto the stack, and continue
the execution where we left off. In this case, the generator evaluates the expression
"Yoshi " + action. But this time there’s no yield expression, and instead the program
encounters a return statement. This returns the value Yoshi skulk and completes the
generator’s execution by moving the generator into the Completed state.

 Uff, this was something! We went deep into how generators work under the hood
to show you that all the wonderful benefits of generators are a side effect of the fact
that a generator’s execution context is kept alive if we yield from a generator, and not
destroyed as is the case with return values and standard functions. 

 Now we recommend that you take a quick breather before continuing on to the
second key ingredient required for writing elegant asynchronous code: promises.

6.3 Working with promises
In JavaScript, we rely a lot on asynchronous computations, computations whose
results we don’t have yet but will at some later point. So ES6 has introduced a new con-
cept that makes handling asynchronous tasks easier: promises. 

 A promise is a placeholder for a value that we don’t have now but will have later; it’s
a guarantee that we’ll eventually know the result of an asynchronous computation. If
we make good on our promise, our result will be a value. If a problem occurs, our
result will be an error, an excuse for why we couldn’t deliver. One great example of
using promises is fetching data from a server; we promise that we’ll eventually get the
data, but there’s always a chance that problems will occur.

 Creating a new promise is easy, as you can see in the following example.

const ninjaPromise = new Promise((resolve, reject) => {
  resolve("Hattori");                       
  //reject("An error resolving a promise!");
});

ninjaPromise.then(ninja => {                               
  assert(ninja === "Hattori", "We were promised Hattori!");
}, err => {                          
  fail("There shouldn't be an error")
});                                  

Listing 6.10 Creating a simple promise

Creates a promise by calling a built-in Promise
constructor and passing in a callback function

with two parameters: resolve and reject

A promise is
successfully resolved

by calling the
passed-in resolve

function (and
rejected by calling

the reject function).

By using the then method on a promise, we can
pass in two callbacks; the first is called if a

promise is successfully resolved.

And the second is
called if an error

occurs.



147Working with promises

To create a promise, we use the new, built-in Promise constructor, to which we pass
a function, in this case an arrow function (but we could just as easily use a
function expression). This function, called an executor function, has two parameters:
resolve and reject. The executor is called immediately when constructing the
Promise object with two built-in functions as arguments: resolve, which we
manually call if we want the promise to resolve successfully, and reject, which we
call if an error occurs. 

 This code uses the promise by calling the built-in then method on the Promise
object, a method to which we pass two callback functions: a success callback and a fail-
ure callback. The former is called if the promise is resolved successfully (if the resolve
function is called on the promise), and the latter is called if there’s a problem (either
an unhandled exception occurs or the reject function is called on a promise).

 In our example code, we create a promise and immediately resolve it by calling the
resolve function with the argument Hattori. Therefore, when we call the then
method, the first, success, callback is executed and the test that outputs We were

promised Hattori! passes.
 Now that we have a general idea of what promises are and how they work, let’s take

a step back to see some of the problems that promises tackle.

6.3.1 Understanding the problems with simple callbacks

We use asynchronous code because we don’t want to block the execution of our appli-
cation (thereby disappointing our users) while long-running tasks are executing. Cur-
rently, we solve this problem with callbacks: To a long-running task we provide a
function, a callback that’s invoked when the task is finally done.

 For example, fetching a JSON file from a server is a long-running task, during
which we don’t want to make the application unresponsive for our users. Therefore,
we provide a callback that will be invoked when the task is done:

getJSON("data/ninjas.json", function() {  
  /*Handle results*/
});

Naturally, during this long-running task, errors can happen. And the problem with
callbacks is that you can’t use built-in language constructs, such as try-catch state-
ments, in the following way: 

try {
  getJSON("data/ninjas.json", function() {  
    //Handle results
  });
} catch(e) {/*Handle errors*/}

This happens because the code invoking the callback usually isn’t executed in the
same step of the event loop as the code that starts the long-running task (you’ll see
exactly what this means when you learn more about the event loop in chapter 13).



148 CHAPTER 6 Functions for the future: generators and promises

As a consequence, errors usually get lost. Many libraries, therefore, define their own
conventions for reporting errors. For example, in the Node.js world, callbacks
customarily take two arguments, err and data, where err will be a non-null value if
an error occurs somewhere along the way. This leads to the first problem with
callbacks: difficult error handling.

 After we’ve performed a long-running task, we often want to do something with
the obtained data. This can lead to starting another long-running task, which can
eventually trigger yet another long-running task, and so on—leading to a series of
interdependent, asynchronous, callback-processed steps. For example, if we want to
execute a sneaky plan to find all ninjas at our disposal, get the location of the first
ninja, and send him some orders, we’d end up with something like this:

getJSON("data/ninjas.json", function(err, ninjas){  
  getJSON(ninjas[0].location, function(err, locationInfo){
    sendOrder(locationInfo, function(err, status){
     /*Process status*/
    })     
  })
});

You’ve probably ended up, at least once or twice, with similarly structured code—a
bunch of nested callbacks that represent a series of steps that have to be made. You
might notice that this code is difficult to understand, inserting new steps is a pain, and
error handling complicates your code significantly. You get this “pyramid of doom”
that keeps growing and is difficult to manage. This leads us to the second problem
with callbacks: performing sequences of steps is tricky.

 Sometimes, the steps that we have to go through to get to the final result don’t
depend on each other, so we don’t have to make them in sequence. Instead, to save
precious milliseconds, we can do them in parallel. For example, if we want to set a
plan in motion that requires us to know which ninjas we have at our disposal, the plan
itself, and the location where our plan will play out, we could take advantage of
jQuery’s get method and write something like this:

var ninjas, mapInfo, plan;

$.get("data/ninjas.json", function(err, data){
  if(err) { processError(err); return; }
  ninjas = data;
  actionItemArrived();
});

$.get("data/mapInfo.json", function(err, data){
  if(err) { processError(err); return; }
  mapInfo = data;
  actionItemArrived();
});



149Working with promises

$.get("plan.json", function(err, data) {
  if(err) { processError(err); return; }

  plan = data;
  actionItemArrived ();
});

function actionItemArrived(){
  if(ninjas != null && mapInfo != null && plan != null){
    console.log("The plan is ready to be set in motion!");
  }
}

function processError(err){
  alert("Error", err)
}

In this code, we execute the actions of getting the ninjas, getting the map info, and
getting the plan in parallel, because these actions don’t depend on each other. We
only care that, in the end, we have all the data at our disposal. Because we don’t know
the order in which the data is received, every time we get some data, we have to check
whether it’s the last piece of the puzzle that we’re missing. Finally, when all pieces are
in place, we can set our plan in motion. Notice that we have to write a lot of boiler-
plate code just to do something as common as executing a number of actions in paral-
lel. This leads us to the third problem with callbacks: performing a number of steps in
parallel is also tricky.

 When presenting the first problem with callbacks—dealing with errors—we
showed how we can’t use some of the fundamental language constructs, such as try-
catch statements. A similar thing holds with loops: If you want to perform asynchro-
nous actions for each item in a collection, you have to jump through some more
hoops to get it done.

 It’s true that you can make a library to simplify dealing with all these problems
(and many people have). But this often leads to a lot of slightly different ways of deal-
ing with the same problems, so the people behind JavaScript have bestowed upon us
promises, a standard approach for dealing with asynchronous computation.

 Now that you understand most of the reasons behind the introduction of prom-
ises, as well as have a basic understanding of them, let’s take it up a notch.

6.3.2 Diving into promises

A promise is an object that serves as a placeholder for a result of an asynchronous
task. It represents a value that we don’t have but hope to have in the future. For this
reason, during its lifetime, a promise can go through a couple of states, as shown in
figure 6.10.

 A promise starts in the pending state, in which we know nothing about our prom-
ised value. That’s why a promise in the pending state is also called an unresolved
promise. During program execution, if the promise’s resolve function is called, the



150 CHAPTER 6 Functions for the future: generators and promises

promise moves into the fulfilled state, in which we’ve successfully obtained the prom-
ised value. On the other hand, if the promise’s reject function is called, or if
an unhandled exception occurs during promise handling, the promise moves into
the rejected state, in which we weren’t able to obtain the promised value, but in which
we at least know why. Once a promise has reached either the fulfilled state or the
rejected state, it can’t switch (a promise can’t go from fulfilled to rejected or vice
versa), and it always stays in that state. We say that a promise is resolved (either suc-
cessfully or not). 

 The following listing provides a closer look at what’s going on when we use promises.

report("At code start");

var ninjaDelayedPromise = new Promise((resolve, reject) => {
  report("ninjaDelayedPromise executor");             
  setTimeout(() => {                        
    report("Resolving ninjaDelayedPromise");
    resolve("Hattori");                     
  }, 500);                                  
});

assert(ninjaDelayedPromise !== null, "After creating ninjaDelayedPromise");

ninjaDelayedPromise.then(ninja => {                         
  assert(ninja === "Hattori",                               
        "ninjaDelayedPromise resolve handled with Hattori");
});                                                         

Listing 6.11 A closer look at promise order of execution

Pending

?

Rejected

Reason

Fulfilled

Our data

Unresolved state

Resolved states

resolve()
reject()

(or error thrown)

Figure 6.10 States of a promise

Calling the Promise 
constructor immediately 
invokes the passed-in 
function.

We’ll resolve this promise 
as successful after a 500ms 
timeout expires.

The Promise then method is used to set up a
callback that will be called when the promise

resolves, in our case when the timeout expires.



151Working with promises

const ninjaImmediatePromise = new Promise((resolve, reject) => { 
  report("ninjaImmediatePromise executor. Immediate resolve.");  
  resolve("Yoshi");                                              
});                                                              

ninjaImmediatePromise.then(ninja => {                         
  assert(ninja === "Yoshi",                                   
         "ninjaImmediatePromise resolve handled with Yoshi"); 
});                                                           

report("At code end");

The code in listing 6.11 outputs the results shown in figure 6.11. As you can see, the
code starts by logging the “At code start” message by using our custom-made report
function (appendix C) that outputs the message onscreen. This enables us to easily
track the order of execution.

 Next we create a new promise by calling the Promise constructor. This immedi-
ately invokes the executor function in which we set up a timeout:

setTimeout(() => {
  report("Resolving ninjaDelayedPromise");
  resolve("Hattori");    
}, 500);

The timeout will resolve the promise after
500ms. This could have been any other
asynchronous task, but we chose the
humble timeout because of its simplicity. 

 After the ninjaDelayedPromise has
been created, it still doesn’t know the
value that it will eventually have, or
whether it will even be successful.
(Remember, it’s still waiting for the time-
out that will resolve it.) So after construc-
tion, the ninjaDelayedPromise is in the
first promise state, pending.

 Next we use the then method on the
ninjaDelayedPromise to schedule a
callback to be executed when the promise successfully resolves: 

ninjaDelayedPromise.then(ninja => {
  assert(ninja === "Hattori",   
        "ninjaDelayedPromise resolve handled with Hattori");  
});

This callback will always be called asynchronously, regardless of the current state of
the promise.

Creates a new 
promise that 
gets immediately 
resolved

Sets up a callback to be invoked when the promise
resolves. But our promise is already resolved!

Figure 6.11 The result of executing listing 6.11



152 CHAPTER 6 Functions for the future: generators and promises

 We continue by creating another promise, ninjaImmediatePromise, which is
resolved immediately during its construction, by calling the resolve function. Unlike
the ninjaDelayedPromise, which after construction is in the pending state, the ninja-
ImmediatePromise finishes construction in the resolved state, and the promise already
has the value Yoshi.

 Afterward, we use the ninjaImmediatePromise’s then method to register a call-
back that will be executed when the promise successfully resolves. But our promise is
already settled; does this mean that the success callback will be immediately called or
that it will be ignored? The answer is neither. 

 Promises are designed to deal with asynchronous actions, so the JavaScript engine
always resorts to asynchronous handling, to make the promise behavior predictable.
The engine does this by executing the then callbacks after all the code in the current
step of the event loop is executed (once again, we’ll explore exactly what this means
in chapter 13). For this reason, if we study the output in figure 6.11, we’ll see that we
first log “At code end” and then we log that the ninjaImmediatePromise was resolved.
In the end, after the 500ms timeout expires, the ninjaDelayedPromise is resolved,
which causes the execution of the matching then callback.

 In this example, for the sake of simplicity, we’ve worked only with the rosy scenario
in which everything goes great. But the real world isn’t all sunshine and rainbows, so
let’s see how to deal with all sorts of crazy problems that can occur. 

6.3.3 Rejecting promises

There are two ways of rejecting a promise: explicitly, by calling the passed-in reject
method in the executor function of a promise, and implicitly, if during the handling of
a promise, an unhandled exception occurs. Let’s start our exploration with the follow-
ing listing.

const promise = new Promise((resolve, reject) => {
  reject("Explicitly reject a promise!");     
});

promise.then(
  () => fail("Happy path, won't be called!"),
  error => pass("A promise was explicitly rejected!")
);

We can explicitly reject a promise, by calling the passed-in reject method:
reject("Explicitly reject a promise!"). If a promise is rejected, when registering
callbacks through the then method, the second, error, callback will always be invoked.

 In addition, we can use an alternative syntax for handling promise rejections, by
using the built-in catch method, as shown in the following listing.

Listing 6.12 Explicitly rejecting promises

A promise can be explicitly 
rejected by calling the 
passed-in reject function.

If a promise is rejected, 
the second, error, 
callback is invoked.



153Working with promises

var promise = new Promise((resolve, reject) => {
  reject("Explicitly reject a promise!");
});

promise.then(()=> fail("Happy path, won't be called!"))
       .catch(() => pass("Promise was also rejected"));

As listing 6.13 shows, we can chain in the catch method after the then method, to also
provide an error callback that will be invoked when a promise gets rejected. In this
example, this is a matter of personal style. Both options work equally well, but later,
when working with chains of promises, we’ll see an example in which chaining the
catch method is useful.

 In addition to explicit rejection (via the reject call), a promise can also be
rejected implicitly, if an exception occurs during its processing. Take a look at the fol-
lowing example.

const promise = new Promise((resolve, reject) => {
  undeclaredVariable++;                         
});

promise.then(() => fail("Happy path, won't be called!"))
       .catch(error => pass("Third promise was also rejected"));

Within the body of the promise executor, we try to increment undeclaredVariable, a
variable that isn’t defined in our program. As expected, this results in an exception.
Because there’s no try-catch statement within the body of the executor, this results
in an implicit rejection of the current promise, and the catch callback is eventually
invoked. In this situation, we could have just as easily supplied the second callback to
the then method, and the end effect would be the same.

 This way of treating all problems that happen while working with promises in a
uniform way is extremely handy. Regardless of how the promise was rejected, whether
explicitly by calling the reject method or even implicitly, if an exception occurs, all
errors and rejection reasons are directed to our rejection callback. This makes our
lives as developers a little easier.

 Now that we understand how promises work, and how to schedule success and fail-
ure callbacks, let’s take a real-world scenario, getting JSON-formatted data from a
server, and “promisify” it.

Listing 6.13 Chaining a catch method

Listing 6.14 Exceptions implicitly reject a promise

Instead of supplying the 
second, error, callback, 
we can chain in the catch 
method, and pass to it 
the error callback. The 
end result is the same.

A promise is implicitly 
rejected if an unhandled 
exception occurs when 
processing the promise.

If an exception occurs, the second,
error, callback is invoked.



154 CHAPTER 6 Functions for the future: generators and promises

6.3.4 Creating our first real-world promise

One of the most common asynchronous actions on the client is fetching data from the
server. As such, this is an excellent little case study on the use of promises. For the
underlying implementation, we’ll use the built-in XMLHttpRequest object. 

function getJSON(url) {
  return new Promise((resolve, reject) => {
    const request = new XMLHttpRequest();
    
    request.open("GET", url);
    
    request.onload = function() {
      try {
        if(this.status === 200 ){           
          resolve(JSON.parse(this.response));
        } else{
             reject(this.status + " " + this.statusText); 
        }                                                 
      } catch(e){                                         
        reject(e.message);                                
      }                                                   
    };
    
    request.onerror = function() {                
      reject(this.status + " " + this.statusText);
    };                                            
    
    request.send();
  });
}

getJSON("data/ninjas.json").then(ninjas => {   
  assert(ninjas !== null, "Ninjas obtained!"); 
}).catch(e => fail("Shouldn't be here:" + e)); 

NOTE Executing this example, and all subsequent examples that reuse this
function, requires a running server. You can, for example, use www.npmjs.com/
package/http-server.

Our goal is to create a getJSON function that returns a promise that will enable us to reg-
ister success and failure callbacks for asynchronously getting JSON-formatted data from
the server. For the underlying implementation, we use the built-in XMLHttpRequest
object that offers two events: onload and onerror. The onload event is triggered when
the browser receives a response from the server, and onerror is triggered when an error
in communication happens. These event handlers will be called asynchronously by the
browser, as they occur. 

Listing 6.15 Creating a getJSON promise

Creates and returns 
a new promise

Creates an
XMLHttpRequest

object

Initializes 
the request

Registers an onload
handler that will be
called if the server

has responded

Even if the server has 
responded, it doesn’t mean 
everything went as expected. 
Use the result only if the 
server responds with status 
200 (everything OK).

Try to parse the JSON string;
if it succeeds, resolve the

promise as successful with
the parsed object.

If the server responds with a different status
code, or if there’s an exception parsing the

JSON string, reject the promise.

If there’s an error while
communicating with the

server, reject the promise.

Sends the
request

Uses the promise created by the getJSON function
to register resolve and reject callbacks

www.npmjs.com/package/http-server
www.npmjs.com/package/http-server


155Working with promises

 If an error in the communication happens, we definitely won’t be able to get our
data from the server, so the honest thing to do is to reject our promise:

request.onerror = function(){
  reject(this.status + " " + this.statusText);
}; 

If we receive a response from the server, we have to analyze that response and consider
the exact situation. Without going into too much detail, a server can respond with var-
ious things, but in this case, we care only that the response is successful (status 200). If
it isn’t, again we reject the promise. 

 Even if the server has successfully responded with data, this still doesn’t mean that
we’re in the clear. Because our goal was to get JSON-formatted objects from the server,
the JSON code could always have syntax errors. This is why, when calling the
JSON.parse method, we surround the code with a try-catch statement. If an excep-
tion occurs while parsing the server response, we also reject the promise. With this,
we’ve taken care of all bad scenarios that can happen.

 If everything goes according to plan, and we successfully obtain our objects, we can
safely resolve the promise. Finally, we can use our getJSON function to fetch ninjas
from the server:

getJSON("data/ninjas.json").then(ninjas => {
  assert(ninjas !== null, "Ninjas obtained!");
}).catch(e => fail("Shouldn't be here:" + e));

In this case, we have three potential sources of errors: errors in establishing the com-
munication between the server and the client, the server responding with unantici-
pated data (invalid response status), and invalid JSON code. But from the perspective
of the code that uses the getJSON function, we don’t care about the specifics of error
sources. We only supply a callback that gets triggered if everything goes okay and the
data is properly received, and a callback that gets triggered if any error occurs. This
makes our lives as developers so much easier.

 Now we’re going to take it up a notch and explore another big advantage of prom-
ises: their elegant composition. We’ll start by chaining several promises in a series of
distinct steps.

6.3.5 Chaining promises

You’ve already seen how handling a sequence of interdependent steps leads to the
pyramid of doom, a deeply nested and difficult-to-maintain sequence of callbacks.
Promises are a step toward solving that problem, because they have the ability to be
chained.

 Earlier in the chapter, you saw how, by using the then method on a promise, we
can register a callback that will be executed if a promise is successfully resolved. What
we didn’t tell you is that calling the then method also returns a new promise. So



156 CHAPTER 6 Functions for the future: generators and promises

there’s nothing stopping us from chaining as many then methods as we want; see the
following code.

getJSON("data/ninjas.json")
 .then(ninjas => getJSON(ninjas[0].missionsUrl))                      
 .then(missions => getJSON(missions[0].detailsUrl))                   
 .then(mission => assert(mission !== null, "Ninja mission obtained!"))
 .catch(error => fail("An error has occurred"));

This creates a sequence of promises that will be, if everything goes according to plan,
resolved one after another. First, we use the getJSON("data/ninjas.json") method to
fetch a list of ninjas from the file on the server. After we receive that list, we take the infor-
mation about the first ninja, and we request a list of missions the ninja is assigned to:
getJSON(ninjas[0].missionsUrl). Later, when these missions come in, we make yet
another request for the details of the first mission: getJSON(missions[0].details-
Url). Finally, we log the details of the mission.

 Writing such code using standard callbacks would result in a deeply nested
sequence of callbacks. Identifying the exact sequence of steps wouldn’t be easy, and
God forbid we decide to add in an extra step somewhere in the middle.

CATCHING ERRORS IN CHAINED PROMISES

When dealing with sequences of asynchronous steps, an error can occur in any step.
We already know that we either can provide a second, error callback to the then call,
or can chain in a catch call that takes an error callback. When we care about only the
success/failure of the entire sequence of steps, supplying each step with special error
handling might be tedious. So, as shown in listing 6.16, we can take advantage of the
catch method that you saw earlier:

...catch(error => fail("An error has occurred:" + err));

If a failure occurs in any of the previous promises, the catch method catches it. If no
error occurs, the program flow continues through it, unobstructed.

 Dealing with a sequence of steps is much nicer with promises than with regular call-
backs, wouldn’t you agree? But it’s still not as elegant as it could be. We’ll get to that
soon, but first let’s see how to use promises to take care of parallel asynchronous steps. 

6.3.6 Waiting for a number of promises

In addition to helping us deal with sequences of interdependent, asynchronous steps,
promises significantly reduce the burden of waiting for several independent asynchro-
nous tasks. Let’s revisit our example in which we want to, in parallel, gather informa-
tion about the ninjas at our disposal, the intricacies of the plan, and the map of the

Listing 6.16 Chaining promises with then

Specifies multiple
sequential steps by

chaining in then calls
Catches promise rejections

in any of the steps



157Working with promises

location where the plan will be set in motion. With promises, this is as simple as shown
in the following listing. 

Promise.all([getJSON("data/ninjas.json"),                        
             getJSON("data/mapInfo.json"),                       
             getJSON("data/plan.json")]).then(results => {       
  const ninjas = results[0], mapInfo = results[1], plan = results[2];

  assert(ninjas !== undefined 
 && mapInfo !== undefined && plan !== undefined,  
        "The plan is ready to be set in motion!");
}).catch(error => {
  fail("A problem in carrying out our plan!");
});

As you can see, we don’t have to care about the order in which tasks are executed, and
whether some of them have finished, while others didn’t. We state that we want to wait
for a number of promises by using the built-in Promise.all method. This method
takes in an array of promises and creates a new promise that successfully resolves when
all passed-in promises resolve, and rejects if even one of the promises fails. The suc-
ceed callback receives an array of succeed values, one for each of the passed-in prom-
ises, in order. Take a minute to appreciate the elegance of code that processes
multiple parallel asynchronous tasks with promises.

 The Promise.all method waits for all promises in a list. But at times we have
numerous promises, but we care only about the first one that succeeds (or fails). Meet
the Promise.race method.

RACING PROMISES

Imagine that we have a group of ninjas at our disposal, and that we want to give an
assignment to the first ninja who answers our call. When dealing with promises, we
can write something like the following listing.

Promise.race([getJSON("data/yoshi.json"), 
              getJSON("data/hattori.json"),
              getJSON("data/hanzo.json")])
       .then(ninja => {
         assert(ninja !== null, ninja.name + " responded first");
        }).catch(error => fail("Failure!"));

It’s simple as that. There’s no need for manually tracking everything. We use the
Promise.race method to take an array of promises and return a completely new
promise that resolves or rejects as soon as the first of the promises resolves or rejects.

 So far you’ve seen how promises work, and how we can use them to greatly simplify
dealing with a series of asynchronous steps, either in series or in parallel. Although

Listing 6.17 Waiting for a number of promises with Promise.all

Listing 6.18 Racing promises with Promise.race

The Promise.all method
takes an array of promises,
and creates a new promise

that succeeds if all
promises succeed, and fails

if even one promise fails.

The result is an
array of succeed

values, in the
order of passed-

in promises.



158 CHAPTER 6 Functions for the future: generators and promises

the improvements, when compared to plain old callbacks in terms of error handling
and code elegance, are great, promisified code still isn’t on the same level of elegance
as simple synchronous code. In the next section, the two big concepts that we’ve intro-
duced in this chapter, generators and promises, come together to provide the simplicity
of synchronous code with the nonblocking nature of asynchronous code.

6.4 Combining generators and promises
In this section, we’ll combine generators (and their capability to pause and resume
their execution) with promises, in order to achieve more elegant asynchronous code.
We’ll use the example of a functionality that enables users to get details of the highest-
rated mission done by the most popular ninja. The data representing the ninjas, the
summaries of their missions, as well as the details of the missions are stored on a
remote server, encoded in JSON.

 All of these subtasks are long-running and mutually dependent. If we were to
implement them in a synchronous fashion, we’d get the following straightforward
code:

try {
   const ninjas = syncGetJSON("data/ninjas.json");
   const missions = syncGetJSON(ninjas[0].missionsUrl);
   const missionDetails = syncGetJSON(missions[0].detailsUrl);   
   //Study the mission description
} catch(e){
  //Oh no, we weren't able to get the mission details
}

Although this code is great for its simplicity and error handling, it blocks the UI,
which results in unhappy users. Ideally, we’d like to change this code so that no block-
ing occurs during a long-running task. One way of doing this is by combining genera-
tors and promises.

 As we know, yielding from a generator suspends the execution of the generator
without blocking. To wake up the generator and continue its execution, we have to
call the next method on the generator’s iterator. Promises, on the other hand, allow
us to specify a callback that will be triggered in case we were able to obtain the prom-
ised value, and a callback that will be triggered in case an error has occurred.

 The idea, then, is to combine generators and promises in the following way: We
put the code that uses asynchronous tasks in a generator, and we execute that genera-
tor function. When we reach a point in the generator execution that calls an asynchro-
nous task, we create a promise that represents the value of that asynchronous task.
Because we have no idea when that promise will be resolved (or even if it will be
resolved), at this point of generator execution, we yield from the generator, so that we
don’t cause blocking. After a while, when the promise gets settled, we continue the
execution of our generator by calling the iterator’s next method. We do this as many
times as necessary. See the following listing for a practical example.



159Combining generators and promises

async(function*(){ 
  try {
    const ninjas = yield getJSON("data/ninjas.json");                
    const missions = yield getJSON(ninjas[0].missionsUrl);           
    const missionDescription = yield getJSON(missions[0].detailsUrl);
    //Study the mission details
  }
  catch(e) {                                             
    //Oh no, we weren't able to get the mission details  
  }                                                      
});

function async(generator) {
  var iterator = generator();

  function handle(iteratorResult) {
    if(iteratorResult.done) { return; }
    
    const iteratorValue = iteratorResult.value;
    
    if(iteratorValue instanceof Promise) {                
      iteratorValue.then(res => handle(iterator.next(res))
                   .catch(err => iterator.throw(err));    
    }                                                     
  }

  try {                           
    handle(iterator.next());      
  }                               
  catch (e) { iterator.throw(e); }
}

The async function takes a generator, calls it, and creates an iterator that will be used
to resume the generator execution. Inside the async function, we declare a handle
function that handles one return value from the generator—one “iteration” of our
iterator. If the generator result is a promise that gets resolved successfully, we use the
iterator’s next method to send the promised value back to the generator and resume
the generator’s execution. If an error occurs and the promise gets rejected, we throw
that error to the generator by using the iterator’s throw method (told you it would
come in handy). We keep doing this until the generator says it’s done. 

NOTE This is a rough sketch, a minimum amount of code needed to com-
bine generators and promises. We don’t recommend that you use this code in
production.

Now let’s take a closer look at the generator. On the first invocation of the iterator’s
next method, the generator executes up to the first getJSON("data/ninjas.json")

Listing 6.19 Combining generators and promises

The function using asynchronous 
results should be able to pause while 
waiting for results. Notice the 
function*. We’re using generators!

Yield on each
asynchronous

task.

We can still use all standard
language constructs such as

try-catch statements or loops.

Defines a
helper

function
that will

control our
generator

Creates an iterator through which 
we’ll control the generator

Defines the
function that will

handle each value
generated by the

generator

Stops when the
generator has

no more results

If the generated value is a promise, register
a success and a failure callback. This is the

asynchronous part. If the promise succeeds,
great, resume the generator and send in the
promised value. If there’s an error, throw an

exception to the generator.

Restarts the
generator
execution.



160 CHAPTER 6 Functions for the future: generators and promises

call. This call creates a promise that will eventually contain the list of information
about our ninjas. Because this value is fetched asynchronously, we have no idea how
much time it will take the browser to get it. But we know one thing: We don’t want
to block the application execution while we’re waiting. For this reason, at this
moment of execution, the generator yields control, which pauses the generator, and
returns the control flow to the invocation of the handle function. Because the
yielded value is a getJSON promise, in the handle function, by using the then and
catch methods of the promise, we register a success and an error callback, and
continue execution. With this, the control flow leaves the execution of the handle
function and the body of the async function, and continues after the call to the
async function (in our case, there’s no more code after, so it idles). During this
time, our generator function patiently waits suspended, without blocking the
program execution.

 Much, much later, when the browser receives a response (either a positive or a neg-
ative one), one of the promise callbacks is invoked. If the promise was resolved suc-
cessfully, the success callback is invoked, which in turn causes the execution of the
iterator’s next method, which asks the generator for another value. This brings back
the generator from suspension and sends to it the value passed in by the callback. This
means that we reenter the body of our generator, after the first yield expression,
whose value becomes the ninjas list that was asynchronously fetched from the server.
The execution of the generator function continues, and the value is assigned to the
plan variable. 

 In the next line of the generator, we use some of the obtained data, ninjas[0]
.missionUrl, to make another getJSON call that creates another promise that should
eventually contain a list of missions done by the most popular ninja. Again, because
this is an asynchronous task, we have no idea how long it’s going to take, so we again
yield the execution and repeat the whole process. 

 This process is repeated as long as there are asynchronous tasks in the generator.
 This was a tad on the complex side, but we like this example because it combines a

lot of things that you’ve learned so far:

■ Functions as first-class objects—We send a function as an argument to the async
function.

■ Generator functions—We use their ability to suspend and resume execution.
■ Promises—They help us deal with asynchronous code.
■ Callbacks—We register success and failure callbacks on our promises. 
■ Arrow functions—Because of their simplicity, for callbacks we use arrow

functions.
■ Closures—The iterator, through which we control the generator, is created in

the async function, and we access it, through closures, in the promise callbacks.

Now that we’ve gone through the whole process, let’s take a minute to appreciate how
much more elegant the code that implements our business logic is. Consider this:



161Combining generators and promises

getJSON("data/ninjas.json", (err, ninjas) => {
  if(err) { console.log("Error fetching ninjas", err); return; }
  
  getJSON(ninjas[0].missionsUrl, (err, missions) => {
     if(err) { console.log("Error locating ninja missions", err); return; }
     console.log(misssions);
  })
});

Instead of mixed control-flow and error handling, and slightly confusing code, we end
up with something like this:

async(function*() {
  try {
    const ninjas = yield getJSON("data/ninjas.json");
    const missions = yield getJSON(ninjas[0].missionsUrl);

    //All information recieved
  }
  catch(e) {
    //An error has occurred
  }
});

This end result combines the advantages of synchronous and asynchronous code. From
synchronous code, we have the ease of understanding, and the ability to use all standard
control-flow and exception-handling mechanisms such as loops and try-catch
statements. From asynchronous code, we get the nonblocking nature; the execution of
our application isn’t blocked while waiting for long-running asynchronous tasks.

6.4.1 Looking forward—the async function

Notice that we still had to write some boilerplate code; we had to develop an async
function that takes care of handling promises and requesting values from the genera-
tor. Although we can write this function only once and then reuse it throughout our
code, it would be even nicer if we didn’t have to think about it. The people in charge
of JavaScript are well aware of the usefulness of the combination of generators and
promises, and they want to make our lives even easier by building in direct language
support for mixing generators and promises.

 For these situations, the current plan is to include two new keywords, async and
await, that would take care of this boilerplate code. Soon, we’ll be able to write some-
thing like this:

(async function (){
  try {
    const ninjas = await getJSON("data/ninjas.json");
    const missions = await getJSON(missions[0].missionsUrl);

    console.log(missions);
  }



162 CHAPTER 6 Functions for the future: generators and promises

  catch(e) {
    console.log("Error: ", e);
  }
})()

We use the async keyword in front of the function keyword to specify that this func-
tion relies on asynchronous values, and at every place where we call an asynchronous
task, we place the await keyword that says to the JavaScript engine, please wait for this
result without blocking. In the background, everything happens as we’ve discussed
previously throughout the chapter, but now we don’t need to worry about it.

NOTE Async functions will appear in the next installment of JavaScript. Cur-
rently no browser supports it, but you can use transpilers such as Babel or Tra-
ceur if you wish to use async in your code today.

6.5 Summary
■ Generators are functions that generate sequences of values—not all at once,

but on a per request basis.
■ Unlike standard functions, generators can suspend and resume their execu-

tion. After a generator has generated a value, it suspends its execution without
blocking the main thread and patiently waits for the next request.

■ A generator is declared by putting an asterisk (*) after the function keyword.
Within the body of the generator, we can use the new yield keyword that yields
a value and suspends the execution of the generator. If we want to yield to
another generator, we use the yield* operator.

■ Calling a generator creates an iterator object through which we control the exe-
cution of the generator. We request new values from the generator by using the
iterator’s next method, and we can even throw exceptions into the generator by
calling the iterator’s throw method. In addition, the next method can be used
to send in values to the generator.

■ A promise is a placeholder for the results of a computation; it’s a guarantee that
eventually we’ll know the result of the computation, most often an asynchro-
nous computation. A promise can either succeed or fail, and after it has done
so, there will be no more changes.

■ Promises significantly simplify our dealings with asynchronous tasks. We can
easily work with sequences of interdependent asynchronous steps by using the
then method to chain promises. Parallel handling of multiple asynchronous
steps is also greatly simplified; we use the Promise.all method.

■ We can combine generators and promises to deal with asynchronous tasks with
the simplicity of synchronous code.



163Exercises

6.6 Exercises
1 After running the following code, what are the values of variables a1 to a4?

function *EvenGenerator(){
  let num = 2;
  while(true){
    yield num;
    num = num + 2;
  }
}

let generator = EvenGenerator();

let a1 = generator.next().value;
let a2 = generator.next().value;
let a3 = EvenGenerator().next().value;
let a4 = generator.next().value;

2 What’s the content of the ninjas array after running the following code? (Hint:
think about how the for-of loop can be implemented with a while loop.)

function* NinjaGenerator(){
  yield "Yoshi";
  return "Hattori";
  yield "Hanzo";
}

var ninjas = [];
for(let ninja of NinjaGenerator()){
  ninjas.push(ninja);
}

ninjas;

3 What are the values of variables a1 and a2, after running the following code?

function *Gen(val){
  val = yield val * 2;
  yield val;
}

let generator = Gen(2);
let a1 = generator.next(3).value;
let a2 = generator.next(4).value;

4 What’s the output of the following code?

const promise = new Promise((resolve, reject) => {
  reject("Hattori");
});

promise.then(val => alert("Success: " + val))
       .catch(e => alert("Error: " + e));



164 CHAPTER 6 Functions for the future: generators and promises

5 What’s the output of the following code?

const promise = new Promise((resolve, reject) => {
  resolve("Hattori");
  setTimeout(()=> reject("Yoshi"), 500);
});

promise.then(val => alert("Success: " + val))
       .catch(e => alert("Error: " + e));



Part 3

Digging into objects
 and fortifying your code

Now that you’ve learned the ins and outs of functions, we’ll continue our
exploration of JavaScript by taking a closer look at object fundamentals in chapter 7. 

 In chapter 8, we’ll study how to control access to and monitor our objects
with getters and setters, and with proxies, a completely new type of object in
JavaScript.

 We’ll take a look at collections in chapter 9—traditional ones such as arrays,
as well as completely new types such as maps and sets.

 From there, we’ll move on to regular expressions in chapter 10. You’ll learn
that many tasks that used to take reams of code to accomplish can be condensed
to a mere handful of statements through the proper use of JavaScript regular
expressions.

 Finally, in chapter 11, we’ll show you how to structure your JavaScript applica-
tions into smaller, well-organized units of functionality called modules.





167

Object orientation
 with prototypes

You’ve learned that functions are first-class objects in JavaScript, that closures make
them incredibly versatile and useful, and that you can combine generator functions
with promises to tackle the problem of asynchronous code. Now we’re ready to
tackle another important aspect of JavaScript: object prototypes.

 A prototype is an object to which the search for a particular property can be dele-
gated to. Prototypes are a convenient means of defining properties and functional-
ity that will be automatically accessible to other objects. Prototypes serve a similar
purpose to that of classes in classical object-oriented languages. Indeed, the main
use of prototypes in JavaScript is in producing code written in an object-oriented

This chapter covers
■ Exploring prototypes
■ Using functions as constructors
■ Extending objects with prototypes
■ Avoiding common gotchas
■ Building classes with inheritance



168 CHAPTER 7 Object orientation with prototypes

way, similar to, but not exactly like, code in more conventional, class-based languages
such as Java or C#.

 In this chapter, we’ll delve into how prototypes work, study their connection with
constructor functions, and see how to mimic some of the object-oriented features
often used in other, more conventional object-oriented languages. We’ll also explore
a new addition to JavaScript, the class keyword, which doesn’t exactly bring full-
featured classes to JavaScript but does enable us to easily mimic classes and
inheritance. Let’s start exploring.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

How do you test whether an object has access to a particu-
lar property? 

Why is a prototype chain important for working with
objects in JavaScript? 

Do ES6 classes change how JavaScript works with objects? 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1 Understanding prototypes
In JavaScript, objects are collections of named properties with values. For example, we
can easily create new objects with object-literal notation:

let obj = {
  prop1: 1,        
  prop2: function(){},     
  prop3: {}           
}

As we can see, object properties can be simple values (such as numbers or strings),
functions, and even other objects. In addition, JavaScript is a highly dynamic lan-
guage, and the properties assigned to an object can be easily changed by modifying
and deleting existing properties:

obj.prop1 = 1;
obj.prop1 = [];         
delete obj.prop2;

We can even add completely new properties:

obj.prop4 = "Hello"; 

In the end, all these modifications have left our simple object in the following state:

Do you know? 

Assigns a simple value

Assigns a function

Assigns another object

prop1 stores a 
simple number.

Assigns a value of a 
completely different 
type, here an array

Removes the property from the object

Adds a completely new property



169Understanding prototypes

{
  prop1: [],
  prop3: {},
  prop4: "Hello"
};

When developing software, we strive not to reinvent the wheel, so we want to reuse as
much code as possible. One form of code reuse that also helps organize our programs
is inheritance, extending the features of one object into another. In JavaScript, inheri-
tance is implemented with prototyping.

 The idea of prototyping is simple. Every object can have a reference to its prototype,
an object to which the search for a particular property can be delegated to, if the object
itself doesn’t have that property. Imagine that you’re in a game quiz with a group of peo-
ple, and that the game show host asks you a question. If you know the answer, you give
it immediately, and if you don’t, you ask the person next to you. It’s as simple as that. 

 Let’s take a look at the following listing.

const yoshi = { skulk: true };  
const hattori = { sneak: true }; 
const kuma = { creep: true };   

assert("skulk" in yoshi, "Yoshi can skulk");       
assert(!("sneak" in yoshi)), "Yoshi cannot sneak");
assert(!("creep" in yoshi)), "Yoshi cannot creep");

Object.setPrototypeOf(yoshi, hattori);

assert("sneak" in yoshi, "Yoshi can now sneak");
assert(!("creep" in hattori)), "Hattori cannot creep");

Object.setPrototypeOf(hattori, kuma);
assert("creep" in hattori, "Hattori can now creep");
assert("creep" in yoshi, "Yoshi can also creep");

In this example, we start by creating three objects: yoshi, hattori, and kuma. Each has
one specific property accessible only to that object: Only yoshi can skulk, only hat-
tori can sneak, and only kuma can creep. See figure 7.1.

Listing 7.1 With prototypes, objects can access properties of other objects

Creates three 
objects, each with 
its own property

yoshi has access to 
only its own, skulk, 
property.

Use the Object
.setPrototypeOf

method to set
one object as

the prototype of
another object. By setting hattori as 

yoshi’s prototype, 
yoshi now has 
access to hattori’s 
properties.

Currently, hattori
can’t creep.

Sets kuma as
a prototype

of hattori
Now hattori 
has access 
to creep.

yoshi also has access to creep,
through hattori.

hattori

sneak: true

kuma

creep: true

yoshi

skulk: true

const yoshi = { skulk: true };
const hattori = { sneak: true };
const kuma = { creep: true };

Figure 7.1 Initially, 
each object has ac-
cess to only its own 
properties.



170 CHAPTER 7 Object orientation with prototypes

To test whether an object has access to a particular property, we can use the in opera-
tor. For example, executing skulk in yoshi returns true, because yoshi has access to
the skulk property; whereas executing sneak in yoshi returns false.

 In JavaScript, the object’s prototype property is an internal property that’s not
directly accessible (so we mark it with [[prototype]]). Instead, the built-in method
Object.setPrototypeOf takes in two object arguments and sets the second object as
the prototype of the first. For example, calling Object.setPrototypeOf(yoshi, hat-
tori); sets up hattori as a prototype of yoshi. 

 As a result, whenever we ask yoshi for a property that it doesn’t have, yoshi dele-
gates that search to hattori. We can access hattori’s sneak property through yoshi.
See figure 7.2.

 We can do a similar thing with hattori and kuma. By using the Object.setProto-
typeOf method, we can set kuma as the prototype of hattori. If we then ask hattori
for a property that he doesn’t have, that search will be delegated to kuma. In this case,
hattori now has access to kuma’s creep property. See figure 7.3.

 It’s important to emphasize that every object can have a prototype, and an object’s
prototype can also have a prototype, and so on, forming a prototype chain. The search
delegation for a particular property occurs up the whole chain, and it stops only when
there are no more prototypes to explore. For example, as shown in figure 7.3, asking
yoshi for the value of the creep property triggers the search for the property first in
yoshi. Because the property isn’t found, yoshi’s prototype, hattori, is searched.
Again, hattori doesn’t have a property named creep, so hattori’s prototype, kuma, is
searched, and the property is finally found.

Object.setPrototypeOf(yoshi, hattori); 

hattori

sneak: true

kuma

creep: true

yoshi

skulk: true
[[prototype]]

hattori is set as
yoshi’s prototype.

Accessing the property
sneak on yoshi will return
true, even though yoshi
doesn’t have a sneak
property.

const yoshi = { skulk: true };
const hattori = { sneak: true };
const kuma = { creep: true };

Figure 7.2 When we access a property that the object doesn’t have, the object’s prototype is searched 
for that property. Here, we can access hattori’s sneak property through yoshi, because yoshi is 
hattori’s prototype.



171Object construction and prototypes

Now that we have a basic idea of how the search for a particular property occurs
through the prototype chain, let’s see how prototypes are used when constructing new
objects with constructor functions.

7.2 Object construction and prototypes
The simplest way to create a new object is with a statement like this:

const warrior = {};

This creates a new and empty object, which we can then populate with properties via
assignment statements:

const warrior = {};
warrior.name = 'Saito';
warrior.occupation = 'marksman';

But those coming from an object-oriented background might miss the encapsulation
and structuring that comes with a class constructor, a function that serves to initialize
an object to a known initial state. After all, if we’re going to create multiple instances
of the same type of object, assigning the properties individually isn’t only tedious but
also highly error-prone. We’d like to be able to consolidate the set of properties and
methods for a class of objects in one place.

 JavaScript provides such a mechanism, though in a different form than most other
languages. Like object-oriented languages such as Java and C++, JavaScript employs
the new operator to instantiate new objects via constructors, but there’s no true class
definition in JavaScript. Instead, the new operator, applied to a constructor function
(as you saw in chapter 3), triggers the creation of a newly allocated object. 

Object.setPrototypeOf(yoshi, hattori);
Object.setPrototypeOf(hattori, kuma);

const yoshi = { skulk: true };
const hattori = { sneak: true };
const kuma = { creep: true };

hattori

sneak: true
[[prototype]]

kuma

creep: true

yoshi

skulk: true
[[prototype]]

Accessing the property creep
on yoshi will return true.

Figure 7.3 The search for a particular property stops when there are no more prototypes to explore. 
Accessing yoshi.creep triggers the search first in yoshi, then in hattori, and finally in kuma.



172 CHAPTER 7 Object orientation with prototypes

 What we didn’t learn in the previous chapters was that every function has a proto-
type object that’s automatically set as the prototype of the objects created with that
function. Let’s see how that works in the following listing.

function Ninja(){}
Ninja.prototype.swingSword = function(){ 
  return true;                           
};                                       

const ninja1 = Ninja();                 
assert(ninja1 === undefined,            
       "No instance of Ninja created.");

const ninja2 = new Ninja();                        
assert(ninja2 &&                                   
       ninja2.swingSword &&                        
       ninja2.swingSword(),                        
       "Instance exists and method is callable." );

In this code, we define a seemingly do-nothing function named Ninja that we’ll
invoke in two ways: as a “normal” function, const ninja1 = Ninja(); and as a construc-
tor, const ninja2 = new Ninja();. 

 When the function is created, it immediately gets a new object assigned to its pro-
totype object, an object that we can extend just like any other object. In this case, we
add a swingSword method to it:

Ninja.prototype.swingSword = function(){ 
  return true;
};

Then we put the function through its paces. First we call the function normally and
store its result in variable ninja1. Looking at the function body, we see that it returns
no value, so we’d expect ninja1 to test as undefined, which we assert to be true. As a
simple function, Ninja doesn’t appear to be all that useful.

 Then we call the function via the new operator, invoking it as a constructor, and
something completely different happens. The function is once again called, but this
time a newly allocated object has been created and set as the context of the function
(and is accessible through the this keyword). The result returned from the new oper-
ator is a reference to this new object. We then test that ninja2 has a reference to the
newly created object, and that that object has a swingSword method that we can call.
See figure 7.4 for a glimpse of the current application state.

Listing 7.2 Creating a new instance with a prototyped method

Defines a function that does 
nothing and returns nothing

Every function has a built-in 
prototype object, which we 
can freely modify.

Calls the function as a function. 
Testing confirms that nothing at 
all seems to happen.

Calls the function as a constructor. 
Testing confirms that not only is a 
new object instance created, but it 
possesses the method from the 
prototype of the function.



173Object construction and prototypes

As you can see, a function, when created, gets a new object that’s assigned to its proto-
type property. The prototype object initially has only one property, constructor, that
references back to the function (we’ll revisit the constructor property later).

 When we use a function as a constructor (for example, by calling new Ninja()),
the prototype of the newly constructed object is set to the object referenced by the
constructor function’s prototype. 

 In this example, we’ve extended the Ninja.prototype with the swingSword
method, and when the ninja2 object is created, its prototype property is set to
Ninja’s prototype. Therefore, when we try to access the swingSword property on
ninja2, the search for that property is delegated to the Ninja prototype object. Notice
that all objects created with the Ninja constructor will have access to the swingSword
method. Now that’s code reuse!

 The swingSword method is a property of the Ninja’s prototype, and not a property
of ninja instances. Let’s explore this difference between instance properties and pro-
totype properties.

7.2.1 Instance properties

When the function is called as a constructor via the new operator, its context is defined
as the new object instance. In addition to exposing properties via the prototype, we can

function Ninja(){}
Ninja.prototype.swingSword = function(){                    
  return true;
};      
…
const ninja2 = new Ninja(); 

Ninja prototype

constructor
swingSword

[[prototype]]

Every function has
a prototype object.

A function’s prototype
has a constructor property
that references back to
the function.

The constructor object’s prototype
is set as the prototype of the newly
created object. 

ninja2

function Ninja(){}
prototype:

function(){}

Figure 7.4 Every function, when created, gets a new prototype object. When we use a function 
as a constructor, the constructed object’s prototype is set to the function’s prototype.



174 CHAPTER 7 Object orientation with prototypes

initialize values within the constructor function via the this parameter. Let’s examine
the creation of such instance properties in the next listing.

 function Ninja(){
  this.swung = false;
  this.swingSword = function(){                   
    return !this.swung;                           
  };
 }
 Ninja.prototype.swingSword = function(){ 
   return this.swung;                     
 };                                       

 const ninja = new Ninja();                                     
 assert(ninja.swingSword(),                                     
       "Called the instance method, not the prototype method.");

Listing 7.3 is similar to the previous example in that we define a swingSword method
by adding it to the prototype property of the constructor:

Ninja.prototype.swingSword = function(){
   return this.swung;
}; 

But we also add an identically named method within the constructor function itself: 

function Ninja(){
  this.swung = false; 
  this.swingSword = function(){ 
    return !this.swung;
  };
}

The two methods are defined to return opposing results so we can tell which will be
called.

NOTE This isn’t anything we’d advise doing in real-world code; quite the oppo-
site. We’re doing it here just to demonstrate the precedence of properties.

When you run the test, you see that it passes! This shows that instance members will
hide properties of the same name defined in the prototype. See figure 7.5.

Listing 7.3 Observing the precedence of initialization activities

Creates an instance 
variable that holds 
a Boolean value 
initialized to false Creates an instance method 

that returns the inverse of the 
swung instance variable value

Defines a prototype method with the 
same name as the instance method. 
Which will take precedence?

Constructs a Ninja instance and asserts that the instance
method will override the prototype method of the same name



175Object construction and prototypes

Within the constructor function, the this keyword refers to the newly created object,
so the properties added within the constructor are created directly on the new ninja
instance. Later, when we access the property swingSword on ninja, there’s no need to
traverse the prototype chain (as shown in figure 7.4); the property created within the
constructor is immediately found and returned (see figure 7.5). 

 This has an interesting side effect. Take a look at figure 7.6, which shows the state
of the application if we create three ninja instances.

function Ninja(){
  this.swung = false;
  this.swingSword = function(){     
    return !this.swung;
  };
 }
 Ninja.prototype.swingSword = function(){
   return this.swung;
 };  
const ninja = new Ninja();

Ninja prototype

constructor
swingSword

swung: false
swingSword
[[prototype]]

ninja

function Ninja(){}
prototype:

function(){} function(){}

Figure 7.5 If a property can be found on the instance itself, the prototype isn’t even consulted!

Ninja prototype

constructor
swingSword

swung: false
swingSword
[[prototype]]

ninja2

function Ninja(){}
prototype:

function(){}

swung: false
swingSword
[[prototype]]

ninja3

function(){}

swung: false
swingSword
[[prototype]]

ninja1

function(){}

function(){}

Figure 7.6 Every instance gets its own version of the properties created within the constructor, but 
they all have access to the same prototype’s properties.



176 CHAPTER 7 Object orientation with prototypes

As you can see, every ninja instance gets its own version of the properties that were
created within the constructor, while they all have access to the same prototype’s prop-
erties. This is okay for value properties (for example, swung) that are specific to each
object instance. But in certain cases it might be problematic for methods. 

 In this example, we’d have three versions of the swingSword method that all per-
form the same logic. This isn’t a problem if we create a couple of objects, but it’s
something to pay attention to if we plan to create large numbers of objects. Because
each method copy behaves the same, creating multiple copies often doesn’t make
sense, because it only consumes more memory. Sure, in general, the JavaScript engine
might perform some optimizations, but that’s not something to rely on. From that
perspective, it makes sense to place object methods only on the function’s prototype,
because in that way we have a single method shared by all object instances.

NOTE Remember chapter 5 on closures: Methods defined within constructor
functions allow us to mimic private object variables. If this is something we
need, specifying methods within constructors is the only way to go.

7.2.2 Side effects of the dynamic nature of JavaScript

You’ve already seen that JavaScript is a dynamic language in which properties can be
easily added, removed, and modified at will. The same thing holds for prototypes,
both function prototypes and object prototypes. See the following listing.

 function Ninja(){          
   this.swung = true;       
 }                          

 const ninja1 = new Ninja();            

 Ninja.prototype.swingSword = function(){
   return this.swung;                    
 };                                      
 assert(ninja1.swingSword(),      
        "Method exists, even out of order.");

 Ninja.prototype = {      
  pierce: function() {    
    return true;          
  }                       
 }                        

 assert(ninja1.swingSword(),                 
        "Our ninja can still swing!");       

 const ninja2 = new Ninja();                               
 assert(ninja2.pierce(),"Newly created ninjas can pierce");
 assert(!ninja2.swingSword, "But they cannot swing!");     

Listing 7.4 With prototypes, everything can be changed at runtime

Defines a constructor that 
creates a Ninja with a single 
Boolean property

Creates an instance of 
Ninja by calling the 
constructor function via 
the “new” operator

Adds a method to the 
prototype after the 
object has been created

Shows that the method 
exists in the object

Completely 
overrides the Ninja’s 
prototype with a 
new object via the 
pierce method

Even though we’ve completely replaced 
the Ninja constructor’s prototype, our 
Ninja can still swing a sword, because 
it keeps a reference to the old Ninja 
prototype.

Newly created ninjas 
reference the new 
prototype, so they can 
pierce but can’t swing.



177Object construction and prototypes

Here we again define a Ninja constructor and proceed to use it to create an object
instance. The state of the application at this moment is shown in figure 7.7.

After the instance has been created, we add a swingSword method to the proto-
type. Then we run a test to show that the change we made to the prototype after the
object was constructed takes effect. The current state of the application is shown in
figure 7.8.

Ninja prototype

constructor

function Ninja(){}
prototype:

swung: true
[[prototype]]

ninja1

function Ninja(){
   this.swung = true;
 }

const ninja1 = new Ninja();

Figure 7.7 After construction, ninja1 has the property swung, and its pro-
totype is the Ninja prototype that has only a constructor property.

Ninja prototype

constructor
swingSword

function Ninja(){}
prototype:

swung: true
[[prototype]]

ninja1

function Ninja(){
  this.swung = true;
}

const ninja1 = new Ninja();

Ninja.prototype.swingSword = function(){
  return this.swung;
};   

function(){}

Figure 7.8 Because the ninja1 instance references the Ninja prototype, 
even changes made after the instance was constructed are accessible.



178 CHAPTER 7 Object orientation with prototypes

Later, we override the Ninja function’s prototype by assigning it to a completely new
object that has a pierce method. This results in the application state shown in figure 7.9.

 As you can see, even though the Ninja function doesn’t reference the old Ninja
prototype, the old prototype is still kept alive by the ninja1 instance, which can still,
through the prototype chain, access the swingSword method. But if we create new
objects after this prototype switcheroo, the state of the application will be as shown in
figure 7.10.

 The reference between an object and the function’s prototype is established at
the time of object instantiation. Newly created objects will have a reference to the
new prototype and will have access to the pierce method, whereas the old,
pre-prototype-change objects keep their original prototype, happily swinging their
swords.

 We’ve explored how prototypes work and how they’re related to object instantia-
tion. Well done! Now take a quick breath, so we can continue onward by learning
more about the nature of those objects.

Ninja prototype

constructor
swingSword

function Ninja(){}
prototype:

swung: true
[[prototype]]

ninja1

function Ninja(){
   this.swung = true;
 }

const ninja1 = new Ninja();

 Ninja.prototype.swingSword = function(){
   return this.swung;
};       

 …
 Ninja.prototype = {
  pierce: function() {
    return true;
  }
 }

Ninja prototype’

pierce

function(){}

function(){}

New prototype
created (shown
below as Ninja
prototype' )'

Figure 7.9 The function’s prototype can be replaced at will. The already constructed instances reference 
the old prototype!



179Object construction and prototypes

7.2.3 Object typing via constructors

Although it’s great to know how
JavaScript uses the prototype to find
the correct property references, it’s
also handy to know which function
constructed an object instance. As
you’ve seen earlier, the constructor of
an object is available via the construc-
tor property of the constructor func-
tion prototype. For example, figure
7.11 shows the state of the application
when we instantiate an object with the
Ninja constructor.

ninja2

Ninja prototype

constructor
swingSword

function Ninja(){}
prototype:

swung: true
[[prototype]]

swung: true
[[prototype]]

ninja1

function Ninja(){
   this.swung = true;
}      

 const ninja1 = new Ninja();

 Ninja.prototype.swingSword = function(){
   return this.swung;
};      
 …
 Ninja.prototype = {
  pierce: function() {
    return true;
  }
 }
 …
const ninja2 = new Ninja();

Ninja prototype’

pierce

function(){}

function(){}

Figure 7.10 All newly created instances reference the new prototype.

Ninja prototype

constructor

function Ninja(){}
prototype:

[[prototype]]

ninja1

function Ninja(){}
const ninja1 = new Ninja();

Figure 7.11 The prototype object of each function 
has a constructor property that references the func-
tion.



180 CHAPTER 7 Object orientation with prototypes

 By using the constructor property, we can access the function that was used to
create the object. This information can be used as a form of type checking, as shown
in the next listing.

function Ninja(){}
const ninja = new Ninja();

assert(typeof ninja === "object",
      "The type of the instance is object.");
assert(ninja instanceof Ninja,                   
       "instanceof identifies the constructor." );
assert(ninja.constructor === Ninja,                        
       "The ninja object was created by the Ninja function.");

We define a constructor and create an object instance using it. Then we examine the
type of the instance by using the typeof operator. This doesn’t reveal much, as all
instances will be objects, thus always returning object as the result. Much more inter-
esting is the instanceof operator, which gives us a way to determine whether an
instance was created by a particular function constructor. You’ll learn more about how
the instanceof operator works later in the chapter.

 In addition, we can use the constructor property, that we now know is accessible
to all instances, as a reference to the original function that created it. We can use this
to verify the origin of the instance (much as we can with the instanceof operator).

 Additionally, because this is just a reference to the original constructor, we can
instantiate a new Ninja object using it, as shown in the next listing.

function Ninja(){}

const ninja = new Ninja();
const ninja2 = new ninja.constructor();

assert(ninja2 instanceof Ninja, "It's a Ninja!");
assert(ninja !== ninja2, "But not the same Ninja!");

Here we define a constructor and create an instance using that constructor. Then we
use the constructor property of the created instance to construct a second instance.
Testing shows that a second Ninja has been constructed and that the variable doesn’t
merely point to the same instance.

Listing 7.5 Examining the type of an instance and its constructor

Listing 7.6 Instantiating a new object using a reference to a constructor

Tests the type of ninja via
typeof. This tells us it’s an
object, but not much else. Tests the type of ninja via 

instanceof. This provides 
more information—that it 
was constructed from Ninja.

Tests the type of ninja via the constructor reference.
This gives a reference to the constructor function.

Constructs a second 
Ninja from the first

Proves the new 
object’s Ninja-ness

They aren’t the same object, 
but two distinct instances.



181Achieving inheritance

 What’s especially interesting is that we can do this without even having access to
the original function; we can use the reference completely behind the scenes, even if
the original constructor is no longer in scope.

NOTE Although the constructor property of an object can be changed,
doing so doesn’t have any immediate or obvious constructive purpose
(though we might be able to think of some malicious ones). The property’s
reason for being is to indicate from where the object was constructed. If the
constructor property is overwritten, the original value is lost.

That’s all useful, but we’ve just scratched the surface of the superpowers that proto-
types confer on us. Now things get interesting.

7.3 Achieving inheritance
Inheritance is a form of reuse in which new objects have access to properties of existing
objects. This helps us avoid the need to repeat code and data across our code base. In
JavaScript, inheritance works slightly differently than in other popular object-oriented
languages. Consider the following listing, in which we attempt to achieve inheritance.

 function Person(){}                   
 Person.prototype.dance = function(){};

 function Ninja(){} 
 Ninja.prototype = { dance: Person.prototype.dance };

 const ninja = new Ninja();
 assert(ninja instanceof Ninja,
        "ninja receives functionality from the Ninja prototype" );
 assert(ninja instanceof Person, "... and the Person prototype" );
 assert(ninja instanceof Object, "... and the Object prototype" );

Because the prototype of a function is an object, there are multiple ways of copying func-
tionality (such as properties or methods) to effect inheritance. In this code, we define
a Person and then a Ninja. And because
a Ninja is clearly a person, we want
Ninja to inherit the attributes of Per-
son. We attempt to do so by copying the
dance property of the Person proto-
type’s method to a similarly named
property in the Ninja prototype.

 Running our test reveals that
although we may have taught the ninja
to dance, we failed to make the Ninja
a Person, as shown in figure 7.12. We
taught the Ninja to mimic the dance

Listing 7.7 Trying to achieve inheritance with prototypes

Defines a dancing Person via a 
constructor and its prototype

Defines a Ninja Attempts to make Ninja 
a dancing Person by 
copying the dance 
method from the 
Person prototype

Figure 7.12 Our Ninja isn’t really a Person. No 
happy dance!



182 CHAPTER 7 Object orientation with prototypes

of a person, but that hasn’t made the Ninja a Person. That’s not inheritance—it’s
just copying.

 Apart from the fact that this approach isn’t exactly working, we’d also need to copy
each property of Person to the Ninja prototype individually. That’s no way to do
inheritance. Let’s keep exploring.

 What we really want to achieve is a prototype chain so that a Ninja can be a Person,
and a Person can be a Mammal, and a Mammal can be an Animal, and so on, all the way
to Object. The best technique for creating such a prototype chain is to use an
instance of an object as the other object’s prototype:

SubClass.prototype = new SuperClass();

For example:

Ninja.prototype = new Person();

This preserves the prototype chain, because the prototype of the SubClass instance will
be an instance of the SuperClass, which has a prototype with all the properties of Super-
Class, and which will in turn have a prototype pointing to an instance of its superclass, and
on and on. In the next listing, we change listing 7.7 slightly to use this technique.

function Person(){}
Person.prototype.dance = function(){};

function Ninja(){}
Ninja.prototype = new Person();           

const ninja = new Ninja();
assert(ninja instanceof Ninja,
      "ninja receives functionality from the Ninja prototype");
assert(ninja instanceof Person, "... and the Person prototype");
assert(ninja instanceof Object, "... and the Object prototype");
assert(typeof ninja.dance === "function", "... and can dance!")

The only change to the code is to use
an instance of Person as the prototype
for Ninja. Running the tests shows
that we’ve succeeded, as shown in fig-
ure 7.13. Now we’ll take a closer look
at the inner workings by looking at the
state of the application after we’ve cre-
ated the new ninja object, as shown in
figure 7.14.

 Figure 7.14 shows that when we
define a Person function, a Person

Listing 7.8 Achieving inheritance with prototypes

Makes a Ninja a Person by 
making the Ninja prototype 
an instance of Person

Figure 7.13 Our Ninja is a Person! Let the victory 
dance begin.



183Achieving inheritance

prototype is also created that references the Person function through its constructor
property. Normally, we can extend the Person prototype with additional properties,
and in this case, we specify that every person, created with the Person constructor, has
access to the dance method:

function Person(){}
Person.prototype.dance = function(){};

We also define a Ninja function that gets its own prototype object with a constructor
property referencing the Ninja function: function Ninja(){}.

 Next, in order to achieve inheritance, we replace the prototype of the Ninja
function with a new Person instance. Now, when we create a new Ninja object, the
internal prototype property of the newly created ninja object will be set to the
object to which the current Ninja prototype property points to, the previously con-
structed Person instance:

Ninja prototype

constructor

function Ninja(){}
prototype:

[[prototype]]

ninja

function Person(){}
Person.prototype.dance = function(){};

function Ninja(){}
Ninja.prototype = new Person();
const ninja = new Ninja();
           

Person prototype

constructor
dance

function Person(){}
prototype:

[[prototype]]

new Person()

function(){}

ninja’s prototype is a
person; a ninja has access
to all person methods. Notice how we’ve lost

our connection to the
Ninja constructor.

The old prototype is
left alone; nobody is
referencing it. It will
be deleted. 

Ninja.prototype = new Person() sets
the prototype of the Ninja constructor
to a newly created person.

Figure 7.14 We’ve achieved inheritance by setting the prototype of the Ninja constructor to a new 
instance of a Person object.



184 CHAPTER 7 Object orientation with prototypes

function Ninja(){}
Ninja.prototype = new Person();
var ninja = new Ninja();

When we try to access the dance method through the ninja object, the JavaScript run-
time will first check the ninja object itself. Because it doesn’t have the dance property,
its prototype, the person object, is searched. The person object also doesn’t have the
dance property, so its prototype is searched, and the property is finally found. This is
how to achieve inheritance in JavaScript! 

 Here’s the important implication: When we perform an instanceof operation, we
can determine whether the function inherits the functionality of any object in its pro-
totype chain.

NOTE Another technique that may have occurred to you, and that we advise
strongly against, is to use the Person prototype object directly as the Ninja
prototype, like this: Ninja.prototype = Person.prototype. Any changes to
the Ninja prototype will then also change the Person prototype (because
they’re the same object), and that’s bound to have undesirable side effects.

An additional happy side effect of doing prototype inheritance in this manner is that
all inherited function prototypes will continue to live-update. Objects that inherit
from the prototype always have access to the current prototype properties.

7.3.1 The problem of overriding the constructor property

If we take a closer look at figure 7.14, we’ll see that by setting the new Person object as
a prototype of the Ninja constructor, we’ve lost our connection to the Ninja construc-
tor that was previously kept by the original Ninja prototype. This is a problem,
because the constructor property can be used to determine the function with which
the object was created. Somebody using our code could make a perfectly reasonable
assumption that the following test will pass:

assert(ninja.constructor === Ninja, 
      "The ninja object was created by the Ninja constructor");

But in the current state of the application, this test fails. As figure 7.14 shows, if we
search the ninja object for the constructor property, we won’t find it. So we go over
to its prototype, which also doesn’t have a constructor property, and again, we follow
the prototype and end up in the prototype object of Person, which has a constructor
property referencing the Person function. In effect, we get the wrong answer: If we
ask the ninja object which function has constructed it, we’ll get Person as the answer.
This can be the source of some serious bugs.

 It’s up to us to fix this situation! But before we can do that, we have to take a
detour and see how JavaScript enables us to configure properties.



185Achieving inheritance

CONFIGURING OBJECT PROPERTIES

In JavaScript, every object property is described with a property descriptor through which
we can configure the following keys:

■ configurable—If set to true, the property’s descriptor can be changed and the
property can be deleted. If set to false, we can do neither of these things. 

■ enumerable—If set to true, the property shows up during a for-in loop over
the object’s properties (we’ll get to the for-in loop soon).

■ value—Specifies the value of the property. Defaults to undefined.
■ writable—If set to true, the property value can be changed by using an

assignment. 
■ get—Defines the getter function, which will be called when we access the prop-

erty. Can’t be defined in conjunction with value and writable.
■ set—Defines the setter function, which will be called whenever an assignment is

made to the property. Also can’t be defined in conjunction with value and
writable.

Say we create a property through a simple assignment, for example:

ninja.name = "Yoshi";

This property will be configurable, enumerable, and writable, its value will be set to
Yoshi, and functions get and set would be undefined.

 When we want to fine-tune our property configuration, we can use the built-in
Object.defineProperty method, which takes an object on which the property will be
defined, the name of the property, and a property descriptor object. As an example,
take a look at the following code.

var ninja = {};              
ninja.name = "Yoshi";        
ninja.weapon = "kusarigama"; 

Object.defineProperty(ninja, "sneaky", {  
  configurable: false,                    
  enumerable: false,                      
  value: true,                            
  writable: true                          
});                                       

assert("sneaky" in ninja, "We can access the new property");

for(let prop in ninja){                                         
  assert(prop !== undefined, "An enumerated property: " + prop);
}                                                               

Listing 7.9 Configuring properties

Creates an empty object; 
uses assignments to add 
two properties

The built-in Object.defineProperty 
method is used to fine-tune the 
property configuration details.

Uses the for-in loop to iterate over
ninja’s enumerable properties



186 CHAPTER 7 Object orientation with prototypes

We start with the creation of an empty
object, to which we add two properties:
name and weapon, in the good old-
fashioned way, by using assignments.
Next, we use the built-in Object

.defineProperty method to define the
property sneaky, which isn’t configu-
rable, isn’t enumerable, and has its
value set to true. This value can be
changed because it’s writable.

 Finally, we test that we can access the
newly created sneaky property, and we
use the for-in loop to go through all
enumerable properties of the object.
Figure 7.15 shows the result.

 By setting enumerable to false, we can be sure that the property won’t appear
when using the for-in loop. To understand why we’d want to do something like this,
let’s go back to the original problem.

FINALLY SOLVING THE PROBLEM OF OVERRIDING THE CONSTRUCTOR PROPERTY

When trying to extend Person with Ninja (or to make Ninja a subclass of Person), we
ran into the following problem: When we set a new Person object as a prototype to the
Ninja constructor, we lose the original Ninja prototype that keeps our constructor
property. We don’t want to lose the constructor property, because it’s useful for
determining the function used to create our object instances and it might be expected
by other developers working on our code base.

 We can solve this problem by using the knowledge that we’ve just obtained. We’ll
define a new constructor property on the new Ninja.prototype by using the
Object.defineProperty method. See the following listing.

function Person(){}
Person.prototype.dance = function(){};

function Ninja(){}
Ninja.prototype = new Person();

Object.defineProperty(Ninja.prototype, "constructor", { 
  enumerable: false,                                    
  value: Ninja,                                         
  writable: true                                        
});                                                     

var ninja = new Ninja();

Listing 7.10 Fixing the constructor property problem

We define a new non-
enumerable constructor

property pointing back to Ninja.

Figure 7.15 Properties name and weapon will be 
visited in the for-in loop, whereas our specially 
added sneaky property won’t (even though we can 
access it normally).



187Achieving inheritance

assert(ninja.constructor === Ninja,                        
      "Connection from ninja instances to Ninja constructor
        reestablished!");                                  
for(let prop in Ninja.prototype){                                   
  assert(prop === "dance", "The only enumerable property is dance!");
}                                                                   

Now if we run the code, we’ll see that everything is peachy. We’ve reestablished the con-
nection between ninja instances and the Ninja function, so we can know that they
were constructed by the Ninja function. In addition, if anybody tries to loop through
the properties of the Ninja.prototype object, we’ve made sure that our patched-on
property constructor won’t be visited. Now that’s the mark of a true ninja; we went in,
did our job, and got out, without anybody noticing anything from the outside!

7.3.2 The instanceof operator

In most programming languages, the straightforward approach for checking whether
an object is a part of a class hierarchy is to use the instanceof operator. For example,
in Java, the instanceof operator works by checking whether the object on the left
side is either the same class or a subclass of the class type on the right.

 Although certain parallels could be made with how the instanceof operator works
in JavaScript, there’s a little twist. In JavaScript, the instanceof operator works on the
prototype chain of the object. For example, say we have the following expression:

ninja instanceof Ninja

The instanceof operator works by checking whether the current prototype of the
Ninja function is in the prototype chain of the ninja instance. Let’s go back to our
persons and ninjas, for a more concrete example.

function Person(){}
function Ninja(){}

Ninja.prototype = new Person();

const ninja = new Ninja();

assert(ninja instanceof Ninja, "Our ninja is a Ninja!");      
assert(ninja instanceof Person, "A ninja is also a Person. ");

As expected, a ninja is, at the same time, a Ninja and a Person. But, to nail down this
point, figure 7.16 shows how the whole thing works behind the scenes.

Listing 7.11 Studying the instanceof operator

We’ve
reestablished

the connection.

We haven’t added any enumerable
properties to the Ninja.prototype.

A ninja instance is both a
Ninja and a Person.



188 CHAPTER 7 Object orientation with prototypes

The prototype chain of a ninja instance is composed of a new Person() object, through
which we’ve achieved inheritance, and the Person prototype. When evaluating the
expression ninja instanceof Ninja, the JavaScript engine takes the prototype of the
Ninja function, the new Person() object, and checks whether it’s in the prototype chain
of the ninja instance. Because the new Person() object is a direct prototype of the
ninja instance, the result is true.

 In the second case, where we check ninja instanceof Person, the JavaScript
engine takes the prototype of the Person function, the Person prototype, and checks
whether it can be found in the prototype chain of the ninja instance. Again, it can,
because it’s the prototype of our new Person() object, which, as we’ve already seen, is
the prototype of the ninja instance. 

 And that’s all there is to know about the instanceof operator. Although its most
common use is in providing a clear way to determine whether an instance was created
by a particular function constructor, it doesn’t exactly work like that. Instead, it checks
whether the prototype of the right-side function is in the prototype chain of the object
on the left. Therefore, there is a caveat that we should be careful about.

THE INSTANCEOF CAVEAT

As you’ve seen multiple times throughout this chapter, JavaScript is a dynamic lan-
guage in which we can modify a lot of things during program execution. For example,
there’s nothing stopping us from changing the prototype of a constructor, as shown in
the following listing.

Ninja prototype

constructor

function Ninja(){}
prototype:

[[prototype]]

ninja

function Person(){}
function Ninja(){}

Ninja.prototype = new Person();
const ninja = new Ninja();

Person prototype

constructor

function Person(){}
prototype:

[[prototype]]

new Person()

The prototype chain
of the ninja instance

Figure 7.16 The prototype chain of a ninja instance is composed of a new Person() object and 
the Person prototype. 



189Achieving inheritance

function Ninja(){}

const ninja = new Ninja();

assert(ninja instanceof Ninja, "Our ninja is a Ninja!");

Ninja.prototype = {};

assert(!(ninja instanceof Ninja), "The ninja is now not a Ninja!?");

In this example, we again repeat all the basic steps of making a ninja instance, and
our first test goes fine. But if we change the prototype of the Ninja constructor func-
tion after the creation of the ninja instance, and again test whether ninja is an
instanceof Ninja, we’ll see that the situation has changed. This will surprise us only
if we cling to the inaccurate assumption that the instanceof operator tells us whether
an instance was created by a particular function constructor. If, on the other hand, we
take the real semantics of the instanceof operator—that it checks only whether the
prototype of the function on the right side is in the prototype chain of the object on
the left side—we won’t be surprised. This situation is shown in figure 7.17.

Listing 7.12 Watch out for changes to constructor prototypes

We change
the prototype

of the Ninja
constructor

function.

Even though our ninja instance was created by the
Ninja constructor, the instanceof operator now says

that ninja isn’t an instance of Ninja anymore!

Ninja prototype

constructor
[[prototype]]

ninja

function Ninja(){}

const ninja = new Ninja();

ninja instanceof Ninja //true

The prototype chain
of the ninja object

The prototype of the Ninja function
is in the prototype chain of the ninja
object; the instanceof operator
returns true.

function Ninja(){}
prototype:

Ninja prototype

constructor
[[prototype]]

ninja

New object

Ninja.prototype = {};

ninja instanceof Ninja //false

The prototype chain
of the ninja object

Change the prototype
of the Ninja function.

The prototype of the Ninja function (a new,
empty object) is not in the prototype chain
of the ninja object; the instanceof
operator returns false.

function Ninja(){}
prototype:

Ninja pr

construc
ototype]]

ninja

The prototype chain

Ninja pr

construc
ototype]]

ninja

The prototype chain

Figure 7.17 The instanceof operator checks whether the prototype of the function on the right is in 
the prototype chain of the object on the left. Be careful; the function’s prototype can be changed anytime!



190 CHAPTER 7 Object orientation with prototypes

Now that we understand how prototypes work in JavaScript, and how to use prototypes
in conjunction with constructor functions to implement inheritance, let’s move on to
a new addition in the ES6 version of JavaScript: classes.

7.4 Using JavaScript “classes” in ES6 
It’s great that JavaScript lets us use a form of inheritance via prototypes. But many
developers, especially those from a classical object-oriented background, would prefer
a simplification or abstraction of JavaScript’s inheritance system into one that they’re
more familiar with. 

 This inevitably leads toward the realm of classes, even though JavaScript doesn’t
support classical inheritance natively. As a response to this need, several JavaScript
libraries that simulate classical inheritance have popped up. Because each library
implements classes in its own way, the ECMAScript committee has standardized the
syntax for simulating class-based inheritance. Notice how we said simulating. Even
though now we can use the class keyword in JavaScript, the underlying implementa-
tion is still based on prototype inheritance! 

Let’s start by studying the new syntax.

7.4.1 Using the class keyword

ES6 introduces a new class keyword that provides a much more elegant way of creating
objects and implementing inheritance than manually implementing it ourselves with
prototypes. Using the class keyword is easy, as shown in the following listing.

class Ninja{
  constructor(name){  
    this.name = name; 
  }                   

  swingSword(){   
    return true;  
  }               
}

var ninja = new Ninja("Yoshi");

assert(ninja instanceof Ninja, "Our ninja is a Ninja");
assert(ninja.name === "Yoshi", "named Yoshi");         
assert(ninja.swingSword(), "and he can swing a sword");

NOTE The class keyword has been added to the ES6 ver-
sion of JavaScript, and not all browsers implement it (see
http://mng.bz/3ykA for current support).

Listing 7.13 Creating a class in ES6 

Uses the class
keyword to start
specifying an ES6

class

Defines a constructor function 
that will be called when we call 
the class with the keyword new

Defines an additional 
method accessible to 
all Ninja instances

Instantiates
 a new ninja

object with the
keyword new

Tests for the
expected behavior

http://mng.bz/3ykA


191Using JavaScript “classes” in ES6 

Listing 7.13 shows that we can create a Ninja class by using the class keyword. When
creating ES6 classes, we can explicitly define a constructor function that will be
invoked when instantiating a Ninja instance. In the constructor’s body, we can access
the newly created instance with the this keyword, and we can easily add new proper-
ties, such as the name property. Within the class body, we can also define methods that
will be accessible to all Ninja instances. In this case, we’ve defined a swingSword
method that returns true:

class Ninja{
  constructor(name){
    this.name = name;
  }

  swingSword(){
    return true;
  }
}

Next we can create a Ninja instance by calling the Ninja class with the keyword new,
just as we would if Ninja was a simple constructor function (as earlier in the chapter):

var ninja = new Ninja("Yoshi");

Finally, we can test that the ninja instance behaves as expected, that it’s an instanceof
Ninja, has a name property, and has access to the swingSword method:

assert(ninja instanceof Ninja, "Our ninja is a Ninja");
assert(ninja.name === "Yoshi", "named Yoshi");
assert(ninja.swingSword(), "and he can swing a sword");

CLASSES ARE SYNTACTIC SUGAR

As mentioned earlier, even though ES6 has introduced the class keyword, under the
hood we’re still dealing with good old prototypes; classes are syntactic sugar designed
to make our lives a bit easier when mimicking classes in JavaScript. 

 Our class code from listing 7.13 can be translated to functionally identical ES5
code:

function Ninja(name) {
  this.name = name;
}
Ninja.prototype.swingSword = function() {
  return true;
};

As you can see, there’s nothing especially new with ES6 classes. The code is more ele-
gant, but the same concepts are applied.



192 CHAPTER 7 Object orientation with prototypes

STATIC METHODS

In the previous examples, you saw how to define object methods (prototype meth-
ods), accessible to all object instances. In addition to such methods, classical object-
oriented languages such as Java use static methods, methods defined on a class level.
Check out the following example.

class Ninja{
  constructor(name, level){
    this.name = name;
    this.level = level;
  }

  swingSword() {
    return true;
  }

  static compare(ninja1, ninja2){       
    return ninja1.level - ninja2.level; 
  }                                     
}

var ninja1 = new Ninja("Yoshi", 4);
var ninja2 = new Ninja("Hattori", 3);

assert(!("compare" in ninja1) && !("compare" in ninja2),
       "A ninja instance doesn't know how to compare"); 

assert(Ninja.compare(ninja1, ninja2) > 0,         
      "The Ninja class can do the comparison!");  

assert(!("swingSword" in Ninja), 
      "The Ninja class cannot swing a sword");

We again create a Ninja class that has a swingSword method accessible from all ninja
instances. We also define a static method, compare, by prefixing the method name
with the keyword static.

static compare(ninja1, ninja2){
    return ninja1.level - ninja2.level;
}

The compare method, which compares the skill levels of two ninjas, is defined on the class
level, and not the instance level! Later we test that this effectively means that the compare
method isn’t accessible from ninja instances but is accessible from the Ninja class: 

assert(!("compare" in ninja1) && !("compare" in ninja2), 
       "The ninja instance doesn’t know how to compare");
assert(Ninja.compare(ninja1, ninja2) > 0,
      "The Ninja class can do the comparison!");

Listing 7.14 Static methods in ES6

Uses the static 
keyword to make 
a static method

ninja instances 
don’t have access 
to compare.

The class Ninja 
has access to the 
compare method.



193Using JavaScript “classes” in ES6 

We can also look at how “static” methods can be implemented in pre-ES6 code. For
this, we have to remember only that classes are implemented through functions.
Because static methods are class-level methods, we can implement them by taking
advantage of functions as first-class objects, and adding a method property to our con-
structor function, as in the following example:

function Ninja(){}
Ninja.compare = function(ninja1, ninja2){...} 

Now let’s move on to inheritance.

7.4.2 Implementing inheritance

To be honest, performing inheritance in pre-ES6 code can be a pain. Let’s go back to
our trusted Ninjas, Persons example:

function Person(){}
Person.prototype.dance = function(){};

function Ninja(){}
Ninja.prototype = new Person();

Object.defineProperty(Ninja.prototype, "constructor", {
  enumerable: false,
  value: Ninja,
  writable: true
});

There’s a lot to keep in mind here: Methods accessible to all instances should be
added directly to the prototype of the constructor function, as we did with the dance
method and the Person constructor. If we want to implement inheritance, we have to
set the prototype of the derived “class” to the instance of the base “class.” In this case,
we assigned a new instance of Person to Ninja.prototype. Unfortunately, this messes
up the constructor property, so we have to manually restore it with the
Object.defineProperty method. This is a lot to keep in mind when trying to achieve
a relatively simple and commonly used feature (inheritance). Luckily, with ES6, all of
this is significantly simplified.

 Let’s see how it’s done in the following listing.

class Person {
  constructor(name){
    this.name = name;
  }
  
  dance(){
    return true;
  }

Listing 7.15 Inheritance in ES6

Extends the constructor function 
with a method to mimic static 
methods in pre-ES6 code



194 CHAPTER 7 Object orientation with prototypes

}

class Ninja extends Person {  
  constructor(name, weapon){
    super(name);            
    this.weapon = weapon;
  }

  wieldWeapon(){
    return true;
  }  
}

var person = new Person("Bob");

assert(person instanceof Person, "A person's a person");
assert(person.dance(), "A person can dance.");
assert(person.name === "Bob", "We can call it by name.");
assert(!(person instanceof Ninja), "But it's not a Ninja");
assert(!("wieldWeapon" in person), "And it cannot wield a weapon");

var ninja = new Ninja("Yoshi", "Wakizashi");
assert(ninja instanceof Ninja, "A ninja's a ninja");
assert(ninja.wieldWeapon(), "That can wield a weapon");
assert(ninja instanceof Person, "But it's also a person");
assert(ninja.name === "Yoshi" , "That has a name");
assert(ninja.dance(), "And enjoys dancing");

Listing 7.15 shows how to achieve inheritance in ES6; we use the extends keyword to
inherit from another class:

class Ninja extends Person

In this example, we create a Person class with a constructor that assigns a name to each
Person instance. We also define a dance method that will be accessible to all Person
instances:

class Person {
  constructor(name){
    this.name = name;
  }
  dance(){
    return true;
  }  
}

Next we define a Ninja class that extends the Person class. It has an additional weapon
property, and a wieldWeapon method:

class Ninja extends Person {
  constructor(name, weapon){
    super(name);

Uses the extends keyword to 
inherit from another class

Uses the super keyword to call 
the base class constructor



195Summary

    this.weapon = weapon;
  }

  wieldWeapon(){
    return true;
  }
}

In the constructor of the derived, Ninja class, there’s a call to the constructor of the
base, Person class, through the keyword super. This should be familiar, if you’ve
worked with any class-based language. 

 We continue by creating a person instance and checking that it’s an instance of the
Person class that has a name and can dance. Just to be sure, we also check that a person
who isn’t a Ninja can’t wield a weapon:

var person = new Person("Bob");

assert(person instanceof Person, "A person's a person");
assert(person.dance(), "A person can dance.");
assert(person.name === "Bob", "We can call it by name.");
assert(!(person instanceof Ninja), "But it's not a Ninja");
assert(!("wieldWeapon" in person), "And it cannot wield a weapon");

We also create a ninja instance and check that it’s an instance of Ninja and can wield
a weapon. Because every ninja is also a Person, we check that a ninja is an instance of
Person, that it has a name, and that it also, in the interim of fighting, enjoys dancing:

var ninja = new Ninja("Yoshi", "Wakizashi");
assert(ninja instanceof Ninja, "A ninja's a ninja");
assert(ninja.wieldWeapon(), "That can wield a weapon");
assert(ninja instanceof Person, "But it's also a person");
assert(ninja.name === "Yoshi" , "That has a name");
assert(ninja.dance(), "And enjoys dancing");

See how easy this is? There’s no need to think about prototypes or the side effects of
certain overridden properties. We define classes and specify their relationship by
using the extends keyword. Finally, with ES6, hordes of developers coming from lan-
guages such as Java or C# can be at peace.

 And that’s it. With ES6, we build class hierarchies almost as easily as in any other,
more conventional object-oriented language.

7.5 Summary
■ JavaScript objects are simple collections of named properties with values.
■ JavaScript uses prototypes.
■ Every object can have a reference to a prototype, an object to which we delegate

the search for a particular property, if the object itself doesn’t have the
searched-for property. An object’s prototype can have its own prototype, and so
on, forming a prototype chain.



196 CHAPTER 7 Object orientation with prototypes

■ We can define the prototype of an object by using the Object.setPrototypeOf
method.

■ Prototypes are closely linked to constructor functions. Every function has a
prototype property that’s set as the prototype of objects that it instantiates.

■ A function’s prototype object has a constructor property pointing back to the
function itself. This property is accessible to all objects instantiated with that
function and, with certain limitations, can be used to find out whether an
object was created by a particular function.

■ In JavaScript, almost everything can be changed at runtime, including an
object’s prototypes and a function’s prototypes!

■ If we want the instances created by a Ninja constructor function to “inherit”
(more accurately, have access to) properties accessible to instances created by
the Person constructor function, set the prototype of the Ninja constructor to a
new instance of the Person class. 

■ In JavaScript, properties have attributes (configurable, enumerable, writable). These
properties can be defined by using the built-in Object.defineProperty method. 

■ JavaScript ES6 adds support for a class keyword that enables us to more easily
mimic classes. Behind the scenes, prototypes are still in play!

■ The extends keyword enables elegant inheritance. 

7.6 Exercises
1 Which of the following properties points to an object that will be searched if the

target object doesn’t have the searched-for property?

a class

b instance

c prototype

d pointTo

2 What’s the value of variable a1 after the following code is executed?

function Ninja(){}
Ninja.prototype.talk = function (){
  return "Hello";
};

const ninja = new Ninja();
const a1 = ninja.talk();

3 What’s the value of a1 after running the following code?

function Ninja(){}
Ninja.message = "Hello";

const ninja = new Ninja();

const a1 = ninja.message;



197Exercises

4 Explain the difference between the getFullName method in these two code
fragments:

//First fragment
function Person(firstName, lastName){
  this.firstName = firstName;
  this.lastName = lastName;

  this.getFullName = function () {
    return this.firstName + " " + this.lastName;
  }
}

//Second fragment
function Person(firstName, lastName) {
  this.firstName = firstName;
  this.lastName = lastName;
}

Person.prototype.getFullName = function () {
  return this.firstName + " " + this.lastName;
}

5 After running the following code, what will ninja.constructor point to?

function Person() { }
function Ninja() { }

const ninja = new Ninja();

6 After running the following code, what will ninja.constructor point to?

function Person() { }
function Ninja() { }
Ninja.prototype = new Person();
const ninja = new Ninja();

7 Explain how the instanceof operator works in the following example.

function Warrior() { }

function Samurai() { }
Samurai.prototype = new Warrior();

var samurai = new Samurai();

samurai instanceof Warrior; //Explain

8 Translate the following ES6 code into ES5 code.

class Warrior {
  constructor(weapon){



198 CHAPTER 7 Object orientation with prototypes

    this.weapon = weapon;
  }

  wield() {
    return "Wielding " + this.weapon;
  }

  static duel(warrior1, warrior2){
    return warrior1.wield() + " " + warrior2.wield();
  } 
}



199

Controlling access to objects

In the previous chapter, you saw that JavaScript objects are dynamic collections of prop-
erties. We can easily add new properties, change the values of properties, and even com-
pletely remove existing properties. In many situations (for example, when validating
property values, logging, or displaying data in the UI), we need to be able to monitor
exactly what’s going on with our objects. So in this chapter, you’ll learn techniques for
controlling access to and monitoring all of the changes that occur in your objects.

 We’ll start with getters and setters, methods that control access to specific object
properties. You first saw these methods in action in chapters 5 and 7. In this chap-
ter, you’ll see some of their built-in language support and how to use them for log-
ging, performing data validation, and defining computed properties.

 We’ll continue with proxies, a completely new type of object introduced in ES6.
These objects control access to other objects. You’ll learn how they work and how
to use them to great effect to easily expand your code with cross-cutting concerns

This chapter covers
■ Using getters and setters to control access to 

object properties
■ Controlling access to objects through proxies
■ Using proxies for cross-cutting concerns



200 CHAPTER 8 Controlling access to objects

such as performance measurement or logging, and how to avoid null exceptions by
autopopulating object properties. Let’s start the journey with something we already
know to a certain degree: getters and setters.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What are some of the benefits of accessing a property’s
value through getters and setters?

Do you know? What is the main difference between proxies and getters
and setters? 

What are proxy traps? Name three types of trap.
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.1 Controlling access to properties with getters and setters
In JavaScript, objects are relatively simple collections of properties. The primary way
to keep track of our program state is by modifying those properties. For example, con-
sider the following code:

function Ninja (level) {
  this.skillLevel = level;
}
const ninja = new Ninja(100);

Here we define a Ninja constructor that creates ninja objects with a property skill-
Level. Later, if we want to change the value of that property, we can write the follow-
ing code: ninja.skillLevel = 20. 

 That’s all nice and convenient, but what happens in the following cases?

■ We want to safeguard against accidental mistakes, such as assigning unantici-
pated data. For example, we want to stop ourselves from doing something like
assigning a value of a wrong type: ninja.skillLevel = "high".

■ We want to log all changes to the skillLevel property.
■ We need to show the value of our skillLevel property somewhere in the UI of

our web page. Naturally, we want to present the last, up-to-date value of the
property, but how can we easily do this?

We can handle all of these cases elegantly with getter and setter methods.
 In chapter 5, you saw a glimpse of getters and setters as a means of mimicking pri-

vate object properties in JavaScript through closures. Let’s revisit the material you’ve
learned so far, by working with ninjas that have a private skillLevel property accessi-
ble only through getters and setters, as shown in the following listing.

function Ninja () {
  let skillLevel;              

Listing 8.1 Using getters and setters to guard private properties

Defines a private skillLevel variable



201Controlling access to properties with getters and setters

  
  this.getSkillLevel = () => skillLevel;

  this.setSkillLevel = value => {   
    skillLevel = value;             
  };                                
}

const ninja = new Ninja();
ninja.setSkillLevel(100);          
assert(ninja.getSkillLevel() === 100,      
      "Our ninja is at level 100!");       

We define a Ninja constructor that creates ninjas with a “private” skillLevel variable
accessible only through our getSkillLevel and setSkillLevel methods: The prop-
erty value can be obtained only through the getSkillLevel method, whereas a new
property value can be set only through the setSkillLevel method (remember chap-
ter 5 on closures?).

 Now, if we want to log all read attempts of the skillLevel property, we expand the
getSkillLevel method; and if we want to react to all write attempts, we expand the
setSkillLevel method, as in the following snippet:

function Ninja () {
  let skillLevel;
  
  this.getSkillLevel = () => {
    report("Getting skill level value");  
    return skillLevel;
  };

  this.setSkillLevel = value => {
    report("Modifying skillLevel property from:", 
           skillLevel, "to: ", value);     
    skillLevel = value;
  }
}

This is great. We can easily react to all interactions with our properties by plugging in,
for example, logging, data validation, or other side effects such as UI modifications.

 But one nagging concern might be popping into your mind. The skillLevel
property is a value property; it references data (the number 100), and not a function.
Unfortunately, in order to take advantage of all the benefits of controlled access, all
our interactions with the property have to be made by explicitly calling the associated
methods, which is, to be honest, slightly awkward.

 Luckily, JavaScript has built-in support for true getters and setters: properties that
are accessed as normal data properties (for example, ninja.skillLevel), but that are
methods that can compute the value of a requested property, validate the passed-in
value, or whatever else we need them to do. Let’s take a look at this built-in support.

The getter method controls access 
to our private skillLevel variable.

The setter method 
controls the values we 
can assign to skillLevel.

Sets a new value of skillLevel 
through the setter method

Retrieves the value of skillLevel 
with the getter method

Using getters, we can 
know whenever code 
accesses a property.

Using setters, we can know whenever code
wants to set a new value to a property.



202 CHAPTER 8 Controlling access to objects

8.1.1 Defining getters and setters

In JavaScript, getter and setter methods can be defined in two ways: 

■ By specifying them within object literals or within ES6 class definitions
■ By using the built-in Object.defineProperty method

Explicit support for getters and setters has existed for quite some time now, since the days
of ES5. As always, let’s explore the syntax through an example. In this case, we have an
object storing a list of ninjas, and we want to be able to get and set the first ninja in the list.

const ninjaCollection = {
  ninjas: ["Yoshi", "Kuma", "Hattori"],
  get firstNinja(){                      
    report("Getting firstNinja");       
    return this.ninjas[0];               
  },                                     
  set firstNinja(value){         
    report("Setting firstNinja");
    this.ninjas[0] = value;      
  }                              
};

assert(ninjaCollection.firstNinja === "Yoshi",
       "Yoshi is the first ninja");           

ninjaCollection.firstNinja = "Hachi";          

assert(ninjaCollection.firstNinja === "Hachi"  
    && ninjaCollection.ninjas[0] ===  "Hachi", 
       "Now Hachi is the first ninja");        

This example defines a ninjaCollection object that has a standard property, ninjas,
which references an array of ninjas, and a getter and a setter for the property first-
Ninja. The general syntax for getters and setters is shown in figure 8.1.

Listing 8.2 Defining getters and setters in object literals

Defines a getter method for the firstNinja 
property that returns the first ninja in 
our collection and logs a message

Defines a setter method for the firstNinja 
property that modifies the first ninja in 
our collection and logs a message

Accesses the firstNinja property as if 
it were a standard object property

Modifies the firstNinja property as if 
it were a standard object property

Tests that the property 
modification is stored

obj = {    
  get name() {
    ...
  },
  set name(value) {   
    ...
  }
};

obj.name

obj.name = "Yoshi" 

Define a getter method by
prefixing the property name
with the get keyword.

Define a setter method by
prefixing the property name
with the set keyword.

Implicitly call the getter by
reading the property value.

A getter doesn’t
receive any arguments.

A setter receives one
argument (the right side of
an assignment expression).

Implicitly call the setter by
assigning a value to a property.

Figure 8.1 The syntax for defining getters and setters. Prefix the property name with either the get
or the set keyword.



203Controlling access to properties with getters and setters

As you can see, we define a getter property by prefixing the name with a get keyword,
and a setter property with a set keyword. 

 In listing 8.2, both the getter and the setter log a message. In addition, the getter
returns the value of the ninja at index 0, and the setter assigns a new value to the ninja
at the same index:

get firstNinja(){
  report("Getting firstNinja");
  return this.ninjas[0];
},
set firstNinja(value){
  report("Setting firstNinja");
  this.ninjas[0] = value;
}

Next, we test that accessing the getter property returns the first ninja, Yoshi:

assert(ninjaCollection.firstNinja === "Yoshi", 
       "Yoshi is the first ninja");

Notice that the getter property is accessed as if it were a standard object property (and
not as the method that it is). 

 After we access a getter property, the associated getter method is implicitly called,
the message Getting firstNinja is logged, and the value of the ninja at index 0 is
returned.

 We continue by taking advantage of our setter method, and writing to the first-
Ninja property, again, just as we would assign a new value to a normal object property:

ninjaCollection.firstNinja = "Hachi";

Similar to the previous case, because the firstNinja property has a setter method,
whenever we assign a value to that property, the setter method is implicitly called. This
logs the message Setting firstNinja and modifies the value of the ninja at index 0.

 Finally, we can test that our modification has done the work and that the new value
of the ninja at index 0 can be accessed both through the ninjas collection and
through our getter method:

assert(ninjaCollection.firstNinja === "Hachi"
    && ninjaCollection.ninjas[0] ===  "Hachi",
       "Now Hachi is the first ninja");

Figure 8.2 shows the output generated by listing 8.2. When we access a property with a
getter (for example, through ninjaCollection.firstNinja), the getter method is
immediately called, and in this case, the message Getting firstNinja is logged.
Later, we test that the output is Yoshi and that the message Yoshi is the first ninja
is logged. We proceed similarly by assigning a new value to the firstNinja property,



204 CHAPTER 8 Controlling access to objects

and as we can see in the output, this implicitly triggers the execution of the setter
method, which outputs the message Setting firstNinja.

 An important point to take from all this is that native getters and setters allow us to
specify properties that are accessed as standard properties, but that are methods
whose execution is triggered immediately when the property is accessed. This is fur-
ther emphasized in figure 8.3.

This syntax for defining a getter and a setter is straightforward, so it’s no wonder that
we can use the exact same syntax to define getters and setters in other situations. The
following example uses ES6 classes.

class NinjaCollection {
  constructor(){
    this.ninjas = ["Yoshi", "Kuma", "Hattori"];
  }

Listing 8.3 Using getters and setters with ES6 classes

Figure 8.2 The output from listing 8.2: if a 
property has a getter and a setter method, the 
getter method is implicitly called whenever we 
read the property value, and the setter method 
is called whenever we assign a new value to 
the property.

const ninjaCollection = {
    ninjas: ["Yoshi", "Kuma", "Hattori"],
    get firstNinja() {
        report("Getting firstNinja");
        return this.ninjas[0];
    },
    ...
};

assert(ninjaCollection.firstNinja === "Yoshi",
       "Yoshi is the first ninja");

The getter method is called, and a matching
execution context is created and pushed on
the stack. The process is the same as when
a standard function is called.

Accessing a getter property
immediately triggers the execution
of the matching getter method!

Execution context 
stack

Global
execution context

get firstNinja
execution context

Figure 8.3 Accessing a property with a getter method implicitly calls the matching getter. The pro-
cess is the same as if this were a standard method call, and the getter method gets executed. A 
similar thing happens when we assign a value to a property through a setter method.



205Controlling access to properties with getters and setters

  get firstNinja(){                        
    report("Getting firstNinja");          
    return this.ninjas[0];                 
  }                                        
  set firstNinja(value){                   
    report("Setting firstNinja");          
    this.ninjas[0] = value;                
  }
}
const ninjaCollection = new NinjaCollection();

assert(ninjaCollection.firstNinja === "Yoshi", 
       "Yoshi is the first ninja");

ninjaCollection.firstNinja = "Hachi";

assert(ninjaCollection.firstNinja === "Hachi"
    && ninjaCollection.ninjas[0] ===  "Hachi",
       "Now Hachi is the first ninja");

This modifies the code from listing 8.2 to include ES6 classes. We keep all the tests to
verify that the example still works as expected.

NOTE We don’t always have to define both a getter and a setter for a given
property. For example, often we’ll want to provide only a getter. If in that case
we still attempt to write a value to that property, the exact behavior depends
on whether the code is in strict or nonstrict mode. If the code is in nonstrict
mode, assigning a value to a property with only a getter achieves nothing; the
JavaScript engine will silently ignore our request. If, on the other hand, the
code is in strict mode, the JavaScript engine will throw a type error, indicating
that we’re trying to assign a value to a property that has a getter but no setter.

Although specifying getters and setters through ES6 classes and object literals is easy,
you’ve probably noticed something missing. Traditionally, getters and setters are used
to control access to private object properties, as in listing 8.1. Unfortunately, as we
already know from chapter 5, JavaScript doesn’t have private object properties.
Instead, we can mimic them through closures, by defining variables and specifying
object methods that will close over those variables. Because with object literals and
classes our getter and setter methods aren’t created within the same function scope as
variables that we could use for private object properties, we can’t do this. Luckily,
there’s an alternative way, through the Object.defineProperty method.

 In chapter 7, you saw that the Object.defineProperty method can be used to
define new properties by passing in a property descriptor object. Among other things,
the property descriptor can include a get and a set property that define the prop-
erty’s getter and setter methods. 

 We’ll use this feature to modify listing 8.1 to implement built-in getters and setters
that control access to a “private” object property, as shown in the following listing.

Defines a getter and a 
setter within an ES6 class



206 CHAPTER 8 Controlling access to objects

  function Ninja() {
    let _skillLevel = 0;     

    Object.defineProperty(this, 'skillLevel', {
      get: () => {                            
        report("The get method is called");   
        return _skillLevel;                   
      },                                      
      set: value => {                      
        report("The set method is called");
        _skillLevel = value;               
      }                                    
    });
  }

  const ninja = new Ninja();

  assert(typeof ninja._skillLevel === "undefined",         
         "We cannot access a 'private' property");         
  assert(ninja.skillLevel === 0, "The getter works fine!");

  ninja.skillLevel = 10;                                   
  assert(ninja.skillLevel === 10, "The value was updated");

In this example, we first define a Ninja constructor function with a _skillLevel vari-
able that we’ll use as a private variable, just as in listing 8.1.

 Next, on the newly created object, referenced by the this keyword, we define a
skillLevel property by using the built-in Object.defineProperty method: 

Object.defineProperty(this, 'skillLevel', {
  get: () => {
    report("The get method is called");
    return _skillLevel;
  },
  set: value => { 
    report("The set method is called");
    _skillLevel = value;
  }
});

Because we want the skillLevel property to control access to a private variable, we
specify a get and a set method that will be called whenever the property is accessed.

 Notice that, unlike getters and setters specified on object literals and classes, the
get and set methods defined through Object.defineProperty are created in the
same scope as the “private” skillLevel variable. Both methods create a closure

Listing 8.4 Defining getters and setters with Object.defineProperty

Defines a constructor function Defines a “private” 
variable that will be 
accessible through 
function closures

Uses the built-in
Object.defineProperty

to define a skillLevel
property

A get method that will be 
called whenever we read 
the skillLevel property.

A set method that will be called 
whenever we assign a value to 
the skillLevel property.

Creates a new Ninja instance The private variable isn’t
accessible directly, but

through the skillLevel getter.

The set method is implicitly called when
assigning to the skillLevel property.



207Controlling access to properties with getters and setters

around the private variable, and we can access that private variable only through these
two methods.

 The rest of the code works exactly as in the previous examples. We create a new
Ninja instance and check that we can’t access the private variable directly. Instead, all
interactions have to go through the getter and setter, which we now use just as if they
were standard object properties:

ninja.skillLevel === 0         
ninja.skillLevel = 10    

As you can see, the approach with Object.defineProperty is more verbose and com-
plicated than getters and setters in object literals and classes. But in certain cases,
when we need private object properties, it’s well worth it.

 Regardless of the way we define them, getters and setters allow us to define object
properties that are used like standard object properties, but are methods that can exe-
cute additional code whenever we read or write to a particular property. This is an
incredibly useful feature that enables us to perform logging, validate assignment val-
ues, and even notify other parts of the code when certain changes occur. Let’s explore
some of these applications.

8.1.2 Using getters and setters to validate property values

As we’ve established so far, a setter is a method that’s executed whenever we write a
value to the matching property. We can take advantage of setters to perform an action
whenever code attempts to update the value of a property. For example, one of the
things we can do is validate the passed-in value. Take a look at the following code,
which ensures that our skillLevel property can be assigned only integer values.

  function Ninja() {
    let _skillLevel = 0;

    Object.defineProperty(this, 'skillLevel', {
      get: () => _skillLevel,
      set: value => {
        if(!Number.isInteger(value)){                           
          throw new TypeError("Skill level should be a number");
        }                                                       
        _skillLevel = value;
      }
    });
  }

  const ninja = new Ninja();

  ninja.skillLevel = 10;                                   
  assert(ninja.skillLevel === 10, "The value was updated");

Listing 8.5 Validating property value assignments with setters

Activates the getter method

Activates the setter method

Checks whether the passed-in
value is an integer. If it isn’t,

an exception is thrown.

We can assign an 
integer value to 
the property.



208 CHAPTER 8 Controlling access to objects

  try {                                                     
    ninja.skillLevel = "Great";                             
    fail("Should not be here");                             
  } catch(e){                                               
    pass("Setting a non-integer value throws an exception");
  }                                                         

This example is a straightforward extension to listing 8.4. The only major difference is
that now, whenever a new value is assigned to the skillLevel property, we check
whether the passed-in value is an integer. If it isn’t, an exception is thrown, and the
private _skillLevel variable won’t be modified. If everything went okay and an inte-
ger value is received, we end up with a new value of the private _skillLevel variable:

set: value => {
  if(!Number.isInteger(value)){
    throw new TypeError("Skill level should be a number");
  }
  _skillLevel = value;
}

When testing this code, we first check that all goes okay if we assign an integer:

ninja.skillLevel = 10;
assert(ninja.skillLevel === 10, "The value was updated");

And then we test the situation in which we mistakenly assign a value of another type,
such as a string. In that case, we should end up with an exception. 

  try {
    ninja.skillLevel = "Great";
    fail("Should not be here");
  } catch(e){ 
    pass("Setting a non-integer value throws an exception");
  }

This is how you avoid all those silly little bugs that happen when a value of the wrong
type ends up in a certain property. Sure, it adds overhead, but that’s a price that we
sometimes have to pay to safely use a highly dynamic language such as JavaScript. 

 This is just one example of the usefulness of setter methods; there are many more
that we won’t explicitly explore. For example, you can use the same principle to track
value history, perform logging, provide change notification, and more.

8.1.3 Using getters and setters to define computed properties

In addition to being able to control access to certain object properties, getters and setters
can be used to define computed properties, properties whose value is calculated per request.
Computed properties don’t store a value; they provide a get and/or a set method to
retrieve and set other properties indirectly. In the following example, the object has two
properties, name and clan, which we’ll use to compute the property fullTitle.

Trying to assign a 
noninteger value (in 
this case, a string) 
results in an exception 
thrown from the 
setter method.



209Controlling access to properties with getters and setters

const shogun = {
  name: "Yoshiaki",
  clan: "Ashikaga",
  get fullTitle(){                     
    return this.name + " " + this.clan;
  },                                   
  set fullTitle(value) {              
    const segments = value.split(" ");
    this.name = segments[0];          
    this.clan = segments[1];          
  }                                   
};

assert(shogun.name === "Yoshiaki", "Our shogun Yoshiaki");
assert(shogun.clan === "Ashikaga", "Of clan Ashikaga");   
assert(shogun.fullTitle === "Yoshiaki Ashikaga",          
       "The full name is now Yoshiaki Ashikaga");         

shogun.fullTitle = "Ieyasu Tokugawa";                  
assert(shogun.name === "Ieyasu", "Our shogun Ieyasu"); 
assert(shogun.clan === "Tokugawa", "Of clan Tokugawa");
assert(shogun.fullTitle === "Ieyasu Tokugawa",         
       "The full name is now Ieyasu Tokugawa");        

Here we define a shogun object, with two standard properties, name and clan. In addi-
tion, we specify a getter and a setter method for a computed property, fullTitle: 

const shogun = {
  name: "Yoshiaki",
  clan: "Ashikaga",
  get fullTitle(){
    return this.name + " " + this.clan;
  },
  set fullTitle(value) {
    const segments = value.split(" ");
    this.name = segments[0];
    this.clan = segments[1];
  }
};

The get method computes the value of the fullTitle property, on request, by con-
catenating the name and clan properties. The set method, on the other hand, uses
the built-in split method, available to all strings, to split the assigned string into seg-
ments by the space character. The first segment represents the name and is assigned
to the name property, whereas the second segment represents the clan and is assigned
to the clan property.

Listing 8.6 Defining computed properties

Defines a getter method on a 
fullTitle property of an object 
literal that calculates the 
value by concatenating two 
object properties

Defines a setter method on a fullTitle 
property of an object literal that splits 
the passed-in value and updates two 
standard properties

The name and clan 
properties are normal 
properties whose 
values are directly 
obtained. Accessing 
the fullTitle property 
calls the get method, 
which computes the 
value.

Assigning a value to the fullTitle property calls the set method, which
computes and assigns new values to the name and clan properties.



210 CHAPTER 8 Controlling access to objects

 This takes care of both routes: Reading the fullTitle property computes its value,
and writing to the fullTitle property modifies the properties that constitute the
property value.

 To be honest, we don’t have to use computed properties. A method called get-
FullTitle could be equally useful, but computed properties can improve the concep-
tual clarity of our code. If a certain value (in this case, the fullTitle value) depends
only on the internal state of the object (in this case, on the name and clan properties),
it makes perfect sense to represent it as a data field, a property, instead of a function.

 This concludes our exploration of getters and setters. You’ve seen that they’re a
useful addition to the language that can help us deal with logging, data validation,
and detecting changes in property values. Unfortunately, sometimes this isn’t enough.
In certain cases, we need to control all types of interactions with our objects, and for
this, we can use a completely new type of object: a proxy.

8.2 Using proxies to control access
A proxy is a surrogate through which we control access to another object. It enables us
to define custom actions that will be executed when an object is being interacted
with—for example, when a property value is read or set, or when a method is called.
You can think of proxies as almost a generalization of getters and setters; but with
each getter and setter, you control access to only a single object property, whereas
proxies enable you to generically handle all interactions with an object, including
even method calls. 

 We can use proxies when we’d traditionally use getters and setters, such as for log-
ging, data validation, and computed properties. But proxies are even more powerful.
They allow us to easily add profiling and performance measurements to our code,
autopopulate object properties in order to avoid pesky null exceptions, and to wrap
host objects such as the DOM in order to reduce cross-browser incompatibilities.

In JavaScript, we can create proxies by using the built-in Proxy constructor. Let’s start
simple, with a proxy that intercepts all attempts to read and write to properties of an
object.

const emperor = { name: "Komei" };
const representative = new Proxy(emperor, {

NOTE Proxies are introduced by ES6. For current browser
support, see http://mng.bz/9uEM.

Listing 8.7 Creating proxies with the Proxy constructor

The emperor is our target object.
Creates a proxy with 
the Proxy constructor 
that takes in the object 
the proxy wraps...

http://mng.bz/9uEM


211Using proxies to control access

  get: (target, key) => {                              
    report("Reading " + key + " through a proxy");     
    return key in target ? target[key]                 
                         : "Don't bother the emperor!" 
  },                                                
  set: (target, key, value) => {                       
    report("Writing " + key + " through a proxy");     
    target[key] = value;                               
  }                                                    
});

assert(emperor.name === "Komei", "The emperor's name is Komei");
assert(representative.name === "Komei",                         
      "We can get the name property through a proxy");          

assert(emperor.nickname === undefined,              
      "The emperor doesn’t have a nickname ");      
assert(representative.nickname === "Don't bother the emperor!",
      "The proxy jumps in when we make inproper requests");    

representative.nickname = "Tenno";                            
assert(emperor.nickname === "Tenno",                          
      "The emperor now has a nickname");                      
assert(representative.nickname === "Tenno",                   
      "The nickname is also accessible through the proxy");   

We first create our base emperor object that has only a name property. Next, by using
the built-in Proxy constructor, we wrap our emperor object (or target object, as it’s
commonly called) into a proxy object named representative. During proxy con-
struction, as a second argument, we also send an object that specifies traps, functions
that will be called when certain actions are performed on an object: 

const representative = new Proxy(emperor, {
  get: (target, key) => {
    report("Reading " + key + " through a proxy"); 
    return key in target ? target[key]
                             : "Don't bother the emperor!"
  },
  set: (target, key, value) => {
    report("Writing " + key + " through a proxy");
    target[key] = value;
  }
});

In this case, we’ve specified two traps: a get trap that will be called whenever we try to
read a value of a property through the proxy, and a set trap that will be called when-
ever we set a property value through the proxy. The get trap performs the following
functionality: If the target object has a property, that property is returned; and if the

...and an object 
with traps that 
will be called 
when reading 
(get) and 
writing (set) to 
properties.

Accesses the
name property

both through
the emperor

object and
through the
proxy object

Accessing a non-
existing property 
directly on the object 
returns undefined.

Accessing a
property

through a proxy
detects that the

object doesn’t
exist in our

target object, so
a warning

message is
returned.

Adds a property through the proxy. The property is accessible
both through the target object and through the proxy.



212 CHAPTER 8 Controlling access to objects

object doesn’t have a property, we return a message warning our user not to bother
the emperor with frivolous details.

get: (target, key) => {
  report("Reading " + key + " through a proxy");
  return key in target ? target[key]
                       : "Don't bother the emperor!"
}

Next, we test that we can access the name property both directly through the target
emperor object as well as through our proxy object: 

assert(emperor.name === "Komei", "The emperor's name is Komei");
assert(representative.name === "Komei",
      "We can get the name property through a proxy");

If we access the name property directly through the emperor object, the value Komei is
returned. But if we access the name property through the proxy object, the get trap is
implicitly called. Because the name property is found in the target emperor object, the
value Komei is also returned. See figure 8.4.

NOTE It’s important to emphasize that proxy traps are activated in the same
way as getters and setters. As soon as we perform an action (for example,
accessing a property value on a proxy), the matching trap gets implicitly
called, and the JavaScript engine goes through a similar process as if we’ve
explicitly invoked a function.

On the other hand, if we access a nonexisting nickname property directly on the target
emperor object, we’ll get, unsurprisingly, an undefined value. But if we try to access it
through our proxy object, the get handler will be activated. Because the target

representative

get

Calling emperor.name directly
accesses the name property
of the emperor object.

Calling proxy.name calls the proxy’s get
trap, which in this case simply returns
the value of the name property of the
emperor object.

emperor.name //"Komei" representative.name //"Komei"

emperor

name: "Komei"

emperor

name: "Komei"

Figure 8.4 Accessing the name property directly (on the left) and indirectly, through a 
proxy (on the right) 



213Using proxies to control access

emperor object doesn’t have a nickname property, the proxy’s get trap will return the
Don't bother the emperor! message.

 We’ll continue the example by assigning a new property through our proxy object:
representative.nickname = "Tenno". Because the assignment is done through a
proxy, and not directly, the set trap, which logs a message and assigns a property to
our target emperor object, is activated:

set: (target, key, value) => {
    report("Writing " + key + " through a proxy");
    target[key] = value;
}

Naturally, the newly created property can be accessed both through the proxy object
and the target object:

assert(emperor.nickname === "Tenno",
      "The emperor now has a nickname");
assert(representative.nickname === "Tenno",
      "The nickname is also accessible through the proxy");

This is the gist of how to use proxies: Through the Proxy constructor, we create a
proxy object that controls access to the target object by activating certain traps, when-
ever an operation is performed directly on a proxy.

 In this example, we’ve used the get and set traps, but many other built-in traps allow
us to define handlers for various object actions (see http://mng.bz/ba55). For
example:

■ The apply trap will be activated when calling a function, and the construct trap
when using the new operator.

■ The get and set traps will be activated when reading/writing to a property. 
■ The enumerate trap will be activated for for-in statements.
■ getPrototypeOf and setPrototypeOf will be activated for getting and setting

the prototype value.

We can intercept many operations, but going through all of them is outside the scope
of this book. For now, we turn our attention to a few operations that we can’t override:
equality (== or ===), instanceof, and the typeof operator.

 For example, the expression x == y (or a stricter x === y) is used to check whether
x and y refer to identical objects (or are of the same value). This equality operator has
some assumptions. For example, comparing two objects should always return the
same value for the same two objects, which isn’t something that we can guarantee if
that value is determined by a user-specified function. In addition, the act of compar-
ing two objects shouldn’t give access to one of those objects, which would be the case
if equality could be trapped. For similar reasons, the instanceof and the typeof oper-
ators can’t be trapped.

http://mng.bz/ba55


214 CHAPTER 8 Controlling access to objects

 Now that we know how proxies work and how to create them, let’s explore some of
their practical aspects, such as how to use proxies for logging, performance measure-
ment, autopopulating properties, and implementing arrays that can be accessed with
negative indexes. We’ll start with logging.

8.2.1 Using proxies for logging

One of the most powerful tools when trying to figure out how code works or when try-
ing to get to the root of a nasty bug is logging, the act of outputting information that
we find useful at a particular moment. We might, for example, want to know which
functions are called, how long they’ve been executing, what properties are read or
written to, and so on.

 Unfortunately, when implementing logging, we usually scatter logging statements
throughout the code. Take a look at the Ninja example used earlier in the chapter.

function Ninja() {
    let _skillLevel = 0;

    Object.defineProperty(this, 'skillLevel', {
      get: () => {
        report("skillLevel get method is called"); 
        return _skillLevel;
      },
      set: value => { 
        report("skillLevel set method is called");
        _skillLevel = value;
      }
    });
  }
  
  const ninja = new Ninja();
  ninja.skillLevel;             
  ninja.skillLevel = 4;   

We define a Ninja constructor function that adds a getter and a setter to the skill-
Level property, which log all attempts of reading and writing to that property. 

 Notice that this isn’t an ideal solution. We’ve cluttered our domain code that deals
with reading and writing to an object property with logging code. In addition, if in the
future we need more properties on the ninja object, we have to be careful not to for-
get to add additional logging statements to each new property.

 Luckily, one of the straightforward uses of proxies is to enable logging whenever
we read or write to a property, but in a much nicer and cleaner way. Consider the fol-
lowing example.

Listing 8.8 Logging without proxies

We log whenever the 
skillLevel property is read...

...and whenever the skillLevel 
property is written to.

Reads the skillLevel 
property and triggers 
the get method

Writes to the skillLevel property 
and triggers the set method



215Using proxies to control access

function makeLoggable(target){
  return new Proxy(target, {
    get: (target, property) => {    
      report("Reading " + property);
      return target[property];      
    },                              

    set: (target, property, value) => {                    
      report("Writing value " + value + " to " + property);
      target[property] = value;                             
    }                                                      
  });
}

let ninja = { name: "Yoshi"};
ninja = makeLoggable(ninja); 

assert(ninja.name === "Yoshi", "Our ninja Yoshi");
ninja.weapon = "sword";                           

Here we define a makeLoggable function that takes a target object and returns a new
Proxy that has a handler with a get and a set trap. These traps, besides reading and
writing to the property, log the information about which property is read or written to. 

 Next, we create a ninja object with a name property, and we pass it to the make-
Loggable function, in which it will be used as a target for a newly created proxy. We
then assign the proxy back to the ninja identifier, overriding it. (Don’t worry, our
original ninja object is kept alive as the target object of our proxy.)

 Whenever we try to read a property (for example, with ninja.name), the get trap
will be called, and the information about which property has been read will be logged.
A similar thing will happen when writing to a property: ninja.weapon = "sword".

 Notice how much easier and more transparent this is when compared to the stan-
dard way of using getters and setters. We don’t have to mix our domain code with our
logging code, and there’s no need to add separate logging for each object property.
Instead, all property reads and writes go through our proxy object trap methods. Log-
ging has been specified in only one place and is reused as many times as necessary, on
as many objects as necessary.

8.2.2 Using proxies for measuring performance

Besides being used for logging property accesses, proxies can be used for measuring
the performance of function invocations, without even modifying the source code of a

Listing 8.9 Using proxies makes it easier to add logging to objects 

Defines a function that 
takes a target object 
and makes it loggableCreates a

new proxy
with that

target
object

A get trap that 
logs property 
reads

A set trap that logs property writes

Creates a new
ninja object

that will serve
as our target

object and
make it

loggable

Reads and writes to our proxy object. These
actions are logged by the proxy traps.



216 CHAPTER 8 Controlling access to objects

function. Say we want to measure the performance of a function that calculates
whether a number is a prime, as shown in the following listing.

function isPrime(number){                   
  if(number < 2) { return false; }          

  for(let i = 2; i < number; i++) {         
     if(number % i === 0) { return false; } 
  }                                         

  return true;                              
}                                           

isPrime = new Proxy(isPrime, {
  apply: (target, thisArg, args) => {
    console.time("isPrime");

    const result = target.apply(thisArg, args);

    console.timeEnd("isPrime"); 

    return result;
  }
});

isPrime(1299827); 

In this example, we have a simple isPrime function. (The exact function doesn’t mat-
ter; we’re using it as an example of a function whose execution can last a nontrivial
amount of time.) 

 Now imagine that we need to measure the performance of the isPrime function,
but without modifying its code. We could wrap the function into a proxy that has a
trap that will be called whenever the function is called:

isPrime = new Proxy(isPrime, {
  apply: (target, thisArg, args) => {
...
  }
});

We use the isPrime function as the target object of a newly constructed proxy. In addition,
we supply a handler with an apply trap that will be executed on function invocation.

 Similarly, as in the previous example, we’ve assigned the newly created proxy to the
isPrime identifier. In that way, we don’t have to change any of the code that calls the
function whose execution time we want to measure; the rest of the program code is
completely oblivious to our changes. (How’s that for some ninja stealth action?)

Listing 8.10 Measuring performance with proxies

Defines a primitive 
implementation of the 
isPrime function

Wraps the
isPrime

function
within a

proxy
Provides an apply trap that will 
be called whenever a proxy is 
called as a functionStarts a timer

called isPrime
Invokes 
the target 
functionStops the timer

and outputs the
result

Calls the function. The call 
works the same as if we’d 
called the original function.



217Using proxies to control access

 Whenever the isPrime function is called, that call is rerouted to our proxy’s apply
trap, which will start a stopwatch with the built-in console.time method (remember
chapter 1), call the original isPrime function, log the elapsed time, and finally return
the result of the isPrime invocation. 

8.2.3 Using proxies to autopopulate properties

In addition to simplifying logging, proxies can be used for autopopulating properties.
For example, imagine that you have to model your computer’s folder structure, in
which a folder object can have properties that can also be folders. Now imagine that
you have to model a file at the end of a long path, such as this:

rootFolder.ninjasDir.firstNinjaDir.ninjaFile = "yoshi.txt";

To create this, you might write something along the following lines:

const rootFolder = new Folder();
rootFolder.ninjasDir = new Folder();
rootFolder.ninjasDir.firstNinjaDir = new Folder();
rootFolder.ninjasDir.firstNinjaDir.ninjaFile = "yoshi.txt";

Seems a tad more tedious than necessary, doesn’t it? This is where autopopulating
properties comes into play; just take a look at the following example.

function Folder() {
  return new Proxy({}, {
    get: (target, property) => {
       report("Reading " + property); 
       
       if(!(property in target)) {                
          target[property] = new Folder();        
       }                                          

       return target[property];
    }
  });
}

const rootFolder = new Folder();

try {
  rootFolder.ninjasDir.firstNinjaDir.ninjaFile = "yoshi.txt"; 
  pass("An exception wasn’t raised");    
}
catch(e){
  fail("An exception has occurred");
}

Listing 8.11 Autopopulating properties with proxies

Logs all readings 
to our object

If the accessed 
property doesn’t 
exist, we create it.

Whenever a property is accessed, the
get trap, which creates a property if

it doesn’t exist, is activated.

No exception will be raised.



218 CHAPTER 8 Controlling access to objects

Normally, if we consider only the following code, we’d expect an exception to be
raised:

const rootFolder = new Folder();
rootFolder.ninjasDir.firstNinjaDir.ninjaFile = "yoshi.txt";

We’re accessing a property, firstNinja-
Dir, of an undefined property, ninjas-
Dir, of the rootFolder object. But if we
run the code, you see that all is well, as
shown in figure 8.5.

 This happens because we’re using
proxies. Every time we access a property,
the proxy get trap is activated. If our
folder object already contains the
requested property, its value is returned,
and if it doesn’t, a new folder is created
and assigned to the property. This is how
two of our properties, ninjasDir and
firstNinjaDir, are created. Requesting
a value of an uninitialized property triggers its creation. 

 Finally, we have a tool for ridding ourselves of some cases of the pesky null exception!

8.2.4 Using proxies to implement negative array indexes

In our day-to-day programming, we’ll usually work with a lot of arrays. Let’s explore how
to take advantage of proxies to make our dealings with arrays a little more pleasant. 

 If your programming background is from languages such as Python, Ruby, or Perl,
you might be used to negative array indexes, which enable you to use negative indexes
to access array items from the back, as shown in the following snippet:

const ninjas = ["Yoshi", "Kuma", "Hattori"];

ninjas[0]; //"Yoshi"       
ninjas[1]; //"Kuma"        
ninjas[2]; //"Hattori"     

ninjas[-1]; //"Hattori"      
ninjas[-2]; //"Kuma"         
ninjas[-3]; //"Yoshi"        

Now compare the code that we normally use to access the last item in the array, ninjas
[ninjas.length-1], with the code that we can use if our language of choice supports
negative array indexes, ninjas[-1]. See how much more elegant this is?

 Unfortunately, JavaScript doesn’t offer built-in support for negative array indexes,
but we can mimic this ability through proxies. To explore this concept, we’ll look at a

Standard access to array 
items, with positive 
array indexes

Negative array indexes enable us to access 
array items from the back, starting with –1, 
which accesses the last array item.

Figure 8.5 The output of running the code from list-
ing 8.11



219Using proxies to control access

slightly simplified version of code written by Sindre Sorhus (https://github.com/
sindresorhus/negative-array), as shown in the following listing.

function createNegativeArrayProxy(array){
  if (!Array.isArray(array)) {                
    throw new TypeError('Expected an array'); 
  }                                           
  
  return new Proxy(array, {
    get: (target, index) => {                      
      index = +index;                            
      return target[index < 0 ? target.length + index : index];
    },
    set: (target, index, val) => {
     index = +index;
     return target[index < 0 ? target.length + index : index] = val;
    }
  });
}

const ninjas = ["Yoshi", "Kuma", "Hattori"];
const proxiedNinjas = createNegativeArrayProxy(ninjas);

assert(ninjas[0] === "Yoshi" && ninjas[1] === "Kuma"      
    && ninjas[2] === "Hattori",                           
       "Array items accessed through positive indexes");  

assert(proxiedNinjas[0] === "Yoshi" && proxiedNinjas[1] === "Kuma" 
    && proxiedNinjas [2] === "Hattori",                            
       "Array items accessed through positive indexes on a proxy");

assert(typeof ninjas[-1] === "undefined" 
    && typeof ninjas[-2] === "undefined" 
    && typeof ninjas[-3] === "undefined",
       "Items cannot be accessed through negative indexes on an array");

assert(proxiedNinjas[-1] === "Hattori" 
    && proxiedNinjas[-2] === "Kuma"
    && proxiedNinjas[-3] === "Yoshi",
       "But they can be accessed through negative indexes");

proxiedNinjas[-1] = "Hachi";                                  
assert(proxiedNinjas[-1] === "Hachi" && ninjas[2] === "Hachi",
       "Items can be changed through negative indexes");      

Listing 8.12 Negative array indexes with proxies

If our target object isn’t an
array, throw an exception.

Returns a
new proxy

that takes in
the array

and uses it
as a proxy

target

The get trap is 
activated whenever an 
array index is read.

Turns the property 
name into a number 
with the unary plus 
operatorIf the read index

is a negative
number, read

from the back of
the array, and if

it’s a positive
number, access it

normally.

The set trap is activated whenever 
an array index is written to.

Creates a standard array

Passes it into
our function

that will create
a proxy to that

array

Checks that we can
access array items

through the original
array as well as

through the proxy

Checks that we can’t access array 
items through negative indexes in 
a standard array...

...but that we can do it through 
our proxy, because we’ve supplied 
a get trap that handles the case.

We can also modify array items from the
back, but only if we go through the proxy.

https://github.com/sindresorhus/negative-array
https://github.com/sindresorhus/negative-array


220 CHAPTER 8 Controlling access to objects

In this example, we define a function that will create a proxy for a passed-in array.
Because we don’t want our proxy to work with other types of objects, we throw an
exception in case the argument isn’t an array:

if (!Array.isArray(array)) {
    throw new TypeError('Expected an array');
}

We continue by creating and returning a new proxy with two traps, a get trap that will
activate whenever we try to read an array item, and a set trap that will activate when-
ever we write to an array item:

return new Proxy(array, {
  get: (target, index) => {
    index = +index;
    return target[index < 0 ? target.length + index : index];
  },
  set: (target, index, val) => {
    index = +index;
    return target[index < 0 ? target.length + index : index] = val;
  }
});

The trap bodies are similar. First, we turn the property into a number by using the
unary plus operator (index = +index). Then, if the requested index is less than 0, we
access array items from the back by anchoring to the length of the array, and if it’s
greater than or equal to 0, we access the array item in a standard fashion.

 Finally, we perform various tests to check that on normal arrays we can only access
array items through positive array indexes, and that, if we use a proxy, we can both
access and modify array items through negative indexes.

 Now that you’ve seen how to use proxies to achieve some interesting features such
as autopopulating object properties and accessing negative array indexes, which are
outright impossible without proxies, let’s explore the most significant downside to
proxies: performance issues.

8.2.5 Performance costs of proxies

As we already know, a proxy is a surrogate object through which we control access to
another object. A proxy can define traps, functions that will be executed whenever a
certain operation is performed on a proxy. And, as you’ve also seen, we can use these
traps to implement useful functionalities such as logging, performance measure-
ments, autopopulating properties, negative array indexes, and so on. Unfortunately,
there’s also a downside. The fact that all our operations have to pass in through the
proxy adds a layer of indirection that enables us to implement all these cool features,
but at the same time it introduces a significant amount of additional processing that
impacts performance. 



221Summary

 To test these performance issues, we can build on the negative array indexes exam-
ple from listing 8.12 and compare the execution time when accessing items in a nor-
mal array versus accessing items through a proxy, as shown in the following listing.

function measure(items){
  const startTime = new Date().getTime();
  for(let i = 0; i < 500000; i++){   
    items[0] === "Yoshi";            
    items[1] === "Kuma";             
    items[2] === "Hattori";          
  }                                  
  return new Date().getTime() - startTime;
}

const ninjas = ["Yoshi", "Kuma", "Hattori"];           
const proxiedNinjas = createNegativeArrayProxy(ninjas);

console.log("Proxies are around", 
            Math.round(measure(proxiedNinjas)/ measure(ninjas)),
            "times slower");

Because a single operation of the code happens much too quickly to measure reliably,
the code has to be executed many times to get a measurable value. Frequently, this
count can be in the tens of thousands, or even millions, depending on the nature of
the code being measured. A little trial and error lets us choose a reasonable value: in
this case 500,000. 

 We also need to bracket the execution of the code with two new Date().getTime()
timestamps: one before we start executing the target code, and one after. Their differ-
ence tells us how long the code took to perform. Finally, we can compare the results by
calling the measure function on both the proxied array and the standard array. 

 On our machine, the results don’t fare well for proxies. It turns out that in
Chrome, proxies are around 50 times slower; in Firefox, they’re about 20 times slower.

 For now, we recommend that you be careful when using proxies. Although they
allow you to be creative with controlling access to objects, that amount of control
comes with performance issues. You can use proxies with code that’s not performance
sensitive, but be careful when using them in code that’s executed a lot. As always, we
recommend that you thoroughly test the performance of your code.

8.3 Summary
■ We can monitor our objects with getters, setters, and proxies.
■ By using accessor methods (getters and setters), we can control access to object

properties.

Listing 8.13 Checking the performance limitations of proxies 

Accesses the items 
in our collection in a 
long-running loop

Gets the current time 
before running a long-
running operation

Measures the
time it took

for the long-
running code

to execute

Compares the
running time

when accessing
the standard
array versus

when accessing
through a proxy

Creates a standard array
and a proxy for that array



222 CHAPTER 8 Controlling access to objects

– Accessor properties can be defined by using the built-in Object.define-
Property method or with a special get and set syntax as parts of object liter-
als or ES6 classes.

– A get method is implicitly called whenever we try to read, whereas a set
method is called whenever we assign a value to the matching object’s property.

– Getter methods can be used to define computed properties, properties
whose value is calculated on a per request basis, whereas setter methods can
be used to achieve data validation and logging.

■ Proxies are an ES6 addition to JavaScript and are used to control other objects.
– Proxies enable us to define custom actions that will be executed when an object

is interacted with (for example, when a property is read or a function is called).
– All interactions have to go through the proxy, which has traps that are trig-

gered when a specific action occurs.
■ Use proxies to achieve elegant

– Logging 
– Performance measurements
– Data validation
– Autopopulating object properties (thereby avoiding pesky null exceptions)
– Negative array indexes

■ Proxies aren’t fast, so be careful when using them in code that’s executed a lot.
We recommend that you do performance testing.

8.4 Exercises
1 After running the following code, which of the following expressions will throw

an exception and why?

const ninja = {
   get name() {
     return "Akiyama";
   }
}

aninja.name();
bconst name = ninja.name;

2 In the following code, which mechanism allows getters to access a private object
variable?

function Samurai() {
  const _weapon = "katana";
  Object.defineProperty(this, "weapon", {
    get: () => _weapon
  });
}
const samurai = new Samurai();
assert(samurai.weapon === "katana", "A katana wielding samurai");



223Exercises

3 Which of the following assertions will pass?

const daimyo = { name: "Matsu", clan: "Takasu"};
const proxy = new Proxy(daimyo, {
  get: (target, key) => {
    if(key === "clan"){
      return "Tokugawa";
    } 
  }
});

assert(daimyo.clan === "Takasu", "Matsu of clan Takasu");
assert(proxy.clan === "Tokugawa", "Matsu of clan Tokugawa?");

proxy.clan = "Tokugawa";

assert(daimyo.clan === "Takasu", "Matsu of clan Takasu");
assert(proxy.clan === "Tokugawa", "Matsu of clan Tokugawa?");

4 Which of the following assertions will pass?

const daimyo = { name: "Matsu", clan: "Takasu", armySize: 10000};
const proxy = new Proxy(daimyo, {
  set: (target, key, value) => {
    if(key === "armySize") {
      const number = Number.parseInt(value);
      if(!Number.isNaN(number)){
        target[key] = number;
      }
    } else {
       target[key] = value;
    }
  },
});

assert(daimyo.armySize === 10000, "Matsu has 10 000 men at arms");
assert(proxy.armySize === 10000, "Matsu has 10 000 men at arms");

proxy.armySize = "large";
assert(daimyo.armySize === "large", "Matsu has a large army");

daimyo.armySize = "large";
assert(daimyo.armySize === "large", "Matsu has a large army");



224

Dealing with collections

Now that we’ve spent some time wrangling the particularities of object-orientation
in JavaScript, we’ll move on to a closely related topic: collections of items. We’ll
start with arrays, the most basic type of collection in JavaScript, and look at some
array peculiarities you may not expect if your programming background is in
another programming language. We’ll continue by exploring some of the built-in
array methods that will help you write more elegant array-handling code.

 Next, we’ll discuss two new ES6 collections: maps and sets. Using maps, you can
create dictionaries of a sort that carry mappings between keys and values—a
collection that’s extremely useful in certain programming tasks. Sets, on the other
hand, are collections of unique items in which each item can’t occur more than
once. Let’s begin our exploration with the simplest and most common of all
collections: arrays.

This chapter covers
■ Creating and modifying arrays
■ Using and reusing array functions 
■ Creating dictionaries with maps
■ Creating collections of unique objects with sets



225Arrays

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What are some of the common pitfalls of using objects as
dictionaries or maps?

What value types can a key/value pair have in a Map? 
Must the items in a Set be of the same type? 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.1 Arrays
Arrays are one of the most common data types. Using them, you can handle collec-
tions of items. If your programming background is in a strongly typed language such
as C, you probably think of arrays as sequential chunks of memory that house items of
the same type, where each chunk of memory is of fixed size and has an associated
index through which you can easily access it. 

 But as with many things in JavaScript, arrays come with a twist: They’re just objects.
Although this leads to some unfortunate side effects, primarily in terms of perfor-
mance, it also has some benefits. For example, arrays can access methods, like other
objects—methods that will make our lives a lot easier.

 In this section, we’ll first look at ways to create arrays. Then we’ll explore how to add
items to and remove items from different positions in an array. Finally, we’ll examine
the built-in array methods that will make our array-handling code much more elegant.

9.1.1 Creating arrays

There are two fundamental ways to create new arrays:

■ Using the built-in Array constructor
■ Using array literals []

Let’s start with a simple example in which we create an array of ninjas and an array of
samurai.

const ninjas = ["Kuma", "Hattori", "Yagyu"];
const samurai = new Array("Oda", "Tomoe");    

assert(ninjas.length === 3, "There are three ninjas");
assert(samurai.length === 2, "And only two samurai");

assert(ninjas[0] === "Kuma", "Kuma is the first ninja");
assert(samurai[samurai.length-1] === "Tomoe",           
       "Tomoe is the last samurai");                    

assert(ninjas[4] === undefined,
      "We get undefined if we try to access an out of bounds index");

Listing 9.1 Creating arrays

Do you know? 

To create an array, we can
use an array literal [] …… or the

built-in Array
constructor.

The length
property tells
us the size of

the array.

We access array
items with index

notation: The first
item is indexed
with 0, and the

last with
array.length – 1.

Reading items
outside the array
bounds results in

undefined.



226 CHAPTER 9 Dealing with collections

ninjas[4] = "Ishi";                        
assert(ninjas.length === 5,                
      "Arrays are automatically expanded");

ninjas.length = 2;                                           
assert(ninjas.length === 2, "There are only two ninjas now");
assert(ninjas[0] === "Kuma" && ninjas[1] === "Hattori",      
       "Kuma and Hattori");                                  
assert(ninjas[2] === undefined, "But we've lost Yagyu");     

In listing 9.1, we start by creating two arrays. The ninjas array is created with a simple
array literal: 

const ninjas = ["Kuma", "Hattori", "Yagyu"]; 

It’s immediately prefilled with three ninjas: Kuma, Hattori, and Yagyu. The samurai
array is created using the built-in Array constructor:

const samurai = new Array("Oda", "Tomoe");

Regardless of how we create it, each array has a length property that specifies the size
of the array. For example, the length of the ninjas array is 3, and it contains 3 ninjas.
We can test this with the following assertions:

assert(ninjas.length === 3, "There are three ninjas");
assert(samurai.length === 2, "And only two samurai");

As you probably know, you access array items by using index notation, where the first
item is positioned at index 0 and the last item at index array.length – 1. But if we try
to access an index outside those bounds—for example, with ninjas[4] (remember,
we have only three ninjas!), we won’t get the scary “Array index out of bounds” excep-
tion that we receive in most other programming languages. Instead, undefined is
returned, signaling that there’s nothing there: 

assert(ninjas[4] === undefined,
      "We get undefined if we try to access an out of bounds index");

Writing to indexes outside 
the array bounds extends 
the array.

Manually overriding the length property
with a lower value deletes the excess items.

Array literals versus the Array constructor
Using array literals to create arrays is preferred over creating arrays with the Array
constructor. The primary reason is simplicity: [] versus new Array() (2 characters
versus 11 characters—hardly a fair contest). In addition, because JavaScript is highly
dynamic, nothing stops someone from overriding the built-in Array constructor,
which means calling new Array() doesn’t necessarily have to create an array. Thus
we recommend that you generally stick to array literals.



227Arrays

This behavior is a consequence of the fact that JavaScript arrays are objects. Just as
we’d get undefined if we tried to access a nonexistent object property, we get unde-
fined when accessing a nonexistent array index.

 On the other hand, if we try to write to a position outside of array bounds, as in 

ninjas[4] = "Ishi";

the array will expand to accommodate the new situation. For example, see figure 9.1:
We’ve essentially created a hole in the array, and the item at index 3 is undefined.
This also changes the value of the length property, which now reports a value of 5,
even though one array item is undefined.

Unlike in most other languages, in JavaScript, arrays also exhibit a peculiar feature
related to the length property: Nothing stops us from manually changing its value.
Setting a value higher than the current length will expand the array with undefined
items, whereas setting the value to a lower value will trim the array, as in
ninjas.length = 2;.

 Now that we’ve gone through the basics of array creation, let’s go through some of
the most common array methods.

9.1.2 Adding and removing items at either end of an array

Let’s start with the following simple methods we can use to add items to and remove
items from an array:

■ push adds an item to the end of the array.
■ unshift adds an item to the beginning of the array.
■ pop removes an item from the end of the array. 
■ shift removes an item from the beginning of the array. 

You’ve probably already used these methods, but just in case, let’s make sure we’re on
the same page by exploring the following listing.

var ninjas = ["Kuma", "Hattori", "Yagyu"]

"Kuma"

0

"Hattori"

1

"Yagyu"

2 length: 3

ninjas[4] = "Ishi"; 

"Kuma"

0

"Hattori"

1

"Yagyu"

2

undefined

3

"Ishi"

4 length: 5

Figure 9.1 Writing to an array index outside of array bounds expands the array.



228 CHAPTER 9 Dealing with collections

const ninjas = [];                                   
assert(ninjas.length === 0, "An array starts empty");

ninjas.push("Kuma");                                         
assert(ninjas[0] === "Kuma",                                 
       "Kuma is the first item in the array");               
assert(ninjas.length === 1, "We have one item in the array");

ninjas.push("Hattori");                            
assert(ninjas[0] === "Kuma",                       
       "Kuma is still first");                     
assert(ninjas[1] === "Hattori",                    
       "Hattori is added to the end of the array");
assert(ninjas.length === 2,                        
       "We have two items in the array!");         

ninjas.unshift("Yagyu");                    
assert(ninjas[0] === "Yagyu",               
       "Now Yagyu is the first item");      
assert(ninjas[1] === "Kuma",                
       "Kuma moved to the second place");   
assert(ninjas[2] === "Hattori",             
       "And Hattori to the third place");   
assert(ninjas.length === 3,                 
       "We have three items in the array!");

const lastNinja = ninjas.pop();                            
assert(lastNinja === "Hattori",                            
       "We've removed Hattori from the end of the array"); 
assert(ninjas[0] === "Yagyu",                              
       "Now Yagyu is still the first item");               
assert(ninjas[1] === "Kuma,                                
       "Kuma is still in second place");                   
assert(ninjas.length === 2,                                
       "Now there are two items in the array");            

const firstNinja = ninjas.shift();                             
assert(firstNinja === "Yagyu",                                 
       "We've removed Yagyu from the beginning of the array"); 
assert(ninjas[0] === "Kuma",                                   
       "Kuma has shifted to the first place");                 
assert(ninjas.length === 1,                                    
       "There's only one ninja in the array");                 

In this example, we first create a new, empty ninjas array: 

ninjas = [] // ninjas: []

In each array, we can use the built-in push method to append an item to the end of
the array, changing its length in the process:

ninjas.push("Kuma"); // ninjas: ["Kuma"]; 
ninjas.push("Hattori"); // ninjas: ["Kuma", "Hattori"]; 

Listing 9.2 Adding and removing array items

Creates a new, 
empty array

Pushes a new 
item to the end 
of the array

Pushes another 
item to the end 
of the array

Uses the built-in unshift 
method to insert the item 
at the beginning of the 
array. Other items are 
adjusted accordingly.

Pops the last item 
from the array

Removes the first 
item from the array. 
Other items are 
moved to the left 
accordingly.



229Arrays

We can also add new items to the beginning of the array by using the built in unshift
method:

ninjas.unshift("Yagyu");// ninjas: ["Yagyu", "Kuma", "Hattori"];

Notice how existing array items are adjusted. For example, before calling the unshift
method, "Kuma" was at index 0, and afterward it’s at index 1.

 We can also remove elements from either the end or the beginning of the array.
Calling the built-in pop method removes an element from the end of the array, reduc-
ing the array’s length in the process:

var lastNinja = ninjas.pop(); // ninjas:["Yagyu", "Kuma"]
                              // lastNinja: "Hattori"

We can also remove an item from the beginning of the array by using the built-in
shift method:

var firstNinja = ninjas.shift(); //ninjas: ["Kuma"]
                                 //firstNinja: "Yagyu"

Figure 9.2 shows how push, pop, shift, and unshift modify arrays.

push

Argument

pop

Before After

push and pop
modify the back
of the array.

unshift

Argument

shift

unshift and shift
modify the front
of the array.

Figure 9.2 The push and pop methods modify the end of an array, whereas shift and unshift
modify the array’s beginning.



230 CHAPTER 9 Dealing with collections

9.1.3 Adding and removing items at any array location

The previous example removed items from the beginning and end of the array. But this
is too constraining—in general, we should be able to remove items from any array loca-
tion. One straightforward approach for doing this is shown in the following listing.

const ninjas = ["Yagyu", "Kuma", "Hattori", "Fuma"];

delete ninjas[1];

assert(ninjas.length === 4,                                        
       "Length still reports that there are 4 items");             

assert(ninjas[0] === "Yagyu", "First item is Yagyu");              
assert(ninjas[1] === undefined, "We've simply created a hole");    
assert(ninjas[2] === "Hattori", "Hattori is still the third item");
assert(ninjas[3] === "Fuma", "And Fuma is the last item");         

This approach to deleting an item from an array doesn’t work. We effectively only cre-
ate a hole in the array. The array still reports that it has four items, but one of them—
the one we wanted to delete—is undefined (see figure 9.3).

Listing 9.3 Naïve way to remove an array item

Performance considerations: pop and push versus shift and unshift
The pop and push methods only affect the last item in an array: pop by removing the
last item, and push by inserting an item at the end of the array. On the other hand,
the shift and unshift methods change the first item in the array. This means the
indexes of any subsequent array items have to be adjusted. For this reason, push
and pop are significantly faster operations than shift and unshift, and we recom-
mend using them unless you have a good reason to do otherwise.

Uses the delete command to delete an item

We deleted an item, but the array still reports that it
has 4 items. We’ve only created a hole in the array.

var ninjas = ["Yagyu", "Kuma", "Hattori", "Fuma"]

"Yagyu" "Kuma" "Hattori" "Fuma"

delete ninjas[1]

"Yagyu" undefined "Hattori" "Fuma"
Figure 9.3 Deleting an item from an 
array creates a hole in the array.



231Arrays

Similarly, if we wanted to insert an item at an arbitrary position, where would we even
start? As an answer to these problems, all JavaScript arrays have access to the splice
method: Starting from a given index, this method removes and inserts items. Check
out the following example.

const ninjas = ["Yagyu", "Kuma", "Hattori", "Fuma"];

var removedItems = ninjas.splice(1, 1);         

assert(removedItems.length === 1, "One item was removed");
assert(removedItems[0] === "Kuma");                       

assert(ninjas.length === 3,                       
       "There are now three items in the array"); 
assert(ninjas[0] === "Yagyu",                     
       "The first item is still Yagyu");          
assert(ninjas[1] === "Hattori",                   
       "Hattori is now in the second place");     
assert(ninjas[2] === "Fuma",                      
       "And Fuma is in the third place");         

removedItems = ninjas.splice(1, 2, "Mochizuki", "Yoshi", "Momochi");
assert(removedItems.length === 2, "Now, we've removed two items");  
assert(removedItems[0] === "Hattori", "Hattori was removed");    
assert(removedItems[1] === "Fuma", "Fuma was removed");             
assert(ninjas.length === 4, "We've inserted some new items");       
assert(ninjas[0] === "Yagyu", "Yagyu is still here");               
assert(ninjas[1] === "Mochizuki", "Mochizuki also");                
assert(ninjas[2] === "Yoshi", "Yoshi also");                        
assert(ninjas[3] === "Momochi", "and Momochi");                     

We begin by creating a new array with four items:

var ninjas = ["Yagyu", "Kuma", "Hattori", "Fuma"];

Then we call the built-in splice method: 

var removedItems = ninjas.splice(1,1);//ninjas:["Yagyu","Hattori", "Fuma"];
                                    //removedItems: ["Kuma"]

In this case, splice takes two arguments: the index from which the splicing starts, and
the number of elements to be removed (if we leave out this argument, all elements to
the end of the array are removed). In this case, the element with index 1 is removed
from the array, and all subsequent elements are shifted accordingly. 

Listing 9.4 Removing and adding items at arbitrary positions

Creates a new array
with four items Uses the built-in 

splice method to 
remove one element, 
starting at index 1

splice returns an array 
of the removed items. 
In this case, we 
removed one item.

The ninja array no 
longer contains Kuma; 
subsequent items were 
automatically shifted.

We can insert an element at a position
by adding arguments to the splice call.



232 CHAPTER 9 Dealing with collections

 In addition, the splice method returns an array of items that have been removed.
In this case, the result is an array with a single item: "Kuma".

 Using the splice method, we can also insert items into arbitrary positions in an
array. For example, consider the following code:

removedItems = ninjas.splice(1, 2, "Mochizuki", "Yoshi", "Momochi");
//ninjas: ["Yagyu", "Mochizuki", "Yoshi", "Momochi"]
//removedItems: ["Hattori", "Fuma"]

Starting from index 1, it first removes two items and then adds three items: "Mochi-
zuki", "Yoshi", and "Momochi".

 Now that we’ve given you a refresher on how arrays work, let’s continue by study-
ing some common operations that are often performed on arrays. These will help you
write more elegant array-handling code.

9.1.4 Common operations on arrays

In this section, we’ll explore some of the most common operations on arrays: 

■ Iterating (or traversing) through arrays
■ Mapping existing array items to create a new array based on them
■ Testing array items to check whether they satisfy certain conditions
■ Finding specific array items
■ Aggregating arrays and computing a single value based on array items (for exam-

ple, calculating the sum of an array)

We’ll start with the basics: array iterations.

ITERATING OVER ARRAYS

One of the most common operations is iterating over an array. Going back to Com-
puter Science 101, an iteration is most often performed in the following way:

const ninjas = ["Yagyu", "Kuma", "Hattori"];

for(let i = 0; i < ninjas.length; i++){
  assert(ninjas[i] !== null, ninjas[i]);    
}

This example is as simple as it looks. It uses a
for loop to check every item in the array; the
results are shown in figure 9.4.

 You’ve probably written something like
this so many times that you don’t even have to
think about it anymore. But just in case, let’s
take a closer look at the for loop. 

 To go through an array, we have to set up a
counter variable, i, specify the number up to
which we want to count (ninjas.length), and

Reports the value 
of each ninja

Figure 9.4 The output of checking the ninjas 
with a for loop



233Arrays

define how the counter will be modified (i++). That’s an awful lot of bookkeeping to
perform such a common action, and it can be a source of annoying little bugs. In addi-
tion, it makes our code more difficult to read. Readers have to look closely at every part
of the for loop, just to be sure it goes through all the items and doesn’t skip any.

 To make life easier, all JavaScript arrays have a built-in forEach method we can use
in such situations. Look at the following example.

const ninjas = ["Yagyu", "Kuma", "Hattori"];

ninjas.forEach(ninja => {           
  assert(ninja !== null, ninja);    
));                                 

We provide a callback (in this case, an arrow function) that’s called immediately, for
each item in the array. That’s it—no more fussing about the start index, the end con-
dition, or the exact nature of the increment. The JavaScript engine takes care of all
that for us, behind the scenes. Notice how much easier to understand this code is, and
how it has fewer bug-spawning points.

 We’ll continue by taking things up a notch and seeing how we can map arrays to
other arrays.

MAPPING ARRAYS

Imagine that you have an array of ninja objects. Each ninja has a name and a favorite
weapon, and you want to extract an array of weapons from the ninjas array. Armed
with the knowledge of the forEach method, you might write something like the fol-
lowing listing.

const ninjas = [
  {name: "Yagyu", weapon: "shuriken"},
  {name: "Yoshi", weapon: "katana"},
  {name: "Kuma", weapon: "wakizashi"}
];

const weapons = [];                  
ninjas.forEach(ninja => {            
  weapons.push(ninja.weapon);       
});                                  

assert(weapons[0] === "shuriken" 
    && weapons[1] === "katana"
    && weapons[2] === "wakizashi" 
    && weapons.length === 3, 
    "The new array contains all weapons");

Listing 9.5 Using the forEach method

Listing 9.6 Naïve extraction of a weapons array

Uses the built-in 
forEach method to 
iterate over the array

Creates a new array and uses 
a forEach loop over ninjas to 
extract individual ninja weapons



234 CHAPTER 9 Dealing with collections

This isn’t all that bad: We create a new, empty array, and use the forEach method to
iterate over the ninjas array. Then, for each ninja object, we add the current weapon
to the weapons array.

 As you might imagine, creating new arrays based on the items in an existing array is
surprisingly common—so common that it has a special name: mapping an array. The idea
is that we map each item from one array to a new item of a new array. Conveniently,
JavaScript has a map function that does exactly that, as shown in the following listing.

const ninjas = [
  {name: "Yagyu", weapon: "shuriken"},
  {name: "Yoshi", weapon: "katana"},
  {name: "Kuma", weapon: "wakizashi"}
];

const weapons = ninjas.map(ninja => ninja.weapon); 

assert(weapons[0] === "shuriken" 
    && weapons[1] === "katana"
    && weapons[2] === "wakizashi" 
    && weapons.length == 3, "The new array contains all weapons");

The built-in map method constructs a completely new array and then iterates over the
input array. For each item in the input array, map places exactly one item in the newly
constructed array, based on the result of the callback provided to map. The inner work-
ings of the map function are shown in figure 9.5.

Listing 9.7 Mapping an array

The built-in map method 
takes a function that’s 
called for each item in 
the array.

const weapons = ninjas.map(ninja => ninja.weapon);

The map callback function is immediately
called for each item in an array.

map function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"
weapon:
 "katana"

name:
 "Kuma"
weapon:
 "wakizashi"

weapons

"shuriken" "katana" "wakizashi" "shuriken" "katana" "wakizashi"

fc

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fcfc

name:
 "Yoshi"
weapon:
 "katana"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.5 The map function calls the provided callback function (fc) on each array item, and creates a new array 
with callback return values.



235Arrays

Now that we know how to map arrays, let’s see how to test array items for certain
conditions.

TESTING ARRAY ITEMS

When working with collections of items, we’ll often run into situations where we need
to know whether all or at least some of the array items satisfy certain conditions. To
write this code as efficiently as possible, all JavaScript arrays have access to the built-in
every and some methods, shown next.

const ninjas = [
  {name: "Yagyu", weapon: "shuriken"},
  {name: "Yoshi" },
  {name: "Kuma", weapon: "wakizashi"}
];

const allNinjasAreNamed = ninjas.every(ninja => "name" in ninja);  
const allNinjasAreArmed = ninjas.every(ninja => "weapon" in ninja);

assert(allNinjasAreNamed, "Every ninja has a name");
assert(!allNinjasAreArmed, "But not every ninja is armed");

const someNinjasAreArmed = ninjas.some(ninja => "weapon" in ninja);
assert(someNinjasAreArmed, "But some ninjas are armed");           

Listing 9.8 shows an example where we have a collection of ninja objects but are
unsure of their names and whether all of them are armed. To get to the root of this
problem, we first take advantage of every:

var allNinjasAreNamed = ninjas.every(ninja => "name" in ninja);    

The every method takes a callback that, for each ninja in the collection, checks
whether we know the ninja’s name. every returns true only if the passed-in callback
returns true for every item in the array. Figure 9.6 shows how every works.

 In other cases, we only care whether some array items satisfy a certain condition.
For these situations, we can use the built-in method some:

const someNinjasAreArmed = ninjas.some(ninja => "weapon" in ninja);

Starting from the first array item, some calls the callback on each array item until an
item is found for which the callback returns a true value. If such an item is found, the
return value is true; if not, the return value is false. 

Listing 9.8 Testing arrays with the every and some methods

The built-in every method takes a
callback that’s called for each array
item. It returns true if the callback

returns a true value for all array
items, or false otherwise.

The built-in some method also takes a callback. It
returns true if the callback returns a true value for at

least one array item, or false otherwise.



236 CHAPTER 9 Dealing with collections

Figure 9.7 shows how some works under the hood: We search an array in order to find
out whether some or all of its items satisfy a certain condition. Next we’ll explore how
to search an array to find a particular item.

const allNinjasAreNamed = ninjas.every(ninja => "name" in ninja);

The every callback function is
immediately called for each item
in an array, until false is returned.

If one callback returns false,
subsequent items are not even
examined.

every function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

allNinjasAreNamed: true true true true

fc

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fcfc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

const allNinjasAreArmed = ninjas.every(ninja => "weapon" in ninja);

every function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

allNinjasAreArmed: false true false

fc

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.6 The every method tests whether all items in an array satisfy a certain condition represented by a 
callback.



237Arrays

SEARCHING ARRAYS

Another common operation that you’re bound to use, sooner rather than later, is
finding items in an array. Again, this task is greatly simplified with another built-in
array method: find. Let’s study the following listing. 

const ninjas = [
  {name: "Yagyu", weapon: "shuriken"},
  {name: "Yoshi" },
  {name: "Kuma", weapon: "wakizashi"}
];

const ninjaWithWakizashi = ninjas.find(ninja => {
  return ninja.weapon === "wakizashi";             
});

assert(ninjaWithWakizashi.name === "Kuma"
    && ninjaWithWakizashi.weapon === "wakizashi", 
    "Kuma is wielding a wakizashi");

NOTE The built-in find method is part of the ES6 standard. For
current browser compatibility, see http://mng.bz/U532.

Listing 9.9 Finding array items

const someNinjasAreArmed = ninjas.some(ninja => "weapon" in ninja);

If one callback returns true,
subsequent items are not even
examined.

some function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

someNinjasAreArmed: true true

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.7 The some method checks whether at least one array item satisfies a condition represented by the 
passed-in callback.

Uses the find method to find the 
first array item that satisfies a 
certain condition, represented 
by a passed-in callback.

http://mng.bz/U532


238 CHAPTER 9 Dealing with collections

const ninjaWithKatana = ninjas.find(nina => {
  return ninja.weapon === "katana";            
});

assert(ninjaWithKatana === undefined,
      "We couldn't find a ninja that wields a katana");

const armedNinjas = ninjas.filter(ninja => "weapon" in ninja);   

assert(armedNinjas.length === 2, "There are two armed ninjas:");
assert(armedNinjas[0].name === "Yagyu"
    && armedNinjas[1].name === "Kuma", "Yagyu and Kuma");

It’s easy to find an array item that satisfies a certain condition: We use the built-in find
method, passing it a callback that’s invoked for each item in the collection until the
targeted item is found. This is indicated by the callback returning true. For example,
the expression

ninjas.find(ninja => ninja.weapon === "wakizashi");

finds Kuma, the first ninja in the ninjas array that’s wielding a wakizashi. 
 If we’ve gone through the entire array without a single item returning true, the

final result of the search is undefined. For example, the code

ninjaWithKatana = ninjas.find(ninja => ninja.weapon === "katana");

returns undefined, because there isn’t a katana-wielding ninja. Figure 9.8 shows the
inner workings of the find function.

The find method returns 
undefined if an item 
can’t be found.

Use the filter method to find multiple
items that all satisfy a certain condition.

const ninjaWithWakizashi = ninjas.find(ninja => ninja.weapon == "wakizashi");

find function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

name:
 "Kuma"
weapon:
 "wakizashi"

name:
 "Kuma"
weapon:
 "wakizashi"ninjaWithWakizashi

false

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fc

false

fc

true

fc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.8 The find function finds one item in an array: the first item for which the find callback returns true.



239Arrays

If we need to find multiple items satisfying a certain criterion, we can use the filter
method, which creates a new array containing all the items that satisfy that criterion.
For example, the expression

const armedNinjas = ninjas.filter(ninja => "weapon" in ninja);

creates a new armedNinjas array that contains only ninjas with a weapon. In this case,
poor unarmed Yoshi is left out. Figure 9.9 shows how the filter function works.

Throughout this example, you’ve seen how to find particular items in an array, but in
many cases it might also be necessary to find the index of an item. Let’s take a closer
look, with the following example.

const ninjas = ["Yagyu", "Yoshi", "Kuma", "Yoshi"];

assert(ninjas.indexOf("Yoshi") === 1, "Yoshi is at index 1");
assert(ninjas.lastIndexOf("Yoshi") === 3, "and at index 3");

const yoshiIndex = ninjas.findIndex(ninja => ninja === "Yoshi");

assert(yoshiIndex === 1, "Yoshi is still at index 1");

To find the index of a particular item, we use the built-in indexOf method, passing it
the item whose index we want to find:

ninjas.indexOf("Yoshi")

Listing 9.10 Finding array indexes

const armedNinjas = ninjas.filter(ninja => "weapon" in ninja);

filter function

ninjas

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Kuma"
weapon:
 "wakizashi"

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

name:
 "Yagyu"
weapon:
 "shuriken"

name:
 "Kuma"
weapon:
 "wakizashi"armedNinjas

true

fc

name:
 "Yagyu"
weapon:
 "shuriken"

fc

false

fc

true

name:
 "Yagyu"
weapon:
 "shuriken"

fc

name:
 "Yoshi"

name:
 "Kuma"
weapon:
 "wakizashi"

Figure 9.9 The filter function creates a new array that contains all items for which the callback returns true.



240 CHAPTER 9 Dealing with collections

In cases where a particular item can be found multiple times in an array (as is the case
with "Yoshi" and the ninjas array), we may also be interested in finding the last
index where Yoshi appears. For this, we can use the lastIndexOf method:

ninjas.lastIndexOf("Yoshi")

Finally, in the most-general case, when we don’t have a reference to the exact item
whose index we want to search for, we can use the findIndex method:

const yoshiIndex = ninjas.findIndex(ninja => ninja === "Yoshi");

The findIndex method takes a callback and returns the index of the first item for
which the callback returns true. In essence, it works a lot like the find method, the
only difference being that find returns a particular item, whereas findIndex returns
the index of that item.

SORTING ARRAYS

One of the most common array operations is sorting—arranging items systematically in
some order. Unfortunately, correctly implementing sorting algorithms isn’t the easiest
of programming tasks: We have to select the best sorting algorithm for the task, imple-
ment it, and tailor it to our needs, while, as always, being careful not to introduce subtle
bugs. To get this burden off our back, as you saw in chapter 3, all JavaScript arrays have
access to the built-in sort method, whose usage looks something like this:

array.sort((a, b) => a – b);

The JavaScript engine implements the sorting algorithm. The only thing we have to
provide is a callback that informs the sorting algorithm about the relationship
between two array items. The possible results are as follows:

■ If a callback returns a value less than 0, then item a should come before item b.
■ If a callback returns a value equal to 0, then items a and b are on equal footing

(as far as the sorting algorithm is concerned, they’re equal).
■ If a callback returns a value greater than 0, then item a should come after item b.

Figure 9.10 shows the decisions made by the sorting algorithm depending on the call-
back return value.

returnValue < 0
(a should come before b)

returnValue == 0
(a and b are on equal footing)

returnValue > 0
(b should come before a)

Leave as is

Leave as is

b should be moved before a

a should be moved before b

…

Leave as is

Leave as is

a … b … b … a
Figure 9.10 If the call-
back returns a value 
less than 0, the first 
item should come be-
fore the second. If the 
callback returns 0, both 
items should be left as 
is. And if the return val-
ue is greater than 0, the 
first item should come 
after the second item.



241Arrays

And that’s about all you need to know about the sorting algorithm. The actual sorting
is performed behind the scenes, without us having to manually move array items
around. Let’s look at a simple example.

const ninjas = [{name: "Yoshi"}, {name: "Yagyu"}, {name: "Kuma"}];

ninjas.sort(function(ninja1, ninja2){           
  if(ninja1.name < ninja2.name) { return -1; }  
  if(ninja1.name > ninja2.name) { return 1; }   
                                                
  return 0;                                     
});                                             

assert(ninjas[0].name === "Kuma", "Kuma is first");
assert(ninjas[1].name === "Yagyu", "Yagyu is second");
assert(ninjas[2].name === "Yoshi", "Yoshi is third");

In listing 9.11 we have an array of ninja objects, where each ninja has a name. Our
goal is to sort that array lexicographically (in alphabetical order), according to ninja
names. For this, we naturally use the sort function:

ninjas.sort(function(ninja1, ninja2){            
  if(ninja1.name < ninja2.name) { return -1; }
  if(ninja1.name > ninja2.name) { return 1; }
  
  return 0;
});

To the sort function we only need to pass a callback that’s used to compare two array
items. Because we want to make a lexical comparison, we state that if ninja1’s name is
“less” than ninja2’s name, the callback returns -1 (remember, this means ninja1 should
come before ninja2, in the final sorted order); if it’s greater, the callback returns 1
(ninja1 should come after ninja2); if they’re equal, the callback returns 0. Notice that we
can use simple less-than (<) and greater-than (>) operators to compare two ninja names.

 That’s about it! The rest of the nitty-gritty details of sorting are left to the
JavaScript engine, without us having to worry about them.

AGGREGATING ARRAY ITEMS

How many times have you written code like the following?

const numbers = [1, 2, 3, 4];
const sum = 0;

numbers.forEach(number => {
   sum += number;
});

assert(sum === 10, "The sum of first four numbers is 10");

Listing 9.11 Sorting an array

Passes a callback to the 
built-in sort method to 
specify a sorting order



242 CHAPTER 9 Dealing with collections

This code has to visit every item in a collection and aggregate some value, in essence
reducing the entire array to a single value. Don’t worry—JavaScript has something to
help with this situation, too: the reduce method, as shown in the following example.

const numbers = [1, 2, 3, 4];

const sum = numbers.reduce((aggregated, number) =>  
                            aggregated + number, 0);

assert(sum === 10, "The sum of first four numbers is 10");

The reduce method works by taking the initial value (in this case, 0) and calling the call-
back function on each array item with the result of the previous callback invocation (or
the initial value) and the current array item as arguments. The result of the reduce
invocation is the result of the last callback, called on the last array item. Figure 9.11
sheds more light on the process.

 We hope we’ve convinced you that JavaScript contains some useful array methods that
can make our lives significantly easier and your code more elegant, without having to
resort to pesky for loops. If you’d like to find out more about these and other array meth-
ods, we recommend the Mozilla Developer Network explanation at http://mng.bz/cS21.

 Now we’ll take things a bit further and show you how to reuse these array methods
on your own, custom objects.

9.1.5 Reusing built-in array functions

There are times when we may want to create an object that contains a collection of data.
If the collection was all we were worried about, we could use an array. But in certain
cases, there may be more state to store than just the collection itself—perhaps we need
to store some sort of metadata regarding the collected items. 

Listing 9.12 Aggregating items with reduce

Uses reduce to accumulate a 
single value from an array

1

1

00

2 3 41 2 3 4

const sum = numbers.reduce((aggregated, number) => 
                            aggregated + number, 0);

reduce function

sum

numbers

Initial value

fc

fc fc

3

fc

6 1010

fc

Figure 9.11 The reduce function applies a callback to an aggregated value and each item in 
an array to reduce the array to a single value.

http://mng.bz/cS21


243Arrays

One option may be to create a new array every time you wish to create a new version of
such an object, and add the metadata properties and methods to it. Remember, we
can add properties and methods to an object as we please, including arrays. Generally,
however, this can be slow, not to mention tedious.

 Let’s examine the possibility of using a normal object and giving it the functionality
we desire. Methods that know how to deal with collections already exist on the Array
object; can we trick them into working on our own objects? Turns out that we can, as
shown in the following listing.

<body>
  <input id="first"/>
  <input id="second"/>
  <script>
    const elems = {
      length: 0,          
      add: function(elem){                       
        Array.prototype.push.call(this, elem);   
      },                                         
      gather: function(id){                    
        this.add(document.getElementById(id)); 
      },                                       
      find: function(callback){                          
        return Array.prototype.find.call(this, callback);
      }                                                  
    };
    
    elems.gather("first");                                          
    assert(elems.length === 1 && elems[0].nodeType,          
           "Verify that we have an element in our stash");  
    
    elems.gather("second");                                 
    assert(elems.length === 2 && elems[1].nodeType,          
           "Verify the other insertion");

    elems.find(elem => elem.id === "second");
    assert(found && found.id === "second", 
           "We've found our element");                 
  </script>
</body>

In this example, we create a “normal” object and instrument it to mimic some of the
behaviors of an array. First we define a length property to record the number of ele-
ments that are stored, just like an array. Then we define a method to add an element
to the end of the simulated array, calling this method add:

add: function(elem){                                        
  Array.prototype.push.call(this, elem);
}

Listing 9.13 Simulating array-like methods

Stores the count of 
elements. The array 
needs a place to store 
the number of items 
it’s storing.

Implements the method to 
add elements to a collection. 
The prototype for Array has a 
method to do this, so why not 
use it instead of reinventing 
the wheel?

Implements the gather method to 
find elements by their id values 
and add them to the collection

Implements the method
to find elements in the

collection. Similar to the
add method, it reuses

the existing find method
accessible to arrays.



244 CHAPTER 9 Dealing with collections

Rather than write our own code, we can use a native method of JavaScript arrays:
Array.prototype.push. 

 Normally, the Array.prototype.push method would operate on its own array via
its function context. But here, we’re tricking the method to use our object as its con-
text by using the call method (remember chapter 4) and forcing our object to be the
context of the push method. (Notice how we could’ve just as easily used the apply
method.) The push method, which increments the length property (thinking that it’s
the length property of an array), adds a numbered property to the object referencing
the passed element. In a way, this behavior is almost subversive (how fitting for nin-
jas!), but it exemplifies what we can do with mutable object contexts.

 The add method expects an element reference to be passed for storage. Although
sometimes we may have such a reference around, more often than not we won’t, so we
also define a convenience method, gather, that looks up the element by its id value
and adds it to storage:

gather: function(id){
  this.add(document.getElementById(id));
}

Finally, we also define a find method that lets us find an arbitrary item in our custom
object, by taking advantage of the built-in array find method:

find: function(callback){
  return Array.prototype.find.call(this, callback);
}

The borderline nefarious behavior we demonstrated in this section not only reveals
the power that malleable function contexts give us, but also shows how we can be
clever in reusing code that’s already written, instead of constantly reinventing the
wheel.

 Now that we’ve spent some time with arrays, let’s move on to two new types of col-
lections introduced by ES6: maps and sets.

9.2 Maps
Imagine that you’re a developer at freelanceninja.com, a site that wants to cater to a
more international audience. For each piece of text on the website—for example,
“Ninjas for hire”—you’d like to create a mapping to each targeted language, such as
“ レンタル用の忍者 ” in Japanese, “ 忍者出租 ” in Chinese, or “ 고용 닌자 ” in Korean
(let’s hope Google Translate has done an adequate job). These collections, which
map a key to a specific value, are called by different names in different programming
languages, but most often they’re known as dictionaries or maps. 

 But how do you efficiently manage this localization in JavaScript? One traditional
approach is to take advantage of the fact that objects are collections of named proper-
ties and values, and create something like the following dictionary:



245Maps

const dictionary = {
  "ja": {
    "Ninjas for hire": "レンタル用の忍者 "
  },
  "zh": {
    "Ninjas for hire": "忍者出租 "
  },
  "ko": {
    "Ninjas for hire":" 고용 닌자 "
  }
}
assert(dictionary.ja["Ninjas for hire"] === "レンタル用の忍者 ");

At first glance, this may seem like a perfectly fine approach to this problem, and for
this example, it isn’t half bad. But unfortunately, in general, you can’t rely on it. 

9.2.1 Don’t use objects as maps

Imagine that somewhere on our site we need to access the translation for the word
constructor, so we extend the dictionary example into the following code.

const dictionary = {
  "ja": {
    "Ninjas for hire": "レンタル用の忍者 "
  },
  "zh": {
    "Ninjas for hire": "忍者出租 "
  },
  "ko": {
    "Ninjas for hire":" 고용 닌자 "
  }
};

assert(dictionary.ja["Ninjas for hire"] === "レンタル用の忍者 ", 
      "We know how to say 'Ninjas for hire' in Japanese!");

assert(typeof dictionary.ja["constructor"] === "undefined",
       dictionary.ja["constructor"]);

We try to access the translation for the
word constructor—a word that we foolishly
forgot to define in our dictionary. Nor-
mally, in such a case, we’d expect the dic-
tionary to return undefined. But that isn’t
the result, as you can see in figure 9.12.

 As you can see, by accessing the
constructor property, we obtain the
following string:

"function Object() { [native code] }"

Listing 9.14 Objects have access to properties that weren’t explicitly defined

Figure 9.12 Running listing 9.14 shows that objects 
aren’t good maps, because they have access to prop-
erties that weren’t explicitly defined (through their 
prototypes).



246 CHAPTER 9 Dealing with collections

What’s with this? As you learned in chapter 7, all objects have prototypes; even if we
define new, empty objects as our maps, they still have access to the properties of the
prototype objects. One of those properties is constructor (recall that constructor is
the property of the prototype object that points back to the constructor function),
and it’s the culprit behind the mess we now have on our hands. 

 In addition, with objects, keys can only be string values; if you want to create a map-
ping for any other value, that value will be silently converted into a string without any-
one asking you anything! For example, imagine that we want to track some
information about HTML nodes, as in the following listing.

  <div id="firstElement"></div>                                    
  <div id="secondElement"></div>                                   
  <script>
    const firstElement = document.getElementById("firstElement");  
    const secondElement = document.getElementById("secondElement");

    const map = {};

    map[firstElement] = { data: "firstElement"};     
    assert(map[firstElement].data === "firstElement",
       "The first element is correctly mapped");     
    
    map[secondElement] = { data: "secondElement"};     
    assert(map[secondElement].data === "secondElement",
       "The second element is correctly mapped");      

    assert(map[firstElement].data === "firstElement",
       "But now the firstElement is overriden!");    
  </script>

In listing 9.15, we create two HTML elements, firstElement and secondElement,
which we then fetch from the DOM by using the document.getElementById method.
In order to create a mapping that will store additional information about each ele-
ment, we define a plain old JavaScript object:

const map = {};

Then we use the HTML element as a key for our mapping object and associate some
data with it:

map[firstElement] = { data: "firstElement"}

Listing 9.15 Mapping values to HTML nodes with objects

Defines two HTML elements and
fetches them by using the built-in

document.getElementById method

Defines an
object that we’ll
use as a map to
store additional

information
about our HTML

elements Stores information about the first element,
and checks that it was correctly stored

Stores information
about the second

element, and checks
that it was correctly

stored The mapping 
for the first 
element is 
now invalid!



247Maps

And we check that we can retrieve that data. Because that works as it should, we repeat
the entire process for the second element:

map[secondElement] = { data: "secondElement"};

Again, everything looks hunky dory; we’ve successfully associated some data with our
HTML element. But a problem occurs if we decide to revisit the first element:

map[firstElement].data

It would be normal to assume that
we’d again obtain the information
about the first element, but this isn’t
the case. Instead, as figure 9.13 shows,
the information about the second ele-
ment is returned. 

 This happens because with objects,
keys are stored as strings. This means
when we try to use any non-string value,
such as an HTML element, as a property
of an object, that value is silently con-
verted to a string by calling its toString
method. Here, this returns the string
"[object HTMLDivElement]", and the
information about the first element is stored as the value of the [object HTMLDiv-
Element] property. 

 Next, when we try to create a mapping for the second element, a similar thing hap-
pens. The second element, which is also an HTML div element, is also converted to a
string, and its additional data is also assigned to the [object HTMLDivElement] prop-
erty, overriding the value we set for the first element.

 For these two reasons—properties inherited through prototypes and support for
string-only keys—plain objects generally aren’t useful as maps. Due to this limitation,
the ECMAScript committee has specified a completely new type: Map.

9.2.2 Creating our first map

Creating maps is easy: We use a new, built-in Map constructor. Look at the following
example.

NOTE Maps are a part of the ES6 standard. For current browser
compatibility, see: http://mng.bz/JYYM.

Figure 9.13 Running the code from listing 9.15 
shows that objects are converted to strings if we try 
to use them as object properties.

http://mng.bz/JYYM


248 CHAPTER 9 Dealing with collections

  const ninjaIslandMap = new Map();
  
  const ninja1 = { name: "Yoshi"};  
  const ninja2 = { name: "Hattori"}; 
  const ninja3 = { name: "Kuma"};   

  ninjaIslandMap.set(ninja1, { homeIsland: "Honshu"});  
  ninjaIslandMap.set(ninja2, { homeIsland: "Hokkaido"});

  assert(ninjaIslandMap.get(ninja1).homeIsland === "Honshu",  
        "The first mapping works");                           
  assert(ninjaIslandMap.get(ninja2).homeIsland === "Hokkaido",
         "The second mapping works");                         

  assert(ninjaIslandMap.get(ninja3) === undefined,  
        "There is no mapping for the third ninja!");

  assert(ninjaIslandMap.size === 2,   
        "We've created two mappings");

  assert(ninjaIslandMap.has(ninja1)                   
      && ninjaIslandMap.has(ninja2),                  
         "We have mappings for the first two ninjas");
  assert(!ninjaIslandMap.has(ninja3),                 
        "But not for the third ninja!");              

  ninjaIslandMap.delete(ninja1);                  
  assert(!ninjaIslandMap.has(ninja1)              
      && ninjaIslandMap.size() === 1,             
       "There's no first ninja mapping anymore!");

  ninjaIslandMap.clear();                  
  assert(ninjaIslandMap.size === 0,        
         "All mappings have been cleared");

In this example, we create a new map by calling the built-in Map constructor:

const ninjaIslandMap = new Map();

Next, we create three ninja objects, cleverly called ninja1, ninja2, and ninja3. We
then use the built-in map set method:

ninjaIslandMap.set(ninja1, { homeIsland: "Honshu"});

This creates a mapping between a key—in this case, the ninja1 object—and a value—
in this case, an object carrying the information about the ninja’s home island. We do
this for the first two ninjas, ninja1 and ninja2. 

Listing 9.16 Creating our first map

Uses the Map constructor 
to create a map

Defines three 
ninja objects

Creates a mapping for the 
first two ninja objects by 
using the map set method

Gets the mapping 
for the first two 
ninja objects by 
using the map get 
method

Checks that there’s no mapping 
for the third ninja

Checks that the map contains mappings for the 
first two ninjas, but not for the third one!

Uses the has method to 
check whether a mapping 
for a particular key exists

Uses the delete method 
to delete a key from the 
map

Uses the clear method to 
completely clear the map



249Maps

 In the next step, we obtain the mapping for the first two ninjas by using another
built-in map method, get:

  assert(ninjaIslandMap.get(ninja1).homeIsland === "Honshu",
        "The first mapping works");

The mapping of course exists for
the first two ninjas, but it doesn’t
exist for the third ninja, because we
haven’t used the third ninja as an
argument to the set method. The
current state of the map is shown in
figure 9.14.

 In addition to get and set meth-
ods, every map also has a built-in
size property and has and delete
methods. The size property tells us
how many mappings we’ve created.
In this case, we’ve created only two
mappings. 

 The has method, on the other
hand, notifies us whether a map-
ping for a particular key already exists:

ninjaIslandMap.has(ninja1); //true
ninjaIslandMap.has(ninja3); //false

The delete method enables us to remove items from our map:

ninjaIslandMap.delete(ninja1);

One of the fundamental concepts when dealing with maps is determining when two
map keys are equal. Let’s explore this concept.

KEY EQUALITY

If you come from a bit more traditional background, such as C#, Java, or Python, you
may be surprised by the next example.

const map = new Map();
const currentLocation = location.href;

const firstLink = new URL(currentLocation); 
const secondLink = new URL(currentLocation);

map.set(firstLink, { description: "firstLink"});  
map.set(secondLink, { description: "secondLink"});

Listing 9.17 Key equality in maps 

Uses the built-in location.href property 
to get the current page URL

Creates two links to 
the current page

Adds a mapping 
for both links

Keys

name:
 "Yoshi"

Ninja1 

Ninja2

homeIsland: 
 "Hokkaido"

name:
 "Hattori"

homeIsland: 
 "Honshu"

Values

Map

Figure 9.14 A map is a collection of key-value pairs, 
where a key can be anything—even another object.



250 CHAPTER 9 Dealing with collections

assert(map.get(firstLink).description === "firstLink",   
      "First link mapping" );                            
assert(map.get(secondLink).description === "secondLink", 
       "Second link mapping");                           
assert(map.size === 2, "There are two mappings");        

In listing 9.17, we use the built-in
location.href property to obtain the
URL of the current page. Next, by
using the built-in URL constructor, we
create two new URL objects that link to
the current page. We then associate a
description object with each link.
Finally, we check that the correct map-
pings have been created, as shown in
figure 9.15. 

 People who have mostly worked in
JavaScript may not find this result
unexpected: We have two different
objects for which we create two differ-
ent mappings. But notice that the two URL objects, even though they’re separate
objects, still point to the same URL location: the location of the current page. We
could argue that, when creating mappings, these two objects should be considered
equal. But in JavaScript, we can’t overload the equality operator, and the two objects,
even though they have the same content, are always considered different. This isn’t
the case with other languages, such as Java and C#, so be careful!

9.2.3 Iterating over maps

So far, you’ve seen some of the advantages of maps: You can be sure they contain only
items that you put in them, and you can use anything as a key. But there’s more!

 Because maps are collections, there’s nothing stopping us from iterating over
them with for...of loops. (Remember, we used the for...of loop to iterate over val-
ues created by generators in chapter 6.) You’re also guaranteed that these values will
be visited in the order in which they were inserted (something we can’t rely on when
iterating over objects using the for...in loop). Let’s look at the following example.

const directory = new Map();  

directory.set("Yoshi", "+81 26 6462");    
directory.set("Kuma", "+81 52 2378 6462");
directory.set("Hiro", "+81 76 277 46");   

Listing 9.18 Iterating over maps

Each link gets its own 
mapping, even though 
they point to the same 
page.

Creates a new map, just 
as we’ve done so far

Creates a ninja directory that 
stores each ninja’s phone number

Figure 9.15 If we run the code from listing 9.17, we 
can see that key equality in maps is based on object 
equality.



251Sets

for(let item of directory){                    
  assert(item[0] !== null, "Key:" + item[0]);  
  assert(item[1] !== null, "Value:" + item[1]);
}                                              

for(let key of directory.keys()){      
  assert(key !== null, "Key:" + key);  
  assert(directory.get(key) != null,   
        "Value:" + directory.get(key));
}                                      

for(var value of directory.values()){      
  assert(value !== null, "Value:" + value);
}                                          

As the previous listing shows, once we’ve created a mapping, we can easily iterate over
it using the for...of loop:

for(var item of directory){            
  assert(item[0] !== null, "Key:" + item[0]);
  assert(item[1] !== null, "Value:" + item[1]);
}

In each iteration, this gives a two-item array, where the first item is a key and the sec-
ond item is the value of an item from our directory map. We can also use the keys and
values methods to iterate over, well, keys and values contained in a map.

 Now that we’ve looked at maps, let’s visit another newcomer to JavaScript: sets,
which are collections of unique items.

9.3 Sets
In many real-world problems, we have to deal with collections of distinct items (mean-
ing each item can’t appear more than once) called sets. Up to ES6, this was something
you had to implement yourself by mimicking sets with standard objects. For a crude
example, see the next listing.

function Set(){
  this.data = {};         
  this.length = 0;        
}

Set.prototype.has = function(item){                 
  return typeof this.data[item] !== "undefined";    
};

Set.prototype.add = function(item){
  if(!this.has(item)){                
    this.data[item] = true;           
    this.length++;                    
  }                                   
};

Listing 9.19 Mimicking sets with objects

Iterates over each item in a dictionary 
using the for...of loop. Each item is a 
two-item array: a key and a value.

We can also iterate over 
keys using the built-in 
keys method…

…and over values using the 
built-in values method.

Uses an object 
to store items

Checks whether the 
item is already stored

Adds an item only 
if it isn’t already 
contained in the set



252 CHAPTER 9 Dealing with collections

Set.prototype.remove = function(item){  
  if(this.has(item)){                   
    delete this.data[item];             
    this.length--;                      
  }                                     
};                                      

const ninjas = new Set();                
ninjas.add("Hattori");                 
ninjas.add("Hattori");                 

assert(ninjas.has("Hattori") && ninjas.length === 1, 
       "Our set contains only one Hattori");         

ninjas.remove("Hattori");                            
assert(!ninjas.has("Hattori") && ninjas.length === 0,
       "Our set is now empty");                      

Listing 9.19 shows a simple example of how sets can be mimicked with objects. We use
a data-storage object, data, to keep track of our set items, and we expose three meth-
ods: has, which checks whether an item is already contained in the set; add, which
adds an item only if the same item isn’t already contained in the set; and remove,
which removes an already-contained item from the set.

 But this is a poor doppelganger. Because with maps, you can’t really store objects—
only strings and numbers—and there’s always the risk of accessing prototype objects.
For these reasons, the ECMAScript committee decided to introduce a completely new
type of collection: sets. 

9.3.1 Creating our first set

The cornerstone of creating sets is the newly introduced constructor function, conve-
niently named Set. Let’s look at an example.

const ninjas = new Set(["Kuma", "Hattori", "Yagyu", "Hattori"]); 

assert(ninjas.has("Hattori"), "Hattori is in our set");              
assert(ninjas.size === 3, "There are only three ninjas in our set!");

NOTE Sets are a part of the ES6 standard. For current browser
compatibility, see http://mng.bz/QRTS. 

Listing 9.20 Creating a set

Removes an item if 
it’s already contained 
in the set

Tries to add 
Hattori twice

Checks that Hattori 
was added only once

Removes Hattori and 
checks that he was 
removed from the set

The Set constructor can take an array of
items with which the set is initialized.

Discards any duplicate items

http://mng.bz/QRTS


253Sets

assert(!ninjas.has("Yoshi"), "Yoshi is not in, yet..");        
ninjas.add("Yoshi");                                           
assert(ninjas.has("Yoshi"), "Yoshi is added");                 
assert(ninjas.size === 4, "There are four ninjas in our set!");

assert(ninjas.has("Kuma"), "Kuma is already added");         
ninjas.add("Kuma");                                          
assert(ninjas.size === 4, "Adding Kuma again has no effect");

for(let ninja of ninjas) {             
  assert(ninja !== null, ninja);       
}                                      

Here we use the built-in Set constructor to create a new ninjas set that will contain
distinct ninjas. If we don’t pass in any arguments, an empty set is created. We can also
pass in an array, such as this, which pre-fills the set:

new Set(["Kuma", "Hattori", "Yagyu", "Hattori"]);

As we already mentioned, sets are collections of unique items, and their primary pur-
pose is to stop us from storing multiple occurrences of the same object. In this case,
this means "Hattori", which we tried to add twice, is added only once. 

 A number of methods are accessible from every set. For example, the has method
checks whether an item is contained in the set:

ninjas.has("Hattori")

and the add method is used to add
unique items to the set:

ninjas.add("Yoshi");

If you’re curious about how many items
are in a set, you can always use the size
property.

 Similar to maps and arrays, sets are
collections, so we can iterate over
them with a for...of loop. As you
can see in figure 9.16, the items are
always iterated over in the order in
which they were inserted.

 Now that we’ve gone through the
basics of sets, let’s visit some common
operations on sets: unions, intersec-
tions, and differences.

9.3.2 Union of sets

A union of two sets, A and B, creates a new set that contains all elements from both A
and B. Naturally, each item can’t occur more than once in the new set. 

We can add new 
items that aren’t 
already contained 
in the set.

Adding existing 
items has no effect.

Iterates through the 
set with a for...of loop

Figure 9.16 Running the code from listing 9.20 
shows that the items in a set are iterated over in 
the order in which they were inserted.



254 CHAPTER 9 Dealing with collections

const ninjas = ["Kuma", "Hattori", "Yagyu"];
const samurai = ["Hattori", "Oda", "Tomoe"];

const warriors = new Set([...ninjas, ...samurai]);

assert(warriors.has("Kuma"), "Kuma is here");              
assert(warriors.has("Hattori"), "And Hattori");            
assert(warriors.has("Yagyu"), "And Yagyu");                
assert(warriors.has("Oda"), "And Oda");                    
assert(warriors.has("Tomoe"), "Tomoe, last but not least");

assert(warriors.size === 5, "There are 5 warriors in total");

We first create an array of ninjas and an array of samurai. Notice that Hattori is lead-
ing a busy life: samurai by day, ninja by night. Now imagine that we need to create a
collection of people whom we can call to arms if a neighboring daimyo decides that
his province is a bit cramped. We create a new set, warriors, that includes all ninjas
and all samurai. Hattori is in both collections, but we want to include him only once—
it’s not like two Hattoris will respond to our call. 

 In this case, a set is perfect! We don’t need to manually keep track of whether an item
has been already included: The set takes care of that by itself, automatically. When cre-
ating this new set, we use the spread operator [...ninjas, ...samurai] (remember
chapter 3) to create a new array that contains all ninjas and all samurai. In case you’re
wondering, Hattori is present twice in this new array. But when we finally pass that array
to the Set constructor, Hattori is included only once, as shown in figure 9.17.

Listing 9.21 Using sets to perform a union of collections
Creates an array of ninjas and 
samurai. Notice that Hattori is 
both a ninja and a samurai.

Creates a new set of 
warriors by spreading 
ninjas and samurai

All the ninjas 
and samurai are 
included in the 
new warriors set.

There are no duplicates in the new set. Even though Hattori is
in both the ninjas and samurai sets, he is included only once.

ninjas=["Kuma", "Hattori", "Yagyu"]

"Kuma"
Create two
arrays.

Merge them into
one array with the
spread operator.

"Hattori" "Yagyu"

new Set([…ninjas, …samurai])

"Kuma" "Hattori" "Yagyu"

samurai=["Hattori", "Oda", "Tomoe"]

"Hattori" "Oda" "Tomoe"

"Hattori" "Oda" "Tomoe"

"Oda" "Tomoe"

"Kuma"

Create a set from
the merged array.
This will remove
all duplicates!

"Hattori" "Yagyu"

[…ninjas, …samurai]

ninjas samurai

Figure 9.12 A union of two sets keeps the items from both collections (without duplicates).



255Sets

9.3.3 Intersection of sets

The intersection of two sets, A and B, creates a set that contains elements of A that are
also in B. For example, we can find ninjas that are also samurai, as shown next.

const ninjas = new Set(["Kuma", "Hattori", "Yagyu"]);         
const samurai = new Set(["Hattori", "Oda", "Tomoe"]);       

const ninjaSamurais = new Set(
  [...ninjas].filter(ninja => samurai.has(ninja))
);

assert(ninjaSamurais.size === 1, "There's only one ninja samurai");
assert(ninjaSamurais.has("Hattori"), "Hattori is his name");

The idea behind listing 9.22 is to create a new set that contains only ninjas who are
also samurai. We do this by taking advantage of the array’s filter method, which, as
you’ll remember, creates a new array that contains only the items that match a certain
criterion. In this case, the criterion is that the ninja is also a samurai (is contained in
the set of samurai). Because the filter method can only be used on arrays, we have
to turn the ninjas set into an array by using the spread operator:

[...ninjas]

Finally, we check that we’ve found only one ninja who’s also a samurai: the Jack of all
trades, Hattori.

9.3.4 Difference of sets

The difference of two sets, A and B, contains all elements that are in set A but are not in
set B. As you might guess, this is similar to the intersection of sets, with one small but
significant difference. In the next listing, we want to find only true ninjas (not those
who also moonlight as samurai).

const ninjas = new Set(["Kuma", "Hattori", "Yagyu"]);         
const samurai = new Set(["Hattori", "Oda", "Tomoe"]);       

const pureNinjas = new Set(
  [...ninjas].filter(ninja => !samurai.has(ninja))
);

assert(pureNinjas.size === 2, "There's only one ninja samurai");
assert(pureNinjas.has("Kuma"), "Kuma is a true ninja");
assert(pureNinjas.has("Yagyu"), "Yagyu is a true ninja");

The only change is to specify that we care only about the ninjas who are not also samu-
rai, by putting an exclamation mark (!) before the samurai.has(ninja) expression.

Listing 9.22 Intersection of sets

Listing 9.23 Difference of sets 

Uses the spread operator to turn 
our set into an array so we can 
use the array’s filter method to 
keep only ninjas that are 
contained in the samurai set

With set difference, 
we care only about 
ninjas who are not 
samurai!



256 CHAPTER 9 Dealing with collections

9.4 Summary
■ Arrays are a special type of object with a length property and Array.prototype

as their prototype.
■ We can create new arrays using the array literal notation ([]) or by calling the

built-in Array constructor.
■ We can modify the contents of an array using several methods accessible from

array objects:
– The built-in push and pop methods add items to and remove items from the

end of the array.
– The built-in shift and unshift methods add items to and remove items

from the beginning of the array.
– The built-in splice method can be used to remove items from and add items

to arbitrary array positions.
■ All arrays have access to a number of useful methods:

– The map method creates a new array with the results of calling a callback on
every element.

– The every and some methods determine whether all or some array items sat-
isfy a certain criterion.

– The find and filter methods find array items that satisfy a certain condi-
tion.

– The sort method sorts an array.
– The reduce method aggregates all items in an array into a single value.

■ You can reuse the built-in array methods when implementing your own objects
by explicitly setting the method call context with the call or apply method.

■ Maps and dictionaries are objects that contain mappings between a key and a
value.

■ Objects in JavaScript are lousy maps because you can only use string values as
keys and because there’s always the risk of accessing prototype properties.
Instead, use the new built-in Map collection.

■ Maps are collections and can be iterated over using the for...of loop.
■ Sets are collections of unique items.

9.5 Exercises
1 What will be the content of the samurai array, after running the following code?

const samurai = ["Oda", "Tomoe"];
samurai[3] = "Hattori";

2 What will be the content of the ninjas array, after running the following code?

const ninjas = [];

ninjas.push("Yoshi");



257Exercises

ninjas.unshift("Hattori");

ninjas.length = 3;

ninjas.pop();

3 What will be the content of the samurai array, after running the following code?

const samurai = [];

samurai.push("Oda");
samurai.unshift("Tomoe");
samurai.splice(1, 0, "Hattori", "Takeda");
samurai.pop();

4 What will be stored in variables first, second, and third, after running the fol-
lowing code?

const ninjas = [{name:"Yoshi", age: 18}, 
             {name:"Hattori", age: 19}, 
             {name:"Yagyu", age: 20}];

const first = persons.map(ninja => ninja.age);
const second = first.filter(age => age % 2 == 0);
const third = first.reduce((aggregate, item) =>  aggregate + item, 0);

5 What will be stored in variables first and second, after running the following
code?

const ninjas = [{ name: "Yoshi", age: 18 },
               { name: "Hattor", age: 19 }, 
               { name: "Yagyu", age: 20 }];

const first = ninjas.some(ninja => ninja.age % 2 == 0);
const second = ninjas.every(ninja => ninja.age % 2 == 0);

6 Which of the following assertions will pass?

const samuraiClanMap = new Map();

const samurai1 = { name: "Toyotomi"};
const samurai2 = { name: "Takeda"};
const samurai3 = { name: "Akiyama"};

const oda = { clan: "Oda"};
const tokugawa = { clan: "Tokugawa"};
const takeda ={clan: "Takeda"};

samuraiClanMap.set(samurai1, oda);
samuraiClanMap.set(samurai2, tokugawa);
samuraiClanMap.set(samurai2, takeda);



258 CHAPTER 9 Dealing with collections

assert(samuraiClanMap.size === 3, "There are three mappings");
assert(samuraiClanMap.has(samurai1), "The first samurai has a mapping");
assert(samuraiClanMap.has(samurai3), "The third samurai has a mapping");

7 Which of the following assertions will pass?

const samurai = new Set("Toyotomi", "Takeda", "Akiyama", "Akiyama");
assert(samurai.size === 4, "There are four samurai in the set");

samurai.add("Akiyama");
assert(samurai.size === 5, "There are five samurai in the set");

assert(samurai.has("Toyotomi", "Toyotomi is in!");
assert(samurai.has("Hattori", "Hattori is in!"); 



259

Wrangling regular expressions

Regular expressions are a necessity of modern development. There, we said it.
Although many a web developer could go through life happily ignoring regular
expressions, some problems that need to be solved in JavaScript code can’t be
addressed elegantly without regular expressions.

 Sure, there may be other ways to solve the same problems. But frequently, some-
thing that might take a half-screen of code can be distilled down to a single state-
ment with the proper use of regular expressions. All JavaScript ninjas need regular
expressions as an essential part of their toolkits.

 Regular expressions trivialize the process of tearing apart strings and looking
for information. Everywhere you look in mainstream JavaScript libraries, you’ll see
the prevalent use of regular expressions for various spot tasks:

■ Manipulating strings of HTML nodes
■ Locating partial selectors within a CSS selector expression
■ Determining whether an element has a specific class name

This chapter covers
■ A refresher on regular expressions
■ Compiling regular expressions
■ Capturing with regular expressions
■ Working with frequently encountered idioms



260 CHAPTER 10 Wrangling regular expressions

■ Input validation
■ And more

Let’s start by looking at an example.

TIP Becoming fluent in regular expressions requires a lot of practice. You might
find a site such as JS Bin (http://jsbin.com) handy for playing around with exam-
ples. A couple of sites are dedicated to regular expression testing, such as the Reg-
ular Expression Test Page for JavaScript (www.regexplanet.com/advanced/
javascript/index.html) and regex101 (www.regex101.com/#javascript).
regex101 is an especially useful site for beginners, because it also automatically
generates explanations for the targeted regular expression.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When would you prefer to use a RegExp literal over a
RegExp object? 

Do you know? What is sticky matching, and how do you enable it? 
How does matching differ when using a global versus a

non-global regular expression? 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1 Why regular expressions rock
Let’s say we want to validate that a string, perhaps entered into a form by a website
user, follows the format for a nine-digit U.S. postal code. We all know that the U.S.
Postal Service has little sense of humor and insists that a postal code (also known as a
ZIP code) follows this specific format:

99999-9999

Each 9 represents a decimal digit, and the format is 5 decimal digits, followed by a
hyphen, followed by 4 decimal digits. If you use any other format, your package or let-
ter gets diverted into the black hole of the hand-sorting department, and good luck
predicting how long it will take to emerge again.

 Let’s create a function that, given a string, verifies that the U.S. Postal Service will
stay happy. We could resort to performing a comparison on each character, but we’re
a ninja and that’s too inelegant a solution, resulting in a lot of needless repetition.
Rather, consider the following solution.

function isThisAZipCode(candidate) {
  if (typeof candidate !== "string" ||          
      candidate.length != 10) return false;     
  for (let n = 0; n < candidate.length; n++) {
    let c = candidate[n];

Listing 10.1 Testing for a specific pattern in a string

Short-circuits obviously 
bogus candidates

http://www.regexplanet.com/advanced/javascript/index.html
http://www.regexplanet.com/advanced/javascript/index.html
http://jsbin.com
http://www.regex101.com/#javascript


261A regular expression refresher

    switch (n) {                              
      case 0: case 1: case 2: case 3: case 4:
      case 6: case 7: case 8: case 9:
        if (c < '0' || c > '9') return false;
        break;
      case 5:
        if (c != '-') return false;
        break;
    }
  }
  return true;                     
}

This code takes advantage of the fact that we have only two checks to make, depend-
ing on the position of the character within the string. We still need to perform up to
nine comparisons at runtime, but we have to write each comparison only once.

 Even so, would anyone consider this solution elegant? It’s more elegant than the
brute-force, noniterative approach, but it still seems like an awful lot of code for such
a simple check. Now consider this approach:

function isThisAZipCode(candidate) {
  return /^\d{5}-\d{4}$/.test(candidate);
}

Except for some esoteric syntax in the body of the function, that’s a lot more succinct
and elegant, no? That’s the power of regular expressions, and it’s just the tip of the
iceberg. Don’t worry if that syntax looks like someone’s pet iguana walked across the
keyboard; we’re about to recap regular expressions before you learn how to use them
in ninja-like fashion on your pages.

10.2 A regular expression refresher
Much as we’d like to, we can’t offer you an exhaustive tutorial on regular expressions
in the space we have. After all, entire books have been dedicated to regular expres-
sions. But we’ll do our best to hit all the important points.

 For more detail than we can offer in this chapter, the books Mastering Regular
Expressions by Jeffrey E. F. Friedl, Introducing Regular Expressions by Michael Fitzgerald,
and Regular Expressions Cookbook by Jan Goyvaerts and Steven Levithan, all from
O’Reilly, are popular choices.

 Let’s dig in.

10.2.1 Regular expressions explained

The term regular expression stems from mid-century mathematics, when a
mathematician named Stephen Kleene described models of computational automata
as “regular sets.” But that won’t help us understand anything about regular
expressions, so let’s simplify things and say that a regular expression is a way to express
a pattern for matching strings of text. The expression itself consists of terms and

Performs tests based 
on character index

If all succeeds, 
we’re good!



262 CHAPTER 10 Wrangling regular expressions

operators that allow us to define these patterns. We’ll see what those terms and
operators consist of shortly.

 In JavaScript, as with most other object types, we have two ways to create a regular
expression:

■ Via a regular expression literal
■ By constructing an instance of a RegExp object

For example, if we want to create a mundane regular expression (or regex, for short)
that matches the string test exactly, we could do so with a regex literal:

const pattern = /test/;

That might look strange, but regex literals are delimited with forward slashes in the
same way that string literals are delimited with quote characters.

 Alternatively, we could construct a RegExp instance, passing the regex as a string:

const pattern = new RegExp("test");  

Both formats result in the same regex being created in the variable pattern.

TIP The literal syntax is preferred when the regex is known at development
time, and the constructor approach is used when the regex is constructed at
runtime by building it up dynamically in a string.

One of the reasons that the literal syntax is preferred over expressing regexes in a
string is that (as you’ll soon see) the backslash character plays an important part in
regular expressions. But the backslash character is also the escape character for string
literals, so to express a backslash within a string literal, we need to use a double back-
slash (\\). This can make regular expressions, which already possess a cryptic syntax,
even more odd-looking when expressed within strings.

 In addition to the expression itself, five flags can be associated with a regex:

■ i—Makes the regex case-insensitive, so /test/i matches not only test, but also
Test, TEST, tEsT, and so on.

■ g—Matches all instances of the pattern, as opposed to the default of local, which
matches only the first occurrence. More on this later.

■ m—Allows matches across multiple lines, as might be obtained from the value of
a textarea element.

■ y—Enables sticky matching. A regular expression performs sticky matching in
the target string by attempting to match from the last match position.

■ u—Enables the use of Unicode point escapes (\u{...}).

These flags are appended to the end of the literal (for example, /test/ig) or passed
in a string as the second parameter to the RegExp constructor (new RegExp("test",
"ig")).



263A regular expression refresher

 Matching the exact string test (even in a case-insensitive manner) isn’t interest-
ing—after all, we can do that particular check with a simple string comparison. So let’s
take a look at the terms and operators that give regular expressions their immense
power to match more compelling patterns.

10.2.2 Terms and operators

Regular expressions, like most other expressions we’re familiar with, are made up of
terms and operators that qualify those terms. In the sections that follow, you’ll see how
these terms and operators can be used to express patterns.

EXACT MATCHING

Any character that’s not a special character or operator (which we’ll introduce as we
go along) must appear literally in the expression. For example, in our /test/ regex,
four terms represent characters that must appear literally in a string for it to match
the expressed pattern. 

 Placing such characters one after the other implicitly denotes an operation that
means followed by. So /test/ means t followed by e followed by s followed by t. 

MATCHING FROM A CLASS OF CHARACTERS

Many times, we won’t want to match a specific literal character, but a character from a
finite set of characters. We can specify this with the set operator (also called the charac-
ter class operator) by placing the set of characters that we want to match in square
brackets: [abc].

 The preceding example signifies that we want to match any of the characters a, b,
or c. Note that even though this expression spans five characters (three letters and
two brackets), it matches only a single character in the candidate string.

 Other times, we want to match anything but a finite set of characters. We can specify
this by placing a caret character (^) right after the opening bracket of the set operator:

[^abc]

This changes the meaning to any character but a, b, or c.
 There’s one more invaluable variation to the set operation: the ability to specify a

range of values. For example, if we want to match any one of the lowercase characters
between a and m, we could write [abcdefghijklm]. But we can express that much
more succinctly as follows:

[a-m]

The dash indicates that all characters from a through m inclusive (and lexicographi-
cally) are included in the set.

ESCAPING

Not all characters represent their literal equivalent. Certainly all of the alphabetic and
decimal digit characters represent themselves, but as you’ll see, special characters such
as $ and the period (.) represent either matches to something other than themselves,



264 CHAPTER 10 Wrangling regular expressions

or operators that qualify the preceding term. In fact, you’ve already seen how the
[, ], -, and ^ characters are used to represent something other than their literal selves.

 How do we specify that we want to match a literal [ or $ or ^ or other special char-
acter? Within a regex, the backslash character escapes whatever character follows it,
making it a literal match term. So \[ specifies a literal match to the [ character, rather
than the opening of a character class expression. A double backslash (\\) matches a
single backslash.

BEGINS AND ENDS

Frequently, we may want to ensure that a pattern matches at the beginning of a string,
or perhaps at the end of a string. The caret character, when used as the first character
of the regex, anchors the match at the beginning of the string, such that /^test/
matches only if the substring test appears at the beginning of the string being
matched. (Note that this is an overload of the ^ character, because it’s also used to
negate a character class set.)

 Similarly, the dollar sign ($) signifies that the pattern must appear at the end of
the string:

/test$/

Using both ^ and $ indicates that the specified pattern must encompass the entire
candidate string:

/^test$/

REPEATED OCCURRENCES

If we want to match a series of four a characters, we might express that with /aaaa/,
but what if we want to match any number of the same character? Regular expressions
enable us to specify several repetition options:

■ To specify that a character is optional (it can appear either once or not at all),
follow it with ?. For example, /t?est/ matches both test and est.

■ To specify that a character should appear one or many times, use +, as in
/t+est/, which matches test, ttest, and tttest, but not est.

■ To specify that the character appears zero, one, or many times, use *, as in /t*est/,
which matches test, ttest, tttest, and est.

■ To specify a fixed number of repetitions, indicate the number of allowed repeti-
tions between braces. For example, /a{4}/ indicates a match on four consecu-
tive a characters.

■ To specify a range for the repetition count, indicate the range with a comma
separator. For example, /a{4,10}/ matches any string of 4 through 10 consecu-
tive a characters.

■ To specify an open-ended range, omit the second value in the range (but leave
the comma). The regex /a{4,}/ matches any string of four or more consecu-
tive a characters.



265A regular expression refresher

Any of these repetition operators can be greedy or nongreedy. By default, they’re greedy:
They will consume all the possible characters that make up a match. Annotating the
operator with a ? character (an overload of the ? operator), as in a+?, makes the oper-
ation nongreedy: It will consume only enough characters to make a match.

 For example, if we’re matching against the string aaa, the regular expression /a+/
would match all three a characters, whereas the nongreedy expression /a+?/ would
match only one a character, because a single a character is all that’s needed to satisfy
the a+ term.

PREDEFINED CHARACTER CLASSES

Some characters that we might want to match are impossible to specify with literal
characters (for example, control characters such as a carriage return). In addition,
often we might want to match character classes, such as a set of decimal digits, or a set
of whitespace characters. The regular expression syntax provides predefined terms
that represent these characters or commonly used classes so that we can use control-
character matching in our regular expressions and don’t need to resort to the charac-
ter class operator for commonly used sets of characters.

 Table 10.1 lists these terms and the character or set they represent. These pre-
defined sets help keep our regular expressions from looking excessively cryptic.

Table 10.1 Predefined character classes and character terms

Predefined term Matches

\t Horizontal tab

\b Backspace

\v Vertical tab

\f Form feed

\r Carriage return

\n Newline

\cA : \cZ Control characters

\u0000 : \uFFFF Unicode hexadecimal

\x00 : \xFF ASCII hexadecimal

. Any character, except for whitespace characters (\s)

\d Any decimal digit; equivalent to [0-9]

\D Any character but a decimal digit; equivalent to [^0-9]

\w Any alphanumeric character including underscore; equivalent to [A-Za-z0-9_]

\W Any character but alphanumeric and underscore characters; equivalent to 
[^A-Za-z0-9_]



266 CHAPTER 10 Wrangling regular expressions

GROUPING

So far, you’ve seen that operators (such as + and *) affect only the preceding term. If
we want to apply the operator to a group of terms, we can use parentheses for groups,
just as in a mathematical expression. For example, /(ab)+/ matches one or more con-
secutive occurrences of the substring ab.

 When a part of a regex is grouped with parentheses, it serves double duty, also cre-
ating what’s known as a capture. There’s a lot to captures, and we discuss them in more
depth in section 10.4.

ALTERNATION (OR)

Alternatives can be expressed using the pipe (|) character. For example: /a|b/
matches either the a or b character, and /(ab)+|(cd)+/ matches one or more occur-
rences of either ab or cd.

BACKREFERENCES

The most complex terms we can express in regular expressions are backreferences to
captures defined in the regex. We address captures at length in section 10.4, but for
now just think of them as the portions of a candidate string that are successfully
matched against terms in the regular expression. The notation for such a term is the
backslash followed by the number of the capture to be referenced, beginning with 1,
such as \1, \2, and so on.

 An example is /^([dtn])a\1/, which matches a string that starts with any of the d,
t, or n characters, followed by an a, followed by whatever character matches the first
capture. This latter point is important! This isn’t the same as /[dtn] a[dtn]/. The
character following the a can’t be any of d, or t, or n, but must be whichever one of
those triggers the match for the first character. As such, which character the \1 will
match can’t be known until evaluation time.

 A good example of where this might be useful is in matching XML-type markup
elements. Consider the following regex:

/<(\w+)>(.+)<\/\1>/

This allows us to match simple elements such as <strong>whatever</strong>. With-
out the ability to specify a backreference, this wouldn’t be possible, because we’d have
no way to know what closing tag would match the opening tag ahead of time.

\s Any whitespace character (space, tab, form feed, and so on)

\S Any character but a whitespace character

\b A word boundary

\B Not a word boundary (inside a word)

Table 10.1 Predefined character classes and character terms (continued)

Predefined term Matches



267Compiling regular expressions

TIP That was kind of a whirlwind crash course on regular expressions. If
they’re still making you pull your hair out and you find yourself bogged down
in the material that follows, we strongly recommend using one of the
resources mentioned earlier in this chapter.

Now that you have a handle on regular expressions, you’re ready to look at how to use
them wisely in your code.

10.3 Compiling regular expressions
Regular expressions go through multiple phases of processing, and understanding
what happens during each phase can help us optimize JavaScript code that uses regu-
lar expressions. The two main phases are compilation and execution. 

Compilation occurs when the regular expression is first created. Execution occurs
when we use the compiled regular expression to match patterns in a string.

 During compilation, the expression is parsed by the JavaScript engine and con-
verted into its internal representation (whatever that may be). This phase of parsing
and conversion must occur every time a regular expression is created (discounting
any internal optimizations performed by the browser).

 Frequently, browsers are smart enough to determine when identical regular expres-
sions are being used, and to cache the compilation results for that particular expres-
sion. But we can’t count on this being the case in all browsers. For complex
expressions, in particular, we can begin to get some noticeable speed improvements
by predefining (and thus precompiling) our regular expressions for later use.

 As we learned in our regular expression overview in the previous section, there are
two ways of creating a compiled regular expression in JavaScript: via a literal and via a
constructor. Let’s look at an example in the following listing.

  const re1 = /test/i;         
  const re2 = new RegExp("test", "i");                
  assert(re1.toString()=== "/test/i",
         "Verify the contents of the expression.");
  assert(re1.test("TesT"), "Yes, it's case-insensitive.");
  assert(re2.test("TesT"), "This one is too.");
  assert(re1.toString()=== re2.toString(),
        "The regular expressions are equal.");
  assert(re1 !== re2, "But they are different objects.");

In this example, both regular expressions are in their compiled state after creation. If
we were to replace every reference to re1 with the literal /test/i, it’s possible that the
same regex would be compiled time and time again, so compiling a regex once and
storing it in a variable for later reference can be an important optimization.

 Note that each regex has a unique object representation: Every time a regular
expression is created (and thus compiled), a new regular expression object is created.

Listing 10.2 Two ways to create a compiled regular expression

Creates a regex via a literal

Creates a regex via the constructor



268 CHAPTER 10 Wrangling regular expressions

This is unlike other primitive types (such as string, number, and so on), because the
result will always be unique.

 Of particular importance is the use of the constructor (new RegExp(...)) to create
a regular expression. This technique allows us to build and compile an expression
from a string that we can dynamically create at runtime. This can be immensely useful
for constructing complex expressions that will be heavily reused.

 For example, let’s say that we want to determine which elements within a docu-
ment have a particular class name, whose value we won’t know until runtime. Because
elements are capable of having multiple class names associated with them (inconve-
niently stored in a space-delimited string), this serves as an interesting example of
runtime, regular-expression compilation (see the following listing).

<div class="samurai ninja"></div>              
<div class="ninja samurai"></div>              
<div></div>                                    
<span class="samurai ninja ronin"></span>      
<script>
  function findClassInElements(className, type) {
    const elems =                       
      document.getElementsByTagName(type || "*");
    const regex =                              
      new RegExp("(^|\\s)" + className + "(\\s|$)");
    const results = [];
    for (let i = 0, length = elems.length; i < length; i++)
      if (regex.test(elems[i].className)) {           
        results.push(elems[i]);
      }
    return results;
  }
  assert(findClassInElements("ninja", "div").length === 2,
         "The right amount of div ninjas was found.");
  assert(findClassInElements("ninja", "span").length === 1,
         "The right amount of span ninjas was found.");
  assert(findClassInElements("ninja").length === 3,
         "The right amount of ninjas was found.");
</script>

We can learn several interesting things from listing 10.3. To start, we set up a number
of test-subject <div> and <span> elements with various combinations of class names.
Then we define our class-name checking function, which accepts as parameters the
class name for which we’ll check and the element type to check within.

 Then we collect all the elements of the specified type by using the getElementsBy-
TagName built-in method and set up our regular expression:

const regex = new RegExp("(^|\\s)" + className + "(\\s|$)");

Listing 10.3 Compiling a runtime regular expression for later use

Creates test subjects of 
various elements with 
various class names

Collects elements by type

Compiles a regex using 
the passed class nameStores the

results

Tests for regex matches



269Capturing matching segments

Note the use of the new RegExp() constructor to compile a regular expression based
on the class name passed to the function. This is an instance where we can’t use a
regex literal, as the class name for which we’ll search isn’t known in advance.

 We construct (and hence, compile) this expression once in order to avoid fre-
quent and unnecessary recompilation. Because the contents of the expression are
dynamic (based on the incoming className argument), we can realize major perfor-
mance savings by handling the expression in this manner.

 The regex itself matches either the beginning of the string or a whitespace charac-
ter, followed by the target class name, followed by either a whitespace character or the
end of the string. Notice the use of a double-escape (\\) within the new regex: \\s.
When creating literal regular expressions with terms including the backslash, we have
to provide the backslash only once. But because we’re writing these backslashes within
a string, we must double-escape them. This is a nuisance, to be sure, but one that we
must be aware of when constructing regular expressions in strings rather than literals.

 After the regex is compiled, using it to collect the matching elements is a snap via
the test method: 

regex.test(elems[i].className)

Preconstructing and precompiling regular expressions so that they can be reused
(executed) time and time again is a recommended technique that provides perfor-
mance gains that can’t be ignored. Virtually all complex regular expression situations
can benefit from the use of this technique.

 Earlier in this chapter, we mentioned that the use of parentheses in regular expres-
sions not only serves to group terms for operator application, but also creates captures.
Let’s find out more about that.

10.4 Capturing matching segments
The height of usefulness with respect to regular expressions is realized when we cap-
ture the results that are found so that we can do something with them. Determining
whether a string matches a pattern is an obvious first step and often all that we need,
but determining what was matched is also useful in many situations.

10.4.1 Performing simple captures

Say we want to extract a value that’s embedded in a complex string. A good example
of such a string is the value of the CSS transform property, through which we can mod-
ify the visual position of an HTML element.

<div id="square" style="transform:translateY(15px);"></div>
<script>
  function getTranslateY(elem){
    const transformValue = elem.style.transform;

Listing 10.4 A simple function for capturing an embedded value

Defines the 
test subject



270 CHAPTER 10 Wrangling regular expressions

    if(transformValue){
      const match = transformValue.match(/translateY\(([^\)]+)\)/); 
      return match ? match[1] : "";                                 
    }

    return "";
  }

  const square = document.getElementById("square");

  assert(getTranslateY(square) === "15px", 
         "We've extracted the translateY value");
</script>

We define an element that specifies the style that will translate its position by 15 px: 

"transform:translateY(15px);"

Unfortunately, the browser doesn’t offer an API for easily fetching the amount by
which the element is translated. So we create our own function:

function getTranslateY(elem){
    const transformValue = elem.style.transform;
    if(transformValue){
      const match = transformValue.match(/translateY\(([^\)]+)\)/);
      return match ? match[1] : "";  
    }
     return "";
   }

The transform parsing code may seem confusing at first:

const match = transformValue.match(/translateY\(([^\)]+)\)/); 
return match ? match[1] : "";

But it’s not too bad when we break it down. To start, we need to determine whether a
transform property even exists for us to parse. If not, we’ll return an empty string. If
the transform property is resident, we can get down to the opacity value extraction.
The match method of a regular expression returns an array of captured values if a
match is found, or null if no match is found. 

 The array returned by match includes the entire match in the first index, and then
each subsequent capture following. So the zeroth entry would be the entire matched
string of translateY(15px), and the entry at the next position would be 15px.

 Remember that the captures are defined by parentheses in the regular expression.
Thus, when we match the transform value, the value is contained in the [1] position
of the array, because the only capture we specified in our regex was created by the
parentheses that we embedded after the translateY portion of the regex.

 This example uses a local regular expression and the match method. Things
change when we use global expressions. Let’s see how.

Extracts the translateY
value from the string



271Capturing matching segments

10.4.2 Matching using global expressions

As we saw in the previous section, using a local regular expression (one without the
global flag) with the String object’s match methods returns an array containing
the entire matched string, along with any matched captures in the operation.

 But when we supply a global regular expression (one with the g flag included),
match returns something different. It’s still an array of results, but in the case of a
global regular expression, which matches all possibilities in the candidate string
rather than just the first match, the array returned contains the global matches; cap-
tures within each match aren’t returned in this case.

 We can see this in action in the following code and tests.

  const html = "<div class='test'><b>Hello</b> <i>world!</i></div>";
  const results = html.match(/<(\/?)(\w+)([^>]*?)>/);                 
  assert(results[0] === "<div class='test'>", "The entire match.");
  assert(results[1] === "", "The (missing) slash.");
  assert(results[2] === "div", "The tag name.");
  assert(results[3] === " class='test'", "The attributes.");
  
  const all = html.match(/<(\/?)(\w+)([^>]*?)>/g);               
  assert(all[0] === "<div class='test'>", "Opening div tag.");
  assert(all[1] === "<b>", "Opening b tag.");
  assert(all[2] === "</b>", "Closing b tag.");
  assert(all[3] === "<i>", "Opening i tag.");
  assert(all[4] === "</i>", "Closing i tag.");
  assert(all[5] === "</div>", "Closing div tag.");

We can see that when we do a local match, html.match(/<(\/?)(\w+)([^>]*?)>/), a
single instance is matched and the captures within that match are also returned. But
when we use a global match, html.match(/<(\/?)(\w+)([^>]*?)>/g), what’s
returned is the list of matches.

 If captures are important to us, we can regain this functionality while still perform-
ing a global search by using the regular expression’s exec method. This method can
be repeatedly called against a regular expression, causing it to return the next
matched set of information every time it’s called. A typical pattern for use is shown in
the following listing.

 const html = "<div class='test'><b>Hello</b> <i>world!</i></div>";
 const tag = /<(\/?)(\w+)([^>]*?)>/g; 
 let match, num = 0;
 while ((match = tag.exec(html)) !== null) {                
   assert(match.length === 4,
         "Every match finds each tag and 3 captures.");
   num++;
 }
 assert(num === 6, "3 opening and 3 closing tags found.");

Listing 10.5 Differences between global and local searches with match

Listing 10.6 Using the exec method to do both capturing and a global search

Matches using
a local regex

Matches using
a global regex

Repeatedly 
calls exec



272 CHAPTER 10 Wrangling regular expressions

In this example, we repeatedly call the exec method:  

while ((match = tag.exec(html)) !== null) {...} 

This retains state from the previous invocation so that each subsequent call progresses
to the next global match. Each call returns the next match and its captures.

 By using either match or exec, we can always find the exact matches (and captures)
that we’re looking for. But we’ll need to dig further if we want to refer to the captures
themselves within the regex.

10.4.3 Referencing captures

We can refer to portions of a match that we’ve captured in two ways: one within the
match itself, and one within a replacement string (where applicable). For example, let’s
revisit the match in listing 10.6 (in which we match an opening or closing HTML tag)
and modify it in the following listing to also match the inner contents of the tag itself.

const html = "<b class='hello'>Hello</b> <i>world!</i>";
const pattern = /<(\w+)([^>]*)>(.*?)<\/\1>/g;          
let match = pattern.exec(html);                   
assert(match[0] === "<b class='hello'>Hello</b>",
      "The entire tag, start to finish.");
assert(match[1] === "b", "The tag name.");
assert(match[2] === " class='hello'", "The tag attributes.");
assert(match[3] === "Hello", "The contents of the tag.");

match = pattern.exec(html);
assert(match[0] === "<i>world!</i>",
      "The entire tag, start to finish.");
assert(match[1] === "i", "The tag name.");
assert(match[2] === "", "The tag attributes.");
assert(match[3] === "world!", "The contents of the tag.");

We use \1 to refer to the first capture within the expression, which in this case is the
name of the tag. Using this information, we can match the appropriate closing tag,
referring to whatever the capture matched. (This all assumes, of course, that there
aren’t any embedded tags of the same name within the current tag, so this is hardly an
exhaustive example of tag matching.)

 Additionally, we can get capture references within the replace string of a call to the
replace method. Instead of using the backreference codes, as in listing 10.7, we use
the syntax of $1, $2, $3, up through each capture number. Here’s an example:

assert("fontFamily".replace(/([A-Z])/g, "-$1").toLowerCase() ===
       "font-family", "Convert the camelCase into dashed notation.");

Listing 10.7 Using backreferences to match the contents of an HTML tag

Uses capture backreference

Runs the pattern 
on the test string

Tests various 
captures that are 
captured by the 
defined pattern



273Capturing matching segments

In this code, the value of the first capture (in this case, the capital letter F) is refer-
enced in the replace string (via $1). This allows us to specify a replace string without
even knowing what its value will be until matching time. That’s a powerful ninja-esque
weapon to wield.

 The ability to reference regular-expression captures helps make a lot of code that
would otherwise be difficult, quite easy. The expressive nature that it provides ends up
allowing for some terse statements that could otherwise be rather obtuse, convoluted,
and lengthy.

 Because both captures and expression grouping are specified using parentheses,
there’s no way for the regular-expression processor to know which sets of parentheses
we added to the regex for grouping and which were intended to indicate captures. It
treats all sets of parentheses as both groups and captures, which can result in the cap-
ture of more information than we really intended, because we needed to specify some
grouping in the regex. What can we do in such cases?

10.4.4 Noncapturing groups

As we noted, parentheses serve a double duty: They not only group terms for opera-
tions, but also specify captures. This usually isn’t an issue, but in regular expressions in
which lots of grouping is going on, it could cause lots of needless capturing, which
may make sorting through the resulting captures tedious.

 Consider the following regex:

const pattern = /((ninja-)+)sword/;

Here, the intent is to create a regex that allows the prefix ninja- to appear one or
more times before the word sword, and we want to capture the entire prefix. This
regex requires two sets of parentheses:

■ The parentheses that define the capture (everything before the string sword)
■ The parentheses that group the text ninja- for the + operator

This all works fine, but it results in more than the single intended capture because of
the inner set of grouping parentheses.

 To indicate that a set of parentheses shouldn’t result in a capture, the regular
expression syntax lets us put the notation ?: immediately after the opening parenthe-
sis. This is known as a passive subexpression.

 Changing this regular expression to

const pattern = /((?:ninja-)+)sword/;

causes only the outer set of parentheses to create a capture. The inner parentheses
have been converted to a passive subexpression.

 To test this, take a look at the following code.



274 CHAPTER 10 Wrangling regular expressions

const pattern = /((?:ninja-)+)sword/;              
const ninjas = "ninja-ninja-sword".match(pattern);

assert(ninjas.length === 2,"Only one capture was returned.");
assert(ninjas[1] === "ninja-ninja-",
      "Matched both words, without any extra capture.");

Running these tests, we can see that the passive subexpression /((?:ninja-)+)sword/
prevents unnecessary captures.

 Wherever possible in our regular expressions, we should strive to use noncapturing
(passive) groups in place of capturing when the capture is unnecessary, so that the
expression engine will have much less work to do in remembering and returning the
captures. If we don’t need captured results, there’s no need to ask for them! The price
that we pay is that already-complex regular expressions can become a tad more cryptic.

 Now let’s turn our attention to another way that regular expressions give us ninja
powers: using functions with the String object’s replace method.

10.5 Replacing using functions
The replace method of the String object is a powerful and versatile method, which
we saw used briefly in our discussion of captures. When a regular expression is pro-
vided as the first parameter to replace, it will cause a replacement on a match (or
matches if the regex is global) to the pattern rather than on a fixed string. 

 For example, let’s say that we want to replace all uppercase characters in a string
with X. We could write the following:

"ABCDEfg".replace(/[A-Z]/g,"X")

This results in a value of XXXXXfg. Nice.
 But perhaps the most powerful feature presented by replace is the ability to pro-

vide a function as the replacement value rather than a fixed string.
 When the replacement value (the second argument) is a function, it’s invoked for

each match found (remember that a global search will match all instances of the pat-
tern in the source string) with a variable list of parameters:

■ The full text of the match
■ The captures of the match, one parameter for each
■ The index of the match within the original string
■ The source string

The value returned from the function serves as the replacement value.
 This provides a tremendous amount of leeway to determine what the replacement

string should be at runtime, with lots of information regarding the nature of the
match at our fingertips. For example, in the following listing, we use the function to

Listing 10.8 Grouping without capturing

Uses a passive 
subexpression



275Replacing using functions

provide a dynamic replacement value for converting a string with words separated by
dashes to its camel-cased equivalent.

 function upper(all,letter) { return letter.toUpperCase(); }
 assert("border-bottom-width".replace(/-(\w)/g,upper) 
       === "borderBottomWidth",
      "Camel cased a hyphenated string.");

Here, we provide a regex that matches any character preceded by a dash character. A
capture in the global regex identifies the character that was matched (without the
dash). Each time the function is called (twice in this example), it’s passed the full
match string as the first argument, and the capture (only one for this regex) as the
second argument. We aren’t interested in the rest of the arguments, so we didn’t spec-
ify them.

 The first time the function is called, it’s passed -b and b; and the second time it’s
called, it’s passed -w and w. In each case, the captured letter is uppercased and
returned as the replacement string. We end up with -b replaced by B and with -w
replaced by W.

 Because a global regex will cause such a replace function to be executed for every
match in a source string, this technique can even be extended beyond doing rote
replacements. We can use the technique as a means of string traversal, instead of
doing the exec()-in-a-while-loop technique that we saw earlier in this chapter.

 For example, let’s say that we’re looking to take a query string and convert it to an
alternative format that suits our purposes. We’d turn a query string such as

foo=1&foo=2&blah=a&blah=b&foo=3

into one that looks like this

foo=1,2,3&blah=a,b"

A solution using regular expressions and replace could result in some especially terse
code, as shown in the next listing.

function compress(source) {
  const keys = {};           
  source.replace(
    /([^=&]+)=([^&]*)/g,
    function(full, key, value) {    
      keys[key] =
        (keys[key] ? keys[key] + "," : "") + value;
      return "";
    }

Listing 10.9 Converting a dashed string to camel case

Listing 10.10 A technique for compressing a query string

Converts to 
uppercase

Matches dashed 
characters

Stores located keys

Extracts key-value info



276 CHAPTER 10 Wrangling regular expressions

  );
  const result = [];                     
  for (let key in keys) {                
    result.push(key + "=" + keys[key]);  
  }                                      
  return result.join("&");        
}

assert(compress("foo=1&foo=2&blah=a&blah=b&foo=3") ===
       "foo=1,2,3&blah=a,b",
       "Compression is OK!");

The most interesting aspect of this example is its use of the string replace method as
a means of traversing a string for values, rather than as a search-and-replace mecha-
nism. The trick is twofold: passing in a function as the replacement value argument,
and instead of returning a value, using it as a means of searching.

 The example code first declares a hash key in which we store the keys and values that
we find in the source query string. Then we call the replace method on the source
string, passing a regex that will match the key-value pairs, and capture the key and the
value. We also pass a function that will be passed the full match, the key capture, and the
value capture. These captured values get stored in the hash for later reference. Note
that we return the empty string because we don’t care what substitutions happen to the
source string—we’re just using the side effects rather than the result.

 After replace returns, we declare an array in which we’ll aggregate the results and
iterate through the keys that we found, adding each to the array. Finally, we join each
of the results we stored in the array by using & as the delimiter, and we return the
result:

const result = []; 
for (let key in keys) { 
  result.push(key + "=" + keys[key]); 
} 
return result.join("&");  

Using this technique, we can co-opt the String object’s replace method as our own
string-searching mechanism. The result isn’t only fast, but also simple and effective.
The level of power that this technique provides, especially in light of the small amount
of code necessary, shouldn’t be underestimated. 

 All of these regular expression techniques can have a huge impact on how we write
script on our pages. Let’s see how to apply what you’ve learned to solve some common
problems we might encounter.

10.6 Solving common problems with regular expressions
In JavaScript, a few idioms tend to occur again and again, but their solutions aren’t always
obvious. A knowledge of regular expressions can definitely come to the rescue, and in this
section we’ll look at a few common problems that we can solve with a regex or two.

Collects 
key info

Joins results with &



277Solving common problems with regular expressions

10.6.1 Matching newlines

When performing a search, it’s sometimes desirable for the period (.) term, which
matches any character except for newline, to also include newline characters. Regular
expression implementations in other languages frequently include a flag for making
this possible, but JavaScript’s implementation doesn’t.

 Let’s look at a couple of ways of getting around this omission in JavaScript, as
shown in the next listing.

 const html = "<b>Hello</b>\n<i>world!</i>";
 assert(/.*/.exec(html)[0] === "<b>Hello</b>",      
         "A normal capture doesn't handle endlines.");
 assert(/[\S\s]*/.exec(html)[0] ===                     
         "<b>Hello</b>\n<i>world!</i>",                  
         "Matching everything with a character set.");   
 assert(/(?:.|\s)*/.exec(html)[0] ===                       
         "<b>Hello</b>\n<i>world!</i>",                      
         "Using a non-capturing group to match everything.");

This example defines a test subject string: "<b>Hello</b>\n<i>world!</i>", contain-
ing a newline. Then we try various ways of matching all the characters in the string.

 In the first test, /.*/.exec(html)[0] === "<b>Hello</b>", we verify that newlines
aren’t matched by the . operator. Ninjas won’t be denied, so in the next test we get
our way with an alternative regex, /[\S\s]*/, in which we define a character class that
matches anything that’s not a whitespace character and anything that is a whitespace
character. This union is the set of all characters. 

 Another approach is taken in the next test: 

/[\S\s]*/.exec(html)[0] === "<b>Hello</b>\n<i>world!</i>"

Here we use an alternation regex, /(?:.|\s)*/, in which we match everything matched
by ., which is everything but newline, and everything considered whitespace, which
includes newline. The resulting union is the set of all characters including newlines.
Note the use of a passive subexpression to prevent any unintended captures. Because
of its simplicity (and implicit speed benefits), the solution provided by /[\S\s]*/ is
generally considered optimal.

 Next, let’s take a step to widen our view to a worldwide scope.

10.6.2 Matching Unicode

Frequently in the use of regular expressions, we want to match alphanumeric
characters, such as an ID selector in a CSS selector engine implementation. But
assuming that the alphabetic characters will be from only the set of English ASCII
characters is shortsighted. 

Listing 10.11 Matching all characters, including newlines

Defines a test subject Shows that newlines 
aren’t matched

Matches all using 
whitespace matching

Matches all using 
alteration



278 CHAPTER 10 Wrangling regular expressions

 Expanding the set to include Unicode characters is sometimes desirable, explicitly
supporting multiple languages not covered by the traditional alphanumeric character
set (see the following listing).

 const text ="\u5FCD\u8005\u30D1\u30EF\u30FC";
 const matchAll = /[\w\u0080-\uFFFF_-]+/;               
 assert(text.match(matchAll),"Our regexp matches non-ASCII!");

This listing includes the entire range of Unicode characters in the match by creating
a character class that includes the \w term, to match all the “normal” word charac-
ters, plus a range that spans the entire set of Unicode characters above U+0080. Start-
ing at 128 gives us some high ASCII characters along with all Unicode characters in
the Basic Multilingual Plane.

 The astute among you might note that by adding the entire range of Unicode
characters above \u0080, we match not only alphabetic characters, but also all Uni-
code punctuation and other special characters (arrows, for example). But that’s okay,
because the point of the example is to show how to match Unicode characters in gen-
eral. If you have a specific range of characters that you want to match, you can use the
lesson of this example to add whatever range you wish to the character class.

 Before moving on from our examination of regular expressions, let’s tackle one
more common issue.

10.6.3 Matching escaped characters

It’s common for page authors to use names that conform to program identifiers when
assigning id values to page elements, but that’s just a convention; id values can con-
tain characters other than “word” characters, including punctuation. For example, a
web developer might use the id value form:update for an element.

 A library developer, when writing an implementation for, say, a CSS selector
engine, would like to support escaped characters. This allows the user to specify com-
plex names that don’t conform to typical naming conventions. So let’s develop a
regex that will allow matching escaped characters. Consider the following code.

 const pattern = /^((\w+)|(\\.))+$/;  
 const tests = [
   "formUpdate",
   "form\\.update\\.whatever",
   "form\\:update",
   "\\f\\o\\r\\m\\u\\p\\d\\a\\t\\e",
   "form:update"
 ];

Listing 10.12 Matching Unicode characters

Listing 10.13 Matching escaped characters in a CSS selector

Matches all, 
including Unicode

This regular expression allows 
any sequence composed of word 
characters, a backslash followed 
by any character (even a 
backslash), or both.

Sets up various
test subjects.

All should pass
but the last,

which fails to
escape its
nonword

character (:).



279Summary

 for (let n = 0; n < tests.length; n++) {     
   assert(pattern.test(tests[n]),
          tests[n] + " is a valid identifier" );
 }

This particular expression works by allowing for a match of either a word character
sequence or a sequence of a backslash followed by any character.

 Note that more work is required to fully support all escape characters. For more
details, visit https://mathiasbynens.be/notes/css-escapes. 

10.7 Summary
■ Regular expressions are a powerful tool that permeates modern JavaScript

development; virtually every aspect of any sort of matching depends on their
use. With a good understanding of the advanced regex concepts covered in this
chapter, you should feel comfortable tackling any challenging piece of code
that could benefit from regular expressions.

■ We can create regular expressions with regular expression literals (/test/) and
with the RegExp constructor (new RegExp("test")). Literals are preferred
when the regex is known at development time, and the constructor when the
regex is constructed at runtime.

■ With each regular expression, we can associate five flags: i makes the regex
case-insensitive, g matches all instances of the pattern, m allows matches across
multiple lines, y enables sticky matching, while u enables the use of Unicode
escapes. Flags are added at the end of a regex literal: /test/ig, or as a second
parameter to the RegExp constructor: new RegExp("test", "i").

■ Use [] (as in [abc]) to specify a set of characters that we wish to match. 
■ Use ^ to signify that the pattern must appear at the beginning of a string and $

to signify that the pattern must appear at the end of a string.
■ Use ? to specify that a term is optional, + that a term should appear one or

many times, and * to specify that a term appears zero, one, or many times.
■ Use . to match any character.
■ We can use backslash (\) to escape special regex characters (such as . [ $ ^).
■ Use parentheses () to group multiple terms together, and pipe (|) to specify

alternation.
■ Portions of a string that are successfully matched against terms can be back ref-

erenced with a backslash followed by the number of the capture (\1, \2, and so
on).

■ Every string has access to the match function, which takes in a regular expres-
sion and returns an array containing the entire matched string along with any
matched captures. We can also use the replace function, which causes a
replacement on pattern matches rather than on a fixed string.

Runs through all 
the test subjects

https://mathiasbynens.be/notes/css-escapes


280 CHAPTER 10 Wrangling regular expressions

10.8 Exercises
1 In JavaScript, regular expressions can be created with which of the following?

a Regular expression literals
b The built-in RegExp constructor
c The built-in RegularExpression constructor

2 Which of the following is a regular expression literal?

a /test/

b \test\

c new RegExp("test");

3 Choose the correct regular expression flags:

a /test/g

b g/test/

c new RegExp("test", "gi");

4 The regular expression /def/ matches which of the following strings?

a One of the strings d, e, f
b def

c de

5 The regular expression /[^abc]/ matches which of the following?

a One of strings a, b, c
b One of strings d, e, f
c Matches the string ab

6 Which of the following regular expressions matches the string hello?

a /hello/

b /hell?o/

c /hel*o/

d /[hello]/

7 The regular expression /(cd)+(de)*/ matches which of the following strings?

a cd

b de

c cdde

d cdcd

e ce

f cdcddedede



281Exercises

8 In regular expressions, we can express alternatives with which of the following?

a #

b &

c |

9 In the regular expression /([0-9])2/, we can reference the first matched digit
with which of the following?

a /0

b /1

c \0

d \1

10 The regular expression /([0-5])6\1/ will match which of the following?

a 060

b 16

c 261

d 565

11 The regular expression /(?:ninja)-(trick)?-\1/ will match which of the fol-
lowing?

a ninja-

b ninja-trick-ninja

c ninja-trick-trick

12 What is the result of executing "012675".replace(/0-5/g, "a")?

a aaa67a

b a12675

c a1267a



282

Code
 modularization techniques

So far we’ve explored the basic primitives of JavaScript, such as functions, objects,
collections, and regular expressions. We have more than a couple of tools in our
belt for solving specific problems with our JavaScript code. But as our applications
start to grow, another whole set of problems, related to how we structure and man-
age our code, starts to emerge. Time and time again, it’s been proven that large,
monolithic code bases are far more likely to be difficult to understand and main-
tain than smaller, well-organized ones. So it’s only natural that one way of improv-
ing the structure and organization of our programs is to break them into smaller,
relatively loosely coupled segments called modules.

 Modules are larger units of organizing our code than objects and functions;
they allow us to divide programs into clusters that belong together. When creating

This chapter covers
■ Using the module pattern
■ Using current standards for writing modular 

code: AMD and CommonJS
■ Working with ES6 modules



283Modularizing code in pre-ES6 JavaScript

modules, we should strive to form consistent abstractions and encapsulate implemen-
tation details. This makes it easier to reason about our application, because we aren’t
bothered with various frivolous details when using our module functionality. In addi-
tion, having modules means that we can easily reuse module functionality in different
parts of our applications, and even across different applications, significantly speeding
up our development process.

 As you saw earlier in the book, JavaScript is big on global variables: Whenever we
define a variable in mainline code, that variable is automatically considered global
and can be accessed from any other part of our code. This might not be a problem for
small programs, but as our applications start to grow and we include third-party code,
the chance that naming clashes will occur starts to grow significantly. In most other
programming languages, this problem is solved with namespaces (C++ and C#) or
packages (Java), which wrap all enclosed names in another name, thereby signifi-
cantly reducing potential clashes.

 Up to ES6, JavaScript didn’t offer a higher-level, built-in feature that allows us to
group related variables in a module, namespace, or package. So in order to tackle this
problem, JavaScript programmers have developed advanced code modularization
techniques that take advantage of existing JavaScript constructs, such as objects, imme-
diate functions, and closures. In this chapter, we’ll explore some of these techniques.

 Luckily, it’s only a matter of time until we’ll be able to completely let go of these
work-around techniques, because ES6 finally introduces native modules. Unfortunately,
the browsers haven’t caught on, so we’ll explore how modules should work in ES6, even
though we won’t have a specific native browser implementation to test them on.

 Let’s start with modularization techniques that we can use today.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What existing mechanism do you use to approximate
modules in JavaScript pre-ES6? 

What is the difference between the AMD and CommonJS
module specifications? 

Using ES6, what two statements would you need to use the
tryThisOut() function from a module called test
from within another module called guineaPig? 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.1 Modularizing code in pre-ES6 JavaScript
Pre-ES6 JavaScript has only two types of scopes: global scope and function scope. It
doesn’t have something in between, a namespace or a module that would allow us to
group certain functionality together. To write modular code, JavaScript developers are
forced to be creative with existing JavaScript language features. 

 When deciding which features to use, we have to keep in mind that, at a bare min-
imum, each module system should be able to do the following:

Do you know? 



284 CHAPTER 11 Code modularization techniques

■ Define an interface through which we can access the functionality offered by the
module.

■ Hide module internals so that the users of our modules aren’t burdened with a
whole host of unimportant implementation details. In addition, by hiding mod-
ule internals, we protect those internals from the outside world, thereby prevent-
ing unwanted modifications that can lead to all sorts of side effects and bugs.

In this section, we’ll first see how to create modules by using standard JavaScript fea-
tures that we’ve explored so far in the book, features such as objects, closures, and
immediate functions. We’ll continue this modularization vein by exploring Asynchro-
nous Module Definition (AMD) and CommonJS, the two most popular module specifi-
cation standards, built on slightly different foundations. You’ll learn how to define
modules using these standards, as well as their pros and cons.

 But let’s start with something for which we’ve already set the stage in previous
chapters.

11.1.1 Using objects, closures, and immediate functions to specify modules

Let’s go back to our minimal module system requirements, hiding implementation details
and defining module interfaces. Now think about which JavaScript language features we
can take advantage of in order to implement these minimal requirements:

■ Hiding module internals—As we already know, calling a JavaScript function cre-
ates a new scope in which we can define variables that are visible only within the
current function. So, one option for hiding module internals is using functions
as modules. In this way, all function variables become internal module variables
that are hidden from the outside world. 

■ Defining module interfaces—Implementing module internals through function
variables means that those variables are accessible from only within the module.
But if our modules are to be used from other code, we have to be able to define
a clean interface through which we can expose the functionality offered by the
module. One way of achieving this is by taking advantage of objects and closures.
The idea is that, from our function module, we return an object that represents
the public interface of our module. That object should contain methods offered
by the module, methods that will, through closures, keep alive our internal mod-
ule variables, even after our module function has finished its execution.

Now that we’ve given a high-level description of how to implement modules in
JavaScript, let’s go through it slowly, step by step, starting with using functions for hid-
ing module internals.

FUNCTIONS AS MODULES

Calling a function creates a new scope that we can use to define variables that won’t be
visible from outside the current function. Let’s take a look at the following code snip-
pet that counts the number of clicks on a web page:



285Modularizing code in pre-ES6 JavaScript

(function countClicks(){
  let numClicks = 0;                        
  document.addEventListener("click", () => {
    alert( ++numClicks );          
  });
})();

In this example, we create a function called countClicks that creates a variable num-
Clicks and registers a click event handler on the entire document. Whenever a click
is made, the numClicks variable gets incremented and the result is displayed to the
user via an alert box. There are two important things to notice here:

■ The numClicks variable, internal to the countClicks function, is kept alive
through the closure of the click handler function. The variable can be refer-
enced only within the handler, and nowhere else! We’ve shielded the numClicks
variable from the code outside the countClicks function. At the same time, we
haven’t polluted the global namespace of our program with a variable that’s
probably not that important for the rest of our code.

■ Our countClicks function is called only in this one place, so instead of defin-
ing a function and then calling it in a separate statement, we’ve used an imme-
diate function, or an IIFE (presented in chapter 3), to define and immediately
invoke the countClicks function.

We can also take a look at the current application state, with respect to how our internal
function (or module) variable is kept alive through closures, as shown in figure 11.1.

 Now that we understand how to hide internal module details, and how closures
can keep those internal details alive as long as necessary, let’s move on to our second
minimal requirement for modules: defining module interfaces.

THE MODULE PATTERN: AUGMENTING FUNCTIONS AS MODULES WITH OBJECTS AS INTERFACES

The module interface is usually composed of a set of variables and functions that our
module provides to the outside world. The easiest way to create such an interface is to
use the humble JavaScript object.

Defines a local variable that 
will store click counts

Whenever a user clicks, the counter 
is incremented and the current value 
reported.

The closure created by
the handler keeps alive
the numClicks variable.

The browser holds a
reference to the click
handler (keeping it alive).

countClicks
environment

numClicks: 0 function (){}

[[Environment]]

Figure 11.1 The click event handler, through closures, keeps alive the local numClicks variable.



286 CHAPTER 11 Code modularization techniques

For example, let’s create an interface for our module that counts the clicks on our
web page, as shown in the following listing.

const MouseCounterModule = function() {
  let numClicks = 0;
  const handleClick = () => {
    alert(++numClicks);      
  };                         
  
  return {                                            
    countClicks: () => {                              
      document.addEventListener("click", handleClick);
    }                                                 
  };                                                  
}();

assert(typeof MouseCounterModule.countClicks === "function",
       "We can access module functionality");               
assert(typeof MouseCounterModule.numClicks === "undefined"    
    && typeof MouseCounterModule.handleClick === "undefined" ,
       "We cannot access internal module details");           

Here we use an immediate function to implement a module. Within the immediate
function, we define our internal module implementation details: one local variable,
numClicks, and one local function, handleClick, that are accessible only within the
module. Next we create and immediately return an object that will serve as the mod-
ule’s “public interface.” This interface contains a countClicks method that we can
use from outside the module to access module functionality. 

 At the same time, because we’ve exposed a module interface, our internal module
details are kept alive through closures created by the interface. For example, in this
case, the countClicks method of the interface keeps alive internal module variables
numClicks and handleClick, as shown in figure 11.2.

 Finally, we store the object that represents the module interface, returned by the
immediate function, into a variable named MouseCounterModule, through which we
can easily consume module functionality, by writing the following code:

MouseCounterModule.countClicks()

And that’s basically it. 
 By taking advantage of immediate functions, we can hide certain module imple-

mentation details. Then by adding objects and closures into the mix, we can specify a
module interface that exposes the functionality provided by our module to the out-
side world.

Listing 11.1 The module pattern

Creates a global module variable and assigns
the result of immediately invoking a function

Creates a
“private”

module
variable

Creates a
“private”

module
function

Returns an object that represents the
module’s interface. Through closures,

we can access “private” module
variables and functions.

From outside,
we can access
the properties

exposed through
the interface.

But we can’t access module internals.



287Modularizing code in pre-ES6 JavaScript

This pattern of using immediate functions, objects, and closures to create modules in
JavaScript is called the module pattern. It was popularized by Douglas Crockford, and
was one of the first massively popular ways of modularizing JavaScript code.

 Once we have the ability to define modules, it’s always nice to be able to split them
across multiple files (in order to more easily manage them), or to be able to define
additional functionality on existing modules, without modifying their source code. 

 Let’s see how this can be done.

AUGMENTING MODULES

Let’s augment our MouseCounterModule from the previous example with an addi-
tional feature of counting the number of mouse scrolls, but without modifying the
original MouseCounterModule code. See the following listing.

const MouseCounterModule = function(){
  let numClicks = 0;
  const handleClick = () => {
    alert(++numClicks);
  };
  
  return {
    countClicks: () => {
      document.addEventListener("click", handleClick);
    }
  };
}();

(function(module) {       

Listing 11.2 Augmenting modules

MouseCounterModule

countClicks

const MouseCounterModule = function(){ 
  let numClicks = 0;
  const handleClick = () => {
    alert(++numClicks);
  };
  
  return {
    countClicks: () => {
      document.addEventListener("click", handleClick);
    }
  };
}();

module
environment

numClicks: 0
handleClick: function (){}

[[Environment]]

function (){}

Figure 11.2 Expose the 
public interface of a module 
through a returned object. 
The internal module imple-
mentation (“private” vari-
ables and functions) is kept 
alive through closures creat-
ed by public interface meth-
ods.

The original 
MouseCounterModule

Immediately invokes a function 
that accepts the module we 
want to extend as an argument



288 CHAPTER 11 Code modularization techniques

  let numScrolls = 0;             
  const handleScroll = () => {    
    alert(++numScrolls);          
  }                               

  module.countScrolls = () => {                       
    document.addEventListener("wheel", handleScroll); 
  };                                                  
})(MouseCounterModule);

assert(typeof MouseCounterModule.countClicks === "function",
       "We can access initial module functionality");

assert(typeof MouseCounterModule.countScrolls === "function",
       "We can access augmented module functionality");

When augmenting a module, we usually follow a procedure similar to creating a new
module. We immediately call a function, but this time, we pass to it the module we
want to extend as an argument:

(function(module){
  ...
  return module;
})(MouseCounterModule);

Within the function, we then go about our work and create all the necessary private
variables and functions. In this case, we’ve defined a private variable and a private
function for counting and reporting the number of scrolls:

let numScrolls = 0;
const handleScroll = () => {
  alert(++numScrolls);
}

Finally, we extend our module, available through the immediate function’s module
parameter, just as we would extend any other object:

module.countScrolls = ()=> {
  document.addEventListener("wheel", handleScroll);
};

After we’ve performed this simple operation, our MouseCounterModule can also
countScrolls.

 Our public module interface now has two methods, and we can use the module in
the following ways:

MouseCounterModule.countClicks();
MouseCounterModule.countScrolls();    

Defines new 
private variables 
and functions

Extends the 
module interface

Passes in the
module as an

argument

A method that’s part of the module’s 
interface from the beginning

A new module method that we’ve 
added by extending the module



289Modularizing code in pre-ES6 JavaScript

As we’ve already mentioned, we’ve extended the module in a way that’s similar to the
creation of a new module, through an immediately invoked function that extends the
module. This has some interesting side effects in terms of closures, so let’s take a
closer look at the application state after we’ve augmented the module, as shown in fig-
ure 11.3.

 If you look closely, figure 11.3 also shows one of the shortcomings of the module
pattern: the inability to share private module variables across module extensions. For
example, the countClicks function keeps a closure around the numClicks and
handleClick variables, and we could access these private module internals through
the countClicks method. 

const MouseCounterModule = function() { 
  let numClicks = 0;
  const handleClick = () => {
    alert(++numClicks);
  };
  return {
    countClicks: () => {
      document.addEventListener("click", handleClick);
    }
  };
}();

(function (module){
  let numScrolls = 0;
 const handleScroll = () => {

    alert(++numScrolls);
  }

  module.countScrolls = () => {
    document.addEventListener("wheel", handleClick);
  };
})(MouseCounterModule);

Module
environment

numClicks: 0
handleClick:

Extended module
environment

numScrolls: 0
handleScroll:

function (){}

[[Environment]]

[[Environment]]

function (){}

MouseCounterModule

countClicks

countScrolls

function (){}

function (){}

Figure 11.3 When augmenting a module, we extend its external interface with new functionality, usually 
by passing the module to another immediate function. In this example, we add the ability to 
countScrolls to our MouseCounterModule. Notice that two separate functions are defined in dif-
ferent environments, and they can’t access each other’s internal variables.



290 CHAPTER 11 Code modularization techniques

Unfortunately, our extension, the countScrolls function, is created in a completely
separate scope, with a completely new set of private variables: numScrolls and
handleScroll. The countScrolls function creates a closure only around numScrolls
and handleScroll variables, and therefore can’t access the numClicks and handle-
Click variables. 

NOTE Module extensions, when performed through separate immediate
functions, can’t share private module internals, because every function invo-
cation creates a new scope. Although this is a shortcoming, it’s not a show-
stopper, and we can still use the module pattern to keep our JavaScript
applications modular.

Note that, in the module pattern, modules are objects just like any other, and we can
extend them in any way we find appropriate. For example, we can add new functional-
ity by extending the module object with new properties:

MouseCounterModule.newMethod = ()=> {...}

We can also use the same principle to easily create submodules:

MouseCounterModule.newSubmodule = () => {
  return {...};
}();

Notice that all of these approaches suffer from the same fundamental shortcoming of
the module pattern: Subsequent extensions of the module can’t access previously
defined internal module details.

 Unfortunately, there are more problems with the module pattern. When we start
building modular applications, the modules themselves will often depend on other
modules for their functionality. Unfortunately, the module pattern doesn’t cover the
management of these dependencies. We, as developers, have to take care of the right
dependency order so that our module code has all it needs to execute. Although this
isn’t a problem in small and medium applications, it can introduce serious issues in
large applications that use a lot of interdependent modules.

 To deal with these issues, a couple of competing standards have arisen, namely
Asynchronous Module Definition (AMD) and CommonJS.

11.1.2 Modularizing JavaScript applications with AMD and CommonJS

AMD and CommonJS are competing module specification standards that allow us to
specify JavaScript modules. Besides some differences in syntax and philosophy, the main
difference is that AMD was designed explicitly with the browser in mind, whereas Com-
monJS was designed for a general-purpose JavaScript environment (such as servers, with
Node.js), without being bound to the limitations of the browser. This section provides
a relatively short overview of these module specifications; setting them up and including



291Modularizing code in pre-ES6 JavaScript

them in your projects is beyond the scope of this book. For more information, we rec-
ommend JavaScript Application Design by Nicolas G. Bevacqua (Manning, 2015). 

AMD

AMD grew out of the Dojo toolkit (https://dojotoolkit.org/), one of the popular
JavaScript toolkits for building client-side web applications. AMD allows us to easily
specify modules and their dependencies. At the same time, it was built from the
ground up for the browser. Currently, the most popular AMD implementation is
RequireJS (http://requirejs.org/).

 Let’s see an example of defining a small module that has a dependency to jQuery.

define('MouseCounterModule',['jQuery'], $ => {
  let numClicks = 0;
  const handleClick = () => {
    alert(++numClicks);
  };
  
  return {                                 
    countClicks: () => {
      $(document).on("click", handleClick);
    }
  };
});

AMD provides a function called define that accepts the following:

■ The ID of the newly created module. This ID can later be used to require the
module from other parts of our system.

■ A list of module IDs on which our current module depends (the required
modules).

■ A factory function that will initialize the module and that accepts the required
modules as arguments.

In this example, we use AMD’s define function to create a module with an
ID MouseCounterModule that depends on jQuery. Because of this dependency, AMD
first requests the jQuery module, which can take some time if the file has to be
requested from a server. This action is performed asynchronously, in order to avoid
blocking. After all dependencies have been downloaded and evaluated, the module
factory function is called with one argument for each requested module. In this case,
there will be one argument, because our new module requires only jQuery. Within
the factory function, we create our module just as we would with the standard
module pattern: by returning an object that exposes the public interface of
the module.

Listing 11.3 Using AMD to specify a module dependent on jQuery

Uses the define function to specify 
a module, its dependencies, and 
the module factory function that 
will create the module

The public interface of our module

http://requirejs.org/
https://dojotoolkit.org/


292 CHAPTER 11 Code modularization techniques

 As you can see, AMD offers several interesting benefits, such as these:

■ Automatic resolving of dependencies, so that we don’t have to think about the
order in which we include our modules.

■ Modules can by asynchronously loaded, thereby avoiding blocking. 
■ Multiple modules can be defined within one file.

Now that you have the basic idea of how AMD works, let’s take a look at another, mas-
sively popular module definition standard.

COMMONJS

Whereas AMD was built explicitly for the browser, CommonJS is a module specification
designed for a general-purpose JavaScript environment. Currently it has the biggest
following in the Node.js community.

 CommonJS uses file-based modules, so we can specify one module per file. To each
module, CommonJS exposes a variable, module, with a property, exports, which we can
easily extend with additional properties. In the end, the content of module.exports is
exposed as the module’s public interface. 

 If we want to use a module from other parts of the application, we can require it.
The file will be synchronously loaded, and we’ll have access to its public interface.
This is the reason that CommonJS is much more popular on the server, where module
fetching is relatively quick because it requires only a file-system read, than on the cli-
ent, where the module has to be downloaded from a remote server, and where syn-
chronous loading usually means blocking.

 Let’s look at an example that defines our reoccurring MouseCounterModule, this
time in CommonJS.

//MouseCounterModule.js
const $ = require("jQuery");  
let numClicks = 0;
const handleClick = () => {
  alert(++numClicks);
};

module.exports = {                        
  countClicks: () => {
    $(document).on("click", handleClick);
  }
};

To include our module within a different file, we can write this:

const MouseCounterModule = require("MouseCounterModule.js");
MouseCounterModule.countClicks();

Listing 11.4 Using CommonJS to define a module

Synchronously requires 
a jQuery module

Modifies the module.exports property to 
specify the public interface of a module



293Modularizing code in pre-ES6 JavaScript

See how simple this is?
 Because the philosophy of CommonJS dictates one module per file, any code that

we put in a file module will be a part of that module. Therefore, there’s no need for
wrapping variables up in immediate functions. All variables defined within a module
are safely contained within the scope of the current module and don’t leak out to the
global scope. For example, all three of our module variables ($, numClicks, and
handleClick) are module scoped, even though they’re defined in top-level code
(outside all functions and blocks), which would technically make them global
variables in standard JavaScript files.

 Once again, it’s important to note that only variables and functions exposed
through the module.exports object are available from outside the module. The pro-
cedure is similar to the module pattern, only instead of returning a completely new
object, the environment already provides one that we can extend with our interface
methods and properties. 

 CommonJS has a couple of advantages:

■ It has simple syntax. We need to specify only the module.exports properties,
while the rest of the module code stays pretty much the same as if we were writ-
ing standard JavaScript. Requiring modules is also simple; we just use the
require function.

■ CommonJS is the default module format for Node.js, so we have access to thou-
sands of packages that are available through npm, node’s package manager.

CommonJS’s biggest disadvantage is that it wasn’t explicitly built with the browser in
mind. Within JavaScript in the browser, there’s no support for the module variable and
the export property; we have to package our CommonJS modules into a browser-
readable format. We can achieve this with either Browserify (http://browserify.org/)
or RequireJS (http://requirejs.org/docs/commonjs.html).

 Having two competing standards for specifying modules, AMD and CommonJS,
has led to one of those situations in which people tend to divide themselves into two,
sometimes even opposing, camps. If you work on relatively closed projects, this might
not be an issue; you choose the standard that suits you better. Problems can arise,
however, when we need to reuse code from the opposing camp and are forced to
jump through all sorts of hoops. One solution is to use Universal Module Definition,
or UMD (https://github.com/umdjs/umd), a pattern with a somewhat convoluted
syntax that allows the same file to be used by both AMD and CommonJS. This is
beyond the scope of this book, but if you’re interested, many quality resources are
available online.

 Luckily, the ECMAScript committee has recognized the need for a unified module
syntax supported in all JavaScript environments, so ES6 defines a new module stan-
dard that should finally put these differences to rest.

http://browserify.org/
http://requirejs.org/docs/commonjs.html
https://github.com/umdjs/umd


294 CHAPTER 11 Code modularization techniques

11.2 ES6 modules
ES6 modules are designed to marry the advantages of CommonJS and AMD: 

■ Similar to CommonJS, ES6 modules have a relatively simple syntax, and ES6
modules are file based (one module per file).

■ Similar to AMD, ES6 modules provide support for asynchronous module loading.

The main idea behind ES6 modules is that only the identifiers explicitly exported
from a module are accessible from outside that module. All other identifiers, even the
ones defined in top-level scope (what would be global scope in standard JavaScript),
are accessible only from within the module. This was inspired by CommonJS. 

 To provide this functionality, ES6 introduces two new keywords: 

■ export—For making certain identifiers available from outside the module
■ import—For importing exported module identifiers

The syntax for exporting and importing module functionality is simple, but it has a lot
of subtle nuances that we’ll explore slowly, step by step. 

11.2.1 Exporting and importing functionality

Let’s start with a simple example that shows how to export functionality from one
module and import it into another.

const ninja = "Yoshi";           
export const message = "Hello";   

export function sayHiToNinja() {  
  return message + " " + ninja;     
}

NOTE Built-in modules are a part of the ES6 standard. As you’ll
soon see, the ES6 module syntax includes additional semantics
and keywords (such as the export and import keywords) that
aren’t supported by current browsers. If we want to use modules
today, we have to transpile our module code with Traceur
(https://github.com/google/traceur-compiler), Babel (http:
//babeljs.io/), or TypeScript (www.typescriptlang.org/). We
also can use the SystemJS library (https://github.com/systemjs/
systemjs), which provides support for loading all currently
available module standards: AMD, CommonJS, and even ES6
modules. You can find instructions on how to use SystemJS in the
project’s repository (https://github.com/systemjs/systemjs). 

Listing 11.5 Exporting from a Ninja.js module

Defines a top-level variable in a module

Defines a variable and a function, and exports 
them from the module with the export keyword

Accesses an inner module variable 
from the module’s public API

https://github.com/google/traceur-compiler
http://babeljs.io/
http://babeljs.io/
https://github.com/systemjs/systemjs
https://github.com/systemjs/systemjs
https://github.com/systemjs/systemjs
http://www.typescriptlang.org/


295ES6 modules

We first define a variable, ninja, a module variable that will be accessible only within
this module, even though it’s placed in top-level code (which would make it a global
variable in pre-ES6 code).

 Next, we define another top-level variable, message, which we make accessible
from outside the module by using the new export keyword. Finally, we also create and
export the sayHiToNinja function. 

 And that’s it! This is the minimum syntax we need to know for defining our own
modules. We don’t have to use immediate functions or remember any esoteric syntax
in order to export functionality from a module. We write our code as we would write
standard JavaScript code, with the only difference that we prefix some of the identifi-
ers (such as variables, functions, or classes) with an export keyword.

 Before learning how to import this exported functionality, we’ll take a look at an
alternative way to export identifiers: We list everything we want to export at the end of
the module, as shown in the following listing.

const ninja = "Yoshi";    
const message = "Hello";  

function sayHiToNinja() {             
  return message + " " + ninja;       
}

export { message, sayHiToNinja };     

This way of exporting module identifiers bears some resemblance to the module pat-
tern, as an immediate function returns an object that represents the public interface
of our module, and especially to CommonJS, as we expand the module.exports object
with the public module interface.

 Regardless of how we’ve exported identifiers of a certain module, if we need to
import them into another module, we have to use the import keyword, as in the fol-
lowing example.

import { message, sayHiToNinja} from "Ninja.js";

assert(message === "Hello",                             
      "We can access the imported variable");           
assert(sayHiToNinja() === "Hello Yoshi",                
      "We can say hi to Yoshi from outside the module");

assert(typeof ninja === "undefined",         
      "But we cannot access Yoshi directly");

Listing 11.6 Exporting at the end of a module

Listing 11.7 Importing from the Ninja.js module

Specifies all module identifiers

Exports some of the 
module identifiers

Uses the import keyword to import 
an identifier binding from a module

We can now access the 
imported variable and call 
the imported function.

We can’t access not-exported 
module variables directly.



296 CHAPTER 11 Code modularization techniques

We use the new import keyword to import a variable, message and a function, sayHi-
ToNinja from the ninja module:

import { message, sayHiToNinja} from "Ninja.js";

By doing this, we’ve gained access to these two identifiers defined in the ninja
module. Finally, we can test that we can access the message variable and call the
sayHiToNinja function:

assert(message === "Hello",
      "We can access the imported variable");
assert(sayHiToNinja() === "Hello Yoshi",
      "We can say hi to Yoshi from outside the module");

What we can’t do is access the nonexported and nonimported variables. For example,
we can’t access the ninja variable because it isn’t marked with export:

assert(typeof ninja === "undefined", 
      "But we cannot access Yoshi directly");

With modules, we’re finally a bit safer from the misuse of global variables. Everything
that we didn’t explicitly mark for export stays nicely isolated within a module. 

 In this example, we’ve used a named export, which enables us to export multiple
identifiers from a module (as we did with message and sayHiToNinja). Because we
can export a large number of identifiers, listing them all in an import statement can
be tedious. Therefore, a shorthand notation enables us to bring in all exported identi-
fiers from a module, as shown in the following listing.

import * as ninjaModule from "Ninja.js";

assert(ninjaModule.message === "Hello",                 
      "We can access the imported variable");           
assert(ninjaModule.sayHiToNinja() === "Hello Yoshi",    
      "We can say hi to Yoshi from outside the module");

assert(typeof ninjaModule.ninja === "undefined",
      "But we cannot access Yoshi directly");   

As listing 11.8 shows, to import all exported identifiers from a module, we use the import
* notation in combination with an identifier that we’ll use to refer to the whole module
(in this case, the ninjaModule identifier). After we’ve done this, we can access the
exported identifiers through property notation; for example, ninjaModule.message,
ninjaModule.sayHiToNinja. Notice that we still can’t access top-level variables that
weren’t exported, as is the case with the ninja variable.

Listing 11.8 Importing all named exports from the Ninja.js module

Uses * notation to import 
all exported identifiers

Refers to the named 
exports through 
property notation

We still can’t access not-
exported identifiers.



297ES6 modules

DEFAULT EXPORTS

Often we don’t want to export a set of related identifiers from a module, but instead
want to represent the whole module through a single export. One fairly common situ-
ation in which this occurs is when our modules contain a single class, as in the follow-
ing listing.

export default class Ninja {   
  constructor(name){
    this.name = name;
  }
}

export function compareNinjas(ninja1, ninja2){
  return ninja1.name === ninja2.name;
}

Here we’ve added the default keyword after the export keyword, which specifies
the default binding for this module. In this case, the default binding for this mod-
ule is the class named Ninja. Even though we’ve specified a default binding, we can
still use named exports to export additional identifiers, as we did with the compare-
Ninjas function.

 Now, we can use simplified syntax to import functionalities from Ninja.js, as shown
in the following listing.

import ImportedNinja from "Ninja.js";
import {compareNinjas} from "Ninja.js";

const ninja1 = new ImportedNinja("Yoshi");                            
const ninja2 = new ImportedNinja("Hattori");                          

assert(ninja1 !== undefined 
    && ninja2 !== undefined, "We can create a couple of Ninjas");     

assert(!compareNinjas(ninja1, ninja2),  
      "We can compare ninjas");         

We start this example with importing a default export. For this, we use a less cluttered
import syntax by dropping the braces that are mandatory for importing named
exports. Also, notice that we can choose an arbitrary name to refer to the default
export; we aren’t bound to use the one we used when exporting. In this example,
ImportedNinja refers to the Ninja class defined in the file Ninja.js.

Listing 11.9 A default export from Ninja.js

Listing 11.10 Importing a default export

Uses the export default 
keywords to specify the 
default module binding

We can still use named exports 
along with the default export.

When importing a default export, there’s no
need for braces, and we can use whatever

name we want.
We can still import 
named exports.

Creates a couple 
of ninjas, and 
tests that they 
exist

We can also access 
the named exports.



298 CHAPTER 11 Code modularization techniques

 We continue the example by importing a named export, as in previous examples,
just to illustrate that we can have both a default export and a number of named
exports within a single module. Finally, we instantiate a couple of ninja objects and
call the compareNinjas function, to confirm that all imports work as they should.

 In this case, both imports are made from the same file. ES6 offers a shorthand syntax:

import ImportedNinja, {compareNinjas} from "Ninja.js";

Here we use the comma operator to import both the default and the named exports
from the Ninja.js file, in a single statement.

RENAMING EXPORTS AND IMPORTS

If necessary, we can also rename both exports and imports. Let’s start with renaming
exports, as shown in the following code (the comments indicate in which file the code
is located):

//************* Greetings.js ************/
function sayHi(){                          
  return "Hello";
}

assert(typeof sayHi === "function"                  
    && typeof sayHello === "undefined",             
      "Within the module we can access only sayHi");

export { sayHi as sayHello }                    

//*************  main.js *****************/
import {sayHello } from "Greetings.js";               

assert(typeof sayHi === "undefined"                   
    && typeof sayHello === "function",                
      "When importing, we can only access the alias");

In the previous example, we define a function called sayHi, and we test that we can
access the function only though the sayHi identifier, and not through the sayHello
alias that we provide at the end of the module through the as keyword:

export { sayHi as sayHello }

We can perform an export rename only in this export form, and not by prefixing the
variable or function declaration with the export keyword.

 Then, when we perform an import of the renamed export, we reference the
import through the given alias:

import { sayHello } from "Greetings.js";

Finally, we test that we have access to the aliased identifier, but not the original one:

assert(typeof sayHi === "undefined"
    && typeof sayHello === "function",
      "When importing, we can only access the alias");

Defines a function 
called sayHi

Tests that we can access 
only the sayHi function, but 
not the alias!

Provides an identifier alias 
with the as keyword

When importing, 
only the sayHello 
alias is available.



299ES6 modules

The situation is similar when renaming imports, as shown in the following code
segment:

/************* Hello.js *************/
export function greet(){                    
  return "Hello";                           
}                                           

/************* Salute.js *************/
export function greet(){                    
  return "Salute";                          
}                                           

/************* main.js *************/
import { greet as sayHello } from "Hello.js";   
import { greet as salute } from "Salute.js";    

assert(typeof greet === "undefined",        
      "We cannot access greet");            

assert(sayHello() === "Hello" && salute() === "Salute", 
      "We can access aliased identifiers!");          

Similarly to exporting identifiers, we can also use the as keyword to create aliases
when importing identifiers from other modules. This is useful when we need to pro-
vide a better name that’s more suitable to the current context, or when we want to
avoid naming clashes, as is the case in this small example.

 With this, we’ve finished our exploration of the ES6 modules’ syntax, which is
recapped in table 11.1.

Table 11.1 Overview of ES6 module syntax

Code Meaning

export const ninja = "Yoshi";
export function compare(){}
export class Ninja{}

export default class Ninja{}
export default function Ninja(){}

const ninja = "Yoshi";
function compare(){};
export {ninja, compare};
export {ninja as samurai, compare};

Export a named variable.
Export a named function.
Export a named class.

Export the default class export.
Export the default function export.

Export existing variables.
Export a variable through a new name.

import Ninja from "Ninja.js";
import {ninja, Ninja} from "Ninja.js";

import * as Ninja from "Ninja.js";

Import a default export.
Import named exports.

Import all named exports from a module.

import {ninja as iNinja} from "Ninja.js"; Import a named export through a new name.

Exports a function with 
the name greet from the 
Hello.js module

Exports a function with 
the same name greet 
from Salute.js

Uses the as keyword to alias imports, 
thereby avoiding name clashes

We can’t access the 
original function name.

But we can access 
the aliases.



300 CHAPTER 11 Code modularization techniques

11.3 Summary
■ Large, monolithic code bases are far more likely to be difficult to understand

and maintain than smaller, well-organized ones. One way of improving the
structure and organization of our programs is to break them into smaller, rela-
tively loosely coupled segments or modules.

■ Modules are larger units of organizing code than objects and functions, and
they allow us to divide programs into clusters that belong together. 

■ In general, modules foster understandability, ease maintenance, and improve
the reusability of code.

■ Pre-ES6 JavaScript has no built-in modules, and developers had to be creative
with existing language features to enable code modularization. One of the most
popular ways of creating modules is by combining immediately invoked func-
tions with closures.
– Immediate functions are used because they create a new scope for defining

module variables that aren’t visible from outside that scope.
– Closures are used because they enable us to keep module variables alive.
– The most popular pattern is the module pattern, which usually combines an

immediate function with a return of a new object that represents the mod-
ule’s public interface.

■ In addition to the module pattern, two popular module standards exist: Asyn-
chronous Module Definition, designed to enable modules in the browser; and
CommonJS, which is more popular in server-side JavaScript. 
– AMD can automatically resolve dependencies, and modules are asynchro-

nously loaded, thereby avoiding blocking.
– CommonJS has a simple syntax, synchronously loads modules (and is there-

fore more appropriate for the server), and has many packages available
through node’s package manager (npm).

■ ES6 modules are designed to take into account the features of AMD and Com-
monJS. These modules have a simple syntax influenced by CommonJS, and pro-
vide asynchronous module loading as in AMD.
– ES6 modules are file based, one module per file.
– We export identifiers so that they can be referenced by other modules by

using the new export keyword.
– We import identifiers exported from other modules by using the import key-

word.
– A module can have a single default export, which we use if we want to repre-

sent that whole module through a single export.
– Both imports and exports can be renamed with the as keyword.



301Exercises

11.4 Exercises
1 Which mechanism enables private module variables in the module pattern?

a Prototypes
b Closures
c Promises

2 In the following code that uses ES6 modules, which identifiers can be accessed if
the module is imported?

const spy = "Yagyu";
function command(){
  return general + " commands you to wage war!";
}
export const general = "Minamoto";

a spy

b command

c general

3 In the following code that uses ES6 modules, which identifiers can be accessed
when the module is imported?

const ninja = "Yagyu";
function command(){
  return general + " commands you to wage war!";
}
const general  = "Minamoto";

export {ninja as spy};

a spy

b command

c general

d ninja

4 Which of the following imports are allowed?

//File: personnel.js
const ninja = "Yagyu";
function command(){
  return general + " commands you to wage war!";
}
const general  = "Minamoto";

export {ninja as spy};

a import {ninja, spy, general} from "personnel.js"

b import * as Personnel from "personnel.js"

c import {spy} from "personnel.js"



302 CHAPTER 11 Code modularization techniques

5 If we have the following module code, which statement will import the Ninja
class?

//Ninja.js
export default class Ninja {
  skulk(){ return "skulking"; }
}

a import Ninja from “Ninja.js”
b import * as Ninja from “Ninja.js”
c import * from “Ninja.js”



Part 4

Browser reconnaissance

Now that we’ve explored the fundamentals of the JavaScript language, we’ll
move on to browsers, the environment in which most JavaScript applications are
executed.

 In chapter 12, we’ll take a closer look at the DOM by exploring efficient tech-
niques for modifying the DOM and achieving fast, highly dynamic web applications.

 In chapter 13, you’ll learn about events, with a special focus on the event
loop and its influence on perceived web application performance.

 Finally, the book concludes with a not-so-pleasant but necessary topic: cross-
browser development. Although the state of affairs has improved greatly in
recent years, we still can’t assume that our code will work in the same way in
every available browser. Therefore, chapter 14 presents strategies for developing
cross-browser web applications.





305

Working the DOM

Up to now, you’ve been learning mostly about JavaScript the language, and
although there are plenty of nuances to pure JavaScript, developing web applica-
tions definitely doesn’t get any easier when we throw the browser’s Document
Object Model (DOM) into the mix. One of the primary means for achieving highly
dynamic web applications that respond to user actions is by modifying the DOM.
But if we were to open up a JavaScript library, you’d notice the length and complex-
ity of the code behind simple DOM operations. Even presumably simple operations
like cloneNode and removeChild have relatively complex implementations.

 This raises two questions:

■ Why is this code so complex?
■ Why do you need to understand how it works if the library will take care of it

for you? 

This chapter covers
■ Inserting HTML into the DOM
■ Understanding DOM attributes and DOM 

properties
■ Discovering computed styles
■ Dealing with layout thrashing



306 CHAPTER 12 Working the DOM

The most compelling reason is performance. Understanding how DOM modification
works in libraries can allow you to write better and faster code that uses the library or,
alternatively, enable you to use those techniques in your own code.

 So we’ll start this chapter by seeing how to create new parts of our pages, on
demand, by injecting arbitrary HTML. We’ll continue by examining all the conun-
drums that browsers throw at us with respect to element properties and attributes, and
we’ll discover why the results aren’t always exactly what we might expect. 

 The same goes for Cascading Style Sheets (CSS) and the styling of elements. Many
of the difficulties that we’ll run into when constructing a dynamic web application
stem from the complications of setting and getting element styling. This book can’t
cover all that’s known about handling element styling (that’s enough to fill another
entire book), but the core essentials are discussed.

 We’ll finish the chapter by taking a look at some of the performance difficulties
that can arise if you don’t pay attention to the way you modify and read information
from the DOM. Let’s start by seeing how to inject arbitrary HTML into our pages.
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Why do you need to preparse self-closing elements in a
page before injecting HTML into it? 

What are the benefits of working with DOM fragments
when inserting HTML?

How do you determine the dimensions of a hidden ele-
ment on a page? 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.1 Injecting HTML into the DOM
In this section, we’ll look at an efficient way to insert HTML into a document at any
location, given that HTML as a string. We present this particular technique because it’s
frequently used to create highly dynamic web pages in which the user interface is
modified as a response to user actions or data incoming from the server. This is partic-
ularly useful for the following scenarios: 

■ Injecting arbitrary HTML into a page and manipulating and inserting client-side
templates

■ Retrieving and injecting HTML sent from a server

It can be technically challenging to implement this functionality correctly (especially
when compared to building an object-oriented-style DOM construction API, which is
certainly easier to implement but requires an extra layer of abstraction than injecting
the HTML). Consider this example of creating HTML elements from an HTML string
that we can use with jQuery:

$(document.body).append("<div><h1>Greetings</h1><p>Yoshi here</p></div>") 

Do you know? 



307Injecting HTML into the DOM

And compare that with an approach that uses only the DOM API:

const h1 = document.createElement("h1");
h1.textContent = "Greetings";

const p = document.createElement("p");
p.textContent = "Yoshi here";

const div = document.createElement("div");

div.appendChild(h1);
div.appendChild(p);

document.body.appendChild(div);

Which one would you rather use?
 For these reasons, we’ll implement our own way of doing clean DOM manipulation

from scratch. The implementation requires the following steps:

1 Convert an arbitrary but valid HTML string into a DOM structure.
2 Inject that DOM structure into any location in the DOM as efficiently as possible.

These steps provide page authors with a smart way to inject HTML into a document.
Let’s get started.

12.1.1 Converting HTML to DOM

Converting an HTML string to a DOM structure doesn’t involve a whole lot of magic.
In fact, it uses a tool that you’re most likely already familiar with: the innerHTML prop-
erty of DOM elements. 

 Using it is a multistep process:

1 Make sure that the HTML string contains valid HTML code.
2 Wrap the string in any enclosing markup that’s required by browser rules.
3 Insert the HTML string, using innerHTML, into a dummy DOM element.
4 Extract the DOM nodes back out.

The steps aren’t overly complex, but the actual insertion has some gotchas that we’ll
need to take into account. Let’s take a look at each step in detail.

PREPROCESSING THE HTML SOURCE STRING

To start, we’ll need to clean up the source HTML to meet our needs. For example, let’s
take a look at a skeleton HTML that allows us to choose a ninja (through the option
element) and that shows the details of the chosen ninja within a table, details that are
intended to be added at a later point:

<option>Yoshi</option>
<option>Kuma</option>
<table/>



308 CHAPTER 12 Working the DOM

This HTML string has two problems. First, the option elements shouldn’t stand on
their own. If you follow proper HTML semantics, they should be contained within a
select element. Second, even though markup languages usually allow us to self-close
childless elements, such as <table/>, in HTML the self-closing works for only a small
subset of elements (table not being one of them). Attempting to use that syntax in
other cases is likely to cause problems in some browsers.

 Let’s start with solving the problem of self-closing elements. To support this fea-
ture, we can do a quick preparse on the HTML string to convert elements such as
<table/> to <table></table> (which will be handled uniformly in all browsers), as
shown in the following listing.

const tags = 

➥ /^(area|base|br|col|embed|hr|img|input|keygen|link|menuitem|meta|param|

➥       source|track|wbr)$/i;                                          
function convert(html) {                     
  return html.replace(

➥          /(<(\w+)[^>]*?)\/>/g, (all, front, tag) => {
      return tags.test(tag) ? all :
                            front + "></" + tag + ">";
    });
  }
  assert(convert("<a/>") === "<a></a>", "Check anchor conversion.");
  assert(convert("<hr/>") === "<hr/>", "Check hr conversion.");

When we apply the convert function to this example HTML string, we end up with the
following HTML string:

<option>Yoshi</option>
<option>Kuma</option>
<table></table>            

With that accomplished, we still have to solve the problem that our option elements
aren’t contained within a select element. Let’s see how to determine whether an ele-
ment needs to be wrapped.

HTML WRAPPING

According to the semantics of HTML, some HTML elements must be within certain
container elements before they can be injected. For example, an <option> element
must be contained within a <select>.

 We can solve this problem in two ways, both of which require constructing a map-
ping between problematic elements and their containers:

Listing 12.1 Making sure that self-closing elements are interpreted correctly

Uses a regular expression to match the tag name of
any elements we don’t need to be concerned about

A function that uses 
regular expressions to 
convert self-closing 
tags to “normal” form

<table/> expanded



309Injecting HTML into the DOM

■ The string could be injected directly into a specific parent by using innerHTML,
where the parent has been previously constructed using the built-in document
createElement. Although this may work in some cases and in some browsers, it
isn’t universally guaranteed.

■ The string could be wrapped with the appropriate required markup and then
injected directly into any container element (such as a <div>). This is more
foolproof, but it’s also more work.

The second technique is preferred; it involves little browser-specific code, in contrast
to the first approach, which requires a fair amount of mostly browser-specific code.

 The set of problematic elements that need to be wrapped in specific container ele-
ments is fortunately a rather manageable seven. In table 12.1, the ellipses (...) indi-
cates the locations where the elements need to be injected.

Nearly all of these are straightforward, save for the following points, which require a
bit of explanation:

■ A <select> element with the multiple attribute is used (as opposed to a non-
multiple select) because it won’t automatically check any of the options that are
placed inside it (whereas a single select will autocheck the first option).

■ The <col> fix includes an extra <tbody>, without which the <colgroup> won’t
be generated properly. 

With the elements properly mapped to their wrapping requirements, let’s start generating.
 With the information from table 12.1, we can generate the HTML that we need to

insert into a DOM element, as shown in the following listing.
  

Table 12.1 Elements that need to be contained within other elements

Element name Ancestor element

<option>, <optgroup> <select multiple>...</select>

<legend> <fieldset>...</fieldset>

<thead>, <tbody>, <tfoot>, 
<colgroup>, <caption>

<table>...</table>

<tr> <table><thead>...</thead></table>
<table><tbody>...</tbody></table>
<table><tfoot>...</tfoot></table>

<td>, <th> <table><tbody><tr>...</tr></tbody></table>

<col> <table>
  <tbody></tbody>
  <colgroup>...</colgroup>
</table>



310 CHAPTER 12 Working the DOM

function getNodes(htmlString, doc) {
    const map = {                                              
      "<td":[3,"<table><tbody><tr>","</tr></tbody></table>"],  
      "<th":[3,"<table><tbody><tr>","</tr></tbody></table>"],  
      "<tr":[2,"<table><thead>","</thead></table>"],           
      "<option":[1,"<select multiple>","</select>"],           
      "<optgroup":[1,"<select multiple>","</select>"],         
      "<legend":[1,"<fieldset>","</fieldset>"],                
      "<thead":[1,"<table>","</table>"],                       
      "<tbody":[1,"<table>","</table>"],                       
      "<tfoot":[1,"<table>","</table>"],                       
      "<colgroup":[1,"<table>","</table>"],                    
      "<caption":[1,"<table>","</table>"],                     
      "<col":[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],
    };
    const tagName = htmlString.match(/<\w+/);       
    let mapEntry = tagName ? map[tagName[0]] : null;
    if (!mapEntry) { mapEntry = [0, " "," " ];}      
    let div = (doc || document).createElement("div");              
    div.innerHTML = mapEntry[1] + htmlString + mapEntry[2];  
    while (mapEntry[0]--) { div = div.lastChild;}                
    return div.childNodes;   
  }
  assert(getNodes("<td>test</td><td>test2</td>").length === 2,
         "Get two nodes back from the method.");
  assert(getNodes("<td>test</td>")[0].nodeName === "TD",
         "Verify that we're getting the right node.");

We create a map of all element types that need to be placed within special parent con-
tainers, a map that contains the depth of the node, as well as the enclosing HTML.
Next, we use a regular expression to match the opening bracket and the tag name of
the element we want to insert:

const tagName = htmlString.match(/<\w+/); 

Then we select a map entry, and in case there isn’t one, we create a dummy entry with
an empty parent element markup:

let mapEntry = tagName ? map[tagName[0]] : null;
if  (!mapEntry) { mapEntry = [0, " ", " "]; }

We follow this by creating a new div element, surrounding it with the mapped HTML,
and inserting the newly created HTML into the previously created div element:

let div = (doc || document).createElement("div");
div.innerHTML = mapEntry[1] + htmlString + mapEntry[2]

Listing 12.2 Generating a list of DOM nodes from some markup

Map of element types 
that need special parent 
containers. Each entry 
has the depth of the new 
node, opening HTML for 
the parents, and closing 
HTML for the parents.

Matches
the

opening
bracket
and tag

name
If it’s in the map, grabs the entry; otherwise, 
constructs a faux entry with empty “parent” 
markup and a depth of zero.

Walks down the just-created tree to the depth indicated by
the map entry. This should be the parent of the desired node

created from the markup.

Wraps the incoming 
markup with the 
parents from the map 
entry, and injects it as 
the inner HTML of the 
newly created <div>

Creates a <div> element 
in which to create the new 
nodes. Note that we use a 
passed document if it 
exists, or default to the 
current document if not.

Returns the newly created element



311Injecting HTML into the DOM

Finally, we find the parent of the desired node created from our HTML string, and we
return the newly created node:

while (mapEntry[0]--) { div = div.lastChild;} 
return div.childNodes; 

After all of this, we have a set of DOM nodes that we can begin to insert into the document.
 If we go back to our motivating example, and apply the getNodes function, we’ll

end up with something along the following lines:

<select multiple>           
  <option>Yoshi</option>    
  <option>Kuma</option>     
</select>
<table></table>

12.1.2 Inserting elements into the document

After we have the DOM nodes, it’s time to insert them into the document. A couple of
steps are required, and we’ll work through them in this section.

 Because we have an array of elements that we need to insert—potentially into any
number of locations within the document—we want to try to keep the number of
operations performed to a minimum. We can do this by using DOM fragments. DOM
fragments are part of the W3C DOM specification and are supported in all browsers.
This useful facility gives us a container to hold a collection of DOM nodes.

 This in itself is quite useful, but it also has the advantage that the fragment can be
injected and cloned in a single operation instead of having to inject and clone each
individual node over and over again. This has the potential to dramatically reduce the
number of operations required for a page.

 Before we use this mechanism in our code, let’s revisit the getNodes() code of list-
ing 12.2 and adjust it a tad to use DOM fragments. The changes are minor and consist
of adding a fragment parameter to the function’s parameter list, as follows.

function getNodes(htmlString, doc, fragment){  
    const map = { 
      "<td":[3,"<table><tbody><tr>","</tr></tbody></table>"], 
      "<th":[3,"<table><tbody><tr>","</tr></tbody></table>"], 
      "<tr":[2,"<table><thead>","</thead></table>"],
      "<option":[1,"<select multiple>","</select>"],
      "<optgroup":[1,"<select multiple>","</select>"],
      "<legend":[1,"<fieldset>","</fieldset>"], 
      "<thead":[1,"<table>","</table>"], 
      "<tbody":[1,"<table>","</table>"],
      "<tfoot":[1,"<table>","</table>"],
      "<colgroup":[1,"<table>","</table>"],
      "<caption":[1,"<table>","</table>"], 

Listing 12.3 Expanding the getNodes function with fragments

Option elements have 
been wrapped inside a 
select element.

Adds a new 
fragment 
parameter to 
the function



312 CHAPTER 12 Working the DOM

      "<col":[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],
    };
    const tagName = htmlString.match(/<\w+/);
    let mapEntry = tagName ? map[tagName[0]] : null;
    if  (!mapEntry) { mapEntry = [0, " "," " ];}
    let div = (doc || document).createElement("div");
    div.innerHTML = mapEntry[1] + htmlString + mapEntry[2];
    while (mapEntry[0]--) { div = div.lastChild;}
    if (fragment) {                                    
      while (div.firstChild) {                         
        fragment.appendChild(div.firstChild);          
      }                                                
    }                                                  

    return div.childNodes;
  }

In this example, we make a couple of changes. First we modify the function signature
by adding another parameter, fragment:

function getNodes(htmlString, doc, fragment) {...}

This parameter, if it’s passed, is expected to be a DOM fragment that we want the
nodes to be injected into for later use.

 To do so, we add the following fragment just before the return statement of the
function to add the nodes to the passed fragment:

if (fragment) {
  while (div.firstChild) {
    fragment.appendChild(div.firstChild);
  }
}

Now, let’s see it in use. In the following listing, which assumes that the updated get-
Nodes function is in scope, a fragment is created and passed in to that function
(which, you may recall, converts the incoming HTML string into DOM elements). This
DOM is now appended to the fragment.

<div id="test"><b>Hello</b>, I'm a ninja!</div>   
<div id="test2"></div>                            
<script>
  document.addEventListener("DOMContentLoaded", () => {
    function insert(elems, args, callback) {
      if (elems.length) {
        const doc = elems[0].ownerDocument || elems[0],
              fragment = doc.createDocumentFragment(),
              scripts = getNodes(args, doc, fragment),
              first = fragment.firstChild;

Listing 12.4 Inserting a DOM fragment into multiple locations in the DOM

If the fragment 
exists, injects the 
nodes into it.

Sets up a couple 
of test nodes

Creates a document 
fragment in which 
we’ll insert nodes

Creates HTML
nodes from the

HTML string



313Using DOM attributes and properties

        if (first) {
          for (let i = 0; elems[i]; i++) {
            callback.call(root(elems[i], first),
                i > 0 ? fragment.cloneNode(true) : fragment);
          }
        }
      }
    }
    const divs = document.querySelectorAll("div");
    insert(divs, "<b>Name:</b>", function (fragment) {
      this.appendChild(fragment);
    });

    insert(divs, "<span>First</span> <span>Last</span>",
        function (fragment) {
          this.parentNode.insertBefore(fragment, this);
        });
  });
</script>

There’s another important point here: If we’re inserting this element into more than
one location in the document, we’re going to need to clone this fragment again and
again. If we weren’t using a fragment, we’d have to clone each individual node every
time, instead of the whole fragment at once.

 With this, we’ve developed a way to generate and insert arbitrary DOM elements in
an intuitive manner. Let’s continue this exploration of the DOM by seeing the differ-
ence between DOM attributes and properties.

12.2 Using DOM attributes and properties
When accessing the values of element attributes, we have two options: using the tradi-
tional DOM methods of getAttribute and setAttribute, or using properties of the
DOM objects that correspond to the attributes.

 For example, to obtain the id of an element whose reference is stored in variable
e, we could use either of the following:

e.getAttribute('id')
e.id

Either will give us the value of the id. 
 Let’s examine the following code to better understand how attribute values and

their corresponding properties behave.

<div></div>
<script>
  document.addEventListener("DOMContentLoaded", () => {
    const div = document.querySelector("div");        

Listing 12.5 Accessing attribute values via DOM methods and properties 

If we need to insert the
nodes into more than one
element, we have to clone

the fragment each time.

Obtains an element 
reference



314 CHAPTER 12 Working the DOM

    div.setAttribute("id","ninja-1");           
    assert(div.getAttribute('id') === "ninja-1",
           "Attribute successfully changed");   
    div.id = "ninja-2";                       
    assert(div.id === "ninja-2",              
           "Property successfully changed");  
    
    assert(div.getAttribute('id') === "ninja-2",          
           "Attribute successfully changed via property");
    div.setAttribute("id","ninja-3");
    assert(div.id === "ninja-3",
           "Property successfully changed via attribute");
    assert(div.getAttribute('id') === "ninja-3",
           "Attribute successfully changed");
  });
</script>

This example shows interesting behavior with respect to element attributes and ele-
ment properties. It starts by defining a simple <div> element that we’ll use as a test
subject. Within the document’s DOMContentLoaded handler (to ensure that the DOM
is fully built), we obtain a reference to the lone <div> element, const div = document
.querySelector("div"), and then run a few tests.

 In the first test, we set the id attribute to the value ninja-1 via the setAttribute()
method. Then we assert that getAttribute() returns the same value for that attribute.
It should be no surprise that this test works just fine when we load the page:

div.setAttribute("id", "ninja-1");
assert(div.getAttribute('id') === "ninja-1",
       "Attribute successfully changed");

Similarly, in the next test, we set the id property to the value ninja-2 and then verify
that the property value has indeed changed. No problem.

div.id = "ninja-2";
assert(div.id === "ninja-2",
      "Property successfully changed");

The next test is when things get interesting. We again set the id property to a new
value, in this case ninja-3, and again verify that the property value has changed. But
then we also assert that not only should the property value change, but also the value
of the id attribute. Both assertions pass. From this we learn that the id property and
the id attribute are somehow linked together. Changing the id property value also
changes the id attribute value:

div.id = "ninja-3";
assert(div.id === "ninja-3",
      "Property successfully changed");
assert(div.getAttribute('id') === "ninja-3",
       "Attribute successfully changed via property");

Changes the value of the id attribute 
with the setAttribute method and tests 
that the value has changed 

Changes the value of the property 
and tests that the value has changed

Changing the 
property also 
changes the value 
obtained with 
getAttribute.

Using
setAttribute
also changes

the value
obtained

through the
property.



315Styling attribute headaches

The next test proves that it also works the other way around: Setting an attribute value
also changes the corresponding property value.

div.setAttribute("id","ninja-4");  
assert(div.id === "ninja-4",
       "Property successfully changed via attribute");
assert(div.getAttribute('id') === "ninja-4","Attribute changed");

But don’t let this fool you into thinking that the property and attribute are sharing the
same value—they aren’t. We’ll see later in this chapter that the attribute and corre-
sponding property, although linked, aren’t always identical. 

 It’s important to note that not all attributes are represented by element properties.
Although it’s generally true for attributes that are natively specified by the HTML
DOM, custom attributes that we may place on the elements in our pages don’t automati-
cally become represented by element properties. To access the value of a custom attri-
bute, we need to use the DOM methods getAttribute() and setAttribute().

 If you’re not sure whether a property for an attribute exists, you can always test for
it and fall back to the DOM methods if it doesn’t exist. Here’s an example:

const value = element.someValue ? element.someValue
                                : element.getAttribute('someValue');

TIP In HTML5, use the prefix data- for all custom attributes to keep them
valid in the eye of the HTML5 specification. It’s a good convention that clearly
separates custom attributes from native attributes.

12.3 Styling attribute headaches
As with general attributes, getting and setting styling attributes can be a headache. As
with the attributes and properties in the previous section, we again have two
approaches for handling style values: the attribute value, and the element property
created from it.

 The most commonly used of these is the style element property, which isn’t a string
but an object that holds properties corresponding to the style values specified in the ele-
ment markup. In addition, you’ll see that there’s a method for accessing the computed
style information of an element, where computed style means the style that will be applied
to the element after evaluating all inherited and applied style information.

 This section outlines the things you need to know when working with styles in
browsers. Let’s start with a look at where style information is recorded.

12.3.1 Where are my styles?

The style information located in the style property of a DOM element is initially set
from the value specified for the style attribute in the element markup. For example,
style="color:red;" results in that style information being placed into the style
object. During page execution, the script can set or modify values in the style object,
and these changes will actively affect the display of the element.



316 CHAPTER 12 Working the DOM

 Many script authors are disappointed to find that no values from on-page <style>
elements or external style sheets are available in the element’s style object. But we
won’t stay disappointed for long—you’ll soon see a way to obtain this information.

 For now, let’s see how the style property gets its values. Examine the following
code.

<style>          
  div { font-size: 1.8em; border: 0 solid gold; }
</style>
<div style="color:#000;" title="Ninja power!"> 
  忍者パワー
</div>
<script>
  document.addEventListener("DOMContentLoaded", () => {
    const div = document.querySelector("div");
    assert(div.style.color === 'rgb(0, 0, 0)' ||       
           div.style.color === '#000',
           'color was recorded');
    assert(div.style.fontSize === '1.8em',
           'fontSize was recorded');
    assert(div.style.borderWidth === '0',       
           'borderWidth was recorded');
    div.style.borderWidth = "4px";            
    assert(div.style.borderWidth === '4px',
           'borderWidth was replaced');
  });
</script>

In this example, we set up a <style> element to establish an internal style sheet whose
values will be applied to the elements on the page. The style sheet specifies that all
<div> elements will appear in a font size that’s 1.8 times bigger than the default, with
a solid gold border of 0 width. Any elements to which this is applied will possess a bor-
der, but it won’t be visible because it has a width of 0.

<style> 
  div { font-size: 1.8em; border: 0 solid gold; }
</style>

Then we create a <div> element with an inlined style attribute that colors the text of
the element black:

<div style="color:#000;" title="Ninja power!">  
  忍者パワー
</div>

Listing 12.6 Examining the style property

Declares an in-page style sheet that applies
font size and border information This test element should 

receive multiple styles from 
various places, including its 
own style attribute and the 
style sheet.

Tests that the 
inlined color style 
was recorded

Tests that the inherited font 
size style was recorded

Tests that the inherited border 
width style was recorded

Replaces the border 
width styleTests the border width style

change was recorded



317Styling attribute headaches

We then begin the testing. After obtaining a reference to the <div> element, we test
that the style attribute receives a color property that represents the color assigned to
the element. Note that even though the color is specified as #000 in the inline style,
it’s normalized to RGB notation when set in the style property in most browsers (so
we check both formats). 

    assert(div.style.color === 'rgb(0, 0, 0)' || 
           div.style.color === '#000',
           'color was recorded');

Looking ahead, in figure 12.1, we see
that this test passes.

 Then we naïvely test that the font-
size styling and the border width speci-
fied in the inline style sheet have been
recorded in the style object. But even
though we can see in figure 12.1 that
the font-size style has been applied to
the element, the test fails. This is
because the style object doesn’t reflect
any style information inherited from
CSS style sheets:

    assert(div.style.fontSize === '1.8em',   
           'fontSize was recorded');
    assert(div.style.borderWidth === '0',  
           'borderWidth was recorded');

Moving on, we use an assignment to change the value of the borderWidth property in
the style object to 4 pixels wide and test that the change is applied. We can see in fig-
ure 12.1 that the test passes and that the previously invisible border is applied to the
element. This assignment causes a borderWidth property to appear in the style prop-
erty of the element, as proven by the test.

div.style.borderWidth = "4px";    
assert(div.style.borderWidth === '4px',
       'borderWidth was replaced');

It should be noted that any values in an element’s style property take precedence over
anything inherited by a style sheet (even if the style sheet rule uses the !important
annotation). 

 One thing that you may have noted in listing 12.6 is that CSS specifies the font size
property as font-size, but in script you reference it as fontSize. Why is that?

Figure 12.1 By running this test, we can see that 
inline and assigned styles are recorded, but inherited 
styles aren’t.



318 CHAPTER 12 Working the DOM

12.3.2 Style property naming

CSS attributes cause relatively few cross-browser difficulties when it comes to accessing
the values provided by the browser. But differences between how CSS names styles and
how we access those in script do exist, and some style names differ across browsers.

CSS attributes that span more than one word separate the words with a hyphen;
examples are font-weight, font-size, and background-color. You may recall that
property names in JavaScript can contain a hyphen, but including a hyphen prevents
the property from being accessed via the dot operator. 

 Consider this example:

const fontSize = element.style['font-size'];

The preceding is perfectly valid. But the following isn’t:

const fontSize = element.style.font-size;

The JavaScript parser would see the hyphen as a subtraction operator, and nobody
would be happy with the outcome. Rather than forcing page developers to always use
the general form for property access, multiword CSS style names are converted to camel case
when used as a property name. As a result, font-size becomes fontSize, and background-
color becomes backgroundColor.

 We can either remember to do this, or write a simple API to set or get styles that
automatically handle the camel casing, as shown in the following listing.

<div style="color:red;font-size:10px;background-color:#eee;"></div>
<script> 
  function style(element,name,value){
    name = name.replace(/-([a-z])/ig, (all,letter) => { 
      return letter.toUpperCase();
    });
    if (typeof value !== 'undefined') {
      element.style[name] = value;
    }
    return element.style[name];
  }
  document.addEventListener("DOMContentLoaded", () => {
    const div = document.querySelector("div");
    assert(style(div,'color') === "red", style(div,'color'));
    assert(style(div,'font-size') === "10px", style(div,'font-size'));
    assert(style(div,'background-color') === 
    "rgb(238, 238, 238)",style(div,'background-color'));
  });
</script>

Listing 12.7 A simple method for accessing styles

Defines the style function that will assign a value to a style property in case a value is 
provided, and in case it isn’t, it will simply return the value of the style property. We 
can use this function for both setting and getting the value of a style property.

Converts name 
to camel case

The new value of the 
style property is set, if 
a value is provided.

Always
returns

the value
of the
style

property



319Styling attribute headaches

The style function has two important characteristics:

■ It uses a regular expression to convert the name parameter to camel-case nota-
tion. (If the regex-driven conversion operation has you scratching your head,
you might want to review the material in chapter 10.)

■ It can be used both as a setter and a getter, by inspecting its own argument
list. For example, we can obtain the value of the font-size property with
style(div, 'font-size'), and we can set a new value with style(div,
'font-size', '5px').

Consider the following code:

function style(element,name,value){ 
    ...
  if (typeof value !== 'undefined') {
    element.style[name] = value;
  }
  
  return element.style[name];
}

If a value argument is passed to the function, the function acts as a setter, setting the
passed value as the value of the attribute. If the value argument is omitted and only
the first two arguments are passed, it acts as a getter, retrieving the value of the speci-
fied attribute. In either case, the value of the attribute is returned, which makes it easy
to use the function in either of its modes in a function-call chain.

 The style property of an element doesn’t include any style information that an
element inherits from style sheets in scope for the element. Many times it would be
handy to know the full computed style that’s been applied to an element, so let’s see if
there’s a way to obtain that.

12.3.3 Fetching computed styles

At any point in time, the computed style of an element is a combination of all the built-
in styles provided by the browser, all the styles applied to it via style sheets, the element’s
style attribute, and any manipulations of the style property by script. Figure 12.2
shows how browser developer tools differentiate between styles.

 The standard method, implemented by all modern browsers, is the getComputed-
Style method. This method accepts an element whose styles are to be computed and
returns an interface through which property queries can be made. The returned
interface provides a method named getPropertyValue for retrieving the computed
style of a specific style property.

 Unlike the properties of an element’s style object, the getPropertyValue
method accepts CSS property names (such as font-size and background-color)
rather than the camel-cased versions of those names.



320 CHAPTER 12 Working the DOM

The following listing shows a simple example.

<style>
  div {
    background-color: #ffc; display: inline; font-size: 1.8em;
    border: 1px solid crimson; color: green;
  }
</style>
<div style="color:crimson;" id="testSubject" title="Ninja power!">
  忍者パワー
</div>
<script>
  function fetchComputedStyle(element,property) {
    const computedStyles = getComputedStyle(element);
    if (computedStyles) {
      property = property.replace(/([A-Z])/g,'-$1').toLowerCase();
      return computedStyles.getPropertyValue(property);
    }
  }
  document.addEventListener("DOMContentLoaded", () => {
    const div = document.querySelector("div");
    report("background-color: " +
           fetchComputedStyle(div,'background-color'));
    report("display: " +
           fetchComputedStyle(div,'display'));

Listing 12.8 Fetching computed style values

Browser built-in stylesStyles defined through the
element’s style attribute

Style sheet styles

Figure 12.2 The final style associated with an element can come from many things: the browser built-
in styles (user agent style sheet), the styles assigned through the style property, and styles from the 
CSS rules defined in CSS code.

Creates a test subject
with a style attribute

Defines a
function that

will get the
computed
value of a

style
property

Uses the built-in getComputedStyle
method to obtain a descriptor object

Replaces
camel-case

notation
with

dashes

Tests that we
can obtain the

values of various
style properties,

using different
notations



321Styling attribute headaches

    report("font-size: " +
           fetchComputedStyle(div,'fontSize'));
    report("color: " +
           fetchComputedStyle(div,'color'));
    report("border-top-color: " +
           fetchComputedStyle(div,'borderTopColor'));
    report("border-top-width: " +
           fetchComputedStyle(div,'border-top-width'));
  });
</script>

To test the function that we’ll be creating, we set up an element that specifies style
information in its markup and a style sheet that provides style rules to be applied to
the element. We expect that the computed styles will be the result of applying both
the immediate and the applied styles to the element.

 We then define the new function, which accepts an element and the style property
that we want to find the computed value for. And to be especially friendly (after all,
we’re ninjas—making things easier for those using our code is part of the job), we’ll
allow multiword property names to be specified in either format: dashed or camel-
cased. In other words, we’ll accept both backgroundColor and background-color.
We’ll see how to accomplish that in a little bit.

 The first thing we want to do is to obtain the computed style interface, which we
store in a variable, computedStyles, for later reference. We want to do things this way
because we don’t know how expensive making this call may be, and it’s likely best to
avoid repeating it needlessly.

const computedStyles = getComputedStyle(element);
if (computedStyles) {
  property = property.replace(/([A-Z])/g,'-$1').toLowerCase();
  return computedStyles.getPropertyValue(property);
}

If that succeeds (and we can’t think of any reason why it wouldn’t, but it frequently pays
to be cautious), we call the getPropertyValue() method of the interface to get the com-
puted style value. But first we adjust the name of the property to accommodate either the
camel-cased or dashed version of the property name. The getPropertyValue method
expects the dashed version, so we use the String’s replace() method, with a simple but
clever regular expression, to insert a hyphen before every uppercase character and then
lowercase the whole thing. (Bet that was easier than you thought it would be.)

 To test the function, we make calls to the function, passing various style names in
various formats, and display the results, as shown in figure 12.3.

 Note that the styles are fetched regardless of whether they’re explicitly declared on
the element or inherited from the style sheet. Also note that the color property, spec-
ified in both the style sheet and directly on the element, returns the explicit value.
Styles specified by an element’s style attribute always take precedence over inherited
styles, even if marked !important.



322 CHAPTER 12 Working the DOM

 We need to be aware of one more
topic when dealing with style proper-
ties: amalgam properties. CSS allows us
to use a shortcut notation for the amal-
gam of properties such as the border-
properties. Rather than forcing us to
specify colors, widths, and border
styles individually and for all four bor-
ders, we can use a rule such as this:

border: 1px solid crimson;

We used this exact rule in listing 12.8.
This saves a lot of typing, but we need
to be aware that when we retrieve the
properties, we need to fetch the low-
level individual properties. We can’t
fetch border, but we can fetch styles such as border-top-color and border-top-
width, just as we did in the example.

 It can be a bit of a hassle, especially when all four styles are given the same values,
but that’s the hand we’ve been dealt.

12.3.4 Converting pixel values

An important point to consider when setting style values is the assignment of numeric
values that represent pixels. When setting a numeric value for a style property, we
must specify the unit in order for it to work reliably across all browsers. For example,
let’s say that we want to set the height style value of an element to 10 pixels. Either of
the following is a safe way to do this across browsers:

element.style.height = "10px";
element.style.height = 10 + "px";

The following isn’t safe across browsers:

element.style.height = 10;

You might think it’d be easy to add a little logic to the style() function of listing 12.7
to tack a px to the end of a numeric value coming into the function. But not so fast!
Not all numeric values represent pixels! Some style properties take numeric values
that don’t represent a pixel dimension. The list includes the following:

■ z-index
■ font-weight
■ opacity
■ zoom
■ line-height

Figure 12.3 Computed styles include all styles 
specified with the element as well as those inherited 
from style sheets.



323Styling attribute headaches

For these (and any others you can think of), go ahead and extend the function of list-
ing 12.6 to automatically handle nonpixel values. Also, when attempting to read a
pixel value out of a style attribute, the parseFloat method should be used to make
sure that you get the intended value under all circumstances.

 Now let’s take a look at a set of important style properties that can be tough to handle.

12.3.5 Measuring heights and widths

Style properties such as height and width pose a special problem, because their val-
ues default to auto when not specified, so that the element sizes itself according to its
contents. As a result, we can’t use the height and width style properties to get accu-
rate values unless explicit values are provided in the attribute string.

 Thankfully, the offsetHeight and offsetWidth properties provide just that: a
fairly reliable means to access the height and width of an element. But be aware that
the values assigned to these two properties include the padding of the element. This
information is usually exactly what we want if we’re attempting to position one ele-
ment over another. But sometimes we may want to obtain information about the ele-
ment’s dimensions with and without borders and padding.

 Something to watch out for, however, is that in highly interactive sites, elements
will likely spend some of their time in a nondisplayed state (with the display style
being set to none), and when an element isn’t part of the display, it has no dimensions.
Any attempt to fetch the offsetWidth or offsetHeight properties of a nondisplayed
element will result in a value of 0.

 For such hidden elements, if we want to obtain the nonhidden dimensions, we can
employ a trick to momentarily unhide the element, grab the values, and hide it again.
Of course, we want to do so in such a way that we leave no visible clue that this is going
on behind the scenes. How can we make a hidden element not hidden without mak-
ing it visible?

 Employing our ninja skills, we can do it! Here’s how:

1 Change the display property to block.
2 Set visibility to hidden.
3 Set position to absolute.
4 Grab the dimension values.
5 Restore the changed properties.

Changing the display property to block allows us to grab the values of offsetHeight
and offsetWidth, but that makes the element part of the display and therefore visi-
ble. To make the element invisible, we’ll set the visibility property to hidden. But
(there’s always another but) that will leave a big hole where the element is positioned,
so we also set the position property to absolute to take the element out of the nor-
mal display flow.

 All that sounds more complicated than the implementation, which is shown in the
following listing.



324 CHAPTER 12 Working the DOM

<div>
  Lorem ipsum dolor sit amet, consectetur adipiscing elit.
  Suspendisse congue facilisis dignissim. Fusce sodales,
  odio commodo accumsan commodo, lacus odio aliquet purus,
  <img src="../images/ninja-with-pole.png" id="withPole" alt="ninja pole"/>
  <img src="../images/ninja-with-shuriken.png"
       id="withShuriken" style="display:none" alt="ninja shuriken" />
  vel rhoncus elit sem quis libero. Cum sociis natoque
  penatibus et magnis dis parturient montes, nascetur
  ridiculus mus. In hac habitasse platea dictumst. Donec
  adipiscing urna ut nibh vestibulum vitae mattis leo
  rutrum. Etiam a lectus ut nunc mattis laoreet at
  placerat nulla. Aenean tincidunt lorem eu dolor commodo
  ornare.
</div>
<script
  (function(){              
    const PROPERTIES = {            
      position: "absolute",
      visibility: "hidden",
      display: "block"
    };
    window.getDimensions = element => { 
      const previous = {};             
      for (let key in PROPERTIES) {
        previous[key] = element.style[key];
        element.style[key] = PROPERTIES[key];
      }
      const result = {                
        width: element.offsetWidth,
        height: element.offsetHeight
      };
      for (let in PROPERTIES) {             
        element.style[key] = previous[key];
      }
      return result;
    };
  })();
  document.addEventListener("DOMContentLoaded", () => {
    setTimeout(() => {
      const withPole = document.getElementById('withPole'),
          withShuriken = document.getElementById('withShuriken');
      assert(withPole.offsetWidth === 41,                 
             "Pole image width fetched; actual: " +
             withPole.offsetWidth + ", expected: 41");
      assert(withPole.offsetHeight === 48,
             "Pole image height fetched: actual: " +
             withPole.offsetHeight + ", expected 48");
      assert(withShuriken.offsetWidth === 36,       
             "Shuriken image width fetched; actual: " +
             withShuriken.offsetWidth + ", expected: 36");
      assert(withShuriken.offsetHeight === 48,
             "Shuriken image height fetched: actual: " +

Listing 12.9 Grabbing the dimensions of hidden elements

Creates a private scope

Defines target properties

Creates the new function

Remembers settings

Replaces settings

Fetches dimensions

Restores settings

Tests visible element

Tests hidden element



325Styling attribute headaches

             withShuriken.offsetHeight + ", expected 48");
      const dimensions = getDimensions(withShuriken);
      assert(dimensions.width === 36,              
             "Shuriken image width fetched; actual: " +
             dimensions.width + ", expected: 36");
      assert(dimensions.height === 48,
             "Shuriken image height fetched: actual: " +
             dimensions.height + ", expected 48");
    },3000);
  });
</script>

That’s a long listing, but most of it is test code; the implementation of the new
dimension-fetching function spans only a dozen or so lines of code.

 Let’s take a look at it piece by piece. First, we set up elements to test: a <div> ele-
ment containing a bunch of text with two images embedded within it, left-justified by
styles in an external style sheet. These image elements will be the subjects of our tests;
one is visible, and one is hidden.

 Prior to running any script, the ele-
ments appear as shown in figure 12.4.
If the second image weren’t hidden, it
would appear as a second ninja just to
the right of the visible one.

 Then we set about defining our new
function. We’re going to use a hash for
some important information, but we
don’t want to pollute the global
namespace with this hash; we want it to
be available to the function in its local
scope, but no further than that.

 We accomplish that by enclosing
the hash definition and function decla-
ration within an immediate function, which creates a local scope. The hash isn’t acces-
sible outside the immediate function, but the getDimensions function that we also
define within the immediate function has access to the hash via its closure. Nifty, eh?

(function(){ 
    const PROPERTIES = {
      position: "absolute",
      visibility: "hidden",
      display: "block"
    };
    window.getDimensions = element => { 
      const previous = {};  
      for (let key in PROPERTIES) {
        previous[key] = element.style[key];
        element.style[key] = PROPERTIES[key]; 
      }

Uses new function

Retests hidden element

Figure 12.4 We’ll use two images—one visible, one 
hidden—for testing the fetching of dimensions of hid-
den elements.



326 CHAPTER 12 Working the DOM

      const result = { 
        width: element.offsetWidth,
        height: element.offsetHeight
      };
      for (let key in PROPERTIES) {   
        element.style[key] = previous[key];
      }
      return result;
    };
  })();

Our new dimension-fetching function is then declared, accepting the element that’s
to be measured. Within that function, we first create a hash named previous in which
we’ll record the previous values of the style properties that we’ll be stomping on, so
that we can restore them later. Looping over the replacement properties, we then
record each of their previous values and replace those values with the new ones.

 That accomplished, we’re ready to measure the element, which has now been
made part of the display layout, invisible, and absolutely positioned. The dimensions
are recorded in a hash assigned to local variable result.

 Now that we’ve pilfered what we came for, we erase our tracks by restoring the orig-
inal values of the style properties that we modified, and we return the results as a hash
containing width and height properties.

 All well and good, but does it work? Let’s find out.
 In a load handler, we perform the tests in a callback to a 3-second timer. Why, you

ask? The load handler ensures that we don’t perform the test until we know that the
DOM has been built, and the timer enables us to watch the display while the test is run-
ning, to make sure no display glitches occur while we fiddle with the properties of the
hidden element. After all, if the display is disturbed in any way when we run our func-
tion, it’s a bust.

 In the timer callback, we first get a reference to our test subjects (the two images)
and assert that we can obtain the dimensions of the visible image by using the offset
properties. This test passes, which we can see if we peek ahead to figure 12.5.

 Then we make the same test on the hidden element, incorrectly assuming that the
offset properties will work with a hidden image. Not surprisingly, because we’ve
already acknowledged that this won’t work, the test fails.

 Next, we call our new function on the hidden image, and then retest with those
results. Success! Our test passes, as shown in figure 12.5.

 If we watch the display of the page while the test is running—remember, we delay
running the test until 3 seconds after the DOM is loaded—we can see that the display
isn’t perturbed in any way by our behind-the-scenes adjustments of the hidden ele-
ment’s properties.

TIP Checking the offsetWidth and offsetHeight style properties for zeroes
can serve as an incredibly efficient means of determining the visibility of
an element.



327Minimizing layout thrashing

12.4 Minimizing layout thrashing
So far in this chapter, you’ve learned how to relatively easily modify the DOM: by creat-
ing and inserting new elements, removing existing elements, or modifying their attri-
butes. Modifying the DOM is one of the fundamental tools for achieving highly
dynamic web applications. 

 But this tool also comes with usage asterisks, one of the most important being, be
aware of layout thrashing. Layout thrashing occurs when we perform a series of consec-
utive reads and writes to DOM, in the process not allowing the browser to perform lay-
out optimizations. 

 Before we delve deeper, consider that changing attributes of one element (or mod-
ifying its content) doesn’t necessarily affect only that element; instead it can cause a
cascade of changes. For example, setting the width of one element can lead to
changes in the element’s children, siblings, and parents. So whenever a change is
made, the browser has to calculate the impact of those changes. In certain cases,
there’s nothing we can do about it; we need those changes to occur. But at the same
time, there’s no need to put additional weight on the shoulders of our poor browsers,
causing our web application performance to dwindle.

 Because recalculating layout is expensive, browsers try to be as lazy as possible, by
delaying working with the layout as much as they can; they try to batch as many write
operations as possible on the DOM in a queue so that these operations can be exe-
cuted in one go. Then, when an operation that requires an up-to-date layout comes
along, the browser grudgingly obeys, and executes all batched operations and finally
updates the layout. But sometimes, the way we’ll write our code doesn’t give the
browser enough room to perform these sorts of optimizations, and we force the

Figure 12.5 By temporarily 
adjusting the style properties 
of hidden elements, we can 
successfully fetch their di-
mensions.



328 CHAPTER 12 Working the DOM

browser to perform a lot of (possibly needless) recalculations. This is what layout
thrashing is all about; it occurs when our code performs a series of (often unneces-
sary) consecutive reads and writes to the DOM, not allowing the browser to optimize
layout operations. The problem is that, whenever we modify the DOM, the browser has
to recalculate the layout before any layout information is read. This action is expen-
sive, in terms of performance. Let’s take a look at an example.

<div id="ninja">I’m a ninja</div>     
<div id="samurai">I’m a samurai</div> 
<div id="ronin">I’m a ronin</div>     
<script>
  const ninja = document.getElementById("ninja");    
  const samurai = document.getElementById("samurai");
  const ronin = document.getElementById("ronin");    

  const ninjaWidth = ninja.clientWidth;        
  ninja.style.width = ninjaWidth/2 + "px";     
  
  const samuraiWidth = samurai.clientWidth;    
  samurai.style.width = samuraiWidth/2 + "px"; 

  const roninWidth = ronin.clientWidth;        
  ronin.style.width = roninWidth/2 + "px";     
</script>

Reading the value of the element’s clientWidth property is one of those actions that
requires the browser to have an up-to-date layout. By performing consecutive reads
and writes to the width property of different elements, we don’t allow the browser to
be lazy in a smart way. Instead, because we read layout information after every layout
modification, the browser has to recalculate the layout every time, just to be sure that
we still get the correct information. 

 One way of minimizing layout thrashing is to write code in a way that doesn’t cause need-
less layout recalculations. For example, we can rewrite listing 12.10 into the following.

<div id="ninja">I’m a ninja</div>
<div id="samurai">I’m a samurai</div>
<div id="ronin">I’m a ronin</div>
<script>
  const ninja = document.getElementById("ninja");
  const samurai = document.getElementById("samurai");
  const ronin = document.getElementById("ronin");

  const ninjaWidth = ninja.clientWidth;           
  const samuraiWidth = samurai.clientWidth;       
  const roninWidth = ronin.clientWidth;           

Listing 12.10 Consecutive series of reads and writes causes layout thrashing

Listing 12.11 Batch DOM reads and writes to avoid layout thrashing

Defines a few HTML elements

Fetches the elements 
from the DOM

Performs a series of 
consecutive reads and 
writes. DOM modifications 
invalidate the layout.

Batches all reads to layout 
properties together



329Minimizing layout thrashing

  ninja.style.width = ninjaWidth/2 + "px";    
  samurai.style.width = samuraiWidth/2 + "px";
  ronin.style.width = roninWidth/2 + "px";    
</script>

Here we batch all reads and writes, because we know that no dependencies exist
between the dimensions of our elements; setting the width of the ninja element
doesn’t influence the width of the samurai element. This allows the browser to lazily
batch operations that modify the DOM.

 Layout thrashing isn’t something that you’d notice in smaller, simpler pages, but
it’s something to keep in mind when developing complex web applications, especially
on mobile devices. For this reason, it’s always good to keep in mind the methods and
properties that require an up-to-date layout, shown in the following table (obtained
from http://ricostacruz.com/cheatsheets/layout-thrashing.html).

Several libraries that try to minimize layout thrashing have been developed. One of
the more popular ones is FastDom (https://github.com/wilsonpage/fastdom). The
library repository includes examples that clearly show the performance gains that can
be achieved by batching DOM read/write operations (https://wilsonpage.github.io/
fastdom/examples/aspect-ratio.html).

Table 12.2 APIs and properties that cause layout invalidation

Interface Property name

Element clientHeight, clientLeft, clientTop, clientWidth, focus, 
getBoundingClientRect, getClientRects, innerText, 
offsetHeight, offsetLeft, offsetParent, offsetTop, 
offsetWidth, outerText, scrollByLines, scrollByPages, 
scrollHeight, scrollIntoView, scrollIntoViewIfNeeded, 
scrollLeft, scrollTop, scrollWidth

MouseEvent layerX, layerY, offsetX, offsetY

Window getComputedStyle, scrollBy, scrollTo, scroll, scrollY

Frame, Document, Image height, width

Batches all writes to layout 
properties together

React’s virtual DOM
One of the most popular client-side libraries is Facebook’s React (https://
facebook.github.io/react/). React achieves great performance by using a virtual
DOM, a set of JavaScript objects that mimic the actual DOM. When we develop
applications in React, we perform all modifications on the virtual DOM, without any
regard for layout thrashing. Then, at an appropriate time, React uses the virtual DOM
to figure out what changes have to be made to the actual DOM, in order to keep the
UI in sync. This batching of updates increases the performance of applications.

http://ricostacruz.com/cheatsheets/layout-thrashing.html
https://github.com/wilsonpage/fastdom
https://wilsonpage.github.io/fastdom/examples/aspect-ratio.html
https://wilsonpage.github.io/fastdom/examples/aspect-ratio.html
https://facebook.github.io/react/
https://facebook.github.io/react/


330 CHAPTER 12 Working the DOM

12.5 Summary
■ Converting an HTML string into DOM elements includes the following steps:

– Making sure that the HTML string is valid HTML code
– Wrapping it into enclosing markup, required by browser rules
– Inserting the HTML into a dummy DOM element through the innerHTML

property of a DOM element
– Extracting the created DOM nodes back out

■ For fast inserting of DOM nodes, use DOM fragments, because a fragment can
be injected in a single operation, thereby drastically reducing the number of
operations.

■ DOM element attributes and properties, although linked, aren’t always identi-
cal! We can read and write to DOM attributes by using the getAttribute and
setAttribute methods, whereas we write to DOM properties by using object
property notation.

■ When working with attributes and properties, we have to be aware of custom
attributes. Attributes that we decide to place on HTML elements in order to carry
information useful to our applications aren’t automatically presented as ele-
ment properties. 

■ The style element property is an object that holds properties corresponding to
the style values specified in the element markup. To get the computed styles,
which also take into account the styles set in style sheets, use the built-in get-
ComputedStyle method.

■ For getting the dimensions of HTML elements, use offsetWidth and
offsetHeight properties.

■ Layout thrashing occurs when code performs a series of consecutive reads and
writes to DOM, each time forcing the browser to recalculate the layout informa-
tion. This leads to slower, less responsive web applications. 

■ Batch your DOM updates!

12.6 Exercises
1 In the following code, which of the following assertions will pass?

<div id="samurai"></div>
<script>
  const element = document.querySelector("#samurai");
  
  assert(element.id === "samurai", "property id is samurai");
  assert(element.getAttribute("id") === "samurai", 
         "attribute id is samurai");

  element.id = "newSamurai";
  



331Exercises

  assert(element.id === "newSamurai", "property id is newSamurai");
  assert(element.getAttribute("id") === "newSamurai", 
         "attribute id is newSamurai");
</script>

2 Given the following code, how can we access the element’s border-width style
property?

<div id="element" style="border-width: 1px; 
                         border-style:solid; border-color: red">
</div> 
<script>
  const element = document.querySelector("#element");
</script>

a element.border-width

b element.getAttribute("border-width");

c element.style["border-width"];

d element.style.borderWidth;

3 Which built-in method can get all styles applied to a certain element (styles pro-
vided by the browser, styles applied via style sheets, and properties set through
the style attribute)?

a getStyle

b getAllStyles

c getComputedStyle

4 When does layout thrashing occur?



332

Surviving events

Chapter 2 included a short discussion on the JavaScript single-threaded execution
model and introduced the event loop and the event queue, in which events wait for
their turn to be processed. This discussion was particularly useful when presenting
the steps in the lifecycle of a web page, especially when discussing the order in
which certain pieces of JavaScript code get executed. At the same time, it’s a simpli-
fication, so in order to get a more complete picture of how the browser works, we’ll
spend a significant part of this chapter exploring the nooks and crannies of the
event loop. This will help us better understand some of the performance limita-
tions inherent in JavaScript and the browser. In turn, we’ll use this knowledge to
develop smoother-running applications.

This chapter covers
■ Understanding the event loop
■ Processing complex tasks with timers
■ Managing animations with timers
■ Using event bubbling and delegation
■ Using custom events



333Diving into the event loop 

 During this exploration, we’ll put a special focus on timers, a JavaScript feature
that enables us to delay the execution of a piece of code asynchronously by a certain
amount of time. At first glance, this might not seem like much, but we’ll show you how
to use timers to break up long-running tasks that make applications slow and
unresponsive into smaller tasks that don’t clog the browser. This helps develop better-
performing applications.

 We’ll continue this exploration of events by showing how events are propagated
through the DOM tree, and how to use this knowledge to write simpler and less
memory-intensive code. Finally, we’ll finish the chapter with creating custom events,
which can help reduce coupling between different parts of the application. Without
further ado, let’s start looping through the event loop.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Why is the timing on timer callbacks not guaranteed? 
If a setInterval timer fires every 3 milliseconds while

another event handler is running for 16 ms, how many
times will the timer’s callback function be added to the
microtask queue? 

Why is the function context for an event handler some-
times different from the event’s target? 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.1 Diving into the event loop 
As you might have figured out, the event loop is more complicated than its presenta-
tion in chapter 2. For starters, instead of a single event queue, which holds only
events, the event loop has at least two queues that, in addition to events, hold other
actions performed by the browser. These actions are called tasks and are grouped into
two categories: macrotasks (or often just called tasks) and microtasks.

 Examples of macrotasks include creating the main document object, parsing
HTML, executing mainline (or global) JavaScript code, changing the current URL, as
well as various events such as page loading, input, network events, and timer events.
From the browser’s perspective, a macrotask represents one discrete, self-contained
unit of work. After running a task, the browser can continue with other assignments
such as re-rendering the UI of the page, or performing garbage collection.

 Microtasks, on the other hand, are smaller tasks that update the application state
and should be executed before the browser continues with other assignments such as
re-rendering the UI. Examples include promise callbacks and DOM mutation changes.
Microtasks should be executed as soon as possible, in an asynchronous way, but with-
out the cost of executing a whole new macrotask. Microtasks enable us to execute cer-
tain actions before the UI is re-rendered, thereby avoiding unnecessary UI rendering
that might show inconsistent application state. 

Do you know? 



334 CHAPTER 13 Surviving events

NOTE The ECMAScript specification doesn’t mention event loops. Instead,
the event loop is detailed in the HTML specification (https://
html.spec.whatwg.org/#event-loops), which also discusses the concept of
macrotasks and microtasks. The ECMAScript specification mentions jobs
(which are analogous to microtasks) in respect to handling promise callbacks
(http://mng.bz/fOlK). Even though the event loop is defined in the HTML
specification, other environments, such as Node.js, also use it.

The implementation of an event loop should use at least one queue for macrotasks and
at least one queue for microtasks. Event loop implementations usually go beyond that,
and have several queues for different types of macro- and microtasks. This enables the
event loop to prioritize types of tasks; for example, giving priority to performance-
sensitive tasks such as user input. On the other hand, because there are many browsers
and JavaScript execution environments out in the wild, you shouldn’t be surprised if you
run into event loops with only a single queue for both types of tasks together.

 The event loop is based on two fundamental principles: 

■ Tasks are handled one at a time.
■ A task runs to completion and can’t be interrupted by another task.

Let’s take a look at figure 13.1, which depicts these two principles.

Macrotask queue

The event loop

Microtask queue

Mouse
events

Keyboard
events

Network
events

HTML
parsing

Is queue
empty?

Process
one task

Yes

No

Process
one task

No

Yes

Update
rendering

Yes

Is
rendering
needed?

No

DOM mutations Promises

Is queue
empty?

Figure 13.1 The event loop usually 
has access to at least two task 
queues: a microtask queue and a ma-
crotask queue. Both types of tasks 
are handled one at a time.

http://mng.bz/fOlK
https://html.spec.whatwg.org/#event-loops
https://html.spec.whatwg.org/#event-loops


335Diving into the event loop 

On a high level, figure 13.1 shows that in a single iteration, the event loop first checks
the macrotask queue, and if there’s a macrotask waiting to be executed, starts its exe-
cution. Only after the task is fully processed (or if there were no tasks in the queue),
the event loop moves onto processing the microtask queue. If there’s a task waiting in
that queue, the event loop takes it and executes it to completion. This is performed
for all microtasks in the queue. Note the difference between handling the macrotask
and microtask queues: In a single loop iteration, one macrotask at most is processed
(others are left waiting in the queue), whereas all microtasks are processed.

 When the microtask queue is finally empty, the event loop checks whether a UI
render update is required, and if it is, the UI is re-rendered. This ends the current iter-
ation of the event loop, which goes back to the beginning and checks the macrotask
queue again. 

 Now that we have a high-level understanding of the event loop, let’s check some of
the interesting details shown in figure 13.1:

■ Both task queues are placed outside the event loop, to indicate that the act of adding
tasks to their matching queues happens outside the event loop. If this wasn’t
the case, any events that occur while JavaScript code is being executed would be
ignored. Because we most definitely don’t want to do this, the acts of detecting
and adding tasks are done separately from the event loop.

■ Both types of tasks are executed one at a time, because JavaScript is based on a single-
threaded execution model. When a task starts executing, it’s executed to its
completion, without being interrupted by another task. Only the browser can
stop the execution of a task; for example, if the task starts being too selfish by
taking up too much time or memory. 

■ All microtasks should be executed before the next rendering, because their goal is to
update the application state before rendering occurs.

■ The browser usually tries to render the page 60 times per second, to achieve 60 frames
per second (60 fps), a frame rate that’s often considered ideal for smooth
motion, such as animations—meaning, the browser tries to render a frame every 16 ms.
Notice how the “Update rendering” action, shown in figure 13.1, happens
inside the event loop, because the page content shouldn’t be modified by
another task while the page is being rendered. This all means that, if we want to
achieve smooth-running applications, we don’t have much time to process tasks
in a single event-loop iteration. A single task and all microtasks generated by that task
should ideally complete within 16 ms. 

Now, let’s consider three situations that can occur in the next event-loop iteration,
after the browser has completed a page render:

■ The event loop reaches the “Is rendering required?” decision point before
another 16 ms has elapsed. Because updating the UI is a complex operation, if
there isn’t an explicit need to render the page, the browser may choose not to
perform the UI rendering in this loop iteration. 



336 CHAPTER 13 Surviving events

■ The event loop reaches the “Is rendering required?” decision point roughly
around 16 ms after the last rendering. In this case, the browser updates the UI,
and users will experience a smooth-running application.

■ Executing the next task (and all related microtasks) takes much more than 16
ms. In this case, the browser won’t be able to re-render the page at the target
frame rate, and the UI won’t be updated. If running the task code doesn’t take
up too much time (more than a couple of hundred milliseconds), this delay
might not even be perceivable, especially if there isn’t much motion going on
in the page. On the other hand, if we take too much time, or animations are
running on the page, users will probably perceive the web page as slow and
nonresponsive. In a worst-case scenario, in which a task gets executed for more
than a couple of seconds, the user’s browser shows the dreaded “Unresponsive
script” message. (Don’t worry, later in the chapter we’ll show you a technique
for breaking complex tasks into smaller ones that won’t clog the event loop.)

NOTE Be careful about which events you decide to handle, how often they
occur, and how much processing time an event handler takes. For example,
you should be extra careful when handling mouse-move events. Moving the
mouse around causes a large number of events to be queued, so performing
any complex operation in that mouse-move handler is a sure path to building
a slow and jerky web application.

Now that we’ve described how the event loop works, you’re ready to explore a couple
of examples in detail.

13.1.1 An example with only macrotasks

The unavoidable result of JavaScript’s single-threaded execution model is that only
one task can be executed at a time. This in turn means that all created tasks have to
wait in a queue until their turn for execution comes.

 Let’s focus our attention on a simple web page that contains the following:

■ Nontrivial mainline (global) JavaScript code
■ Two buttons and two nontrivial click handlers, one for each button

The following listing shows the sample code.

<button id="firstButton"></button>
<button id="secondButton"></button>
<script>
  const firstButton = document.getElementById("firstButton");
  const secondButton = document.getElementById("secondButton");
  firstButton.addEventListener("click", function firstHandler(){ 
   /*Some click handle code that runs for 8 ms*/                 
  });  

Listing 13.1 Pseudocode for our event loop demo with one task queue

Registers an event handler for a
button-click event on the first button



337Diving into the event loop 

  secondButton.addEventListener("click", function secondHandler(){
    /*Click handle code that runs for 5ms*/                       
  });
  /*Code that runs for 15ms*/
</script>

This example requires some imagination, so instead of cluttering the code fragment
with unnecessary code, we ask you to imagine the following: 

■ Our mainline JavaScript code takes 15 ms to execute.
■ The first click event handler runs for 8 ms.
■ The second click event handler runs for 5 ms.

Now let’s continue to be imaginative, and say that we have a super quick user who
clicks the first button 5 ms after our script starts executing, and the second button 12
ms after. Figure 13.2 depicts this situation.

 There’s a lot of information to digest here, but understanding it completely will
give you a better idea of how the event loop works. In the top part of the figure, time

Registers another click event handler,
this time for the second button

Click
firstButton

Macrotask queue @ 0 ms

Add handlers for click events 

The first task is to
evaluate mainline JS code
(currently executing task).

1. Evaluate
mainline JS

0 ms 5 ms 12 ms 15 ms 23 ms 28 ms

TimeFirst click handlerMainline JavaScript execution Second click handler

Click
secondButton

Can re-render 
the page

Can re-render 
the page

Macrotask queue @ 5 ms

The click event on
firstButton is added to

the queue, without interrupting
mainline code execution.

1. Evaluate
mainline JS

2. Click
firstButton

2. Click
secondButton

Macrotask queue @ 12 ms

The click event on secondButton
is added to the queue, also without

interrupting mainline code execution.

1. Evaluate
mainline JS

2. Click on
firstButton

3. Click
secondButton

Macrotask queue @ 15 ms

Mainline code is done
executing. Take the task off
the queue. Move on to the

next task: handle
firstButton click.

1. Click
firstButton

Macrotask queue @ 23 ms

firstButton click handler is
done executing. Take the task

off the queue. Move on to
the next task: handle
secondButton click.

1. Click
secondButton

Macrotask queue @ 28 ms

secondButton click handler is done
executing. Take the task off the queue.

The task queue is now empty.

Figure 13.2 This timing diagram shows how events are added to the task queue as they occur. When a 
task is done executing, the event loop takes it off the queue, and continues by executing the next task.



338 CHAPTER 13 Surviving events

(in milliseconds) is running from left to right along the x-axis. The rectangles
underneath that timeline represent portions of JavaScript code under execution,
extending for the amount of time they’re running. For example, the first block of
mainline JavaScript code executes for approximately 15 ms, the first click handler for
approximately 8 ms, and the second click handler for approximately 5 ms. The timing
diagram also shows when certain events occur; for example, the first button click
occurs 5 ms into application execution, and the second button click at 12 ms. The
bottom part of the figure shows the state of the macrotask queue at various points of
application execution.

 The program starts by executing mainline JavaScript code. Immediately, two ele-
ments, firstButton and secondButton, are fetched from the DOM, and two func-
tions, firstHandler and secondHandler, are registered as click event handlers:

firstButton.addEventListener("click", function firstHandler(){...});
secondButton.addEventListener("click", function secondHandler(){...});

This is followed by code that executes for another 15 ms. During this execution, our
quick user clicks firstButton 5 ms after the program starts executing, and clicks
secondButton 12 ms after. 

 Because JavaScript is based on a single-threaded execution model, clicking first-
Button doesn’t mean that the click handler is immediately executed. (Remember, if a
task is already being executed, it can’t be interrupted by another task.) Instead, the
click event related to firstButton is placed in the task queue, where it patiently waits
for its turn to be executed. The same thing happens when a click of secondButton
occurs: A matching event is placed in the task queue, and waits for execution. Note
that it’s important that the event detection and addition to the task queue happens
outside the event loop; the tasks are
added to the task queue even while main-
line JavaScript code is being executed.

 If we take a snapshot of our task queue
12 ms into the execution of our script,
we’ll see the following three tasks:

1 Evaluate mainline JavaScript code—
the currently executing task.

2 Click firstButton—the event cre-
ated when firstButton is clicked.

3 Click secondButton—the event cre-
ated when secondButton is clicked.

These tasks are also shown in figure 13.3.
 The next interesting point in the appli-

cation execution happens at 15 ms, when
the mainline JavaScript code finishes its

Click
firstButton

0 ms 5 ms 12 ms 15 ms

TimeMainline JavaScript execution

Click
secondButton

Macrotask queue @ 12 ms

1. Evaluate
mainline JS

2. Click
firstButton

3. Click
secondButton

Figure 13.3 12 ms into the application execu-
tion, the task queue has three tasks: one for eval-
uating mainline JavaScript code (the currently 
executing task), and one for each button-click 
event.



339Diving into the event loop 

execution. As shown in figure 13.1, after a task has finished the execution, the event loop
moves on to processing the microtask queue. Because in this situation we don’t have any
microtasks (we don’t even show the microtask queue in the diagram, because it’s always
empty), we skip this step and move on to updating the UI. In this example, even though
the update happens and takes some time, for simplicity sake, we keep it out of our dis-
cussion. With this, the event loop finishes the first iteration and starts the second iter-
ation, by moving onto the following task in the queue.

 Next, the firstButton click task starts its execution. Figure 13.4 illustrates the task
queue 15 ms into the application execution. The execution of firstHandler, associ-
ated with the firstButton click, takes around 8 ms, and the handler is executed to its
completion, without interruption, while the click event related to secondButton is
waiting in the queue.

 Next, at 23 ms, the firstButton click event is fully processed, and the matching
task is removed from the task queue. Again, the browser checks the microtask queue,
which is still empty, and re-renders the page, if necessary.

 Finally, in the third loop iteration, the secondButton click event is being handled,
as shown in figure 13.5. The secondHandler takes around 5 ms to execute, and after
this is performed, the task queue is finally empty, at 28 ms.

 This example emphasizes that an event has to wait its turn to be processed, if other
tasks are already being handled. For example, even though the secondButton click
has happened 12 ms into the application execution, the matching handler is called
somewhere around 23 ms into the application execution.

 Now let’s extend this code to include microtasks.

13.1.2 An example with both macro- and microtasks

Now that you’ve seen how the event loop works against one task queue, we’ll extend
our example to also include a microtask queue. The cleanest way to do this is to
include a promise in the first button-click handler and the code that handles the
promise after it resolves. As you’ll recall from chapter 6, a promise is a placeholder for a
value that we don’t have yet but will have later; it’s a guarantee that we’ll eventually know

Click
firstButton

0 ms 5 ms 12 ms 15 ms 23 ms

TimeFirst click handlerMainline JavaScript execution

Click
secondButton

Can re-render 
the page

2. Click
secondButton

Macrotask queue @ 15 ms

1. Click
firstButton

Figure 13.4 The task queue 
15 ms into application execu-
tion contains two tasks for 
click events. The first task is 
currently being executed.



340 CHAPTER 13 Surviving events

the result of an asynchronous computation. For this reason, promise handlers, the
callbacks we attach through the promise’s then method, are always called asynchro-
nously, even if we attach them to already resolved promises.

 The following listing shows the modified code for this two-queue example.

<button id="firstButton"></button>
<button id="secondButton"></button>
<script>
  const firstButton = document.getElementById("firstButton");
  const secondButton = document.getElementById("secondButton");
  firstButton.addEventListener("click", function firstHandler(){ 
    Promise.resolve().then(() => {                        
      /*Some promise handling code that runs for 4 ms*/   
    });                                                   

    /*Some click handle code that runs for 8 ms*/
  }); 

  secondButton.addEventListener("click", function secondHandler(){  
    /*Click handle code that runs for 5ms*/ 
  });
/*Code that runs for 15ms*/
</script>

In this example, we assume that the same actions occur as in the first example:

■ firstButton is clicked after 5 ms. 
■ secondButton is clicked after 12 ms. 
■ firstHandler handles the click event of firstButton and runs for 8 ms.
■ secondHandler handles the click event of secondButton and runs for 5 ms. 

Listing 13.2 Pseudocode for our event loop demo with two queues

Click
firstButton

0 ms 5 ms 12 ms 15 ms 23 ms 28 ms

TimeFirst click handlerMainline JavaScript execution Second click handler

Click
secondButton

Can re-render 
the page

Can re-render 
the page

Macrotask queue @ 23 ms

1. Click
secondButton

Figure 13.5 23 ms after the application starts executing, only one task, handling 
the secondButton click event, remains to be executed.

Immediately resolves a
promise and passes in a

callback to the then method



341Diving into the event loop 

The only difference is that this time, within the firstHandler code, we also create an
immediately resolved promise to which we pass a callback that will run for 4 ms.
Because a promise represents a future value that we usually don’t know immediately,
promise handlers are always handled asynchronously. 

 To be honest, in this case, where we’ve created an immediately resolved promise,
the JavaScript engine could immediately invoke the callback, because we already know
that the promise is successfully resolved. But, for consistency sake, the JavaScript
engine doesn’t do this, and instead calls all promise callbacks asynchronously, after
the rest of the firstHandler code (which runs for 8 ms) is done executing. It does
this by creating a new microtask and pushing it onto the microtask queue. Let’s
explore the timing diagram of this execution in figure 13.6.

Click
firstButton

Macrotask queue @ 15 ms

Microtask queue @ 15 ms

The event loop moves on to the
next task in the macrotask queue:

handle firstButton click.
The microtask queue

is still empty.

1. Click on
firstButton

0 ms 5 ms 12 ms 15 ms 23 ms 32 ms

First click handlerMainline JavaScript execution Second click handler

Click
secondButton

Can re-render 
the page

27 ms

Promise handler

Can re-render 
the page

Macrotask queue @ 15 ms

Microtask queue @ 15 ms

First click handler creates
and immediately resolves the

promise, which queues
a microtask.

1. Click on
firstButton

2. Click
secondButton

2. Click
secondButton

1. Promise
success

1. Promise
success

Macrotask queue @ 23 ms

Microtask queue @ 23 ms

After the first click handler is finished, the
next task is chosen from the microtask queue

(even if there’s a task already waiting).

1. Click
secondButton

Macrotask queue @ 12 ms

The microtask queue
is empty.

1. Evaluate
mainline JS

2. Click
firstButton

3. Click
secondButton

Microtask queue @ 12 ms

Macrotask queue @ 27 ms

Microtask queue @ 27 ms

After the microtask queue is
empty, the event loop moves back

to processing the macrotask queue.

1. Click
secondButton

Promise
resolved

Time

Add handlers for click events 

Figure 13.6 If a microtask is queued in the microtask queue, it gets priority and is processed even if 
an older task is already waiting in the queue. In this case, the promise success microtask gets priority 
over the secondButton click event task.



342 CHAPTER 13 Surviving events

This timing diagram is similar to the diagram of the previous example. If we take a
snapshot of the task queue 12 ms into the application execution, we’ll see the exact
same tasks in the queue: The mainline JavaScript code is being processed while the
tasks for handling the firstButton click and the secondButton click are waiting for
their turns (just as in figure 13.3). But in addition to the task queue, in this exam-
ple we’ll also focus on the microtask queue, which is still empty 12 ms into applica-
tion execution.

 The next interesting point in application execution happens at 15 ms, when
mainline JavaScript execution ends. Because a task has finished executing, the event
loop checks the microtask queue, which is empty, and moves onto page rendering, if
necessary. Again, for simplicity sake, we don’t include a rendering fragment in our
timing diagram.

 In the next iteration of the event loop, the task associated with the firstButton
click is being processed: 

firstButton.addEventListener("click", function firstHandler(){
    Promise.resolve().then(() => {
      /*Some promise handling code that runs for 4ms*/
    });
    /*Some click handle code that runs for 8ms*/ 
  });

The firstHandler function creates an already resolved promise, by calling Promise
.resolve() with a callback function that will for sure be invoked, because the prom-
ise is already resolved. This creates a new microtask to run the callback code. The
microtask is placed into the microtask queue, and the click handler continues to exe-
cute for another 8 ms. The current state of the task queues is shown in figure 13.7.

 We revisit the task queues again 23 ms into the application execution, after the
firstButton click has been completely handled and its task taken off the task queue. 

Click
firstButton

Macrotask queue @ 15 ms

1. Click
firstButton

0 ms 5 ms 12 ms 15 ms 23 ms

First click handlerMainline JavaScript execution

Click
secondButton

Can re-render 
the page

Microtask queue @ 15 ms

2. Click
secondButton

1. Promise
success

Promise
resolved

Time

Figure 13.7 During the execu-
tion of the first click handler, a 
resolved promise is created. 
This queues up a promise suc-
cess microtask in the microtask 
queue that will be executed as 
soon as possible, but without in-
terrupting the currently running 
task.



343Diving into the event loop 

At this point, the event loop has to choose which task to process next. We have one
macrotask for handling the secondButton click that was placed in the task queue 12 ms
into application execution, and one microtask for handling the promise success that was
placed in the microtask queue somewhere around 15 ms into the application execution.

 If we consider things like this, it would be only fair that the secondButton click task
gets handled first, but as we already mentioned, microtasks are smaller tasks that
should be executed as soon as possible. Microtasks have priority, and if you look back
at figure 13.1, you’ll see that every time a task is processed, the event loop first checks
the microtask queue, with the goal of processing all microtasks before continuing on
to either rendering or other tasks.

 For this reason, the promise success task is executed immediately after the first-
Button click, even with the “older” secondButton click task still waiting in the task
queue, as shown in figure 13.8.

There’s one important point that we need to emphasize. After a macrotask gets exe-
cuted, the event loop immediately moves onto handling the microtask queue, without
allowing rendering until the microtask queue is empty. Just take a look at the timing
diagram in figure 13.9.

Promise handler

Click
firstButton

0 ms 5 ms 12 ms 15 ms 23 ms

First click handlerMainline JavaScript execution

Click
secondButton

Can re-render 
the page

1. Promise
success

Macrotask queue @ 23 ms

1. Click
secondButton

Microtask queue @ 23 ms

Promise
resolved

Time

Figure 13.8 After a task gets executed, the event loop processes all tasks in the microtask queue. 
In this case, before moving to the secondButton click task, the promise success task is handled.

Click
firstButton

0 ms 5 ms 12 ms 15 ms 23 ms 32 ms

First click handlerMainline JavaScript execution Second click handler

Click
secondButton

Can re-render 
the page

27 ms

Promise handler

Can re-render 
the page

Promise
resolved

Time

Figure 13.9 A page can be re-rendered between two macrotasks (mainline JavaScript execution and 
first click handler), while it can’t be rendered before a microtask is executed (before the promise handler).



344 CHAPTER 13 Surviving events

Figure 13.9 shows that a re-render can occur between two macrotasks, only if there are
no microtasks in between. In our case, the page can be rendered between the main-
line JavaScript execution and the first click handler, but it can’t be rendered immedi-
ately after the first click handler, because microtasks, such as promise handlers, have
priority over rendering. 

 A render can also occur after a microtask, but only if no other microtasks are wait-
ing in the microtask queue. In our example, after the promise handler occurs, but
before the event loop moves onto the second click handler, the browser can re-render
the page.

 Note that there’s nothing stopping the promise success microtask from queuing
other microtasks, and that all of these microtasks will have priority over the second-
Button click task. The event loop will re-render the page and move onto the second-
Button task only when the microtask queue is empty, so be careful!

 Now that you understand how the event loop works, let’s take a look at a special
group of events: timers.

13.2 Taming timers: time-outs and intervals
Timers, an often misused and poorly understood feature in JavaScript, can enhance
the development of complex applications if used properly. Timers enable us to delay
the execution of a piece of code by at least a certain number of milliseconds. We’ll use
this capability to break long-running tasks into smaller tasks that won’t clog the event
loop, thereby stopping the browser from rendering, and in the process making our
web applications slow and unresponsive.

 But first, we’ll start by examining the functions we can use to construct and manip-
ulate timers. The browser provides two methods for creating timers: setTimeout and
setInterval. The browser also provides two corresponding methods to clear (or
remove) them: clearTimeout and clearInterval. All are methods of the window
(global context) object. Similarly to the event loop, timers aren’t defined within
JavaScript itself; instead they’re provided by the host environment (such as the
browser on the client, or Node.js on the server). Table 13.1 lists the methods for creat-
ing and clearing timers.

Table 13.1 JavaScript’s timer-manipulation methods (methods of the global window object)

Method Format Description

setTimeout id = setTimeout(fn,delay) Initiates a timer that will execute the 
passed callback once after the specified 
delay has elapsed. A value that uniquely 
identifies the timer is returned.

clearTimeout clearTimeout(id) Cancels (clears) the timer identified by the 
passed value if the timer hasn’t yet fired.



345Taming timers: time-outs and intervals

These methods allow us to set and clear timers that either fire a single time or fire
periodically at a specified interval. In practice, most browsers allow you to use both
clearTimeout and clearInterval to cancel both kinds of timers, but it’s recom-
mended that the methods be used in matched pairs, if for nothing other than clarity.

NOTE It’s important to understand that a timer’s delay isn’t guaranteed. This has
a great deal to do with the event loop, as we’ll see in the next section.

13.2.1 Timer execution within the event loop

You’ve already examined exactly what happens when an event occurs. But timers are
different from standard events, so let’s explore an example similar to the ones you’ve
seen so far. The following listing shows the code used for this example.

<button id="myButton"></button>
<script>
  setTimeout(function timeoutHandler(){            
    /*Some timeout handle code that runs for 6ms*/ 
  }, 10);                                          

  setInterval(function intervalHandler(){            
    /*Some interval handle code that runs for 8ms*/  
  }, 10);                                            

  const myButton = document.getElementById("myButton");
  myButton.addEventListener("click", function clickHandler(){
     /*Some click handle code that runs for 10ms*/           
  });                                                        

  /*Code that runs for 18ms*/
</script>

This time we have only one button, but we also register two timers. First, we register a
time-out that expires after 10 ms:

setTimeout(function timeoutHandler(){
  /*Some timeout handler code that runs for 6ms*/
}, 10);

setInterval id = setInterval(fn,delay) Initiates a timer that will continually try to 
execute the passed callback at the specified 
delay interval, until canceled. A value that 
uniquely identifies the timer is returned.

clearInterval clearInterval(id) Cancels (clears) the interval timer identi-
fied by the passed value.

Listing 13.3 Pseudocode for our time-out and interval demo

Table 13.1 JavaScript’s timer-manipulation methods (methods of the global window object) (continued)

Method Format Description

Registers a time-out 
that expires after 10 ms

Registers an interval 
that expires every 10 ms

Registers an event 
handler for a 
button-click event



346 CHAPTER 13 Surviving events

As a handler, that time-out has a function that takes 6 ms to execute. Next, we also reg-
ister an interval that expires every 10 ms:

setInterval(function intervalHandler(){
  /*Some interval handler code that runs for 8ms*/
}, 10);

The interval has a handler that takes 8 ms to execute. We continue by registering a
button-click event handler that takes 10 ms to execute:

const myButton = document.getElementById("myButton");
myButton.addEventListener("click", function clickHandler(){
   /*Some click handler code that runs for 10ms*/
});

This example ends with a code block that runs for about 18 ms (again, humor us a bit
and imagine some complex code here). 

 Now, let’s say we again have a quick and impatient user who clicks the button 6 ms
into the application execution. Figure 13.10 shows a timing diagram of the first 18 ms
of execution.

As in the previous examples, the first task in the queue is to execute mainline
JavaScript code. During that execution, which roughly takes 18 ms to complete, three
important things occur:

Click
button

Macrotask queue @ 0 ms

The first task is to
evaluate mainline JS code.

1. Evaluate
mainline JS

0 ms 6 ms 10 ms 18 ms

TimeMainline JavaScript execution

Both timers
expire

Can re-render 
the page

Macrotask queue @ 6 ms

setTimeout(.., 10);

setInterval(.., 10);

Expire these timers 
after 10 ms

The click event 
is added to the queue.

1. Evaluate
mainline JS

2. Click
event

2. Click
event

Macrotask queue @ 10 ms

Both timer events are added to the queue,
in the order they were registered.

1. Evaluate
mainline JS

4. Interval3. Timeout
eventevent

Figure 13.10 A timing diagram that shows 18 ms of execution in the example program. The first, currently 
running task is to evaluate mainline JavaScript code. It takes 18 ms to execute. During that execution, 
three events occur: a mouse click, a timer expiry, and an interval firing.



347Taming timers: time-outs and intervals

1 At 0 ms, a time-out timer is initiated with a 10 ms delay, and an interval timer is
also initiated with a 10 ms delay. Their references are kept by the browser.

2 At 6 ms, the mouse is clicked.
3 At 10 ms, the time-out timer expires and the first interval fires.

As we already know from our event-loop exploration, a task always runs to completion
and can’t be interrupted by another task. Instead, all newly created tasks are placed in
a queue, where they patiently wait their turn to be processed. When the user clicks the
button 6 ms into application execution, that task is added to the task queue. A similar
thing happens at around 10 ms, when the timer expires and the interval fires. Timer
events, just like input events (such as mouse events), are placed in the task queue.
Note that both the timer and interval are initiated with a 10 ms delay, and that after
this period, their matching tasks are
placed in the task queue. We’ll come
back to this later, but for now it’s
enough that you notice that the tasks
are added to the queue in the order in
which the handlers are registered: first
the time-out handler and then the inter-
val handler.

 The initial block of code completes
executing after 18 ms, and because
there are no microtasks in this execu-
tion, the browser can re-render the page
(again, left out from our timing discus-
sions, due to simplicity) and move onto
the second iteration of the event loop.
The state of the task queue at this time
is shown in figure 13.11.

 When the initial block of code ends execution at 18 ms, three code blocks are
queued up for execution: the click handler, the time-out handler, and the first
invocation of the interval handler. This means that the waiting click handler (which
we assume takes 10 ms to execute) begins execution. Figure 13.12 shows another
timing diagram.

 Unlike the setTimeout function, which expires only once, the setInterval func-
tion fires until we explicitly clear it. So, at around 20 ms, another interval fires. Nor-
mally, this would create a new task and add it to the task queue. But this time,
because an instance of an interval task is already queued and awaiting execution, this
invocation is dropped. The browser won’t queue up more than one instance of a specific inter-
val handler.

 The click handler completes at 28 ms, and the browser is again allowed to re-render
the page before the event loop goes into another iteration. In the next iteration of the
event loop, at 28 ms, the time-out task is processed. But think back to the beginning of

Click
button

0 ms 6 ms 10 ms 18 ms

TimeMainline JavaScript execution

Both timers
expire

Can re-render 
the page

Macrotask queue @ 18 ms

1. Click
event

3. Interval2. Timeout
eventevent

Figure 13.11 Timer events are placed into the 
task queue as they expire.



348 CHAPTER 13 Surviving events

this example. We used the following function call to set a time-out that should expire
after 10 ms:

setTimeout(function timeoutHandler(){
  /*Some timeout handle code that runs for 6ms*/
}, 10);

Because this is the first task in our application, it’s not weird to expect that the time-
out handler will be executed exactly after 10 ms. But as you see in figure 13.11, the
time-out starts at the 28 ms mark!

 That’s why we were extra careful when saying that a timer provides the capability to
asynchronously delay the execution of a piece of code by at least a certain number of
milliseconds. Because of the single-threaded nature of JavaScript, we can control only
when the timer task is added to the queue, and not when it’s finally executed! Now
that we cleared up this little conundrum, let’s continue with the remainder of the
application execution.

18 ms 20 ms 28 ms 30 ms

Click event handlerMainline JavaScript execution Interval event

Can re-render 
the page

Can re-render 
the page

34 ms

Timeout event

Can re-render 
the page

Time

40 ms

The interval
fires again.

The interval
fires again.

The interval
fires again.

Macrotask queue @ 28 ms

The timeout task is
processed.

1. Timeout
event

2. Interval
event

Macrotask queue @ 40 ms

This time, the interval task is
added to the queue, because

there isn’t a matching task
already waiting.

1. Interval
event

2. Interval
event

Macrotask queue @ 30 ms

An interval fires, but a new task
is not created, because there’s

already a matching task in
the event queue.

1. Timeout
event

2. Interval
event

Macrotask queue @ 34 ms

An interval task
is processed.

1. Interval
event

Macrotask queue @ 18 ms

The click task is processed.

1. Click
event

2. Timeout
event

3. Interval
event

Macrotask queue @ 20 ms

1. Click
event

2. Timeout
event

3. Interval
event

An interval fires, but a new task
is not created, because there’s

already a matching task in
the event queue.

Figure 13.12 If an interval event fires, and a task is already associated with that interval waiting in the 
queue, a new task isn’t added. Instead, nothing happens, as is shown for the queues at 20 ms and 30 ms.



349Taming timers: time-outs and intervals

 The time-out task takes 6 ms to execute, so it should be finished 34 ms into the
application execution. During this time period, at 30 ms another interval fires,
because we’ve scheduled it to be executed every 10 ms. Once more, no additional task
is queued, because a matching task for interval handler execution is already waiting in
the queue. At 34 ms, the time-out handler finishes, and the browser again has a
chance to re-render the page and enter another iteration of the event loop.

 Finally, the interval handler starts its execution at 34 ms, 24 ms after the 10 ms mark
at which it was added to the event queue. This again emphasizes that the delay we pass
in as an argument to the functions setTimeout(fn, delay) and setInterval(fn,
delay) specifies only the delay after which the matching task is added to the queue,
and not the exact time of execution.

 The interval handler takes 8 ms to execute, so while it’s executing, another interval
expires at the 40 ms mark. This time, because the interval handler is being executed
(and not waiting in the queue), a new interval task is finally added to the task queue,
and the execution of our application continues, as shown in figure 13.13. Setting a
setInterval delay to 10 ms doesn’t mean that we’ll end up with our handler execut-
ing every 10 ms. For example, because tasks are queued and the duration of a single
task execution can vary, intervals can be executed one right after another, as is the
case with intervals at the 42 and 50 ms marks. 

 Finally, after 50 ms our intervals stabilize and are executed every 10 ms. The impor-
tant concept to take away is that the event loop can process only one task at a time,
and that we can never be certain that timer handlers will execute exactly when we
expect them to. This is especially true of interval handlers. We saw in this example
that even though we scheduled an interval expected to fire at 10, 20, 30, 40, 50, 60,
and 70 ms marks, the callbacks were executed at 34, 42, 50, 60, and 70 ms marks. In
this case, we completely lost two of them along the way, and some weren’t executed at
the expected time.

 As we can see, intervals have special considerations that don’t apply to time-outs.
Let’s look at those more closely.

42 ms 50 ms 58 ms 60 ms

Interval eventInterval event Interval event Interval event

Can re-render 
the page

68 ms

Interval event

Can re-render 
the page

Can re-render 
the page

Can re-render 
the page

Time

70 ms

The interval
fires again.

The interval
fires again.

The interval
fires again.

Figure 13.13 Because of the setbacks caused by the mouse click and time-out handler, it takes some 
time for the interval handlers to start executing every 10 ms.



350 CHAPTER 13 Surviving events

DIFFERENCES BETWEEN TIME-OUTS AND INTERVALS

At first glance, an interval may look like a time-out that periodically repeats itself. But
the differences run a little deeper. Let’s look at an example to better illustrate the dif-
ferences between setTimeout and setInterval:

setTimeout(function repeatMe(){    
  /* Some long block of code... */ 
  setTimeout(repeatMe, 10);        
}, 10);                            
setInterval(() => {                
  /* Some long block of code... */ 
}, 10);                            

The two pieces of code may appear to be functionally equivalent, but they aren’t. Nota-
bly, the setTimeout variant of the code will always have at least a 10 ms delay after the
previous callback execution (depending on the state of the event queue, it may end
up being more, but never less), whereas setInterval will attempt to execute a call-
back every 10 ms regardless of when the last callback was executed. And, as you saw in
the example from the previous section, intervals can be fired immediately one after
another, regardless of the delay.

 We know that the time-out callback is never guaranteed to execute exactly when
it’s fired. Rather than being fired every 10 ms, as the interval is, it will reschedule itself
for 10 ms after it gets around to executing.

 All of this is incredibly important knowledge. Knowing how a JavaScript engine
handles asynchronous code, especially with the large number of asynchronous events
that typically occur in the average page, creates a great foundation for building
advanced pieces of application code.

 With all that under our belts, let’s see how our understanding of timers and the
event loop can help avoid some performance pitfalls.

13.2.2 Dealing with computationally expensive processing

The single-threaded nature of JavaScript is probably the largest gotcha in complex
JavaScript application development. While JavaScript is busy executing, user interac-
tion in the browser can become, at best, sluggish, and, at worst, unresponsive. The
browser may stutter or seem to hang, because all updates to the rendering of a page
are suspended while JavaScript is executing. 

 Reducing all complex operations that take any more than a few hundred millisec-
onds into manageable portions becomes a necessity if we want to keep the interface
responsive. Additionally, most browsers will produce a dialog box warning the user that
a script has become “unresponsive” if it has run nonstop for at least 5 seconds, while
some other browsers will even silently kill any script running for more than 5 seconds.

 You may have been to a family reunion where a garrulous uncle won’t stop talking
and insists on telling the same stories over and over again. If no one else gets a chance
to break in and get a word in edgewise, the conversation’s not going to be pleasant for

Sets up a time-out that 
reschedules itself every 
10 milliseconds

Sets up an interval that 
triggers every 10 milliseconds



351Taming timers: time-outs and intervals

anyone (except for Uncle Bruce). Likewise, code that hogs all the processing time
results in an outcome that’s less than desirable; producing an unresponsive user inter-
face is never good. But situations will almost certainly arise that require us to process a
significant amount of data, situations such as manipulating a couple of thousand DOM
elements, for example.

 On these occasions, timers can come to the rescue and become especially useful.
Because timers are capable of effectively suspending the execution of a piece of
JavaScript until a later time, they can also break individual pieces of code into frag-
ments that aren’t long enough to cause the browser to hang. Taking this into account,
we can convert intensive loops and operations into nonblocking operations.

 Let’s look at the following example of a task that’s likely to take a long time.

<table><tbody></tbody></table>
<script>
  const tbody = document.querySelector("tbody");
  for (let i = 0; i < 20000; i++) {
    const tr = document.createElement("tr");  
    for (let t = 0; t < 6; t++) {
      const td = document.createElement("td");
      td.appendChild(document.createTextNode(i + "," + t));
      tr.appendChild(td);
    }
    tbody.appendChild(tr);      
  }
</script>

In this example, we’re creating a total of 240,000 DOM nodes, populating a table
with 20,000 rows of 6 cells, each containing a text node. This is incredibly expensive
and will likely hang the browser for a noticeable period while executing, preventing
the user from performing normal interactions (much in the same way that Uncle
Bruce dominates the conversation at the family get-together).

 What we need to do is shut up Uncle Bruce at regular intervals so that other peo-
ple can get a chance to join the conversation. In code, we can introduce timers to cre-
ate just such “breaks in the conversation,” as shown in the next listing.

const rowCount = 20000;                   
const divideInto = 4;                                       
const chunkSize = rowCount/divideInto;                      
let iteration = 0;                                        
const table = document.getElementsByTagName("tbody")[0];
setTimeout(function generateRows(){
  const base = chunkSize * iteration;          

Listing 13.4 A long-running task

Listing 13.5 Using a timer to break up a long-running task

Finds the tbody 
element that 
we’re going to 
create a boatload 
of rows for

Makes 20,000
rows, which

should qualify
as a “boatload”

Creates an 
individual rowFor each row,

creates 6 cells,
each with a

text node Attaches the new 
row to its parent

Sets up the data

Computes where we left off last time



352 CHAPTER 13 Surviving events

  for (let i = 0; i < chunkSize; i++) {
    const tr = document.createElement("tr");
    for (let t = 0; t < 6; t++) {
      const td = document.createElement("td");
      td.appendChild(
        document.createTextNode((i + base) + "," + t + 
                                 "," + iteration));
      tr.appendChild(td);
    }
    table.appendChild(tr);
  }
  iteration++;                                        
  if (iteration < divideInto)   
    setTimeout(generateRows, 0);
},0);                           

In this modification to the example, we’ve broken up the lengthy operation into four
smaller operations, each creating its own share of DOM nodes. These smaller opera-
tions are much less likely to interrupt the flow of the browser, as shown in figure 13.14.
Note that we’ve set it up so that the data values controlling the operation are collected
into easily tweakable variables (rowCount, divideInto, and chunkSize), should we
need to break the operations into, let’s say, ten parts instead of four.

Schedules 
the next 
phase

Sets time-out delay to 0 to indicate that the 
next iteration should execute “as soon as 
possible,” but after the UI has been updated

JavaScript code execution (create 240,000 nodes)

Use timers to break
up the long-running task.

Can re-render 
the page

Can re-render 
the page

Time

Create
60,000 nodes

Create
60,000 nodes

Create
60,000 nodes

Create
60,000 nodes

Can re-render 
the page

Can re-render 
the page

Can re-render 
the page

Can re-render 
the page

Can re-render 
the page

Time

A long-running task that blocks rendering 
until all 240,000 nodes have been created

Break up the long-running task into four smaller
tasks. This allows rendering between tasks and
doesn’t block the UI.

Figure 13.14 Use timers to break long-running tasks into smaller tasks that won’t clog the event loop.



353Working with events

Also important to note is the little bit of math needed to keep track of where we left
off in the previous iteration, base = chunkSize * iteration, and how we automatically
schedule the next iterations until we determine that we’re done:

if (iteration < divideInto)
    setTimeout(generateRows, 0);

What’s impressive is just how little the code has to change in order to accommodate
this new, asynchronous approach. We have to do a little more work to keep track of
what’s going on, to ensure that the operation is correctly conducted, and to schedule
the execution parts. But beyond that, the core of the code looks similar to what we
started with.

NOTE In this case, we’ve used 0 for our time-out delay. If you’ve paid close
attention to how the event loop works, you know that this doesn’t mean that
the callback will be executed in 0 ms. Instead, it’s a way of telling the browser,
please execute this callback as soon as possible; but unlike with microtasks,
you’re allowed to do page rendering in between. This allows the browser to
update the UI and make our web applications more responsive.

The most perceptible change resulting from this technique, from the user’s perspec-
tive, is that a long browser hang is replaced with four (or however many we choose)
visual updates of the page. Although the browser will attempt to execute the code seg-
ments as quickly as possible, it will also render the DOM changes after each step of the
timer. In the original version of the code, it needed to wait for one large bulk update. 

 Much of the time, these types of updates are imperceptible to the user, but it’s impor-
tant to remember that they do occur. We should strive to ensure that any code we intro-
duce into the page doesn’t perceptibly interrupt the normal operation of the browser.

 It’s often surprising just how useful this technique can be. By understanding how
the event loop works, we can work around the restrictions of the single-threaded
browser environment, while still providing a pleasant experience to the user.

 Now that we understand the event loop and the roles timers can play in dealing
with complex operations, let’s take a closer look at how the events themselves work.

13.3 Working with events
When a certain event occurs, we can handle it in our code. As you’ve seen many times
throughout this book, one common way of registering event handlers is by using the
built-in addEventListener method, as shown in the following listing.

<button id="myButton">Click</button>
<script>
  const myButton = document.getElementById("myButton");
  myButton.addEventListener("click", function myHandler(event){

Listing 13.6 Registering event handlers

Registers an event handler by using
the addEventListener method



354 CHAPTER 13 Surviving events

    assert(event.target === myButton,                 
          "The target of the event is also myButton");

    assert(this === myButton,                       
           "The handler is registered on myButton");
  });
</script>

In this snippet, we define a button named myButton and register a click event handler
by using the built-in addEventListener method that’s accessible from all elements.

 After a click event occurs, the browser calls the associated handler, in this case the
myHandler function. To this handler, the browser passes in an event object that con-
tains properties that we can use to find out more information about the event, such as
the position of the mouse or the mouse button that was clicked, in case we’re dealing
with a mouse-click event, or the pressed key if we’re dealing with a keyboard event.

 One of the properties of the passed-in event object is the target property, which
references the element on which the event has occurred. 

NOTE As within most other functions, within the event handler, we can use
the this keyword. People often colloquially say that within an event handler,
the this keyword refers to the object on which the event has occurred, but as
we’ll soon find out, this isn’t exactly true. Instead, the this keyword refers to
the element on which the event handler has been registered. To be honest, in
most cases the element on which the event handler has been registered is the
element on which the event has occurred, but there are exceptions. We’ll
explore these situations shortly.

Before exploring this concept further, let’s set the stage so you can see how events can
be propagated through the DOM.

13.3.1 Propagating events through the DOM 

As we already know from chapter 2, in HTML documents, elements are organized in a
tree. An element can have zero or more children, and every element (except the root
html element) has exactly one parent. Now, suppose that we’re working with a page
that has an element inside another element, and both elements have a click handler,
as in the following listing.

<html>
  <head>
    <style>
      #outerContainer {width:100px; height:100px; background-color: blue;}
      #innerContainer {width:50px; height:50px; background-color: red;}
    </style>
  </head>
  <body>

Listing 13.7 Nested elements and click handlers

Accesses the
element that the

event has occurred
on through the

target property of
the passed-in

event
Within the handler function, this refers to the

element that has registered the handler.



355Working with events

    <div id="outerContainer">          
      <div id="innerContainer"></div>  
    </div>
    <script>
      const outerContainer = document.getElementById("outerContainer");
      const innerContainer = document.getElementById("innerContainer");

      outerContainer.addEventListener("click", () => {
        report("Outer container click");
      });

      innerContainer.addEventListener("click", () => {
        report("Inner container click");
      });

      document.addEventListener("click", () => {
        report("Document click");
      });
    </script>
  </body>
</html>

Here we have two HTML elements, outerContainer and innerContainer, that are,
like all the other HTML elements, contained within our global document. And on all
three objects, we register a click handler.

 Now let’s suppose that a user clicks the innerContainer element. Because inner-
Container is contained within the outerContainer element, and both of these ele-
ments are contained within the document, it’s obvious that this should trigger the
execution of all three event handlers, outputting three messages. What’s not apparent
is the order in which the event handlers should be executed.

 Should we follow the order in which the events were registered? Should we start
with the element on which the event occurs and move upward? Or should we start
from the top and move downward toward the targeted element? Back in the day, when
browsers were first making these decisions, the two primary competitors, Netscape
and Microsoft, made opposing choices. 

 In Netscape’s event model, the event handling starts with the top element and
trickles down to the event target element. In our case, the event handlers would be
executed in the following order: document click handler, outerContainer click han-
dler, and finally innerContainer click handler. This is called event capturing.

 Microsoft chose to go the other way around: start from the targeted element and
bubble up the DOM tree. In our case, the events would be executed in the following
order: innerContainer click handler, outerContainer click handler, and document
click handler. This is called event bubbling.

 The standard set by the W3 Consortium (www.w3.org/TR/DOM-Level-3-Events/),
which is implemented by all modern browsers, embraces both approaches. An event is
handled in two phases: 

Creates two 
nested elements

Registers a click handler 
for the outer container

Registers a click handler 
for the inner container

Registers a click handler 
for the entire document

www.w3.org/TR/DOM-Level-3-Events/


356 CHAPTER 13 Surviving events

1 Capturing phase—An event is first captured at the top element and trickled
down to the target element.

2 Bubbling phase—After the target element has been reached in the capturing
phase, the event handling switches to bubbling, and the event bubbles up again
from the target element to the top element.

These two phases are shown in figure 13.15.

We can easily decide which event-handling order we want to use, by adding another
Boolean argument to the addEventListener method. If we use true as the third argu-
ment, the event will be captured, whereas if we use false (or leave out the value), the
event will bubble. So in a sense, the W3C standard prefers event bubbling slightly
more to event capturing, because bubbling has been made the default option.

 Now let’s go back to listing 13.7 and look closely at the way we’ve registered events: 

outerContainer.addEventListener("click", () => { 
  report("Outer container click");
});

innerContainer.addEventListener("click", () => {
  report("Inner container click");
});

document.addEventListener("click", () => {
  report("Document click");
});

window

document

html

head body

style div #outerContainer

div #innerContainer

script

1. Capture
2. Bubble

Figure 13.15 With capturing, the 
event trickles down to the target ele-
ment. With bubbling, the event bubbles 
up from the target element.



357Working with events

As you can see, in all three cases, we’ve called the addEventListener method with
only two arguments, which means that the default method, bubbling, is chosen. So in
this case, if we click the innerContainer element, the event handlers would be exe-
cuted in this order: innerContainer click handler, outerContainer click handler,
document click handler.

 Let’s modify the code in listing 13.7 in the following way.

const outerContainer = document.getElementById("outerContainer");
const innerContainer = document.getElementById("innerContainer");

document.addEventListener("click", () => {
  report("Document click");
});                                            

outerContainer.addEventListener("click", () => {  
  report("Outer container click");
}, true);                                           

innerContainer.addEventListener("click", () => {  
  report("Inner container click");
}, false);                                   

This time, we set the event handler of the outerContainer to capturing mode (by
passing in true as the third argument), and the event handlers of innerContainer
(by passing in false as the third argument) and document to bubbling mode (leaving
out the third argument chooses the default, bubbling mode).

 As you know, a single event can trigger the execution of multiple event handlers,
where each handler can be in either capturing or bubbling mode. For this reason, the
event first goes through capturing, starting from the top element and trickling down
to the event target element. When the target element is reached, bubbling mode is
activated, and the event bubbles from the target element all the way back to the top. 

 In our case, capturing starts from the top, window object and trickles down to the
innerContainer element, with the goal of finding all elements that have an event han-
dler for this click event in capturing mode. Only one element, outerContainer, is
found, and its matching click handler is executed as the first event handler.

 The event continues traveling down the capturing path, but no more event han-
dlers with capturing are found. After the event reaches the event target element, the
innerContainer element, the event moves on to the bubbling phase, where it goes
from the target element all the way back to the top, executing all bubbling event han-
dlers on that path.

 In our case, the innerContainer click handler will be executed as the second event
handler, and the document click handler as the third. The output generated by clicking
the innerContainer element, as well as the taken path, is shown in figure 13.16.

Listing 13.8 Capturing versus bubbling

By not specifying the third argument, 
the default, bubbling mode, is enabled.

Passing in true as the third 
argument enables capturing.

Passing in false 
enables bubbling.



358 CHAPTER 13 Surviving events

One of the things this example shows is that the element on which the event is han-
dled doesn’t have to be the element on which the event occurs. For example, in our
case, the event occurs on the innerContainer element, but we can handle it on ele-
ments higher up in the DOM hierarchy, such as on the outerContainer or the docu-
ment element.

 This takes us back to the this keyword in event handlers, and why we explicitly
stated that the this keyword refers to the element on which the event handler is regis-
tered, and not necessarily to the element on which the event occurs.

 Again, let’s modify our running example, as shown in the following listing.

const outerContainer = document.getElementById("outerContainer");
const innerContainer = document.getElementById("innerContainer");

innerContainer.addEventListener("click", function(event){ 

Listing 13.9 The difference between this and event.target in event handlers

document.addEventListener("click", () => {
  report("Document click");
});

The element on
which the event
occurred

Click
the inner
container

Bubbling

outerContainer.addEventListener("click", () => {  
  report("Outer container click");
}, true);

Capturing

innerContainer.addEventListener("click", () => {  
  report("Inner container click");
 }, false);

Bubbling

window

document

html

head body

style div #outerContainer

div #innerContainer

script

1. Capture
2. Bubble

Figure 13.16 First the event trickles down from the top, executing all event handlers in capturing mode. When 
the target element is reached, the event bubbles up to the top, executing all event handlers in bubbling mode.



359Working with events

  report("innerContainer handler");                   
  assert(this === innerContainer,                     
         "This referes to the innerContainer");       
  assert(event.target === innerContainer,             
         "event.target refers to the innerContainer");
});

outerContainer.addEventListener("click", function(event){
  report("innerContainer handler");                    
  assert(this === outerContainer,                      
         "This refers to the outerContainer");         
  assert(event.target === innerContainer,              
         "event.target refers to the innerContainer"); 
});

Again, let’s look at the application execution when a click occurs on innerContainer.
Because both event handlers use event bubbling (there’s no third argument set to
true in the addEventListener methods), first the innerContainer click handler is
invoked. Within the body of the handler, we check that both the this keyword and
the event.target property refer to the innerContainer element:

  assert(this === innerContainer, 
         "This refers to the innerContainer");
  assert(event.target === innerContainer, 
         "event.target refers to the innerContainer");

The this keyword points to the innerContainer element because that’s the element
on which the current handler has been registered, whereas the event.target property
points to the innerContainer element because that’s the element on which the event
has occurred.

 Next, the event bubbles up to the outerContainer handler. This time, the this
keyword and the event.target point to different elements:

  assert(this === outerContainer, 
         "This refers to the outerContainer");
  assert(event.target === innerContainer, 
         "event.target refers to the innerContainer");

As expected, the this keyword refers to the outerContainer element, because this is
the element on which the current handler has been registered. On the other hand,
the event.target property points to the innerContainer element, because this is the
element on which the event has occurred.

 Now that we understand how an event is propagated through the DOM tree and
how to access the element on which the event has originally occurred, let’s see how to
apply this knowledge to write less memory-intensive code.

Within the innerContainer 
handler, both this and 
event.target point to the 
innerContainer element.

Within the outerContainer handler, if we’re handling the event originating on the
innerContainer, this will refer to the outerContainer and event.target to innerContainer.



360 CHAPTER 13 Surviving events

DELEGATING EVENTS TO AN ANCESTOR

Let’s say that we want to visually indicate whether a cell within a table has been clicked
by the user, by initially displaying a white background for each cell and then changing
the background color to yellow after the cell is clicked. Sounds easy enough. We can
iterate through all the cells and establish a handler on each one that changes the
background color property:

const cells = document.querySelectorAll('td');
for (let n = 0; n < cells.length; n++) {
  cells[n].addEventListener('click', function(){
    this.style.backgroundColor = 'yellow';
  });
}

Sure this works, but is it elegant? No. We’re establishing the exact same event handler
on potentially hundreds of elements, and they all do the exact same thing.

 A much more elegant approach is to establish a single handler at a level higher
than the cells that can handle all the events using event bubbling. We know that all
the cells will be descendants of their enclosing table, and we know that we can get a
reference to the element that was clicked via event.target. It’s much more suave to
delegate the event handling to the table, as follows:

const table = document.getElementById('someTable');
table.addEventListener('click', function(event){
  if (event.target.tagName.toLowerCase() === 'td')  
    event.target.style.backgroundColor = 'yellow';
});

Here, we establish one handler that easily handles the work of changing the back-
ground color for all cells in the table that were clicked. This is much more efficient
and elegant.

 With event delegation, we have to make sure that it’s only applied to elements
that are ancestors of the elements that are the event targets. That way, we’re sure
that the events will eventually bubble up to the element to which the handler has
been delegated.

 So far, we’ve been dealing with events that are provided by the browser, but haven’t
you ever fervently desired the ability to trigger your own custom events?

13.3.2 Custom events

Imagine a scenario in which you want to perform an action, but you want to trigger it
under a variety of conditions from different pieces of code, perhaps even from code
that’s in shared script files. A novice would repeat the code everywhere it’s needed. A
journeyman would create a global function and call it from everywhere it’s needed. A
ninja would use custom events. But why?

Performs an action only if 
the click happens on a 
cell element (and not on 
a random descendant) 



361Working with events

LOOSE COUPLING

Say we’re doing operations from shared code, and we want to let page code know
when it’s time to react to a particular condition. If we use the journeyman’s global
function approach, we introduce the disadvantage that our shared code needs to
define a fixed name for the function, and all pages that use the shared code need
to use such a function.

 Moreover, what if there are multiple things to do when the triggering condition
occurs? Making allowances for multiple notifications would be arduous and necessarily
messy. These disadvantages are a result of close coupling, in which the code that detects
the conditions has to know the details of the code that will react to that condition.

Loose coupling, on the other hand, occurs when the code that triggers the condition
doesn’t know anything about the code that will react to the condition, or even if there’s
anything that will react to it at all. One of the advantages of event handlers is that we can
establish as many as we want, and these handlers are completely independent of each
other. So event handling is a good example of loose coupling. When a button-click
event is triggered, the code triggering the event has no knowledge of what handlers
we’ve established on the page, or even if there are any. Rather, the click event is pushed
onto the task queue by the browser, and whatever caused the event to trigger could care
less what happens after that. If handlers have been established for the click event,
they’ll eventually be individually invoked in a completely independent fashion.

 There’s much to be said for loose coupling. In our scenario, the shared code,
when it detects an interesting condition, triggers a signal of some sort that says, “This
interesting thing has happened; anyone interested can deal with it,” and it couldn’t
give a darn whether anyone’s interested. Let’s examine a concrete example.

AN AJAX-Y EXAMPLE

Let’s pretend that we’ve written some shared code that will be performing an Ajax
request. The pages that this code will be used on want to be notified when an Ajax
request begins and when it ends; each page has its own things that it needs to do when
these “events” occur.

 For example, on one page using this package, we want to display a spinning pin-
wheel when an Ajax request starts, and we want to hide it when the request completes,
in order to give the user some visual feedback that a request is being processed. If we
imagine the start condition as an event named ajax-start, and the stop condition as
ajax-complete, wouldn’t it be grand if we could establish event handlers on the page
for these events that show and hide the image as appropriate?

 Consider this:

document.addEventListener('ajax-start', e => {
  document.getElementById('whirlyThing').style.display = 'inline-block';
});
document.addEventListener('ajax-complete', e => {
  document.getElementById('whirlyThing').style.display = 'none';
});



362 CHAPTER 13 Surviving events

Sadly, these events don’t exist, but there’s nothing stopping us from bringing them
into existence.

CREATING CUSTOM EVENTS

Custom events are a way of simulating (for the user of our shared code) the experi-
ence of a real event, but an event that has business sense within the context of our
application. The following listing shows an example of triggering a custom event.

<style>
  #whirlyThing { display: none; }
</style>
<button type="button" id="clickMe">Start</button>
<img id="whirlyThing" src="whirly-thing.gif" />         

<script>
  function triggerEvent(target, eventType, eventDetail){
    const event = new CustomEvent(eventType, {           
      detail: eventDetail    
    });
    target.dispatchEvent(event);  
  }
  
  function performAjaxOperation() {                         
    triggerEvent(document, 'ajax-start', { url: 'my-url'}); 
    setTimeout(() => {                                      
      triggerEvent(document, 'ajax-complete');              
    },5000);
  }

  const button = document.getElementById('clickMe'); 
  button.addEventListener('click', () => {  
    performAjaxOperation();
  });
    
  document.addEventListener('ajax-start', e => {
    document.getElementById('whirlyThing').style.display = 'inline-block';
    assert(e.detail.url === 'my-url', 'We can pass in event data');
  });
  
  document.addEventListener('ajax-complete', e => {          
      document.getElementById('whirlyThing').style.display = 'none';  
  });
</script>

In this example, we explore custom events by establishing the scenario described in
the previous section: An animated pinwheel image is displayed while an Ajax opera-
tion is underway. The operation is triggered by the click of a button.

 In a completely decoupled fashion, a handler for a custom event named ajax-
start is established, as is the one for the ajax-complete custom event. The handlers
for these events show and hide the pinwheel image, respectively:

Listing 13.10 Using custom events

A button that we’ll click to
simulate an Ajax request

Our spinner image, 
which indicates 
loading, if shown

Uses the CustomEvent 
constructor to create a 
new eventPasses in

information
to the event

object
through

 the detail
property

Uses the built-in dispatchEvent 
method to dispatch the event 
to the specified element

Mimics our Ajax request with a
timer. At the start of execution,

triggers the ajax-start event. After
enough time elapses, triggers the

ajax-complete event. Passes in a
URL as additional event data

When a
button is

clicked,
the Ajax

operation
is started.

Handles
the ajax-

start event
by showing
our whirly

thing

Checks that we can access
additional event data

Handles the ajax-complete event
by hiding our whirly thing



363Working with events

  button.addEventListener('click', () => {  
    performAjaxOperation();
  });

  document.addEventListener('ajax-start', e => { 
    document.getElementById('whirlyThing').style.display = 'inline-block';
    assert(e.detail.url === 'my-url', 'We can pass in event data');  
  });
  
  document.addEventListener('ajax-complete', e => {
      document.getElementById('whirlyThing').style.display = 'none';  
  });

Note that the three handlers know nothing of each other’s existence. In particular,
the button click handler has no responsibilities with respect to showing and hiding
the image.

 The Ajax operation itself is simulated with the following code:

function performAjaxOperation() {
  triggerEvent(document, 'ajax-start', { url: 'my-url'});
  setTimeout(() => {
    triggerEvent(document, 'ajax-complete');
  }, 5000);
}

The function triggers the ajax-start event and sends data about the event (the url
property), pretending that an Ajax request is about to be made. The function then
issues a 5-second time-out, simulating an Ajax request that spans 5 seconds. When the
timer expires, we pretend that the response has been returned and trigger an ajax-
complete event to signify that the Ajax operation has completed.

 Notice the high degree of decoupling throughout this example. The shared Ajax
operation code has no knowledge of what the page code is going to do when the
events are triggered, or even if there’s page code to trigger at all. The page code is
modularized into small handlers that don’t know about each other. Furthermore, the
page code has no idea how the shared code is doing its thing; it just reacts to events
that may or may not be triggered.

 This level of decoupling helps to keep code modular, easier to write, and a lot
easier to debug when something goes wrong. It also makes it easy to share portions
of code and to move them around without fear of violating a coupled dependency
between the code fragments. Decoupling is a fundamental advantage when using
custom events in code, and it allows us to develop applications in a much more
expressive and flexible manner.



364 CHAPTER 13 Surviving events

13.4 Summary
■ An event-loop task represents an action performed by the browser. Tasks are

grouped into two categories:
– Macrotasks are discrete, self-contained browser actions such as creating the

main document object, handling various events, and making URL changes.
– Microtasks are smaller tasks that should be executed as soon as possible.

Examples include promise callbacks and DOM mutation changes.
■ Because of the single-threaded execution model, tasks are processed one at a

time, and after a task starts executing, it can’t be interrupted by another task.
The event loop usually has at least two event queues: a macrotask queue and a
microtask queue.

■ Timers provide the ability to asynchronously delay the execution of a piece of
code by at least some number of milliseconds.
– Use the setTimeout function to execute a callback once after the specified

delay has elapsed.
– Use the setInterval function to initiate a timer that will try to execute the

callback at the specified delay interval, until canceled.
– Both functions return an ID of the timer that we can use to cancel a timer

through the clearTimeout and clearInterval functions.
– Use timers to break up computationally expensive code into manageable

chunks that won’t clog the browser.
■ The DOM is a hierarchical tree of elements, and an event that occurs on an ele-

ment (the target) is usually propagated through the DOM. There are two prop-
agation mechanisms:
– In event capturing, the event trickles down from the top element all the way

to the target element.
– In event bubbling, the event bubbles up from the target element all the way

to the top element.
■ When calling event handlers, the browser also passes in an event object. Access

the element on which the event has occurred through the event’s target prop-
erty. Within the handler, use the this keyword to refer to the element on which
the handler has been registered.

■ Use custom events, created through the built-in CustomEvent constructor, and
dispatched with the dispatchEvent method, to reduce coupling between dif-
ferent parts of your application.

13.5 Exercises
1 Why is it important that adding tasks into the task queue happens outside the

event loop?
2 Why is it important that each iteration of the event loop doesn’t take much

more than about 16 ms?



365Exercises

3 What’s the output from running the following code for 2 seconds?

setTimeout(function(){
  console.log("Timeout ");
}, 1000);

setInterval(function(){
  console.log("Interval ");
}, 500);

a Timeout Interval Interval Interval Interval

b Interval Timeout Interval Interval Interval

c Interval Timeout Timeout

4 What’s the output from running the following code for 2 seconds?

const timeoutId = setTimeout(function(){
  console.log("Timeout ");
}, 1000);

setInterval(function(){
  console.log("Interval ");
}, 500);

clearTimeout(timeoutId);

a Interval Timeout Interval Interval Interval

b Interval

c Interval Interval Interval Interval

5 What’s the output from running the following code and clicking the element
with the ID inner?

<body>
  <div id="outer">
    <div id="inner"></div>
  </div>
  <script>
    const innerElement = document.querySelector("#inner");
    const outerElement = document.querySelector("#outer");
    const bodyElement = document.querySelector("body");

    innerElement.addEventListener("click", function(){
       console.log("Inner");
    });

    outerElement.addEventListener("click", function(){
       console.log("Outer");
    }, true);

    bodyElement.addEventListener("click", function(){
       console.log("Body");



366 CHAPTER 13 Surviving events

    })
  </script>
</body>

a Inner Outer Body

b Body Outer Inner

c Outer Inner Body



367

Developing
 cross-browser strategies

Anyone who’s spent time developing on-page JavaScript code knows that a wide
range of pain points exist when it comes to ensuring that the code works flawlessly
across a set of supported browsers. These considerations span from providing basic
development for immediate needs, to planning for future browser releases, all the
way to reusing code on web pages that have yet to be created. 

 Coding for multiple browsers is a nontrivial task that must be balanced according
to the development methodologies that you have in place, as well as the resources
available to your project. As much as we’d love for our pages to work perfectly in every
browser that ever existed or will ever exist, reality will rear its ugly head and we must
realize that we have finite development resources. We must plan to apply those
resources appropriately and carefully, getting the biggest bang for our buck.

This chapter covers
■ Developing reusable, cross-browser JavaScript code
■ Analyzing cross-browser issues needing to be 

tackled
■ Tackling those issues in a smart way



368 CHAPTER 14 Developing cross-browser strategies

 Because of this, we start this chapter with advice on choosing which browsers to
support. This is followed with a discussion of the major concerns regarding cross-
browser development, as well as effective strategies for dealing with such problems.
Let’s jump right into ways to carefully choose supported browsers.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What are some common ways of dealing with inconsisten-
cies in behavior with different browsers?

Do you know? What is the best way to make your code usable on other
people’s pages? 

Why are polyfills useful in cross-browser scripting? 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.1 Cross-browser considerations
Perfecting our JavaScript programming skills will take us far, especially now that
JavaScript has escaped the confines of the browser and is being used on the server
with Node.js. But when developing browser-based JavaScript applications (which is the
focus of this book), sooner rather than later, we’re going to run face first into The
Browsers and their various issues and inconsistencies. 

 In a perfect world, all browsers would be bug-free and would support web stan-
dards consistently, but as we all know, we don’t live in that world. Although the quality
of browsers has improved greatly as of late, all still have some bugs, missing APIs, and
browser-specific quirks that we’ll need to deal with. Developing a comprehensive strat-
egy for tackling these browser issues, and becoming intimately familiar with their dif-
ferences and quirks, isn’t less important than proficiency in JavaScript itself.

 When writing browser applications, choosing which browsers to support is impor-
tant. We’d probably like to support them all, but limitations on development and testing
resources dictate otherwise. So how do we decide which to support, and to what level?

 One approach that we can employ is loosely borrowed from an older Yahoo!
approach, graded browser support. In this technique, we create a browser-support matrix
that serves as a snapshot of how important a browser and its platform are to our needs.
In this table, we list the target platforms on one axis, and the browsers on the other.
Then, in the table cells, we give a “grade” (A through F, or any other grading system
that meets our needs) to each browser/platform combination. Table 14.1 shows a
hypothetical example.

 Note that we haven’t filled in any grades. The grades you assign to a particular
combination of platform and browser are entirely dependent on the needs and
requirements of your project, as well as other important factors, such as the makeup
of the target audience. We can use this approach to come up with grades that measure
the importance of support for that platform/browser, and combine that info with the
cost of that support to try to come up with the optimal set of supported browsers.



369Cross-browser considerations

When we choose to support a browser, we’re typically making the following promises:

■ We’ll actively test against that browser with our test suite.
■ We’ll fix bugs and regressions associated with that browser.
■ The browser will execute our code with a reasonable level of performance.

Because it’s impractical to develop against lots of platform/browser combinations, we
must weigh the costs versus the benefits of supporting the various browsers. This analysis
must take into account multiple considerations, and the primary ones are as follows:

■ The expectations and needs of the target audience
■ The market share of the browser
■ The amount of effort necessary to support the browser

The first point is a subjective one that only your project can determine. Market share,
on the other hand, can frequently be measured using available information. And a
rough estimate of the effort involved in supporting each browser can be determined by
considering the capabilities of the browsers and their adherence to modern standards.

 Figure 14.1 shows a sample chart that represents information on browser use
(obtained from http://gs.statcounter.com for April 2016). Any piece of reusable
JavaScript code, whether it’s a mass-consumption JavaScript library or our own on-
page code, should be developed to work in as many environments as feasible, concen-
trating on the browsers and platforms that are important to the end user. For mass-
consumption libraries, that’s a large set; for more-targeted applications, the required
set may be narrower.

 But it’s vitally important not to bite off more than you can chew, and quality should
never be sacrificed for coverage. That’s important enough to repeat; in fact, we urge
you to read it out loud:

Quality should never be sacrificed for coverage.

Table 14.1 A hypothetical browser-support matrix

Windows OS X Linux iOS Android

IE 9 N/A N/A N/A N/A

IE10 N/A N/A N/A N/A

IE11 N/A N/A N/A N/A

Edge N/A N/A N/A N/A

Firefox N/A

Chrome

Opera

Safari N/A N/A

http://gs.statcounter.com
http://gs.statcounter.com
http://gs.statcounter.com


370 CHAPTER 14 Developing cross-browser strategies

In this chapter, we’ll examine the situations that JavaScript code will find itself up
against with regards to cross-browser support. Then we’ll examine some of the best
ways to write that code with the aim of alleviating any potential problems that those
situations pose. This should go a long way in helping you decide which of these tech-
niques are worth your time to adopt, and it should help you fill out your own browser-
support chart.

14.2 The five major development concerns
Any piece of nontrivial code carries myriad development concerns to worry about. But
five major points pose the biggest challenges to our reusable JavaScript code, as illus-
trated in figure 14.2.

 These are the five points:

■ Browser bugs
■ Browser bug fixes
■ External code
■ Browser regressions
■ Missing features in the browsers

We’ll want to balance the amount of
time we spend on each point against
the resulting benefits. Ultimately, these

Other
5%

Other
3.6%

Chrome
53%

Chrome
35%

Opera
2% Opera

11.4%Safari
9%

Safari
18%

UC browser
17%

Android
13%

Firefox
15%

IE
16%

IE
2%

Desktop browser statistics Mobile browser statistics

Figure 14.1 Looking at the usage statistics of browsers on desktop and mobile devices gives us an idea of 
which browsers to focus our attention on.

Regressions

External code

Browser bugs

Bug fixes

JavaScript
code

Missing features

Figure 14.2 The five major points of concern for the 
development of reusable JavaScript

https://dev.opera.com/articles/fixing-the-scrolltop-bug/
https://dev.opera.com/articles/fixing-the-scrolltop-bug/


371The five major development concerns

are questions that you’ll have to answer, applying them to your own situation. An anal-
ysis of your intended audience, development resources, and schedule are all factors
that go into your decision. 

 When striving to develop reusable JavaScript code, we must take all the points
into consideration but pay closest attention to the most popular browsers that exist
right now, because these are most likely to be used by our targeted audience. With
other, less popular browsers, we should at least make sure that our code degrades
gracefully. For example, if a browser doesn’t support a certain API, at the very least,
we should be careful that our code doesn’t throw any exceptions so that the rest of
the code can be executed.

 In the following sections, we’ll break down these various concerns to get a better
understanding of the challenges we’re up against and how to combat them.

14.2.1 Browser bugs and differences

One of the concerns that we’ll need to deal with when developing reusable JavaScript
code is handling the various bugs and API differences associated with the set of brows-
ers we’ve decided to support. Even though browsers are much more uniform these
days, any features that we provide in our code should be completely and verifiably cor-
rect in all browsers we choose to support.

 The way to achieve this is straightforward: We need a comprehensive suite of tests
to cover both the common and fringe use cases of the code. With good test coverage,
we can feel safe in knowing that the code we develop will work in the supported set of
browsers. And assuming that no subsequent browser changes break backward compat-
ibility, we’ll have a warm, fuzzy feeling that our code will even work in future versions
of those browsers. We’ll be looking at specific strategies for dealing with browser bugs
and differences in section 14.3. 

 A tricky point in all of this is implementing fixes for current browser bugs in such a
way that they’re resistant to any fixes for those bugs that are implemented in future
versions of the browser.

14.2.2 Browser bug fixes

Assuming that a browser will forever present a particular bug is foolhardy—most
browser bugs eventually get fixed, and counting on the presence of the bug is a danger-
ous development strategy. It’s best to use the techniques in section 14.3 to make sure
that any bug work-arounds are future-proofed as much as possible.

 When writing a piece of reusable JavaScript code, we want to make sure that it can
last a long time. As with writing any aspect of a website (CSS, HTML, and so on), we
don’t want to have to go back and fix code that’s broken by a new browser release.

 Making assumptions about browser bugs causes a common form of website break-
age: specific hacks put in place to work around bugs presented by a browser that break
when the browser fixes the bugs in future releases.



372 CHAPTER 14 Developing cross-browser strategies

 The problem with handling browser bugs is twofold:

■ Our code is liable to break when the bug fix is eventually instituted.
■ We could end up training browser vendors to not fix bugs for fear of causing

websites to break.

An interesting example of the second situation occurred just recently, with the
scrollTop bug (https://dev.opera.com/articles/fixing-the-scrolltop-bug/). 

 When dealing with elements in the HTML DOM, we can use the scrollTop and
scrollLeft properties to access and modify the current scroll position of the ele-
ment. But if we use these properties on the root, html element, these properties
should, according to specification, instead report (and influence) the scroll position
of the viewport. IE 11 and Firefox closely follow this specification. Unfortunately,
Safari, Chrome, and Opera don’t. Instead, if you try to modify these properties of the
root, html element, nothing happens. To achieve the same effect in these browsers, we
have to use the scrollTop and scrollLeft properties on the body element.

 When faced with this inconsistency, web developers have often resorted to detect-
ing the current name of the browser (through the user agent string, more on this
later), and then modifying the scrollTop and scrollLeft of the html element if our
JavaScript code is being executed in IE or Firefox, and of the body element if the code
is being executed in Safari, Chrome, or Opera. Unfortunately, this way of circumvent-
ing this bug has proved to be disastrous. Because many pages now explicitly encode “if
this is Safari, Chrome, or Opera,” modify the body element, these browsers can’t really
fix this bug, because the bug fix would, ironically, cause failures in many web pages. 

 This brings up another important point concerning bugs: When determining whether
a piece of functionality is potentially a bug, always verify it with the specification!

 A browser bug is also different from an unspecified API. It’s important to refer to
browser specifications, because they provide the exact standards that browsers use to
develop and improve their code. In contrast, the implementation of an unspecified
API could change at any point (especially if the implementation ever attempts to
become standardized). In the case of inconsistencies in unspecified APIs, you should
always test for your expected output. Always be aware that future changes could occur
in these APIs as they become solidified.

 Additionally, there’s a distinction between bug fixes and API changes. Whereas bug
fixes are easily foreseen—a browser will eventually fix the bugs in its implementation,
even if it takes a long time—API changes are much harder to spot. Standard APIs are
unlikely to change (though it’s not completely unheard of); changes are much more
likely to occur with unspecified APIs.

 Luckily, this rarely happens in a way that will massively break most web applications.
But if it does, it’s effectively undetectable in advance (unless, of course, we test every sin-
gle API that we ever touch—but the overhead incurred in such a process would be ludi-
crous). API changes of this sort should be handled like any other regression.

 For our next point of concern, we know that no man is an island, and neither is
our code. Let’s explore the ramifications.

https://dev.opera.com/articles/fixing-the-scrolltop-bug/


373The five major development concerns

14.2.3 External code and markup

Any reusable code must coexist with the code that surrounds it. Whether we’re
expecting our code to work on pages that we write or on websites developed by others,
we need to ensure that it can exist on the page with any other random code. 

 This is a double-edged sword: Our code not only must be able to withstand living
with potentially poorly written external code, but also must take care not to have
adverse effects on the code with which it lives.

 Exactly how much we need to be vigilant about this point of concern depends a
great deal on the environment in which we expect the code to be used. For example,
if we’re writing reusable code for a single or limited number of websites that we have
some level of control over, it might be safe to worry less about effects of external code
because we know where the code will operate, and we can, to some degree, fix any
problems ourselves.

TIP This is an important enough concern to warrant an entire book on the
subject. If you’d like to delve more deeply, we highly recommend Third-Party
JavaScript by Ben Vinegar and Anton Kovalyov (Manning, 2013, https://
www.manning.com/books/third-party-javascript).

If we’re developing code that will have a broad level of applicability in unknown (and
uncontrollable) environments, we’ll need to make doubly sure that our code is
robust. Let’s discuss some strategies to achieve that.

ENCAPSULATING OUR CODE

To keep our code from affecting other pieces of code on the pages where it’s loaded,
it’s best to practice encapsulation. In general, this refers to the act of placing something
in, or as if in, a capsule. A more domain-focused definition is “a language mechanism
for restricting access to some of the object’s components.” Your Aunt Mathilda might
summarize it more succinctly as “Keep your nose in your own business!”

 Keeping an incredibly small global footprint when introducing our code into a
page can go a long way toward making Aunt Mathilda happy. In fact, keeping our
global footprint to a handful of global variables, or better yet, one, is fairly easy.

 As you saw in chapter 12, jQuery, the most popular client-side JavaScript library, is
a good example of this. It introduces one global variable (a function) named jQuery,
and one alias for that global variable, $. It even has a supported means to give the $
alias back to whatever other on-page code or other library may want to use it.

 Almost all operations in jQuery are made via the jQuery function. And any other
functions that it provides (called utility functions) are defined as properties of jQuery
(remember from chapter 3 how easy it is to define functions that are properties of
other functions), thus using the name jQuery as a namespace for all its definitions.

 We can use the same strategy. Let’s say that we’re defining a set of functions for our
own use, or for the use of others, that we’ll group under a namespace of our own
choosing—say, ninja.

https://www.manning.com/books/third-party-javascript
https://www.manning.com/books/third-party-javascript


374 CHAPTER 14 Developing cross-browser strategies

 We could, like jQuery, define a global function named ninja()that performs vari-
ous operations based on what we pass to the function. For example:

var ninja = function(){ /* implementation code goes here */ }

Defining our own utility functions that use this function as their namespace is easy:

ninja.hitsuke = function(){ /* code to distract guards with fire here */ }

If we didn’t want or need ninja to be a function but only to serve as a namespace, we
could define it as follows:

var ninja = {};

This creates an empty object in which we can define properties and functions in order
to keep from adding these names to the global namespace.

 Other practices that we want to avoid, in order to keep our code encapsulated, are
modifying any existing variables, function prototypes, or even DOM elements. Any
aspect of the page that our code modifies, outside itself, is a potential area for colli-
sion and confusion.

 The other side of the two-way street is that even if we follow best practices and care-
fully encapsulate our code, we can’t be assured that code we haven’t written is going to
be as well-behaved.

DEALING WITH LESS-THAN-EXEMPLARY CODE

There’s an old joke that’s been going around since Grace Hopper removed that moth
from a relay back in the Cretaceous period: “The only code that doesn’t suck is the
code you write yourself.” This may seem cynical, but when our code coexists with code
that we can’t control, we should assume the worst, just to be safe.

 Some code, even if well-written, might intentionally be doing things like modifying
function prototypes, object properties, and DOM element methods. This practice,
well-meant or otherwise, can lay traps for us to step into. 

 In these circumstances, our code could be doing something innocuous, such as
using JavaScript arrays, and no one could fault us for making the simple assumption
that JavaScript arrays are going to act like JavaScript arrays. But if some other on-page
code modifies the way that arrays work, our code could end up not working as
intended, through absolutely no fault of our own.

 Unfortunately, there aren’t many steadfast rules when dealing with situations of
this nature, but we can take some mitigating steps. The next few sections introduce
these defensive steps.

COPING WITH GREEDY IDS

Most browsers exhibit an anti-feature (we can’t call it a bug because the behavior is
absolutely intended) that can cause our code to trip and fall unexpectedly. This fea-
ture causes element references to be added to other elements by using the id or name
attributes of the original element. And when that id or name conflicts with properties
that are already part of the element, bad things can happen.



375The five major development concerns

 Take a look at the following HTML snippet to observe the nastiness that can ensue
as a result of these greedy IDs:

<form id="form" action="/conceal">
  <input type="text" id="action"/>
  <input type="submit" id="submit"/>
</form>

Now, in the browsers, let’s call this:

var what = document.getElementById('form').action;

Rightly, we’d expect this to be the value of the form’s action attribute. And in most
cases, it would be. But if we inspect the value of variable what, we find that it’s instead
a reference to the input#action element! Huh?

 Let’s try something else:

document.getElementById('form').submit();

This statement should cause the form to be submitted, but instead, we get a
script error:

Uncaught TypeError: Property 'submit' of object #<HTMLFormElement> is not a function

What’s going on?
 The browsers have added properties to the <form> element for each of the input

elements within the form that reference the element. This might seem handy at first,
until we realize that the name of the added property is taken from the id or name val-
ues of the input elements. And if that value just happens to be an already-used prop-
erty of the form element, such as action or submit, those original properties are
replaced by the new property. This is usually referred to as DOM clobbering.

 So, before the input#submit element is created, the reference form.action points
to the value of the action attribute for the <form>. Afterward, it points to the
input#submit element. The same thing happens to form.submit. Yeesh!

 This is a remnant from way back, from a time when browsers didn’t have a rich set
of API methods for fetching elements from the DOM. Browser vendors added this fea-
ture to give easy access to form elements. Nowadays we can easily access any element
in the DOM, so we’re left with only the unfortunate side effects of the feature.

 In any case, this particular “feature” of the browsers can cause numerous and mys-
tifying problems in our code, and we should keep it in mind when debugging. When
we encounter properties that have seemingly been inexplicably transformed into
something other than what we expect, DOM clobbering is a likely culprit.

 Luckily, we can avoid this problem in our own markup by avoiding simple id and
name values that can conflict with standard property names, and we can encourage
others to do the same. The value submit is especially to be avoided, as it’s a common
source of frustrating and perplexing buggy behavior.



376 CHAPTER 14 Developing cross-browser strategies

LOADING ORDER OF STYLE SHEETS AND SCRIPTS

Often we’ll expect CSS rules to already be available by the time our code executes.
One of the best ways to ensure that CSS rules provided by style sheets are defined
when our JavaScript code executes is to include the external style sheets prior to
including the external script files. 

 Not doing so can cause unexpected results, because the script attempts to access
the as-yet-undefined style information. Unfortunately, this issue can’t easily be recti-
fied with pure JavaScript and should instead be handled with user documentation.

 These last few sections have covered some basic examples of how externalities can
affect how our code works, frequently in unintentional and confounding ways. Issues
with our code will often pop up when other users try to integrate it into their sites, at
which point we should be able to diagnose the issues and build appropriate tests to han-
dle them. At other times, we’ll discover such problems when we integrate others’ code
into our pages, and hopefully the tips in these sections will help to identify the causes.

 It’s unfortunate that there are no better and deterministic solutions to handling
these integration issues other than to take some smart first steps and to write our code
defensively. We’ll now move on to the next point of concern.

14.2.4 Regressions

Regressions are one of the hardest problems we’ll encounter in creating reusable and
maintainable JavaScript code. These are bugs, or non-backward-compatible API
changes (mostly to unspecified APIs), that browsers have introduced and that cause
code to break in unpredictable ways.

NOTE Here we’re using the term regression in its classical definition: a feature
that used to work but no longer functions as expected. This is usually unin-
tentional, but it’s sometimes caused by deliberate changes that break existing
code.

ANTICIPATING CHANGES

There are  some API changes that, with some foresight, we can proactively detect and
handle, as shown in listing 14.1. For example, with Internet Explorer 9, Microsoft intro-
duced support for DOM level 2 event handlers (bound using the addEventListener
method), while previous versions of IE were using the IE-specific built-in attachEvent
method. For code written prior to IE 9, simple feature detection was able to handle
that change.

function bindEvent(element, type, handle) {
  if (element.addEventListener) {
    element.addEventListener(type, handle, false);
  }
  else if (element.attachEvent) {

Listing 14.1 Anticipating an upcoming API change

Binds using the 
standard API



377The five major development concerns

    element.attachEvent("on" + type, handle); 
  }
}

In this example, we future-proof our code knowing (or hoping against hope) that
someday Microsoft will bring Internet Explorer into line with DOM standards. If the
browser supports the standards-compliant API, we use feature detection to infer that
and use the standard API, the addEventListener method. If not, we check to see
that the IE-proprietary method attachEvent is available and use that. If all else fails,
we do nothing.

 Most future API changes, alas, aren’t that easy to predict, and there’s no way to pre-
dict upcoming bugs. This is but one of the important reasons that we’ve stressed test-
ing throughout this book. In the face of unpredictable changes that will affect our
code, the best that we can hope for is to be diligent in monitoring our tests for each
browser release, and to quickly address issues that regressions may introduce.

 Having a good suite of tests and keeping close track of upcoming browser releases
is absolutely the best way to deal with future regressions of this nature. It doesn’t have
to be taxing on your normal development cycle, which should already include routine
testing. Running these tests on new browser releases should always be factored into
the planning of any development cycle.

 You can get information on upcoming browser releases from the following
locations:

■ Microsoft Edge (a successor to IE): http://blogs.windows.com/msedgedev/
■ Firefox: http://ftp.mozilla.org/pub/firefox/nightly/latest-trunk/
■ WebKit (Safari): https://webkit.org/nightly/
■ Opera: https://dev.opera.com/ 
■ Chrome: http://chrome.blogspot.hr/ 

Diligence is important. Because we can never fully predict the bugs that will be intro-
duced by a browser, it’s best to make sure that we stay on top of our code and quickly
avert any crises that may arise.

 Thankfully, browser vendors are doing a lot to make sure that regressions of this
nature don’t occur, and browsers often have test suites from various JavaScript librar-
ies integrated into their main browser test suite. This ensures that no future regres-
sions will be introduced that affect those libraries directly. Although this won’t catch
all regressions (and certainly won’t in all browsers), it’s a great start and shows good
progress by the browser vendors toward preventing as many issues as possible.

 In this section, we’ve gone through four major points of concern for the develop-
ment of reusable JavaScript: browser bugs, browser bug fixes, external code, and
browser regressions. The fifth point—missing features in the browsers—deserves a
special mention, so we cover it in the next section, alongside other implementation
strategies relevant for cross-browser web applications.

Binds using a 
proprietary API

http://ftp.mozilla.org/pub/firefox/nightly/latest-trunk/
https://dev.opera.com/
https://webkit.org/nightly/
http://blogs.windows.com/msedgedev/
http://chrome.blogspot.hr/


378 CHAPTER 14 Developing cross-browser strategies

14.3 Implementation strategies
Knowing which issues to be aware of is only half the battle. Figuring out effective solu-
tions and using them to implement robust cross-browser code is another matter.

 A wide range of strategies are available, and although not every strategy will work
in every situation, the range presented in this section covers most of the concerns that
we’ll need to address within our robust code bases. Let’s start with something that’s
easy and almost trouble free.

14.3.1 Safe cross-browser fixes

The simplest (and safest) classes of cross-browser fixes are those that exhibit two
important traits:

■ They have no negative effects or side effects on other browsers.
■ They use no form of browser or feature detection.

The instances for applying these fixes may be rare, but they’re a tactic that we should
always strive for in our applications. 

 Let’s look at an example. The following code snippet represents a change
(plucked from jQuery) that came about when working with Internet Explorer:

// ignore negative width and height values
if ((key == 'width' || key == 'height') && parseFloat(value) < 0)
  value = undefined;

Some versions of IE throw an exception when a negative value is set on the height or
width style properties. All other browsers ignore negative input. This work-around
ignores all negative values in all browsers. This change prevents an exception from
being thrown in Internet Explorer and has no effect on any other browser. This is a
painless change that provides a unified API to the user (because throwing unexpected
exceptions is never desired).

 Another example of this type of fix (also from jQuery) appears in the attribute
manipulation code. Consider this:

if (name == "type" &&
    elem.nodeName.toLowerCase()== "input" &&
    elem.parentNode)
  throw "type attribute can't be changed";

Internet Explorer doesn’t allow us to manipulate the type attribute of input elements
that are already part of the DOM; attempts to change this attribute result in a proprie-
tary exception being thrown. jQuery came to a middle-ground solution: It disallows all
attempts to manipulate the type attribute on injected input elements in all browsers,
throwing a uniform informational exception. 



379Implementation strategies

 This change to the jQuery code base requires no browser or feature detection; it
unifies the API across all browsers. The action still results in an exception, but that
exception is uniform across all browser types.

 This particular approach could be considered controversial. It purposefully limits
the features of the library in all browsers because of a bug that exists in only one. The
jQuery team weighed this decision carefully and decided that it was better to have a
unified API that works consistently than an API that would break unexpectedly when
developing cross-browser code. You might come across situations like this when devel-
oping your own reusable code bases, and you’ll need to carefully consider whether a
limiting approach such as this is appropriate for your audience.

 The important thing to remember for these types of code changes is that they pro-
vide a solution that works seamlessly across browsers without the need for browser or
feature detection, effectively making them immune to changes going forward. You
should always strive for solutions that work in this manner, even if the applicable
instances are few and far between.

14.3.2 Feature detection and polyfills

As we’ve previously discussed, feature detection is a commonly used approach when writ-
ing cross-browser code. This approach isn’t only simple but also generally effective. It
works by determining whether a certain object or object property exists, and if so,
assuming that it provides the implied functionality. (In the next section, we’ll see what
to do about cases where this assumption fails.)

 Most commonly, feature detection is used to choose between multiple APIs that pro-
vide duplicate pieces of functionality. For example, chapter 10 explored the find
method, accessible to all arrays, a method that we can use to find the first array item that
satisfies a certain condition. Unfortunately, the method is accessible only in browsers
that fully support ES6. So what do we do when we’re stuck with browsers that still don’t
support this feature? In general, how do we deal with missing features in the browsers?

 The answer is polyfilling! A polyfill is a browser fallback. If a browser doesn’t sup-
port a particular functionality, we provide our own implementation. For example,
the Mozilla Developer Network (MDN) provides polyfills for a wide range of ES6
functionality. Among other things, this includes the JavaScript implementation of
the Array.prototype.find method (http://mng.bz/d9lU), as shown in the follow-
ing listing.

if (!Array.prototype.find) {                              
  Array.prototype.find = function(predicate) {
    if (this === null) {
      throw new TypeError('find called on null or undefined');
    }
    if (typeof predicate !== 'function') {

Listing 14.2 A polyfill for the Array.prototype.find method

Provides a polyfill only if the 
current browser doesn’t 
implement the method

Specifies 
our own 
implementation

http://mng.bz/d9lU


380 CHAPTER 14 Developing cross-browser strategies

      throw new TypeError('predicate must be a function');
    }
    var list = Object(this);
    var length = list.length >>> 0;     
    var thisArg = arguments[1];
    var value;

    for (var i = 0; i < length; i++) {               
      value = list[i];                               
      if (predicate.call(thisArg, value, i, list)) { 
        return value;                                
      }                                              
    }                                                
    return undefined;
  };
}

In this example, we first use feature detection to check whether the current browser
has built-in support for the find method: 

if (!Array.prototype.find) {
 ...
}

Whenever possible, we should default to the standard way of performing any action. As
mentioned before, this will help make our code as future-proof as possible. For this rea-
son, if the browser already supports the method, we do nothing. If we’re dealing with
a browser that hasn’t yet caught up with ES6, we provide our own implementation.

 It turns out that the core of the method is straightforward. We loop through the
array, calling the passed-in predicate function, which checks whether an array item sat-
isfies our criteria. If it does, we return it.

 One interesting technique is presented in this listing:

var length = list.length >>> 0;

The >>> operator is the zero-fill right-shift operator, which shifts the first operand the
specified number of bits to the right, while discarding the excess bits. In this case, this
operator is used to convert the length property to a non-negative integer. This is done
because array indexes in JavaScript should be unsigned integers.

 An important use of feature detection is discovering the facilities provided by the
browser environment in which the code is executing. This allows us to provide fea-
tures that use those facilities in our code, or to determine whether we need to provide
a fallback.

 The following code snippet shows a basic example of detecting the presence of a
browser feature by using feature detection, to determine whether we should provide
full application functionality or a reduced-experience fallback:

Makes sure that length is a 
non-negative integer

Finds the first array 
item that satisfies a 
predicate



381Implementation strategies

if (typeof document !== "undefined" && 
    document.addEventListener &&
    document.querySelector &&
    document.querySelectorAll) {
  // We have enough of an API to work with to build our application
}
else {
  // Provide Fallback
}

Here, we test whether

■ The browser has a document loaded
■ The browser provides a means to bind event handlers
■ The browser can find elements based on a selector

Failing any of these tests causes us to resort to a fallback position. What is done in the
fallback is up to the expectations of the consumers of the code, and the requirements
placed on the code. A few options can be considered:

■ We could perform further feature detection to figure out how to provide a
reduced experience that still uses some JavaScript.

■ We could opt to not execute any JavaScript, falling back to the unscripted
HTML on the page.

■ We could redirect the user to a plainer version of the site. Google does this with
Gmail, for example.

Because feature detection has little overhead (it’s just a property/object lookup) and
is relatively simple in its implementation, it’s a good way to provide basic levels of fall-
back, both at the API and application levels. It’s a good choice for the first line of
defense in your reusable code authoring.

14.3.3 Untestable browser issues

Unfortunately, JavaScript and the DOM have several possible problem areas that are
either impossible or prohibitively expensive to test for. These situations are fortu-
nately rare, but when we encounter them, it always pays to spend time investigating to
see whether there’s something we can do about it.

 The following sections discuss some known issues that are impossible to test using
any conventional JavaScript interactions.

EVENT HANDLER BINDINGS

One of the infuriating lapses in browsers is the inability to programmatically deter-
mine whether an event handler has been bound. The browsers don’t provide any way
of determining whether any functions have been bound to an event listener on an ele-
ment. There’s no way to remove all bound event handlers from an element unless
we’ve maintained references to all bound handlers as we create them. 



382 CHAPTER 14 Developing cross-browser strategies

EVENT FIRING

Another aggravation is determining whether an event will fire. Although it’s possible
to determine whether a browser supports a means of binding an event, it’s not possible
to know whether a browser will fire an event. This becomes problematic in a couple of
places.

 First, if a script is loaded dynamically after the page has already loaded, the script
may try to bind a listener to wait for the window to load when, in fact, that event
already happened. Because there’s no way to determine whether the event has already
occurred, the code may wind up waiting forever to execute.

 The second situation occurs if a script wants to use custom events provided by a
browser as an alternative. For example, Internet Explorer provides mouseenter and
mouseleave events, which simplify the process of determining when a user’s mouse
enters or leaves an element’s boundaries. These are frequently used as alternatives to
the mouseover and mouseout events, because they act slightly more intuitively than the
standard events. But because there’s no way of determining whether these events will
fire without first binding the events and waiting for a user interaction against them,
it’s hard to use them in reusable code.

CSS PROPERTY EFFECTS

Yet another pain point is determining whether changing certain CSS properties affects
the presentation. Some CSS properties affect only the visual representation of the dis-
play and nothing else; they don’t change surrounding elements or affect other prop-
erties on the element. Examples are color, backgroundColor, and opacity. 

 There’s no way to programmatically determine whether changing these style prop-
erties will generate the effects desired. The only way to verify the impact is through a
visual examination of the page.

BROWSER CRASHES

Testing script that causes the browser to crash is another annoyance. Code that causes
a browser to crash is especially problematic, because unlike exceptions that can be
easily caught and handled, these will always cause the browser to break.

 For example, in older versions of Safari (see http://bugs.jquery.com/ticket/1331),
creating a regular expression that used Unicode-character ranges would always cause
the browser to crash, as in the following example:

new RegExp("[\\w\u0128-\uFFFF*_-]+");

The problem with this is that it’s not possible to test whether this problem exists,
because the test itself will always produce a crash in that older browser.

 Additionally, bugs that cause crashes to occur forever become embroiled in diffi-
culty, because although it may be acceptable for JavaScript to be disabled in some seg-
ment of the population using your browser, it’s never acceptable to outright crash the
browser of those users.

http://bugs.jquery.com/ticket/1331


383Reducing assumptions

INCONGRUOUS APIS

A while back, we saw that jQuery decided to disallow the ability to change the type
attribute in all browsers because of a bug in Internet Explorer. We could test this fea-
ture and disable it only in IE, but that would set up an incongruity, as the API would
work differently from browser to browser. In these situations, when a bug is so bad that
it causes an API to break, the only option is to work around the affected area and pro-
vide a different solution.

 In addition to impossible-to-test problems, some issues are possible to test but are
prohibitively difficult to test effectively. Let’s look at some of them.

API PERFORMANCE

Sometimes specific APIs are faster or slower in different browsers. When writing reus-
able and robust code, it’s important to try to use the APIs that provide good perfor-
mance. But it’s not always obvious which API that is.

 Effectively conducting performance analysis of a feature usually entails throwing a
large amount of data at it, and that typically takes a relatively long time. Therefore, it’s
not something we can do whenever our page is loaded.

 Untestable features are a significant hassle that hinder writing reusable JavaScript,
but frequently we can work around them with a bit of effort and cleverness. By using
alternative techniques, or constructing our APIs so as to obviate these issues in the first
place, we’ll likely be able to build effective code despite the odds stacked against us.

14.4 Reducing assumptions
Writing cross-browser, reusable code is a battle of assumptions, but by using clever
detection and authoring, we can reduce the number of assumptions that we make in
our code. When we make assumptions about the code that we write, we stand to
encounter problems further down the road.

 For example, assuming that an issue or a bug will always exist in a specific browser
is a huge and dangerous assumption. Instead, testing for the problem (as we’ve done
throughout this chapter) proves to be much more effective. In our coding, we should
always strive to reduce the number of assumptions, effectively reducing the room for
error and the probability that something is going to come back and bite us in the behind.

 The most common area for making assumptions in JavaScript is in user-agent detec-
tion—specifically, analyzing the user agent provided by a browser (navigator
.userAgent) and using it to make an assumption about how the browser will behave (in
other words, browser detection). Unfortunately, most user-agent string analysis proves
to be a superb source of future-induced errors. Assuming that a bug, issue, or proprie-
tary feature will always be linked to a specific browser is a recipe for disaster.

 But reality intervenes when it comes to minimizing assumptions: It’s virtually
impossible to remove all of them. At some point, we’ll have to assume that a browser
will do what it’s supposed to do. Figuring out where to strike that balance is com-
pletely up to the developer, and it’s what “separates the men from the boys,” as they
say (with apologies to our female readers).



384 CHAPTER 14 Developing cross-browser strategies

 For example, let’s reexamine the event-attaching code that we’ve already seen in
this chapter:

function bindEvent(element, type, handle) {
  if (element.addEventListener) {
    element.addEventListener(type, handle, false);
  }
  else if (element.attachEvent) {
    element.attachEvent("on" + type, handle);
  }
}

Without looking ahead, see if you can spot three assumptions made by this code. Go
on, we’ll wait. (Jeopardy theme plays...)

 How’d you do? The preceding code has at least these three assumptions:

■ The properties that we’re checking are callable functions.
■ They’re the correct functions, performing the actions that we expect.
■ These two methods are the only possible ways of binding an event.

We could easily get rid of the first assumption by adding checks to see whether the prop-
erties are, in fact, functions. Tackling the remaining two points is much more difficult.

 In this code, we always need to decide how many assumptions are optimal for our
requirements, our target audience, and us. Frequently, reducing the number of
assumptions also increases the size and complexity of the code base. It’s fully possible,
and rather easy, to attempt to reduce assumptions to the point of complete insanity,
but at some point we have to stop and take stock of what we have, say “good enough,”
and work from there. Remember that even the least-assuming code is still prone to
regressions introduced by a browser.

14.5 Summary
■ Although the situation has improved considerably, browsers unfortunately

aren’t bug-free and usually don’t support web standards consistently.
■ When writing JavaScript applications, choosing which browsers and platforms

to support is an important consideration.
■ Because it’s not possible to support all combinations, quality should never be

sacrificed for coverage!
■ The biggest challenges to writing JavaScript code that can be executed in vari-

ous browsers are bug fixes, regressions, browser bugs, missing features, and
external code.

■ Reusable cross-browser development involves juggling several factors:
– Code size—Keeping the file size small
– Performance overhead—Keeping the performance level above a palatable

minimum
– API quality—Making sure that the APIs work uniformly across browsers



385Exercises

■ There’s no magic formula for determining the correct balance of these factors. 
■ The development factors are something that have to be balanced by every

developer in their individual development efforts. 
■ By using smart techniques such as feature detection, we can defend against the

numerous directions from which reusable code will be attacked without making
any undue sacrifices.

14.6 Exercises
1 What should we take into account when deciding which browsers to support?
2 Explain the problem of greedy IDs.
3 What is feature detection?
4 What is a browser polyfill? 





387

appendix A
Additional ES6 features

This appendix covers some of the “smaller” ES6 features that don’t fit neatly into
the previous chapters. Template literals enable string interpolation and multiline
strings, destructuring enables us to easily extract data from objects and arrays, and
enhanced object literals improve dealings with, well, object literals.

Template literals
Template literals are a new ES6 feature that make manipulating strings much more
pleasant than before. Just think back; how many times have you been forced to
write something as ugly as this?

This appendix covers
■ Template literals
■ Destructuring
■ Object literal enhancements



388 APPENDIX A Additional ES6 features

const ninja = {
  name: "Yoshi",   
  action: "subterfuge" 
};

const concatMessage = "Name: " + ninja.name + " " 
                    + "Action: " + ninja.action;

In this example, we have to construct a string with data dynamically inserted. To
achieve this, we have to resort to some messy concatenations. But not anymore! In ES6
we can achieve the same result with template literals; just take a look at the following
listing.

const ninja = {   
  name: "Yoshi",   
  action: "subterfuge" 
};

const concatMessage = "Name: " + ninja.name + " " 
                    + "Action: " + ninja.action;
const templateMessage = `Name: ${ninja.name} Action: ${ninja.action}`; 

assert(concatMessage === templateMessage, 
      "Our messages match");

As you can see, ES6 provides a new type of string that uses backticks (`), a string that
can contain placeholders, denoted with the ${} syntax. Within these placeholders, we
can place any JavaScript expression: a simple variable, an object property access (as we
did with ninja.action), and even function calls. 

 When a template string gets evaluated, the placeholders are replaced with the
result of evaluating the JavaScript expression contained within those placeholders.

 In addition, template literals aren’t limited to a single line (as are standard double
and single quoted ones), and there’s nothing stopping us from making them multi-
line, as shown in the following listing.

const name = "Yoshi", action = "subterfuge";
const multilineString = 
`Name: ${name}
 Yoshi: ${action}`; 

Now that we’ve given you a short intro to template literals, let’s look at another ES6
feature: destructuring.

Listing A.1 Template literals

Listing A.2 Multiline template literals

Uses backticks to create template
literals that can contain JavaScript

expressions encapsulated in ${}

Template strings aren’t 
limited to a single line.



389Destructuring

Destructuring
Destructuring allows us to easily extract data from objects and arrays by using patterns.
For example, imagine that you have an object whose properties you want to assign to a
couple of variables, as in the following listing.

const ninja = { name:"Yoshi", action: "skulk", weapon: "shuriken"};

const nameOld = ninja.name;      
const actionOld = ninja.action;  
const weaponOld = ninja.weapon;  

const {name, action, weapon} = ninja;

assert(name === "Yoshi", "Our ninja Yoshi");
assert(action === "skulk", "is skulking");
assert(weapon === "shuriken", "with a shuriken");

const {name: myName, action: myAction, weapon: myWeapon} = ninja;

assert(myName === "Yoshi", "Our ninja Yoshi");
assert(myAction === "skulk", "is skulking");
assert(myWeapon === "shuriken", "with a shuriken");

As listing A.3 shows, with object destructuring, we can easily extract multiple variables
from an object literal, all in one go. Consider the following statement:

const {name, action, weapon} = ninja;

This creates three new variables (name, action, and weapon) whose values are the val-
ues of the matching properties of the object on the right-hand side of the statement
(ninja.name, ninja.action, and ninja.weapon, respectively).

 When we don’t want to use the names of object properties, we can fine-tune them,
as in the following statement:

const {name: myName, action: myAction, weapon: myWeapon} = ninja;

Here we create three variables (myName, myAction, and myWeapon) and assign to them
values of the specified object properties.

 Earlier, we mentioned that we can also destructure arrays, as arrays are just a spe-
cial kind of object.Take a look at the following listing.

const ninjas = ["Yoshi", "Kuma", "Hattori"];
const [firstNinja, secondNinja, thirdNinja] = ninjas;

assert(firstNinja === "Yoshi", "Yoshi is our first ninja");
assert(secondNinja === "Kuma", "Kuma the second one");

Listing A.3 Destructuring objects

Listing A.4 Destructuring arrays

Old way: we have to explicitly 
assign each object property 
to a variable.

Object destructuring: we 
can assign each property 
to a variable of the same 
name, all at once.

If necessary, we can explicitly
name the variables to which

we want to assign values.

Array items are, in 
order, assigned to 
specified variables.



390 APPENDIX A Additional ES6 features

assert(thirdNinja === "Hattori", "And Hattorithe third");

const [, , third] = ninjas;
assert(third === "Hattori", "We can skip items");

const [first, ...remaining] = ninjas;
assert(first === "Yoshi", "Yoshi is again our first ninja");
assert(remaining.length === 2, "There are two remaining ninjas");
assert(remaining[0] === "Kuma", "Kuma is the first remaining ninja");
assert(remaining[1] === "Hattori", "Hattori the second remaining ninja");

Destructing arrays is slightly different from destructuring objects, primarily in syntax,
because the variables are wrapped in brackets (as opposed to braces, which are used
for object destructuring), as shown in the following fragment:

const [firstNinja, secondNinja, thirdNinja] = ninjas;

In this case, Yoshi, the first ninja, is assigned to the variable firstNinja. Kuma is
assigned to the variable secondNinja. Hattori is assigned to the variable thirdNinja.

 Array destructuring also has some advanced uses. For example, if we want to skip
certain items, we can omit variable names, while keeping commas, as in the following
statement:

const [, , third] = ninjas;

In this case, the first two ninjas will be ignored, while the value of the third ninja, Hat-
tori, will be assigned to the variable third.

 In addition, we can extract only certain items, while assigning remaining items to a
new array:

const [first, ...remaining] = ninjas;

The first item, Yoshi, is assigned to the variable first, and the remaining ninjas, Kuma
and Hattori, are assigned to the new array, remaining. Notice that in this case, the
remaining items are marked in the same way as the rest parameters (the ... operator).

Enhanced object literals
One of the great things about JavaScript is its ease of creating objects with object liter-
als: We define a couple of properties and wrap them within curly braces, and voilà,
we’ve created a new object. In ES6, the object literal syntax has gained some new
extensions. Let’s look at an example. Say we want to create a ninja object, and assign
to it a property based on the value of a variable that’s in scope, a property whose name
is dynamically computed, and a method, as shown in the following listing.

constname = "Yoshi";
const oldNinja = {
  name: name,

Listing A.5 Enhanced object literals

We can skip certain 
array items.

We can capture 
trailing items.

Creates a property with the same name 
as a variable in scope and assigns the 
value of that variable to it



391Enhanced object literals

  getName: function(){     
    return this.name;
  }
};

oldNinja["old" + name] = true;                
assert(oldNinja.name === "Yoshi", "Yoshi here");
assert(typeof oldNinja.getName === "function", "with a method");
assert("oldYoshi" in oldNinja, "and a dynamic property");

constnewNinja = {
  name,                
  getName(){             
    return this.name;
  },
  ["new" + name]: true
};

assert(newNinja.name === "Yoshi", "Yoshi here, again");
assert(typeof newNinja.getName === "function", "with a method");
assert("newYoshi" in newNinja, "and a dynamic property");

This example starts by creating an oldNinja object using the old pre-ES6 object literal
syntax:

const name = "Yoshi";
const oldNinja = {
  name: name,
  getName: function(){
    return this.name;
  }
};
oldNinja["old" + name] = true;

We contrast this with enhanced object literals that achieve exactly the same effect,
with less syntactic clutter:

const newNinja = {
  name,
  getName(){
    return this.name;
  },
  ["new" + name]: true
};

This completes our exploration of important, new concepts introduced by ES6.

Defines a method 
on an object

Creates a property whose name 
is dynamically calculated

Property value shorthand syntax; 
assigns the value of the same 
named variable to the property

Method definition shorthand; there’s no 
need to add a colon and the function 
keyword. Using parentheses after the 
property name signals that we’re 
dealing with a method.

A computed property name



392

appendix B
Arming with

 testing and debugging

This appendix presents some fundamental techniques in developing client-side
web applications: debugging and testing. Constructing effective test suites for our
code is always important. After all, if we don’t test our code, how do we know that it
does what we intend? Testing gives us a means to ensure that our code not only
runs, but runs correctly.

 Moreover, as important as a solid testing strategy is for all code, it can be crucial
when external factors have the potential to affect the operation of our code, which

This appendix covers
■ Tools for debugging JavaScript code
■ Techniques for generating tests
■ Building a test suite
■ Surveying some of the popular testing 

frameworks



393Web developer tools

is exactly the case we’re faced with in cross-browser JavaScript development. Not only
do we have the typical problems of ensuring the quality of the code (especially when
dealing with multiple developers working on a single code base) and guarding against
regressions that could break portions of an API (generic problems that all program-
mers need to deal with), but we also have the problem of determining whether our
code works in all the browsers that we choose to support.

 In this chapter, we’ll look at tools and techniques for debugging JavaScript code,
generating tests based on those results, and constructing a test suite to reliably run
those tests. Let’s get started.

Web developer tools
For a long time, the development of JavaScript applications was hindered by the lack
of a basic debugging infrastructure. The only way to debug JavaScript code was to scat-
ter alert statements that would notify us about the value of the alerted expression, all
around the code that was acting strangely. As you might imagine, this made debug-
ging (hardly ever a fun activity) even more difficult.

 Luckily, Firebug, an extension to Firefox, was developed in 2007. Firebug holds a
special place in the hearts of many web developers, because it was the first tool that
provided a debugging experience that closely matched debugging in state-of-the-art
integrated development environments (IDEs), such as Visual Studio or Eclipse.
In addition, Firebug has inspired the development of similar developer tools for
all major browsers: F12 Developer Tools, included in Internet Explorer and Micro-
soft Edge; WebKit Inspector, included in Safari; Firefox Developer Tools, included
in Firefox; and Chrome DevTools included in Chrome and Opera. Let’s explore
them a bit.

FIREBUG

Firebug, the first advanced web application debugging tool, is available exclusively for
Firefox, and is accessed by pressing the F12 key (or by right-clicking anywhere on the
page and selecting Inspect Element with Firebug). You can install Firebug by opening
the page in Firefox (https://getfirebug.com/) and following the instructions. Figure
B.1 shows Firebug.

 Firebug offers advanced debugging functionalities, some of which it has even pio-
neered. For example, we can easily explore the current state of the DOM by using the
HTML pane (the pane shown in figure B.1), run custom JavaScript code within the
context of the current page by using the console (the bottom of figure B.1), explore
the state of our JavaScript code by using the Script pane, and even explore network
communications from the Net pane.

FIREFOX DEVELOPER TOOLS

In addition to Firebug, if you’re a Firefox user, you can use the built-in Firefox
DevTools, shown in figure B.2. As you can see, the general look and feel of Firefox
developer tools is similar to Firebug (apart from some minor layout and label

https://getfirebug.com/


394 APPENDIX B Arming with testing and debugging

Debug
JavaScript code.

The current state 
of the DOM.

Run custom JavaScript 
code in the console.

Explore network
communication.

Additional node
properties.

Figure B.1 Firebug, available only in Firefox, was the first advanced debugging tool for web applications.

Inspect the current 
state of the DOM.

Debug
JavaScript code.

Run custom JavaScript 
code in the console.

Explore network
communication.

Measure
performance.

Responsive
Design mode.

Figure B.2 Firefox developer tools, built into Firefox, offer all the Firebug features and then some.



395Web developer tools

differences; for example, the HTML pane from Firebug is called Inspector in Firefox
developer tools). 

 Firefox developer tools are built by the Mozilla team, which has taken advantage
of this close integration with Firefox by bringing in some additional useful features.
The Performance pane, for instance, provides detailed insight about the perfor-
mance of our web applications. In addition, Firefox developer tools are built with
the modern web in mind. For example, they offer Responsive Design mode, which
helps us explore the look and feel of our web applications across different screen
sizes—which is something we have to be careful about, because nowadays users
access web applications not only from their PCs, but also from mobile devices, tab-
lets, and even TVs.

F12 DEVELOPER TOOLS

If you’re in the Internet Explorer (IE) camp, you’ll be happy to know that IE and
Microsoft Edge (the successor to IE) offer their own developer tools, the F12 devel-
oper tools. (Quickly, try to guess which key toggles them on and off.) These tools are
shown in figure B.3.

 Again, notice the similarities between the F12 developer tools and Firefox’s
developer tools (with only slight differences in labels). The F12 tools also enable us
to explore the current state of the DOM (the DOM Explorer pane, figure B.3), run
custom JavaScript code through the console, debug our JavaScript code (the
Debugger pane), analyze the network traffic (Network), deal with responsive design
(UI Responsiveness), and analyze performance and memory consumption (Profiler
and Memory).

Figure B.3 F12 developer tools (toggled by pressing F12) are available in Internet Explorer and Edge.



396 APPENDIX B Arming with testing and debugging

WEBKIT INSPECTOR

If you’re an OS X user, you can use WebKit Inspector, which is offered by Safari, as
shown in figure B.4. Although the UI of Safari’s WebKit Inspector is slightly different

from that of F12 developer tools or Firefox’s developer tools, rest assured that the
WebKit Inspector also supports all important debugging features.

CHROME DEVTOOLS

We’ll complete our little survey of developer tools with Chrome DevTools—in our
opinion, the current flagship of web application developer tools that’s been driving a
lot of innovations lately. As you can see in figure B.5, the basic UI and features are sim-
ilar to the rest of the developer tools.

Figure B.4 WebKit Inspector, available in Safari

Figure B.5 Chrome DevTools, available in Chrome and Opera



397Debugging code

Throughout this book, we’ve used Chrome DevTools, for the sake of convention. But
as you’ve seen throughout this section, most developer tools offer similar features
(and if one of them offers something new, the others catch up quickly). You can just as
easily use the developer tools offered by your browser of choice.

 Now that you’ve had an introduction to the tools you can use for debugging code,
let’s explore some debugging techniques.

Debugging code
A significant portion of time developing software is spent on removing annoying bugs.
Although this can sometimes be interesting, almost like solving a whodunit mystery,
typically we’ll want our code working correctly and bug-free as soon as possible. 

 Debugging JavaScript has two important aspects: 

■ Logging, which prints out what’s going on as our code is running
■ Breakpoints, which allow us to temporarily pause the execution of our code and

explore the current state of the application

They’re both useful for answering the important question, “What’s going on in my
code?” but each tackles it from a different angle. Let’s start by looking at logging.

Logging

Logging statements are used for outputting messages during program execution, with-
out impeding the normal flow of the program. When we add logging statements to
our code (for example, by using the console.log method), we benefit from seeing
messages in the browser’s console. For example, if we want to know the value of a vari-
able named x at certain points of program execution, we might write something like
the following listing.

  <!DOCTYPE html>
1: <html>
2:   <head>
3:    <title>Logging</title>
4:    <script>
5:      var x = 213;
6:      console.log("The value of x is: ", x);
7:
8:      x = "Hello " + "World";
9:      console.log("The value of x is now:", x);
10:   </script>
11:  </head>
12:  <body></body>
13:</html>

Figure B.6 shows the result of executing this code in the Chrome browser with the
JavaScript console enabled.

Listing B.1 Logging the value of variable x at various points of program execution



398 APPENDIX B Arming with testing and debugging

As you can see, the browser logs the messages directly to the JavaScript console, show-
ing both the logged message and the line in which the message was logged.

 This is a simple example of logging a value of a variable at different points of pro-
gram execution. But in general, you can use logging to explore various facets of your
running applications, such as the execution of important functions, the change of an
important object property, or the occurrence of a particular event.

 Logging is all well and good for seeing the state of things while the code is run-
ning, but sometimes we’ll want to stop the action and take a look around. That’s
where breakpoints come in.

Breakpoints

Using breakpoints can be more complex than logging, but they possess a notable advantage:
They halt the execution of a script at a specific line of code, pausing the browser. This
allows us to leisurely investigate the state of all sorts of things at the point of the break.

 Let’s say that we have a page that logs a greeting to a famous ninja, as shown in the
following listing.

<!DOCTYPE html>
<html>
  <head>
   <title>Ninja greeting</title>
   <script>
    function logGreeting(name){
      console.log("Greetings to the great " + name);

Listing B.2 A simple “greet a ninja” page 

Open the JavaScript 
console tab.

Result of executing
console.log("The value of x is:", x);

Result of executing
console.log("The value of x is now:", x);

Shows the file and the line
from which the log was made

Figure B.6 Logging lets us see the state of our code as it’s running. In this case, we can see that the value of 
213 is logged from line 6, and the value of “Hello World” from line 9 of listing B.1. All developer tools, including 
Chrome DevTools shown here, have a Console tab for logging purposes.



399Debugging code

    }
    var ninja = "Hattori Hanzo";
    logGreeting(ninja); 
  </script>
  </head>
  <body>
  </body>
</html>

Say we set a breakpoint by using the Chrome DevTools on the annotated line that calls
the logGreeting function in listing B.2 (by clicking the line number gutter in the
Debugger pane) and refresh the page to cause the code to execute. The debugger
would then stop the execution at that line and show us the display in figure B.7.

 The pane on the right shows the state of the application within which our code is
running, including the value of the ninja variable (Hattori Hanzo). The debugger
breaks on a line before the breakpointed line is executed; in this example, the call to
the logGreeting function has yet to be executed.

STEPPING INTO A FUNCTION

If we’re trying to debug a problem with our logGreeting function, we might want to
step into that function to see what’s going on inside it. While our execution is paused
on the logGreeting call (with a breakpoint that we’ve previously set), we click the
Step Into button (shown as an arrow pointing to a dot in most debuggers) or press
F11, which will cause the debugger to execute up to the first line of our logGreeting
function. Figure B.8 shows the result.

Line where we’ll break

1. Shows the current
   code of our web page

4. The current state
    of our application
    (ninja: “Hattori Hanzo”)

2. Create a breakpoint
   by clicking in the
   line gutter.

3. When the page is loaded,
    execution will stop at the
    breakpoint and highlight
    the line next to be executed.

Figure B.7 When we set a breakpoint on a line of code (by clicking the line gutter) and load the 
page, the browser will stop executing JavaScript code before that line is executed. Then you can 
leisurely explore the current state of the application in the pane on the right.

http://jasmine.github.io/


400 APPENDIX B Arming with testing and debugging

Note that the look of Chrome DevTools has changed a bit (when compared to figure
B.7) to allow us to poke around the application state in which the logGreeting
function executes. For example, now we can easily explore the local variables of our
logGreeting function and see that we have a name variable with the value Hattori
Hanzo (the variable values are even shown inline, with the source code on the left).
Also notice that in the upper-right corner is a Call Stack pane, which shows that we’re
currently within the logGreeting function, which was called by global code.

The line in which
the execution is
currently paused

The list of active
breakpoints

The current values
of local variables

The Call Stack (marking
that we’re currently in
the logGreeting function)

Variable values are
also shown inline!

Clicking the Step Into
button will execute up to
the first line of a function.

Figure B.8 Stepping into a function lets us see the new state in which the function is executed. We 
can explore the current position by studying the Call Stack and the current values of local variables.

Step Over and Step Out
In addition to the Step Into command, we can use Step Over and Step Out. 

The Step Over command executes our code line by line. If the code in the executed
line contains a function call, the debugger steps over the function (the function will
be executed, but the debugger won’t jump into its code). 

If we’ve paused the execution of a function, clicking the Step Out button will execute
the code to the end of the function, and the debugger will again pause right after the
execution has left that function.



401Debugging code

CONDITIONAL BREAKPOINTS

Standard breakpoints cause the debugger to stop the application execution every time
a debugger reaches that particular point in program execution. In certain cases, this
can be tiring. Consider the following listing.

<!DOCTYPE html>
<html>
  <head>
    <script>
      for(var i = 0; i < 100; i++){
        console.log("Ninjas: " + i);    
      }
    </script>
  </head>
  <body>
  </body>
</html>

Imagine that we want to explore the state of the application when counting the 50th
ninja. How tiring would it be to have to visit all 49 ninjas before finally reaching the
one we want? 

 Welcome to conditional breakpoints! Unlike traditional breakpoints, which halt
every time the breakpointed line is executed, a conditional breakpoints causes the debug-
ger to break only if an expression associated with the conditional breakpoints is satis-
fied. You can set a conditional breakpoint by right-clicking in the line-number gutter
and choosing Add  (see figure B.9 for how it’s done in Chrome).

 By associating the expression: i == 49 with a conditional breakpoint, the debugger
will halt only when that condition is satisfied. In that way, we can jump immediately to
the point in the application execution that we’re interested in, and ignore the less
interesting ones.

 So far, you’ve seen how to use various developer tools from different browsers in
order to debug our code with logging and breakpoints. These are all great tools that

Listing B.3 Counting Ninjas and conditional breakpoints

What if we want to explore the 
application state when counting 
the 50th ninja? Should we have to 
tediously go through the first 49?

Figure B.9 Right-click in the line-number margin to set a breakpoint as conditional; notice that these 
are shown in a different color, usually orange.



402 APPENDIX B Arming with testing and debugging

help us locate specific bugs and achieve a better understanding of the execution of a
particular application. But in addition to this, we want to have an infrastructure in place
that will help us detect bugs as soon as possible. This can be achieved with testing.

Creating tests
Robert Frost wrote that “good fences make good neighbors,” but in the world of web
applications, and indeed any programming discipline, good tests make good code.
Note the emphasis on the word good. It’s possible to have an extensive test suite that
doesn’t help the quality of our code one iota if the tests are poorly constructed. 

 Good tests exhibit three important characteristics:

■ Repeatability—Our test results should be highly reproducible. Tests that run
repeatedly should always produce the exact same results. If test results are non-
deterministic, how would we know which results are valid and which are invalid?
Additionally, reproducibility ensures that our tests aren’t dependent on exter-
nal factors, such as network or CPU loads.

■ Simplicity—Our tests should focus on testing one thing. We should strive to
remove as much HTML markup, CSS, or JavaScript as we can without disrupting
the intent of the test case. The more we remove, the greater the likelihood that
the test case will be influenced by only the specific code that we’re testing.

■ Independence—Our tests should execute in isolation. We must avoid making the
results from one test dependent on another. Breaking tests into the smallest
possible units will help us determine the exact source of a bug when an error
occurs.

We can use various approaches to construct tests. The two primary approaches are
deconstructive and constructive:

■ Deconstructive test cases—Existing code is whittled down (deconstructed) to iso-
late a problem, eliminating anything that’s not germane to the issue. This helps
achieve the three characteristics listed previously. We might start with a com-
plete website, but after removing extra markup, CSS, and JavaScript, we’ll arrive
at a smaller case that reproduces the problem.

■ Constructive test cases—We start from a known good, reduced case and build up
until we’re able to reproduce the bug in question. To use this style of testing,
we’ll need a couple of simple test files from which to build up tests, and a way to
generate these new tests with a clean copy of our code.

Let’s look at an example of constructive testing.
 When creating reduced test cases, we can start with a few HTML files with mini-

mum functionality already included in them. We might even have different starting
files for various functional areas; for example, one for DOM manipulation, one for
Ajax tests, one for animations, and so on.



403Creating tests

 For example, the following listing shows a simple DOM test case used to test jQuery.

<style>
  #test { width: 100px; height: 100px; background: red; }
</style>
<div id="test"></div>
<script src="dist/jquery.js"></script>
<script>
  $(document).ready(function() {
    $("#test").append("test");
  });
</script>

Another alternative is to use a prebuilt service designed for creating simple test cases,
for example JSFiddle (http://jsfiddle.net/), CodePen (http://codepen.io/), or
JS Bin (http://jsbin.com/). All have similar functionality; they allow us to build test
cases that become available at a unique URL. (And you can even include copies of
popular libraries.) An example in JSFiddle is shown in figure B.10.

Listing B.4 A reduced DOM test case for jQuery

HTML code goes here.

The end result
is shown here.

Include additional 
libraries. CSS code goes here.

JavaScript code
goes here.

Figure B.10 JSFiddle enables us to test combinations of HTML, CSS, and JavaScript snippets in a 
sandbox to see if everything works as intended.

http://jsfiddle.net/
http://codepen.io/
http://jsbin.com/


404 APPENDIX B Arming with testing and debugging

Using JSFiddle (or similar tools) is all nice and practical when we have to do a quick
test of a certain concept, especially because you can easily share it with other people,
and maybe even get some useful feedback. Unfortunately, running such tests requires
that you manually open the test and check its result, which might be fine if you have
only a couple of tests, but normally we should have lots and lots of tests that check
every nook and cranny of our code. For this reason, we want to automate our tests as
much as possible. Let’s look at how to achieve that.

The fundamentals of a testing framework
The primary purpose of a testing framework is to allow us to specify individual tests
that can be wrapped into a single unit, so that they can be run in bulk, providing a sin-
gle resource that can be run easily and repeatedly.

 To better understand how a testing framework works, it makes sense to look at
how it’s constructed. Perhaps surprisingly, JavaScript testing frameworks are easy to
construct. 

 You’d have to ask, though, “Why would I want to build a new testing framework?”
For most cases, writing your own JavaScript testing framework isn’t necessary, because
many good-quality ones are already available (as you’ll soon see). But building your
own test framework can serve as a good learning experience.

The assertion

The core of a unit-testing framework is its assertion method, customarily named
assert. This method usually takes a value—an expression whose premise is asserted—
and a description of the purpose of the assertion. If the value evaluates to true, the
assertion passes; otherwise, it’s considered a failure. The associated message is usually
logged with an appropriate pass/fail indicator.

 A simple implementation of this concept can be seen in the following listing.

<!DOCTYPE html>
<html>
  <head>
    <title>Test Suite</title>
    <script>
      function assert(value, desc) {                       
        var li = document.createElement("li");             
        li.className = value ? "pass" : "fail";            
        li.appendChild(document.createTextNode(desc));     
        document.getElementById("results").appendChild(li);
      }                                                    
      window.onload = function() {
        assert(true, "The test suite is running.");
        assert(false, "Fail!");                    
      };
    </script>
    <style>

Listing B.5 A simple implementation of a JavaScript assertion

Defines the assert 
method

Executes tests 
using assertions



405The fundamentals of a testing framework

      #results li.pass { color: green; } 
      #results li.fail { color: red; }   
    </style>
  </head>
  <body>
    <ul id="results"></ul>          
  </body>
</html>

The function named assert is almost surprisingly straightforward. It creates a new
<li> element containing the description, assigns a class named pass or fail, depend-
ing on the value of the assertion parameter (value), and appends the new element to
a list element in the document body.

 The test suite consists of two trivial tests: one that will always succeed, and one that
will always fail:

assert(true, "The test suite is running."); //Will always pass
assert(false, "Fail!"); //Will always fail

Style rules for the pass and fail classes visually indicate success or failure using colors.
 The result of running our test suite in Chrome is shown in figure B.11.

TIP If you’re looking for something quick, you can use the built-in
console.assert() method (see figure B.12).

Now that we’ve built our own rudimentary testing framework, let’s meet some of the
widely available, more popular testing frameworks.

Defines styles 
for results

Holds test results

Figure B.11 The result of running our first test suite



406 APPENDIX B Arming with testing and debugging

Popular testing frameworks

A test framework should be a fundamental part of your development workflow, so
you should pick a framework that works particularly well for your coding style and
your code base. A JavaScript testing framework should serve a single need: display-
ing the results of the tests, and making it easy to determine which tests have passed
or failed. Testing frameworks can help us reach that goal without having to worry
about anything other than creating the tests and organizing them into collections
called test suites.

 There are several features that we might want to look for in a JavaScript unit-testing
framework, depending on the needs of the tests. Some of these features include the
following:

■ The ability to simulate browser behavior (clicks, key presses, and so on)
■ Interactive control of tests (pausing and resuming tests)
■ Handling asynchronous test time-outs
■ The ability to filter which tests are to be executed

Let’s meet the two currently most popular testing frameworks: QUnit and Jasmine.

QUNIT

QUnit is the unit-testing framework originally built to test jQuery. It has since
expanded beyond its initial goals and is now a standalone unit-testing framework.

Assertion passes; nothing
is logged in the console.

Assertion fails; a message
is logged in the console.

Figure B.12 You can use the built-in console.assert as a quick way to test code. The fail 
message is logged to the console only if an assertion fails.



407The fundamentals of a testing framework

QUnit is primarily designed to be a simple solution to unit testing, providing a mini-
mal but easy-to-use API. QUnit’s distinguishing features are as follows:

■ Simple API
■ Supports asynchronous testing
■ Not limited to jQuery or jQuery-using code
■ Especially well-suited for regression testing

Let’s look at a QUnit test example in the following listing that tests whether we’ve
developed a function that accurately says “Hi” to a ninja.

<!DOCTYPE html>
<html>
  <head>
    <link rel="stylesheet" href="qunit/qunit-git.css"/>
 <script src="qunit/qunit-git.js"></script>            
  </head>
  <body>
    <div id="qunit"></div>           
 <script>
  function sayHiToNinja(ninja) {
     return "Hi " + ninja;      
  }                             

  QUnit.test("Ninja hello test", function(assert){          
     assert.ok( sayHiToNinja("Hatori") == "Hi Hatori", "Passed");
     assert.ok( false, "Failed");
  }); 
</script>
 </body>
</html>

When you open this example in a browser, you should get the results shown in figure
B.13, with one passing assertion from executing the line sayHiToNinja("Hatori"),
and one failing assertion from assert.ok(false, "Failed").

 More information on QUnit can be found at http://qunitjs.com/.

JASMINE

Jasmine is another popular testing framework, built on slightly different foundations
than QUnit. The principal parts of the framework are as follows: 

■ The describe function, which describes test suites 
■ The it function, which specifies individual tests 
■ The expect function, which checks individual assertions

Listing B.6 QUnit test example

Includes QUnit 
code and styles

Creates an HTML element that 
QUnit fills with test results

Declares the function 
that we want to test

Specifies a 
QUnit test case

Tests a passing assertion

Tests a failing assertion



408 APPENDIX B Arming with testing and debugging

The combination and naming of these functions are geared toward making the test
suite almost conversational in nature. For example, the following listing shows how to
test the sayHiToNinja function using Jasmine.

<!DOCTYPE html>
<html>
<head>
  <link rel="stylesheet" href="lib/jasmine-2.2.0/jasmine.css"> 
  
  <script src="lib/jasmine-2.2.0/jasmine.js"></script>         
  <script src="lib/jasmine-2.2.0/jasmine-html.js"></script>    
  <script src="lib/jasmine-2.2.0/boot.js"></script>            
</head>
<body>
<script>
  function sayHiToNinja(ninja) {      

Listing B.7 Jasmine test example

Figure B.13 An example of a QUnit test run. As a part of our test, we have one passing and one 
failing assertion (one assertion of two passed, one failed.) The displayed results put a much bigger 
emphasis on the failing test, to make sure we fix it as soon as possible.

Includes 
Jasmine files

Declares the function 
that we want to test



409The fundamentals of a testing framework

    return "Hi " + ninja;             
  }                                   

  describe("Say Hi Suite", function() {               
    it("should say hi to a ninja", function() {          
      expect(sayHiToNinja("Hatori")).toBe("Hi Hatori");
    });
    
    it("should fail", function(){
      expect(false).toBe(true);
    })
  });
</script>
</body>
</html>

The result of running this Jasmine test suite in the browser is shown in figure B.14. 
 More information on Jasmine can be found at http://jasmine.github.io/.

Defines a test suite 
that calls “Say Hi 
Suite”

Specifies a single 
test that checks 
our function

Asserts
that our
function

produces
the right

result
Fails on purpose

Figure B.14 The result of running a Jasmine test suite in the browser. We have two tests: one passing 
and one failing (two specs, one failure).

http://jasmine.github.io/


410 APPENDIX B Arming with testing and debugging

MEASURING CODE COVERAGE

It’s difficult to say what makes a particular test suite good. Ideally, we should test all
possible execution paths of our programs. Unfortunately, except for the most trivial
cases, this isn’t possible. A step in the right direction is trying to test as much code as
we can, and a metric that tells us the degree to which a test suite covers our code is
called code coverage. 

 For example, saying that a test suite has 80% code coverage means that 80% of our
program code is executed by the test suite, whereas 20% of our code isn’t. Although we
can’t be entirely sure that this 80% of code doesn’t contain bugs (we might have missed
an execution path that leads to one), we’re completely in the dark about the 20% that
wasn’t even executed. This is why we should measure the code coverage of our test suites.

 In JavaScript development, we can use several libraries to measure the coverage of
our test suites, most notably Blanket.js (https://github.com/alex-seville/blanket) and
Istanbul (https://github.com/gotwarlost/istanbul). Setting up these libraries goes
beyond the scope of this book, but their respective web pages offer all the info we
might need on properly setting them up. 

https://github.com/alex-seville/blanket
https://github.com/gotwarlost/istanbul


411

appendix C
Exercise answers

Chapter 2. Building the page at runtime
1 What are the two phases in the lifecycle of a client-side web application?

A: The two phases in the lifecycle of a client-side web application are page
building and event handling. In the page-building phase, the user interface
of our page is built by processing HTML code and by executing mainline
JavaScript code. After the last HTML node is processed, the page enters the
event-handling phase, in which various events are processed.

2 What is the main advantage of using the addEventListener method to regis-
ter an event handler versus assigning a handler to a specific element property?

A: When assigning event handlers to specific element properties, we can reg-
ister only one event handler; addEventListener, on the other hand, enables
us to register as many event handlers as necessary.

3 How many events can be processed at once?

A: JavaScript is based on a single-threaded execution model, in which events
are processed one at a time.

4 In what order are events from the event queue processed?

A: Events are processed in the order in which they were generated: first in,
first out.

Chapter 3. First-class functions for the novice: 
definitions and arguments

1 In the following code snippet, which functions are callback functions?

//sortAsc is a callback because the JavaScript engine
//calls it to compare array items 
numbers.sort(function sortAsc(a,b){ 



412 APPENDIX C Exercise answers

  return a – b;
}); 

//Not a callback; ninja is called like a standard function
function ninja(){}
ninja();

var myButton = document.getElementById("myButton");
//handleClick is a callback, the function is called
//whenever myButton is clicked
myButton.addEventListener("click", function handleClick(){
  alert("Clicked");
});

2 In the following snippet, categorize functions according to their type (function
declaration, function expression, or arrow function).

  //function expression as argument to another function
  numbers.sort(function sortAsc(a,b){ 
    return a – b;
  });

  //arrow function as argument to another function
  numbers.sort((a,b) => b – a);

  //function expression as the callee in a call expression
 (function(){})();

  //function declaration
  function outer(){
    //function declaration
    function inner(){}
    return inner;
  }

  //function expression call wrapped in an expression
  (function(){}());

  //arrow function as a callee
  (()=>"Yoshi")();

3 After executing the following code snippet, what are the values of variables
samurai and ninja?

//"Tomoe", the value of the expression body of the arrow function
var samurai = (() => "Tomoe")(); 
//undefined, in case an arrow function's body is a block statement
//the value is the value of the return statement. 
//Because there's no return statement, the value is undefined.
var ninja = (() => {"Yoshi"})(); 

4 Within the body of the test function, what are the values of parameters a, b,
and c for the two function calls?



413Chapter 4. Functions for the journeyman: understanding function invocation

function test(a, b, ...c){ /*a, b, c*/}

// a = 1; b = 2; c = [3, 4, 5]
test(1, 2, 3, 4, 5); 
// a = undefined; b = undefined; c = []
test();

5 After executing the following code snippet, what are the values of the message1
and message2 variables?

function getNinjaWieldingWeapon(ninja, weapon = "katana"){
  return ninja + " " + katana;
}

//"Yoshi katana" – there's only one argument in the call
//so weapon defaults to "katana"
var message1 = getNinjaWieldingWeapon("Yoshi");  

//"Yoshi wakizashi" – we've sent in two arguments, the default
//value is not taken into account
var message2 = getNinjaWieldingWeapon("Yoshi", "wakizashi"); 

Chapter 4. Functions for the journeyman: 
understanding function invocation

1 The following function calculates the sum of the passed-in arguments using the
arguments object. By using the rest parameters introduced in the previous
chapter, rewrite the sum function so that it doesn’t use the arguments object.

function sum(){
  var sum = 0;
  for(var i = 0; i < arguments.length; i++){
     sum += arguments[i];
  }
  return sum;
}

assert(sum(1, 2, 3) === 6, 'Sum of first three numbers is 6');
assert(sum(1, 2, 3, 4) === 10, 'Sum of first four numbers is 10');

A: Add a rest parameter to the function definition and slightly adjust the func-
tion body:

function sum(... numbers){
  var sum = 0;
  for(var i = 0; i < numbers.length; i++){
     sum += numbers[i];
  }
  return sum;
}

assert(sum(1, 2, 3) === 6, 'Sum of first three numbers is 6');
assert(sum(1, 2, 3, 4) === 10, 'Sum of first four numbers is 10');



414 APPENDIX C Exercise answers

2 After running the following code in the browser, what are the values of variables
ninja and samurai? 

function getSamurai(samurai){
  "use strict"

  arguments[0] = "Ishida";
  
  return samurai;
}

function getNinja(ninja){
  arguments[0] = "Fuma";
  return ninja;
}

var samurai = getSamurai("Toyotomi");
var ninja = getNinja("Yoshi");

A: samurai will have the value Toyotomi, and ninja will have the value Fuma.
Because the getSamurai function is in strict mode, the arguments parameter
doesn’t alias function parameters, so changing the value of the first argument
won’t change the value of the samurai parameter. Because the getNinja func-
tion is in nonstrict mode, any changes made to the arguments parameter will be
reflected in the function parameters.

3 When running the following code, which of the assertions will pass?

function whoAmI1(){
  "use strict";
  return this;
}

function whoAmI2(){
  return this;
}

assert(whoAmI1() === window, "Window?"); //fail
assert(whoAmI2() === window, "Window?"); //pass

A: The whoAmI1 function is in strict mode; when it’s called as a function, the
value of the this parameter will be undefined (and not window). The second
assertion will pass: If a function in nonstrict mode is called as a function, this
refers to the global object (the window object, when running the code in the
browser).

4 When running the following code, which of the assertions will pass?

var ninja1 = {
   whoAmI: function(){
     return this;
   }



415Chapter 4. Functions for the journeyman: understanding function invocation

};

var ninja2 = {
  whoAmI: ninja1.whoAmI
};

var identify = ninja2.whoAmI;

//pass: whoAmI called as a method of ninja1
assert(ninja1.whoAmI() === ninja1, "ninja1?");

//fail: whoAmI called as a method of ninja2
assert(ninja2.whoAmI() === ninja1, " ninja1 again?");

//fail: identify calls the function as a function
//because we are in non-strict mode, this refers to the window
assert(identify() === ninja1, "ninja1 again?");

//pass: Using call to supply the function context
//this refers to ninja2
assert(ninja1.whoAmI.call(ninja2) === ninja2, "ninja2 here?");

5 When running the following code, which of the assertions will pass?

function Ninja(){
  this.whoAmI = () => this;
}

var ninja1 = new Ninja();
var ninja2 = {
  whoAmI: ninja1.whoAmI
};

//pass: whoAmI is an arrow function inherits the function context 
//from the context in which it was created.
//Because it was created during the construction of ninja1
//this will always point to ninja1
assert(ninja1.whoAmI() === ninja1, "ninja1 here?");

//false: this always refers to ninja1
assert(ninja2.whoAmI() === ninja2, "ninja2 here?");

6 Which of the following assertions will pass?

function Ninja(){
  this.whoAmI = function(){
    return this;
  }.bind(this);
}

var ninja1 = new Ninja();
var ninja2 = {
  whoAmI: ninja1.whoAmI
};



416 APPENDIX C Exercise answers

//pass: the function assigned to whoAmI is a function bound
//to ninja1 (the value of this when the constructor was invoked)
//this will always refer to ninja1
assert(ninja1.whoAmI() === ninja1, "ninja1 here?");
//fail: this in whoAmI always refers to ninja1
//because whoAmI is a bound function.
assert(ninja2.whoAmI() === ninja2, "ninja2 here?");

Chapter 5. Functions for the master: closures and scopes
1 Closures allow functions to

A: Access external variables that are in scope when the function is defined
(option a)

2 Closures come with
A: Memory costs (closures keep alive the variables that are in scope when the
function is defined) (option b)

3 In the following code example, mark the identifiers accessed through closures:

function Samurai(name) {
  var weapon = "katana"; 
  
  this.getWeapon = function(){
    //accesses the local variable: weapon
    return weapon; 
  };
  
  this.getName = function(){
    //accesses the function parameter: name
    return name; 
  }

  this.message = name + " wielding a " + weapon;

  this.getMessage = function(){
    //this.message is not accessed through a closure 
   //it is an object property (and not a variable)
    return this.message;
  }
}

var samurai = new Samurai("Hattori");

samurai.getWeapon();
samurai.getName();
samurai.getMessage();

4 In the following code, how many execution contexts are created, and what’s the
largest size of the execution context stack?

  function perfom(ninja) {
    sneak(ninja);
    infiltrate(ninja);



417Chapter 6. Functions for the future: generators and promises

  }

  function sneak(ninja) {
    return ninja + " skulking";
  }
  
  function infiltrate(ninja) {
    return ninja + " infiltrating";
  }

  perfom("Kuma");

A: The largest stack size is 3, in the following situations: 

■ global code -> perform -> sneak
■ global code -> perform -> infiltrate

5 Which keyword in JavaScript allows us to define variables that can’t be reas-
signed to a completely new value?
A: const variables can’t be reassigned to new values.

6 What’s the difference between var and let?
A: The keyword var is used to define only function- or global-scoped variables,
whereas let enables us to define block-scoped, function-scoped, and global-
scoped variables.

7 Where and why will the following code throw an exception?

getNinja();
getSamurai();  //throws an exception

function getNinja() {
  return "Yoshi";
}

var getSamurai = () => "Hattori";

A: An exception will be thrown when trying to invoke the getSamurai function.
The getNinja function is defined with a function declaration and will be cre-
ated before any of the code is executed; we can call it “before” its declaration
has been reached in code. The getSamurai function, on the other hand, is an
arrow function that’s created when the execution reaches it, so it will be unde-
fined when we try to invoke it.

Chapter 6. Functions for the future: generators and promises
1 After running the following code, what are the values of variables a1 to a4?

function *EvenGenerator(){
  let num = 2;
  while(true){



418 APPENDIX C Exercise answers

    yield num;
    num = num + 2;
  }
}

let generator = EvenGenerator();

//2 the first value yielded
let a1 = generator.next().value; 

//4 the second value yielded
let a2 = generator.next().value; 
//2, because we have started a new generator
let a3 = EvenGenerator().next().value; 
//6, we go back to the first generator
let a4 = generator.next().value;

2 What’s the content of the ninjas array after running the following code? (Hint:
Think about how the for-of loop can be implemented with a while loop.)

function* NinjaGenerator(){
  yield "Yoshi";
  return "Hattori";
  yield "Hanzo";
}

var ninjas = [];
for(let ninja of NinjaGenerator()){
  ninjas.push(ninja);
}

ninjas;

A: The ninjas array will contain only Yoshi. This happens because the for-of
loop iterates over a generator until the generator says it’s done (without including
the value passed along with done). This happens either when there’s no more
code in the generator to execute, or when a return statement is encountered.

3 What’s the value of variables a1 and a2, after running the following code?

function *Gen(val){
  val = yield val * 2;
  yield val;
}

let generator = Gen(2);
//4. The value of the first value passed in through next: 3 is ignored
//because the generator hasn't yet started its execution, and there 
//is no waiting yield expression. 
//Because the generator is created with val being 2
//the first yield occurs for val * 2, i.e. 2*2 == 4
let a1 = generator.next(3).value; 



419Chapter 7. Object orientation with prototypes

//5: passing in 5 as a argument to next
//means that the waiting yielded expression will get the value 5
//(yield val * 2) == 5
//because that value is then assigned to val, the next yield expression
//yield val;
//will return 5
let a2 = generator.next(5).value;

4 What’s the output of the following code?

const promise = new Promise((resolve, reject) => {
  reject("Hattori"); //the promise was explicitly rejected
});

//the error handler will be invoked
promise.then(val => alert("Success: " + val))
       .catch(e => alert("Error: " + e)); 

5 What’s the output of the following code?

const promise = new Promise((resolve, reject) => {
  //the promise was explicitly resolved
  resolve("Hattori");
  //once a promise has settled, it can't be changed
  //rejecting it after 500ms will have no effect
  setTimeout(()=> reject("Yoshi"), 500);
});

//the success handler will be invoked
promise.then(val => alert("Success: " + val))
       .catch(e => alert("Error: " + e));

Chapter 7. Object orientation with prototypes
1 Which of the following properties points to an object that will be searched if the

target object doesn’t have the searched-for property?
A: prototype (option c)

2 What’s the value of variable a1 after the following code is executed?

function Ninja(){}
Ninja.prototype.talk = function (){
  return "Hello";
};

const ninja = new Ninja();
const a1 = ninja.talk(); //"Hello"

A: The value of variable a1 will be Hello. Even though the object ninja doesn’t
possess the talk method, its prototype does. 

3 What’s the value of a1 after running the following code?



420 APPENDIX C Exercise answers

function Ninja(){}
Ninja.message = "Hello";

const ninja = new Ninja();

const a1 = ninja.message;

A: The value of variable a1 will be undefined. The message property is defined
in the constructor function Ninja, and isn’t acessible through the ninja object.

4 Explain the difference between the getFullName method in these two code
fragments:

//First fragment
function Person(firstName, lastName){
  this.firstName = firstName;
  this.lastName = lastName;

  this.getFullName = function () {
    return this.firstName + " " + this.lastName;
  }
}

//Second fragment
function Person(firstName, lastName) {
  this.firstName = firstName;
  this.lastName = lastName;
}

Person.prototype.getFullName = function () {
  return this.firstName + " " + this.lastName;
}

A: In the first fragment, the getFullName method is defined directly on the
instance created with the Person constructor. Each object created with the
Person constructor gets its own getFullName method. In the second frag-
ment, the getFullName method is defined on the prototype of the Person
function. All instances created with the Person function will have access to this
single method.

5 After running the following code, what will ninja.constructor point to?

function Person() { }
function Ninja() { }

const ninja = new Ninja();

A: When accessing ninja.constructor, the constructor property is found on
ninja’s prototype. Because ninja was created with the Ninja constructor func-
tion, the constructor property points to the Ninja function.



421Chapter 7. Object orientation with prototypes

6 After running the following code, what will ninja.constructor point to?

function Person() { }
function Ninja() { }
Ninja.prototype = new Person();
const ninja = new Ninja();

A: The constructor property is the property of the prototype object that was
created with the constructor function. In this example, we override the built-in
prototype of the Ninja function with a new Person object. Therefore, when a
ninja object is created with the Ninja constructor, its prototype is set to the new
person object. Finally, when we access the constructor property on the ninja
object, because the ninja object doesn’t have its own constructor property, its
prototype, the new person object, is consulted. The person object also doesn’t
have a constructor property, so its prototype, the Person.prototype object, is
consulted. That object has a constructor property, referencing the Person
function. This example perfectly illustrates why we should be careful when
using the constructor property: Even though our ninja object was created
with the Ninja function, the constructor property, due to the hiccup of over-
riding the default Ninja.prototype, points to the Person function.

7 Explain how the instanceof operator works in the following example.

function Warrior() { }

function Samurai() { }
Samurai.prototype = new Warrior();

var samurai = new Samurai();

samurai instanceof Warrior; //Explain

A: The instanceof operator checks whether the prototype of the function on
the right-hand side is in the prototype chain of the object on the left-hand side.
The object on the left is created with the Samurai function, and its prototype
has a new warrior object, whose prototype is the prototype of the Warrior
function (Warrior.prototype). On the right we have the Warrior function. So
in this example, the instanceof operator will return true, because the proto-
type of the function on the right, Warrior.prototype, can be found in the pro-
totype chain of the object on the left.

8 Translate the following ES6 code into ES5 code.

class Warrior { 
  constructor(weapon){
    this.weapon = weapon;
  }

  wield() {



422 APPENDIX C Exercise answers

    return "Wielding " + this.weapon;
  }

  static duel(warrior1, warrior2){
    return warrior1.wield() + " " + warrior2.wield();
  } 
}

A: We can translate the code in the following way:

function Warrior(weapon) {
  this.weapon = weapon;
}

Warrior.prototype.wield = function () {
  return "Wielding " + this.weapon;
};

Warrior.duel = function (warrior1, warrior2) {
  return warrior1.wield() + " " + warrior2.wield();
};

Chapter 8. Controlling access to objects
1 After running the following code, which of the following expressions will throw

an exception and why?

const ninja = {
   get name() {
     return "Akiyama";
   }
}

A: Calling ninja.name() throws an exception because ninja doesn’t have a
name method (option a). Accessing ninja.name in const name = ninja.name
works like a charm; the getter gets activated, and the variable name gets the
value Akiyama.

2 In the following code, which mechanism allows getters to access a private object
variable?

function Samurai() {
  const _weapon = "katana";
  Object.defineProperty(this, "weapon", {
    get: () => _weapon
  });
}
const samurai = new Samurai();
assert(samurai.weapon === "katana", "A katana wielding samurai");



423Chapter 8. Controlling access to objects

A: Closures allow getters to access private object variables. In this case, the get
method creates a closure around the _weapon private variable defined in the
constructor function, which keeps the _weapon variable alive. 

3 Which of the following assertions will pass?

const daimyo = { name: "Matsu", clan: "Takasu"};
const proxy = new Proxy(daimyo, {
  get: (target, key) => {
    if(key === "clan"){
      return "Tokugawa";
    } 
  }
});

assert(daimyo.clan === "Takasu", "Matsu of clan Takasu");     //pass
assert(proxy.clan === "Tokugawa", "Matsu of clan Tokugawa?"); //pass

proxy.clan = "Tokugawa";

assert(daimyo.clan === "Takasu", "Matsu of clan Takasu"); //fail
assert(proxy.clan === "Tokugawa", "Matsu of clan Tokugawa?"); //pass

A: The first assertion passes because daimyo has a clan property with value
Takasu. The second assertion passes, because we access the property clan
through a proxy with a get trap that always returns Tokugawa as the value of the
clan property. 

When the expression proxy.clan = "Tokugawa" is evaluated, the value Toku-
gawa is stored in the daimyo’s clan property because the proxy doesn’t have a
set trap, so the default action of setting the property is carried out on the target,
daimyo object.

The third assertion fails, because the daimyo’s clan property has the value Toku-
gawa and not Takasu.

The fourth assertion passes, because the proxy always returns Tokugawa, regard-
less of the value stored in the target object’s clan property.

4 Which of the following assertions will pass?

const daimyo = { name: "Matsu", clan: "Takasu", armySize: 10000};
const proxy = new Proxy(daimyo, {
  set: (target, key, value) => {
    if(key === "armySize") {
      const number = Number.parseInt(value);
      if(!Number.isNaN(number)){
        target[key] = number;
      }
    } else {
        target[key] = value;
    }
  },
});



424 APPENDIX C Exercise answers

//pass
assert(daimyo.armySize === 10000, "Matsu has 10 000 men at arms"); 
//pass
assert(proxy.armySize === 10000, "Matsu has 10 000 men at arms");

proxy.armySize = "large";
assert(daimyo.armySize === "large", "Matsu has a large army"); //fail

daimyo.armySize = "large";
assert(daimyo.armySize === "large", "Matsu has a large army");//pass

A: The first assertion passes; the value of daimyo’s armySize property is 10000.
The second assertion also passes; the proxy doesn’t have a get trap defined so
the value of the target, daimyo’s armySize property, is returned.

When the expression proxy.armySize = "large"; is evaluated, the proxy’s set
trap is activated. The setter checks whether the passed-in value is a number, and
only if it is, the value is assigned to the target’s property. In this case, the passed-
in value isn’t a number, so no changes are made to the armySize property. For
this reason, the third assertion, which assumes the change, fails.

The expression daimyo.armySize = "large"; directly writes to the armySize
property, bypassing the proxy. Therefore, the final assertion passes.

Chapter 9. Dealing with collections
1 After running the following code, what’s the content of the samurai array?

const samurai = ["Oda", "Tomoe"];
samurai[3] = "Hattori";

A: The value of the samurai is ["Oda", "Tomoe", undefined, "Hattori"]. The
array starts with Oda and Tomoe at indexes 0 and 1. We then add a new samurai,
Hattori, at index 3, which “expands” the array, and leaves index 2 with unde-
fined.

2 After running the following code, what’s the content of the ninjas array?

const ninjas = [];

ninjas.push("Yoshi");
ninjas.unshift("Hattori");

ninjas.length = 3;

ninjas.pop();

A: The value of ninjas is ["Hattori", "Yoshi"]. We start with an empty array,
push adds Yoshi to the end, and unshift adds Hattori to the beginning.



425Chapter 9. Dealing with collections

Explicitly setting length to 3 expands the array with undefined at index 2. Calling
pop removes that undefined from the array, leaving only ["Hattori", "Yoshi"].

3 After running the following code, what’s the content of the samurai array?

const samurai = [];

samurai.push("Oda");
samurai.unshift("Tomoe");
samurai.splice(1, 0, "Hattori", "Takeda");
samurai.pop();

A: The value of samurai is ["Tomoe", "Hattori", "Takeda"]. The array starts
empty; push adds Oda to the end, and unshift adds Tomoe to the beginning;
splice removes the item at index 1 (Oda) and adds Hattori and Takeda instead.

4 After running the following code, what’s stored in the variables first, second,
and third?

const ninjas = [{name:"Yoshi", age: 18}, 
    {name:"Hattori", age: 19}, 
    {name:"Yagyu", age: 20}];

const first = persons.map(ninja => ninja.age);
const second = first.filter(age => age % 2 == 0);
const third = first.reduce((aggregate, item) =>  aggregate + item, 0);

A: first: [18, 19, 20]; second: [18, 20]; third: 57

5 After running the following code, what’s stored in the variables first and
second?

const ninjas = [{ name: "Yoshi", age: 18 },
               { name: "Hattor", age: 19 }, 
               { name: "Yagyu", age: 20 }];

const first = ninjas.some(ninja => ninja.age % 2 == 0);
const second = ninjas.every(ninja => ninja.age % 2 == 0);

A: first: true; second: false

6 Which of the following assertions will pass?

const samuraiClanMap = new Map();

const samurai1 = { name: "Toyotomi"};
const samurai2 = { name: "Takeda"};
const samurai3 = { name: "Akiyama"};

const oda = { clan: "Oda"};
const tokugawa = { clan: "Tokugawa"};
const takeda ={clan: "Takeda"};



426 APPENDIX C Exercise answers

samuraiClanMap.set(samurai1, oda);
samuraiClanMap.set(samurai2, tokugawa);
samuraiClanMap.set(samurai2, takeda);

assert(samuraiClanMap.size === 3, "There are three mappings");
assert(samuraiClanMap.has(samurai1), "The first samurai has a 
mapping");
assert(samuraiClanMap.has(samurai3), "The third samurai has a 
mapping");

A: The first assertion fails, because a mapping for samurai2 was created twice.
The second assertion passes, because a mapping for samurai1 was added. And
the third assertion fails, because a mapping for samurai3 was never created.

7 Which of the following assertions will pass?

const samurai = new Set("Toyotomi", "Takeda", "Akiyama", "Akiyama");
assert(samurai.size === 4, "There are four samurai in the set");

samurai.add("Akiyama");
assert(samurai.size === 5, "There are five samurai in the set");

assert(samurai.has("Toyotomi", "Toyotomi is in!");
assert(samurai.has("Hattori", "Hattori is in!"); 

A: The first assertion fails because Akiyama is added only once to the set. The sec-
ond assertion also fails, because trying to add Akiyama once more will not change
the set (nor its length). The last two assertions will pass.

Chapter 10. Wrangling regular expressions
1 In JavaScript, regular expressions can be created with which of the following?

A: Regular expression literals (option a) and by using the built-in RegExp
constructor (option B). Answer c is incorrect; no built-in RegularExpression
constructor exists.

2 Which of the following is a regular expression literal?
A: In JavaScript, a regular expression literal is enclosed in two forward slashes:
/test/ (option a).

3 Choose the correct regular expression flags.
A: With regular expression literals, expression flags are placed after the closing
forward slash: /test/g (option a). With RegExp constructors, they’re passed as a
second argument: new RegExp ("test", "gi"); (option c).

4 The regular expression /def/ matches which of the following strings?
A: The regular expression /def/ matches only def: d followed by e, followed by f
(option b).

5 The regular expression /[^abc]/ matches which of the following?



427Chapter 11. Code modularization techniques

A: The regular expression /[^abc]/ matches one of the strings d, e, f—one
character that isn’t a, b, or c (option b).

6 Which of the following regular expressions matches the string hello?
A: Options a, b, and c match. /hello/ matches only the exact string hello.
/hell?o/ matches either hello or helo (the second l is optional). /hel*o/,
after the first l, matches any number of the letter l. 

7 The regular expression /(cd)+(de)*/ matches which of the following strings?
A: Options a, c, d, and f are correct. /(cd)+(de)*/ matches one or more occur-
rences of cd followed by any number of occurrences of de.

8 In regular expressions, we can express alternatives with which of the following?
A: We use the pipe character, |, to express alternatives in regular expressions
(option c).

9 In the regular expression /([0-9])2/, we can reference the first matched digit
with which of the following?
A: \1 (option d)

10 The regular expression /([0-5])6\1/ will match which of the following?
A: In the regular expression /([0-5])6\1/, the first character is a digit from 0–5,
the second character is the digit 6, and the third character is the first matched digit,
so both 060 and 565 match (options a and d).

11 The regular expression /(?:ninja)-(trick)?-\1/ will match which of the
following?
A: In the regular expression /(?:ninja)-(trick)?-\1/, the first group
(?:ninja) is a noncapturing one, whereas the second group is a capturing one,
which is optional (trick)?. But if this second group is found, in the end we
have a backreference to it. Therefore, ninja- and ninja-trick-trick match
(options a and c).

12 What is the result of executing "012675".replace(/0-5/g, "a")?
A: The code replaces all occurrences of digits from 0 to 5 with the letter a, so
aaa67a results (option a).

Chapter 11. Code modularization techniques
1 Which mechanism enables private module variables in the module pattern?

A: In the module pattern, closures allow us to hide module internals: The meth-
ods of the module’s public API keep the module internals alive (option b).

2 In the following code that uses ES6 modules, which identifiers can be accessed if
the module is imported?

const spy = "Yagyu";
function command(){
  return general + " commands you to wage war!";
}
export const general = "Minamoto";



428 APPENDIX C Exercise answers

A: From outside the module, we can access only the general identifier, because
it’s the only identifier that has been explicitly exported (option c).

3 In the following code that uses ES6 modules, which identifiers can be accessed
when the module is imported?

const ninja = "Yagyu";
function command(){
  return general + " commands you to wage war!";
}
const general  = "Minamoto";

export {ninja as spy};

A: From outside the module, we can access only the spy identifier: This is the only
identifier that has been exported as an alias of the ninja variable (option a).

4 Which of the following imports are allowed?

//File: personnel.js
const ninja = "Yagyu";
function command(){
  return general + " commands you to wage war!";
}
const general  = "Minamoto";

export {ninja as spy};

A: The first import isn’t allowed because the personnel module doesn’t export
ninja and general identifiers (option a). The second import is allowed
because we import the whole module, which is accessible through the object
Personnel (option b). The third import is also allowed, because we import the
exported spy identifier (option c).

5 If we have the following module code, which statement will import the Ninja class?

//Ninja.js
export default class Ninja {
  skulk(){ return "skulking"; }
}

A: The first import is allowed: We import the default export (option a). The sec-
ond import is allowed: We import the whole module (option b). The third
import isn’t allowed because it isn’t syntactically correct (after the * should
come the “as Name” part) (option c).

Chapter 12. Working the DOM
1 In the following code, which of the following assertions will pass?

<div id="samurai"></div>
<script>
  const element = document.querySelector("#samurai");



429Chapter 13. Surviving events

  
  assert(element.id === "samurai", "property id is samurai");
  assert(element.getAttribute("id") === "samurai", 
         "attribute id is samurai");

  element.id = "newSamurai";
  
  assert(element.id === "newSamurai", "property id is newSamurai");
  assert(element.getAttribute("id") === "newSamurai", 
         "attribute id is newSamurai");
</script>

A: In this code, all assertions pass. The id attribute and the id property are
linked; a change to one of them is reflected in the other.

2 Given the following code, how can we access the element’s border-width style
property?

<div id="element" style="border-width: 1px; 
                         border-style:solid; border-color: red">
</div> 
<script>
  const element = document.querySelector("#element");
</script>

A: The element.border-width expression doesn’t make much sense. It calcu-
lates the difference between element.border and a variable width, which defi-
nitely isn’t something we want. The next option, element.getAttribute
("border-width");, fetches the attribute of the HTML element, and not the style
property. Finally, the last two options give the value of 1px (options c and d). 

3 Which built-in method can get all styles applied to a certain element (styles pro-
vided by the browser, styles applied via style sheets, and properties set through
the style attribute)?
A: Only the last option, getComputedStyle, is a built-in method that can be
used to get the computed style of a certain HTML element (option c). The
other three methods aren’t included in the standard API.

4 When does layout trashing occur?
A: Layout trashing occurs when our code performs a series of consecutive reads
and writes to DOM, each time forcing the browser to recalculate the layout
information. This leads to slower, less responsive web applications.

Chapter 13. Surviving events
1 Why is it important that adding tasks into the task queue happens outside the

event loop?
A: If the process of adding tasks into the task queue were part of the event loop,
any events that occur while JavaScript code is being executed would be ignored.
This would definitely be a bad idea. 



430 APPENDIX C Exercise answers

2 Why is it important that each iteration of the event loop doesn’t take much
more than about 16 ms?
A: To achieve smooth-running applications, the browser tries to perform ren-
dering around 60 times per second. Because rendering is performed at the end
of the event loop, each iteration shouldn’t last much longer than 16 ms, unless
we want to create slow and jagged applications.

3 What’s the output from running the following code for 2 seconds?

setTimeout(function(){
  console.log("Timeout ");
}, 1000);

setInterval(function(){
  console.log("Interval ");
}, 500);

A: Interval Timeout Interval Interval Interval (option b). The set-
Interval method calls the handler with at least the fixed delay between each
call, until the interval is explicitly cleared. The setTimeout method, on the
other hand, calls the callback only once, after the specified delay has elapsed.
In this example, first the setInterval callback is fired once after 500 ms. Then
the setTimeout callback is invoked after 1000 ms, and another setInterval
immediately after. Our examination stops with two more setInterval callback
invocations, one at 1500 ms, and the other at 2000 ms.

4 What’s the output from running the following code for 2 seconds?

const timeoutId = setTimeout(function(){
  console.log("Timeout ");
}, 1000);

setInterval(function(){
  console.log("Interval ");
}, 500);

clearTimeout(timeoutId);

A: Interval Interval Interval Interval (option c). The setTimeout call-
back is cleared before it has the chance to fire, so in this case we have only four
executions of the setInterval callback.

5 What’s the output from running the following code and clicking the element
with the ID inner?

<body>
  <div id="outer">
    <div id="inner"></div>
  </div>
  <script>
    const innerElement = document.querySelector("#inner");
    const outerElement = document.querySelector("#outer");



431Chapter 14. Developing cross-browser strategies

    const bodyElement = document.querySelector("body");
    innerElement.addEventListener("click", function(){
      console.log("Inner");
    });

    outerElement.addEventListener("click", function(){
      console.log("Outer");
    }, true);

    bodyElement.addEventListener("click", function(){
      console.log("Body");
    });
  <script>
</body>

A: Outer Inner Body (option c). The click handlers on the innerElement and the
bodyElement are registered in bubbling mode, whereas the click handler on
the outerElement is registered in capturing mode. When processing the event, the
event first trickles down from the top and calls all event handlers in capturing
mode. The first message will be Outer. After the event target is reached, in our case
the element with ID inner, the event bubbling takes place, and the event bubbles
up. Therefore, the second message will be Inner, and the third one will be Body.

Chapter 14. Developing cross-browser strategies
1 What should we take into account when deciding which browsers to support?

A: When deciding which browsers to support, we should at least take into
account the following:
■ The expectations and needs of the target audience
■ The market share of the browser
■ The amount of effort necessary to support the browser

2 Explain the problem of greedy IDs.
A: When working with form elements, the browser adds properties to the form
element for each descendent element with an ID, so that we can access these
elements easily through the form element. Unfortunately, this can override
some of the built-in form properties such as action or submit.

3 What is feature detection?
A: Feature detection works by determining whether a certain object or object
property exists, and if so, assumes that it provides the implied functionality.
Instead of testing whether the user is using a particular browser and then imple-
menting work-arounds based on that information, we test whether a certain fea-
ture works as it’s supposed to.

4 What is a browser polyfill?
A: If we want to use a certain functionality that’s not supported by all targeted brows-
ers, we can use feature detection. If a current browser doesn’t support a certain
functionality, we provide our own implementation, and this is called polyfilling.





433

index

Symbols

` character 388
^ character 263–264
! character 255
? character 265
. character 263, 277
() operator 68
* character 129, 264, 266
\ character 262, 264, 

269, 316–317
+ operator 266, 273
< operator 241
=> operator 50
> operator 241
>>> operator 380
| character 266, 427
$ character 263–264
${} syntax 388

A

access to objects, controlling
exercise answers 422–424
overview 210–213
properties, access to with get-

ters and setters 200–210
defining getters and 

setters 202–207
using getters and setters to 

define computed 
properties 208–210

using getters and setters to 
validate property 
values 207–208

using proxies
for logging 214–215
for measuring 

performance 215–217
overview 210–223
performance costs 220–223
to autopopulate 

properties 217–218
to implement negative array 

indexes 218–220
accessor method 95–96
action attribute 375
Add Conditional Breakpoint 

option 401
addEventListener method

26, 353–354, 356–357, 359, 
376–377, 411

advanced array methods 5
aggregating array items 241–242
alert() method 9
aliases

arguments object as alias to 
function parameters 65

avoiding 66–67
amalgam properties 322
AMD (Asynchronous Module 

Definition) 291–292
anonymous functions 39
anti-feature 374
Apache Cordova 11
APIs

incongruous 383
testing performance 383

applications, for embedded 
devices 11

apply trap 213, 216–217

apply() method
forcing function context in 

callbacks 83
invoking functions with

77–83
arguments

function parameters and
52–60
default parameters and

55–60
rest parameters and 54–55

overview 52
slicing 54

arguments parameter 62–67
as alias to function 

parameters 65
avoiding aliases 66–67
overview 413

arguments.length property 63
array literals 225–226
Array object 225–226, 243
Array.prototype.find 

method 379
Array.prototype.push() 

method 244
arrays 225–244

adding and removing items at 
any array location 230–232

adding and removing items at 
either end of 227–229

aggregating array items
241–242

creating 225–227
iterating over 232–233
mapping 233–235



INDEX434

arrays (continued)
reusing built-in array 

functions 242–244
searching 237–240
sorting 39, 240–241
testing array items 235–236

arrow functions 34, 44, 50–52, 
72, 83–86, 160

as keyword 298–300
assert() method 9–10, 37–38, 

108, 404–405
assertion method, testing 

code 404–405
assumptions, cross-browser 

strategies 383–385
asterisk character 129
async function 159–162
asynchronous events 25
asynchronous handling 152
Asynchronous Module 

Definition. See AMD
attachEvent method 376
attributes, DOM 313–315
augmenting modules 287–290
autopopulating properties

overview 200, 214
using proxies for 217–218

await keyword 161

B

Babel 7
backslash character 264
backticks 388
best practices 8–10

debugging 9
performance analysis 10
testing 9–10

bind() method
fixing problem of function 

contexts with 86–90
overview 83

block-scoped variables, using let 
and const keywords to 
specify 111–113

Boolean property 176
border-properties 322
borderWidth property 317, 429
breakpoints

conditional 401–402
defined 398–399

browser
APIs 8, 20
bug fixes 371–372
compatibility 8

overview 7–8
See also untestable browser 

issues
browser events 25
bubbling mode 431
bubbling phase 356
building page at runtime, 

exercise answers 411
built-in array functions, 

reusing 242–244
<button> element 79
button object 78–79, 84–87
button.click() method 78

C

call stack 100, 102
call() method 68, 79–80, 

82–83, 244
callback functions

overview 36–38
sorting with comparator

39–40
callback parameter 38
callbacks

concept of 36
forcing function context 

in 83
overview 160
problems with 147–149
using closures with 96–99

captures 266
capturing phase 356, 431
caret character 263
Cascading Style Sheets. See CSS
catch block 128, 138
catch method 152–153, 156, 160
catch statement 108
chaining promises 155–156
character class operator 263
check function 113
childless elements 308
Chrome DevTools 9, 102, 

396–397
class keyword 168, 190–191
classes, using in ES6 190–197

implementing 
inheritance 193–197

using class keyword 190–193
className argument 269
clearInterval method

122, 344–345
clearTimeout method 344
click function 16, 26, 28, 78, 85

clientHeight property 329
clientLeft property 329
clientTop property 329
clientWidth property 328–329
cloneNode operation 305
close coupling 361
closures

example 122–125
exercise answers 416–417
keeping track of identifiers 

with lexical 
environments 103–106

overview 92–95
private variables, 

mimicking 95–96, 117–121
tracking code execution with 

execution contexts 99–102
using with callbacks 96–99

code modularization 
techniques. See modules

code nesting 103–106
<col> element 309
<colgroup> element 309
collections

arrays 225–244
adding and removing items 

at any array 
location 230–232

adding and removing items 
at either end of
227–229

aggregating array 
items 241–242

creating 225–227
iterating over 232–233
mapping 233–235
reusing built-in array 

functions 242–244
searching 237–240
sorting 240–241
testing array items 235–236

exercise answers 424–426
maps 244–251

creating 247–250
iterating over 250–251
objects as, don't use

245–247
sets 251–256

creating 252–253
difference of 255–256
intersection of 255
union of 253–254

color property 317, 321
CommonJS, modules 292–293



INDEX 435

communicating, with 
generators 136–139

sending values as generator 
function arguments
136–137

throwing exceptions 138–139
using next method to send val-

ues into generator 137–138
comparator, sorting callback 

functions with 39–40
computationally expensive 

processing, event loop
350–353

computed styles
DOM 319–322
overview 315

computedStyles variable 321
conditional breakpoints

401–402
configurable key 185
console object 10
console.assert() method 405
console.log method 103, 397
console.time method 10, 217
console.timeEnd method 10
const keyword, specifying 

block-scoped variables 
with 111–113

const variables 107–109
construct trap 213
constructive test cases 402
constructor property 173, 177, 

179–181, 183–184, 186, 193, 
246, 420–421

constructors
invoking functions as 72–77

coding considerations 
for 76–77

considerations for 76–77
overview 72–74, 76
return values 74–76

object typing via 179–181
overview 172, 245

context, for functions 80, 83
createElement 309
Creates object 70
Crockford, Douglas 287
cross-browser strategies

browser bug fixes 371–372
exercises 385
external code and 

markup 373–376
CSS rules 376
DOM clobbering 374–375

encapsulation 373–374
working with existing 

code 374
feature detection 379–381
fixes 378–379
overview 8, 368–370
polyfills 379–381
reducing assumptions

383–385
regressions 376–377
untestable browser 

issues 381–383
API performance 383
browser crashes 382
CSS property effects 382
event firing 382
event handler bindings 381
incongruous APIs 383

CSS (Cascading Style Sheets)
overview 306
property effects 382
rules 376

custom events 360–364
Ajax 361–362
creating 362–364
loose coupling 361

D

dash character 275
Debugger pane 395, 399
debugging code 397–402

breakpoints 398–399
conditional breakpoints

401–402
logging 397–398
stepping into function

399–400
declarations (function) 45–46
deconstructive test cases 402
default exports, ES6 

modules 297–298
default parameters 

(function) 55–60
define function 291
defining module interfaces 284
delete method 249
desktop applications 11
destructuring 387, 389–390
Developer Tools, Firefox

9, 393–395
DevTools 9, 102, 396–397
dictionaries. See maps
difficult error handling 148

display property 323
distinct items 251
<div> element 268, 309, 314, 

316, 325
doc.createDocumentFrag-

ment() method 312
document click handler

355, 357
document object 20, 22
Document Object Model. See 

DOM
document.getElementById 

method 246
Dojo toolkit 291
dollar sign character 264
DOM (Document Object 

Model) 305–331
attributes and 

properties 313–315
building 18–20
cross-browser strategies

374–375
exercise answers 428–429
injecting HTML into 306–313

HTML wrapping 308–311
inserting elements into 

document 311–313
overview 307–311
preprocessing HTML 

source string 307–308
layout thrashing 327–331
overview 7, 17
propagating events 

through 354–360
styling attributes 315–326

computed styles 319–322
converting pixel 

values 322–323
height and width 

properties 323
naming 318–319
overview 315–317

traversing using 
generators 135–136

DOM Explorer pane 395
DOM fragments 306, 311
DOM method 313–315
DOM specification 19
DOMContentLoaded 

handler 314
done property 132
double backslash character

262, 264
double brackets 104



INDEX436

double-escape character 269
dynamic nature of JavaScript, 

side effects of 176–178

E

ECMAScript 6. See ES6
elem variable 98
ellipses 54, 309
embedded values 269
encapsulation 373–374
enhanced object literals

387, 390–391
enumerable key 185
enumerate trap 213
[[Environment]] property

106, 118
errors, catching in chained 

promises 156
ES6 (ECMAScript 6)

destructuring 389–390
enhanced object literals

390–391
exporting and importing 

functionality 294–302
default exports 297–298
renaming exports and 

imports 298–302
template literals 387–388
using classes in 190–197

implementing 
inheritance 193–197

using class keyword
190–193

escaped characters 278
event bubbling 355–356, 

359–360, 364
event capturing 355–356, 364
event handling

overview 14–15
page-building 23–29

event loop 152, 333, 335–344
macrotasks 336–344
microtasks 339–344
timers 344–353

computationally expensive 
processing 350–353

overview 345–350
time-outs and intervals 350

event queue 14, 24–25, 28
event-driven applications 8
event-handler registration 26
event.target property 359
events

custom events 360–364

Ajax 361–362
creating 362–364
loose coupling 361

event firing 382
event handler bindings 381
exercise answers 429–431
exercises 364–365
propagating through 

DOM 354–360
See also event loop

every method 235
exceptions, throwing 138–139
exclamation mark 255
exec() method 271, 275
executing state 139
execution 267
execution contexts

tracking code execution 
with 99–102

tracking generators 
using 141–146

executor function 147, 151–152
exercise answers 411–431

access to objects, 
controlling 422–424

building page at runtime 411
code modularization 

techniques 427–428
collections 424–426
cross-browser strategies 431
DOM 428–429
events 429–431
functions

closures and scopes
416–417

definitions and 
arguments 411–413

generators and 
promises 417–419

invocation 413–416
prototypes, object orientation 

with 419–422
regular expressions 426–427

expect function 407
explicitly rejecting promises 152
export keyword 294–295, 297–

298
exports property 292
exports, renaming 298–302
expressions (function) 46–48
extends keyword 194–195
external code and markup, 

cross-browser 
strategies 373–376

CSS rules 376

DOM clobbering 374–375
encapsulation 373–374
working with existing 

code 374

F

F12 Developer Tools 9, 395
fail class 405
fail function 108
failure callback 147
FastDom 329
fat-arrow operator 50–51
feature detection, cross-browser 

strategies 379–381
filter method 238–239, 255
find method 237–238, 240, 244, 

379–380
findIndex method 240
Firebug 9, 393
Firefox Developer Tools

9, 393–395
first-class objects 5, 34–35, 38, 

44, 58, 160
Fitzgerald, Michael 261
for loop 10, 104, 110, 

112, 232–233
for statement 81
for-in loop 185–186
for-in statements 213
for-of loop 129–130, 132–133, 

136, 163, 418
forEach() method 81–82, 

233–234
<form> element 375
fragment parameter 311
Friedl, Jeffrey 261
fulfilled state 150
function closures 5
function code 21, 99
function constructors 44, 72
function contexts

fixing problem of 83–90
using bind method 86–90
with arrow functions 83–86

forcing in callbacks 80–83
overview 67, 100

function declarations 44
function execution context 99
function expressions 44, 47
function keyword 45, 50, 

128–130, 162
function literal 44
function() statement 49



INDEX 437

functional programming 36
functions

arguments 52–60
default parameters and

55–60
rest parameters and 54–55
slicing 54

as first-class objects 35–36
as modules 284–285
as objects 40–44

self-memoizing 
functions 42–44

storing functions 40–42
callback 36–40
calling functions before their 

declarations 115
closures, exercise 

answers 416–417
declaring 44
defining 44–52

arrow functions 50–52
function declarations

45–46
function expressions 46–48
immediate functions 48–50

fixing problem of function 
contexts 83–90
using bind method 86–90
with arrow functions 83–86

generators, exercise 
answers 417–419

implicit function 
parameters 62–67
arguments parameter

62–67
function context 67

importance of in JavaScript
anonymous functions 39
callback concept 36

invoking 67, 72, 77–83
as constructors 72–77
as methods 69–72
considerations for 76–77
exercise answers 413–416
overview 68–69, 72, 76
with apply and call 

methods 77–83
overriding 115–116
parameters for 53, 67
promises, exercise 

answers 417–419
scopes, exercise answers

416–417
self-memoizing 42

simulating array methods 
with 242

stepping into function
399–400

storing 42

G

g flag 262, 271
generator functions 44
generators 129–146

combining with 
promises 158–164

communicating with 136–139
sending values as generator 

function 
arguments 136–137

throwing exceptions
138–139

using next method to send 
values into 
generator 137–138

controlling through iterator 
object 130–133
iterating iterator 132
yielding to another 

generator 133
exercise answers 417–419
making async code elegant 

with 127–129
overview 5
tracking using execution 

contexts 141–146
using to generate IDs

133–135
using to traverse DOM

135–136
get keyword 185, 203
get trap 211–213, 215, 218, 220
getAttribute() method 313–315
getBoundingClientRect 

property 329
getComputedStyle method

329, 429
getElementById method

16, 21–22
getElementsByTagName 

method 268
getPrototypeOf 213
getter function 185, 203
getters and setters

access to properties 
using 200–210
defining getters and 

setters 202–207

using getters and setters to 
define computed 
properties 208–210

using getters and setters to 
validate property 
values 207–208

overview 96
global code 21, 99
Goyvaerts, Jan 261
graded browser support 368
greater-than operator 241
greedy operators 265

H

handling events 25
has method 248–249, 253
head element 18–19
height property, DOM 323–326
hiding module internals 284
hoisting 116
HTML

injecting into DOM 306–313
HTML wrapping 308–311
inserting elements into 

document 311–313
overview 307–311
preprocessing HTML 

source string 307–308
parsing 18–20

html element 18, 372
HTML pane 393

I

i flag 262
i variable 110–111
id attribute 314, 374, 429
id values 41, 134, 278
identifier resolution 102
identifiers

registering within lexical 
environments 113–116
calling functions before 

declarations 115
overriding functions

115–116
process 113–115

tracking with lexical 
environments 103–106

IDEs (integrated development 
environments) 393

IDs, generating using 
generators 133–135



INDEX438

IE (Internet Explorer) 395
IIFE (immediately invoked 

function expression) 49
immediate functions 48–50
implicit function 

parameters 62–67
arguments parameter 62–67
function context 67

implicit parameters 62
import keyword 294–296
important annotation 317
imports, renaming 298–302
indexOf method 239
inheritance 169
input#action element 375
instance properties 173–176
instanceof operator

180, 187–190, 213, 421
integrated development envi-

ronments. See IDEs
interfaces, module 285–287
Internet Explorer. See IE
intersection, of sets 255
intervals, event loop 350
invocation, exercise 

answers 413–416
invoking functions 67–83

as method 69–72
constructor 72–77

coding considerations 
for 76–77

overview 72–74
return values 74–76

overview 68–69
with apply and call 

methods 77–83
iterating over maps 250–251
iterator object, controlling gen-

erators through 130–133
iterating iterator 132
yielding to another 

generator 133

J

Jasmine testing framework
407–409

JavaScript
best practices 8–10

debugging 9
performance analysis 10
testing 9–10

boosting skill 
transferability 10–12

browser 7–8
language features

evolution of 6
overview 4–5
transpilers 6–7

jQuery function 373
JSON.parse method 155
juggle() method 79

K

keys method 251
Kleene, Stephen 261
kuma object 169–170

L

lambda functions 44
layout thrashing, DOM 327–331
length parameter 64
length property 63, 225–227, 

243–244, 380
less-than operator 241
let keyword

overview 417
specifying block-scoped 

variables with 111–113
Levithan, Steven 261
lexical environments

keeping track of identifiers 
with 103–106

registering identifiers 
within 113–116
calling functions before 

declarations 115
overriding functions

115–116
process 113–115

<li> element 23, 405
lifecycle, page-building 14–17
location.href property 249–250
logging

overview 397–398
using proxies for 214–215

loose coupling 361

M

m flag 262
macrotasks

event loop 336–344
overview 333–334

makeLoggable function 215

Map constructor 248
map function 234
mapping arrays 233–235
maps 244–251

creating 247–250
iterating over 250–251
objects as, don't use 245–247
overview 6

match() method 270–272
matching segments, capturing

noncapturing groups 273
performing simple 

captures 269
referencing captures 272

MDN (Mozilla Developer 
Network) 379

measuring performance, proxies 
for 215–217

memoization 40
methods, invoking functions 

as 69–72
microtasks

event loop 339–344
overview 334, 336

minimizing assumptions 383
mobile apps, with 

frameworks 11
module parameter 288
module pattern 286–287, 

289–291, 293, 295
module variable

286, 292–293, 295
module.exports object 293, 295
modules

ES6 294–302
exercise answers 427–428
in pre-ES6 JavaScript 283–293

Asynchronous Module 
Definition 291–292

augmenting modules
287–290

CommonJS 292–293
functions as 284–285
module interfaces 285–287

mouseenter event 382
mouseleave event 382
mousemove event 15–16, 

27–28, 39
mouseout event 382
mouseover event 382
Mozilla Developer Network. See 

MDN
multiline strings 387



INDEX 439

N

named export 296, 298–299
negative array indexes, 

implementing using 
proxies 218–220

network events 25
new operator 171–173
newlines, matching 277
next method 130–134, 136–138, 

140, 143–144, 158–160
nonblocking callback code 129
nonblocking generators 129
noncapturing groups 273–274
nondisplayed element 323
nonexported variables 296
nongreedy operators 265
nonimported variables 296
nonstrict mode 67–69, 205, 414

O

object literals
arrow functions and 85–86
enhanced 390–391

object methods 192
object orientation, using 

prototypes 419–422
Object.defineProperty 

method 185–186, 193, 202, 
205–206

Object.setPrototypeOf 
method 170

objects
access to, controlling 422–424
as maps, don't use 245–247
construction of, prototypes 

and 171–181
instance properties

173–176
object typing via 

constructors 179–181
side effects of dynamic 

nature of 
JavaScript 176–178

functions as 40–44
self-memoizing 

functions 42–44
storing functions 40–42

offsetHeight property 323, 329
offsetLeft property 329
offsetParent property 329
offsetTop property 329
offsetWidth property 323, 329

offsetX property 329
offsetY property 329
onerror event 154
onload event 154
onload property 26
<option> element 307–308
outer (parent) lexical 

environment 104
overriding functions 115–116

P

page-building
building DOM 18–20
event handling 23–29
exercises 29
JavaScript code

executing 21–23
global objects 20
types of 21

lifecycle 14–17
overview 14–15
parsing HTML 18–20

parameters, for functions 53, 67
parseFloat method 323
passive subexpression

273–274, 277
pattern variable 262
patterns 261
pending state 149, 151–152
performance

measuring proxies for
215–217

overview 306
period character 263, 277
pipe character 266, 427
pixel values, DOM 322–323
polyfills 379–381
pop method 227, 229
position property 323
precompiling regular 

expressions 269
preconstructing regular 

expressions 269
predefined character 

classes 265
previous hash 326
prime value 43
private variables, mimicking

95–96
Promise constructor

146–147, 151
Promise.all method 157
Promise.race method 157

Promise.resolve() method 342
promises

chaining 155–156
combining with 

generators 158–164
creating 154–155
exercise answers 417–419
making async code elegant 

with 127–129
overview 149–152
rejecting 152–153
waiting for number of

156–158
properties

access to with getters and 
setters 200–210
defining getters and 

setters 202–207
using getters and setters to 

define computed 
properties 208–210

using getters and setters to 
validate property 
values 207–208

DOM 313–315
property descriptor 185
prototype chain 170, 175, 182
prototype methods 192
prototype property

170, 173–174, 183
prototype-based object 

orientation 5
prototypes

achieving inheritance
181–190
instanceof operator

187–190
problem of overriding 

constructor 
property 184–187

instantiating using reference 
to constructor 179

object construction and
171–181
instance properties

173–176
object typing via 

constructors 179–181
side effects of dynamic 

nature of 
JavaScript 176–178

object orientation using
417–422

overview 168–171



INDEX440

prototypes (continued)
using JavaScript classes in 

ES6 190–197
implementing 

inheritance 193–197
using class keyword

190–193
proxies

performance costs of 220–223
using for logging 214–215
using for measuring 

performance 215–217
using to autopopulate 

properties 217–218
using to implement negative 

array indexes 218–220
Proxy constructor 210–211, 213
push method 227–229, 244

Q

QUnit testing framework
406–407

R

reconciling property 
references 178

reduce method 242
referencing captures, capturing 

matching segments 272
RegExp() method 262, 269
regressions, cross-browser 

strategies 376–377
regular expressions

benefits of 260
capturing matching 

segments 269–274
matching using global 

expressions 271
noncapturing groups 273
performing simple 

captures 269
referencing captures

272–273
using global 

expressions 272
characters classes 263
compiling 267
end of string 264
examples using

matching newlines 277
matching unicode 

characters 277–278

exercise answers 426–427
overview 260
replacing using functions 274
solving common problems 

with
matching escaped 

characters 278
matching newlines 277
matching Unicode 277

terms and operators
alternation (or) 266
backreferences 266
begins and ends 264
escaping 263
exact matching 263
grouping 266
matching from class of 

characters 263
predefined character 

classes 265
repeated occurrences 264

RegularExpression 
constructor 426

reject function 146–147, 
150, 152

rejecting promises 152–153
removeChild operation 305
repeated occurrences, regular 

expressions and 264
replace() method 272, 274, 

276, 321
representative object 211
require function 293
RequireJS 291
resolve function 146–147, 

149, 152
Responsive Design mode 395
rest parameters (function)

54–55
return statement 50, 52, 130, 

140, 146, 312
return values, constructors

74–76
runtime, building page at 411

S

scopes 5, 92, 416–417
script element 17–18, 20, 22–23
scroll property 329
scrollBy property 329
scrollByLines property 329
scrollByPages property 329
scrollHeight property 329
scrollIntoView property 329

scrollLeft property 329, 372
scrollTo property 329
scrollTop property 329, 372
scrollWidth property 329
scrollY property 329
searching arrays 237–240
<select> element 308–309
self-memoizing functions 42–44
server-side applications 11
set keyword 202–203
set operator 263
set trap 211, 213, 215, 220
setAttribute() method 314–315
setInterval method 98, 122, 

344–345, 347, 349, 364, 430
setPrototypeOf 213
sets 251–256

creating 252–253
difference of 255–256
intersection of 255
overview 251
union of 253–254

setter function 185
setTimeout method 344, 347, 

350, 364, 430
shift method 227, 230
siblings 18
simple elements 266
simulating class-based 

inheritance 190
single-threaded execution 

model 24
size property 249, 253
slicing arguments 54
sort method 39, 50, 240
sorting arrays 39, 240–241
<span> element 268
splice method 231–232
square brackets 263
stack 100
stepping into function 399–400
store variable 41
storing functions 40–42
strict mode 66
string interpolation 387
String object 271, 274, 276
style attribute 315–317

and computed styles 322
conversion of pixel values 323
getting properties from 317
overview 315–316

<style> element 316
style property 315–317, 

319–322, 331



INDEX 441

style() method 322
styling attributes, DOM 315–326

computed styles 319–322
converting pixel values

322–323
height and width 

properties 323–326
naming 318–319
overview 315–317

success callback 147
super keyword 195
SuperClass method 182
Suspended start state 139
Suspended yield state 145

T

target object 210–211, 213, 
215–216, 219

target property 354, 359, 364
<tbody> element 309
template literals 387–388
test cases 402
test function 412
test independence 402
test module 283
test repeatability 402
test simplicity 402
test suites 406
test() method 269
testing

array items 235–236
overview 9

testing code 402–410
assertion method 404–405
creating tests 402–404
fundamentals of 404–410
Jasmine 407–409
measuring code coverage 410
QUnit 406–407

textarea element 262
then method 146–147, 150–153, 

155, 160, 340
throw method 138–139, 159
throwing exceptions 138–139
time method 10
time-outs, event loop 350
timeEnd method 10
timer events 25
timer variable 98

timers, event loop 344–353
computationally expensive 

processing 350–353
overview 345–350

toString method 247
Traceur 7
transform property 269–270
transpilers 6–7
traps 211
traversing DOM, using 

generators 135–136
try-catch block 138
try-catch statements 103, 147, 

149, 153, 155, 161
type attribute 378, 383
typeof operator 56, 180, 213

U

u flag 262
UI Responsiveness 395
ul element 23
undefined string 56
Unicode, matching 277
union, of sets 253–254
unresolved promise 149
unshift method 227–230
untestable browser issues

381–383
API performance 383
browser crashes 382
CSS property effects 382
event firing 382
event handler bindings 381
incongruous APIs 383

untestable features 383
user events 25

V

value argument 319
value key 185
values method 251
values, sending into 

generator 137–138
var keyword, variables 109–111
variable hoisting 116
variables 106–116

const variables 107–109
overview 106

registering identifiers within 
lexical environments
113–116
calling functions before 

declarations 115
overriding functions

115–116
process 113–115

using let and const keywords 
to specify block-scoped 
variables 111–113

using var keyword 109–111
variable mutability 107–109

visibility property 323

W

web developer tools 393–397
Chrome DevTools 396–397
F12 395
Firebug 393
Firefox 393–395
WebKit Inspector 9, 396

WebKit Inspector 9, 396
while loop 132, 134, 163, 418
whitespace character

266, 269, 277
width property 323–326, 

329, 378
window object 20, 23, 26, 

68, 414
window.getComputedStyle() 

method 319
writable key 185

X

XMLHttpRequest object 154

Y

y flag 262
yield expression 131, 137–138, 

140, 146, 160
yield keyword 128–129, 131, 145
yield* operator 133

Z

zero-fill right-shift operator 380



MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Functional Programming in JavaScript 
by Luis Atencio

ISBN: 9781617292828
272 pages
$44.99 
June 2016

JavaScript Application Design
A Build First approach
by Nicolas G. Bevacqua

ISBN: 9781617291951
344 pages
$39.99 
January 2015

Building the Web of Things
With examples in Node.js and Raspberry Pi
by Dominique D. Guinard and Vlad M. Trifa

ISBN: 9781617292682
344 pages
$34.99 
June 2016

https://www.manning.com/books/functional-programming-in-javascript
https://www.manning.com/books/javascript-application-design
https://www.manning.com/books/building-the-web-of-things


ES6 cheat sheet (continued)

Proxies control access to other objects. Custom actions can be executed when an object is inter-
acted with (for example, when a property is read or a function is called):

const p = new Proxy(target, {
  get: (target, key) => { /*Called when property accessed through proxy*/ },
  set: (target, key, value) => { /*Called when property set through proxy*/ }
});

Sets are collections of unique items: 

■ new Set() creates a new set. 
■ Use the add method to add a new item, the delete method to remove an item, and the

size property to check the number of items in a set.

Destructuring extracts data from objects and arrays:
■ const {name: ninjaName} = ninja;
■ const [firstNinja] = ["Yoshi"];

Classes act as syntactic sugar around JavaScript’s prototypes:

class Person {
  constructor(name){ this.name = name; }
  dance(){ return true; }
}
class Ninja extends Person {
  constructor(name, level){
    super(name);
    this.level = level;
  }
  static compare(ninja1, ninja2){
    return ninja1.level - ninja2.level;
  }    
}

Maps are mappings between a key and a value: 

■ new Map() creates a new map. 
■ Use the set method to add a new mapping, the get method to fetch a mapping, the has

method to check whether a mapping exists, and the delete method to remove a mapping.

for...of loops iterate over collections and generators.

Modules are larger units of organizing code that allow us to divide programs into clusters:

export class Ninja{}; //Export an item
export default class Ninja{} //Default export
export {ninja};//Export existing variables
export {ninja as samurai}; //Rename an export

import Ninja from "Ninja.js"; //Import a default export
import {ninja} from "Ninja.js"; //Import named exports
import * as Ninja from "Ninja.js"; //Import all named exports
import {ninja as iNinja} from "Ninja.js"; //Import with a new name



Resig  ●   Bibeault  ●   Maras

J
avaScript is rapidly becoming a universal language for 
every type of application, whether on the web, on the 
desktop, in the cloud, or on mobile devices. When you 

become a JavaScript pro, you have a powerful skill set that’s 
usable across all these domains.

Secrets of the JavaScript Ninja, Second Edition uses practical 
examples to clearly illustrate each core concept and technique. 
This completely revised edition shows you how to master key 
JavaScript concepts such as functions, closures, objects, proto-
types, and promises. It covers APIs such as the DOM, events, 
and timers. You’ll discover best practice techniques such as 
testing, and cross-browser development, all taught from the 
perspective of skilled JavaScript practitioners. 

What’s Inside
●  Writing more effective code with functions, objects, 
   and closures
●  Learning to avoid JavaScript application pitfalls
●  Using regular expressions to write succinct text-
   processing code
●  Managing asynchronous code with promises
●  Fully revised to cover concepts from ES6 and ES7

You don’t have to be a ninja to read this book—just be willing 
to become one. Are you ready?

John Resig is an acknowledged JavaScript authority and creator 
of the jQuery library. Bear Bibeault is a web developer and au-
thor of the fi rst edition, as well as coauthor of Ajax in Practice, 
Prototype and Scriptaculous in Action, and jQuery in Action. 
Josip Maras is a post-doctoral researcher and teacher.

To download their free eBook in PDF, ePub, and Kindle formats, 
owners of this book should visit 

manning.com/books/secrets-of-the-javascript-ninja-second-edition

$44.99 / Can $51.99  [INCLUDING eBOOK]

Secrets of the JavaScript Ninja  Second Edition

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Essential reading for 
developers of any discipline ... 
with powerful techniques to 
improve your JavaScript.” 
—Becky Huett, Big Shovel Labs

“Excellent and comprehensive 
insight into the magic of 

functions and closures for the 
effi cient use of JavaScript.” 

—Gerd Klevesaat, Siemens

“The essential resource for 
moving your JavaScript skills 

to the next level.”—David Starkey, Blum

“Helps you master both the 
stealthy and bold techniques 

of modern JavaScript.”—Christopher Haupt
New Relic Inc.

SEE  INSERT


	Secrets of the JavaScript Ninja, Second Edition
	contents
	author’s introduction
	acknowledgments
	John Resig
	Bear Bibeault
	Josip Maras

	about this book
	Audience
	Roadmap
	Code conventions
	Code downloads
	Author Online
	About the authors

	about the cover illustration
	Part 1: Warming up
	Chapter 1: JavaScript is everywhere
	1.1 Understanding the JavaScript language
	1.1.1 How will JavaScript evolve?
	1.1.2 Transpilers give us access to tomorrow’s JavaScript today

	1.2 Understanding the browser
	1.3 Using current best practices
	1.3.1 Debugging
	1.3.2 Testing
	1.3.3 Performance analysis

	1.4 Boosting skill transferability
	1.5 Summary

	Chapter 2: Building the page at runtime
	2.1 The lifecycle overview
	2.2 The page-building phase
	2.2.1 Parsing the HTML and building the DOM
	2.2.2 Executing JavaScript code

	2.3 Event handling
	2.3.1 Event-handling overview
	2.3.2 Registering event handlers
	2.3.3 Handling events

	2.4 Summary
	2.5 Exercises


	Part 2: Understanding functions
	Chapter 3: First-class functions for the novice: definitions and arguments
	3.1 What’s with the functional difference?
	3.1.1 Functions as first-class objects
	3.1.2 Callback functions

	3.2 Fun with functions as objects
	3.2.1 Storing functions
	3.2.2 Self-memoizing functions

	3.3 Defining functions
	3.3.1 Function declarations and function expressions
	3.3.2 Arrow functions

	3.4 Arguments and function parameters
	3.4.1 Rest parameters
	3.4.2 Default parameters

	3.5 Summary
	3.6 Exercises

	Chapter 4: Functions for the journeyman: understanding function invocation
	4.1 Using implicit function parameters
	4.1.1 The arguments parameter
	4.1.2 The this parameter: introducing the function context

	4.2 Invoking functions
	4.2.1 Invocation as a function
	4.2.2 Invocation as a method
	4.2.3 Invocation as a constructor
	4.2.4 Invocation with the apply and call methods

	4.3 Fixing the problem of function contexts
	4.3.1 Using arrow functions to get around function contexts
	4.3.2 Using the bind method

	4.4 Summary
	4.5 Exercises

	Chapter 5: Functions for the master: closures and scopes
	5.1 Understanding closures
	5.2 Putting closures to work
	5.2.1 Mimicking private variables
	5.2.2 Using closures with callbacks

	5.3 Tracking code execution with execution contexts
	5.4 Keeping track of identifiers with lexical environments
	5.4.1 Code nesting
	5.4.2 Code nesting and lexical environments

	5.5 Understanding types of JavaScript variables
	5.5.1 Variable mutability
	5.5.2 Variable definition keywords and lexical environments
	5.5.3 Registering identifiers within lexical environments

	5.6 Exploring how closures work
	5.6.1 Revisiting mimicking private variables with closures
	5.6.2 Private variables caveat
	5.6.3 Revisiting the closures and callbacks example

	5.7 Summary
	5.8 Exercises

	Chapter 6: Functions for the future: generators and promises
	6.1 Making our async code elegant with generators and promises
	6.2 Working with generator functions
	6.2.1 Controlling the generator through the iterator object
	6.2.2 Using generators
	6.2.3 Communicating with a generator
	6.2.4 Exploring generators under the hood

	6.3 Working with promises
	6.3.1 Understanding the problems with simple callbacks
	6.3.2 Diving into promises
	6.3.3 Rejecting promises
	6.3.4 Creating our first real-world promise
	6.3.5 Chaining promises
	6.3.6 Waiting for a number of promises

	6.4 Combining generators and promises
	6.4.1 Looking forward—the async function

	6.5 Summary
	6.6 Exercises


	Part 3: Digging into objects and fortifying your code
	Chapter 7: Object orientation with prototypes
	7.1 Understanding prototypes
	7.2 Object construction and prototypes
	7.2.1 Instance properties
	7.2.2 Side effects of the dynamic nature of JavaScript
	7.2.3 Object typing via constructors

	7.3 Achieving inheritance
	7.3.1 The problem of overriding the constructor property
	7.3.2 The instanceof operator

	7.4 Using JavaScript “classes” in ES6
	7.4.1 Using the class keyword
	7.4.2 Implementing inheritance

	7.5 Summary
	7.6 Exercises

	Chapter 8: Controlling access to objects
	8.1 Controlling access to properties with getters and setters
	8.1.1 Defining getters and setters
	8.1.2 Using getters and setters to validate property values
	8.1.3 Using getters and setters to define computed properties

	8.2 Using proxies to control access
	8.2.1 Using proxies for logging
	8.2.2 Using proxies for measuring performance
	8.2.3 Using proxies to autopopulate properties
	8.2.4 Using proxies to implement negative array indexes
	8.2.5 Performance costs of proxies

	8.3 Summary
	8.4 Exercises

	Chapter 9: Dealing with collections
	9.1 Arrays
	9.1.1 Creating arrays
	9.1.2 Adding and removing items at either end of an array
	9.1.3 Adding and removing items at any array location
	9.1.4 Common operations on arrays
	9.1.5 Reusing built-in array functions

	9.2 Maps
	9.2.1 Don’t use objects as maps
	9.2.2 Creating our first map
	9.2.3 Iterating over maps

	9.3 Sets
	9.3.1 Creating our first set
	9.3.2 Union of sets
	9.3.3 Intersection of sets
	9.3.4 Difference of sets

	9.4 Summary
	9.5 Exercises

	Chapter 10: Wrangling regular expressions
	10.1 Why regular expressions rock
	10.2 A regular expression refresher
	10.2.1 Regular expressions explained
	10.2.2 Terms and operators

	10.3 Compiling regular expressions
	10.4 Capturing matching segments
	10.4.1 Performing simple captures
	10.4.2 Matching using global expressions
	10.4.3 Referencing captures
	10.4.4 Noncapturing groups

	10.5 Replacing using functions
	10.6 Solving common problems with regular expressions
	10.6.1 Matching newlines
	10.6.2 Matching Unicode
	10.6.3 Matching escaped characters

	10.7 Summary
	10.8 Exercises

	Chapter 11: Code modularization techniques
	11.1 Modularizing code in pre-ES6 JavaScript
	11.1.1 Using objects, closures, and immediate functions to specify modules
	11.1.2 Modularizing JavaScript applications with AMD and CommonJS

	11.2 ES6 modules
	11.2.1 Exporting and importing functionality

	11.3 Summary
	11.4 Exercises


	Part 4: Browser reconnaissance
	Chapter 12: Working the DOM
	12.1 Injecting HTML into the DOM
	12.1.1 Converting HTML to DOM
	12.1.2 Inserting elements into the document

	12.2 Using DOM attributes and properties
	12.3 Styling attribute headaches
	12.3.1 Where are my styles?
	12.3.2 Style property naming
	12.3.3 Fetching computed styles
	12.3.4 Converting pixel values
	12.3.5 Measuring heights and widths

	12.4 Minimizing layout thrashing
	12.5 Summary
	12.6 Exercises

	Chapter 13: Surviving events
	13.1 Diving into the event loop
	13.1.1 An example with only macrotasks
	13.1.2 An example with both macro- and microtasks

	13.2 Taming timers: time-outs and intervals
	13.2.1 Timer execution within the event loop
	13.2.2 Dealing with computationally expensive processing

	13.3 Working with events
	13.3.1 Propagating events through the DOM
	13.3.2 Custom events

	13.4 Summary
	13.5 Exercises

	Chapter 14: Developing cross-browser strategies
	14.1 Cross-browser considerations
	14.2 The five major development concerns
	14.2.1 Browser bugs and differences
	14.2.2 Browser bug fixes
	14.2.3 External code and markup
	14.2.4 Regressions

	14.3 Implementation strategies
	14.3.1 Safe cross-browser fixes
	14.3.2 Feature detection and polyfills
	14.3.3 Untestable browser issues

	14.4 Reducing assumptions
	14.5 Summary
	14.6 Exercises


	appendix A: Additional ES6 features
	Template literals
	Destructuring
	Enhanced object literals

	appendix B: Arming with testing and debugging
	Arming with testing and debugging
	Web developer tools
	Debugging code
	Logging
	Breakpoints
	Creating tests
	The fundamentals of a testing framework
	The assertion
	Popular testing frameworks

	appendix C: Exercise answers
	Chapter 2. Building the page at runtime
	Chapter 3. First-class functions for the novice: definitions and arguments
	Chapter 4. Functions for the journeyman: understanding function invocation
	Chapter 5. Functions for the master: closures and scopes
	Chapter 6. Functions for the future: generators and promises
	Chapter 7. Object orientation with prototypes
	Chapter 8. Controlling access to objects
	Chapter 9. Dealing with collections
	Chapter 10. Wrangling regular expressions
	Chapter 11. Code modularization techniques
	Chapter 12. Working the DOM
	Chapter 13. Surviving events
	Chapter 14. Developing cross-browser strategies

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


