
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Selenium	Design	Patterns	and	Best
Practices

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Selenium	Design	Patterns	and	Best	Practices

Credits

Foreword

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Writing	the	First	Test

Choosing	Selenium	over	other	tools

Right	tool	for	the	right	job

Price

Open	source

Flexibility

The	Record	and	Playback	pattern

Advantages	of	the	Record	and	Playback	pattern

www.allitebooks.com

http://www.allitebooks.org

Disadvantages	of	the	Record	and	Playback	pattern

Getting	started	with	the	Selenium	IDE

Installing	the	Selenium	IDE

Recording	our	first	test

Saving	the	test

Understanding	Selenium	commands

Reading	Selenese

Comparing	Ruby	to	Selenese

Comparing	Selenium	commands	in	multiple	languages

Writing	a	Selenium	test	in	Ruby

Introducing	Test::Unit

Introducing	asserts

Interactive	test	debugging

Summary

2.	The	Spaghetti	Pattern

Introducing	the	Spaghetti	pattern

Advantages	of	the	Spaghetti	pattern

Disadvantages	of	the	Spaghetti	pattern

Testing	the	product	review	functionality

Starting	a	product	review	test

Locating	elements	on	the	page

Using	a	browser’s	element	inspector

Introducing	locator	strategies

Using	advanced	locator	strategies

Using	the	absolute	path

Using	the	relative	path

Writing	locator	strategy	code

Using	chained	selector	strategy	methods

Using	the	CSS	selector

Using	XPath

Implementing	clicks	and	assertions

www.allitebooks.com

http://www.allitebooks.org

Duplicating	the	product	review	test

Reasons	for	failures

The	Chain	Linked	pattern

The	Big	Ball	of	Mud	pattern

Summary

3.	Refactoring	Tests

Refactoring	tests

The	DRY	testing	pattern

Advantages	of	the	DRY	testing	pattern

Disadvantages	of	the	DRY	testing	pattern

Moving	code	into	a	setup	and	teardown

Removing	duplication	with	methods

Removing	external	test	goals

Using	a	method	to	fill	out	the	review	form

Reviewing	the	refactored	code

The	Hermetic	test	pattern

Advantages	of	the	Hermetic	test	pattern

Disadvantages	of	the	Hermetic	test	pattern

Removing	test-on-test	dependence

Using	timestamps	as	test	data

Extracting	the	remaining	common	actions	to	methods

Creating	a	new	review	with	a	single	method	call

Reviewing	the	test-on-test	dependency	refactoring

Creating	generic	DRY	methods

Refactoring	with	generic	methods

The	random	run	order	principle

Advantages	of	the	random	run	order	principle

Disadvantages	of	the	random	run	order	principle

Summary

4.	Data-driven	Testing

Data	relevance	versus	data	accessibility

www.allitebooks.com

http://www.allitebooks.org

Hardcoding	input	data

Hiding	test	data	from	tests

Choosing	the	test	environment

Introducing	test	fixtures

Parsing	fixture	data

Using	fixture	data	in	the	tests

Using	fixtures	to	validate	products

Testing	the	remaining	products

Multiple	test	models

A	single	test	model

Implementing	multiple	test	models

Making	test	failures	more	expressive

Using	an	API	as	a	source	of	fixture	data

Using	data	stubs

The	default	values	pattern

Advantages	of	the	default	values	pattern

Disadvantages	of	the	default	values	pattern

Merging	the	default	values	pattern	and	the	faker	library

Implementing	faker	methods

Updating	the	comment	test	to	use	default	values

Summary

5.	Stabilizing	the	Tests

Engineering	the	culture	of	stability

Running	fast	and	failing	fast

Running	as	often	as	possible

Keeping	a	clean	and	consistent	environment

Discarding	bad	code	changes

Maintaining	a	stable	test	suite

Waiting	for	AJAX

Testing	without	AJAX	delays

Using	explicit	delays	to	test	AJAX	forms

www.allitebooks.com

http://www.allitebooks.org

Implementing	intelligent	delays

Waiting	for	JavaScript	animations

The	Action	Wrapper	pattern

Advantages	of	the	Action	Wrapper	pattern

Disadvantages	of	the	Action	Wrapper	pattern

Implementing	the	Action	Wrapper	pattern

The	Black	Hole	Proxy	pattern

Advantages	of	the	Black	Hole	Proxy	pattern

Disadvantages	of	the	Black	Hole	Proxy	pattern

Implementing	the	Black	Hole	Proxy	pattern

Test	your	tests!

Summary

6.	Testing	the	Behavior

Behavior-driven	Development

Advantages	of	BDD

Disadvantages	of	BDD

Testing	the	shopping	cart	behavior

Describing	shopping	cart	behavior

Writing	step	definitions

Is	BDD	right	for	my	project?

Introducing	Cucumber

Feature	files

Step	definition	files

The	configuration	directory

Cucumber.yml

env.rb

Running	the	Cucumber	suite

The	write	once,	test	everywhere	pattern

Advantages	of	the	write	once,	test	everywhere	pattern

Disadvantages	of	the	write	once,	test	everywhere	pattern

Testing	a	mobile	site

www.allitebooks.com

http://www.allitebooks.org

Updating	the	Selenium	wrapper

Moving	step	definition	files

Updating	the	Cucumber	profile	and	tagging	tests

Running	and	fixing	incompatible	steps

Testing	the	purchase	API

Summary

7.	The	Page	Objects	Pattern

Understanding	objects

Describing	a	literal	object

Object	properties

Object	actions

Objects	within	objects

Describing	a	programming	object

Describing	a	web	page	with	objects

The	Page	Objects	pattern

Advantages	of	the	Page	Objects	pattern

Disadvantages	of	the	Page	Objects	pattern

Creating	a	Page	Objects	framework

Creating	a	page	super	class

Implementing	sidebar	objects

Implementing	the	SidebarCart	class

Adding	Self	Verification	to	pages

Implementing	individual	page	classes

Increasing	the	number	of	sidebar	objects	as	the	website	grows

Running	tests	with	the	Page	Objects	framework

Using	Page	Objects	in	the	Test::Unit	framework

Using	Page	Objects	in	different	testing	frameworks

Looking	at	the	Cucumber	implementation

Looking	at	the	RSpec	implementation

The	test	tool	independence	pattern

Advantages	of	the	test	tool	independence

www.allitebooks.com

http://www.allitebooks.org

Disadvantages	of	the	test	tool	independence

The	right	way	to	implement	Page	Objects

Making	pages	smarter	than	tests

Making	tests	smarter	than	pages

Using	modules	instead	of	inheritance

Placing	logic	in	Page	Objects

Summary

8.	Growing	the	Test	Suite

Strategies	for	writing	test	suites

Different	types	of	tests

The	smoke	test	suite

The	money	path	suite

New	feature	growth	strategy

Bug-driven	growth	strategy

The	regression	suite

The	99	percent	coverage	suite

Continuous	Integration

Managing	the	test	environments	and	nodes

Deploying	new	builds

CI	environment	management

Build	node	management

Configuration	management	system

Virtualization

Selenium	Grid

Understanding	standalone	and	grid	modes

JsonWire	protocol

Standalone	mode

Grid	mode

Installing	Selenium	Grid

Using	Selenium	Grid

Selenium	Grid	Extras

www.allitebooks.com

http://www.allitebooks.org

Choosing	the	CI	tool

Decoupling	tests	from	tools

Frequently	Asked	Questions

How	to	test	on	multiple	browsers?

Problem

Possible	solutions

Localhost	testing

Setting	up	Selenium	Grid

Setting	up	SauceLabs	Grid

Which	programming	language	to	write	tests	in?

Should	we	use	Selenium	to	test	the	JS	functionality?

Problem

Possible	solution

Why	should	I	use	a	headless	browser?

Possible	solution

PhantomJS

Which	BDD	tool	should	I	use	on	my	team?

Problem

Possible	solutions

Can	I	use	Selenium	for	performance	testing?

Problem

Possible	solutions

Summary

A.	Getting	Started	with	Selenium

Setting	up	the	computer

Using	Command	Line	Interface

Using	the	terminal	on	Windows

Using	MS-DOS

Using	PowerShell

Using	the	terminal	emulator

Using	the	terminal	on	Mac	OS	X

Using	the	terminal	on	Linux

Configuring	the	Ruby	runtime	environment

Installing	Ruby

Installing	the	selenium-webdriver	gem

Installing	Firefox

Understanding	test	class	naming

Naming	files

Naming	classes

Understanding	the	namespace

Showing	object	inheritance

Summary

Index

Selenium	Design	Patterns	and	Best
Practices

Selenium	Design	Patterns	and	Best
Practices
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2014

Production	reference:	1170914

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-270-7

www.packtpub.com

Cover	image	by	Jeremy	Segal	(<info@jsegalphoto.com>)

http://www.packtpub.com
mailto:info@jsegalphoto.com

Credits
Author

Dima	Kovalenko

Reviewers

Anuj	Chaudhary

Dave	Haeffner

Dave	Hunt

Alex	Kogon

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Llewellyn	Rozario

Content	Development	Editor

Priya	Singh

Technical	Editor

Shiny	Poojary

Copy	Editors

Roshni	Banerjee

Adithi	Shetty

Project	Coordinators

Judie	Jose

Swati	Kumari

Proofreaders

Simran	Bhogal

Maria	Gould

Ameesha	Green

Indexers

Monica	Ajmera	Mehta

Rekha	Nair

Priya	Sane

Production	Coordinator

Kyle	Albuquerque

Cover	Work

Kyle	Albuquerque

Foreword
“But	wouldn’t	we	be	much	more	efficient	if	we	could	just	record	our	tests	and	play	them
back?”	Chris,	the	QA	manager,	stood	at	my	desk	looking	for	confirmation.

I	recall	my	mouth	actually	hanging	open	for	a	moment,	then	stammering	something	like,
“What	the…I	don’t	even…Wait,	what?”

I	was	working	for	a	small	company	that	produced	off-the-shelf	software	for	small-	to
medium-sized	businesses.	As	part	of	the	product	line,	it	had	a	client-server	desktop
application,	which	also	featured	a	web	portal.	I	had	spent	the	previous	couple	of	years
working	with	a	small	team	of	colleagues	to	create	a	successful	automated	testing
framework	for	the	desktop	application.	We	built	it	from	the	ground	up	and	automated	a
significant	portion	of	the	testing	of	the	desktop	application	with	it.	We	had	intentionally
left	the	testing	of	the	web	portal	to	be	done	manually,	with	the	intention	to	automate	it
later.	The	company	had	also	recently	purchased	another	company	that	provided	a	web-
only	product	intended	for	use	by	larger	enterprise	customers.	With	the	purchase	of	the
other	company,	automating	the	tests	for	the	web	products	was	becoming	more	important.

Additionally,	we’d	already	gone	through	the	process	of	tool	evaluation	for	the	automated
testing	of	the	web	products.	We	knew	that	as	a	small	company,	we	didn’t	have	a	huge
budget	to	purchase	expensive	commercial	testing	tools.	In	fact,	the	budget	was
nonexistent;	we’d	have	to	make	do	with	tools	that	were	free	or	nearly	so,	and	wire	them
together	ourselves.	Given	that	both	web	products	supported	multiple	browsers,	we	had
landed	on	Selenium	as	our	solution,	specifically	choosing	the	newer	WebDriver	API	over
the	older	remote	control	API.

Mistakenly	taking	my	apparent	confusion	for	his	having	interrupted	me	from	a	tricky	bit
of	coding,	Chris	pressed	on	to	explain,	“I	mean,	you’ve	done	great	on	the	desktop
application,	but	as	you	said,	you	need	to	be	a	programmer	to	effectively	use	those	tests.
That’s	great	for	you	and	Barbara	because	you’ve	been	working	on	the	framework	and
understand	how	to	code.	The	new	guy,	Derek,	has	some	skills	there	too,	and	he’s	been	able
to	use	it	pretty	well.	However,	that	kind	of	leaves	out	Cindy,	Josh,	and	Brian.	Wouldn’t	it
be	great	if	we	could	just	use	the	Selenium	IDE	to	record	those	test	for	the	websites?	Then,
they	could	get	automated	tests	into	the	suite	too.	We	could	even	get	Christian,	the	business
analyst,	in	on	it	too!”	Just	like	that,	we’d	started	down	a	path;	one	that	you	may	have
started	down	yourself.

Dima	Kovalenko’s	approach	discusses	problems	that	nearly	every	Selenium	user	has
encountered	at	one	time	or	another.	His	knowledge	of	the	subject	is	born	from	years	of
experience,	and	that	hard-won	knowledge	is	now	available	to	you	in	this	very	volume.	By
applying	the	patterns	found	here,	you	can	navigate	your	way	to	efficient	solutions	to	those
problems.	Additionally,	Dima’s	writing	style	uses	consistent	examples	throughout,	and	the
language	is	engaging	and	easy	to	follow.

I	envy	you,	dear	reader.	Douglas	Adams,	author	of	The	Hitchhiker’s	Guide	to	the	Galaxy,
once	wrote,	“Human	beings,	who	are	almost	unique	in	having	the	ability	to	learn	from	the

experience	of	others,	are	also	remarkable	for	their	apparent	disinclination	to	do	so.”	If	we
had	a	book	like	this	in	the	situation	I	described	earlier,	our	Selenium	implementation
would	have	been	much	smoother.	Whether	you’re	reading	this	because	you	are	looking	to
acquire	more	knowledge	about	Selenium	on	your	own,	or	whether	you’ve	been	told	to	use
Selenium	by	someone	else,	you	now	have	the	opportunity	to	benefit	from	the	experiences
of	those	who	have	gone	before.	Seize	that	opportunity	and	enjoy	working	with	Selenium.

Jim	Evans

Core	contributor	to	the	WebDriver	project,	musician,	and	devoted	husband	and	father

About	the	Author
Dima	Kovalenko	started	his	career	in	2003	as	a	quality	assurance	intern	during	his
summer	internship	at	Rosetta	Stone.	Since	then,	he	has	spent	many	years	testing	software
in	both	a	manual	and	automated	fashion	in	companies	such	as	ThoughtWorks,	Groupon,
and	many	others.	He	has	participated	in	many	different	types	of	projects,	including
language-learning	software,	web	e-commerce	stores,	and	legacy	maintenance	for
telecommunication	and	airline	companies.	His	experience	includes	support	to	Ruby,	Java,
iOS,	Android,	and	PHP	projects	as	an	automated	tester	and	software	developer.

His	first	real	experience	with	computers	was	at	the	age	of	14,	shortly	after	moving	to	the
United	States	of	America	from	Russia;	this	encounter	has	sparked	a	lifelong	passion	for
technology.

Acknowledgments
This	book	would	not	exist	without	the	help	and	support	of	the	people	in	my	life,	who
supported	and	encouraged	this	passion	to	grow	and	develop	further.	I’d	like	to	thank	my
wife,	Lena	Kovalenko,	for	tolerating	and	putting	up	with	my	neediness	and	endless	torrent
of	useless	trivia.	Without	her	support,	and	my	constant	desire	to	impress	her,	I	would	not
have	taken	any	rewarding	risks	in	my	career.	I	would	also	like	to	thank	my	parents
Nikolay	and	Svetlana	Kovalenko	for	letting	my	brother,	Vadim,	and	me	learn	from	our
own	mistakes	and	have	ample	computer	time,	that	is,	after	the	dishes	were	washed,
naturally.

I’d	like	to	thank	my	family	and	friends	who	were	supportive	in	this	project	and	helped	me:
Lil	Kovalenko,	Vadim	Kovalenko,	David	Tolley,	Steve	Fournier	II	(Steve-o,	formally
known	as	“Scuba	Steve”),	Josiah	Weaver,	and	Alfredo	Velasquez.

This	book	would	not	be	accurate	without	the	help	of	Alex	Kogon,	Dave	Haeffner,	Dave
Hunt,	and	Anuj	Chaudhary.	Thank	you	all	for	considering	all	of	my	insane	ideas	and
theories	and	giving	me	good	feedback.

I’d	like	to	thank	Seth	Lochen,	Andy	Duncan,	Shinji	Kuwayama,	and	Virgil	Bistriceanu	for
being	incredible	managers	who	encouraged	me	to	learn	new	skills	and	grow	to	be	a	better
person.

Finally,	I’d	like	to	also	thank	my	coworkers,	from	whom	I’ve	learned	more	programming
skills	than	any	book	could	have	ever	taught	me:	Scott	Muc,	Isa	Goksu,	Jack	Calzaretta,
Surya	Gaddipati,	Michael	Standley,	Valdis	Vitayaudom,	Gregory	Blike,	Jason	Lantz,	and
Greg	Smith.

About	the	Reviewers
Anuj	Chaudhary	is	a	software	engineer	who	enjoys	working	on	software	testing	and
automation.	He	has	vast	experience	in	different	testing	methodologies	such	as	manual
testing,	automated	testing,	performance	testing,	and	security	testing.	He	has	worked	as	an
individual	contributor	and	technical	lead	on	various	software	projects	dealing	with	all
stages	of	the	application	development	life	cycle.

He	has	been	awarded	Microsoft	MVP	two	times	in	a	row.	He	also	blogs	at
www.anujchaudhary.com.

He	has	also	reviewed	the	book	Selenium	WebDriver	Practical	Guide,	Satya	Avasarala,
Packt	Publishing.

I	would	like	to	thank	my	wife,	Renu,	for	always	supporting	me.	I	wouldn’t	have	been	able
to	spend	extra	hours	on	reviewing	this	book	without	her	support.

Dave	Haeffner	is	the	writer	of	Elemental	Selenium	(elementalselenium.com)—a	free,
once-a-week	Selenium	tip	newsletter	that’s	read	by	thousands	of	testing	professionals.
He’s	also	the	creator	and	maintainer	of	ChemistryKit	(https://github.com/chemistrykit),	an
open	source	Selenium	framework,	and	the	author	of	The	Selenium	Guidebook
(seleniumguidebook.com).	He’s	helped	numerous	companies	successfully	implement
automated	acceptance	testing,	including	The	Motley	Fool,	ManTech	International,
Sittercity,	and	Animoto.	He’s	also	the	founder/co-organizer	of	Selenium	Hangout	and	has
spoken	at	numerous	conferences	and	meetings	about	automated	acceptance	testing.

Dave	Hunt	lives	in	Kent,	UK,	with	his	wife	and	two	sons.	He	has	always	had	a	passion
for	turning	mundane	tasks	into	one-click	solutions,	and	when	he	discovered	Selenium
back	in	2005,	his	career	in	software	testing	and	automation	development	was	sealed.	He
works	from	home	for	Mozilla,	where	he	assists	teams	to	create	automated	tests	for	their
projects—ranging	from	Mozilla’s	web	properties	to	the	Firefox	web	browser	and	the
Firefox	OS	mobile	operating	system.

Alex	Kogon	started	programming	in	1979	and	has	been	working	as	an	IT	professional
since	1985,	helping	small	and	large	companies	define	and	implement	business	software
solutions.	He	has	worked	as	everything	from	a	Unix	Systems	Administrator	and	software
tester	to	Internet	start-up	company	CTO	and	has	been	a	part	of	the	senior	management	in	a
major	global	Investment	Bank.

Since	the	late	1990s,	Alex	has	been	a	major	proponent	of	methodologies	to	improve	the
design	and	development	of	software,	leveraging	RAD	techniques	and	developing	his	own
pre-Agile	methodologies	to	deliver	projects	to	major	global	financial	institutions	in	a
fraction	of	the	regular	time.	He	now	works	as	a	Management	Consultant	helping
organizations	leverage	Agile	methodologies	to	be	more	efficient	and	effective	through
communication,	collaboration,	tools,	automated	testing,	continuous	integration,	coding
standards,	and	pair	programming.

His	ideas	have	been	published	in	the	Financial	Times	and	Wall	Street	Journal	and	his

http://www.anujchaudhary.com
http://elementalselenium.com
https://github.com/chemistrykit
http://seleniumguidebook.com

seminal	research	on	Additive	Synthesis	of	Digital	Signals	is	published	and	referred	to
frequently	in	research	documents.	Alex	is	currently	working	on	a	book	on	how	to	save
money	and	improve	results	in	corporate	IT	with	Agile	Methodologies.

I’d	like	to	thank	Ben	and	Tilda	for	providing	a	counterpoint	in	my	life.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Selenium	Design	Patterns	and	Best	Practices	will	help	you	write	better	tests!

It	does	not	matter	whether	you	are	writing	a	Selenium	WebDriver	test	to	test	your	website
or	shell	scripts	to	test	the	HTTP	API	of	the	backend	services	of	your	multibillion	dollar
enterprise	application.	This	book	is	not	purely	theoretical	work,	but	comes	from	years	of
experience	of	the	author	and	his	colleagues.	A	lot	of	the	practices	and	ideas	written	in	this
book	did	not	appear	as	soon	as	we	started	to	test	the	software.	Instead,	they	came	from
years	of	mistakes,	frustrations,	and	slow	but	continuous	improvement.	We	do	not	believe
that	the	examples	and	topics	described	in	this	book	are	definitive	and	static	solutions	to
every	single	problem	that	you	may	encounter	in	your	career.	Instead,	this	book	shows	you
some	very	generic	solutions	to	very	common	problems	that	we,	an	ever-growing
community	of	automated	software	testers,	have	encountered.	We	hope	that	this	book	will
not	only	provide	quick	fixes	to	the	problem(s)	you	may	encounter,	but	will	also	empower
you	to	solve	more	and	more	complex	problems	in	your	career	by	showing	you	some	very
simple	improvement	techniques.

What	this	book	covers
Chapter	1,	Writing	the	First	Test,	will	guide	us	through	the	process	of	writing	a	simple
Selenium	test	and	converting	it	to	a	programming	language.

Chapter	2,	The	Spaghetti	Pattern,	will	help	us	write	our	second	test	that	will	completely
depend	on	the	test	we	wrote	in	the	first	chapter.	We	will	understand	why	having	tests	that
completely	depend	on	each	other	is	a	bad	practice.

Chapter	3,	Refactoring	Tests,	will	fix	some	of	the	pitfalls	and	common	mistakes	we
encountered	so	far.	This	chapter	will	concentrate	on	the	introduction	of	good	computer
programming	practices	such	as	code	reuse.

Chapter	4,	Data-driven	Testing,	will	guide	us	through	making	some	initial	improvements
to	your	test	suite,	and	it	will	eventually	prepare	us	to	examine	one	of	the	most	difficult
problems	in	software	testing:	test	data.

Chapter	5,	Stabilizing	the	Tests,	will	help	us	understand	that	writing	tests	alone	is	not
enough.	We	will	dedicate	this	chapter	to	making	our	test	bug	free	and	resistant	to	random
instabilities	in	the	test	environment.

Chapter	6,	Testing	the	Behavior,	will	help	you	discover	why	testing	the	application	in	its
current	iteration	becomes	unmaintainable	in	the	long	run.	Instead,	we	will	start	testing	the
desired	behavior	of	the	application,	not	the	implementation.

Chapter	7,	The	Page	Objects	Pattern,	covers	one	of	the	most	undervalued	and
misunderstood	topics	when	it	comes	to	User	Interface	testing,	that	is,	Page	Objects.	In	this
chapter,	we	will	create	a	working	Page	Object	testing	framework	and	demonstrate	how	the
tests	can	keep	up	with	the	new	feature	development	cycle.

Chapter	8,	Growing	the	Test	Suite,	will	conclude	this	book	with	some	basic	tips	on	how	to
prioritize	the	growth	of	the	test	suite.	Along	the	way,	we	will	discuss	how	to	keep	our	test
stable	and	relevant	to	the	whole	team,	no	matter	how	often	or	big	the	changes	are	to	the
application	being	tested.

Appendix,	Getting	Started	with	Selenium,	covers	the	initial	setup	of	the	user’s	computer.
We	will	learn	how	to	use	the	Command	Line	Interface	terminal	on	Windows,	Mac	OSX,
and	Linux.	We	will	install	the	Ruby	programming	language	and	Selenium	WebDriver
Ruby	gem,	followed	by	installation	of	the	Firefox	web	browser.	It	concludes	by	explaining
the	test	file	and	class	nomenclature	so	that	individuals	new	to	the	Ruby	programming
language	can	easily	follow	along	with	the	tests.

What	you	need	for	this	book
To	get	started	with	this	book,	you	will	need	a	basic	understanding	of	what	Selenium	is,
what	it	does,	and	basic	programming	skills.	If	you	are	able	to	create	a	simple	click
command	in	Selenium	WebDriver	and	write	a	simple	loop	program	in	any	programming
language,	you	should	be	able	to	keep	up	with	every	example	in	this	book.	We	will	take	the
time	to	explain	every	line	of	code	written	in	this	book	so	that	you	are	able	to	create	the
desired	outcome	in	any	situation	you	may	find	yourself	in.	There	are	some	very	small	and
simple	software	prerequisites	that	are	needed.	We	will	need	to	have	access	to	the
Command	Line	Interface	terminal,	Ruby	runtime	environment,	and	Firefox	web	browser.
You	can	find	the	simple	step-by-step	setup	instructions	for	all	of	these	prerequisites	in	the
Appendix,	Getting	Started	with	Selenium.

Who	this	book	is	for
This	book	is	for	anyone	who	wishes	to	write	better	automated	tests.	Whether	you	are
writing	your	first	Selenium	test	or	have	written	hundreds	of	them,	you	will	find	this	book
useful	to	create	a	good	test	suite.	However,	this	book	is	not	only	meant	for	writing	better
Selenium	tests.	A	lot	of	the	examples	and	techniques	discussed	in	this	book	apply	not	only
to	Selenium	WebDriver,	but	also	to	any	automated	tests	written	in	any	programming
language.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“You	can
even	open	the	search_test.html	file	in	your	web	browser	and	see	how	it	looks!”

A	block	of	code	is	set	as	follows:

more_info_buttons	=	special_items.collect	do	|special_item|

		special_item.find_element(:class,	"more-info")

end

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

require	'rubygems'

require	'selenium-webdriver'

selenium	=	Selenium::WebDriver.for(:firefox)

selenium.get("http://awful-valentine.com/")

selenium.find_element(:id,	"searchinput").clear

selenium.find_element(:id,	"searchinput").send_keys("cheese")

selenium.find_element(:id,	"searchsubmit").click

selenium.quit

Any	command-line	input	or	output	is	written	as	follows:

ruby	run_tests.rb

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Click	on	Install	Now
when	it	becomes	clickable	after	several	seconds.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

www.allitebooks.com

mailto:copyright@packtpub.com
http://www.allitebooks.org

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Writing	the	First	Test
	 “Self-education	is,	I	firmly	believe,	the	only	kind	of	education	there	is.” 	

	 —Isaac	Asimov

In	this	book,	we	will	simulate	my	personal	experience	of	testing	e-commerce	systems.	We
will	start	by	writing	a	very	simple	and	crude	test	case,	and	we	will	refactor	it	and	grow	it
into	a	stable	and	reliable	test	suite.	A	web	store	example	might	not	apply	to	everyone’s
job,	but	the	examples	provided	should	be	general	enough	to	apply	to	any	situation.

Today	is	our	first	day	on	the	job;	you	and	I	are	the	sole	members	of	the	newly	formed
Quality	Assurance	team	for	the	little	start-up	that	sells	Valentine’s	Day	cards.	It’s	a	small
company	and	the	pay	is	not	the	greatest;	however,	just	like	any	small	start	up,	we	get	some
company	stock.	This	means	that	we	can	be	very	rich	and	famous	if	the	website	becomes
popular.	The	website	needs	to	stay	operational	and	bug	free,	or	our	customers	will	never
return	and	I	will	not	be	able	to	purchase	that	yacht	I	always	wanted.

We	know	that	we	are	short-staffed	and	need	some	automated	tests	to	keep	the	quality	high.
However,	first	we	need	to	convince	the	owner	of	the	company	that	test	automation	is	the
right	direction,	instead	of	just	testing	everything	by	hand.	We	need	to	provide	a	cost-
effective	way	to	test	the	website	and	get	quick	results!

In	this	chapter,	we	will	make	an	argument	for	using	Selenium	as	our	automation	tool	of
choice	and	write	a	simple	test	to	show	how	fast	we	can	start	building	new	tests.	We	will
discuss	the	following	topics	along	the	way:

Why	you	should	use	Selenium	over	other	tools
The	Record	and	Playback	pattern
The	Selenium	IDE
Recording	a	test	with	the	Selenium	IDE
Selenium	WebDriver
Writing	a	test	with	Ruby
The	Test::Unit	testing	framework
Interactive	test	debugging

Choosing	Selenium	over	other	tools
There	are	several	reasons	to	use	Selenium	over	other	test	automation	tools	out	there:

It	is	the	right	tool	for	the	right	job
It	is	free	of	cost
It	is	open	source
It	is	highly	flexible

Right	tool	for	the	right	job
Selenium	is	a	great	tool	for	testing	web	applications	and	interacting	with	the	application
like	a	real	user	would.	It	uses	a	real	browser	to	click,	type,	and	fill	out	forms.	It	is	as	close
to	a	human	user	as	you	can	get.	It’s	the	perfect	tool	for	testing	the	flow	of	the	web
application	from	start	to	finish.

Price
Nothing	can	beat	the	free	price	tag!	While	there	are	other	commercial	products	that	have
more	advanced	features	available	for	purchase,	they	tend	to	run	into	tens	of	thousands	of
dollars	per	license.	Selenium	is	so	cheap	that	you	will	be	able	to	finish	this	book	and	build
a	whole	test	suite	without	spending	another	dollar.

Tip
As	old	anti-proverb	states:	there	is	no	free	lunch,	but	there	is	always	more	cheese	in	the
mousetrap.	A	free	tool	does	not	mean	that	the	tests	will	write	themselves	for	free;	there
will	always	be	expenditure	on	someone’s	time.	By	following	good	practices,	we	will	not
be	able	to	eliminate	this	cost	but	will	try	to	reduce	it	as	much	as	possible	in	the	long	run.

Open	source
Selenium	is	Open	source	software	(OSS),	but	this	means	more	than	“it	is	free”.	As	with
other	OSS,	with	Selenium,	you	don’t	just	get	the	product	but	you	get	a	whole	community;
you	become	part	of	the	family.	The	majority	of	Selenium	developers	cannot	wait	to	help
someone	who	is	in	need,	or	to	share	some	really	great	workaround	for	a	difficult	problem
they	ran	into.	This	sure	beats	paying	for	expensive	and	underwhelming	technical	support
you	get	with	a	commercial	product.

Flexibility
Selenium	is	incredibly	flexible;	because	it	is	Java-based,	you	can	run	it	on	most	operating
systems	or	browsers.	You	can	even	use	it	to	test	iOS	and	Android	browsers.	On	top	of	that,
you	can	run	it	in	“headless	mode”	with	an	emulation	browser,	or	set	up	a	grid	to	increase
your	capacity,	but	we	will	cover	more	on	these	topics	later	in	the	book.

The	Record	and	Playback	pattern
Let’s	start	with	the	very	first	test	development	pattern:	the	Record	and	Playback	pattern.
This	is	the	starting	point	with	majority	of	Selenium	and	other	automated	user	interface
testing	tools.	The	idea	behind	this	approach	of	test	development	is	to	allow	the	user	to
record	their	normal	testing	activities	and	play	them	back	through	the	testing	tool	at	a	later
date.

Advantages	of	the	Record	and	Playback	pattern
Having	a	tool	record	our	interaction	with	the	application	has	several	advantages;	chief
among	them	is	the	speed	at	which	we	can	grow	our	test	suite.	Let’s	take	a	look	at
individual	advantages:

Fast	test	growth:	This	is	the	biggest	selling	point	in	most	commercial	tools
available.	A	user	is	able	to	record	new	individual	tests	as	fast	as	he	or	she	can	click
on	links.	A	large	test	suite	can	be	created	in	hours	instead	of	weeks.
No	previous	experience:	It	does	not	require	any	experience	with	programming
language,	just	click	on	the	record	button	and	click	around.	Let	the	tool	write	the
actual	test	code.
Element	lookup:	It	is	incredibly	easy	and	useful,	and	there	is	no	need	to	look	at	the
page	source	to	find	the	button	by	hand.	Just	click	on	record,	click	on	the	desired
button,	and	the	element	location	is	recorded	in	the	test	for	you.

Disadvantages	of	the	Record	and	Playback	pattern
The	commercial	testing	tools	will	give	you	a	very	large	list	of	great	features,	which	may
sound	too	good	to	be	true.	In	actuality,	these	features	probably	are	too	good	to	be	true;
every	recording	tool	has	these	and	many	more	disadvantages:

Bad	locators:	These	are	a	common	problem	with	recording	tools.	Often	a	tool	will
record	the	absolute	path	to	an	element.	If	the	desired	button	shifts	left	or	right	on	the
page,	the	playback	of	the	test	might	fail	even	though	the	application	works	perfectly
fine.
Inflexible	tests:	These	are	the	only	output	from	recording	tools.	Since	the	playback	is
identical	to	the	recording	process,	the	final	result	is	an	identical	copy	of	the
recording.	However,	what	if	a	test	needs	to	register	a	new	unique	user	for	each	run?
To	accommodate	this	task,	it	often	takes	more	time	than	to	write	the	test	by	hand	in	a
programming	language.
Hardcoded	test	data:	It	is	a	big	problem	if	your	tests	need	to	be	flexible	and	use
different	data	depending	on	the	environment.	We	will	discuss	test	data	in	Chapter	4,
Data-driven	Testing.
Poorly	written	tests:	Just	like	many	WYSWYG	tools	available	for	writing	code,	the
task	of	creating	something	is	simple.	However,	the	maintenance	becomes	incredibly
difficult,	as	variable	names	and	method	names	might	be	poorly	named	or	strangely
nested	within	each	other.

Note
What	You	See	(is)	What	You	Get	(WYSWYG)	is	a	name	for	tools	that	allow	users
to	quickly	mock	up	an	application	interface.	Using	the	final	product	of	a	WYSWYG
tool	in	production	is	generally	considered	a	bad	idea	and	should	be	avoided.

Duplicate	code:	It	is	one	of	the	examples	of	poorly	written	tests.	Most	recording
tools	are	not	intelligent	enough	to	detect	duplicate	steps	and	will	not	reuse	existing
code.	See	the	The	DRY	testing	pattern	section	in	Chapter	3,	Refactoring	Tests.

Getting	started	with	the	Selenium	IDE
Now,	let’s	get	our	hands	dirty!	We	will	be	playing	with	Selenium	Interactive
Development	Environment	(Selenium	IDE	or	simply	IDE)	in	this	section.	IDE	is	one	of
the	greatest	starting	points	for	the	Selenium	project.	It	allows	someone	who	has	never
programmed	in	his	or	her	life	to	record	a	useful	test	in	a	matter	of	minutes	and	start	adding
new	tests	to	the	test	suite	in	no	time.

Installing	the	Selenium	IDE
Selenium	IDE	is	a	browser	plugin	that	only	works	in	Firefox	browser.	It	is	easy	to	install
and	integrates	well	with	the	functionality	of	the	browser.	Use	these	easy-to-follow	steps	to
install	the	IDE	in	the	browser:

1.	 In	your	Firefox	browser,	navigate	to	the	Selenium	website	at	http://seleniumhq.org:

2.	 Click	on	the	Download	Selenium	link	on	the	home	page	shown:

http://seleniumhq.org

3.	 In	the	Selenium	IDE	section	on	the	Download	page,	click	on	the	link	for	the	latest
released	version,	as	shown	here:

4.	 Allow	Selenium	to	be	installed	on	your	computer	by	clicking	on	Allow	on	the
following	permission	dialog:

5.	 The	following	dialog	will	show	you	all	of	the	Selenium	IDE	components	that	will	be
installed	on	your	browser.	Click	on	Install	Now	when	it	becomes	clickable	after
several	seconds.	The	installation	dialog	is	shown	in	the	following	screenshot:

6.	 Restart	Firefox.

Now	that	the	plugins	have	been	installed,	you	should	see	a	little	icon	in	the	browser:

7.	 Clicking	on	that	button	will	reveal	the	Selenium	IDE	window,	as	shown	in	the
following	screenshot:

We	are	now	ready	to	go!

Recording	our	first	test
Just	like	many	commercial	testing	tools,	the	Selenium	IDE	supports	the	Record-Playback
style	of	writing	tests.	The	IDE	monitors	your	browser	and	notes	down	any	actions	that	you
perform.	By	compiling	a	list	of	actions,	a	test	slowly	emerges.	Let’s	start	recording	our
first	test	by	following	these	steps:

1.	 Open	the	Selenium	IDE	in	the	Firefox	browser	and	make	sure	the	recording	mode	is
on,	as	shown	in	following	screenshot:

Note
Note	that	the	recording	indicator	is	a	little	difficult	to	read	since	it	does	not	change
color	when	on	or	off.	The	main	difference	is	a	slightly	light	gray	square	around	the
button	when	it’s	on.	This	is	one	of	several	major	drawbacks	of	Selenium	IDE.

2.	 In	a	new	tab,	navigate	to	http://awful-valentine.com,	as	shown	in	the	following
screenshot:

3.	 Click	on	the	search	text	field	and	type	in	cheese	in	the	search	bar	and	click	on	the
submit	button.	The	following	screenshot	shows	the	search	box	and	the	submit	button:

http://awful-valentine.com

As	we	are	performing	these	actions,	the	IDE	is	recording	all	of	them	in	the
background.	We	can	inspect	all	of	the	recorded	actions	in	the	IDE	window,	as	shown
in	the	following	screenshot:

Let’s	walk	through	the	table	inside	the	IDE	window	to	get	a	better	understanding	of	each
item.

The	table	has	three	columns	in	it:

The	first	column	is	Command.	This	is	where	the	action	of	the	command	is	defined,
such	as	a	click	or	type.
The	second	column	is	Target,	where	the	command	will	be	performed.
Finally,	the	third	column	is	Value.	This	section	is	only	used	when	the	target	element,
such	as	a	text	field,	needs	some	text	inserted	into	it.

We	have	our	simple	script	now;	let’s	save	it	so	we	can	reuse	it	later.

Saving	the	test
Our	next	step	is	to	save	the	test	run	to	a	file:

1.	 Click	on	the	File	option:

2.	 Choose	Save	Test	Case.
3.	 Name	the	file	search_test.html	and	save	it.

Notice	that	we	saved	the	test	as	an	HTML	file.	This	is	because	Selenese,	the	language	that
the	IDE	uses	to	record	and	playback	tests,	is	just	an	HTML	table.	You	can	even	open	the
search_test.html	file	in	your	web	browser	and	see	how	it	looks!	In	the	following
screenshot,	we	have	Selenium	IDE	and	the	saved	test	opens	side	by	side	for	easy
comparison:

Right	away,	you	can	see	that	the	IDE	(on	the	left)	and	the	saved	Selenese	output	displayed
in	a	web	browser	(on	the	right)	look	extremely	similar.

Understanding	Selenium	commands
In	this	section,	we	will	walk	through	the	saved	test	from	the	IDE,	which	is	written	in	a
language	called	Selenese.	We	will	then	compare	the	Selenese	commands	to	the	commands
written	in	a	real	programming	language.

Note
The	code	and	the	step-by-step	instructions	on	how	to	test	it	on	Windows	and	other
operating	systems	can	be	found	at
https://github.com/dimacus/SeleniumBestPracticesBook.

https://github.com/dimacus/SeleniumBestPracticesBook

Reading	Selenese
If	you	ever	see	the	HTML	source	code	of	any	web	page,	Selenese	will	not	be	a	new
concept	for	you.	Selenese	can	simply	be	described	as	an	HTML	table	with	a	table	row	as	a
test	command.	Let’s	take	a	closer	look	at	it.	Open	the	search_test.html	file	in	your
editor	of	choice.	The	whole	test	should	look	like	this:

We	will	ignore	the	first	five	lines	of	the	code,	as	it	has	no	practical	application	for	us	at
this	point.	On	line	6,	you	will	find	the	following	code:

The	preceding	line	declares	the	base	domain	URL	for	our	tests.

Note
One	of	the	biggest	weaknesses	in	Selenium	1	(RC)	is	that	it	was	written	in	JavaScript,
which	exposes	security	issues	with	third-party	domains	running	arbitrary	JavaScript	code

on	any	website.	The	security	experts	implemented	strict	rules	to	prevent	Cross-Site
Scripting	(XSS).	Thus,	Selenium	IDE	and	RC	will	not	be	able	to	test	multiple	websites	in
a	single	test	run.

Our	next	section	of	interest	is	the	code	on	lines	14	to	18,	where	a	single	table	row	(tr)
contains	our	first	command	in	three	table	data	(td)	sections.	Test	lines	14	to	18	are	shown
here:

The	first	TD	matches	the	Command	column	in	the	IDE,	and	in	this	case	the	command	is
to	open	a	given	URL.

The	second	TD	matches	the	Target	column	in	the	IDE	and	is	telling	the	test	to	open	the
root	of	the	base	URL	from	line	6.

Tip
You	can	tweak	your	test	here	by	adding	a	direct	link	to	a	page	you	want,	such	as
/index.html	or	/register.	This	will	allow	you	to	go	directly	to	the	page	you	wish	to	test.

Comparing	Ruby	to	Selenese
Let’s	look	at	the	commands	we	just	learned	in	the	IDE	and	Selenese	and	how	they
translate	into	the	Ruby	language.	In	the	case	of	Ruby,	we	will	only	look	at	the	key
commands	and	how	they	translate	from	Selenese	into	Ruby.	The	goal	of	this	exercise	is	to
take	away	some	of	the	intimidation	factor	of	moving	to	a	programming	language	for
someone	who	may	never	have	seen	software	code	before.

To	start,	let’s	look	back	at	the	HTML	table	that	is	the	Selenese	output:

The	first	line	in	this	table	is	the	name	of	the	test,	which	happens	to	be	search_test.

The	second	item,	shown	in	the	preceding	screenshot	is	the	open	command	to	the	root	(/)
of	the	base	domain	URL.	So,	the	browser	will	navigate	to	this	exact	address	http://awful-
valentine.com/.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to

http://awful-valentine.com/
http://www.packtpub.com
http://www.packtpub.com/support

you.

In	Ruby,	the	open	command	translates	into	a	very	straightforward	get	method	call.	The
code	looks	like	this:

selenium.get("http://awful-valentine.com/")

Tip
Note	that	we	didn’t	have	to	use	base	URL	like	we	did	with	Selenese.	WebDriver	talks
directly	to	the	web	browser,	not	through	JavaScript;	this	eliminates	XSS	limitations,	and
you	can	test	as	many	websites	as	you	want	in	a	single	test	run.

Once	the	browser	navigates	to	the	website	we	want,	it	needs	to	locate	the	search	field	and
input	the	search	term.	In	the	search_test	table,	it	is	in	the	third	line:

Since	this	is	a	complex	multistep	action,	let’s	break	it	down	into	smaller	chunks:

1.	 Find	the	text	field	element	with	the	help	of	the	find_element	method	by	passing	it
the	HTML	ID	of	the	text	field	(searchInput),	and	then	store	the	element	in	the
element	variable:

element	=	selenium.find_element(:id,	"searchInput")

2.	 Once	the	text	field	is	located	and	stored	in	the	element	variable,	we	will	type	the
cheese	string	into	it	by	using	the	send_keys	method:

element.send_keys("cheese")

3.	 We	have	now	typed	the	text	we	wanted	into	the	search	bar.	We	used	the	element
variable	to	store	the	reference	to	the	text	field,	and	then	applied	some	typing	action
on	that	variable.

4.	 We	can	use	method	chaining	to	get	the	same	result	in	a	more	condensed	version;	the
search	and	type	text	action	would	look	like	the	following	code	with	method	chaining:

selenium.find_element(:id,	"searchInput").send_keys("cheese")

Note

Method	chaining	is	a	common	type	of	syntax	that	allows	the	programmer	to	invoke
multiple	method	calls	without	using	intermittent	variables.	Each	method	call	in	the
chain	returns	an	object	that	answers	to	the	next	method	call	in	the	chain.	We	will	go
deeper	into	object-oriented	programming	in	the	The	Page	Objects	pattern	section	of
Chapter	7,	The	Page	Objects	Pattern.

The	last	action	our	test	performs	is	clicking	on	the	search	submit	button.	In	the
Selenese	table,	it	is	the	fourth	row	of	our	test:

5.	 Using	method	chaining	as	before,	we	will	find	the	submit	button	and	send	a	click
command	to	it:

selenium.find_element(:id,	"searchsubmit").click

The	clickAndWait	command	translates	to	a	simple	click	method	call	in	Ruby.

Note
Notice	that	with	Selenium	WebDriver,	the	wait	for	page	to	load	part	of	the	clickAndWait
command	is	implicit.	As	of	Selenium	2,	when	navigating	from	page	to	page,	Selenium
will	automatically	wait	for	the	new	page	to	finish	loading.	This,	however,	does	not	apply
for	any	AJAX	requests	to	finish.	We	will	discuss	AJAX	waits	in	Chapter	5,	Stabilizing	the
Tests.

Comparing	Selenium	commands	in
multiple	languages
Translating	recorded	tests	from	IDE	into	Ruby	is	rather	simple,	and	we	can	get	started
even	if	we	do	not	have	any	previous	programming	experience;	learning	as	we	go	works
just	fine.	The	most	exciting	part	is	that	these	commands	are	even	easier	to	translate	from
Ruby	to	any	other	programming	language.	Here	are	a	couple	of	examples	of	the	usage	of
the	sendKeys()	method	that	we	used	in	the	preceding	example:

Language Command

Ruby element.send_keys("cheese");

Java element.sendKeys("cheese");

C-Sharp element.SendKeys("cheese");

Python element.send_keys("cheese");

JavaScript element.sendKeys("cheese");

The	consistency	of	the	WebDriver	API	makes	it	incredibly	easy	to	port	your	knowledge	of
the	test	from	one	language	to	another.	This	is	great	news	for	you,	the	test	engineer,
because	you	become	more	valuable	to	your	company.	You	can	be	dropped	in	on	any	web
project,	written	in	any	programming	language,	and	start	writing	tests	right	away!
Information	and	examples	of	different	WebDriver	commands	in	any	programming
language	can	be	found	at	http://docs.seleniumhq.org/docs/.

The	preceding	example	is	slightly	oversimplified.	The	action	commands	are	written	in	the
same	format	from	programming	language	to	programming	language.	However,	writing
code	in	different	kinds	of	languages,	such	as	compiled	VS	interpreted,	will	have	their	own
idioms	and	best	practices.	Some	actions	that	work	well	in	Ruby	would	be	wasteful	and
counterintuitive	in	Java.

http://docs.seleniumhq.org/docs/

Writing	a	Selenium	test	in	Ruby
In	this	section,	we	will	implement	our	test	case	completely	in	Ruby.	Writing	a	test	in	a
new	language	can	be	intimidating,	but	don’t	despair	because	we	will	walk	through	and
talk	about	every	command	we	use.	This	book	will	not	make	you	a	great	Ruby	developer,
but	it	will	get	you	comfortable	enough	to	write	tests	on	your	own!

Note
At	this	point,	it	is	assumed	that	you	already	have	Ruby	and	the	selenium-webdriver	gem
installed	on	your	computer.	Please	refer	to	Appendix,	Getting	Started	with	Selenium,	for
step-by-step	installation	instructions.

Our	fully	ported	test	into	Ruby	looks	like	this:

require	'rubygems'

require	'selenium-webdriver'

selenium	=	Selenium::WebDriver.for(:firefox)

selenium.get("http://awful-valentine.com/")

selenium.find_element(:id,	"searchinput").clear

selenium.find_element(:id,	"searchinput").send_keys("cheese")

selenium.find_element(:id,	"searchsubmit").click

selenium.quit

As	you	can	see,	there	are	only	a	couple	of	new	lines	that	we	didn’t	see	before.	The	first
two	lines	are	require	'rubygems'	and	require	'selenium-webdriver',	which	tell	the
Ruby	interpreter	that	we	want	to	use	some	gems;	specifically,	we	want	to	the	selenium-
webdriver	gem:

selenium	=	Selenium::WebDriver.for(:firefox)

In	the	preceding	line,	we	request	a	new	instance	of	the	Firefox	browser,	and	store	it	in	the
selenium	variable.	From	this	point	on,	we	will	reference	back	the	selenium	variable
anytime	we	wish	to	give	new	directions	to	Firefox	browsers.	The	code	is	as	follows:

selenium.find_element(:id,	"searchinput").clear

The	preceding	line	clears	any	previous	text	from	the	search	field.	This	is	just	a	good
practice	anytime	you	wish	to	fill	out	any	text	field,	because	you	never	know	what	was	left
over	there	after	some	other	test.

Tip
When	writing	a	Selenium	test,	it	is	always	a	good	practice	to	send	a	clear	command	into
every	text	field	you	wish	to	fill	out.	Due	to	the	unpredictable	nature	of	JavaScript	from
browser	to	browser,	the	default	text	might	not	be	cleared	before	the	new	desired	text	is
entered	by	Selenium.	By	explicitly	clearing	each	field,	we	avoid	test	instabilities.

Finally,	selenium.quit	is	the	final	command	of	our	test,	which	closes	the	Firefox	browser
and	stops	any	WebDriver	processes	we	started	at	the	beginning	of	our	test.

Save	our	test	to	a	file	as	search_test.rb,	and	then	run	the	following	command	in	the

terminal:

ruby	search_test.rb

Tip
The	preceding	command	assumes	that	search_test.rb	is	located	in	the	current	directory
that	your	terminal	is	located	in.	You	may	need	to	look	up	some	basic	command-line
navigation	to	find	the	location	of	your	search_test.rb	file.

After	you	run	this	command,	you	will	see	a	Firefox	window	open;	navigate	to	your
website	and	search	for	cheese.	Congratulations!	Our	test	has	been	ported	from	Selenium
IDE	to	Ruby,	and	we	learned	some	new,	fun	skills	such	as	simple	Ruby	commands	and
command-line	navigation	in	the	process!

Introducing	Test::Unit
Now	that	we	have	ported	our	test	into	Ruby,	you	probably	noticed	that	even	though	our
test	does	some	stuff,	it	actually	does	not	really	test	anything.	Yes,	it	searches	for	cheese	on
the	website,	but	it	does	not	actually	validate	that	anything	was	found	or	not	found.	As	far
as	we	are	concerned,	this	test	is	a	complete	failure,	because	it	not	only	doesn’t	test
anything	useful,	but	also	because	it	has	no	failure	condition—it	will	always	pass.

We	could	write	some	checks	in	our	current	script	to	check	that	the	search	page	returns	the
results	we	care	about.	However,	this	is	a	pretty	good	time	to	introduce	Test::Unit.	The
Test::Unit	framework	is	a	simple	testing	framework	that	comes	with	Ruby.	Testing
frameworks	allows	us	to	better	organize	our	individual	tests	and	verify	that	everything	on
the	page	looks	as	expected	with	built-in	methods	called	assertions.

Note
An	assertion	is	what	a	test	framework	uses	to	confirm	that	something	is	a	certain	way.
Assertions	need	two	things	to	work—an	expected	outcome	and	an	actual	outcome.	The
expected	outcome	is	defined	in	the	test	and	the	actual	outcome	is	the	result	from	the
application	when	we	run	the	test.

Let’s	convert	our	search	test	to	use	the	Test::Unit	framework.	We	will	do	this	in	three
steps:

1.	 Convert	the	test	file	into	a	CheeseFinderTest	class	that	inherits	functionality	from
the	Test::Unit	framework.

2.	 Save	the	new	test	as	cheese_finder_test.rb.

Note
Even	though	it	is	not	required,	Ruby	convention	demands	us	to	save	the	file	name	to
match	the	name	of	the	class	contained	in	the	file.

3.	 Add	an	assertion	to	make	the	test	meaningful.

After	completing	the	first	step,	our	test	file	will	look	like	this:

As	you	can	see,	only	a	couple	of	lines	in	our	test	case	actually	changed:

For	starters,	we	pulled	in	a	new	require	'test/unit'	gem	on	line	3
Next,	we	declared	a	new	class	on	line	5	to	be	CheeseFinderTests
Finally,	we	created	a	new	method	called	test_find_some_cheese	that	has	all	of	our
test	code

Note
In	the	Test::Unit	framework,	all	of	the	test	method	names	have	to	start	with	test_
or	they	will	be	ignored.

Let’s	save	this	to	cheese_finder_test.rb	and	run	the	following	command	in	the
terminal:

ruby	cheese_finder_test.rb

The	following	screenshot	shows	the	output	of	the	test	run.	The	period	(.)	character	in	the
middle	of	output,	pointed	out	by	the	arrow,	represents	a	single	passing	test.	If	a	given	test
fails,	you	will	see	an	F	character	in	that	position:

This	is	pretty	cool,	isn’t	it?	We	got	all	of	this	information	about	our	test	by	only	adding	3
new	lines	of	actual	code!	As	our	suite	keeps	growing,	these	statistics	will	continue	to
change,	and	the	test	count	should	keep	going	up	while	failure	count	should	stay	down.

However,	as	we	can	still	see,	there	are	0	assertions	in	our	test.	Let’s	add	some	assertions	so
that	we	are	actually	testing	something!

Introducing	asserts
Test::Unit	comes	with	many	different	assertions,	and	the	most	commonly	used	ones	are
assert	and	assert_equal	to	test	whether	something	is	true	or	two	items	equal	each	other,
respectively.	In	this	test	case,	we	will	be	using	the	assert	method	to	check	whether	the
search	for	cheese	gives	the	No	Results	Found	message.

Note
A	list	of	all	supported	assertions	can	be	found	at	http://ruby-doc.org/stdlib-
2.1.0/libdoc/test/unit/rdoc/Test/Unit/Assertions.html.

Let’s	walk	through	the	individual	steps	required	to	add	assertions	to	our	tests:

1.	 To	make	this	assertion	work,	we	will	use	the	find_element	method	we	used
previously	to	find	the	entry	class	on	the	page;	the	entry	DIV	will	contain	all	of	the
search	results	on	the	page.	The	code	for	this	is	as	follows:

selenium.find_element(:class,	"entry")

2.	 Once	we	find	the	entry	element,	we	can	use	the	text	method	to	get	the	full	string
seen	on	the	page:

selenium.find_element(:class,	"entry").text

3.	 Finally,	we	will	use	the	include?	method	on	the	returned	text	string.	This	Ruby
method	returns	true	if	the	characters	we	are	looking	for	are	present	in	the	string.	The
code	looks	something	like	this:

selenium.find_element(:class,	"entry").text.include?("No	Results	

Found")

4.	 After	all	of	this	is	set	up	for	the	assertion,	we	can	now	pass	in	the	result	of	the	word
search	into	an	assertion.	As	long	as	we	keep	getting	No	Results	Found,	our	tests	will
keep	passing.	Let’s	take	a	look	at	the	final	version	of	our	test:

http://ruby-doc.org/stdlib-2.1.0/libdoc/test/unit/rdoc/Test/Unit/Assertions.html

Let’s	rerun	our	test;	we	should	now	see	(as	shown	in	the	following	screenshot)	that	the
assertion	count	went	up	from	0	to	1:

Our	test	is	now	officially	testing	the	website!	But	we	are	not	done	yet;	let’s	see	what	will
happen	when	we	force	it	to	fail.	Let’s	modify	line	13	to	expect	a	different	result:

Tip
Never	consider	a	test	complete	unless	you	have	seen	it	fail	due	to	incorrect	expectations.
Often	in	a	rush	to	get	a	test	complete,	we	forget	to	test	that	it	fails	when	it	should,	which
gives	us	false	green	builds.	These	types	of	tests	are	not	just	useless,	but	harmful	as	they
give	us	a	false	sense	of	security	about	the	build.

Our	modified	code	looks	like	the	following:

By	modifying	the	expected	result	to	say	5	Results	Found,	our	test	will	fail	in	the
following	manner:

Our	test	has	passed	once	and	failed	once,	we	can	officially	call	it	complete!

Note
In	the	current	state	of	our	test,	on	assertion	failure	the	test	suite	exits	but	does	not	close	the
Firefox	window.	This	allows	us	to	examine	the	last	page	our	test	finished	on.	In	Chapter	3,
Refactoring	Tests,	we	will	discuss	the	teardown	method,	which	will	clean	up	the	test

environment	every	time	the	test	finishes.

Interactive	test	debugging
Nothing	is	more	exciting	than	to	see	your	tests	running,	and	running	fast—really	fast!
Computers	are	great	at	taking	bad	instructions	and	running	them	really	fast.	The	problem,
of	course,	comes	from	the	fact	that	when	something	goes	wrong	it	is	too	fast	for	you	to	see
it.	You	will	run	into	a	test	failure,	which	no	one	can	explain,	almost	on	a	daily	basis.	Tests,
which	fail	intermittently,	can	be	the	source	of	frustration	in	your	life.	But	don’t	despair;
there	are	ways	to	track	them	down	and	fix	them.

We	will	go	into	detail	on	how	to	track	down	and	get	rid	of	intermittent	test	failures	in
Chapter	5,	Stabilizing	the	Tests.	But	in	this	section,	we	will	take	a	look	at	a	simple	tool
built	into	Ruby,	called	debug.	Since	Ruby	is	an	interpreted	language,	you	are	able	to	stop
test	execution	on	any	of	your	test	environments	without	any	fancy	debugging	tools.	Let’s
play	around	with	it,	I	promise	it	will	be	fun!	Perform	the	following	steps:

1.	 Let’s	add	one	simple	line,	require	'debug',	to	the	beginning	of	our	test	so	that	it
looks	like	this:

2.	 Now	save	it	and	run	the	test	again.	You	will	see	that	a	Firefox	window	opened	up	and
is	just	sitting	on	a	blank	white	page.	Take	a	look	at	the	terminal;	it	will	look
something	like	this:

We	have	halted	our	test	execution	and	entered	into	the	Interactive	Ruby	Shell	(irb),
which	is	a	command-line	tool	for	controlling	Ruby.	This	is	a	great	tool	for	debugging
tests,	because	all	of	the	memory	objects	are	available	at	your	fingertips.	You	can	“quite
literally”	control	your	tests	from	here	if	you	type	in	the	proper	commands.	Let’s	take	it	for
a	spin.

In	the	terminal	irb	session,	type	in	selenium.get("http://seleniumhq.org")	and	hit	the
return	(Enter)	key	on	the	keyboard.

Note
With	Ruby	2.X,	you	will	need	to	press	the	n	+	return	buttons	before	you	are	able	to	take
advantage	of	the	selenium	variable.	Ruby	2.X	tends	to	halt	the	execution	in	the	Kernel
class,	which	is	one	step	before	line	10	of	our	test	file.	By	sending	the	next	line	command
in	irb,	we	step	back	into	the	test	file	and	have	access	to	the	selenium	variable.

Now	watch	the	browser	navigate	to	Selenium’s	website!	You	can	run	clicks,	asserts,	or
anything	else	your	tests	can	do	and	more.	You	are	able	to	walk	through	your	tests	one	line
at	the	time,	step	into	any	method,	or	completely	alter	the	course	of	the	test.	Here	are	some
basic	commands	on	how	to	control	your	test:

Description Command

Next	line	in	the	test n

Step	into	method s

Continue c

Exit	irb	and	continue	execution exit

The	debugging	tool	mentioned	here	is	by	far	the	simplest	tool	available.	It	is	built	into
every	version	of	Ruby,	but	will	not	give	us	any	fancy	features.	In	compiled	languages	such
as	Java	or	C#,	we	can	rely	on	the	IDE	to	provide	a	user	interface	rich	debugger.	For	a
feature-rich	debugger	in	Ruby,	check	out	the	Pry	gem	found	at	http://pryrepl.org/.

Tip
Using	the	debugger	tool	can	be	a	little	intimidating	at	times.	If	you	ever	get	stuck,	just
close	the	terminal	window	and	start	again.	You	will	soon	be	as	comfortable	with	the
debugger	as	with	any	other	tool	in	your	arsenal.

http://pryrepl.org/

Summary
This	concludes	our	first	chapter;	we	got	a	lot	accomplished	in	it.	First	we	discussed	the
advantages	of	using	Selenium	and	other	OSS	tools	over	the	expensive	commercial	tools.
After	that	we	installed	Selenium	IDE	and	recorded	our	first	test	script,	followed	by	the
step-by-step	deconstruction	of	each	command	performed	in	the	script.

We	then	proceeded	to	convert	the	recorded	test	into	Ruby	programming	language,
comparing	each	command	from	the	IDE	with	its	Ruby	equivalent.	Finally,	we	started
working	with	the	Test::Unit	testing	framework	and	then	learned	about	test	assertions.
We	finished	the	chapter	by	making	the	test	fail	on	purpose	and	played	with	the	Ruby
debugger.	In	the	next	chapter,	we	will	add	a	couple	of	new	tests	and	start	to	dive	deeper
into	the	Test::Unit	framework.	We	will	also	talk	about	test	suite	design	patterns	that
emerge	from	growing	your	test	suite.

Chapter	2.	The	Spaghetti	Pattern
	 “Always	code	as	if	the	guy	who	ends	up	maintaining	your	code	will	be	a	violent	psychopath	who	knows	where	you
live.”

	

	 —Martin	Golding

Writing	and	maintaining	any	form	of	software	is	like	fighting	entropy;	given	enough	time
and	changes,	any	code	base	will	gradually	decline	into	disorder.	A	test	suite	is	a	closed
system;	if	you	do	not	provide	energy	in	constant	upkeep	and	planning,	the	suite	will
deteriorate	and	will	fail	constantly.	Every	new	feature	and	line	of	code	added	to	our
website	makes	our	test	suite	obsolete.	The	only	way	to	fight	back	these	natural	forces	is	to
constantly	upgrade	and	improve	existing	tests.

In	this	chapter,	we	will	start	to	grow	our	test	suite	organically	and	take	a	look	at	an	anti-
pattern	called	the	Spaghetti	pattern.	Along	the	way,	we	will	pick	up	some	more	basic
skills,	such	as	using	XPath	and	CSS	selectors	to	locate	the	elements	on	a	web	page.

Note
The	term	anti-pattern	was	inspired	by	a	great	book	on	software	design	called	Design
Patterns:	Elements	of	Reusable	Object-Oriented	Software	by	Erich	Gamma,	Richard
Helm,	Ralph	Johnson,	and	John	Vlissides,	published	by	Addison-Wesley	Professional	and
is	roughly	defined	as	a	common	practice,	which	seems	appropriate	for	current	situation,
but	has	a	lot	of	unintended	side	effects.	Furthermore,	a	better	solution	for	the	problem
does	exist,	but	is	typically	ignored	in	favor	of	the	initial	obvious	but	wrong	solution.

In	order	to	write	the	new	tests	in	this	chapter,	we	will	cover	the	following	topics:

Spaghetti	pattern
Element	locator	strategies
XPath	and	CSS	selector	query	languages
Relative	and	absolute	path
Browser	inspector	tool
Test	run	order
Chain	Linked	pattern
Big	Ball	of	Mud	pattern

Introducing	the	Spaghetti	pattern
In	automated	test	projects,	the	Spaghetti	pattern	development	is	characterized	by	lack	of
perceived	architecture	and	design.	This	style	of	test	development	evokes	an	image	of	bowl
of	spaghetti,	where	each	strand	of	spaghetti	can	represent	a	single	test	or	multiple	tests
intertwined	so	tightly	together	that	it	becomes	difficult	to	tell	one	apart	from	another.
Furthermore,	it	is	close	to	impossible	to	understand	anything	at	a	glance	without	spending
time	fishing	out	and	untangling	each	individual	strand	of	spaghetti	from	the	bowl.

Tests	in	this	pattern	not	only	depend	on	the	execution	order	of	all	the	tests,	but	also	tend	to
over-share	internal	private	components	with	each	other.	The	run	order	is	important
because	each	test	is	not	self	sufficient	and	independent,	and	thus	needs	previously	run	tests
to	set	up	the	test	environment.	For	example,	a	login	test	requires	the	registration	test	to
successfully	register	a	new	user,	instead	of	having	an	existing	user	or	registering	one	on	its
own.	Furthermore,	variables	in	the	test	suite	are	shared	on	a	global	level,	allowing
individual	tests	too	much	control	over	the	whole	test	suite.

Note
The	Spaghetti	pattern	is	a	close	relative	to	the	Chain	Linked	pattern	and	the	Big	Ball	of
Mud	pattern.	We	will	discuss	both	of	these	patterns	at	the	end	of	this	chapter.

www.allitebooks.com

http://www.allitebooks.org

Advantages	of	the	Spaghetti	pattern
Even	though	the	Spaghetti	pattern	is	an	anti-pattern,	it	is	not	without	some	positive
elements.	Let’s	take	a	look	at	several	positives:

Quick	start:	The	reason	that	this	type	of	a	development	pattern	is	initially	popular	is
because	it	is	by	far	the	easiest	and	fastest	way	to	get	going.	No	need	to	sit	down	and
plan	ahead;	just	use	Record	and	Playback	to	record	one	long	test	session	and	split	it
up	into	smaller	chunks.
Smaller	code	base:	Since	all	the	tests	depend	on	each	other,	we	do	not	need	to	repeat
test	actions	within	individual	tests.	As	a	result,	each	individual	test	is	smaller	in	code
size,	and	we	do	not	need	to	have	unique	test	data	for	each	test.

Tip
This	is	by	far	the	worst	justification	for	any	anti-pattern.	We	no	longer	live	in	the
Commodore	64	days;	if	a	test	or	a	piece	of	code	needs	an	additional	20	lines	of	code
to	become	easy	to	comprehend,	then	always	choose	verbosity	over	brevity.

Smoke	tests:	By	definition,	smoke	tests	need	to	be	fast,	brief,	and	leave	as	small	a
test	data	footprint	as	possible.	Having	several	tests	that	reuse	a	single	registered	user
in	production	is	a	good	practice.	No	need	to	fill	up	the	production	database	with	test
users.

Note
We	will	discuss	different	test	suite	types,	including	smoke	tests,	in	more	detail	in
Chapter	8,	Growing	the	Test	Suite.

Disadvantages	of	the	Spaghetti	pattern
Aside	from	the	ability	to	get	going	fast,	the	Spaghetti	pattern	has	many	disadvantages:

Anti-pattern:	Building	one	test	on	top	of	another	seems	like	a	great	idea	at	first.
After	all,	this	is	how	we	test	applications	when	we	do	it	manually.	However,	in
context	of	test	automation,	this	leads	to	long-term	maintainability	problems.	Thus,	it
is	considered	an	anti-pattern.
Tight	coupling:	The	more	tightly	integrated	individual	parts	of	the	application	are,
the	more	indistinguishable	they	are	from	each	other.	Tight	coupling	prevents	code
reusability	and	leads	to	duplication.

Note
We	will	concentrate	on	code	reusability	and	decoupling	in	Chapter	3,	Refactoring
Tests.

No	random	order:	Dependence	on	the	strict	order	of	execution	leads	to	the	inability	to
run	our	tests	in	a	random	order.	This	might	not	seem	like	a	problem	at	first,	until	we	need
to	debug	test	data	pollution	in	the	test	suite.

Note
Data	pollution	occurs	when	a	certain	test	puts	the	test	environment	into	an	unrecoverable
state	by	adding	unexpected	data	into	the	database	or	memory.	If	that	test	is	executed	last	in
the	test	suite,	an	application	crash	might	not	be	detected	until	the	execution	order	is
accidentally	switched.

No	parallel	test	runs:	Once	the	test	suite	grows	in	size,	we	might	wish	to	reduce	the
total	execution	time	by	running	multiple	tests	in	parallel.	Having	each	test	depend	on
the	execution	order	of	the	whole	suite	will	prevent	us	from	accomplishing	this	task.
Covers	up	failures:	A	failure	in	the	beginning	of	the	test	suite	can	prevent	the
execution	of	the	entire	test	suite.	Several	tests	that	would	have	failed	later	in	the	suite
are	never	executed.
No	resilience:	Certain	tests	are	not	able	to	fulfill	their	target	goals.	A	credit	card
processing	test	that	does	not	know	how	to	register	a	required	user	will	never	run	if
the	user	registration	test	fails	due	to	an	unrelated	issue.

Testing	the	product	review	functionality
Our	website,	like	many	other	modern	websites,	allows	users	to	leave	positive	and	negative
feedback	on	a	given	product.	Higher-rated	comments	on	any	given	product	can	provide	a
much	needed	boost	in	sales.	As	with	any	situation	involving	monetary	incentives,
someone	will	try	to	game	the	system	and	make	money	in	the	process.	So,	aside	from	the
ability	to	leave	a	comment,	our	website	has	a	rudimentary	fraud	prevention	system.	It	will
prevent	any	suspiciously	duplicate	comments/ratings	from	being	added	to	any	product.

It	is	now	our	task	to	test	both	of	these	features.	So,	let’s	explicitly	state	the	target	goals	of
the	tests	we	will	now	implement:

As	a	website	user,	I	should	be	able	to	leave	a	product	review	for	any	product,	and	the
resulting	review	should	be	immediately	visible	on	the	product’s	page
As	a	fraudulent	user,	I	should	be	prevented	from	posting	duplicate	product	reviews
on	our	website

Starting	a	product	review	test
Let’s	start	off	by	making	a	new	file,	product_review_test.rb.	In	this	file,	we	will	be
writing	our	tests	for	this	chapter.	We	will	copy	and	paste	most	of	the	initial	boilerplate
from	cheese_finder_test.rb	from	the	previous	chapter.

Note
Boilerplate	code	refers	to	parts	of	the	code	that	remain	close	to	identical	between	different
files/classes.	Several	examples	of	boilerplate	are	includes,	requires,	and	imports.	These
are	used	by	most	programming	languages	to	specify	dependencies	used	in	the	current	file.

The	starting	point	of	our	test	will	look	like	this:

As	described	in	the	previous	chapter,	in	our	test	we	created	an	instance	of	selenium	and
sent	it	a	command	to	navigate	to	our	website	of	choice.	Later,	we	have	a	comment	#Test
work	goes	here	followed	by	a	command	to	close	the	instance	of	Firefox	we	are	using
with	selenium.quit.

Tip
The	test	name	and	class	name	for	this	file	has	changed.	You	can	find	a	more	detailed
explanation	of	Ruby	class	names	under	the	Understanding	test	class	naming	section,	in
Appendix,	Getting	Started	with	Selenium.

The	steps	of	our	new	product	review	test	are	listed	as	follows:

1.	 Locate	and	click	on	the	MORE	INFO	button	for	the	product	of	your	choice.

2.	 Check	whether	the	correct	product	was	selected.
3.	 Fill	in	the	user	information,	comment,	and	rating	and	submit	the	review.

4.	 Check	whether	the	product	review	is	properly	saved:

Let’s	implement	our	test!

Locating	elements	on	the	page
The	first	step	of	the	test_add_new_review	implementation	is	to	navigate	to	the	home
page	of	our	site	and	click	on	the	MORE	INFO	button	of	the	product	we	wish	to	review.
However,	it	has	to	be	the	product	in	the	SPECIAL	OFFERS	section,	as	shown	in	the
following	screenshot:

Since	there	are	multiple	products	with	the	MORE	INFO	button	and	sometimes	we	have
the	same	product	on	the	page	multiple	times,	each	with	the	MORE	INFO	button,	the	task
seems	impossibly	hard.	The	following	screenshot	shows	an	example	of	a	product	with
three	occurrences	of	the	MORE	INFO	button:

But	fret	not;	the	solution	is	extremely	simple	once	we	learn	about	different	ways	of
locating	elements	on	the	page.	The	first	step	is	to	locate	the	element	we	want	to	interact
with	on	the	page.	For	this	purpose,	most	modern	browsers	have	a	built-in	page	inspector.

Using	a	browser’s	element	inspector
Until	recently,	when	writing	an	automated	test,	we	would	have	to	open	up	the	HTML
source	of	any	given	page	and	hunt	through	the	code	to	find	the	element	we	want.	Needless
to	say,	this	was	difficult	and	time-consuming.	In	recent	iterations	of	Firefox	and	Chrome
browsers,	the	functionality	of	the	Firebug	plugin	was	copied	into	the	browser,	allowing
users	to	interactively	inspect	any	element	on	the	page.	This	makes	our	life	as	test
automators	a	lot	easier!	Let’s	get	our	hands	dirty	with	the	page	inspector.

Note
Firebug	was	one	of	the	earliest	Firefox	plugins,	which	gave	users	the	ability	to	inspect	the
elements	on	the	page,	directly	interact	with	CSS,	and	do	much	more.	The	majority	of
built-in	inspectors	function	identically	to	Firebug.	This	plugin	is	still	backwards
compatible	with	Firefox	Version	3,	and	it	is	a	great	option	for	users	who	are	not	able	to	use
latest	version	of	Firefox	or	Chrome.	For	more	info,	visit	https://addons.mozilla.org/en-
US/firefox/addon/firebug/.

To	inspect	the	desired	element,	all	we	have	to	do	is	right	click	on	the	MORE	INFO
button	of	the	product	and	select	the	Inspect	Element	option	from	the	context	menu,	as
shown	in	the	following	screenshot:

Once	the	inspector	window	opens,	we	will	see	the	following	breakdown	of	the	page
source:

https://addons.mozilla.org/en-US/firefox/addon/firebug/

If	you	ever	feel	lost	looking	at	the	inspector,	just	remember,	hovering	over	a	piece	of
HTML	code	will	highlight	that	element	on	the	page.

Using	the	element	IDs,	tags,	classes,	and	position	within	parent	elements,	we	are	able	to
express	an	exact	location	of	any	element	on	the	page.	Let’s	talk	about	different	ways	of
expressing	the	element	locations	next.

Introducing	locator	strategies
When	giving	driving	direction	to	someone,	we	can	express	said	instructions	in	multiple
ways.	We	can	show	the	destination	on	a	map	or	give	a	turn-by-turn	instruction,	or	even
give	the	individual	the	final	address	and	let	them	use	a	GPS	to	find	the	address.	Similarly,
WebDriver	allows	us	to	find	an	element	through	the	following	strategies:

ID:	This	finds	an	element	that	has	an	ID	provided.	By	far,	it’s	the	best	way	to	locate
any	element	because	we	can	jump	directly	to	the	element	without	having	to	deal	with
surrounding	elements	or	parent	elements.

Note
Even	though	finding	an	element	by	ID	is	the	best	location	strategy,	we	have	to	use	it
with	care.	There	is	no	guarantee	that	an	element	we	want	will	have	an	ID	attached	to
it,	or	that	a	given	element	ID	is	unique.

Class	name:	This	will	locate	an	element(s)	with	a	given	class	name.

Note
We	might	get	different	search	results	if	we	use	the	find_element	method	vs
find_elements.	The	first	method	will	return	the	first	element	found	out	of	all
matches	on	the	page;	the	second	method	will	return	all	matching	elements.	In	our
case,	searching	for	all	of	the	buttons	with	a	class	of	more	information	will	return
many	results.	Thus,	it	is	not	the	most	useful	approach.

Link	text:	This	finds	a	link	that	has	an	exact	text	in	it;	in	our	case,	MORE	INFO.

Note
Since	most	modern	website	use	links	that	are	styled	with	CSS	to	look	like	buttons,
the	term	link	and	button	are	used	interchangeably	in	this	book.

Partial	link	text:	This	is	similar	to	link	text	locator,	but	allows	a	wild	card	search	for
partial	text	match.	In	our	case	a	search	for	info	will	return	all	of	the	MORE	INFO
buttons.
Name:	This	searches	for	all	elements	that	have	a	name	property.

Note
The	name	is	not	the	most	popular	element	property	in	modern	websites,	thus	this
locator	strategy	is	rarely	used.

Tag	name:	This	searches	for	an	element’s	tag	name,	such	as	input	or	label.
CSS	selector:	This	searches	for	elements	with	custom-written	CSS	selector	style
query.
XPath:	This	searches	for	elements	with	custom-written	XPath	style	query.

In	a	perfect	world,	all	of	the	buttons	on	the	home	page	would	have	unique	IDs.	Within	the
ID,	we	would	be	able	to	specify	the	product	name	or	SKU	number	and	the	location	of	the
product,	such	as	the	Special	Offers	section	or	in	the	Featured	section.	In	that	case,	if	we

ever	wanted	to	click	on	the	exact	MORE	INFO	button	we	want,	all	that	we	would	have	to
do	is	write	this	one	line:

selenium.find_element(:id,	"more-info-product-25-special-offer").click

Sadly,	things	are	typically	not	this	simple,	and	elements	don’t	have	unique	IDs	that	we	can
use.	More	often	than	not,	we	have	to	find	the	location	of	the	element	using	CSS	selectors
or	XPath;	in	the	next	section,	we	will	learn	about	these	advanced	techniques.

Tip
Just	because	our	website	does	not	have	unique	IDs,	it	does	not	mean	we	have	to	give	up
and	try	to	find	a	difficult	solution	for	finding	and	element.	It	is	amazing	how	often	a
unique	identifier	can	be	added	to	the	website	by	simply	talking	to	the	developers	and
making	a	good	case	for	it.	If	an	argument	such	as	“it	will	make	testing	much	simpler	for
me”	does	not	work,	an	argument	of	making	the	website	accessible	for	the	blind	might
work.	Screen	readers	work	best	with	lots	of	uniquely	identifiable	elements.

Using	advanced	locator	strategies
Searching	for	an	element	by	using	the	unique	ID	of	the	element	is	similar	to	giving	your
friends	the	address	of	the	party	and	letting	them	figure	out	the	directions	with	a	smart
phone.	Aside	from	several	glitches	in	the	navigation	software,	it	is	the	fastest	and	simplest
way	to	get	around.	However,	when	a	smart	phone	or	a	map	is	not	available,	we	have	to
write	directions	on	a	napkin.

We	can	give	directions	in	two	ways,	the	absolute	path	and	relative	path.	Let’s	compare
these	two	types	of	directions:

Absolute	path:	This	is	a	very	detailed	set	of	instructions	starting	from	the	friend’s
house	and	gives	every	turn,	road	name,	number,	and	even	the	distance	between	each
turn.	My	dad	typically	gives	directions	in	this	manner.
Relative	path:	This	approach	is	a	little	more	relaxed	and	is	the	preferred	way	of
giving	directions	by	my	mother.	These	directions	typically	look	like	this:	“Get	to	that
big	store	where	we	bought	this	rug	from,	you	remember?	Then	take	a	left	and	drive
until	you	see	the	blue	gas	station,	turn	around,	and	turn	right	on	the	second	stop	sign
you	see.”

Both	approaches	have	their	own	advantages	and	disadvantages.	The	absolute	path	requires
the	least	amount	of	thinking	and	is	simplest	to	follow.	However,	it	is	very	rigid	and
becomes	useless	if	there	is	a	traffic	accident	on	the	way	and	we	need	to	find	new
directions.	The	relative	path	requires	the	most	concentration	from	the	driver,	but	at	the
same	time	is	the	most	flexible.	By	setting	the	starting	point	of	the	directions	at	a	known
location	that	is	close	to	the	destination,	it	allows	the	driver	to	take	any	route	he	or	she
wishes.

As	you	already	guessed,	the	driving	directions	example	is	a	thinly	veiled	metaphor	for
locating	elements.	The	two	most	common	ways	of	describing	the	direction	to	elements	on
the	page	are	called	XPath	and	CSS	selector.	Let’s	discuss	how	absolute	and	relative	paths
are	used	in	these	two	query	languages.	First	we	will	start	with	the	absolute	path.

Using	the	absolute	path

If	we	write	out	the	absolute	path	to	the	MORE	INFO	button	we	want	to	click	on,	we
would	start	from	the	very	top:	from	the	<html>	tag.	Then,	we	would	go	into	the	<body>
tag,	followed	by	the	<div>	tag,	and	so	on.	The	fully	written	out	path	looks	like	this	in
XPath	notation:

/html/body/div[4]/div[1]/div[4]/div[1]/a[2]

Note
The	absolute	path	for	the	button	written	in	CSS	selector	is	this	(it	is	just	as	complicated
and	ugly	as	the	XPath	example):

html.js	body.home.blog.gecko.et_includes_sidebar	div#main-content-

area.container	div#special-items.clearfix	div.special-item	div.et-

links.clearfix	a.more-info

As	you	can	see,	when	reading	from	right	to	left,	we	are	looking	for	a	second	link	<a>	that
is	in	the	first	<div>	tag	of	the	fourth	<div>	tag	and	so	on,	until	<html>	is	found.
Computers	love	this	type	of	description,	as	it	is	easy	to	understand:	just	travel	two	miles,
take	the	third	left,	and	travel	five	miles	more.	But	wait	a	minute,	what	happens	if	we	add
one	more	new	product	to	the	home	page?	Well,	all	of	the	numbers	will	be	off	by	one	and
the	test	will	now	click	on	the	wrong	link.	Of	course,	you	did	say	that	you	wanted	the
fourth	<div>	tag	and	not	the	fifth	after	all.	Even	though	using	the	absolute	path	is	super
fast	and	efficient	for	the	computer,	it	is	rarely	used	since	it	is	very	easy	to	break.	Thus,	we
use	the	relative	path	the	majority	of	the	time	to	find	the	elements	we	want.

Tip
Hard	coding	the	position	of	any	element	on	the	page	is	a	poor	practice	and	should	be
avoided	at	all	costs.

Using	the	relative	path

The	best	practice	to	find	an	element	is	to	use	as	much	contextual	information	as	possible
to	find	the	desired	element.	To	accomplish	this,	we	need	to	start	from	the	closest	most
unique	parent	element	and	drill	our	way	down	to	the	child	element	that	we	want.	Let’s
look	at	a	visual	step-by-step	demonstration:

1.	 Since	the	button	we	are	interested	in	is	in	the	Special	Offers	section,	this	will
become	the	starting	point	for	the	element	search.

2.	 Within	the	special-items	container,	we	have	four	special-item	products.

3.	 All	of	the	special-item	containers	have	a	button	with	the	more-info	class.	Since
there	are	no	unique	IDs	to	help	us	distinguish	one	product	from	the	other,	we	look	at
the	target	URL	for	all	of	the	buttons.	Once	we	find	the	one	that	should	lead	us	to	the
correct	product,	we	will	click	on	it.

In	this	example,	we	started	by	looking	at	the	grandparent	of	the	desired	element	and
drilling	down	to	the	desired	child	element.	XPath	and	CSS	selectors	allow	reverse
traversal	from	a	child	element	up	to	the	parent	element.

Writing	locator	strategy	code
Now	that	you	have	a	theoretical	understanding	of	the	search,	let’s	take	a	look	at	a	couple
of	practical	examples.	We	have	three	ways	of	implementing	the	search	for	the	element.
When	confronted	with	a	similar	situation,	always	choose	the	approach	that	is	best	for	the
current	situation.

Tip
Keep	in	mind	that	sometimes	one	of	the	approaches	will	be	a	lot	shorter	than	the	other
two.	However,	the	smallest	solution	that	is	difficult	to	understand	is	always	worse	than	a
long	solution	that	is	obvious.

Using	chained	selector	strategy	methods
Typically,	using	the	find_element	methods	chained	in	the	row	is	the	simplest	solution	to
understand.	It	is	highly	verbose,	but	each	individual	step	is	small,	concise,	and	easy	to
understand	compared	to	a	cryptic	XPath	or	CSS	selector	statement.	Let’s	break	down	each
step	of	the	solution:

special_items	=	selenium.find_elements(:class,	"special-item")

The	first	step	is	to	collect	all	of	the	special-item	DIVs,	for	example:

This	will	give	us	an	array	of	possible	options.	Next,	we	refine	our	search	by	looping
through	all	of	the	special-item	DIVs	and	collecting	all	the	buttons	that	have	the	more-
info	class:

more_info_buttons	=	special_items.collect	do	|special_item|

		special_item.find_element(:class,	"more-info")

end

Note
The	collect	method	is	useful	to	loop	through	an	existing	array	and	build	a	new	array	of
selected	items.

Finally,	we	use	the	find	method	to	loop	through	the	array	and	pick	the	button	whose	href
attribute	matches	the	URL	of	the	desired	product:

button_to_click	=	more_info_buttons.find	do	|button|

		button.attribute("href").include?("our-love-is-special")

end

Now	that	we	located	the	MORE	INFO	button,	we	are	ready	to	click	on	it!

Note
The	uninterrupted	code	snipped	looks	like	this:

special_items	=	selenium.find_elements(:class,	"special-item")					

more_info_buttons	=	special_items.collect	do	|special_item|

		special_item.find_elements(:class,	"more-info")

end

button_to_click	=	more_info_buttons.find	do	|button|

		button.attribute("href").include?("our-love-is-special")

end

Using	the	CSS	selector
Looking	for	the	desired	element	with	CSS	selector	can	be	accomplished	with	one	line,	but
it	will	require	basic	knowledge	of	CSS	selector	syntax:

selenium.find_element(:css,	'.special-item	a[href*="our-love-is-

special"].more-info')

In	this	code	snippet,	we	use	the	.special-item	statement	to	find	all	of	the	special	items.
We	then	refine	our	search	to	retrieve	all	of	the	links	with	the	appropriate	href	attribute.
We	finish	our	search	by	narrowing	down	the	link	list	to	only	the	links	with	the	more-info
class.

Note
A	very	good	beginner	tutorial	for	CSS	selector	is	located	on	the	SauceLabs	website:
https://saucelabs.com/resources/selenium/css-selectors.

Using	XPath
In	XPath	notation,	the	search	query	will	look	like	this:

selenium.find_element(:xpath,	"//div[@class='special-

item']//a[contains(@href,	'our-love-is-special')	and	@class='more-info']")

The	//	symbol	in	XPath	denotes	a	relative	position	of	elements	compared	to	each	other.

https://saucelabs.com/resources/%20selenium/css-selectors

Note
W3Schools	has	a	detailed	XPath	tutorial	at	http://www.w3schools.com/XPath/.

When	trying	to	find	an	element,	don’t	be	shy	to	use	any	mixture	of	the	mentioned
strategies	if	you	need	to	accomplish	the	task.	Mix	and	match	as	much	as	you	need,	as	long
as	it	is	clearly	expressed	and	easy	to	understand.

http://www.w3schools.com/XPath/

Implementing	clicks	and	assertions
Now	that	we	have	had	a	crash	course	in	element	locator	strategies,	we	should	be	able	to
face	any	challenge—no	matter	how	difficult	it	is.	Using	the	CSS	selector	strategy,	we	will
click	on	the	MORE	INFO	button	for	our	product	and	check	whether	we	are	taken	to	the
correct	product	page	by	checking	the	URL,	as	shown	in	the	following	code:

selenium.find_element(:css,	'.special-item	a[href*="our-love-is-

special"].more-info').click					

assert_equal("http://awful-valentine.com/our-love-is-special/",	

selenium.current_url)

Next,	we	will	use	the	class	locator	to	get	the	category-title	DIV	and	then	check	whether
the	product	title	matches	the	expectation:

assert_equal("Our	love	is	special!!",	selenium.find_element(:class	

"category-title").text)

Our	test	file	now	looks	like	this:

Next,	we	will	add	some	lines	to	fill	out	the	product	review	form	and	submit	the	form.	We
will	accomplish	this	with	these	seven	lines	of	code:

There	are	two	items	of	note	in	preceding	code:

On	line	18,	we	are	using	CSS	selector	strategy	to	click	on	the	five-star	rating	for	the
product.
On	line	20,	we	append	the	computer’s	username	to	the	comment	to	make	it	unique
enough	to	allow	the	product	review	to	not	be	rejected	by	the	fraud	filter.	We	will

improve	this	situation	in	Chapter	4,	Data-driven	Testing.

After	the	review	form	is	submitted,	the	product	page	will	refresh	and	the	new	review
should	appear	on	the	page.	Time	to	add	some	assertions	to	verify	that	everything	was
saved	properly.

We	could	cheat	a	little	and	just	make	an	assertion	that	our	semi-unique	comment,	which
we	left	on	the	review	form,	appears	somewhere	on	the	page.	However,	this	approach
might	get	us	in	trouble	if	an	identical	comment	already	exists	on	the	page;	our	test	would
not	be	able	to	distinguish	the	existing	review	from	the	new	one	we	just	created.	It	is	a
much	better	approach	to	capture	the	container	of	the	newly	created	review	and	check
whether	each	piece	of	information	is	correct.

Lucky	for	us,	when	a	new	comment	is	created,	the	unique	review	ID	is	placed	as	a
hyperlink	anchor	into	the	browser’s	URL.	Take	a	look	at	this:

Let’s	use	the	selenium.current_url	method	to	get	the	URL	and	parse	out	the	unique
review	ID:

comment_id	=	selenium.current_url.split("#").last

In	the	preceding	code,	we	are	splitting	the	whole	URL	string	on	the	hash	tag	(#)	and	taking
the	last	item	from	the	resulting	array;	for	me,	it	was	the	ninth	comment	posted	to	the

website	so	my	unique	ID	is	comment-9.

Now	that	we	have	a	way	to	pull	out	just	the	data	we	care	about,	let’s	store	the	review
container	in	the	review	variable	so	that	we	can	interrogate	it	later.	The	code	should	look
like	this:

Now	let’s	get	the	reviewer’s	name	and	comment,	and	then	assert	the	expected	value	to	the
actual	value:

Let’s	get	a	little	creative;	check	the	date	of	the	newly	created	comment.	We	will	take	a
human	readable	date	that	looks	something	like	March	3,	2014	at	3:05	pm	and	convert	it
into	a	DateTime	object	with	the	parse	method.	After	the	parsing	is	complete,	we	will	use
the	Date.today	method	call	to	assert	that	the	timestamp	on	screen	matches	today.	The
code	looks	like	this:

Let’s	take	a	look	at	our	comment	test	in	its	full	glory:

Duplicating	the	product	review	test
Our	second	test	will	be	a	prime	example	of	the	Spaghetti	pattern.	It	will	completely
depend	on	the	first	test	to	set	up	the	test	environment	and	make	it	ready.	The	second	test	is
slightly	shorter	than	the	first,	since	it	only	has	one	assert	at	the	end.	Let’s	take	a	look	at
test_adding_a_duplicate_review:

Due	to	the	fact	that	this	test	relies	on	unique	data,	we	might	need	to	alter	the	text	that	goes
into	the	comment	text	box	in	order	to	get	the	tests	to	pass	during	multiple	concurrent	runs.
This	is	done	intentionally	to	show	that	data	going	into	the	text	fields	is	important	and	can
be	extremely	difficult	to	manage.

Note
We	will	learn	how	to	properly	handle	test	data	in	Chapter	4,	Data-driven	Testing.

Reasons	for	failures
We	finished	our	two	tests	and	we	should	now	examine	just	how	fragile	they	are.	Even
though	the	design	of	our	tests	made	sense	at	the	time	of	writing	them,	they	will	fail	at	the
slightest	provocation.	Let’s	imagine	a	couple	of	real-life	situations.

The	sales	team	decided	that	having	to	change	the	amount	of	exclamation	marks	in	the
name	of	the	product.	These	little	tweaks	happen	all	the	time.	We	won’t	change	the	actual
website,	but	we	will	change	our	test	to	expect	a	different	amount	of	exclamation	marks	in
the	assertion.	This	will	provide	a	sufficient	discrepancy	between	the	test	and	reality	to
make	the	test	fail.

Note
You	can	download	the	full	test	code	from	http://awful-valentine.com/code/chapter-2.

Let’s	change	the	assertion	in	test_add_new_review	to	look	like	this:

Running	the	tests	will	now	give	the	following	output:

Let’s	do	a	postmortem	of	our	tests	and	list	several	bad	mistakes:

Test	on	test	dependence:	This	is	the	most	obvious	test.	If	the	first	test	we	execute
does	not	complete	the	review	creation	process,	the	environment	is	not	in	an	ideal
state	for	the	second	test	to	run.
Hardcoded	test	data:	Both	tests	have	all	of	the	website	implementation	details
hardcoded.	The	URL	of	the	product	page	and	the	title	of	the	product	being	tested	are
written	in	the	test	itself.	If	the	any	of	these	details	ever	change	even	minutely,	we	will

http://awful-valentine.com/code/chapter-2

have	to	go	and	update	every	test	that	has	product	data	hardcoded.	Furthermore,	if	the
product	data	is	different	between	test	environments,	these	tests	cannot	be	reused.	We
will	discuss	test	data	management	in	Chapter	4,	Data-driven	Testing.
Code	duplication:	A	lot	of	actions,	such	as	clicking	on	links	and	filling	out	form
data,	are	duplicated	between	the	tests.	We	will	fix	this	problem	in	the	next	chapter.

All	we	wanted	to	do	was	to	test	the	functionality	of	the	website,	and	the	majority	of	the
choices	we	made	were	not	obviously	bad.	However,	the	end	result	is	a	completely	unstable
test	suite.	Thus,	we	inadvertently	used	an	anti-pattern.	If	uncorrected,	our	test	suite	will
become	so	unstable	that	the	whole	team	will	ignore	it	altogether.

Note
If	you	are	feeling	adventurous	and	want	to	destabilize	our	test	suite	in	a	couple	of	other
ways,	you	can	experiment	with	following	changes:

1.	 Delete	the	first	test	all	together,	and	only	run	the	second	test.
2.	 Rename	the	second	test	to	test_add.

In	both	cases,	your	test	suite	will	fail	since	the	duplication	test	is	not	able	to	recover	from
its	rigid	dependencies	on	the	first	test.

Before	concluding	this	chapter,	let’s	briefly	discuss	two	other	development	patterns	that
are	closely	related	to	the	Spaghetti	pattern.	They	are	not	so	closely	related	as	to	call	them
siblings,	so	let’s	just	call	them	cousins	for	now.	If	we	wish	to	make	a	slight	upgrade	to	our
Spaghetti	tests,	we	can	convert	them	to	the	Chain	linked	pattern.	If	we	want	to	downgrade
the	quality	of	the	test	suite,	the	Big	Ball	of	Mud	pattern	is	a	suitable	pattern	for	us.

The	Chain	Linked	pattern
The	Chain	Linked	pattern	is	an	improvement	on	the	Spaghetti	pattern.	Unlike	the	bowl	of
spaghetti,	an	outstretched	length	of	chain	can	characterize	this	pattern.	Each	link	in	the
chain	is	an	individual	test	and	is	an	entity	on	its	own.	Even	though	each	test	is	self
contained	and	does	not	share	too	much	with	its	neighbors,	it	still	relies	on	a	rigid	order	of
execution.	Most	tests	in	this	pattern	rely	on	previous	tests	to	set	up	the	environment	to	be
just	right.	This	pattern	is	a	huge	improvement	on	the	Spaghetti	pattern	in	its	long-term
maintainability;	however,	since	the	whole	test	suite	needs	to	be	executed	every	time,	it	is
neither	efficient	nor	easy	to	use.	In	conclusion,	the	Chain	Linked	pattern	might	not	be	the
best	way	to	approach	writing	a	test	suite.	However,	it	is	an	overall	improvement	over	the
Spaghetti	pattern,	since	it	segregates	individual	tests	into	more	or	less	self-contained	units.

The	Big	Ball	of	Mud	pattern
Brian	Foote	and	Joseph	Yoder	first	popularized	the	Big	Ball	of	Mud	in	their	self-titled
paper.	Unlike	the	Spaghetti	pattern,	where	the	test	suite	can	be	separated	into	individual
strands,	Big	Ball	of	Mud	does	not	have	any	formal	structures	that	will	allow	a	distinction
between	any	individual	components.	Test	data	and	results	are	promiscuously	shared
amongst	most	distant	and	unrelated	components	until	everything	is	global	and	mutable
without	warning.	Unintentional	test	failures	occur	when	a	component	is	changed	for	a	new
test	without	the	realization	that	hundreds	of	other	tests	depend	on	it.	To	exacerbate	the
problem,	there	is	no	easy	way	to	find	all	of	the	interdependencies	since	everything	is
merged	together	like	a	piece	of	wet	clay.

Adoption	of	this	pattern	is	usually	unintentional	and	stems	from	being	developed	over
long	periods	of	time	with	different	individuals	working	on	different	pieces	without	any
overall	architectural	plan.	The	initial	success	of	just	making	it	work	leads	to	shortcuts	and
haphazard	patches,	which	require	more	and	more	workarounds	just	to	add	one	additional
feature.	In	comparison	to	the	Spaghetti	pattern,	this	state	of	affairs	is	in	much	more	dire
need	of	repair.

Summary
In	this	chapter,	we	added	two	new	tests	to	our	test	suite.	In	order	to	do	that,	we	had	to	first
learn	some	advanced	techniques	of	locating	elements	on	the	page;	no	matter	how
complicated	the	website	might	be,	we	can	now	test	it!	By	the	end	of	the	chapter,	we	had
two	tests	that	heavily	depended	on	each	other;	we	watched	them	crash	and	burn	at	the
slightest	problem.	We	then	analyzed	the	shortcomings	of	the	Spaghetti	pattern	and	briefly
talked	about	the	two	related	anti-patterns:	the	Chain	Linked	pattern	and	the	Big	Ball	of
Mud.

In	the	next	chapter,	we	will	refactor	our	test	suite	to	dry	out	our	code.	We	will	make	our
tests	more	independent	and	stable	by	decoupling	them	from	the	implementation	details
and	each	other.

Chapter	3.	Refactoring	Tests
	
“A	bear,	however	hard	he	tries,

Grows	tubby	without	exercise….”
	

	 —A.	A.	Milne,	“Teddy	Bear”	from	The	Complete	Poems	of	Winnie-the-Pooh

Exercise	is	an	important	part	of	keeping	your	body	fit;	however,	it	can	be	easily	despised.
Exercising	takes	a	lot	of	work,	causes	a	lot	of	physical	pain,	and	gives	very	few	instant
results	to	keep	you	motivated.	Our	test	suite	needs	some	upkeep	and	refactoring	to	remain
in	pristine	condition.

In	the	previous	chapter,	we	wrote	two	tests	but	we	did	it	in	a	quick	and	sloppy	manner.	A
lot	of	code	was	duplicated,	and	simply	copied	and	pasted.	If	we	keep	growing	our	suite	in
a	similar	manner,	it	will	become	unmanageable	in	no	time!	In	this	chapter,	we	will	put	our
test	suite	on	a	treadmill	to	get	it	into	a	better	overall	shape.	We	will	cover	the	following
topics:

Refactoring	tests
The	DRY	principle
The	DRY	testing	pattern
Setup	and	teardown	methods
The	Hermetic	test	pattern
Test	independence
Using	timestamps	to	create	unique	test	data
Sharing	common	functionalities	between	tests
Random	run	order	practice

Refactoring	tests
Since	this	chapter	will	be	focused	on	refactoring	tests,	let’s	first	define	this	term.
Refactoring	is	the	act	of	restructuring	your	code	to	improve	the	internal	efficiency,
stability,	and	long-term	maintainability	without	adding	or	modifying	any	of	the	underlying
functionalities.	At	the	end	of	the	refactoring	session,	we	should	not	have	any	new	tests;	the
only	goal	is	to	improve	the	existing	tests.

Since	there	are	no	obvious	instant	results	such	as	having	10	more	new	tests,	refactoring
may	seem	like	a	waste	of	time.	However,	having	two	tests	that	do	not	randomly	fail	is	a	lot
more	productive	in	the	long	run	than	having	12	tests	that	cannot	be	relied	on.	Refactoring
your	tests	is	similar	to	calisthenics;	if	you	don’t	exercise,	you	will	probably	die	of	a	heart
attack	20	years	before	your	time.	That	being	said,	we	will	not	add	any	new	tests	in	this
chapter.	Instead,	we	will	improve	the	product	review	tests	in	Chapter	2,	The	Spaghetti
Pattern.

The	DRY	testing	pattern
Treating	automated	tests	with	the	same	care	and	respect	as	the	application	that	we	are
trying	to	test	is	the	key	to	long-term	success.	Adopting	common	software	development
principles	and	design	patterns	will	prevent	some	costly	maintenance	in	the	future.	One	of
these	principles	is	the	Don’t	Repeat	Yourself	(DRY)	principle;	the	most	basic	idea
behind	the	DRY	principle	is	to	reduce	long-term	maintenance	costs	by	removing	all
unnecessary	duplication.

Tip
There	are	a	few	times	when	it	is	okay	to	have	a	duplicate	code,	at	least	temporarily.	As
Donald	Knuth	so	eloquently	stated,	“Premature	optimization	is	the	root	of	all	evil	(or	at
least	most	of	it)	in	programming.”

The	DRY	testing	pattern	embraces	the	DRY	principle	and	expands	on	it.	Not	only	do	we
remove	the	duplicate	code	and	duplicate	test	implementations,	but	we	also	remove
duplicate	test	goals.

Note
A	test	goal	or	test	target	is	the	main	idea	behind	any	given	test.	The	rule	of	thumb	is	if	you
cannot	describe	what	the	test	is	supposed	to	accomplish	in	a	sentence	or	two,	then	the	test
is	too	complicated	or	it	does	not	understand	what	it	is	testing.	A	good	example	of	a	test
goal	would	be	“an	anonymous	user	should	be	able	to	purchase	product	X	on	the	website.”

We	are	trying	to	avoid	accidentally	testing	any	functionality	not	related	to	the	current	test.
For	example,	if	the	target	of	the	current	test	is	the	registration	flow,	this	test	should	not	fail
if	a	social	media	icon	fails	to	load.	Social	media	icons	should	have	a	test	of	their	own	that
is	not	related	to	registration	tests.

Note
David	Thomas	and	Andrew	Hunt	formulated	the	DRY	principle	in	their	book,	The
Pragmatic	Programmer,	by	Andrew	Hunt	and	David	Thomas,	published	by	Addison-
Wesley	Professional.	The	DRY	principle	is	sometimes	referred	to	as	Single	Source	Of
Truth	(SSOT)	or	Single	Point	Of	Truth	(SPOT)	because	it	attempts	to	store	every	single
piece	of	unique	information	in	one	place	only.

Advantages	of	the	DRY	testing	pattern
Writing	tests	using	the	DRY	testing	pattern	has	many	advantages.	Here	are	four
advantages:

Modular	tests:	Tests	and	test	implementations	are	self-sufficient.	Any	test	can	run	in
any	order.	Also,	test	actions	such	as	clicking	or	registering	a	new	user	are	shared
during	the	tests.
Reduced	duplication:	All	actions	such	as	filling	out	a	form	are	neatly	kept	in	a
single	place	instead	of	having	multiple	copies	peppered	all	over	the	suite.
Fast	updates:	Having	unique	actions	in	a	single	place	makes	it	easy	to	update	the
tests	to	mimic	new	growth	of	the	application.
No	junk	code:	Constant	upkeep	of	the	test	suite,	with	deletion	of	duplicates,	prevents
the	test	suite	from	having	code	that	is	no	longer	used.

Disadvantages	of	the	DRY	testing	pattern
There	are	some	disadvantages	of	setting	your	tests	according	to	the	DRY	testing	pattern;	it
is	a	lot	of	work	and	requires	a	lot	of	buy	in	from	the	whole	team.	Here	are	some	of	the
most	common	issues:

Complicated	project	structure:	Some	test	actions	will	be	logically	grouped	with
other	similar	actions.	Filling	out	a	login	form	and	clicking	the	login	button	will
probably	happen	in	the	same	implementation	file.	However,	some	actions	will
inevitably	end	up	in	a	different	file,	making	it	hard	to	find	them.
Lack	of	a	good	IDE:	There	aren’t	many	good	IDEs	that	will	notify	the	test	developer
if	a	test	action	has	already	been	implemented.	Most	test	developers	will	reimplement
the	action	they	need	instead	of	looking	for	it.

Tip
The	best	way	around	this	problem	is	to	have	a	lot	of	in-team	communication.	Asking
whether	anyone	has	already	implemented	an	action	in	code	will	save	you	time	and
prevent	duplication.

Constant	upkeep:	Keeping	the	test	suite	clean	and	applying	the	DRY	test	pattern
will	need	dedication	from	the	team.	Duplicate	code	needs	to	be	pruned	and	deleted
instead	of	being	ignored.

Note
In	statically	typed	languages	such	as	Java,	we	can	use	static	analysis	tools	that	can	be
used	to	monitor	code	duplication.

Programming	skills:	This	needs	to	be	improved	by	the	whole	team.	One	test
developer	who	keeps	duplicating	logic	and	cargo-culting	can	spoil	the	elegant	test
suite	in	a	matter	of	weeks.

Note
Cargo	cult	is	a	phrase	commonly	used	to	describe	a	programming	style	where	a
programmer	uses	a	piece	of	code	without	understanding	what	the	original	intention	of
that	code	was.	It	can	be	described	as	“we	do	this	because	we	always	did	this;	I	don’t
know	why.”

Let’s	start	DRY-ing	out	our	tests.	The	first	and	obvious	choice	is	the	setup	and	teardown
methods.

Moving	code	into	a	setup	and	teardown
Most	modern	testing	frameworks	include	the	concept	of	a	setup	and	teardown.	Each
framework	can	call	them	by	a	different	name.	For	example,	in	Cucumber,	the	setup	is
called	Background,	while	in	Rspec,	it	is	called	Before.	No	matter	what	name	the
framework	chooses,	the	idea	behind	these	two	methods	remains	the	same.	This	setup	is
run	before	tests	and	is	used	to	get	the	environment	in	a	test-ready	state.	The	teardown	is
used	to	clean	up	after	the	tests	to	put	the	environment	back	into	a	pristine	state.	Some

frameworks	allow	the	setup	and	teardown	to	be	run	before	and	after	each	individual	test,
while	others	only	allow	them	to	be	executed	before	and	after	a	group	of	tests;	some	even
allow	both.

Let’s	start	cleaning	up	product_review_test.rb	from	Chapter	2,	The	Spaghetti	Pattern,
by	adding	the	setup	and	teardown	methods:

Note
You	can	find	the	complete	product_review_test.rb	file	at	http://awful-
valentine.com/code/chapter-2/.

1.	 The	first	thing	we	will	do	is	add	the	setup	and	teardown	methods	at	the	top	of	our
test;	our	code	will	look	like	this:

2.	 Let’s	move	the	creation	of	the	Firefox	instance	into	setup	and	the	quitting	of	the
Firefox	instance	into	teardown,	as	seen	in	the	following	screenshot:

Note
We	changed	all	instances	of	the	selenium	variable	to	@selenium;	this	makes	our	variable

http://awful-valentine.com/code/chapter-2/

an	instance	variable	for	the	current	test	class.	Individual	tests	are	now	able	to	reference	the
@selenium	variable	instead	of	having	to	create	their	own.

Our	tests	are	starting	to	look	better	right	away;	the	setup	method	is	helping	us	to	create	a
new	instance	of	Firefox	before	each	test	is	started.	The	biggest	advantage	is	that	the
teardown	method	will	execute	every	single	time	the	test	finishes.	This	means	that	Firefox
will	be	closed	every	time,	even	if	the	test	fails	before	completion.

Removing	duplication	with	methods
Let’s	keep	refactoring	our	test’s	logic;	the	next	item	to	refactor	is	the	click	on	the	home
page	for	the	product	we	desire	to	comment	on.	Let’s	create	a	new	method	called
select_desired_product_on_homepage,	and	move	the	click	code	inside	it,	as	seen	here:

After	we	move	the	click	action	to	the	new	method,	we	need	to	invoke	this	method	from
our	test,	like	this:

We	need	to	perform	the	same	refactoring	in	the	test_adding_a_duplicate_review	test.
This	way,	both	tests	use	the	same	method	call	to	select	a	product	on	the	home	page.

Removing	external	test	goals
In	the	previous	chapter,	we	added	two	assertions;	they	were	there	to	verify	that	clicking	on
the	MORE	INFO	link	on	the	home	page	takes	us	to	the	correct	product.	The	assertions
are	shown	here:

These	do	not	adhere	to	the	DRY	testing	pattern,	because	the	tests	are	no	longer	testing	the
product	review	functionalities;	now	they	also	test	the	product	retrieval	and	display
functionalities.

Besides	performing	duplicate	assertions,	they	make	the	test	suite	unstable.	Test	that	check
product	review	functionality	broke	because	of	a	minor	editorial	change	to	the	page
content.	The	most	logical	thing	to	do	is	delete	this	instability	causing	code	and	write	a	set
of	tests	specifically	to	test	product	descriptions.	We	will	delete	the	assertions	now	and	add
the	new	tests	in	Chapter	4,	Data-driven	Testing.

Let’s	take	a	look	at	the	test	after	we	delete	the	unnecessary	assertions:

Using	a	method	to	fill	out	the	review	form
Finally,	the	biggest	chunk	of	duplication	comes	from	filling	out	the	review	form.	Since	the
values	that	we	insert	in	the	form	fields	are	identical	between	the	two	tests,	we	should	be
able	to	easily	pull	out	this	duplication	to	fill_out_comment_form.	Our	new	method	will
look	like	this:

Reviewing	the	refactored	code
Our	tests	are	starting	to	look	completely	different	from	when	we	first	began	refactoring.	In
the	book	Refactoring	to	Patterns,	the	author	Joshua	Kerievsky,	shows	readers	how	to
refactor	code	into	a	series	of	small,	easy-to-understand	actions.	The	idea	is	to	avoid
refactoring	the	whole	class	or	file	in	one	go.	We	might	have	an	idea	of	how	the	code	is
supposed	to	look	when	we	are	finished	with	it,	but	rewriting	everything	into	its	final	form
right	away	tends	to	prove	difficult.	So,	it	is	better	to	take	many	tiny	steps	than	one	giant
step	that	will	often	leave	us	confused	and	frustrated.

Note

Refactoring	to	Patterns	by	Joshua	Kerievsky,	published	by	Addison-Wesley	Professional.

Staying	with	the	principle	of	small,	easy-to-understand	changes,	let’s	review	our	test	code
so	far	before	we	make	any	more	modifications	to	it.	First,	let’s	take	a	look	at	the	four	new
methods	we	added.

Everything	should	look	familiar	so	far.	The	setup	and	teardown	methods	run	before	and
after	each	test	and	manage	the	instances	of	Selenium	WebDriver	and	Firefox.	The
select_desired_product_on_homepage	method	can	be	invoked	on	the	home	page	to
click	on	the	MORE	INFO	button	for	the	product	we	want	to	review.	Finally,	the
fill_out_comment_form	method	fills	out	the	review	form	for	the	product	we’ve	selected.

Next,	let’s	take	a	look	at	test_add_new_review,	shown	here:

So	far,	we	have	dramatically	improved	the	code	quality	of	our	tests.	By	moving	out	some
of	the	duplication	into	individual	methods,	we	made	our	test	suite	a	lot	easier	to	maintain
in	the	long	run.	The	select_desired_product_on_homepage	and
fill_out_comment_form	methods	can	now	be	reused	by	any	test	in	our	test	class.	This
means	that	if	we	ever	need	to	update	our	test	to	adhere	to	the	new	functionalities,	we	only

need	to	do	it	once	in	the	appropriate	method;	all	of	the	tests	will	automatically	work.

Since	we	are	extremely	dedicated	to	having	a	good	test	suite,	we	will	not	stop	refactoring
just	yet.	Our	next	goal	is	to	fix	test	instability	caused	by	the	Spaghetti	pattern;	we	will
break	the	test-on-test	dependency	in	the	next	section.

Tip
Make	sure	you	fully	understand	all	of	the	actions	performed	so	far	before	moving	on	to
the	next	section.

The	Hermetic	test	pattern
The	Hermetic	test	pattern	is	the	polar	opposite	of	the	Spaghetti	pattern;	it	states	that	each
test	should	be	completely	independent	and	self-sufficient.	Any	dependency	on	other	tests
or	third-party	services	that	cannot	be	controlled	should	be	avoided	at	all	costs.	It	is
impossible	to	get	a	perfectly	hermetically	sealed	test;	however,	anytime	a	dependency	on
anything	outside	the	test	is	detected,	it	should	be	removed	as	soon	as	possible.

Note
The	Hermetic	test	pattern	can	also	be	referred	to	as	Test	is	an	Island	Pattern,	which	is	a
play	on	the	word	from	an	old	saying	no	man	is	an	island.

Advantages	of	the	Hermetic	test	pattern
The	Hermetic	pattern	is	especially	appealing	when	trying	to	flush	out	test	instability.	Here
are	some	advantages	to	hermetically	seal	your	tests:

Clean	start:	Each	test	has	a	cleaned	up	environment	to	work	in.	This	prevents
accidental	test	pollution	from	previous	tests,	such	as	a	created	user	that	should	not	be
present.
Resilience:	Each	test	is	responsible	for	its	own	environment,	so	it	has	no	need	for
everything	to	go	perfectly	right	somewhere	else	in	the	suite.

Note
We	will	talk	about	data	management	for	individual	tests	in	Chapter	4,	Data-driven
Testing.

Modular:	Each	test	is	standalone	and	can	be	rearranged	into	smaller	test	suites	such
as	a	smoke	suite,	or	can	run	as	a	standalone	test.

Note
Smoke	suite	refers	to	a	set	of	smoke	tests,	which	is	run	on	any	environment,	usually
immediately	post	deploy	of	a	new	version.	The	idea	is	to	quickly	smoke	out	any
issues	in	the	new	build.	Other	types	of	test	suites	are	discussed	in	Chapter	8,	Growing
the	Test	Suite.

Random	run	order	practice:	Since	tests	do	not	depend	on	successful	completion	of
any	other	test	in	the	suite,	they	can	be	executed	in	any	order.	We’ll	cover	more	on
random	run	order	practice	later	in	this	chapter.
Parallel	testing:	If	our	test	suite	can	run	in	any	random	execution	order,	it	can	also
be	executed	in	parallel.	Executing	multiple	tests	simultaneously	can	significantly
reduce	the	runtime	of	the	test	suite.

Disadvantages	of	the	Hermetic	test	pattern
Hermetically	sealing	each	test	comes	with	an	increase	in	individual	test	stability	but	it
does	have	some	disadvantages:

Upfront	design:	Each	test	needs	to	be	designed	to	be	self-sufficient.	Each	test	can
reuse	methods	used	by	other	tests,	but	cannot	reuse	data	and	test	results	generated	by
other	tests.
Runtime	increase:	Since	each	test	has	to	set	up	the	environment	before	it	starts,	the
runtime	of	each	individual	test	is	increased.

Tip
This	effect	is	easily	negated	when	the	test	suite	is	executed	in	parallel.

Resource	usage	increase:	Increased	runtime	of	individual	tests	means	that	the	test
suite	will	need	more	resources,	such	as	RAM,	to	run	tests	in	parallel.

Removing	test-on-test	dependence
In	the	previous	chapter,	we	created	two	tests;	one	of	which	depended	on	the	success	of	the
first	test	for	the	environment	to	be	in	a	testable	state.	So	far,	we	removed	some	of	the
duplication	from	our	tests	but	we	did	not	solve	the	data	interdependency.	You	may	have
probably	noticed	that	running	our	tests	multiple	times	in	a	row	will	fail	tests	in
unpredictable	ways	unless	you	constantly	update	the	test	data	manually	in	between	the	test
runs.	In	this	section,	we	will	make	our	tests	independent	of	hardcoded	test	data	and	each
other.

Our	website	only	checks	that	the	content	of	the	comment	is	unique;	it	does	not	check
whether	any	of	the	other	fields	such	as	name	are	duplicates.	So,	we	can	modify	our	test	to
provide	a	new	comment	every	time	the	fill_out_comment_form	method	is	called	by
passing	in	the	comment	we	want	to	add:

Our	fill_out_comment_form	method	now	accepts	comment	text	from	the	test,	so	we	can
make	our	test	generate	a	unique	comment	and	pass	it	to	the	fill_out_comment_form
method.

Using	timestamps	as	test	data
Using	timestamps	to	guarantee	unique	data	is	a	great	shortcut	when	writing	tests,	since	it
is	very	unlikely	that	two	tests	will	be	executed	at	the	exact	same	time.	Let’s	create	a
method	that	will	generate	a	unique	comment	by	adding	a	timestamp	to	it,	as	follows:

Note
In	Ruby,	the	last	statement	in	a	method	is	automatically	returned;	so,	having	return	is
redundant	in	this	case.

What	makes	our	generate_unique_comment	method	work	is	the	Time.now.to_i	call,
which	returns	a	timestamp	in	seconds	since	the	epoch.

Note
Epoch	is	a	UNIX	timestamp	of	seconds	elapsed	since	January	1,	1970.

If	we	were	to	print	out	our	unique	comment	with	the	timestamp,	it	would	look	something
like	this:

Let’s	add	a	new	variable	to	our	test,	which	will	generate	and	store	the	unique	comments,
so	that	we	can	use	it	later	in	the	test	when	we	perform	an	assertion.	Our	code	will	look	like
this	with	the	new	variable	pointed	out	with	arrows:

Extracting	the	remaining	common	actions	to	methods
Now	that	we	got	the	pesky	data	uniqueness	out	of	the	way,	we	can	refactor	our	tests	even
further!	Currently,	our	test_add_new_review	test	fills	out	a	product	review	every	single
time	it	runs.	At	the	same	time,	our	test_adding_a_duplicate_review	test	relies	on	that
review	to	exist	before	the	actual	assertion	can	take	place.	Since	both	tests	are	using	the
same	functionalities	to	create	a	product	review,	we	can	extract	and	reuse	duplicate	code
between	the	tests	by	extracting	it	to	a	method	and	having	both	tests	call	the	said	method.

Creating	a	new	review	with	a	single	method	call

Here	are	the	four	actions	that	both	of	our	tests	share:

Navigating	to	the	home	page:	The	starting	point	of	both	of	the	tests	is	to	get	to	the
home	page.	The	rest	of	the	execution	starts	from	this	point.
Select	product:	A	given	product	needs	to	be	selected	and	the	MORE	INFO	button

needs	to	be	clicked,	so	that	we	can	review	the	product.
New	review	form	completion:	Both	tests	fill	out	the	product	review	form	with
identical	data.
Retrieve	new	review	ID:	After	the	review	is	created,	the	review	ID	is	retrieved	for
double	assertion.

Note
This	step	is	optional	for	the	duplicate	review	test,	since	it	does	not	actually	do
anything	with	the	review	ID.

We	need	to	create	a	new	method	that	can	easily	be	called	by	both	the	tests.	To	make	the
generate_new_product_review	method	portable	and	reusable,	we	will	not	implement	the
previously	described	tests	in	it.	Instead,	we	will	create	several	helper	methods	that	the
generate_new_product_review	method	will	call.	First,	let’s	create	a	method	to	navigate
to	the	home	page,	as	shown	here:

We	already	have	the	methods	to	select	a	product	on	the	home	page	and	fill	out	the	review
form;	so	we	will	skip	those.	Let’s	make	a	method	to	retrieve	the	newly	generated	review
ID	now;	get_newly_created_review_id	is	shown	as	follows:

Let’s	pull	together	all	of	these	methods	into	generate_new_product_review	like	this:

Note
As	mentioned	earlier,	Ruby	implicitly	adds	the	return	statement	to	the	very	last	action	in
any	method.	This	means	that	the	generate_new_product_review	method	will

automatically	give	the	returned	value	of	the	get_newly_created_review_id	method,
which	happens	to	be	the	new	review	comment.

Let’s	take	a	look	at	test_add_new_review	after	we	finish	this	round	of	refactoring.	It	will
look	like	this:

Our	test	now	generates	a	unique	comment,	passes	that	comment	to	review	a	generation
method,	and	uses	the	returned	review_id	to	collect	the	needed	information	for	assertions.
Let’s	take	a	look	at	test_adding_a_duplicate_review	now:

The	duplicate	review	test	benefits	the	most	from	this	refactoring.	At	this	point,	it	has	to
call	the	generate_new_product_review	method	two	times	in	a	row	to	be	ready	for
assertions.	This	test	is	now	completely	independent.	Even	if	test_add_new_review	never
runs,	it	will	still	be	able	to	test	duplicate	review	functionalities.

Note
Note	that	we	added	sleep	10	(denoted	with	an	arrow)	in	our	duplicate	review	test.	The
product	review	form	has	another	fraud	detection	mechanism,	which	prevents	users	from
posting	product	reviews	too	rapidly.	The	sleep	10	call	will	allow	10	seconds	to	elapse
between	review	creations	to	work	around	this	limitation.

Reviewing	the	test-on-test	dependency	refactoring
As	we	did	before,	let’s	review	our	refactoring	session	progress.	The	setup	and	teardown
methods	have	not	changed	at	all.

Note
The	order	of	method	declarations	has	changed	to	make	the	test	class	more	aesthetically
pleasing	to	read.

The	two	tests	for	the	product	review	functionalities	look	like	this:

Finally,	all	of	the	refactored	out	helper	methods	are	moved	into	the	private	section	of	the
test	class,	as	follows:

Creating	generic	DRY	methods
At	this	point,	our	test	is	no	longer	recognizable	compared	to	what	it	was	at	the	beginning
of	the	chapter.	Before	we	wrap	it	up,	let’s	talk	about	the	generic	action	used	all	through
our	tests.	Throughout	the	test	code,	we	use	some	common	methods	to	perform	actions
such	as	clicking	or	typing	text	into	a	text	field.	These	chained	methods	look	something
like	this:

What	if	we	refactor	these	methods	a	little	further	and	create	some	generic	private	methods
that	can	be	used	in	a	much	simpler	way?	Let’s	start	with	the	most	common	method	used,
@selenium.find_element,	and	create	a	generic	find_element	method:

Our	find_element	method	now	accepts	an	element	identifier	and	an	optional	strategy
parameter.	If	the	strategy	is	not	specified,	it	will	default	to	the	CSS	selector.

Note
More	information	about	element	locator	strategies	can	be	found	in	Chapter	2,	The
Spaghetti	Pattern.

Now	let’s	add	two	new	methods	that	use	our	local	find_element	method	to	click	and	type
text	into	text	fields.	These	methods	look	like	this.

Refactoring	with	generic	methods
Now	that	we	have	three	very	generic	methods	that	allow	tests	to	interact	with	the	web
page,	you	have	a	small	homework	assignment.	Finish	refactoring	the	rest	of	the	test,	and
see	how	many	more	generic	methods	you	can	create.	I’ll	give	you	a	hint;	the
fill_out_comment_form	method	from	earlier	now	looks	something	like	this:

Note
We	will	take	greater	advantage	of	generic	action	methods	when	we	get	to	the	The	Action
Wrapper	pattern	section	in	Chapter	5,	Stabilizing	the	Tests.

Before	we	finish	this	chapter,	let’s	take	a	look	at	the	random	run	order	principle,	which
takes	advantage	of	the	refactoring	we	just	completed.	Without	all	of	this	work,	we	would
never	be	able	to	put	this	principle	into	practice.

The	random	run	order	principle
Random	run	order	is	more	of	a	principle	than	a	pattern.	It	applies	to	the	test	execution.
This	execution	is	usually	performed	on	a	Continuous	Integration	(CI)	environment.	The
random	run	order	principle	states	that	the	order	of	the	test	suite	execution	should	be
randomized	every	time	the	suite	is	executed.	The	idea	is	to	flush	out	instabilities	in	the	test
suite	by	introducing	an	element	of	chaos.	Any	test	that	has	a	hidden	dependency	on
another	test	will	eventually	fail	when	the	test	run	order	is	random.

Note
CI	tools	are	simple	applications	that	execute	a	given	build	when	certain	conditions	such	as
code	change	are	met.	There	are	several	commercial	tools	available,	such	as	TeamCity,
Bamboo,	and	Travis-CI.	One	of	the	most	popular	and	free	open	source	CI	tools	is
Jenkins,	which	can	be	found	at	http://jenkins-ci.org/.

http://jenkins-ci.org/

Advantages	of	the	random	run	order	principle
Let’s	talk	about	the	advantages	of	running	our	tests	in	a	random	order:

Prevents	test	interdependence:	Any	test	that	depends	on	another	test	to	set	up	the
environment	will	be	exposed	rather	quickly.	This	forces	us	to	maintain	good
Hermetic	integrity	within	each	test.

Note
The	type	of	test-on-test	dependency	described	here	is	the	Chain	Linked	pattern,
discussed	in	Chapter	2,	The	Spaghetti	Pattern.

Flushes	out	data	pollution:	Sometimes	test	flakiness	does	not	come	from	the	setup
stage	of	the	test.	Often	we	will	find	a	test	that	intentionally	puts	the	test	environment
into	a	bad	state	on	purpose,	to	test	the	application	resilience.	If	the	said	test	leaves	the
environment	in	a	bad	state	after	completion,	it	can	break	the	test	that	follows.

Tip
Ideally,	each	test	will	set	up	the	test	environment	in	the	setup	stage	of	the	execution,
and	return	the	environment	to	the	original	state	every	single	time	in	the	teardown
stage.

Built	in:	Some	test	frameworks	not	only	support	test	randomization	out	of	the	box,
but	also	have	the	random	run	order	as	a	default	setting.

Disadvantages	of	the	random	run	order	principle
As	always,	there	are	some	negatives	when	making	your	test	suite	compatible	with	the
random	run	order;	here	is	a	short	list:

A	lot	of	refactoring:	If	we	have	a	large	and	mature	test	suite	with	copious	usage	of
the	Spaghetti	pattern	and	the	Big	Ball	of	Mud	pattern,	making	tests	compatible	with	a
random	run	order	is	tremendous	amount	of	work.
Random	run	audits:	If	the	test	run	is	completely	random	for	every	single	build,	it
can	be	difficult	to	know	the	sequence	of	tests	that	causes	the	instability.	One	way	to
solve	this	difficulty	is	to	have	an	audit	trail	for	each	build	that	will	allow	us	to	know
the	exact	sequence	of	tests	that	led	us	to	failure.
Team	frustration:	Running	tests	in	a	random	order	can	create	a	lot	of	frustration	and
resentment	for	the	whole	team.	When	working	on	a	deadline,	having	your	build	fail
due	to	unrelated	data	pollution	is	annoying.

Tip
Remember	that	to	go	fast,	one	needs	to	start	slow.	Issues	like	these	will	always	slow
down	the	whole	process	initially.	Once	they	are	exposed	and	fixed,	the	overall
velocity	of	the	test	development	actually	goes	up.

No	built-in	support:	A	lot	of	test	frameworks	do	not	support	test	randomization.
Implementing	this	functionality	might	be	very	difficult.

Summary
In	this	chapter,	we	discussed	the	harmful	effects	of	code	duplication	on	the	test	suite.	As
the	application	keeps	evolving,	the	time	required	to	keep	the	tests	up	to	date	grows
exponentially.	The	solution	for	this	is	to	avoid	code	and	test	duplication	by	using	the	DRY
testing	pattern.	We	applied	the	DRY	principle	by	refactoring	duplicate	code	into	the	setup
and	teardown	methods	and	other	methods	that	our	tests	can	share.

We	also	removed	the	interdependency	between	our	two	tests	by	using	the	Hermetic	test
pattern.	Removing	the	Spaghetti	pattern	from	our	suite	has	dramatically	increased	the	test
stability.	Random	order	ability	was	achieved	by	hermetically	sealing	our	tests	and	having
them	use	unique	data.

In	the	next	chapter,	we	will	be	concentrating	on	test	data	and	how	to	manage	it	in	different
environments.

Chapter	4.	Data-driven	Testing
	 “Errors	using	inadequate	data	are	much	less	than	those	using	no	data	at	all.” 	

	 —Charles	Babbage

Test	data	is	a	crucial	part	of	automated	tests;	the	old	truism	garbage	in,	garbage	out
applies	especially	well	in	this	case.	Tests	will	feed	some	data	into	our	Turing	machine	and
compare	the	output	with	the	expectations.	In	a	manner	of	speaking,	a	perfect	test	is	a	little
insane;	it	will	keep	doing	the	same	things	over	and	over	while	expecting	a	different	result.

As	automated	test	developers,	our	goal	is	to	make	the	tests	fulfill	their	destiny	of	endlessly
repeating	identical	steps,	forever.	The	only	way	to	accomplish	this	goal	is	to	have	as	much
control	as	possible	over	every	single	piece	of	data	our	application	consumes.	Test	data	is
not	just	the	text	our	test	will	type	into	the	purchase	form;	test	data	is	the	complete	state	of
the	whole	environment	we	are	testing.	In	this	chapter,	we	will	take	control	of	the
environment	we	are	testing	by	using	these	concepts:

Fixtures
Stubs
YAML
JSON
Using	API	endpoints
Generating	test	cases	with	a	loop
The	default	values	pattern
The	faker	library

Data	relevance	versus	data	accessibility
Controlling	the	test	data,	or	the	state	of	our	environment,	is	a	continuous	battle	of	how
relevant	our	data	is	versus	how	easily	accessible	it	is.	Relevance	is	a	scale	of	how	closely
our	environment	mimics	our	production	environment.	Accessibility	is	a	scale	of	how	easy
it	is	to	control	the	data	in	a	given	environment.	Each	of	the	environments	we	will	test	will
fall	somewhere	in	between	these	two	scales.	The	following	graph	is	a	rough	representation
of	this	idea:

In	this	graph,	points	higher	up	on	the	y	axis	mimic	production	data	the	closest.
Conversely,	the	lower	points	do	not	resemble	production	at	all.	The	x	axis	represents	the
ability	to	have	control	on	our	data	and	environment,	with	the	rightmost	point	having	full
control	and	leftmost	point	having	close	to	zero	control.

Testing	our	application	on	a	localhost	will	yield	some	of	the	most	consistent	results,	as	we
have	full	and	total	control	over	every	variable.	But	this	comes	at	a	cost;	our	tests	may	be
missing	bugs	since	we	might	not	be	able	to	use	real	production	data,	or	simulate
production	like	load	on	the	website.	Running	tests	against	the	production	environment	is
generally	frowned	upon,	since	our	tests	will	fill	up	the	database	with	fake	usernames.
Worse	still,	they	might	be	making	test	purchases	in	your	store!

Never	write	a	Selenium	test	to	make	real	currency	purchases	on	your	production	website;
if	you	choose	to	disobey	this	rule,	at	least	make	sure	not	to	leave	your	personal	credit	card
information	in	the	test	for	all	to	see!	We	will	now	try	to	resolve	this	delicate	balance	of
data	we	can	and	cannot	control	between	the	different	environments.	A	very	good	starting
point	is	to	extract	as	much	of	the	test	data	out	of	the	test	implementation	as	possible.

Hardcoding	input	data
Hardcoding	test	data	is	just	like	hardcoding	anything	in	a	software;	a	quick	and	dirty	fix
that	will	forever	haunt	your	nightmares.	In	Chapter	3,	Refactoring	Tests,	we	refactored	out
some	bad	practices	from	our	tests.	We,	however,	left	test	data	still	hardcoded	in	the	tests.
Let’s	take	a	look	at	how	each	piece	of	the	test	data	can	make	our	life	difficult:

URL	of	the	website:	Like	most	web	projects,	we	have	several	testing	environments:
staging,	localhost,	development,	and	so	on.	Our	tests	have	the	URL	of	the	application
hardcoded;	thus,	without	changing	the	test	code,	we	cannot	have	the	tests	execute	on
both	the	staging	and	production	environments.
Hardcoded	product:	Typically,	different	test	environments	do	not	share	the	same
identical	data	such	as	products.	Furthermore,	most	environments	will	only	have	a
subset	of	the	products	available	in	production.	Test	environments	in	particular	will
have	products	that	never	did	and	never	will	exist	in	production.
Private	user	data:	Due	to	legal	reasons,	our	test	environment	should	never	contain
user	data	from	the	production	environment.	This	is	doubly	true	for	sensitive	user
information,	such	as	credit	card	numbers	and	e-mails.

Our	test	should	be	able	to,	within	reason,	run	on	any	environment	we	have.	But	this	is	not
possible	if	every	single	piece	of	data	we	use	is	hardcoded	for	a	test	environment.

Hiding	test	data	from	tests
The	act	of	hiding	data	from	tests	sounds	counterintuitive	at	first;	the	tests	need	to	do	things
with	the	data	after	all.	To	make	our	tests	flexible	enough	to	work	on	any	test	environment
we	want,	we	will	need	to	provide	them	with	data	applicable	to	the	said	environment.
However,	the	test	itself	does	not	need	to	know	what	data	we	are	using.	When	the	data	is
properly	hidden,	the	test	does	not	care	what	username	and	password	is	used;	the
information	fed	into	the	test	from	the	outside	is	stored	as	a	variable.

To	start	hiding	our	data,	we	will	need	a	single	place	that	stores	data	and	provides	it	to	the
test	on	request.	For	this,	we	will	create	a	new	class	called	TestData	in	the	test_data.rb
file.	Let’s	create	this	file	and	add	an	empty	class	inside	it:

The	first	variable	we	want	to	move	into	the	TestData	class	is	the	URL	of	the	website	we
are	testing.	It	is	the	simplest	and	fastest	way	to	start	adding	this	functionality.	Let’s	take	a
look	at	the	get_base_url	method	we	created:

Now	that	we	have	a	simple	way	to	get	the	URL	of	our	test	environment,	all	we	have	to	do
is	call	TestData.get_base_url	from	anywhere	in	the	test.	We	are	ready	to	hide	the	test
environment	URL	from	the	tests.

Note
The	naming	convention	of	the	get_base_url	method	is	slightly	different	from	before;	it
now	begins	with	a	keyword,	self.	By	adding	self	in	front	of	a	method	name,	we	turn	it

into	a	class	method	(static	method),	which	will	allow	us	to	call	it	directly	without	first
creating	a	new	instance	of	the	TestData	object.

Let’s	modify	the	product_review_test.rb	file;	we	will	need	to	tell	our	test	to	include	the
code	from	test_data.rb,	making	the	TestData	class	accessible.

Note
The	File.dirname(__FILE__)	call	is	used	to	locate	the	current	relative	directory	of	our
test	file,	and	File.join	is	used	to	join	the	relative	path	with	a	file	called	test_data.

The	code	in	the	following	screenshot	shows	how	to	require	another	Ruby	file	such	as
test_data.rb:

Part	of	the	refactoring	effort	in	Chapter	3,	Refactoring	Tests,	was	to	create	the
navigate_to_homepage	method.	Both	of	the	tests	in	product_review_test.rb	use	this
method,	so	we	only	need	to	modify	our	code	in	one	place	to	start	using	the	TestData	class.
Without	the	DRY	principle,	we	would	have	to	locate	every	test	that	navigated	to	the	home
page	and	modify	the	URL.	Instead,	our	modification	simply	looks	like	this:

We	have	successfully	obfuscated	the	URL	of	the	environment	from	the	test.	As	always,
when	refactoring,	let’s	run	our	test	and	verify	we	did	not	break	our	tests.	Our	refactored
tests	yield	the	following	results:

Choosing	the	test	environment
Now	that	the	environment	URL	is	hidden	from	the	test,	switching	between	the	staging,
test,	and	production	environments	will	become	easy.	By	using	environment	variables,	we
can	control	a	lot	of	the	test	data	at	runtime.

Note
Environment	variables	are	dynamically	named	values	at	the	operating	system	level.	Using
the	environment	variables,	the	application	behavior	can	be	easily	altered.	To	set	an
environment	variable	value,	through	the	Command	Line	Interface	on	Windows,	we	run	the
following	command:

set	environment=staging

On	UNIX-based	systems,	we	use	the	export	command	to	set	environment	variables,	as
follows:

export	environment=production

Let’s	create	a	method	our	tests	will	use	to	retrieve	the	current	test	environment.	Let’s	take
a	look	at	this	method	in	the	TestData	class:

The	get_environment	method	uses	the	ENV['environment']	call	to	see	whether	the
environment	variable	is	set	on	the	current	system.	If	it’s	not	set,	then	our	environment	will
default	to	test;	this	way	we	are	never	accidently	testing	in	the	production	environment.

Tip
Always	have	safety	measures	in	place	to	prevent	production	testing	with	automated	tests.
Having	a	localhost	or	test	environment	is	the	best	default	value.

Next,	let’s	update	our	get_base_url	method	to	hold	every	test	environment	we	have	in	a
hash.	As	you	can	see	in	the	following	screenshot,	the	hash	contains	a	key	value	pair	of	the
environment	name	and	URL	it	uses,	and	we	use	the	get_environment	method	to	choose
the	appropriate	URL:

Let’s	set	the	environment	in	the	terminal	and	run	our	tests	again	to	make	sure	everything	is
still	passing.	The	following	screenshot	demonstrates	the	test	run	output;	the	underlined
section	shows	us	how	to	set	a	different	environment:

And	that’s	it!	Our	tests	can	now	run	on	three	different	environments,	and	all	we	have	to	do
is	specify	the	test	environment	we	want	our	tests	to	run	against.	Now	that	the	URL	of	the
website	is	no	longer	hardcoded	and	can	be	dynamically	specified	at	runtime,	we	can	start
migrating	test	data	into	fixtures.

Note
For	the	purpose	of	this	book,	our	test,	staging,	and	production	environments	are	actually
the	same,	but	we	will	pretend	that	different	web	addresses	go	to	a	different	environment.

Introducing	test	fixtures
In	software	development,	test	fixtures	(fixtures)	is	a	term	used	to	describe	any	test	data
that	lives	outside	of	that	particular	test,	and	is	used	to	set	the	application	to	a	known	fixed
state.	Fixtures	allow	us	to	have	a	constant	to	compare	individual	test	runs	against.

Fixtures	work	best	in	any	environment	that	is	high	on	the	accessibility	scale.	If	we	are
testing	on	the	localhost	or	in	the	CI	environment,	we	can	start	with	a	completely	empty
test	database	and	fill	it	up	with	fixture	data.	When	the	tests	are	ready	to	run,	the	tests	will
know	the	exact	state	of	the	application,	how	many	registered	users	we	have,	prices	of
every	product,	and	so	on.	Let’s	take	a	look	at	a	sample	fixture,	which	was	used	to	create	a
product	on	our	website:

A	script	parsed	the	YAML	fixture	file	and	then	inserted	the	YAML	data	into	the	website’s
database.	As	you	can	see,	our	fixtures	are	really	simple	and	easy	to	read.	This	is	a	great
advantage	of	using	the	YAML	format	for	data,	because	it	is	easy	for	both	humans	and
machines	to	read.

Note
YAML	is	an	acronym	for	YAML	Ain’t	a	Markup	Language.	Unlike	XML	and	Comma
Separated	Value	(CSV)	formats,	YAML	tries	to	display	data	in	a	matter	that	is	as
readable	as	possible.

Parsing	fixture	data
Parsing	YAML	fixtures	in	Ruby	is	surprisingly	simple.	After	telling	Ruby	where	the
fixture	file	is,	it	will	do	a	lot	of	work	for	us;	the	end	result	is	a	simple	hash	filled	with	data.

Tip
Parsing	YAML,	or	any	other	data	representation,	differs	between	different	programming
languages.	Since	the	programming	idioms	vary	so	greatly	between	programming
languages,	follow	the	best	standards	for	the	toolset	you	have	at	hand.

Since	the	test	fixture	file	is	quite	large,	we	will	need	to	download	it	from	http://awful-
valentine.com/code/chapter-4	and	save	it	as	product_fixtures.yml	to	continue	our	work.
After	the	fixture	file	has	been	downloaded,	let’s	modify	the	test_data.rb	file	to	look	like
this:

The	TestData	class	has	two	modifications;	the	first	one	is	an	online	one,	where	we
required	a	YAML	parsing	library	in	our	class.	The	second	modification	is	the	addition	of
the	get_product_fixtures	method,	which	reads	the	contents	of	product_fixtures.yml
and	returns	the	parsed	file	as	a	large	hash.

http://awful-valentine.com/code/chapter-4

Using	fixture	data	in	the	tests
In	Chapter	3,	Refactoring	Tests,	we	created	the	select_desired_product_on_homepage
method	to	click	on	the	MORE	INFO	button	for	a	given	product.	The	method	looks	like
this:

As	explained	previously,	this	method	chooses	a	product	to	review	based	on	the	HREF
attribute	of	the	MORE	INFO	button.	When	inspecting	the	fixture	data,	it	is	easy	to	find
the	permalink	URL	for	every	single	product	offered	on	the	website.	The	permalink	is	a
permanent	static	and	unique	link	for	any	given	page.	Let’s	take	a	look	at	the	permalink	in
fixtures:

Because	the	fixtures	allow	us	to	use	the	permalink	of	every	product	available,	we	no
longer	need	to	have	the	HREF	attribute	hardcoded.	Let’s	modify	the
select_desired_product_on_homepage	method	to	accept	different	permalinks	such	as
the	one	shown	in	the	following	screenshot:

Now,	let’s	update	the	setup	method	to	get	the	product	permalink	from	TestData,	and	store
it	as	a	@product_permalink	instance	variable,	as	follows:

The	final	change	is	to	modify	the	generate_new_product_review	method,	so	that	it	uses
the	@product_permalink	variable,	as	seen	here:

Once	more,	let’s	rerun	our	tests	to	make	sure	everything	is	still	passing.	The	test	results
should	look	something	like	this:

Using	fixtures	to	validate	products
Before	we	started	to	refactor	tests	in	Chapter	3,	Refactoring	Tests,	our	tests	were	working
too	much.	Not	only	were	they	trying	to	create	a	new	product	review,	but	they	were	also
trying	to	verify	the	information	displayed	on	the	page	for	a	given	product.	We	removed
that	assertion	with	a	promise	to	create	a	test,	whose	only	job	would	be	to	verify	products.
Now	that	we	have	access	to	the	product	fixtures,	we	can	write	a	test	for	every	product	sold
on	our	website.	Let’s	create	product_validation_test.rb	to	do	just	that.	The	contents	of
the	file	are	as	follows:

So	far,	everything	in	our	new	file	should	look	familiar	to	the	previous	tests	we	have
written.	Since	we	have	the	permalink	for	the	product	being	tested,	we	do	not	need	to	land
on	the	home	page	and	click	on	the	MORE	INFO	button	for	that	product.	Instead,	we	will
have	our	test	go	directly	to	the	product	page.

Tip
Since	we	navigate	directly	to	the	product’s	page,	we	are	making	our	tests	more	resilient.
Even	if	the	home	page	of	the	website	does	not	load	properly,	this	test	will	be	able	to	check
individual	products.

In	the	following	code,	we	store	the	fixture	for	the	tested	product	in	the	product_info
variable	and	then	combine	it	with	TestData.get_base_url	to	navigate	directly	to	the
product’s	page:

Once	the	product	pages	load,	we	can	start	validating	that	everything	was	rendered
correctly.	Let’s	add	four	assertions	to	our	test,	shown	as	follows,	and	understand	what	each
one	does:

Our	first	assertion	is	on	line	19;	we	compare	the	product’s	name	from	fixtures	against
what	is	displayed	in	the	DIV	with	the	category-title	class.	On	the	next	line,	we
compare	the	current	URL	of	the	product	page	against	the	URL	generated	from	the	fixtures.
On	line	21,	we	verify	the	product	description,	followed	by	the	product’s	price	on	line	22.

Note
When	comparing	the	product	price,	we	used	the	gsub	method	to	find	and	delete	any
instance	of	a	new	line	character	(\n)	and	the	dollar	sign	($).

Let’s	see	the	test	result	of	our	new	test	case:

Before	we	move	on	to	the	next	section,	let’s	refactor	a	little.	Since	searching	for	individual
elements	on	the	page	may	look	too	cryptic,	let’s	move	these	out	into	methods,	which	are
easy	to	understand.	Our	refactored	code	will	look	like	this:

Is	test	refactoring	becoming	a	habit	yet?	It	should	be!	Our	goal	is	to	constantly	improve
the	quality	of	our	tests;	even	if	it	is	something	as	simple	as	renaming	a	method	so	it	better
explains	its	actions.

Tip
This	refactoring	might	seem	unnecessary	at	first,	but	six	months	from	now	when	we	are
updating	this	test	to	accommodate	new	functionalities,	will	you	remember	what	#main-
products	.content	is?

Testing	the	remaining	products
We	are	currently	at	a	crossroad,	and	need	to	make	a	decision	on	how	to	proceed	with
adding	tests	for	the	remaining	products.	We	can	create	a	test	for	every	single	product	or
loop	through	the	fixtures	and	programmatically	test	every	product.	Technically,	there	is	no
right	or	wrong	choice	here;	both	the	options	have	advantages	and	disadvantages.	When
faced	with	a	similar	situation,	we	should	weigh	the	pros	and	cons	of	each	approach	and
select	the	right	answer	for	the	given	moment.	Let’s	compare	multiple	test	models	to	the
loop	model.

Multiple	test	models

There	are	several	advantages	to	writing	a	test	for	every	single	product	in	our	store;	let’s
take	a	look	at	some	of	them:

Clear	test:	Each	test	clearly	describes	the	product	it	is	testing.	At	a	glance,	we	can
tell	how	many	products	we	are	testing	and	how	long	the	test	run	will	take.

Clear	test	failure:	When	a	test	fails	for	any	product,	we	will	know	right	away	which
product	it	was	by	simply	looking	at	the	name	of	the	test.	A	clear	test	failure	should
never	be	underestimated,	especially	if	the	test	suite	has	1,000	similar-looking	tests.
Parallel	execution:	When	we	have	many	individual	tests,	we	can	execute	them	all	in
parallel.

Since	every	coin	has	two	sides,	this	approach	has	some	disadvantages	too.	Let’s	take	a
look	at	those:

More	verbose:	If	we	are	only	going	to	test	a	handful	of	products,	this	approach	is
perfectly	good.	However,	if	we	were	to	test	30	products,	our	test	file	would	grow	in
size	rapidly.
Duplication:	Each	test	is	identical	to	every	other	test;	the	only	difference	being	the
product	it	is	testing.	Managing	these	many	tests	can	get	tiresome	quickly.

A	single	test	model

Now	that	we	weighed	the	advantages	and	disadvantages	of	the	verbose	option,	let’s	take	a
look	at	the	idea	of	having	a	single	test	that	loops	through	the	products.	It	has	some	very
distinct	advantages:

Less	duplication:	This	one	is	obvious;	a	single	test	is	always	cleaner	than	two	dozen
duplicates.
Automatic	catalog	updates:	If	our	product	catalog	changes	in	the	future	and	we	add
or	subtract	some	items	in	the	fixture,	our	test	will	follow	suit.	There’s	no	need	to	add
or	delete	new	tests	at	all,	out	of	sight	and	out	of	mind!
Faster	runtime:	Having	a	single	test	means	that	we	will	not	have	to	restart	our	web
browser	every	time	a	test	is	completed.	These	restarts	will	save	a	significant	portion
of	the	runtime	compared	to	multiple	tests.

Tip
If	we	run	our	test	suite	in	parallel,	this	argument	becomes	weaker.

However,	there	are	some	disadvantages	to	looping	though	all	of	the	products:

Obfuscation:	Every	time	a	new	product	is	tested,	there	is	no	clear	separation
between	the	products.	We	will	have	to	add	some	very	clear	messages	to	our	tests	to
make	sure	that	we	can	quickly	find	which	product	was	not	meeting	our	expectations.
Testing	all	the	products:	The	old	proverb	goes,	“When	you	are	a	hammer,
everything	looks	like	a	nail.”	Just	because	we	can	test	every	single	product,	should
we	really	do	it?	Generally,	if	three	or	four	of	our	products	are	rendered	correctly,
chances	are	the	rest	will	be	rendered	in	a	similar	fashion.	Automatically	testing	every
new	product	added	can	be	a	waste	of	resources;	if	we	have	to	write	a	test	for	each
product,	we	might	get	tired	and	stop	adding	new	ones	after	the	fifth	or	sixth	test	we
write.
Single	test	runtime	increase:	If	our	test	is	very	involved,	we	can	look	at	a	20-minute
runtime	to	cover	several	products.	This	might	not	seem	like	a	big	problem	at	first,	but
let’s	pretend	that	we	want	to	reduce	the	test	execution	time	by	running	our	tests	in

parallel.	By	running	seven	tests	at	the	same	time,	we	can	reduce	the	suite	runtime	to
10	minutes,	except	for	that	one	20	minute	test;	our	test	suite	is	as	fast	as	the	slowest
running	test.

Implementing	multiple	test	models

At	some	point,	we	all	have	to	make	a	decision	between	having	many	tests	that	are	easy	to
debug	and	having	one	complicated	test.	Make	sure	you	do	not	rush	into	anything	without
considering	the	consequences	of	every	approach.	Since	copying	and	pasting	half	a	dozen
new	tests	does	not	take	much	imagination,	we	will	implement	a	single	complicated	test
here.

Let’s	start	by	renaming	test_validate_our_love_is_special	to	something	a	little	more
generic,	such	as	test_all_products_with_fixtures.	Next,	we	create	a	loop	to	go
through	all	of	the	parsed	fixtures;	the	loop	looks	like	this:

TestData.get_product_fixtures.values.each

Now,	every	time	the	loop	moves	to	the	next	product	from	the	fixtures	file,	it	will	store	the
current	fixture	in	the	product_info	variable	(designated	with	an	arrow).	The	refactored
test	now	looks	like	this:

After	we	run	the	new	test,	we	will	see	right	away	that	every	single	product	page	is	now
visited	in	the	browser.	Also,	notice	that	the	assertion	count	went	up	to	24:

Making	test	failures	more	expressive

Sadly,	by	using	the	looping	approach,	we	gave	up	expressive	test	failures.	If	we	had	an
individual	test	per	product,	we	could	look	at	the	test	name	and	instantly	know	which
product	failed.	In	the	current	state,	test	failures	will	look	like	this:

Outside	the	very	long	string	of	text	that	shows	the	difference	between	expectation	and
reality,	we	have	very	little	clue	about	the	product	that	is	not	being	rendered	properly.	We
now	have	to	open	up	the	fixture	file	and	find	the	description	that	will	match	our	failure,	so
that	we	can	understand	why	our	test	failed.

There	is	a	way	to	make	our	tests	more	descriptive;	we	do	this	by	passing	a	third	parameter
into	the	assert_equals	method.	The	third	parameter	can	be	an	arbitrary	string	that	will	be
displayed	on	a	failed	assertion.	Let’s	store	some	information	about	the	product	in	the
failure_info	variable,	like	this:

Our	assertions	now	accept	the	failure_info	parameter,	and	they	look	like	this:

The	result	of	this	simple	modification	is	that	our	test	failures	are	a	lot	simpler	to
understand.	Take	a	look	at	the	new	test	failure	message:

The	additional	information	in	a	test	failure	does	not	take	a	lot	of	effort	to	implement,
which	makes	debugging	failures	so	much	simpler	for	everyone	involved.

Tip
Make	sure	your	test	provides	too	much	information,	because	having	too	little	information

is	always	regrettable.

Using	an	API	as	a	source	of	fixture	data
Using	fixtures	for	test	data	is	great	for	environments	that	are	highly	accessible.	If	we	need
to	test	something	other	than	the	localhost	or	CI	environment,	where	we	cannot	easily	load
fixture	data	into	the	database,	we	will	have	to	use	a	different	approach.	The	trick	is	to
utilize	any	and	all	the	resources	we	can	find	to	make	testing	possible.

One	of	these	resources	is	a	public-facing	web	API.	If	your	website	has	a	native	cell	phone
application	or	uses	a	lot	of	AJAX	to	load	content,	then	our	tests	can	have	some	data	to
test.	All	we	have	to	do	is	interrogate	the	API	to	get	an	idea	of	the	state	of	the	application.

A	common	API	endpoint	for	most	e-commerce	websites	is	a	list	of	all	the	available
products.	This	list	is	used	by	mobile	phones	to	display	what	a	user	can	purchase.	Our
website	stores	the	product	catalog	at	http://api.awful-valentine.com/;	if	you	navigate	to
this	URL	in	your	browser,	you	will	see	something	like	this:

Our	API	endpoint	returns	a	product	catalog	in	the	JavaScript	Object	Notation	(JSON)
format.	If	we	compare	our	test	fixtures	to	the	returned	JSON,	we	will	find	a	lot	of
similarities;	in	fact,	the	data	is	identical!	By	consuming	the	product	catalog,	we	are	able	to
create	a	similar	test	we	just	made.	Let’s	begin	by	adding	two	more	libraries	to	the
test_data.rb	file,	shown	here:

We	will	be	using	these	libraries	to	make	an	HTTP	request	against	the	website’s	API
endpoint.	Then,	we	will	use	the	json	library	to	parse	the	received	data	and	use	it	in	the
test.	Now	we	are	going	to	add	a	method	to	the	TestData	class	called
get_products_from_api.	It	looks	like	this:

http://api.awful-valentine.com/

Let’s	take	a	look	at	individual	things	happening	in	this	method.	On	line	12,	we	create	a
URI	object	from	a	string.	We	pass	this	object	to	the	Net::HTTP.get	method	call	on	line	13
and	get	a	string	of	unparsed	JSON	in	return.	Finally,	use	the	JSON.parse	method	to	parse
the	string	and	return	the	value	as	a	hash.	We	have	a	way	to	get	the	product	catalog	from
the	environment;	let’s	create	a	test	to	take	advantage	of	this	data.

We	will	add	a	new	test	called	test_all_products_with_api_response	and	it	will	be	98
percent	identical	to	test_all_products_with_fixtures.	Let’s	take	a	look	at	both	the
tests	side	by	side,	with	the	major	differences	pointed	out:

Let’s	save	and	run	both	the	tests.	Our	test	results	should	now	look	like	this:

As	always,	when	we	get	our	tests	running,	it’s	time	to	refactor	the	duplication.	Let’s	take	a
look	at	the	final	product;	all	of	it	should	look	familiar	and	make	sense:

Using	data	stubs
Modern	websites	are	incredibly	complicated	and	combine	many	external	services.	Most	e-
commerce	websites	do	not	actually	process	the	credit	cards	themselves.	Instead,	the
payment	information	is	passed	on	to	the	bank,	and	the	bank	tells	the	website	whether	the
transaction	is	successful.

Getting	all	of	the	external	services	running	is	a	difficult	task,	especially	if	the	service	our
website	is	using	is	also	being	developed	at	the	same	time	as	our	project.	We	cannot	afford
to	wait	until	all	of	the	services	are	completely	written	and	integrated	to	start	writing	our
tests.	So,	we	have	to	stub	some	of	the	services	until	they	are	fully	developed.

Stubs	are	premade	responses	to	our	application’s	requests.	Stub	responses	are	formatted
and	look	like	real	responses,	but	they	don’t	actually	do	any	work.	For	example,	the	API
endpoint	we	used	to	write	our	test	does	not	actually	communicate	with	the	database.
Instead,	it	responds	with	a	premade	JSON	file.	Stubbing	the	application	is	a	great	way	to
set	up	a	test	environment	for	automated	tests,	and	should	be	used	as	much	as	possible
when	running	automated	tests	in	the	CI	system.

The	default	values	pattern
Filling	out	form	information	is	one	of	the	core	principles	of	writing	tests	with	Selenium.
The	test	will	need	to	register	a	new	user,	or	make	a	purchase,	or	log	in	to	an	account	at
some	point.	The	default	values	pattern	aims	to	extract	any	data	that	our	test	does	not
actually	care	about.	Tests	should	not	have	to	know	what	the	username	and	password	are
for	every	test	user	on	every	environment	we	have.	Instead,	it	should	rely	on	defaults	that
are	appropriate	for	the	current	state.

Advantages	of	the	default	values	pattern
Isolating	irrelevant	data	from	the	test	implementation	has	many	advantages:

Need	to	know	basis:	If	our	test	is	testing	whether	a	purchase	can	be	made	with	a
credit	card,	the	test	does	not	need	to	know	which	credit	card	was	used.	However,	if
our	test	needs	to	check	whether	a	certain	credit	card	is	accepted,	then	the	card
number	is	known	to	the	test.
Simpler	tests:	Extracting	all	of	the	unnecessary	data	out	of	the	test	implementation
makes	the	test	easier	to	read	and	understand.
More	focus:	While	writing	the	test,	it	is	easy	to	get	distracted	with	data	that	is	used	in
the	test	setup.	Having	all	of	the	setup	data	handed	to	us	as	we	are	writing	the	test,
allows	us	to	concentrate	on	the	test	implementation.
Overwrite	only	important	values:	If	we	are	testing	the	registration	flow,	we	only
care	that	the	username	is	unique.	The	default	values	pattern	allows	you	to	provide
just	the	important	values	while	reusing	the	defaults.

Disadvantages	of	the	default	values	pattern
There	aren’t	many	disadvantages	to	the	default	values	pattern,	but	here	are	the	top	two:

Implementing	overwrite:	Depending	on	the	programming	language	and	framework
used	to	write	the	test,	we	might	need	to	implement	the	data	merge/overwrite	logic
ourselves.
Homogeneous	data:	Having	static	default	data	might	not	always	be	preferable.	In	the
comment-creation	test,	we	had	to	add	timestamps	to	the	comment	string	to	make	the
website	accept	our	new	comments.	Using	a	library	like	faker	can	alleviate	this	pain
point.

Merging	the	default	values	pattern	and	the	faker
library
Every	test	should	strive	to	use	input	data	that	is	as	close	to	real	life	scenarios	as	possible.
If	our	test	always	uses	test_selenium_user_34256	as	the	user’s	first	and	last	name,	we
are	not	using	our	application	in	the	same	manner	as	our	customers.	For	example,	how	will
our	application	handle	having	a	title	in	the	name	such	as	Mr.,	Sr.,	or	PhD?

Faker	is	a	library	that	was	written	to	solve	these	types	of	scenarios.	It	has	been	ported	into
many	programming	languages	including	Perl,	Java,	and	Ruby.	For	the	rest	of	this	chapter,
we	will	implement	the	default	values	pattern	and	integrate	the	faker	library	into	our	test	to
help	us	create	default	values	that	mimic	real	world	scenarios.

Implementing	faker	methods
Let’s	install	the	faker	gem	and	implement	several	methods	that	will	be	used	for	the	new
comment	form	functionalities.	We	need	to	install	the	faker	gem,	since	it	is	not	shipped
with	Ruby;	run	the	following	command	in	your	terminal:

gem	install	faker

Now,	we	are	ready	to	modify	the	test_data.rb	file.	As	always,	we	will	require	a	faker
library	at	the	top	of	the	file.	Then,	add	a	couple	of	methods	to	get	some	life-like	data	for
our	tests.	The	code	for	the	TestData	class,	with	additions	annotated,	looks	like	this:

All	of	these	faker	methods	should	be	self-explanatory,	except	for	get_buzzword.	This
method	is	used	to	generate	a	catchphrase	that	some	fortune	500	companies	would	use	in
their	advertisements.	Since	these	phrases	are	a	collection	of	randomly	pieced	buzzwords,
they	will	most	likely	be	unique	enough	to	be	used	in	the	comment	section	of	our	reviews.

Let’s	create	a	method	that	ties	all	of	these	items	together	for	us;	we	will	call	it
get_comment_form_values	and	it	will	look	like	this:

This	method	is	not	very	complicated;	all	it	does	is	create	a	new	hash	and	then	populates	it
with	faker	data.	Here	are	a	couple	of	key	parts:

This	method	accepts	an	optional	parameter,	overwrites,	which	defaults	to	an	empty
hash.	This	will	allow	us	to	overwrite	any	field	value	at	will.	Also,	if	we	are	so
inclined,	we	can	add	a	new	key	and	value	that	is	not	set	by	this	method.	This	makes
the	get_comment_form_values	method	incredibly	flexible.
After	the	hash	with	new	fake	data	is	created,	we	overwrite	the	generated	values	with
values	from	overwrites	by	using	the	merge(overwrites)	method.

Every	time	the	get_comment_form_values	method	is	executed,	it	will	create	beautifully
nonsensical	but	real-world	looking	data.	If	we	are	to	invoke	this	method	in	irb,	we	will
get	this	output:

Note
The	pp	method	call	before	the	TestData.get_comment_form_values	call	is	Ruby
shorthand	for	Pretty	Print.	This	allows	us	to	see	each	value	of	the	hash	on	a	new	line
instead	of	a	single	long	string.

Updating	the	comment	test	to	use	default	values
We	need	to	revisit	product_review_test.rb	to	take	advantage	of	the	default	values	we
just	implemented	in	the	TestData	class.	The	implementation	is	actually	quite	simple	and
fast.	Let’s	make	it	happen!

Remember	the	fill_out_comment_form	method,	which	we	wrote	to	fill	out	the	review
form?	It	looked	like	this	the	last	time	we	modified	it:

As	we	can	see,	most	of	the	data	it	fills	out	is	hardcoded,	and	only	the	portion	that	is	not
hardcoded	is	the	comment	variable.	Our	goal	is	to	pass	in	every	piece	of	data	this	method
uses.	We	will	rename	the	comment	argument	to	form_info,	to	make	our	intentions	more
clear.	This	new	argument	is	a	hash,	so	we	will	have	to	retrieve	the	appropriate	key	for	each
field	we	fill	out	in	the	form.	Let’s	take	a	look	at	the	new	code	with	the	changes
highlighted:

Let’s	modify	test_add_new_review	to	use	the	faker	methods.	Our	test,	with	changes
highlighted,	will	now	look	like	this:

The	only	major	change	in	our	test	is	on	line	20,	where	we	no	longer	use	the
generate_unique_comment	method,	calling	TestData.get_comment_form_values

instead.	Note	that	we	are	overwriting	the	faker	value	for	:name	with	Dima	to	demonstrate
the	overwriting	capability	of	our	new	method.

Finally,	let’s	update	test_adding_a_duplicate_review	in	a	similar	fashion	so	that	it
looks	like	this:

And	this	wraps	up	the	changes	that	we	needed	to	finish.	Let’s	run	our	tests	to	make	sure
everything	still	passes.

Tip
Since	we	are	no	longer	using	the	generate_unique_comment	method	in	our	tests,	this	is
probably	a	good	time	to	clean	up	our	code	base	by	deleting	this	and	any	other	unused
methods.

The	test	output	should	look	like	this:

Summary
To	be	completely	honest,	managing	test	data	is	by	far	the	single	most	difficult	task	with
test	automation.	Locating	an	element	on	a	complicated	web	page	pales	in	comparison	in
complexity,	compared	to	dealing	with	test	data.	There	are	so	many	technical	and	legal
restrictions	whenever	production	data	is	used	that	maintaining	a	grid	of	hundreds	of
browsers	will	feel	like	a	vacation.

In	this	chapter,	we	only	scratched	the	surface	of	data	management.	By	using	fixtures,	we
can	control	some	of	the	chaos	in	the	CI	test	environment.	When	fixtures	are	not	an	option,
we	can	find	other	ways	to	interrogate	the	state	of	the	application	by	using	API	endpoints,
or	we	can	stub	out	external	services	to	make	sure	our	application	can	still	function.	With
the	use	of	the	faker	library	and	default	values	pattern,	we	can	simplify	our	test
implementation	by	generating	real-looking	data	that	has	been	abstracted	away.

In	the	next	chapter,	we	will	be	improving	the	stability	of	our	small	test	suite.	We	will	fix	a
lot	of	the	common	causes	of	instability,	thereby	making	our	test	suite	as	stable	as	humanly
possible.

Chapter	5.	Stabilizing	the	Tests
	 “And	the	rain	descended,	and	the	floods	came,	and	the	winds	blew,	and	beat	upon	that	house;	and	it	fell	not:	for	it
was	founded	upon	a	rock.”

	

	 —Matthew	7:25,	King	James	Version

When	the	test	suite	becomes	large	enough,	our	job	becomes	less	about	the	fixing	every
flaky	test.	In	fact,	it	centers	on	engineering	a	solution	that	will	prevent	all	similar	flaky
behavior	from	happening.

In	this	chapter,	we	will	give	our	tests	a	good	solid	foundation	that	will	prevent	a	lot	of
instability	in	the	long	run.	We	waited	until	this	chapter	to	start	fixing	the	behavior	that
drives	anyone	who	writes	web	tests	insane,	because	we	had	to	first	build	up	a	foundation
of	good	data	management	and	coding	skills.	These	skills	are	crucial	for	long-term	use	and
without	them,	all	of	the	fixes	of	instability	discussed	in	this	chapter	would	be	useless.	Now
we’re	ready	to	talk	about	the	following	topics:

Culture	of	stability
jQuery
Waiting	for	AJAX	requests	to	finish
Waiting	for	jQuery	animations	to	finish
The	Action	Wrapper	pattern
The	Black	Hole	Proxy	pattern
Screenshot	on	failure	practice

Engineering	the	culture	of	stability
I’d	like	to	start	the	current	chapter	with	a	personal	tale	of	a	past	experience.	The	majority
of	projects	that	I	worked	on	had	similar	situation	to	what	you	are	probably	used	to.
Typically,	the	Selenium	build	is	treated	as	a	second-class	citizen,	not	having	a	single
passing	build	for	days	or	weeks	at	the	time.	Eventually,	the	tests	become	so
embarrassingly	riddled	with	failures	and	instabilities	that	any	further	development	is
stopped,	and	the	Selenium	build	is	completely	ignored.

On	my	last	project	I	inherited	300	Selenium	tests,	which	were	red	90	percent	of	the	time.
So,	I	started	to	fix	them	but	that	was	not	enough;	no	sooner	that	I	would	fix	a	broken	test,
somebody	would	make	a	commit	that	broke	another	test	somewhere	else.	I	did	not	have	a
technical	problem,	I	had	a	cultural	problem;	nobody	but	me	seemed	to	care	about
Selenium	tests.

The	team	that	I	was	a	part	of	was	given	the	task	of	maintaining	builds;	with	a	lot	of	trial
and	error,	we	came	up	with	several	key	goals	that	would	lead	all	of	our	builds	to	be
passing	99	percent	of	the	time	(less	actual	failures	due	to	bad	code).	Here	are	the	key
goals,	as	I	see	them,	for	any	CI	system:

Running	fast	and	failing	fast
Running	as	often	as	possible
Keeping	a	clean	and	consistent	environment
Discarding	bad	code	changes
Maintaining	a	stable	test	suite

Running	fast	and	failing	fast
A	developer’s	time	is	very	expensive.	We	cannot	afford	to	let	them	sit	around	for	40
minutes	to	see	whether	all	of	the	tests	are	passing	after	every	minor	code	change.	The	goal
is	to	run	the	whole	test	suite	under	10	minutes,	or	the	developer	will	not	have	an	incentive
to	run	the	tests	at	all.	Doing	the	simple	math	of	the	man	hours	spent	by	each	developer	on
daily	basis	waiting	for	the	build,	compared	to	doing	actual	work,	we	had	a	very
convincing	argument	to	purchase	a	lot	more	test	nodes	for	CI.	With	these	new	computers,
we	were	able	to	run	the	test	suite	in	parallel	across	multiple	computers,	bringing	the	whole
build	down	to	12	minutes.	Furthermore,	we	added	some	code	to	send	an	e-mail	to	the
developer	as	soon	as	a	test	failed.	This	allows	the	developers	to	start	fixing	a	broken	test
even	before	the	build	is	complete.

Running	as	often	as	possible
Creating	a	cascading	build	chain,	starting	with	unit	tests	and	finishing	with	Selenium,	is	a
common	practice.	However,	this	practice	turned	out	to	be	an	anti-pattern,	a	term	discussed
in	Chapter	2,	The	Spaghetti	Pattern.	A	typical	Selenium	build	is	the	slowest	in	the	series;
thus,	it	occupies	the	last	place	where	everyone	can	easily	ignore	it.	Often,	a	failure	early	in
the	chain	will	prevent	the	Selenium	build	from	ever	being	executed.	By	the	time	the	long
forgotten	Selenium	build	is	finally	executed,	a	dozen	code	commits	have	occurred.
Making	sure	that	the	Selenium	build	is	triggered	on	every	single	commit	seems	excessive,
but	the	whole	idea	of	CI	is	to	catch	a	test	failure	as	soon	as	it	occurs,	not	20	changes	down
the	road.	Taking	this	idea	to	its	logical	conclusion,	a	code	change	should	always	be
considered	bad	if	even	a	single	test	fails.

Tip
Having	the	whole	code	base	being	deployed	and	tested	with	every	code	change	also	has	an
advantage	of	testing	the	deploy	scripts	continuously.

Keeping	a	clean	and	consistent	environment
Unlike	instability	caused	by	test	implementation,	instability	caused	by	inconsistent	testing
nodes	can	be	more	frustrating	and	harder	to	track	down.	Having	different	versions	of
Firefox	or	Internet	Explorer	on	every	test	node	might	not	seem	like	a	big	deal,	but	when	a
test	fails	because	of	such	minor	differences	and	the	failure	cannot	be	easily	replicated,	a
lot	of	frustration	will	be	experienced.

We	discussed	test	fixtures	in	Chapter	4,	Data-driven	Testing;	reloading	the	test	database
for	every	build	is	a	great	way	to	keep	a	clean	and	consistent	test	environment.	Also,	using
a	configuration	management	tool	to	keep	all	of	the	dependencies,	such	as	Java	versions,
consistent	on	all	of	the	test	nodes	will	save	you	a	lot	of	headaches.	Finally,	make	sure	that
the	test	environment	that	serves	your	website	is	as	close	of	a	physical	clone	of	production
as	you	can	make	it.	All	of	your	tests	can	be	completely	invalid	if	your	production	uses
Linux	servers	to	host	the	website,	but	your	test	environment	is	hosted	on	a	Windows
computer.

Note
There	are	several	open	source,	free	tools	for	the	configuration	management	of	computers.
Two	of	the	more	popular	ones	are	Chef	(http://www.getchef.com/)	and	Puppet
(http://puppetlabs.com/).

http://www.getchef.com/
http://puppetlabs.com/

Discarding	bad	code	changes
We	set	up	a	simple	system	that	prevented	anybody	from	committing	changes	to	the
master/trunk	unless	all	of	the	tests,	including	Selenium,	were	passing.	Needless	to	say,	this
was	not	a	popular	approach	because	tests	from	unrelated	parts	of	the	application	were
sometimes	preventing	new	features	from	going	into	Version	Control	System	(VCS).
However,	as	the	test	suite	stabilized,	this	became	a	great	way	to	prevent	unintended
defects	from	going	into	production,	and	making	sure	that	the	whole	test	suite,	including
Selenium,	was	always	passing!

Note
There	are	multiple	ways	to	implement	this,	since	most	VCS	systems	allow	users	to	define
precommit	or	postcommit	hooks.	The	other	approach	is	to	prevent	direct	commits	to	the
trunk/master	branches,	instead	deferring	to	a	build	that	automatically	merges	the	changes
after	all	tests	pass.	The	latter	approach	works	best	in	GIT	and	Mercurial	VCS	tools.

Maintaining	a	stable	test	suite
Cultural	changes	will	never	last	if	your	tests	will	fail	at	random	due	to	technical	problems
such	as	not	dealing	with	AJAX	properly	or	not	accounting	for	external	influences	that	will
make	the	test	environment	run	slow.	In	this	chapter,	we	will	concentrate	on	some	of	the
most	common	technical	solutions	that	make	tests	unstable.	Let’s	get	going!

Note
Asynchronous	JavaScript	and	XML	(AJAX)	is	a	relatively	new	web	development
technique	that	allows	the	web	page	to	send	and	receive	content	in	the	background.

Waiting	for	AJAX
Test	automation	was	simpler	in	the	good	old	days,	before	asynchronous	page	loading
became	mainstream.	Previously,	the	test	would	click	on	a	button	causing	the	whole	page
to	reload;	after	the	new	page	loaded,	we	could	check	whether	any	errors	were	displayed.
The	act	of	waiting	for	the	page	to	load	guaranteed	that	all	of	the	items	on	the	page	are
already	there,	and	our	test	could	fail	with	confidence	if	the	expected	element	was	missing.
Now,	an	element	might	be	missing	for	several	seconds,	and	magically	show	up	after	an
unspecified	delay.	The	only	thing	for	a	test	to	do	is	become	smarter!

Filling	out	credit	card	information	is	a	common	test	for	any	online	store.	Similarly,	we	set
up	a	simple	credit	card	purchase	form	that	looks	like	this:

Our	form	has	some	default	values	for	users	to	fill	out	and	a	quick	JavaScript	check	to	see
whether	the	required	information	was	entered	into	the	field	(by	adding	a	quick	Done	text):

Once	all	of	the	fields	have	been	filled	out	and	seem	correct,	JavaScript	makes	the
Purchase	button	clickable.	Clicking	on	the	button	will	trigger	an	AJAX	request	for	the
purchase,	followed	by	successful	purchase	message:

The	preceding	steps	were	very	simple	and	straightforward;	anyone	who	has	made	an
online	purchase	has	seen	some	variation	of	this	form.	Writing	a	quick	test	to	fill	out	the
form	and	making	sure	the	purchase	is	complete	should	be	a	breeze!

Testing	without	AJAX	delays
Let’s	get	started	then.	We	have	to	add	two	new	methods	to	the	TestData	class.	We	need
one	method	to	generate	realistic	credit	card	numbers	and	another	method	that	generates
expiration	dates.	These	two	new	methods	will	look	like	this	in	the	test_data.rb	file:

Faker	is	really	good	at	generating	test	credit	cards	that	will	pass	the	Luhn	test.	This	allows
us	to	write	tests	against	purchase	forms	that	have	simple	JavaScript	validation	for	the
validity	of	the	card	number.

Note
The	Luhn	test	algorithm	is	a	simple	checksum	formula	created	by	Hans	Peter	Luhn.	It	is
used	by	majority	of	credit	card	companies	when	generating	an	account	number.	Here	are
examples	of	a	Luhn	valid	test	credit	cards	for	VISA:	4444	3333	2222	1111	and	4111	1111
1111	1111.	Similarly,	test	numbers	for	MasterCard	are	5555555555554444	and
5454545454545454.

Now	let’s	create	a	new	test	file	called	purchase_form_test.rb.	Let’s	take	a	look	at	our
very	simple	PurchaseFormTests	class;	we	will	start	with	the	same	boilerplate	code	that
we	have	seen	many	times	in	previous	chapters:

Looking	at	the	actual	test,	we	should	see	a	lot	of	similarities	to	the	code	we	wrote	in
Chapter	4,	Data-driven	Testing.	Let’s	take	a	quick	look:

We	close	the	test	file	with	the	helper	images	in	the	private	section:

If	we	compare	the	code	from	this	test	with	product_review_test.rb	from	the	previous
chapter,	we	will	notice	that	the	helper	methods	are	pretty	much	identical.	This	is	typically
a	good	sign	that	a	code	refactors	in	order.	However,	before	we	can	start	refactoring,	we
should	first	concentrate	on	making	the	tests	work.

Tip
Remember,	premature	optimization	is	the	root	of	all	evil	in	software	programming.

So,	without	any	further	delays,	let’s	run	our	tests.	Our	output	should	look	like	this:

We	have	a	passing	test	for	the	purchase	form;	in	a	perfect	world,	our	work	would	be
complete.	In	the	next	section,	let’s	take	a	look	at	a	scenario	that	is	a	little	more	realistic.

Using	explicit	delays	to	test	AJAX	forms
We	now	have	a	test	that	will	work	perfectly	well	when	testing	the	website	against	a	fast
test	environment	like	localhost.	These	environments	tend	to	stub	the	purchase	form
responses	to	create	an	environment	that	is	easily	testable	in	CI.	However,	our	staging	and
production	environments	communicate	with	a	third-party	service	to	validate	the	credit
card	information.

Note
For	more	information	about	stubbing	third-party	services,	visit	Chapter	4,	Data-driven
Testing.

Let’s	see	how	well	our	tests	do	in	such	an	environment.	In	the	previous	chapter,	we
implemented	a	concept	of	environment	in	the	TestData	class.	It’s	time	to	put	it	to	use	by
pointing	our	tests	toward	the	staging	environment	with	the	help	of	command	line
variables.	On	a	Windows-based	computer,	type	the	following	command	in	the	terminal:

set	environment=staging

If	you	are	using	a	Linux-based	computer,	including	OS	X,	we	will	use	the	export
command:

export	environment="staging"

Now	let’s	run	our	test	the	same	way	we	just	did.	The	terminal	should	now	display	this:

What	went	wrong?	If	we	were	watching	the	test	run	on	the	monitor,	we	would	notice	that
the	Purchase	complete!	message	did	not	appear	instantly.	Instead,	we	saw	an	AJAX
request	indicator,	colloquially	known	as	spinner,	as	shown	in	the	following	screenshot:

Since	the	success	DIV	only	shows	the	Purchase	complete!	text	after	the	asynchronous
request	is	completed,	our	test	only	saw	an	empty	string;	thus	it	failed.	The	most	obvious
and	fastest	way	to	fix	our	test	is	to	add	a	sleep	command	to	allow	the	AJAX	request	to
complete.	The	code	will	look	like	this:

Just	like	every	other	anti-pattern,	this	quick	fix	makes	our	tests	pass	right	away	with	some
long	term	unintended	consequences.	In	this	particular	case,	the	purchase	form’s	AJAX
request	will	take	up	to	30	seconds	to	complete.	Telling	the	test	to	pause	for	25	seconds
raises	these	issues:

Wasted	time:	The	majority	of	the	requests	made	by	the	purchase	form	will	finish	in
less	than	15	seconds.	This	means	that	our	tests	will	be	doing	nothing	even	though	the
page	is	in	ready	state.

Tip
Avoiding	unnecessary	delays	becomes	very	important	as	the	test	suite	grows.

Remember,	we	want	the	whole	test	suite	to	finish	in	10	minutes	or	less.

Environment	unaware:	Only	the	staging	environment	has	such	a	delay	with	the
AJAX	request,	the	CI	environment	gives	an	instant	response.	As	mentioned	in
previous	point,	this	is	wasted	time.
Wait	can	be	too	short:	Once	in	a	while	the	staging	environment	or	the	third-party
service	can	be	under	heavy	load	and	the	request	might	take	longer	than	30	seconds.
The	hardcoded	sleep	value	is	not	adequate	enough	to	deal	with	real-world	scenarios.

What	we	need	is	to	make	our	tests	smart	enough	to	know	when	the	AJAX	request	to
complete.

Implementing	intelligent	delays
There	are	a	lot	of	JavaScript	frameworks	that	allow	developers	to	implement
asynchronous	request	functionality	with	ease.	One	of	the	most	popular	is	called	jQuery,
which	implements	a	lot	of	useful	functionality	outside	AJAX	requests.	One	of	the	API
calls	that	jQuery	provides	is	ability	to	get	the	total	current	count	of	active	asynchronous
requests.	Executing	jQuery.active	function	call	from	JavaScript	will	return	0	if	the	page
is	fully	loaded	and	it	will	return	a	nonzero	number	if	there	are	current	background
requests.

Selenium	WebDriver	allows	our	tests	to	execute	arbitrary	JavaScript	commands	within	the
context	of	the	current	web	page	with	execute_script	method.	If	we	combine	all	of	these
items	together	in	a	wait_for_ajax	method,	we	can	make	our	tests	treat	background
requests	intelligently.

Tip
If	your	current	project	does	not	use	jQuery	to	make	AJAX	requests,	check	the
documentation	of	your	framework	for	something	analogous	to	jQuery.active.	If	all	else
fails,	you	can	take	Dave	Haeffner’s	approach	of	injecting	jQuery	into	a	web	page	that	does
not	have	it	included.	You	can	find	his	blog	post	at	http://elementalselenium.com/tips/53-
growl.

Let’s	take	a	look	at	the	wait_for_ajax	method	implementation:

There	is	a	lot	going	on	here;	so	let’s	break	things	down	a	little	starting	on	line	49.	We
create	a	new	instance	of	the	Wait	class	provided	by	Selenium	WebDriver.	When	creating
this	new	class,	we	explicitly	set	the	timeout	to	be	60	seconds;	when	the	timeout	is	reached,
the	test	will	get	back	the	control	and	move	to	the	next	step.	The	Wait	class	has	an	until
method	that	accepts	a	block	of	code,	line	50	and	51.

In	WebDriver,	the	until	method	in	the	Wait	class	is	simply	a	loop	that	executes	the
contents	of	the	code	block	passed	to	it	until	the	code	returns	a	true	value.	In	the	case	of
the	wait_for_ajax	method,	the	exit	loop	condition	is	reached	when	there	are	0	active
AJAX	requests.	We	ask	the	JavaScript	to	return	jQuery.active	count.	Finally,	we
compare	the	returned	integer	value	to	0.	If	the	conditional	returns	true,	all	of	AJAX
requests	finished	and	we	are	ready	to	move	to	the	next	step.

Now,	we	just	add	the	wait_for_ajax	invocation	anywhere	we	need	our	tests	to	wait.	We

http://elementalselenium.com/tips/53-growl

will	be	replacing	the	hardcoded	sleep	method	from	earlier,	as	shown	here:

As	a	good	habit,	after	we	refactor	any	code,	we	run	our	tests	to	make	sure	everything	is
passing.	Let’s	take	a	look	at	the	test	results	with	the	wait_for_ajax	method	included.	In
the	following	screenshot,	we	can	see	that	the	total	execution	time	of	the	test	went	up	to
accommodate	the	background	AJAX	request:

We	conquered	the	AJAX	menace.	It’s	time	to	move	on	to	the	next	cause	of	instability	on
modern	websites:	JavaScript	animations.

Waiting	for	JavaScript	animations
When	websites	started	to	use	AJAX,	the	developers	and	designers	faced	a	new	challenge.
Previously,	any	major	interaction	with	a	website,	such	as	clicking	the	purchase	button,
gave	a	user	clear	indication	that	something	is	changing	after	each	action.	With
asynchronous	requests,	parts	of	the	web	page	can	change	and	user	would	not	notice	that
something	important	has	happened.	So,	the	designers	came	up	with	ways	to	draw	user’s
attention	towards	the	section	of	the	page	that	has	changed.	It	started	with	fading	in	the
changing	content	in	a	yellow	box,	slowly	incorporated	a	spiny	wheel,	and	now	we	have
whole	page	swipes	and	many	other	animations	to	accomplish	this.

Note
Animation	is	an	act	of	changing	the	web	page;	it	ranges	from	adding	or	subtracting	images
to	removing	everything	on	the	page	and	starting	over.

There	are	several	situations	in	which	a	Selenium	test	will	fail	with
ElementNotVisibleError	even	though	the	element	we	are	looking	for	is	technically	on
the	page.	If	our	test	is	attempting	to	click	on	a	button,	the	following	conditions	will
prevent	the	click:

Not	currently	visible:	Some	websites	place	the	button	somewhere	on	the	page,	but
make	it	invisible	until	it	is	ready	to	be	clicked.	Often,	they	will	use	an	animated
transition	effect	to	slowly	fade	in	the	button	to	make	the	experience	feel	pleasant.
Attempting	to	click	on	the	element,	which	is	still	transparent,	will	not	be	successful.
Under	other	elements:	Let’s	say	a	defect	is	introduced	in	the	page	layout	where
some	element	such	as	a	text	input	is	out	of	place	and	ends	up	covering	up	the	button
we	wish	to	click	on.	The	button	is	present	on	the	screen	and	technically	functional.
However,	since	the	human	user	is	not	able	to	point	the	mouse	at	it	and	click	it,
WebDriver	will	not	allow	the	test	to	click	on	it	either.
Offscreen:	A	common	design	practice	is	adding	elements	to	the	page	but	placing
them	far	offscreen,	and	using	JavaScript	to	slide	them	into	view	when	certain
conditions	are	met.	The	transition	enhances	the	user’s	experience.	Attempting	to	click
on	an	element	that	has	not	yet	slid	into	place	will	make	WebDriver	throw
ElementNotVisibleError.

Test	failures	caused	by	element	animation	are	some	of	the	most	difficult	to	debug.	Even	if
we	take	a	screenshot	of	the	entire	page	at	the	point	of	failure,	the	element	finished
rendering.	This	leads	to	a	situation	where	the	test	claims	that	an	element	is	missing,	but
the	screenshot	shows	that	element	in	fact	is	present.	In	other	words,	making	our	tests	wait
for	AJAX	requests	to	complete	is	not	enough;	they	also	need	to	wait	for	JavaScript
animations	to	finish.	To	demonstrate	a	test	failure	due	to	JavaScript	animation,	let’s
modify	the	target	URL	of	our	test	to	this:

This	page	contains	a	purchase	form	similar	to	the	ones	we	have	been	dealing	with,	with
one	minor	difference.	The	Purchase	button	is	invisible	until	enough	text	fields	are	filled
out;	after	a	threshold	for	completeness	is	reached,	the	Purchase	button	slowly	fades	in.
The	following	screenshot	shows	the	purchase	form	before	the	animation	complete	and
after	the	animation	is	complete:

If	we	run	our	test	without	any	modifications,	we	will	get	the	following	test	failure	in	our
output:

To	fix	this	problem,	we	will	need	to	create	a	wait_for_animation	method,	which
similarly	to	the	wait_for_ajax	method	from	earlier,	will	be	intelligent	enough	to	allow
JavaScript	to	finish	its	tasks.	Let’s	take	a	look	at	this	method:

This	method	looks	identical	to	the	wait_for_ajax	method.	The	only	difference	is	the
JavaScript	command	passed	into	execute_script	method.	We	use	the
jQuery(':animated').length	command	to	find	how	many	animations	are	currently	in
progress;	when	total	animation	count	hits	0,	we	move	on	to	the	next	step	in	our	test.	Let’s
add	this	method	to	our	tests	as	shown	here:

Before	we	start	to	refactor	all	of	the	code	duplication	into	the	Action	Wrapper	pattern,	let’s
make	sure	our	test	is	now	passing.	The	test	output	should	look	like	this:

The	Action	Wrapper	pattern
The	idea	behind	the	Action	Wrapper	pattern	is	to	collect	all	of	the	most	common	pain
points,	such	as	AJAX,	and	automatically	implement	them	every	time	that	action	is
performed.	It	helps	to	future	proof	the	tests	by	automatically	accounting	for	things	that
commonly	go	wrong	and	destabilizing	the	tests.

Advantages	of	the	Action	Wrapper	pattern
The	Action	Wrapper	pattern	has	a	lot	more	advantages	than	disadvantages;	let’s	take	a
look	at	them:

Single	location	for	actions:	All	of	the	actions	such	as	clicking,	typing,	and	dealing
with	AJAX	requests	and	animations	are	in	a	single	class.	This	makes	them	easy	to
find	and	modify	and	very	DRY.

Note
The	DRY	principle	and	the	DRY	pattern	are	discussed	in	Chapter	3,	Refactoring
Tests.

Increased	overall	build	stability:	Overall,	the	test	suite	becomes	a	lot	more	stable
since	forgetting	to	add	a	wait	no	longer	breaks	random	tests	at	random	times.
Capture	and	append	exceptions:	If	an	action	(such	as	clicking	on	a	button)	cannot
be	performed,	we	can	capture	the	stack	trace	and	add	more	information	for	better
debugging.
Helps	to	implement	screenshot	pattern:	This	pattern	makes	it	easier	to	add
functionality	that	will	capture	screenshots	of	the	whole	web	page	on	test	failures.

Disadvantages	of	the	Action	Wrapper	pattern
The	biggest	disadvantage	of	the	Action	Wrapper	pattern	is	increased	time.	We	are	trading
fast	build	time	for	a	more	stable	build,	which	is	typically	a	good	trade.

Note
The	build	time	increase	is	not	that	dramatic.	If	intelligent	delays	are	implemented
properly,	we	will	be	adding	10	percent	to	20	percent	time	increase,	while	reducing	test
flakiness	by	up	to	80	percent.

Implementing	the	Action	Wrapper	pattern
By	using	the	Wrapper	pattern	on	the	Selenium	class,	we	are	able	to	add	some	additional
functionality	to	our	test	actions.	A	click	on	the	Purchase	button	does	not	have	to	be	just	a
click;	it	can	become	so	much	more.	Wrapping	an	action	gives	us	the	ability	to	ask	the
AJAX	and	animations	to	finish	after	we	click	on	any	button	automatically.	Furthermore,
we	are	able	to	catch	any	exception	in	our	test	and	take	a	screenshot	of	the	whole	page	at
that	moment	in	order	to	help	us	debug	the	failure!

Note
The	Wrapper	pattern,	also	called	Decorator	pattern	or	Adapter	pattern,	is	a	design
pattern	used	to	encapsulate	certain	objects	to	give	them	more	functionality	than	initially
designed.	For	example,	in	Selenium,	the	click	method	and	the	save_screenshot	methods
are	separate	entities.	By	wrapping	the	click	method,	we	are	able	to	attempt	a	click	and
take	an	instant	screenshot	of	the	webpage	if	the	click	fails	for	any	reason	whatsoever.

To	save	some	time,	I	did	some	refactoring	for	us,	so	please	download	the	new	project	from
here	http://awful-valentine.com/code/chapter-5.	To	make	the	project	files	more
manageable,	I	created	several	new	folders	and	grouped	files	inside.	Let’s	look	at	the	new
places	for	everything,	starting	with	all	the	files	that	deal	with	test	data.	They	now	live	in
the	fixtures	directory	as	shown	here:

All	of	the	tests	we	have	written	so	far	now	live	in	the	tests	directory,	as	shown	here:

The	images	directory	is	where	we	will	store	screenshots	of	the	web	page	on	test	failures,
but	right	now	it	is	empty.	Finally,	the	helpers	directory,	shown	in	the	following
screenshot,	is	where	we	will	store	the	selenium_wrapper.rb.	We	will	implement	the
Action	Wrapper	pattern	in	this	file:

http://awful-valentine.com/code/chapter-5

The	SeleniumWrapper	class	will	become	a	single	point	of	contact	between	the	tests	and
the	web	page	being	tested.	Let’s	take	a	look	at	this	class	in	detail;	we	will	start	with
methods	responsible	for	the	creation	and	destruction	of	browser	sessions:

The	initializer	method	creates	a	new	instance	of	WebDriver	with	a	chosen	browser	that
defaults	to	Firefox.	It	stores	this	new	session	in	the	@selenium	instance	variable	for	future
uses,	such	as	when	the	quit	command	is	invoked.

Since	waiting	for	AJAX	and	animations	to	complete	is	a	common	task	in	every	test,	we
moved	those	methods	into	SeleniumWrapper	class,	as	shown	here:

Since	will	be	using	these	methods	a	lot,	let’s	make	a	small	method	called
wait_for_ajax_and_animation	that	calls	both	AJAX	and	animation	wait,	as	shown	here:

Next,	we	moved	all	of	the	little	helper	methods	such	as	type_text	or	click	into	the
SeleniumWrapper	class.	This	allows	us	to	have	these	methods	implemented	only	once	and
shared	by	all	of	the	tests.	However,	we	have	modified	these	methods	to	become	a	lot	more
powerful.	Let’s	take	a	look	at	the	type_text	method	that	is	shown	here:

This	may	seem	confusing	at	first,	but	the	send_keys	method	we	used	so	many	times
before	is	still	present	on	line	35.	Let’s	discuss	the	new	code	that	surrounds	the	send_keys
method.

On	line	33,	we	added	a	brand	new	method	called	bring_current_window_to_front,
whose	only	job	is	to	locate	the	current	browser	window	and	bring	it	to	the	very	front	of	the
display.	In	certain	situations,	JavaScript	is	not	properly	triggered	when	the	browser	in
which	the	tests	are	running	is	not	in	focus.	This	causes	some	very	confusing	and
unrepeatable	test	flakiness,	just	as	AJAX	requests	not	being	triggered	after	we	click	on	the
Purchase	button.	By	bringing	the	current	window	to	the	top	of	the	screen,	we	sidestep	this
issue	and	improve	overall	test	stability.	For	more	information	about	bringing	a	browser
window	to	the	front	with	WebDriver,	check	out	the	blog	post	at
http://elementalselenium.com/tips/4-work-with-multiple-windows.

Let’s	look	at	the	next	piece	of	code,	line	34.	Before	we	start	typing	any	text	into	a	text
field,	we	use	the	clear	method	to	delete	any	text	that	might	have	been	in	the	text	box.	By
explicitly	clearing	the	text	boxes,	we	avoid	situation	where	the	new	input	is	appended	to
existing	text	in	the	filed.	This	is	especially	useful	on	text	fields	that	have	default	values	in

http://elementalselenium.com/tips/4-work-with-multiple-windows

the	text	field	that	need	to	be	overwritten.

Note
While	writing	this	section	of	the	book,	I	did	a	little	experiment.	I	ran	all	of	the	tests	on	my
computer	20	times	to	see	how	many	would	fail	with	the	previously	described	JavaScript
malfunctions.	Out	of	the	20	runs,	I	had	seven	test	failures	due	to	flakiness.	After	adding
the	bring_current_window_to_front	and	clear	methods	into	the	Action	Wrapper,	I	only
had	one	test	failure	out	of	30	runs.	That’s	a	huge	stability	improvement	with	a	single	line
of	code!

After	the	test	finished	typing	text	into	the	text	field,	we	call	the
wait_for_ajax_and_animation	method,	as	shown	on	line	36.	This	is	to	allow	any
animation	or	AJAX	requests	to	finish.	This	is	extremely	useful	when	testing	input	fields
that	use	AJAX	to	auto	complete	text	as	the	user	types	it.

The	most	important	part	of	this	action	wrapper	is	the	exception	handling	built	in	around
each	action.	Typically,	if	the	WebDriver	click	or	send_keys	encounter	any	difficulty,
such	as	an	element	not	being	visible,	an	exception	would	be	raised	and	the	test	exists.	By
wrapping	these	methods	in	begin/rescue	statements,	as	shown	in	the	following	screenshot,
we	are	able	to	print	out	more	information	about	the	failure	and	take	a	screenshot	of	the
web	page:

The	test	will	still	fail	when	it	encounters	a	problem	but	will	print	out	information	about
what	it	was	trying	to	do.	Furthermore,	a	screenshot	is	incredibly	helpful	when	debugging	a
test	in	CI.	We	will	not	go	into	the	details	of	every	method	implemented	in	the
SeleniumWrapper	class	since	all	of	the	code	in	that	class	should	be	familiar.	Let’s	take	a
look	at	the	refactored	purchase	form	test	we	have	been	working	on	this	chapter.	As	you
can	see	in	the	following	screenshot,	the	overall	size	of	the	test	file	has	shrunk	as	a	lot	of
boilerplate	and	duplicate	code	has	been	moved	out	to	a	central	location:

The	final	change	has	been	an	addition	of	the	runt_tests.rb	file.	We	moved	all	of	the
boilerplate	require	statements	that	used	to	be	in	every	test	here.	We	no	longer	need	to	run
each	test	file	individually;	instead,	we	can	run	the	full	test	suite	by	simply	running	this
command:

ruby	run_tests.rb

The	result	of	this	command	should	be	all	of	the	tests	executing	with	the	help	of	the
SeleniumWrapper	class.	The	result	of	running	all	of	the	tests	should	look	like	this:

Our	test	suite	is	now	in	a	much	better	place.	We	protected	it	from	a	lot	of	flakiness	due	to
JavaScript	and	browser	idiosyncratic	issues.	There	is	one	more	type	of	flakiness	we	need
protect	our	tests	from,	failures	due	to	unnecessary	third-party	dependencies.	The	Black
Hole	Proxy	pattern	is	used	to	help	with	these.

The	Black	Hole	Proxy	pattern
The	Black	Hole	Proxy	pattern	tries	to	reduce	test	instability	by	getting	rid	of	as	many
third-party	uncertainties	as	possible.	Modern	websites	have	a	lot	of	third-party	content
loaded	on	every	page.	There	are	social	networking	buttons,	images	coming	from	CDNs,
tracking	pixels,	and	much	more.	All	of	these	items	can	destabilize	our	tests	at	any	point.
Black	Hole	Proxy	takes	all	HTTP	requests	going	to	third-party	websites	and	blocks	them,
as	if	the	request	was	sucked	into	a	black	hole.

Note
Web	pages	that	have	heavy	traffic	in	the	production	environment	tend	to	cache	their
JavaScript	and	the	cached	assets	on	a	third-party	CDN.	When	testing	an	environment	such
as	production,	we	should	not	be	blocking	critical	assets	but	allowing	them	to	be	properly
loaded	using	the	proxy	whitelist	feature.

Advantages	of	the	Black	Hole	Proxy	pattern
Black	Hole	Proxy	brings	many	advantages	to	our	tests:

Improved	speed:	Since	the	web	applications	we	test	tend	to	be	on	the	local	network,
the	web	page	loads	are	much	faster	if	there	is	no	wait	for	third-party	content	to	load.
Improved	stability:	Modern	web	applications	have	a	lot	of	third-party	dependencies
that	are	not	critical	to	core	functionality	of	the	application.	These	include	tracking
pixels	and	social	media	buttons,	such	as	Facebook	or	Twitter.	Sometimes,	these	third-
party	dependencies	will	make	our	tests	fail	because	they	are	taking	a	longer	than
usual	amount	of	time	to	load.	Blocking	these	noncritical	third-party	dependencies
allow	our	Selenium	tests	to	verify	the	functionality	of	our	application	without
breaking	due	to	unpredictable	dependencies.
Hermetically	sealed	tests:	The	test	has	higher	control	over	the	environment.	By
blocking	third-party	content,	we	reduce	external	dependencies	that	cause	test	failures.

Disadvantages	of	the	Black	Hole	Proxy	pattern
There	are	two	major	disadvantages	to	the	Black	Hole	Proxy	pattern:

Broken	layout:	If	a	lot	of	third-party	content	is	removed	from	the	page,	the	page	will
still	function,	but	the	locations	of	buttons	and	images	might	shift	to	fill	out	the	newly
created	gaps	on	the	page.
Third-party	content	tests	are	broken:	Any	test	that	tries	to	check	the	third-party
integration,	such	as	logging	in	with	social	network	credentials,	will	not	work.	We
have	to	implement	a	way	to	give	the	tests	control	over	the	Black	Hole	Proxy	pattern.

Implementing	the	Black	Hole	Proxy	pattern
Our	website	integrates	with	a	couple	of	third-party	social	networks.	The	A	book	is	a	social
network	for	people	whose	name	start	with	the	letter	A.	The	Walker	network	is	for	sending
142	character	status	updates	to	your	walking	buddies.	Both	of	the	networks	are	integrated
at	random	spots	of	our	application.	Furthermore,	our	website	has	two	banners	on	every
page.	Overall,	our	purchase	form	page	looks	something	like	this:

Our	social	network	partners	are	having	a	slow	network	connection.	To	simulate	that,	let’s
modify	the	PurchaseFormTests	test	once	more.	We	change	the	first	line	of	the	test	to
navigate	to	a	new	page	that	has	a	lot	of	slow	loading	third-party	dependencies,	as	shown	in
the	preceding	image.	Let’s	modify	our	test’s	target	URL	like	this:

This	new	URL	takes	us	to	a	page	that	is	designed	to	simulate	extremely	slow	loading
third-party	assets	such	as	social	network	sites	and	tracking	pixels.	If	we	run	our	test	suite
now,	we	will	get	Timeout::Error,	as	shown	in	the	following	screenshot,	because	the	tests
timed	out	while	waiting	for	the	page	to	finish	loading.	An	uncontrollable	delay	is	caused
by	third-party	dependencies:

We	will	be	taking	advantage	of	the	HTTP	proxy	settings	that	all	browsers	use.	Our	tests
will	send	all	of	the	HTTP	traffic,	without	our	testing	environment,	to	a	fake	proxy	that	will
swallow	up	all	of	the	requests.	Let’s	add	a	couple	of	lines	to	the	class	initializer:

The	preceding	code	performs	the	following	actions:

It	creates	an	instance	of	the	Firefox::Profile	class
It	configures	the	HTTP	proxy	to	point	to	a	non	existing	proxy	on	127.0.0.1	with	port
of	9999

Note
You	do	not	have	to	use	a	fake	proxy	at	all.	As	a	matter	of	fact,	you	can	create	a
simple	proxy	server	that	logs	all	external	URLs	to	a	logfile.	This	way	you	know	all
the	external	dependencies	in	your	application.	Just	make	sure	that	no	matter	what	the
request	is,	your	proxy	server	returns	a	200	response	with	an	empty	body.
BrowserMob	Proxy	accomplishes	just	that,	and	it	can	be	found	at
http://bmp.lightbody.net/.

It	tells	the	profile	to	not	use	the	proxy	for	any	connections	going	to	localhost,
127.0.0.1,	and	all	instances	of	our	website
Finally,	it	tells	Selenium	to	get	us	a	new	instance	of	Firefox	with	the	profile	we	just
made

Let’s	run	the	test	suite	again.	All	the	tests	should	be	passing,	like	this:

When	loading	the	web	page,	here	is	what	the	tests	see:

http://bmp.lightbody.net/

The	tests	are	now	at	the	highest	stability	point	they	have	ever	been.	Some	flakiness	will
occur	from	time	to	time;	this	cannot	be	avoided.	However,	the	more	work	we	put	in
stabilizing	our	Selenium	tests,	the	fewer	failures	we	will	see.	At	some	point	in	the	future,
when	the	Selenium	build	fails,	we	will	have	confidence	to	say	it	is	a	real	bug	that	caused
the	failure	and	not	test	flakiness.

Test	your	tests!
A	last	thought	before	we	close	this	chapter:	not	enough	time	and	thought	is	given	to	the
idea	of	testing	the	tests	themselves.	One	should	not	hurry	in	adding	a	new	test	to	the	suite
without	running	it	at	least	a	dozen	times.	Personally,	I	tend	to	run	each	new	test	about	20
times	before	I	consider	it	stable.	Just	put	the	tests	in	a	loop,	let	it	run	for	20	minutes	while
you	get	a	cup	of	coffee.	You	will	be	surprised	how	often	a	test	will	fail	if	you	just	let	it	run
enough	times.

Finally,	don’t	forget	to	test	your	tests	on	multiple	browsers.	As	a	rule	of	the	thumb,	any
test	you	will	write	will	be	a	lot	more	stable	in	Firefox	and	Chrome	browsers	than	they	are
in	Internet	Explorer	and	Safari.	Just	because	you	got	stability	in	the	test	suite	for	the	first
two	browsers,	it	does	not	mean	the	latter	two	are	stable.

Summary
In	this	chapter,	we	covered	the	topic	of	test	stability.	We	discussed	some	of	the	things	that
make	an	individual	test	stable—starting	with	cultural	changes	on	the	team	and	ending	with
changing	personal	behavior,	such	as	testing	our	own	tests	before	committing	them	to
source	control.

We	also	discussed	some	of	the	more	technical	solutions	such	as	using	an	existing
JavaScript	infrastructure	to	check	completion	of	background	AJAX	requests	and
JavaScript	animations.	We	also	wrapped	some	of	the	common	Selenium	actions	to
automatically	give	them	the	ability	to	wait	for	JavaScript	events	and	take	a	full-page
screenshot	of	the	page	when	something	fails.

Now	that	we	have	some	measure	of	stability	in	our	tests,	we	can	start	spending	more	time
thinking	about	the	test	declaration	versus	test	implementation.	In	the	next	chapter,	we	will
be	testing	the	behavior	of	our	application.

Chapter	6.	Testing	the	Behavior
	 “Do	not	allow	watching	food	to	replace	making	food.” 	

	 —Alton	Brown

How	important	is	it	to	clearly	state	your	intended	actions?	When	driving	a	car	on	an	empty
street	at	night,	do	you	use	a	turning	signal	to	let	any	unseen	pedestrians	know	what	you
intend	to	do?	It	is	too	easy	to	write	a	test	that	seems	fine,	but	after	two	months	of	working
on	something	else,	it	looks	completely	cryptic	and	incomprehensible.

In	this	chapter,	we	will	be	converting	our	tests	from	a	cryptic	set	of	method	calls	into
something	that	any	person	off	the	street	can	understand.	The	actions	of	the	test	will	remain
the	same,	but	how	each	action	is	described	will	become	dramatically	clearer.	In	this
chapter,	we	will	cover	the	following	topics:

Behavior-driven	Development
The	write	once,	test	everywhere	pattern
JBehave
Cucumber

Behavior-driven	Development
Writing	a	test	that	clearly	states	its	intent,	is	useful	in	itself.	However,	as	we	get	into	the
habit	of	making	ourselves	clearly	understood,	we	start	to	notice	a	pattern.	Behavior-
driven	Development	(BDD)	encourages	us	to	step	back	and	think	of	how	the	application
should	behave	end-to-end	first,	and	only	then	concentrate	on	the	smaller	details.	After	all,
our	application	can	be	refactored	many	times	with	all	of	the	IDs	and	names	changing
while	still	maintaining	the	same	intended	behavior.

Advantages	of	BDD
By	separating	the	implementation	details	from	the	behavior	definition,	our	tests	gain	a	lot
of	advantages:

Better	test	understanding:	If	the	test	is	written	properly,	then	it	is	possible	to	know
exactly	what	the	test	plans	to	do	without	being	confused	by	code	details.
Modular	implementation:	The	methods	that	perform	the	actual	implementation	can
be	shared	while	testing.

Note
For	more	information	on	code	reuse,	see	the	The	DRY	testing	pattern	section	in
Chapter	3,	Refactoring	Tests.

Versatile	implementation	options:	By	sticking	closely	to	behavior,	it	is	easy	to	have
one	defined	behavior	running	in	multiple	environments.	This	will	further	be
explained	in	the	write	once,	test	everywhere	pattern	later	in	this	chapter.
Multiple	BDD	frameworks:	There	are	multiple	testing	frameworks	written	to	allow
you	to	test	with	the	BDD	principle	in	just	about	every	programming	language.
Data	separation:	Data	used	by	the	test	is	extracted	out	of	the	behavior	definition,
making	it	easier	to	manage	the	data	in	the	long	run.

Note
To	study	further,	refer	to	the	Hardcoding	input	data	section	in	Chapter	4,	Data-driven
Testing.

Disadvantages	of	BDD
There	are	several	disadvantages	of	using	BDD	tools;	some	teams	might	find	that	the
negatives	outweigh	the	positives.	Here	are	some	examples	of	the	disadvantages	of	BDD:

Consistent	specification	language:	If	you	ask	10	people	to	describe	a	spoon	in	one
sentence,	you	will	get	10	different	sentences.	Having	the	whole	team	agree	on	how	a
registration	flow	should	be	described	in	a	consistent	plain	language	can	be	a
nightmare.	Without	having	a	consistent	standard,	it	is	easy	to	create	duplicate	code
based	on	how	someone	wishes	to	describe	an	action.	For	example,	I	click	on	the
product	link	and	I	follow	the	link	to	product	page	could	be	describing	the
same	method	call.

Note
Gojko	Adzic	describes	ways	to	bridge	the	communication	gap	between	team
members	in	Specification	by	Example:	How	Successful	Teams	Deliver	the	Right
Software,	Manning	Publications.

Easy	to	mix	behavior	and	implementation:	It	is	very	temptingly	easy	to	start
adding	implementation	into	a	definition.	This	practice	leads	to	muddled,	confused,
and	hardcoded	tests.
Which	BDD	tool	to	use:	Any	team	might	have	a	long	and	heated	debate	over	which
tool	is	perfect	for	a	project.	Choosing	the	perfect	tool	might	be	very	difficult.
Added	overhead:	Adding	another	framework	to	a	project	makes	writing	tests
simpler.	However,	each	tool	will	use	precious	resources	such	as	time	or	processing
power.
Learning	curve:	Each	new	framework	will	have	a	learning	curve	before	everyone	on
the	team	can	use	the	tools	effectively.

Testing	the	shopping	cart	behavior
Adding	items	to	the	shopping	cart	is	one	of	the	key	components	of	any	online	store	test
suite.	This	test	has	to	be	one	of	the	most	common	tests	ever	written.	It	is	a	crucial	part	of
our	website	and	lies	directly	on	the	Money	Path	of	the	application.

Note
Money	Path	is	a	simple	concept;	it	says	that	it	is	okay	to	have	an	occasional	bug	go	into
production,	as	long	as	none	of	these	bugs	ever	prevent	the	customer	from	giving	us	their
money.	A	customer	might	forgive	a	bug	that	prevents	them	from	uploading	a	profile
picture,	but	won’t	be	so	forgiving	if	they	cannot	purchase	the	item	they	desperately	need.
For	more	information	on	this,	please	refer	to	the	The	money	path	suite	section	in	Chapter
8,	Growing	the	Test	Suite.

If	we	were	to	write	a	test	that	adds	a	product	to	a	cart,	it	might	look	something	like	this:

Let’s	walk	through	the	actions	of	this	test,	starting	with	line	2:

1.	 Navigate	to	the	page	of	the	product	we	wish	to	test	by	using	the	get	method	and	our
TestData	class	to	obtain	the	environment	URL.

2.	 Click	on	the	initial	Add	To	Cart	button,	as	follows,	that	has	a	CSS	class	of	.single-
addtocart:

3.	 After	a	modal	giving	more	description	appears	on	the	screen,	the	test	clicks	on
another	Add	to	Cart	button.	The	JavaScript	modal	looks	like	this:

After	the	modal	is	displayed,	the	test	clicks	on	the	second	Add	to	Cart	button.

Note
Note	that	the	JavaScript	modal	shown	here	is	drawn	with	jQuery.	Because	our	tests
are	using	the	Action	Wrapper	pattern	discussed	in	Chapter	5,	Stabilizing	the	Tests,
they	automatically	wait	for	everything	to	be	on	the	screen	before	clicking	on	the
second	Add	to	Cart	button.

4.	 Finally,	the	test	asserts	the	total	amount	due,	which	resides	in	a	DIV	with	the	class
grand-total-amount.	Then,	it	checks	the	human-readable	summary	of	the	cart	from
the	DIV	with	the	ID	Cart66WidgetCartEmptyAdvanced.	The	cart	summary	page	is
shown	as	follows:

This	test	is	quite	brief,	concise,	and	to	the	point.	It	is	easy	to	call	it	complete	and	move	on
to	another	test	all	together.	However,	let’s	take	a	look	at	some	of	the	problems	with	this
test:

The	test’s	class	name	and	test	name	are	the	only	things	telling	us	what	the	overall
goal	of	the	test	is.	Even	though	they	are	short	and	concise,	they	don’t	really	explain
what	the	test	is	doing.

Individual	steps	are	written	in	pure	code,	without	a	step-by-step	explanation	of	what
each	line	does;	a	non-technical	individual	will	have	a	hard	time	understanding	what	is
going	on.
Every	class	and	ID	of	the	HTML	elements	in	the	test	is	hard	coded,	and	by	now	we
all	know	that	hardcoding	is	difficult	to	maintain	and	causes	long-term	difficulties.

Describing	shopping	cart	behavior
To	solve	similar	issues	with	tests,	Dan	North	set	out	to	develop	a	new	way	to	describe
application	behavior	in	the	Given,	When,	Then	format.

Note
For	more	information	about	Dan	North	and	BDD,	you	can	visit	his	website
http://dannorth.net.	His	article	Introducing	BDD	is	a	must	read,	and	can	be	found	at
http://dannorth.net/introducing-bdd.

This	textual	format	template	gives	semirigid	rules	to	be	used	when	describing	any	feature.
For	example,	the	add	to	cart	test	can	be	described	as	a	human-like	language	called
Gherkin.	Let’s	take	a	look	at	this	test	translated	into	Gherkin:

Dan’s	format	quickly	became	one	of	the	most	popular	formats	to	describe	feature
behaviors.	There	are	dozens	of	tools	written	in	every	major	computer	language,	which
parse	this	format	and	implement	actual	test	steps	based	on	it.	Let’s	take	a	closer	look	at	the
keywords	used	in	this	format:

Features:	This	give	an	overview	of	the	whole	feature.	It	is	used	to	describe	a	group
of	Scenarios	in	a	given	test	file.
Scenario:	This	describes	different	test	variations	within	the	overall	features.	Here	are
a	couple	of	Scenarios	for	our	feature:

Given:	This	is	the	starting	point	of	the	test;	it	describes	preconditions	that	need	to	be
in	place	before	the	test	can	successfully	start.

Note
To	say	that	a	Given	statement	is	analogous	to	a	setup	method	is	not	entirely	correct.
Yes,	it	is	used	to	put	our	environment	into	a	certain	state	before	the	actual	test	begins,
but	individual	scenarios	can	have	different	Given	statements.	Some	BDD	frameworks
support	the	concept	of	the	Background	statement,	which	resembles	a	setup	method.

When:	These	statements	are	used	to	start	performing	actions	against	the	current	state
of	the	application.	In	this	case,	we	click	on	the	Add	To	Cart	button.

http://dannorth.net
http://dannorth.net/introducing-bdd

Then:	These	statements	are	used	to	describe	the	final	state	of	the	application;	they
are	used	as	a	test	assertion.
And:	These	statements	are	usually	interchangeable	between	Given,	When,	or	Then.
They	are	there	to	allow	the	feature	description	flow	naturally	in	a	human	language.
The	preceding	feature	description	can	be	typically	rewritten	as	shown	in	the
following	screenshot:

Writing	step	definitions
We	now	have	a	declaration	of	how	our	application	is	supposed	to	behave	in	a	human
language.	We	are	ready	to	concentrate	on	implementing	a	test	for	this	feature.

Note
Typically,	a	step	is	any	line	item	that	performs	some	action	in	our	application.	Scenarios
and	features	are	not	steps	in	traditional	ways,	as	they	only	clarify	the	behavior	and	do	not
perform	any	work.

Let’s	take	a	look	at	how	each	step	is	implemented	one	at	a	time:

We	start	with	the	Given	step,	which	sets	up	the	environment	in	a	testable	state.	In	this
case,	it	navigates	to	a	certain	URL:

Next,	we	implement	the	two	separate	steps	that	click	on	the	Add	to	Cart	buttons:

Our	test	concludes	with	a	Then	step,	which	checks	that	the	application	behaved	in	a
predictable	manner:

If	we	compare	the	code	that	does	the	actual	testing,	we	can	see	that	our	step	definitions	are
identical	to	the	test	we	wrote	earlier	in	the	chapter.	This	is	the	biggest	power	and	strength
of	most	BDD	frameworks;	they	allow	users	to	write	real	programming	language	code,	not
just	a	specially	formatted	XML.	The	step	names	do	use	the	Given,	When,	Then	format	but
inside	each	step	is	pure	Ruby.	However,	what	if	we	need	to	use	another	language	besides
Ruby	to	write	our	tests?	Luckily	for	us,	the	majority	of	the	programming	languages	have

an	implementation	of	this	BDD	definition	format.	Let’s	take	a	look	at	a	couple	of
examples	for	the	Then	I	should	see	"$68.99"	in	the	grand	total	section	step
written	in	several	languages	besides	Ruby:

Language Code	Example

Java	with	JBehave	framework
@Then("I	should	see	$price	in	the	grand	total	section")

public	void	theGridShouldLookLike(String	price)	{

				//Assertion	of	price

}

Python	with	Lettuce	framework
@step('I	should	see	"(\$[\d\.]+)"	in	the	grand	total	section')

def	see_the_string_in_grand_total_section(step,	price):

				#Assertion

PHP	with	Behat	framework

/**

	*	@Then	/^I	should	see	"(\$[\d\.]+)"	in	the	grand	total	section$/

	*/

public	function	iSeePriceInGrandTotal($price)

{

		/*	Assertion	*/

}

Is	BDD	right	for	my	project?
Each	project	and	team	is	different,	so	choosing	the	right	test	framework	should	be	an
informed	decision.	As	you	are	trying	to	make	this	decision,	ask	yourself	a	couple	of
questions:

Is	BDD	too	much	for	what	you	need?:	Sometimes,	the	project	you	are	working	on
is	too	small	or	simple	to	set	up	a	large	BDD	framework.	If	you	do	not	expect	any
growth	in	the	project	and	test	suite,	maybe	a	simple	test	written	in	plain	language	is
more	than	enough.

	 “Do	not	use	a	cannon	to	kill	a	mosquito.” 	

	 —Confucius

Is	human	language	too	nuanced?:	Using	plain-language	step	definitions	has	a	lot	of
downfalls.	For	example,	the	I	should	be	able	to	Click	Purchase	button,	I
Click	Purchase	button,	and	Purchase	button	should	be	clickable	step
definitions	can	be	phrased	in	many	other	ways.	Can	the	whole	team	agree	on	how	to
describe	every	action	in	the	future	so	that	duplication	is	not	caused?
Do	you	have	a	proper	IDE	to	deal	with	Regular	Expressions?:	To	make	the	step
definitions	reusable,	you	might	need	to	use	a	lot	of	regular	expressions	to	get
different	variables	out	of	a	name.	Searching	the	project	to	see	whether	a	step	has
already	been	defined	is	extremely	complicated	if	you	do	not	have	an	IDE	to
autocomplete	the	already	defined	steps.
Is	the	Given,	When,	Then	format	right	for	you?:	Being	able	to	read	the	test
intention	in	human	language	is	great.	However,	if	you	do	not	plan	to	ever	have	any
nontechnical	individual	people	read	the	tests,	maybe	implementing	another
framework	is	too	much	when	a	simple	Test::Unit	or	JUnit	will	suffice.

Introducing	Cucumber
Cucumber	is	a	tool	used	to	convert	BDD	behavior	definitions	into	executable	steps	in
several	programming	languages	besides	Ruby.	Similar	to	the	tools	mentioned	in	the
previous	section,	it	parses	the	Given,	When,	Then	format	of	feature	specification	and
matches	it	with	the	proper	code	implementation.	Cucumber	has	many	great	features	that
we	will	now	explore.	To	save	time,	the	majority	of	the	existing	test	suites	have	been
converted	to	Cucumber	already;	please	download	the	new	workspace	from	http://awful-
valentine.com/code/chapter-6/part-1.

Our	workspace	project	structure	has	changed	a	little	bit	to	accommodate	some	of	the
cucumber	conventions.	Let’s	take	a	look	how	the	files	are	now	arranged:

As	you	can	see,	the	test	suite	structure	has	not	changed	much	from	what	it	used	to	be	in
the	previous	chapter,	except	a	couple	of	files	were	moved	and	renamed,	and	several	were
deleted.	Let’s	take	a	closer	look	at	the	Cucumber-specific	changes.

http://awful-valentine.com/code/chapter-6/part-1

Feature	files
The	features	directory	has	several	files	with	the	.feature	extension.	These	are	the	files
with	the	Given,	When,	Then	style	of	feature	definitions.	Take	a	look	inside	them	and	make
sure	all	of	our	tests	make	sense	in	a	human-readable	language.

Note
One	of	the	great	features	of	Cucumber	is	that	it’s	not	tied	to	the	English	language.	If	you
wanted	to	write	your	feature	definition	in	Russian	or	Japanese,	there	is	nothing	stopping
you	from	accomplishing	that.	For	more	information	on	the	supported	spoken	languages,
visit	Cucumber’s	wiki	page	at	https://github.com/cucumber/cucumber/wiki/Spoken-
languages.

https://github.com/cucumber/cucumber/wiki/Spoken-languages

Step	definition	files
The	step_definitions	directory	contains	all	the	Ruby	files	that	implement	the	steps
described	in	the	.feature	files.	Steps	defined	in	any	of	these	files	automatically	become
globally	accessible	to	the	whole	test	suite.	It	is	a	standard	practice	to	name	the	_steps.rb
files	as	clearly	as	possible	because	that	will	help	everyone	find	the	required	step	much
faster.	For	example,	any	steps	definitions	that	have	to	deal	with	creating	a	comment	will
go	into	review_steps.rb.

Note
Typically,	the	step_definitions	directory	should	be	placed	inside	the	features
directory.	By	following	this	standard,	all	the	files	in	the	step_definitions	directory	will
be	automatically	required	for	runtime.	However,	for	reasons	that	will	become	clear	later	in
this	chapter,	we	will	ignore	this	convention	for	now	and	explicitly	use	the
step_definitions	directory.

The	setup_teardown.rb	file	contains	the	two	blocks	of	code	that	start	a	new	browser
before	each	test	and	quit	the	browser	after	the	test	has	finished	executing.

Note
A	common	practice	with	Cucumber	is	to	put	the	global	Before	and	After	steps	into	the
env.rb	file.	However,	I	would	advise	against	this	practice	since	this	file	can	grow	to	be
incredibly	large	and	difficult	to	manage;	using	smaller	well-named	files	is	much	better	for
everyone	involved.

These	blocks	of	code	look	like	this:

The	configuration	directory
The	configuration	directory	is	a	reserved	directory	in	Cucumber;	inside,	you	will	typically
find	the	configuration	for	our	test	suite.	The	convention	is	to	store	anything	that	is	related
to	how	the	tests	are	executed	in	this	directory.

Cucumber.yml
The	cucumber.yml	file	is	one	of	the	files	that	is	used	to	store	Cucumber	profiles.
Currently,	our	file	looks	like	this:

<%

		common_requires	=	"--require	config	--require	step_definitions"

%>

default:	<%=	common_requires	%>	--format	pretty

ci:	<%=	common_requires	%>	--format	progress	

Note
cucumber.yml	can	be	written	in	plain	YAML	format	or	in	ERB,	which	is	a	template
language	used	to	insert	Ruby	code	inside	YAML	and	some	other	files.	Ruby	code	lives
within	the	<%	and	%>	characters.

The	cucumber.yml	files	begins	by	collecting	all	of	the	directories	that	contain	the	required
Ruby	files	into	the	common_requires	variable.	Then,	it	specifies	two	profiles,	default	and
ci,	which	in	turn	incorporate	the	common_requires	variable.

In	this	example,	the	only	difference	between	the	profiles	is	the	format	in	which	the	test
results	are	printed	out.	When	a	profile	is	not	specified,	the	default	profile’s	pretty
formatter	will	look	like	this:

The	test	failure	was	introduced	to	demonstrate	how	the	stack	trace	is	printed	out	in	the
pretty	format.

The	ci	profile	uses	the	progress	output	formatter.	This	type	of	output	looks	much	cleaner
when	running	our	tests	in	CI.	The	test	output	in	the	progress	formatter	should	look
familiar,	as	it	resembles	the	Test::Unit	output	first	introduced	in	Chapter	1,	Writing	the
First	Test:

env.rb
The	env.rb	file	is	a	bit	of	a	catchall	file.	We	typically	store	global	variables,	gem
requirements,	and	anything	else	the	whole	test	suite	would	need	access	to.	This	saves	us
the	trouble	of	requiring	a	specific	gem	in	every	single	step	definition	file.

Running	the	Cucumber	suite
Now	that	we	are	familiar	with	the	project	layout,	let’s	execute	some	tests.	To	start,	let’s
install	the	Cucumber	gem.	So,	run	the	following	command	in	the	terminal:

gem	install	cucumber

After	the	gem	has	been	installed,	we	have	several	commands	we	can	use	to	run	our	tests
from	the	root	of	the	working	directory:

1.	 To	execute	the	whole	suite	in	the	default	profile,	we	simply	run	the	following
command	in	our	terminal	from	the	root	of	our	workspace:

cucumber

The	Cucumber	gem	will	automatically	find	the	features	directory.	If	your	features
are	located	in	another	directory,	you	will	need	to	specify	the	path	to	that	directory
like	this:

cucumber	some/other/directory

2.	 Use	the	-p	flag	to	specify	a	different	profile	at	the	time	of	execution.	To	run	our
whole	test	suite	in	the	ci	profile,	we	can	use	this	command:

cucumber	–p	ci

3.	 We	do	not	need	to	execute	the	whole	test	suite	every	single	time.	If	we	want	to	run
only	a	single	file	or	all	the	feature	files	in	a	directory,	we	just	provide	the	path	to	the
file/directory	as	the	last	parameter	in	our	command:

Cucumber	-p	features/add_item_to_cart.feature

4.	 Finally,	we	can	execute	just	a	single	scenario	in	any	feature	file	by	appending	a	colon
and	line	number	of	the	scenario.	The	following	commands	will	only	execute	the
scenarios	that	are	on	the	provided	line:

cucumber	features/product_review.feature:15

cucumber	features/product_review.feature:15:33

cucumber	features/product_review.feature:15	features/	

add_item_to_cart.feature:20

Now	that	you	know	the	basics	of	using	Cucumber,	you	have	a	chance	to	play	around	with
individual	tests	and	see	how	they	run,	or	you	can	write	a	couple	of	scenarios	yourself	for
practice.	When	you	think	you	have	a	good	handle	on	how	Cucumber	works,	we	will	move
to	a	more	advanced	usage	of	it	in	the	next	section.

The	write	once,	test	everywhere	pattern
Jeff	Roggers	and	Kristan	Vingrys	initially	developed	the	write	once,	test	everywhere
pattern	while	working	at	ThoughtWorks.	The	concept	centers	on	taking	advantage	of
shared	behavior	between	multiple	implementations	of	one	application.	For	example,	it
should	be	possible	to	purchase	a	product	from	our	website	no	matter	whether	the	user	is
using	our	full	website,	the	mobile	version,	or	native	mobile	application.	If	the	feature
definitions	are	well	written,	the	steps	used	to	implement	the	test	can	be	interchangeable.

Note
The	write	once,	test	everywhere	pattern	is	also	known	as	the	pluggable	test	pattern,	since
we	can	plug	the	implementation	of	tests	into	different	contexts.	As	we	change	the	context
from	the	desktop	website	to	mobile	to	API	tests,	we	plug	in	the	correct	implementation.

Advantages	of	the	write	once,	test	everywhere
pattern
The	write	once,	test	everywhere	pattern	has	several	advantages	going	for	it;	here	is	a	list	of
a	few	of	them:

Foresight:	This	pattern	forces	the	architect	of	the	test	suite	to	think	ahead	and	boil
down	every	feature	and	behavior	into	the	simplest,	most	common	list	of	ideas.	When
the	idea	is	boiled	down	to	the	most	basic	components,	it	can	describe	the	behavior	of
our	application	from	multiple	implementations.
Reusability:	The	behavior	definition	can	be	reused	between	the	mobile	website	test
suite,	the	full	browser	test	suite,	and	even	at	times	for	native	mobile	applications.
Furthermore,	some	of	the	steps	written	for	the	full	browser	version	and	mobile
versions	can	be	reused,	as	some	of	the	web	elements	share	similar	attributes.
Simplicity:	We	have	a	single	test	suite	that	runs	on	multiple	platforms,	and	it	shares
some	of	the	implementation	details.	There	is	no	need	to	have	multiple	test	suites.

Disadvantages	of	the	write	once,	test	everywhere
pattern
There	are,	however,	some	disadvantages	in	placing	multiple	test	suites	in	a	single	one.
Let’s	take	a	look	at	these	disadvantages:

Runtime	context	switching:	In	the	example	provided,	we	use	Ruby’s	ability	to
require	the	correct	step	definitions	on	the	fly	based	on	the	profile.	In	static	languages
such	as	Java,	this	might	be	more	difficult	to	accomplish.
Complex	code	base:	Combining	multiple	test	suites	into	one	has	a	lot	of	advantages;
however,	the	project	structure	might	become	convoluted	and	difficult	to	understand
very	quickly.

Testing	a	mobile	site
Like	many	other	websites,	ours	has	a	special	stripped	down	version	to	be	used	with	smart
phones.	The	ability	to	leave	comments	on	any	product	remains,	but	the	steps	to	fill	up	the
product	comment	are	now	different.	So	in	this	section,	we	will	make
product_review.feature	work	on	both	regular	and	mobile	websites.	Let’s	update	our	test
suite	to	run	on	both	the	full	browser	version	and	mobile	browser	version.

Note
Typically,	testing	mobile	versions	of	a	website	can	be	better	accomplished	by	driving	the
tests	on	the	actual	smart	phone	or	in	an	emulator.	There	are	two	good	projects	that	allow
WebDriver	tests	to	run	on	mobile	devices.	These	projects	are	iOS	Driver	and	Appium.	The
project	websites	are	listed	respectively:	http://ios-driver.github.io/ios-driver	and
http://appium.io.	However,	modifying	the	browser’s	user	agent	does	not	require	as	much
setup	time.

http://ios-driver.github.io/ios-driver
http://appium.io

Updating	the	Selenium	wrapper
Our	first	step	is	to	modify	how	Firefox	identifies	itself	to	websites	by	modifying	the	user
agent’s	name.	Since	our	website	decides	which	version	to	serve	to	the	browser	based	on
the	user	agent,	we	will	change	the	Firefox	profile	to	identify	itself	as	iPhone.	Let’s	open
selenium_wrapper.rb	and	modify	the	initialize	method	to	look	like	this:

The	initialize	method	now	accepts	an	optional	mobile	parameter	that	is	set	to	false,	by
default.	If	the	mobile	parameter	is	set	to	true,	then	we	set	the
general.useragent.override	parameter	in	the	profile	to	iPhone.

Moving	step	definition	files
Many	of	the	steps	that	were	defined	for	the	full	browser	version	of	the	application	will
work	just	fine	with	the	mobile	version,	but	there	are	several	steps	that	will	fail.	So,	we	will
make	our	mobile	tests	and	full	browser	tests	share	as	many	steps	as	possible.	Let’s	update
our	step	definitions	as	follows:

1.	 Create	a	new	folder	called	common_steps	inside	the	step_definitions	folder.
2.	 Move	all	of	the	_steps.rb	files	from	the	root	of	the	step_definitions	folder	into

the	common_steps	folder.
3.	 Add	two	new	folders	inside	the	step_definitions	folder	called	desktop	and

mobile.
4.	 Add	a	file	for	each	of	the	new	directories	called	setup_teardown.rb.
5.	 In	the	desktop	version	of	setup_teardown.rb,	add	the	following	code:

Before	do

			@selenium	=	SeleniumWrapper.new

end

6.	 In	the	mobile	version	of	setup_teardown.rb,	add	the	following	code:

Before	do

			@selenium	=	SeleniumWrapper.new(:firefox,	true)

end

Note
The	mobile	version	of	Before	will	now	pass	in	the	mobile	=	true	parameter
explicitly,	while	the	desktop	version	will	remain	as	it	is.

7.	 Finally,	delete	the	Before	statement	from	setup_teardown.rb	in	the	common_steps
folder,	since	each	version	of	the	browser	will	create	its	own	instance	of	@selenium.
The	file	should	now	look	like	this:

After	do

		@selenium.quit

end							

The	final	layout	of	the	step_definitions	folder	should	look	like	this:

Updating	the	Cucumber	profile	and	tagging	tests
The	final	step	in	our	refactoring	effort	is	to	identify	several	tests	that	are	mobile-browser
ready,	and	create	a	profile	that	will	only	execute	mobile-ready	tests.

To	tag	product_review.feature	and	purchase_form.feature	as	mobile	ready,	add	the
@mobile	tag	to	the	very	top	of	each	test.	Both	files	should	look	something	like	this	at	the
top:

Next,	we	modify	cucumber.yml	to	look	like	this:

Now	we	have	a	new	mobile	profile,	which	uses	the	tags	parameter	to	only	execute	the
tagged	features	of	@mobile.	Also,	the	default	and	ci	profiles	share	common_steps	with
the	mobile	profile;	at	the	same	time,	each	profile	requires	its	own	appropriate	folder	for
steps	that	cannot	be	shared.

Running	and	fixing	incompatible	steps
Our	refactoring	is	now	complete	and	we	are	ready	to	test	both	the	full	and	mobile	versions
of	the	website.	Let’s	first	run	the	full	browser	version	tests	of	our	website	by	executing
Cucumber	with	the	ci	profile:

cucumber	-p	ci

The	result	of	the	test	run	should	be	all	the	passing	tests,	shown	as	follows:

Great	start!	Let’s	see	whether	all	of	the	mobile	tests	also	pass	by	running	Cucumber	in	the
mobile	profile:

cucumber	-p	mobile

The	output	is	as	shown	in	the	following	screenshot:

All	but	one	of	the	tests	passes;	that’s	not	bad	at	all.	It	turns	out	that	the	mobile	version
does	not	tag	each	of	the	comment	DIVs	with	a	unique	ID.	We	need	to	rectify	this
difference	in	behavior	between	the	full	version	and	mobile	version	of	our	sites.

The	problem	comes	from	the	product_review.feature	file	with	these	three	steps:

Let’s	fix	these	step	definitions	by	separating	the	full	browser	tests	from	the	mobile	ones:

1.	 Create	the	review_steps.rb	file	in	the	desktop	folder,	as	shown	in	the	following

screenshot:

2.	 Move	the	following	code	out	of	common_steps/review_steps.rb	into	the	newly
created	file:

3.	 Create	the	review_steps.rb	file	in	the	mobile	folder:

4.	 Add	the	following	step	implementation	for	the	mobile	browser	version	of
review_steps.rb:

Since	the	mobile	view	does	not	allow	us	to	grab	the	user’s	review	by	a	unique	comment
ID,	we	search	for	all	the	reviews	on	the	page	and	only	grab	the	last	one	created.	This	is
seen	in	line	2,	in	the	preceding	code.

Tip
Typically,	this	is	a	very	poor	practice	and	should	be	avoided.	If	another	test	is	running	at
the	same	time	as	ours,	the	very	last	review	item	on	the	page	might	be	someone	else’s	and
not	the	current	tests.

Now	when	we	run	the	test	suite	in	both	the	full	browser	and	mobile	profiles,	we	should
see	all	of	the	tests	passing:

Testing	the	purchase	API
Modern	websites	have	started	to	include	public	API	endpoints.	These	are	used	as	a
communication	portal	between	native	mobile	phone	applications	and	the	core	website,
amongst	other	things.	Many	companies	build	their	whole	business	on	providing	a	public
API.	Testing	the	publicly	accessible	API	is	just	as	critical	as	testing	the	main	website.
After	all,	if	the	API	breaks,	than	all	of	the	third-party	applications	that	consume	it	will
stop	working,	thus	preventing	users	from	giving	us	money.

Our	website	provides	several	public	API	endpoints	to	allow	third-party	integration.	One	of
these	endpoints	allows	the	purchase	of	a	given	product.	By	sending	a	POST	request	with
some	customer	information,	we	can	purchase	products	from	a	mobile	phone	app	or	a	web
portal	embedded	on	some	other	website.

We	have	several	options	when	it	comes	to	testing	our	API.	For	example,	we	can	write	a
simple	shell	script	that	will	make	a	curl	or	wget	request	against	the	API	endpoint	and
perform	a	simple	string	parsing	of	the	resulting	reply	from	the	API.	However,	we	already
have	the	power	of	Ruby	and	existing	Cucumber	tests	with	the	write	once,	test	everywhere
pattern.	Thus,	we	will	integrate	our	API	tests	into	the	existing	framework.

Note
Curl	and	wget	are	simple	command-line	applications	that	allow	users	and	scripts	to	make
GET,	POST,	and	other	HTTP	requests	directly	from	the	terminal	or	a	shell	script.

To	get	started,	we	will	make	an	HttpHelper	module	that	will	contain	the	method	to	post
data	to	an	arbitrary	URL.	Our	test	will	use	the	make_post_request	method	to	send	the
customer’s	name,	credit	card	info,	and	the	ID	of	the	product	we	wish	to	purchase.	The
server	will	return	a	JSON	response	letting	us	know	whether	the	purchase	was	successful.

Note
Modules	(Mixins)	are	snippets	of	code	and	methods	that	do	not	explicitly	belong	to	any
class.	Instead,	any	class	that	wishes	to	share	these	methods	will	include	the	appropriate
module.	This	common	object-oriented	technique	helps	to	reuse	the	code	used	between
multiple	unrelated	classes.

Let’s	take	a	look	at	http_helper.rb:

We	will	not	go	into	a	detailed	explanation	of	the	preceding	code.	The	gist	of	the	method	is
to	take	a	URL	string	and	a	hash	of	the	POST	parameters,	build	and	execute	an	HTTP
request,	and	return	the	body	of	the	response	from	the	server.

Note
To	make	this	test	more	stable,	we	increased	the	request	timeout	to	120	seconds	in	case	the
API	endpoint	is	under	a	lot	of	load	and	does	not	reply	fast	enough.

Next,	we	create	an	api	directory	inside	step_definitions,	with	purchase_steps.rb	and
setup_teardown.rb	inserted	inside.	So	far,	all	of	the	steps	performed	are	similar	to	the
work	we	did	for	mobile	testing	support.	The	differences	start	to	emerge	in
setup_teardown.rb,	shown	as	follows:

Since	the	API	tests	will	be	making	direct	HTTP	requests	against	the	server,	we	have	no

need	for	a	web	browser.	Thus,	the	Before	and	After	sections	of	the	code	are	empty.	Next,
we	need	to	implement	the	test	steps	in	purchase_steps.rb.	Let’s	take	a	look	at	the
implementation	of	the	test	steps:

We	set	the	endpoint	URL	in	line	10	and	build	the	POST	data	to	be	sent	out	in	line	11.	In
line	17,	we	send	the	POST	request	and	use	the	JSON.parse	method	to	parse	the	returned
response	from	the	server.	We	finish	the	test	implementation	by	checking	the	returned
response	against	expectations	in	lines	21	through	23.	Before	we	can	run	our	API	test,	we
just	need	to	create	a	new	api	profile	in	cucumber.yml,	shown	as	follows:

All	right,	we	are	ready	to	test	the	API	endpoint!	In	the	following	screenshot,	we	ran	the
whole	test	suite	against	the	desktop,	mobile,	and	API	versions	of	our	website.	Everything

should	be	green	across	the	board:

Summary
In	this	chapter,	we	discussed	the	need	to	test	application	behavior	instead	of
implementation	details.	By	testing	the	expected	business	behavior,	our	tests	can	still	be
useful	in	the	long	run,	even	if	the	underlying	website	is	completely	rewritten	in	a	new
programming	language	or	framework.	We	got	familiar	with	the	BDD	principle	and	got
comfortable	with	a	tool	that	implemented	the	BDD	ideas	called	Cucumber.	Furthermore,
we	used	the	power	of	our	BDD	tools	to	define	our	application’s	behavior	in	such	a	way
that	we	are	able	to	test	both	the	full	browser,	mobile,	and	API	versions	of	our	application.

In	the	next	chapter,	we	will	discuss	the	page	objects	and	how	to	provide	a	reusable
framework	for	our	tests	to	interact	with	the	website.

Chapter	7.	The	Page	Objects	Pattern
	 “There	are	two	ways	of	constructing	a	software	design:	one	way	is	to	make	it	so	simple	that	there	are	obviously	no
deficiencies	and	the	other	way	is	to	make	it	so	complicated	that	there	are	no	obvious	deficiencies.”

	

	 —C.	A.	R.	Hoare

Object-oriented	programming	(OOP)	is	not	a	new	concept	in	computer	science.	It	has
been	around	since	the	early	1950s	and	has	been	integrated	into	almost	every	modern
programming	language.	Selenium	WebDriver	is	written	using	OOP	and	we	have	been
interacting	with	individual	objects	this	whole	time	though	you	might	not	have	realized	it.
Even	though	OOP	offers	a	lot	of	advantages	for	the	code	base,	which	we	will	discuss	later
in	this	chapter,	a	lot	of	tests	written	in	Selenium	do	not	take	full	advantage	of	it.

We	are	ready	to	take	the	principles	and	design	patterns	discussed	throughout	this	book	and
create	a	fully	functional	Page	Objects	framework.	To	accomplish	this	task,	we	will	be
covering	the	following	topics:

Objects	and	OOP
The	Page	Objects	pattern
The	test	tool	independence	pattern
The	YAGNI	principle
Making	a	test	more	or	less	intelligent

Understanding	objects
If	you	have	attended	any	of	the	Selenium	conferences	or	read	any	blogs	on	the	topic,	then
the	topic	of	Page	Objects	must	have	come	up	multiple	times.	Before	we	get	into	the	nitty-
gritty	of	the	Page	Objects	pattern	implementation,	let’s	first	talk	about	objects.

Describing	a	literal	object
A	standard	definition	of	an	object	is	a	material	thing	that	can	be	touched,	seen,	and
interacted	with,	such	as	a	person,	a	car,	or	this	book.	We	interact	with	objects	on	a	daily
basis	without	a	second	thought.	Let’s	take	a	look	at	the	cup	of	coffee	sitting	right	there	on
your	desk;	tea	or	water	if	you	are	not	a	coffee	drinker.	Do	you	sit	and	ponder	the	meaning
of	the	cup	of	coffee	and	its	position	within	this	universe?	No,	we	just	drink	it,	and	if	it’s
cold	we	reheat	it	or	pour	it	into	the	sink	as	we	get	a	new	cup.	By	describing	the
temperature	of	the	cup	of	coffee,	we	described	the	properties	that	it	has.	Similarly,	the	act
of	drinking	out	of	the	cup	or	pouring	the	coffee	into	the	sink	describes	the	actions	it	can
perform.

Object	properties
Object	properties	(attributes)	are	things	that	describe	the	current	state	of	the	object.	Our
cup	has	several	attributes	that	we	can	describe	with	this	bit	of	pseudocode:

cup	=	CoffeeMug

cup.color	=	white

cup.hight	=	5	inches

cup.contents	=	coffee

Note
Psuedocode	is	an	informal	high-level	of	describing	something.	It	concentrates	on
describing	a	complex	action	or	algorithm	in	programming-like	language	that	is	human-
readable.

We	can	go	on	describing	all	of	the	attributes	of	the	drinking	utensil,	such	as	its	GPS,
location,	or	elevation	above	sea	level.	This	would	become	too	time-consuming,	so	instead
we	will	talk	about	the	things	our	cup	can	do.

Object	actions
A	typical	cup,	and	I	can’t	stress	typical	enough,	has	only	one	hole	at	the	top.	Through	this
hole,	we	can	perform	two	actions	with	this	cup;	we	can	add	liquids	to	the	cup	or	we	can
remove	them.	Describing	these	actions	with	pseudocode	will	look	like	this:

liquid	=	coffee

cup.add(coffee)	//Pouring	fresh	cup	in	the	morning

cup.remove(1	sip)	//This	action	would	be	in	a	loop	until	empty	

Objects	within	objects
One	last	item	we	should	discuss	before	moving	on	is	that	objects	can	store	other	objects	as
a	property.	The	coffee	inside	of	our	mug	is	not	part	of	the	cup	itself.	Instead,	it	is	a	value
of	the	contents	attribute.	We	can	put	other	objects	inside	the	cup,	such	as	water,	juice,	or
tea,	which	all	have	their	own	attributes	and	their	own	actions.	When	I	filled	my	cup	of
coffee	up,	I	followed	this	procedure:

liquid	=	FreshCoffee

liquid.add(Sugar)

liquid.add(Milk)

cup	=	CoffeMug

cup.add(liquid)

This	little	analogy	is	not	a	complete	waste	of	time,	because	it	helps	us	to	better	understand
the	concept	of	a	programming	object.

Describing	a	programming	object
In	OOP,	an	object	is	an	abstract	representation	of	a	data.	Similar	to	the	cup	object	in	the
preceding	code,	these	abstract	objects	have	properties	and	can	perform	actions	known	as
methods.	When	writing	automated	tests,	we	can	use	the	same	analogy	to	describe	just
about	anything	we	do.	For	example,	when	filling	out	credit	card	information	on	the
purchase	form,	we	will	be	using	this	CreditCard	object:

card	=	CreditCard

card.number	=	4444	3333	2222	1111

card.expiration	=	01/2050

But	why	stop	there?	Why	not	use	the	similar	analogy	to	describe	every	single	page	of	the
website	we	are	testing?

Describing	a	web	page	with	objects
Earlier	in	this	book,	in	Chapter	2,	The	Spaghetti	Pattern,	we	discussed	different	locator
strategies	to	find	elements	on	the	page.	By	locating	different	elements	on	the	page,	we	got
a	little	glimpse	of	the	hierarchy	of	any	given	page.	We	saw	that	some	elements	were
located	inside	of	DIVs,	which	were	located	inside	of	bigger	DIVs,	and	so	on.	This
hierarchical	structuring	of	the	web	page	separates	different	elements	into	groups.	Let’s
take	a	look	at	the	Contact	Us	page:

We	can	subdivide	it	into	four	clearly	visible	sections:	the	header,	the	body,	the	sidebar,	and
the	footer.	These	sections	are	marked	in	the	following	image:

Now	that	the	page	is	clearly	sectioned	into	smaller	objects,	we	can	use	a	little	pseudocode
to	describe	the	web	page	as	objects:

page	=	ContactUsPage

page.header	=	PageHeader

page.body	=	PageBody

page.sidebar	=	PageSidebar

page.footer	=	PageFooter

Using	an	analogy	similar	to	the	coffee	mug	from	earlier,	we	are	able	to	describe	any	web
page	in	terms	of	top-level	objects	that	contain	more	and	more	granular	and	smaller	objects
within	them.	This	style	of	describing	a	given	web	page	is	called	the	Page	Objects	pattern.

The	Page	Objects	pattern
The	Page	Objects	pattern	describes	any	web	page	in	terms	of	a	hierarchical	Domain
Specific	Language	(DSL).	The	application	specific	DSL	helps	to	hide	the	page
implementation;	the	test	is	no	longer	allowed	to	directly	interact	with	a	given	page,	but
instead	uses	a	framework	of	classes	and	methods	to	accomplish	the	same	goal.	This
pattern	abstracts	the	implementation	details,	such	as	element	IDs,	into	a	framework
specifically	designed	for	the	application	being	tested.

Note
A	DSL	is	a	computer	language	that	has	been	highly	specialized	for	a	specific	application.
It	uses	a	general	programming	language	such	as	Ruby	or	Java	to	implement	classes	and
methods,	which	specifically	apply	to	the	application	at	hand.

Advantages	of	the	Page	Objects	pattern
There	are	many	advantages	of	using	this	pattern	of	test	development;	let’s	take	a	look	at	a
handful:

DSL	framework:	After	implementing	the	Page	Objects	pattern,	we	end	up	with	a
framework	that	describes	the	application	from	business	point	of	view.	Each	action
performed	by	a	test	using	this	framework	should	be	easy	to	comprehend	to	anyone	in
the	given	field.	That	is	to	say,	a	test	written	for	an	accounting	system	that	is	heavy	on
the	field’s	jargon	might	not	be	easy	to	comprehend	to	the	laymen;	however,	anyone
with	basic	knowledge	of	the	field	should	understand	the	intentions	of	each	action.

Note
Referring	to	something	as	business	is	standard	shorthand	to	describe	the	parts	of	the
application	that	only	the	customer	sees,	that	is,	no	code.	The	customer	is	anyone	who
uses	the	finished	product,	including	people	from	within	the	company.

Testing	behavior:	Similar	to	BDD,	the	Page	Object	pattern	helps	to	test	the	desired
behavior	of	the	application	using	its	DSL.

Note
More	information	about	BDD	can	be	found	in	Chapter	6,	Testing	the	Behavior.

DRY:	Unlike	BDD,	which	has	the	disadvantage	of	phrasing	a	single	action	in	multiple
ways,	a	well-implemented	and	rigid	Page	Objects	framework	has	one	and	only	way	to
accomplish	any	action.	This	prevents	duplicate	implementation	of	the	same	click	or
fill_out_form	methods.

Note
In	this	context,	rigidity	refers	to	how	well	the	rules	of	a	framework	are	enforced.	A
flexible	framework	might	have	multiple	classes	or	methods,	which	accomplish	a	given
goal,	whereas	a	rigid	one	would	allow	only	one.	Any	new	code	that	breaks	this	rule	is	not
allowed.

Modular	and	reusable:	Since	each	Page	Object	is	made	from	multiple	smaller	objects,
such	as	header	section	or	login	form,	the	smaller	objects	can	be	shared	between	multiple
Page	Objects.

Clear	Intentions:	Similar	to	BDD,	the	intended	actions	can	be	clearly	represented	in
code.	For	example,	a	test	that	wishes	to	use	the	search	field	in	the	header,	as	shown	in	the
following	screenshot,	it	does	not	have	to	create	a	cryptic	element	locator	search.	Instead,	a
test	that	is	attempting	to	search	for	cheese	will	perform	an	action	similar	to	this
ContactUsPage.header.search("cheese").	This	is	a	lot	simpler	to	understand	than	a
cryptic	XPATH	query	for	the	search	input	box.

Disadvantages	of	the	Page	Objects	pattern
There	are	some	disadvantages	to	this	approach.	Let’s	take	a	look	at	them:

Complexity	is	increased	when	using	Page	Objects	framework.	As	the	name	implies,
we	can’t	just	write	a	simple	procedural	test,	we	need	to	create	a	framework.
Programming	design	patterns	should	be	followed	to	make	the	code	consistent	and
easy	to	understand.	Otherwise,	the	framework	quickly	becomes	muddled	and
complex	to	use	and	maintain.

Note
A	good	introduction	to	design	patterns	can	be	found	in	Design	Patterns:	Elements	of
Reusable	Object-Oriented	Software,	Erich	Gamma,	Richard	Helm,	Ralph	Johnson,
and	John	Vlissides,	Addison-Wesley	Professional.

As	with	any	new	tool,	it	is	tempting	to	get	carried	away	and	use	it	everywhere.	It’s
tempting	to	implement	a	Page	Objects	framework	on	a	test	suite	that	only	has	10
tests;	this	time	could	probably	have	been	spent	better	improving	existing	code.

Creating	a	Page	Objects	framework
Now	that	we	have	a	theoretical	knowledge	of	Page	Objects,	let’s	put	it	to	use.	When
building	a	new	Page	class,	we	can	take	multiple	approaches	to	implement.	We	can	use	any
tool	that	our	OOP	language	provides	for	us.	For	this	example,	we	will	be	using	the
inheritance	as	a	way	to	quickly	create	new	Page	classes.

Note
Inheritance	is	a	feature	of	OOP	languages,	which	allows	new	classes	to	be	based	on
another	class,	creating	a	subclass.	The	newly	created	subclass	inherits	all	of	the
functionality	of	the	parent	class.

The	majority	of	the	web	pages	on	our	site	follow	a	similar	pattern	of	display:	header,	body,
sidebar,	and	footer.	This	means	we	can	create	a	generic	Page	class	that	will	provide	us
with	access	to	different	sections	of	the	page.

Creating	a	page	super	class
The	first	step	of	the	implementation	is	to	create	a	page.rb	file	that	will	host	our	class.	The
code	inside	will	look	like	this:

This	class	will	provide	us	with	access	to	different	parts	of	every	page.	When	the	test	needs
to	check	the	content	of	the	shopping	cart	in	the	sidebar,	it	will	ask	the	current	page	for	the
Sidebar	object;	it	will	ask	for	the	ShoppingCart	object	from	that	object,	which	will
provide	the	desired	information,	such	as	the	subtotal.	The	code	described	will	look
something	like	this:

current_page.sidebar.cart.subtotal

We	can	implement	the	getter	methods	for	the	sidebar	and	body	inside	the	Page	class.

Note
The	getter	method	is	used	to	retrieve	information	from	within	an	object.	Since	each	object
hides	all	of	the	properties	from	the	rest	of	the	world	by	design,	it	needs	to	have	a	method
to	retrieve	the	properties	it	wishes	to	share.	Similarly,	a	setter	method	is	used	to	update
properties	inside	of	the	object.

I’ve	seen	multiple	ways	to	implement	the	getters	for	different	objects	on	the	page.	One
approach	is	to	break	up	each	section	into	modules	and	have	each	individual	page	with	the
appropriate	page	section.	For	example,	if	the	page	containing	the	contact	form	has	all	four
major	sections,	then	the	ContactUsPage	class	will	declare	this	in	the	following	manner:

Since	the	error	pages	on	our	website	only	have	a	body	section	and	no	footers	or	headers,
we	would	implement	the	ErrorPage	class	like	this:

This	approach	works	well.	However,	to	reduce	the	number	of	files	created	and	referenced
in	this	chapter,	we	will	add	the	getters	in	the	class	itself:

In	this	chapter,	we	will	be	writing	a	test	that	adds	an	item	into	the	cart	and	checks	that	the
sidebar	displays	the	said	item	properly.	For	this	reason,	let’s	implement	the	cod	that	deals
with	the	sidebar	next.

Implementing	sidebar	objects
Before	creating	a	sidebar	class,	let’s	take	a	look	at	the	sidebar	on	the	page	and	understand
the	two	main	sections	it	will	break	into.	When	we	have	an	item	in	the	shopping	cart,	the
sidebar	looks	like	this:

The	sidebar	separates	into	the	Cart	and	Advertisement	sections.	This	means	that	the
sidebar	class	will	have	to	have	two	getter	methods,	which	return	the	appropriate	object	for

each	section.	Let’s	implement	this	in	sidebar.rb	as	follows:

Since	we	won’t	be	testing	the	Advertisement	section,	the	advertisement	method	is	not
implemented.	We	will	move	on	to	the	SidebarCart	class	now.

Implementing	the	SidebarCart	class
Let’s	take	a	closer	look	at	the	sidebar	shopping	cart	shown	in	the	following	screenshot:

There	is	a	lot	of	information	displayed	in	such	a	small	place.	Let’s	divide	the	whole	cart
into	smaller	sections	in	this	breakdown:

In	order	to	access	these	different	pieces	of	information,	we	will	need	to	implement	a	getter
method	for	each	item	in	the	SidebarCart	class.	However,	we	will	not	implement	them	all
because	of	the	YAGNI	principle.	Since	our	test	will	only	check	the	summary	and	subtotal,
we	will	only	implement	those	methods.

Note

The	YAGNI	principle	says	that	if	you	do	not	need	something,	do	not	implement	it.	If	we
ever	write	a	test	that	examines	the	product	name	and	quantity,	then	we	will	implement	the
getter	methods	at	that	point.

For	now,	the	SidebarCart	class	looks	like	this:

Our	tests	are	now	able	to	interrogate	the	sidebar	cart	of	any	page	that	contains	it.	The	test
will	simply	follow	the	chain	of	objects	until	it	finds	the	current	summary	or	subtotal	of	the
cart.	Following	this	pattern,	we	can	implement	code	to	interact	with	other	parts	of	the
application.	When	implementing	the	code	to	interact	with	other	parts	of	the	application,
we	will	keep	the	YAGNI	principle.	If	we	spend	our	time	implementing	a	comprehensive
framework	instead	of	writing	tests,	we	have	wasted	our	time!	The	objects	that	were
implemented	in	the	Page	Object	framework	but	don’t	have	a	single	test	using	them	are
useless.	Furthermore,	they	quickly	become	obsolete	when	the	application	changes	but	no
test	failures	occur	to	show	us	that	the	object	we	wrote	is	no	longer	relevant.

Adding	Self	Verification	to	pages
Not	all	ElementNotVisibleError	exceptions	are	the	same.	Sometimes,	the	button	or	DIV
is	not	present	on	the	page	because	of	a	defect.	However,	there	are	times	when	the	test
cannot	find	the	element	because	the	browser	is	on	the	completely	wrong	page.	Let’s	take	a
look	at	a	scenario	that	demonstrates	the	second	situation.

We	are	testing	the	registration	flow	of	the	application.	After	filling	out	and	submitting	the
registration	form,	the	page	should	redirect	us	to	the	account	page.	On	the	account	page,
our	test	needs	to	check	that	the	username	is	displayed	before	moving	on.	However,	our
test	did	not	notice	that	registration	form	refreshed	with	duplicate	username	error.	Our	test
now	fails	with	ElementNotVisibleError,	because	our	test	assumed	that	it	is	on	account
page,	but	in	fact	still	is	on	registration	page.

This	type	of	test	failure	is	very	common	and	is	extremely	misleading.	In	Chapter	5,
Stabilizing	the	Tests,	we	started	to	take	screenshots	every	time	any	failure	occurred.	These
screenshots	will	help	us	to	understand	the	test	failure,	but	what	if	our	tests	would	detect
that	they	are	on	the	wrong	page	and	fail	with	a	much	clearer	error?	Let’s	add	a	verify
method	to	our	Page	class.

This	method	gets	the	current_url	of	the	browser	from	Selenium	and	parses	it	with	the
URI	class.	Once	the	URL	is	parsed,	we	grab	the	current	path	and	compare	it	to	the	value	of
page_path	method;	all	of	this	is	seen	on	line	24.	If	the	two	paths	do	not	match,	we	raise	a
RuntimeError	with	a	helpful	message	that	explains	which	page	the	test	expected	to	be	on,
and	the	actual	full	URL	in	the	browser.	We	print	the	full	URL	of	the	current	page	in	case
we	got	redirected	away	from	our	application	to	a	new	domain,	such	as	a	defect	in	which	a
link	should	open	the	target	URL	in	a	new	browser	window,	but	instead	redirects	in	the
current	window.

Tip
It	might	be	a	good	idea	to	make	the	verify	method	do	some	other	verification	of	the
current	page.	The	page	title	is	another	good	item	to	verify	on	each	page	we	visit.

All	we	have	to	do	now	is	have	the	class	initializer	call	the	verify	method:

One	last	thought	before	moving	on	to	implementing	individual	page	classes:	the	verify
method	will	check	the	correctness	of	the	current	page	by	inheriting	it	from	the	Page	super
class.	If	we	have	a	one	off	page	that	does	not	follow	the	verification	pattern	of	other	pages,
we	can	overwrite	the	super	method	and	create	individualized	verifications	for	each	page
that	needs	it.

Implementing	individual	page	classes
Now	that	we	have	a	way	to	access	different	parts	of	individual	page	with	the	object
framework	and	the	ability	to	verify	that	we	are	on	the	correct	page,	it	is	time	to	start
implementing	individual	page	classes.	Let’s	take	a	look	at	the	ContactUsPage
implementation:

As	you	can	see,	the	amount	of	code	required	to	create	new	page	classes	that	adhere	to	the
standard	page	layout	is	minimal.	Since	there	is	nothing	special	about	the	ContactUsPage
class,	it	can	inherit	all	of	the	interactions	from	the	Page	super	class.	But	what	if	we	wanted
to	implement	a	HomePage	class?

The	majority	of	the	pages	on	our	website	follow	the	same	four	section	layout	described	in
the	Describing	a	web	page	with	objects	section	of	this	chapter.	However,	the	home	page
has	six	major	sections,	as	shown	in	the	following	image:

The	body	section	of	the	page	is	missing;	it	with	Featured	Items	Carousel,	the	Special
Items	section,	and	the	Recent	Products	section.	The	Header,	Sidebar,	and	Footer
sections	remain	the	same.	So	the	HomePage	class	needs	to	reflect	this	uniqueness.	Let’s
take	a	look	at	the	class	definition:

We	start	the	class	by	declaring	the	path	of	the	existing	page,	so	that	the	verify	method	can
check	that	we	are	on	the	right	page.	Also,	we	overwrite	the	body	method	from	the	super
class.	Since	the	home	page	does	not	technically	have	a	main	body	section,	we	will	just
return	a	nil.	Next,	we	will	implement	the	three	methods	needed	to	access	the	unique	page
sections	found	on	the	home	page.

On	line	10,	we	have	a	method	that	searches	for	all	instances	of	the	special-item	class
and	creates	an	array	of	the	SpecialItem	objects.	Since	we	do	not	have	a	test	that	uses	the
featured_item_carousel	or	recent_products	sections,	we	will	not	implement	these
methods	yet.	However,	we	will	have	a	test	that	will	add	one	of	the	Special	Offers	item	to
the	cart,	so	let’s	take	a	quick	look	at	the	SpecialItem	class:

Each	SpecialItem	object	initializes	with	the	element	that	WebDriver	found	on	the	home
page.	This	is	done	so	that	each	SpecialItem	instance	has	a	reference	only	to	itself,	that	is,
it	does	not	know	about	the	existence	of	other	special	items	on	the	home	page.
Furthermore,	each	SpecialItem	object	implements	an	add_to_cart	method	as	an	action
that	it	can	perform.

Note	that	the	reference	to	selenium	is	passed	into	the	SpecialItem	class.	Typically,
having	the	element	reference	alone	is	not	only	enough	but	is	encouraged	since	we	want
the	class	to	be	as	isolated	as	possible.	However,	due	to	peculiarities	of	our	website’s
implementation,	after	clicking	on	the	Add	To	Cart	button	for	a	product,	a	review	modal
opens	up.	This	is	shown	in	the	following	screenshot:

The	modal	does	not	reside	within	the	scope	of	the	SpecialItem	object,	so	we	need	access
to	the	whole	scope	of	the	page	to	add	the	item	to	the	cart.	This	workaround	is	atypical.

Tip
Whenever	possible,	make	each	Page	Object	element	as	dumb	and	blind	of	anything	else
happening	on	the	page	as	possible.	The	less	they	know	about	the	world	outside	of	them,
the	easier	it	is	to	maintain	them	in	the	long	run.

After	adding	the	SpecialItems	object	to	the	HomePage	class,	our	test	should	easily	be	able
to	add	a	product	to	the	cart	with	this	simple	to	understand	line	of	code:

HomePage.new(@selenium).special_items.first.add_to_cart

The	preceding	method	call	will	add	the	first	product	in	the	Special	Offers	section	to	the
cart.	We	can	add	more	functionality	to	the	SpecialItem	class	as	necessary.	For	example,
instead	of	choosing	the	item	to	add	by	the	position	in	the	array,	such	as	first	or	third,
we	can	add	a	method	to	select	the	desired	SpecialItem	object	by	product	name	or	by
target	URL.	Our	test	might	look	like	this:

HomePage.new(@selenium).special_items.find("Our	love	is	

special!!").add_to_cart

We	will	not	go	into	the	implementation	details	of	this	functionality,	but	it	sounds	like	a
worthy	exercise	for	the	reader	to	practice	with.	Last	but	not	least,	let’s	put	together	all	of
the	code	we	just	added	into	a	test!

Increasing	the	number	of	sidebar	objects	as	the
website	grows
Before	moving	on	to	implementations	of	Page	Objects	in	different	testing	frameworks,
let’s	think	about	our	SidebarCart	class	and	how	it	will	organically	change	as	our	website
changes.	Let’s	start	by	adding	new	methods	to	test	the	existing	functionality.

When	writing	a	test	that	checks	individual	items	in	our	cart,	for	things	such	as	quantity	or
unit	price,	all	we	have	to	do	is	add	a	couple	of	new	methods	to	retrieve	this	information.
We	can	also	add	a	couple	of	methods	that	will	perform	an	action	of	clicking	on	the	View
Cart	and	Checkout	links:

These	methods	will	allow	us	to	interact	with	specific	parts	of	the	web	page.	If	in	the	future
our	website	adds	functionality	to	modify	the	contents	of	the	cart	from	the	sidebar,	such	as
changing	quantity	or	deleting	items,	we	can	easily	add	two	new	methods	to	accomplish
this	as	well.	Once	the	initial	framework	is	set	up,	the	functionality	added	to	it	will	grow
organically	as	the	test	needs	change.

Running	tests	with	the	Page	Objects
framework
The	largest	advantage	of	the	Page	Object	pattern	is	that	it	is	not	a	zero-sum	approach.	That
is,	we	do	not	need	to	convert	the	entire	test	suite	to	the	Page	Object	framework	to	take
advantage	of	it.	Instead,	we	can	slowly	add	new	Page	subclasses	as	they	are	needed	and
updating	the	existing	tests	to	use	the	newly	created	classes	as	they	become	available.	For	a
while,	our	test	suite	might	look	like	a	hybrid	of	direct	Selenium	click	methods	and	the
add_to_cart	methods	from	the	framework.	This	is	perfectly	acceptable	as	long	as	our
code	is	continuously	improving	in	the	positive	direction.

Note
In	the	following	test	examples,	we	are	not	using	the	The	Action	Wrapper	pattern	section
from	Chapter	5,	Stabilizing	the	Tests.	Thus,	we	have	a	mix	of	Selenium	get	and	click
method	calls,	and	we	are	missing	all	of	the	stability	improvements	added	in	that	chapter.
This	is	done	for	both	brevity	and	to	demonstrate	that	the	test	suite	can	be	improved	in
small	portions.

Using	Page	Objects	in	the	Test::Unit	framework
The	Test::Unit	framework	that	we	have	been	using	since	Chapter	1,	Writing	the	First	Test,
is	a	good	starting	point	to	implement	our	Page	Objects.	The	test,	minus	the	setup	and
teardown	methods,	will	look	like	this:

After	navigating	to	the	home	page	on	line	14,	we	allow	the	HomePage	object	take	over	the
test.	Using	this	Page	object,	we	add	an	item	to	the	cart	and	then	navigate	to	the	Contact
Us	page	on	line	18.	On	line	20,	the	ContactUsPage	object	takes	over	and	validates	that	we
have	landed	on	the	appropriate	web	page,	as	all	of	the	Page	subclasses	do.	We	then	use	the
method	chain	to	retrieve	the	summary	and	subtotal	of	the	shopping	cart.

As	you	can	see,	with	this	method,	our	test	knows	very	little	about	the	classes	and	IDs	of
different	elements	on	the	page.	This	may	seem	excessive	and	complicated	at	first;	after	all,
when	writing	our	test	in	Selenium,	we	want	to	be	able	to	click	on	buttons	from	within	the
test.	However,	the	possibilities	that	open	up	to	us	when	using	this	approach	are	endless.
Let’s	take	a	look	at	this	piece	of	code	in	particular:

ContactUsPage.new(@selenium).sidebar.cart.summary

This	code	explains	to	us	the	behavior	of	our	application	in	just	a	few	simple	method
names.	From	this,	we	know	the	following	facts	about	the	current	page:

Our	test	should	be	on	the	Contact	Us	page,	represented	by	the	ContactUsPage
object.
The	Contact	Us	page	has	a	concept	of	sidebar,	unlike	some	pages	that	do	not.	The
SideBar	object	will	allow	us	to	interact	with	items	within.
We	know	that	within	the	current	page’s	sidebar,	we	can	find	a	shopping	cart,	and	use
the	SidebarCart	object	to	interact	with	it.
With	the	use	of	the	SidebarCart	object,	we	can	retrieve	summary	of	the	cart	or	the
subtotal.

We	get	all	of	this	information	by	just	looking	at	the	method	call,	isn’t	that	amazing?	If	we
wanted	to	implement	a	method	that	retrieves	the	shopping	cart	summary	by	using	Selenium
alone,	our	code	would	look	like	this:

The	test	now	has	all	of	the	IDs	and	classes	hard	coded	in	it.	Furthermore,	if	we	change	the
plugin	we	are	using	to	display	our	sidebar	cart,	these	IDs	and	classes	will	change.	We	will
have	to	fix	every	instance	it	is	used.	With	the	Page	Object	pattern,	the	only	change	that	we
will	need	to	make	in	our	framework	is	how	the	Sidebar	and	SidebarCart	classes	locate
the	web	elements	on	the	page.	Since	the	code	is	stored	in	a	central	place,	all	of	the	tests
will	automatically	start	using	the	new	implementation	of	our	website.

Let’s	run	our	Test::Unit	test	and	make	sure	that	it	is	passing	with	our	test	framework:

The	new	test	is	working	great!	Let’s	take	a	look	at	how	the	test	would	be	implemented	in
RSpec	and	Cucumber.

Using	Page	Objects	in	different	testing	frameworks
Our	framework	is	independent	from	different	testing	tools.	This	means	that	we	can	use	it
with	Test::Unit,	Cucumber,	and	RSpec	tools,	but	it	is	not	limited	to	just	them.	This	is	great
for	us,	since	it	allows	us	to	follow	the	test	tool	independence	pattern,	which	we	will
discuss	in	greater	detail	in	the	next	section.	In	the	meantime,	let’s	pretend	that	we	have	a
large	website	with	multiple	teams	working	on	different	sections	of	the	website.	As	always,
some	teams	will	want	to	test	the	code	with	the	tools	they	are	comfortable	with.	The	good
news	is	that	everyone	can	test	the	entire	website	using	the	tool	of	their	choosing,	while	at
the	same	time,	sharing	the	framework	code.

Looking	at	the	Cucumber	implementation
Since	we	have	used	Cucumber	extensively	in	Chapter	6,	Testing	the	Behavior,	let’s	start
with	it.	The	team	responsible	for	implementing	the	sidebar	widgets,	such	as	the	cart,	loves
to	test	with	Cucumber.	They	have	written	this	feature	definition:

To	implement	this	test,	we	will	have	the	following	step	definitions:

As	we	can	see,	aside	from	a	slightly	different	way	of	declaring	steps,	the	interaction	with

different	pages	remains	the	same.	The	consistency	in	how	the	tests	interact	with	the	web
pages	is	very	important,	because	it	allows	different	teams	understand	the	tests	written	by
another	team	with	another	tool.	Let’s	run	our	Cucumber	test	and	make	sure	it	passes:

Looking	at	the	RSpec	implementation
RSpec	is	a	BDD	tool	that	follows	a	similar	philosophy	as	Cucumber:	test	the	behavior	of
the	application,	not	the	implementation.	RSpec	uses	a	different	syntax	to	accomplish	this
task.	Unlike	Cucumber,	which	tries	to	describe	the	behavior	in	a	human	language,	RSpec
tries	to	use	a	much	more	rigid	syntax	that	does	not	allow	as	much	variation	in	how
someone	can	describe	functionality.	Since	RSpec	definitions	resemble	a	programming
language	instead	of	the	human	language,	some	developers	prefer	it	to	Cucumber.

Note
Even	though	both	RSpec	and	Cucumber	are	great	tools	for	testing	behavior,	the	minor
difference	between	them	cause	a	lot	of	strife	between	some	developers.	These	debates	of
preference	remind	me	of	Mac	versus	Windows	versus	Linux	arguments	typically	heard	on
any	development	team.

The	team	responsible	for	the	shopping	cart	functionality	loves	to	write	tests	using	RSpec
or	Test::Unit.	To	test	the	shopping	cart	in	the	sidebar	widget,	we	will	write	a	test	like	this:

As	we	can	see,	some	things	are	slightly	different	from	everything	we	have	written	so	far.
The	before	and	after	methods	take	the	place	of	setup	and	teardown,	and	the	description
of	the	functionality	is	made	in	short	clipped	describe,	context,	and	it	statements.	The
interactions	with	the	page,	however,	remain	the	same	between	the	three	tools.	Let’s	run	the
RSpec	test	to	make	sure	everything	is	passing:

Now	that	we	have	working	examples	of	it,	let’s	formally	define	the	test	tool	independence
pattern.

The	test	tool	independence	pattern
Test	tool	independence	occurs	when	the	test	suite	is	not	heavily	integrated	with	any	given
testing	tool.	For	example,	switching	from	Selenium	1	to	Selenium	WebDriver	is	difficult,
because	both	tools	use	different	methods	to	locate	and	click	on	page	elements.	If	we	wrote
our	framework	in	such	a	way	as	to	hide	these	changing	methods	from	the	test,	all	we	need
to	do	to	upgrade	to	Selenium	WebDriver	is	update	the	find_element	and	click	methods
to	use	the	new	WebDriver	API.	This	practice	is	referred	to	as	the	Adapter	pattern.	In	the
previous	example	of	this	chapter,	the	SidebarCart	class	acts	as	an	adapter	between	the
test	and	the	instance	of	Selenium	WebDriver	by	translating	the	add_to_cart	method	call
into	a	WebDriver	click	method.

Note
In	software	design,	Adapter	pattern	is	used	to	map	functionality	of	different	objects	that
have	different	interfaces.	Adding	an	adapter	object	between	the	two	objects	that	wish	to
communicate	with	each	other	does	this;	the	adapter	object	acts	as	an	interpreter	between
the	two	objects.

Just	because	our	test	suite	is	written	with	the	Page	Object	pattern	does	not	make	it	test	tool
independent.	It	is	just	as	easy	to	lock	into	a	given	tool	or	a	specific	version	of	that	tool
inside	of	a	Page	class.

Advantages	of	the	test	tool	independence
There	are	many	advantages	of	writing	our	test	framework	in	such	a	way	that	it	does	not
directly	depend	on	any	testing	tool.	Let’s	look	at	several	of	these	here:

Easy	upgrade:	Different	tools,	such	as	gems	or	libraries,	change	all	the	time.	As	new
features	are	added,	the	public	methods	might	change	completely,	becoming
incompatible	with	previous	versions.	By	hiding	the	method	implementation	from	the
test,	our	test	does	not	need	to	know	about	the	current	version	of	any	third-party
library.
Easy	tool	switching:	With	our	framework,	we	can	switch	between	the	testing	tools
we	want	without	chaining	the	test	core	much.	This	applies	both	to	testing
frameworks,	such	as	Cucumber,	but	also	applies	to	the	testing	tool,	such	as	Selenium.
After	all,	just	because	our	tests	are	written	in	a	regular	Firefox	browser	today,	it	does
not	mean	we	will	not	want	to	add	support	for	Chrome	or	a	headless	browser	in	the
future.
Consistent	descriptive	API:	Since	our	framework	describes	behavior,	such	as
adding	item	to	the	cart,	instead	of	listing	a	series	of	clicks	required	to	accomplish	that
task,	it	is	easy	to	read	and	understand	our	test’s	intention.

Disadvantages	of	the	test	tool	independence
As	always,	every	time	we	make	our	test	more	independent	and	resilient,	we	increase	the
amount	of	complexity	and	overhead.	A	simple	test,	described	earlier	in	the	chapter,	can	be
written	in	a	few	lines	of	code	if	we	allow	the	test	to	talk	directly	to	Selenium.	With	the
intention	of	making	our	test	suite	future-proof,	we	have	to	add	many	new	wrapper	and
adapter	classes	today.

The	right	way	to	implement	Page	Objects
I	will	not	venture	a	claim	that	the	implementation	of	the	Page	Objects	in	this	chapter	is	the
right	and	only	way	to	do	it.	Just	like	there	are	many	programming	languages	and	different
ways	to	write	code,	there	are	multiple	ways	to	implement	Page	Objects.	Choosing	the
right	approach	will	be	one	of	the	first	and	most	difficult	tasks	to	figure	out.	I’d	like	to
spend	this	section	talking	about	different	approaches	we	could	have	taken	when	writing
our	framework.

Making	pages	smarter	than	tests
In	the	framework	we	implemented,	the	@selenium	instance	is	passed	between	different
Page	objects	as	the	test	progresses.	For	example,	after	we	have	created	an	instance	of
Firefox	browser	with	WebDriver,	we	pass	it	into	each	class	like	this:

This	approach	is	good	because	it	is	clear	to	see	the	order	of	progression	from	page	to	page.
It’s	clear	to	see	that	@selenium	moves	first	to	the	home	page	and	hands	off	itself	to	the
HomePage	object.	Then,	the	test	adds	a	product	into	the	shopping	cart,	followed	by	test’s
expectation	that	the	ShoppingCartPage	class	will	be	needed	next.	In	this	scenario,	the	test
is	smart	and	the	pages	are	dumb.	If	we	make	our	pages	smarter	and	the	test	dumber,	our
code	will	look	like	this:

In	the	preceding	code,	the	ShoppingCartPage	object	is	never	explicitly	declared,	so	the
test	is	oblivious	to	the	class	it	is	asserting	against.	All	it	knows	is	that	the	next	page	will
contain	a	shopping	cart	object	that	will	return	a	total	value.

The	implementation	of	the	add_to_cart	method	in	the	SpecialItem	class	will	change	to
become	smarter.	This	is	the	code	from	before	the	change:

Now,	this	method	will	know	that	ShoppingCartPage	is	the	next	in	the	application	flow,
and	it	will	return	that	object	back	to	the	test:

The	instance	of	@selenium	is	passed	between	the	objects.	We	can	take	this	approach
further	and	make	the	test	not	use	@selenium	at	all.	In	the	following	code,	the	test	no	longer
knows	the	URL	of	the	HomePage,	because	the	HomePage	class	has	a	new	navigate_to
method	that	takes	care	of	navigation:

With	this	approach,	the	test	dictates	what	needs	to	be	done,	while	the	test	framework	takes
care	of	how	things	should	be	done.	One	thing	to	be	careful	about	is	that	the	framework
will	become	too	smart,	that	is,	the	behavior	logic	is	stored	in	the	framework	and	not	in	the
test.	See	the	Placing	logic	in	Page	Objects	section	for	more	information.

Making	tests	smarter	than	pages
We	can	head	in	the	opposite	direction	and	make	the	tests	know	how	the	application	should
behave,	while	leaving	as	little	logic	in	the	Page	classes	as	possible.	One	way	to
accomplish	this	is	to	make	all	of	the	page	interactions	into	static	class	methods.	Our	test
code	will	look	something	like	this:

Now	our	pages	are	stateless,	that	is,	every	time	we	want	to	perform	an	action,	we	have	to
pass	in	the	current	instance	of	@selenium	to	it.	The	test	is	the	one	that	dictates	the	flow	of
the	application,	and	the	Page	classes	only	perform	the	actions	they	are	requested	to	only
with	the	information	provided	by	the	test.

Which	should	be	smarter,	the	test	or	the	page?	That’s	a	tough	question,	probably	the	best
solution	is	to	have	a	compromise	and	make	parts	of	the	Page	Object	framework	smart	and
other	parts	intentionally	dumb,	as	the	situation	dictates.

Using	modules	instead	of	inheritance
When	I	first	learned	about	object	inheritance,	I	wanted	to	use	it	everywhere.	This	is	typical
of	any	new	skill	or	programming	pattern	we	learn	as	developers.	However,	sometimes	a
module/mixin	is	a	better	and	cleaner	solution	than	creating	an	inheritance	hierarchy.	In	the
framework	we	created,	we	used	inheritance	to	give	different	pages	ability	to	access	the
header,	footer,	and	other	objects	on	the	page.	This	setup	works	well	if	most	of	the	web
pages	on	our	website	are	extremely	similar.	In	case	of	the	HomePage	class,	we	had	to
overwrite	the	body	method	because	the	home	page	didn’t	have	that	section.

This	approach	will	quickly	become	complicated	if	we	have	to	overwrite	nonexisting
objects	on	every	new	Page	subclass	we	create.	Instead	of	inheriting	everything	from	the
Page	superclass,	a	more	practical	solution	would	be	to	have	each	individual	subpage
import	only	the	functionality	it	has	and	ignore	everything	that	does	not	apply.

Placing	logic	in	Page	Objects
One	of	the	useful	shortcuts	we	added	in	the	Page	class	is	the	verify	method.	Each	page
automatically	checks	itself	to	make	sure	it	is	where	it	is	supposed	to	be.	We	can	add	more
logic	to	verify	that	the	page	is	completely	loaded.	For	example,	if	we	have	a	certain	image
or	form	that	needs	to	appear	on	the	page	every	time,	we	could	make	that	check	happen
automatically	the	page	loads	the	page.	If	for	whatever	reason	the	element	is	not	present,
the	test	will	fail,	saying	that	the	page	was	not	completely	loaded.

It	is	too	easy	to	get	carried	away	with	verifying	everything.	Having	some	verification	can
be	useful	in	debugging	a	test	failure,	but	putting	too	much	logic	into	the	Page	classes	can
be	detrimental	in	the	long	term.	Let’s	take	a	look	at	two	scenarios	where	we	have	too
much	logic	in	our	Page	Object:

Every	page	class	contains	detailed	information	about	all	the	elements	on	the	page.	If
the	social	network	icons	are	missing	or	some	content	such	as	an	image	is	missing,	the
Page	Object	framework	throws	an	error	to	let	us	know	that	the	page	is	not	fully
loaded.	This	is	good	practice	when	testing	for	page	completeness	every	time;
however,	it	might	prevent	a	registration	test	from	completing	because	an	unrelated
asset	is	missing.
The	login	action	on	the	Page	Object	checks	whether	the	browser	already	has	a	logged
in	user.	This	check	will	log	out	the	current	user	and	login	with	the	user	the	test
desires.	This	useful	check	can	prevent	test	failures	due	to	data	pollution	from
previous	tests,	where	the	previous	test	did	not	teardown	properly.	At	the	same	time,
this	functionality	can	mask	a	poorly	written	test,	which	reduces	the	quality	and
usefulness	of	the	test	suite	as	a	whole.

In	conclusion,	be	wary	about	putting	too	much	logic	into	the	individual	Page	classes.

Summary
In	this	chapter,	you	had	a	brief	introduction	to	the	Page	Object	pattern.	Using	this	pattern,
we	are	able	to	create	a	test	suite	framework,	which	is	simple	to	understand	and	easy	to
maintain	in	the	long	term.	We	discussed	different	advantages	of	using	the	Page	Objects	as
opposed	to	writing	direct	Selenium	commands.	These	advantages	are	portability,
upgradability,	and	reusability.

By	using	the	test	tool	independence	pattern,	we	demonstrated	that	our	Page	Object
framework	could	be	used	with	any	testing	tool	the	development	wishes	to	use.	We
concluded	the	chapter	by	discussing	several	alternative	implementations	for	the
framework.

In	the	next	chapter,	we	will	talk	about	prioritizing	the	test	growth	in	the	test	suite.	We	will
also	discuss	different	ways	to	manage	our	test	environments.

Chapter	8.	Growing	the	Test	Suite
	 “To	succeed,	planning	alone	is	insufficient.	One	must	improvise	as	well.” 	

	 —Isaac	Asimov,	Foundation	Series

Writing	tests	is	fun!	This	may	seem	contrary	to	the	first	sentence	in	Chapter	1,	Writing	the
First	Test,	of	this	book.	However,	once	we	solve	the	difficult	problems	such	as	test
stability,	test	data,	and	the	framework	design,	writing	a	new	test	case	is	the	most	gratifying
experience	one	can	have	in	our	field.

Once	we	have	a	good	grasp	of	Selenium	and	are	ready	to	grow	our	test	suite,	we	will	face
some	new	challenges.	Questions	such	as	what	test	needs	to	be	written	next	or	what	CI	tool
to	choose	from	will	naturally	come	up.	In	this	chapter,	we	will	discuss	the	following	topics
about	the	long-term	growth	and	maintenance	of	the	test	suite:

Strategies	for	writing	test	suites
Different	types	of	tests
Different	types	of	test	suites
Continuous	Integration
Testing	in	multiple	browsers
Selenium	Grid
Managing	build	nodes
Build	node	virtualization
Frequently	Asked	Questions

Strategies	for	writing	test	suites
A	common	question	during	a	job	interview	for	test	automation	is	“How	do	you	plan	to
build	the	test	suite?”	When	I	was	new	to	software	test	automation,	I	would	answer	that	99
percent	coverage	is	critical.	After	reality	had	a	chance	to	catch	up,	it	became	apparent	that
such	high	coverage	is	impossible	due	to	obvious	time	constraints.

Instead	of	having	100	percent	test	coverage,	the	best	that	can	be	done	is	to	prioritize	the
growth	of	the	test	suites.	In	this	section,	we	will	discuss	the	order	in	which	test	suits
should	be	built.	As	we	build	our	test	suites,	some	tests	will	cross	multiple	boundaries,
which	is	perfectly	normal.	However,	it	is	best	to	have	a	way	to	group	certain	tests	together
so	they	can	be	executed	individually.	For	example	the	smoke	test	suite	is	a	subset	of	the
regression	suite,	but	we	need	ability	to	execute	it	without	having	to	run	the	regression
suite.

Note
All	of	the	strategies	listed	are	in	order	from	highest	priority	to	lowest,	but	they	are	not
mutually	exclusive.

Different	types	of	tests
Before	we	dive	into	the	different	Selenium	test	suites,	let’s	define	several	types	of
automated	tests.	This	will	help	us	understand	where	Selenium	tests	belong	in	the
development	cycle.	The	following	definitions	are	commonly	used	to	describe	a	type	of	an
individual	test;	however,	they	are	slightly	redefined	with	Selenium	bias:

Unit	test:	This	is,	by	definition,	the	smallest	test	unit.	This	type	of	a	test	is	written	to
test	an	individual	object	and	even	individual	methods	of	said	object.	Unit	testing	is
highly	important	because	it	prevents	bugs	from	creeping	in	at	the	lowest	level.	These
tests	rarely	use	any	production-like	test	data	and	often	solely	rely	on	mock	data.
Since	unit	tests	are	at	a	low	level	of	the	application,	Selenium	tests	are	not	applicable
here.

Note
Low	level	is	a	phrase	commonly	used	to	describe	code	that	has	a	low	level	of
abstraction.	Likewise,	high	level	describes	code	with	a	high	level	of	abstraction.	For
example,	a	method	that	adds	1	and	1	would	be	described	as	low	level	and	a	method
that	registers	a	new	user	in	the	database	is	a	high-level	method.

Integration	test:	This	consists	of	several	modules	of	code	put	together,	allowing
them	to	pass	data	between	each	other.	The	purpose	of	this	type	of	test	is	to	make	sure
that	all	modules	integrate	and	work	with	each	other.	In	terms	of	Selenium,	integration
might	be	checking	that	the	store	module	of	our	website	can	pass	the	product
information	into	the	cart	module.	The	tests	that	run	in	CI	after	every	commit	to	test
only	our	application	and	stubbing	all	third-party	services	is	considered	integration
build.

Note
Integration	tests	are	sometimes	referred	to	as	functional	tests,	since	they	test	the
functionality	of	an	application.

End-to-end:	This	is	the	highest-level	of	test.	This	type	of	test	is	executed	in
production	or	a	production-like	environment,	such	as	staging.	Similar	to	integration
tests,	an	end-to-end	test	tries	to	verify	that	all	of	the	components,	including	third-
party	services,	can	communicate	well	with	each	other.

Note
End-to-end	tests	are	sometimes	referred	to	as	Verification	and	Validation	(V&V)

The	majority	of	Selenium	tests	will	fall	into	the	integration	category.	By	blocking	as	much
instability	caused	by	test	data	and	third-party	dependencies	as	possible,	our	tests	can
concentrate	on	testing	only	one	piece	of	functionality	at	the	time.	However,	a	well-written
test	that	is	properly	hermetically	sealed	should	be	able	to	run	in	both	integration	and	end-
to-end	environments.

Note

See	Hermetic	Test	Pattern	in	Chapter	3,	Refactoring	Tests,	for	more	information.

The	smoke	test	suite
Smoke	testing	is	a	very	common	and	popular	concept	in	the	quality	assurance	world.	The
idea	is	to	plug	in	the	new	code,	let	it	run,	and	see	whether	it	runs	or	catches	on	fire.	Out	of
all	the	test	suites,	a	smoke	suite	will	by	far	be	the	smallest	in	size,	since	it	needs	to	give	a
close	to	instantaneous	pass	or	fail	verdict.	This	test	suite	is	best	used	in	the	first	few
minutes	after	new	code	is	deployed	to	any	environment.	Use	this	small	test	suite	to	make
sure	that	the	production	environment	is	up	and	running.

Tests	in	the	smoke	test	suite	should	look	for	the	following:

Running	application:	Does	the	website	load	or	does	it	give	a	500	error?	This	is	by
far	the	simplest	question	and	could	be	answered	by	navigating	to	several	key	pages,
such	as	the	home	page	or	the	online	store.
Database	connection:	Database	issues	happen	more	often	than	anyone	cares	to
admit.	After	the	deployment	of	the	new	code,	we	realize	that	the	database	was	not
properly	migrated.	Test	should	do	several	read	only	checks	against	the	database,	such
as	log	in	with	an	existing	user.
Abnormal	amount	of	exception:	This	question	is	a	little	bit	more	involving	than
others.	The	starting	point	is	to	make	sure	no	page	returns	an	error	code	when	it
should	not.	It	can	evolve	into	dumping	the	JavaScript	console	logs	to	check	whether
new	JavaScript	errors	start	to	appear.

Smoke	test	suite	should	almost	be	like	a	feather	in	a	boxing	fight.	It	should	touch	the
application	without	leaving	a	single	dent	or	scratch.	We	should	keep	the	following	in
mind:

Avoid	writing	to	a	database	if	you	cannot	clean	it	up	after:	It	is	normal	to	register
new	users	or	make	purchases	on	a	staging	environment.	However,	this	is	typically	a
bad	idea	in	production,	since	it	is	difficult	to	clean	up	the	test	data	after	the	test	is
complete.	To	stay	on	the	safe	side,	the	test	should	only	perform	actions	that	read	from
the	database,	never	write	to	it.
Don’t	test	too	much:	We	want	to	have	an	answer	about	the	state	of	the	environment
as	fast	as	possible.	Leave	the	more	extensive	testing	to	other	test	suites.

The	money	path	suite
Money	path	is	one	or	several	core	key	pathway	through	our	application.	In	the	case	of	an
online	store,	it	is	the	ability	to	add	items	to	the	cart	and	receive	payment	information.	In	an
inventory	management	system,	it’s	the	ability	to	retrieve	and	update	current	inventory.
Noncritical	functionality,	such	as	updating	user’s	email	preferences,	is	to	be	left	out	of	this
test	suite.

Money	path	and	smoke	test	strategies	can	have	multiple	tests	in	common;	however,	tests
that	write	to	the	database	in	the	money	path	suite	should	probably	not	be	included	in	the
Smoke	Test	suite.

The	money	path	suite	should	answer	the	following	question:	is	the	customer	prevented
from	giving	us	money?	This	is	by	far	the	most	important	part	of	this	suite.	Every	single
test	in	this	test	suite	should	aim	to	answer	that	question,	if	it’s	not	it	should	be	moved	to
another	test	suite.

New	feature	growth	strategy
Smoke	test	suite	and	money	path	suites	are	the	top	priority	when	writing	tests.	However,
those	test	suites	are	relatively	small	and	will	go	into	maintenance	mode	pretty	quickly.
After	they	are	finished,	we	will	spend	the	majority	of	our	time	in	this	mode.	The	idea	of
the	new	feature	strategy	is	to	keep	up	with	the	development	of	the	application.	As	a	new
feature	is	added,	we	add	a	new	test.	This	strategy	does	not	try	to	write	tests	for	an	already
existing	functionality	such	as	regression	strategy.

By	far,	this	new	feature	strategy	is	most	effective	when	the	test	writer	is	embedded	in	the
development	team.

Tip
Some	of	the	teams	I’ve	personally	worked	on,	the	developers	themselves	were	responsible
for	the	creation	of	new	tests	as	the	application	got	new	features.	This	gave	an	up-to-date
Selenium	test	support	for	all	new	features	and	gave	the	QA	team	a	starting	point	to	add
and	improve	the	said	tests.	This	setup	has	been	extremely	successful.

Being	part	of	the	team	on	a	daily	basis	and	seeing	the	direction	of	development	is	an
important	part	in	keeping	up	with	new	features.	The	classic	over-the-wall	approach	to
quality	assurance	will	not	work	well	because	by	the	time	the	test	developer	starts	writing
tests	for	newly	delivered	feature,	the	development	team	has	moved	on	to	new	tasks.

Note
The	over-the-wall	testing	approach	consists	of	the	Development	and	QA	teams	being
completely	separate.	After	a	new	set	of	features	has	been	added	to	the	application,	the	new
build	is	given	to	the	QA	team	to	test.	The	QA	members	are	not	involved	in	daily	testing	as
each	commit	happens.

When	writing	tests	for	new	features,	the	tests	should	concentrate	on	answering	the
following	questions:

Is	this	the	most	important	and	critical	feature	to	be	tested?

There	are	new	features	that	enhance	the	application	slightly	and	there	are	critical
features.	When	pressed	for	time,	as	we	always	are,	the	new	tests	should	aim	to	test
mission	critical	features	and	leave	the	enhancements	to	the	regression	suite.

Are	the	new	tests	useful	right	away?

As	soon	as	a	new	test	is	written,	even	for	an	unfinished	feature,	it	should	be	added	to
CI.	Features	that	are	in	active	development	have	the	maximum	instances	of	instability
and	bugs	by	far.	Having	the	new	tests	added	in	step	with	new	code	and	running	on
every	commit	provides	a	good	foundation	for	stability.

Bug-driven	growth	strategy
Bug-driven	and	new	feature	strategies	are	extremely	compatible	with	each	other.	The	new
feature	strategy	concentrates	on	adding	a	new	test	for	every	new	feature.	The	bug-driven
strategy	concentrates	on	adding	a	new	test	for	every	bug	discovered	and	fixed.

Every	new	release	of	the	application	comes	with	a	list	of	new	features	or	bug	fixes,	and
more	often	than	not,	both	at	the	same	time.	Most	people	who	will	be	testing	the	new
release	of	the	application	will	concentrate	on	testing	the	new	features,	while	giving	the
bug	fixes	a	cursory	glance.	Having	an	automated	test	case	for	every	bug	fixed	in	the
current	build	is	a	great	safety	net.	Furthermore,	sometimes	when	a	new	release	branch	is
being	created	in	the	Version	Control	System	(VCS),	bug	fixes	are	sometimes	overwritten
or	reverted	by	accident.	A	single	test	might	prevent	an	emergency	deploy!

Tip
An	accidental	revert	of	a	bug	fix	may	not	be	the	most	common	occurrence	on	a	team
familiar	with	their	VCS	tool;	when	it	does	happen,	it	happens	at	the	worst	possible	time.

The	regression	suite
Regression	tests	are	all	of	the	tests	in	our	suite	that	test	features	developed	in	the	past;	this
is	not	to	be	confused	with	features	actively	being	developed.	Following	the	previously-
described	strategies,	we	will	add	new	tests	to	the	regression	test	suite.

Sadly,	more	often	than	not,	our	teams	will	always	be	too	understaffed	to	write	new	tests
against	already	existing	features.	When	pressed	for	time,	we	should	always	concentrate	on
new	features,	since	this	part	of	the	code	will	prove	to	be	most	unstable.	As	new	bugs	are
discovered	in	older	code	and	feature	set,	the	regression	suite	will	slowly	grow.	However,
spending	too	much	time	writing	tests	for	sections	of	code	that	were	not	touched	in	years
will	probably	prove	to	be	a	waste	of	time.

The	99	percent	coverage	suite
A	test	suite	that	covers	99	percent	of	new	and	existing	features	in	an	application	is	the
dream	of	every	tester.	However,	it	often	proves	to	be	nothing	but	a	pipe	dream.	Unless	we
are	on	the	team	writing	tests	for	the	space	station	or	a	nuclear	power	plant,	we	will	never
have	enough	resources	to	test	everything.	Thus,	for	most	automated	test	creators,	this
strategy	is	not	only	wasteful	but	can	be	extremely	harmful.

Any	piece	of	the	application	that	has	not	been	touched	in	a	long	time	and	has	not	had	any
bugs	in	that	time	is	unlikely	to	randomly	start	producing	bugs.	Writing	a	test	for	that	code
may	be	harmful	because	it	takes	time	away	from	writing	a	test	for	new	code	that	more
than	likely	will	break.	However,	if	the	said	old	code	starts	to	be	updated	with	a	bug	fix	or
a	new	feature,	it’s	a	good	idea	to	write	tests	for	it.

On	the	other	hand,	if	you	are	in	a	very	fortunate	position	where	you	can	afford	to	keep
updating	the	test	suite,	bringing	it	closer	and	closer	to	full	coverage,	consider	yourself
extremely	lucky	and	keep	going!

One	last	thought	about	adding	new	tests	to	our	application	before	we	move	on,	is	that	it	is
always	better	to	have	a	smaller	test	suite	that	is	reliable	and	is	executed	often,	than	to	have
a	large	test	suite	that	fails	randomly	and	makes	everyone	on	the	team	lose	faith	in	its
usefulness.

Tip
As	soon	as	we	start	to	add	any	test	to	our	suite,	it’s	a	good	time	to	start	thinking	about	CI.

Continuous	Integration
The	most	amazing	test	suite	ever	written	is	useless	if	it	sits	on	someone’s	laptop	and	is
never	executed!	Having	our	tests	in	CI	is	not	only	beneficial	to	the	quality	of	the
application,	but	it	is	also	beneficial	to	the	quality	of	the	test	suite	itself.	By	executing	the
test	suite	dozens	of	times	a	day	we	can	discover	test	instabilities,	which	occur	once	in	a
while.

There	are	five	components	to	setting	up	a	Continuous	Integration	system.	They	are	listed
in	order	of	importance	here:

Test	environment:	In	order	to	execute	the	tests,	we	need	to	have	an	application	we
are	trying	to	test.	Without	a	test	environment,	the	tests	are	just	pieces	of	code	that
cannot	be	executed.	We	talked	about	different	types	of	test	environments	in	the	Data
relevance	versus	data	accessibility	section	of	Chapter	4,	Data-driven	Testing.

Tip
Even	if	it	is	possible	to	execute	a	more	complicated	test	suite	than	a	smoke	test	in	a
production	environment,	it	is	an	anti-pattern	that	should	be	avoided.

Test	data:	Having	access	to	reliable	test	data	is	very	important.	After	all,	the	test’s
only	role	is	to	pass	data	from	one	location	in	our	application	to	another	and	check	the
outcome.	We	discussed	the	Test	Data	problems	and	solutions	in	Chapter	4,	Data-
driven	Testing.
Tests	and	test	stability:	Developing	the	test	suite	the	next	item	on	the	list.	We
discussed	some	strategies	on	prioritizing	the	order	of	the	tests	earlier	in	this	chapter.
Remember,	do	not	let	the	pace	of	test	suite	growth	reduce	the	quality	of	individual
tests	and	the	test	suite	as	a	whole.	We	discussed	improving	test	stability	and
reliability	in	Chapter	5,	Stabilizing	the	Tests.
Test	nodes:	Managing	the	computers	that	host	the	test	environment	and	the	testing
nodes	is	important.	Having	a	stable	application	and	test	suite	can	be	completely
negated	by	a	test	environment,	which	randomly	deletes	the	database	or	test	nodes	that
restart	at	will.	We	will	cover	these	issues	further	in	the	Managing	the	test
environments	and	nodes	section.
CI	system:	Choosing	the	right	CI	tool	seems	like	the	top	priority;	how	can	we
execute	our	tests	without	it?	However,	if	the	preceding	four	points	are	properly
resolved,	the	tool	that	executes	the	tests	can	be	completely	interchangeable;	thus,	it	is
the	least	important	item	on	our	list.	We	will	talk	more	about	choosing	the	right	CI
tool	in	the	Choosing	the	CI	tool	section.

Note
The	statement	made	in	this	bullet	can	only	remain	true	if	the	investment	made	into
the	current	CI	tool	is	minimal.	We	will	discuss	some	ways	to	reduce	dependency	on	a
specific	CI	tool	in	the	Choosing	the	CI	tool	section.

Managing	the	test	environments	and	nodes
The	management	of	CI	and	testing	environments	is	often	ignored.	The	development	team
is	often	too	busy	or	doesn’t	want	to	play	the	role	of	a	systems	administrator.	The
production	system	administrators	might	be	able	to	help	with	managing	the	hardware	and
the	operating	system	of	staging	and	testing	environments,	but	making	dozens	of
deployments	of	new	code	to	those	environments	can	become	taxing	on	them.

For	these	reasons,	the	quality	assurance	and	test	automation	teams	must	fill	in	that	role.
They	are	the	ones	who	care	the	most	about	these	environments	and	having	a	more	intimate
knowledge	of	how	the	application	is	deployed	can	provide	a	lot	of	insight	on	why	certain
bugs	occur;	not	to	mention	a	more	detailed	bug	report,	for	which	all	of	the	developers	are
eternally	grateful!	There	are	two	aspects	of	environment	management	that	naturally	fall
into	this	field:	the	testing	environment	and	the	CI	environment.

Deploying	new	builds
Being	able	to	reliably	deploy	new	code	into	a	testing	environment	at	the	drop	of	a	hat	is
extremely	useful	both	for	manual	and	automated	testing.	Testing	new	features	or	verifying
that	a	bug	is	fixed	as	soon	as	the	new	build	released	is	great	for	a	fast	feedback	cycle	and
reduction	in	frustration	for	all	parties	involved.

Luckily	for	us,	we	do	not	necessarily	have	to	do	a	lot	of	work	to	make	this	a	reality.	Most
of	the	time,	the	production	operations	administrators	have	scripts	written	to	help	them
deploy	new	versions.	By	working	with	those	teams,	it	is	possible	to	get	a	hold	of	those
scripts	and	adopt	them	to	work	with	Integration	and	Staging	testing	environments.
Combining	those	deployments	scripts	with	CI	build,	we	are	able	to	deploy	the	latest	build
into	our	test	environment	and	automatically	trigger	a	Selenium	smoke	test	suite.
Depending	on	the	test	environment,	we	even	are	able	to	run	the	whole	regression	test
suite.

We	do	not	necessarily	need	to	have	system	administrator	experience	to	have	the	tools	to
make	our	day-to-day	life	easier.	Convincing	all	parties	involved	that	a	QA	team,	which	is
independent,	is	a	huge	time	and	money	saver.	Very	few	people	can	argue	against	that
logic.

CI	environment	management
Managing	the	CI	environment	can	be	slightly	more	involved	compared	to	having
deployment	scripts	to	a	testing	environment.	We	need	to	manage	the	build	nodes,	the	test
data,	and	the	scripts	to	execute	the	test	build.	There	is	a	lot	of	work	to	do	in	this	area,	but
keeping	these	items	stable	will	prevent	a	lot	of	flakey	builds.	Let’s	talk	about	node
management	first.

Build	node	management

Whether	we	are	talking	about	CI	build	nodes	or	Selenium	Grid	nodes,	in	an	ideal	world,
all	of	them	would	be	identical	to	each	other.	Having	the	same	version	of	all	tools	and
environment	settings,	such	as	the	version	of	Java	or	the	same	version	of	Firefox,	will

prevent	failures	that	cannot	be	easily	replicated	or	explained.	There	are	several	ways	to
approach	this	problem:

Configuration	Management	System
Virtualization

Configuration	management	system

There	are	several	commercial	and	open	source	configuration	management	systems
available.	These	tools	take	care	of	managing	third-party	applications,	dependencies,	and
configurations	on	large	quantities	of	computers.	These	tools	will	not	only	help	you
manage	the	testing	nodes,	but	will	also	help	you	to	manage	the	computers	used	by	both
development	and	testing	teams.	Having	all	of	the	environments	in	sync	with	production
will	prevent	odd	surprises	once	the	code	is	deployed	for	the	customers.

Early	on	in	my	career,	I	was	a	manual	and	automated	tester	on	a	Java-based	web	project.
When	the	whole	website	overhaul	effort	was	completed	and	deployed	to	production,	we
noticed	some	poor	performance	and	strange	bugs	that	were	never	seen	in	testing
environments.	After	further	inspection,	it	was	discovered	that	the	version	of	Java	used	on
production	severs	was	one	minor	version	behind	from	development	and	testing
environment.	The	difference	caused	a	forced	rollback	and	delay	of	this	major	undertaking,
not	to	mention	embarrassment	for	the	whole	team	involved.

After	learning	this	valuable	lesson,	it	has	always	been	my	priority	to	manage	all	of	the
build	nodes	properly.	Here	are	the	tools	that	I	was	able	to	use	successfully	in	the	past	to
avoid	instability:

Chef:	This	is	a	Ruby	cross-platform	tool	that	allows	you	to	group	computers	on	your
network	into	groups	and	assign	which	applications	and	versions	of	said	applications
are	to	be	installed	on	per-group	basis.	Find	more	information	about	Chef	at
http://www.getchef.com/chef/.
Puppet:	This	is	a	Ruby-based	configuration	management,	which	is	a	direct
competitor	to	Chef.	Both	have	an	analogous	feature	set;	you	can	find	more
information	about	Puppet	at	http://puppetlabs.com/.
Shell	scripts:	When	you	do	not	have	ability	to	use	a	full	configuration	management
system,	having	some	shell	scripts	is	drastically	better	than	trying	to	manage	each
node	by	hand.	You	can	use	Bash	scripts	on	Linux-based	systems	and	batch	and
PowerShell	scripts	on	Windows-based	systems.	Having	a	script	that	downloads,
installs	the	correct	tools,	and	manages	the	configuration	of	the	operating	system	is	a
worthwhile	initial	investment	that	will	pay	off	in	the	long	run.

Note
If	you	wish	to	use	Bash	scripts	on	a	Windows	node	instead	of	writing	it	as	a	batch	or
PowerShell	file,	installing	Cygwin	is	a	great	solution.	Cygwin	can	be	found	at
https://www.cygwin.com/install.html.

Virtualization

Virtualization	is	another	way	to	manage	build	nodes.	It	can	be	combined	with	a

http://www.getchef.com/chef/
http://puppetlabs.com/
https://www.cygwin.com/install.html

configuration	management	system	or	by	itself.	By	setting	up	a	base	Virtual	Machine
(VM)	image	of	a	testing	node,	we	can	configure	an	environment	to	be	optimal	for	testing.
After	the	base	image	has	been	created,	we	can	copy	it	to	create	as	many	nodes	as
necessary	without	spending	any	time	in	configuring	individual	ones.	Furthermore,	VMs
are	great	for	periodically	deleting	the	whole	OS	and	starting	again	from	an	optimal
environment!

There	are	dozens	of	free	and	enterprise	VM	solutions	available	on	the	market.	Each	comes
with	its	own	feature	set	and	some	might	work	much	better	for	your	individual	situation
than	others.	Here	are	several	free	virtualization	solutions:

Xen	project:	This	is	an	open	source	virtualization	product	that	allows	users	to	host
multiple	concurrent	VMs.	This	allows	users	to	host	both	Linux-and	Windows-based
VMs.	This	is	a	lightweight,	highly	stable	and	highly	reliable	solution	to	host	multiple
simple	build	nodes.	The	biggest	drawback	of	Xen	is	that	it	can	only	be	hosted	on	a
Linux-based	host	computer,	and	requires	some	system	administrator	skills;	simply
put,	it	is	not	overly	user	friendly.	More	information	about	Xen	project	can	be	found	at
http://www.xenproject.org.
Virtual	box:	This	is	an	open	source	project	by	Oracle.	It	runs	on	many	host	operating
systems	such	as	Windows,	Linux,	and	Mac	OSX.	Virtual	Box	supports	many	types	of
guest	VMs,	such	as	Windows,	Linux,	and	Mac	OSX.	Virtual	box	is	user	friendly	and
easy	to	get	started	with.	More	information	on	virtual	box	can	be	found	at
https://www.virtualbox.org.
Windows	virtual	PC:	This	is	a	free	VM	host	provided	by	Microsoft.	This	can	only
be	run	on	a	Windows	host,	and	have	only	provided	Windows	guest	VMs.	For	more
information	about	Windows	virtual	PC,	please	refer	to
http://www.microsoft.com/windows/virtual-pc/.

http://www.xenproject.org
https://www.virtualbox.org
http://www.microsoft.com/windows/virtual-pc

Selenium	Grid
While	we	are	on	the	topic	of	build	nodes,	let’s	briefly	visit	Selenium	Grid.	So	far,	we	have
been	writing	our	tests	and	executing	them	only	on	our	local	computers.	This	type	of	test
execution	is	called	the	standalone	mode	of	execution.	The	downside	of	standalone	mode	is
that	the	resources	available	limit	us	on	our	current	computer.	For	example,	we	can	only
use	the	browsers	currently	installed	on	the	computer;	basically,	running	your	tests	in
Internet	Explorer	from	a	Mac	is	impossible.	Selenium	Grid	solves	these	limitations	by
allowing	our	tests	to	take	over	other	computers	on	our	network.	Thus,	we	are	no	longer
limited	by	the	resources	on	our	computer,	but	can	increase	the	coverage	and	reach	of	our
test	suite!

Understanding	standalone	and	grid	modes
To	clear	up	any	misconceptions	on	how	Selenium	Grid	works,	let’s	take	a	closer	look	at
how	WebDriver	controls	the	web	browser.	Understanding	the	internal	workings	will	help
you	set	up	a	much	more	stable	grid	in	the	long	run.	Let’s	first	take	a	look	at	how	Selenium
WebDriver	controls	a	web	browser	with	the	JsonWire	protocol.

JsonWire	protocol

The	JsonWire	protocol	(also	known	as	the	WebDriver	Wire	protocol)	is	a	standard	set	of
API	calls	that	is	used	to	communicate	with	the	WebDriver	server.	Basically,	when	our	test
wants	the	browser	to	navigate	to	a	certain	page	or	click	on	a	certain	link,	the	language
binding	translates	the	click	method	call	into	the	JsonWire	protocol	and	sends	it	as	an
HTTP	request	to	the	WebDriver	server.

Note
Detailed	documentation	on	the	JsonWire	API	can	be	found	at
https://code.google.com/p/selenium/wiki/JsonWireProtocol.

Since	the	JsonWire	protocol	is	simple	to	understand	and	use,	anyone	can	write	a	language
binding	to	drive	any	browser!

Note
Throughout	this	book,	we	used	Ruby	bindings	to	control	the	browser;	however,	there’s	a
binding	for	every	major	programming	language.	In	some	cases,	there	are	multiple
implementations	of	WebDriver	bindings	for	a	given	programming	language.

Standalone	mode

When	we	run	our	Selenium	tests	in	standalone	mode,	an	instance	of	WebDriver	server	is
started	on	our	computer.	This	server	controls	the	browser	we	are	testing	and	we	control	the
server	through	the	language	bindings.	The	following	figure	demonstrates	the	flow	of
commands	from	the	test	to	the	browser:

https://code.google.com/p/selenium/wiki/JsonWireProtocol

The	click	command	follows	these	steps:

1.	 Our	test	finds	the	element	it	wants	to	click	on	and	calls	the	click	method.
2.	 The	language	binding,	where	the	click	method	is	defined,	builds	a	simple	JSON

snippet.	This	snippet	explains	what	action	needs	to	be	performed	and	what	the	target
of	the	action	is	to	the	WebDriver	server.

3.	 Selenium	WebDriver	server	tells	the	web	driver	what	action	to	perform.

Grid	mode

Selenium	Grid	manages	multiple	computers,	called	nodes.	Instead	of	connecting	to	a	local
instance	of	the	Selenium	WebDriver	server,	our	tests	connect	to	a	central	hub.	The	hub
keeps	track	of	all	available	nodes.	The	grid	hub	has	the	following	responsibilities:

Keep	track	of	all	available	nodes
Manage	the	creation	and	clean-up	of	test	sessions
Forward	JsonWire	communication	between	test	bindings	and	nodes

When	running	tests	using	Selenium	Grid,	our	tests	are	executed	on	a	remote	node	in	a
remote	browser,	but	everything	acts	as	if	we	are	running	in	standalone	mode.	The
following	diagram	demonstrates	how	a	click	command	works	in	the	grid	mode:

There	are	two	things	to	note	about	the	preceding	diagram:

As	node	2	executes	our	tests,	node	1	is	idle;	this	means	that	we	can	start	another	test
suite	to	run	against	node	1.
Node	1	supports	both	the	Firefox	and	Safari	browsers.	Our	test	suite	can	drive	the
Safari	browser	from	any	computer,	even	if	that	computer	does	not	support	Safari.

Note
SauceLabs	is	a	company	that	set	up	a	Grid-like	infrastructure	in	the	cloud.	If	you
want	to	be	able	to	test	multiple	browsers	but	do	not	have	access	or	do	not	want	to
manage	the	grid	nodes,	they	might	be	the	right	solution	for	you.	Find	more
information	at	https://saucelabs.com/.

Installing	Selenium	Grid
Installing	Selenium	Grid	on	your	network	is	as	simple	as	finding	several	computers,
downloading	the	Selenium	WebDriver	JAR	file,	and	running	the	start	command.	If	your
IT	department	has	several	old	computers	that	are	out	of	date	to	be	used	in	development	but
can	still	run	at	least	one	modern	browser,	you	can	build	a	large	grid	for	your	tests!	Follow
these	steps	to	get	started:

1.	 Download	the	latest	version	of	the	Selenium	server	from
http://docs.seleniumhq.org/download/.

2.	 In	the	terminal,	run	the	following	command	to	start	the	Selenium	hub	(replacing
PATH-TO-SELENIUM-JAR	with	the	path	to	the	downloaded	JAR	file):

java	-jar	PATH-TO-SELENIUM-JAR.jar	-role	hub

https://saucelabs.com/
http://docs.seleniumhq.org/download/

The	terminal	output	should	look	something	like	this:

Note
This	command	is	using	all	default	settings,	such	as	port	number,	for	the	hub	to	start
on.	To	see	all	available	settings,	add	the	–help	flag	to	the	preceding	command.

3.	 Now	that	the	hub	server	has	been	started,	let’s	add	a	node.	In	a	new	terminal	window,
run	the	following	command:

java	-jar	PATH-TO-SELENIUM-JAR.jar	-role	wd	-hub	http://localhost:4444	

-port	5555

We	added	the	–role	wd	flag	to	tell	our	JAR	to	start	in	WebDriver	mode.	The	–hub
flag	is	used	to	point	the	node	to	the	hub	location.	Finally,	the	–port	parameter	is	used
to	tell	the	node	which	port	to	listen	on.	The	default	port	is	4444,	which	was	occupied
by	the	hub,	so	we	use	5555	instead.

We	have	a	small	Selenium	Grid	up	and	running!	Let’s	take	a	look	at	the	grid	console	by
navigating	to	http://localhost:4444/grid/console	in	our	browser.	We	will	see	a
summary	of	available	nodes	and	browsers;	it	will	look	similar	to	this:

As	we	can	see,	our	grid	has	one	node	that	can	run	five	instances	of	Chrome,	five	instances
of	Firefox,	and	one	instance	of	Internet	Explorer.	Now	that	we	have	an	active	grid,	we	can
point	our	tests	at	it.

Using	Selenium	Grid

It	is	very	easy	to	start	using	our	tests	in	grid	mode.	In	Chapter	1,	Writing	the	First	Test,	we
used	the	following	code	to	acquire	a	new	instance	of	Firefox:

selenium	=	Selenium::WebDriver.for(:firefox)

By	adding	several	new	parameters	to	the	WebDriver.for	method	call,	we	can	request	the
new	session	to	come	from	the	Selenium	Grid:

selenium	=	Selenium::WebDriver.for(:remote,	

																																			:url	=>	"http://localhost:4444",	

																																			:desired_capabilities	=>	:firefox)

The	:remote	parameter	declares	that	the	tests	will	run	in	Grid	mode,	and	the	Grid	is
located	in	the	:url	parameter.	Finally,	:desired_capabilities	specifies	the	browser	we
want	to	use.

Selenium	Grid	Extras

Managing	Selenium	Grid	can	become	quite	involving.	There	are	a	lot	of	options	and
preferences	for	session	management,	timeouts,	and	much	more.	Selenium	Grid	can	only
control	the	web	browsers	on	the	nodes	it	manages.	This	means	that	someone	has	to
manually	manage	all	OS-level	tasks	on	the	Grid	nodes.	To	help	with	the	node	management
tasks,	the	Selenium	Grid	Extras	project	was	created.

Selenium	Grid	Extras	takes	care	of	many	aspects	of	grid	management.	Things	such	as
automatically	downloading	new	versions	of	WebDriver,	periodically	restarting	the	nodes,
and	viewing	system	resource	usage	can	be	handled	by	this	project.	To	get	more
information	about	Selenium	Grid	Extras,	please	visit
https://github.com/groupon/Selenium-Grid-Extras.

Whether	we	choose	to	use	Selenium	Grid	for	our	testing	in	CI	or	not,	we	need	to	take
environment	maintenance	seriously.	In	the	next	section,	we	will	talk	about	managing	both
the	test	environments	and	the	CI	environments.

https://github.com/groupon/Selenium-Grid-Extras

Choosing	the	CI	tool
Since	there	are	multiple	open	source	and	enterprise	CI	tools	available	on	the	market,	the
task	of	choosing	one	can	be	quite	daunting.	We	can	spend	weeks	comparing	tables	of
features,	licenses,	capabilities,	and	User	Interface	(UI).	This	task	might	feel	monumental;
after	all,	once	the	tool	is	selected	we	are	stuck	with	it	forever!	However,	as	it	turns	out,	the
tool	itself	is	the	least	important	part	of	setting	up	a	CI	environment.

After	all,	a	CI	tool	is	nothing	but	a	glorified	cron	job,	with	a	UI	attached	to	it.	At	its	core,	a
CI	tool	runs	on	a	set	interval	to	check	whether	any	updates	were	made	to	the	code	base;	if
changes	are	detected,	it	executes	a	saved	script	that	we	call	test	suite.	We	can	set	up	a
single	script	file	on	a	computer,	which	executes	on	a	cron	and	achieves	the	exact	same
results	as	the	most	expensive	enterprise	tool	available	on	the	market!

Note
A	cron	job	is	a	software	utility	on	Unix-like	systems,	which	executes	a	specified	task	at	a
specified	interval.	Windows	has	an	analogous	utility	called	Task	Scheduler.

It	is	too	easy	to	get	carried	away	with	research	and	acquisition	of	the	perfect	tool	that	we
hope	will	fulfill	all	of	our	needs.	However,	if	we	decouple	our	test	suite	from	the	CI	tool,
we	will	be	able	to	switch	tools	at	will.	This	allows	us	the	flexibility	to	start	with	a	free
solution	at	first	and	migrate	to	a	paid	solution	if	the	feature	set	in	said	solution	is
overwhelmingly	positive.

Decoupling	tests	from	tools
As	we	discussed	in	Chapter	5,	Stabilizing	the	Tests,	Chapter	6,	Testing	the	Behavior,	and
Chapter	7,	The	Page	Objects	Pattern,	our	tests	need	to	be	as	independent	from	the
application	and	tools	as	possible.	Decoupling	tests	from	the	implementation	details	of	the
application	and	reusing	methods	in	a	DRY	pattern	makes	them	easy	to	maintain	in	the
long	run	and	gives	us	flexibility	to	change	things	without	breaking	everything.	The	same
principle	applies	to	running	our	tests	in	CI.

To	prevent	a	situation	where	we	are	locked	into	a	given	CI	tool	and	cannot	migrate	to	a
better	option,	we	need	to	separate	the	tool’s	tasks	from	the	tests	themselves.	We	will	let	the
CI	tool	do	what	it	was	designed	to	do	and	nothing	else.	Here	are	the	three	primary
functions	of	the	CI	tool:

Looking	for	code	changes	in	VCS
Managing	build	node	availability
Providing	some	rudimentary	security	system	to	prevent	accident	modifications	to
builds

Treating	the	build	configuration	and	execution	with	same	care	and	respect	as	application
code	is	a	great	way	to	separate	the	tests	from	the	tool.	Here	is	how	we	will	approach	the
setup	of	the	CI	environment	for	our	website:

1.	 Set	up	a	separate	VCS	repository	whose	only	job	is	to	store	test	execution	scripts.
2.	 Migrate	any	common	set-up	tasks,	such	as	database	migration	or	starting	of	third-

party	services,	into	the	shared	spaces	in	our	VCS.

Note
Whether	we	are	using	Bash	scripts	or	PowerShell	scripts,	it	is	a	great	idea	to	split
different	set-up	tasks	into	functions	and	keep	things	DRY.

3.	 Add	a	script	for	each	new	job.	Each	script	uses	the	shared	code	to	set	up	the
environment	prebuild.	It	is	the	script’s	responsibility	to	trigger	the	build,	whether	it	is
a	Rake,	Maven,	or	Shell	script.

Note
Some	CI	tools	provide	support	for	Maven,	Rake,	and	ant	builds.	If	we	choose	to	use
the	tool’s	support	to	execute	the	tests,	we	can	still	use	the	setup	scripts	as	part	of	the
prebuild	to	configure	the	environment.

4.	 Each	new	build	job	in	CI	will	use	this	repository	to	call	the	appropriate	script	to	start
the	build.	Since	all	of	the	setup	is	done	within	our	build	scripts,	we	no	longer	rely	on
any	tool	to	provide	all	of	the	needed	support;	thus,	the	CI	tool	becomes
interchangeable.

Tip
If	we	are	careful	in	the	naming	of	build	scripts	in	the	repository	to	match	the	build
name	in	CI,	we	can	copy	and	paste	the	same	execution	commands	to	all	of	our	builds
and	let	the	CI	tool	choose	the	correct	script	at	run	time.

In	Jenkins,	the	build	command	would	look	like	this:	sh	${JOB_NAME}.sh.

By	separating	the	test	execution	away	from	the	CI	tool’s	UI,	we	are	free	to	sample	any
tool	and	settle	down	on	the	one	we	want.	The	other	great	advantage	of	having	a	script
execute	our	test	suite	is	that	we	can	execute	it	on	our	local	machine	without	the	CI.	This	is
a	great	way	to	debug	test	failures	that	occur	only	when	the	whole	suite	is	executed	but	not
when	we	run	a	single	test.	The	script	will	set	up	the	database	and	other	environment
settings	in	an	identical	way	to	CI,	thus	making	the	illusive	test	failures	that	much	easier	to
find.

This	approach	to	configuring	the	CI	job	is	not	the	only	one.	As	you	set	up	your	own,	you
will	find	what	works	best	for	you	and	what	does	not.	Whatever	approach	you	do	decide	to
take,	just	keep	in	mind	that	locking	yourself	into	a	single	tool	might	not	be	the	best
solution	in	the	long	run,	especially	when	you	find	out	that	the	competitor’s	test	reporting
view	is	much	more	pleasing	to	the	eye.

Note
I	will	not	be	listing	all	of	the	currently	available	enterprise	and	open	source	CI	tools.	Since
I	started	working	on	this	book,	at	least	one	more	free	and	paid	for	tool	was	released,	and
many	more	will	be	released	by	the	time	you	read	this.	Thus,	a	simple	Internet	search	will
provide	a	much	better	list	of	current	tools	and	a	feature	set	comparison	between	all	of

them.

Frequently	Asked	Questions
Even	though	this	book	is	about	writing	tests	in	Selenium,	most	of	the	ideas	and	topics
apply	to	test	automation	in	general.	Having	said	that,	Selenium	is	not	necessarily	the	best
solution	for	every	problem	that	comes	along.	In	this	section,	I	would	like	to	discuss	some
of	the	most	common	questions	I’ve	heard	asked.	We	will	discuss	each	scenario,	followed
by	problems	most	commonly	associated	with	that	scenario	and	a	possible	solution	or
possible	solutions	that	may	apply.

How	to	test	on	multiple	browsers?
Testing	in	multiple	browsers	is	by	far	the	most	frustrating	part	of	working	with	Selenium.
Certain	browsers	cause	more	problems	than	others	by	default;	I’m	looking	at	Internet
Explorer.	There	have	been	multiple	situations	where	Firefox	and	Chrome	build	would	pass
but	Internet	Explorer	build	will	fail	due	to	idiosyncrasies	in	how	Microsoft	decided	to
interpreted	common	web	standards.

Problem
More	and	more	web	applications	are	hosted	in	Unix-like	environments.	Thus,	the
development	environments	are	shifting	away	from	Windows	to	Linux-based	computers,
which	cannot	support	a	local	instance	of	Internet	Explorer	for	quick	local	testing.

Possible	solutions
There	are	multiple	approaches	to	testing	in	Internet	Explorer	and	other	browsers.	We	will
list	them	in	order	of	speed	and	overall	stability	here.	The	first	applicable	choice	is	usually
by	far	the	best.

Localhost	testing

The	most	reliable	way	to	test	on	Internet	Explorer	is	to	have	the	tests	execute	locally	on
the	CI	node.	If	it	is	possible	to	add	a	Windows	node	to	your	CI	that	will	execute	the
Selenium	tests,	then	this	is	the	solution	for	you.	Having	the	Windows	node	connected	to
CI	directly	gives	access	to	a	lot	of	operating	system	level	tasks	that	will	help	you	make	the
tests	stable.	In	the	Decoupling	tests	from	tools	section	of	this	chapter,	we	discussed	a
prebuild	setup	script	that	will	set	up	the	test	environment.	Part	of	that	script	can	be
terminating	any	orphan	IE	processes	that	may	have	been	left	over	from	a	previous	run.
These	orphan	processes	can	cause	a	lot	of	environment	instability	for	you.

Setting	up	Selenium	Grid

Sometimes,	setting	up	a	Windows	node	in	CI	is	not	an	option.	For	example,	if	we	want	to
run	the	tests	against	a	local	instance	of	a	website	but	the	application	stack	is	not
compatible	with	Windows	architecture.	We	will	need	to	host	the	application	stack	on	a
different	computer	and	have	the	Internet	Explorer	run	against	that	local	instance	instead.
This	approach	lacks	the	same	amount	of	prebuild	control;	however,	we	discussed	some
possible	work-around	for	it	in	the	Selenium	Grid	section	of	this	chapter.

Setting	up	SauceLabs	Grid

Setting	up	a	Selenium	Grid	might	not	always	be	the	practical	solution.	Managing	the
Windows	nodes	is	a	very	involved	process,	and	having	a	dedicated	Windows	node	for
each	version	of	Internet	Explorer	makes	this	even	more	difficult.	SauceLabs	takes	care	of
hosting	multiple	versions	of	Internet	Explorer	and	administration	of	the	Windows	nodes.
The	only	downside	is	reduced	performance	speed,	since	the	communication	between	the
local	instance	of	the	website	and	remote	browsers	can	become	very	slow.	However,	all	of
the	positive	features	SauceLabs	provides	outweigh	the	reduction	in	test	speed.	For	more
information,	visit	the	SauceLabs	website	at	https://saucelabs.com/.

https://saucelabs.com/

Note
SauceLabs	was	one	of	the	first	companies	to	provide	Selenium	nodes	as	a	service	in	the
cloud.	Since	then,	several	new	companies	started	to	offer	this	service,	and	the	two	most
recent	examples	are	Spoonium	(https://spoonium.net/)	and	BrowserStack
(http://www.browserstack.com/).

https://spoonium.net/
http://www.browserstack.com/

Which	programming	language	to	write	tests	in?
Selenium	has	a	WebDriver	implementation	in	every	major	programming	language.	This
means	that	choosing	the	language	and	testing	framework	for	your	test	suite	should	be
relatively	easy.	You	do	not	have	to	use	the	same	language	to	write	tests	that	was	used	to
write	the	application	itself.	However,	there	are	obvious	advantages	of	doing	so:

Closer	integration:	If	the	application	being	tested	is	written	on	a	JVM	platform,	it
makes	a	lot	of	sense	to	write	tests	in	a	JVM-compatible	language.	This	could	give	us
closer	integration	with	the	application,	making	the	testing	effort	that	much	easier.

Tip
Why	not	reuse	the	existing	database	connection	object	already	written	to	query	the
database	and	find	out	the	contents	required	for	the	test?

Programming	help:	If	you	are	new	to	programming	in	a	given	language	or
programming	in	general,	never	underestimate	the	help	you	can	receive	from	the
developers	on	your	team.	A	single	question	with	the	right	person	on	your	team	might
save	you	days	of	research.
Developer	involvement:	If	the	tests	are	written	in	a	language	developers	understand
and	are	comfortable	with,	they	are	much	more	willing	to	write	and	improve	the	tests
themselves.	Having	a	team	of	developers	writing	their	own	tests	as	they	develop	the
feature	is	the	best	possible	solution	for	a	good	quality	test	suite.	Do	not	be	afraid	that
the	developers	will	take	your	job	if	they	are	also	writing	tests.	There	is	always	plenty
to	do	to	make	sure	the	test	suite	remains	stable,	and	you	might	become	the	Selenium
guru	on	your	team	and	everyone	will	come	to	you	for	help.

Once	we	have	picked	out	the	programming	language	and	toolset	we	will	use,	we	can	start
writing	tons	of	new	tests!	At	some	point	we	will	want	to	test	on	platforms	and	browsers
other	than	Firefox.	To	help	us	diversify	the	browser	coverage,	let’s	talk	about	Selenium
Grid.

Should	we	use	Selenium	to	test	the	JS
functionality?
Using	Selenium	to	only	test	a	single	validation	pop	up	on	the	registration	page	is	like
using	a	canon	to	kill	a	mosquito.	However,	if	we	review	any	large	test	suite,	we	will	find	a
lot	of	canons	used.	Is	Selenium	the	right	tool	to	use	to	test	a	small	piece	of	JavaScript?

Problem
Selenium	is	a	very	resource-intensive	testing	tool	and	loading	the	programming	language,
the	databases,	and	the	browser	is	inefficient	if	we	are	only	testing	JavaScript	validations
on	a	single	form.

Possible	solution
If	we	are	testing	the	JavaScript	functions	on	a	form,	we	should	try	to	isolate	the	code	and
test	it	by	itself.	There	are	multiple	JavaScript	testing	tools,	such	as	Jasmine,	that	allow	the
functions	to	be	tested	without	loading	the	whole	page.	By	moving	the	majority	of	tests
from	Selenium	to	Jasmine,	we	were	able	to	execute	1,000+	JavaScript-only	tests	in	under
2	minutes	(4	minutes	on	Internet	Explorer).

Note
Jasmine	is	a	JavaScript	BDD	tool	that	uses	Selenium	WebDriver	to	load	a	web	browser
and	all	of	the	JavaScript	functions	into	a	single	page.	A	user	writes	tests	in	JavaScript	in
an	RSpec-like	syntax.	For	more	information	on	Jasmine,	visit	http://jasmine.github.io/.

http://jasmine.github.io/

Why	should	I	use	a	headless	browser?
We	do	not	need	to	open	up	an	instance	of	Firefox	to	execute	our	Selenium	tests.	Having
the	tests	run	in	a	browser	allows	us	to	view	the	execution	as	it	is	happening,	which	helps
in	the	writing	and	debugging	stages	of	a	given	test.	However,	once	the	test	is	complete	and
is	reliably	running	in	CI,	we	don’t	always	need	to	physically	watch	it	run.	A	headless
browser	is	a	solution	for	these	scenarios.

The	web	browser	has	to	render	the	whole	Domain	Object	Model	(DOM)	as	the	user
navigates	from	page	to	page.	The	rendering	is	a	slow	and	resource-intensive	process.
Furthermore,	the	operating	system	needs	to	provide	a	windowing	service	in	which	to
render	the	browser.	Windows	can	only	support	a	single	window	at	the	time;	thus,
concurrent	browsers	end	up	stacking	on	top	of	each	other.

Possible	solution
Using	a	headless	browser,	such	as	HTMLUnit	Driver	or	PhatntomJS,	increases	the
execution	speed	of	the	test	suite,	since	the	browser	is	not	required	to	render	the	whole
DOM.	Furthermore,	using	a	headless	browser	is	a	lot	less	resource-intensive,	allowing	a
higher	quantity	of	parallel-running	tests.

Note
More	information	on	HTMLUnit	Driver	can	be	found	at
https://code.google.com/p/selenium/wiki/HtmlUnitDriver.

PhantomJS

PhantomJS	is	a	relatively	new	OSS	project,	which	uses	the	WebKit	engine	to	render	web
pages	in	memory	only,	and	no	browser	window	is	attached.	It	is	newer	and	better
compared	to	HTMLUnit	driver	because	it	uses	the	actual	WebKit	engine	instead	of
emulating	the	behavior	of	JavaScript.	Having	a	real	browser	engine	rendering	the	headless
browser	leads	to	much	more	reliable	and	consistent	results	compared	to	emulation.

Note
WebKit	is	a	web	page	layout	engine	written	by	Apple	for	its	Safari	web	browser.	It	is
dramatically	faster	than	the	Trident	engine	used	by	Internet	Explorer.	Google	has	forked
the	WebKit	project,	calling	it	Blink	engine.	Currently,	the	Google	Chrome	and	Opera
browsers	use	the	Blink	engine.

Because	PhantomJS	is	relatively	easy	to	set	up	and	the	decreased	suite	execution	time,	it
becomes	a	perfect	solution	for	running	the	whole	test	suite	on	the	developer’s	computer
before	committing	new	code	to	the	VCS.	Running	a	headless	test	suite	locally	and	handing
off	the	real	browser	execution	to	the	real	web	browsers	in	CI	can	be	the	solution	your	team
is	looking	for.

Note
Since	PhantomJS	is	a	relatively	new	project,	it	might	not	have	Selenium	bindings
implemented	for	every	programming	language.	However,	the	team	is	very	active	and	is

https://code.google.com/p/selenium/wiki/HtmlUnitDriver

adding	new	language	and	frameworks	all	the	time.	For	more	information	on	PhantomJS,
visit	http://phantomjs.org/.

http://phantomjs.org/

Which	BDD	tool	should	I	use	on	my	team?
BDD	tools	can	provide	a	good	starting	point	for	any	framework	we	want.	But	with	so
many	tools	to	choose	from,	which	one	is	the	best	for	us?

Problem
There	are	multiple	BDD	tools	available	and	all	try	to	accomplish	the	same	goal:	making
the	functionality	of	the	application	easy	to	understand	and	decoupled	from
implementation.	However,	each	tool	has	its	own	format	for	describing	the	behavior	and
tends	to	be	more	resource-intensive	than	a	simpler	framework.	Furthermore,	it	might	be
difficult	to	get	the	whole	team	to	agree	on	which	description	format	to	use;	not	everyone
likes	the	Given,	When,	Then	format	of	describing	the	features.

Possible	solutions
If	the	intention	of	the	test	suite	is	to	have	a	simple	no	frills	test	suite	that	only	runs	the
tests	without	any	BDD	methodologies,	then	choosing	a	simple	framework	such	as
Test::Unit	or	JUnit	might	be	more	than	sufficient.	The	downside	is	that	you	get	what
you	pay	for;	this	approach	will	not	have	all	the	easy-to-understand	features	that	a	BDD
tool	might	have.

If	the	intended	consumer	of	the	test	is	from	a	nontechnical	team,	such	as	a	project	manager
or	manual	testers,	then	a	framework	such	as	Cucumber	or	JBehave	is	great.	It	helps	to
specify	intended	behavior	in	clear,	easy-to	understand	language.	This	is	especially	useful
if	the	team	uses	some	form	of	agile	development	methodology.	The	story	can	be	directly
translated	into	a	Given,	When,	Then	format.	However,	the	tremendous	amount	of
wordiness	might	not	be	idea	for	all	teams.

A	compromise	between	the	preceding	two	options	is	a	framework	like	RSpec.	This	tool
provides	a	human-readable	test	description	but	in	a	much	more	precise	and	less	wordy
manner.	This	seems	to	be	a	lot	more	popular	among	purely	development-minded	people
who	might	be	turned	off	by	the	Given,	When,	Then	style	of	behavior	description.

Note
MiniTest	is	another	tool	that	uses	the	RSpec	style	of	feature	description	but	is	much	more
lightweight	and	faster	than	RSpec.	MiniTest	is	automatically	bundled	with	Ruby,	starting
from	version	1.9.	For	more	information	on	this	tool,	visit
https://github.com/seattlerb/minitest.

In	the	end,	it	does	not	matter	which	tool	is	chosen	as	long	as	the	test	suite	is	growing	with
good	reliable	tests.	The	best	tool	is	not	the	one	that	has	the	most	features,	but	the	one	that
everyone	will	use	to	grow	and	maintain	the	test	suite.

https://github.com/seattlerb/minitest

Can	I	use	Selenium	for	performance	testing?
When	releasing	a	new	version	of	the	website,	we	want	to	make	sure	that	the	new	version
does	not	perform	slower	than	existing	code.	If	we	do	not	pay	attention	to	the	website
performance,	it	will	not	take	a	long	time	for	our	fast	and	new	website	to	become	slow	and
unpleasant	to	use.

Problem
Technically,	we	can	use	Selenium	for	performance	testing.	However,	just	because	we	can
technically	do	something,	a	question	should	always	be	nagging	us	at	the	back	of	our	mind:
should	we	do	it?	Using	Selenium	for	performance	testing	is	similar	to	using	a	butter	knife
to	cut	a	steak;	effective	but	unpleasant.	The	following	factors	make	Selenium	unsuitable
for	performance	testing:

Inaccurate:	When	testing	page	load	performance,	we	are	not	testing	the	server
response	times	but	page	load	times.	Even	if	our	website	is	fully	loaded,	some	asset
from	a	third-party	application	might	still	be	loading.	Timing	the	page	load	times	will
give	inflated	results.
Testing	JavaScript	performance:	Selenium	is	not	the	best	tool	to	use	to	test	the
performance	of	JavaScript	on	the	page.	First	of	all,	it	is	too	big	and	clumsy	to	give
any	results	worth	noting.	Since	JavaScript	is	technically	a	single-threaded	language,
that	means	that	our	site’s	scripts	will	have	to	share	resources	with	any	third-party
JavaScript	loaded	in	the	browser.	The	slower	than	expected	results	might	be	coming
from	something	outside	of	our	control.
Testing	asset	performance:	If	we	cannot	reliably	test	JavaScript	performance	and
the	performance	of	complete	page	loads,	maybe	we	can	test	the	asset	loading.
Selenium	will	not	be	able	to	tell	you	accurately	how	fast	a	certain	image	or	video
downloaded	and	rendered	in	the	browser.	Browser	performance	depends	on	so	many
factors	outside	of	the	current	page,	such	as	the	amount	of	windows	currently	open,
available	RAM,	disk	usage,	and	CPU	usage	by	background	processes.	Not	to	mention
the	asset	caching	performed	by	the	browser	and	the	caching	performed	by	a	network
caching	proxy	that	your	IT	department	installed	for	the	whole	company.	It	is	close	to
impossible	to	get	consistent	download	and	render	time	results	without	using
Selenium.
Testing	server	load:	By	far,	testing	the	server	load	with	Selenium	is	the	least	helpful
experience.	In	order	to	generate	noticeable	load	on	the	web	server	we	need	dozens,	if
not	hundreds	of	Selenium	instances,	and	even	then,	it	might	not	be	enough.

In	conclusion,	Selenium	is	a	terrible	solution	for	performance	testing.	There	are	simpler
and	better	solutions	available.

Possible	solutions
Depending	on	the	type	of	performance	testing	we	are	trying	to	accomplish,	there	are
specialized	tools	to	accomplish	just	about	any	goal.	For	example,	to	put	a	server	under
heavy	load	and	record	the	response	times	from	it,	JMeter	is	a	great	tool.	It	simulates	user

behavior	by	recording	the	HTTP	interactions	your	browser	makes	as	you	normally	browse
the	website	and	replays	these	interactions	with	thousands	of	concurrent	requests.

Note
For	more	information	on	the	JMeter	project,	visit	at	http://jmeter.apache.org/.

To	test	the	performance	of	the	JavaScript	on	a	given	page,	Google	provides	the	V8
Benchmark	Suite	(http://v8.googlecode.com/svn/data/benchmarks/v7/run.html).

If	we	want	to	have	a	cross-browser	solution	for	checking	what	assets	are	slow	to	load,
YSlow	(http://yslow.org/)	is	a	great	tool	for	that.	Furthermore,	most	modern	browsers
provide	a	built-in	test	suite	for	JavaScript	and	asset	performance.

Finally,	if	none	of	the	tools	mentioned	satisfy	your	needs,	we	can	write	our	own	scripts.
Using	Ruby	or	Bash,	we	can	write	a	simple	script	that	makes	HTTP	requests	against
different	API	endpoints	or	assets	and	records	the	time	it	took	to	complete	a	purchase
request	or	for	an	image	to	download.	At	the	end	of	the	day,	a	simple	shell	script	will
provide	a	much	more	accurate	performance	report	than	a	Selenium	test.

http://jmeter.apache.org/
http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
http://yslow.org/

Summary
This	concludes	Selenium	Design	Patterns	and	Best	Practices.	The	goal	of	this	book	was	to
demonstrate	that	Selenium	testing	is	more	than	just	clicking	on	links.	To	test	a
complicated	application	in	a	reliable	and	repeatable	way	requires	a	sophisticated	Selenium
test	suite.	Throughout	this	book,	we	touched	upon	some	of	the	most	difficult	problems	that
I	and	people	like	myself	have	been	encountering	in	the	field	of	test	automation.	I	hope	that
our	collected	knowledge	will	help	save	you	weeks	or	months	of	frustration	and	confusion
that	I	have	personally	experienced.

In	conclusion,	technical	solutions	provided	in	this	book	might	not	be	the	best	solution	in
your	individual	case.	However,	I	hope	they	will	send	you	on	the	right	path	to	something
that	fits	perfectly	for	you.	Improvising	is	a	large	part	of	this	new	field,	so	find	out	what
works	for	you	and	share	your	accumulated	knowledge	with	the	Selenium	community.
Together,	we	can	make	test	automation	into	an	integral	part	of	software	development.

Now,	go	write	some	tests!

Appendix	A.	Getting	Started	with
Selenium
If	you	are	new	to	the	Ruby	programming	language	or	new	to	Selenium	WebDriver,	there
are	just	a	couple	of	things	you	need	to	get	your	computer	ready	for	testing.	In	this	section,
we	will	install	some	software	prerequisites.	At	the	end	of	the	section,	we	will	talk	about
Ruby	class	naming	techniques	so	that	it	is	easier	to	understand	the	test	classes	that	we
write.

Setting	up	the	computer
There	are	multiple	ways	to	develop	and	run	Selenium	WebDriver	tests.	Depending	on	the
programming	language	you	choose	to	use,	different	tools	and	Integrated	Development
Environments	(IDE)	will	be	available	to	you.	In	this	book,	we	are	using	the	Ruby
programming	language	with	the	selenium-webdriver	gem.	However,	this	book	was	not
intended	to	show	how	to	write	the	most	efficient	Ruby	programs,	instead	it	is	meant	to
show	the	best	approaches	to	solve	a	given	problem	in	general;	it	just	happens	that	the
examples	that	appear	in	this	book	are	written	in	Ruby.

Note
As	most	proficient	Ruby	developers	will	notice,	the	syntax	used	in	this	book	is	technically
correct	but	does	not	follow	the	standard	Ruby	paradigms.	The	Ruby	code	examples	are
deliberately	overly	verbose	to	help	Ruby	developers	feel	more	at	home.

All	of	the	code	and	examples	used	for	this	book	were	chosen	so	that	they	would	be	as
inexpensive	(or	free)	for	the	reader	as	possible	and	anyone	can	follow	the	whole	text	with
their	favorite	text	editor	of	choice.	This,	however,	means	that	we	have	to	do	a	little	work
before	we	get	started	to	be	ready	to	write	tests.	The	only	prerequisites	to	get	started	are	as
follows:

The	Command	Line	Interface	terminal
The	Internet	connection
The	Ruby	runtime	environment
The	Firefox	web	browser
The	text	editor	of	choice

Let’s	get	started	by	adding	these	prerequisites	to	your	computer.

Using	Command	Line	Interface
The	Command	Line	Interface	(CLI)	is	one	of	the	most	powerful	ways	to	interface	with
any	OS.	No	matter	what	OS	you	have	installed	on	your	computer,	you	already	have	a
powerful	CLI	toolset	preinstalled.	Let’s	take	a	look	at	different	kinds	of	CLI	terminals,
based	on	the	host	OS.

Note
In	the	context	of	this	book,	the	terms	CLI	and	terminal	are	interchangeable.

Using	the	terminal	on	Windows
Microsoft	Windows	rarely	requires	the	use	of	the	terminal	for	day-to-day	operations.
Unlike	Linux,	most	administrative	tasks	are	completed	in	the	Graphical	User	Interface
(GUI),	that	is,	it	requires	the	user	to	click	on	things	with	the	mouse.	MS-DOS	CLI	is
available	on	all	versions	of	Windows.	Recently,	Microsoft	has	made	a	lot	of	improvements
to	the	CLI;	the	improved	tool	is	called	PowerShell.	Finally,	if	you	are	a	fan	of	Linux-style
CLI,	you	can	install	a	Linux	Terminal	Emulator.	Either	option	is	completely	valid	for	the
purposes	of	this	book,	so	you	are	free	to	choose	the	option	that	suits	you	best.	Let’s	take	a
closer	look	at	each	option.

Using	MS-DOS

Using	MS-DOS	is	as	simple	as	opening	the	terminal	and	starting	to	interact	with	it.
Perform	the	following	steps:

1.	 To	open	MS-DOS,	click	on	the	Start	button	in	Windows,	as	shown	here:

2.	 Locate	the	Run	option	application	as	shown	here:

The	preceding	screenshot	shows	the	Windows	7	interface,	where	the	Run	application
is	found	with	the	search	feature.

Note
A	common	Windows	shortcut	is	to	press	the	Windows	+	R	on	your	keyboard.

3.	 Next,	type	in	cmd	in	the	Run	application	and	hit	Enter:

4.	 An	MS-DOS	window	similar	to	the	following	one	should	open	up:

Using	PowerShell

Starting	with	Windows	Vista,	PowerShell	is	automatically	included	in	the	OS.

Note
If	you	are	using	an	older	version	of	Windows,	you	can	download	the	PowerShell	installer
from	http://technet.microsoft.com/en-us/library/hh847837.aspx.

PowerShell	improves	on	a	lot	of	problems	that	MS-DOS	had,	and	now	follows	Linux’s
Bash	style	paradigm.

To	open	the	PowerShell	terminal,	we	will	follow	the	same	steps	as	shown	in	MS-DOS,	but
instead	of	typing	in	cmd,	we	will	type	in	powershell.	The	PowerShell	terminal,	shown	in
the	following	screenshot,	is	very	similar	to	the	MS-DOS	terminal:

http://technet.microsoft.com/en-us/library/hh847837.aspx

Using	the	terminal	emulator

CygWin	is	an	opensource	project	to	bring	a	Linux	style	CLI	terminal	to	Windows.	It	is	a
good	alternative	to	MS-DOS.	You	can	download	the	CygWin	installer	from	the	project’s
website	at	https://www.cygwin.com/.

Using	the	terminal	on	Mac	OS	X
Mac	OS	X	comes	with	a	great	CLI	terminal	application.	It	runs	Bash	shell	by	default,	and
anyone	who	is	comfortable	with	Linux	shell	will	find	himself	or	herself	comfortably	at
home	with	Terminal.app.	To	start	using	Terminal.app,	navigate	to	the	Applications
directory	and	open	the	Utilities	folder.

Tip
Command	+	Shift	+	U	is	the	shortcut	that	will	take	you	to	the	Utilities	folder	if	you
execute	it	within	the	finder.

Locate	the	Terminal.app	and	open	it.

https://www.cygwin.com/

Using	the	terminal	on	Linux
To	open	the	Terminal	app	in	Linux,	we	will	simply	open	the	Applications	menu,	locate
the	Accessories	option,	and	click	on	Terminal.

Configuring	the	Ruby	runtime	environment
Once	you	have	found	the	CLI	Terminal	in	our	application,	you	can	continue	with	the	Ruby
runtime	environment	installation	and	configuration.

Installing	Ruby
Some	OSes	come	with	Ruby	preinstalled,	such	as	Mac	OSX	and	certain	distributions	of
Linux.	We	can	install	or	upgrade	our	version	of	Ruby	by	finding	the	appropriate	installer
on	the	Ruby	project’s	website	at	https://ruby-lang.org/en/installation.

Note
The	examples	in	this	book	require	Ruby	1.9.3	or	newer.

Installing	the	selenium-webdriver	gem
The	Ruby	runtime	environment	uses	Ruby	gems	(gems)	as	a	package	manager	for	all
third-party	libraries.	This	package	manager	is	really	easy	to	use	and	contains	many	great
features.	After	the	Ruby	runtime	is	installed,	all	we	have	to	do	to	install	any	gem	is	to	run
the	following	command	in	the	terminal:

gem	install	selenium-webdriver

The	preceding	example	will	install	all	of	the	dependencies	that	Selenium	WebDriver	has
along	with	the	WebDriver	gem.	A	helpful	website	that	can	provide	a	lot	of	information	for
any	gem	is	located	at	http://rubygems.org.	There	we	can	find	information	about	the	gem,
such	as	the	names	of	the	contributors,	the	project’s	main	website,	all	of	the	released
versions	of	the	gem,	and	any	dependencies	that	the	gem	has.

https://ruby-lang.org/en/installation
http://rubygems.org

Installing	Firefox
We	will	be	using	the	Firefox	browser	for	all	of	the	examples	in	this	book.	All	of	the
examples	described	here	will	work	with	any	other	browser	that	WebDriver	supports.
However,	Firefox	was	chosen	because	it	needs	the	least	amount	of	out	of	the	box	setup.	If
you	do	not	yet	have	Firefox	installed	on	your	computer,	download	it	from
http://mozilla.org.

http://mozilla.org

Understanding	test	class	naming
Unlike	Java-	or	C-based	programming	languages,	Ruby	does	not	require	the	filename	of	a
class	to	match	the	class	contained	inside.	For	example,	the	filename	test1.rb	can	contain
a	class	named	Potato.	Furthermore,	a	single	file	can	contain	multiple	classes	within	it	and
Ruby	compiler	will	not	complain	about	it.	With	this	setup,	it	is	very	easy	to	loose	track	of
different	pieces	of	code	and	classes.	To	reduce	the	complexity	and	confusion,	there	are
several	basic	rules	we	can	follow.

Note
Technically,	these	rules	are	more	like	suggestions,	since	the	compiler	will	not	prevent	you
from	breaking	them.	Following	them	is	advised,	but	not	100	percent	necessary.

Naming	files
It	is	a	good	idea	to	name	the	files	as	similar	to	the	class	that	lives	within	it	as	possible.
Since	different	test	frameworks	use	different	file	naming	conventions,	we	will	adhere	to
the	convention	while	at	the	same	time	clearly	explaining	what	is	contained	inside	the	file.

For	example,	if	we	have	a	test	that	does	a	search	for	the	word	cheese	on	our	website,	we
can	name	the	file	test_cheese_finder.rb	or	test_cheese_search.rb.	Both	examples
clearly	explain	the	intention	of	the	test.	We	can	still	name	the	file	test_curd_finder.rb,
since	it	is	both	accepted	by	the	compiler	and	expresses	the	intent	of	the	test;	however,	not
too	many	people	will	be	able	to	find	it	when	looking	at	a	directory	full	of	test	files.

Tip
Since	most	Ruby	developers	do	not	use	an	IDE,	there	are	some	common	practices,	such	as
the	one	described	previously,	to	make	the	development	simpler	to	accomplish.

Naming	classes
Similar	to	naming	the	files,	naming	the	test	class	should	be	done	in	such	a	way	that	a	test
failure	could	be	understood	at	a	quick	glance.	For	example,	in	Chapter	1,	Writing	the	First
Test,	we	have	an	intentional	test	failure	that	looks	like	this:

By	looking	at	the	failure	message,	we	can	identify	the	original	intention	of	the	test	by	the
following	three	clues:

The	filename	of	the	failure	tells	us	that	the	tests	contained	inside	will	be	testing	the
ability	to	find	cheese	on	our	website,	as	shown	in	the	following	screenshot:

The	class	name,	shown	with	an	arrow	in	the	following	screenshot,	reinforces	the	idea
conveyed	by	the	filename:

The	test	method	name	in	the	following	screenshot	shows	that	this	particular	test	was
testing	the	positive	search	result.	If	we	wanted	to	test	for	negative	search	results,	we
would	have	named	it	test_cannot_find_cheese.

Understanding	the	namespace
Namespacing	is	a	way	of	grouping	logically	related	code	together.	Ruby	modules	are	a
great	way	to	accomplish	this,	because	they	allow	the	declaration	of	classes	within	them.
This	allows	us	to	have	multiple	classes	with	the	same	name	within	the	same	application
without	having	a	collision.	It	is	similar	to	having	two	files	with	the	same	name	in	different
directions.

When	writing	out	the	path	to	a	class,	Ruby	uses	the	::	characters	as	a	delimiter.	For
example,	in	Chapter	1,	Writing	the	First	Test,	we	are	introduced	to	the	Test::Unit
framework	for	writing	tests.	All	of	the	test	classes	inherit	their	behavior	from	the
TestCase	class	in	this	framework.	When	the	path	to	TestCase	is	fully	written	out,	it	looks
like	Test::Unit::TestCase.	This	statement	gives	us	the	following	information:

The	TestCase	class	lives	inside	of	the	Unit	module
The	Unit	module	lives	within	the	Test	namespace

Namespacing	is	a	great	way	to	sort	our	code	in	such	a	way	that	we	can	understand	the
intention	of	an	object	at	a	glance.	It	is	similar	to	sorting	the	music	collection	by	genre.

Showing	object	inheritance
The	Test::Unit	framework	provides	us	with	many	great	shortcuts	when	testing.	For
example,	when	we	want	to	compare	two	numbers	with	each	other	and	make	sure	they	are
equal,	we	can	write	our	own	comparison	or	we	can	use	the	assert	method	to	do	a
comparison	and	display	a	meaningful	failure	message.	Since	we	do	not	wish	to	write	out
every	comparison	by	hand,	we	want	our	test	class	to	inherit	this	behavior	from	the	testing
framework.

Note
For	more	information	about	objects,	object-oriented	programming,	and	inheritance,	read
Chapter	7,	The	Page	Objects	Pattern.

In	Ruby,	we	declare	object	inheritance	with	the	<	character.	This	character	shows	the
direction	in	which	the	inheritance	is	flowing;	the	<	character	shows	the	direction	of
inheritance,	like	an	arrow.	In	the	following	test	class	declaration,	we	know	that	the
CheeseFinderTest	class	will	inherit	all	of	its	functionality	from	the	TestCase	class.

class	CheeseFinderTests	<	Test::Unit::TestCase

Summary
In	this	section,	we	concluded	the	setup	of	our	test	machine.	You	also	learned	the	location
of	the	CLI	terminal	for	the	majority	of	operating	systems.	Also,	we	installed	all	of	the
necessary	components	that	will	allow	us	to	follow	all	of	the	exercises	in	this	book.

We	also	took	the	time	to	understand	why	our	test	classes	are	named	the	way	they	are.	We
covered	the	file	and	class	naming	conventions,	and	you	also	understand	how	Ruby	does
namespacing	and	declares	inheritance.

We	are	now	ready	to	start	writing	our	tests!

Index
A

absolute	path
about	/	Using	advanced	locator	strategies
using	/	Using	the	absolute	path

Action	Wrapper	pattern
about	/	The	Action	Wrapper	pattern
advantages	/	Advantages	of	the	Action	Wrapper	pattern
disadvantages	/	Disadvantages	of	the	Action	Wrapper	pattern
implementing	/	Implementing	the	Action	Wrapper	pattern

advanced	locator	strategies
using	/	Using	advanced	locator	strategies
absolute	path,	using	/	Using	the	absolute	path
relative	path,	using	/	Using	the	relative	path

advantages,	Record	and	Playback	pattern
fast	test	growth	/	Advantages	of	the	Record	and	Playback	pattern
no	previous	experience	/	Advantages	of	the	Record	and	Playback	pattern
element	lookup	/	Advantages	of	the	Record	and	Playback	pattern

advantages,	Selenium
about	/	Right	tool	for	the	right	job
price	/	Price
Open	Source	Software	(OSS)	/	Open	source
flexibility	/	Flexibility

AJAX
about	/	Maintaining	a	stable	test	suite
waiting	for	/	Waiting	for	AJAX

AJAX	delays
testing	without	/	Testing	without	AJAX	delays

AJAX	forms
testing,	explicit	delays	used	/	Using	explicit	delays	to	test	AJAX	forms

animation
about	/	Waiting	for	JavaScript	animations

API
using,	as	source	of	fixture	data	/	Using	an	API	as	a	source	of	fixture	data

Appium
URL	/	Testing	a	mobile	site

assertions
adding,	to	Selenium	test	/	Introducing	asserts
adding,	to	Selenium	test	/	Introducing	asserts
implementing	/	Implementing	clicks	and	assertions

assert	method
using	/	Introducing	asserts

asserts	/	Introducing	asserts

B
Bamboo	/	The	random	run	order	principle
BDD

about	/	Behavior-driven	Development
advantages	/	Advantages	of	BDD
disadvantages	/	Disadvantages	of	BDD
URL	/	Describing	shopping	cart	behavior
using,	in	project	/	Is	BDD	right	for	my	project?

Big	Ball	of	Mud	pattern
about	/	The	Big	Ball	of	Mud	pattern

Black	Hole	Proxy	pattern
about	/	The	Black	Hole	Proxy	pattern
advantages	/	Advantages	of	the	Black	Hole	Proxy	pattern
disadvantages	/	Disadvantages	of	the	Black	Hole	Proxy	pattern
implementing	/	Implementing	the	Black	Hole	Proxy	pattern

BrowserMob	Proxy
URL	/	Implementing	the	Black	Hole	Proxy	pattern

BrowserStack
URL	/	Setting	up	SauceLabs	Grid

bug-driven	growth	strategy	/	Bug-driven	growth	strategy
build	node	management

about	/	Build	node	management
configuration	management	system	/	Configuration	management	system
virtualization	/	Virtualization

builds
deploying	/	Deploying	new	builds

C
c	command	/	Interactive	test	debugging
chained	selector	strategy	methods

using	/	Using	chained	selector	strategy	methods
Chain	Linked	pattern

about	/	The	Chain	Linked	pattern
Chef

URL	/	Keeping	a	clean	and	consistent	environment,	Configuration	management
system
about	/	Configuration	management	system

CI
about	/	Continuous	Integration
test	environments,	managing	/	Managing	the	test	environments	and	nodes
nodes,	managing	/	Managing	the	test	environments	and	nodes
Selenium	Grid	/	Selenium	Grid

CI,	setting	up
test	environment	/	Continuous	Integration
test	data	/	Continuous	Integration
tests	/	Continuous	Integration
test	stability	/	Continuous	Integration
test	nodes	/	Continuous	Integration
CI	system	/	Continuous	Integration

CI	environment
setup	/	Decoupling	tests	from	tools

CI	environment	management
about	/	CI	environment	management
build	node	management	/	Build	node	management

CI	system	/	Continuous	Integration
CI	tool

selecting	/	Choosing	the	CI	tool
tests,	decoupling	from	/	Decoupling	tests	from	tools
functions	/	Decoupling	tests	from	tools

classes
naming	/	Naming	classes

CLI
using	/	Using	Command	Line	Interface
terminal,	using	on	Windows	/	Using	the	terminal	on	Windows
terminal,	using	on	Mac	OS	X	/	Using	the	terminal	on	Mac	OS	X
terminal,	using	on	Linux	/	Using	the	terminal	on	Linux

click	command
about	/	Standalone	mode

clicks
implementing	/	Implementing	clicks	and	assertions

code
moving,	into	setup	/	Moving	code	into	a	setup	and	teardown
moving,	into	teardown	/	Moving	code	into	a	setup	and	teardown

collect	method	/	Using	chained	selector	strategy	methods
Comma	Separated	Value	(CSV)	/	Introducing	test	fixtures
comment	test

updating,	to	use	default	values	/	Updating	the	comment	test	to	use	default	values
computer

setting	up	/	Setting	up	the	computer
CLI,	using	/	Using	Command	Line	Interface
Ruby	runtime	environment,	configuring	/	Configuring	the	Ruby	runtime
environment
Firefox,	installing	/	Installing	Firefox

configuration	directory
about	/	The	configuration	directory
cucumber.yml	file	/	Cucumber.yml
env.rb	file	/	env.rb

configuration	management	system	/	Configuration	management	system
Continuous	Integration	(CI)	/	The	random	run	order	principle
Cross-Site	Scripting	(XSS)	/	Reading	Selenese
CSS	selector

using	/	Using	the	CSS	selector
Cucumber

about	/	Introducing	Cucumber
feature	files	/	Feature	files
step	definitions	files	/	Step	definition	files
configuration	directory	/	The	configuration	directory

cucumber.yml	file	/	Cucumber.yml
Cucumber	implementation	/	Looking	at	the	Cucumber	implementation
Cucumber	profile

updating	/	Updating	the	Cucumber	profile	and	tagging	tests
Cucumber	suite

running	/	Running	the	Cucumber	suite
Cucumber	wiki	page

URL	/	Feature	files
Curl

about	/	Testing	the	purchase	API
Cygwin

URL	/	Configuration	management	system
CygWin	installer

URL	/	Using	the	terminal	emulator

D
Dan	North

URL	/	Describing	shopping	cart	behavior
data	accessibility

versus	data	relevance	/	Data	relevance	versus	data	accessibility
data	relevance

versus	data	accessibility	/	Data	relevance	versus	data	accessibility
data	stubs

using	/	Using	data	stubs
debug	tool,	Ruby	/	Interactive	test	debugging
Decorator	pattern	/	Implementing	the	Action	Wrapper	pattern
default	values	pattern

about	/	The	default	values	pattern
advantages	/	Advantages	of	the	default	values	pattern
disadvantages	/	Disadvantages	of	the	default	values	pattern
and	faker,	merging	/	Merging	the	default	values	pattern	and	the	faker	library

default	values	pattern,	merging	with	faker
faker	methods,	implementing	/	Implementing	faker	methods
comment	test,	updating	to	use	default	values	/	Updating	the	comment	test	to	use
default	values

disadvantages,	Record	and	Playback	pattern
bad	locators	/	Disadvantages	of	the	Record	and	Playback	pattern
inflexible	tests	/	Disadvantages	of	the	Record	and	Playback	pattern
hardcoded	test	data	/	Disadvantages	of	the	Record	and	Playback	pattern
poorly	written	tests	/	Disadvantages	of	the	Record	and	Playback	pattern
duplicate	code	/	Disadvantages	of	the	Record	and	Playback	pattern

Domain	Object	Model	(DOM)	/	Why	should	I	use	a	headless	browser?
Domain	Specific	Language	(DSL)	/	The	Page	Objects	pattern
Don’t	Repeat	Yourself	(DRY)	/	The	DRY	testing	pattern
DRY	/	Advantages	of	the	Page	Objects	pattern
DRY	testing	pattern

about	/	The	DRY	testing	pattern
advantages	/	Advantages	of	the	DRY	testing	pattern
disadvantages	/	Disadvantages	of	the	DRY	testing	pattern
code,	moving	into	setup	/	Moving	code	into	a	setup	and	teardown
code,	moving	into	teardown	/	Moving	code	into	a	setup	and	teardown
duplication,	removing	with	methods	/	Removing	duplication	with	methods
external	test	goals,	removing	/	Removing	external	test	goals
method	used,	for	filling	out	review	form	/	Using	a	method	to	fill	out	the	review
form
refactored	code,	reviewing	/	Reviewing	the	refactored	code

DSL	framework	/	Advantages	of	the	Page	Objects	pattern
duplication

removing,	with	methods	/	Removing	duplication	with	methods

E
elements

locating,	on	page	/	Locating	elements	on	the	page
inspector	window,	using	/	Using	a	browser’s	element	inspector

End-to-End	test	/	Different	types	of	tests
env.rb	file	/	env.rb
environment	management

new	builds,	deploying	/	Deploying	new	builds
CI	environment	management	/	CI	environment	management

environment	variables
about	/	Choosing	the	test	environment
setting	/	Choosing	the	test	environment

exit	command	/	Interactive	test	debugging
external	test	goals

removing	/	Removing	external	test	goals

F
failures,	tests

reasons	for	/	Reasons	for	failures
Faker

about	/	Testing	without	AJAX	delays
faker

and	default	values	pattern,	merging	/	Merging	the	default	values	pattern	and	the
faker	library

faker	methods
implementing	/	Implementing	faker	methods

feature	files,	Cucumber	/	Feature	files
feature	growth	strategy	/	New	feature	growth	strategy
File.dirname(__FILE__)	call	/	Hiding	test	data	from	tests
files

naming	/	Naming	files
Firebug

about	/	Using	a	browser’s	element	inspector
URL	/	Using	a	browser’s	element	inspector

Firefox
installing	/	Installing	Firefox

fixture	data
parsing	/	Parsing	fixture	data
using,	in	tests	/	Using	fixture	data	in	the	tests
API,	using	as	source	/	Using	an	API	as	a	source	of	fixture	data

Frequently	asked	questions
multiple	browsers,	testing	/	How	to	test	on	multiple	browsers?,	Localhost	testing
programming	language,	selecting	/	Which	programming	language	to	write	tests
in?
Selenium	usage,	for	testing	JS	functionality	/	Should	we	use	Selenium	to	test	the
JS	functionality?,	Problem
headless	browser,	using	/	Why	should	I	use	a	headless	browser?,	PhantomJS
BDD	tool,	selecting	/	Which	BDD	tool	should	I	use	on	my	team?
Selenium	usage,	for	performance	testing	/	Can	I	use	Selenium	for	performance
testing?,	Possible	solutions

G
generic	DRY	methods

making	/	Creating	generic	DRY	methods
refactoring	with	/	Refactoring	with	generic	methods

Getter	method	/	Creating	a	page	super	class
get_environment	method	/	Choosing	the	test	environment
Graphical	User	Interface	(GUI)	/	Using	the	terminal	on	Windows
grid	mode

about	/	Understanding	standalone	and	grid	modes,	Grid	mode

H
hardcoded	product	/	Hardcoding	input	data
hardcoding

test	data	/	Hardcoding	input	data
Hermetic	test	pattern

about	/	The	Hermetic	test	pattern
advantages	/	Advantages	of	the	Hermetic	test	pattern
disadvantages	/	Disadvantages	of	the	Hermetic	test	pattern
test-on-test	dependence,	removing	/	Removing	test-on-test	dependence

HTMLUnit	Driver
URL	/	Possible	solution

I
IDE

about	/	Getting	started	with	the	Selenium	IDE
incompatible	steps

running	/	Running	and	fixing	incompatible	steps
fixing	/	Running	and	fixing	incompatible	steps

individual	page	classes
implementing	/	Implementing	individual	page	classes

inspector	window
using	/	Using	a	browser’s	element	inspector

Integrated	Development	Environments	(IDE)	/	Setting	up	the	computer
integration	test	/	Different	types	of	tests
intelligent	delays

implementing	/	Implementing	intelligent	delays
Interactive	Ruby	Shell	(irb)	/	Interactive	test	debugging
interactive	test

debugging	/	Interactive	test	debugging
iOS	Driver

URL	/	Testing	a	mobile	site

J
Jasmine

about	/	Possible	solution
URL	/	Possible	solution

JavaScript	animations
about	/	Waiting	for	JavaScript	animations

JavaScript	Object	Notation	(JSON)	/	Using	an	API	as	a	source	of	fixture	data
Jenkins	/	The	random	run	order	principle
JMeter	project

URL	/	Possible	solutions
jQuery

about	/	Implementing	intelligent	delays
JSON.parse	method	/	Using	an	API	as	a	source	of	fixture	data
JsonWire	API

URL	/	JsonWire	protocol
JsonWire	protocol

about	/	JsonWire	protocol

K
keywords,	shopping	cart	behavior

about	/	Describing	shopping	cart	behavior

L
Linux

terminal,	using	on	/	Using	the	terminal	on	Linux
literal	object

about	/	Describing	a	literal	object
object	properties	/	Object	properties
object	actions	/	Object	actions
objects	within	objects	/	Objects	within	objects

localhost	testing
about	/	Localhost	testing

locator	strategies
about	/	Introducing	locator	strategies
ID	/	Introducing	locator	strategies
class	name	/	Introducing	locator	strategies
link	text	/	Introducing	locator	strategies
partial	link	text	/	Introducing	locator	strategies
name	property	/	Introducing	locator	strategies
tag	name	/	Introducing	locator	strategies
CSS	selector	/	Introducing	locator	strategies
XPath	/	Introducing	locator	strategies
advanced	locator	strategies,	using	/	Using	advanced	locator	strategies

locator	strategy	code
writing	/	Writing	locator	strategy	code
chained	selector	strategy	methods,	using	/	Using	chained	selector	strategy
methods
CSS	selector,	using	/	Using	the	CSS	selector
XPath,	using	/	Using	XPath

Luhn	test	algorithm
about	/	Testing	without	AJAX	delays

M
Mac	OS	X

terminal,	using	on	/	Using	the	terminal	on	Mac	OS	X
method

used,	for	filling	out	review	form	/	Using	a	method	to	fill	out	the	review	form
method	chaining	/	Comparing	Ruby	to	Selenese
methods

duplication,	removing	with	/	Removing	duplication	with	methods
MiniTest

about	/	Possible	solutions
URL	/	Possible	solutions

mobile	site
testing	/	Testing	a	mobile	site

mobile	site,	testing
Selenium	wrapper,	updating	/	Updating	the	Selenium	wrapper
step	definition	files,	moving	/	Moving	step	definition	files
Cucumber	profile,	updating	/	Updating	the	Cucumber	profile	and	tagging	tests
tests,	tagging	/	Updating	the	Cucumber	profile	and	tagging	tests
incompatible	steps,	running	/	Running	and	fixing	incompatible	steps
incompatible	steps,	fixing	/	Running	and	fixing	incompatible	steps

money	path	suite	/	The	money	path	suite
MS-DOS

using	/	Using	MS-DOS
multiple	tests	models

advantages	/	Multiple	test	models
disadvantages	/	Multiple	test	models
implementing	/	Implementing	multiple	test	models

N
namespace

about	/	Understanding	the	namespace
n	command	/	Interactive	test	debugging
number	of	sidebar	objects

increasing	/	Increasing	the	number	of	sidebar	objects	as	the	website	grows

O
object	actions,	literal	object	/	Object	actions
object	inheritance

displaying	/	Showing	object	inheritance
object	properties,	literal	object	/	Object	properties
objects

about	/	Understanding	objects
literal	object,	defining	/	Describing	a	literal	object
programming	object,	defining	/	Describing	a	programming	object
web	page,	defining	with	/	Describing	a	web	page	with	objects

objects	within	objects,	literal	object	/	Objects	within	objects
Open	Source	Software	(OSS)	/	Open	source

P
-port	parameter

about	/	Installing	Selenium	Grid
99	percent	coverage	suite	/	The	99	percent	coverage	suite
Page	Objects

used,	in	Test$$Unit	framework	/	Using	Page	Objects	in	the	Test::Unit
framework
used,	in	different	testing	frameworks	/	Using	Page	Objects	in	different	testing
frameworks
Cucumber	implementation	/	Looking	at	the	Cucumber	implementation
RSpec	implementation	/	Looking	at	the	RSpec	implementation
implementing	/	The	right	way	to	implement	Page	Objects,	Making	pages
smarter	than	tests,	Making	tests	smarter	than	pages,	Placing	logic	in	Page
Objects

Page	Objects	framework
creating	/	Creating	a	Page	Objects	framework
page	super	class,	creating	/	Creating	a	page	super	class
sidebar	objects,	implementing	/	Implementing	sidebar	objects
Self	Verification,	adding	to	Pages	/	Adding	Self	Verification	to	pages
individual	page	classes,	implementing	/	Implementing	individual	page	classes
number	of	sidebar	objects,	increasing	/	Increasing	the	number	of	sidebar	objects
as	the	website	grows
tests,	running	with	/	Running	tests	with	the	Page	Objects	framework

Page	Objects	pattern
about	/	The	Page	Objects	pattern
advantages	/	Advantages	of	the	Page	Objects	pattern
disadvantages	/	Disadvantages	of	the	Page	Objects	pattern

Pages
Self	Verification,	adding	to	/	Adding	Self	Verification	to	pages

page	super	class
creating	/	Creating	a	page	super	class

PhantomJS
about	/	PhantomJS
URL	/	PhantomJS

PowerShell
using	/	Using	PowerShell

PowerShell	installer
URL	/	Using	PowerShell

product	review	functionality
testing	/	Testing	the	product	review	functionality
product	review	test,	starting	/	Starting	a	product	review	test
elements,	locating	on	page	/	Locating	elements	on	the	page
locator	strategies	/	Introducing	locator	strategies

locator	strategy	code,	writing	/	Writing	locator	strategy	code
clicks,	implementing	/	Implementing	clicks	and	assertions
assertions,	implementing	/	Implementing	clicks	and	assertions
product	review	test,	duplicating	/	Duplicating	the	product	review	test

product	review	test
starting	/	Starting	a	product	review	test
duplicating	/	Duplicating	the	product	review	test

products
validating,	fixtures	used	/	Using	fixtures	to	validate	products
testing	/	Testing	the	remaining	products
multiple	tests	models	/	Multiple	test	models,	Implementing	multiple	test	models
single	test	model	/	A	single	test	model
test	failures	/	Making	test	failures	more	expressive

product_review_test.rb	file
URL	/	Moving	code	into	a	setup	and	teardown

programming	object
about	/	Describing	a	programming	object

project
BDD,	using	/	Is	BDD	right	for	my	project?

Pry	gem
URL	/	Interactive	test	debugging

Puppet
URL	/	Keeping	a	clean	and	consistent	environment,	Configuration	management
system
about	/	Configuration	management	system

purchase	API
testing	/	Testing	the	purchase	API

R
$remote	parameter

about	/	Using	Selenium	Grid
-role	wd	flag

about	/	Installing	Selenium	Grid
random	run	order	principle

about	/	The	random	run	order	principle
advantages	/	Advantages	of	the	random	run	order	principle
disadvantages	/	Disadvantages	of	the	random	run	order	principle

Record	and	Playback	pattern
about	/	The	Record	and	Playback	pattern
advantages	/	Advantages	of	the	Record	and	Playback	pattern
disadvantages	/	Disadvantages	of	the	Record	and	Playback	pattern

refactored	code
reviewing	/	Reviewing	the	refactored	code

refactoring
about	/	Refactoring	tests

regression	test	suite	/	The	regression	suite
relative	path

about	/	Using	advanced	locator	strategies
using	/	Using	the	relative	path

review
creating,	with	single	method	call	/	Creating	a	new	review	with	a	single	method
call

RSpec	implementation	/	Looking	at	the	RSpec	implementation
Ruby

comparing,	to	Selenese	/	Comparing	Ruby	to	Selenese
Selenium	test,	writing	in	/	Writing	a	Selenium	test	in	Ruby
installing	/	Installing	Ruby
installing,	URL	/	Installing	Ruby

Ruby	gems	(gems)	/	Installing	the	selenium-webdriver	gem
Ruby	runtime	environment

configuring	/	Configuring	the	Ruby	runtime	environment
Ruby,	installing	/	Installing	Ruby
selenium-webdriver	gem,	installing	/	Installing	the	selenium-webdriver	gem

S
SauceLabs

about	/	Grid	mode
URL	/	Grid	mode,	Setting	up	SauceLabs	Grid

SauceLabs	Grid
setting	up	/	Setting	up	SauceLabs	Grid
URL	/	Setting	up	SauceLabs	Grid

SauceLabs	website
URL	/	Using	the	CSS	selector

s	command	/	Interactive	test	debugging
Selenese

reading	/	Reading	Selenese
comparing,	to	Ruby	/	Comparing	Ruby	to	Selenese

Selenium
advantages	/	Choosing	Selenium	over	other	tools
commands	/	Understanding	Selenium	commands

selenium-webdriver	gem
installing	/	Installing	the	selenium-webdriver	gem

Selenium	build	/	Running	as	often	as	possible
Selenium	commands

about	/	Understanding	Selenium	commands
Selenese,	reading	/	Reading	Selenese
comparing,	in	multiple	languages	/	Comparing	Selenium	commands	in	multiple
languages

Selenium	Grid
about	/	Selenium	Grid
standalone	mode	/	Understanding	standalone	and	grid	modes
grid	mode	/	Understanding	standalone	and	grid	modes
installing	/	Installing	Selenium	Grid
using	/	Using	Selenium	Grid
setting	up	/	Setting	up	Selenium	Grid

Selenium	Grid	Extras
about	/	Selenium	Grid	Extras
URL	/	Selenium	Grid	Extras

Selenium	IDE
about	/	Getting	started	with	the	Selenium	IDE
installing	/	Installing	the	Selenium	IDE
URL	/	Installing	the	Selenium	IDE
test,	recording	/	Recording	our	first	test
test,	saving	/	Saving	the	test

Selenium	test
writing,	in	Ruby	/	Writing	a	Selenium	test	in	Ruby

Selenium	test,	writing	in	Ruby

about	/	Writing	a	Selenium	test	in	Ruby
Test**Unit	framework,	using	/	Introducing	Test::Unit
assertions,	adding	/	Introducing	asserts
interactive	test,	debugging	/	Interactive	test	debugging

Selenium	wrapper
updating	/	Updating	the	Selenium	wrapper

SeleniumWrapper	class	/	Implementing	the	Action	Wrapper	pattern
Self	Verification

adding,	to	Pages	/	Adding	Self	Verification	to	pages
setup

code,	moving	into	/	Moving	code	into	a	setup	and	teardown
Shell	scripts

about	/	Configuration	management	system
shopping	cart	behavior

testing	/	Testing	the	shopping	cart	behavior
about	/	Describing	shopping	cart	behavior
step	definitions,	writing	/	Writing	step	definitions
BDD,	using	in	project	/	Is	BDD	right	for	my	project?

SidebarCart	class
implementing	/	Implementing	the	SidebarCart	class

sidebar	objects
implementing	/	Implementing	sidebar	objects
SidebarCart	class,	implementing	/	Implementing	the	SidebarCart	class

single	method	call
review,	creating	with	/	Creating	a	new	review	with	a	single	method	call

Single	Point	Of	Truth	(SPOT)	/	The	DRY	testing	pattern
Single	Source	Of	Truth	(SSOT)	/	The	DRY	testing	pattern
single	test	model

advantages	/	A	single	test	model
disadvantages	/	A	single	test	model

Smoke	tests
about	/	Advantages	of	the	Spaghetti	pattern

smoke	test	suite
about	/	The	smoke	test	suite
tests	/	The	smoke	test	suite

Spaghetti	pattern
about	/	Introducing	the	Spaghetti	pattern
advantages	/	Advantages	of	the	Spaghetti	pattern
disadvantages	/	Disadvantages	of	the	Spaghetti	pattern

Spoonium
URL	/	Setting	up	SauceLabs	Grid

Stable	Test	Suite
maintaining	/	Maintaining	a	stable	test	suite

standalone	mode

about	/	Understanding	standalone	and	grid	modes,	Standalone	mode
step	definition	files

moving	/	Moving	step	definition	files
step	definitions

writing	/	Writing	step	definitions
step	definitions	files,	Cucumber	/	Step	definition	files

T
table	data	(td)	/	Reading	Selenese
table	row	(tr)	/	Reading	Selenese
TeamCity	/	The	random	run	order	principle
teardown

code,	moving	into	/	Moving	code	into	a	setup	and	teardown
terminal

used,	on	Windows	/	Using	the	terminal	on	Windows
used,	on	Mac	OS	X	/	Using	the	terminal	on	Mac	OS	X
used,	on	Linux	/	Using	the	terminal	on	Linux

terminal,	on	Windows
MS-DOS,	using	/	Using	MS-DOS
PowerShell,	using	/	Using	PowerShell
terminal	emulator,	using	/	Using	the	terminal	emulator

terminal	emulator
using	/	Using	the	terminal	emulator

Test$$Unit	framework
Page	Objects,	used	in	/	Using	Page	Objects	in	the	Test::Unit	framework
about	/	Showing	object	inheritance

Test**Unit	framework
using	/	Introducing	Test::Unit

test,	types
unit	test	/	Different	types	of	tests
integration	test	/	Different	types	of	tests
End-to-End	test	/	Different	types	of	tests

test-on-test	dependence
timestamps,	used	as	test	data	/	Using	timestamps	as	test	data
remaining	common	actions,	extracting	to	methods	/	Extracting	the	remaining
common	actions	to	methods

test-on-test	dependency	refactoring
reviewing	/	Reviewing	the	test-on-test	dependency	refactoring

test	class	naming
about	/	Understanding	test	class	naming
files,	naming	/	Naming	files
classes,	naming	/	Naming	classes
namespace	/	Understanding	the	namespace
object	inheritance,	displaying	/	Showing	object	inheritance

test	data
timestamps,	using	as	/	Using	timestamps	as	test	data
hardcoding	/	Hardcoding	input	data
hiding,	from	tests	/	Hiding	test	data	from	tests
test	environment,	selecting	/	Choosing	the	test	environment

/	Continuous	Integration

TestData	class	/	Parsing	fixture	data
test	environment

selecting	/	Choosing	the	test	environment
/	Continuous	Integration
test	failures

file	downloading,	URL	/	Parsing	fixture	data
about	/	Making	test	failures	more	expressive
not	currently	visible	/	Waiting	for	JavaScript	animations
under	other	elements	/	Waiting	for	JavaScript	animations
Offscreen	/	Waiting	for	JavaScript	animations

test	fixtures
about	/	Introducing	test	fixtures
fixture	data,	parsing	/	Parsing	fixture	data
fixture	data,	using	/	Using	fixture	data	in	the	tests
using,	to	validate	products	/	Using	fixtures	to	validate	products
data	stubs,	using	/	Using	data	stubs

Test	is	an	Island	Pattern	/	The	Hermetic	test	pattern
test	nodes	/	Continuous	Integration
tests

refactoring	/	Refactoring	tests
test	data,	hiding	from	/	Hiding	test	data	from	tests
fixture	data,	using	/	Using	fixture	data	in	the	tests
without	AJAX	delays	/	Testing	without	AJAX	delays
AJAX	forms	testing,	explicit	delays	used	/	Using	explicit	delays	to	test	AJAX
forms
pausing,	issues	/	Using	explicit	delays	to	test	AJAX	forms
testing,	on	multiple	browsers	/	Test	your	tests!
tagging	/	Updating	the	Cucumber	profile	and	tagging	tests
running,	with	Page	Objects	framework	/	Running	tests	with	the	Page	Objects
framework
decoupling,	from	CI	tool	/	Decoupling	tests	from	tools

tests,	writing
prerequisites	/	Setting	up	the	computer

test	stability
about	/	Engineering	the	culture	of	stability
running	fast	/	Running	fast	and	failing	fast,	Running	as	often	as	possible
failing	fast	/	Running	fast	and	failing	fast
clean	and	consistent	environment,	maintaining	/	Keeping	a	clean	and	consistent
environment
bad	code	changes,	discarding	/	Discarding	bad	code	changes
Stable	Test	Suite,	maintaining	/	Maintaining	a	stable	test	suite
AJAX,	waiting	for	/	Waiting	for	AJAX

/	Continuous	Integration
test	suites,	writing

strategies	/	Strategies	for	writing	test	suites
test,	types	/	Different	types	of	tests
smoke	test	suite	/	The	smoke	test	suite
money	path	suite	/	The	money	path	suite
feature	growth	strategy	/	New	feature	growth	strategy
bug-driven	growth	strategy	/	Bug-driven	growth	strategy
regression	test	suite	/	The	regression	suite
99	percent	coverage	suite	/	The	99	percent	coverage	suite

test	tool	independence	pattern
about	/	The	test	tool	independence	pattern
advantages	/	Advantages	of	the	test	tool	independence
disadvantages	/	Disadvantages	of	the	test	tool	independence

Tight	coupling
about	/	Disadvantages	of	the	Spaghetti	pattern

Travis-CI	/	The	random	run	order	principle

U
unit	test	/	Different	types	of	tests
user	data

private	/	Hardcoding	input	data
User	Interface	(UI)

about	/	Choosing	the	CI	tool

V
V8	Benchmark	Suite

URL	/	Possible	solutions
Verification	and	Validation	(V&V)	/	Different	types	of	tests
verify	method	/	Adding	Self	Verification	to	pages
Version	Control	System	(VCS)	/	Discarding	bad	code	changes,	Bug-driven	growth
strategy
virtual	box

URL	/	Virtualization
virtualization	/	Virtualization
virtualization	solutions

Xen	project	/	Virtualization
virtual	box	/	Virtualization
Windows	virtual	PC	/	Virtualization

Virtual	Machine	(VM)	/	Virtualization

W
WebKit

about	/	PhantomJS
web	page

defining,	with	objects	/	Describing	a	web	page	with	objects
website

URL	/	Hardcoding	input	data
wget

about	/	Testing	the	purchase	API
What	You	See	(is)	What	You	Get	(WYSWYG)	/	Disadvantages	of	the	Record	and
Playback	pattern
Windows

terminal,	using	on	/	Using	the	terminal	on	Windows
Windows	virtual	PC

URL	/	Virtualization
write	once	test	everywhere	pattern

advantages	/	Advantages	of	the	write	once,	test	everywhere	pattern
disadvantages	/	Disadvantages	of	the	write	once,	test	everywhere	pattern

X
Xen	project

about	/	Virtualization
URL	/	Virtualization

XPath
using	/	Using	XPath
URL	/	Using	XPath

Y
YAML

about	/	Introducing	test	fixtures
YSlow

URL	/	Possible	solutions

	Selenium Design Patterns and Best Practices
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Writing the First Test
	Choosing Selenium over other tools
	Right tool for the right job
	Price
	Open source
	Flexibility
	The Record and Playback pattern
	Advantages of the Record and Playback pattern
	Disadvantages of the Record and Playback pattern
	Getting started with the Selenium IDE
	Installing the Selenium IDE
	Recording our first test
	Saving the test
	Understanding Selenium commands
	Reading Selenese
	Comparing Ruby to Selenese
	Comparing Selenium commands in multiple languages
	Writing a Selenium test in Ruby
	Introducing Test::Unit
	Introducing asserts
	Interactive test debugging
	Summary
	2. The Spaghetti Pattern
	Introducing the Spaghetti pattern
	Advantages of the Spaghetti pattern
	Disadvantages of the Spaghetti pattern
	Testing the product review functionality
	Starting a product review test
	Locating elements on the page
	Using a browser's element inspector
	Introducing locator strategies
	Using advanced locator strategies
	Using the absolute path
	Using the relative path
	Writing locator strategy code
	Using chained selector strategy methods
	Using the CSS selector
	Using XPath
	Implementing clicks and assertions
	Duplicating the product review test
	Reasons for failures
	The Chain Linked pattern
	The Big Ball of Mud pattern
	Summary
	3. Refactoring Tests
	Refactoring tests
	The DRY testing pattern
	Advantages of the DRY testing pattern
	Disadvantages of the DRY testing pattern
	Moving code into a setup and teardown
	Removing duplication with methods
	Removing external test goals
	Using a method to fill out the review form
	Reviewing the refactored code
	The Hermetic test pattern
	Advantages of the Hermetic test pattern
	Disadvantages of the Hermetic test pattern
	Removing test-on-test dependence
	Using timestamps as test data
	Extracting the remaining common actions to methods
	Creating a new review with a single method call
	Reviewing the test-on-test dependency refactoring
	Creating generic DRY methods
	Refactoring with generic methods
	The random run order principle
	Advantages of the random run order principle
	Disadvantages of the random run order principle
	Summary
	4. Data-driven Testing
	Data relevance versus data accessibility
	Hardcoding input data
	Hiding test data from tests
	Choosing the test environment
	Introducing test fixtures
	Parsing fixture data
	Using fixture data in the tests
	Using fixtures to validate products
	Testing the remaining products
	Multiple test models
	A single test model
	Implementing multiple test models
	Making test failures more expressive
	Using an API as a source of fixture data
	Using data stubs
	The default values pattern
	Advantages of the default values pattern
	Disadvantages of the default values pattern
	Merging the default values pattern and the faker library
	Implementing faker methods
	Updating the comment test to use default values
	Summary
	5. Stabilizing the Tests
	Engineering the culture of stability
	Running fast and failing fast
	Running as often as possible
	Keeping a clean and consistent environment
	Discarding bad code changes
	Maintaining a stable test suite
	Waiting for AJAX
	Testing without AJAX delays
	Using explicit delays to test AJAX forms
	Implementing intelligent delays
	Waiting for JavaScript animations
	The Action Wrapper pattern
	Advantages of the Action Wrapper pattern
	Disadvantages of the Action Wrapper pattern
	Implementing the Action Wrapper pattern
	The Black Hole Proxy pattern
	Advantages of the Black Hole Proxy pattern
	Disadvantages of the Black Hole Proxy pattern
	Implementing the Black Hole Proxy pattern
	Test your tests!
	Summary
	6. Testing the Behavior
	Behavior-driven Development
	Advantages of BDD
	Disadvantages of BDD
	Testing the shopping cart behavior
	Describing shopping cart behavior
	Writing step definitions
	Is BDD right for my project?
	Introducing Cucumber
	Feature files
	Step definition files
	The configuration directory
	Cucumber.yml
	env.rb
	Running the Cucumber suite
	The write once, test everywhere pattern
	Advantages of the write once, test everywhere pattern
	Disadvantages of the write once, test everywhere pattern
	Testing a mobile site
	Updating the Selenium wrapper
	Moving step definition files
	Updating the Cucumber profile and tagging tests
	Running and fixing incompatible steps
	Testing the purchase API
	Summary
	7. The Page Objects Pattern
	Understanding objects
	Describing a literal object
	Object properties
	Object actions
	Objects within objects
	Describing a programming object
	Describing a web page with objects
	The Page Objects pattern
	Advantages of the Page Objects pattern
	Disadvantages of the Page Objects pattern
	Creating a Page Objects framework
	Creating a page super class
	Implementing sidebar objects
	Implementing the SidebarCart class
	Adding Self Verification to pages
	Implementing individual page classes
	Increasing the number of sidebar objects as the website grows
	Running tests with the Page Objects framework
	Using Page Objects in the Test::Unit framework
	Using Page Objects in different testing frameworks
	Looking at the Cucumber implementation
	Looking at the RSpec implementation
	The test tool independence pattern
	Advantages of the test tool independence
	Disadvantages of the test tool independence
	The right way to implement Page Objects
	Making pages smarter than tests
	Making tests smarter than pages
	Using modules instead of inheritance
	Placing logic in Page Objects
	Summary
	8. Growing the Test Suite
	Strategies for writing test suites
	Different types of tests
	The smoke test suite
	The money path suite
	New feature growth strategy
	Bug-driven growth strategy
	The regression suite
	The 99 percent coverage suite
	Continuous Integration
	Managing the test environments and nodes
	Deploying new builds
	CI environment management
	Build node management
	Configuration management system
	Virtualization
	Selenium Grid
	Understanding standalone and grid modes
	JsonWire protocol
	Standalone mode
	Grid mode
	Installing Selenium Grid
	Using Selenium Grid
	Selenium Grid Extras
	Choosing the CI tool
	Decoupling tests from tools
	Frequently Asked Questions
	How to test on multiple browsers?
	Problem
	Possible solutions
	Localhost testing
	Setting up Selenium Grid
	Setting up SauceLabs Grid
	Which programming language to write tests in?
	Should we use Selenium to test the JS functionality?
	Problem
	Possible solution
	Why should I use a headless browser?
	Possible solution
	PhantomJS
	Which BDD tool should I use on my team?
	Problem
	Possible solutions
	Can I use Selenium for performance testing?
	Problem
	Possible solutions
	Summary
	A. Getting Started with Selenium
	Setting up the computer
	Using Command Line Interface
	Using the terminal on Windows
	Using MS-DOS
	Using PowerShell
	Using the terminal emulator
	Using the terminal on Mac OS X
	Using the terminal on Linux
	Configuring the Ruby runtime environment
	Installing Ruby
	Installing the selenium-webdriver gem
	Installing Firefox
	Understanding test class naming
	Naming files
	Naming classes
	Understanding the namespace
	Showing object inheritance
	Summary
	Index

