
www.allitebooks.com

http://www.allitebooks.org

Service Worker
Development
Cookbook

Build highly available and performant native web
applications that seamlessly integrate with third-party APIs

Sean Amarasinghe

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Service Worker Development Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1260816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-529-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Sean Amarasinghe

Reviewer
Daijiro Wachi

Commissioning Editor
David Barnes

Acquisition Editor
Nitin Dasan

Content Development Editor
Mehvash Fatima

Technical Editor
Siddhi Rane

Copy Editors
Safis Editing

Tom Jacob

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sean Amarasinghe is a software developer from Melbourne, Australia. He is a developer,
designer, photographer, and also a blogger. He blogs about development, design, technology,
and photography. He is passionate about offline apps and what they bring to the user. He
has firsthand experience of how well offline apps work. He has written a couple of blog posts
about offline cache manifests, as well as service workers.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Daijiro Wachi is a JavaScript developer from Tokyo, Japan. He is passionate about open
web and some of open source projects/communities related to JavaScript on a daily basis.
He has gained the highest award in Service Worker Hackathon 2015 held by Google Japan.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

i

Table of Contents
Preface v
Chapter 1: Learning Service Worker Basics 1

Introduction 1
Setting up service workers 4
Setting up SSL for Windows 6
Setting up SSL for Mac 10
Setting up GitHub pages for SSL 13
Registering a service worker 15
Registering a service worker in detail 18
Debugging 22
Providing a stale version on error 27
Creating mock responses 30
Handling request timeouts 36

Chapter 2: Working with Resource Files 41
Introduction 41
Displaying a custom offline page 42
Loading images offline 50
Loading CSS offline 60
Loading fonts offline 64
Implementing multiple fetch handlers 71
Fetching remote resources 76

Chapter 3: Accessing Offline Content 91
Introduction 91
Caching critical resources for offline use 92
Showing cached content first 105
Implementing a cache and network race 117
Using window.caches 124
Implementing stale-while-revalidate 134

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Accessing Offline Content with Advanced Techniques 139
Introduction 139
Templating 140
Implementing read-through caching 150
Allowing offline Google Analytics 158
Allowing offline user interaction 170
Implementing selective caching 178

Chapter 5: Reaching Beyond the Offline Cache 185
Introduction 185
Getting network responses offline 186
Caching content from ZIP 187
Selecting the best content provider (load balancer) 194
Redirecting a request 198
Setting request headers 204
Making a service worker act like a remote server 208
Making a service worker act as a dependency injector 213
Forcing immediate control 219
Implementing fallback responses 222
Deferring offline requests 228

Chapter 6: Working with Advanced Libraries 231
Introduction 231
Working with global APIs 232
Implementing a circuit breaker 234
Implementing a dead letter queue 242
Logging API analytics 245
Working with Google Analytics 253

Chapter 7: Fetching Resources 259
Introduction 259
Fetching remote resources 259
Fetching with FetchEvent 264
Fetching a JSON file during service worker installation 267
Proxying 271
Prefetching 274

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 8: Experimenting with Web Push 281
Introduction 281
Implementing a simple push notification 282
Showing rich notifications 286
Using the notification tag 289
Implementing push clients 291
Subscribing to push notifications 297
Managing push notification quotas 303

Chapter 9: Looking at General Usage 311
Introduction 311
Taking immediate control of the page 311
Working with slow responses 314
Relaying messages 317
Using a service worker as a proxy middleware 321
Using a service worker with a live flowchart 324

Chapter 10: Improving Performance 335
Introduction 335
Performing network requests from a cache 335
Performing network requests from a network 343
Testing waitUntil 350
Implementing background sync 354
Sending forward requests 357
Avoiding model fetching and render times 359

Index 365

www.allitebooks.com

http://www.allitebooks.org

v

Preface
The service worker feature of the browser will enable you to build highly available and
performant native web applications that seamlessly integrate with third-party APIs. Whether
you want to create an offline web app or a proxy, this book will show you how to do it.

 What this book covers
Chapter 1, Learning Service Worker Basics, covers setting up the service worker in your
environment, and how to get up and running using service worker development. This chapter
includes registering a service worker and debugging.

Chapter 2, Working with Resource Files, provides several recipes on how to handle resource
files with the service worker, including loading CSS and fonts.

Chapter 3, Accessing Offline Content, takes a look at how to cache resources and serve
content offline.

Chapter 4, Accessing Offline Content with Advanced Techniques, explores advanced
techniques, including templating and Google Analytics, when working with offline content.

Chapter 5, Reaching Beyond the Offline Cache, provides recipes beyond the offline cache
and explores topics ranging from getting network responses offline to how to use the service
worker as a load balancer.

Chapter 6, Working with Advanced Libraries, talks about Google Analytics, circuit breakers,
and dead letter queues.

Chapter 7, Fetching Resources, covers various techniques on fetching resources from
different sources.

Chapter 8, Experimenting with Web Push, talks about different ways of implementing
push notifications.

Preface

vi

Chapter 9, Looking at General Usage, provides various recipes on general usages of the
service worker from slow responses to a live flowchart.

Chapter 10, Improving Performance, talks about how to optimize your service worker
application to perform efficiently and in a performant manner.

What you need for this book
This book was written using a Mac with Google Chrome as the browser, running Node.js.
However, Node.js can be run on a Windows or Linux machine as well, along with Google
Chrome.

All the software used in this book is free and open source. You will definitely need to be
running Node.js and Google Chrome for most of the recipes.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, dummy URLs, user
input, and Twitter handles are shown as follows: "The skipWaiting() method is used inside
the active event handler, which in turn uses Clients.claim()."

A block of code is set as follows:

self.oninstall = function(event) {
 event.waitUntil(
 fetch(zipURL)
 .then(function(res) {
 return res.arrayBuffer();
 })
 .then(getZipFileReader)
 .then(cacheFileContents)
 .then(self.skipWaiting.bind(self))
);
};

Any command-line input or output is written as follows:

$ git add –all
$ git commit -m "initial commit"
$ git push -u origin master

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes, for example, appear in the text like this: "Finally, in the sidebar
on the left-hand side, select Credentials."

Preface

vii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

 f WinRAR / 7-Zip for Windows
 f Zipeg / iZip / UnRarX for Mac
 f 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

viii

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Service-Worker-Development-Cookbook. We also have other
code bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section
of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Service-Worker-Development-Cookbook
https://github.com/PacktPublishing/Service-Worker-Development-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Learning Service

Worker Basics

In this chapter, we will cover the following topics:

 f Setting up service workers

 f Setting up SSL for Windows

 f Setting up SSL for Mac

 f Setting up GitHub pages for SSL

 f Registering a service worker

 f Registering a service worker in detail

 f Debugging

 f Providing stale version on error

 f Creating mock responses

 f Handling request timeouts

Introduction
If you travel a bit, chances are you have probably found yourself stuck with zero network
connectivity way too often. This is frustrating, especially if you just wanted to continue
reading some news articles, blog posts, or you wanted to get some work done.

Learning Service Worker Basics

2

Unfortunately, with your browser, attempting to make requests for something from the network
while being offline doesn't quite work out so well.

Even though on planes, the subway, in hotels, and at conferences, Wi-Fi may provide you with
opportunities to restore your connection, in general you will have to wait for the network to
return online in order to request the pages you want to view.

Previous attempts to solve this issue include AppCache. It seems to work, to some extent, but
the issue with AppCache is that it makes a lot of assumptions about user interactions. When
those assumptions are not met, the application will fail to function as expected. It is also
designed to work well with single page apps, not the traditional multi-page websites.

Also, one of the most challenging problems with providing a seamless user experience with
web apps is making them functional while offline. This is an important issue to resolve, given
that most users today access web apps on the move. Enter service workers, a script running
in the background of our browser.

Being able to use a web app, regardless of the connectivity, means users can operate
uninterrupted when they are on board a plane, the subway, or in places where connectivity is
limited or not available. This technology will help boost client productivity and will increase the
availability of the application.

With service workers, we are able to pre-cache some assets of a website. What we are
referencing as assets are JavaScript files, CSS files, images, and some fonts. This will help
us to speed up the loading time, instead of having to fetch information from the web servers
every time we visit the same website. And of course, most importantly, those assets will be
available for us when we are offline.

Service workers
A service worker is a script that stands between your browser and the network, giving
you, among other things, the ability to intercept network requests, and respond to them
in different ways.

Chapter 1

3

In order for your website or app to work, the browser fetches its assets, such as HTML pages,
JavaScript, CSS, images, and fonts. In the past, managing these resources was mainly the
browser's responsibility. If the browser couldn't access the network, you would probably see
its Unable to connect to the Internet message. There were techniques you could use to
encourage the local caching of assets, but the browser often had the last say.

One feature service worker uses heavily is promises. So it is important to have a good
understanding of promises.

Promises
Promises are a great mechanism for running async operations with success dependent on
one another. This is central to the way service workers work.

Promises can do a great many things, but for now, all you need to know is that if something
returns a promise, you can attach .then() to the end and include callbacks inside it for
success, failure, and so on, or you can insert .catch(), the end if you want to include a
failure callback.

Let's compare a traditional synchronous callback structure to its asynchronous
promise equivalent:

sync

try {
 var value = Fn();
 console.log(value);
} catch(err) {
 console.log(err);
}

async

Fn().then(function(value) {
 console.log(value);
 }).catch(function(err) {
 console.log(err);
});

In the sync example, we have to wait for Fn() to run and return a value before any more of
the code can execute. In the async example, Fn() returns a promise for the value, then the
rest of the code can carry on running. When the promise resolves, the code inside then will
be run asynchronously.

Learning Service Worker Basics

4

Promise.resolve(value)
This method returns an object of Promise.then, which is resolved with the value passed
into the resolve method, as in Promise.resolve(value). If this value has a then
method, the returned method will follow it; otherwise, it will be fulfilled with the value.

Promise.reject(reason)
This method takes reason as an argument and returns a promise object that is rejected.

Setting up service workers
In order to get service workers running, we need to serve our code via Hyper Text
Transfer Protocol Secure (HTTPS). Service workers are designed to run only across HTTPS
for security reasons. Source code repositories such as GitHub support HTTPS, where you can
host your files.

Getting ready
If you are using a newer version of a browser, the chances are that service workers are
already enabled on it. But, if that is not the case, we will have to change few things in the
browser settings. In the following section, we are going to cover how to enable service worker
features in Chrome and Firefox.

How to do it...
Follow the steps below to enable service worker in Chrome and Firefox.

Chrome
To experiment in Chrome, you need to download Chrome Canary:

1. Go to https://www.google.com/chrome/browser/canary.html and
download the latest version.

2. Open Chrome Canary and type chrome://flags.

3. Turn on experimental-web-platform-features.

4. Restart the browser.

5. The following image shows experimental features on the Chrome browser, where
you enable the Experimental Web Platform feature by clicking on the Enable link
underneath:

https://www.google.com/chrome/browser/canary.html

Chapter 1

5

Firefox
To experiment in Firefox, you need to download Firefox Nightly:

1. Go to https://nightly.mozilla.org/ and download the latest version.

2. Open Firefox Nightly, and go to about:config.

3. Set experimental-web-platform-features to true.

4. Restart the browser.

https://nightly.mozilla.org/

Learning Service Worker Basics

6

At the time of writing, Opera offers partial support for service workers,
including basic support, as well as installing and uninstalling events.
Internet Explorer and Safari do not support service workers.
Service workers are currently an experimental technology, meaning the
syntax and the behavior are subject to change in future versions as the
specification changes.

Setting up SSL for Windows
Service workers are designed to run only across HTTPS, so in order for us to test our code, we
need our web pages to be delivered across HTTPS. In this recipe, we will cover getting your
site setup with SSL support for Windows.

Getting ready
This recipe assumes you run Windows 7 or higher with Internet Information Service
(IIS) enabled.

How to do it...
Follow these instructions to enable SSL:

1. First, open IIS; you can do this by running the following command inside the
command line:
Inetmgr

2. Select the server node in the tree view and double-click the Server Certificates
feature in the list view, as shown:

Chapter 1

7

3. Click on the Create Self-Signed Certificate... link in the Actions pane.

Learning Service Worker Basics

8

4. Enter a meaningful name for the new certificate and click OK.

This will generate a self-signed certificate, which is marked for Server Authentication
use, meaning it uses a server-side certificate for authenticating the identity of the
server and also for HTTP SSL encryption.

In order to create an SSL binding, we have to select a site in the tree view and then,
in the Actions pane, click Bindings.... This will bring up the bindings editor that
manages bindings for your website, which include create, edit, and delete. Now, to
add your new SSL binding to the site, click Add....

5. Port 80 is the default setting for a new binding for HTTP. We can select https in the
Type drop-down list. Select the self-signed certificate we created in the previous
section from the SSL Certificate drop-down list, and then click OK.

Chapter 1

9

6. Now we have a new SSL binding on our site and all that remains is to make sure that
it works.

7. Click Continue to this website to proceed.

Learning Service Worker Basics

10

Setting up SSL for Mac
As mentioned in the previous recipe, service workers are designed to run only across HTTPS.
So, in order for us to test our code, we need our web pages to be delivered across HTTPS. In
this recipe, we will cover getting your site set up with SSL support for Mac.

Getting ready
This recipe assumes that you are running OS X 10.11, El Capitan, or higher. We are going to
use a command-line utility called Vim for editing files, which already comes with Mac. Make
sure not to use the number pad with Vim. Please be aware that this process is lengthy.

How to do it...
Follow these instructions to enable SSL:

1. First, we need to make sure Apache is running (you may get a prompt for a password):
$ sudo apachectl start

2. The next step is to make some modifications to your httpd.conf. Because it's a
system file, you will need to use sudo again:
$ sudo vim /etc/apache2/httpd.conf

3. In this file, you should uncomment both socache_shmcb_module and
ssl_module, and also the include the httpd-ssl.conf file by removing the
leading # symbol on those lines (you can use / to search on the Vim editor):
LoadModule socache_shmcb_module
libexec/apache2/mod_socache_shmcb.so
...
LoadModule ssl_module libexec/apache2/mod_ssl.so
...
Include /private/etc/apache2/extra/httpd-ssl.conf

4. After saving the preceding file (press :wq), you should then open up your
/etc/apache2/extra/httpd-vhosts.conf file:
$ sudo vim /etc/apache2/extra/httpd-vhosts.conf

5. Here, you can create a VirtualHost entry for each virtual host that you wish to provide
SSL support for:
<VirtualHost *:80>
 DocumentRoot "/Library/WebServer/Documents"
 ServerName localhost
 SSLEngine on

Chapter 1

11

 SSLCertificateFile "/private/etc/apache2/localhost.crt"
 SSLCertificateKeyFile
 "/private/etc/apache2/localhost.key"
</VirtualHost>

Make sure you copy your development folder to the DocumentRoot directory as you
did earlier: /Library/WebServer/Documents.

To get this all to work with Apache, we need to create a self-signed certificate that we
have already referenced in the VirtualHost definition.

6. Generate a key:
$ cd /etc/apache2

7. Press Enter with no input after the following command:
$ sudo openssl genrsa -out localhost-key.pem 1024

8. Next, we have to generate a certificate signing request:
$ sudo openssl req -new -key localhost-key.pem -out localhost.csr

9. Using this certificate signing request (CSR), generate the certificate:
$ sudo openssl x509 -req -days 365 -in localhost.csr -signkey

localhost-key.pem -out localhost.crt

10. Then we have to convert the key to a no-phrase key:
$ sudo openssl rsa -in localhost-key.pem -out localhost.key

11. Now change server.crt to localhost.crt as well as server.key to
localhost.key:
$ sudo vim /etc/apache2/extra/httpd-ssl.conf

12. All you need to do now is double check your Apache configuration syntax:
$ sudo apachectl configtest

13. If all goes well, restart Apache:
$ sudo apachectl -k restart

14. Now, simply point your browser at https://localhost. If you are prompted for a
self-signed certificate in Chrome you can hit the Advanced option on that page and
proceed, while in Firefox, you need to expand the I understand the risks options and
add an exception. This is owing to the fact that the self-signed certificates are not
signed by any authority, and for this reason the browsers add warnings about them.
Although, since you are the one who created the certificate, you understand it's safe
to accept it.

Learning Service Worker Basics

12

15. To fix this, you need to add the certificate as a trusted root authority.

16. Open the Keychain Access utility in OS X. Select the System option on the left.
Click the lock icon in the upper-left corner to enable changes.

17. Click the plus button at the bottom and select the /etc/apache2/localhost.
cer file you copied to the desktop. In the dialog that comes up, click Always Trust.
After the localhost gets added to the system keychain, double-click it to open it again.
Expand the Trust section and for the first option, pick Always Trust.

18. At this point, everything has been configured. Quit Chrome and all other browsers
(this is required), fire up the web server, and try to navigate to the local HTTPS
site again.

Chapter 1

13

Detailed steps to download the code bundle are mentioned in the
Preface of this book. Please have a look.
The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Service-Worker-
Development-Cookbook. We also have other code bundles
from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Setting up GitHub pages for SSL
Service workers are designed to run only across HTTPS. So, in order for us to test our code,
we need our web pages to be delivered across HTTPS. GitHub pages are served across HTTPS
and it's free to use. So let's get on with it.

Getting ready
Before registering for a GitHub account, please make sure you have a valid e-mail address.

https://github.com/PacktPublishing/Service-Worker-Development-Cookbook
https://github.com/PacktPublishing/Service-Worker-Development-Cookbook
https://github.com/PacktPublishing/Service-Worker-Development-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Learning Service Worker Basics

14

How to do it...
Follow these instructions to set up GitHub pages:

1. Head over to GitHub (https://github.com) and register yourself to obtain an
account, if you don't have one already.

2. Once you have done that, log in and create a new repository with the following format:

username.github.io, where username is your username.

If the first part of the repository doesn't match your username exactly, it won't work.

3. Open your command-line window and clone your repository.
$ git clone https://github.com/username/username.github.io

4. Change the directory to username.github.io:
$ cd username.github.io

https://github.com

Chapter 1

15

5. Create a directory called service-workers:
$ mkdir service-workers

6. Create an index.html file with some text:
$ echo "Service Workers" > index.html

7. Now let's commit and push our changes to the repository:
$ git add --all

$ git commit -m "initial commit"

$ git push -u origin master

8. Open up a browser and go to http://username.github.io/service-
workers/.

Registering a service worker
Registering your service worker is the first step to getting a service worker up and running. By
registering a service worker, we tell our website to use the service worker. And this registering
process happens outside of the service worker, in our case inside the index.html file. You
can do that inside a JavaScript file and then reference it within the index.html file, but not
in the service worker script file.

In this basic registration demo, we will test to see if our service worker gets
registered successfully.

Getting ready
To get started, with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe: Setting up service workers. Service workers only run across HTTPS. To find out how
to set up a development environment to support this feature, refer to the following recipes:
Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we need to create the index.html file as follows:
<!DOCTYPE html>
 <html lang="en">
 <head></head>
 <body>

www.allitebooks.com

http://www.allitebooks.org

Learning Service Worker Basics

16

 <p>Registration status: <strong
 id="status"></p>
 <script>
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 { scope: './' }
).then(function(serviceWorker) {
 document.getElementById('status').innerHTML =
 'successful';
 }).catch(function(error) {
 document.getElementById('status').
 innerHTML = error;
 });
 } else {
 document.getElementById('status').
 innerHTML =
 'unavailable';
 }
</script>
</body>
</html>

2. Create an empty JavaScript file called service-worker.js in the same folder as
the index.html file.

3. With your two files in place, you can navigate to the GitHub page,
https://username.github.io/service-workers/01/01/index.html,
and you will see the success message in your browser.

How it works...
We started off by making sure that the service worker feature is available with the line if
('serviceWorker' in navigator). If that's not the case, then we set the message to
unavailable. If your browser does not support service workers, you will get this message.

Now we register the service worker with the empty JavaScript file and the scope. To ensure the
registration is only applicable to the current directory and those underneath it, we override the
default scope of '/' with './' in the line { scope: './' } as the scope has to be of the
same origin.

Chapter 1

17

If you decide that your script files should sit elsewhere, you will need a special header, such as
Service-Worker-allowed: true or a specific content-type, such as text/javascript.

If the registration was successful, we print the message successful to the status message.

Otherwise, we print the error message as the status. The reason for the error could be
something going wrong during the registration, for example, the service-worker.js file
may not available or it may contain a syntax error.

There's more...
We can unregister the service worker by calling the following unregister() function:

serviceWorker.unregister().then(function() {
 document.getElementById('status').innerHTML = 'unregistered';
})

Known issues
There are a couple of issues with the Chrome browser when working with service workers,
which might confuse you.

The ERR_FILE_EXISTS error message
Reloading pages with service workers will always show an ERR_FILE_EXISTS error message,
even if there's nothing wrong with your code.

This seems to occur when we are trying to access an already registered service worker.

Learning Service Worker Basics

18

Stale console messages
Logging messages from the service worker scripts such as the console.log may not clear
from the console, which seems like the events are being fired too many times on subsequent
page loads.

Registering a service worker in detail
Understanding events involved in service worker registration and state transitions will give you
greater control over your application by using this feature. In this detailed registration demo,
we will take a look at the state transitions of service worker registration.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the previous
recipe: Setting up service workers. Service workers only run across HTTPS. To find out how
to set up a development environment to support this feature, refer to the following recipes:
Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we need to create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Detailed Registration</title>
</head>
<body>
 <p>Registration status: <strong id="status"></p>
 <p>State: <strong id="state"></p>

 <script>
 function printState(state) {
 document.getElementById('state').innerHTML = state;
 }

 if ('serviceWorker' in navigator) {

 navigator.serviceWorker.register(
 'service-worker.js',
 { scope: './' }
).then(function(registration) {

Chapter 1

19

 var serviceWorker;

 document.getElementById('status').innerHTML =
 'successful';

 if (registration.installing) {
 serviceWorker = registration.installing;
 printState('installing');
 } else if (registration.waiting) {
 serviceWorker = registration.waiting;
 printState('waiting');
 } else if (registration.active) {
 serviceWorker = registration.active;
 printState('active');
 }

 if (serviceWorker) {
 printState(serviceWorker.state);

 serviceWorker.addEventListener('statechange',
 function(e) {
 printState(e.target.state);
 });
 }
 }).catch(function(error) {
 document.getElementById('status').innerHTML =
 error;
 });
 } else {
 document.getElementById('status').innerHTML =
 'unavailable';
 }
 </script>
</body>
</html>

2. Create a JavaScript file called service-worker.js in the same folder as the
index.html file with the following code:
self.addEventListener('install', function(e) {
 console.log('Install Event:', e);
});

self.addEventListener('activate', function(e) {
 console.log('Activate Event:', e);
});

Learning Service Worker Basics

20

3. With your two files in place, you can navigate to the GitHub page, https://
username.github.io/service-workers/01/02/index.html, and
you will see the success message in your browser.

How it works...
When the registration is successful, we inspect the state of the registration and print it to the
browser. In this case it is installing, waiting, or active:

 if (registration.installing) {
 serviceWorker = registration.installing;
 printState('installing');
 } else if (registration.waiting) {
 serviceWorker = registration.waiting;
 printState('waiting');
 } else if (registration.active) {
 serviceWorker = registration.active;
 printState('active');
 }

The printState(state) helper function will print out the state to the browser.

At the end we attach an event listener to the service worker called statechange.
The callback of this event listener will print the state changes to the browser:

if (serviceWorker) {
 printState(serviceWorker.state);

 serviceWorker.addEventListener('statechange',
 function(e) {
 printState(e.target.state);
 });
 }

When the registered service worker is in the activated state, we can refresh the page to see
the service worker taking control.

Chapter 1

21

To demonstrate a page loading, without the service worker taking control, press Shift and
refresh the page. You will see the activate event logged in the web console.

We are subscribing to two event listeners in the service-worker.js file, install and
activate:

self.addEventListener('install', function(e) {
 console.log('Install Event:', e);
});

self.addEventListener('activate', function(e) {
 console.log('Activate Event:', e);
});

These events get fired when this version of the script first gets registered for the given scope.

The install event is a good place to prefetch data and initialize caches, and the activate
event works well for cleaning up data from the old version of the script.

There's more...
When the service worker is successfully registered, it will go through the following stages.

Install
In the life cycle of service workers, at the point when the service worker has registered without
errors, but is not yet active, any service workers previously activated will still be in control.
The service worker is considered new if there is any change in the service worker file between
page reloads. It will therefore go through the installation step. At this stage, the service
workers are not intercepting any requests.

Activate
The service worker is said to be at the activate stage when it becomes active for the first time.
The service worker is now able to intercept requests. This will happen when we close the tab
and reopen it, or the page is refreshed by a hard refresh using Shift + reload. It will not occur
immediately after the install event.

Fetch
The fetch happens when there is a request being made within the current service
worker scope.

Learning Service Worker Basics

22

Terminate
This can happen at any time, even outside of a request. But the termination happens mostly
when the browser needs to reclaim memory. When a new request is made, the service worker
will be restarted as needed, or a message will be received, but it will not go back through the
activate step.

The service worker will intercept a request it is registered to catch all the time, even if it needs
to be restarted in order to do so. But, having said that, we cannot guarantee it will be around
for any length of time. Because of this, the global state will not be preserved, so we have to
make sure to avoid using any global variables within the service worker file. Instead, we can
use indexed or localStorage for persistence.

See also
 f The previous recipe, Registering a service worker

Debugging
Service workers run in a separate thread in the browser from the pages they control. There
are ways to communicate between workers and pages, but they execute in a separate scope.
That means you will not have access to the DOM of those web pages from the service worker
script, for example. Because of this, we cannot use the DevTools on the same web page to
debug service worker scripts. We need to open a separate inspector to debug the service
worker thread.

Service workers do most of their work by listening for relevant events and responding to
them in a productive way. In the life cycle of service workers, different events are triggered at
different points in a service worker's life cycle. So, if we want to cache assets, it is a good time
to do that during the install state by listening to the install event. In the same way, we can
debug service workers by adding breakpoints to the relevant event handlers.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the previous
recipe: Setting up service workers. Service workers only run across HTTPS. To find out how
to set up a development environment to support this feature, refer to the following recipes:
Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

Chapter 1

23

How to do it...
Follow these instructions to set up debugging for service workers:

1. To find out your currently running service workers, type the following into your
browser: chrome://inspect/#service-workers:

2. Otherwise, type the following into your browser: chrome://serviceworker-
internals to find out the registered workers. If there aren't any listed, then there
are no currently running service workers.

Learning Service Worker Basics

24

3. To debug your service worker with Chrome DevTools, navigate to the service worker
page and open DevTools. (Cmd + Alt + I in Mac or F12 in Windows)

4. You can add a breakpoint to inspect your code.

The service worker will be displayed in the Threads list, and the Service Workers tab
lists all the Active Running service workers this page belongs to.

Chapter 1

25

We can use the console for debugging as well. Any errors during the installation
process will be printed on the console page. The console is useful for inspecting the
service worker context.

Learning Service Worker Basics

26

5. You will also find the debugging panel in the Resources tab of the DevTools useful. In
order to view network activity of the worker, click the inspect link on the Resources
tab to launch a dedicated DevTools window for the worker.

The resulting page chrome://serviceworker-internals shows the registered service
workers. It also shows basic action buttons, which are explained in detail as follows:

 f Terminated: Unregisters the worker.

 f Start/Stop: Starts/stops the worker. This will happen automatically when you
navigate to a page in the worker's scope.

 f Sync: Dispatches a sync event to the worker. If you don't handle this event, nothing
will happen.

 f Push: Dispatches a push event to the worker. If you don't handle this event, nothing
will happen.

 f Inspect: Opens the worker in the inspector.

Chapter 1

27

There's more...
When you are working with DevTools open, you might want to check to make sure that the
Disable cache is not checked in the Network tab. If that option is checked, the requests will
go to the network instead of the service worker.

Providing a stale version on error
If you travel a lot, chances are you have often experienced a lot of zero network connectivity.
This is frustrating, especially if you want to view previously viewed pages. In this recipe,
we will look at how we can address this issue by providing the user with the stale version
from the cache.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the previous
recipe: Setting up service workers. Service workers only run across HTTPS. To find out how
to set up a development environment to support this feature, refer to the following recipes:
Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure (or you can find the files in the provided
directory, 01/05):

1. First, we need to create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Stale on Error</title>
</head>
<body>
 <p>Registration status: <strong id="status"></p>
 <script>
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 { scope: './' }
).then(function(serviceWorker) {

Learning Service Worker Basics

28

 document.getElementById('status').innerHTML =
 'successful';
 }).catch(function(error) {
 document.getElementById('status').innerHTML =
 error;
 });

 } else {
 document.getElementById('status').innerHTML =
 'unavailable';
 }
 </script>
</body>
</html>

2. Create a JavaScript file called service-worker.js in the same folder as the
index.html file with the following code:
var version = 1;
var cacheName = 'stale- ' + version;

self.addEventListener('install', function(event) {
 self.skipWaiting();
});

self.addEventListener('activate', function(event) {
 if (self.clients && clients.claim) {
 clients.claim();
 }
});

self.addEventListener('fetch', function(event) {

 event.respondWith(
 fetch(event.request).then(function(response) {
 caches.open(cacheName).then(function(cache) {

 if(response.status >= 500) {
 cache.match(event.request).
 then(function(response) {

 return response;
 }).catch(function() {

 return response;

Chapter 1

29

 });
 } else {
 cache.put(event.request,
 response.clone());
 return response;
 }
 });
 })
);
});

3. With your two files in place, navigate to index.html.

How it works...
When the registration is successful, we inspect the state of the registration and print it to
the browser.

In the service-worker.js file, we always fetch the response from the network:

event.respondWith(
 fetch(event.request).then(function(response) {

If we received an error response, we return the stale version from the cache:

if(response.status >= 500) {
 cache.match(event.request).
 then(function(response) {
 // Return stale version from cache
 return response;
})

If we can't find the stale version, we return the network response, which is the error:

}).catch(function() {

return response;
});

If the response was successful (response code 200), we update the cached version:

} else {
cache.put(event.request, response.clone());
 return response;
}

Learning Service Worker Basics

30

There's more...
The put() method of the cache interface allows key/value pairs to be added to the current
cache object. The put() method also overrides any key/value pair previously stored in the
cache that matches the request:

fetch(url).then(function (response) {
 return cache.put(url, response);
});

Creating mock responses
In order to mock API responses from your server to your app, which is instead of actual API
responses for the API requests, we can make the service worker return mock responses that
will be identical to an API response.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the previous
recipe: Setting up service workers. Service workers only run across HTTPS. To find out how
to set up a development environment to support this feature, refer to the following recipes:
Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure (these can also be found in the provided
directory, 01/03):

1. First, we need to create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Detailed Registration</title>
</head>
<body>
 <p>Network status: <strong id="status"></p>
 <div id="request" style="display: none">
 <input id="long-url" value="https://www.packtpub.com/"
 size="50">
 <input type="button" id="url-shorten-btn"
 value="Shorten URL" />

Chapter 1

31

 </div>
 <div>
 <input type="checkbox" id="mock-checkbox"
 checked>Mock Response</input>
 </div>
 <div>

 </div>
 </div>

 <script>
 function printStatus(status) {
 document.getElementById('status').innerHTML = status;
 }

 function showRequest() {
 document.getElementById('url-shorten-btn')
 .addEventListener('click', sendRequest);
 document.getElementById('request').style.display =
 'block';
 }

 function sendRequest() {
 var xhr = new XMLHttpRequest(),
 request;

 xhr.open('POST',
 'https://www.googleapis.com/urlshortener/
 v1/url?' +
 'key=[Your API Key]');
 xhr.setRequestHeader('Content-Type',
 'application/json');

 if (document.getElementById('mock-checkbox').checked)
 {
 xhr.setRequestHeader('X-Mock-Response',
 'yes');
 }

 xhr.addEventListener('load', function() {
 var response = JSON.parse(xhr.response);
 var el = document.getElementById('short-url');

Learning Service Worker Basics

32

 el.href = response.id;
 el.innerHTML = response.id;
 });

 request = {
 longUrl: document.getElementById('long-url').value
 };

 xhr.send(JSON.stringify(request));
 }

 if ('serviceWorker' in navigator) {

 navigator.serviceWorker.register(
 'service-worker.js',
 { scope: './' }
).then(function(registration) {
 if (navigator.serviceWorker.controller) {
 printStatus('The service worker is currently
 handling ' +
 'network operations.');
 showRequest();
 } else {
 printStatus('Please reload this page to allow
 the ' + 'service worker to handle network
 operations.');
 }

 }).catch(function(error) {
 document.getElementById('status').innerHTML =
 error;
 });
 } else {
 document.getElementById('status').
 innerHTML = 'unavailable';
 }
 </script>
</body>
</html>

Chapter 1

33

2. Create a JavaScript file called service-worker.js in the same folder as the
index.html file with the following code:
self.addEventListener('fetch', function(event) {
 console.log('Handling fetch event for',
 event.request.url);
 var requestUrl = new URL(event.request.url);

 if (requestUrl.pathname === '/urlshortener/v1/url' &&
 event.request.headers.has('X-Mock-Response')) {

 var response = {
 body: {
 kind: 'urlshortener#url',
 id: 'http://goo.gl/IKyjuU',
 longUrl: 'https://slightlyoff.github.io/
 ServiceWorker/spec/service_worker/index.html'
 },
 init: {
 status: 200,
 statusText: 'OK',
 headers: {
 'Content-Type': 'application/json',
 'X-Mock-Response': 'yes'
 }
 }
 };

 var mockResponse = new
 Response(JSON.stringify(response.body),
 response.init);

 console.log('Responding with a mock response body:',
 response.body);
 event.respondWith(mockResponse);
 }
});

Learning Service Worker Basics

34

3. With your two files in place, you can navigate to the GitHub page, https://
username.github.io/service-workers/01/03/index.html, and
you will see the success message in your browser.

How it works...
After the service worker registers itself successfully, we check to make sure that it is currently
handling the network operations:

if (navigator.serviceWorker.controller) {
printStatus('The service worker is currently handling
network operations.');
…
}

In this case, we are calling the showRequest() function to add an event listener to
the URL shorten button, and show the request block. Otherwise, the whole request
block will be hidden:

function showRequest() {
 document.getElementById('url-shorten-btn')
.addEventListener('click', sendRequest);
 document.getElementById('request').style.display = 'block';
}

The sendRequest() function builds the HTTP request. It creates a POST request with a URL
of the Google API for URL shortening:

xhr.open('POST',
 'https://www.googleapis.com/urlshortener/v1/url?' +
 'key=[Your API Key]');

Chapter 1

35

You will have to obtain an API key for this service to be used. For this, follow these instructions:

1. Visit the Google Developers Console page at https://console.developers.
google.com.

2. You can either select an existing project or create a new one.

3. Expand APIs & auth, in the sidebar on the left.

4. Click APIs. Now, in the list of APIs provided, make sure the status is ON for the Google
URL Shortener API.

5. Finally, in the sidebar on the left-hand side, select Credentials.

If the Mock Response is checked, set the request header X-Mock-Response to yes:

if (document.getElementById('mock-checkbox').checked) {
 xhr.setRequestHeader('X-Mock-Response', 'yes');
 }

Now add an event listener to the load event and pass in a callback to assign the response
data to the link displaying the result:

xhr.addEventListener('load', function() {
var response = JSON.parse(xhr.response);
var el = document.getElementById('short-url');

 el.href = response.id;
 el.innerHTML = response.id;
});

At the end of the sendRequest function, we are sending the original URL as well as the
request object we built as a request:

request = {
 longUrl: document.getElementById('long-url').value
 };
xhr.send(JSON.stringify(request));

In the service-worker.js file, we are adding an event listener for the fetch event. We
check that the request URL path has the urlshortner in it and the request header has
X-Mock-Response:

if (requestUrl.pathname === '/urlshortener/v1/url' &&
 event.request.headers.has('X-Mock-Response')) {
…
 }

www.allitebooks.com

https://console.developers.google.com
https://console.developers.google.com
http://www.allitebooks.org

Learning Service Worker Basics

36

We build a mock response object with a body, status, and the headers:

 var response = {
 body: {
 kind: 'urlshortener#url',
 id: 'https://goo.gl/KqR3lJ',
 longUrl: 'https://www.packtpub.com/books/info/packt/about'
 },
 init: {
 status: 200,
 statusText: 'OK',
 headers: {
 'Content-Type': 'application/json',
 'X-Mock-Response': 'yes'
 }
 }
 };

Finally, we create a response with the mock response:

var mockResponse = new Response(
JSON.stringify(response.body), response.init);

console.log('Mock Response: ', response.body);
event.respondWith(mockResponse);

Handling request timeouts
Long-running requests can be the result of connectivity issues. Service workers are an ideal
solution for overcoming these problems. Let's look at how we can implement a solution with
service workers to handle request timeouts.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the previous
recipe: Setting up service workers. Service workers only run across HTTPS. To find out how
to set up a development environment to support this feature, refer to the following recipes:
Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

Chapter 1

37

How to do it...
Follow these instructions to set up your file structure:

1. First, we need to create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Request Timeouts</title>
</head>
<body>
 <p>Registration status: <strong id="status"></p>

 <script>
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 { scope: './' }

).then(function(serviceWorker) {
 document.getElementById('status').innerHTML =
 'successful';
});
 } else {
 document.getElementById('status').innerHTML =
 'unavailable';
 }
 </script>
 <script src="https://code.jquery.com/jquery-
 2.2.0.js"></script>
</body>
</html>

2. Create a JavaScript file called service-worker.js in the same folder as the
index.html file with the following code:
function timeout(delay) {
 return new Promise(function(resolve, reject) {
 setTimeout(function() {
 resolve(new Response('', {
 status: 408,
 statusText: 'Request timed out.'
 }));

Learning Service Worker Basics

38

 }, delay);
 });
}

self.addEventListener('install', function(event) {
 self.skipWaiting();
});

self.addEventListener('activate', function(event) {
 if (self.clients && clients.claim) {
 clients.claim();
 }
});

self.addEventListener('fetch', function(event) {
 if (/\.js$/.test(event.request.url)) {
 event.respondWith(Promise.race([timeout(400),
 fetch(event.request.url)]));
 } else {
 event.respondWith(fetch(event.request));
 }
});

3. With your two files in place, navigate to index.html and open the DevTools. You will
see the time out error logged on the console.

Chapter 1

39

How it works...
In our index.html file, we're fetching a large uncompressed jQuery library:

<script src="https://code.jquery.com/jquery-2.2.0.js"></script>

In our service-worker.js file, the event listener of the install event is calling the
skipWaiting() method, which forces the waiting service worker to become the active
service worker:

self.addEventListener('install', function(event) {
 self.skipWaiting();
});

The skipWaiting() method is used inside the active event handler, which in turn uses
Clients.claim() to ensure that updates to the underlying service worker take effect
immediately, for both the current client and all other active clients:

self.addEventListener('activate', function(event) {
 if (self.clients && clients.claim) {
 clients.claim();
 }
});

In event listener for fetch, we pass in a Promise.race() function where the first iterable,
which is timeout(400), gets resolved first:

self.addEventListener('fetch', function(event) {
 if (/\.js$/.test(event.request.url)) {
 event.respondWith(Promise.race([timeout(400),
 fetch(event.request.url)]));
 } else {
 event.respondWith(fetch(event.request));
 }
});

We will elaborate on the Promise.race() function soon. The timeout() function returns a
promise with 408, which is the code for the request timed out status.

Learning Service Worker Basics

40

There's more...
The Promise.race() method returns a promise that resolves, or rejects, as soon as one of
the promises in the iterable resolves or rejects, with the value or reason from that promise:

var p1 = new Promise(function(resolve, reject) {
 setTimeout(resolve, 400, "one");
});
var p2 = new Promise(function(resolve, reject) {
 setTimeout(reject, 100, "two");
});

Promise.race([p1, p2]).then(function(value) {
 // Not called
}, function(reason) {
 console.log(reason); // "two"
 // p2 is faster, so it rejects
});

As you can see, two is faster, so the result is reject.

41

2
Working with

Resource Files

In this chapter, we will cover the following topics:

 f Displaying a custom offline page

 f Loading images offline

 f Loading CSS offline

 f Loading fonts offline

 f Implementing multiple fetch handlers

 f Fetching remote resources

Introduction
You might have encountered, from time to time, having broken images appear on certain
websites. This could be because of a number of reasons: the image might not have existed, it
might not have been named properly, or the file path in the code might have been incorrect.
Whatever the reason it might be, it could impact your website, and could lead the user to think
that your website is broken.

Images are not the only resources that are essential to your website. Cascading style
sheets (CSS), JavaScript files, and font files are also necessary to make your website appear
functional. In this chapter, we are going to look at how to load these resources offline.

Before we start working on loading resources offline, let's find out how we can notify the user
that the network is unavailable.

Working with Resource Files

42

Displaying a custom offline page
Let's revisit the scenario from the first chapter where you are on a train, traveling home from
work, and you are reading an important news article on the web using your mobile device. At
the same moment that you click on a link to view more details, the train suddenly disappears
into a tunnel. You've just lost connectivity, and are presented with the Unable to connect
to the Internet message. Well, you will not doubt be less annoyed if you can still play the
dinosaur game by hitting the spacebar on your desktop/laptop, or by tapping on your phone,
but this can be an area where you can significantly enhance a client's user experience by
using a service worker. One of the great features of service workers is that they allow you to
intercept network requests and decide how you want to respond:

In this recipe, we are going to use a service worker to check whether a user has connectivity,
and respond with a really simple offline page if they aren't connected.

Chapter 2

43

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting up
service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run
across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Custom Offline Page</title>
</head>
<body>
 <p>Registration status: <strong id="status"></p>

 <script>
 var scope = {
 scope: './'
 };

 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('service-worker.js',
 scope)
 .then(
 function(serviceWorker) {
 document.getElementById('status').innerHTML =
 'successful';
 }).catch(function(error) {
 document.getElementById('status').innerHTML =
 error;
 });
 } else {
 document.getElementById('status').innerHTML =
 'unavailable';
 }
 </script>
</body>
</html>

Working with Resource Files

44

2. Create a JavaScript file called service-worker.js in the same folder as the
index.html file, with the following code:
'use strict';

var version = 1;
var currentCache = {
 offline: 'offline-cache' + version
};

var offlineUrl = 'offline.html';

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(currentCache.offline).then(function(cache)
 {
 return cache.addAll([
 offlineUrl
]);
 })
);
});

self.addEventListener('fetch', function(event) {
 var request = event.request,
 isRequestMethodGET = request.method === 'GET';

 if (request.mode === 'navigate' || isRequestMethodGET) {
 event.respondWith(
 fetch(createRequestWithCacheBusting(request.url)).
 catch(function(error) {
 console.log('OFFLINE: Returning offline page.',
 error);
 return caches.match(offlineUrl);
 })
);
 } else {
 event.respondWith(caches.match(request)
 .then(function (response) {
 return response || fetch(request);
 })
);
 }
});
function createRequestWithCacheBusting(url) {
 var request,
 cacheBustingUrl;

 request = new Request(url,
 {cache: 'reload'}

Chapter 2

45

);

 if ('cache' in request) {
 return request;
 }

 cacheBustingUrl = new URL(url, self.location.href);
 cacheBustingUrl.search += (cacheBustingUrl.search ? '&' :
 '') + 'cachebust=' + Date.now();

 return new Request(cacheBustingUrl);
}

3. Create a second HTML file called offline.html file as follows:
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Offline</title>
 <style>
 #container {
 text-align: center;
 margin-top: 40px;
 }
 #container img {
 width: 80px;
 height: 80px;
 }
 </style>
 </head>
 <body>
 <div id="container">
 <svg xmlns="http://www.w3.org/2000/svg" width="25"
 height="25" viewBox="0 0 25 25">
 <path d="M16 0l-3 9h9l-1.866 2h-14.4L16 0zm2.267
 13h-14.4L2 15h9l-3 9 10.267-11z" fill="#04b8b8"/>
 </svg>
 <p>Whoops, something went wrong...!</p>
 <p>Your internet connection is not working.</p>
 <p>Please check your internet connection and try
 again.</p>
 <div>
 </body>
</html>

Working with Resource Files

46

4. Open up a browser and go to index.html. You will see the Registration status:
successful message:

5. Now open up DevTools (Cmd + Alt + I or F12), go to the Network tab, click on the
dropdown displaying No throttling, and select Offline:

6. Now refresh your browser, and you will see the offline message and the
following image:

Chapter 2

47

How it works...
When the registration is successful, we are instructing the service worker to intercept a
request and provide resources from the cached content using the fetch event, as illustrated in
the following diagram:

Inside the index.html file, when the registration is successful, we inspect the state of the
registration and print it to the browser. Otherwise, we are printing the error message returned
by the service worker:

navigator.serviceWorker.register(
 'service-worker.js',
 { scope: './' }
).then(function(serviceWorker) {
 document.getElementById('status').innerHTML =
 'successful';

Working with Resource Files

48

 }).catch(function(error) {
 document.getElementById('status').innerHTML = error;
 });

The service worker script file will intercept network requests, check for connectivity, and
provide the content to the user.

We start off by adding our offline page to the cache when we install the service worker. In
the first few lines, we are specifying the cache version and the URL for the offline page. If we
had different versions of our cache, you would simply update this version number, so a new
version of the file will take effect. We call this cache busting:

var version = 1;
var currentCache = {
 offline: 'offline-cache' + version
};

We add an event listener to the install event and inside the callback, we make a request for
this offline page and its resources; when we have a successful response, it gets added to
the cache:

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(currentCache.offline)
 .then(function(cache) {
 return cache.addAll([
 offlineUrl
]);
 })
);
});

Now that the offline page is stored in the cache, we can retrieve it whenever we need to.
In the same service worker, we need to add the logic to return the offline page if we have
no connectivity:

self.addEventListener('fetch', function(event) {
 var request = event.request,
 isRequestMethodGET = request.method === 'GET';

 if (request.mode === 'navigate' || isRequestMethodGET) {
 event.respondWith(
 fetch(createRequestWithCacheBusting(request.url)).
 catch(function(error) {
 console.log('OFFLINE: Returning offline page.', error);

Chapter 2

49

 return caches.match(offlineUrl);
 })
);
 } else {
 event.respondWith(caches.match(request)
 .then(function (response) {
 return response || fetch(request);
 })
);
 }
});

In the preceding listing, we are listening out for the fetch event, and if we detect that the user
is trying to navigate to another page, and there is an error while doing so, we simply return the
offline page from the cache. And there you go, we have our offline page working.

There's more...
The waitUntil event extends the lifetime of the install event, until all the caches are
populated. In other words, it delays treating the installing worker as installed, until all the
resources we specify are cached and the passed promise resolves successfully.

We saw an HTML and an image file get cached, and then being retrieved when our website is
offline. We can cache other resources as well, including CSS and JavaScript files:

caches.open(currentCache.offline)
.then(function(cache) {
 return cache.addAll([
 'offline.html',
 '/assets/css/style.css',
 '/assets/js/index.js'
]);
 })
);

See also
 f The Registering a service worker in detail recipe of Chapter 1, Learning Service

Worker Basics

 f The Creating mock responses recipe of Chapter 1, Learning Service Worker Basics

Working with Resource Files

50

Loading images offline
Images are a resource that almost all websites in the world today use. Just like your HTML,
CSS, and JavaScript, you can cache images to be viewed offline with service workers.
In this chapter, we are going to look at how to load images offline, as well as handling
responsive images.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting up
service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run
across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Offline Images</title>
</head>
<body>
 <main>
 <p>Registration status: <strong
 id="status"></p>

 <main>
 <script src="index.js"></script>
</body>
</html>

2. Now we have to create a JavaScript file service-worker.js, in the same folder as
the index.html file, with the following code:
'use strict';

var version = 1;

Chapter 2

51

var cacheName = 'static-' + version;

self.addEventListener('install', installHandler);
self.addEventListener('fetch', fetchHandler);

function installHandler(event) {
 event.waitUntil(
 caches.open(cacheName).then(function(cache) {
 return cache.addAll([
 'index.html',
 'packt-logo.png'
]);
 })
);
}

event.respondWith(
 fetch(event.request).catch(function() {
 return caches.match(event.request);
 })
);

3. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var scope = {
 scope: './'
};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

function printStatus(status) {
 document.getElementById('status').innerHTML = status;
}

4. Download an image file and save it in the same folder as the index.html file. In this
example, I am calling it packt-logo.png.

Working with Resource Files

52

5. Open up a browser and go to the index.html file:

6. Open up Chrome Developer Tools (Cmd + Alt + I or F12), select the Network tab, and
click Offline:

Chapter 2

53

7. Refresh the page by pressing Cmd + R or F5, and you will see the image looks the
same as it did online.

How it works...
In the index.html file, we are linking the image we have downloaded inside an img tag:

<body>
 <p>Registration status: <strong id="status"></p>

 <script src="index.js"></script>
</body>

In the service worker script file, we add our offline page to the cache when we install the
service worker. In the first few lines, we specify the cache version and the URL for the
offline page:

var version = 1;
var cacheName = 'static-' + version;

The event listener for the install event calls the waitUntil function, where we cache
index.html and the font file, in our case, webfont-serif.woff. The cache.addAll
function takes an array of files to be cached:

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName).then(function(cache) {
 return cache.addAll([
 'index.html',
 'packt-logo.png'
]);
 })
);
});

When we reload the page, after it is set to go offline, the fetch event gets fired, retrieves those
two files from the cache, and sends them along with the response:

self.addEventListener('fetch', function(event) {
 event.respondWith(caches.match(event.request));
});

Now, the page will be displayed as it was online.

Working with Resource Files

54

There's more...
If we were to develop our website following a mobile-first strategy, having responsive images
would greatly benefit it. Let's look at how we can achieve this.

Handling responsive images
There are a number of ways to enable the responsive behavior for images. One of the older
methods (not recommended) is by simply scripting, but this leads to a couple of problems.
First, if a script determines which image to download, but the script itself is loaded after the
images specified in the HTML have been downloaded, you may potentially end up with two
downloaded images. Second, if you don't specify any image in HTML, and want to load only
the image defined by the script, you'll end up with no image at all for browsers that have
scripting disabled.

Hence, we need a better way to deal with responsive images. And thankfully, there is one! The
recommended way is to use:

 f srcset

 f sizes

 f picture

The srcset attribute
Before we explore how srcset is actually used, let's understand a few terms.

Device-pixel ratio
The device-pixel ratio is the number of device pixels per CSS pixel. Two key conditions
contribute to the device-pixel ratio:

 f Pixel density of the device (number of physical pixels per inch): A high resolution
device will have a higher pixel density and hence, for the same zoom level, it will have
a high device-pixel ratio compared to a lower resolution device. For example: a high-
end Lumia 950 phone will have a higher resolution than a budget Lumia 630 phone,
and therefore it will have a higher device-pixel ratio for the same zoom level.

 f Zoom level of the browser: For the same device, a higher zoom level means a higher
number of device pixels per CSS pixel, and hence a higher device-pixel ratio. For
example, consider this figure:

Chapter 2

55

When you zoom in on your browser (Ctrl + +), the number of CSS pixels for your div remains
the same, but the number of device pixels it occupies increases. So, you have a higher
number of device pixels per CSS pixel.

When you want to display separate images (or usually, a separate asset of the same image)
based on the device-pixel ratio, you'd go with a basic srcset implementation:

<img src="image-src.png" srcset="image-src.png 1x, image-2x.png
2x" />

The x descriptor in the srcset attribute is used to define the device-pixel ratio:

 f For a device-pixel ratio of 1, the image-src.png image will be used.

 f For a device-pixel ratio of 2, the image-2x.png image will be used.

The src attribute is used as a fallback for browsers that do not yet support
srcset implementation.

This works well. Using the x descriptor, you'll always get the same image on devices with a
similar device-pixel ratio—even if this means that you get the same image on a 13.5-inch
laptop, and a 5-inch mobile phone, which both have the same device-pixel ratio.

The sizes attribute
The actual implementation where you'd want a different-sized image (different height and
width) on different screen sizes is accomplished by using the sizes attribute along with the w
descriptor of the srcset attribute.

Say you want the image to be viewed in half of the viewport width. You'll type:

<img src="image-src.png" sizes="50vw"
srcset="image-src.png 1x, image-2x.png 2x 400w">

Working with Resource Files

56

The picture element
As we saw in the previous section, the picture element is used when you want to show a
different image depending on the rendered size of the image. The picture element is a
container, which contains other elements that control the image to be downloaded:

<picture>
 <img src="image-src.png" sizes="50vw"srcset="image-src.png 1x,
 image-2x.png 2x 400w">
</picture>

At runtime, the srcset attribute or the <picture> element selects the most appropriate
image asset and performs a network request.

If you want to cache an image during the install step for the service worker, you have
a few options:

 f Installing a single low-resolution version of the image

 f Installing a single high-resolution version of the image

It is ideal to limit the amount to two or three images in order to preserve memory.

To improve the load time, you may decide to go for the low resolution version at the time of
installation, and you would try to retrieve higher resolution images from the network when the
page is loaded; however, in the case that the high-resolution images fail, you would think you
can easily fall back to the low resolution version, but there is one issue.

Let's assume we have two images:

Display density Width Height
1x 400 400

2x 800 800

Here is the markup for an srcset image:

<img src="image-src.png" srcset="image-src.png 1x, image-2x.png
2x" />

On a screen with a 2x display, the browser could opt to download image-2x.png, if we are
offline, then we could catch this request and return the image-src.png image instead if the
image is cached, the browser may expect an image that considers the extra pixels on a 2x
screen, therefore the image will appear as 200 x 200 pixels instead of 400 x 400 pixels. The
only fix is to set a fixed width and height on the image:

<img src="image-src.png" srcset="image-src.png 1x, image-2x.png
2x"
style="width:400px; height: 400px;" />

Chapter 2

57

We can take the same approach to srcset.

No width or height set:

Height and width set:

Working with Resource Files

58

If you want to unregister the service worker, you can head to the Developer Toolbar in Chrome,
and click the Unregister button in the Service Workers section, as shown in the following
screenshot:

If you want to find out the resources stored in the caches, you can do so by opening Developer
Tools and looking at the Resources tab:

Chapter 2

59

If you are using Firefox Nightly, you can view the caches by opening up Developer Tools and
looking at the Storage Inspector:

See also
 f The Registering a service worker in detail recipe in Chapter 1, Learning Service

Worker Basics

 f The Creating mock responses recipe in Chapter 1, Learning Service Worker Basics

Working with Resource Files

60

Loading CSS offline
CSS is essential in structuring your website and making it look functional. Because of this,
if your website goes offline and the CSS is not available in the cache, your website will look
broken. In order to achieve this, we cache CSS with service workers, and deliver those CSS
files as external resources. In this recipe, we are going to look at how to load CSS offline.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting up
service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run
across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Offline CSS</title>
 <link rel="stylesheet" href="style-2.css">
 <link rel="stylesheet" href="style-1.css">
</head>
<body>
 <p>Registration status: <strong id="status"></p>

 <script>
 var scope = {
 scope: './'
 };

 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('service-worker.js',
 scope)
 .then(
 function(serviceWorker) {
 printStatus('successful');

Chapter 2

61

 }).catch(function(error) {
 printStatus(error);
 });
 } else {
 printStatus('unavailable');
 }

 function printStatus(status) {
 document.getElementById('status').innerHTML = status;
 } </script>
</body>
</html>

2. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
var version = 1;
var cacheName = 'static-' + version;

self.addEventListener('install', installHandler);
self.addEventListener('fetch', fetchHandler);

function installHandler(event) {
 event.waitUntil(
 caches.open(cacheName).then(function(cache) {
 return cache.addAll([
 'index.html',
 'style-2.css'
]);
 })
);
}

function fetchHandler(event) {
 if (/index/.test(event.request.url) || /style-
 2/.test(event.request.url)) {
 event.respondWith(caches.match(event.request));
 }
}

3. Create a CSS file called style-1.css, in the same folder as the index.html file,
with the following code:
body {
 background-color: lightgreen;
}

Working with Resource Files

62

4. Create another CSS file called style-2.css, in the same folder as the index.html
file, with the following code:
body {
 background-color: red;
}

5. Open up a browser and go to the index.html file. You will see that the background
color is green:

6. Now open up the Developer Tools (Cmd + Shift + I or F12) and change the Network
tab to Offline as shown in the following screenshot:

Chapter 2

63

7. The color of the background is now red.

How it works...
In the header section of the index.html file, we are linking two CSS files:

<head>
 <meta charset="UTF-8">
 <title>Offline CSS</title>
 <link rel="stylesheet" href="style-2.css">
 <link rel="stylesheet" href="style-1.css">
</head>

In our styles sheets, we are referencing the same CSS property of body.

Because of the order we are calling the CSS files, the last selector takes effect on the online
page, in our case, this is the body selector of style-1.css:

body {
 background-color: lightgreen;
}

In the service-worker.js file, we add index.html and the style-2.css file to the
cache when we install the service worker. In the first few lines, we specify the cache version
and the URL for the offline page:

var version = 1;
var cacheName = 'static-' + version;

The event listener for the install event calls the waitUntil function, where we cache
index.html, and the CSS file. The cache.addAll function takes an array of files to
be cached:

function installHandler(event) {
 event.waitUntil(
 caches.open(cacheName).then(function(cache) {
 return cache.addAll([
 'index.html',
 'style-2.css'
]);
 })
);
}

Working with Resource Files

64

When we reload the page, after it is set to go offline, the fetch event gets fired, retrieves those
two files from the cache, and sends them along with the response:

self.addEventListener('fetch', function(event) {
 event.respondWith(caches.match(event.request));
});

Now, when we refresh the page, the background will change to red, as the CSS file we saved
in the cache will be applied to the page this time.

Loading fonts offline
If your website uses external fonts, such as open source web fonts, you could cache them
to be viewed offline with service workers. In this chapter, we are going to look at how to load
fonts offline.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting up
service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run
across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Offline Fonts</title>
 <style>
 @font-face{
 font-family: 'MyWebFont';
 src: url('webfont-serif.woff') format('woff');
 }
 p { font-family: 'MyWebFont', Arial, sans-serif; }
 </style>

Chapter 2

65

</head>
<body>
 <p>Registration status: <strong id="status"></p>

 <script>
 var scope = {
 scope: './'
 };

 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('service-worker.js',
 scope)
 .then(
 function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
 } else {
 printStatus('unavailable');
 }

 function printStatus(status) {
 document.getElementById('status').innerHTML = status;
 } </script>
</body>
</html>

2. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
'use strict';

var version = 1;
var cacheName = 'static-' + version;

self.addEventListener('install', installHandler);
self.addEventListener('fetch', fetchHandler);

function installHandler(event) {
 event.waitUntil(
 caches.open(cacheName).then(function(cache) {
 return cache.addAll([

Working with Resource Files

66

 'index.html',
 'webfont-serif.woff'
]);
 })
);
}

function fetchHandler(event) {
 event.respondWith(caches.match(event.request));
}

3. Download a web font from https://www.google.com/fonts and save it in the
same folder as the index.html file. If you are not quite sure how to do this, please
look at the following There's more... section.

4. Open up the browser and go to the index.html file:

5. Open up Chrome Developer Tools (Cmd + Alt + I or Fb12), select the Network tab,
and click Offline:

https://www.google.com/fonts

Chapter 2

67

6. Refresh the page by pressing Cmd + R or F5, and you will see the font looks the same
as it did online.

How it works...
In the header section of the index.html file, we link the font file we have downloaded inside
a style tag:

<style>
 @font-face{
 font-family: 'MyWebFont';
 src: url('webfont-serif.woff') format('woff');
 }

 p { font-family: 'MyWebFont', Arial, sans-serif; }
</style>

Working with Resource Files

68

The @font-face declaration will specify a font named myWebFont and specify the URL
where it can be found. In our case, it is in the same directory as the index.html file. Then
we reference the font inside the paragraph declaration as the font-family attribute:

p { font-family: 'MyWebFont', Arial, sans-serif; }

In the service worker script file, we add our offline page to the cache when we install the
service worker. In the first few lines, we specify the cache version and the URL for the
offline page:

var version = 1;
var cacheName = 'static-' + version;

The event listener for the install event calls the waitUntil function, where we cache the
index.html file and the font file; in our case webfont-serif.woff. The cache.addAll
function takes an array of files to be cached:

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName).then(function(cache) {
 return cache.addAll([
 'index.html',
 'webfont-serif.woff'
]);
 })
);
});

When we reload the page, after it is set to go offline, the fetch event gets fired, retrieves those
two files from the cache, and sends them along with the response:

self.addEventListener('fetch', function(event) {
 event.respondWith(caches.match(event.request));
});

Now, the page will be displayed as it was online.

There's more...
In order to find a free font family from Google and download it, please perform
the following instructions:

1. Please navigate to https://www.google.com/fonts, and search, or browse, the
desired font, then add the one you like to your collection by clicking on the blue Add
to Collection button on the right side of the font:

https://www.google.com/fonts

Chapter 2

69

2. Your collection will show at the bottom of your screen. Once it has, select the Use this
style checkbox, towards the top-left side of the screen:

3. Now, when you click the arrow on the top right-hand side of the page, it will prompt
you with a dialog. You can choose the first option, which downloads the file as a
ZIP file:

Working with Resource Files

70

4. Once you unzip the file, you will find the font you need inside the folder. If you want
to unregister a service worker, you can go to chrome://service-worker-
internals and click the Unregister button:

5. In Firefox Nightly, you can go to about:serviceworkers and click on the
Unregister button:

Chapter 2

71

See also
 f The Registering a service worker in detail recipe in Chapter 1, Learning Service

Worker Basics

 f The Creating mock responses recipe in Chapter 1, Learning Service Worker Basics

Implementing multiple fetch handlers
Service workers can handle multiple fetch handlers, each of which intercepts a different type
of request. This recipe explains, in detail, how different types of request can be handled by
implementing separate fetch handlers.

Working with Resource Files

72

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting up
service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run
across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we need to create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Multiple Fetch</title>
</head>
<body>
 <p>Registration status: <strong id="status"></p>

 <script>
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 { scope: './' }
).then(function(serviceWorker) {
 document.getElementById('status').innerHTML =
 'successful';
 }).catch(function(error) {
 document.getElementById('status').innerHTML =
 error;
 });
 } else {
 document.getElementById('status').innerHTML =
 'unavailable';
 }
 </script>
</body>
</html>

Chapter 2

73

2. Create a JavaScript file called service-worker.js in the same folder as the
index.html file with the following code:
var cookFetchHandler = function(event) {
 console.log('DEBUG: Inside the /cook handler.');
 if (event.request.url.indexOf('/cook/') > 0) {
 event.respondWith(new Response('Fetch handler for
 /cook'));
 }
};

var cookBookFetchHandler = function(event) {
 console.log('DEBUG: Inside the /cook/book handler.');
 if (event.request.url.endsWith('/cook/book')) {
 event.respondWith(new Response('Fetch handler for
 /cook/book'));
 }
};

var fetchHandlers = [cookBookFetchHandler, cookFetchHandler];

fetchHandlers.forEach(function(fetchHandler) {
 self.addEventListener('fetch', fetchHandler);
});

3. Open up a browser and go to the index.html file. You will see the Registration
status: successful message:

Working with Resource Files

74

4. Change the URL by adding /cook/ in front as follows:

5. Change the URL again by adding /book in front as follows:

Chapter 2

75

How it works...
When the registration is successful, we inspect the state of the registration, and print it to
the browser. Now it's time to trigger the responses by the service worker. In the service-
worker.js file, there are two registered fetch handlers, cookFetchHandler and
cookBookFetchHandler:

var cookFetchHandler = function(event) {
 console.log('DEBUG: Inside the /cook handler.');
 if (event.request.url.indexOf('/cook/') > 0) {
 event.respondWith(new Response('Fetch handler for /cook'));
 }
};

var cookBookFetchHandler = function(event) {
 console.log('DEBUG: Inside the /cook/book handler.');
 if (event.request.url.endsWith('/cook/book')) {
 event.respondWith(new Response('Fetch handler for
 /cook/book'));
 }
};

The first handler, cookFetchHandler, intercepts requests ending with /cook anywhere in
the URL, and returns a new response with the wording, Fetch handler for /cook.

The second handler, cookBookFetchHandler, intercepts requests ending with /cook/
book anywhere in the URL, and returns a new response with the wording, Fetch handler
for /cook/book.

Since cookBookFetchHandler is registered first, when it intercepts /cook/book requests,
it will always first have the chance to return a response via event.respondWith().The
second handler gets its chance to handle event.respondWith() only if the first handler
does not call it.

When the fetch event occurs, they are invoked one at a time, in the order they are registered.
Any time a handler calls event.respondWith(), none of the other registered handlers will
be run:

var fetchHandlers = [cookBookFetchHandler, cookFetchHandler];

fetchHandlers.forEach(function(fetchHandler) {
 self.addEventListener('fetch', fetchHandler);
});

If none of the registered fetch handlers call event.respondWith(), the browser takes
control and makes a normal HTTP request. This is the normal procedure, when no service
workers are involved.

Working with Resource Files

76

There's more...
Within each fetch handler, we have to make sure that the logic that determines whether or
not to call event.respondWith(), is executed synchronously. Simple if() statements
that check event.request.url are fine. Anything asynchronous, such as performing
caches.match() and then deciding whether or not to call event.respondWith() based
on the response, will trigger a race condition, and you're likely to see an event already
responded to error in the console.

If you want to unregister the service worker, you can head to the Developer Toolbar in
Chrome and click the Unregister button in the Service Workers section, as shown in
the following screenshot:

See also
 f The Registering a service worker in detail recipe in Chapter 1, Learning Service

Worker Basics

 f The Creating mock responses recipe in Chapter 1, Learning Service Worker Basics

Fetching remote resources
Fetching remote resources can be done in a few different ways. In this recipe, we are going to
look at two standard ways of fetching remote resources, as well as finding out how to use a
service worker to act like a proxy middleware.

Chapter 2

77

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting up
service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run
across HTTPS. To find out how to set up a development environment to support this feature,
refer to the Setting up GitHub pages for SSL recipe of Chapter 1, Learning Service
Worker Basics.

How to do it...
Follow these instructions to set up your file structure:

1. First, we need to create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Fetching Offline Resources</title>
 <style>
 .error {
 color: #FF0000;
 }
 .success {
 color: #00FF00;
 }
 </style>
 </head>
 <body>
 <section>
 <h1>Images</h1>
 <div id="https-acao-image"></div>
 <div id="https-image"></div>
 <div id="http-image"></div>
 </section>

 <section>
 <h1>HTTPS Fetch</h1>
 <div id="https-cors">
 https-cors
 </div>
 <div id="https-no-cors">

Working with Resource Files

78

 https-no-cors
 </div>
 <div id="https-acao-cors">
 https-acao-cors
 </div>
 <div id="https-acao-no-cors">
 https-acao-no-cors
 </div>
 <div id="service-https-cors">
 service-https-cors
 </div>
 <div id="service-http-cors">
 service-http-cors
 </div>
 <div id="service-http-no-cors">
 service-http-no-cors
 </div>
 </section>

 <section>
 <h1>HTTP Fetch</h1>
 <div id="http-cors">
 http-cors
 </div>
 <div id="http-no-cors">
 http-no-cors
 </div>
 </section>

 <script src="index.js"></script>
 </body>
</html>

2. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var protocols = {
'https':
'https://dz13w8afd47il.cloudfront.net/sites/all/themes/
packt_v4/images/packtlib-logo-dark.png',

 'https-acao':

Chapter 2

79

'https://i942.photobucket.com/albums/ad261/szaranger/Packt/
packt-logo.png',

 'http':
'http://seanamarasinghe.com/
wp-content/uploads/2015/06/icon-128x128.jpg'
};

navigator.serviceWorker.getRegistration()
.then(function(registration) {
 var fetchModes = ['cors', 'no-cors'];

 if (!registration || !navigator.serviceWorker.controller)
 {
 navigator.serviceWorker.register(
 './service-worker.js').then(function() {
 console.log('Service worker registered,
 reloading the page');
 window.location.reload();
 });
 } else {
 console.log('Client is under service worker\s
 control');

 for (var protocol in protocols) {
 if (protocols.hasOwnProperty(protocol)) {
 buildImage(protocol, protocols[protocol]);

 for (var index = 0; index < fetchModes.length;
 index++) {
 var fetchMode = fetchModes[index],
 init = { method: 'GET',
 mode: fetchMode,
 cache: 'default' };

 fireRequest(fetchMode, protocol, init)();
 }
 }
 }
 }
});

function buildImage(protocol, url) {
 var element = protocol + '-image',

Working with Resource Files

80

 image = document.createElement('img');

 image.src = url;
 document.getElementById(element).appendChild(image);
}

function fireRequest(fetchMode, protocol, init) {
 return function() {
 var section = protocol + '-' + fetchMode,
 url = protocols[protocol];

 fetch(url, init).then(function(response) {
 printSuccess(response, url, section);
 }).catch(function(error) {
 printError(error, url, section);
 });

 fetch('./proxy/' + url, init).then(function(response) {
 url = './proxy/' + url;
 printSuccess(response, url, section);
 }).catch(function(error) {
 section = 'service-' + section;

 console.log(section, 'ERROR: ', url, error);
 log(section, 'ERROR: ' + error, 'error');
 });
 };
}

function printSuccess(response, url, section) {
 if (response.ok) {
 console.log(section, 'SUCCESS: ', url, response);
 log(section, 'SUCCESS');
 } else {
 console.log(section, 'FAIL:', url, response);
 log(section, 'FAIL: response type: ' + response.type +
 ', response status: ' +
 response.status, 'error');
 }

Chapter 2

81

}

function printError(error, url, section) {
 console.log(section, 'ERROR: ', url, error);
 log(section, 'ERROR: ' + error, 'error');
}

function log(id, message, type) {
 var sectionElement = document.getElementById(id),
 logElement = document.createElement('p');

 if (type) {
 logElement.classList.add(type);
 }
 logElement.textContent = message;
 sectionElement.appendChild(logElement);
}

3. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
self.onfetch = function(event) {
 if (event.request.url.indexOf('proxy') > -1) {
 var init = { method: 'GET',
 mode: event.request.mode,
 cache: 'default' };
 var url = event.request.url.split('proxy/')[1];
 console.log('DEBUG: proxying', url);
 event.respondWith(fetch(url, init));
 } else {
 event.respondWith(fetch(event.request));
 }
};

Working with Resource Files

82

4. Open up a browser and go to the index.html file:

Chapter 2

83

How it works...
At the beginning of the index.js file, we are testing three different protocols for
loading resources:

 f https: HTTP with Secure Socket Layer (SSL) protocol

 f https-acao: SSL protocol with the Access-Control-Origin=* header

 f http: HTTP without SSL

We will use three different URLs, which will be loaded multiple times:

var protocols = {
 'https-acao':
 'https://i942.photobucket.com/albums/ad261/szaranger/
 Packt/packt-logo.png',
 'https':
 'https://dz13w8afd47il.cloudfront.net/sites/all/themes/
 packt_v4/images/packtlib-logo-dark.png',
 'http':
 'http://seanamarasinghe.com/wp-content/uploads/2015/06/
 icon-128x128.jpg'
};

We also use two different methods for fetching resources, with or without cors:

var fetchModes = ['cors', 'no-cors'];

Next, we check to see whether the service worker is registered:

 navigator.serviceWorker.register(
'./service-worker.js').then(function() {
 console.log('Service worker registered, reloading the
 page');
 window.location.reload();
 });

If that is not the case, then we register it and reload the page to make sure the client is under
the service worker's control:

for (var protocol in protocols) {
 if (protocols.hasOwnProperty(protocol)) {
 buildImage(protocol, protocols[protocol]);

 for (var i = 0; i < fetchModes.length; i++) {
 var fetchMode = fetchModes[i],
 init = {
 method: 'GET',

Working with Resource Files

84

 mode: fetchMode,
 cache: 'default'
 };

 fireRequest(fetchMode, protocol, init)();
 }
 }
}

The for loops go through the provided protocols array, make requests for each protocol,
build a DOM image element with each URL, and go through each mode of the
fetchModes array.

The init object contains any custom settings that you want to apply to the request:

 f method: The request method, for example, GET and POST

 f mode: The mode you want to use for the request, for example, cors, no-cors, or
same-origin

 f cache: The cache mode you want to use for the request: default, no-store,
reload, no-cache, force-cache, or only-if-cached

The buildImage function takes two arguments: protocol and url. It creates an image
element on the fly and attaches the URL as the source of that image. Then it goes on to add
that image to the DOM tree, where the ID is one of https-acao-image, https-image,
or http–image. JavaScript has no control over the URL handling at this point; the browser
handles the URLs:

function buildImage(protocol, url) {
 var element = protocol + '-image',
 image = document.createElement('img');

 image.src = url;
 document.getElementById(element).appendChild(image);
}

Images will be rendered for HTTPS requests only, as service workers only support connections
over SSL:

Chapter 2

85

The broken image is the one requested over standard HTTP, which fails to respond with the
requested image.

Other requests over HTTP also fail to deliver, resulting in errors:

www.allitebooks.com

http://www.allitebooks.org

Working with Resource Files

86

The requests over SSL, with the Access-Control-Origin=* header (Access Control Allow
Origin), will return results successfully:

By default, fetching a resource from a third-party URL will fail if it doesn't support CORS.
You can add a non-CORS option to the request to overcome this, although this will cause an
opaque response, which means you won't be able to tell whether the response was successful
or not:

The fireRequest function takes three arguments, fetchMode, protocol, and init. This
function, in turn returns another function, which we can call a composition. We start with
fetching the given resource directly from the remote resource:

 fetch(url, init).then(function(response) {
 printSuccess(response, url, section);
 }).catch(function(error) {
 printError(error, url, section);
 });

If the fetch was successful, we print it to the console, as well as log it on the webpage. We do
the same if the request fails, only we print error.

We also attempt to fetch the resource with the service worker's proxy, which the client
recognizes as a local resource:

fetch('./proxy/' + url, init).then(function(response) {
 url = './proxy/' + url;
 printSuccess(response, url, section);
 }).catch(function(error) {
 section = 'service-' + section;

 console.log(section, 'ERROR: ', url, error);
 log(section, 'ERROR: ' + error, 'error');
 });

Chapter 2

87

The printSuccess and printError functions log responses to the console, as well as the
DOM of the web page:

function printSuccess(response, url, section) {
 if (response.ok) {
 console.log(section, 'SUCCESS: ', url, response);
 log(section, 'SUCCESS');
 } else {
 console.log(section, 'FAIL:', url, response);
 log(section, 'FAIL: response type: ' + response.type +
 ', response status: ' + response.status,
 'error');
 }
}

function printError(error, url, section) {
 console.log(section, 'ERROR: ', url, error);
 log(section, 'ERROR: ' + error, 'error');
}

The helper function log finds the DOM element by the ID, and adds a paragraph element,
as well as a class attribute, to depict the type of the message:

function log(id, message, type) {
 var type = type || 'success',
 sectionElement = document.getElementById(id),
 logElement = document.createElement('p');

 if (type) {
 logElement.classList.add(type);
 }
 logElement.textContent = message;
 sectionElement.appendChild(logElement);
}

In the index.html file, we have style declarations in the head section:

<style>
.error {
 color: #FF0000;
 }
 .success {
 color: #00FF00;
 }
</style>

Working with Resource Files

88

In our log() function, we set the undefined type to success, so that it will display the color
green when we add it to classList. The error type will display red as declared in the
previous styles.

Let's move over to our service-worker.js file. There we have the onfetch event handler,
which gets fired whenever a fetch event occurs. Here, we check to see whether the request
has a proxy/ parameter in it. If it does, then it responds with the remaining part of the URL:

var url = event.request.url.split('proxy/')[1];
console.log('DEBUG: proxying', url);
event.respondWith(fetch(url, init));

Otherwise, the response will perform the request with the full URL:

} else {
 event.respondWith(fetch(event.request));
}

There's more...
Let's examine the defaults of the fetch() function in more detail.

No credentials by default
When you use fetch, by default, requests won't contain credentials such as cookies. If you
want credentials, you can call this instead:

fetch(url, {
 credentials: 'include'
});

This behavior is intentional, and is arguably better than XHR's more complex default behavior
of sending credentials if the URL has the same origin, but omitting them otherwise.

Fetch's behavior is more like other CORS requests, such as , which
never sends cookies unless you opt in with .

Non-CORS fail by default
By default, fetching a resource from a third-party URL will fail if it doesn't support CORS.
You can add a non-CORS option to the Request function to overcome this, although this will
cause an opaque response, which means you won't be able to tell whether the response was
successful or not:

cache.addAll(urlsToPrefetch.map(function(urlToPrefetch) {
 return new Request(urlToPrefetch, { mode: 'no-cors' });
})).then(function() {
 console.log('All resources have been fetched and cached.');
});

Chapter 2

89

If you want to unregister the service worker, you can head over to the chrome://service-
worker-internals page in Chrome and click the Unregister button of the relevant service
worker, as shown in the following screenshot:

See also
 f The Registering a service worker in detail recipe in Chapter 1, Learning Service

Worker Basics

 f The Creating mock responses recipe in Chapter 1, Learning Service Worker Basics

91

3
Accessing Offline

Content

In this chapter, we will cover the following topics:

 f Caching critical resources for offline use

 f Showing cached content first

 f Implementing a cache and network race

 f Using window.caches

 f Implementing stale-while-revalidate

Introduction
You don't need network access for your laptop or smartphone to be useful. Especially in areas
where mobile data is expensive, with some proper planning, you can download certain apps
that you can sync via free Wi-Fi, and then use them offline elsewhere.

Mobile apps such as Google Maps, FeedMe, and Wikipedia give us offline apps, which can be
used anywhere regardless of the Internet. Making our own app offline-compatible is a great
way of winning the hearts of our clients.

Let's start this chapter by looking at how to cache critical resources for use offline.

Accessing Offline Content

92

Caching critical resources for offline use
In this recipe, we look at how we can cache a set of critical resources to enable users to go
offline and provide the user with the same experience. In the meantime, we will notify the user
that they can go offline and continue to use the same features.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL
for Mac.

How to do it...
Follow these instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/03/01/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Caching Critical Resources</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>

 <main>
 <section>
 <h1>Brand Game</h1>
 <p>Attempts: 0</p>
 <select id="choice">

https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/01/
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/01/

Chapter 3

93

 <option value="0">Apple</option>
 <option value="1">Google</option>
 <option value="2">Adobe</option>
 <option value="3">Facebook</option>
 <option value="4">Amazon</option>
 </select>
 <input type="button" id="tryButton" value="Try" />
 </section>
 <section>

 <p id="result">
 </section>
 <div id="notification" class="hidden">
 <p>Ready to go offline!</p>
 </div>
 </main>

 <script src="index.js"></script>
 <script src="game.js"></script>
</body>
</html>

2. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var scope = {
 scope: './'
};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

Accessing Offline Content

94

navigator.serviceWorker.addEventListener('controllerchange',
 function(event) {
 console.log('EVENT: controllerchange', event);

 navigator.serviceWorker.controller
 .addEventListener('statechange',
 function() {
 console.log('EVENT: statechange', this.state);
 if (this.state === 'activated') {
 document.querySelector('#notification').
 classList.remove('hidden');
 }
 }
);
 }
);

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.querySelector('#resetButton').
addEventListener('click',
 function() {
 navigator.serviceWorker.getRegistration().then(function
 (registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

3. Create a JavaScript file called game.js, in the same folder as the index.html file,
with the following code:
'use strict';

var attempts = 0,
 images = [

 'adobe',
 'apple',
 'google',

Chapter 3

95

 'facebook',
 'amazon'
];

document.getElementById('tryButton').addEventListener
('click', function() {
 var imageElement = document.getElementById('logo'),
 choice = document.querySelector('#choice').value,
 attemptsEl = document.querySelector('#attempts'),
 result = document.querySelector('#result'),
 currentIndex = imageElement.getAttribute('data-image'),
 newIndex = getRandomIndex();

 do {
 newIndex = getRandomIndex();
 } while(newIndex === currentIndex);

 imageElement.src = images[newIndex] + '-logo.png';
 imageElement.setAttribute('data-image', newIndex);

 result.className = '';
 attempts++;

 if(newIndex == choice) {
 result.innerText = "Yay! Well done! You did it in " +
 attempts + " attempt(s)";
 result.classList.add('success');
 attemptsEl.innerText = attempts;
 attempts = 0;
 } else {
 result.innerText = "Boo! Try again..";
 result.classList.add('fail');
 attemptsEl.innerText = attempts;
 }

});

function getRandomIndex() {
 return Math.floor(Math.random() * 5);
}

Accessing Offline Content

96

4. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
'use strict';
var cacheName= 'dependencies-cache';

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'apple',
 'google',
 'adobe',
 'facebook',
 'amazon'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request)
 .then(function(response) {
 if (response) {
 console.log('Fetching from the cache: ',
 event.request.url);
 return response;
 } else {
 console.log('Fetching from server: ',
 event.request.url);
 }
 return fetch(event.request);
 }
)
);
});

self.addEventListener('activate', function(event) {
 console.log('Activating the service worker!');
 event.waitUntil(self.clients.claim());
});

Chapter 3

97

5. Create a JavaScript file called style.css, in the same folder as the index.html
file, with the following code:
* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;
 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
}

h1 {
 color: #4CAF50;
}

img {
 padding: 20px 0;
 max-width: 200px;
}

.success {
 color: #4CAF50;
 font-size: 2em;
}

.fail {
 color: #FF8401;
 font-size: 1.5em;
}

Accessing Offline Content

98

.hidden {
 display: none;
}

#registration-status {
 background-color: #FFE454;
 padding: 10px;
}

#notification {
 background-color: #4CAF50;
 padding: 3px;
 border-radius: 5px;
 max-width: 350px;
 color: #FFF;
}

6. Open up a browser and go to the index.html file:

Chapter 3

99

7. You will see the Ready to go offline! message. This means that we can play the game
offline. Now open up DevTools (Cmd + Alt + I or F12), go to the Network tab, click on
the dropdown displaying No throttling, and select Offline:

8. Now refresh your browser, and you will be able to continue playing the game.

9. You can select a company name from the dropdown and click the Try button:

Accessing Offline Content

100

10. Every time the selection does not match the result, it will show a message saying
Boo! Try again.., and you will see the attempts count:

11. Once your selection matches you will get a success message with the attempt count,
and you will see the attempts count:

Chapter 3

101

How it works...
Our index.html file contains the structure for the dropdown, buttons, and image. The
dropdown contains the options for the brand:

<select id="choice">
 <option value="0">Apple</option>
 <option value="1">Google</option>
 <option value="2">Adobe</option>
 <option value="3">Facebook</option>
 <option value="4">Amazon</option>
</select>

Accessing Offline Content

102

The values for the options are specified by numbers, which later match up with the images, so
the order is important. As you can see, they start with 0, to adhere to the 0-based index of the
array where we are going to store the names of the companies later on.

The style.css file contains all the styles we need for our page. The top two declarations are
common styles for all the elements and the body element respectively:

* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

The styles for failed and successful messages contain orange and green colors:

.success {
 color: #4CAF50;
 font-size: 2em;
}

.fail {
 color: #FF8401;
 font-size: 1.5em;
}

The notification message is initially hidden. This is done by assigning a class with
display:none:

.hidden {
 display: none;
}

The first of the three JavaScript files, index.js, performs service worker registration, and
then listens to the controllerchange event. It also handles the event for the reset button.

The game engine for our little game is in the game.js file. So let's go through what's
happening inside this file.

Chapter 3

103

First, we declare two variables at the top, attempts and images, with initial values;
attempts contains the initial value for tries, 0, and images, which is an array constant,
has the brand names in order. The order of the brands is important so that it matches the
dropdown in the index.html file:

var attempts = 0,
images = [
 'apple',
 'google',
 'adobe',
 'facebook',
 'amazon'
];

When the user clicks the try button, the game logic in the callback function is handled:

document.getElementById('tryButton').addEventListener('click',
function() {
 // callback
…
});

There is a lot going on in the declaration section in the callback handler. So let's look at
each initialization:

1. First we grab the logo from the Document Object Model (DOM):
var imageElement = document.getElementById('logo'),

2. We also capture the user choice and attempts element from the DOM, and the
result element:
choice = document.querySelector('#choice').value,
attemptsEl = document.querySelector('#attempts'),
result = document.querySelector('#result'),

3. Then we capture the data attribute from the logo element, and we generate a random
number with getRandomIndex():
currentIndex = imageElement.getAttribute('data-image'),
newIndex = getRandomIndex();

4. We generate a random number for the next index, as long as it is not the one we
already have for the index:
do {
 newIndex = getRandomIndex();
 } while(newIndex === currentIndex);

Accessing Offline Content

104

5. Next, we are set the brand images source to the image at the random index we
created. Then we set the data-image attribute to the same index:
imageElement.src = images[newIndex] + '-logo.png';
imageElement.setAttribute('data-image', newIndex);

For example, this may create an HTML element like the following on our web page:

6. We make sure the class name for the result element is cleared before adding
a new one. Then we increase the attempts count:
result.className = '';
attempts++;

7. Next, we find out whether the new index is equal to the choice the user made. Note
that we have used a double equation instead of triple deliberately, because the
choice is a string and newIndex is an integer:

if(newIndex == choice) {

Let's move on to the service-worker.js file. There we handle three events: install, fetch,
and activate. In the install event handler, we cache all the dependencies—the files we need to
go offline:

return cache.addAll([
 'adobe-logo.png',
 'apple-logo.png',
 'google-logo.png',
 'style.css',
 'index.html',
 'index.js',
 'style.css'
]);

Inside the fetch handler, we check whether the resources are in the cache. If yes, then the
response is provided by the cache:

caches.match(event.req uest)
 .then(function(response) {
 if (response) {
 console.log('Fetching from the cache: ',
 event.request.url);
 return response;
 }

Chapter 3

105

Otherwise, return the result from the server itself:

else {
 console.log('Fetching from server: ',
 event.request.url);
 }
 return fetch(event.request);

Finally, we are forcing a controllerchange event on navigator.serviceWorker by
calling claim():

self.addEventListener('activate', function(event) {
 console.log('Activating the service worker!');
 event.waitUntil(self.clients.claim());
});

See also
 f The Registering a service worker in detail recipe of Chapter 1, Learning Service

Worker Basics

 f The Loading CSS offline recipe of Chapter 2, Working with Resource Files

Showing cached content first
If you are a regular visitor to a certain website, chances are that you may be loading most of
the resources, such as CSS and JavaScript files, from your cache, rather than from the server
itself. This saves us necessary bandwidth for the server, as well as requests over the network.
Having control over which content we deliver from the cache and server is a great advantage.
Server workers provide us with this powerful feature by having programmatic control over the
content. In this recipe, we are going to look at the methods that enable us to do so by creating
a performance art event viewer web app.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up
SSL for Mac.

Accessing Offline Content

106

How to do it...
Follow these instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/03/02/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Cache First, then Network</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="events">
 <h1>NYC Events TONIGHT</h1>
 <aside>

 <h2>Source</h2>
 <section>
 <h3>Network</h3>
 <input type="checkbox" name="network" id="network-
 disabled-checkbox">
 <label for="network">Disabled</label>

 <h3>Cache</h3>
 <input type="checkbox" name="cache" id="cache-
 disabled-checkbox">
 <label for="cache">Disabled</label>

 </section>
 <h2>Delay</h2>
 <section>
 <h3>Network</h3>
 <input type="text" name="network-delay"
 id="network-delay" value="400" /> ms
 <h3>Cache</h3>

https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/02/
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/02/

Chapter 3

107

 <input type="text" name="cache-delay" id="cache-
 delay" value="1000" /> ms
 </section>
 <input type="button" id="fetch-btn" value="FETCH" />
 </aside>
 <section class="data connection">
 <table>
 <tr>
 <td>Network</td>
 <td><output id='network-status'></output></td>
 </tr>
 <tr>
 <td>Cache</td>
 <td><output id='cache-status'></output><td>
 </tr>
 </table>
 </section>
 <section class="data detail">
 <output id="data"></output>
 </section>
 <script src="index.js"></script>
</body>
</html>

2. Create a CSS file called style.css in the same folder as the index.html file. You
can find the source code in the following location on GitHub:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/03/02/style.css

3. Create a JavaScript file called index.js in the same folder as the index.html file.
You can find the source code in the following location on GitHub:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/03/02/index.js

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/03/02/style.css
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/03/02/style.css
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/03/02/index.js
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/03/02/index.js

Accessing Offline Content

108

4. Open up a browser and go to index.html:

Chapter 3

109

5. First, we are requesting data from the network with caching enabled. Click on the
Fetch button:

Accessing Offline Content

110

6. If you click Fetch again, the data has been retrieved first from cache, and then from
the network, so you see duplicate data (see that the last line is the same as the first):

Chapter 3

111

7. Now we are going to select the Disabled checkbox under the Network label, and click
the Fetch button again, in order to fetch data only from the cache:

Accessing Offline Content

112

8. Select the Disabled checkbox under the Network label, as well as the Cache label,
and click the Fetch button again:

How it works...
In the index.js file, we are setting a page-specific name for the cache, as the caches are
origin-based, and no other page should use the same cache name:

var CACHE_NAME = 'cache-and-then-network';

If you inspect the Resources tab of the development tools, you will find the cache inside the
Cache Storage tab:

Chapter 3

113

If we have already fetched network data, we don't want the cache fetch to complete and
overwrite the data that we just got from the network. We use the networkDataReceived
flag to let the cache fetch callbacks to know whether a network fetch has already completed:

var networkDataReceived = false;

We are storing elapsed time for the network and cache in two variables:

var networkFetchStartTime;
var cacheFetchStartTime;

The source URL, for example, is pointing to a file location in GitHub via RawGit:

var SOURCE_URL = 'https://cdn.rawgit.com/szaranger/
szaranger.github.io/master/service-workers/03/02/events';

If you want to set up your own source URL, you can easily do so by creating a gist or a
repository on GitHub, and creating a file with your data in JSON format (you don't need the
.json extension). Once you've done that, copy the URL of the file, head over to https://
rawgit.com, and paste the link there to obtain another link with a content type header, as
shown in the following screenshot:

https://rawgit.com
https://rawgit.com

Accessing Offline Content

114

Between the time we press the Fetch button and when the data is received, we have to make
sure the user doesn't change the search criteria, or press the Fetch button again. To handle
this situation, we disable the controls:

function clear() {
 outlet.textContent = '';
 cacheStatus.textContent = '';
 networkStatus.textContent = '';
 networkDataReceived = false;
}

function disableEdit(enable) {
 fetchButton.disabled = enable;
 cacheDelayText.disabled = enable;
 cacheDisabledCheckbox.disabled = enable;
 networkDelayText.disabled = enable;
 networkDisabledCheckbox.disabled = enable;

 if(!enable) {
 clear();
 }
}

The returned data will be rendered to the screen in rows:

function displayEvents(events) {

 events.forEach(function(event) {
 var tickets = event.ticket ?
 'Tickets'
 : '';

 outlet.innerHTML = outlet.innerHTML +
 '<article>' +
 '' + formatDate(event.date) + ''
 +
 ' ' + event.title + '' +
 ' - ' + event.venue + ' ' +
 tickets +
 '</article>';
 });

}

Chapter 3

115

Each item of the events array will be printed to the screen as rows:

The function handleFetchComplete is the callback for both the cache and the network.

If the disabled checkbox is checked, we are simulating a network error by throwing an error:

var shouldNetworkError = networkDisabledCheckbox.checked,
 cloned;

 if (shouldNetworkError) {
 throw new Error('Network error');
 }

Because request bodies can only be read once, we have to clone the response:

cloned = response.clone();

We place the cloned response in the cache using cache.put as a key/value pair. This helps
subsequent cache fetches to find this update data:

caches.open(CACHE_NAME).then(function(cache) {
 cache.put(SOURCE_URL, cloned); // cache.put(URL, response)
});

Now we read the response in JSON format. Also, we make sure that any in-flight
cache requests will not be overwritten by the data we have just received, using the
networkDataReceived flag:

response.json().then(function(data) {
 displayEvents(data);
 networkDataReceived = true;
 });

To prevent overwriting the data we received from the network, we make sure only to update
the page if the network request has not yet returned:

result.json().then(function(data) {
 if (!networkDataReceived) {
 displayEvents(data);
 }
 });

Accessing Offline Content

116

When the user presses the Fetch button, they make nearly simultaneous requests of the
network and the cache for data. This happens on a page load in a real-world application,
instead of as a result of a user action:

fetchButton.addEventListener('click', function handleClick() {
...
}

We start by disabling any user input while the network fetch requests are initiated:

disableEdit(true);

networkStatus.textContent = 'Fetching events...';
networkFetchStartTime = Date.now();

We request data using the fetch API with a cache-busting URL, as well as the no-cache
option in order to support Firefox, which hasn't implemented the caching options yet:

networkFetch = fetch(SOURCE_URL + '?cacheBuster=' + now, {
 mode: 'cors',
 cache: 'no-cache',
 headers: headers
})

In order to simulate network delays, we wait before calling the network fetch callback. In
situations where the callback errors out, we have to make sure that we reject the promise we
received from the original fetch:

return new Promise(function(resolve, reject) {
 setTimeout(function() {
 try {
 handleFetchComplete(response);
 resolve();
 } catch (err) {
 reject(err);
 }
 }, networkDelay);
 });

To simulate cache delays, we wait before calling the cache fetch callback. If the callback
errors out, we make sure that we reject the promise we got from the original call to match:

return new Promise(function(resolve, reject) {
 setTimeout(function() {
 try {
 handleCacheFetchComplete(response);
 resolve();

Chapter 3

117

 } catch (err) {
 reject(err);
 }
 }, cacheDelay);
 });

The formatDate function is a helper function for us to convert the date format we receive in
the response into a much more readable format on the screen:

function formatDate(date) {
 var d = new Date(date),
 month = (d.getMonth() + 1).toString(),
 day = d.getDate().toString(),
 year = d.getFullYear();

 if (month.length < 2) month = '0' + month;
 if (day.length < 2) day = '0' + day;

 return [month, day, year].join('-');
}

If you use a different date format, you can shuffle the position of the array in the return
statement to your preferred format.

Implementing a cache and network race
If your client is using older and slower hardware, including older hard drives, there is a
chance that accessing resources from a hard drive could be slower than accessing the same
resources on a faster Internet connection. But just because some of your users are using
slower hardware, it doesn't justify accessing resources already in the hardware over the
network all the time, because some users may have faster hardware that could be a waste of
data. To resolve this issue, we can implement a solution that performs a race condition, and
fetch data according to which resolves first.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up
SSL for Mac.

Accessing Offline Content

118

How to do it...
Follow these instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/03/03/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Cache & Network Race</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <script src="index.js"></script>
</body>
</html>

2. Create a JavaScript file called style.css in the same folder as the index.html file
with the following code:
* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;

https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/03/
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/03/

Chapter 3

119

 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
}

h1 {
 color: #4CAF50;
}

img {
 padding: 20px 0;
 max-width: 200px;
}

.hidden {
 display: none;
}

#registration-status {
 background-color: #FFE454;
 padding: 10px;
}

3. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var scope = {
 scope: './'
};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

Accessing Offline Content

120

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.querySelector('#resetButton').addEventListener
('click',
 function() {
 navigator.serviceWorker.getRegistration().then(function
 (registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

4. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file with the following code:
'use strict';

var cacheName = 'cache-network-race';

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'index.html',
 'style.css',
 'index.js'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

self.addEventListener('fetch', function(event) {
 event.respondWith(
 resolveAny([
 caches.match(event.request),
 fetch(event.request)
])
);

Chapter 3

121

});

function resolveAny(promises) {
 return new Promise(function(resolve, reject) {
 promises = promises.map(function(promise) {
 return Promise.resolve(promise);
 });

 promises.forEach(function(promise) {
 promise.then(resolve);
 });

 promises.reduce(function(a, b) {
 return a.catch(function() {
 return b;
 });
 }).catch(function() {
 return reject(Error("All have failed"));
 });
 });
}

5. Open up a browser and go to the index.html file:

Accessing Offline Content

122

6. Now open up DevTools (Cmd + Alt + I or F12), go to the Network tab, click on the
dropdown, and select GPRS(50 kb/s) in order to simulate a slower network speed:

7. Refresh the page and you will see the same page. But if you view the network
requests, you will be able to find out that the service worker kicked in:

Chapter 3

123

How it works...
In the service-worker.js file, we are caching the necessary resources for us to go offline
and still use the application:

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'index.html',
 'style.css',
 'index.js'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

Accessing Offline Content

124

Then we create a function called resolveAny. The purpose of this function is to handle race
conditions in a proper manner. The promise has a function called race(). This function is of
no help to us, as it rejects if a promise has rejected before fulfilling.

The resolveAny function returns a new promise. Inside the promise, we make sure the array
we pass in is an array of promises:

promises = promises.map(function(promise) {
 return Promise.resolve(promise);
 });

Next, we make sure that we resolve the current promise as soon as another one in the array
gets resolved:

promises.forEach(function(promise) {
 promise.then(resolve);
 });

We also make sure to reject if all promises are rejected:

promises.reduce(function(a, b) {
 return a.catch(function() {
 return b;
 });
 }

The callback function of the event listener for fetch calls the resolveAny function and
passes in two functions, caches.match(event.request) and fetch(event.request).
Both these functions send the same request, resulting in a race condition.

Using window.caches
In this recipe, we look at how to prefetch specific resources during the installation of the
service worker, as well as how to use the window.cache to make requests against the Cache
Storage API, not within the scope of the service worker, but from the context of the HTML
document.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for
Mac.

Chapter 3

125

How to do it...
Follow these instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/03/04/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Using window.caches</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <section id="article-area">
 <h1>Bookmark App</h1>
 <form action="#" method="post">
 <div>
 <label for="new-bookmark">+Add Bookmark</label>
 <input type="text" name="new-bookmark" id="new-
 bookmark" placeholder="new bookmark">
 <input type="submit" value="Add">
 </div>
 </form>
 <ul id="articles">
 <div id="bookmark-status"></div>
 </section>
 <script src="index.js"></script>
 <script src="app.js"></script>
</body>
</html>

https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/04/
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/04/

Accessing Offline Content

126

2. Create a CSS file called style.css in the same folder as the index.html file. You
can find the source code on GitHub at the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/03/04/style.css

3. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var scope = {
 scope: './'
};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.querySelector('#resetButton').addEventListener
('click',
 function() {
 navigator.serviceWorker.getRegistration().
 then(function(registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/03/04/style.css
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/03/04/style.css

Chapter 3

127

4. Create a JavaScript file called app.js in the same folder as the index.html file.
The source code for this file can be found on GitHub at the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/03/04/app.js

5. Create an HTML file called prefetched.html:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Prefetched</title>
</head>
<body>
 <p>Prefetched Page</p>
</body>
</html>

6. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
'use strict';

var cacheVersion = 1;
var currentCaches = {
 prefetch: 'window-cache-v' + cacheVersion
};

self.addEventListener('install', function(event) {
 var prefetchUrls = [

 './prefetched.html',

];

 console.log('EVENT: install. Prefetching resource:',
 prefetchUrls);

 event.waitUntil(
 caches.open(currentCaches.prefetch).
 then(function(cache) {

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/03/04/app.js
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/03/04/app.js

Accessing Offline Content

128

 return cache.addAll(prefetchUrls.map(function
 (prefetchUrl) {
 return new Request(prefetchUrl, {mode: 'no-cors'});
 })).then(function() {
 console.log('SUCCESS: All resources fetched and
 cached.');
 });
 }).catch(function(error) {
 console.error('FAIL: Prefetch:', error);
 })
);
});

self.addEventListener('activate', function(event) {
 var expectedCacheNames = Object.keys(currentCaches).
 map(function(key) {
 return currentCaches[key];
 });

 event.waitUntil(
 caches.keys().then(function(cacheNames) {
 return Promise.all(
 cacheNames.map(function(cacheName) {
 if (expectedCacheNames.indexOf(cacheName) === -1)
 {
 console.log('DELETE: Out of date cache:',
 cacheName);
 return caches.delete(cacheName);
 }
 })
);
 })
);
});

7. Open up a browser and go to the index.html file. You will see one
prefetched bookmark:

Chapter 3

129

8. Add a bookmark by typing a URL and clicking on the Add button on the right:

9. You can delete a bookmark by clicking on the tick icon on the right-hand side
of the bookmark.

10. Add another bookmark and refresh the page. You will see the bookmarks are intact.

Accessing Offline Content

130

How it works...
In our service-worker.js file, we maintain a cache version in order to use a fresh cache
by incrementing the cacheVersion value. When the updated service worker kicks in, the old
caches will be removed as a part of the activate event handler:

var cacheVersion = 1;
var currentCaches = {
 prefetch: 'window-cache-v' + cacheVersion
};

The following resource will be displayed as a bookmarked URL when you load the page for the
first time, and the event will be logged in your developer console:

var prefetchUrls = [
 './prefetched.html',
];
console.log('EVENT: install. Prefetching resource:',
 prefetchUrls);

If there is a possibility that the resources being fetched are served off a server that does not
support CORS, it is important to use {mode: 'no-cors'}:

return new Request(prefetchUrl, {mode: 'no-cors'});

The catch() method handles any exceptions from the caches.open() and
cache.addAll() steps:

}).catch(function(error) {
 console.error('FAIL: Prefetch:', error);
})

In the event handler for activate, we delete all caches that are not named in
currentCaches. While in this example there is only one cache, the same logic handles
cases where there are multiple versioned caches:

var expectedCacheNames =
Object.keys(currentCaches).map(function(key) {
 return currentCaches[key];
 });

If this cache name isn't present in the array of "expected" cache names, then delete it:

if (expectedCacheNames.indexOf(cacheName) === -1) {
console.log('DELETE: Out of date cache:', cacheName);
 return caches.delete(cacheName);
}

Chapter 3

131

Let's move on to the app.js file, where most of the work is taking place. The
initializeBookmarks function attaches an event listener to the form for the submit
button. In the callback for submit, the value of the text field is extracted and then a list is
generated with it. This list is then attached to the unordered list represented by the ID of the
articles in the index.html file. We then call the showBookmarks() function:

function initializeBookmarks() {
 form.addEventListener('submit', function(event) {
 var text = newBookmark.value;
 if (text !== '') {
 articles.innerHTML += '' + text + '';
 addUrlToCache(text);
 newBookmark.value = '';
 newBookmark.focus();
 }
 event.preventDefault();
 }, false);
 showBookmarks();
}

We also add an event listener to the unordered articles list for the click event. Inside the
callback, we remove the item itself if it's a list (li) element. This is how we remove articles
from the list:

articles.addEventListener('click', function(event) {
 var target = event.target;
 if (target.tagName === 'LI') {
 target.parentNode.removeChild(target);
 };

 event.preventDefault();
}, false);

In the showBookmarks() function, we clear out any of the previous URLs, in case this
function was called after adding a new URL to the cache:

while (articles.firstChild) {
 articles.removeChild(articles.firstChild);
}

We then iterate over all the available caches, and for each of the caches, iterate over all of the
URLs, adding each cache to the bookmark list:

window.caches.keys().then(function(cacheNames) {
 cacheNames.forEach(function(cacheName) {
 window.caches.open(cacheName).then(function(cache) {

Accessing Offline Content

132

 cache.keys().then(function(requests) {
 requests.forEach(function(request) {
 addRequestToBookmarks(cacheName, request);
 });
 });
 });
 });
 });

Now let's look at the function that actually uses window.fetch() to retrieve a response
from the network and store it in the named cache. The important thing here is that the service
worker controlling this page has no fetch event handler, therefore this request is made without
the involvement of the service worker:

function addUrlToCache(url) {
 window.fetch(url, { mode: 'no-cors' }).then(function(response) {
 if (response.status < 400) {
 caches.open(cacheName).then(function(cache) {
 cache.put(url, response).then(showBookmarks);
 });
 }
 }).catch(function(error) {
 document.querySelector('#status').textContent = error;
 });
}

The addRequestToBookmarks() function is a helper function for adding a cached request
to the list of the cached bookmarks. In this function, we're creating a span, a button, and a list
item, and appending those to the unordered articles list:

function addRequestToBookmarks(cacheName, request) {
 var url = request.url,
 span = document.createElement('span'),
 button = document.createElement('button'),
 li = document.createElement('li');

 span.textContent = url;
 button.textContent = '✔';
 button.dataset.url = url;
 button.dataset.cacheName = cacheName;
 button.classList.add('done');
 button.addEventListener('click', function() {
 removeCachedBookmark(this.dataset.cacheName,
 this.dataset.url).then(function() {
 var parent = this.parentNode,

Chapter 3

133

 grandParent = parent.parentNode;
 grandParent.removeChild(parent);
 }.bind(this));
 });
 li.appendChild(span);
 li.appendChild(button);
 articles.appendChild(li);
}

Next, the removeCachedBookmark() function removes the cache entry by a given a cache
name and a URL:

function removeCachedBookmark(cacheName, url) {
 return window.caches.open(cacheName).then(function(cache) {
 return cache.delete(url);
 });
}

The waitUntilInstalled() helper function returns a promise which gets resolved once
the service worker registration passes the installing state:

function waitUntilInstalled(registration) {
 return new Promise(function(resolve, reject) {
 if (registration.installing) {

If the current registration portrays the installing service worker, then we make sure to
wait until the installation step, where the resources are pre-fetched, completes to display the
bookmark list:

registration.installing.addEventListener('statechange',
function(event) {
 if (event.target.state === 'installed') {
 resolve();
 } else if(event.target.state === 'redundant') {
 reject();
 }
});

If that's not the case, and this isn't the installing service worker, then we can safely
assume the installation must have been completed during a previous visit to the current
page, and the resources have already been prefetched. Therefore we can now show the list of
bookmarks right away:

 } else {
 resolve();
 }

Accessing Offline Content

134

Implementing stale-while-revalidate
Having the latest version of the cache is sometimes not absolutely necessary for resources
such as certain images of a web page. We can use the cached version if available, and fetch
an update next time.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for
Mac.

How to do it...
Follow these instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/03/05/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Cache First, then Network</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <section>

 </section>
 <script src="index.js"></script>
</body>
</html>

https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/05/
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/03/05/

Chapter 3

135

2. Create a JavaScript file called index.js in the same folder as the index.html file
with the following code:
'use strict';

var scope = {
 scope: './'
};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.querySelector('#resetButton').addEventListener
('click',
 function() {
 navigator.serviceWorker.getRegistration().
 then(function(registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

3. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
'use strict';

var cacheName= 'stale-while-revalidate';

self.addEventListener('install', function(event) {
 event.waitUntil(

Accessing Offline Content

136

 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'adobe-logo.png',
 'style.css',
 'index.html',
 'index.js',
 'style.css'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.open('stale-while-revalidate')
 .then(function(cache) {
 return cache.match(event.request)
 .then(function(response) {
 var promise;

 if (response) {
 console.log('Fetching from the cache: ',
 event.request.url);
 } else {
 console.log('Fetching from server: ',
 event.request.url);
 }

 promise = fetch(event.request)
 .then(function(networkResponse) {
 var cloned = networkResponse.clone();
 cache.put(event.request, cloned);
 console.log('Fetching from the cache: ',
 event.request.url);
 return networkResponse;
 }
)
 console.log('Fetching from server: ',
 event.request.url);

Chapter 3

137

 return response || promise;
 }
)
 }
)
);
});

self.addEventListener('activate', function(event) {
 console.log('Activating the service worker!');
 event.waitUntil(self.clients.claim());
});

4. Download the adobe-log.png image from the source code, or use your own image
in the same folder as the index.html file.

5. Open up a browser and go to index.html. You will see the Registration status:
successful message and the logo:

Accessing Offline Content

138

6. Now if you refresh the page and inspect the Console tab of the Developer Tools, you
will be able to see that the adobe-logo.png file has been fetched from the cache.

How it works...
In our service-worker.js file, we make sure that if a cached version is available, we use it
instead of a network request, but fetch an update the next time:

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.open('stale-while-revalidate')
 .then(function(cache) {
 return cache.match(event.request)
 .then(function(response) {
 var promise;

 if (response) {
 console.log('Fetching from the cache: ',
 event.request.url);
 } else {
 console.log('Fetching from server: ',
 event.request.url);
 }
 promise = fetch(event.request)
 .then(function(networkResponse) {
 var cloned = networkResponse.clone();
 cache.put(event.request, cloned);
 console.log('Fetching from the cache: ',
 event.request.url);
 return networkResponse;
 }
)
 console.log('Fetching from server: ',
 event.request.url);
 return response || promise;
 }
)
 }
)
);
});

139

4
Accessing Offline

Content with Advanced
Techniques

In this chapter, we will cover the following topics:

 f Templating

 f Implementing read-through caching

 f Allowing offline Google Analytics

 f Allowing offline user interaction

 f Implementing selective caching

Introduction
In this chapter, we will continue to improve on our experience working with offline content
using the service worker.

We will look into advanced techniques, including how to use templating with a template
engine, diving into Google Analytics, how to solve issues with offline user interaction, and
implementing selective caching.

Let's start off this chapter by experimenting with templating for the service worker.

Accessing Offline Content with Advanced Techniques

140

Templating
Traditional server-side page rendering has become a thing of the past with modern-day
single page applications (SPAs). Even though server-side rendering is faster, state data
will prove hard to implement with the service worker. Instead, we can request JSON data
and a template, allow the service worker to take in the data and the template, and render a
response page. JavaScript templating is a client-side data binding method, implemented with
the use of the JavaScript language.

In order to learn more about templating, please refer the following link:

https://en.wikipedia.org/wiki/JavaScript_templating

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/04/01/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Templating</title>
 <style>
 * {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
 }

https://en.wikipedia.org/wiki/JavaScript_templating
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/04/01/
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/04/01/

Chapter 4

141

 body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
 }

 main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;
 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
 }

 h1 {
 color: #4CAF50;
 }

 img {
 padding: 20px 0;
 max-width: 200px;
 }

 .hidden {
 display: none;
 }

 .frameworks {
 margin: 20px auto;
 }

 table, th, td {
 border: 1px solid black;
 border-collapse: collapse;
 }

 .frameworks th {
 background-color: #000;
 color: #FFF;
 padding: 3px 10px;
 }

Accessing Offline Content with Advanced Techniques

142

 .frameworks tr {
 text-align: left;
 }

 .frameworks td {
 background-color: #FFF;
 padding: 3px 10px;
 }

 #registration-status {
 background-color: #FFE454;
 padding: 10px;
 }
 </style>
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <section>
 <h2>JS Frameworks & Creators</h2>
 <table class="frameworks">
 <tr>
 <th>Framework</th>
 <th>Name</th>
 <th>Twitter</th>
 </tr>
 {{#users}}
 <tr>
 <td>{{framework}}</td>
 <td>{{person.firstName}}
 {{person.lastName}}</td>
 <td><a href="https://twitter.com/
 {{twitter}}">@{{twitter}}</td>
 </tr>
 {{/users}}
 </table>
 </section>

 <script>
 'use strict';

Chapter 4

143

 var scope = {
 scope: './'
 };

 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
 } else {
 printStatus('unavailable');
 }

 function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
 }

 document.querySelector('#resetButton').
 addEventListener('click',
 function() {
 navigator.serviceWorker.getRegistration().
 then(function(registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);
 </script>
</body>
</html>

2. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
'use strict';

importScripts('handlebars.js');

var cacheName= 'template-cache';

Accessing Offline Content with Advanced Techniques

144

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'index.html',
 'service-worker.js',
 'people.json'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

self.addEventListener('fetch', function(event) {
 var requestURL = new URL(event.request.url);

 event.respondWith(
 Promise.all([
 caches.match('index.html').then(function(res) {
 if(res) {
 return res.text();
 }
 }),
 caches.match('people.json').then(function(res) {
 return res.json();
 })
]).then(function(resps) {
 var template = resps[0],
 data = resps[1],
 renderTemplate = Handlebars.compile(template);

 return new Response(renderTemplate(data), {
 headers: {
 'Content-Type': 'text/html'
 }
 });
 })
);
});

Chapter 4

145

3. Create a JSON file called people.js, in the same folder as the index.html file,
with the following code:
{
 "users":[
 {
 "framework": "Ember",
 "person":{
 "firstName": "Yehuda",
 "lastName": "Katz"
 },
 "twitter": "wycats"
 },
 {
 "framework": "React",
 "person":{
 "firstName": "Jordan",
 "lastName": "Walke"
 },
 "twitter": "jordwalke"
 },
 {
 "framework": "Angular",
 "person":{
 "firstName": "Miško",
 "lastName": "Hevery"
 },
 "twitter": "mhevery"
 }
]
}

Accessing Offline Content with Advanced Techniques

146

4. Download the handlebars library from http://handlebarsjs.com/
installation.html and save as handlebars.js in the same directory as the
index.html file, as shown in the following screenshot:

http://handlebarsjs.com/installation.html
http://handlebarsjs.com/installation.html

Chapter 4

147

5. Open up a browser and go to the index.html file:

How it works...
We are using handlebars as our choice of templating engine for this example.

The template for the service worker is the index.html file itself. We are using double curly
braces, the Handlebars syntax, inside a table:

<table class="frameworks">
 <tr>
 <th>Framework</th>
 <th>Name</th>
 <th>Twitter</th>
 </tr>
 {{#users}}
 <tr>
 <td>{{framework}}</td>
 <td>{{person.firstName}} {{person.lastName}}</td>
 <td>
 @{{twitter}}</td>
 </tr>
 {{/users}}
</table>

Accessing Offline Content with Advanced Techniques

148

The values are read from the JSON file that we feed into the template. The {{#users}} tag
is an array, and it works like a loop, printing out the content inside the users property to the
screen by replacing the placeholder, such as {{twitter}}, with the relevant value.

The people.json file contains data we need for our template. The users property contains
an array of the users:

{
 "users":[
 {
 "framework": "Ember",
 "person":{
 "firstName": "Yehuda",
 "lastName": "Katz"
 },
 "twitter": "wycats"
 },
 {
 "framework": "React",
 "person":{
 "firstName": "Jordan",
 "lastName": "Walke"
 },
 "twitter": "jordwalke"
 },
 {
 "framework": "Angular",
 "person":{
 "firstName": "Miško",
 "lastName": "Hevery"
 },
 "twitter": "mhevery"
 }
]
}

Let's move on to the service-worker.js file. There we handle two events: install and fetch.
In the install event handler, we are caching all the dependencies:

return cache.addAll([
 'index.html',
 'style.css',

Chapter 4

149

 'service-worker.js',
 'people.json'
]);

Inside the fetch handler, we check to see whether the fetch request is the template, in our
case the index.html file, and we send the response in text format:

caches.match('index.html').then(function(response) {
 if(response) {
 return response.text();
 }
 }),

If the fetch request is the JSON file, we return the result in JSON format:

 caches.match('people.json').then(function(response) {
 return response.json();
 })

Finally, we render the template with the JSON data and then send the response back
with a header:

]).then(function(resps) {
 var template = resps[0],
 data = resps[1],
 renderTemplate = Handlebars.compile(template);

 return new Response(renderTemplate(data), {
 headers: {
 'Content-Type': 'text/html'
 }
 });
 })

The Handlebars.compile() function takes in a template and returns a function, which can
in turn take in data and render an output.

See also
 f The Registering a service worker in detail recipe in Chapter 1, Learning Service

Worker Basics

Accessing Offline Content with Advanced Techniques

150

Implementing read-through caching
Read-through caching is an assertive approach to all-out caching for types of static content
you visit regularly. This is not very suitable for dynamic content, such as news or sports. A
selective caching approach would be better suited for such instances. Read-through caching
saves us the necessary bandwidth for the server, as well as requests over the network. The
way read-through caching works is that after the service worker takes control of your page,
when the first fetch() request is called, the response will be cached, and subsequent
requests to the same URL will be served from the cache.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for
Mac.

How to do it...
Follow the instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/04/02/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Read-through Caching</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>

https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/04/02
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/04/02

Chapter 4

151

 <section</section>
 <script src="index.js"></script>
</body>
</html>

2. Create a CSS file called style.css in the same folder as the index.html file:
* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;
 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
}

h1 {
 color: #4CAF50;
}

img {
 padding: 20px 0;
 max-width: 200px;
}

.hidden {
 display: none;
}

#registration-status {
 background-color: #FFE454;
 padding: 10px;
}

Accessing Offline Content with Advanced Techniques

152

3. Create a JavaScript file called index.js in the same folder as the index.html file:
'use strict';

var scope = {
 scope: './'
};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.querySelector('#resetButton').
addEventListener('click',
 function() {
 navigator.serviceWorker.getRegistration().
 then(function(registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

4. Create a JavaScript file called service-worker.js in the same folder as the
index.html file:
'use strict';

var version = 1,
 currentCaches= { readThrough : 'version-' + version },
 NOT_FOUND = -1,

Chapter 4

153

 ERROR_RESPONSE = 400;

self.addEventListener('activate', function(event) {
 var expectingCacheNames =
 Object.keys(currentCaches).map(function(key) {
 return currentCaches[key];
 });

 event.waitUntil(
 caches.keys().then(function(cacheNames) {
 return Promise.all(
 cacheNames.map(function(cacheName) {
 if (expectingCacheNames.indexOf(cacheName) ===
 NOT_FOUND) {
 console.log(
 '%c DELETE: Out of date cache: %s',
 'color: #ff0000',
 cacheName
);
 return caches.delete(cacheName);
 }
 })
);
 })
);
});

self.addEventListener('fetch', function(event) {
 var request = event.request,
 requestUrl = request.url;

 console.log(
 '%c EVENT: %c Handling fetch event for %s',
 'color: #F57F20',
 'color: #000',
 requestUrl
);

 event.respondWith(
 caches.open(currentCaches['readThrough']).
 then(function(cache) {
 return cache.match(request).then(function(response) {

Accessing Offline Content with Advanced Techniques

154

 if (response) {
 console.log(
 '%c P RESPONSE: %c Found in cache: %s',
 'color: #5EBD00',
 'color: #000000',
 response
);

 return response;
 }
 console.log(
 '%c O RESPONSE: %c For %s not found in cache. ' +
 'fetching from network...',
 'color: #F05266',
 'color: #000',
 requestUrl
);

 return fetch(request.clone()).
 then(function(response) {
 console.log(
 '%c RESPONSE: %c For %s from network is: %O',
 'color: #F05266',
 'color: #000',
 requestUrl,
 response
);

 if (response.status < ERROR_RESPONSE) {
 cache.put(request, response.clone());
 }

 return response;
 });
 }).catch(function(err) {
 console.error('FAIL: Read-through cache:', err);
 throw error;
 });
 })
);
});

Chapter 4

155

5. Open up a browser and go to index.html:

6. Open up Developer Tools (Cmd + Alt + I or F12). You will see messages logged on the
console, saying most resources were not found in the cache, so were fetched from
the network:

Accessing Offline Content with Advanced Techniques

156

7. If you refresh the page, you will see different messages appearing in the console. This
time, the resources are fetched from the cache:

How it works...
In the service-worker.js file, we are setting a page-specific name for the cache, as the
caches are origin-based, and no other page should use the same cache name. We are also
versioning the cache, in order to address a scenario where you would want a fresh cache; in
this instance, we can update the version:

var version = 1,
 currentCaches= { readThrough : 'version-' + version },

We also make sure that the old caches are purged at the time the service worker is activated.
So, we delete all the caches that do not match the name we previously specified for our
cache name:

self.addEventListener('activate', function(event) {
 var expectingCacheNames =
 Object.keys(currentCaches).map(function(key) {
 return currentCaches[key];
 });

 event.waitUntil(
 caches.keys().then(function(cacheNames) {
 return Promise.all(
 cacheNames.map(function(cacheName) {
 if (expectingCacheNames.indexOf(cacheName) ===
 NOT_FOUND) {
 console.log('%c DELETE: Out of date cache: %s',
 'color: #ff0000', cacheName);
 return caches.delete(cacheName);
 }
 })
);

Chapter 4

157

 })
);
});

The fetch event listener looks into the cache to find whether our requested resource is in the
cache; if it is found, it will respond with the entry:

event.respondWith(
 caches.open(currentCaches['readThrough']).then(function(cache)
 {
 return cache.match(request).then(function(response) {
 if (response) {
 console.log(
 '%c ü RESPONSE: %c Found in cache: %s',
 'color: #5EBD00','color: #000000',response
);

 return response;
 }

Otherwise, if there is no entry for event.request in the cache, the response is going to be
undefined, so we have to fetch the resource using fetch():

return fetch(request.clone()).then(function(response) {
 console.log(
 '%c RESPONSE: %c For %s from network is: %O',
 'color: #F05266',
 'color: #000',
 requestUrl,
 response
);

Here, the clone() call is useful if we use cache.put() later.

Making a copy is necessary because both cache.put() and fetch() will consume
the request.

We also make sure not to cache error responses by checking the response.status
parameter is not 400 or above:

if (response.status < ERROR_RESPONSE) {

Accessing Offline Content with Advanced Techniques

158

Lastly, we call the clone() method on the response, in order to save a copy in the cache,
and then return the response to the browser:

…
cache.put(request, response.clone());
}

return response;

Allowing offline Google Analytics
We discussed read-through caching in the previous recipe. Let's quickly recap what read-
through caching is. After a service worker gains control of the page, the first time a new
resource has been requested, the response will be stored in the service worker cache.

In this recipe, we are utilizing this feature to store any failed Google Analytics/collect
pings in an IndexedDb database. IndexedDb is a client-side, user-specific storage specification
that allows us to store data in an indexed manner, and is backed by an API that provides
search capabilities. So any time the service worker starts up, any saved Google Analytics
pings will be replayed.

To learn more about IndexedDb you can follow these links:

 f https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/
Using_IndexedDB

 f http://seanamarasinghe.com/developer/indexeddb/

This will give you a great platform to perform transactions offline, regardless of connectivity
and availability.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
http://seanamarasinghe.com/developer/indexeddb/

Chapter 4

159

How to do it...
Follow the instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/04/03/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Offline Google Analytics</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <section id="outlet">
 <p id="message"></p>
 <div id="images" style="display: none">
 <img src="https://raw.githubusercontent.com/
 szaranger/szaranger.github.io/master/service-
 workers/04/03/serice-worker.jpg">
 </div>
 </section>
 <script src="index.js"></script>
 <script>
 /* jshint ignore:start */
 (function(i,s,o,g,r,a,m){i
 ['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new
 Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;
 a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','//www.google-
 analytics.com/analytics.js','ga');
 ga('create', 'UA-12345678-1', 'auto');

https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/04/03/
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/04/03/

Accessing Offline Content with Advanced Techniques

160

 ga('send', 'pageview');
 /* jshint ignore:end */
 </script>
</body>
</html>

2. Create a CSS file called style.css, in the same folder as the index.html file,
with the following code:
* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;
 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
}

h1 {
 color: #4CAF50;
}

img {
 padding: 20px 0;
 max-width: 400px;
}

.hidden {
 display: none;
}

Chapter 4

161

#registration-status {
 background-color: #FFE454;
 padding: 10px;
}

3. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var scope = {
 scope: './'
};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(

 'service-worker.js',

 scope
).then(function(serviceWorker) {
 printStatus('successful');
 if (navigator.serviceWorker.controller) {
 showImages();
 } else {
 document.querySelector('#message').textContent =
 'Reload the page for images to be loaded from the
 service worker cache';
 }
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.querySelector('#resetButton').
addEventListener('click',
 function() {

Accessing Offline Content with Advanced Techniques

162

 navigator.serviceWorker.getRegistration().
 then(function(registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

function showImages() {
 document.querySelector('#images').style.display =
 'block';
}

4. Create a JavaScript file called analytics.js, in the same folder as the
index.html file, with the following code:
'use strict';

var RW = 'readwrite';

function checkForAnalyticsRequest(requestUrl) {
 var url = new URL(requestUrl),
 regex = /^(w{3}|ssl)\.google-analytics.com$/;

 if (url.hostname.match(regex) && url.pathname ===
 '/collect') {
 console.log('INDEXEDDB: Store request(Google analytics)
 for replaying later.');
 saveGoogleAnalyticsRequest(requestUrl);
 }
}

function saveGoogleAnalyticsRequest(requestUrl) {
 getIDBObjectStore(idbInstance, idbStore, RW).add({
 url: requestUrl,
 timestamp: Date.now()
 });
}

function replayGoogleAnalyticsRequests(idbInstance,
idbStore, throttle) {
 var savedGoogleAnalyticsRequests = [];

Chapter 4

163

 getIDBObjectStore(idbInstance,
 idbStore).openCursor().onsuccess = function(event) {
 var cursor = event.target.result;

 if (cursor) {
 savedGoogleAnalyticsRequests.push(cursor.value);
 cursor.continue();
 } else {
 console.log('REPLAY: Starting %d Google Analytics
 requests',
 savedGoogleAnalyticsRequests.length);

 savedGoogleAnalyticsRequests.forEach
 (function(savedRequest) {
 var queueTime = Date.now() -
 savedRequest.timestamp;
 if (queueTime > throttle) {
 getIDBObjectStore(idbInstance,
 idbStore, RW).delete(savedRequest.url);
 console.log('REQUEST: Queued for %dms ' +
 'STOPPED: Replay attempt', queueTime);
 } else {
 var requestUrl = savedRequest.url +
 '&qt=' + queueTime;

 console.log('%c ♫ REPLAY: %s %s', 'color:
 #1C99D8', 'in progress...', requestUrl);

 fetch(requestUrl).then(function(response) {
 if (response.status < 400) {
 getIDBObjectStore(idbInstance, idbStore,
 RW).delete(savedRequest.url);
 console.log('%c ♫ REPLAY: %s', 'color:
 #1C99D8', 'success');
 } else {
 console.error('♫ REPLAY: fail -', response);
 }
 }).catch(function(err) {
 console.error('♫ REPLAY: fail - ', err);
 });
 }
 });
 }
 };
}

Accessing Offline Content with Advanced Techniques

164

5. Open up a browser and go to the index.html file:

6. Now open up DevTools (Cmd + Alt + I or F12) and go to the Network tab. You will see
the /collect requests have a state of 200, which means successful:

Chapter 4

165

7. Refresh the page. You will see an image as shown in the following screenshot:

8. Go to the Console tab of DevTools:

Accessing Offline Content with Advanced Techniques

166

9. Now, go to the Network tab of DevTools and select Offline:

10. Refresh the page and you will still see the same page, but if you view the network
requests, you will be able to find out that the service worker has saved the analytics
requests in IndexedDb:

11. Now change the Offline option to No throttling in DevTools:

12. Click on the Reset button on this page to refresh the service worker, and monitor the
console in DevTools. You will see that the replay message extracted from IndexedDb
has been sent:

Chapter 4

167

How it works...
In the service-worker.js file, we are accessing IndexedDb by getting a reference to it.
Then we go on attaching event handlers for the error, upgradeneed, and onsuccess
events of the database instance:

var db = openIDBDatabase('offline-google-analytics', idbVersion);
db.onerror = function(err) {
 console.error('%c û ERROR: IndexedDB - %s', 'color: #ff0000',
 err);
};

db.onupgradeneeded = function() {
 this.result.createObjectStore(idbStore, {keyPath: 'url'});
};

db.onsuccess = function() {
 idbInstance = this.result;
 replayGoogleAnalyticsRequests(idbInstance, idbStore, throttle);
};

Because of the read-through, caching will cache the initial requests; the subsequent requests
to the same resource will be handled by the fetch() event handler of the service worker.
The fetch event handler queries the cache for requests in the currentCaches cache, and
sends the response back to the browser:

event.respondWith(
 caches.open(currentCaches['offline-google-
 analytics']).then(function(cache) {
 return cache.match(event.request).then(function(res) {
 if (res) {
 console.log(
 '%c ü RESPONSE: %c Found in cache: %s',
 'color: #5EBD00', 'color: #000000', res
);

 return res;
 }

Accessing Offline Content with Advanced Techniques

168

If the response was not found, it will send a fetch request to the network:

 return fetch(event.request.clone()).then(function(res) {
 console.log('%c ü RESPONSE: %c For %s from network: %O',
 'color: #5EBD00', 'color: #000000',
 event.request.url, res);

 if (res.status < 400) {
 cache.put(event.request, res.clone());
 }

If the response for the preceding request was successful, the response will be cloned and
added to the cache, with the request as the key and the response as the value:

promises = promises.map(function(promise) {
 return Promise.resolve(promise);
 });

Next, we make sure that we resolve the current promise as soon as another one in the array
gets resolved:

if (res.status < 400) {
 cache.put(event.request, res.clone());
 }

If the response is not a server error, and is likely to be a timeout, we pass the request URL to
checkForAnalyticsRequest():

} else if (res.status >= 500) {
 checkForAnalyticsRequest(event.request.url);
 }

The checkForAnalyticsRequest() function is in the analytics.js file. Let's examine
this method. The passed-in URL is first checked to make sure whether it's a call to
google-analytics.com, regardless of whether the subdomain is www or ssl, and the path
name has /collect in it. This is to make sure this is an analytics ping:

function checkForAnalyticsRequest(requestUrl) {
 var url = new URL(requestUrl),
 regex = /^(w{3}|ssl)\.google-analytics.com$/;

 if (url.hostname.match(regex) && url.pathname === '/collect') {
 console.log('INDEXEDDB: Store request(Google analytics) for
 replaying later.');
 saveGoogleAnalyticsRequest(requestUrl);
 }
}

Chapter 4

169

The saveGoogleAnalyticsRequest() method will add the URL and the timestamp to the
store, which in turn saves the entry.

The onsuccess() method, back in the service-worker.js file, calls the
replayGoogleAnalyticsRequests() method. Inside this method, the analytics requests
will be saved in a queue called savedGoogleAnalyticsRequests:

function replayGoogleAnalyticsRequests(idbInstance, idbStore,
throttle) {
 var savedGoogleAnalyticsRequests = [];

 getIDBObjectStore(idbInstance, idbStore).openCursor().onsuccess
 = function(event) {
 var cursor = event.target.result;

The openCursor() function is a pointer to the database where you can traverse records.

The callback of the onsuccess event handler will pass in the value of event.target.
result into the savedGoogleAnalyticsRequests array:

getIDBObjectStore(idbInstance, idbStore).openCursor().onsuccess =
function(event) {
 var cursor = event.target.result;

 if (cursor) {
 savedGoogleAnalyticsRequests.push(cursor.value);
 cursor.continue();
 }

Otherwise, each saved Google Analytics request will be replayed:

} else {
 console.log('REPLAY: Starting %d Google Analytics requests',
 savedGoogleAnalyticsRequests.length);

 savedGoogleAnalyticsRequests.forEach(function(savedRequest) {
 var queueTime = Date.now() - savedRequest.timestamp;
 if (queueTime > throttle) {
 getIDBObjectStore(idbInstance, idbStore,
 RW).delete(savedRequest.url);
 console.log('REQUEST: Queued for %dms ' +
 'STOPPED: Replay attempt', queueTime);
 } else {
 var requestUrl = savedRequest.url + '&qt=' + queueTime;

Accessing Offline Content with Advanced Techniques

170

 console.log('%c ♫ REPLAY: %s %s', 'color: #1C99D8', 'in
 progress...', requestUrl);

 fetch(requestUrl).then(function(response) {
 if (response.status < 400) {
 getIDBObjectStore(idbInstance, idbStore,
 RW).delete(savedRequest.url);
 console.log('%c ♫ REPLAY: %s', 'color: #1C99D8',
 'success');
 } else {
 console.error('♫ REPLAY: fail -', response);
 }
 }).catch(function(err) {
 console.error('♫ REPLAY: fail - ', err);
 });
 }
 });
 }

See also
 f The Implementing read-through caching recipe

Allowing offline user interaction
Most websites out there, including news articles, sports videos, or music, are not quite able to
be taken offline completely, given their amount of content. There is no real reason for having
everything in your cache if you don't access them. But giving the user the option of saving
the content in the cache to read later is the ideal solution. In this recipe, we are going to
investigate how we can achieve this.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

Chapter 4

171

How to do it...
Follow the instructions to set up your file structure. Alternatively, you can download the files
from the following location:

https://github.com/szaranger/szaranger.github.io/tree/master/service-
workers/04/04/

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Offline User Interaction</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <section>
 <video width="320" height="240" id="video-01" controls>
 <source src="video.mp4" type="video/mp4">
 Your browser does not support the video tag.
 </video>
 <input type="button" id="watch-later" value="Watch
 Later" />
 </section>
 <script src="index.js"></script>
</body>
</html>

2. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var scope = {
 scope: './'
};

https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/04/04/
https://github.com/szaranger/szaranger.github.io/tree/master/service-workers/04/04/

Accessing Offline Content with Advanced Techniques

172

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

document.querySelector('#resetButton').
addEventListener('click',
 function() {
 navigator.serviceWorker.getRegistration().
 then(function(registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.getElementById('watch-later').
addEventListener('click', function(event) {
 event.preventDefault();

 caches.open('video').then(function(cache) {
 fetch('video.mp4').then(function(response) {
 return response.url;
 }).then(function(url) {
 cache.add(url);
 });
 });
});

Chapter 4

173

3. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
'use strict';

var cacheName= 'user-interaction-cache';

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'index.html'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request)
 .then(function(response) {
 if (response) {
 console.log('Fetching from the cache: ',
 event.request.url);
 return response;
 } else {
 console.log('Fetching from server: ',
 event.request.url);
 }
 return fetch(event.request);
 }
)
);
});

self.addEventListener('activate', function(event) {
 console.log('Activating the service worker!');
 event.waitUntil(self.clients.claim());
});

Accessing Offline Content with Advanced Techniques

174

4. Create a CSS file called style.css, in the same folder as the index.html file, with
the following code:
* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;
 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
}

h1 {
 color: #4CAF50;
}

img {
 padding: 20px 0;
 max-width: 200px;
}

.hidden {
 display: none;
}

#registration-status {
 background-color: #FFE454;
 padding: 10px;
}

Chapter 4

175

input#watch-later {
 display: block;
 margin: 10px auto;
 padding: 50px;
}

5. Open up a browser and go to the index.html file. You will see one prefetched
bookmark:

6. Add the video to the cache by clicking on the Watch Later button:

Accessing Offline Content with Advanced Techniques

176

7. Now, change the Offline option to No throttling in DevTools:

8. Now refresh the page. You will see that styles aren't loaded, but the video is still
accessible:

How it works...
In our service-worker.js file, we are only caching the index.html file in order to load
the page:

caches.open(cacheName)
 .then(function(cache) {

Chapter 4

177

 return cache.addAll([
 'index.html'
]);
 })

In the index.html file, we have a video tag with its source pointing to a video file. If the
.mp4 extension is not supported by the browser, it will show the Your browser does not
support the video tag message:

<section>
 <video width="320" height="240" id="video-01" controls>
 <source src="video.mp4" type="video/mp4">
 Your browser does not support the video tag.
 </video>
 <input type="button" id="watch-later" value="Watch Later" />
 </section>

When you click the Watch Later button, the event handler gets fired, which is in turn is
handled inside the index.js file:

document.getElementById('watch-later').addEventListener('click',
function(event) {
 event.preventDefault();

 caches.open('video').then(function(cache) {
 fetch('video.mp4').then(function(response) {
 return response.url;
 }).then(function(url) {
 cache.add(url);
 });
 });
});

The cache.add() function adds the response URL to the cache. Back in service-
worker.js, the event listener for fetch retrieves this saved response when we refresh the
page in offline mode:

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request)
 .then(function(response) {
 if (response) {
 console.log('Fetching from the cache: ',
 event.request.url);
 return response;

Accessing Offline Content with Advanced Techniques

178

 } else {
 console.log('Fetching from server: ',
 event.request.url);
 }
 return fetch(event.request);
 }
)
);
});

Implementing selective caching
In the second recipe of this chapter, Implementing read-through caching, we discussed
caching all resources at the time of the first request, and we talked about how it does not suit
some scenarios, such as news or sports, where most articles will become outdated and you
will never access them again. The solution we pointed out at the time was selective caching.
So let's look at a working example.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Cache First, then Network</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>

Chapter 4

179

 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <section id="outlet">
 <p></p>
 </section>
 <script src="index.js"></script>
</body>
</html>

2. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var scope = {
 scope: './'
};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 document.querySelector('#outlet p').textContent =
 'The service worker controlling this page has cached
 this funky font.';
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.querySelector('#resetButton').addEventListener
('click',

Accessing Offline Content with Advanced Techniques

180

 function() {
 navigator.serviceWorker.getRegistration().
 then(function(registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

3. Download the webfont-serif.woff file from the source code, or use your own font
file, in the same folder as the index.html file.

4. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
'use strict';

var cacheVersion = 1,
 currentCaches = {
 font: 'selective-caching-v' + cacheVersion
};

self.addEventListener('activate', function(event) {
 var cacheNamesExpected =
 Object.keys(currentCaches).map(function(key) {
 return currentCaches[key];
 });

 event.waitUntil(
 caches.keys().then(function(cacheNames) {
 return Promise.all(
 cacheNames.map(function(cacheName) {
 if (cacheNamesExpected.indexOf(cacheName) === -1)
 {
 console.log('DELETE: out of date cache:',
 cacheName);
 return caches.delete(cacheName);
 }
 })
);
 })
);
});

Chapter 4

181

self.addEventListener('fetch', function(event) {
 console.log('%c EVENT: %c Handling fetch event for
 %s','color: #F57F20',
 'color: #000',
 event.request.url);

 event.respondWith(
 caches.open(currentCaches.font).then(function(cache) {
 return cache.match(event.request).then(function(res)
 {
 if (res) {
 console.log(
 '%c P RESPONSE: %c Found in cache: %s',
 'color: #5EBD00', 'color: #000000', res
);
 return res;
 }

 console.log('%c O RESPONSE: %c Not found for %s in
 cache. ' +
 'Attempt to fetch from network', 'color:
 #EB4A4B', 'color: #000000',
 event.request.url);

 return fetch(event.request.clone()).
 then(function(res) {
 console.log('%c P RESPONSE: %c For %s from
 network: %O',
 'color: #5EBD00', 'color: #000000',
 event.request.url, res);

 if (res.status < 400 &&
 res.headers.has('content-type') &&
 res.headers.get('content-
 type').match(/^font\//i)) {
 console.log('%c P RESPONSE: %c Caching to %s ',
 'color: #5EBD00', 'color: #000000',
 event.request.url);
 cache.put(event.request, res.clone());
 } else {
 console.log('%c P RESPONSE: %c Not caching to %s ',

Accessing Offline Content with Advanced Techniques

182

 'color: #5EBD00', 'color: #000000',
 event.request.url);
 }

 return res;
 });
 }).catch(function(err) {
 throw error;
 });
 })
);
});

5. Create a CSS file called style.css, in the same folder as the index.html file, with
the following code:
* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;
 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
}

h1 {
 color: #4CAF50;
}

img {

Chapter 4

183

 padding: 20px 0;
 max-width: 200px;
}

.hidden {
 display: none;
}

#registration-status {
 background-color: #FFE454;
 padding: 10px;
}

@font-face{
 font-family: 'MyWebFont';
 src: url('webfont-serif.woff') format('woff');
}

#outlet p {
 font-family: 'MyWebFont', Arial, sans-serif;
}

6. Open up a browser and go to index.html. You will see the Registration status:
successful message and the logo:

7. Now, if you refresh the page and inspect the Console tab of the Developer Tools,
you will be able to see that the webfont-serif.woff file has been fetched from
the cache.

Accessing Offline Content with Advanced Techniques

184

How it works...
In our index.html file, we add a placeholder section for our message to be displayed:

 <section id="outlet">
 <p></p>
 </section>

In the style.css file, we declare the font family we are going to use, and then assign it to
the paragraph we are targeting:

 @font-face{
 font-family: 'MyWebFont';
 src: url('webfont-serif.woff') format('woff');
}

#outlet p {
 font-family: 'MyWebFont', Arial, sans-serif;
}

In our service-worker.js file, we make sure that if a cached version is available, we use it
instead of a network request, but fetch an update the next time:

if (res.status < 400 &&
 res.headers.has('content-type') &&
 res.headers.get('content-type').match(/^font\//i)) {
 console.log('%c P RESPONSE: %c Caching to %s ',
 'color: #5EBD00', 'color: #000000',
 event.request.url);
 cache.put(event.request, res.clone());
 } else {
 console.log('%c P RESPONSE: %c Not caching to %s ',
 'color: #5EBD00', 'color: #000000',
 event.request.url);
 }

See also
 f The Implementing read-through caching recipe

185

5
Reaching Beyond the

Offline Cache

In this chapter, we will cover the following topics:

 f Getting network responses offline

 f Caching content from ZIP

 f Selecting the best content provider (load balancer)

 f Redirecting a request

 f Setting request headers

 f Making a service worker act like a remote server (virtual server)

 f Making a service worker act as a dependency injector

 f Forcing immediate control

 f Implementing fallback responses

 f Deferring offline requests

Introduction
In this chapter, we will reach beyond the offline cache and look into advance techniques
such as offline network responses; advanced request handling including redirecting, setting
request headers, deferring offline requests, and implementing fallback requests; and using a
service worker as a load balancer or dependency injector, forcing immediate control, and also
caching content from ZIP files.

Let's start off this chapter by looking at how to get network responses offline.

Reaching Beyond the Offline Cache

186

Getting network responses offline
Read-through caching is an assertive approach of all-out caching for the type of static content
that you visit regularly. This is not very suitable for dynamic content such as news and sports.
A selective caching approach would be better suited for such instances. Read-through caching
saves us bandwidth for the server as well as requests over the network. The way read-
through caching works is that after the service worker takes control of your page when the
first fetch() request is called, the response will be cached and subsequent requests to the
same URL will be served from the cache.

Getting ready
To get started with service workers, you will need to have the service worker experiment feature
turned on in your browser settings. If you have not done this yet, refer to the first recipe of
Chapter 1, Learning Service Worker Basics: Setting up service workers. Service workers only
run across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, and style.css files
from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/01/

2. Open up a browser and go to index.html.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/01/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/01/

Chapter 5

187

3. Open up the Developer Toolbar (Cmd + Alt + I or F12). Now refresh the page and look
at the message in the console. You will see the style.css file is served from the
network, but the index.js file is served from the cache.

How it works...
When the service worker file is installing the service worker, it saves the index.html file
and the index.js file in the cache. We are intentionally skipping the style.css file here,
so when you refresh the page, the service worker first looks at the cached files, finds
index.html and index.js files there, and serves them from the cache. The style.css
file is not in the cache, however, so the service worker fetches it from the network.

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'index.html',
 'index.js'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

Caching content from ZIP
If you are concerned about the speed of loading your application over the Internet, one of the
areas you might look into is reducing the number of requests made by your app to download
resources. One way of reducing HTTP requests is sending your resource files, such as, images
as a ZIP package to the client.

In this recipe, we will look at how we can cache resources from a ZIP file.

Reaching Beyond the Offline Cache

188

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL
for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we must create an index.html file and copy the code from the
following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/02/index.html

2. Create a JavaScript file called service-worker.js in the same folder as the
index.html and copy the code from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/02/index.html

3. Copy the third-party code from the following location into a new folder called vendor:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/02/vendor

4. Add archive.zip, cacheProvider.js, helper.js, index.js, the images
folder, and style.css into the same directory as the index.html file from the
following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/02/

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/02/index.html
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/02/index.html
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/02/index.html
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/02/index.html
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/02/vendor
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/02/vendor
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/02/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/02/

Chapter 5

189

5. Open up a browser and go to the index.html file.

Reaching Beyond the Offline Cache

190

6. Select a brand from the drop-down menu and click Load.

7. Now click on the Uninstall button.

Chapter 5

191

How it works...
In our index.html file, we check whether the service worker is controlling the page. If so, we
display the images.

navigator.serviceWorker.getRegistration().then(function(reg) {
 if (reg && reg.active) {
 displayImages();
 }
 });

When the service worker is active at the time of installation, we show the drop-down list:

navigator.serviceWorker.oncontrollerchange = function() {
 if (navigator.serviceWorker.controller) {
 printInstall('INSTALL: Completed');
 displayImages();
 }
};

Uninstalling the package does not remove the resources from the cache because the offline
cache will not be erased by uninstalling the service worker:

document.querySelector('#uninstall').onclick = function() {
 …
}

Let's move on to the service-worker.js file. There we import some third-party scripts from
the vendor folder, and also some of our own:

importScripts('./vendor/zip.js');
importScripts('./vendor/ArrayBufferReader.js');
importScripts('./vendor/deflate.js');
importScripts('./vendor/inflate.js');
importScripts('./helper.js');
importScripts('./cacheProvider.js');

Reaching Beyond the Offline Cache

192

At the time of the installation, we are getting the content from the ZIP file, responses-
offline, and storing it in the cache.

self.oninstall = function(event) {
 event.waitUntil(
 fetch(zipURL)
 .then(function(res) {
 return res.arrayBuffer();
 })
 .then(getZipFileReader)
 .then(cacheFileContents)
 .then(self.skipWaiting.bind(self))
);
};

Gain control of the clients at the point of activation:

self.onactivate = function(evt) {
 evt.waitUntil(self.clients.claim());
};

Query the cache and, if the request doesn't match, send the request to the network:

self.onfetch = function(evt) {
 evt.respondWith(openCache().then(function(cache) {
 var request = evt.request;

 return cache.match(request).then(function(res) {
 return res || fetch(request);
 });
 }));
 };

Now let's look at the cacheProvider.js file for the functions handling the cache.

We don't cache the folders, only the files inside them:

function cacheEntry(entry) {
 if (entry.directory) {
 return Promise.resolve();
 }

Chapter 5

193

The blob writer is a supported format for the response object's constructor. The data will be
read the way the writer wants it to be read:

return new Promise(function(fulfill, reject) {
 var blobWriter = new zip.BlobWriter();

 entry.getData(blobWriter, function(data) {
 return openCache().then(function(cache) {
 var fileLocation = getFileLocation(entry.filename),
 response = new Response(data, { headers: {

We identify the type of the file by looking at its extension:

 response = new Response(data, { headers: {
 'Content-Type': getContentType(entry.filename)
 } });

We have to clone the response object because once it is being used, you cannot use it
again:

if (entry.filename === ROOT) {
 cache.put(getFileLocation(), response.clone());
 }

 return cache.put(fileLocation, response);
 }).then(fulfill, reject);

Let's look at the helper.js file as well. The getZipFileReader(data) function wraps the
zip.js API in a promise:

function getZipFileReader(data) {
 return new Promise(function(fulfill, reject) {
 var arrayBufferReader = new zip.ArrayBufferReader(data);
 zip.createReader(arrayBufferReader, fulfill, reject);
 });
}

The getContentType(filename) method returns the content type of a file by the
extension:

function getContentType(filename) {
 var tokens = filename.split('.');
 var extension = tokens[tokens.length - 1];
 return contentTypes[extension] || 'text/plain';
}

Reaching Beyond the Offline Cache

194

Selecting the best content provider (load
balancer)

In this recipe, we are going to look at how we can use the service worker as a load balancer so
we can decide which content provider is the best suited for us to get content from, depending
on the load of the content provider.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting up
SSL for Windows, and Setting up SSL for Mac. You also need to make sure Node.js is available
to you. You can read how to install Node.js at https://nodejs.org/en/.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/03/

2. Run the following command in the command line (make sure you have Node.js
installed or read how to do so on https://nodejs.org/en/):
npm install

3. Open up a browser and go to index.html.

https://nodejs.org/en/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/03/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/03/
https://nodejs.org/en/

Chapter 5

195

4. You can select the logo from the drop-down list and it will load the image from the
best content provider, with less load. You can also manually set the server loads and
click Reset.

Reaching Beyond the Offline Cache

196

How it works...
In the service-worker.js file, we are forcing the service worker to gain control of the
clients straight away:

self.oninstall = function(evt) {
 evt.waitUntil(self.skipWaiting());
};

self.onactivate = function(evt) {
 evt.waitUntil(self.clients.claim());
};

We use a regex pattern to check whether the request contains images:

function isResource(req) {
 return req.url.match(/\/images\/.*$/) && req.method === 'GET';
}

The method for the best server returns the server with the lowest load and then returns the
image from that server:

function fetchContentFromBestServer(req) {
 var session = req.url.match(/\?session=([^&]*)/)[1];
 return getContentServerLoads(session)
 .then(selectContentServer)
 .then(function(serverUrl) {
 var resourcePath = req.url.match(/\/images\/[^?]*/)[0],
 serverReq = new Request(serverUrl + resourcePath);

 return fetch(serverReq);
 });
}

The Express server will be queried to find the server loads:

function getContentServerLoads(session) {
 return fetch(baseURL + '/server-loads?session=' +
 session).then(function(res) {
 return res.json();
 });
}

Chapter 5

197

In the index.js file, we are setting the handlers for image selection:

navigator.serviceWorker.ready.then(displayUI);

function displayUI() {
 getServerLoads().then(function(loads) {
 serverLoads.forEach(function(input, index) {
 input.value = loads[index];
 input.disabled = false;
 });
 document.querySelector('#image-selection').disabled = false;
 });
}

Also, when the user clicks on the Reset button, the manual load values will be sent to the
Express server:

document.querySelector('#load-configuration').onsubmit =
function(event) {
 event.preventDefault();

 var loads = serverLoads.map(function(input) {
 return parseInt(input.value, 10);
 });

 fetch(setSession(baseURL + '/server-loads'), {
 method: 'PUT',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify(loads)
 }).then(function(res) {
 return res.json();
 }).then(function(result) {
 document.querySelector('#server-label').textContent = result;
 });
};

When changing the image selection, in order to prevent caching, we add a cache bust
parameter:

document.querySelector('#image-selection').onchange = function() {
 var imgUrl = document.querySelector('select').value,
 img = document.querySelector('img');
 if (imgUrl) {
 img.src = setSession(imgUrl) + '&_b=' + Date.now();

Reaching Beyond the Offline Cache

198

We are setting the session values with a random string and store them in localStorage:

function getSession() {
 var session = localStorage.getItem('session');
 if (!session) {
 session = '' + Date.now() + '-' + Math.random();
 localStorage.setItem('session', session);
 }
 return session;
}

The server.js file is an Express server running on a specified port. The service worker
requires the server to run over a SSL connection. To achieve this, we are using HTTP node
module and we are setting the location of the key/value pairs we created in the following
recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub pages for SSL,
Setting up SSL for Windows, and Setting up SSL for Mac.

var https = require('https');
var fs = require('fs');

var privateKey = fs.readFileSync('/private/etc/apache2/localhost-
key.pem', 'utf8');
var certificate = fs.readFileSync('/private/etc/apache2/localhost-
cert.pem', 'utf8');
var credentials = { key: privateKey, cert: certificate };
var httpsServer = https.createServer(credentials, app);

We are also allowing cross-origin resource sharing for our web page to access this server.

app.use(function(req, res, next) {
 res.header("Access-Control-Allow-Origin", "*");
 res.header("Access-Control-Allow-Methods", "POST, GET, PUT,
 DELETE, OPTIONS");
 res.header("Access-Control-Allow-Headers", "Origin, X-Requested-
 With, Content-Type, Accept");
 next();
});

Redirecting a request
Relative URLs, such as test/, should redirect to index.html if there is one in the test/
directory. Let's test this scenario with the service worker.

Chapter 5

199

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL,
Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we must create an index.html file as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Redirect request</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <section>
 <h1>Redirect</h1>
 <p>Relative URLs should redirect to
 index.html if it exists.</p>
 <p>Click</p>
 </section>
 <script src="index.js"></script>
</body>
</html>

2. Create a CSS file called style.css, in the same folder as the index.html file,
with the following code:
* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;

Reaching Beyond the Offline Cache

200

 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;
 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
}

h1 {
 color: #4CAF50;
}

img {
 padding: 20px 0;
 max-width: 400px;
}

.hidden {
 display: none;
}

#registration-status {
 background-color: #FFE454;
 padding: 10px;
}

3. Create a JavaScript file called index.js, in the same folder as the index.html file,
with the following code:
'use strict';

var scope = {
 scope: './'

Chapter 5

201

};

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'service-worker.js',
 scope
).then(function(serviceWorker) {
 printStatus('successful');
 if (navigator.serviceWorker.controller) {
 showImages();
 } else {
 document.querySelector('#message').textContent =
 'Reload the page for images to be loaded from the
 service worker cache';
 }
 }).catch(function(error) {
 printStatus(error);
 });
} else {
 printStatus('unavailable');
}

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
}

document.querySelector('#resetButton').addEventListener
('click',
 function() {
 navigator.serviceWorker.getRegistration().
 then(function(registration) {
 registration.unregister();
 window.location.reload();
 });
 }
);

4. Create a JavaScript file called service-worker.js in the same folder as the
index.html file

5. :
'use strict';

var cacheName= 'redirect-request';

Reaching Beyond the Offline Cache

202

self.addEventListener('activate', function() {
 clients.claim();
});

self.addEventListener('fetch', function(evt) {
 console.log(evt.request);
 evt.respondWith(
 fetch(evt.request).catch(function() {
 return new Response("FETCH: failed");
 })
);
});

6. Open up a browser and go to index.html.

Chapter 5

203

7. Now open up the DevTools (Cmd + Alt + I or F12) and make sure the Preserve log
checkbox is clicked. Now click on the Click link. The page will be redirected to the
index.html file of the test/ directory.

Reaching Beyond the Offline Cache

204

How it works...
In the service-worker.js file, we let all the fetch requests through to the network:

self.addEventListener('fetch', function(evt) {
 console.log(evt.request);
 evt.respondWith(
 fetch(evt.request).catch(function() {
 return new Response("FETCH: failed");
 })
);
});

This way, the relative URL will redirect to the HTTP version of test/, if the
test/index.html file exists.

Setting request headers
If we wanted to find out the request header details sent to the network, we can log the request
header details to the console. In this recipe, we are going to find out how to do this.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL,
Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. First, we must create an index.html file, as follows:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Request headers</title>
 <link rel="stylesheet" href="style.css">
</head>

Chapter 5

205

<body>
 <section id="registration-status">
 <p>Registration status: <strong
 id="status"></p>
 <input type="button" id="resetButton" value="Reset" />
 </section>
 <script src="index.js"></script>
 <section>

 </section>
</body>
</html>

2. Create a JavaScript file called service-worker.js, in the same folder as the
index.html file, with the following code:
'use strict';

self.addEventListener('fetch', function(evt) {
 var request = evt.request;

 console.log(
 "FETCH: ",
 evt.request.url,
 "HEADERS: ",
 new Set(request.headers)
);

 evt.respondWith(fetch(request));
});

3. Create a CSS file called style.css, in the same folder as the index.html file, with
the following code:
* {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

body {
 margin: 0 auto;
 text-align: center;
 font-family: sans-serif;
}

Reaching Beyond the Offline Cache

206

main {
 max-width: 350px;
 border: 1px solid #4CAF50;
 padding: 20px;
 border-radius: 5px;
 width: 350px;
 margin: 20px auto;
}

h1 {
 color: #4CAF50;
}

img {
 padding: 20px 0;
 max-width: 200px;
}

.hidden {
 display: none;
}

#registration-status {
 background-color: #FFE454;
 padding: 10px;
}

4. Open up a browser and go to the index.html file. You will see one
pre-fetched bookmark.

Chapter 5

207

5. Now open up the DevTools (Cmd + Alt + I or F12), and refresh the page. Check out
the log details on the console.

Reaching Beyond the Offline Cache

208

How it works...
In our service-worker.js file, the fetch event handler logs the request details, as well as
the header details of any request:

caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'index.html'
]);
 })

In the index.html file, we are loading an image which will be intercepted by the controlling
service worker's fetch event.

<section >

</section>

Making a service worker act like
a remote server

Service workers not only act like load balancers, as we discussed in the Selecting the best
content provider (load balancer) recipe of this chapter; they can also act like virtual servers.
This allows us to decouple the UI from the typical server-side business logic.

In this recipe, we are going to learn how we can move the business logic portion to a service
worker responding to traditional RESTful fetch requests. To demonstrate this feature, we are
going to implement a to-do app.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

Chapter 5

209

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/06/

2. Open up a browser and go to the index.html file. You will see the to-do app with
pre-fetched to-dos.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/06/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/06/

Reaching Beyond the Offline Cache

210

3. Now open up DevTools (Cmd + Alt + I or F12) and refresh the page. Check out the log
details on the console. You will see the endpoint has been accessed.

4. You can add to-do items and their priorities, and you can also remove them by
clicking on the remove icon.

Chapter 5

211

How it works...
We need to implement the endpoints to start with. In the worker.js file, we are
creating an instance of the ServiceWorkerWare module. We then declare the routes
for our to-do items.

We determine the root using self.location:

root = (function() {
 var tkns = (self.location + '').split('/');
 tkns[tkns.length - 1] = '';
 return tkns.join('/');
 })();

Retrieve all to-do items:

worker.get(root + 'api/todos', function(request, response) {
 return new Response(JSON.stringify(todos.filter(function(item) {
 return item !== null;
 })));
});

Retrieve the 0-based position (id) for deleting a specific to-do item:

worker.delete(root + 'api/todos/:id', function(request, response) {
 var id = parseInt(request.parameters.id, 10) - 1;
 if (!todos[id].isSticky) {
 todos[id] = null;
 }
 return new Response({ status: 204 });
});

To add a new to-do item to the collection, use the following code:

worker.post(root + 'api/todos', function(request, response) {
 return request.json().then(function(quote) {
 quote.id = todos.length + 1;
 todos.push(quote);
 return new Response(JSON.stringify(quote), { status: 201 });
 });
});

In the index.html file, we are loading an image that will be intercepted by the controlling
service worker's fetch event:

<section >

</section>

Reaching Beyond the Offline Cache

212

In our service-worker.js file, we are importing a third-party script called
ServiceWorkerWare.js and our custom script, worker.js, and declaring a to-do list with
pre-filled to-do items:

importScripts('./vendor/ServiceWorkerWare.js');
importScripts('./worker.js');

var todos = [
 {
 text: 'Buy Milk',
 priority: 'high'
 },
 {
 text: 'Refill Car',
 priority: 'medium'
 },
 {
 text: 'Return loaned book',
 priority: 'low'
 }
].map(function(todo, index) {
 todo.id = index + 1;
 todo.isSticky = true;

 return todo;
});

The index.js file is where most of our work is taking place. When the service worker gets
hold of the control of the page, it shows the list of to-do items:

navigator.serviceWorker.oncontrollerchange = function() {
 this.controller.onstatechange = function() {
 if (this.state === 'activated') {
 loadTodos();
 }
 };
};

Clicking the + button will retrieve the to-do item and post it to the backend:

document.getElementById('add-form').onsubmit = function(event) {

Chapter 5

213

Any to-do item with no priority provided will be left blank:

todoPriority = document.getElementById('priority').value.trim() ||
 'Not specified';

Finally, send the to-do item to the backend via a post request:

fetch(endPoint, {
 method: 'POST',
 body: JSON.stringify(todo),
 headers: headers
 })

Making a service worker act as a
dependency injector

Dependency injection is a great pattern for avoiding hardcoded dependencies for
components. In this recipe, we are going to examine how we can use a service worker to
development and production environments by passing in two injectors to our components
without hardcoding the dependencies.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/07/

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/07/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/07/

Reaching Beyond the Offline Cache

214

2. Open up a browser and go to the index.html file:

3. Click on the Production link. You will see a hash added in front of the URL,
#production.

4. Now click on the buttons. You will get the JavaScript alert messages as a result.

Chapter 5

215

5. Open up DevTools (Cmd + Alt + I or F12).

6. Now click on the Development button and then click on the buttons. Check out the
log details on the console. You will get the console messages as a result.

How it works...
We are adding a section to the index.html file with two links and three buttons; the links
are for production and development, and the buttons are for prompts:

<section id="actions">
 <h1>Environment Switch</h1>
 <p>
 Production |
 Development
 </p>
 <p>
 <button id="alert">Alert</button>
 <button id="confirm">Confirm</button>
 <button id="prompt">Prompt</button>
 </p>
 </section>

In the index.js file, the service worker registration handler is given the development-
sw.js file that we are going to implement soon:

if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register(
 'development-sw.js',
 scope
)

We create a bootstrap file for identifying location URL hash changes and performing a
dependency injection when we click on development or production links.

This way, by checking the hash of the URL, we can switch between development and
production environments:

window.onhashchange = function() {
 var newInjector = window.location.hash.substr(1) ||
 'production',

Reaching Beyond the Offline Cache

216

 lastInjector = getLastInjector();

 if (newInjector !== lastInjector) {
 navigator.serviceWorker.oncontrollerchange = function() {
 this.controller.onstatechange = function() {
 if (this.state === 'activated') {
 window.location.reload();
 }
 };
 };
 registerNewInjector(newInjector);
 }
};

Now we force an initial check:

window.onhashchange();

Depending on the type of environment, register a service worker:

function registerNewInjector(newInjector) {
 var newInjectorUrl = newInjector + '-sw.js';
 return navigator.serviceWorker.register(newInjectorUrl);
}

If there are any registered service workers, get the current inspecting injector:

 function getLastInjector() {
 var newInjector,
 ctr = navigator.serviceWorker.controller;

 if (ctr) {
 newInjector = ctr.scriptURL.endsWith('production-
 sw.js')
 ? 'production' : 'development';
 }
 return newInjector;
 }

Let's look at the injector.js file now. Let's make the service worker take control of the
client straight away:

function onInstall(evt) {
 evt.waitUntil(self.skipWaiting());
}

Chapter 5

217

function onActivate(evt) {
 evt.waitUntil(self.clients.claim());
}

The rest of the code is responsible for retrieving actual and abstract resources, and
responding to the request accordingly:

function onFetch(evt) {
 var abstractRes = evt.request.url,
 actualRes = getActualRes(abstractRes);

 evt.respondWith(fetch(actualRes || abstractRes));
}

function getActualRes(abstractRes) {
 var actualRes,
 keys = Object.keys(mapping);

 for (var i = 0, len = keys.length; i < len; i++) {
 var key = keys[i];

 if (abstractRes.endsWith(key)) {
 actualRes = mapping[key];
 break;
 }
 }

 return actualRes;
}

The fake-dialogs.js file is a mock implementation that console logs the prompts; that is,
it doesn't show the alert message, but instead logs to the console:

(function(window) {
 window.dialogs = {
 alert: function(msg) {
 console.log('alert:', msg);
 },

 confirm: function(msg) {
 console.log('confirm:', msg);
 return true;
 },

Reaching Beyond the Offline Cache

218

 prompt: function(msg) {
 console.log('prompt:', msg);
 return 'development';
 }
 };
})(window);

The real-dialogs.js file instead generates an alert message:

(function(window) {
 window.dialogs = {
 alert: function(msg) {
 window.alert(msg);
 },

 confirm: function(msg) {
 return window.confirm(msg);
 },

 prompt: function(msg) {
 return window.prompt(msg);
 }
 };
})(window);

The production-sw.js file imports the default mapping, as well as the injector. We also
wire the event listeners for the events:

importScripts('injector.js');
importScripts('default-mapping.js');

self.onfetch = onFetch;
self.oninstall = onInstall;
self.onactivate = onActivate;

The development-sw.js file imports the default mapping and the injector as well. But the
difference is it overrides utils/dialogs to serve the mockup instead:

importScripts('injector.js');
importScripts('default-mapping.js');

mapping['utils/dialogs'] = 'fake-dialogs.js';

self.onfetch = onFetch;
self.oninstall = onInstall;
self.onactivate = onActivate;

Chapter 5

219

Forcing immediate control
Usually, a service worker will take control of a page when a navigation event is fired. In this
recipe, we are looking at how we can take control of a page without waiting for any kind of
navigation event.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/08/

2. Open up a browser and go to the index.html file.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/08/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/08/

Reaching Beyond the Offline Cache

220

3. Now refresh the page. You will see that there is no registration and no controller
change event fired.

4. Open up the DevTools (Cmd + Alt + I or F12) and refresh the page. Check out the log
details on the console. You will see the image has been served from the cache.

Chapter 5

221

How it works...
In the index.js file, the fetchServiceWorkerUpdate method updates an image and the
current version:

function fetchServiceWorkerUpdate() {
 var img = document.getElementById('picture');
 img.src = 'picture.jpg?' + Date.now();

 fetch('./version').then(function(res) {
 return res.text();
 }).then(function(text) {
 debug(text, 'version');
 });
}

The service worker will take control of the site on loading and handles offline fallbacks:

if (navigator.serviceWorker.controller) {
 var url = navigator.serviceWorker.controller.scriptURL;
 console.log('serviceWorker.controller', url);
 debug(url, 'onload');
 fetchServiceWorkerUpdate();
} else {
 navigator.serviceWorker.register('service-worker.js', {
 scope: './'
 }).then(function(registration) {
 debug('REFRESH for the Service Worker to control this client',
 'onload');
 debug(registration.scope, 'register');
 });
}

The skipWaiting() method will force the waiting service worker to become active by
triggering the onactivate event. Along with Clients.claim(), this will allow the service
worker to take effect immediately in the clients:

 }).then(function() {
 console.log('SERVICE_WORKER: Skip waiting on install');
 return self.skipWaiting();
 })

Reaching Beyond the Offline Cache

222

Usually, the onactivate method is called once a worker has been installed and the page
is refreshed. However, because of the fact that we call skipWaiting() at the point of
oninstall, the onactivate method is called immediately:

self.addEventListener('activate', function(evt) {
 self.clients.matchAll({
 includeUncontrolled: true
 }).then(function(clientList) {
 var urls = clientList.map(function(client) {
 return client.url;
 });
 console.log('SERVICE_WORKER: Matching clients:', urls.join
 (', '));
 });

 evt.waitUntil(
 caches.keys().then(function(cacheNames) {
 return Promise.all(
 cacheNames.map(function(cacheName) {
 if (cacheName !== VERSION) {
 console.log('SERVICE_WORKER: Deleting old cache:',
 cacheName);
 return caches.delete(cacheName);
 }
 })
);
 }).then(function() {
 console.log('SERVICE_WORKER: Claiming clients for version',
 VERSION);
 return self.clients.claim();
 })
);
});

Implementing fallback responses
Generally, you can trust the API endpoints your application is connecting to, but there is
always a chance that those services could go down. It is good to have a plan B for situations
such as this. In this recipe, we are going to use the service worker to provide us with a fallback
response in such a situation.

Chapter 5

223

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/09/

2. Open up a browser and go to the index.html file.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/09/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/09/

Reaching Beyond the Offline Cache

224

3. Click on the Valid Request button. You will see a list of three brands.

4. Now click on the Invalid Request button. You will see a list of three brands.

Chapter 5

225

5. Open up the DevTools (Cmd + Alt + I or F12) and refresh the page. Check out the log
details on the console. You will see the fallback response in action.

How it works...
We are adding a section to the index.html file with two buttons, one for valid requests and
the other for invalid requests:

<section id="actions">
 <button id="valid-call" disabled>Valid Request</button>
 <button id="invalid-call" disabled>Invalid Request</button>
 <div id="output"></div>
</section>

In the index.js file, the enableRequestLinks method wires up the event handlers for the
buttons. Both handlers will fire a fetchApiRequest method with a link as a parameter:

function enableRequestLinks() {
 var validButton = document.querySelector('#valid-call');
 validButton.addEventListener('click', function() {
 fetchApiRequest('https://raw.githubusercontent.com/
 szaranger/szaranger.github.io/master/service-
 workers/05/09/brands.json');
 });
 validButton.disabled = false;

Reaching Beyond the Offline Cache

226

 var invalidButton = document.querySelector('#invalid-call');
 invalidButton.addEventListener('click', function() {
 fetchApiRequest('https://raw.githubusercontent.com/
 szaranger/szaranger.github.io/master/service-
 workers/05/09/blah.json');
 });
 invalidButton.disabled = false;
}

We have a mock API response prepared for this recipe at the following location:

https://github.com/szaranger/szaranger.github.io/blob/master/service-
workers/05/09/brands.json

It's a simple JSON object with few brand names:

{
 "brands": [
 {
 "name": "Apple"
 },
 {
 "name": "Google"
 },
 {
 "name": "Facebook"
 }
]
}

The fetchApiRequest method calls fetch to get a promise that will return the result in turn.
We will use the response to build the list we need:

function fetchApiRequest(url) {
 fetch(url).then(function(res) {
 return res.json();
 }).then(function(res) {
 var brands = res.brands.map(function(brand) {
 return '' + brand.name + '';
 }).join('');

 brands = '' + brands+ '';

 document.querySelector('#output').innerHTML =
 '<h1>Brands</h1>' + brands;
 });
}

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/09/brands.json
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/09/brands.json

Chapter 5

227

The service worker is where we implement the fallback response if the API is not available.
But first, we need tell the service worker to take control of the page immediately:

 self.addEventListener('install', function(evt) {
 evt.waitUntil(self.skipWaiting());
 });

 self.addEventListener('activate', function(evt) {
 evt.waitUntil(self.clients.claim());
 });

In the fetch handler, we are checking for the response to see whether it is successful by
checking res.ok. Otherwise, we will construct a response on the fly as the fallback:

self.addEventListener('fetch', function(evt) {
 evt.respondWith(
 fetch(evt.request).then(function(res) {
 if (!res.ok) {
 throw Error('response status ' + res.status);
 }

 return res;
 }).catch(function(err) {
 console.warn('RESPONSE: Error in constructing a fallback
 response - ', err);

 var fallbackRes = {
 brands: [
 {
 name: 'Fallback Brand 1'
 },
 {
 name: 'Fallback Brand 1'
 },
 {
 name: 'Fallback Brand 1'
 }
]
 };

 return new Response(JSON.stringify(fallbackRes), {
 headers: {'Content-Type': 'application/json'}
 });
 })
);
});

Reaching Beyond the Offline Cache

228

Deferring offline requests
Applications such as Gmail can enqueue requests in a buffer while the network is not
available. When the connection is restored, it will perform the requests in order to complete
the operation.

In this recipe, we are building an app, which can defer to-do items while offline.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL,
Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/05/10

2. Open up a browser and go to the index.html file.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/10
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/05/10

Chapter 5

229

3. Add and delete to-do items, then go offline as instructed. Once you reconnect, the
to-do items will automatically synchronize.

How it works...
We are adding a section to the index.html file with inputs and a button:

<section id="todo-area">

 Add/delete some todos.
 Go offline (disconnect Internet).
 Continue to add some todos.
(They are now in the
 queue, so the delete button is not visible now)
 Reconnect internet. The todos will automatically
 synchronize.

 <form id="add-form">
 <input type="text" id="new-todo" placeholder="Add a task
 here"/>
 <input type="text" id="priority" placeholder="Priority"/>
 <input type="submit" value="Add" />
 </form>
 <table id="todos">
 </table>
 </section>

In the service-worker.js file, we bring in two third-party libraries,
ServiceWorkerWare.js and localforage.js:

importScripts('./vendor/ServiceWorkerWare.js');
importScripts('./vendor/localforage.js');

Reaching Beyond the Offline Cache

230

Determine the root for the routes:

var root = (function() {
 var tokens = (self.location + '').split('/');
 tokens[tokens.length - 1] = '';
 return tokens.join('/');
})();

We are using Mozilla's ServiceWorkerWare library to build quick routes for the
virtual server:

var worker = new ServiceWorkerWare();

In order to mock responses, we enqueue the original request:

 function tryOrFallback(fakeResponse) {
 return function(req, res) {
 if (!navigator.onLine) {
 console.log('No network availability, enqueuing');
 return enqueue(req).then(function() {
 return fakeResponse.clone();
 });
 }

See also
 f The Logging API analytics recipe of Chapter 6, Working with Advanced Libraries

231

6
Working with

Advanced Libraries

In this chapter, we will cover the following topics:

 f Working with global APIs

 f Implementing a circuit breaker

 f Implementing a dead letter queue

 f Logging API analytics

 f Working with Google Analytics

Introduction
In this chapter, you will be introduced to some of the advanced libraries available to interface
with the service worker. These topics will be pragmatic and you will be working with advanced
libraries in real-world software development. We will also learn about advanced topics, such
as circuit breakers and dead letter queues, which you might not come across in everyday
programming, but are something new to learn.

Let's start off this chapter by looking at which global APIs are available for the service worker
to work with.

Working with Advanced Libraries

232

Working with global APIs
Service workers can access some very useful global API methods. Let's look at a few of
these methods; you might them find handy, and they can be used in your own projects.
Some of these global API methods include Cache, caches, getAll, Request, Response,
and fetch.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up
SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, and style.css files
from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/06/01/

2. Open up a browser and go to index.html:

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/01/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/01/

Chapter 6

233

3. Open up the Developer Toolbar (Cmd + Alt + I or F12). Now refresh the page and look
at the message in the console. You will see the global API functions logged into
the console:

How it works...
We are simply printing some of the APIs available to the service worker to the console. Our
service-worker.js file looks like the following:

'use strict';

console.log(
 'Cache', this.Cache, '\n',
 'caches', this.caches,'\n',
 'fetch', this.fetch,'\n',
 'getAll', this.getAll,'\n',
 'Request', this.Request,'\n',
 'Response', this.Response
);

Let's discuss some of these API methods in more detail.

Cache
The Cache interface is available for both service workers and windowed scopes. Its main
purpose is to provide a storage mechanism for cached Request and Response object pairs.

Working with Advanced Libraries

234

caches
The service worker stores assets offline with the CacheStorage object, which is enabled by
the window.caches read-only property.

fetch
The global fetch performs an asynchronous fetch across the network.

getAll
This is part of Chromium's command API. It gets passed into Promise.then() as an
argument.

Implementing a circuit breaker
Imagine you run an application that polls an API every 5 seconds, but for some reason the
service goes down, and you keep polling and getting timeouts. You would need to handle the
error quickly and gracefully. The circuit breaker pattern detects failures and prevents your
application from performing actions that are doomed to fail.

In this recipe, we will look at how to implement a circuit breaker library with the service
worker.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL
for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/06/02/

2. Open up a browser and go to the index.html file:

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/02/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/02/

Chapter 6

235

3. Now open up the DevTools (Cmd + Alt + I or F12) and make sure the Preserve log
checkbox is clicked. Now refresh the page and you will see the log messages from the
circuit breaker:

How it works...
Before looking at the implementation, let's try to understand how a circuit breaker goes about
its business.

A circuit breaker monitors for failures. Whenever the failures hit the threshold, the circuit
breaker trips and any calls to the circuit breaker will return with an error. After a suitable
interval, the circuit breaker resets the breaker if the error no longer occurs.

Working with Advanced Libraries

236

As you can see, we need two thresholds for error handling and resetting at a certain time after
the circuit breaker trips:

Image source: http://martinfowler.com

The majority of our work is going to be in the circuit-breaker.js file. If you want to learn
more about the circuit breaker, follow this link:

http://martinfowler.com/bliki/CircuitBreaker.html

First, we need to configure the circuit breaker. Let's make 10 blocks with a 3-second timeout
and a threshold of five. We also define the error threshold as fifty percent:

var TEN_SECONDS = 10000,
 TEN_BLOCKS = 10,
 THREE_SECONDS = 3000,
 FIFTY_PERCENT = 50,
 FIVE = 5;

 var CB = function(opts) {
 opts = opts || {};

 this.errorThreshold = opts.errorThreshold || FIFTY_PERCENT;
 this.numBlocks = opts.numBlocks || TEN_BLOCKS;
 this.timeoutDuration = opts.timeoutDuration || THREE_SECONDS;
 this.volumeThreshold = opts.volumeThreshold || FIVE;

http://martinfowler.com
http://martinfowler.com/bliki/CircuitBreaker.html

Chapter 6

237

 this.windowDuration = opts.windowDuration || TEN_SECONDS;

 this.hanldeCircuitOpen = opts.hanldeCircuitOpen ||
 function() {};
 this.handleCircuitClose = opts.handleCircuitClose ||
 function() {};

 this.$buckets = [this.$createBlock()];
 this.$state = CB.CLOSED;

 this.$startTicker();
 };

We then define a method for run as follows:

CB.prototype.run = function(command, fallback) {
 if (this.isOpen()) {
 this.$executeFallback(fallback || function() {});
 } else {
 this.$execCmd(command);
 }
 };

This method executes the fallback function passed in as an argument if the circuit is open.
Otherwise, it will execute the command. In the service-worker.js file, we pass in the
fetch request as the fallback function for the run method:

CircuitBreaker.prototype.fetch = function(request) {
 var unavailableRes = Response.error();

 return new Promise(function(resolve, reject) {
 this.run(function(success, fail) {
 fetch(request).then(function(res) {
 if(res.status < 400) {
 success();
 console.log('FETCH: successful');
 } else {
 fail();
 console.log('FETCH: failed');
 }
 resolve(res);
 }).catch(function(err) {
 fail();
 reject(unavailableRes);
 console.log('FETCH: unavailable');
 });

Working with Advanced Libraries

238

 }, function() {
 resolve(unavailableRes);
 });
 }.bind(this));
};

The forceClose, forceOpen, and unforce methods change the state accordingly:

 CB.prototype.forceClose = function() {
 this.$forced = this.$state;
 this.$state = CB.CLOSED;
 };

 CB.prototype.forceOpen = function() {
 this.$forced = this.$state;
 this.$state = CB.OPEN;
 };

 CB.prototype.unforce = function() {
 this.$state = this.$forced;
 this.$forced = null;
 };

The isOpen function returns a value indicating whether the circuit is open or closed:

 CB.prototype.isOpen = function() {
 return this.$state === CB.OPEN;
 };

Query the cache first; if the request doesn't match, send the request to the network:

self.onfetch = function(evt) {
 evt.respondWith(openCache().then(function(cache) {
 var request = evt.request;

 return cache.match(request).then(function(res) {
 return res || fetch(request);
 });
 }));
};

Chapter 6

239

We denote our private functions with a $ prefix. The $startTicker function starts the
timer for us:

CB.prototype.$startTicker = function() {
 var me = this,
 bucketIndex = 0,
 bucketDuration = this.windowDuration / this.numBlocks;

 var tick = function() {
 if (me.$buckets.length > me.numBlocks) {
 me.$buckets.shift();
 }

 bucketIndex++;

 if (bucketIndex > me.numBlocks) {
 bucketIndex = 0;

 if (me.isOpen()) {
 me.$state = CB.HALF_OPEN;
 }
 }

 me.$buckets.push(me.$createBlock());
 };

 setInterval(tick, bucketDuration);
};

The $createBlock function gives us a fresh block to work with, and the $lastBlock
function gives us the last block, as expected:

 CB.prototype.$createBlock = function() {
 return {
 successes: 0,
 failures: 0,
 shortCircuits: 0,
 timeouts: 0
 };
 };

 CB.prototype.$lastBlock = function() {
 var numBlocks = this.$buckets.length,
 lastBlock = this.$buckets[numBlocks - 1];

 return lastBlock;
 };

Working with Advanced Libraries

240

The $execCmd method updates the state by incrementing successes and failures:

 CB.prototype.$execCmd = function(command) {
 var me = this,
 increment,
 timeout;

 increment = function(prop) {
 return function() {
 var bucket;

 if (!timeout) {
 return;
 }

 bucket = me.$lastBlock();
 bucket[prop]++;

 if (me.$forced === null) {
 me.$updateState();
 }

 clearTimeout(timeout);
 timeout = null;
 };
 };

 timeout = setTimeout(increment('timeouts'),
 this.timeoutDuration);

 command(increment('successes'), increment('failures'));
 };

The $executeFallback function runs the fallback method we discussed before:

CB.prototype.$executeFallback = function(fallback) {
 var bucket;

 fallback();

 bucket = this.$lastBlock();
 bucket.shortCircuits++;
};

Chapter 6

241

The $calcMetrics function returns the total number of errors, as well as the count
of successes:

CB.prototype.$calcMetrics = function() {
 var totalCount = 0,
 totalErrors = 0,
 errorPerc = 0,
 bucket,
 errors,
 i;

 for (i = 0, len = this.$buckets.length; i < len; i++) {
 bucket = this.$buckets[i];
 errors = (bucket.failures + bucket.timeouts);

 totalErrors += errors;
 totalCount += (errors + bucket.successes);
 }

 errorPerc = (totalErrors / (totalCount > 0 ? totalCount : 1))
 * 100;

 return {
 totalErrors: totalErrors,
 errorPerc: errorPerc,
 totalCount: totalCount
 };
};

The $updateState method updates the state after a series of calculations:

CB.prototype.$updateState = function() {
 var metrics = this.$calcMetrics();

 if (this.$state == CB.HALF_OPEN) {
 var lastCmdFailed = !this.$lastBlock().successes &&
 metrics.totalErrors > 0;

 if (lastCmdFailed) {
 this.$state = CB.OPEN;
 } else {
 this.$state = CB.CLOSED;
 this.handleCircuitClose(metrics);
 }
 } else {

Working with Advanced Libraries

242

 var overErrorThreshold = metrics.errorPerc >
 this.errorThreshold,
 overVolumeThreshold = metrics.totalCount >
 this.volumeThreshold,
 overThreshold = overVolumeThreshold && overErrorThreshold;

 if (overThreshold) {
 this.$state = CB.OPEN;
 this.hanldeCircuitOpen(metrics);
 }
 }
};

Inside our service-worker.js file, we are using our circuit-breaker library by passing the
fetch request via a circuitBreaker object:

self.addEventListener('fetch', function(evt) {
 var url = evt.request.url;

 if(!circuitBreakers[url]) {
 circuitBreakers[url] = new CircuitBreaker(opt);
 }

 evt.respondWith(circuitBreakers[url].fetch(evt.request));
});

Implementing a dead letter queue
Dead letter queues are system-generated queues for one or many of the following reasons: for
storing messages that could not be delivered, queue length limit exceeded, message length
limit exceeded, or a message being rejected by another queue exchange.

In this recipe, we are implementing a dead letter queue in the service worker.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

Chapter 6

243

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/06/03/

2. Open up a browser and go to index.html:

3. Now open up the DevTools (Cmd + Alt + I or F12) and make sure the Preserve log
checkbox is clicked.

4. Select the offline option on the Network tab:

5. Now refresh the page and you will see the failed request messages, which are
queued in the dead letter queue we implemented:

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/03/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/03/

Working with Advanced Libraries

244

How it works...
The install event handler of the service worker caches the files we are passing into the
addAll method in the service-worker.js file:

self.addEventListener('install', function(evt) {
 evt.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([
 'style.css',
 'index.html',
 'index.js',
 'style.css'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

When we request files over the wire, the fetch event handler queries the cache to find out
whether the requests are matched, and if so, serves them from the cache:

self.addEventListener('fetch', function(evt) {
 evt.respondWith(
 caches.match(evt.request)
 .then(function(res) {
 if(res.status >= 500) {
 console.log('RESPONSE: error');
 return Response.error();
 } else {
 console.log('RESPONSE: success');
 replayQueuedRequests();
 return res;
 }
 }).catch(function() {
 queueFailedRequest(evt.request);
 })
);
});

Chapter 6

245

Also, if the response is successful, then we call replayQueuedRequests() to run any
outstanding requests in the queue:

function replayQueuedRequests() {
 Object.keys(queue).forEach(function(evt) {
 fetch(queue[evt]).then(function(){
 if(res.status >= 500) {
 console.log('RESPONSE: error');
 return Response.error();
 }
 console.log('DELETE: queue');
 delete queue[error];
 }).catch(function() {
 if (Date.now() - evt > expiration) {
 delete queue[error];
 console.log('DELETE: queue');
 }
 });
 });
}

If the fetch fails, we queue the request:

function queueFailedRequest(request) {
 queue[Date.now()] = request.url;
 console.log('QUEUED: failed request');
}

Logging API analytics
If you were asked to implement API logging for an existing application, what will your approach
be? The most common approaches are to either change the client-side code or the server-side
code, or both.

By using a service worker, we can intercept client requests and gather information, and then
send them to a log API.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

Working with Advanced Libraries

246

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/06/04/

2. Run npm install on the command line:
npm install

3. Run npm start on the command line:
npm start

4. Open up a browser and go to the index.html file:

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/04/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/04/

Chapter 6

247

5. Add a task and a priority:

6. Now go to the reports page by clicking on the reports link:

How it works...
In the index.html file, we are adding a section with a form:

<section id="todo-area">
 <p>Try to add and delete some todos.</p>
 <form id="add-form">
 <input type="text" id="new-todo" placeholder="Add a task
 here"/>

Working with Advanced Libraries

248

 <input type="text" id="priority" placeholder="Priority"/>
 <input type="submit" value="Add" />
 </form>
 <table id="todos">
 </table>
 <p>Go to <a href="https://localhost:3011/report/"
 target="_blank">report</p>
 </section>

In the service-worker.js file, every time a fetch request is fired, we are logging it:

self.onfetch = function(evt) {
 evt.respondWith(
 logRequest(evt.request).then(fetch)
);
};

function logRequest(req) {
 var retRequest = function() {
 return req;
 };

 var data = {
 method: req.method,
 url: req.url
 };

 return fetch(URL, {
 method: 'POST',
 body: JSON.stringify(data),
 headers: { 'content-type': 'application/json' }
 }).then(retRequest, retRequest);
}

The index.js file contains the logic for adding and deleting to-dos. We first show the list of
to-dos at the point of registration:

navigator.serviceWorker.oncontrollerchange = function() {
 this.controller.onstatechange = function() {
 if (this.state === 'activated') {
 loadTodos();
 }
 };
};

By clicking on the add button, a new to-do is created and sent to the server:

document.querySelector('#add-form').onsubmit = function(event) {

Chapter 6

249

If a to-do was provided, skip it. If no priority is given, the default is Minor:

if (!newTodo) {
 return;
 }

priority = document.querySelector('#priority').value.trim()
 || 'Minor';

We then send the API request, a POST request of to-do collection:

fetch(URL, {
 method: 'POST',
 body: JSON.stringify(todo),
 headers: headers,
 }).then(function(response) {
 return response.json();
 }).then(function(addedTodo) {
 document.querySelector('#todos').
 appendChild(getRowFor(addedTodo));
 });
};

In order to retrieve the collection of to-dos, we fire a fetch request with the GET method:

function loadTodos() {
 fetch(URL).then(function(res) {
 return res.json();
 }).then(showTodos);
}

Then we populate the to-dos table:

function showTodos(items) {
 var table = document.querySelector('#todos');

 table.innerHTML = '';
 for (var i = 0, len = items.length, todo; i < len; i++) {
 todo = items[i];
 table.appendChild(getRowFor(todo));
 }

 if (window.parent !== window) {
 window.parent.document.body.dispatchEvent(new
 CustomEvent('iframeresize'));
 }
}

Working with Advanced Libraries

250

A function is useful for creating rows for the table:

function getRowFor(todo) {
 var tr = document.createElement('TR'),
 id = todo.id;

 tr.id = id;

 tr.appendChild(getCell(todo.todo));
 tr.appendChild(getCell(todo.priority));
 tr.appendChild(todo.isSticky ? getCell('') :
 getDeleteButton(id));

 return tr;
}

Build a helper function for the table data:

function getCell(todo) {
 var td = document.createElement('TD');

 td.textContent = todo;
 return td;
}

Build a delete button:

function getDeleteButton(id) {
 var td = document.createElement('TD'),
 btn = document.createElement('BUTTON');

 btn.textContent = 'Delete';
 btn.onclick = function() {
 deleteTodo(id).then(function() {
 var tr = document.getElementById(id);
 tr.parentNode.removeChild(tr);
 });
 };

 td.appendChild(btn);
 return td;
}

Make a DELETE request for deleting to-dos:

function deleteTodo(id) {
 return fetch(URL + '/' + id, { method: 'DELETE' });
}

Chapter 6

251

The server.js file consists of two APIs, of which one is for to-do management and the other
is for logs.

We are providing a set of default to-dos to start with. These to-dos will appear on the top of
our list as examples.

var todos = [
 {
 todo: 'Buy milk',
 priority: 'Minor'
 },
 {
 todo: 'Refill car',
 priority: 'Medium'
 },
 {
 todo: 'Learn service worker',
 priority: 'Major'
 }
].map(function(todo, index) {
 todo.id = index + 1;
 todo.isSticky = true;

 return todo;
});

The sticky flag will make sure that these to-dos are not removable.

The REST API endpoints will manage the requests for adding and deleting to-dos and the logs:

app.get('/report', function(req, res) {
 var stats = getLogSummary();
 var buffer = report({ stats: stats });
 res.send(buffer);
});

app.post('/report/logs', function(req, res) {
 var logEntry = logRequest(req.body);
 res.status(201).json(logEntry);
});

app.get('/api/todos', function(req, res) {
 res.json(todos.filter(function(item) {
 return item !== null;
 }));
});

Working with Advanced Libraries

252

app.get('/api/todos', function(req, res) {
 res.json(todos.filter(function(item) {
 return item !== null;
 }));
});

app.delete('/api/todos/:id', function(req, res) {
 var id = parseInt(req.params.id, 10) - 1;
 if (!todos[id].isSticky) {
 todos[id] = null;
 }
 res.sendStatus(204);
});

app.post('/api/todos', function(req, res) {
 var todo = req.body;
 todo.id = todos.length + 1;
 todos.push(todo);
 res.status(201).json(todo);
});

We create an aggregation function for the log report for GET, DELETE, and POST requests:

function getLogSummary() {
 var aggr = requestsLog.reduce(function(subSummary, entry) {
 if (!(entry.url in subSummary)) {
 subSummary[entry.url] = {
 url: entry.url,
 GET: 0,
 POST: 0,
 DELETE: 0,
 };
 }
 subSummary[entry.url][entry.method]++;
 return subSummary;
 }, {});

 return Object.keys(aggr).map(function(url) {
 return aggr[url];
 });
}

Chapter 6

253

In the report.html file, we have a template for rendering log data. We use SWIG on the
server side to render this template:

<table id="todos">
 <tr>
 <th>url</th>
 <th>GET</th>
 <th>POST</th>
 <th>DELETE</th>
 </tr>
 {% for entry in stats %}
 <tr>
 <td>{{ entry.url }}</td>
 <td class="counter">{{ entry.GET }}</td>
 <td class="counter">{{ entry.POST }}</td>
 <td class="counter">{{ entry.DELETE }}</td>
 </tr>
 {% endfor %}
 </table>

Working with Google Analytics
Google Analytics is a widely used tool today, and the majority of websites use it to collect
various data from visitors. In this recipe, we are going to look at how we can benefit from the
service worker when implementing Google Analytics.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/06/05/

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/05/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/06/05/

Working with Advanced Libraries

254

2. Open up a browser and go to the index.html file:

3. Now open up the DevTools (Cmd + Alt + I or F12), and go to the Network tab.
You will see the /collect requests have a Status of 200, which means they've
been successful:

4. Refresh the page. You will see the following screen:

Chapter 6

255

5. Go to the Console tab of the DevTools:

Working with Advanced Libraries

256

How it works...
In the service-worker.js file, at the point of activation, caches.delete(cacheName)
will find and delete redundant out of date caches by checking the cache name:

var version = 1,
 currentCaches = {
 'google-analytics': 'google-analytics-v' + version
 };

self.addEventListener('activate', function(event) {
 var cacheNamesExpected = Object.keys(currentCaches)
 .map(function(key) {
 return currentCaches[key];
 });

 event.waitUntil(
 caches.keys().then(function(cacheNames) {
 return Promise.all(
 cacheNames.map(function(cacheName) {
 if (cacheNamesExpected.indexOf(cacheName) === -1) {
 console.log('DELETE: Out of date cache:', cacheName);
 return caches.delete(cacheName);
 }
 })
);
 })
);
});

The service worker will cache the initial requests; the subsequent requests to the same
resource will be handled by the fetch() event handler of the service worker. The fetch
event handler queries the cache for the requests in the currentCaches cache and sends
back the response to the browser:

event.respondWith(
 caches.open(currentCaches['google-
 analytics']).then(function(cache) {
 return cache.match(event.request).then(function(res) {
 if (res) {
 console.log(
 '%c ✓ RESPONSE: %c Found in cache: %s',
 'color: #5EBD00', 'color: #000000', res
);

 return res;
 }

Chapter 6

257

If the response was not found, it will send a fetch request to the network:

 return fetch(event.request.clone()).then(function(res) {
 console.log('%c ✓ RESPONSE: %c For %s from network: %O',
 'color: #5EBD00', 'color: #000000',
 event.request.url, res);

 if (res.status < 400) {
 cache.put(event.request, res.clone());
 }

If the response for the preceding request was successful, the response will be cloned and
added to the cache, with the request being the key and the response being the value:

promises = promises.map(function(promise) {
 return Promise.resolve(promise);
 });

Next, we make sure that we resolve the current promise as soon as another on the array
gets resolved:

if (res.status < 400) {
 cache.put(event.request, res.clone());
}

See also
 f The Implementing read-through caching recipe in Chapter 4, Accessing Offline

Content with Advanced Techniques

259

7
Fetching Resources

In this chapter, we will cover the following topics:

 f Fetching remote resources

 f Fetching with FetchEvent

 f Fetching a JSON file during service worker installation

 f Proxying

 f Prefetching

Introduction
In this chapter, we will look at how to request files and resources from different sources, which
in more technical terms perform fetch actions against different resources. We will look at
fetching a JSON file during the service worker installation, using the service worker as a proxy
middleware, and prefetching a list of specific resource URLs during the installation process, so
that you have the resources handy before loading the page.

Let's start off this chapter by looking at a simple example of fetching a resource from two
different resources.

Fetching remote resources
Fetching remote resources can be done in different ways. In this recipe, we are going to look
at two standard ways of fetching a remote resource using a service worker, with and without
cross-origin HTTP requests (CORS).

Fetching Resources

260

You can learn more about CORS at the following link:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the Setting up GitHub pages for SSL recipe of Chapter 1,
Learning Service Worker Basics.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, and style.css file from
the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/07/01/

2. Open up a browser and go to index.html. You will see two images fetched from two
different protocols, https and https-acao:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/01/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/01/

Chapter 7

261

How it works...
At the beginning of the index.js file, we are testing two different protocols for loading
resources:

 f https: HTTP with Secure Socket Layer (SSL) protocol

 f https-acao: SSL protocol with the Access-Control-Origin=* header

We will use two different URLs, which will be loaded multiple times:

var protocols = {
 'https-acao': 'https://i942.photobucket.com/albums/ad261/
 szaranger/Packt/packt-logo.png',
 'https': 'https://dz13w8afd47il.cloudfront.net/sites/all/
 themes/packt_v4/images/packtlib-logo-dark.png'
};

We will also use two different methods for fetching resources, with or without CORS:

navigator.serviceWorker.getRegistration().then(function
(registration) {
 var fetchModes = ['cors', 'no-cors'];

Next, we will check to see whether the service worker is registered:

if (!registration || !navigator.serviceWorker.controller) {
 navigator.serviceWorker.register(
 './service-worker.js').then(function() {
 console.log('Service worker registered, reloading the
 page');
 window.location.reload();
 });

If that is not the case, we register it and reload the page to ensure that the client is under the
service worker's control:

for (var protocol in protocols) {
 if (protocols.hasOwnProperty(protocol)) {
 buildImage(protocol, protocols[protocol]);

 for (var i = 0; i < fetchModes.length; i++) {
 var fetchMode = fetchModes[i],
 init = {
 method: 'GET',
 mode: fetchMode,

Fetching Resources

262

 cache: 'default'
 };

 }
 }
}

The two for loops go through the provided protocols array and make requests for each
protocol. They also build a DOM image element with each URL and go through each mode of
the fetchModes array.

The init object contains any custom settings that you may want to apply to the request. Let's
look at the properties of the init object:

 f method: The request method, for example, GET, and POST

 f mode: The mode you want to use for the request, for example, cors, no-cors, or
same-origin

 f cache: The cache mode you want to use for the request, for example default, no-
store, reload, no-cache, force-cache, or only-if-cached

The buildImage function takes two arguments, protocol and url. It creates an image
element on the fly and attaches the URL as the source of that image. Then it goes on to add
that image to the DOM tree, where the ID is one of https-acao-image, https-image,
or http–image. JavaScript has no control over the URL handling at this point; the browser
handles the URLs:

function buildImage(protocol, url) {
 var element = protocol + '-image',
 image = document.createElement('img');

 image.src = url;
 document.getElementById(element).appendChild(image);
}

Images will be rendered for HTTPS requests only, as service workers only support connections
over SSL.

The requests over SSL with the Access-Control-Origin=* header (Access Control Allow
Origin) will return results successfully.

By default, fetching a resource from a third-party URL will fail if CORS is not supported by it.
You can add a non-CORS option to the Request to overcome this. However, this will cause
an opaque response, which means that you won't be able to tell whether the response was
successful or not.

Chapter 7

263

The fireRequest function takes three arguments, fetchMode, protocol, and init. This
function returns another function, which we can call as a composition. We start with fetching
the given resource directly from the remote resource:

 fetch(url, init).then(function(response) {
 printSuccess(response, url, section);
 }).catch(function(error) {
 printError(error, url, section);
 });

If the fetch was successful, we print it into the console as well as log it on the web page. The
same applies if the request fails, only this time we print the error.

The helper function log finds the DOM element by the ID and adds a paragraph element, as
well as a class attribute to depict the type of the message:

function log(id, message, type) {
 var type = type || 'success',
 sectionElement = document.getElementById(id),
 logElement = document.createElement('p');

 if (type) {
 logElement.classList.add(type);
 }
 logElement.textContent = message;
 sectionElement.appendChild(logElement);
}

In the index.html file, we have style declarations in the head section:

<style>
.error {
 color: #FF0000;
 }
 .success {
 color: #00FF00;
 }
</style>

In our log() function, we set the undefined type to success so that it will display the color
green when we add it to classList. The error type will display red, as declared in the
preceding styles.

Fetching Resources

264

Fetching with FetchEvent
The FetchEvent class is a fetch action dispatched on the service worker. It contains
details about requests as well as responses. It provides all important FetchEvent.
reponseWith() methods, which we can use to provide a response back to the page that is
controlled by the service worker.

Getting ready
To get started with service workers, you will need to have the service worker experiment feature
turned on in your browser settings. If you have not done this yet, refer to the first recipe of
Chapter 1, Learning Service Worker Basics: Setting up service workers. Service workers only
run across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, adeobe-log.png, and
style.css files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/07/02/

2. Open up a browser and go to index.html:

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/02/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/02/

Chapter 7

265

3. Open up the Developer Toolbar (Cmd + Alt + I or F12). Now refresh the page and look
at the messages in the console. You will see the fetch requests are logged in the
console:

How it works...
We are simply printing out different stages within the fetch event handler of the service worker
to the console. The fetch method of our service-worker.js file looks like the following:

var cacheName= 'fetch-event-cache';

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {
 return cache.addAll([

Fetching Resources

266

 'adobe-logo.png',

 'style.css',
 'index.html',
 'index.js',
 'style.css'
]);
 })
 .then(function() {
 return self.skipWaiting();
 })
);
});

self.addEventListener('fetch', function(event) {
 console.log('Handling fetch event for', event.request.url);

 event.respondWith(
 caches.match(event.request).then(function(res) {
 if (res) {
 console.log('Fetching from cache:', res);

 return res;
 }
 console.log('No response from cache. Fetching from
 network...');

 return fetch(event.request).then(function(res) {
 console.log('Response from network:', res);

 return res;
 }).catch(function(error) {
 console.error('ERROR: Fetching failed:', error);

 throw error;
 });
 })
);
});

Let's discuss some of these API methods in more detail.

Chapter 7

267

Cache.addAll()
This method takes in a URL array, retrieves the response, and then adds that result to a
specified cache. The specified cache in our example is 'fetch-event-cache':

var cacheName= 'fetch-event-cache';

ExtendableEvent.waitUntil()
This method extends the lifetime of an event. In our example, we are waiting until the
resources are cached:

.then(function(cache) {
 return cache.addAll([
 'adobe-logo.png',
 'style.css',
 'index.html',
 'index.js',
 'style.css'
]);
 })

FetchEvent.respondWith()
This method resolves by returning a Response object or a network error to the Fetch object:

event.respondWith(
 caches.match(event.request).then(function(res) {

Fetching a JSON file during service worker
installation

In this recipe, we are going to learn how to cache resource files using a JSON file by specifying
the names of the resource files in it. Usually, this is done by keeping an array in the service
worker JavaScript file, but you might want them in a separate location, for reasons such as
versioning, for example.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for
Mac.

Fetching Resources

268

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
2. https://github.com/szaranger/szaranger.github.io/blob/master/

service-workers/07/03/

3. Open up a browser and go to the index.html file:

4. Now open up the DevTools (Cmd + Alt + I or F12) and make sure the Preserve
log checkbox is clicked. Now refresh the page and you will see the log messages
retrieving files from the cache:

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/03/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/03/

Chapter 7

269

5. If you look at the Resources tab, you will see the cached resources:

How it works...
We only require one action, which is at the time of the initial load for caching the assets and
registering the service worker. So at the time of installation, we load the JSON file, parse
JSON, and add the files to the cache. Our service-worker.js file looks like this:

var cacheName= 'fetch-json';

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName)
 .then(function(cache) {

Fetching Resources

270

 return fetch('files.json').then(function(response) {
 return response.json();
 }).then(function(files) {
 console.log('Installing files from JSON file: ', files);
 return cache.addAll(files);
 });
 })
 .then(function() {
 console.log(
 'All resources cached'
);

 return self.skipWaiting();
 })
);
});

Return a response from the cache if it was found:

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request)
 .then(function(response) {
 if (response) {
 console.log('Fetching from the cache: ',
 event.request.url);
 return response;
 } else {
 console.log('Fetching from server: ',
 event.request.url);
 }
 return fetch(event.request);
 }
)
);
});

The client claims the service worker:

self.addEventListener('activate', function(event) {
 console.log('Activating the service worker!');
 event.waitUntil(self.clients.claim());
});

Chapter 7

271

We will list the resource file names in the files.json file:

[
 "adobe-logo.png",
 "apple-logo.png",
 "google-logo.png",
 "style.css",
 "index.html",
 "index.js",
 "style.css"
]

We will add a section to our index.html file for the images:

<section>
 <h2>Assets from JSON</h2>

</section>

Proxying
A proxy is an intermediary between a web browser and the Internet. In this recipe, we will learn
how to use the service worker as a proxy middleware.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/07/04/

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/04/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/04/

Fetching Resources

272

2. Open up a browser and go to index.html:

3. Now click on the first link to navigate to the /hello link:

4. Now open up DevTools (Cmd + Alt + I or F12) to see the log messages on the Console
tab:

Chapter 7

273

5. Now click on the first link to navigate to the /hello/world link:

How it works...
We are adding two links to the index.html file where we are planning to create a proxy:

<section >
 <h1>Proxy</h1>
 <p>Click the links below for navigating to fetch handlers:</p>
 <div class="links">
 /hello

 <a href="/service-
 workers/07/04/hello/world">/hello/world
 </div>
</section>

Fetching Resources

274

We create a proxy for requests to the local URLs, inside the service-worker.js file,
containing a hello string as well as hello/world. The client will recognize this as
a local resource:

var helloFetchHandler = function(event) {
 if (event.request.url.indexOf('/hello') > 0) {
 console.log('DEBUG: Inside the /hello handler.');
 event.respondWith(new Response('Fetch handler for /hello'));
 }
};

var helloWorldFetchHandler = function(event) {
 if (event.request.url.endsWith('/hello/world')) {
 console.log('DEBUG: Inside the /hello/world handler.');
 event.respondWith(new Response('Fetch handler for
 /hello/world'));
 }
};

We pass these handlers into the fetch event listener as callbacks:

var fetchHandlers = [helloWorldFetchHandler, helloFetchHandler];

fetchHandlers.forEach(function(fetchHandler) {
 self.addEventListener('fetch', fetchHandler);
});

Prefetching
Prefetching resources during the service worker installation phase can easily enable offline
viewing of a website. In this recipe, we will look into be prefetching resources including pages
and images.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes: Setting up GitHub pages for SSL, Setting
up SSL for Windows, and Setting up SSL for Mac.

Chapter 7

275

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
2. https://github.com/szaranger/szaranger.github.io/blob/master/

service-workers/07/05/

3. Open up a browser and go to the index.html file:

4. Open up the Developer Toolbar (Cmd + Alt + I or F12) and look at the messages in
the console. You will see the resources have been successfully cached:

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/05/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/07/05/

Fetching Resources

276

5. Now go offline by selecting offline on the DevTools Network tab:

6. Now click on the prefetched.txt link. The linked text file will open in a new tab:

7. Click on the prefetched.html link. The linked page will open in a new tab:

8. Click on the apple-log.png link. The linked image will open in a new tab:

Chapter 7

277

9. If you examine the console, you will find the links have been served from the cache:

How it works...
In the index.html file, we are adding a section with links to the prefetched files:

 <section id="prefetched">

 <a href="prefetched.txt"
 target="_blank">prefetched.txt
 <a href="prefetched.html"
 target="_blank">prefetched.html
 apple-
 logo.png

 </section>

Fetching Resources

278

In the service-worker.js file, we start with declaring the cache version at the top in case
you have to force pages controlled by the service worker to use a new cache:

var cacheName= 'cache';
var currentCaches = {
 prefetch: 'prefetch-' + cacheName
};

We also list the resources to be cached:

var prefetchedURLs = [
 'prefetched.txt',
 'prefetched.html',
 'apple-logo.png'
];

The following line will construct a new URL from the list we have given it, using the service
worker's script location as its base:

 var url = new URL(prefetchedURLs, location.href);

Next, we add a cache busting timestamp to the query string:

url.search += (url.search ? '&' : '?') + 'cache-bust=' +
Date.now();

We have to make sure to specify {mode: 'no-cors'} if there is a possibility that the server
delivering the resource does not support CORS:

var request = new Request(url, {mode: 'no-cors'});

Next, we fetch the resources and cache them:

return fetch(request).then(function(res) {
 if (res.status >= 400) {
 throw new Error('FAIL: request for ' + prefetchedURLs +
 ' failed, status ' + res.statusText);
 }
 console.log('CACHING: Caching');
 return cache.put(prefetchedURLs, res);
}).catch(function(err) {
 console.error('CACHING: Not caching ' + prefetchedURLs + ' due
 to ' + err);
});

Chapter 7

279

Now let's look at the activate event handler. We make sure to delete all the caches that aren't
in the currentChaches object we declared at the start:

 self.addEventListener('activate', function(evt) {
 var expectedCacheNames =
 Object.keys(currentCaches).map(function(key) {
 return currentCaches[key];
 });

 evt.waitUntil(
 caches.keys().then(function(cacheNames) {
 return Promise.all(
 cacheNames.map(function(cacheName) {
 if (expectedCacheNames.indexOf(cacheName) === -
 1) {
 console.log('DELETE: out of date cache:',
 cacheName);
 return caches.delete(cacheName);
 }
 })
);
 })
);
 });

The fetch event listener is where the service worker looks for the cached resources:

self.addEventListener('fetch', function(evt) {
 console.log('FETCH: Handling fetch event for ',
 evt.request.url);

 evt.respondWith(
 caches.match(evt.request).then(function(res) {
 if (res) {
 console.log('RESPONSE: found in cache:', res);

 return res;
 }

 console.log('RESPONSE: not found in cache. Fetching from
 network.');

Fetching Resources

280

 return fetch(evt.request).then(function(res) {
 console.log('RESPONSE: from network:', res);

 return res;
 }).catch(function(error) {
 console.error('FAIL: fetching :', error);

 throw error;
 });
 })
);
});

281

8
Experimenting with

Web Push

In this chapter, we will cover the following topics:

 f Implementing a simple push notification

 f Showing rich push notifications

 f Using the notification tag

 f Implementing push clients

 f Subscribing to push notifications

 f Managing push notification quotas

Introduction
Push notifications have been popular with the features in mobile phone applications for the
last few years. Regardless of whether you have an app opened, running in the foreground, or
not running at all, push notifications will pop a message on your mobile phone. Similar to this,
there is a new API available for the web called Push API, which is an experimental technology
at the time of writing. In order to make Push API work, we need to have an active service
worker running and must have subscribed to push notifications.

Let's start off this chapter by looking at how to implement a simple push notification.

Experimenting with Web Push

282

Implementing a simple push notification
Fetching remote resources can be done in different ways. In this recipe, we are going to look
at two standard ways of fetching a remote resource using a service worker with and without
cross-origin HTTP requests (CORS).

If you want to learn more about CORS, follow this link:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting
up service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers
only run across HTTPS. To find out how to set up a development environment to support this
feature, refer to the Setting up GitHub pages for SSL recipe of Chapter 1, Learning Service
Worker Basics.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, manifest.json,
server.js, package.json, and style.css files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/08/01/

2. Run npm install from the command line.

3. Go to https://console.developers.google.com/project and create an
API project. Obtain a sender ID (project number) and replace gcm_sender_id in
the manifest.json file. Also replace the <GCM API KEY> placeholder in the
server.js file.
webPush.setGCMAPIKey(/*GCM API KEY*/);

4. Run npm start to kick off a server.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/01/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/01/
https://console.developers.google.com/project

Chapter 8

283

5. Open a browser and go to index.html. Make sure that you don't open the browser
in the incognito mode. Click on the Send Notification! button to send a notification.

6. Open the Developer Toolbar (Cmd + Alt + I or F12). Now refresh the page and look at
the messages in the console. You will see that the fetch requests are logged out into
the console.

Experimenting with Web Push

284

7. You will be prompted by your browser to allow notifications.

8. Soon you will receive the notification. (It might also take some time depending on
your configuration.)

How it works...
At the beginning of the index.js file, we specify the base URL we use for the server.

var baseURL = 'https://localhost:3012/';

Next, in order to get the user subscription to the push service, we use pushManager.

return registration.pushManager.getSubscription()

If a subscription was found, it will be returned. Otherwise, the user is subscribed.

return registration.pushManager.getSubscription()
 .then(function(subscription) {
 if (subscription) {
 return subscription;
 }

 return registration.pushManager.subscribe({ userVisibleOnly:
 true });
 });

Chapter 8

285

Next, we will send subscription details to the server.

fetch(baseURL + 'register', {
 method: 'post',
 headers: {
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 endpoint: subscription.endpoint,
 }),
 });

This will make the server send a notification to the client.

document.querySelector('#send').onclick = function() {
 var delay = document.querySelector('#notification-delay').value;
 var ttl = document.querySelector('#notification-ttl').value;

 fetch(baseURL + 'sendNotification?endpoint=' + endpoint +
 '&delay=' + delay +
 '&ttl=' + ttl,
 {
 method: 'post',
 }
);
};

We will add a section to the index.html file for the input fields for the delay as well as the
active time.

<section id="notification-input">
 <form>
 <h1>Notification</h1>
 Delay Time <input id='notification-delay' type='number'
 value='2'></input> <small>s</small>

 Active Time <input id='notification-ttl' type='number'
 value='0'></input> <small>s</small>

 </form>
 <button id="send">Send Notification!</button>
</section>

Experimenting with Web Push

286

We will use a manifest.json file for Google Chrome support.

{
 "name": "Simple Push Notification",
 "short_name": "push-simple",
 "start_url": "./index.html",
 "display": "standalone",
 "gcm_sender_id": "46143029380",
 "gcm_user_visible_only": true
}

In the service-worker.js file, we will add an event listener for registering the push event.

'use strict';

self.addEventListener('push', function(event) {
 event.waitUntil(
 self.registration.showNotification('SW Push Notification', {
 body: 'Notification received!',
 })
);
});

Showing rich notifications
Rich push notifications can send images, vibration patterns, and localized notifications.
Let's look at how we can achieve this.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting
up service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers
only run across HTTPS. To find out how to set up a development environment to support this
feature, refer to the Setting up GitHub pages for SSL recipe of Chapter 1, Learning Service
Worker Basics.

Chapter 8

287

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, manifest.json,
server.js, package.json, amazon-logo.png, and style.css files from the
following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/08/03/

2. Open a browser and go to index.html.

3. You can change the delay time as well as the active time by changing them in the
input fields.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/03/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/03/

Experimenting with Web Push

288

4. You may be prompted to allow push notifications.

5. Soon you will receive the notification. (It might also take some time depending on
your configuration.)

6. Open the Developer Toolbar (Cmd + Alt + I or F12). Now refresh the page and look at
the messages in the console.

Chapter 8

289

How it works...
In the index.js file, we will handle the click event when the user clicks on the button.

This will make the server send a notification to the client.

document.querySelector('#send').onclick = function() {
 var delay = document.querySelector('#notification-delay').value;
 var ttl = document.querySelector('#notification-ttl').value;

 fetch(baseURL + 'sendNotification?endpoint=' + endpoint +
 '&delay=' + delay +
 '&ttl=' + ttl,
 {
 method: 'post',
 }
);
};

In the service-worker.js file, we will add an event listener to register the push event.

'use strict';

self.addEventListener('push', function(event) {
 event.waitUntil(
 self.registration.showNotification('SW Rich Push
 Notification', {
 body: 'Richer than richest',
 icon: 'amazon-logo.png',
 vibrate: [300, 100, 300]
 })
);
});

Using the notification tag
In order to replace old notifications, we can use the notification tag. This will help us show
up-to-date information to the user.

This recipe will show you how to manage a queue of notifications and discard previous
notifications or merge them into a single notification.

Experimenting with Web Push

290

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the Setting up GitHub pages for SSL recipe of Chapter 1,
Learning Service Worker Basics.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, manifest.json,
server.js, package.json, and style.css files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/08/04/

2. Open a browser and go to index.html.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/04/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/04/

Chapter 8

291

3. Soon you will receive the notification. (It might also take some time depending on
your configuration.)

How it works...
In the service-worker.js file, we will add an event listener to register the push event.
Note the tag element passed into the showNotification method.

'use strict';

self.addEventListener('push', function(event) {
 event.waitUntil(
 self.registration.showNotification('SW Push Notification', {
 body: 'Notification ' + count++,
 tag: 'swc'
 }));
});

Implementing push clients
Push clients enables us to focus on the tab that our app is running on when the user clicks on
a notification message. We can even reopen our app if it was closed.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics, Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL
for Mac.

Experimenting with Web Push

292

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, manifest.json,
server.js, package.json, and style.css files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/08/05/

2. Run npm install from the command line.

3. Go to https://console.developers.google.com/project and create an
API project. Obtain a sender ID (project number) and replace gcm_sender_id in
the manifest.json file. Also replace the <GCM API KEY> placeholder in the
server.js file.
webPush.setGCMAPIKey(/*GCM API KEY*/);

4. Run npm start to kick off a server.

5. Open a browser and go to index.html. Make sure that you don't open the browser
in the incognito mode. Insert some text in the Payload field and click on the Send
Notification! button to send a notification.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/05/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/05/
https://console.developers.google.com/project

Chapter 8

293

6. Open the Developer Toolbar (Cmd + Alt + I or F12). Now refresh the page and look at
the messages in the console. You will see that the fetch requests are logged out into
the console.

7. You will be prompted by your browser to allow notifications.

8. Soon you will start to receive notifications. (It might also take some time depending
on your configuration.)

Experimenting with Web Push

294

9. Clicking on this first notification will take you to the page your app is running.

10. Clicking on the second notification will not do anything.

11. Clicking on the third notification will open a new page with your app running.

How it works...
At the beginning of the index.js file, we will specify the base URL we use for the server.

var baseURL = 'https://localhost:3012/';

Next, in order to get the user subscription to the push service, we use pushManager.

return registration.pushManager.getSubscription()

If a subscription was found, this will be returned. Otherwise the user will be subscribed.

return registration.pushManager.getSubscription()
 .then(function(subscription) {
 if (subscription) {
 return subscription;
 }

 return registration.pushManager.subscribe({ userVisibleOnly:
 true });
});

Chapter 8

295

Next, we will send subscription details to the server.

fetch(baseURL + 'register', {
 method: 'post',
 headers: {
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 endpoint: subscription.endpoint,
 }),
});

The send button enables the server to send a notification to the client with the payload we
specified in the form.

document.querySelector('#send').onclick = function() {
 fetch(baseURL + 'sendNotification?endpoint=' + endpoint, {
 method: 'post',
 });
};

We will add a section to the index.html file for instructing the user about the
notification messages.

<section id="notification-input">
 <form>
 <h1>Notification</h1>
 <p>Click 'Send notification' & try:</p>

 Close this page: Click the notification, and it will
 be reopened.
 Switch to another page: Click the notification, and it
 will be re-focused
 Remain on current page: A different notification will
 be shown, Clicking will not do anything.

 </form>
 <button id="send">Send Notification!</button>
</section>

Experimenting with Web Push

296

We use a manifest.json file for Google Chrome support.

{
 "name": "SW Push Clients Notification",
 "short_name": "push-clients",
 "start_url": "./index.html",
 "display": "standalone",
 "gcm_sender_id": "46143029380",
 "gcm_user_visible_only": true
}

In the service-worker.js file, we will receive the payload and add an event listener for
registering the push event.

'use strict';

self.addEventListener('push', function(event) {
 event.waitUntil(
 self.clients.matchAll().then(function(clients) {

 var focused = clients.some(function(client) {
 return client.focused;
 });

 var notificationMessage;

 if (focused) {
 notificationMessage = 'Same Page';
 } else if (clients.length > 0) {
 notificationMessage = 'Diffrerent Page, ' +
 'click here to gain focus';
 } else {
 notificationMessage = 'Page Closed, ' +
 'click here to re-open it!';
 }

 return self.registration.showNotification('ServiceWorker
 Cookbook', {
 body: notificationMessage,
 });
 })
);
});

Chapter 8

297

Subscribing to push notifications
This recipe will teach you how to use push notifications with subscription management,
enabling users to subscribe for features that your app will expose to keep in touch.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics, Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL
for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, manifest.json,
server.js, package.json, and style.css files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/08/06/

2. Run npm install from the command line.

3. Go to https://console.developers.google.com/project and create an
API project. Obtain a sender ID (project number) and replace gcm_sender_id in the
manifest.json file. Also replace the <GCM API KEY> placeholder in the server.
js file.
webPush.setGCMAPIKey(/*GCM API KEY*/);

4. Run npm start to kick off a server.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/06/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/06/
https://console.developers.google.com/project

Experimenting with Web Push

298

5. Open a browser and go to index.html. Make sure that you don't open the browser
in the incognito mode. Click on the Subscribe button. The button will change
into Unsubscribe.

6. Open the Developer Toolbar (Cmd + Alt + I or F12). Now refresh the page and look at
the messages in the console. You will see that the fetch requests are logged out into
the console.

Chapter 8

299

7. You might be prompted by your browser to allow notifications.

8. Soon you will receive notifications. (It might also take some time depending on
your configuration.) Once you click on the Unsubscribe button, the notifications
will no longer appear.

How it works...
At the beginning of the index.js file, we will specify the base URL we use for the server.

var baseURL = 'https://localhost:3012/';

Next, in order to get the user subscription to the push service, we use pushManager.

return registration.pushManager.getSubscription()

If a subscription was found, it will be returned. Otherwise the user is subscribed.

return registration.pushManager.getSubscription()
 .then(function(subscription) {
 if (subscription) {

Experimenting with Web Push

300

 return subscription;
 }

 return registration.pushManager.subscribe({ userVisibleOnly:
 true });
});

Next, we will send subscription details to the server.

fetch(baseURL + 'register', {
 method: 'post',
 headers: {
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 endpoint: subscription.endpoint,
 }),
 });

The button enables the server to send a notification to the client with the payload we specified
in the form.

document.querySelector('#subscription-button').onclick =
function() {
 fetch(baseURL + 'sendNotification?endpoint=' + endpoint, {
 method: 'post',
 });
};

In order to manage subscriptions we will add toggle logic.

function unsubscribe() {
 getSubscription().then(function(subscription) {
 return subscription.unsubscribe()
 .then(function() {
 console.log('Unsubscribed', subscription.endpoint);
 return fetch('unregister', {
 method: 'post',
 headers: {
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 endpoint: subscription.endpoint
 })
 });

Chapter 8

301

 });
 }).then(setSubscribeButton);
}

function setSubscribeButton() {
 subscriptionBtn.onclick = subscribe;
 subscriptionBtn.textContent = 'Subscribe!';
}

function setUnsubscribeButton() {
 subscriptionBtn.onclick = unsubscribe;
 subscriptionBtn.textContent = 'Unsubscribe!';
}

We will add a section to the index.html file for instructing the user about the
notification messages.

<section id="notification-input">
 <form>
 <h1>Notification</h1>
 <p>Click to subscribe</p>
 </form>
 <button id="subscription-button" disabled=true></button>
</section>

We will use a manifest.json file for Google Chrome support.

{
 "name": "SW Push Notification Subscription Management",
 "short_name": "push-with_subscription",
 "start_url": "./index.html",
 "display": "standalone",
 "gcm_sender_id": "46143029380",
 "gcm_user_visible_only": true
}

In the service-worker.js file, we will receive the payload and add an event listener
for registering the push event.

'use strict';

self.addEventListener('push', function(event) {
 event.waitUntil(self.registration.
 showNotification('ServiceWorker Cookbook', {

Experimenting with Web Push

302

 body: 'Push Notification Subscription Management'
 }));
});

self.addEventListener('pushsubscriptionchange', function(event) {
 console.log('Subscription expired');
 event.waitUntil(
 self.registration.pushManager.subscribe({ userVisibleOnly:
 true })
 .then(function(subscription) {
 console.log('Subscribed after expiration',
 subscription.endpoint);
 return fetch('register', {
 method: 'post',
 headers: {
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 endpoint: subscription.endpoint
 })
 });
 })
);
});

In the server.js file, we will send notifications to the push service.

function sendNotification(endpoint) {
 webPush.sendNotification(endpoint).then(function() {
 console.log('Push Application Server - Notification sent to '
 + endpoint);
 }).catch(function() {
 console.log('ERROR in sending Notification, endpoint removed '
 + endpoint);
 subscriptions.splice(subscriptions.indexOf(endpoint), 1);
 });
}

Chapter 8

303

For the purpose of demonstration, we will simulate the event that has occurred by sending a
notification in every pushInterval to the registered end point. So, you will see notifications
coming in rapidly.

setInterval(function() {
 subscriptions.forEach(sendNotification);
}, pushInterval * 1000);

function isSubscribed(endpoint) {
 return (subscriptions.indexOf(endpoint) >= 0);
}

Managing push notification quotas
In this recipe, we are going to experiment with the quota management policies of different
browsers. We will attempt to send as many notifications as possible to test against opened
and closed tabs, clicking on notifications as well as ignoring them.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting
up service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers
only run across HTTPS. To find out how to set up a development environment to support this
feature, refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up
GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, manifest.json,
server.js, package.json, and style.css files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/08/07/

2. Run npm install from the command line.

3. Go to https://console.developers.google.com/project and create an
API project. Obtain a sender ID (project number) and replace gcm_sender_id in
the manifest.json file. Also, replace the <GCM API KEY> placeholder in the
server.js file.
webPush.setGCMAPIKey(/*GCM API KEY*/);

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/07/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/07/
https://console.developers.google.com/project

Experimenting with Web Push

304

4. Run npm start to kick off a server.

5. Open a browser and go to index.html. Make sure that you don't open the
browser in the incognito mode. Click on either the Visible notifications or
Invisible notifications button.

Chapter 8

305

6. Open the Developer Toolbar (Cmd + Alt + I or F12). Now refresh the page and look at
the messages in the console. You will see that the fetch requests are logged out into
the console.

7. You may be prompted by your browser to allow notifications.

How it works...
At the beginning of the index.js file, we will specify the base URL we use for the server.

var baseURL = 'https://localhost:3012/';

Next, in order to get the user subscription to the push service, we use pushManager.

return registration.pushManager.getSubscription()

Experimenting with Web Push

306

If a subscription was found, that will be returned. Otherwise the user is subscribed.

return registration.pushManager.getSubscription()
 .then(function(subscription) {
 if (subscription) {
 return subscription;
 }

 return registration.pushManager.subscribe({ userVisibleOnly:
 true });
});

We will also retrieve the user's public key.

var rawKey = subscription.getKey ? subscription.getKey('p256dh') :
'';
key = rawKey ?
btoa(String.fromCharCode.apply(null,
new Uint8Array(rawKey))) : '';
var rawAuthSecret = subscription.getKey ?
subscription.getKey('auth') : '';
authSecret = rawAuthSecret ?
btoa(String.fromCharCode.apply(null, new
Uint8Array(rawAuthSecret))) : '';

 endpoint = subscription.endpoint;

Next, we will send subscription details to the server.

fetch(baseURL + 'register', {
 method: 'post',
 headers: {
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 endpoint: subscription.endpoint,
 key: key,
 authSecret: authSecret
 }),
 });

Chapter 8

307

We will ask the server to send the client a notification for testing purposes.

fetch(baseURL + 'sendNotification', {
 method: 'post',
 headers: {
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 endpoint: endpoint,
 key: key,
 visible: visible,
 num: notificationNum,
 }),
 });

The clear button clears the notification cache, which stores the number of
notifications received.

document.querySelector('#clear').onclick = function() {
 window.caches.open('notifications').then(function(cache) {
 Promise.all([
 cache.put(new Request('invisible'), new Response('0', {
 headers: {
 'content-type': 'application/json'
 }
 })),
 cache.put(new Request('visible'), new Response('0', {
 headers: {
 'content-type': 'application/json'
 }
 })),
]).then(function() {
 updateNotificationNumbers();
 });
 });
};

Update the UI by reading the number of notifications received.

function updateNotificationNumbers() {
 window.caches.open('notifications').then(function(cache) {
 ['visible', 'invisible'].forEach(function(type) {

Experimenting with Web Push

308

 cache.match(type).then(function(res) {
 if(res) {
 res.text().then(function(text) {
 document.getElementById('sent-' + type).textContent =
 text;
 });
 }
 });
 });
 });
}

Also, update the number of notifications received periodically.

window.onload = function() {
 updateNotificationNumbers();
 setInterval(updateNotificationNumbers, 1000);
};

We will add a section to the index.html file for instructing the user about the
notification messages.

<section id="notification-input">

 Select Visible notifications - They
 will appear one after another on your screen. The quota will
 not be enforced;
 Select Invisible notifications - They
 won't appear on your screen, but the number at the bottom of
 the page will update once the page is re-opened, to indicate
 the number of invisible notifications sent before reaching
 the quota.

 <form>
 Notifications to send: <input id="notification-count"
 type="number" value="30"></input>
 </form>

 <button id="visible">Visible notifications</button>
 <button id="invisible">Invisible notifications</button>

 <p>Received 0 visible
 notifications

Chapter 8

309

 Received 0 invisible
 notifications</p>
 <button id="clear">Clear</button>
 </section> id="subscription-button" disabled=true></button>
</section>

We will use a manifest.json file for Google Chrome support.

{
 "name": "SW Push Quota",
 "short_name": "push-quota",
 "start_url": "./index.html",
 "display": "standalone",
 "gcm_sender_id": "46143029380",
 "gcm_user_visible_only": true
}

In the service-worker.js file, we keep the service worker alive until the notifications
cache is updated.

self.addEventListener('push', function(event) {

 var visible = event.data ? event.data.json() : false;

 if (visible) {
 event.waitUntil(updateNumber('visible').then(function(num) {
 return self.registration.showNotification('SW', {
 body: 'Received ' + num + ' visible notifications',
 });
 }));
 } else {
 event.waitUntil(updateNumber('invisible'));
 }
});

We will create a notifications cache to store the notifications received.

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(cacheName).then(function(cache) {
 return Promise.all([
 cache.put(new Request('invisible'), new Response('0', {
 headers: {
 'content-type': 'application/json'
 }
 })),

Experimenting with Web Push

310

 cache.put(new Request('visible'), new Response('0', {
 headers: {
 'content-type': 'application/json'
 }
 })),
]);
 })
);
});

In the server.js file, we will send notifications to the push service.

app.post('/sendNotification', function(req, res) {
 var num = 1;
 var promises = [];

 var intervalID = setInterval(function() {
 promises.push(webPush.sendNotification(req.body.endpoint, {
 TTL: 200,
 payload: JSON.stringify(req.body.visible),
 userPublicKey: req.body.key,
 userAuth: req.body.authSecret,
 }));

 if (num++ === Number(req.body.num)) {
 clearInterval(intervalID);

 Promise.all(promises)
 .then(function() {
 res.sendStatus(201);
 });
 }
 }, 1000);
});

311

9
Looking at General

Usage

In this chapter, we will cover the following topics:

 f Taking immediate control of the page

 f Working with slow responses

 f Relaying messages

 f Using a service worker as a proxy middleware

 f Using a service worker with a live flowchart

Introduction
In this chapter, we will look into some of the scenarios where the service worker can become
useful. These scenarios may fall into the general-use category. The examples we will look at
here can be used as the foundation to build other service worker features.

Taking immediate control of the page
This simple recipe will demonstrate how to have the service worker immediately take control
of the page without having to wait for a navigation event.

Looking at General Usage

312

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting
up service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers
only run across HTTPS. To find out how to set up a development environment to support this
feature, refer to the Setting up GitHub pages for SSL recipe of Chapter 1, Learning Service
Worker Basics.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, and style.css files
from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/09/01/

2. Open a browser and go to index.html.

3. Refresh the page. The status of the service worker will be displayed on the screen.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/09/01/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/09/01/

Chapter 9

313

How it works...
In our index.html file, we will add a section to display the service worker status.

<section>
 <h3>Immediate Control</h3>
 <p>Status:

 </p>
</section>

At the beginning of the index.js file, we will inspect the registration status and print it
to the screen.

if (registration.installing) {
 serviceWorker = registration.installing;
 document.querySelector('#control-status')
 .textContent = 'Installing';
} else if (registration.waiting) {
 serviceWorker = registration.waiting;
 document.querySelector('#control-status')
 .textContent = 'Waiting';
} else if (registration.active) {
 serviceWorker = registration.active;
 document.querySelector('#control-status')
 .textContent = 'Active';
}

Next, in the service-worker.js file, we will call skipWaiting() to enable an updated
service worker to be immediately active when there is an existing service worker that
differs from the updated version.

if (typeof self.skipWaiting === 'function') {
 console.log('self.skipWaiting()');
 self.addEventListener('install', function(evt) {
 evt.waitUntil(self.skipWaiting());
 });
} else {
 console.log('self.skipWaiting() is unsupported.');
}

Looking at General Usage

314

if (self.clients && (typeof self.clients.claim === 'function')) {
 console.log('self.clients.claim()');
 self.addEventListener('activate', function(evt) {
 evt.waitUntil(self.clients.claim());
 });
} else {
 console.log('self.clients.claim() is unsupported.');
}

Working with slow responses
Slow updates from the service worker are a good way to mock slow response times from the
servers. In this recipe, we are going to use a timeout to mock slow responses.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes in Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up
SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, manifest.json,
server.js, package.json, and style.css files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/09/02/

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/09/02/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/09/02/

Chapter 9

315

2. Open a browser and go to index.html.

3. Open the Developer Toolbars (Cmd + Alt + I or F12). Now refresh the page and look
at the messages in the console. You will see the service worker life cycle methods are
logged out into the console.

4. Refresh the page. A message from the service worker will be displayed on the screen.

Looking at General Usage

316

How it works...
In the index.js file, we will append the console message to the screen at the point of
service worker registration.

function printStatus(status) {
 document.querySelector('#status').innerHTML = status;
 document.body.appendChild(document.
 createTextNode(Array.prototype.join.call(arguments, ", ") +
 '\n'));

 console.log.apply(console, arguments);
}

Next, in the service-worker.js file we will create a function to delay any new promise
we receive.

function wait(ms) {
 return new Promise(function(resolve) {
 setTimeout(resolve, ms);
 });
}

The usual lifecycle methods will call the wait function in order to delay the install,
activate, and fetch statuses.

self.addEventListener('install', function(evt) {
 console.log('INSTALL: In progress ..');
 evt.waitUntil(
 wait(DELAY).then(function() {
 console.log('INSTALL: Complete');
 })
);
});

self.addEventListener('activate', function(evt) {
 console.log('ACTIVATION: In progress ..');
 evt.waitUntil(
 wait(DELAY).then(function() {
 console.log('ACTIVATION: Complete');
 })
);
});

self.addEventListener('fetch', function(evt) {
 evt.respondWith(new Response("Service workers says Hello!"));
});

Chapter 9

317

Relaying messages
Service workers can be used to build a small chat message feature into your browser.
This recipe demonstrates how to communicate between a page and the service worker by
relaying messages between pages we are going to use to build our little chat app.

Getting ready
To get started with service workers, you will need to have the service worker experiment feature
turned on in your browser settings. If you have not done this yet, refer to the Setting up service
workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run across
HTTPS. To find out how to set up a development environment to support this feature, refer to the
Setting up GitHub pages for SSL recipe of Chapter 1, Learning Service Worker Basics.

How to do it...
Follow these instructions to set up your file structure:

1. Copy the index.html, index.js, service-worker.js, manifest.json,
package.json, and style.css files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/09/03/

2. Open a browser and go to index.html.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/09/03/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/09/03/

Looking at General Usage

318

3. Now open another browser and go to index.html. Type something in the text area.

4. Now open another browser and go to index.html. Type something in the text area.

Chapter 9

319

How it works...
At the beginning of the index.js file, we query the DOM nodes for the UI.

 if (navigator.serviceWorker) {
 var message = document.querySelector('#message');
 var received = document.querySelector('#received');
 var status = document.querySelector('#status');
 var inbox = {};

We then listen to any service worker messages. When a message is received, we specify a
DOM element to display it.

navigator.serviceWorker.addEventListener('message', function(evt)
{

 var userId = evt.data.client;
 var node;

 if (!inbox[userId]) {
 node = document.createElement('div');
 received.appendChild(node);
 inbox[userId] = node;
 }

 node = inbox[userId];
 node.textContent = 'User ' + userId + ' says: ' +
 evt.data.message;
});

When a page is force-reloaded, for example, the service worker will not send any messages.

message.addEventListener('input', function() {
 if (!navigator.serviceWorker.controller) {
 status.textContent = 'ERROR: no controller';
 return;
 }

 navigator.serviceWorker.controller.
 postMessage(message.value);
});

Looking at General Usage

320

The service-worker.js file has the event handler for the message.

self.addEventListener('message', function(event) {

 var promise = self.clients.matchAll()
 .then(function(clientList) {
 var senderID = event.source ? event.source.id : 'unknown';

 if (!event.source) {
 console.log('Unsure about the sender');
 }

 clientList.forEach(function(client) {
 if (client.id === senderID) {
 return;
 }
 client.postMessage({
 client: senderID,
 message: event.data
 });
 });
 });

 if (event.waitUntil) {
 event.waitUntil(promise);
 }
});

An immediate claim will make sure that the user doesn't have to refresh the page.

self.addEventListener('activate', function(event) {
 event.waitUntil(self.clients.claim());
});

In the index.html file, we add a div, a text area, and a paragraph tag for the messages.

<section class="message">
 <div id="received"></div>

 <textarea id="message" style="width: 90%;padding: 10px;"
 rows="5"></textarea>
 <p>Message</p>
</section>

Chapter 9

321

Using a service worker as a proxy
middleware

A proxy is an intermediary between a web browser and the Internet. In this recipe, you will
learn how to use a service worker as a proxy middleware.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics: Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes in Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up
SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/09/04/

2. Open a browser and go to index.html.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/09/04/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/09/04/

Looking at General Usage

322

3. Now click on the first link to navigate to the /hello link.

4. Now open DevTools (Cmd + Alt + I or F12) to see the log messages on the
Console tab.

5. Now click on the first link to navigate to the /hello/world link.

Chapter 9

323

How it works...
We will add two links to the index.html file where we are planning to create a proxy.

<section >
 <h1>Proxy</h1>
 <p>Click the links below for navigating to fetch handlers:</p>
 <div class="links">
 /hello

 <a href="/service-workers/
 07/04/hello/world">/hello/world
 </div>
</section>

We will create a proxy for requests to the local URLs inside the service-worker.js
file containing a hello string as well as hello/world. The client will recognize this
as a local resource.

var helloFetchHandler = function(event) {
 if (event.request.url.indexOf('/hello') !== -1) {
 console.log('DEBUG: Inside the /hello handler.');
 event.respondWith(new Response('Fetch handler for /hello'));
 }
};

var helloWorldFetchHandler = function(event) {
 if (event.request.url.endsWith('/hello/world')) {
 console.log('DEBUG: Inside the /hello/world handler.');
 event.respondWith(new Response('Fetch handler for
 /hello/world'));
 }
};

We will pass these handlers into the fetch event listener as callbacks.

var fetchHandlers = [helloWorldFetchHandler, helloFetchHandler];

fetchHandlers.forEach(function(fetchHandler) {
 self.addEventListener('fetch', fetchHandler);
});

Looking at General Usage

324

Using a service worker with a live flowchart
In this recipe, you will learn how to use a service worker by demonstrating the workflow and
logging the steps so we can follow the flow.

The features we are going to implement are as follows:

 f A button to register a service worker

 f A button to reload the document

 f A button to unregister the service worker

The buttons can be pressed in any order. You can also specify the service worker script URL
and scope to simulate different test cases.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting
up service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers
only run across HTTPS. To find out how to set up a development environment to support this
feature, refer to the Setting up GitHub pages for SSL recipe of Chapter 1, Learning Service
Worker Basics.

How to do it...
Follow these instructions to set up your file structure:

1. Download files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/08/05/

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/05/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/08/05/

Chapter 9

325

2. Open a browser and go to index.html.

3. Now open DevTools (Cmd + Alt + I or F12) to see the log messages on the
Console tab.

Looking at General Usage

326

4. Now click on the REGISTER SPECIFIED SW button.

Chapter 9

327

5. Now open DevTools (Cmd + Alt + I or F12) to see the log messages on the
Console tab.

6. Now click on the RELOAD DOCUMENT button.

Looking at General Usage

328

7. Now open up DevTools (Cmd + Alt + I or F12) to see the log messages on the
Console tab.

Chapter 9

329

8. Now click on the UNREGISTER ACTIVE SW button.

Looking at General Usage

330

9. Now open up DevTools (Cmd + Alt + I or F12) to see the log messages on the
Console tab.

How it works...
At the beginning of the app.js file, we initiate a helper for the service worker.

this.serviceWorkerUtil = new ServiceWorkerUtil();

To register a service worker, we perform the following steps:

document.getElementById('reloadapp').addEventListener('click',
function() {
 window.location.reload();
 });

Then, we check if the service worker is supported.

if (this.serviceWorkerUtil.isServiceWorkerSupported()) {
 document.getElementById('swinstall').addEventListener('click',
 function() {
 self.enableFeatures();
 }
);

 document.getElementById('swuninstall').
 addEventListener('click',
 function() {
 self.disableFeatures();
 }
);

Chapter 9

331

Next, we check if the service worker is in control.

if (this.serviceWorkerUtil.isServiceWorkerControllingThisApp()) {
 Logger.info('App code run as expected');

 this.disableSWRegistration();
 } else {
 this.enableSWRegistration();
 }

Now we try to register the service worker in order to enable features.

App.prototype.enableFeatures = function enableFeatures() {
 var scriptURL;
 var scope;

 Logger.newSection();
 Logger.log('ENABLE: Features enabled.');

 scriptURL = document.getElementById('swscripturl');
 scope = document.getElementById('swscope');

 Logger.debug(
 'Configuring the following service worker ' +
 scriptURL.value +
 ' with scope ' + scope.value
);

 if (scriptURL.value !== '') {
 Logger.debug('scriptURL: ' + scriptURL.value);
 } else {
 Logger.error('No SW scriptURL specified');
 return;
 }

 if (scope.value !== '') {
 Logger.debug('SCOPE: ' + scope.value);
 } else {
 Logger.warn('SCOPE: not specified');
 }

Looking at General Usage

332

 this.serviceWorkerUtil.registerServiceWorker(scriptURL.value,
 scope.value).then(
 this.disableSWRegistration,
 this.enableSWRegistration
);
};

We will disable the possibility of the user unregistering the service worker.

App.prototype.enableSWRegistration = function() {
 document.getElementById('swinstall').disabled = false;
 document.getElementById('swuninstall').disabled = true;
};

App.prototype.disableSWRegistration = function() {
 document.getElementById('swinstall').disabled = true;
 document.getElementById('swuninstall').disabled = false;
};

So the application gets started.

var app = new App();

console.debug(app);

In the service-worker.js file, we receive the payload and add an event listener for
registering the push event.

'use strict';

self.addEventListener('push', function(event) {
 event.waitUntil(
 self.clients.matchAll().then(function(clients) {

 var focused = clients.some(function(client) {
 return client.focused;
 });

 var notificationMessage;

 if (focused) {
 notificationMessage = 'Same Page';
 } else if (clients.length > 0) {

Chapter 9

333

 notificationMessage = 'Diffrerent Page, ' +
 'click here to gain focus';
 } else {
 notificationMessage = 'Page Closed, ' +
 'click here to re-open it!';
 }

 return self.registration.showNotification('ServiceWorker
 Cookbook', {
 body: notificationMessage,
 });
 })
);
});

In the index.html file, we will add a section to display the buttons and the console.

<section class="playground">
 <div class="inputs">
 Service Worker
 <input id="swscripturl" placeholder="SW path"
 value="./service-worker.js" />
 Options
 <input id="swscope" placeholder="scope (optional)" />
 </div>
 <div class="actions">
 <button id="swinstall" disabled>Register specified
 SW</button>
 <button id="reloadapp">Reload document</button>
 <button id="swuninstall" disabled>Unregister active
 SW</button>
 </div>
 <div id="log" class="log"></div>
</section>

335

10
Improving Performance

In this chapter, we will cover the following topics:

 f Performing network requests from a cache

 f Performing network requests from a network

 f Testing waitUntil

 f Implementing background sync

 f Sending forward requests

 f Avoiding model fetching and render times

Introduction
In this last chapter, we will explore improving performance with the help of the service worker.
Now, we are going to look into the areas around improving network requests from a cache
and network, implementing background sync, sending forward requests, and avoiding model
fetching and render times.

Performing network requests from a cache
If you are a regular visitor to a certain website, chances are that you may be loading most of
the resources such as CSS and JavaScript files from your cache rather than the server itself.
This saves us necessary bandwidth for the server as well as requests over the network. Having
control over which content we deliver from the cache and server is a great advantage. The
server worker provides us this powerful feature by giving us programmatic control over the
content. In this recipe, we are going to look at the methods that enable us to do so by creating
a performance art event viewer web app.

Improving Performance

336

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting up
service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run
across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure.

1. Download files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/10/01/

2. Open a browser and go to index.html.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/01/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/01/

Chapter 10

337

3. First we will request data from the network with the cache enabled. Click on the
FETCH button.

Improving Performance

338

4. Now we are going to select the Disabled checkbox under the SOURCE label and click
on the FETCH button again in order to fetch data only from the cache. An error will be
shown on the page. Since the cache is disabled, data cannot be fetched.

How it works...
In the index.js file, we will set a page-specific name for the cache as the caches are per
origin-based and no other page should use the same cache name.

var CACHE_NAME = cache-only';

Chapter 10

339

If you inspect the Resources tab of the development tools, you can find the cache inside
Cache Storage.

We will store the elapsed time for the cache in variables.

var cacheFetchStartTime;

The source URL, for example, points to a file location in GitHub via RawGit.

var SOURCE_URL = 'https://cdn.rawgit.com/szaranger/
szaranger.github.io/master/service-workers/10/01/events';

If you want to set up your own source URL, you can easily do so by creating a gist or a
repository in GitHub and creating a file with your data in the JSON format (you don't need
the .json extension). Once you've done that, copy the URL of the file and head over to
https://rawgit.com.

https://rawgit.com

Improving Performance

340

Paste the link there to obtain another link with a content type header as shown in the
following screenshot:

Between the time we click on the fetch button and all the data being received, we have to
make sure that the user doesn't either change the criteria for searching or click on the fetch
button again. To handle this situation, we will disable the controls.

function clear() {
 outlet.textContent = '';
 cacheStatus.textContent = '';
}

function disableEdit(enable) {
 fetchButton.disabled = enable;

Chapter 10

341

 cacheDelayText.disabled = enable;
 cacheDisabledCheckbox.disabled = enable;

 if(!enable) {
 clear();
 }
}

The returned data will be rendered to the screen in rows.

function displayEvents(events) {

 events.forEach(function(event) {
 var tickets = event.ticket ?
 'Tickets'
 : '';

 outlet.innerHTML = outlet.innerHTML +
 '<article>' +
 '' + formatDate(event.date) +
 '' +
 ' ' + event.title + '' +
 ' - ' + event.venue + ' ' +
 tickets +
 '</article>';
 });

}

Each item of the events array will be printed to the screen as rows.

The handleFetchComplete function is the callback for the cache.

Improving Performance

342

Because request bodies can only be read once, we have to clone
the response.

cloned = response.clone();

We will place the cloned response in the cache using cache.put as a key value pair.
This helps subsequent cache fetches to find this updated data.

caches.open(CACHE_NAME).then(function(cache) {
 cache.put(SOURCE_URL, cloned); // cache.put(URL, response)
});

Now we will read the response in the JSON format.

response.json().then(function(data) {
 displayEvents(data);
});

When the user clicks on the fetch button, we will make nearly simultaneous requests from the
cache for data. This would happen on a page load in a real-world application instead of as a
result of a user action.

fetchButton.addEventListener('click', function handleClick() {
...
}

To simulate cache delays, we wait before calling the cache fetch callback. In case the callback
errors out, we will make sure that we reject Promise we got from the original call to match.

return new Promise(function(resolve, reject) {
 setTimeout(function() {
 try {
 handleCacheFetchComplete(response);
 resolve();
 } catch (err) {
 reject(err);
 }
 }, cacheDelay);
});

Chapter 10

343

The formatDate function is a helper function for us to convert the date format we receive in
the response into a much more readable format on the screen.

function formatDate(date) {
 var d = new Date(date),
 month = (d.getMonth() + 1).toString(),
 day = d.getDate().toString(),
 year = d.getFullYear();
 if (month.length < 2) month = '0' + month;
 if (day.length < 2) day = '0' + day;

 return [month, day, year].join('-');
}

If you prefer a different date format, you can shuffle the position of the array in the return
statement to your preferred format.

See also
 f The Showing cached content first recipe in Chapter 3, Accessing Offline Content

Performing network requests
from a network

In the previous recipe, we looked at how we can fetch requests from the cache. In this recipe,
we are going to demonstrate how we can fetch requests from the server/network using the
service worker. To demonstrate network fetch, we are going to build an interface similar to the
previous recipe, but catered to show network interactions.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics, Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up SSL
for Mac.

Improving Performance

344

How to do it...
Follow these instructions to set up your file structure:

1. Download files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/10/02/

2. Open a browser and go to index.html.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/02/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/02/

Chapter 10

345

3. First, we will request data from the network with the cache enabled. Click on the
FETCH button.

Improving Performance

346

4. Now we are going to select the Disabled checkbox under the SOURCE label and click
on the FETCH button again in order to fetch data only from the cache. An error will be
shown on the page. Since the cache is disabled, data cannot be fetched.

How it works...
In the index.js file, we will set a page-specific name for the cache as the caches are per
origin-based and no other page should use the same cache name.

var CACHE_NAME = 'network-only';

If you inspect the Resources tab of the development tools, you can find the cache inside
Cache Storage.

We will store the elapsed time for both networks in variables.

var networkFetchStartTime;

The source URL, for example, points to a file location in GitHub via RawGit.

var SOURCE_URL = 'https://cdn.rawgit.com/szaranger/
szaranger.github.io/master/service-workers/10/02/events';

Chapter 10

347

If you want to set up your own source URL, you can easily do so by creating a gist or a
repository in GitHub and creating a file with your data in the JSON format (you don't need
the .json extension). Once you've done that, copy the URL of the file and head over to
https://rawgit.com. Paste the link there to obtain a another link with a content type
header as shown in the following screenshot:

Between the time we click on the fetch button and all the data being received, we have to
make sure that the user doesn't either change the criteria for searching or click on the fetch
button again. To handle this situation, we will disable the controls.

function clear() {
 outlet.textContent = '';
 networkStatus.textContent = '';
 networkDataReceived = false;
}

https://rawgit.com

Improving Performance

348

function disableEdit(enable) {
 fetchButton.disabled = enable;
 networkDelayText.disabled = enable;
 networkDisabledCheckbox.disabled = enable;

 if(!enable) {
 clear();
 }
}

The returned data will be rendered to the screen in rows.

function displayEvents(events) {

 events.forEach(function(event) {
 var tickets = event.ticket ?
 'Tickets
 ' : '';

 outlet.innerHTML = outlet.innerHTML +
 '<article>' +
 '' + formatDate(event.date) +
 '' +
 ' ' + event.title + '' +
 ' - ' + event.venue + ' ' +
 tickets +
 '</article>';
 });

}

Each item of the events array will be printed to the screen as rows.

The handleFetchComplete function is the callback for both the cache and network.

Chapter 10

349

If the Disabled checkbox is checked we will simulate a network error by throwing an error.

var shouldNetworkError = networkDisabledCheckbox.checked,
 cloned;

 if (shouldNetworkError) {
 throw new Error('Network error');
 }

Because request bodies can only be read once, we have to clone the response.

cloned = response.clone();

Now we will read the response in the JSON format.

response.json().then(function(data) {
 displayEvents(data);
 networkDataReceived = true;
});

When the user clicks on the fetch button, we will make nearly simultaneous requests from the
network and the cache for data. This would happen on a page load in a real-world application
instead of as the result of a user action.

fetchButton.addEventListener('click', function handleClick() {
...
}

We will start with disabling any user input while the network fetch requests are initiated.

disableEdit(true);

networkStatus.textContent = 'Fetching events...';
networkFetchStartTime = Date.now();

We will request data with the fetch API with a cache-busting URL as well as a no-cache option
in order to support Firefox, which hasn't implemented the caching options yet.

networkFetch = fetch(SOURCE_URL + '?cacheBuster=' + now, {
 mode: 'cors',
 cache: 'no-cache',
 headers: headers
})

Improving Performance

350

In order to simulate network delays, we wait before calling the network fetch callback.
In situations where the callback errors out, we have to make sure that we reject Promise
we received from the original fetch.

return new Promise(function(resolve, reject) {
 setTimeout(function() {
 try {
 handleFetchComplete(response);
 resolve();
 } catch (err) {
 reject(err);
 }
 }, networkDelay);
});

The formatDate function is a helper function for us to convert the date format we receive in
the response into a much more readable format on the screen.

function formatDate(date) {
 var d = new Date(date),
 month = (d.getMonth() + 1).toString(),
 day = d.getDate().toString(),
 year = d.getFullYear();

 if (month.length < 2) month = '0' + month;
 if (day.length < 2) day = '0' + day;

 return [month, day, year].join('-');
}

If you prefer a different date format, you can shuffle the position of the array in the return
statement to your preferred format.

See also
 f The Showing cached content first recipe in Chapter 3, Accessing Offline Content

Testing waitUntil
In this recipe, we are going to use the service worker to test the waitUntil method, which
will delay the install method of the service worker life cycle until the process of opening
caches and saving a page to the cache.

Chapter 10

351

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting up
service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers only run
across HTTPS. To find out how to set up a development environment to support this feature,
refer to the following recipes of Chapter 1, Learning Service Worker Basics: Setting up GitHub
pages for SSL, Setting up SSL for Windows, and Setting up SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/10/03/

2. Open a browser and go to index.html. You will see the Registration status:
successful message.

3. Now open DevTools (Cmd + Alt + I or F12), go to the Network tab, click on the
dropdown displaying No Throttling, and select Offline.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/03/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/03/

Improving Performance

352

4. Now refresh your bowser, and you will see the offline message and the image.

How it works...
The waitUntil event extends the lifetime of the install event until all the caches are
populated. In other words, it delays treating the installing worker as installed until all the
resources we specify are cached and the passed promise resolves successfully.

We saw an HTML and an image file getting cached and then retrieved when our website was
offline. We can cache other resources as well, including CSS and JavaScript files.

caches.open(currentCache.offline)
.then(function(cache) {
 return cache.addAll([
 'offline.html',
 '/assets/css/style.css',
 '/assets/js/index.js'
]);
 })
);

When the registration is successful, we will instruct the service worker to intercept a request
and provide resources from the cached content using the fetch event.

Chapter 10

353

Inside the index.html file, when the registration is successful, we will inspect the state of
the registration and print it to the browser. Otherwise, we will print the error message returned
by the service worker.

navigator.serviceWorker.register(
 'service-worker.js',
 { scope: './' }
).then(function(serviceWorker) {
 document.getElementById('status').innerHTML =
 'successful';
 }).catch(function(error) {

 document.getElementById('status').innerHTML = error;

});

The service worker script file will intercept network requests, check for connectivity,
and provide the content for the user.

We will add an event listener to the install event, and inside the callback we will fire a
request to get this offline page with its resources, which gets added to the cache when
the result is successful.

self.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open(currentCache.offline)
 .then(function(cache) {
 return cache.addAll([
 offlineUrl
]);
 })
);
});

Now we can retrieve this page whenever we need to, because the offline page is stored in the
cache. We need to add the logic to return the offline page if we don't have connectivity in the
same service worker.

self.addEventListener('fetch', function(event) {
 var request = event.request,
 isRequestMethodGET = request.method === 'GET';

 if (request.mode === 'navigate' || isRequestMethodGET) {
 event.respondWith(

Improving Performance

354

 fetch(createRequestWithCacheBusting
 (request.url)).catch(function(error) {
 console.log('OFFLINE: Returning offline page.', error);
 return caches.match(offlineUrl);
 })
);
 } else {
 event.respondWith(caches.match(request)
 .then(function (response) {
 return response || fetch(request);
 })
);
 }
});

We are listening out for the fetch event in the preceding source code, and we simply return
the offline page from the cache if we detect that the user is trying to navigate to another page,
resulting in an error. Now we have our offline page working.

Implementing background sync
The background synchronization feature of the service worker is responsible for managing
background synchronization processes. This feature, as of writing this book, is still
nonstandard and you should avoid using it in the production.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting
up service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers
only run across HTTPS. To find out how to set up a development environment to support this
feature, refer to the Setting up GitHub pages for SSL recipe of Chapter 1, Learning Service
Worker Basics.

How to do it...
Follow these instructions to set up your file structure:

1. Copy files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/10/04/

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/04/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/04/

Chapter 10

355

2. Open a browser and go to index.html.

3. Click on the Register Background Sync button. A message will appear at the bottom
displaying Sync registered.

4. A notification message will also appear on the screen.

Improving Performance

356

How it works...
In our index.html file, we will add a section for the button and the message.

 <section>
 <p>Registration status: <strong id="status"></p>
 <button id="register">Register Background Sync</button>
 <div id="console"></div>
 </section>

We will handle the button click in the index.js file. Notifications need permissions, so we
will handle that here as well.

document.getElementById('register').addEventListener('click',
function(event) {
 event.preventDefault();

 new Promise(function(resolve, reject) {
 Notification.requestPermission(function(result) {
 if (result !== 'granted') {
 return reject(Error('Notification permission
 denied'));
 }
 resolve();
 })
 }).then(function() {
 return navigator.serviceWorker.ready;
 }).then(function(reg) {
 return reg.sync.register('syncTest');
 }).then(function() {
 print('Sync registered');
 }).catch(function(err) {
 print('It broke');
 print(err.message);
 });
});

Our service-worker.js file is fairly simple. We show the notification when the sync event
handler is called.

self.addEventListener('sync', function(event) {
 self.registration.showNotification('Sync\'d');
});

Chapter 10

357

Sending forward requests
In this recipe, we are going to implement a service worker that sends forward requests.
Request forwarding is helpful when you want to temporarily forward a request to a
different resource.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the first
recipe of Chapter 1, Learning Service Worker Basics, Setting up service workers. Service
workers only run across HTTPS. To find out how to set up a development environment to
support this feature, refer to the following recipes of Chapter 1, Learning Service Worker
Basics: Setting up GitHub pages for SSL, Setting up SSL for Windows, and Setting up
SSL for Mac.

How to do it...
Follow these instructions to set up your file structure:

1. Download all the files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/10/05/

2. Open a browser and go to index.html.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/05/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/05/

Improving Performance

358

3. Now open DevTools (Cmd + Alt + I or F12) to see the log messages on the Console
tab. A forward message will appear in a second.

How it works...
We will add a div element to the index.html file where we are planning to log a message.

<section>
 <div id="console"></div>
</section>

Chapter 10

359

We will handle the active and fetch events inside the service-worker.js file.

self.addEventListener('activate', _ => {
 clients.claim();
});

self.addEventListener('fetch', event => {
 console.log(event.request);
 event.respondWith(fetch(event.request));
});

The helper function for logging messages to the screen is in the index.js file.

var consoleEl = document.getElementById('console');

function print(message) {
 var p = document.createElement('p');

 p.textContent = message;
 consoleEl.appendChild(p);
 console.log(message);
}

Avoiding model fetching and render times
In order to avoid model fetching and render times upon successive requests, a cache
containing the interpolated templates in order is saved, which we call as a render store.

According to Mozilla, the render store is intended to save/restore a serialized version of a
particular view, mostly for the purpose of performance.

Getting ready
To get started with service workers, you will need to have the service worker experiment
feature turned on in your browser settings. If you have not done this yet, refer to the Setting
up service workers recipe of Chapter 1, Learning Service Worker Basics. Service workers
only run across HTTPS. To find out how to set up a development environment to support this
feature, refer to the Setting up GitHub pages for SSL recipe of Chapter 1, Learning Service
Worker Basics.

Improving Performance

360

How to do it...
Follow these instructions to set up your file structure:

1. Download files from the following location:
https://github.com/szaranger/szaranger.github.io/blob/master/
service-workers/10/06/

2. Open a browser and go to index.html.

3. Click on any link in the list to go to the store.

https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/06/
https://github.com/szaranger/szaranger.github.io/blob/master/service-workers/10/06/

Chapter 10

361

How it works...
At the beginning of the index.js file, we specify the Pokemon API endpoint as well as a
secure origin.

var proxy = 'https://crossorigin.me/';
var pokedex = proxy + 'http://pokeapi.co/api/v1/pokedex/1/';
…

Next, fetch the Pokemon list from pokedex and create a list of links.

function fetchPokemonList() {
 fetch(pokedex)
 .then(function(response) {
 return response.json();
 })
 .then(function(info) {
 populatePokemonList(info.pokemon);

 if (window.parent !== window) {
 window.parent.document.body
 .dispatchEvent(new CustomEvent('iframeresize'));
 }
 });
}

Subsequently, populate the list and create the links for the Pokemon list. These links will be
intercepted by the service worker.

function populatePokemonList(pokemonList) {
 var el = document.querySelector('#pokemon');
 var buffer = pokemonList.map(function(pokemon) {
 var tokens = pokemon.resource_uri.split('/');
 var id = tokens[tokens.length - 2];
 return '' +
 pokemon.name +
 '';
 });
 el.innerHTML = buffer.join('\n');
}

Improving Performance

362

Next, let's look at the service-worker.js file. It tries to recover a cached copy of the
document. If not found, it responds from the network.

function getResponse(request) {
 return self.caches.open('render-store').then(function(cache) {
 return cache.match(request).then(function(match) {
 return match || fetch(request);
 });
 });
}

The cacheResponseInRenderStore function gets the interpolated HTML contents of a
PUT request from pokemon.js and creates an HTML response for the interpolated result.

function cacheResponseInRenderStore(request) {
 return request.text().then(function(contents) {
 var headers = { 'Content-Type': 'text/html' };
 var response = new Response(contents, { headers: headers });

 return self.caches.open('render-store').then(function(cache) {
 return cache.put(request.referrer, response);
 });
 });
}

In the pokemon.js file, we initialize timers to start with.

var startTime = performance.now();
var interpolationTime = 0;
var fetchingModelTime = 0;

We are going to create a template for a Pokemon, which is responsible for rendering by
obtaining data requested from the URL's query string. This template will fetch the given
Pokemon and fill the template. Once the template has been filled, we will mark the
document as cached and then we will send it to the render store by sending the
contents to the service worker.

if (document.documentElement.dataset.cached) {
 logTime();
} else {
 var pokemonId = window.location.search.split('=')[1];

 getPokemon(pokemonId).then(fillCharSheet).
 then(logTime).then(cache);
}

Chapter 10

363

function getPokemon(id) {
 var fetchingModelStart = getStartTime();

 return fetch(getURL(id)).then(function(response) {
 fetchingModelTime = getStartTime() - fetchingModelStart;
 return response.json();
 });
}

Next, we mark the documents as cached, get all the HTML content, and send it to the service
worker using a PUT request into the ./render-store/ URL.

function interpolateTemplate(template, pokemon) {
 var interpolationStart = performance.now();
 var result = template.replace(/{{(\w+)}}/g, function(match,
 field) {
 return pokemon[field];
 });
 interpolationTime = performance.now() - interpolationStart;
 return result;
}

365

Index
A
API analytics

logging 245-252
API methods

Cache interface 233
caches 234
fetch 234
getAll 234

API methods, FetchEvent
about 266
Cache.addAll() 267
ExtendableEvent.waitUntil() 267
FetchEvent.respondWith() 267

B
background sync

implementing 354-356
best content provider (load balancer)

selecting 194-198

C
cache

implementing 117-124
network requests,

performing from 336-343
cached content

displaying, first then networks 105-117
Cascading style sheets (CSS)

about 41, 60
loading offline 60-63

certificate signing request (CSR) 11
Chrome

service worker, enabling 4
Chrome Canary

URL 4
circuit breaker

implementing 234-242
reference 236

code bundle
references 13

content
caching, from ZIP 187-193

critical resources
caching, for offline 92-105

cross-origin HTTP requests (CORS)
reference 282

custom offline page
displaying 42-49

D
dead letter queue

about 242
implementing 242-245

debugging, service worker 22-26
Document Object Model (DOM) 103

F
fallback responses

implementing 222-227
FetchEvent

API methods 266
fetching with 264, 265

366

fetch() function
no credentials by default 88
non-CORS fail by default 88, 89

Firefox
service worker, enabling 5, 6

Firefox Nightly
URL 5

font family, from Google
reference 68

fonts
loading offline 64-70

forward requests
sending 357-359

G
GitHub pages

setting up, for SSL 13-15
global APIs

working with 232, 233
Google Analytics

about 253
working with 253-257

Google Developers Console page
URL 35

H
handlebars library

reference 146
Hyper Text Transfer Protocol

Secure (HTTPS) 4

I
images

loading offline 50-53
responsive images, handling 54

immediate control
forcing 219-221

IndexedDb
references 158

index.html file
reference 107

init object
cache 84
method 84
mode 84

Internet Information Service (IIS) 6
issues with Chrome, service workers

ERR_FILE_EXISTS error message 17
stale console messages 18

J
JSON file

fetching, during service worker
installation 267-271

L
live flowchart

service worker, using with 324-333

M
messages

relaying 317-320
mock responses

creating 30-35
model fetching

avoiding 359-363
multiple fetch handlers

implementing 71-76

N
network races

implementing 117-124
network requests

performing, from cache 336-343
performing, from network 343-350

network responses
receiving offline 186, 187

Node.js
URL 194

notification tag
using 289-291

367

O
offline Google Analytics

allowing 158-169
offline requests

deferring 228-230
offline user interaction

allowing 170-177

P
page

immediate control, taking of 311-313
Promise.reject(reason) 4
Promise.resolve(value) 4
promises 3
proxy 271
proxy middleware

service worker, using as 271-274
using 321-323

Push API 281
push clients

implementing 291-296
push notification quota

managing 303-309
push notifications

subscribing to 297-303

R
RawGit

URL 113
read-through caching

about 150
implementing 150-157

remote resources
fetching 76-88, 259-263

render times
avoiding 359-363

request
redirecting 198-204

request headers
setting 204-208

request timeouts
handling 36-40

resources
prefetching 274-279

responsive images
device-pixel ratio 55
handling 54
picture element 56-59
sizes attribute 55
srcset attribute 54

rich notifications
displaying 286-289

S
selective caching

implementing 178-184
service worker

about 2, 3
debugging 22
enabling, in Chrome 4
enabling, in Firefox 5
registering 15, 16
registering, in detail 18-20
setting up 4
using, as proxy middleware 271-274
using, with live flowchart 324-333
working, as dependency injector 213-218
working, as remote server 208-213

service worker, stages
activate 21
fetch 21
install 21
terminate 22

simple push notification
implementing 282-286

single page applications (SPA) 140
slow responses

working with 314-316
srcset attribute

about 54
device-pixel ratio 54
pixel density of device 54
zoom level of browser 54

368

SSL
GitHub pages, setting up for 13-15
setting up, for Mac 10-12
setting up, for Windows 6-9

stale version
providing, on error 27-29

stale-while-revalidate
implementing 134-138

style.css
reference 107

T
templating

about 140
implementing 140-146
reference 140
working 147-149

W
waitUntil method

testing 351-354
web font

reference 66
window.caches

using 124-133

Z
zero network connectivity 1

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Learning Service Worker Basics

	Introduction
	Setting up service workers
	Setting up SSL for Windows
	Setting up SSL for Mac
	Setting up GitHub pages for SSL
	Registering a service worker
	Registering a service worker in detail
	Debugging
	Providing a stale version on error
	Creating mock responses
	Handling request timeouts

	Chapter 2: Working with
Resource Files

	Introduction
	Displaying a custom offline page
	Loading images offline
	Loading CSS offline
	Loading fonts offline
	Implementing multiple fetch handlers
	Fetching remote resources

	Chapter 3: Accessing Offline Content

	Introduction
	Caching critical resources for offline use
	Showing cached content first
	Implementing a cache and network race
	Using window.caches
	Implementing stale-while-revalidate

	Chapter 4: Accessing Offline Content with Advanced Techniques

	Introduction
	Templating
	Implementing read-through caching
	Allowing offline Google Analytics
	Allowing offline user interaction
	Implementing selective caching

	Chapter 5: Reaching Beyond the Offline Cache

	Introduction
	Getting network responses offline
	Caching content from ZIP
	Selecting the best content provider (load balancer)
	Redirecting a request
	Setting request headers
	Making a service worker act like a remote server
	Making a service worker act as a dependency injector
	Forcing immediate control
	Implementing fallback responses
	Deferring offline requests

	Chapter 6: Working with
Advanced Libraries

	Introduction
	Working with global APIs
	Implementing a circuit breaker
	Implementing a dead letter queue
	Logging API analytics
	Working with Google Analytics

	Chapter 7: Fetching Resources

	Introduction
	Fetching remote resources
	Fetching with FetchEvent
	Fetching a JSON file during service worker installation
	Proxying
	Prefetching

	Chapter 8: Experimenting with Web Push

	Introduction
	Implementing a simple push notification
	Showing rich notifications
	Using the notification tag
	Implementing push clients
	Subscribing to push notifications
	Managing push notification quotas

	Chapter 9: Looking at General Usage

	Introduction
	Taking immediate control of the page
	Working with slow responses
	Relaying messages
	Using a service worker as a proxy middleware
	Using a service worker with a live flowchart

	Chapter 10: Improving Performance

	Introduction
	Performing network requests from a cache
	Performing network requests
from a network
	Testing waitUntil
	Implementing background sync
	Sending forward requests
	Avoiding model fetching and render times

	Index

