
www.allitebooks.com

http://www.allitebooks.org

SignalR Real-time
Application Cookbook

Use SignalR to create real-time, bidirectional,
and asynchronous applications based on standard
web technologies

Roberto Vespa

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

SignalR Real-time Application Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1160414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-595-2

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Roberto Vespa

Reviewers
Sriram Cherukumilli

Robin Karlsson

Duncan Mole

Emanuele Rabino

Richard Seroter

Commisioning Editor
Saleem Ahmed

Acquisition Editor
Rebecca Youe

Content Development Editor
Dayan Hyames

Technical Editors
Dennis John

Sebastian Rodrigues

Copy Editors
Dipti Kapadia

Aditya Nair

Kirti Pai

Stuti Srivastava

Project Coordinator
Swati Kumari

Proofreaders
Simran Bhogal

Linda Morris

Indexer
Hemangini Bari

Production Coordinators
Pooja Chiplunkar

Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Roberto Vespa has been passionate about programming computers since he was at high
school, and he always wanted to do that for a living.

He has a degree in Electronic Engineering obtained in Italy, and has been working in the
Information Technology industry since 1995, consulting on many different projects and for
several customers. He is a software developer and architect with strong experience on the
Windows platform, and in particular on the .NET Framework since Version 1.0, and on web
technologies. He has always been working across a broad spectrum of responsibilities from
distributed applications to complex user interfaces, from architecture and designing solutions
to debugging server and client code, and from native Windows clients to web user interfaces.

He loves to learn, share, and communicate about technology. He wrote technical articles for
an Italian magazine in the past, and now puts his effort into looking at the latest advances
in programming or in contributing to open source projects such as ElmahR, a real-time error
monitoring web dashboard built on top of SignalR. You can find out more about it at
http://elmahr.apphb.com/.

Since 2011, he has been working in Switzerland where he lives with his wife, Cecilia, and
their cats.

You can follow him on Twitter at @wasp_twit.

Roberto's blogs are at http://www.robychechi.it/roby.

www.allitebooks.com

http://elmahr.apphb.com/
http://www.robychechi.it/roby
http://www.allitebooks.org

Acknowledgments

I would like to thank Packt Publishing for the opportunity they gave me to write this book.
This has been my first time as a writer and, for sure, it has been a challenging task, but their
support has been constant and fundamental in making it possible. I would like to thank my
colleague Duncan Moles and my old friend Emanuele "Lele" Rabino for accepting to review
my first drafts. Their helpful advice comes from their skills and expertise. My gratitude goes
also to Jean-Luc Marbot, Roberto Forno, Atif Aziz, and Gustavo Perez Leon. I learned so much
from them in the last couple of years, and they have been very important to me during my
adventure in Switzerland.

My biggest thanks go to my intercontinental family, without whom this book would not
have been possible: my parents and brother in Italy, who have always supported and loved
me; and my adoptive family in Paraguay, who received me as if I had always been one of them.
And, of course I would like to thank my wife, Cecilia, who's at the center of my life: I love you.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sriram Cherukumilli is a developer/architect with experience in architecture, design,
and development across all application tiers with emphasis on enterprise real-time backend
systems. He works at Argo Data Resources on Windows Workflow Foundation 4.5-based
workflow management applications that abstract developer-specific and platform-specific
details to present business-friendly orchestration services to build workflows across the
company's different verticals. Sriram holds a Bachelor's degree in Engineering and a
Master's degree in Information Technology. Before working at Argo, Sriram worked with
many .NET SOA-based enterprise software systems at EMSI, Yahoo! Inc, and Verizon.

I would like to thank Packt Publishing for providing me with this opportunity.

Robin Karlsson is a Tech Lead and System Developer at Teleopti, with more than
10 years' experience of development in product companies in the HR area. The team at
Teleopti successfully switched from a proprietary solution to a SignalR-based solution
to enable monitoring the contact center performance in a web-based solution.

Duncan Mole is an experienced .NET architect/developer, and C# specialist with
a focus on real-time, reactive programming. In recent years, Duncan has worked for
a variety of investment banks and financial institutions, delivering solutions involving
push-style messaging models on a variety of technologies such as SignalR.

www.allitebooks.com

http://www.allitebooks.org

Emanuele Rabino is a freelance developer specialized and passionate about everything
related to the world of web development.

After working for many years on enterprise projects, using the ASP.NET stack in all its forms,
he has been driving the development of e-commerce solutions using HTML5 and full-stack
JavaScript environments.

Richard Seroter is the head of product management for CenturyLink Cloud, a Microsoft
MVP, an instructor for the developer-centric training company Pluralsight, an InfoQ.com
editor for cloud computing, and the author of multiple books on application integration
strategies. He is a recognized public speaker and has spoken at events around the world.
Richard maintains a regularly updated blog on the topics of architecture and solution design
(http://seroter.wordpress.com), and can be found on Twitter as @rseroter.

www.allitebooks.com

http://seroter.wordpress.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Understanding the Basics	 7

Introduction	 7
Adding a Hub to an ASP.NET project	 8
Adding a Hub to a self-hosting application	 14
Connecting to a Hub from a JavaScript client	 18
Connecting to a Hub from a .NET application	 20

Chapter 2: Using Hubs	 25
Introduction	 25
Adding a method to a Hub and counting the calls to it	 27
Calling back the caller from a Hub's method	 30
Broadcasting to all connected clients	 34
Adding a connection to a group	 38
Removing a connection from a group	 41
Broadcasting to all connected clients except the caller	 45
Broadcasting to all clients except the specified ones	 47
Broadcasting to all clients in a group except the caller	 51
Broadcasting from outside a Hub	 54
Using the return value of a Hub method	 58

Chapter 3: Using the JavaScript Hubs Client API	 61
Introduction	 61
Starting a Hub connection	 62
Setting up connection transport strategies	 66
Calling a server-side Hub method	 68
Adding a client-side method on the proxy and calling it from the server	 71
Managing errors across a complex asynchronous workflow	 74

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Using the .NET Hubs Client API	 81
Introduction	 81
Starting a Hub connection	 83
Setting up connection transport strategies	 86
Calling a server-side Hub method	 88
Adding a client-side method on the proxy and calling it from the server	 90
Managing errors across a complex asynchronous workflow	 93

Chapter 5: Using a Persistent Connection	 99
Introduction	 99
Adding and registering a persistent connection	 100
Sending messages from the server	 104
Sending messages to the server	 108
Exchanging messages between a server and a JavaScript client	 111
Exchanging messages between a server and a .NET client	 114

Chapter 6: Handling Connections	 119
Introduction	 119
Controlling the lifetime of a connection	 119
Handling a connection transient state	 125
Establishing a cross-domain connection	 129

Chapter 7: Analyzing Advanced Scenarios	 135
Introduction	 136
Generating static files for JavaScript proxies	 136
Authorizing requests on a Hub	 139
Authorizing requests on a persistent connection	 142
Authorizing requests in a self-hosting context	 146
Scaling up	 150
Scaling out with Azure	 152
Scaling out with Redis	 160
Scaling out with SQL Server	 163
Establishing proxy-less connections	 165
Introducing dependency injection (simple approach)	 168
Introducing dependency injection (advanced approach)	 173
Using dependency injection to replace a default behavior	 177
Extending the Hub pipeline	 181
Handling errors	 188

Chapter 8: Building Complex Applications	 193
Introduction	 193
Implementing a room-based chat application	 194
Implementing a shared whiteboard	 204

iii

Table of Contents

Implementing a real-time map of flying airplanes	 212
Implementing a "pets finder" application	 227
Implementing a custom backplane	 242
Implementing a real-time error notification system	 251

Appendix A: Creating Web Projects	 259
Introduction	 259
Creating an empty ASP.NET web application	 259
Creating an ASP.NET web forms application	 261
Creating an ASP.NET MVC application	 262
Creating an MVC controller and a related view	 264
Creating an ASP.NET website	 265

Appendix B: Insights	 267
Transport strategies	 267
Asynchronous programming and SignalR	 268

Index	 271

Preface
The World Wide Web has been with us for the past 20 years and has become a fundamental
part of our lives. Its distributed architecture has proven to be efficient and scalable. Thanks
to it, nowadays, an incredible amount of information and services is available to all of us.
We just have to connect, look for what we need, and pull it onto our devices to use it. However,
it's also true that many scenarios would be more efficient if services themselves were able
to determine the information that we need and then push it towards us at the right time.
The contrast between these two ways of distributing content is clear and important, and
according to the specific goals, there might be a clear advantage in using one or the other.

We already have several networking and application technologies that are ideal to build
push systems, but the World Wide Web and its enabling protocol, HTTP, were not born for
that. Traditional applications based on HTTP offer a request/response model where it's
always the client's responsibility to initiate a connection, and it's always the client who has
to ask the server for something. The server will send back the appropriate response on the
same connection opened by the client to perform the request, and then, it will terminate the
connection. According to this model, there is usually no natural way for the server to send any
piece of information without a previous specific incoming request. Nevertheless, it would be a
shame to miss the opportunity to leverage such a ubiquitous protocol in order to enable push
scenarios for all its users.

This is how the Web has lately started to move towards enabling push scenarios, first with
a series of technology tricks (Long Polling, Forever Frame, and Server-Sent Events) applied
over the traditional HTTP/HTML stack, and then with the rise of a proper technology that
introduces a way to establish persistent connections between clients and servers, which can
then be used for fully bidirectional communications: WebSocket. Modern browsers and web
servers bring full support to the latter option, while older systems can recur to the former
tricks. So, now we have several ways to deliver a solution, but also the problem of having to
decide which technology to use, or maybe the need to replicate our solution using all these
techniques together to reach every potential user.

Preface

2

Enter SignalR! SignalR is a very interesting library that leverages all the strategies that we
previously mentioned to deliver a real-time push platform. It enables a two-way communication
model between the client and the server, and it achieves this goal simply by leveraging what
HTTP and HTML5 have to offer. SignalR looks like magic because it transparently adapts itself
to the available environment (the HTTP server and the web browser) and transforms a normally
transient HTTP connection into a virtually persistent connection. The messaging API offered by
SignalR succeeds in abstracting the low-level networking strategies, chosen according to what's
supported by the involved counterparts, and offers us a simple and generic way to write code
that remains unaware of the underlying complexity.

We briefly mentioned what SignalR does and how it does it, but the actual goal of this book is
not to dig deep into the mechanics SignalR is built on top of. This is a practical, hands-on guide
that provides you with a number of clear, step-by-step recipes that will gradually enable you to
add SignalR as an innovative, effective, and useful item in your toolbox. It will move from simple
examples down to complex use cases, going through a comprehensive overview of the library.

Although most of the recipes will give some information on how SignalR works behind the
scenes to enable the proposed solution, these explanations shall not be too detailed. You should
not expect otherwise from this book. The book will not go into deep architectural details. It will
just provide you with a decent level of explanations to help the reader understand what is going
on, while keeping the focus on bringing practical and synthetic solutions to specific questions.

In each recipe, we will be picking a problem and showing you a SignalR-based solution, or,
if you prefer, we'll be choosing a specific feature from SignalR and matching it to the class
of scenarios it helps tackle. This way you will gradually learn how to perform a set of common
tasks, which the last chapter will combine to build complex applications.

At the time of writing this book, SignalR reached Version 2, and this is the one that we'll
be using for our discussion. If you need to use Version 1, this book could still be used as a
general reference. However, there are some differences that you would have to take care of,
especially in areas related to hosting and bootstrapping a SignalR-based application. That
said, these differences will not be treated throughout the text, and no particular attention
will be paid to the older version.

You might also have to pay attention to the fast evolution of the minor version number of
SignalR and of all its dependencies. SignalR is available on NuGet. It's constantly updated,
and the same happens to the components that it depends on, such as jQuery or Newtonsoft.
Json. This means that the actual version numbers that you might reference while writing
your code are likely to be different from the ones you will find listed here. The recipes have
been constantly revised, and have been updated to what's available at the time of the final
technical reviews (February, 2014). You will have to take care of any further update that might
be released later and act manually to fix any mismatch. This will probably result in having to
change some JavaScript reference to a later version, or to add some assemblyRedirect
directive in your configuration files to remap an older version of a required assembly to a
newer one. Once done with that, the code will still be valid and fully working.

Preface

3

It's worth mentioning that SignalR is an open source project whose source code can be
found at https://github.com/SignalR/SignalR.

Whenever there's anything unclear and you really need to shed some light on it, you can
inspect its code and find the answers by yourself. It's a very clean and well-organized
code base, and you should not get scared by the idea of going through it. The official
documentation can be found at http://www.asp.net/signalr.

What this book covers
Chapter 1, Understanding the Basics, covers the basic steps to add the server and client
portions of a SignalR application in the context of different hosting technologies. We will be
writing the simplest code possible, and we'll perform the minimal steps that are required to
have everything up and running.

Chapter 2, Using Hubs, illustrates the Hubs API from a server-side point of view.

Chapter 3, Using the JavaScript Hubs Client API, introduces the Hubs API from a client-side
point of view, using the JavaScript client library.

Chapter 4, Using the .NET Hubs Client API, explains the Hubs API from a client-side point of
view, using the .NET client library this time.

Chapter 5, Using a Persistent Connection, moves to the more low-level persistent connection
API, illustrating its peculiar features and differences when compared to Hubs.

Chapter 6, Handling Connections, illustrates some advanced features that we can leverage
to optimize and customize the way we handle the existing connections.

Chapter 7, Analyzing Advanced Scenarios, digs into more infrastructural features made
available to fine-tune and extend SignalR's behaviors.

Chapter 8, Building Complex Applications, is all about full-fledged examples, illustrating
how SignalR can be used as the foundation technology to solve real-world, bidirectional
messaging problems.

Appendix A, Creating Web Projects, explains the steps to create each one of the various types
of ASP.NET projects that we created in Visual Studio, in case you are not yet used to it.

Appendix B, Insights, discusses the different transport strategies that SignalR chooses to
provide a logical persistent connection, according to the environment it runs on. It also talks
about the basic concepts of asynchronous programming.

Preface

4

What you need for this book
All the code samples have been prepared and tested using Microsoft Visual Studio 2013,
which brings the highest integration with Version 2 of SignalR with it. Microsoft Visual Studio
2012 could be used too, and you would be able to reach the same final result, but the
experience inside the IDE might be slightly different. Again, the book will not try to fill any
gap between the two environments, and it will explicitly only target the 2013 version.

Who this book is for
This book can be read by different types of developers.

Beginners will be able to learn all the fundamental concepts of SignalR, quickly becoming
productive in a usually difficult arena that real-time, bidirectional communication normally is.

In this book, experienced programmers will find a handy and useful collection of ready-made
solutions to common use cases, which they will then be able to enhance as needed. They will
be able to use it as a quick reference to the most important SignalR features. No previous
practical experience either in SignalR or real-time communication in general is required.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To add a friendly name, we can use the HubName attribute."

A block of code is set as follows:

 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }

Preface

5

Any command-line input or output is written as follows:

signalr.exe ghp

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Clicking on the Ok button
creates a new file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Understanding the

Basics

In this chapter, we will cover:

ff Adding a Hub to an ASP.NET project

ff Adding a Hub to a self-hosting application

ff Connecting to a Hub from a JavaScript client

ff Connecting to a Hub from a .NET application

Introduction
SignalR is an amazing framework that delivers a real-time and bidirectional messaging
platform. SignalR provides several options to reach its goal, but in this chapter we'll start
simple and use the most basic API to set up a persistent and real-time channel: Hubs. A Hub
is a special class that SignalR will expose to all the connected clients, allowing them to make
Remote Procedure Calls (RPC) to it. Inside the Hub, the developer will also have a set of
special objects to use in order to perform calls back onto the connected clients.

There is a very important detail to highlight: SignalR is composed of a server-side library and
a set of client-side libraries. In every working solution, you will always need to use both; you
will need to expose the server-side endpoints and connect to them using the most appropriate
client library. SignalR will do the rest, and you will experience a very natural, simple, and
bidirectional programming model.

Understanding the Basics

8

All the recipes in this chapter will be classic "Hello World" applications. Nothing fancy or exciting
will be happening, but all of them will clearly illustrate what can be achieved and how. The
Adding a Hub to an ASP.NET project and Adding a Hub to a self-hosting application recipes
will show you how to prepare a server portion of a SignalR application using the Hub type
in different hosting contexts, whereas the Connecting to a Hub from a JavaScript client and
Connecting to a Hub from a .NET application recipes will illustrate how to write client-side code
to connect to it from different types of client processes. Each recipe has the goal to be fully
functional, therefore all of them will in some way provide at least some hints about the missing
counterparts. Server-side recipes will have minimal client code in place, and client-side ones
will either contain a basic Hub to connect to or refer to one created earlier, but for all of them,
the focus will remain on the actual topic of the recipe.

Adding a Hub to an ASP.NET project
SignalR sets a clear separation between the actual messaging runtime and the hosting
environment. Although the host could be any plain old .NET-based process, the most natural
context where you can add a SignalR Hub is inside an ASP.NET project, which is the topic of
this recipe. Later in this chapter, we'll see how to host it in a different context.

This recipe will concentrate on the server-side; however, some minimal client-side code will also
be added to be able to fully demonstrate a complete, although trivial, client-server connection.

Getting ready
There are three main types of ASP.NET projects:

ff A Web Forms application

ff An MVC application

ff A website

The process of creating them is a fairly common task, so we are going to skip the details.
If you want more information, you can refer to the Appendix A, Creating Web Projects at
the end of the book and check how to generate them step by step. In this recipe, we will
be covering all of them at once, highlighting the points where there's some difference
across those types.

In order to show a complete sample for all three cases, the code
that comes with this book will contain three separate projects,
called Recipe01_WF (for the Web Forms sample), Recipe01_
MVC (for the MVC project), and Recipe01_WS (for the website).

Before proceeding, please pick one of them and create your project in Visual Studio 2013.

Chapter 1

9

How to do it…
We're ready to actually start adding the SignalR bits. Let's start with the Hub with the
following steps.

From the Project menu, select Add New Item (you can also use the project context menu from
Solution Explorer or the Ctrl + Shift + A keyboard shortcut), click on the Web folder, and then
select the SignalR Hub Class (v2) template; specify EchoHub as the name and click on OK as
shown in the following screenshot. Make sure you have selected the v2 Version because we
want to target SignalR 2.0.

Visual Studio will add a new file called EchoHub.cs with some boilerplate code inside.

1.	 Let's edit the file content to make it look like the following code snippet:
using System.Diagnostics;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;
namespace Recipe01

Understanding the Basics

10

{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void Say(string message)
 {
 Trace.WriteLine(message);
 }
 }
}

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

The following lists the important points here:

�� The necessary using directives are listed at the top of the file.

�� The EchoHub class is derived from Hub, which comes from Microsoft.
AspNet.SignalR.Hubs and makes the server-side SignalR API available
to our class.

�� The class is marked with the HubName attribute, which allows us to give the
Hub a friendly name to be used by the clients; if we don't use the HubName
attribute, the Hub name will be the same as the class name (in this case,
it would be EchoHub).

�� Our Hub contains a method called Say(). This is just a sample method
we'll use to show how to expose Hub endpoints. On every call, it will just
output the value of the message parameter in the debugger Output
window, or in any trace listener we may want to configure.

The class namespace is not so important. Here, I'm choosing the same name as
the project name; it's the recommended way, but it does not have to be like that.

2.	 From the Project menu, select Add New Item again, click on the Web folder, and
then select the OWIN Startup class template. Specify Startup as the name and
click on OK, as shown in the following screenshot:

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Chapter 1

11

Visual Studio will add a new file called Startup.cs with some code inside it.

3.	 Let's edit the file content to make it look like the following:
using Microsoft.Owin;
using Owin;
[assembly: OwinStartup(typeof(Recipe01.Startup))]
namespace Recipe01
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }
}

Understanding the Basics

12

The following lists the important points here:

ff SignalR 2.0 uses Open Web Interface (OWIN) for .NET as the standard interface
between .NET web servers and web applications, enabling a level of indirection and
abstraction that keeps your project from directly tying to any specific hosting platform.
This is the technical foundation that actually enables SignalR to be hosted from both
web applications and traditional .NET processes, as we'll see later.

ff Every OWIN application must have a Startup class that follows specific conventions.
In particular, a Configuration() method with the signature shown in the
preceding code must be made available.

ff The assembly-level attribute OwinStartup is there to declare that our Startup
class will be used to bootstrap every OWIN-based asset contained in all the loaded
assemblies; there are other ways to declare the right Startup class to load, but
we'll see them in the future recipes.

ff Inside the Configuration() method, we start up SignalR using an appropriate
extension method (MapSignalR()) made available by the SignalR core inside the
Owin namespace; a call to the MapSignalR() method will expose an endpoint
called /signalr, which the clients will use to connect to the server.

We're done! Our first SignalR Hub is ready to be called. However, as already mentioned,
in order to see it in action, we need a client. Let's build one inside our web application
using the JavaScript SignalR client.

Let's add a web page that we'll use as the place to put our basic client to test our Hub. This
is where the recipe differs across the different project types. The most natural choices are
as follows:

ff Web form for a Web Forms application: From the Project menu, select Add New
Item, click on the Web folder, select the Web Form template (specifying, for example,
index.aspx as the name), and click on OK.

ff Razor View for an MVC application: Let's first add a default controller named
HomeController and then a view for its Index default action, which will be called
index.cshtml. Please refer to the Appendix A, Creating Web Projects if you want
more details about these steps.

ff HTML page for a website: From the Project menu, select Add New Item, click on the
Web folder, select the HTML Page template (specifying, for example, index.html as
the name), and click on OK.

Visual Studio will create the specified file with some basic HTML content. Those files will
slightly differ according to the type you picked earlier, but for now we're just interested in the
content of the <head> section, which we'll modify to make it look like the following code:

 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>

Chapter 1

13

 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;
 $.connection.hub
 .start()
 .done(function () {
 hub.server.say('Hello SignalR!');
 });
 });
 </script>

We basically kept what was there and then we just added a few <script> blocks. We'll go
into detail about this portion in the Connecting to a Hub from a JavaScript client recipe. So,
for any questions you might have about this code, please hold on for a while! The only thing
we anticipate here is that the special /signalr/hubs endpoint does not correspond to any
file that you'll find in the project; nevertheless, it's correct and will be explained later on.

We can now launch the application from Visual Studio: a browser window will open, the page
will be loaded, and the Say() method of the EchoHub class will be executed as soon as
the page is completely loaded in the browser. We can prove this by observing the effect of
the Trace.WriteLine(message); line of code on the Output debug window, where the
message will be printed.

How it works…
Let's review the main points of what we just did:

ff We added a Hub class. Any class available in the project that is derived from
Hub is automatically discovered and exposed when SignalR is initialized calling
MapSignalR in the Startup class.

ff The client page established a connection to our EchoHub using the JavaScript
SignalR client library.

ff When the connection is ready, we make a remote call to the Say() method
exposed by our EchoHub.

ff SignalR coordinates the two sides using the most appropriate connection strategy
(more on that in future recipes), taking into account which is the HTTP server hosting
the application and which web browser is used to run the client page; it gives us
the feeling of a direct connection towards our server-side Hub, allowing us to call
methods on it directly (the line hub.server.say('Hello SignalR!');).

Understanding the Basics

14

There's more…
So far, we did not experience anything really special. We just performed a client-to-server call,
which could have been done with plain old HTTP techniques. Nevertheless, we just laid the
foundation for any SignalR Hub-based web application.

Adding a Hub to a self-hosting application
SignalR can be considered as a web framework because it's based on web technologies, such
as HTTP and HTML5, but it can actually be used in the context of classic standalone processes
without any relationship to browsers or web servers. This is possible thanks to the .NET client
library for the client part, and to the self-hosting capabilities for the server part. The latter, in
particular, is the subject of this recipe. It enables scenarios where the server-side portion of a
SignalR application can live inside any hosting process, without requiring it to be an ASP.NET
web application. In this recipe, we'll see how to host SignalR inside a simple console application,
but any other .NET process would do. This way, we have a chance to use SignalR in scenarios
where we do not have a proper web server available, or where thinking about an embedded
SignalR makes sense.

Getting ready
Let's create a console application using the following steps:

1.	 Navigate to File | New Project.

2.	 Navigate to Installed | Visual C# in the dialog box and select the Windows folder.

3.	 On the central panel of the dialog box, select Console Application, give it a name
(Recipe02, in this case), and click on OK.

Visual Studio will add a Program.cs file containing the startup code for our application to the
new project that we just created in Visual Studio 2013. For this recipe, we will add all our code
to this file just after the Program class, whose static Main() method we'll be filling at the
end of the recipe.

How to do it…
We're ready to actually start building our SignalR server. Visual Studio simplifies the process
for web applications or websites, offering a series of code templates for Hub or Startup
classes that we used in the previous recipe. But, for more general Windows applications,
those templates are not available, and we'll have to undergo a slightly longer process. First,
we'll need to add a reference to SignalR 2.0, which we can be easily found on NuGet, using
the following steps:

Chapter 1

15

1.	 Select the Recipe02 project, and under the Project menu, click on the Manage
NuGet Packages… entry.

2.	 From the corresponding dialog box, let's do a search for the online packages using
signalr self host as a filter condition. We should be presented with a results
list like the following:

3.	 Let's select the Microsoft ASP.NET SignalR Self Host package and then click on
the Install button; this action will download and install all the packages we need
to proceed with our application.

4.	 We are ready to add some code. Let's start with our Hub by opening the Program.cs
file and adding the following code just outside of the existing Program class:
[HubName("echo")]
public class EchoHub : Hub
{
 public void Say(string message)
 {
 Trace.WriteLine(message);
 }
}

Understanding the Basics

16

In order to compile the previous code, we'll have to add the following using
directives at the top of the file:
using System.Diagnostics;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

The following lists the important points here:

�� The class EchoHub is derived from Hub, which comes from Microsoft.
AspNet.SignalR.Hubs, and makes the server-side SignalR API available
to our class.

�� The class is marked with the HubName attribute, which allows us to give
the Hub a friendly name to be used from the clients; if we don't use the
HubName attribute, the Hub name will be the same as the class name (in
this case, it would be EchoHub).

�� Our Hub contains a method called Say(). This is just a sample method we'll
use to show how to expose Hub endpoints. On every call, it will just output
the value of the message parameter in the debugger Output window, or in
any trace listener we may want to configure.

Let's proceed with the rest of the code.

5.	 Now we need to add a Startup class, as shown in the following code, to correctly
bootstrap our SignalR Hub:
class Startup
{
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
}

The MapSignalR call will expose an endpoint called /signalr that the clients
will use to connect to the server. In order to compile the code, we'll have to add
the following using directive at the top of the file:
using Owin;

6.	 We're almost done. We just need to start up everything inside the Main() method
mentioned earlier, which we now modify to make it look like the following code snippet:

static void Main(string[] args)
{
 using (WebApp.Start<Startup>("http://localhost:1968"))

Chapter 1

17

 {
 Console.WriteLine("Server running!");
 Console.ReadLine();
 }
}

In order to compile the code, we'll have to add the following using directives at the
top of the file:

using System;
using Microsoft.Owin.Hosting;

The following lists the important points here:

ff By calling WebApp.Start<Startup>("http://localhost:1968"), we are
telling the self-hosting subsystem that it has to use our Startup class to initiate a
SignalR endpoint and make it listen to the supplied URL. The chosen port (1968)
is a random one. You could pick any other, provided you check your firewall when
deploying your solution.

ff The resulting endpoint will of course expose the SignalR protocol, therefore only
connections to it from a SignalR client would make sense and actually work.

ff When the initialization call has been completed, we print a message and then wait
for someone to press Enter; this is important to keep our console application alive.
Without it, the process would immediately end and the server would go away.

Our self-hosting process is now ready to be used. When launched, it will wait for clients
to connect and call the Say() method on the EchoHub Hub. At each call, we would
notice a Hello SignalR! message printed on the Output debug window by the Trace.
WriteLine(message); call inside the Say() method.

We did not write any client code, but in self-hosting scenarios, it's not so common to have
any client portion at all. Therefore, we'll end this recipe here. In the Connecting to a Hub
from a .NET application recipe at the end of this chapter, we will be writing a standalone
.NET client, and we'll be using it to connect to this server.

www.allitebooks.com

http://www.allitebooks.org

Understanding the Basics

18

Connecting to a Hub from a JavaScript
client

After having illustrated the two different ways we have to expose a server-side Hub let's now
move on and see the client-side code in more detail.

During the Adding a Hub to an ASP.NET project recipe, we quickly used the JavaScript client
library in order to demonstrate that our Hub was fully functional, but we did not go much into
detail about it because we were concentrating on the server-side code. This recipe will fill
this gap and give more clarity on how a JavaScript client is written. However, in order to make
it fully functional, we will need a server-side portion; therefore, we'll be adding a basic Hub
the same way we did for the Adding a Hub to an ASP.NET project recipe. Any specific detail
about how to do it will be skipped because it's just an accessory to the real goal of this recipe,
and we will just list the necessary steps. For any further clarification about that part, you can
check the Adding a Hub to an ASP.NET project recipe.

Getting ready
Let's create a website where we'll be hosting our client. This is a common task, so we are
going to skip the details. If you want more information about this, you can refer to Appendix A,
Creating Web Projects at the end of the book.

How to do it…
We're ready to actually start adding what we need to build our SignalR client. We need to use
the following steps:

1.	 As we did in the Adding a Hub to an ASP.NET project recipe, we'll add a Hub called
EchoHub and a Startup class. Here, we'll skip all the related details for brevity.
Just make sure that the project ends up containing the same server-side code.
These actions will download and add all the SignalR-related references, including
the JavaScript client libraries.

2.	 Let's add a web page to which we'll add our client. From the Project menu, select
Add New Item, click on the Web folder, select the HTML Page template (specifying,
for example, index.html as the name), and click on OK.

Visual Studio will create the specified file with some basic HTML content; let's edit it to make
it look like the following:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>

Chapter 1

19

 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;
 $.connection.hub
 .start()
 .done(function () {
 hub.server.say('Hello SignalR!');
 });
 });
 </script>
</head>
<body>
</body>
</html>

We basically kept what was there and just added the highlighted <script> blocks that
you can see in the previous code.

We can now launch the application from Visual Studio; a browser window will open and
the index.html page will be loaded. Then we'll observe the code reaching the Trace.
WriteLine(message); line inside the Say() method of the EchoHub class as soon
as the page is completely loaded in the browser.

How it works…
Let's concentrate on our client page. The details are as follows:

ff The first relevant portion of code are the first two <script> blocks, where we
reference jquery and jquery.signalR as JavaScript libraries. jQuery is necessary
because the SignalR JavaScript client is actually a jQuery plugin, as the actual name
of the library makes clear.

ff Our libraries are taken from the /scripts folder, where they have been placed by
one of the NuGet packages installed as soon as we added our Hub. This package is
actually called Microsoft ASP.NET SignalR JavaScript Client and can be installed in
any ASP.NET application, even if the application does not contain any Hub. We'll see
how this can be useful in future recipes, where we will be trying to connect to Hubs
hosted in a different web application from the one containing the client.

ff The third <script> block refers to a dynamic endpoint (/signalr/hubs) exposed
by the server portion because of the MapSignalR call from the Startup class,
already explained in the previous recipes. It actually generates JavaScript code on the
fly according to the available Hubs. In practice, the JavaScript proxies for our Hubs (in
this case, the EchoHub Hub) are built on the fly by the server-side portion of SignalR
as soon as this endpoint is hit, and they're sent to the client as JavaScript source code.

Understanding the Basics

20

ff The last <script> block is where we actually connect to our Hub. Let's dig more into
it. The details are as follows:

�� Our code is written inside a classic jQuery $(...); call, which actually
ensures that our code is called when the page is fully loaded.

�� We first take a reference to our echo Hub, which is exposed by the
$.connection.echo property generated by the dynamic endpoint
that we just described.

�� Then we call the start() method exposed by the $.connection.hub
member, which performs the actual connection to our server.

�� The start() call is asynchronous, and we have to make sure it has actually
been completed before using any Hub; that's easy because start() returns
a promise object containing a done() method to which we can pass a
callback function, where we put our Hub-related code. This way, we are sure
that SignalR will call our code when the Hub proxy is fully initialized and
ready to be used.

�� Inside our callback function, we can use our Hub instance; in particular, it's
the server member from which we are able to call any method exposed by
the Hub. The hub.server.say('Hello SignalR!'); line of code will
actually call the Say() method on our server-side Hub.

�� Note that say is written in lowercase here. Regardless of the actual name on
the server-side Hub, in a JavaScript context, SignalR automatically generates
camel case names in order to provide a more idiomatic JavaScript API.

When launching the application from Visual Studio, a browser window will open, the page will
be loaded, and the Say() method of the EchoHub class will execute as soon as the page is
completely loaded.

Connecting to a Hub from a .NET application
In the context of the Adding a Hub to a self-hosting application recipe, we already mentioned
that SignalR can be used in the context of a generic standalone process, and we detailed how
this can be leveraged for the server-side portion of an application. Thanks to the .NET client
library, we can apply the same reasoning on the client side, enabling traditional Windows
applications to connect to any SignalR server. In this recipe, we'll learn how to use the .NET
SignalR client inside a simple console application. For the server portion to connect to, we'll
make use of what we did in the Adding a Hub to a self-hosting application recipe, so please
make sure you have the code from that recipe ready and fully working before proceeding.

Chapter 1

21

Getting ready
Let's create a console application using the following steps:

1.	 Navigate to File | New Project.

2.	 Navigate to Installed | Visual C# in the dialog box and select the Windows folder.

3.	 On the central panel of the dialog box, select Console Application, give it a name
(Recipe04, in this case), and click on OK.

Visual Studio will add a Program.cs file containing the startup code for our application.
For this recipe, we will add all our code to this file, which contains the following lines:

namespace Recipe04
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

How to do it…
We're ready to actually start building our SignalR client. Visual Studio simplifies the process
for web applications or websites, which are normally supposed to contain both server- and
client-side portions; hence, the action of adding a Hub through the corresponding Visual
Studio code template actually includes the JavaScript client portion too. When building a
purely .NET client, we do not have a specific code template to use, and we have to resort
to NuGet to import the appropriate package. This is done using the following steps:

1.	 Select the Recipe04 project, and under the Project menu, click on the Manage
NuGet Packages… entry.

Understanding the Basics

22

2.	 From the corresponding dialog box, perform a search for the online packages
using signalr client as the filter expression. We should obtain a results
list like the following:

3.	 Select the Microsoft ASP.NET SignalR .NET Client package and then click on the
Install button. This action will download and install all the packages that we need
to proceed with our application.

4.	 We are ready to add some code. Let's open the Program.cs file and modify the
Main() method's body as follows:
using System;
using Microsoft.AspNet.SignalR.Client;

namespace Recipe04
{
 class Program
 {
 static void Main(string[] args)
 {
 var url = "http://localhost:1968";
 var connection = new HubConnection(url);
 var hub = connection.CreateHubProxy("echo");
 connection.Start().Wait();

Chapter 1

23

 hub.Invoke("Say", "Hello SignalR!");

 Console.ReadLine();
 }
 }
}

How it works…
ff Starting from the inside of the Main() method, the first line defines the address

to which our client will try to connect to, and the second line actually instantiates a
connection object pointing to that address; our client will expect to find a SignalR
server listening at that position.

ff Then we use the connection object to create a proxy for the EchoHub Hub that
we used so far when building our servers (the third line). In this recipe, we are using
the one that we created in the Adding a Hub to a self-hosting application recipe, so
we know from its code that it will be listening on port 1968, and it will expose our
EchoHub Hub with the friendly name echo, which we supply as a parameter to the
CreateHubProxy() method that will provide us with a proxy pointing to it.

ff We are now ready to perform the connection using the Start() method. Its return
value is a task-derived object, which means its execution will be asynchronous;
indeed, we are not allowed to use a Hub until the connection process has properly
completed. That's why in this example we use the Wait() method to block our
code until the connection is effectively ready.

ff When we are done with the Wait() call, we can safely address any method on
our Hub proxy. We know that EchoHub exposes a Say() method, so we call it
using Invoke, to which we pass the name of the method to call (Say()) and
the list of the expected parameters (in this case, just one for the "Hello
SignalR!" message argument).

ff The Console.Readline() method is there to prevent the process from
exiting immediately.

That's it. If we now launch the Recipe 02 console application first and then the one we just
built in this recipe (either from Visual Studio directly or from a console window), we should see
the server application happily printing Hello SignalR! on the screen because of the call
from our client.

Pay attention; you have to keep the application's Recipe02 project open
while Recipe04 is running. If you just debug Recipe02 and then stop
the debugger to launch Recipe04, Recipe02 will be killed. There are
several ways to achieve the right workflow. One of the simplest is to make
Recipe02 the active project, start it without debugging (Ctrl + F5), and
then make Recipe04 active and launch it, with or without debugging.

Understanding the Basics

24

This recipe has completed our first showcase of SignalR features, and it allowed us to
understand the basics of how it works and the general structure of any SignalR-based
application. We also learned about the different types of hosting we can use and about
the two client libraries available out of the box.

2
Using Hubs

In this chapter, we will cover:

ff Adding a method to a Hub and counting the calls to it

ff Calling back the caller from a Hub's method

ff Broadcasting to all connected clients

ff Adding a connection to a group

ff Removing a connection from a group

ff Broadcasting to all connected clients except the caller

ff Broadcasting to all clients except the specified ones

ff Broadcasting to all clients in a group except the caller

ff Broadcasting from outside a Hub

ff Using the return value of a Hub method

Introduction
SignalR's main goal is to deliver a real-time experience over HTTP, where both clients and
servers can participate in a conversation as senders and listeners at the same time (known
as full-duplex communication). A client initiates the flow by starting a new connection, but after
that, both types of actors are equally capable of sending and receiving bits of the conversation.

In order to deliver such an experience, SignalR comes with two distinct APIs: one called
persistent connection, which we can consider to be the low-level API, and one called Hubs,
which is built on top of the former and brings a higher-level set of concepts and an easier and
straightforward experience for the developer. We'll talk about Hubs first as we want to make our
way through the SignalR features, starting from the simplest to use to the more sophisticated.

Using Hubs

26

A Hub can be seen as a set of methods exposed by a server that any client can connect to,
in order to perform actions on that server or to retrieve data from it. If you are familiar with
the MVC pattern, it looks like a controller because it offers a way to expose the server-side
functionalities through methods whose names we are free to define as we prefer. The usual
way to exploit this capability is to use names related to our business logic, and SignalR's Hubs
are no different; they enable us to do so on top of a bidirectional communication framework.

Previously, I decided to define a Hub as a set of methods and not just an object or a type
(which it is technically), because I wanted to highlight the fact that, when connected to it,
we should not expect to have any strong reference or link to a particular instance of a Hub.
The Hub life cycle is not under our control; we should avoid putting any instance state in it
and expect it to be kept across all the calls. If we keep these concepts in mind, we will be
in a better position to write good SignalR code.

In the same way, a client has no power to select a specific Hub instance to talk to. A server
should avoid talking to specific clients, and talk to specific sets of clients instead. A Hub should
refer to clients according to the following sets that are offered by the SignalR platform:

ff The caller

ff Every connected client

ff Every connected client but the caller

ff Every client belonging to a specific group (more on what a group is will be
covered later on)

ff Exclusion lists that could be passed to most of the previous sets to identify exceptions

There are some other variants of this schema; however, in general, these should be the
targets of any server-side calls. The main reason for this choice is scalability; the less state
about the connected clients we have to maintain on the server, the more concurrent clients
SignalR can serve.

This is the guiding principle that we should try to follow, although there might be the need for
slightly different approaches. This is also a simplified description of the problems and of the
features around SignalR. The implications could be complex and they are not in the scope of
this book. The discussion will try to stay as much as possible on the general case; therefore,
the recipes in this chapter will adhere to some general guidelines about how to write good
standard clients and good standard hubs. You might have to review and adapt them in case
your requirements happen to be more complex.

This chapter will be about how to create Hubs, how to add methods to them, and how a Hub can
interact with its connected clients. We will also briefly describe the client-side code necessary
to have fully working recipes, but for more detail about the client bits, please refer to Chapter 3,
Using the JavaScript Hubs Client API and Chapter 4, Using the .NET Hubs Client API.

Chapter 2

27

For the following recipes, we will always start from empty web application projects, and we'll
use simple HTML pages to host the client code. Creating such a project is a fairly common
task, so we are going to skip the details about it. If you want more information, you can refer
to Appendix A, Creating Web Projects, at the end of the book. The same strategy will apply
when creating recurring assets such as a Startup class or a Hub. We will just briefly mention
the need for them. You could go back to Chapter 1, Understanding the Basics, for some more
information about the steps required in Visual Studio to get there.

For clarity in the explanation, we may sometimes introduce some intermediate variables in the
code to make any related explanation clearer. Of course, you'd want to remove them from your
production code and refactor them to a more streamlined version.

Adding a method to a Hub and counting the
calls to it

This first recipe of the chapter is very simple, and in a way similar to the others we saw in
Chapter 1, Understanding the Basics; however, the focus will be lesser on the process and
the parts involved and more on specific Hub features. We'll learn a simple way to count how
many times a Hub method is called by the connected clients.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application, which
we'll call Recipe05.

How to do it…
We're ready to actually start adding our SignalR bits by performing the following steps:

1.	 Let's add a Hub called EchoHub. Behind the scenes, this action references a
NuGet package called Microsoft.AspNet.SignalR, which then brings a few more
packages.

2.	 Then we add an OWIN Startup class named Startup, which contains just a simple
app.MapSignalR() bootstrap call inside the Configuration() method.

3.	 It is important to highlight the fact that it is recommended to add a Hub to the project
before adding the Startup class, because the first action adds more package
references to the project, and one of them (Microsoft.AspNet.SignalR.Core) contains
the definition of the MapSignalR() extension method that we need to call from
inside the Startup class.

4.	 Let's edit the Hub file content to make it look like the following code:
using System.Diagnostics;
using Microsoft.AspNet.SignalR;

Using Hubs

28

using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe05
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 private static int _calls = 0;
 public void Hello()
 {
 Trace.WriteLine(string.Format("Calls: {0}",
 ++_calls));
 }
 }
}

What's important here? We need to make sure that the following steps are performed:

ff The class EchoHub is derived from Hub, which comes from Microsoft.AspNet.
SignalR.Hubs, and makes the server-side SignalR API available to our class

ff The class is marked with the HubName attribute, which allows us to give the Hub a
friendly name to be used by the clients; if we don't use the HubName attribute, the
Hub name will be the same as the class name (in this case, it would be EchoHub)

ff We added a static int _calls field and used it to count how many times our
exposed method will be called by any client

ff We exposed a public method called Hello() to increment the _calls static field
on every call to it and then output its value into the debugger Output window, or in
any Trace listener that we may want to configure

What we are expecting from the preceding code is a pretty naive way to count how many times
the Hello() method is called. As mentioned in the introduction, we cannot assume anything
about any specific instance of EchoHub being around (the actual default implementation
will always create a new instance per call). The best way to count the calls across the clients
is to use an external reference accessible by all the Hub instances, which will maintain the
state across calls, for example, a static member as we do here. This is not a good strategy
for production environments though, because static fields do not survive application recycles
and this strategy does not scale horizontally in case of web farms. Still, this is just fine for the
introductory goal of this recipe.

Let's move on with the client portion; to build that, we create an HTML page calling it index.
html and add the following code to it:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

Chapter 2

29

 <title>Recipe05</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;

 $.connection.hub
 .start()
 .done(function () {
 $('#send').click(function () {
 hub.server.hello();
 });
 });
 });
 </script>
</head>
<body>
 <button id="send">Send</button>
</body>
</html>

We basically kept what was there after the Visual Studio wizard execution, and then we
added the <script> blocks to reference SignalR to address the dynamic hubs endpoint
(/signalr/hubs), and eventually perform a connection to the server and a subsequent call
to the exposed Hello() method. We explained these steps in greater detail in Chapter 1,
Understanding the Basics, and we'll dig more into all the client-side steps in Chapter 3, Using
the JavaScript Hubs Client API and Chapter 4, Using the .NET Hub's Client API. These will be
recurring steps across the remaining recipes of this chapter.

We can now launch the application from Visual Studio. A browser window will open and the
index.html page will be loaded. By clicking on the Send button on the page, the client will
invoke the Hello() method of the EchoHub class on the client-side proxy, and the server-
side code will reach the Trace.WriteLine(...); line inside the Hello() method of the
EchoHub class. The _calls field will be incremented at every call, and we can verify that by
either clicking on the button multiple times or by opening more browser windows pointing at
the same address as the first one, and clicking on the Send button for all of them.

How it works…
The following are the most relevant points about what we just built:

ff Any public method exposed by a Hub class can be reached by any SignalR client

ff When any client calls a Hub method, a Hub instance is made available and the
code from the called method is executed

Using Hubs

30

ff In order to count the method calls across clients, we cannot rely on a specific
instance of EchoHub being around all the time; so, for this example, we use
the simplistic strategy of incrementing a static field

See also
If you are interested in more resilient ways to solve the problem of counting without having
to worry about application recycles and horizontal scalability, please check out Chapter 7,
Analyzing Advanced Scenarios.

Calling back the caller from a Hub's method
With this recipe, we are actually starting to look at more interesting and real-time SignalR
features. We will see how a Hub can call back into a client that just performed a remote
method call.

Getting ready
Before starting with this recipe, we need to create a new empty web application, which we'll
call Recipe06.

How to do it…
Let's start building the server-side portion of this recipe using the following steps:

1.	 We must first add a Hub called EchoHub.

2.	 We must then add an OWIN Startup class named Startup, containing just a simple
app.MapSignalR(); bootstrap call inside the Configuration() method.

3.	 Let's make the Hub's content look like the following:
using System;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe06
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void Hello()
 {
 var msg = string.Format("Greetings {0}, it's

Chapter 2

31

 {1:F}!",
 Context.ConnectionId,
 DateTime.Now);
 var caller = Clients.Caller;
 caller.greetings(msg);
 }
 }

}

What's important here? We need to make sure that the following steps are performed:

ff Inside the Hello() method, we build a message (msg) using the current time and
a property exposed by the Context member of the Hub type called ConnectionId.
This unique identifier is automatically assigned by SignalR to every new connection.
Each connection belongs to a specific connected client, and we can assume for now
that such a connection stays around until the client goes away. Things are actually
more complex than this, but we'll talk about it in future recipes.

ff Context is of type HubCallerContext, and exposes a set of properties related
to the current connection, such as the just mentioned ConnectionId, query string
parameters, cookies, and more.

ff When msg is ready, we use the Clients member from the Hub type, which gives us
access to the universe of the connected clients. From there, we take a reference to
the Caller member, representing the calling client from which the Hello() method
has been contacted.

ff We finally call the greetings() method on the caller variable, supplying the msg
we just built. We expect this call to be performed on the caller from which the server-
side Hello() method has been hit.

This code illustrates how we can use Context to access information about the connection
(we can not only find details about the SignalR connection identifier, but also about HTTP
headers or the query string), and how to access the current caller from it.

The other interesting part about caller is that it's a dynamic object, meaning we can try to
call whatever method we want on it as the code will pass any compile-time check and the call
will be resolved at runtime by SignalR. The call will succeed only if a method with the same
name and expecting the same parameters is found by SignalR on the client-side hub proxy,
no matter which client library we are using (in this case, the JavaScript one), otherwise it will
silently fail. You can get more information about dynamic programming in .NET at http://
msdn.microsoft.com/en-us/magazine/gg598922.aspx, while you can get specific
introduction about a dynamic method resolution strategy at http://msdn.microsoft.
com/library/ee658247.

Using Hubs

32

Finally, the execution of the dynamic call is performed asynchronously. The server-side code will
not be blocked while waiting for the actual execution of the code on the client; instead, it will
exit immediately, relinquishing the control of the code flow back to the caller. Asynchronism is
a very important feature of SignalR. Every time there is any code that implies network activity
(connection-related operations, client-to-server calls, and server-to-client calls), the execution
of that code is asynchronous. This introduces some complexity, but it's an absolutely necessary
feature in order to achieve the astonishing performance characteristics of this library.

The whole asynchronous strategy in SignalR is built around the Task-based Asynchronous
Pattern (TAP). You can get an overview about it at http://msdn.microsoft.com/en-us/
library/hh873175(v=vs.110).aspx.

Let's now create an HTML client page called index.html, which contains the following code:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe06</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;

 hub.client.greetings = function (message) {
 $('#message').html(message);
 };

 $.connection.hub
 .start()
 .done(function () {
 $('#send').click(function () {
 hub.server.hello();
 });
 });
 });
 </script>

</head>
<body>
 <button id="send">Say Hello!</button>
 <p id="message"></p>
</body>
</html>

Chapter 2

33

What's important here? We need to make sure that we perform the following steps:

ff We have the usual references to the jQuery and SignalR libraries, and to the SignalR
dynamic hubs endpoint, which from now on we'll take for granted.

ff We take a reference to the echo hub, and from there we access the client member
to extend it with a function called greetings(), whose name and signature are
matching the method that the Hub is trying to call back; the function will just update
a p element on the page with the received message.

ff We then start the connection, and when it's ready (the done callback), we hook
the click event of the send button to the action of calling the Hello() method
on the echo hub proxy through the server member; more detail about starting a
connection can be found in Chapter 3, Using the JavaScript Hubs Client API.

ff It's important that the client member is filled with any callback function before
starting the connection.

ff We decide to hook the click event on the button just inside the done callback
to make sure we cannot call the Hello() method before the connection being
established.

Now run the application, navigate to index.html and click on the Say Hello! button.
We should see something like what is shown in the following screenshot:

Every time we click on the Say Hello! button, we'll see that the time changes, but not
ConnectionId, and the page is not refreshed. On the other hand, every time we do a full
refresh of the page and click on the button, we'll see a new ConnectionId displayed.

Using Hubs

34

How it works…
When we ask SignalR to open a connection from the client, it gives us a persistent connection,
the illusion that a permanent channel has been established between the client and the server.
We can use this channel to send messages from the client to the server and the other way
round. Using a Hub we can do that through an object-oriented API, which makes the connection
transparent to both parts.

How the connection is physically established is a SignalR concern; it will use the best option
available according to the context of the running code. However, it could well be that behind
the scenes the connection is not permanent at all. We just don't have to worry about that.
We'll talk more about these details in Chapter 3, Using the JavaScript Hubs Client API and
Chapter 4, Using the .NET Hubs Client API.

The actual resolution of the method calls, both on the server-side Hub and on the connected
clients, is actually performed by SignalR dynamically at runtime. On the server side, SignalR
leverages the .NET dynamic support to do so, while on the client side, this depends on the
library used. In the case of this recipe, we are using the JavaScript client library, so the actual
support for dynamic objects and calls is built into the language.

Broadcasting to all connected clients
After several examples where a single client was involved at a time, we'll start looking at
scenarios where multiple clients are connected at the same time, and we'll start making them
interact. We will see how a Hub can call back into all the connected clients from the context of
a single remote method call performed by just one of them. This is where SignalR becomes a
more interesting and outstanding library!

Getting ready
Before proceeding, we need to create a new empty web application, which we'll call Recipe07.

How to do it…
As usual, we need some simple steps to get started as follows:

1.	 Add a Hub called EchoHub.

2.	 Add an OWIN Startup class named Startup with its Configuration() method
containing just a simple app.MapSignalR(); bootstrap call.

3.	 Modify the file content to make it look like the following code:
using System;
using Microsoft.AspNet.SignalR;

Chapter 2

35

using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe07
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void Hello()
 {
 var msg = string.Format("Greetings {0}, it's
 {1:F}!",
 Context.ConnectionId,
 DateTime.Now);
 var all = Clients.All;
 all.greetings(msg);
 }
 }

}

What's important here? We need to make sure that we perform the following steps:

ff Inside the Hello() method, we build a message (msg) using the current time and
the ConnectionId property exposed by the Context member from the Hub type

ff When msg is ready, we use the Clients member from the Hub type, and from
there we take a reference to the All member, representing all the currently
connected clients

ff We finally call the greetings() method on the all variable, supplying the msg
we just built; we expect this call to be performed on all the connected clients, and
to be triggered at every call to the Hello() method performed by any of them

The All member, like the Caller one we saw earlier, is a dynamic object over which we can
try to call whatever method we want. The call will be resolved at runtime by SignalR, and it will
reach all the connected clients with the only precondition that a method with the same name
and expecting the same parameters must be available on the client-side hub proxy.

To test our hub, let's build a client HTML page, which we'll call index.html. Add the following
code to this file:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe07</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>

Using Hubs

36

 <script>
 $(function () {
 var hub = $.connection.echo;

 hub.client.greetings = function (message) {
 var li = $('').html(message);
 $('#messages').append(li);
 };

 $.connection.hub
 .start()
 .done(function () {
 $('#send').click(function () {
 hub.server.hello();
 });
 });
 });
 </script>

</head>
<body>
 <button id="send">Say Hello!</button>
 <ul id="messages">
</body>
</html>

What's important here? We need to make sure that we perform the following steps:

ff We take a reference to the echo hub, and from there we access the client
member, to which we add a function called greetings() whose name and
signature are matching the method that the Hub is trying to call back; the
function will append every received message to a ul list present on the page
marked with an id attribute whose value is messages

ff We then start the connection, and when it's ready we hook the click event
of the send button on the page to the action of calling the Hello() method
on the echo hub proxy through its server member

ff Remember, the client member has to be filled with the callback function(s)
before starting the connection

Now we can run the application by navigating to index.html multiple times in different
browser windows (or tabs), and then clicking on the Say Hello! button on each of them.
We should see all the browser windows receiving the same message each time we push
the button. The Clients.All member is effectively gives us access to the whole set of
active connections, and it provides a way to broadcast method calls to all of them at once.

Chapter 2

37

At every call, we'll notice that the printed time changes, but not the ConnectionId of the
browser window from which the call comes, and no page refresh happens. On the other hand,
every time we refresh one of the windows and click on the button, a new ConnectionId,
representing that specific browser instance connection, will be shown. The following
screenshot depicts this:

How it works…
The mechanics are the same as explained in the previous recipe, so please refer to it for
more details.

www.allitebooks.com

http://www.allitebooks.org

Using Hubs

38

Adding a connection to a group
Multiple clients can connect to a specific Hub at the same time, and the number of
connections can easily increase. SignalR offers a feature called groups in order to define
subsets of connections and use them when broadcasting to clients. We will see how a Hub
can place connected clients into groups and then broadcast calls to all the connections
belonging to a specific group.

Getting ready
Before writing the actual code, we need to create a new empty web application, which we'll
call Recipe08.

How to do it…
We're ready to start building our sample. We need to perform the following steps:

1.	 Add a Hub called EchoHub.

2.	 Add an OWIN Startup class named Startup with a Configuration() method
calling app.MapSignalR();.

3.	 Add the following to the Hub code:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe08
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void Subscribe(string groupName)
 {
 Groups.Add(Context.ConnectionId, groupName);
 }
 public void Hello(string groupName)
 {
 var msg = string.Format("Welcome from {0}",
 groupName);
 Clients.Group(groupName).greetings(msg);
 }
 }
}

Chapter 2

39

What's important here? We need to make sure that we perform the following steps:

ff We first expose a Subscribe() method, which receives a groupName parameter,
and then uses the Add() method of the Groups member inherited from Hub to add
the ConnectionId of the caller to a group called after the specified argument

ff The Hello() method builds a message (msg) and uses the Group() method of the
Clients member inherited from Hub to broadcast a request to invoke the client-side
greetings() method towards all the connections that joined the groupName group
by calling the Subscribe() method

ff We are allowed to dynamically call whatever method we want to because Group()
returns a dynamic object; it works the same way we saw earlier for Caller or All

This is a very powerful API, but it's also very straightforward. You first add any connection to a
certain group, and then you can access all the connections belonging to any group altogether
to broadcast client-side calls towards them from the context of a server-side Hub method.

You could think about a group as a sort of topic attached to the connection. SignalR is able to
efficiently target sets of connections marked with the same topic.

Let's proceed with the index.html client page and add the following code to it:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe08</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;

 hub.client.greetings = function (message) {
 var li = $('').html(message);
 $('#messages').append(li);
 };

 $.connection.hub
 .start()
 .done(function () {
 $('#subscribe').click(function () {
 $(this).toggle();

 var v = $('#group').val();
 hub.server.subscribe(v);

Using Hubs

40

 $('#send').click(function () {
 hub.server.hello(v);
 });
 $('#send').toggle();
 });
 });
 });
 </script>

</head>
 <body>
 <label>Group:</label>
 <select id="group">
 <option value="A">A</option>
 <option value="B">B</option>
 <option value="C">C</option>
 </select>
 <button id="subscribe">Subscribe</button>
 <button id="send" style="display: none">Say Hello!</button>
 <ul id="messages">
 </body>
</html>

At the bottom of the file, we see some HTML markup declaring a drop-down list with three
group names to choose from (A, B, and C), a button to perform the subscription, another one
to say hello, and an unordered list to collect all the messages that will be received from the
hub. Let's see what happens inside the <script> block:

ff We take a reference to the echo hub, and from there, we access the client member
to which we add a function called greetings() whose name and signature match
the method that the Hub is trying to call back. The function will append every received
message to a ul list present on the page and marked with an id attribute whose value
is messages.

ff We then start the connection and when it's ready, we hook the click event of the
subscribe button to the action of calling the subscribe() method on the echo
hub through the server member of the hub proxy.

ff After calling subscribe(), we set up the click event of the send button to call the
Send() method on the echo hub. Both subscribe() and Send() target the same
destination group, but this is just the way this sample is built; of course, it does not
have to be like that. The code will also take care of toggling the visibility of the two
buttons with simple jQuery methods.

ff We decide to hook the click event on the buttons just inside the done callback
to ensure that we can call the subscribe() and Hello() methods only when
the connection has been established (remember that starting a connection is an
asynchronous operation).

Chapter 2

41

We might have done the same to enable the send button after the asynchronous
completion of the subscribe() call, but we'll dig more into this kind of complex
workflow in the future recipes.

Now we can open index.html multiple times in different browser windows (or tabs),
and then we can click on the Subscribe button after selecting one from the three available
groups. After that, we'll be allowed to click on the Say Hello! button on any of the browser
windows we have, and we'll notice the following points:

ff Each hit on the Say Hello! button will send a message only to the windows that have
already subscribed to the same group as the one where the button was clicked on

ff Each window will receive messages only from other windows that have subscribed to
the same group as the source window

How it works…
SignalR manages the group topics in a very smart way, which actually does not involve any state
storage at the server side. It has information associated to the connection only, and this strategy
allows SignalR to have great horizontal scalability. If you need to persist group associations
across physical connections (think about putting users, not just connections into groups), you'll
have to resort to more complex strategies, which will be analyzed in future recipes.

Adding a connection to a group is always a safe operation, as depicted by the following points:

ff A group, if not yet existing, is automatically created when calling Add

ff You do not have to check if a connection is already present inside the group, because
calling Add multiple times for the same connection is an idempotent operation
without any unexpected side effects

ff A connection can be added to multiple groups at the same time

Removing a connection from a group
As we just saw, groups are an interesting and useful feature exposed by the Hub API. In the
previous recipe, we concentrated on how to add connections to a specific group, but we did
not expand on how you can remove them. This will be the subject of this recipe.

It's quite obvious that in order to remove connections from a group, we'll have to add them
to it first; however, that part has already been covered by the previous recipe. Here we'll show
the code to do both operations in order to deliver a fully working recipe, but we'll indulge in
comments only for the removal part. For more details about adding connections to a group,
please refer to the previous recipe.

Using Hubs

42

Getting ready
Before proceeding, we create a new empty web application, which we'll call Recipe09.

How to do it…
We're ready to actually start adding our SignalR bits by performing the following steps:

1.	 We need a Hub called EchoHub.

2.	 We then need an OWIN Startup class named Startup containing just a simple app.
MapSignalR(); call inside the Configuration() method to bootstrap SignalR.

3.	 We finally need to edit the content of the Hub with the following code:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe09
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void Subscribe(string groupName)
 {
 Groups.Add(Context.ConnectionId, groupName);
 }

 public void Unsubscribe(string groupName)
 {
 Groups.Remove(Context.ConnectionId, groupName);
 }

 public void Hello(string groupName)
 {
 var msg = string.Format("Welcome from {0}",
 groupName);
 Clients.Group(groupName).greetings(msg);
 }
 }
}

Chapter 2

43

What's important here? We need to make sure that we perform the following steps:

ff The Hello() and Subscribe() methods, although important, are the same as we
saw in the previous recipe, so we skip the details about them

ff The Unsubscribe() method receives a groupName parameter, and then uses the
Groups member inherited from Hub to remove the ConnectionId of the caller from
the specified group, via the Remove() method

Basically, we are just adding the removal feature to the Hub from the Broadcasting to all
clients in a group except the caller recipe. Let's now create an HTML client page that we'll
call index.html and add the following code to it:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe09</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;

 hub.client.greetings = function (message) {
 var li = $('').html(message);
 $('#messages').append(li);
 };

 $.connection.hub
 .start()
 .done(function () {
 var group;

 $('#subscribe').click(function () {
 toggler();
 group = $('#group').val();
 hub.server.subscribe(group);
 });
 $('#unsubscribe').click(function () {
 toggler();
 hub.server.unsubscribe(group);
 });

Using Hubs

44

 $('#send').click(function () {
 hub.server.hello(group);
 });
 });

 var toggler = function () {
 $('#subscribe').toggle();
 $('#unsubscribe').toggle();
 $('#send').toggle();
 };

 });
 </script>

</head>
<body>
 <label>Group:</label>
 <select id="group">
 <option value="A">A</option>
 <option value="B">B</option>
 <option value="C">C</option>
 </select>
 <button id="subscribe">Subscribe</button>
 <button id="unsubscribe" style="display: none">Unsubscribe</
button>
 <button id="send" style="display: none">Send</button>
 <ul id="messages">
</body>

</html>

The preceding code again is pretty similar to the one in the Adding a connection to a group
recipe, apart from some jQuery tricks to enable/disable buttons. The only significant addition
is the call to the unsubscribe() method exposed by the server-side Hub, plus the fact
that the selected group name is stored in a variable that is to be passed on subsequent
subscribe()/unsubscribe() calls. Those are not SignalR-specific additions, and their
goal should be easy to grasp.

Now we can open index.html multiple times in different browser windows (or tabs), and
then we can click on the Subscribe button after selecting one of the three available groups,
or the Unsubscribe button when subscribed. When subscribed, we can click on the Say Hello!
button on any of the browser windows that we have and see messages going around; when
unsubscribed, we won't be able to send anything, and we won't see any message popping up.

Chapter 2

45

Broadcasting to all connected clients
except the caller

In the previous recipes, we saw a few examples of broadcasting where the sender was
always included among the receivers of the message. That was because the APIs we used
always included the sender, whether we used the Caller member, the All member, or
the Group() method. There are several scenarios though, where it does not make sense
to broadcast to the caller; for example, in a live forum application, where it might be enough
to broadcast each message to everybody who joined except the sender. That's why SignalR
offers the Others member in order to send calls to everybody but the caller. Let's use it.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application,
which we'll call Recipe10.

How to do it…
This is a simple Hub. To make it work, we need to perform the following steps:

1.	 Add a Hub called EchoHub.

2.	 Add the usual OWIN Startup class, which we name Startup, containing the
Configuration() method just calling app.MapSignalR(); to bootstrap SignalR.

3.	 Add the following code to the Hub:
using System;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe10
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void Hello()
 {
 var msg = string.Format("Greetings {0}, it's
{1:F}!",
 Context.ConnectionId,
 DateTime.Now);
 var others = Clients.Others;
 others.greetings(msg);
 }
 }
}

Using Hubs

46

What's important here? We need to make sure that we perform the following steps:

ff Inside the Hello() method, we build a message (msg) using the current time and
the ConnectionId properties

ff When msg is ready, we use the Clients member inherited from the Hub type, and
from there we take a reference to the Others property, representing all the currently
connected clients and excluding the caller

ff We finally call the greetings() method on the others variable, supplying the msg
object we just built; we expect this call to be performed on all the connected clients
except the caller, and to be triggered by each call to the Hello() method performed
by any of them

The client page for this Hub is very simple and it's actually the same as we had in the
Broadcasting to all connected clients recipe. Add the following code to
this page:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe10</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;

 hub.client.greetings = function (message) {
 var li = $('').html(message);
 $('#messages').append(li);
 };

 $.connection.hub
 .start()
 .done(function () {
 $('#send').click(function () {
 hub.server.hello();
 });
 });
 });
 </script>

</head>
<body>

Chapter 2

47

 <button id="send">Say Hello!</button>
 <ul id="messages">
</body>

</html>

Let's now open multiple browser windows or tabs pointing to index.html, and then let's click
on the Say Hello! button on them. We will see that all the browser windows receive the same
message each time we click on the button, except for the one on which the button has been
pressed. The Clients.Others member is effectively giving us access to the whole set of
active connections excluding the one performing the call to the Hub from where we access it,
and this gives us a way to broadcast method calls to all of them at once.

Broadcasting to all clients except the
specified ones

SignalR offers a couple of ways to exclude entire sets of connections from a broadcast; here,
we see how we can exclude a specific set of connected clients using their ConnectionId
properties.

To demonstrate this feature, we need a slightly more complex sample. Let's consider a case
where some of the messages should go unobserved by the specific clients we do not want
to target. In such a case, we would need to inform everybody about who else is connected,
and provide a way to pick some of those in order to exclude them from the next broadcast.
To achieve this, we store a list of all the received connections in a static Hashset member
inside the hub, and we send this set to every connected client when it calls a Subscribe()
method. This set of connections will be used by the client to show a list of identifiers from
which the user can select who to exclude when performing the broadcast of the message.
To keep the UI simple, we'll let the user exclude just one recipient; however, the code can
be easily extended to exclude several of them.

Getting ready
In order to write the code of this recipe, we need to create a new empty web application,
which we'll call Recipe11.

How to do it…
Let's prepare the ground by performing the following steps:

1.	 We add a Hub called EchoHub.

2.	 We then need the OWIN Startup bootstrap class. We name it Startup and add the
Configuration() method to it, containing a call to app.MapSignalR();.

Using Hubs

48

3.	 The Hub should contain the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe11
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 static readonly HashSet<string> connectionIds =
 new HashSet<string>();

 public void Subscribe()
 {
 var connectionId = Context.ConnectionId;
 connectionIds.UnionWith(
 new [] { connectionId });
 Clients.All.connections(connectionIds);
 }

 public void HelloBut(string excludeConnectionId)
 {
 var msg = string.Format("Welcome {0} at {1:F}!",
 Context.ConnectionId,
 DateTime.Now);
 var allExcept =
 Clients.AllExcept(excludeConnectionId);
 allExcept.greetings(msg);
 }
 }
 }

What's important here? We need to make sure that we perform the following steps:

ff The class contains a static Hashset member to keep a unique list of all the received
ConnectionId values.

ff The Subscribe() method adds the caller's ConnectionId property to the Hashset
member mentioned in the preceding point, and then broadcasts the complete list to all
the connected clients (Clients.All) calling the connections() method. Please
note that we do not pay any particular attention to potential concurrency problems when
accessing the connectionIds member, but in real-world code, you definitely should.

Chapter 2

49

ff Inside the HelloBut() method, we build a message (msg) using the current time
and ConnectionId property. When msg is ready, we reference the Clients
member, inherited from the Hub type, and we call its AllExcept() method, which
returns a set representing all the currently connected clients except the one specified
by passing to it the excludeConnectionId argument. We store the result in the
allExcept variable.

ff We finally call the greetings() method on the allExcept variable.

The client will have to host a button to send the message and a list where it can show the
available ConnectionId values. The user will pick one of them and the client will pass it
to the HelloBut() call to exclude it from the subsequent broadcast.

The following sample code, like many others in the future, has to do some
Document Object Model (DOM) manipulation mixed with logic specific to
the sample itself. We perform DOM manipulation using jQuery, and we try
to keep it at a minimum to avoid distracting you from the relevant portions.
Nevertheless, some of it is necessary; therefore, please pay more attention
to what's actually related to SignalR and consider the rest as just plumping
code that we need in order to have things working.

Let's build our client code in an HTML page called index.html. Add the following code to
this page:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe11</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo,
 connectionId;

 hub.client.connections = function (ids) {
 $('#ids').empty();
 for (var i = 0, l = ids.length; i < l; i++) {
 var id = ids[i];
 if (id !== connectionId) {
 $('#ids').append(
 $('<option/>')
 .attr('value', id)
 .html(id));

Using Hubs

50

 }
 }
 if (ids.length) $('#sender').show();
 };
 hub.client.greetings = function (message) {
 $('#messages').append($('').html(message));
 };

 $.connection.hub
 .start()
 .done(function () {
 connectionId = $.connection.hub.id;
 $('#id').html(connectionId);

 hub.server.subscribe();
 $('#send')
 .click(function () {
 hub.server.helloBut($('#ids').val());
 });
 });
 });
 </script>

</head>
 <body>
 <p id="id"></p>
 <div id="sender" style="display: none">
 <button id="send">Send to all but</button>
 <select id="ids"></select>
 </div>
 <ul id="messages">
 </body>
</html>

At the beginning, we prepare the hub.client member, adding the callback methods that the
Hub will invoke (connections() and greetings()); each one of them will manipulate the
content of the page accordingly. Then, we start the connection, and when done, we proceed
with the following:

ff We store the ID of the current connection in a variable (connectionId =
$.connection.hub.id) used to filter out that value from the list of available
connections we built inside the connections() callback

ff We call the subscribe() server-side method

ff We finally hook the click event of the send button to a method, which will perform
the helloBut() calls, passing to it the connection identifier to be excluded from the
broadcast and picked from the selected one in the list

Chapter 2

51

We can now open index.html multiple times in different browser windows or tabs, and
then click on the Say Hello to all but button. Each time we click on the button, all the browser
windows will receive the same message except the one whose identifier has been selected to
be excluded from the broadcast. The Clients.AllExcept() method is effectively giving us
access to the whole set of active connections, excluding the specified ones (in this case, we
always specify just one exclusion, but they could be many), and it gives us a way to broadcast
method calls to all of them at once.

Broadcasting to all clients in a group except
the caller

Similar to what we just did in order to exclude specific connections from the set of all the
connected clients, we can provide exceptions in the context of a specific group. We can
broadcast to all the connections in a given group, excluding a list of specific ConnectionId
values that we want to omit.

Getting ready
Before writing the code of this recipe, we create a new empty web application, which we'll call
Recipe12.

How to do it…
Let's prepare our project by performing the following steps:

1.	 We add a Hub called EchoHub.

2.	 Let's then add the usual OWIN Startup class named Startup, with a
Configuration() method calling app.MapSignalR().

3.	 Let's edit Hub's content using the following code:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe12
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void Subscribe(string groupName)
 {
 Groups.Add(Context.ConnectionId, groupName);
 }

Using Hubs

52

 public void Hello(string groupName)
 {
 var msg = string.Format("Welcome from {0}",
groupName);
 var targets = Clients.Group(groupName,
Context.ConnectionId);
 targets.greetings(msg);
 }
 }
}

What's important here? We need to make sure that we perform the following steps:

ff We first expose a Subscribe() method that receives a groupName parameter and
then uses the Groups member inherited from Hub to add ConnectionId of the
caller inside a group called as specified, using the Add() method.

ff The Hello() method builds a message (msg) and then it uses the Group() method of
the Clients member exposed by Hub to broadcast the message to all the connections
belonging to the groupName group; we are also supplying an additional parameter
(ConnectionId of the caller) to exclude the calling client from the broadcast.

ff The Group() method accepts a variable length for the list of connection identifiers
to be excluded. Here, we are specifying just one value, but we can supply many of
them. Also, for simplicity, we are using ConnectionId of the caller itself to set an
exclusion, but any other connection identifier would also work.

ff Since SignalR 2.0, we have a new API called OthersInGroup, which would have
been in fact a better match for this specific case; however, the goal here was to
illustrate the generic case of the exclusion of any connection from a group. Whenever
you need to specifically exclude the caller, OthersInGroup will be your best friend.

Let's write a client to test what we wrote inside the Hub. This client is incidentally exactly the
same as the index.html page that we wrote for the Adding a connection to a group recipe.
Therefore, we will keep the comments to a minimum. The following code should be used:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe12</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;

Chapter 2

53

 hub.client.greetings = function (message) {
 var li = $('').html(message);
 $('#messages').append(li);
 };

 $.connection.hub
 .start()
 .done(function () {
 $('#subscribe').click(function () {
 $(this).toggle();

 var v = $('#group').val();
 hub.server.subscribe(v);

 $('#send').click(function () {
 hub.server.hello(v);
 });
 $('#send').toggle();
 });
 });
 });
 </script>

</head>
 <body>
 <label>Group:</label>
 <select id="group">
 <option value="A">A</option>
 <option value="B">B</option>
 <option value="C">C</option>
 </select>
 <button id="subscribe">Subscribe</button>
 <button id="send" style="display: none">Say Hello!</button>
 <ul id="messages">
 </body>

</html>

This client allows the user to subscribe to a specific group and to broadcast messages that
will be received only by other connections subscribed to the same group as the sender.
The specific exclusion logic is completely server-side based, as we already explained while
commenting the code from EchoHub.

Using Hubs

54

We're ready to run index.html multiple times in different browser windows or tabs, and we'll
then click on the Subscribe button on each window after selecting one of the three available
groups. After that, we'll be allowed to click on the Say Hello! button on any of the browser
windows, and we'll see the following things happen:

ff Each hit on the Say Hello! button will send a message only to the windows that have
subscribed to the same group as the one where the button was clicked on, excluding
the window of the caller.

ff Each window will receive messages only from other windows that have subscribed to
the same group as that of the target window.

Broadcasting from outside a Hub
All the recipes we illustrated so far have a common workflow as follows:

ff A client starts a connection first

ff The same client calls at least one method on the Hub

ff Eventually, any sequence of client-to-server and server-to-client calls can happen

Given the precondition of starting a connection from the client, which cannot be skipped, the
fact that we then need at least one client-to-server call at the beginning, before doing anything
else, may not be ideal. What if we want to start a conversation directly from a Hub? There's no
such limitation with SignalR. In fact, a Hub may well be the first one to call back into the clients
(already connected). There are a couple of ways to do it: the first one involves connection
events, which will be illustrated in Chapter 6, Handling Connections, while the other option is
based on the fact that a Hub can be used by any server-side code outside the Hub itself. This
indeed becomes a mechanism to perform server-to-client calls onto any active connection,
without any client having to initiate that specific conversation with some method invocation.

Getting ready
Before describing the code, we need to create a new empty web application, which we'll
call Recipe14.

How to do it…
We're ready to actually start adding our SignalR bits:

1.	 We add a Hub called EchoHub.

2.	 Let's then add an OWIN Startup class named Startup, containing just a simple
app.MapSignalR(); bootstrap call inside the Configuration() method.

Chapter 2

55

3.	 Let's edit the file content to make it look like the following code:
using System;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe13
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 }

}

As you can see, the Hub is completely empty! We just need a Hub in order to target the current
active connections towards it; however, in this recipe, we do not expect clients to perform any
call onto it, so no method is needed.

Let's build a client that is supposed to receive calls from the Hub without calling it first.
As usual, for this chapter, this will be an HTML page called index.html. Add the following
code to this page:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe13</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;

 hub.client.greetings = function (message) {
 $('#messages').append($('').html(message));
 };

 $.connection.hub.start();
 });
 </script>

</head>
<body>
 <ul id="messages">
</body>
</html>

Using Hubs

56

In the preceding code, we just exposed a callback method called greetings() and then
we connected to the remote Hub. There is no code calling onto EchoHub at all. So, how do
we make any communication happen?

We need some server-side code that takes a reference to a Hub somehow, and use it to call
back onto the active connections. We could achieve this in several ways. For this recipe, we'll
write a Razor page that we'll call post.cshtml, with no JavaScript involved. The only thing
happening here is a plain old HTTP POST, which will be handled at the server side, and will be
used as the entry point to get a Hub context. The following code is used in the Razor page:

@using Microsoft.AspNet.SignalR;
@using Microsoft.AspNet.SignalR.Infrastructure;
@using Recipe13;
@{
 var message = Request.Params["message"];
 if (IsPost && message != null)
 {
 var dependencyResolver = GlobalHost.DependencyResolver;

 var connectionManager =
dependencyResolver.Resolve<IConnectionManager>();
 var hubContext =
connectionManager.GetHubContext<EchoHub>();

 var all = hubContext.Clients.All;

 all.greetings(message);
 }
}

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe13</title>
</head>
<body>
 <form method="POST">
 <input type="text" name="message" value="@message" />
 <button type="submit">Send</button>
 </form>
</body>
</html>

Chapter 2

57

The markup portion of this page just defines a form with a textbox and a button to submit
it, while the first half of the page is server-side code that handles any HTTP POST received;
in case it receives a valid one, it starts playing with SignalR in the following way:

ff The GlobalHost object of SignalR is used to get a handle on the
DependencyResolver member. This entry point allows us to interact with many
services used and exposed by SignalR.

ff In this specific case, we call the Resolve() method from DependencyResolver
to access the IConnectionManager service.

ff With a reference to the IConnectionManager, we call the generic
GetHubContext() method on it, specifying EchoHub as its generic argument;
in return, we get a reference to a fully valid EchoHub context!

ff As we already did in earlier recipes, from inside any Hub method, we can now
refer to the Clients member of the Hub context that we have got, and from there,
access any of the connection sets we already know (except the one for the caller).
In this case, we use the All member to perform a broadcast call on the client-side
greetings() method of every connected client.

We can proceed with testing this recipe by opening a few browser tabs pointing to the index.
html page, and then from one last tab navigating to the post.cshtml page. From there, we
will be able to post any message to the server and see it broadcasted towards the remaining
tabs pointing to the index.html page.

How it works…
As we saw at the beginning of this chapter, a Hub instance should be treated as a mere set
of methods, and not as a specific instance with a clear identity and an associated state. In
this recipe, we just introduced the concept of Hub context, which is a stateless façade that
we can use to perform server-to-client calls. We can observe that a Hub is very much like a
Hub context with just some information about the caller attached to it, and this enforces the
hints about the fact that we should avoid any instance state.

From the perspective of a life cycle, a Hub is instantiated by SignalR itself on each call, and we
should never try to cache any particular instance. On the other hand, a Hub context obtained
by calling GetHubContext() can be retrieved at any time, but its creation is quite expensive.
Therefore, it's recommended to cache an instance of it and reuse it whenever possible, which
makes sense. Nevertheless, it's possible and legal to do otherwise. For the sake of simplicity,
that's the way we did it in this recipe.

We also saw that we can ask for a valid context from outside the scope of a specific client-
to-server connection, and we can use it to refer to the active connections against that
Hub context in the same way as we did earlier from inside any Hub method. Thanks to the
GlobalHost static object and the related API, we can get access to a Hub context and
perform server-to-client calls without any triggering client-to-server invocations.

Using Hubs

58

See also
In Chapter 7, Analyzing Advanced Scenarios, we'll discuss DependencyResolver in greater
depth because that's the entry point where you can customize how services are injected
into SignalR, and how we can have SignalR use whatever specific Inversion of Control (IoC)
container we might already be using in our project.

Using the return value of a Hub method
So far, we examined different ways to push information from a server Hub to the connected
clients; in particular, we saw how to perform a client-side call just on the caller in the Calling
back the caller from a Hub's method recipe. All these techniques have one thing in common:
the remote call is performed through the Clients member exposed by Hub. However, in the
special case of communicating just with the caller, we can use a different, and in some way
more natural, way to do it: have the Hub method return a value.

Getting ready
For this recipe, we need a new empty web application, which we'll call Recipe13.

How to do it…
We're ready to start adding our SignalR stuff, as usual. We need to perform the next set of steps:

1.	 Add a Hub called EchoHub.

2.	 Add an OWIN Startup class named Startup, containing just a simple app.
MapSignalR(); bootstrap call inside the Configuration() method.

3.	 The following code needs to be added to the Hub:
using System;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe14
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public string Hello()
 {
 var msg = string.Format("Greetings {0}, it's
 {1:F}!",

Chapter 2

59

 Context.ConnectionId,
 DateTime.Now);
 return msg;
 }
 }

}

What's important here? We need to make sure that we perform the following steps:

ff Inside the Hello() method, we build a message (msg) using the ConnectionId
property exposed by the Context member.

ff When msg is ready, we just use it as the return value of the method: SignalR does
all the necessary marshaling and transport tasks to transform this operation into
an asynchronous call towards the client. We practically have the same effect that
we get when we perform a remote call using the Clients.Caller member.

In this way, we can use a different approach, which makes things simpler in all those
cases where it seems natural to think of a server-to-caller push call as the return value
of a caller-to-server invocation.

Let's build a client HTML page called index.html to see how we can receive such a
response, using the following code:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Recipe14</title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function () {
 var hub = $.connection.echo;

 $.connection.hub
 .start()
 .done(function () {
 $('#send').click(function () {
 hub.server
 .hello()
 .done(function (message) {
 $('#message').html(message);
 });
 });
 });
 });
 </script>

Using Hubs

60

</head>
<body>
 <button id="send">Say Hello!</button>
 <p id="message"></p>
</body>

</html>

The client is very straightforward, and for most of its code, it's just a simplified version of many
samples that we have already seen earlier in the chapter. The only difference is that we actually
use the response value of the hello() call to manage the reception of the return value. When
we open index.html and click on the Say Hello! button, we call the hello() method on the
server member, and the return value is a JavaScript promise, the same type of object used
as the return value of the start() method used to initialize a connection. That's the de facto
standard way in JavaScript to represent an asynchronous operation, which will complete at
some point in the future. When calling done() on the promise object and specifying a callback
function as its argument, we are asking SignalR to handle the related response sometime in the
future and to pass the received value to the callback. This is a simple, elegant, and idiomatic
way to deal with return values of asynchronous calls, which puts the code processing the answer
more in the context of the remote method asynchronously called, and not as part of the client
member as we do when using the callback strategy.

If you want to learn more about JavaScript promises, and in particular about the Deferred
API exposed by jQuery and used by SignalR, you can do that at http://api.jquery.com/
category/deferred-object/.

There's more…
As for the method arguments of any Hub method and any client-to-server invocations, SignalR
deals with the serialization and deserialization steps required when handling a return value;
in fact, this mechanism is not limited to primitive types. If we just change the return type of
the hello() method from string to dynamic, we are instantly allowed to return an instance of
any serializable type we want. Even an anonymous type, that is serializable by nature, would
do, allowing us to build complex return values in an elegant way without the burden of defining
Data Transfer Object (DTO) types just for the sake of representing a complex value. Like
magic, the client will receive a dynamic object with the same shape created inside the Hub
method. The meaning of the word dynamic here should be adapted according to the type of
the client library we are using (JavaScript or .NET).

It's worth observing that the same mechanisms are involved when we use any of the
Clients members described earlier. Dynamic calls on those members could be supplied
with any number of instances of serializable types as arguments, and the serialization/
deserialization magic would kick in and do the rest.

3
Using the JavaScript

Hubs Client API
In this chapter, we will cover:

ff Starting a Hub connection

ff Setting up connection transport strategies

ff Calling a server-side Hub method

ff Adding a client-side method on the proxy and calling it from the server

ff Managing errors across a complex asynchronous workflow

Introduction
Now, it's time to move our attention to the client side of SignalR. We've already written the
client-side code in the previous chapters and briefly described the steps we needed to build
fully working recipes; however, we never went into the details. Nevertheless, the client portion
of any SignalR application is as necessary and important as the server counterpart. Here, we'll
explore how a SignalR client really works and concentrate on the specific characteristics of the
JavaScript client library in the context of its Hubs API.

The level of abstraction used by the Hubs API lets us reason in terms of the business methods
defined on our server-side Hub-derived type. As already explained earlier, we can add as many
methods on a Hub as we need, and define with these an interface made up of members with
names and arguments which fit our business requirements.

Using the JavaScript Hubs Client API

62

The JavaScript client can access this interface in two different modes as follows:

ff A basic mode, where methods and events are accessed in a generic,
string-based manner

ff A more advanced mode based on dynamic proxies

The latter exposes a much easier to use and streamlined approach, and in our path from
simple concepts to more advanced features, we decided to go with this one first, while the
second will be the topic of a future chapter.

The Hubs API also exposes the underlying connection and what's necessary to handle it
from a client-side perspective. In this chapter, we'll start talking about this.

The key enabler here is the dynamic endpoint (usually /signalr/hubs), which we already
saw in the previous recipes where we used the JavaScript client library. It is able to generate
a client-side proxy on the fly and contains all the methods that are declared on the available
server-side Hubs. This proxy greatly simplifies the way we call the server methods, and it
makes SignalR look magical. However, the generated content is nothing more than a smart
JavaScript script that you can easily open in a browser's window for further investigation.

When using proxies, SignalR also allows us to augment them with a set of functions that we
want the server Hub to be able to call back in order to push information to the connected
clients. Each proxy exposes a member called client for this purpose.

The last point that we want to highlight again is the highly asynchronous architecture of this
client and of SignalR in general. Asynchronism brings forth a lot of advantages in terms of
performance and scalability but also some challenges. We'll see how you can set up and
combine your calls when you need to implement specific sequential workflows in the context
of an asynchronous API.

For the following recipes, we will always start with ASP.NET Empty Web Application projects
and use simple HTML pages for the client portions. As usual, if you want more information on
these steps, you can refer to the Appendix A, Creating Web Projects, at the end of the book.
The same strategy will be applied when you create recurring assets such as a Startup class
or a Hub. They will be briefly mentioned in this chapter and you could go back to Chapter 1,
Understanding the Basics, to have some more information about the steps required in Visual
Studio to get there.

Starting a Hub connection
In this recipe, we'll describe the first operation that is necessary in every client-side portion
of a SignalR application: connecting to a server. We'll quickly see how to do it and how the
asynchronous nature of SignalR is already clear since the very first step performed by any
client.

Chapter 3

63

Getting ready
This recipe is only about performing a connection; that's why we do not need a server-side
concrete Hub yet. Therefore, there is only one simple step that we need to perform before
moving to the client-side code as follows:

1.	 We need to add an OWIN Startup class and set it up so that the Configuration()
method calls app.MapSignalR(); in order to properly initiate the server-side
endpoint, as we already did several times in the previous chapters. This method is
contained in the Microsoft ASP.NET SignalR System.Web package, which we can
find on NuGet. If we use the graphical UI, we should search for it and install it from
there. This is depicted in the following screenshot:

The same result can be achieved using the command line supplied by the Package
Manager Console package.

Using the JavaScript Hubs Client API

64

2.	 When you are done, let's add an HTML page called index.html, where we'll build
our client. We need to reference the SignalR JavaScript client, which is normally
added to the project when referencing the Hub type, but in this case, we do not
add any Hub-derived class. So, we have to add the Microsoft ASP.NET SignalR
JavaScript Client NuGet package manually, as shown in the following screenshot:

How to do it…
Now that everything is in place, let's add the necessary bits into the <head> section of our
page. We need to perform the following steps:

1.	 Add a reference to jQuery (remember, the SignalR JavaScript library is a jQuery plugin,
so this is a requirement) using the following code:
<script src="Scripts/jquery-2.1.0.js"></script>

2.	 Add a reference to the SignalR JavaScript library using the following code:
<script src="Scripts/jquery.signalR-2.0.2.js"></script>>

3.	 Add a reference to the SignalR dynamic endpoint:
<script src="/signalr/hubs"></script>

Chapter 3

65

This reference is necessary to access the Hubs API, even
though we do not have any exposed Hub in this sample.

4.	 Add the following simple script that will help you to connect to the server:
 <script>
 $(function () {
 var hub = $.connection.hub;
 var started = hub.start();
 started.done(function() {
 $('#connected').html('connected!');
 });
 });
 </script>

That's it; very simple. We first take a reference to the $.connection.hub object, which is
an entry point to access the details of a connection specific to the Hubs API, and then we
start the server. The start() method returns a JavaScript promise object and then starts
connecting asynchronously. Thanks to the promise object, we can hook a callback that will
be invoked when the connection is ready by using the done() method. Inside the callback,
we refer to an HTML paragraph called connected (which must exist on the page) and set its
content to the 'connected' value. We can easily verify this behavior by running the project
and visiting the index.html page.

How it works…
The SignalR dynamic endpoint returns a script that, when downloaded, executes and adds the
hub member to the $.connection object through which we can then asynchronously initiate
a connection. There are several ways to perform this task as we'll see later in this chapter.
Behind the scenes, the client and the server negotiate the better transport strategy to use. This
phase occurs on the network, and as already mentioned in the past, anything requiring remote
communication happens asynchronously. That's why a promise object is used to expose this
specific phase in a neat and idiomatic way.

See also…
If you want to learn more about JavaScript promises in general and in particular about the
Deferred API, which is exposed by jQuery and used by SignalR, you could start by visiting
http://api.jquery.com/category/deferred-object/. If you want to know more
about the connection strategies that we just mentioned, you can instead go straight ahead
to the following recipe.

Using the JavaScript Hubs Client API

66

Setting up connection transport strategies
When a connection is made, a transport strategy must be put in place in order to properly
move bits back and forth between the client and the server. SignalR can choose among
different transport options as follows:

ff WebSocket: This is an HTML5-related protocol that provides full duplex
communication channels over a single TCP connection and is available in modern
web browsers and web servers

ff Server-Sent Events: This is a strategy based on the EventSource HTML5 support
that allows a server to stream messages to the connected clients

ff Forever Frame: This is a strategy based on the use of a hidden iframe element,
where the chunked encoding HTTP feature is used to send an indefinitely long
stream of bytes

ff Long Polling: This is quite a basic technique that involves the opening of an
HTTP connection and keeping it artificially alive to create the illusion of a
persistent connection

Each one of these strategies is based on a specific underlying technology, which may or may
not be available according to the specific browser used and to the capabilities of the web
server in place. SignalR will try to use WebSocket whenever possible, and if it's not available,
it will gracefully fall back on the remaining ones until it picks the best option for the current
environment. That said, we might have good reasons to decide on a specific one or to define
a custom probing sequence. In this recipe, we'll see how to do this.

For some more details about the transport options, please have a look at Appendix B,
Insights.

Getting ready
As for the previous recipe, this one does not need a server-side concrete Hub yet. We just
need to perform the following steps:

1.	 Add an OWIN Startup class and set it up so that the Configuration() method
calls app.MapSignalR(); in order to properly initiate the server-side endpoint.
This method is contained in the Microsoft ASP.NET SignalR System.Web package,
which we can find on NuGet.

2.	 Reference the Microsoft ASP.NET SignalR JavaScript Client package, which is
normally added to the project when referencing the Hub type. However, because
we do not have any Hub here, we have to do it manually from NuGet.

For more details about these steps, you can check the previous recipe.

Chapter 3

67

How to do it…
Let's proceed with the client code by performing the following steps:

1.	 We first add the needed JavaScript references as follows:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>
<script src="/signalr/hubs"></script>

2.	 We then add the following connection code:
 <script>
 var hub = $.connection.hub;

 var started = hub.start({
 transport: [
 'webSockets',
 'longPolling',
 'serverSentEvents',
 'foreverFrame'
]
 });

 started.done(function () {
 $('#connected')
 .html('connected, transport: ' +
 hub.transport.name);
 });
 </script>

The preceding code is very similar to the code in the previous recipe, but the start() method
is given a transport option that lists a specific sequence of connection strategies, which will
be used by SignalR to pick the best one available. We can change the order, remove any of
these, or even specify just one, in which case we can pass a simple string instead of an array
of strings. When the connection is ready, we can get the current transport strategy by querying
the hub.transport.name value. If we tried to print this value just after the start call, we
would get an undefined value because the transport is available only when the connection is
asynchronously established.

Not every strategy may be available to a specific combination of the server and client
technologies. A specific description of all the cases is outside the scope of this book, and
it would become obsolete quite quickly. For the current list of specific cases, you can visit
http://www.asp.net/signalr/overview/signalr-20/getting-started-with-
signalr-20/supported-platforms. However, you might have to periodically check the
list or look for a more up-to-date one in the future.

Using the JavaScript Hubs Client API

68

Calling a server-side Hub method
After learning how to perform a connection and customize the transport strategy, let's
move to the natural next step: calling a server-side Hub method. As we have done so far
in this chapter, we'll use the SignalR dynamic proxy generation feature that allows us to
perform client-to-server calls in a more natural way. The alternate available approach will
be illustrated in the future recipes.

This recipe and the remaining ones of this chapter have a clear goal of illustrating the client-
side code in a very detailed way, and that's because we have several important features to
explain. For this reason, we'll show the code and comment on it step by step, instead of
going directly to its final version and commenting on it afterwards.

How to do it…
Let's proceed to the code, starting with the server side. Perform the following steps:

1.	 We first need to add a Hub, which we call EchoHub, and add the following code to it:
 using Microsoft.AspNet.SignalR;
 using Microsoft.AspNet.SignalR.Hubs;

 [HubName("echo")]
 public class EchoHub : Hub
 {
 public string Say(string message)
 {
 return message;
 }
 }

The content is trivial; it contains just a Say() method that returns the supplied string.

2.	 Add an OWIN Startup class where the Configuration() method just calls
app.MapSignalR(); in order to initiate SignalR properly. We have already done
this step several times. You can refer to the previous recipes for more insight.

3.	 We then move to the client portion. In order to get there, we need to add an HTML
page, which we'll call index.html.

4.	 We add the needed JavaScript references to the HTML page as follows:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>
<script src="/signalr/hubs"></script>

Chapter 3

69

5.	 Now we can add the client code, and we'll do this step by step to illustrate every
single piece of code. We start by adding an empty script block as follows:
<script>
...

</script>

6.	 Inside this block, we add a jQuery document ready call (using the well-known
shorthand version):
$(function() {
...
});

This is to guarantee that we operate only when the DOM of the page is properly
loaded. It's not always necessary, but it's generally a good practice.

7.	 Inside the document ready call, we take a reference to the hub object as shown in
the following line of code:
var hub = $.connection.hub;

With this object, which we already briefly described in the Starting a Hub Connection
recipe, we will later be able to actually connect to the server through the Hubs API.

8.	 We then take a reference to the echo Hub as shown in the following line of code:
var echo = $.connection.echo;

This reference is a handle to an autogenerated proxy that points to our server-side
EchoHub; its name comes from the value we supplied to the HubName attribute that
we used to mark our Hub.

At this point, you might be slightly confused by the two members of $.connection: hub
and echo. When the Hubs API is used, $.connection will expose each server-side Hub
as a member whose name will match either the name of the concrete Hub type or the value
specified by the HubName attribute. Additionally, $.connection exposes the hub member,
which is not a Hub, but an entry point that we can use to manage the underlying connection
and access a set of methods and properties exposed by the Hubs API itself. We need the
latter to perform general purpose actions such as starting the connection, and we use the
other ones to access specific Hubs.

If you use hub as the name of one of your server-side Hubs,
the corresponding dynamically generated proxy will replace
the general purpose hub member of $.connection,
which will of course break everything!

Using the JavaScript Hubs Client API

70

Let's move on. We will perform the next set of steps to fill EchoHub:

1.	 We are ready to connect using the following line of code:
var started = hub.start();

The start() call, as already mentioned in the Starting a Hub connection recipe of
this chapter, returns a JavaScript promise object that we'll use to set up a function
to be called back when the connection is ready.

2.	 Let's prepare the basis for the callback that we just mentioned with the following code:
started.done(function() {
...
});

The done() method allows us to specify the actual function to be called when the
connection is ready. In this way, we can guarantee that any other interaction will be
performed when everything is in place; otherwise, SignalR will complain.

3.	 We will now fill the done() callback. We know that inside this function, we are
allowed to use our Hub proxy to perform any call towards the server, as shown
in the following code:
var call = echo.server.say("hello!");

The echo proxy exposes a server member on which we can call any method that is
exposed by the server-side Hub. This is where we can really see the proxy generation
shine because each Hub method has been made available by the dynamic endpoint.
The return value of any remote call is again a JavaScript promise object, as for the
connection startup method, because every call going through the network is executed
asynchronously. We'll use this promise to read the return value of the Hub method.

In this specific example, we call the say method exposed by EchoHub, and it's
interesting to observe how we write the method call with the initial s in lower-case
(say instead of Say). SignalR automatically matches the lower-case (also known as
camel case) call on the client, which is more natural in a JavaScript environment,
with the corresponding upper-case (or Pascal case) method definition on the server
side, which is the usual way to name public methods when writing C# code.

4.	 We finally hook a done() callback onto the promise object that we just assigned to
the call variable:
call.done(function(message) {
 $('#message').html(message);
});

The callback declares a parameter that will be set to the value returned by the
server-side Hub method. In this way, we can use it to set the content of a DOM
element on the page with an ID equal to message.

Chapter 3

71

We wrote some pretty verbose code to illustrate the steps one by one; but of course, in real
applications, we could write it in a much more synthetic way, avoiding the intermediate
variables hub and echo, as shown in the following code:

 $(function() {
 $.connection.hub
 .start()
 .done(function() {
 $.connection.echo.server
 .say("hello!")
 .done(function(message) {
 $('#message').html(message);
 });
 });
 });

If we visit the index.html page, we will see a hello! message printed on the page as a result
of a process where the following actions are performed:

1.	 We wait for the page to be loaded.
2.	 We asynchronously connect to the server.
3.	 We wait until the connection is ready (first done() callback).
4.	 We asynchronously perform a remote method call.
5.	 We wait for the answer and when it is received (second done() callback), we print it.

Adding a client-side method on the proxy
and calling it from the server

The previous recipe taught us how to call a server-side method exposed by a Hub and how
to receive its return value, if any. As we already explained in Chapter 2, Using Hubs, SignalR
really shines when we have to push information to several connected clients at the same time,
and we illustrated the various APIs available to do this. In this recipe, we'll concentrate again
on those strategies, and in particular on notifying the caller, but our focus will be on explaining
the client-side mechanics involved when receiving server-to-client calls.

How to do it…
We need to prepare our Hub, and to do this we need to perform the following steps:

1.	 Add a Hub-derived type that we'll call EchoHub.

2.	 Add an OWIN Startup class bootstrapping SignalR with a call to app.MapSignalR();
inside its Configuration() method.

For more details on these steps, you can check the previous chapters.

Using the JavaScript Hubs Client API

72

Then, let's start adding the code for this specific sample by performing the next set of steps:

1.	 We first need to edit the server-side EchoHub and make it look like the following code:
 using Microsoft.AspNet.SignalR;
 using Microsoft.AspNet.SignalR.Hubs;

 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void Say(string message)
 {
 Clients.Caller.greetings(message);
 }
 }

The content is trivial and similar to many samples that we saw in Chapter 2, Using
Hubs. Our Say() method is just pushing the supplied message parameter back to
the caller. We could have pushed it to any of the several connection sets available,
which we saw earlier. If you want to change this particular aspect of this recipe,
please go back to Chapter 2, Using Hubs, for some inspiration.

The highlighted portion of the preceding code is the invocation of the greetings()
method. We already saw in Chapter 2, Using Hubs, how such a method call is
dynamically resolved.

2.	 Let's move to the client portion. To do this, we need to add an HTML page that we'll
call index.html.

3.	 We add the usual JavaScript references as follows:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>
<script src="/signalr/hubs"></script>

4.	 Now, let's proceed step by step with the real code. We start by adding an empty script
block as follows:
<script>
...
</script>

5.	 As usual, we add a jQuery document ready call inside this block (using the shorthand
version) as follows:
$(function() {
...
});

Chapter 3

73

6.	 Inside the document ready call, we take a reference to both the hub object and the
echo Hub proxy, whose roles have been already explained in the previous recipe.
This is shown in the following code:
var hub = $.connection.hub;
var echo = $.connection.echo;

7.	 This is where we start differentiating from the previous recipe. Here we use the
client member of the echo object to dynamically add a greetings() function
expecting one parameter, as shown in the following code:
echo.client.greetings = function(message) {
 $('#message').html(message);
};

This signature corresponds to that of the method invoked from inside the Hub
method on the Clients.Caller member, as illustrated in step 1. SignalR will
wire this definition when the connection starts, and it will be able to match it to the
corresponding server-side call so that the invocation from inside the Hub method
triggers a call to the client. The received argument will have the same value as the
value that is used during the server-side invocation.

All these callback definitions must be added to the client member. It's interesting to
note that while these definitions go all together inside this specific member of the proxy,
the corresponding server-side invocations can be triggered from any of the several
Clients members, such as Caller or Others; each one of them corresponds to
a different set of connected clients as explained in Chapter 2, Using Hubs.

The actual body of the client-side function is not very important. It just uses jQuery
to find a specific DOM element that is filled with the value carried by message.

8.	 We are ready to connect using the following line of code:
var started = hub.start();

The start() call returns a JavaScript promise object that we'll use to set up
a function to be called back when the connection is ready. It's this call that wires
our client-side greetings() function so that the server-side call matches it.

9.	 Let's fill the callback that we mentioned in the previous step with the following code:
started.done(function() {
 echo.server.say("hello!");
});

The done() method and the server member have already been explained in the
previous recipe. What is going on here is just a simple call to the server-side Say()
method and performed inside the done() callback. We ensure that it's triggered
when the connection startup has been completed successfully. The Say() method
will be called on the server, and from there the greetings() invocation will go back
to the calling client.

Using the JavaScript Hubs Client API

74

Again, we wrote some pretty verbose code to illustrate these steps. The exercise of making it
simpler and more synthetic is left to you!

If we now visit the index.html page, we will see a hello! message printed on the page as a
result of a process where the following actions were performed:

1.	 We wait for the page to be loaded.

2.	 We asynchronously connect to the server.

3.	 We wait until the connection is ready (first done() callback).

4.	 We asynchronously perform a remote method call.

5.	 From inside the server-side method, we push back a value to the caller
(Clients.Caller member).

6.	 We receive the message value inside the greetings() method that
we added to the echo.client member and print it.

Managing errors across a complex
asynchronous workflow

In this last recipe, we'll introduce one last concept to have a full view of the basic features
made available by the JavaScript Hubs API: how to react to errors that occur during all the
possible SignalR operational steps and states.

For some specific cases, SignalR offers a couple of native ways to deal with errors as follows:

ff We can supply a fail() callback to any JavaScript promise object that SignalR
returns. This means that we can either use fail() on the promise object returned
when starting a connection to intercept errors during the connection process, or we
can use fail() on the promise object returned during the remote invocation of a
Hub method. By hooking a callback with these fail() methods, we can be notified
about the exceptions that occur during either the networking portion of a remote
invocation or the server-side execution of a Hub method. We should observe that
for errors occurring because of networking issues, SignalR has some built-in logic
to perform some retries before giving up after a certain amount of time.

ff We can call the error() method on $.connection.hub in order to supply a
callback to be invoked when an error occurs on the current connection. This handler
traps both the connection startup exceptions and the method invocation exceptions;
however, for those cases where the SignalR retry logic is in place, this handler
always, and immediately, receives the originating error. In other words, if the retry
logic succeeds at some point, the previously mentioned fail handlers would not be
triggered but we would see the error handler executed in any case.

Chapter 3

75

These scenarios are managed by SignalR out of the box, but there are other types of errors
that are not directly handled and must be intercepted with the traditional try...catch blocks.
Let's illustrate a sample scenario as follows:

1.	 We successfully connected to a remote Hub.
2.	 After that, for some reason, we lost our connection to the server.
3.	 The retry attempts performed by SignalR have already been completed with no

luck, and a timeout has expired after which no more retries are performed and the
connection goes in a disconnected state.

4.	 We try to call a Hub method anyway.

In this scenario, for each Hub method invocation at step 4, SignalR would throw an exception
complaining that we have to start the connection first, and no error or fail handler would ever
see this exception. So, we'd have to set up a try...catch block around the method call to
handle it properly.

Let's get ready to illustrate these different cases with some code.

How to do it…
Let's perform the usual setup steps as follows:

1.	 Add an OWIN Startup class bootstrapping SignalR with a call to app.
MapSignalR(); inside its Configuration() method.

2.	 Add a Hub-derived type, which we'll call EchoHub.

For more details about these steps, you can check the previous chapters.

Now, the following steps need to be performed to edit the code:

1.	 We first need to make the EchoHub code look similar to the following:
using System;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

[HubName("echo")]
public class EchoHub : Hub
{
 public string Say(string message)
 {
 if (new Random().Next(2) == 0)
 throw new ApplicationException("Doh!");
 return message;
 }
}

Using the JavaScript Hubs Client API

76

This version of the Say() method just returns the supplied message parameter similar
to the Calling a server-side Hub method, but we have modified it to throw an exception
every now and then.

2.	 We then need to add an HTML page, which we'll call index.html.

3.	 In the body of the page, we put a couple of buttons, some instructions to display,
and a ul element in order to append messages that we want to show on the screen
as shown in the following code:
<button id="connect">Connect</button>
<button id="say" style="visibility: hidden">
 Say hello
</button>
<p>
 Try stopping the web server while clicking buttons...
</p>
<ul id="messages">

4.	 We move to the <head> section and add the usual JavaScript references as follows:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>
<script src="/signalr/hubs"></script>

5.	 Now, let's proceed step by step with the client-side code. We first add an empty script
block as follows:
<script>
...
</script>

6.	 In the block, we add a simple utility function to append text messages inside the ul
element previously mentioned as shown in the following code:
var print = function (message) {
 $('#messages').append($('').html(message));
};

7.	 Then as usual, we add a jQuery document ready call (using the shorthand version):
$(function() {
...
});

8.	 In the document ready call, we first notify that the page is ready and then take a
reference to the hub object and the echo hub, as we already did in the previous
recipes. This is shown in the following code:
print('Ready');
var hub = $.connection.hub,
 echo = $.connection.echo;

Chapter 3

77

9.	 Here, let's add our first error handler by calling the error() method on the hub
reference, as shown in the following code:
hub.error(function(error) {
 print('An error occurred on the hub connection: ' +
 error);
});

The callback that we supplied will be invoked any time an error occurs while SignalR
is in a valid state, as explained earlier. This will also receive any error causing SignalR
to perform some retry attempts to recover from the problem; the error would be
received regardless of the final outcome of the recovery process.

10.	 We then handle the click event on the connect button, and in the handler we first
print that we are connecting and then we hide the connect button itself, as shown in
the following code:
$('#connect').click(function () {
 print('Connecting...');
 $('#connect').css('visibility', 'hidden');

 ...
});

11.	 We are ready to connect using the following line of code:
var started = hub.start();

The start() call returns a JavaScript promise object that we'll use to set up both
a function to be called back when the connection is ready (done()), and another
function to be triggered when an error occurs (fail()).

12.	 Let's fill the done() callback that we mentioned in the previous step. First we print a
message saying that we are connected, then we show the button to invoke the Say()
method, and finally we prepare an event handler for the click event. The following
code depicts this:
started.done(function() {
 print('Connected!');
 $('#say').css('visibility', 'visible');
 $('#say').click(function () {
 print('Saying...');
 ...
 });
});

Using the JavaScript Hubs Client API

78

13.	 We complete the body of the click handler that we just introduced with a call to the
Say() method on the echo proxy. We know that such a method returns a promise
object, where we handle the possible outcomes using both done() and fail();
because we want to stay on the safe side for any other client-side unhandled error,
we surround everything with a try...catch block as shown in the following code:
try {
 var call = echo.server.say("hello!");

 call.done(function(message) {
 print('Said: ' + message);
 });
 call.fail(function(error) {
 print('An error has occurred during the method
 call: ' + error);
 });
} catch (error) {
 print('An general SignalR error has occurred somewhere
 between client and server: ' + error);
};

The content of the catch block is trivial, while the body of the try block is very similar
to what we already did previously in this chapter, with only the addition of the fail
handler to intercept the errors that occur during the remote method invocation. Here,
the roles are well defined: the fail() callback will intercept any asynchronous error
that occurs during the remote invocation, while the catch block will intercept any
synchronous error that occurs on the client. In particular, a synchronous failure can
occur if we try to invoke a remote method while the connection is in an invalid state.

14.	 We're almost done. Only a fail handler for the connection promise is missing, which
we add after the started.done() call:
started.fail(function (error) {
 print('An error has occurred connecting: ' + error);
 $('#connect').css('visibility', 'visible');
});

Here, we just print the reason for the error and display the connect button to allow
the user to attempt again.

The best way to understand what's going on here is to load the index.html page and try it.
You will first connect and then you'll be allowed to say hello, which sometimes will fail because
of the random exception thrown on the server side.

Chapter 3

79

I also recommend that you try performing the same operations while randomly disrupting the
connection, which you can easily achieve by stopping and restarting the hosting web server
(by default, it would be an instance of IIS Express). If you do this after loading the page but
before connecting or after connecting but before calling the Say() method, you will see
different error messages. If you keep trying to trigger remote calls, you will clearly notice that
the error messages change depending on whether a connection time out has expired already
or not (more about this in Chapter 6, Handling Connections).

How it works…
The internals of these mechanisms are pretty complex and are also influenced by the actual
transport strategy used by SignalR. For the goal of this book, it should be enough to say that
each of these strategies applies all the necessary checks, maintains the needed state, performs
the required retries to keep things working, and, if it's the case, raises useful exceptions that
highlight what went wrong.

There's more…
We've been digging quite deep into how errors are handled in such an asynchronous
context, but in the following chapters we'll see even more tools that SignalR provides,
in order to enhance how server-side errors are sent to clients and control the various
possible states that a connection can go through. All of them are very useful to build complex
applications where a high degree of fault tolerance is a requirement.

4
Using the .NET Hubs

Client API
In this chapter, we will cover:

ff Starting a Hub connection

ff Setting up connection transport strategies

ff Calling a server-side Hub method

ff Adding a client-side method on the proxy and calling it from the server

ff Managing errors across a complex asynchronous workflow

Introduction
In this chapter, we will take a deeper look at the .NET client library on the Hubs API. From a
functional perspective, this API does not differ from the JavaScript one; in fact, it basically
offers the same features, the only difference being the platform it operates on. Hence, in
this chapter, we'll keep the same outline that we used in Chapter 3, Using the JavaScript
Hubs Client API, with recipes that are similar to the ones in that chapter.

This chapter will concentrate exclusively on the .NET client's code that we'll be writing;
however, as usual, we will need a counterpart for the server Hub. In order to avoid repetition
and complexity, we will use the same servers that we used in Chapter 3, Using the JavaScript
Hubs Client API, and we'll connect the new clients to those servers to perform the operations.
Clients will perform mostly the same actions as the corresponding ones from there. In this
way, you will have a chance to easily compare the two APIs in action, discovering similarities
and differences. We can say that for a full comprehension of the current chapter, the previous
one is a prerequisite.

Using the .NET Hubs Client API

82

The first thing worth noticing here is the fact that the .NET client does not bring any
dynamic proxy feature. Everything is based on what is exposed by a specific type called
HubConnection. Whether we need to perform calls on a remote Hub or we want to
supply some function to be called back on, we'll have to use a couple of generic methods
on HubConnection to achieve our goal, and use a string to specify the method names.
We'll cover this in detail later in this chapter.

Dynamic programming shows up again here with method arguments. As long as they are
serializable, we can use any type of argument, no matter whether we're calling a Hub's
method remotely or we're triggering a client-side callback. The receiving part has to just
declare that it's expecting a dynamic value, and SignalR will do the rest to make the supplied
values available, without any need of sharing common assemblies in order to distribute the
type definitions to be shared between the server and client sides.

The other interesting aspect that we'll be digging into is how the asynchronous nature of
SignalR is expressed by the .NET client API. The Task Parallel Library (TPL) is at the core of
this client; in our samples, we'll be showing how that neatly integrates with the async/await
support introduced in C# 5.0. That said, the goal of this book is not to teach how async/
await works; that alone can be the topic for an entire book. For this reason, we'll be writing
code that might look naïve and may not fully exploit the power of async/await, but it will be
hopefully easy to follow and understand. At the same time, there will be enough details to
proof the points that we will be making in our recipes.

For the following recipes, we will always start with console application projects and all our
code will be contained in the default Program class. For each recipe, we will need to go to
NuGet, and from there add the Microsoft ASP.NET SignalR .NET Client client library, which
is the actual full name of the .NET client library we are dissecting here. This is shown in the
following screenshot:

That's it; now we are ready to start.

Chapter 4

83

Starting a Hub connection
In the first recipe of this chapter, like we did in the first one in Chapter 3, Using the JavaScript
Hubs Client API, we'll start describing the very first operation that is necessary in every
SignalR client: connecting to a server.

Getting ready
For this recipe, we will connect to the Hub exposed in the Starting a Hub connection recipe
from Chapter 3, Using the JavaScript Hubs Client API. So please make sure that you've already
started that application before testing the following code.

How to do it…
After creating our console application as described in the Introduction section, and naming it
Recipe20, we just need to edit its code by performing the following steps:

1.	 We first add the necessary using directives as follows:
using System;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR.Client;

2.	 Then we drop the current empty Main() method entry and replace it with the
following code:
static void Main(string[] args)
{
 Do().Wait();
}
static async Task Do()
{
 ...
}

Why this? This is a trick that we need to put in place in order to be allowed to write
the async/await code in the context of the Main() method of a console application.
The problem is that the await keyword is allowed only inside methods marked with
the async directive, but Main() cannot be marked like this. With this workaround,
we write our client code inside the Do() method, which is marked with async, and
therefore can host await statements. Then we wait for its completion using the
Wait() call. We'll be using this strategy through all the recipes of this chapter.

These kind of matters are actually out of the scope of this book. If you want to dig
deeper, you will find a lot of related material available on the Web and you can refer
to Appendix B, Insights, for a few references about it.

Using the .NET Hubs Client API

84

3.	 Let's move on and prepare the connection using the following lines of code:
const string url = "http://localhost:36982";
var connection = new HubConnection(url);

Here, we first prepare the URL of the server that we want to contact, and then pass it
into the constructor of the HubConnection type we are building. HubConnection
is the type that we need to connect to a remote Hub. Please note that the port
number we specify (36982) must match the port number used in the server project
that we are using here. You should check which one is the actual number, and adapt
the one used here in case it's different.

4.	 We are ready to connect to our Hub using the following code:
await connection.Start();

The method we use to perform the connection is called Start(), which is the
equivalent of the one that we find inside the JavaScript client library. This method is
asynchronous and it's actually awaitable (it returns a Task result). Therefore,
we can prefix the call with the await keyword. By doing this, any code after the
line with the keyword await is only executed after Start() has actually been
completed. This is a very neat way to write code that would normally lead to (maybe
deeply nested) callbacks. In complex scenarios, such code could easily become
hardly readable; however, using await, we can greatly improve this aspect. For
more information about async/await, refer to Appendix B, Insights.

5.	 When the connection is available, we just output a message as shown in the
following code:
Console.WriteLine("Connected, transport is: {0}",
 connection.Transport.Name);
Console.ReadLine();

Here, we use the Transport member of our connection to print the strategy that
has been chosen by SignalR to establish the communication channel, and then we
wait for the user to press Enter before exiting the application.

When launching the application, your client will connect asynchronously, the code will wait
for the connection to be available, and then it will print the transport that has been used to
establish it.

You could also conduct an interesting experiment by removing the await keyword before the
Start() call; you will most likely see the WriteLine() call write an empty string instead
of a proper transport name. That's because the code does not wait for the asynchronous call
to be completed, it instead continues immediately after exiting from Start() and tries to
print the transport name, which is not yet available. Remember, the Start() method exits
immediately, but this does not mean that the actual connection is ready yet!

Chapter 4

85

Earlier, we said "most likely" because, theoretically, from the time Start() exits to the instant
when WriteLine() is called, the asynchronous call will actually have enough time to be
completed. In practice, this is very unlikely, because the network will always be slower than a
couple of CPU cycles.

How it works…
Behind the scenes, during the Start() call, the client and server negotiate the best
transport strategy to use. This phase occurs on the network, and as already mentioned in
the past, anything requiring remote communication happens asynchronously. That's why an
asynchronous method is used to expose this specific characteristic in a neat and idiomatic
way. The async/await support does the rest to make the code easily readable. It really looks
like sequential code, but in fact it's not. We could write the same code using the C# 4.0
syntax, and it would be something like the following code:

static Task Do()
{
 const string url = "http://localhost:36982";
 var connection = new HubConnection(url);

 return connection.Start().ContinueWith(_ =>
 {
 Console.WriteLine("Connected, transport is: {0}",
 connection.Transport.Name);
 Console.ReadLine();
 });
}

This is functionally equivalent to the previous version, but more verbose for sure and less
readable. We had to remove the async keyword from the Do() method definition, and then
we returned the Task result from the ContinueWith() method call performed on the
result of the Start() method. This is a native way of declaring a continuation on a Task
object, and it's (well, more or less) what the C# compiler is doing behind the scenes when
translating the await syntactic sugar into actual API calls. You can easily imagine how much
more cumbersome the code would become in case of many nested callbacks. On the other
hand, please remember that writing asynchronous code is complex by nature, and the async/
await support does not make the problem simpler; it's just giving us a cleaner syntax, but the
complexity is still there!

Using the .NET Hubs Client API

86

Setting up connection transport strategies
When a connection is performed, a transport strategy must be put in place in order to properly
move bits back and forth between the client and server. Let's recap them quickly:

ff WebSocket: This is an HTML5-related protocol that provides full duplex communication
channels over a single TCP connection, and is available in modern web browsers and
web servers

ff Server-Sent Events: This is a strategy based on the EventSource HTML5 support,
which allows a server to stream messages to the connected clients

ff Long Polling: This is quite a basic technique, which involves opening a connection
and keeping it artificially alive to create the illusion of a persistent connection

You might have noticed that Forever Frame, which was available with the JavaScript client
library, is not there. That's because this is a purely browser-dependent strategy, and it does
not apply in this case. For some more detail about transport options, please have a look at
Appendix B, Insights.

Let's see how we can specify the load sequence for the remaining strategies when writing a
.NET client.

Getting ready
For this recipe, we will use the server that we used in the Setting up connection transport
strategies recipe from Chapter 3, Using the JavaScript Hubs Client API, so please make
sure you have already launched that server before testing the following code.

How to do it…
After creating a new console application, which we will name Recipe21, following the process
described in the Introduction section, we will just need to edit its code by performing the
following steps:

1.	 We first add the necessary using directives as follows:
using System;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR.Client;
using Microsoft.AspNet.SignalR.Client.Http;
using Microsoft.AspNet.SignalR.Client.Transports;

2.	 Then, we drop the current empty Main() method entry and apply the trick that we
already described in the previous recipe to allow us to use the async/await syntax,
as shown in the following code:

Chapter 4

87

static void Main(string[] args)
{
 Do().Wait();
}
static async Task Do()
{
 ...
}

3.	 Let's move on and prepare the connection with the following code snippet:
const string url = "http://localhost:39944";
var connection = new HubConnection(url);

Please check whether the port number (39944) matches the one used by the server
project we are connecting to here.

4.	 We are ready to connect to our Hub. The following code is used for that purpose:
await connection.Start(
 new AutoTransport(
 new DefaultHttpClient(), new IClientTransport[]
 {
 new WebSocketTransport(),
 new ServerSentEventsTransport(),
 new LongPollingTransport(),
 }));

As we did in the previous recipe, we call the Start() method exposed by the
connection object to negotiate and establish the communication channel. However,
in this case, we use a more verbose overload to specify which transport strategies
we want to try, and in which sequence. The verbosity is increased by the fact that
this overload involves a few extra types (AutoTransport, DefaultHttpClient,
and IClientTransport); so, if compared with the JavaScript version, it is definitely
longer. But, at the end it brings the same functionality.

5.	 When the connection is available, we just want to output a message as shown in the
following code:
Console.WriteLine("Connected, transport is: {0}",
 connection.Transport.Name);
Console.ReadLine();

Here, we use the Transport member of our connection to print the strategy that
has been chosen by SignalR to establish the communication channel, and then we
wait for the user to press Enter before exiting the application.

www.allitebooks.com

http://www.allitebooks.org

Using the .NET Hubs Client API

88

When launching the application, the client will connect asynchronously. It will wait for the
connection to be available, and then it will print the transport that it used to establish it.
Apart from the transport negotiation bits, everything else is equivalent to what we saw in
the previous recipe. Therefore, please refer to it if you want some more details about
what's going on.

Calling a server-side Hub method
After learning how to perform a connection and customize the transport strategy, let's move
to the natural next step: calling a server-side Hub method. We are going along the same path
as the one we took in Chapter 3, Using the JavaScript Hubs Client API; therefore, this recipe
will match what we did in the Calling a server-side Hub method recipe in that chapter. When
we compare both the recipes, we can see one big difference between them: the .NET Hubs
API does not have a concept of dynamic proxy. We'll see how we can call a remote Hub using
a more general-purpose API than the magical one that we saw for the JavaScript client. Such
a type of generic proxy indeed exists in the context of the JavaScript client, too; we will see
that in detail later in the book.

Getting ready
For this recipe, we will use EchoHub exposed in the Calling a server-side Hub method recipe
from Chapter 3, Using the JavaScript Hubs Client API, which must therefore be started before
testing the code from this recipe.

How to do it…
Let's create a console application project as described in the Introduction section, and let's
name it Recipe22. Then, let's modify the code of the Program.cs file by performing the
following steps:

1.	 We first prepare the basis for our code as follows:
using System;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR.Client;

static void Main(string[] args)
{
 Do().Wait();
}
static async Task Do()
{
 const string url = "http://localhost:39492";

Chapter 4

89

 var connection = new HubConnection(url);

 ...
}

Please make sure the port number (39492) matches the one used by the server
project that we are using. For more detail about what's going on here, please check
the previous recipes of this chapter.

2.	 Now, we need to create a proxy for the remote hub with the following code:
var echo = connection.CreateHubProxy("echo");

The CreateHubProxy() method creates a proxy object (echo) referencing
the remote Hub whose name has been passed as the argument of the call.
This reference will allow us to perform remote calls and, as we'll see in future
recipes, to specify the functions to be called back from the server-side code.

3.	 We are ready to connect to our Hub using the following line of code:
await connection.Start();

This code is asynchronously initiating the connection and, as we already saw in
earlier recipes, we then wait for its completion thanks to the await keyword.

4.	 When the connection is ready, we can call any method exposed by the remote Hub
with the following code:
var response = await echo.Invoke<string>("Say", "hello!");

We use the echo reference that we took earlier to call the Invoke() method on it.
The Invoke() method receives as its first argument the name of the remote method
to call (Say), followed by a params array containing the arguments required by the
method itself (in this case, the message to echo). Invoke() is a generic method
whose type argument is the type of the expected return value. Of course, Invoke()
is also an asynchronous method, so we can await it when calling it, and the response
will be available asynchronously.

5.	 We eventually print the response and wait for the user to press Enter before exiting
the application. The following code facilitates this action:
Console.WriteLine(response);
Console.ReadLine();

When running this code, the client will connect asynchronously to EchoHub. It will wait for the
connection to be available and then perform a remote call. It will then wait for the response to
be available and print it.

Using the .NET Hubs Client API

90

How it works…
The remote invocation is based on dynamic information and it's resolved at runtime. We
specify the method to be called by its name, and we have no specific type representing the
actual Hub that we are contacting; hence, there's no way to check whether our call is correct
at compile time. We have to make sure everything matches the definition of the method on
the Hub (name, number and type of the arguments, and type of the return value) while writing
the code, and then let SignalR resolve it at runtime. If that's the case the call will succeed and
we will receive the corresponding return value asynchronously, as usual with SignalR.

Adding a client-side method on the proxy
and calling it from the server

In our journey through the recipes from Chapter 3, Using the JavaScript Hubs Client API and
their adaptation to the .NET client Hubs library, we have just arrived at the point where we
have to modify the recipe that has a similar name, in which we saw how we can define a
client-side method to be called directly from inside a remote Hub. The server that we built
there is already calling back its caller; therefore, in this recipe, we'll just need to connect
to it, call the Say() method, and wait for the callback to happen.

Getting ready
The following code will connect to the EchoHub exposed in the Adding a client-side method
on the proxy and calling it from the server recipe from Chapter 3, Using the JavaScript Hubs
Client API, which we have to run before testing this Recipe.

How to do it…
Let's create a console application project as described in the introduction, and let's name
it Recipe23. The source code of the Program class must be modified using the following
steps:

1.	 Let's write the skeleton of our client code as follows:
using System;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR.Client;

static void Main(string[] args)
{
 Do().Wait();

Chapter 4

91

}
static async Task Do()
{
 const string url = "http://localhost:42171";
 var connection = new HubConnection(url);

 var echo = connection.CreateHubProxy("echo");

 ...
}

The port number we specify (42171) must match the port number used in the server
project that we are connecting to. Please verify if that's the case. More details about
this code can be found in the previous recipes in this chapter.

2.	 On the proxy reference that we just retrieved, we can define any callback we might
need. In this case, we proceed using the following code:
echo.On("Greetings", message =>
 Console.WriteLine(message));

The On() method allows us to define a callback method, giving it a name and defining
its arguments and body, which in this case is an instance of an Action delegate
receiving a string and printing it on the standard output window. It's like subscribing to
an event, although the syntax is not the classic one for event handlers. When a server
Hub pushes a method call on any of the available sets of connected clients (in the case
of the server we are connecting to here, Clients.Caller), the request for that call is
transferred onto the client and SignalR triggers the corresponding handler that we just
registered over there using On(). The resolution, as usual, is performed at runtime.

As for the JavaScript client, the declaration of these event handlers must be done
before connecting to the server.

3.	 Now we are ready to connect to our Hub using the following line of code:
await connection.Start();

This code is asynchronously initiating the connection and, as we already saw in
earlier recipes, we are waiting for its completion thanks to the await keyword.

4.	 When the connection is ready, we can call the Say() method exposed by the remote
Hub with the following code:
await echo.Invoke<string>("Say", "hello!");

The call will be executed asynchronously, and again we wait for its completion.

Using the .NET Hubs Client API

92

5.	 We eventually make our code wait for the user to press Enter before exiting the
application. The following code depicts this:
Console.WriteLine("Press Enter to exit");
Console.ReadLine();

This code follows an awaited statement, therefore it will be executed only when the
asynchronous call to Invoke() will be completed.

Launching the code, we will see how the hello! message pushed by the server towards the
caller is eventually printed on the console.

How it works…
What happens when we execute this code? The Invoke() call will trigger the execution of the
Say() method on the server-side Hub, which we know will call back the caller trying to invoke
a client-side method called greetings(), if available. In our case, we have registered one
with the On() method, which will just print the received message parameter on the console.

This sample is already showing how asynchronous code can easily become difficult to grasp.
You might have noticed that in steps 3 and 4, we perform two subsequent asynchronous calls
using await; this means that the first call will be awaited, and when completed, the second
one will be triggered and again awaited before calling Console.ReadLine(). We can really
appreciate the advantages of the async/await syntax here, because without it we would have
two nested callbacks, and code would be harder to read and understand.

On the other hand, we could easily play with this code and observe subtly different behaviors.
Pay attention to the sequence of messages on the screen. You will see that the hello!
messages are always printed before the Press Enter to exit one. The .NET client is, in
some way, making the remote asynchronous call run synchronously with respect to the client-
side Invoke() call. It's as if the On() handler became part of the body of the Invoke() call.

Because of what we just said, if we now try to remove the await keyword in front of the
Invoke() call and then launch the application again, everything would work as before, except
that the two messages on the screen would appear in reverse order! Why? The On() handler
is executed as it was part of the call that triggered it (the Invoke() call), but the Invoke()
call is not awaited now. Hence, the asynchronous execution of the whole block consisting of
the Invoke() and On() calls is completed after the Console.WriteLine() line, because
writing a message on the console is for sure much faster than any operation involving network
communication. We still have a chance to see the hello! message on screen because
the ReadLine() call is making the process wait for interaction, and this gives time for the
asynchronous invocation to be completed. However, the flow is totally different. If in this case,
we remove the ReadLine() call, we will not see the hello! message printed at all.

Hopefully, this short digression around asynchronous code has been interesting; however,
a good understanding of such concepts is important to write better SignalR code for sure,
especially when using the .NET client library.

Chapter 4

93

Managing errors across a complex
asynchronous workflow

In the last recipe of the chapter, as we did in Chapter 3, Using the JavaScript Hubs Client API,
we'll learn how to handle errors occurring during all the possible SignalR operational steps
and connection states.

The HubConnection class from the .NET client offers a specific Error event, which is useful
to manage most of the exceptions raised by SignalR itself, whereas any server-side exception
occurring during a Hub method invocation can be trapped simply by surrounding the client-
side invocation in a try...catch block. We'll talk a little bit more about the latter case while
commenting on the code of this recipe.

Getting ready
Before proceeding with this recipe, please remember to start the server application that
we used in the homonymous recipe called Managing errors across a complex asynchronous
workflow from Chapter 3, Using the JavaScript Hubs Client API. This is because our code will
connect to its Hub, whose method is already randomly throwing exceptions that we'll take
advantage of in order to test our error-handling strategy.

How to do it…
We first create a console application project, named Recipe24, as described in the
Introduction section, and then we'll work on the source code of the Program class,
applying the following steps:

1.	 We first introduce the basic stuff using the following code:
using System;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR.Client;

static void Main(string[] args)
{
 Do().Wait();
}
static async Task Do()
{
 const string url = "http://localhost:42477";
 var connection = new HubConnection(url);
 var echo = connection.CreateHubProxy("echo");

 ...
}

Using the .NET Hubs Client API

94

As usual, the port number we specify (42477) must match the one used in the server
project that we are connecting to.

2.	 We add a helper method to the Program class, which we'll use to print out colorful
messages easily on the standard output window:
public static void AsColorFor(this ConsoleColor color,
 Action action)
{
 Console.ForegroundColor = color;
 action();
 Console.ResetColor();
}

3.	 We go back to the Main() method, where we now define our Error event handler
as shown in the following code:
connection.Error += error =>
 ConsoleColor.Red.AsColorFor(() =>
 Console.WriteLine("Error from connection: {0}",
 error));

The event's goal is straightforward: any error happening on the connection will trigger
it. Its signature is simple. We just need to define an argument to receive the trapped
exception, which we'll then print in red using our helper method.

4.	 We are ready to start writing our specific workflow to simulate different error
conditions. In Chapter 3, Using the JavaScript Hubs Client API, we used a pretty
interactive way to simulate and handle errors from a web page. Now, we'll use a
simplified strategy where a set of operations is continuously repeated inside an
infinite loop. The reason for this choice is the fact that this is a book about SignalR
and not about asynchronous programming in general. In order to have an exhaustive
sample working properly, we would have to go through a lot of off-topic code just to
correctly handle a set of tricky issues originated by the usage of nested asynchronous
calls from a command-line interactive process. It's better to keep it simple and
concentrate on SignalR's features. Let's go back to the Do() method and complete it
with the following code:
do
{
 ...

 await Task.Delay(3000);
} while (true);

This simple code is just looping indefinitely, and at every iteration, it waits for three
seconds before moving forward.

Chapter 4

95

The code we are going to write inside the loop is simple. Basically, it will check if we
are connected to the hub, and if we're not, it will establish a connection. Then, it will
check again if the connection is valid and, if that's the case, it will try to call the Hub
method exposed by the server that we are using. While doing these operations, it
will constantly print out messages describing how things are going. A bunch of try…
catch blocks will trap errors and print them.

5.	 We first print out the current state of the connection with the following code:
Console.WriteLine("State: {0}", connection.State);

6.	 After that, we test if we are currently disconnected, and if that's the case, we call
Start() using the await prefix to wait for its completion. The connection attempt
is done inside a try...catch block to trap networking issues; for example, in case
the remote host is unreachable. The following code depicts this:
if (connection.State == ConnectionState.Disconnected)
{
 try
 {
 await connection.Start();
 Console.WriteLine("Connected!");
 }
 catch (Exception ex)
 {
 ConsoleColor.Yellow.AsColorFor(() =>
 Console.WriteLine("Error connecting: {0}", ex));
 }
}

7.	 Then, we adopt a similar strategy when calling the remote method; we first check
if we are connected, and if that's the case, we call Invoke() to trigger the remote
invocation. A try...catch block is there to protect us from errors occurring during
the remote invocation (server-side errors trigger InvalidOperationException
errors on the client). Again, we're using await to handle the asynchronous call and
wait for its completion, as shown in the following code snippet:
if (connection.State == ConnectionState.Connected)
{
 try
 {
 var response = await echo.Invoke<string>("Say",
 "hello!");
 ConsoleColor.Green.AsColorFor(() =>
 Console.WriteLine("Said: {0}", response));
 }
 catch (InvalidOperationException ex)
 {
 ConsoleColor.Blue.AsColorFor(() =>

Using the .NET Hubs Client API

96

 Console.WriteLine("Error during Say: {0}", ex));
 }
}

We are ready to launch the application and observe the messages printed on the screen. While
the client is running, we can try to stop and restart the server to see how both the error-handling
logic that we put in place and the SignalR connection-handling strategies work together.

How it works…
The code that we used is pretty simple. It applies a simple pattern where operations are
performed inside a try...catch block, and then a success message is printed. The message
would, of course, be skipped in case an exception is triggered, and the corresponding catch
handler would print out the details about the error that occurred. The whole loop is repeated
every three seconds, which allows us to manipulate the availability of the server while the
client runs. In this way, we can observe how the client reacts to different anomalous conditions
we are creating. The try...catch blocks work well along with the await keyword, making
asynchronous exceptions flow into the catch blocks as if they were happening synchronously.

In order to understand better what is going on here, let's see a list of possible abnormal
conditions that we can simulate:

ff Launch the application before starting the server: The process will continuously try
to connect and fail until the server becomes available, printing out yellow messages
from the catch handler that matches the Start() invocation. If we turn on the
server while the client is still running, at some point the connection will succeed and
the Connected! message will be displayed.

ff Server-side errors: When connected, the Invoke() method calls will reach
the server-side Hub method, which will randomly fail because of the way it's
implemented. If successful, the client will receive a hello string, and it will
display it in green, whereas, in case of a remote failure, the corresponding
catch block will kick in and display a blue message about the remote problem.

ff Server becomes unavailable after connection: If we now stop the server, at some
point the SignalR connection will enter an invalid state (normally, Reconnecting).
Therefore, none of our if statements will pass and at each iteration, nothing will
happen. Behind the scenes, SignalR will be trying to reconnect, but it will fail because
the server is unavailable. This kind of error is trapped by the Error handler on the
connection, and it will be displayed in red. If the server does not become available
before a specified time, (in which case, SignalR would successfully reconnect and
things would go back to normality), SignalR will decide to stop trying to reconnect and
move to the Disconnected state. In this situation, our first if block will be executed
and the related connection attempts will fail, displaying yellow error messages. If we
turn on the server at this point, the connection will be established successfully, and
we'll go back to normality.

Chapter 4

97

The actual internals of these mechanisms are complex and influenced by the actual transport
strategy used by SignalR. As we already said while illustrating the corresponding recipe from
the previous chapter, going too deep into technical detail about how things are handled
behind the scenes would be out of the scope of this book. SignalR is simply smart enough
to perform all the necessary checks and handshake tasks to supply both a natural error
handling and an integrated connection lifecycle handling.

5
Using a Persistent

Connection

In this chapter, we will cover the following recipes:

ff Adding and registering a persistent connection

ff Sending messages from the server

ff Sending messages to the server

ff Exchanging messages between a server and a JavaScript client

ff Exchanging messages between a server and a .NET client

Introduction
In our journey through all the features exposed by SignalR, so far we have been analyzing and
dissecting how we can use the Hubs API to deliver real-time, bidirectional messaging inside
our applications. The Hubs API offers a high-level abstraction over the underlying connection,
effectively introducing a Remote Procedure Call (RPC) model on top it. SignalR is also offering
a low-level API, which is the foundation Hubs is built on top of. However, it's also available to be
used directly from inside our applications and it's called the Persistent Connection API.

A Persistent Connection API is a more basic representation of what the concrete network
connection really is, and exposes a simpler and rawer API to interact with. We hook into this
API by inheriting from a base class (PersistentConnection) in order to add our own
custom Persistent Connection manager. It is the same approach we have been using when
defining our custom Hubs by deriving from the Hub class. Through a registration step, we'll
then let SignalR know about our custom type in order to expose it to our clients.

Using a Persistent Connection

100

The PersistentConnection type exposes a few properties supplying entry points from
where we send messages to the connected clients, and a set of overridable methods we
can use to hook into the connection and messaging pipeline in order to handle the incoming
traffic. This chapter will be an introduction to the Persistent Connection API, hence we'll be
looking at just a portion of it in order to deliver some basic functionalities. We will also try
to highlight what the peculiar attributes of this API are, which characterize it as a low-level
one—still delivering powerful features, but without some of the nice mechanisms we have
for free when using the Hubs API.

For the next four recipes, we will always start with empty web application projects, and we'll
use simple HTML pages for the client portions. However, for the last one, we'll be building a
console application. As usual, if you want more information on these steps, you can refer to
Appendix A, Creating Web Projects, at the end of the book.

Adding and registering a persistent
connection

In this first recipe of the chapter, we'll introduce the PersistentConnection type, and
we'll go into the details about how it works, how to use it, and how to register it into SignalR
to expose it to the connected clients. Our goal for the sample code is to trace any attempt
of connection from a client towards the exposed endpoint. We will also write a minimal
JavaScript client in order to actually test its behavior.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application that
we'll call Recipe25.

How to do it…
Let's run through the steps necessary to accomplish our goal:

1.	 We first need to add a new class derived from PersistentConnection. We can
navigate to Add | New Item… in the context menu of the project from the Solution
Explorer window, and from there look for the SignalR Persistent Connection
Class (v2) template and use it to create our custom type, which we'll name
EchoConnection. Visual Studio will create the related file for us, adding some
plumbing code in it. For our recipe, we want to keep it simple and see how things
work step by step, so we'll remove both methods added by the wizard and leave the
code as follows:

Chapter 5

101

using Microsoft.AspNet.SignalR;
namespace Recipe25
{
 public class EchoConnection : PersistentConnection
 {
 }

}

We could reach the same result manually, but in that case we would have to take
care to add the necessary package references from NuGet first. The simplest way in
this case would be to reference the Microsoft ASP.NET SignalR package, which will
then bring down any other related and necessary module. The process of doing that
has already been described earlier, and it should already be well known. With that
reference in place, we could then add our class, starting with a simple empty file, with
no need for any wizard.

2.	 We then need to add an OWIN Startup class and set it up so that the
Configuration() method calls app.MapSignalR<...>(...); in order to
properly initiate the persistent connection class we just added. We should end up
with a Startup.cs file that looks like the following code:
using Microsoft.Owin;
using Owin;
[assembly: OwinStartup(typeof(Recipe25.Startup))]
namespace Recipe25
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<EchoConnection>("/echo");
 }
 }
}

Using a Persistent Connection

102

We already described the usage of the OwinStartup attribute at the beginning of
the book; therefore, we'll skip any details about that. The usual Configuration()
method calls MapSignalR(), but this time it uses a different overload, supplying
EchoConnection as the type of our connection class and /echo as the name of the
related endpoint. Behind the scenes, what MapSignalR() does is quite similar to
what was happening when we were using the Hubs API; however, in this case, there is a
little bit less magic because we have to explicitly specify both the type of the connection
class and the URL from where it will be exposed. If we had more than one connection
class to expose, we would have to call the MapSignalR() method once for each of
them, and we would have to specify different URL addresses each time. It's worth
noting that the endpoint name must begin with a / character. If we omit it, SignalR will
raise an exception.

3.	 Let's go back to our EchoConnection class and write some code to be executed
when a new connection is performed. In order to achieve that, we have to override
the OnConnected() method from PersistentConnection as shown in the
following code:
protected override Task OnConnected(IRequest request,
 string connectionId)
{
 System.Diagnostics.Trace.WriteLine("Connected");
 return null;
}

OnConnected() is one of the overridable methods mentioned in the Introduction
section of the chapter, and its role is to give us a point from where we can handle
every incoming connection.

The first argument of the method is an instance of an object implementing the
IRequest interface, which is a SignalR interface whose role is to describe the HTTP
incoming request. It's similar to the very well-known ASP.NET Request object, but
this version is much lighter and focused on what's needed in the context of SignalR,
without exposing anything that could harm its efficiency, such as the (somewhat
infamous) Session object or a read-write Cookies collection.

The second argument is of type string and contains the connection identifier
generated during the handshaking steps performed while setting up the connection.

OnConnected() returns a Task instance, and in this way it's declaring its
asynchronous nature. But, in our case, we do not really have anything special to
send back to its caller, so finalizing the code of the method with return null;
will be just fine.

The only relevant line of code in our method is simply sending a diagnostic message
to any Trace listener available.

Chapter 5

103

We are done, and it's been pretty straightforward. Now any client hitting the /echo
endpoint will be handled by this class, and at every new connection, the OnConnect()
method will be called. When we say new connection, we actually mean whenever
SignalR performs a full handshaking cycle, selecting and applying a connection strategy
as we already saw earlier in the book. If a specific client (for example, a browser
window) loses its connection and is able to reconnect just after the reconnection retry
timeout has expired, a new full-blown connection will be built, a new connectionId
value will be assigned to it and OnConnect() will be called again.

We need a client to test if everything is working properly. To achieve this goal,
let's add an HTML page called index.html, which we'll use to build our client.
In this page, we'll link all the necessary JavaScript files that have already been added
to the project when the Microsoft ASP.NET SignalR package has been referenced.
Let's proceed.

4.	 We first reference jQuery using the following code:
<script src="Scripts/jquery-2.1.0.js"></script>

5.	 Then we need to link the SignalR JavaScript library with the following line of code:
<script src="Scripts/jquery.signalR-2.0.2.js"></script>

At this point, we used to add a reference to the dynamic hubs endpoint in the
previous recipes, but this is not the case here. We do not need it because we are not
using the Hubs API, and therefore we don't need dynamic proxies that are typical of
that way of using SignalR. The SignalR JavaScript library that we just added contains
all that's necessary to use the Persistent Connection API.

6.	 We finally add a simple script to connect to the server as follows:

<script>

 $(function() {
 var c = $.connection('echo');
 c.start()
 .done(function(x) {
 console.log(c);
 console.log(x); //x and c are the same!
 });
 });

</script>

Using a Persistent Connection

104

Here we first interact with the $.connection member we already saw when
describing the Hubs API, but in this case we do not use it to access the hubs
property. Instead, we use it as a function to ask SignalR to create a connection
object pointing at the endpoint we specify as its only argument (echo). The returned
object has a similar role to the one the hubs member has; in fact, we can call
start() on it to launch the actual connection process, and the returned value is
again a JavaScript promise object whose completion we can wait for, thanks to the
done() method, in order to ensure that a connection has been fully established. Our
simple code prints out both the connection object we obtained (the c variable) and
the argument supplied to the done() callback (the x variable) just to show that they
are actually the same object, and we are free to pick any of them when a connection
reference is needed.

To test what we did, we just need to run the project from Visual Studio and open the index.
html page using the Developer Tools of the browser of choice to check the messages printed
on the browser console.

How it works…
The SignalR $.connection object exposes the low-level connection object, which is
the real subject of this chapter. Its server-side counterpart can be any type derived from
PersistentConnection that has been previously registered under the same endpoint
address targeted when calling the $.connection() function. Any major event happening
on the connection is then exposed on the server by events that can be intercepted by
overriding a bunch of protected methods. In this recipe, we saw how we can be notified
about new connections just by overriding the OnConnected() method. We'll see a few
more of those in future recipes.

The rest of the client-side code is very simple, and it's very similar to what we have been doing
when starting connections with the Hubs API; the only big difference so far is the fact that we
do not use the dynamically generated hubs member anymore.

Sending messages from the server
Now that we have a good idea about how PersistentConnection can be registered and
then used in our applications, let's go deeper and start sending some data with it. As usual, in
SignalR, we need a client and a server to establish a connection, and both parts can send and
receive data. Here we'll see how a server can push messages to any connected client, and
we'll analyze what a message looks like.

We already mentioned the fact that any communication from client to server could, of course,
be performed using plain old HTTP, but pushing information from a server to any connected
client without any specific client request for that data is not normally possible, and that's
where SignalR really helps.

Chapter 5

105

We'll also start appreciating the fact that this API stands at a lower level when compared to
the Hubs API because its features are more basic, but at the same time we'll see that it's still
a very useful, powerful, and easy-to-use API.

Getting ready
Before writing the code for this recipe, we need to create a new empty web application, which
we'll call Recipe26.

How to do it…
The following are the steps to build the server part:

1.	 We first need to add a new class derived from PersistentConnection, which
we'll name EchoConnection. We can go back to the previous recipe to see the
options we have to accomplish that, always paying attention to every detail in
order to have the right package references in place. We want to end up with an
EchoConnection.cs file containing an empty class having the following code:
using Microsoft.AspNet.SignalR;
namespace Recipe26
{
 public class EchoConnection : PersistentConnection
 {
 }
}

2.	 We then need to add the usual OWIN Startup class and set it up so that the
Configuration() method calls app.MapSignalR<EchoConnection>
("/echo"); in order to properly wire the persistent connection class we just added
to our project. This is actually the same step we took in the previous recipe, and we
will be doing the same through the remainder of this chapter. The final code will look
like the following:
using Microsoft.Owin;
using Owin;
[assembly: OwinStartup(typeof(Recipe26.Startup))]
namespace Recipe26
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<EchoConnection>("/echo");
 }
 }
}

Using a Persistent Connection

106

3.	 Back to our EchoConnection class, we want to redefine the OnConnected()
overridable method, whose function we already described earlier, and from there
send a message to the client that just connected. This is as simple as coding
the following:

protected override Task OnConnected(IRequest request,
 string connectionId)
{
 return Connection.Send(connectionId, "Welcome!");
}

The PersistentConnection class exposes several useful members, and one of
the most important is for sure the Connection property, of type IConnection,
which returns an object that allows us to communicate with the connected clients.
A bunch of methods on the IConnection interface let us send data to specific
sets of connections (Send()), or target all the connected clients at the same
time (Broadcast()). In our example, we use the simplest overload of Send()
to push a string payload down to the client that just connected. Both Send() and
Broadcast() run asynchronously and return a Task instance, which we can directly
use as the return value of the OnConnect() method.

Another relevant member inherited from PersistentConnection is the Groups
member, which exposes a couple of Send() overloads to push messages down to
connections belonging to a specific group. Groups also exposes a set of capabilities
to manage the members of specific groups the same way the Hubs API does. The
concept of groups is very powerful and has already been well illustrated in Chapter 2,
Using Hubs. There is no conceptual difference here with what we explained earlier,
therefore we'll skip any further explanation about it.

All the methods we just mentioned expect a last parameter of type object, which is
the actual payload of the call. This value is automatically serialized before going on
the wire to reach the clients. When there, the involved client library will deserialize
it, giving it back its original shape using the best data type available according to
the actual client library used (JavaScript or .NET). In our example, we used a simple
string type, but any serializable type would do, even an anonymous type.

Back to this sample, any client connecting to the /echo endpoint will be handled
by the OnConnect() method exposed by EchoConnection, whose body will send
back the message Welcome! using the Send() call.

Let's build an HTML page called index.html to host our client code. In this page, we'll link
all the necessary JavaScript files as we already did in the previous recipe, and then we'll add a
few lines of code to enable the client to receive and log whatever the server sends.

1.	 We first reference jQuery and SignalR with the following code:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>

Chapter 5

107

2.	 We then add the following simple piece of script:

<script>

 $(function () {
 var c = $.connection('echo');
 c.received(function(message) {
 console.log(message);
 })
 .start();
 });

</script>

Here, we first interact with the $.connection member in the same way we did in
the previous recipe, in order to create a connection object towards the endpoint we
specify as its argument (echo). We can then call start() on the returned object to
perform the actual connection, and again the returned value is a JavaScript promise
object whose completion we could wait for in order to ensure that a connection has
been fully established. Before starting up the connection, we use the received()
method to set up a callback that SignalR will trigger whenever a message will be
pushed from the type derived from PersistentConnection down to this client,
regardless of the actual method used on the server side (Send() or Broadcast()).
Our sample code will just log the received string onto the console. We'll dig more into
the received() method later in this chapter.

We can test our code by running the project from Visual Studio and opening the index.html
page using the Developer Tools of the browser to see the received message printed onto
the console.

How it works…
Any type derived from PersistentConnection that has been correctly registered behind an
endpoint can be used to send and receive messages. The underlying established connection
is used to move bits back and forth, leveraging a low-level and highly optimized application
protocol used by SignalR to correctly represent every call, regardless of the underlying
networking protocol. As usual, everything happens in an asynchronous manner.

Using a Persistent Connection

108

We have been mentioning the fact that this is a low-level API compared to Hubs; the reason is
that we don't have a concept of methods that we can call on both sides. In fact, what we are
allowed to exchange are just data structures; we can do that using a pair of general-purpose
methods to send and receive them. We are missing a higher abstraction that will allow us
to give more semantic meaning to what we exchange, and we have to add that ourselves
in order to coordinate any complex custom workflow we want to implement across the
involved parts. Nevertheless, this is the only big difference between the two APIs, and almost
every other characteristic or capability is exposed by both of them, apart from a couple of
shortcomings when dealing with serialization, which we'll illustrate later in this chapter.

You might think that there is no real need to use the Persistent Connection API because Hubs
is more powerful and expressive, but that's not always true. For example, you might imagine a
scenario where you want your clients to be in charge of dynamically deciding which Hubs to load
among a set of available ones, and for that they might need to contact the server anyway to get
some relevant information. Hubs are loaded all at once when calling start(), so you would
not be able to use a Hub to do the first handshaking. But a persistent connection would be just
perfect for the job, along with some other advanced feature we'll see in Chapter 7, Analyzing
Advanced Scenarios, because that can be made available and used before starting any hub.

Sending messages to the server
After looking at how to send messages from the server to the connected clients, let's swap
sides and check how to perform the same operation, but in the opposite direction. We'll
illustrate this scenario by building a simple JavaScript client that will send a message to the
server as soon as the connection will be available.

This specific case is not really useful if taken alone, because any communication from
client to server could be easily done by using plain old HTTP. However, when combined with
the reception counterpart, it enables the construction of complex, real-time client-server
workflows.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application,
which we'll call Recipe27.

How to do it…
Let's first check how to build the server portion using the following steps:

1.	 We first add a new class named EchoConnection that is derived from
PersistentConnection, as we already did in the previous recipes of this chapter,
and we will clean up the content generated by Visual Studio in order to have an empty
class body, as follows:

Chapter 5

109

using Microsoft.AspNet.SignalR;
namespace Recipe27
{
 public class EchoConnection : PersistentConnection
 {
 }
}

2.	 As usual, we then add the OWIN Startup class with a Configuration() method
calling app.MapSignalR<EchoConnection>("/echo"); to map our Remove
class derived from PersistentConnection, as shown in the following code:
using Microsoft.Owin;
using Owin;
[assembly: OwinStartup(typeof(Recipe27.Startup))]
namespace Recipe27
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<EchoConnection>("/echo");
 }
 }
}

3.	 In our EchoConnection class, we can handle any incoming message in
one place by simply overriding the OnReceived() method exposed by
PersistentConnection as follows:
protected override Task OnReceived(IRequest request,
 string connectionId, string data)
{
 ...
}

This method will be called every time a client will use the available API method to
send messages, and it will be supplied the following:

�� An instance of IRequest that contains some context information related to
the current HTTP request

�� The identifier of the calling connection

�� A string payload containing the body of the request

Using a Persistent Connection

110

It's very basic and straightforward, but simple to use. One important detail we
can appreciate here is the fact that the data payload is of type string, while
the counterpart server-side Send() method we saw in the previous recipe was
accepting any object and taking care of its serialization on the wire. In the case
of OnReceived(), we stay at a lower level because the API does not offer any way
to specify how the payload should be deserialized; therefore, the most sensible
representation for the message is a string, which is the simplest way to represent
the most common case of simple textual messages. This does not prevent us
from sending more complex objects on the wire, but the deserialization task is not
automatic, and we have to take care of it by ourselves.

4.	 Let's complete the body of our OnReceived() method with a simple call to send
what we just received to any Trace listener available, and then by returning a null
value, as follows:

 System.Diagnostics.Trace.WriteLine(
 string.Format("Received: {0}", data));
 return null;

Let's now build a corresponding client. As we always did through this chapter so far, we will
use an HTML page called index.html. As usual, we'll need to reference the JavaScript files
we already used in the previous recipes first, and then we'll add a couple of lines of code to
send a message to the server as soon as the connection will be available.

1.	 We first reference jQuery and SignalR using the following code:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>

2.	 We then add our piece of script as follows:

<script>

 $(function () {
 var c = $.connection('echo');
 c.start()
 .done(function() {
 c.send('hello');
 });
 });

</script>

Chapter 5

111

How it works…
Through the $.connection member, we first create a connection object pointing to the
/echo endpoint, then we can call start() on it to perform the actual connection, and
eventually we use the done() method to declare the function callback to be asynchronously
invoked when the connection will be ready. Inside the callback, we can safely call the send()
method on the connection object, passing on whatever value we want (in this case, a hello
string). SignalR will take care of building a proper representation of it, serializing it as a string,
and using JSON if necessary. As we already said earlier, the payload will be received by the
server as a plain string anyway, so this feature is clearly handy on the client side but has to be
handled with care because it forces us to perform an explicit deserialization step on the server.

We are done. Let's open the index.html page and check the Output window in Visual Studio
to see the hello string printed out.

Exchanging messages between a server and
a JavaScript client

Let's move on and put things together in order to build a simple test application where
both the server and client will be sending and receiving payloads. To make things more
interesting, we'll stop using simple strings, and we'll be illustrating how to handle serialization
and deserialization of complex objects. In order to do that inside our type derived from
PersistentConnection, we'll be using the JSON.Net library from Newtonsoft, which
has been chosen as the default JSON handling library by the ASP.NET team, and it's already
referenced any time you add SignalR on your server-side projects.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application, which
we'll call Recipe28.

How to do it…
As usual, we start with the server-side portion of the application using the following steps:

1.	 We add a new class named EchoConnection that is derived from
PersistentConnection, cleaning up the content generated by Visual Studio in
order to have an empty class body:
using Microsoft.AspNet.SignalR;
namespace Recipe28
{
 public class EchoConnection : PersistentConnection

Using a Persistent Connection

112

 {
 }
}

2.	 Let's then add the OWIN Startup class with a Configuration() method calling
app.MapSignalR<EchoConnection>("/echo"); to map the class derived
from PersistentConnection as follows:

using Microsoft.Owin;
using Owin;
[assembly: OwinStartup(typeof(Recipe28.Startup))]
namespace Recipe28
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<EchoConnection>("/echo");
 }
 }
}

3.	 Back to our EchoConnection class, we can handle any incoming message by
overriding the OnReceived() method exposed by PersistentConnection.
That's where we will handle any incoming payload, analyze them, and build the
corresponding response messages. In this example, we'll be using the Broadcast()
method to distribute them to all the connected clients, as shown in the following code:

protected override Task OnReceived(IRequest request,
 string connectionId, string data)
{
 var payload = Newtonsoft.Json.JsonConvert
 .DeserializeAnonymousType(
 data,
 new { body = "" });
 var body = string.Format("You said: {0}",
 payload.body);
 return Connection.Broadcast(new { body = body });
}

Chapter 5

113

We first make use of the JsonConvert helper class from JSON.Net to access the
DeserializeAnonymousType() method that allows us to map a JSON string
onto an anonymous type defined on the fly by passing an empty instance of it as
the second argument of the call. Anonymous types are very handy when we need
to define local data structures with no special behavior and without the burden of a
full-blown class definition. Different anonymous type instances are matched across
the code scope, and if they contain the same members (of the same type and in the
same order), they end up being of the same type. DeserializeAnonymousType()
returns a value of type T, where T is the same as the type of the template anonymous
type instance we passed to it, which in this case is this new { body = "" }
instance. The payload variable will therefore be of the same type, and this means
that we are in fact defining the shape of the content we expect to find in the received
data string. At this point, we can easily read inside the payload in a strongly typed
manner and use its content to build a new object with the same shape but different
content (new { body = body }), and use it to broadcast our response to all the
connected clients.

The approach we used when dealing with the serialization is just an example
illustrating one option, and we could have taken several other approaches, but
it should illustrate the kind of problems you might have to face when using the
Persistent Connection API, and which direction to take when trying to solve them.

Let's now build a JavaScript client exchanging messages with the same shape as the ones we
just defined.

1.	 We first reference jQuery and SignalR using the following code:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>

2.	 We then define our client logic with the following code:

 <script>

 $(function () {
 var c = $.connection('echo');
 c.received(function(message) {
 console.log('Received: ' + message.body);
 })
 .start()
 .done(function () {
 c.send({ body: 'hello' });
 });
 });

 </script>

Using a Persistent Connection

114

This code is pretty simple. It's just using both the send() and received() methods
we saw in the previous recipes of the chapter, making sure that received() is called
before starting the connection and send() is used when the connection is ready.

We are ready to test our code by launching the project from Visual Studio and navigating to
the index.html page, while opening the Developer Tools of the browser we are using to
check the shape of the received message. If we open multiple tabs pointing at the same page,
we'll see how the messages are broadcasted to all the already available clients as soon as
they connect for the first time.

How it works…
What's more interesting is how we deal with the exchanged payloads, which are JavaScript
objects with the same shape of the anonymous types inside the server-side OnReceived()
method. We send an object like { body: 'hello' } and we expect to receive messages
with the same shape. SignalR is smart enough to match these equivalent definitions when going
from the server to the client, whereas it needs some help from us when going the other way
round, as we saw when describing what we have to do to interpret the incoming payload in the
OnReceived() method.

Exchanging messages between a server and
a .NET client

SignalR's natural environment is the Web, that's why we tend to prefer the JavaScript client
for our examples that illustrate its features. Nevertheless, the .NET client is as important and
relevant as the JavaScript one, and it definitely deserves to be analyzed too. This last recipe of
the chapter will be a translation of what we did in the previous recipe, but here the JavaScript
client code will be replaced by C# code hosted in a console application. The server-side portion
of this example will be the same as the one we wrote in the previous recipe, hence we'll avoid
repeating the same code here and we'll be connecting to that application instead, using the
same approach we had been applying throughout Chapter 4, Using the .NET Hubs Client API.

Getting ready
As already mentioned, we'll be connecting to the server we wrote in the previous recipe, so
make sure you have that code ready and running before proceeding. Let's then create a
console application project, naming it Recipe29, and then let's add to it the Microsoft ASP.
NET SignalR .NET Client package from NuGet, as already explained in Chapter 4, Using the
.NET Hubs Client API.

Chapter 5

115

How to do it…
The Program class source code must be modified in the following manner:

1.	 We first add the necessary using directives as follows:
using System;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR.Client;

2.	 We then apply the strategy we already described in Chapter 4, Using the .NET Hubs
Client API, in order to be able to use the async/await syntax for our asynchronous
calls as follows:
static void Main(string[] args)
{
 Do().Wait();
}
static async Task Do()
{
 ...
}

3.	 Let's start writing the actual implementation of the Do() method by preparing the
connection as follows:
 const string url = "http://localhost:14622/echo";
 var connection = new Connection(url);

The SignalR client library exposes a Connection type, which is the equivalent of the
$.connection object we used with the JavaScript client. This type plays the same
role as the HubConnection type we saw in Chapter 4, Using the .NET Hubs Client
API, but it works on the lower-level Persistent Connection API. It has to be configured
with an endpoint to target, represented by the URL we are passing as its only
argument. The port number we specify (14622) must match the port number used to
expose EchoConnection in the previous recipe. Please verify and fix it if it does not.

Using a Persistent Connection

116

4.	 We can now attach event handlers on the Received event member exposed
by connection. In our case, we define just one handler in order to send to the
standard output the message we will receive in response to our outgoing call:
 connection.Received += message =>
 Console.WriteLine("Received: {0}", message);

Received differs from the equivalent On() method from HubConnection because
in this case we deal with a classic .NET event handler, while On() has the goal of
registering a callback function to be called by name directly from the server. The
more general-purpose approach of the Persistent Connection API fits nicely with the
idiom exposed by a plain old .NET event handler.

As for the JavaScript client, the declaration of these event handlers must be done
before connecting to the server.

5.	 Now we are ready to connect to our Hub using the following code:
 await connection.Start();

This code is asynchronously initiating the connection and, as we already saw in the
earlier recipes, we are waiting for its completion thanks to the await keyword.

6.	 When the connection is ready, we can call the Send() method exposed by the
Connection type and supply our payload to it as follows:
 connection.Send(new { body = "Hello" });

The Send() method is very straightforward, and it's basically the same as the one
we saw when discussing the JavaScript client. The supplied payload is an instance of
an anonymous type, whose shape must match the one we are expecting to receive
on the server side of the previous recipe, and you can easily verify that it does. In
this way, we'll ensure that the server will be able to correctly understand what we are
sending to it.

7.	 We eventually make our code wait for the user to press Enter before exiting the
application as follows:

Console.WriteLine("Sending...");
Console.ReadLine();

There is something worth noting about the Received member: it does not conform to the
traditional signature of an event handler. Usually, two arguments are expected as follows:

ff The sender of the event

ff A type derived from EventArgs that passes any context information

In the case of Received, the sender is not provided, and the context is in the form of a
simple string containing the received payload. Should the server send a complex object, the
Received event would be supplied with its JSON representation.

Chapter 5

117

We are ready to test our code by launching the project from Visual Studio and observing the
output displayed on the console window.

How it works…
What goes on behind the scenes is no different from what we have been describing earlier in
this chapter, but there is something interesting to highlight about the way we called Send().
In fact, even if it's an asynchronous method and could therefore be awaited, in our code we
are not waiting for its completion as we have normally been doing earlier in the book. Because
of that, the final effect is something like what's shown in the following screenshot:

You can see that the Sending… message is printed out before the received payload, and
that's because we did not wait for Send() to complete. We can modify our call on the Send()
method to be like the following code:

await connection.Send(new { body = "Hello" });

In this case, the output will change, reflecting the fact that we used await to wait for the call
to complete, and the two messages would be swapped.

It's also worth noting that the server payload is received as a string, whose content represents
the JSON serialization of the object prepared on the server side. This illustrates the fact that,
even if the type used to exchange messages is a simple string, a complex object is able to go
through anyway, and it can be received and then properly deserialized if enough knowledge
about its shape is available to the client.

6
Handling Connections

In this chapter, we will cover the following recipes:

ff Controlling the lifetime of a connection
ff Handling a connection transient state
ff Establishing a cross-domain connection

Introduction
After having analyzed most of the features SignalR exposes to enable us to add real-time
messaging features to our applications, we move into a different set of useful characteristics
we can exploit to control our application. In particular, we'll have a deeper look at a bunch of
APIs we can leverage to control different aspects concerning the connections we establish
across clients and servers. In fact, SignalR works across networks, which we all know we
cannot fully trust, and over HTTP, which imposes certain rules when dealing with things such
as server origin and connection lifetime or state.

Controlling the lifetime of a connection
SignalR lets us control several aspects of the connection lifetime on both the server and
the client side. SignalR has the goal of delivering a simple experience based on the idea of
a persistent connection, but we cannot really rely on the assumption that it will always be
available, because too many factors may interfere with it. While it's true that SignalR does
its best to isolate us from these kind of problems, thanks to smart connection strategies
and recovery procedures, on the other hand we might need to have finer control over
what's happening behind the scenes, and we might want to handle the anomalies and the
reconnection procedures ourselves.

In this first recipe of the chapter, we'll use a Hub to illustrate how we can monitor when the
connection state changes over time. Later, we will also write a simple JavaScript client in order
to show how we can perform the same kind of checks on the client side.

Handling Connections

120

Getting ready
Before writing the code of this recipe, we need to create a new empty web application
project, which we'll call Recipe30.

How to do it…
Let's build our project, concentrating first on the server-side code, using the following steps:

1.	 We first add a new empty Hub by navigating to Add | New Item… on the context
menu of the project in the Solution Explorer window, and from there looking for
the SignalR Hub Class (v2) template to create our EchoHub class. We just want to
monitor the connection status and therefore will not need any specific method on our
Hub. Let's make it look like the following code:
using System.Diagnostics;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe30
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 }
}

2.	 We then need, as usual, a Startup class, which we will create in the same way we
did so far for most of the recipes. However, this time, we will specify a set of useful
parameters inside the Configuration() method, as shown in the following code:
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 GlobalHost.Configuration.DisconnectTimeout =
 TimeSpan.FromSeconds(30);
 GlobalHost.Configuration.ConnectionTimeout =
 TimeSpan.FromSeconds(110);
 GlobalHost.Configuration.KeepAlive =
 TimeSpan.FromSeconds(10);

 app.MapSignalR();
 }
 }

Chapter 6

121

The GlobalHost object exposes a Configuration member, through which
we can change some default settings that influence how the connection handling
is performed (the values in the sample code are the current defaults defined by
SignalR). The values are described as follows:

�� DisconnectTimeout: This asks SignalR to wait a maximum number of
seconds after a transport connection is lost before raising a Disconnected
event, and terminating the failed logical connection

�� ConnectionTimeout: In case long polling is used, transport connections
will be kept around for a maximum number of seconds waiting for a
response; when that timeout expires with no activity, the client will be
 forced to open a new connection

�� KeepAlive: For transports other than long polling, this regulates how often
a keepalive packet is sent to avoid the underlying connection being dropped
because of inactivity; this value must be no more than one-third of the
DisconnectTimeout value, and SignalR automatically adjusts this value
accordingly to this rule if DisconnectTimeout is specified without setting
KeepAlive explicitly afterwards

3.	 Let's go back to our EchoHub class to override a set of methods exposed by any
Hub-derived type. Those methods will notify us about specific logical events happening
on the connection. When we say logical event, we are talking in the context of the level
of abstraction defined by SignalR on top of the actual events occurring at the transport
or physical level on the network. Let's look at the following code:
 public override Task OnConnected()
 {
 Trace.WriteLine(string.Format("Connected: {0}",
 Context.ConnectionId));
 return base.OnConnected();
 }
 public override Task OnDisconnected()
 {
 Trace.WriteLine(string.Format("Disconnected: {0}",
 Context.ConnectionId));
 return base.OnDisconnected();
 }
 public override Task OnReconnected()
 {
 Trace.WriteLine(string.Format("Reconnected: {0}",
 Context.ConnectionId));
 return base.OnReconnected();
 }

Handling Connections

122

As we can see, there are three methods that can be overriddenRedundant:

�� OnConnected(): This is triggered only the first time a connection is
established, and a new connection ID is assigned to the calling client

�� OnReconnected(): This can be triggered several times, once each
time a connection is reestablished by SignalR after a lower-level network
disconnection, and this happens every time SignalR is able to rebuild the
same logical connection on top of a potentially new underlying one; in this
case, the connection ID does not change

�� OnDisconnected(): This is triggered when a low-level disconnection
occurs and SignalR is not able to establish it again before the
DisconnectTimeout interval has expired; the logical connection is
dropped, and in order to contact the server again, the client will have to start
a new connection, thus receiving a new connection ID

Inside our method implementations, we just trace the name of the event and the
connection identifier involved, and then call the base implementation.

Let's now build a client we will use to test our code. Both the JavaScript (the one
we are going to use) and the .NET client libraries have similar connection control
features. In our code, we will use them to perform the same kind of checks we've
been performing on the server side.

4.	 We add an HTML page called index.html, which we'll use to build our client, and
where we'll reference the usual JavaScript files that have already been added to the
project when the Microsoft ASP.NET SignalR package has been referenced by adding
EchoHub. Somewhere in the page body, we'll also add a button that we'll use to toggle
a connection to the server and test our control code, as shown in the following code:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>
<script src="/signalr/hubs"></script>
...
<button id="toggle" disabled="true">
 Toggle connection</button>

5.	 We are ready to write our client code inside a script block, initializing a couple of
useful reference variables as follows:
 <script>
 $(function() {

 var hub = $.connection.hub,
 echo = $.connection.echo;

 ...

 });
 </script>

Chapter 6

123

6.	 On the hub variable, we can supply a set of callback functions to be called when
specific connection events happen:

hub.starting(function () {
 console.log('starting'); //no hub.id yet!
});
hub.reconnecting(function () {
 console.log('reconnecting: ' + hub.id);
});
hub.reconnected(function () {
 console.log('reconnected: ' + hub.id);
});	
hub.disconnected(function () {
 console.log('disconnected: ' + hub.id);
});

...

The names and their corresponding meanings are straightforward. Because a
connection is always initiated by the client, we have a starting event and a
reconnecting event available, which are client-only events with no matching
counterpart on the server side.

7.	 We can also supply a callback to be called whenever a change in the connection
state happens, as depicted in the following code:
hub.stateChanged(function (state) {
 console.log('stateChanged: ' + hub.id);
 console.log(state);
 $("#toggle").attr('disabled',
 state.newState !=
 $.signalR.connectionState.connected &&
 state.newState !=
 $.signalR.connectionState.disconnected);
});

...

In the callback supplied to the stateChanged() method, we can output the
current state whenever it changes, and we enable or disable the toggle button
accordingly. The possible connection states are defined as properties exposed by the
$.signalR.connectionState member declared inside the referenced jQuery.
signalR-(version).js file.

Handling Connections

124

8.	 Now we do quite a curious thing. Have a look at the following code:
echo.client.dummy = function() { };

 ...

Why this? In this example, we are using the Hubs API with dynamic proxies because
it's the most common, simple, and straightforward way to use SignalR. However, as of
today, the previously mentioned server-side events are not generated if there are no
client-side callbacks available. We need to have at least one of them in place, even
if we will never call it; that's why we added the dummy one. It's worth making clear
that, although it's something that we do on the client side, this is not necessary to
make the client-side events work. It's there to make the server-side ones work, and
there's no need to call that method from the server at all. Of course, if you already
have proper client-side callbacks to be invoked from the server side, those will be just
fine with no need for a dummy one, and the client-side events will work just fine. It's a
curious and quite strange thing to do, but that's how it currently works and it might be
improved in future versions.

9.	 Let's finalize our client-side portion with the following code, which will toggle the
connection on or off each time a button called toggle is clicked on:

var starter = function() {
 return hub
 .start()
 .done(function () {
 console.log('connected: ' +
 hub.id);
 });
};

$("#toggle").click(function () {
 $("#toggle").attr('disabled', true);
 if ($.signalR.connectionState.disconnected ==
 echo.connection.state)
 starter();
 else if ($.signalR.connectionState.connected ==
 echo.connection.state)
 hub.stop();
});

starter();

Chapter 6

125

It's interesting to observe the usage of the stop() member exposed by hub to explicitly and
gracefully end a connection. We never explicitly mentioned it before because it's quite a rare
thing to do, but it's good to know that it's possible in case you need it.

We are ready to test the code that we just wrote by launching the application and navigating
to the index.html page. Each time we'll click on the toggle connection button, we'll
alternatively turn the connection on and off, and these actions will trigger the client- and
server-side events that we hooked into with our code. It will be interesting for you to try
breaking the network connection between the browser and the web server in any way you
may want too, and observe the reconnection events happening automatically according to the
timeout values we have set earlier.

How it works…
What happens under the hood is pretty smart and complex, and the details are out of the
scope of this book. That said, it's important to understand that each time a persistent
connection is created, SignalR tries its best to keep it alive despite any possible lower-level
network disruption, hiding these kind of problems from us. Whenever these attempts fail and
SignalR decides that the connection is lost, it will not try to fix it anymore; the only way for the
client to connect again will be to perform a full connection restart, hence generating a new
connection ID. This is one of the reasons why the action of associating any state information
to a connection identifier, which is one of the most common needs, it's definitely possible but
should be done in full awareness of these implications. You will have to write defensive code
that is aware of the fact that the connection ID might go away anytime.

Handling a connection transient state
In the previous recipe, we talked about how a persistent connection can experience
problems that SignalR tries to fix automatically. We also saw that such a logical connection
is represented by a unique identifier, which is lost when SignalR is not able to recover from
underlying failures anymore. As long as the persistent connection is alive, SignalR offers a
simple way to associate some transient state to it in the form of a property bag that can be
read and written on both the client and server side. For simple scenarios, where we want
to maintain some information associated with each connection and use it on both sides to
adjust the behavior of available methods/callbacks, this API can be quite useful. The usual
scenarios could be related to classical cross-cutting concerns (authorization and logging),
but it could be used for anything.

In this recipe, we'll build a simple case where we maintain a transient property called name,
and we manipulate it on both sides to show how SignalR keeps it in sync transparently
whenever a call is performed from one side to the other. Keep in mind that no state
synchronization is performed unless a call is triggered; that's when the state is transported
and eventually aligned on the other end.

Handling Connections

126

We make the sample a little bit more interesting by adding some client-side logic to store
such a transient property in a persistent cookie whenever it's modified, and then retrieve it
back from there when we refresh the page. This way, this transient state will actually become
locally persistent, supplying a simple mechanism to make such a state resilient to connection
failures. The cookie is just used on the client for the goal we just mentioned, and it's never
used on the server. That comes at a cost, of course, because our code will need to write the
cookie each time we modify the state, as we'll see soon.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application, which
we'll call Recipe31.

How to do it…
The structure of this project is pretty standard, with the usual suspects in place. We will
perform the following steps:

1.	 We need a Startup class, which we will create as we did so far for most of the
recipes. The following code is added to it:
public class Startup
{
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
}

2.	 Then we need a Hub, and we use the SignalR Hub Class (v2) template to create it
and name it EchoHub. The details (using directives, name) are the same we saw in
most of the previous recipes, so we'll skip them. We will need just one method, which
will conveniently return a simple string, but we'll also use the transient state API to
make a simple value go back and forth between the server and the client, as follows:

public string SayHello()
{
 Clients.Caller.name = Clients.Caller.name ?? "(no name)";
 return "Hello!";
}

Chapter 6

127

The highlighted line of code accesses the Caller member from the Clients
property that we inherited from the base class Hub, and from there it first reads
a property called name, which then is assigned a default value "(no name)"; if
it happens to be empty. This name property does not exist out of the box; we just
defined it dynamically. We already saw in the previous recipes that Caller is a
dynamic property, and this characteristic is leveraged to allow developers to add
properties on it as they are needed. Such properties are automatically kept in sync
on both the server and the client when any remote call happens. This code is pretty
simple. If name has a value, that value is kept; if not, it's set to a fixed value. The only
possible way to have name different from null before this line is to have it assigned
by the client.

Let's move to the client side, where we'll access the same name property, using a cookie to
persist its value across different connections.

1.	 We add an HTML page called index.html, linking the usual JavaScript files that
have been added to the project when the Microsoft ASP.NET SignalR package has
been referenced by adding our server-side bits. At some point in the page body, we'll
also add a textbox to edit the name property, and a button to call our server-side Hub
method, as shown in the following code:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>
<script src="/signalr/hubs"></script>
...
Name: <input id="name" type="text"/>
<button id="sayHello">Say Hello!</button>

2.	 Let's then add a script block and start writing our code by adding a couple of utility
functions to read and write the persistent cookies as follows:
 <script>

 function setCookie(name, value, expirationDays) {
 var d = new Date();
 d.setTime(d.getTime() +
 (expirationDays * 24 * 60 * 60 * 1000));
 var expires = "expires=" + d.toGMTString();
 document.cookie =
 name + "=" + value + "; " + expires;
 }
 function getCookie(name) {
 var start = name + "=";
 var items = document.cookie.split(';');
 for (var i = 0; i < items.length; i++) {
 var c = items[i].trim();
 if (c.indexOf(start) == 0)

Handling Connections

128

 return c.substring(start.length,
 c.length);
 }
 return "";
 }

 ...

 </script>

This code is pretty simple, and it's not directly related to SignalR, so we'll skip any
comment about it.

3.	 We then move on to write our actual logic inside of the usual jQuery callback that is
triggered when the page document is ready. Refer to the following code:
 $(function () {

 var cookieName = 'name',
 hub = $.connection.hub,
 echo = $.connection.echo;

 $("#name").val(getCookie(cookieName));

 ...

 });

We start by defining a few handy variables, and then we assign a name textbox with
the value read from a cookie called name, if that exists. If it does not, an empty value
is put in the textbox.

4.	 We declare a new function, sayHello(), whose goal is to handle the transient state
and sync it with both the persistent cookie and the textbox, as follows:
 var sayHello = function() {
 echo.state.name = $("#name").val();
 setCookie(cookieName, echo.state.name, 7);
 echo.server
 .sayHello()
 .done(function () {
 console.log(echo.state.name);
 });
 };

 ...

Chapter 6

129

The echo variable that references the dynamic proxy contains a member called
state, which is the property bag where the transient state is maintained. It plays
the same role as the Caller member we saw on the server side, and the property
values set there are kept in sync between the client and server each time a message
goes in one direction or the other. The code is quite simple. We assign the value of
the textbox to the transient state, then we save it in the cookie, and finally we call the
sayHello() method exposed by EchoHub, which in theory has nothing to do with
the state itself, but in practice makes it travel towards the server transparently, as
mentioned while introducing this recipe.

5.	 We finalize our code by starting the connection, and when the connection is ready
we execute the previously defined sayHello() method. Finally, we bind the same
sayHello() function to the click event of the button on the page as follows, to
allow us to call it again whenever we want:

 hub
 .start()
 .done(sayHello);

 $("#sayHello").click(sayHello);

We can test our code by launching the project and navigating to index.html. The very first
time the persistent cookie will be empty, and it will then be filled with the value in the textbox
each time we click on the button on the page. Every following time we load the page, the
textbox and the transient state property called name will be set with the value read from the
cookie. Each value put in the property bag will travel to the server side at each button click
because of the call towards the Hub method, and this transparently pushes the state bag
to the server. The same happens the other way round, when we modify the state bag on the
server that's propagated to the client when the server-side method returns, or in case any
client callback execution is triggered by the Hub.

Establishing a cross-domain connection
So far across this book, we've mostly been looking at web scenarios, where web browsers
connect to web servers. Moreover, we saw that .NET clients are also used, thanks to the
SignalR .NET client library, and we have shown how to perform self-hosting of a SignalR server
inside a .NET process. In all these cases, we've always been working in scenarios where
the channel between the client and server was established in optimal conditions. On one
hand, a .NET client does not have any particular problem in connecting to any type of server,
whereas all our examples using web browsers as clients have always been written as simple
and self-contained web applications, implying that the asynchronous requests performed
by the client code were always going towards the same endpoint from where the client itself
was downloaded. This is the most common same-origin scenario, but there might be other
scenarios where the client code does not come from the same origin it tries to connect to.
We call such a case a cross-origin scenario, where the client code is hosted on a different
domain from the one hosting the SignalR endpoint we want to connect to.

Handling Connections

130

This scenario is quite common in cases where a service is intended to be consumed by
third-party applications, usually developed and hosted independently from the service itself.
In such cases, the JavaScript code consuming the service would most likely come from a
different origin than the one exposing it. This is a more delicate situation because it can
introduce security issues. Therefore, such kinds of communication is normally forbidden, and
that's a relevant problem for the SignalR JavaScript client library.

If we assume that we are using a modern browser (IE greater than 9, and any other recent
browser), we can leverage the fact that they all implement the Cross-Origin Resource Sharing
(CORS) specification. As usual, we will not go too much into the details because it is beyond
the scope of this book. What we need to know is that the CORS specification allows a web
server to list specific client origins to which access should be granted. You can easily check
the CORS specification details on the Web, for example, starting with Wikipedia: http://
en.wikipedia.org/wiki/Cross-origin_resource_sharing.

We do not treat the legacy browser scenario, but it's also supported. It involves enabling
JSONP support (http://en.wikipedia.org/wiki/JSONP), and it's described in
SignalR's official documentation.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application, which
we'll call Recipe32, and we'll use it as the application delivering the client portion of our
solution. We will need a server portion from a different application, and for that we'll use the
one we built in the previous recipe. In this way, we avoid wasting too much time building things
we already know and that are not the actual point of this recipe. For this reason, please make
sure that the code for Recipe31 is ready and working before proceeding.

How to do it…
Let's start with the client code in Recipe32, because it's the simplest part of the solution.
We'll be using Hubs through the SignalR dynamic proxies feature. We will perform the
following steps:

1.	 Because we are not building a server portion in this project, we'll just need to
reference the Microsoft.AspNet.SignalR.JS NuGet package using either the Manage
NugGet Packages… project context menu or the Package Manager Console.

2.	 We then add an HTML page called index.html, linking the usual JavaScript files
that have been added to the project with the previous step, as shown in the
following code:
<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/jquery.signalR-2.0.2.js"></script>

Chapter 6

131

3.	 We can now add a reference to the Hub endpoint, but with an important difference as
compared to any other previous recipe. This is done using the following code:
<script src="http://localhost:42613/signalr/hubs">
</script>

The difference here is that we specified an absolute address for the dynamic
endpoint, which of course makes sense because that's what we want to achieve. The
address is pointing to the server exposed by Recipe31. In case the port number
(42613) is different in your code, please fix it accordingly.

4.	 Let's then add our script block, which in this case is pretty simple. Therefore, we'll
show it all at once, as follows:

 <script>
 $(function () {
 var echo = $.connection.echo;

 $.connection.hub.url =
 "http://localhost:42613/signalr";

 echo.client.greetings = function (message) {
 console.log(message);
 };

 $.connection.hub
 .start()
 .done(function () {
 echo.server.sayHello()
 .done(function (message) {
 console.log(message);
 });
 });
 });

 </script>

Most of the code is not really new here. It's just doing the things that we already did
several times earlier. The only relevant code here is the highlighted line, where
we specify where our hub proxy has to point when contacting the server, and again
we use an absolute address pointing to the server exposed by Recipe31. We never
had to do that previously because the default address for that property matches
the one from where the running code has been downloaded, which is just fine for
same-origin scenarios.

Handling Connections

132

What we did so far does not illustrate anything special. This is plain, simple SignalR client
code, where the only different thing is the usage of absolute addresses pointing to an origin
that is different from the one hosting the page. But, as we briefly explained earlier, this code
would not work unless we do not enable cross-origin requests on the server we are trying to
contact. What is more specific to the CORS support happens on the server, therefore the rest
of the recipe will be about how to modify the code we wrote for Recipe31 in order to add the
CORS support we need.

1.	 On the Recipe31 project, we need to add a specific NuGet package called
Microsoft.Owin.Cors, which will contain what we need to enable the CORS support.

2.	 We open the Startup.cs file and modify its content to make it look like the
following code:

using Microsoft.Owin;
using Microsoft.Owin.Cors;
using Owin;

[assembly: OwinStartup(typeof(Recipe31.Startup))]

namespace Recipe31
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.Map("/signalr", map =>
 {
 map.UseCors(CorsOptions.AllowAll);

 map.RunSignalR();
 });
 }
 }
}

We added the using Microsoft.Owin.Cors; directive and then changed the contents of
the Configuration() method to use the more low-level Map() method instead of the simpler
and normally used MapSignalR() method. Here, we first define the route behind which the
SignalR endpoint will be exposed ("/signalr"), then we specify that such mapping must use
CORS support (map.UseCors(CorsOptions.AllowAll)), and finally we start the route. The
stock CorsOptions.AllowAll option opens the access to any client origin.

We can now run both Recipe31 and Recipe32, and we'll see how the index.html page
will log a hello message onto the console, demonstrating that we've been able to connect to
a server living on a different origin from the one where the client code is hosted!

Chapter 6

133

There's more…
The code we wrote is still pretty naïve, because we went from a scenario where no cross
origin client was allowed to a new one where every cross-origin request is happily processed.
This might be too relaxed, and we might want to be able to decide a specific set of origins we
want to enable while leaving out everybody else. That's, of course, possible. Instead of using
the ready-made CorsOptions.AllowAll option, we can build a new one from scratch,
specifying a custom value to use for the PolicyProvider member. This will look like the
following code:

 var corsPolicy = new CorsPolicy
 {
 AllowAnyHeader = true,
 AllowAnyMethod = true
 };
 corsPolicy.Origins.Add("http://localhost:10457");

 map.UseCors(
 new CorsOptions
 {
 PolicyProvider = new CorsPolicyProvider
 {
 PolicyResolver =
 r => Task.FromResult(corsPolicy)
 }
 });

We first build a custom CorsPolicy instance, saying we allow all headers and all methods,
and then supply a single address to the Origins collection. The address we specify is
intended to be the one where Recipe32 is hosted. Please check that 10457 is the right
port number in your case. Then we make a call to the UseCors() method, supplying an
instance of CorsOptions whose PolicyProvider member has been assigned to a custom
CorsPolicyProvider instance, which specifies a PolicyResolver lambda returning the
CorsPolicy instance we just built. The code is pretty simple and should be a good starting
point for you to implement more sophisticated requirements, such as reading the origins to be
enabled from a configuration file.

7
Analyzing Advanced

Scenarios

In this chapter, we will cover:

ff Generating static files for JavaScript proxies

ff Authorizing requests on a Hub

ff Authorizing requests on a persistent connection

ff Authorizing requests in a self-hosting context

ff Scaling up

ff Scaling out with Azure

ff Scaling out with Redis

ff Scaling out with SQL Server

ff Establishing proxy-less connections

ff Introducing dependency injection (simple approach)

ff Introducing dependency injection (advanced approach)

ff Using dependency injection to replace a default behavior

ff Extending the Hub pipeline

ff Handling errors

Analyzing Advanced Scenarios

136

Introduction
So far, we have been making our way through most of the available features that can be
leveraged to exchange real-time client/server messages, and at the same time we've been
analyzing what SignalR delivers in order to monitor our connections and keep them under
control. In this chapter, we'll be putting messaging features aside and concentrating on what
we can do to solve common but orthogonal problems, which are key when moving from
playground projects to real-world applications that have to deliver value in an efficient manner.
Among other things, we'll see more about error management, talk about authentication
and authorization, go through the different mechanisms available to scale and optimize our
applications, and finally hook into SignalR's available extensibility points to show how to solve
interesting and relevant infrastructural issues.

Generating static files for JavaScript proxies
One of the most fascinating things about SignalR is its ability to generate JavaScript dynamic
proxies on the fly for any server-side Hub. These proxies make writing client-side code very
easy and natural, but there's a price to pay, because the dynamic endpoint has to generate
all the necessary plumbing code on the fly when requested. Although SignalR optimizes
this process with caching strategies, this approach cannot be as efficient as a static and
cacheable file. For this reason, SignalR's team decided to provide a way to distribute
JavaScript dynamic proxies through a statically generated script.

In this recipe, we'll write a very basic application using dynamic proxies, and then we'll rework
it to replace the dynamic endpoint with an equivalent static file.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application, which
we'll call Recipe33.

How to do it…
Let's quickly build our sample project using the following steps:

1.	 We first add a new empty Hub, which we'll call EchoHub, using the SignalR Hub
Class (v2) template, as we have already done many times earlier. It will contain a
simple method to return a hardcoded message, as shown in the following code:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe33
{
 [HubName("echo")]

Chapter 7

137

 public class EchoHub : Hub
 {
 public string SayHello()
 {
 return "Hello";
 }
 }
}

2.	 We then create the Startup class with the appropriate template, containing a basic
bootstrap sequence, as follows:
using Microsoft.Owin;
using Owin;
using Recipe33;

[assembly: OwinStartup(typeof(Startup))]

namespace Recipe33
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }
}

3.	 We finally add an HTML client page called index.html. The code to be added to this
page is as follows:

 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>
 $(function() {

 var hub = $.connection.hub,
 echo = $.connection.echo;

 hub.start().done(function() {
 echo.server.sayHello()
 .done(function(message) {
 console.log(message);
 });
 });
 });
 </script>

In its head section, we'll reference the required JavaScript libraries as usual, and
then the dynamic endpoint. We'll also add some trivial code to just prove that the
connection is actually working. At this stage, there should not be any need to go
through this code in detail, so we'll just list it and move on.

Analyzing Advanced Scenarios

138

We can test the code we just wrote by launching the application and navigating to the index.
html page. The page will just emit a message onto the browser console, displaying what's
received from the server-side Hub.

This was simple so far, and as usual we used the /signalr/hubs endpoint, but that's the
piece that has to be generated every time the application starts up, with some (although
limited) waste of resources and some difficulties to face when dealing with caching. These
issues can be easily solved using a utility distributed with SignalR called signalr.exe.

The signalr.exe utility is a simple command-line application that can be used for a few
support tasks. It can be used to manage custom performance counters, and it is able to
generate a static version of a dynamic endpoint. This is the functionality we're after in this
recipe, therefore let's see how and where we can get this utility, and later on how to use it.
We will perform the following steps:

1.	 We first need to reference a NuGet package called Microsoft.AspNet.SignalR.
Utils, which does not actually add any assembly to the project; instead, it
downloads the signalr.exe utility we mentioned earlier.

2.	 In order to find the utility, we have to open the packages folder for our solution on
disk; from there, we navigate into the folder named after the package name (at the
time of writing, it was Microsoft.AspNet.SignalR.Utils.2.0.2) and then we
move inside the tools folder, where eventually we find it. Let's annotate the full path
of this folder and move on.

3.	 Let's now open a console window and set our current directory to the bin folder,
where the application assembly can be found, inside the project's directory, and from
there let's launch the following command:
[path to signalr utility]\signalr ghp

This command scans the current folder looking for all the assemblies containing
hubs. It processes them, accessing their internals to generate the JavaScript
dynamic proxies code, and eventually saves them in a static file conventionally called
server.js and positioned in the current folder.

4.	 The last step is pretty simple: we take the server.js file and copy it into the
scripts folder of our application, maybe renaming it with a more meaningful
name. In this case, we'll name it EchoHub.js. At this point, the only thing to do is to
change the dynamic endpoint reference in index.html from /signalr/hubs to
Scripts/EchoHub.js.

We are done. We can retest the application and verify that we still get the message on the
browser console. We are avoiding a dynamic step and we can more easily work on caching
the static file the way we think it's more appropriate. The online documentation of this utility
can be found at http://www.asp.net/signalr/overview/signalr-20/hubs-api/
hubs-api-guide-JavaScript-client.

Chapter 7

139

Authorizing requests on a Hub
In real-world applications, one of the most common concerns we have to deal with is
recognizing our users and granting or denying rights to perform actions. The first part is
normally called the Authentication process, and it has to do with the steps necessary to
ensure the identity of a user. SignalR does not offer any feature for that because it delegates
the task to the hosting environment, whether that is ASP.NET or a self-host application. The
second component of our concern is the Authorization process, which assumes the user has
already been authenticated and uses his/her identity to decide what the user can or cannot
do. In this case, SignalR offers a couple of mechanisms to deal with it: one specific to Hubs
and another one for persistent connections in general. We'll see both of these in this and the
next recipe, in the context of ASP.NET web applications, while the following one will illustrate
the necessary basic steps to enable the authentication support in a self-hosting environment
through the features provided by the infrastructure.

In this recipe, we'll write a very basic ASP.NET web application using Hubs, which we'll later
adjust to take care of authorization. For the authentication part, we'll take advantage of the
automatic features available with ASP.NET, and we'll build our example on the Windows
Authentication host mechanism exposed by IIS and IIS Express.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application, which
we'll call Recipe34.

How to do it…
We'll proceed by writing the basic sample code with neither authentication nor authorization
in place. We will be adding those later. After creating the empty web application, we add
functionalities through the following steps:

1.	 We first add a new Hub, called EchoHub, using the SignalR Hub Class (v2) template
as usual. We'll make its code look like as follows:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe34
{
 [HubName("echo")]
 public class EchoHub : Hub
 {

Analyzing Advanced Scenarios

140

 public string Hello()
 {
 return "Hello!";
 }
 }
}

2.	 We then add the Startup class, which will just contain a basic initialization
sequence, as follows:
using Microsoft.Owin;
using Owin;

[assembly: OwinStartup(typeof(Recipe34.Startup))]

namespace Recipe34
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }
}

3.	 The server-side portion is ready. Let's quickly add an index.html page and add the
client code to it. All the necessary references are already in place because they have
been automatically added when we created our Hub. Add the following code to the
index.html page:
 <script src= "Scripts/jquery- 2.1.0.js" ></script>
 <script src="Scripts/jquery.signalR-2.0.2.js" ></script>
 <script src= "/signalr/hubs"></script>
 <script>
 $(function () {
 var echo = $.connection.echo;
 $.connection.hub
 .start()
 .done(function() {
 echo.server.hello()
 .done(function(message) {
 console.log(message);
 });
 });
 });
 </script>

Chapter 7

141

We can test what we wrote so far by navigating to index.html and observing the Hello!
message printed on the browser console.

Now we know that our code is functional, hence let's add what's needed to add authorization
rules to our Hub. As already mentioned, we need the hosting infrastructure to perform the
authentication steps first. In the case of an ASP.NET application, we have several options,
and discussing them is out of scope here. For our goal, it is enough to know that all of them
are integrated and capable of providing the necessary information to perform the following
authorization tasks. Let's move on to the following authorization steps:

1.	 For our example, we'll leverage the Windows Authentication mechanism, which is the
default one for ASP.NET and can be easily enabled in IIS or IIS Express. Our examples
are based on the latter, and switching from the default Anonymous Authentication
to Windows Authentication can be easily done through the Properties window of the
project inside Visual Studio, as shown in the following screenshot:

With those settings in place, the Windows identity of the current user will be
transmitted in the context of each request towards the server.

The authorization process available for Hubs is based on an attribute called
AuthorizeAttribute, and it clearly resembles the features available in other
frameworks, such as Web API or MVC identity associated to the current request.
This attribute can be used to mark either single methods or an entire Hub. The
attribute can accept values for two properties, Users and Roles, to which we can
provide a list of users or roles that are authorized to execute the annotated method
or Hub. Those properties will be checked against the identity associated to the
current request.

2.	 Let's modify our Hub to authorize a specific user to remotely call any contained
method using the following code:

 [HubName("echo")]
 [Authorize(Users = "DOMAIN\user")]
 public class EchoHub : Hub
 {
 ...

 }

Analyzing Advanced Scenarios

142

We just added AuthorizeAttribute on the definition of the EchoHub class and
specified a sample name for the user to authorize. You will have to adapt the actual
content of the string to some meaningful identity, or maybe switch to the Roles
property if that better suits your case.

With this simple addition, we can test our application again and check whether we receive the
Hello! string or not, based on the actual parameters supplied to the attribute. In particular,
you can try with different fake identities first and then with the user identity you are currently
using to spot the difference in the actual behavior.

There's more…
We've been illustrating authorization in the context of Windows Authentication, for which we
did not provide deep details, but those are easily available on the Web. The same can be said
for all the remaining authentication mechanisms available for ASP.NET. You can easily use any
of them, and they will nicely fit with the authorization infrastructure.

The other thing to highlight is the fact that the AuthorizeAttribute type can be used to
mark either a type, as we showed, or a method declaration. This provides us with a flexible
mechanism that we can use to apply fine-grained authorization strategies, where we can take
different decisions on a method-by-method basis if necessary, or more simply, apply a global
decision for a whole Hub.

Authorizing requests on a persistent
connection

Hubs is generally an easier API to use as compared to Persistent Connection, and that's the
case for the authorization process too. With this recipe, we'll see how to provide the same
behavior for a persistent connection.

We'll be writing a simple ASP.NET application first, and then we'll add the necessary
authorization features to reach the same goal. For the authorization, we'll be using Windows
Authentication again, and we'll configure IIS Express accordingly.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application, which
we'll call Recipe35.

Chapter 7

143

How to do it…
We first create an empty web application, and we'll make it functional without any
authorization bits, which we'll be adding afterwards. We'll perform the following steps:

1.	 We start by adding a class named EchoConnection that is derived from
PersistentConnection. To do that, we can navigate to Add | New Item… from
the context menu of the project entry inside the Solution Explorer window, and from
there look for SignalR Persistent Connection Class (v2). We'll add a simple method
to broadcast back whatever data is received from the connected client. The code is
as follows:
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR;

namespace Recipe35
{
 public class EchoConnection : PersistentConnection
 {
 protected override Task OnReceived(
 IRequest request,
 string connectionId,
 string data)
 {
 return Connection.Broadcast(data);
 }

 ...
 }
}

The dots are there to mark where we'll be adding the authorization bits.

2.	 As usual, we need to add the Startup class. In this case, we are using a persistent
connection; therefore, we'll have to use the corresponding mapping extension
method, as shown in the following code:
using Microsoft.Owin;
using Owin;
using Recipe35;

[assembly: OwinStartup(typeof(Startup))]

namespace Recipe35
{
 public class Startup
 {

Analyzing Advanced Scenarios

144

 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<EchoConnection>("/echo");
 }
 }
}

The only relevant portion is the line where MapSignalR() is called to wire our
EchoConnection type to the /echo endpoint.

3.	 Let's move to the client side by creating an index.html page and adding some
simple testing code to it, as follows:

 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script>
 $(function() {
 var c = $.connection('echo');
 c.received(function(data) {
 console.log(data);
 });
 c.start()
 .done(function () {
 c.send('hello');
 });
 });
 </script>

This kind of code has already been illustrated in Chapter 5, Using a Persistent
Connection, so we'll skip any further comments.

Testing this application is very simple. We browse to the index.html page and look at the
browser's console to see a hello string popping up. After verifying that it works, we can move
on and add the authentication and authorization bits. For any general discussion about those
topics, you can refer to the Authorizing requests on a Hub recipe. Let's proceed with the
following steps:

1.	 We first need to take care of the authentication, and we'll do it by moving from
the default Anonymous Authentication to the Windows Authentication mechanism
using the Properties window of the project inside Visual Studio, as shown in the
following screenshot:

Chapter 7

145

2.	 As usual, persistent connection exposes a more low-level API for everything,
and authorization is no exception. In order to check if the connecting user
can be authorized to perform the incoming call, we have to override the
AuthorizeRequest() method, and from there do all the necessary checks to
decide whether to accept or reject the request, as shown in the following code:

 protected override bool AuthorizeRequest(
 IRequest request)
 {
 return request.User.Identity.Name ==
 @ "DOMAIN\user" ;
 }

The AuthorizeRequest() method is automatically called every time a remote
request is performed, and it's supplied with a reference to the current request.
The authorization step has already taken place, therefore the request argument
contains all the information necessary to apply our authorization process. The
method has to return a Boolean value, which will either be true to authorize the call
or false to deny access, and that's it. In our example, we simply get access to the
current principal token and check whether the name of the user matches a specific
one, but of course in real-world applications we would perform a more meaningful
authorization process.

We are now ready to test the application again by changing the string we verify the identity
against, as we did in the previous recipe. We'll observe that the hello string will be printed
only if the authorization process will pass. Using breakpoints in Visual Studio, we can verify
that each request is actually passing through the AuthorizeRequest() method, and that
its output is governing the actual execution of the request.

Analyzing Advanced Scenarios

146

Authorizing requests in a self-hosting
context

Earlier in this book, we've been illustrating how SignalR can be hosted in a traditional
Windows process, thanks to the self-hosting support provided. While this opens up several
new and interesting scenarios, on the other end this is a much more basic infrastructure,
and we might therefore lose useful or necessary features exposed by the ASP.NET
environment. In some cases, we might even need to learn about some manual steps that
we have to perform in order to gain access to equivalent functionalities.

This is the case for the authentication process, which needs different additional steps
according to the specific authentication scheme used. Our goal is to illustrate the point, and
therefore we'll stick with the simplest case, represented again by Windows Authentication.
The key part here is that it is definitely possible to support several other authentication
mechanisms; although, for those, we might need to get our hands dirty by digging into the Owin
hosting infrastructure (http://owin.org/), which is actually taking care of these details.

For this, we'll build the server-side portion from scratch, while for the client side we'll
reuse what we wrote for the Authorizing requests on a Hub recipe with a couple of small
modifications, so please make sure you have already read that recipe and have the related
code ready and working.

Getting ready
To build a self-hosting application, we start by creating a console application and then
perform the following steps:

1.	 Navigate to File | New Project from the menu items.

2.	 Navigate to Installed | Visual C# in the dialog box and select the Windows folder.

3.	 On the central panel of the dialog box, select Console Application, give it a name
(Recipe36 in this case), and click on OK. Visual Studio will add a Program.cs
file containing the startup code for our application, which at first will look like the
following code:
namespace Recipe36
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

Chapter 7

147

How to do it...
This is not a web application, therefore we need to add the SignalR packages manually,
as already explained in Chapter 1, Understanding the Basics. We'll need to install the
Microsoft ASP.NET SignalR Self Host package using either the Package Manager Console
window or the Manage NuGet Packages… dialog box. Having done that, we proceed using
the following steps:

1.	 We first add a plain old class called EchoHub, and we modify it to make it derive from
Hub as usual. We'll then add the necessary plumbing code and a simple test method
as follows:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe36
{
 [HubName("echo")]
 [Authorize(Users = @"DOMAIN\user")]
 public class EchoHub : Hub
 {
 public string Hello()
 {
 return "Hello!";
 }
 }
}

Pretty simple. The only thing to highlight is the addition of the
AuthorizeAttribute to establish an authorization rule, as we already saw in
the Authorizing requests on a Hub recipe for the Hubs API.

2.	 We then move on to add the usual Startup class, which we can create from scratch,
and make it look like the following code:
using System.Net;
using Microsoft.Owin;
using Owin;

[assembly: OwinStartup(typeof(Recipe36.Startup))]

namespace Recipe36
{
 public class Startup
 {

Analyzing Advanced Scenarios

148

 public void Configuration(IAppBuilder app)
 {
 ...

 app.MapSignalR();
 }
 }
}

It's mostly standard code. We just marked with dots the place where we'll have to
add some code to take care of a couple of issues that must be solved to have our
authorization process in place. These issues are as follows:

�� Allowing cross-origin requests, which is needed because we'll be using a
browser as the client, and the pages will be hosted by a different application

�� Wiring the Windows Authentication pipeline to pull the appropriate
credentials into the process

3.	 The first bits to add are related to the Cross-Origin Resource Sharing (CORS)
support, which we've been illustrating in the Establishing a cross domain connection
recipe from the previous chapter. For that, we need to add the Microsoft.Owin.
Cors NuGet package first, then add a using Microsoft.Owin.Cors; directive,
and finally perform the actual call to enable CORS support, as follows:
 app.UseCors(CorsOptions.AllowAll);

4.	 The second task is related to Windows Authentication support. Unless we do not
change what's configured by default, the self-hosting infrastructure is based on
the HttpListener type, which is provided by a specific NuGet package called
Microsoft.Owin.Host.HttpListener, and is already available here because it is
automatically added by Microsoft.AspNet.SignalR.SelfHost. In an Owin application,
the IAppBuilder interface exposes a Properties member giving access to the
available modules. We can use it to access the HttpListener instance to tweak its
configuration, as follows:
 var listener = (HttpListener)
 app.Properties["System.Net.HttpListener"];
 listener.AuthenticationSchemes =
 AuthenticationSchemes.IntegratedWindowsAuthentication;

We first extract the HttpListener module from the Properties collection,
and then configure its AuthenticationSchemes member to support Windows
Authentication. That's what we need, and that's enough to hook the authentication
process in our application.

Chapter 7

149

5.	 We need one last step, which is the actual hosting of the application behind a specific
endpoint. For that, we need to go back to the Program class we introduced at the
beginning of the recipe and fill its Main() method with the following code:

 using (WebApp.Start<Startup>("http://localhost:9191/"))
 {
 Console.WriteLine(
 "Server running at http://localhost:9191/");
 Console.ReadLine();
 }

In the Adding a Hub to a self-hosting application recipe of Chapter 1, Understanding
the Basics, we already illustrated this step in detail. Briefly, what we are doing here is
launching our application using the Startup class written earlier and exposing it on
port 9191 of the http://localhost address.

We're done with the server. Now, we just need a client to test if everything works. We'll simplify
this task by using the application we built for the Authorizing requests on a Hub recipe, which,
by the way, is already configured to support the Windows Authentication process. We just
need to slightly modify the index.html client page so that it will point to the server from this
current recipe. That's pretty simple—we just need to adjust a couple of lines, as follows:

 <script src="http://localhost:9191/signalr/hubs"></script>
 <script>
 $(function () {

 $.connection.hub.url =
 'http://localhost:9191/signalr';

 ...

 });
 </script>

We modified the address of the dynamic endpoint, and we did the same for the actual
address where the hub we are contacting must reside. Both are now pointing to port 9191,
where our server is exposed.

We are ready for testing: we first launch the console application and wait for it to be running;
then we move to the project from the Authorizing requests on a Hub recipe and navigate to its
index.html page. The output console of the browser will show the Hello! message received
from our self-hosted Hub only if the authorized username matches the one of the user
currently connecting.

Analyzing Advanced Scenarios

150

Scaling up
This chapter is dedicated to more advanced scenarios, and strategies to guarantee high
performance to our applications are a very good fit for this section of the book. We already
talked about how optimized the overall design of SignalR is, and how well performing its
runtime behavior is, but this does not mean that we will never face scalability issues. There
are ways to scale the performance of SignalR vertically on a single box—for example, adding
more memory (scaling up)—and it's also possible to scale SignalR horizontally by adding more
servers (scaling out) and making them exchange messages so that broadcasting is correctly
replicated. Clients must be able to keep on working as usual, regardless of the actual physical
endpoint they connect to and unaware of the changes in the infrastructure.

In this first recipe dedicated to scaling strategies, we'll discuss the first kind of optimization:
scaling up. The format will slightly deviate from the usual one because there is no easy way
to verify the benefits of our actions; therefore, we'll just list the available options and describe
the advantages they bring.

How to do it...
Let's start with what we can do at the coding level using the following features:

1.	 When we have methods on a Hub that exchange instances of complex types,
sometimes we might realize that there is too much information going on the wire,
and that we could actually save bandwidth and therefore performance by compacting
what we transmit somehow. The goal can be achieved by shortening the names of
the properties contained in the exchanged types, or even by completely removing
some members if they are not needed on the other end of the connection. This could
of course be done manually, but we can make use of some interesting serialization
attributes exposed by Json.Net, which is the default serialization library used by ASP.
NET since Version 4.0.

For example, we could do something like the following:
 public class Payload
 {
 [JsonProperty("s")]
 public string Salutation { get; set; }

 [JsonIgnore]
 public string DummyStuff { get; set; }
 }

The first member, Salutation, is marked with the JsonProperty attribute,
whose role is to specify an alternate name to use when serializing on the server. In
the example, we change the name of the property from Salutation to s, but this
just happens when sending to the client, hence we do not have to give up on more
descriptive names in the rest of our server-side code.

Chapter 7

151

The second member is annotated with the JsonIgnore attribute, which is used to
completely remove the related value from the stream of bytes sent to the client. This
can be useful when our types might contain information that is relevant on the server
but not on the client.

In both cases, we have to realize that the client will have to deal with the shape
of the data as it is after the transformation, that is, with shortened names and
missing fields.

2.	 Another trick we can use to improve the performance is to apply some form of data
compression. In order to work properly, SignalR must fully control what goes on the
wire; therefore, it's not easily possible to hook any sort of transparent and low-level
compression strategy. That said, there might be scenarios where SignalR is used to
provide more general-purpose infrastructure services where performance is really
an issue. In such cases, we might want to give up on business methods and data
structures and move to more general-purpose methods that exchange streams of
bytes, whose content is a compressed version of the actual information. Clients and
servers will have to agree on a compression strategy, and that's easier when the
client is a .NET application too because that would help in sharing the compression
components. In general, the resulting code will be more complex, but the gain in
performance might well be worth the effort.

3.	 Among the configuration parameters exposed by SignalR, there is one we can tweak
to improve the performance profile. The DefaultMessageBufferSize value can
be modified in the following manner:
GlobalHost.Configuration.DefaultMessageBufferSize = 500;

By default, SignalR keeps the last 1000 messages in memory, but if their payload
is large, this might have a negative impact on the memory footprint. Therefore,
decreasing such a number might be a good countermeasure to take. This code
should be placed inside the Configuration() method of the Startup class, just
before initializing SignalR.

We have a few more options thanks to a few parameters exposed by specific hosting
platforms. Please be aware that these settings will affect every other application hosted
by the same environment. They are as follows:

1.	 When we use IIS as our hosting platform, we can regulate the maximum number of
concurrent requests per application. The default value here is 5000, but it can be
increased by running a specific command-line application from an elevated session
as follows:
cd %windir%\System32\inetsrv\

appcmd.exe set config /section:system.webserver/serverRuntime
/appConcurrentRequestLimit:10000

Analyzing Advanced Scenarios

152

2.	 When ASP.NET is used as the hosting platform, there are a couple more parameters
that we can fine-tune, as follows:

�� maxConcurrentRequestsPerCPU: With this parameter, we can increase
the maximum number of concurrent requests per CPU that ASP.NET can
process. This setting can be found inside the aspnet.config file, whose
locations usually are:

%windir%\Microsoft.NET\Framework\v4.0.30319\aspnet.config
%windir%\Microsoft.NET\Framework64\v4.0.30319\aspnet.config

The mentioned key must be located inside the configuration/system.web/
applicationPool node of the file.

�� requestQueueLimit: When the previous limit is exceeded, ASP.NET starts
using a queuing mechanism, and the size of the queue is regulated by this
parameter, which can be found inside the processModel node of the
machine.config file.

There's more…
Tweaking parameters like the ones we just described in a proper way is not a trivial task. They
affect the behavior of the whole server, and therefore they might have an impact on other
non-SignalR applications. For these reasons, it's not easy to give a general guidance about
them. For example, factors like the availability of WebSocket as a connection strategy can
greatly influence the way you might want to fine-tune these values. In an environment where
WebSocket connections are many more than traditional HTTP connections, you might want
to try to set the previous numbers in the order of hundreds of thousands, while such values
would probably be too high if the ratio between the two types of connections is reversed.

For more information about these options, and about scaling up SignalR in general, you
can start by checking the official documentation at http://www.asp.net/signalr/
overview/signalr-20/performance-and-scaling/signalr-performance.

Scaling out with Azure
Scaling up a single machine can help just up to a certain limit, beyond which we have no other
option but trying to add more servers. Of course, this poses different issues; the most relevant
being, how we can keep the redundant infrastructure transparent to users. This principle is the
base of a solution that can scale at will and according to usage. The overall idea here is to have
a load-balancing infrastructure that can transparently route the clients to different servers.

The problem is that this way we lose any guarantee about which of our servers will satisfy
a request; therefore, those would need a system to exchange messages and information
in order to provide a seamless and fully functional experience to users, especially when
performing broadcasts towards all the open connections, which are likely to be scattered
across the whole web farm.

Chapter 7

153

Such systems exist, and are called backplanes. At the time of this writing, SignalR provided
three official backplanes, which will be illustrated here—each one with different characteristics
and performance profiles. They are based on the following technologies:

ff Windows Azure Service Bus

ff Redis

ff SQL Server

While analyzing them, we should always be aware of the general problems backplanes are
trying to solve, and we have to understand that a backplane is a mechanism based on a
continuous replication of messages across servers. This can help when the goal is to increase
the amount of connections we can handle, but the natural drawback is an impact on the
messaging throughput. Applications performing high-frequency broadcasting (think about real-
time games performing several refreshes per second) might suffer from it, and some ad hoc
alleviating strategies might be needed.

For reasons of simplicity, our recipes will not involve any load-balancing system; that's
an infrastructural concern, and it's out of scope here. Nevertheless, we will be able to
demonstrate our point by instantiating different servers and showing how they support
broadcasting towards all the connected clients regardless of the actual endpoint they're
attached to, which is the necessary requirement to support true load-balancing strategies.

In this recipe, we'll describe the first of the three available backplanes: the Windows Azure
Service Bus backplane.

Getting started
In order to illustrate our point, we'll first build a basic sample web application and make it
work in the simplest scenario possible, where just one server is available. We'll then make
use of a Windows Azure Service Bus instance for the backplane, and we'll demonstrate how
that helps.

We'll finalize the example by deploying the application on Azure. This is not strictly necessary,
but it is an interesting option to illustrate here. For that, we'll need to build a Windows Azure
Cloud Service project, whose template is added by installing the free Windows Azure SDK,
available at http://www.windowsazure.com/en-us/downloads/.

Before proceeding, please make sure Windows Azure SDK is installed and the mentioned
project template is available in Visual Studio.

For this recipe, we'll also assume some basic knowledge about what Windows Azure is and
how it works, and we will take for granted that you already have an account on Azure, which
you will use to deploy this solution. Azure offers trial subscriptions and very convenient
plans for MSDN subscribers, so it should not be a problem for you to get ready with these
requirements and follow the rest of this recipe.

Analyzing Advanced Scenarios

154

How to do it...
Let's quickly build the sample project using the following steps:

1.	 We first add a new empty Hub called EchoHub using the SignalR Hub Class (v2)
template as usual. Its implementation will be as simple as the following one:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe38
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void SayHello()
 {
 Clients.Others.greetings("Hello!");
 }
 }
}

We're just exposing a simple Hub with a single method that will broadcast a message
to every other connected client each time it will be called.

2.	 Let's prepare the following code for our Startup class, created as usual using the
corresponding template:
using Microsoft.Owin;
using Owin;

[assembly: OwinStartup(typeof(Recipe38.Startup))]

namespace Recipe38
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 ...

 app.MapSignalR();
 }
 }
}

Chapter 7

155

The code is pretty much the same as we have seen many times, but we already left
some space, marked with dots, for a couple of lines that we'll need later on.

3.	 We finally prepare the code for our client page, called index.html as usual, which
will contain a button to call a method on the server and an unordered list to display
the received messages, as follows:

 <button id="sayHello">Say hello!</button>
 <ul id="messages">

4.	 The JavaScript code is pretty straightforward too, as follows:
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>

 $(function() {
 var echo = $.connection.echo;

 echo.client.greetings = function(message) {
 var $li = $('')
 .html(message);
 $('#messages').append($li);
 };

 $.connection.hub
 .start()
 .done(function() {
 $('#sayHello').click(function() {
 echo.server.sayHello();
 });
 });
 });

 </script>

It prepares a callback to be invoked by the server when a broadcast is performed by
the Clients.Others.greetings("Hello!"); call and binds a call towards the
server on the click event from to the button on the page.

Analyzing Advanced Scenarios

156

We can test what we did so far by opening the index.html page in multiple browser
windows and clicking on the button on each of them. We'll observe how the messages are
broadcasted to the various clients. Once we are sure that everything works as expected,
we can move on and see how to hook a Windows Azure Service Bus backplane into the
application by performing the following steps.

1.	 We log in to the Windows Azure Management Console using our account, then we
move to the SERVICE BUS section on the sidebar to the left, and we click on the
CREATE button to add a namespace. A Service Bus namespace is used by the
backplane to send and receive the messages in a publish/subscribe fashion. In
the creation window displayed, we have to specify a name for the namespace; for
example, SignalRCookbookNS.

2.	 When the namespace will be ready, we'll select it and then open the CONNECTION
INFORMATION window; there, we'll find an Access Connection String (ACS) entry we
need to write down because we'll need it soon.

3.	 We move back to the Recipe38 application in Visual Studio to add the Microsoft.
AspNet.SignalR.ServiceBus NuGet package, which will enable support for the
Windows Azure Service Bus backplane.

4.	 We then move to the Startup file, where we add the following code just before the
call to the MapSignalR() method along with a using Microsoft.AspNet.
SignalR; directive:

 var connectionString =
 "namespace connection string";
 GlobalHost.DependencyResolver.UseServiceBus(
 connectionString, "Recipe38");

We use the UseServiceBus() method to start up the related support. The value
of the supplied connection string is the one we just copied from the management
console, while the "Recipe38" string is a topic name that Azure will use to group
together the messages for this application.

If we now repeat the same test we performed earlier, we should see the same expected
behavior happening; however, we might have to retry a few times at the beginning because
the Service Bus might need a few seconds to warm up.

At this point, we can be pretty sure that our application is relying on the Service Bus instance
we just created, but to double check it, we can perform a further step and try to do a full
deploy of the web application onto Azure. This way, we should be able to run the sample both
locally and from the cloud at the same time, and have both instances exchanging messages
thanks to the backplane. Let's see how to deploy the application using the following steps:

1.	 We start by opening the Add New Project dialog box by navigating to File | New
Project…, and there we look for the Cloud templates folder in the C# section, from
where we pick the Windows Azure Cloud Service template to create our project
named Recipe38.Azure, as shown in the following screenshot:

Chapter 7

157

2.	 The following step of the creation wizard will show a window from where we can pick
several types of roles that we want to add to the project; however, in our case, we'll be
attaching to the Recipe38 web application we already created, so at this stage we
simply click on the OK button without selecting any role type, leaving the right-hand
side of the screen empty, as shown in the following screenshot:

The final effect will be the creation of the project.

Analyzing Advanced Scenarios

158

3.	 Let's now look for the Recipe38.Azure project inside the Solution Explorer
window and expand it. We'll see a bunch of nodes there, but we're just interested in
the Roles one, on which we'll right-click to open its context menu, as shown in the
following screenshot:

Our goal is to generate a role from the web application we built earlier; therefore, we
select the Add… item and then the Web Role Project in solution… item. This will
present a list of projects from where we'll pick Recipe38. This will add a new entry
under the Roles node for our project.

We might also want to redefine the number of instances of our application we want
Azure to start. We achieve that by double clicking on the Recipe38 node we just
mentioned to open its Configuration window, where we can tweak the Instance
count parameter, as shown in the following screenshot:

After building it, our Cloud Service hosting the application will be ready to be deployed;
therefore, we have to perform the necessary steps to publish it on Azure as follows:

1.	 We log in again into the Windows Azure Management Console using our account,
and then we prepare a new Cloud Service instance by opening the NEW wizard
and clicking sequentially on COMPUTE, CLOUD SERVICE, and QUICK CREATE.
We'll give the instance a name, for example, SignalRCookbookRecipe38; we'll
select a deploy region and a subscription plan; and we'll confirm the creation. It's
recommended to deploy it in the same region we choose for the Cloud Service.

2.	 Similarly, we'll create a new storage account by opening the NEW wizard and clicking
sequentially on DATA SERVICES, STORAGE, and QUICK CREATE. We'll give the
instance a name, for example, signalrcookbookstorage; we'll select a deploy
region, a subscription plan, and a replication strategy; and we'll trigger the creation.

Chapter 7

159

3.	 We are done with the preparatory work we needed on the Windows Azure
Management Console. Now, we can go back to Visual Studio to finalize the
publication. We just need to build our solution and deploy the Cloud Service using
the Publish menu item available on the project context menu. We'll be asked to
authenticate on Azure with our credentials, and then we'll be presented a wizard
window from where to configure the final settings of our setup. They should be pretty
straightforward; most of them will correspond to items we created during the previous
steps. When asked which environment to use, let's select Staging because that's the
most appropriate for a test application like this one.

The publication step can take a few minutes, and we can monitor its progress from both
Visual Studio and the Windows Azure Management Console. When finished, we can select
our SignalRCookbookRecipe38 Cloud Service from the Management Console; then open the
corresponding dashboard for the Staging environment and, on the right-hand side bar, look for
the SITE URL link, which we can then use to finally see our sample application in action. Let's
open a few new browser instances pointing to that address, along with the ones we previously
pointed at the application running locally, and let's observe how the triggered messages flow
across all of them, local and remote, thanks to the backplane infrastructure
we just prepared.

How it works...
This backplane is based on the topics feature exposed by the Service Bus, which delivers
a publish/subscribe model where publishers are able to queue messages, and multiple
subscribers can read them concurrently. Each message is read by all the subscribers, and this is
exactly what SignalR needs in order to replicate every message across all the available nodes.

Most of the details about how SignalR actually implements the backplane are out of the scope
of this book. The only interesting thing we'd like to discuss here is that all the backplanes are
written the same way, leveraging an extensibility point provided by SignalR. SignalR exposes
an interface called IMessageBus, and it needs an instance of a type implementing that
interface to work properly. Every single incoming or outgoing message goes through this
service, regardless of the presence of any external backplane. If we do not inject a different
implementation, SignalR creates an instance of a default and embedded type implementing
IMessageBus which handles messages in memory, and sets it as the current backplane.

This is how SignalR makes a standalone setup work, therefore we might say that every
SignalR application is actually working through a backplane, where the default one works
in memory. This smart strategy makes it easy to inject a different strategy to tackle specific
scalability issues when they show up, and it allows anybody to create a custom backplane if
none of the existing ones is satisfactory.

Analyzing Advanced Scenarios

160

Scaling out with Redis
The Windows Azure Service Bus backplane is very interesting, but it's also based on an
external infrastructure, which might not always be a viable option. Also, the resilience
characteristics of the Windows Azure Service Bus are great for guaranteed delivery, but they
have some impact in terms of messaging throughput. Therefore, the SignalR team provided a
high-performance alternative with a backplane based on Redis.

Redis is an in-memory key-value store, with a persistence strategy to make data durable,
but its main focus is speed, which it achieves through its in-memory model. It has a publish/
subscribe structure whose characteristics are ideal to be used as the foundation for a
SignalR backplane.

In this recipe, we'll describe how to set up a Redis instance on a Windows machine, and how
to configure the Redis backplane on a sample application.

Getting started
In order to keep the discussion focused on the actual topic, we'll reuse the code we wrote in
the previous recipe and just highlight the differences we'll need to introduce for the Redis
backplane. We'll need a new empty web application, which we'll name Recipe39.

We, of course, need a Redis instance as the backend of our backplane. Redis is a Linux-based
system, but an unsupported version working on Windows, managed by a team at Microsoft,
is available. This version is in general a little bit behind the official one, and it's probably not
recommended in a production environment. But, it's just fine for our demonstration purposes,
so we'll use it here. We have two ways to get the binaries, which
are as follows:

ff Get the C++ source code from GitHub at the following address and compile it with
Visual Studio:

https://github.com/MSOpenTech/redis

ff Download the readymade binaries from the following site:

https://github.com/mythz/redis-windows

Both ways work fine and are pretty simple, even if you are not an experienced C++ developer.
When you have it ready, you can open a command-line window, set the current directory to the
folder where you have placed the binaries, and launch Redis using the following command:

msvs\x64\Release\redis-server.exe redis.conf

Chapter 7

161

The previous command line is based on the folder structure that is created when downloading
and compiling the source code directly. You might have to adapt it if you download the
binaries directly. In any case, what you need to do is locate redis-server.exe and launch
it by supplying the path of the redis.conf configuration file. You might also want to open
the configuration file, look for the requirepass setting, and use it to specify a connection
password to be used later when configuring the backplane (you might have to uncomment the
corresponding configuration line).

How to do it...
As already mentioned, we'll base our discussion on the code we wrote for Recipe38,
therefore here we'll just quickly mention the necessary steps:

1.	 We first add a Hub class called EchoHub and a test page called index.html.
Please check the previous recipe for more details about the code to put in there.

2.	 Let's then prepare the following code for our Startup class, created, as usual, using
the corresponding template:

using Microsoft.Owin;
using Owin;

[assembly: OwinStartup(typeof(Recipe39.Startup))]

namespace Recipe39
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 ...

 app.MapSignalR();
 }
 }
}

We added some dots to mark the place where we'll later be adding a couple of lines
initiating the Redis backplane.

Analyzing Advanced Scenarios

162

Before proceeding, we should test what we did so far and observe that everything is working
as expected. We can proceed by opening the index.html page in multiple browser windows,
and by clicking on the displayed button to observe how the messages are broadcasted to the
various clients. We can now continue by adding the Redis backplane using the following steps:

1.	 We first need to add the Microsoft.AspNet.SignalR.Redis NuGet package to
enable support for the Redis backplane.

2.	 We then go back to the Startup class, where we add the following code just before
the call to the MapSignalR() method (we need to add a using Microsoft.
AspNet.SignalR; directive to make it compile):

 GlobalHost.DependencyResolver.UseRedis(
 "localhost", 6379, "pwd", "Recipe39");

We use the UseRedis() method to start up the related support, and we need to
provide the following parameters:

�� The network address where to find the Redis instance we want to use
�� The port on which Redis is listening (the default value is 6379)
�� The password we configured in the redis.conf file
�� A name for a topic, which is used to group together all the related messages;

in this case, we use the name of the recipe

We are ready to test the application again, and we should not notice any disruption, with
all the messages correctly broadcasted across all the open browser instances. We can also
observe the messages flow using the redis-cli.exe utility in the following manner:

msvs\x64\Release\redis-cli.exe –a the_password

redis 127.0.0.1> subscribe Recipe39

With this utility, we connect to the same instance we use from inside our application, using
the –a option to specify the password we set up in redis.conf earlier. When connected, we
subscribe to the same topic used by our application by entering the subscribe Recipe39
command. At this point, whenever we'll click on a button in our application page, a message
will be printed in this console window.

We can perform a further test to confirm how the backplane is able to work across multiple
servers. We open a new command-line window and launch an instance of IIS Express pointing
to our application as follows:

"%programfiles%\IIS Express\iisexpress.exe" /path:[path]
 /port:[port]

Chapter 7

163

The [path] argument must be the absolute path of the folder containing the source code of
our application, while the [port] value must be different from the one configured in Visual
Studio, and in general must be a free IP port. When the new IIS Express instance is ready,
we can open a new browser window pointing at the port we just specified. As a result, we'll see
a new copy of our test page, but, regardless of being on a different web server instance, any
message sent from here will reach the other windows we opened earlier, and the other way
round will work too, all thanks to the Redis backplane.

Scaling out with SQL Server
The SignalR team provides a third backplane option, based on Microsoft SQL Server. This
one could be a good fit if both Windows Azure and Redis are not an option for you. It has good
resilience characteristics, although it's not the best option in terms of performance.

In this recipe, we'll assume you have a SQL Server instance available, and we'll see how to plug
the SQL Server backplane into a simple application inspired by the previous scale-out recipes.

Getting started
As we did previously, we'll reuse the code we wrote in the recipe about the Windows Azure
Service Bus backplane, and we'll just show what's to be different when we add the SQL
Server backplane. We'll perform our demonstration using a new empty web application
named Recipe40.

In order to correctly support the backplane, we need to perform the following actions:

1.	 We need to create an empty database. It does not need to have any special
name, and the necessary tables will be created by the backplane itself the first
time it's activated.

2.	 Our application will run under a specific process account, maybe through
impersonation; therefore, we'll have to determine the actual identity that will connect
to the SQL Server instance and give it the necessary permissions to log in and create
tables. The same idea applies if we opt for a SQL Authentication identity. This is
necessary just for the first time the backplane connects to the database to create the
tables it needs. After that, we could downgrade the permissions we granted to a more
traditional read/write set of permissions, or switch to a more adequate user.

3.	 Although we will not proceed with this specific step in our discussion, in a production
environment it's highly recommended that you enable the SQL Server Service
Broker, whose messaging and queuing features greatly enhance the performance
of the SQL Server backplane by notifying it directly, in a push fashion, when control
messages need to be exchanged. You can check the SQL Server documentation for
more details about it, available at http://technet.microsoft.com/en-us/
library/bb522893.aspx.

Analyzing Advanced Scenarios

164

How to do it...
Our sample code will be the same as we wrote for Recipe38; let's quickly review it:

1.	 We first add a Hub class called EchoHub and a test page called index.html, whose
content will be the same as we had prepared for the previous two recipes.

2.	 We then need a Startup class that looks like the following code:

using Microsoft.Owin;
using Owin;

[assembly: OwinStartup(typeof(Recipe40.Startup))]

namespace Recipe40
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 ...

 app.MapSignalR();
 }
 }
}

We'll be adding the missing code later when plugging the SQL Server backplane.

We can proceed with a first test pass by opening the index.html page in multiple
browser windows and by clicking on the button on each of them to verify that messages are
broadcasted across clients. When done, we can proceed by adding the SQL Server backplane
using the following steps:

1.	 We first need to add the Microsoft.AspNet.SignalR.SqlServer NuGet
package to enable support for the SQL Server backplane.

2.	 We then go back to the Startup class code, where we first add a using
Microsoft.AspNet.SignalR; directive and then the following call just before
invoking the MapSignalR() method:
 string connectionString = "[connection string]";
 GlobalHost.DependencyResolver
 .UseSqlServerSqlServer(connectionString);

This code is pretty simple: the UseSqlServerSqlServer() method starts the
backplane, and we just have to provide the necessary connection string to have
access to the database we created earlier.

Chapter 7

165

We are ready to perform a new test on the application by launching it again from Visual Studio
in multiple browser windows, and we should not notice any difference from the behavior we
observed earlier, with the messages correctly broadcasted across all the clients. You can
double-check that the backplane is effectively in place by inspecting the content of the tables
in its database.

We can then perform a further test to clearly observe how the backplane works across
multiple servers. We open a new command-line window, and from there we launch an
instance of IIS Express pointing at our application:

"%programfiles%\IIS Express\iisexpress.exe" /path:[path]
 /port:[port]

As we did in the previous recipe, we are starting a new web server instance that will publish
our application: the [path] argument must be the absolute path to the folder of our
application, and the [port] value must be a free IP port. When the new IIS Express
instance is started, we can open a new browser window pointing at the port we just specified,
and a new copy of our test page will be loaded. Regardless of being on a different web server
instance, any message sent from here will reach the other windows we opened earlier, and
vice versa, thanks to the SQL Server backplane.

Establishing proxy-less connections
One of the biggest differences that we might have observed when comparing the .NET client
library against the JavaScript one, is the presence of the dynamic proxies on the latter.
SignalR takes advantage of the dynamic nature of the JavaScript language to generate
proxies on the fly. Proxies greatly simplify both the calls towards the server-side Hub and the
declaration of the callbacks that will be invoked from within any server-side Hub context, but
the .NET client does not have this luxury. We have to resort to a calling strategy based on
strings used to refer to the actual method names exposed by the Hub.

On the other hand, we have already highlighted during the Generating static files for
JavaScript proxies recipe that the generation of dynamic proxies has its drawbacks, which
we then solved by using the signalr.exe utility to create the proxies statically and persist
them in a file to be referenced in our client pages. In this recipe, we illustrate a different
option we have, which consists of avoiding JavaScript proxies completely. The proxy-less
approach provides the JavaScript client with the same client model we have with the .NET
client, where generic calls allow us to invoke Hub methods and declare callbacks by name. In
this recipe, we'll analyze this API in detail.

Getting ready
Before writing the code of this recipe, we need to create a new empty web application, which
we'll call Recipe41. We'll illustrate how to use proxy-less connections to call a Hub method
from the client and how to define a callback to be invoked from the server.

Analyzing Advanced Scenarios

166

How to do it…
After creating our sample empty web application, we will add the necessary pieces, as follows:

1.	 We add a new Hub called EchoHub using the SignalR Hub Class (v2) template as
usual. The following is the code we need:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe41
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void SayHello()
 {
 Clients.Caller.greetings("Hello!");
 }
 }
}

This method is simply invoking a callback named greetings on the caller.

2.	 We add the Startup class with a simple standard initialization sequence, as follows:
using Microsoft.Owin;
using Owin;
using Recipe41;

[assembly: OwinStartup(typeof(Startup))]

namespace Recipe41
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }
}

3.	 Let's switch to the client code, which we place inside our usual index.html page,
and let's proceed step by step to analyze the specific details of the proxy-less strategy.
All the necessary files to reference have already been added during the creation of
the EchoHub class earlier. We just need to add them to the page as follows:
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>

Chapter 7

167

Here, we notice the first difference: there's no reference either to the dynamic proxies
endpoint or to any file containing the statically generated code for the proxies.

4.	 We now open a script block where we put our code and begin by creating a
connection object as follows:
 <script>
 $(function() {
 var connection = $.hubConnection();

 ...
 });
 </script>

The proxy-less API is made available by invoking the $.hubConnection() function,
whose return value will be used to create any generic proxy on demand. Apart from
this additional feature, this connection object will play the same role we usually
observed on the $.connection.hub member, which is not available if we avoid the
dynamic proxy endpoint.

5.	 Let's use the connection object to create a generic proxy to access the server-side
EchoHub class using the following code:
 var echo = connection.createHubProxy('echo');
 ...

Here, we are using the general-purpose createHubProxy() method, which
requires the name of the Hub and returns a proxy we can use to refer to it. This proxy
has the same role as that of a dynamically generated one, but because we have
no code in place to project the shape of the server-side Hub on top of it, it will just
expose a few general-purpose methods to interact with it.

6.	 Our sample will need a greetings() callback matching the dynamic call occurring
inside EchoHub. The following is its definition:
 echo.on('greetings', function (message) {
 console.log(message);
 });
 ...

The on() method is the one we need in order to attach the function we want to be
triggered when a callback invocation is triggered by the server-side portion of our
application, as it's the case for the greetings() method. It's a generic method that
requires the name of the callback and the corresponding function to call. It's probably
less appealing than the dynamic version, but it's functionally equivalent.

Analyzing Advanced Scenarios

168

7.	 Now, we just need to start up the connection and perform a simple call towards the
server Hub as follows:

 connection
 .start()
 .done(function () {
 echo.invoke('sayHello');
 });

The connection object is used to start the connection in the same way as we've
been doing so far with $.connection.hub, by calling the start() method. After
that, we define what to do when the connection is ready by specifying a callback
through the done() method exposed by the promise returned by start(). That
callback triggers the sayHello() server-side method using the invoke() generic
method exposed by the generic proxy we obtained earlier. Again, we perform an
invocation using a string to represent the name of the method, but apart from that
this strategy is totally equivalent to the one with dynamic proxies. If the server-side
method requires arguments, they can be passed after the method name, and the
promise methods like done() or fail() are available as usual.

We can test what we wrote so far by navigating to index.html and observing the console
printing the Hello! string.

How it works…
It's worth mentioning that the dynamic proxy strategy works on top of the proxy-less one.
The actual core of the SignalR JavaScript client is, in fact, the proxy-less API, while the
dynamic proxies are just sugar on top of it to make it more palatable and easier to use.
Behind the scenes, every dynamic proxy uses the proxy-less API to make things happen.

Although the dynamic proxy strategy might make the proxy-less one look not so interesting,
you might find scenarios where you have no option than using it. For example, sometimes
you might not be able to determine in advance what dynamic proxy endpoint to load, or from
where. In such cases, you might have to recur to the proxy-less strategy, so it's a good idea to
know about it and understand how to use it.

Introducing dependency injection
(simple approach)

Let's now enter a different territory, where we'll learn how to fully integrate our code with
the internal behaviors of SignalR. SignalR offers a powerful way to extend its functionalities
through a dependency injection API and strategy. Thanks to that, we can easily hook into the
Hub creation process, and consequently we have a way to inject other objects into it and make
them available to its methods.

Chapter 7

169

In this recipe, we'll illustrate how we can transparently inject a specific reusable logic inside a
Hub when it's created. The Hub will expose a simple method receiving a string and returning a
corresponding translation obtained from a translator service injected at its creation.

Getting ready
For this recipe, we'll use a new empty web application, which we'll call Recipe42.

How to do it…
After creating our empty web application, we will add all the parts we need using the
following steps:

1.	 We start with a new Hub called EchoHub, created by using the SignalR Hub Class
(v2) template. The following code, which is used for this first iteration, will just return
the received message as it is back to the caller:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe42
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public string SayAnything(string message)
 {
 return message;
 }
 }
}

2.	 We then add the Startup class with the standard initialization sequence as follows:
using Microsoft.AspNet.SignalR;
using Microsoft.Owin;
using Owin;
using Recipe42;

[assembly: OwinStartup(typeof(Startup))]

namespace Recipe42
{

Analyzing Advanced Scenarios

170

 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }
}

3.	 Our client page will connect to EchoHub to send a text to translate from English to
Italian, looking forward to receiving the translation in order to display it on the page,
as follows:
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>

 $(function () {
 var hub = $.connection.hub,
 echo = $.connection.echo;

 hub.start().done(function () {
 $("#translate").click(function () {
 echo.server.sayAnything(
 $("#text").val())
 .done(function (message) {
 $("#translated").text(message);
 });
 });
 });

 });

 </script>

The sayAnything() method is called on the server, and its answer will be
received by the callback specified using the done member, and from there
displayed on the page.

4.	 Finally, the following is the simple HTML body code we need to collect the input and
display the translated message once received:

Text: <input type="text" id="text"/>
<button id="translate">Translate</button>
<p id="translated"></p>

Chapter 7

171

If we test what we wrote so far, we'll see the input text comes back untouched to the client
because our EchoHub is not able to translate it yet. Let's therefore introduce our fancy
translation infrastructure.

1.	 Inside the same file where the EchoHub is defined, we add the ITranslator
interface, defining a contract that any translator will have to implement, as follows:
 public interface ITranslator
 {
 Task<string> Translate(string message);
 }

We clearly state that we expect the translation task to be slow and expensive by
declaring its behavior as asynchronous. This is done by specifying Task<string> as
the return value of the Translate() method.

2.	 We then define an implementation for ITranslator and call it Translator. The
implementation will use the simple and free MyMemory translation service, calling it
asynchronously, as follows:
using System.Net.Http;
using System.Threading.Tasks;
using Newtonsoft.Json;

namespace Recipe42
{
 class Translator : ITranslator
 {
 public async Task<string> Translate(string message)
 {
 using (var w = new HttpClient())
 {
 var url = string.Format(
 "http://api.mymemory.translated.net" +
 "/get?q={0}!&langpair=en|it",
 message);
 var t = await w.GetStringAsync(url);
 var o = JsonConvert
 .DeserializeObject<dynamic>(t);
 return o.responseData.translatedText;
 }
 }
 }
}

The received response is a block of JSON code that we easily parse to extract the
translated text before returning it to the caller. The usage of the async and await
keywords makes the structure of our code straightforward.

Analyzing Advanced Scenarios

172

3.	 We are now ready to use our brand new translator. We could easily instantiate
it directly inside the EchoHub and use it, but we would have all the well-known
problems generated by hardcoded dependencies. We want to supply any dependency
from outside using an appropriate constructor; therefore, our EchoHub code must be
changed to look like the following:

 public class EchoHub : Hub
 {
 private readonly ITranslator _translator;

 public EchoHub(ITranslator translator)
 {
 _translator = translator;
 }

 public string SayAnything(string message)
 {
 return _translator.Translate(message);
 }
 }

Now, a translator is supplied to EchoHub during its creation, stored in
the _translator instance field, and then used inside the SayAnything() method.

The problem is our hub code would not work anymore because SignalR wouldn't know how
to instantiate such a Hub. By default, SignalR creates hubs by invoking their parameter-less
constructor, which therefore must exist, but that's not the case for EchoHub because of the
way we modified it. We need to tell SignalR that each time it's going to create any EchoHub
instance, it will have to create it the right way. Let's see how.

1.	 Let's go back to the Startup code file, where we can interact with the
DependencyResolver member exposed by the GlobalHost object.
DependencyResolver exposes an API we can use to tweak the way Hubs and
other internal objects are created. In particular, we can declare a factory function
to be invoked each time a specific type of object is instantiated by SignalR, and this
strategy is available for any hub object we define. We just need to register our factory
function just before calling MapSignalR(), as shown in the following code:
 GlobalHost.DependencyResolver.Register(
 typeof(EchoHub),
 () => new EchoHub(new Translator()));

The code is pretty straightforward. It's basically specifying how a specific type instance
(in this case, EchoHub) has to be created by the SignalR runtime whenever needed,
and the lambda function we define returns an instance of EchoHub that is created
using the available constructor, supplied with a new instance of the translator type.

Now our application works again, our page is able to translate any input string from English to
Italian, and it does it in a clean way with its dependencies correctly handled.

Chapter 7

173

How it works…
The Inversion of Control (IoC) principle is at the heart of SignalR runtime, and dependencies
can be easily hooked through custom factories. SignalR delivers a simplified dependency
injection system exposed by the DependencyResolver member of GlobalHost, but even
that part is easily replaceable with any other custom implementation that we might prefer,
and that's exactly what we'll be doing in the next recipe.

You can start reading about the Inversion of Control principle at this link:
http://en.wikipedia.org/wiki/Inversion_of_control.

Introducing dependency injection
(advanced approach)

The previous recipe was interesting and showed good potential, but we might need more.
SignalR is a framework that supplies quite a specific set of features, hence it's likely to be
used from inside more complex applications, with different modules and components. In such
a design, chances are that the host application will already have some other general-purpose
dependency injection system in place, probably using one of the many good Inversion of
Control container libraries available out there. SignalR does not let us down even in this case,
allowing us to inject our preferred IoC container into it.

Here, we'll reproduce the same problem that we solved in the previous one (the translator
service), but this time we'll use Ninject as a general purpose IoC container in order to register
and then inject our dependencies.

Getting ready
For this recipe, we'll use a new empty web application, which we'll call Recipe43. We will
not reiterate the ideas behind this recipe because those are the same we explained in the
previous one. We'll just either replicate or mention some bits of code and refer back to the
previous recipe for further explanations.

How to do it…
We start by adding the usual blocks of code using the following steps:

1.	 We first introduce a new Hub called EchoHub, and then the ITranslator
contractand finally the Translator service, all of them the same way as we did in
the previous recipe. Because of this, we omit their code here and invite you to grab
it from there.

Analyzing Advanced Scenarios

174

2.	 We then add the Startup class and prepare the initialization sequence as follows:
using Microsoft.Owin;
using Owin;
using Recipe43;

[assembly: OwinStartup(typeof(Startup))]

namespace Recipe43
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR(new HubConfiguration
 {
 Resolver = ...
 });
 }
 }
}

We are supplying to the MapSignalR() method an instance of
HubConfiguration, which allows us to define a few specific startup parameters.
Our code is left incomplete on purpose, with a few dots where we shall assign an
instance of something to the Resolver member of HubConfiguration. That
will be used as a replacement for the default dependency resolver. We'll be
completing this missing portion of code shortly.

3.	 Let's now start writing our replacement for the dependency resolver available out of
the box. We already mentioned that we want to use Ninject as our IoC container;
therefore, we need to bring it into the project first. Luckily, it's available on NuGet, so
we can easily install it using either the NuGet Package Manager or by typing in the
following command on the Package Manager Console:
Install-Package Ninject

The same would be possible for many other equivalent and interesting libraries, such
as Moq, Unity, Castle, StructureMap, Autofac, and so on.

Chapter 7

175

4.	 We now add a new class called NinjectDependencyResolver to the project and
make it derive from DefaultDependencyResolver, a base class provided by
SignalR to make this particular task easier. It will have to provide a pair of methods
(GetService() and GetServices()) that SignalR will call when looking for
instances of services. Their implementation will just forward the actual resolution
to a Ninject IKernel instance received and stored by the constructor. Here's the
code:
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNet.SignalR;
using Ninject;

namespace Recipe43
{
 class NinjectDependencyResolver :
 DefaultDependencyResolver
 {
 private readonly IKernel _kernel;

 public NinjectDependencyResolver(IKernel kernel)
 {
 _kernel = kernel;
 }
 public override object GetService(Type serviceType)
 {
 return _kernel.TryGet(serviceType) ??
 base.GetService(serviceType);
 }
 public override IEnumerable<object> GetServices(
 Type serviceType)
 {
 return _kernel.GetAll(serviceType)
 .Concat(base.GetServices(serviceType));
 }
 }
}

The code is quite simple, but there is an important thing to highlight here: the
GetService() implementation is asking the _kernel private member to resolve
the supplied type, but if no match is found, then we pass the task on to the base
class. In this way, we do not have to manually register within Ninject all the internal
objects SignalR hooks by default; they'll be retrieved using the base class.

For more details about IKernel and Ninject in general, please refer to its
documentation at http://www.ninject.org.

Analyzing Advanced Scenarios

176

5.	 Now, we can go back to the Startup class and complete its implementation
as follows:
 var standardKernel = new StandardKernel();

 ...

 app.MapSignalR(new HubConfiguration
 {
 Resolver = new
 NinjectDependencyResolver(standardKernel)
 });

This makes it clear how the new dependency resolver is created and supplied to the
HubConfiguration instance. Of course, we'll have to adjust the using directives
accordingly.

6.	 The last step is the registration of the Translator service inside our container.
We have to do it on the standardKernel instance, just before the invocation of the
MapSignalR() method.

 standardKernel
 .Bind<ITranslator>()
 .To<Translator>()
 .InSingletonScope();

We choose a singleton lifestyle for our Translator object just to show that's
possible, but in this specific case, it does not have to be like this.

Our new dependency resolver is ready. It's relying on a stable and widely-used IoC container,
and it's fully integrated with SignalR. We just need to test it, and for that we just have to add a
page called index.html to the project whose content is exactly the same as we wrote in the
previous recipe, hence please go there to grab it and paste it into this new file.

This code will work as expected, and our EchoHub is taking its dependencies from outside.
We've been able to hook a well-known IoC container, such as Ninject, into SignalR's core with
just a couple of simple steps.

Chapter 7

177

Using dependency injection to replace a
default behavior

SignalR's dependency injection system has been exploited so far to hook into the factory
pipeline implemented to create instances of any Hub-derived type, but what's even more
interesting about the whole usage of this system is the fact that most of SignalR's internals
are exposed through the same mechanism. This means that you can actually replace entire
portions of the SignalR machinery. Maybe you know a better way to perform their task, or
maybe you just need to add some more features to a specific part, whatever the reason you
can do it as we'll see here.

SignalR is organized in services, and all of them have a default implementation available.
Let's list a few of them to just give you an idea:

ff IMessageBus: A service implementing this contract processes every single
message, sent or received, with the goal of making them available to every
subscriber; we already mentioned this interface when explaining how backplanes
are implemented.

ff IJavaScriptProxyGenerator: It defines how a service generating JavaScript
proxies for any Hub has to look like.

ff IAssemblyLocator: It is a service contract defining how to locate all the
assemblies potentially containing hubs.

There are many more, and you can check the source code on GitHub to discover which they
are. In this recipe, we'll concentrate on a specific one called IUserIdProvider, and we'll
see how to replace it with our custom implementation. The sample application will allow us to
send messages to a specific user, and it will achieve this goal by using a specific SignalR API
that makes use of the IUserIdProvider service we'll be replacing.

Getting ready
For this recipe, we'll use a new empty web application, which we'll call Recipe44.

Analyzing Advanced Scenarios

178

How to do it…
After creating our empty web application, we will proceed as usual using the following steps:

1.	 We start with a new Hub called EchoHub; you can see its code as follows:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe44
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void SayHello(string recipient)
 {
 Clients.User(recipient).greetings("Hello");
 }
 }
}

The SayHello() method has a single parameter for the name of the user we
want to target with a message, and it uses the Clients.User member to get the
connection(s) owned by the specified user. On the dynamic object returned, it finally
calls the greetings() dynamic method. This mechanism works as for every other
member of the Clients object we described in the first part of the book.

The Clients.User resolution process is based on IUserIdProvider, which is
used by SignalR to extract useful information related to the identity of the connected
user from every single request it performs. Let's see how it works.

2.	 We need to add our custom implementation of IUserIdProvider to the project. For
that, we'll introduce a new class called EchoHubUserProvider with the following
code:
using Microsoft.AspNet.SignalR;

namespace Recipe44
{
 public class EchoHubUserProvider : IUserIdProvider
 {
 public string GetUserId(IRequest request)
 {
 return request.QueryString["user"];
 }
 }
}

Chapter 7

179

The class implements IUserIdProvider, which implies providing a method called
GetUserId(), receiving an IRequest instance and returning a string. For every
incoming request, SignalR will ask the dependency resolver to provide an instance
of a service implementing this contract, in order to extract any useful information
to determine an identifier for the connected user. The default implementation
embedded in SignalR returns the name extracted from the identity principal attached
to the supplied IRequest instance. Our sample implementation will get that
information from a query string parameter called user. This means that we'll need to
put this value in place, and we'll take care of this detail on the test page.

It's a basic example, with nothing in place to take care of concerns like authentication
or security, but it should be enough to let you imagine more sophisticated user-
mapping strategies and handshaking workflows. It also shows how you could design
an authentication mechanism based on some sort of client-side-generated token.

3.	 We then create the Startup class by performing the usual MapSignalR() call, but
not before having registered our custom IUserIdProvider as follows:
using Microsoft.AspNet.SignalR;
using Microsoft.Owin;
using Owin;
using Recipe44;

[assembly: OwinStartup(typeof(Startup))]

namespace Recipe44
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 GlobalHost.DependencyResolver.Register(
 typeof(IUserIdProvider),
 () => new EchoHubUserProvider());

 app.MapSignalR();
 }
 }
}

The call is very straightforward, and it's using the Register() method from
DependencyResolver as we did when performing the registration and
implementation of the ITranslator contract in the Introducing dependencies
injection (simple approach) recipe. This is good news: the same API we leveraged to
register a custom service to be injected in a Hub can be used to replace any SignalR
default implementation of an internal service!

Analyzing Advanced Scenarios

180

4.	 We're almost done. We just need a client test page, which as usual we'll call index.
html, from where anybody can type in the name of a target user who will receive a
"Hello" message. First, we'll need some HTML controls on the page for the login
process and to send messages, as shown in the following code:
 <div id="login-form">
 Your name: <input type="text" id="user" />
 <button id="login">Login</button>
 </div>
 <div id="message-form" style="display: none">
 Say hello to: <input type="text" id="recipient"
 />
 <button id="send">Send</button>
 <ul id="messages">
 </div>

5.	 We then need some JavaScript code to handle the login phase first, and later on the
input of the recipient name and the posting of the message:

 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>

 $(function () {
 $('#login').click(function() {
 $('#login-form').toggle();
 $('#message-form').toggle();

 var hub = $.connection.hub,
 echo = $.connection.echo;

 hub.qs = { 'user': $('#user').val() };

 echo.client.greetings = function(message) {
 $('').html(message)
 .appendTo('#messages');
 };

 hub.start().done(function () {
 $('#send').click(function () {
 echo.server.sayHello(
 $('#recipient').val());
 });
 });
 });
 });

 </script>

Chapter 7

181

There is an interesting and new SignalR feature we need to illustrate in this code. We
do not start SignalR immediately after loading the page; instead, we do that just after
receiving the username. This is because we want to use the query string to supply
that information to SignalR at every call. The hub object exposes a property called
qs, which can be assigned a JavaScript object representing a set of parameters
we want to send to the server using the query string. This property has to be set
before starting the connection, and cannot be changed afterwards. That's why we
need to know what to put in there before connecting. We use this feature to take
the username supplied and add it as a query string parameter called user, which
matches the one expected by the implementation of IUserIdProvider we saw
earlier. SignalR will guarantee that such a value will be provided for every request that
comes to the server.

We can test our page by opening it in a couple of browser windows. In each of them, we'll type
a different username and log in, and finally we'll be able to send direct messages to specific
users identified by the names they used to log in and discriminated on the server by our
EchoHubUserProvider service. We could even use the same username in multiple tabs,
all of them would receive the same message when their user is the target, thanks to the way
Clients.User, and IUserIdProvider work together.

How it works…
If we put a breakpoint on the line of code inside the EchoHubUserProvider, we'll see that
line hit on every request going to the server. This means that SignalR resolves the user ID at
every request and then keeps it around so that an API like Clients.User is able to find the
connection mapped to that user. The value returned by GetUserId() becomes a key through
which we can find a set of connections just by knowing an identifier associated to the user
owning them.

The details about how IUserIdProvider works are interesting, but those wouldn't have
been possible without the DependencyResolver API.

Extending the Hub pipeline
Among all the services that SignalR exposes and lets us customize, there is one that is
particularly interesting: IHubPipeline. This service, as its name clearly states, represents
the full pipeline that underpins a Hub, and its goal is to collect a set of modules to be
executed during the initialization of a Hub. Each module implements IHubPipelineModule,
and each method exposed by this contract is executed during the bootstrap phase. The job
of those methods is to provide a factory methods that SignalR will then invoke during specific
moments in the lifetime of every instance of a Hub. There are factories to build incoming and
outgoing Hub invocations; to perform connection, reconnection, and disconnection tasks; to
authorize connections; and to handle whether a client can rejoin groups on reconnection.

Analyzing Advanced Scenarios

182

Thanks to the dependency injection mechanism we've been analyzing earlier, we could
replace the IHubPipeline service with our custom implementation, but that would
be a tough task to do without having a negative impact on SignalR's behavior. There
are many things at that level that need to be executed, and we cannot afford forgetting
about them while implementing a custom pipeline. That's why in this case it is better to
avoid starting from scratch, and the recommended workflow is to use the HubPipeline
member exposed by GlobalHost, and to add our modules there. Instead of implementing
IHubPipelineModule directly, modules should derive from HubPipelineModule, which
SignalR makes available to simplify the task of introducing new behaviors while still keeping
the overall system functional. It exposes all its factory methods as virtual, allowing us to add
our logic while still relying on the base type where necessary.

In this recipe, we will illustrate a couple of methods exposed by HubPipelineModule,
which allow us to intercept the construction of incoming and outgoing invocations, and we'll
use them to introduce a simple discrimination logic which, based on the name of the called
method, might decide to skip it entirely. We'll build a simple test application and inject such
logic on top of it using the GlobalHost.HubPipeline entry point.

Getting ready
For this recipe, we'll use a new empty web application, which we'll call Recipe45.

How to do it…
Our application will expose a Hub with three similar methods—all with the same behavior but
just different names—and three related callbacks. Our discriminating logic will be based on
those names. We will perform the following steps:

1.	 We start by creating the usual EchoHub class using the SignalR Hub Class (v2)
template. The following is the code we need:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe45
{
 [HubName("echo")]
 public class EchoHub : Hub
 {
 public void SayHello()
 {
 Clients.All.hello();
 }

 public void SayGoodbye()
 {

Chapter 7

183

 Clients.All.goodbye();
 }

 public void SayAnything()
 {
 Clients.All.anything();
 }
 }
}

You can clearly see that the methods are trivial, and they all behave in the same way
by broadcasting a callback with a name corresponding in some way to the method
that triggered it.

2.	 The client page we'll need to test this hub is fairly simple too. Let's create our usual
index.html page and put some HTML controls in it as follows:
 <button id="sayHello">Say hello!</button>
 <button id="sayGoodbye">Say goodbye!</button>
 <button id="sayAnything">Say anything!</button>
 <ul id="messages">

We need a few buttons, one for each method on the hub, and an unordered list to
collect the answers. Let's then add some JavaScript code to bind the buttons to server-
side calls, and to define callbacks which will append specific messages to the list:

 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>

 $(function() {
 var hub = $.connection.hub,
 echo = $.connection.echo,
 message = function(m) {
 $('#messages')
 .append($('').text(m));
 };

 echo.client.hello = function() {
 message('Hello!');
 };
 echo.client.goodbye = function () {
 message('Goodbye!');
 };

Analyzing Advanced Scenarios

184

 echo.client.anything = function () {
 message('Anything!');
 };

 hub.start().done(function () {
 $('#sayHello').click(function() {
 echo.server.sayHello();
 });
 $('#sayGoodbye').click(function () {
 echo.server.sayGoodbye();
 });
 $('#sayAnything').click(function () {
 echo.server.sayAnything();
 });
 });

 });

 </script>

3.	 We finally add the Startup class performing the bootstrap sequence as follows:

using Microsoft.AspNet.SignalR;
using Microsoft.Owin;
using Owin;

[assembly: OwinStartup(typeof(Recipe45.Startup))]

namespace Recipe45
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 ...

 app.MapSignalR();
 }
 }
}

We just placed a few dots where later on we'll be adding some more code to register
our custom implementation of IHubPipelineModule.

Chapter 7

185

Let's do a first test of this page, just to verify that each button actually triggers a server-side
call that is then reflected in a corresponding client-side callback being invoked to print out a
specific message. When everything is good, we can move on to the next set of steps, which
are as follows:

1.	 Let's add to our project the skeleton of a new class called EchoHubModule, and let's
specify HubPipelineModule as its base class, as follows:
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe45
{
 public class EchoHubModule : HubPipelineModule
 {
 ...
 }
}

2.	 After that, we override the BuildIncoming() and BuildOutgoing() methods
using the following code:
 public override
 Func<IHubIncomingInvokerContext, Task<object>>
 BuildIncoming(
 Func<IHubIncomingInvokerContext,
 Task<object>>invoker)
 {
 Trace.WriteLine("BuidIncoming");
 return base.BuildIncoming(invoker);
 }

 public override
 Func<IHubOutgoingInvokerContext, Task>
 BuildOutgoing(
 Func<IHubOutgoingInvokerContext, Task>
 invoker)
 {
 Trace.WriteLine("BuildOutgoing");
 return base.BuildOutgoing(invoker);
 }

BuildIncoming() is invoked to return a factory method that will be used each time
an invocation towards a Hub's method reaches the server, and it will return the actual
server-side call to be performed. BuildOutgoing() performs a similar task, but
it's invoked whenever an invocation towards a client-side callback is happening on
the server. Our overrides are pretty basic. They just call into the base implementation
to keep the base behavior, but just before that they send a message containing the
name of the method to the Trace device.

Analyzing Advanced Scenarios

186

3.	 Let's go back to the Startup class to add the module registration code as follows:

GlobalHost.HubPipeline.AddModule(new EchoHubModule());

If we reload our page and press the buttons, we will experience the same behavior as
before, but if we take a look at the Trace console in Visual Studio, we will notice that
the two messages, BuildIncoming and BuildOutgoing, are printed out, once each,
when the first page connects and the EchoHub instance is initialized by SignalR's
runtime for the first time. That confirms the fact that these methods are invoked just
once at the start-up of the application.

4.	 Back to our module, let's make our methods more interesting by replacing their
return statement with something more useful. We start with BuildIncoming()
as follows:
 return base.BuildIncoming(ctx =>
 {
 Trace.Write(string.Format("I might call
 {0}...",
 ctx.MethodDescriptor.Name));

 if (ctx.MethodDescriptor.Name ==
 "SayHello")
 {
 Trace.WriteLine(" but I won't :(");
 return null;
 }

 Trace.WriteLine(" and I will!");
 return invoker(ctx);
 });

This code needs some comments:

�� We call the base class method again, but this time we supply a lambda
expression whose goal is to decide whether we should actually perform the
invocation or not. The signature of the lambda expression must, of course,
match the one of the incoming invoker() parameter.

�� Inside the expression, we first print out the name of the method that is going
to be called.

�� Then we check the method's name to decide what happens next. If that's
equal to SayHello we want to block its execution, which is as simple as
having our expression returning a null value. In any other case, we call the
invoker() parameter we received and return its exit value, which will be a
task representing the actual execution of the Hub's method requested by the
client.

Chapter 7

187

�� In both execution branches, we send a message describing what happened
to the Trace device.

5.	 Let's do something similar with BuildOutgoing(), as follows:

 return base.BuildOutgoing(ctx =>
 {
 Trace.Write(string.Format("I might call
 back {0}...",
 ctx.Invocation.Method));

 if (ctx.Invocation.Method == "goodbye")
 {
 Trace.WriteLine(" but I won't :(");
 return null;
 }

 Trace.WriteLine(" and I will!");
 return invoker(ctx);
 });

What happens here is similar to what we did with BuildIncoming()—the
differences being the following:

�� We are checking a remote callback invocation, which would be initiated on
the server but executed on the client

�� The context object (ctx) has a slightly different shape, but it's still bringing
similar information about the requested invocation

�� Here we check the method's name against the goodbye string, with the goal
of blocking any call with that name

Our last test session will eventually show a different outcome. The only button fully working
would be the Say Anything one, whereas the SayHello() method would get completely
blocked and the SayGoodbye() one would run on the server, but with no client callback
being triggered. We have been able to both discriminate the execution of specific methods
according to a custom execution workflow and print out diagnostic messages while checking
each invocation. All this has been possible without having to add a single line of code inside
the methods themselves.

There's more…
This sample showed how SignalR allows us to hook code into its own machinery to customize
its behavior or add specific behaviors. These kinds of capabilities are generally used to solve
orthogonal infrastructural aspects, such as logging, caching, or authorization, which are
usually known as cross-cutting concerns. If you are curious about it, you can dig more around
the discipline of Aspect Oriented Programming, maybe starting with this link: http://
en.wikipedia.org/wiki/Aspect-oriented_programming.

Analyzing Advanced Scenarios

188

Handling errors
In this last recipe of the chapter, we want to achieve a smarter exception-handling strategy,
and for that we apply some of the lessons we learned about the extensibility features of
SignalR, along with some other features specific of error management.

Getting ready
For this recipe, we'll use a new empty web application, which we'll call Recipe46.

How to do it…
Our code will contain a Hub with a couple of methods raising exceptions, and the following
steps will illustrate how to work around them in order to collect and manage information
about the errors:

1.	 We create a new Hub called FailingHub using the SignalR Hub Class (v2)
template. The following is what it should look like:
using System;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe46
{
 [HubName("failing")]
 public class FailingHub : Hub
 {
 public void Basic()
 {
 throw new OutOfMemoryException();
 }
 public void Wrapped()
 {
 try
 {
 throw new OutOfMemoryException();
 }
 catch (Exception e)
 {
 throw new HubException("Wrapped",
 new
 {
 Error = e
 });
 }
 }
 }
}

Chapter 7

189

We have two simple methods, both just failing with an OutOfMemoryException
exception. The second one is called Wrapped because we actually put the execution
of the failing method inside a try…catch block and rethrow the exception wrapped
with a HubException instance. We'll be explaining the reason for doing this later on.

2.	 Let's now leverage what we learned in the previous recipe in order to customize the
Hub pipeline. There is an interesting factory method on HubPipelineModule,
called OnIncomingError(), that we can override, as shown in the following code:
using System.Diagnostics;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe46
{
 public class ErrorHandlingPipelineModule :
 HubPipelineModule
 {
 protected override void OnIncomingError(
 ExceptionContext exceptionContext,
 IHubIncomingInvokerContext invokerContext)
 {
 Trace.WriteLine(string.Format(
 "An error occurred while invoking {0}:
 {1}",
 invokerContext.MethodDescriptor.Name,
 exceptionContext.Error));
 base.OnIncomingError(
 exceptionContext, invokerContext);
 }
 }
}

Once we know it's available, OnIncomingError() is pretty easy to use. It's
automatically called whenever an unhandled exception occurs from inside a Hub's
method, and it's supplied information about the error itself, and its execution context.

3.	 Let's now see how to define the Startup class to put things together:
using Microsoft.AspNet.SignalR;
using Microsoft.Owin;
using Owin;
using Recipe46;

[assembly: OwinStartup(typeof(Startup))]

namespace Recipe46
{

Analyzing Advanced Scenarios

190

 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 GlobalHost.HubPipeline.AddModule(
 new ErrorHandlingPipelineModule());

 app.MapSignalR(
 new HubConfiguration
 {
 EnableDetailedErrors = true
 });
 }
 }
}

The first line is simply registering our ErrorHandlingPipelineModule in the same
way we explained in the previous recipe. The following MapSignalR() call is supplied
a specific configuration instance, which sets the EnableDetailedErrors property
to true. This property explicitly instructs SignalR to send unhandled exception details
down to the client who invoked the method. Without that, and for security reasons, the
default behavior would just send a generic message with no detail.

4.	 It's time to prepare the client page and its code. We add index.html to the project,
and we need to put a couple of buttons there to trigger the two server-side methods
along with some JavaScript code, as follows:

 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script>

 var failing = $.connection.failing;

 $.connection.hub
 .start()
 .done(function() {
 $("#basic").click(function() {
 failing.server.basic()
 .fail(function(e) {
 console.log(e);

Chapter 7

191

 });
 });
 $("#wrapped").click(function () {
 failing.server.wrapped()
 .fail(function (e) {
 console.log(e);
 });
 });
 });

 </script>
 <button id="basic">Basic</button>
 <button id="wrapped">Wrapped</button>

 ...

Both invocations towards the server-side Hub are followed by the fail() invocations
in order to specify followed by a callback to be invoked in case of remote error. The
details about the error will be printed to the browser's console.

Now, we are ready to test index.html. If we click on the Basic button, the console will
print a simple object that brings back no more than the exception message, whereas the
Wrapped button will result in a much more detailed object, with a message and a data object
as defined inside the Hub method when the HubException exception was thrown. If we now
go back to the Startup class and revert EnableDetailedErrors to false, the Wrapped
method will result in the same type of error message because the explicit act of emitting a
HubException is a stronger declaration of the wish to have details sent to the client. On
the other hand, the Basic button will receive a very generic error, with a standard message
just saying that the invoked method failed. We can therefore combine HubException and
EnableDetailedErrors the way it best fits our needs.

On the server side, the addition of our custom module has resulted in each exception being
sent to the Trace device, as we can easily verify by checking the Visual Studio Trace window
while running the application and clicking on the buttons. In this sample, we leveraged that
information to just print out details about the error to the Trace device, but it's definitely an
interesting extension point, from where we could inject more useful error-handling strategies
to keep the application healthy.

8
Building Complex

Applications

In this chapter, we will cover the following topics:

ff Implementing a room-based chat application

ff Implementing a shared whiteboard

ff Implementing a real-time map of flying airplanes

ff Implementing a "pets finder" application

ff Implementing a custom backplane

ff Implementing a real-time error notification system

Introduction
In this chapter, we'll try to put together most of the concepts and features that we have been
analyzing so far in order to build a few full-fledged sample applications. Of course, we will not
be able to deliver bulletproof solutions where every single detail is deeply tested, every visual
widget properly styled, and every workflow ramification thoroughly conceived, but each of
the following recipes will give you an idea about how you could structure a real-world project
putting several things together and using SignalR to glue them whenever you need to deliver a
real-time experience.

For each recipe, we'll give you a brief description of both its goals and its design. We'll proceed
by going through the code and trying to minimize its comments unless it's strictly related to
SignalR, but at the same time, listing all the relevant parts so that you can get to the end
of the exercise having built something that actually works. We will not indulge too much in
describing a task such as selecting the right template; this should be clear from the previous
recipes. All our samples will be hosted in web applications.

Building Complex Applications

194

Implementing a room-based chat application
One of the most common types of real-time application is messaging systems, and chat
applications are a good example of such a category. In this recipe, we will build a web chat
where users will log in using a nickname, and once logged in, they will be able to create and
join rooms. After joining a room, they will be able to post messages and see what other users
say. The application will, of course, miss many of the functionalities that we usually find in
a chat application, but it should be good enough to showcase a concrete usage of several
SignalR features, namely the following:

ff Calling methods on a hub from the client

ff Triggering client-side callbacks from the server

ff Using the Groups API

Getting ready
Our application will consist of the following:

ff A Hub called ChatHub, which will handle things such as the login process, rooms
management, and message broadcasting.

ff A page for the client part, named index.html, that displays the list of available
rooms and, for each room that the user has joined, a simple "widget" that displays the
messages that were exchanged there.

ff A JavaScript file called app.js, which contains the client-side logic around the
SignalR interactions and the Document Object Model (DOM) manipulations
necessary to drive the rendering of the information on the host page.

ff A style sheet called chat.css.

ff Everything else necessary to have things running, as already illustrated throughout
the book (the Startup class, proper references, and so on).

Therefore, before writing the code of this recipe, we need to create a new empty web
application, which we'll call Recipe47.

How to do it…
Let's start by preparing the infrastructure that we need. In this case, it is as simple as
adding the Microsoft.AspNet.SignalR NuGet package, which will download all the
up-to-date references that we need. As previously mentioned, we do this before launching
any readymade Visual Studio templates in order to be sure that we are running on the latest
version of our packages.

Chapter 8

195

We can now start sketching the layout of our index.html page. Perform the following steps
to do so:

1.	 Let's first create it and make it look like the following code:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <link href="Styles/chat.css" rel="stylesheet" />
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script src="/Scripts/app.js"></script>
</head>
<body>
 ...
</body>
</html>

The head section starts with a reference to the chat.css CSS style sheet file that
we'll be creating later on. Then, we have the usual references to the JavaScript client
libraries that we need. To be sure that you have the right version numbers, you can
expand the Scripts folder in your project, drag the filename, and drop it onto the
head section of the page.

We also put the usual reference to the dynamic hubs endpoint (/signalr/hubs) in
place, and finally a reference to the app.js file that we'll be creating shortly; this will
contain our application logic.

2.	 We now need to build the body of the page. Include the following code in the body
section:
 <div id="actions">
 <div id="login-box">
 Name:
 <input type="text" id="name" />
 <button id="login">Login</button>
 </div>
 <div id="logout-box">

 <button id="logout">Logout</button>
 </div>
 </div>
 <div id="rooms-box">
 <div>

Building Complex Applications

196

 New room:
 <input type="text" id="room" />
 <button id="new">New</button>
 </div>
 <ul id="rooms">
 </div>
 <div id="chats-box">
 <ul id="chats">
 </div>

We defined one panel where the nickname can be supplied and a second panel that
can be displayed once logged in, along with a button to log out. It's worth noting that
we need not worry about either authentication or authorization for this recipe; every
username will be valid, and no password is required. Then, we need an input section to
use when we want to create a new room, a list for the active rooms, and finally a list of
the rooms that we joined, each containing an input section to type new messages and
a list for the received messages. The actual widgets representing the rooms the user
joined will be dynamically built by some JavaScript code; at this point we just need a
container where we can create them on demand.

3.	 Now, let's add the chat.css file that we mentioned earlier, situated in a folder called
Styles. Its content will take care to properly place all the panels in a rational way on
the page. This is not really needed to have the underlying logic working, but without
any visual organization, the result would be very confusing and therefore unusable,
so we decided to spend some time to list its content with no further comment:

body {
 font-family: "Helvetica Neue", Helvetica, Arial,
sans-serif;
}
button {
 width: 80px;
}
span {
 width: 100px;
 display: inline-block;
}
#actions {
 position: fixed;
 height: 40px; left: 0; right: 0;
 background-color: lightyellow;
}
#login-box {
 float: left;
}

Chapter 8

197

#logout-box {
 float: right; display: none;
}
#rooms-box {
 position: fixed;
 top: 40px; left: 0; width: 400px; bottom: 0;
 background-color: lightgreen;
 display: none;
}
#rooms li {
 cursor: pointer;
}
#chats-box {
 position: fixed; overflow-y: scroll;
 top: 40px; left: 400px; right: 0; bottom: 0;
 background-color: lightpink;
 display: none;
}
#chats-box ul {
 margin: 0; padding: 0;
}
#chats-box > ul > li {
 list-style-type: none;
 height: 200px; width: 100%; border: 1px solid black;
}
#chats h4 {
 height: 25px; margin: 0;
}
div.input {
 height: 25px; width: 100%;
}
div.input input {
 left: 0; width: 580px;
}
div.messages-box {
 top: 80px; left: 0; right: 0; height: 150px;
 overflow-y: scroll;
}
span.sender {
 font-weight: bold;
}

Building Complex Applications

198

We are now ready to move on and bring things to life. Let's start from the server side and
perform the following steps:

1.	 We need to create the Startup class using the proper template; its body will just
have to do the standard bootstrap call in the Configuration() method, shown
as follows:
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }

2.	 It's time for the hub; we'll call it ChatHub and mark it with HubNameAttribute to
specify "chat" as its friendly name, as follows:
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe47
{
 [HubName("chat")]
 public class ChatHub : Hub
 {
 ...
 }
}

3.	 Our implementation will be very minimalistic; in fact, we'll be avoiding any logic
related to the users, such as password management, checks for duplicate
nicknames, and even the maintenance of a simple list of the logged users, because
these details are not the actual topic of this recipe. We'll just keep a list of rooms,
and we'll make it static in order to be available to all instances of Hub, as shown in
the following code snippet. We will not worry about protecting the collection of rooms
from concurrent access:
 static readonly HashSet<string> Rooms =
 new HashSet<string>();

Chapter 8

199

4.	 Let's proceed with the first method that a user would need to call, Login, and its
complementary method, Logout:
 public string Login(string name)
 {
 Clients.Caller.rooms(Rooms.ToArray());
 return name;
 }

 public void Logout(string name)
 {
 }

In the Login() method, we just trigger the rooms callback on Clients.Caller
to communicate to the caller a list of the existing rooms, and then we return the
nickname used to access the chat system. The Logout() method does not do
anything at all, and it's just used as a placeholder for any related action that we would
add in a fully featured system.

Now, things start getting more interesting. A chat room for us is just a topic, and a
portion of users might be interested in anything that occurs in that topic. This is the
perfect case for SignalR's groups, so we'll model rooms around it by performing the
following steps:

5.	 Let's start assuming that a few rooms already exist, and we want to join a specific
one; we'll use the following code:
 public void JoinRoom(string name)
 {
 if (!Rooms.Contains(name)) return;
 Groups.Add(Context.ConnectionId, name);
 Clients.Caller.join(name);
 }

The code is very simple; we first check whether the requested room name exists in
the Rooms set, and we leave it if it's not the case. On being successful, we subscribe
the caller to a group named after the room name; this way, we'll be able to easily
broadcast the messages to all the users in that room by using that group. Before
leaving the method, we perform a callback on Clients.Caller to notify the caller
that they have actually joined the required room. We'll see how that callback is used
on the client later on.

6.	 We've been assuming that some rooms already exist, but at the startup of the system
they do not, so let's see how a user can create one. Consider the following code:
 public void CreateRoom(string name)
 {
 if (Rooms.Contains(name)) return;
 Rooms.Add(name);
 JoinRoom(name);
 Clients.All.rooms(new [] { name });
 }

Building Complex Applications

200

We first check if a room with the specified name already exists, and we just exit it if
it does. If we pass the check, we add the new room to the Rooms set (again, we are
not performing any concurrency check here), and we let the creator join it by calling
the JoinRoom() method that we previously described. At this point, we broadcast to
all the users the fact that a new room exists, and to do that, we use the same rooms
callback that we saw earlier, which expects an array of string values. This is why we
pass our room name inside an array of just one element.

7.	 We're almost done, but we're still missing the most important piece of logic: the
broadcasting of messages to the right rooms. Consider the following code:

 public void Send(string room, string message,
 string user)
 {
 Clients.Group(room).message(room,
 new { message, sender = user });
 }

The sender of a message will have to specify the room on which they are writing, the
text of the message, and their name. With these details, ChatHub will know that it will
have to target all the subscribers to a group called after the room's name and trigger a
client callback (called message) supplied with the same parameters. SignalR's groups
allow us to perform such a complex operation with just one line of code!

Out ChatHub is ready, and it wasn't difficult. Now let's see, with the following steps, how a
client could make use of it:

1.	 We need to add our app.js file inside the Scripts folder and initialize it with the
following code:
$(function () {
 var hub = $.connection.hub,
 chat = $.connection.chat,
 server = chat.server,
 client = chat.client,
 loginName;

 ...
});

As usual, we write our code inside the $(...) jQuery handler for the document.
ready event. We start by simply taking a few references for useful things, such as
the hub member and the chat pointer to our remote hub.

Chapter 8

201

2.	 Let's write the code that we need to interact with the hub, starting with the startup
sequence, as shown in the following code:
 ...
 hub.start()
 .done(function () {
 ...
 });

We call the start() method as we learned earlier, and we prepare a completion
callback, to be filled in the next step, by using the done() method.

3.	 Inside the done() callback, we wire things that should be enabled only when
connected, that is, the login/logout process and the creation of new rooms,
as shown:
 $('#login').click(function () {
 server.login($('#name').val())
 .done(function (name) {
 loginName = name;
 $('#login-box, #logout-box,
 #rooms-box,
 #chats-box').toggle();
 $('#logged').html(loginName);
 });
 });
 $('#logout').click(function () {
 server.logout($('#name').val())
 .done(function () {
 $('#login-box, #logout-box,
 #rooms-box,
 #chats-box').toggle();
 $('#rooms, #chats').empty();
 });
 });
 $('#new').click(function () {
 server.createRoom($('#room').val());
 });

We first bind the login button to a click handler that will call the remote login()
method, passing to it the value of the name textbox. When the call is completed, we
store the chosen login name in a variable and then display the rest of the page to the
user. Something similar happens with the logout button just the other way round.
Finally, the new button is bound to a handler, calling the createRoom() method of
the remote ChatHub, which we already described earlier.

Building Complex Applications

202

We are still missing all the callbacks ChatHub is triggering remotely. Let's add them
using the following steps, paying attention to the fact that, as you should already
know by now, they must be defined before calling hub.start(). So, please position
the cursor just above it before proceeding:

4.	 Let's tackle the callbacks in the same order in which we met them on the server side,
the first one being rooms:
 client.rooms = function (rs) {
 $.each(rs, function (i, r) {
 $('#rooms').append($('')
 .html(r)
 .click(function () {
 server.joinRoom($(this).text());
 }));
 });
 };

It's pretty simple; this one is called when the user logs in and whenever a new room
is created, and is supplied with a list of rooms. Our code takes the list of rooms and
uses it to append li items to the rooms unordered list. Each li item is bound to a
click handler that will call the joinRoom() remote method; this way, joining a new
room is as easy as clicking its name in the list.

5.	 The second callback we saw was join, which is triggered whenever a user joins a
new room, shown as follows:
 client.join = function (r) {
 var $message = $('<input type="text"/>');
 var $li = $('')
 .append($('<h4/>').html(r))
 .append($('<div/>')
 .addClass('input')
 .append($message)
 .append($('<button/>')
 .attr('id', 'send')
 .text('Send')
 .click(function() {
 server.send(r, $message.val(),
 loginName);
 })
)
)
 .append($('<div/>')
 .addClass('messages-box')
 .append($('')
 .attr('data-room', r)));

 $('#chats').append($li);
 };

Chapter 8

203

This one is longer, but that's mainly because we need to dynamically create
several HTML elements to build our room's box, with a proper input area and its
list of messages. The only really interesting line of code is the click handler,
which is attached to a dynamically created button and calls the send message on
the hub's proxy.

6.	 Finally, we need the callback to handle incoming messages, shown as follows:

 client.message = function (room, message) {
 $('[data-room="' + room + '"]')
 .prepend($('')
 .append($('')
 .addClass('sender')
 .html(message.sender))
 .append($('').html(message.message))
);
 };

This one is triggered for each message sent to a chat room. We just need to unpack
the parameters, find the right room box where we can display it, and prepend it to the
corresponding unordered list. A data-room custom attribute is used to find the right
room box, taking advantage of the fact that the same attribute was set by the join
callback when creating the visual elements of the room that was just joined by the
current user.

We are done, and it was not difficult! We can easily test the chat room system by launching
the application, navigating to the index.html page from multiple browser windows,
and logging into each of them with a different nickname. The rest of the usage should be
straightforward and you should appreciate how much we actually achieved with such a small
amount of code.

There's more…
This sample is good enough to illustrate how certain SignalR's features can be put together to
easily build a complex application such as a chat room system, but of course, this is far from
being a professional one. If you want to see a real-world chat application built on SignalR, you
should check JabbR (https://jabbr.net/) from the SignalR team, which is packed with
features that anybody would love to get from such an application. Its open source code can be
found at https://github.com/JabbR/JabbR.

Building Complex Applications

204

Implementing a shared whiteboard
Our next example of a real-time application is a shared whiteboard. SignalR is definitely a
good platform to build real-time collaborative tools, because its ability to push information to
the clients makes managing a shared status easy, allowing us to keep it synchronized across
several instances of the same gadget. Our whiteboard will allow users to join it and draw
simple rectangles, which will be broadcasted live to all users. It will also allow us to store them
on the server to keep a live history that will be used to generate the current status of the
whiteboard to be pushed to new users when they connect. To build these capabilities, we'll
use the following SignalR features:

ff Calling methods on a hub from the client

ff Triggering client-side callbacks from the server

ff Using the Groups API

ff Using the state bag

ff Handling server-side errors

Getting ready
Our application will consist of the following:

ff A Hub called WhiteboardHub, which will be used to handle the login process, to
keep the history of shapes, and to broadcast them.

ff A page for the client part, called index.html, with a login box and a couple of
canvas elements to build our drawing surface.

ff A JavaScript file called app.js, which contains the client-side logic around
the SignalR interactions and the DOM manipulations to build the whiteboard
functionalities.

ff A style sheet called whiteboard.css.

ff The usual plumbing tools (the Startup class, proper references, and so on).

In order to proceed, you'll have to build a new empty web application and call it Recipe48.

How to do it…
As usual, as in the last chapter, we start by adding the Microsoft.AspNet.SignalR NuGet
package, which will download all the up-to-date references that we need.

Chapter 8

205

Let's prepare the visual part of our whiteboard by creating an index.html page by
performing the following steps:

1.	 We first add it to the project and then we make it look like the following code:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <link href="Styles/whiteboard.css" rel="stylesheet" />
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="/signalr/hubs"></script>
 <script src="Scripts/whiteboard.js"></script>
</head>
 <body>
 Name: <input type="text" id="name"/>
 <button id="join">Join</button>

 <canvas id="surface" width="800" height="600"
 style="z-index: 0"></canvas>
 <canvas id="temp" width="800" height="600"
 style="z-index: 1;
 background-color: transparent"></canvas>
 </body>
</html>

The head section contains a reference to the whiteboard.css CSS stylesheet file,
which we'll be illustrating later on, and the usual and up-to-date JavaScript client
libraries we need. After that, we reference the dynamic hubs endpoint (/signalr/
hubs) and a file named whiteboard.js for the code of the application; we'll add
this one shortly.

Then, we have the page body with a top section for the login bits and then we have
the two canvas elements overlapping, the one on top being transparent. We use
the two of them to make it easier to show you the shape of our rectangles on the top
layer while we're still drawing them, and then remove them from there before drawing
the final shape on the bottom and final one.

2.	 Let's finalize the visuals by adding some styling directives. Let's add a file called
whiteboard.css inside a folder called Styles with just one directive in it, shown
as follows:
canvas {
 background-color: lightgoldenrodyellow;
 position: absolute;
 width: 800px;

Building Complex Applications

206

 height: 600px;
 top: 40px;
 left: 10px;
}

Both canvas elements are styled the same way, and the absolute positioning
makes them overlap exactly .

3.	 It's time to move to the server side of our application. We'll add the usual Startup
class in its simplest version, shown as follows:
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }

4.	 Then, we add the skeleton of WhiteboardHub, marked with HubNameAttribute to
define its friendly name, which will be "whiteboard", shown as follows:
using System.Collections.Generic;
using System.Collections.Concurrent;
using System.Drawing;
using System.Linq;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe48
{
 [HubName("whiteboard")]
 public class WhiteboardHub : Hub
 {
 ...
 }
}

5.	 We have to keep track of the shapes that have been drawn by the users; for that, we
use a static field called Shapes of type ConcurrentDictionary, whose keys are
the names of the users and the values are lists of Rectangle objects, as shown in
the following code snippet. The field is static because, as you will remember, hubs are
instantiated per call and cannot maintain any state across invocations, therefore. In
other recipes, we already illustrated more elegant ways to handle this problem, but
for this recipe, we'll stick to this simple strategy:
 private static readonly IDictionary<string,
 IList<Rectangle>> Shapes =
 new ConcurrentDictionary<string,
 IList<Rectangle>>();

Chapter 8

207

6.	 Let's introduce the method used to join the application whose body we'll complete in
the following steps:
 public void Join(string name)
 {
 ...
 }

7.	 At the beginning, we deal with the static store for the shapes:
 if (Shapes.ContainsKey(name))
 throw new HubException(
 "Nickname already taken");

 Shapes.Add(name, new List<Rectangle>());
 Clients.Caller.name = name;

We use the Shapes field to check whether the name supplied by the user is
already taken. If that's the case, we throw HubException, which we know from
earlier will be received by the client with all its details; this way, we'll be able to show
a proper error message to the user. If we pass the check, we prepare a new store for
that user and then add its name to the state bag; later, this will be useful on both
sides of the application.

8.	 Then, we use a little trick, shown as follows, to solve a potential issue in our design:
 Groups.Add(Context.ConnectionId, "Shapes");

Each time a new shape will be drawn, the hub will have to broadcast it to every other
user that joined the whiteboard, but the Clients members that we have out-of-the-
box would not allow us to exclude all the users who might have loaded the application
and connected to the hub without actually joining the whiteboard. This is why we use
a specific group named "Shapes" to identify who's actually joined. We put users in it
when they join, and we then use this group to broadcast new shapes; this way, we avoid
targeting those who had not joined yet.

9.	 Now, we just need to send the current status of the whiteboard to the user,
shown as follows:
 Clients.Caller.draw(
 from u in Shapes.Keys
 from s in Shapes[u]
 select new
 {
 @from = u,
 x = s.Left,
 y = s.Top,
 width = s.Width,
 height = s.Height
 });

Building Complex Applications

208

This is pretty straightforward; we just put in evidence that the draw callback that we
are going to call is expected to receive an array of named shapes represented by an
anonymous type that contains its coordinates and the name of the user who drew it.
The support for transparently transferring complex types is clearly very useful here.

10.	 We are now ready to show you how the server-side Draw() method is implemented.
Consider the following code:

 public void Draw(int x, int y,
 int width, int height)
 {
 Shapes[(string)Clients.Caller.name]
 .Add(new Rectangle(x, y, width, height));

 Clients.Group("Shapes", Context.ConnectionId)
 .draw(new []
 {
 new
 {
 from = Clients.Caller.name,
 x, y, width, height
 }
 });
 }

This is simpler and we can illustrate it in just one pass. Each time a client will have a
new shape ready, it will call Draw on WhiteboardHub to notify its parameters. The
method will first store the shape details in the Shapes store for the caller, whose
name will be available from the state bag, and then, it will notify back the position
and size to all the connections that belong to the "Shapes" group. This group is
made of users who joined the group, but we explicitly exclude the connection of
the caller who will not need to know anything about a shape they just created. The
notification uses the same draw callback that we described earlier, which expects an
array of shapes. This is why we take our only rectangle here and enclose it in an array
before sending it out.

Writing the server-side part of our whiteboard wasn't difficult, we had to deal with a couple of
specific issues, but after all, everything has been done with a couple of simple methods. Let's
finalize our application with the code of the client page. We already defined its layout, and
we've been quickly describing the logic behind the two overlapping layers; let's make them
come alive using the following steps:

Chapter 8

209

1.	 As usual, everything will be set up in a jQuery $(document).ready(...) event
handler, written in its shorthand version, shown as follows:
$(function() {

 var startPoint = null,
 currentPoint = null,
 surfaceLayer = $("#surface")[0],
 surfaceCtx = surfaceLayer.getContext("2d"),
 tempLayer = $("#temp")[0],
 tempCtx = tempLayer.getContext("2d"),

 hub = $.connection.hub,
 whiteboard = $.connection.whiteboard;

 ...

});

We start our code by storing a few useful references in some variables. You will
recognize the ones related to SignalR, but we also have a few more references to the
drawing context of our two overlapping canvas elements.

2.	 Then, we set up a few initial attributes:
 surfaceCtx.font = "16px Arial";
 surfaceCtx.fillStyle = "#0F0";
 tempCtx.fillStyle = "#AAA";

We first define a font family for any text that we'll draw; in fact, we'll be printing the
name of the user above the shape he/she just drew on the screen. Then, we set up
the color for any final shape (green) and for any transient one (gray) drawn on the
temporary layer by dragging the mouse while keeping the left mouse button pressed.

3.	 The next step is the definition of the draw callback, shown as follows:
 whiteboard.client.draw = function (shapes) {
 var prev = surfaceCtx.fillStyle;
 $.each(shapes, function(i, s) {
 surfaceCtx.fillStyle = "#F00";
 surfaceCtx.fillRect(
 s.x, s.y, s.width, s.height);
 surfaceCtx.fillStyle = "#000";
 surfaceCtx.fillText(s.from, s.x, s.y);
 });
 surfaceCtx.fillStyle = prev;
 };

Building Complex Applications

210

As we said earlier, while setting the expectations on this callback, the function is
supplied with an array of shapes, which it enumerates and draws on the final
surface on the page. These are shapes that come from other users than the
connected ones, so we draw them in a different color (red) and with the name of
the user who drew them above.

4.	 The next block of code is the one that handles the actual drawing interaction on the
temporary surface. The principle is quite simple and is as follows:

�� When the mouse button is pushed down, we store the coordinates of the
current point.

�� When the mouse is moved while the button is still down, we continuously
erase the temporary shape drawn at the previous movement and draw a new
one.

�� When the mouse button is released, we erase the last transient shape from
the temporary surface and we draw a final one on the actual whiteboard, just
before notifying its details to the server-side hub.

The following is what it should look like:
 $('#temp')
 .on('mousedown', function (e) {
 if (!whiteboard.state.name) return;

 startPoint = {
 X: e.offsetX,
 Y: e.offsetY
 };
 })
 .on('mousemove', function (e) {
 if (!whiteboard.state.name) return;

 if (startPoint) {
 if (currentPoint) {
 tempCtx.clearRect(
 startPoint.X,
 startPoint.Y,
 currentPoint.X - startPoint.X,
 currentPoint.Y - startPoint.Y);
 }
 currentPoint = {
 X: e.offsetX,
 Y: e.offsetY
 };

Chapter 8

211

 tempCtx.fillRect(
 startPoint.X,
 startPoint.Y,
 currentPoint.X - startPoint.X,
 currentPoint.Y - startPoint.Y);
 }
 })
 .on('mouseup', function () {
 if (!whiteboard.state.name) return;

 if (startPoint) {
 var width = currentPoint.X - startPoint.X,
 height = currentPoint.Y - startPoint.Y;

 tempCtx.clearRect(
 startPoint.X,
 startPoint.Y,
 width,
 height);
 surfaceCtx.fillRect(
 startPoint.X,
 startPoint.Y,
 width,
 height);

 whiteboard.server.draw(
 startPoint.X,
 startPoint.Y,
 width,
 height);

 currentPoint = null;
 startPoint = null;
 }
 });

You might have also noticed that each event handler immediately exits if the state
bag does not contain a valid value for the name property. This is a quick, and maybe
dirty, way to disallow drawing before connecting to the whiteboard, but for our
purposes it works just fine.

Building Complex Applications

212

5.	 We finish with the code that starts up the connection to the hub, shown as follows:

 hub.start().done(function () {
 $('#join').click(function () {
 var name = $('#name').val();
 whiteboard.server.join(name)
 .done(function () {
 $('#name').hide();
 $('#join').hide();
 $('#logged').html(name);
 })
 .fail(function (e) {
 console.log(e);
 $('#logged').html(e.message);
 });
 });
 });

When the connection is ready, we bind the login button to the code that calls
the server-side Join() method, and we set up the fail() callback method of
the returned promise to display any error message; this way, we know that the
HubException that we throw from inside the hub in case of a duplicate user name
will be displayed to the user.

We are done; now, if we launch the application and navigate to the index.html page
from multiple browser windows, we'll be able to connect to the whiteboard with different
nicknames. We can also see how shapes drawn on one window are immediately displayed on
the other ones, with a specific usage of colors and text to differentiate the shapes drawn by
the owner of a window from the ones received from any other. When users come in late, they
receive the current status of the whiteboard as soon as they log in.

Implementing a real-time map of flying
airplanes

Maps have nowadays become more and more important as a visualization tool, and real-
time information often has a geographic component that can be displayed on the maps. In
this recipe, we'll illustrate how we could present a flight map that shows us a set of airplanes
and follow their position while they're flying to their destinations. What's interesting about this
example is the fact that the coordinates of the displayed objects are constantly changing, and
we have to update them on the map as quickly as possible. The other interesting thing is that
time is a main component of the problem here. The information does not get into our system
driven by any user's activity, but by the changes in time of the state of some external component.

Chapter 8

213

From SignalR's perspective, this is a very simple application, and to develop it, we'll just need
the following features:

ff Calling the methods on a hub from the client
ff Triggering client-side callbacks from the server

This sounds too basic, but that's exactly what's interesting about this sample, because
building something as reactive as this with just the basics of SignalR makes us appreciate
its power.

On the other hand, simulating the continuous change of state of observable things in an
expressive way is less simple, but it's also something that's at the heart of many real-time
problems. This is why we decided to spend some time on it in conjunction with SignalR.

Getting ready
Our application will consist of the following:

ff A Hub instance called FlightsHub, which will be used to notify the movement of the
planes in real time and to subscribe to the specific planes in order to get notifications
about their take-offs and landings.

ff A page for the client part, called index.html, with a Google Map on it.
ff A JavaScript file called flights.js that contains the client-side logic around the

SignalR interaction and the manipulation of the map.
ff A styles sheet called flights.css.
ff Some more stuff to put things together (the Startup class, proper references,

and so on).

In order to proceed, you'll have to build a new empty web application and call it Recipe49.

How to do it…
First of all, we add a reference to the Microsoft.AspNet.SignalR NuGet package to
have everything that we need to run SignalR in our application. We'll also use a Google
Map widget, which requires a personal API key that you'll have to create unless you do not
already have one available. We will not spend any time on these details; in case you need
more understanding on them, please refer to the online documentation at https://
developers.google.com/maps/documentation/javascript/tutorial. Let's
proceed with the following steps:

1.	 We first add an index.html page to our project, and we put what we need on it,
shown as follows:
<!DOCTYPE html>
<html>

Building Complex Applications

214

<head>
 <link href="Styles/flights.css" rel="stylesheet" />
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="https://maps.googleapis.com/maps/api/js?
key=YOUR_API_KEY&sensor=false"></script>
 <script src="/signalr/hubs"></script>
 <script src="Scripts/flight.js"></script>
</head>
<body>
 <div id="map"></div>
 <div id="messages">
 <button id="start" style="display: none">
 Start</button>

 </div>
</body>
</html>

As usual, we start with a reference to a CSS file, which, in this case, is named
flight.css. We'll add it to the project later. Then, we reference the JavaScript client
libraries that we always need for our SignalR applications whose versions will have to
match the ones that we got from NuGet when we referenced the SignalR package.

The new thing here is the reference to the Google Maps JavaScript API; for more
details about its usage, please refer to its documentation. Please pay attention to the
key parameter in the URL; in your code, you'll have to replace the YOUR_API_KEY
placeholder with a valid key that you are entitled to use.

Finally, we add the reference to the dynamic hubs endpoint (/signalr/hubs) and
a reference to the flights.js file that we'll create shortly to host our application
logic.

The content of the page's body is very simple; it consists of just a couple of div
elements to host the surface of the map, a button to start the flights, and an
unordered list to display the live notifications that we'll receive.

2.	 Let's add some styling directives to get things to behave properly on the page by
adding the flights.css file that we mentioned earlier inside a folder called
Styles. The following will be its content:

html {
 height: 100%;
}

body {

Chapter 8

215

 height: 100%; margin: 0; padding: 0;
}

#map {
 height: 100%; z-index: 1;
}

#messages {
 z-index: 10; position: absolute;
 top: 0; right: 0; width: 400px;
 text-align: right;
 margin-top: 20px; margin-right: 20px;
 padding: 10px;
 font-family: "Helvetica"
}
#messages ul {
 list-style-type: none;
}

li {
 width: 100%; position: absolute;
 background-color: yellow; opacity: 0.5;
 margin: 3px; padding: 2px;
}
li.subscribed {
 background-color: lightgreen;
}

Nothing special here; we are just placing a right-hand side notifications bar on top
of our fullscreen map. Please note just the height:100% directives on the html,
body, and #map selectors; these are necessary to correctly display our Google Map
widget fullscreen.

Let's move to the server side of the application. As already mentioned, we need a way to
generate real-time information about how planes are moving, and we need to push that
information to the connected clients, but first, we need to have some information about the
actual planes that we are managing, such as their code and some details about their routes.
Ideally, that would be the responsibility of an external system, and we have already been
illustrating how to properly hook an external service inside a hub and how to have such a
service refer to a hub's context. For this recipe, we'll keep things very basic and we'll have
everything inside our hub; we leave the task of decoupling these aspects as an exercise for
the reader. Let's proceed with the following steps:

1.	 We first create the bootstrapping Startup class using the corresponding Visual
Studio template that will add OwinStartupAttribute, and we'll add to it the
standard Configuration method's body:
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }

Building Complex Applications

216

2.	 Then, we move on to the FlightsHub class for the next few steps. We first create it
and change its code, as shown:
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe49
{
 [HubName("flights")]
 public class FlightsHub : Hub
 {
 ...
 }
}

3.	 As we said, we'll be managing everything from inside FlightsHub, including the
generation of real-time information about the flights. To make things more easily
observable, we'll have a specific method, named Go(), to make all the flights take
off. We'll just want to guarantee that this specific method can have an effect just
once, so we'll take care of that with some static fields:
 private static bool Flying;
 private static readonly object Locker =
 new object();

 public void Go()
 {
 if (Flying) return;

 lock (Locker)
 {
 if (Flying) return;

 Flying = true;

 ...
 }
 }

Chapter 8

217

We use the Flying static Boolean field to mark when the flights have actually
started and another static field called Locker to allow the operation of starting the
flights to just the first call on it. This code is pretty basic and not scalable, but it's
good enough for our purposes.

4.	 Let's now gradually fill the rest of the Go() method. We start by adding the following
geographic context to our sample:
var towns = new Dictionary<string, PointF>
{
 {"Turin", new PointF(45.2008018F, 7.6496301F)},
 {"Berlin", new PointF(52.3800011F, 13.5225F)},
 {"Madrid", new PointF(40.4936F, -3.56676F)},
 {"New York", new PointF(40.639801F, -73.7789002F)},
 {"Istanbul", new PointF(40.9768982F, 28.8146F)},
 {"Paris", new PointF(49.0127983F, 2.55F)},
 {"Cape Town", new PointF(-33.9648018F, 18.6016998F)},
};

These are the coordinates of the towns that our planes will be flying to or from.

5.	 Then, let's define our flights, shown as follows:
var flights = new[]
{
 new
 {
 Code = "LH100", Color = "red",
 From = "Turin", To = "Berlin",
 Speed = 10, Period = 500,
 },
 new
 {
 Code = "AZ150", Color = "blue",
 From = "Turin", To = "Madrid",
 Speed = 8, Period = 1500,
 },
 new
 {
 Code = "XX150", Color = "green",
 From = "New York",To = "Istanbul",
 Speed = 30, Period = 400,
 },
 new
 {
 Code = "AA777", Color = "orange",
 From = "Paris", To = "Cape Town",
 Speed = 35, Period = 2000,
 }
};

Building Complex Applications

218

Each of the flights has a code, a color to be used on the map for the corresponding
marker, outbound and inbound towns, a speed value (the custom unit of measure
that we use for speed here is latitude degrees per hour), and a transponder period
that indicates the number of milliseconds between each signal that comes from
the plane to notify us of its current position. Hence, each plane will have a different
speed and will push the information at a different rate.

6.	 To make events on the map easier to observe, we accelerate the time using a
correction factor:

const int simulationFactor = 20; //1 hours = X seconds

This number will determine how many seconds will be used to represent an actual
hour of time; this way, we can compress time and see things happening faster. We set
up a value of 20, which will make one hour pass in just 20 seconds (!).

Now, we get to the complex part: how to make things happen over time. We could have
applied a few different approaches, but we decided to use the Rx framework, which we can
download from NuGet by adding the Rx-Main package. Rx works around the duality between
the concepts of enumerable and observable, and makes working with IObservable as easy
as using IEnumerable the way we do with Linq. It also adds a lot of infrastructure to compose
observable sequences and to add scheduling features to the picture. This is really like adding
time as a first-citizen component of our streams, making them available to the Linq environment
as sequences. The only noticeable difference is that, in this case, the sequences are pushing
information towards us instead of being pulled by us, as it happens with IEnumerable. This
is why Rx and SignalR are technologies that go along well; both of them are about pushing
information and therefore, they can be used together in very effective ways.

With Rx in place and the addition of the using System.Reactive.Linq; directive, we
can start writing the generation of our flights' streams of data, which will actually fit in a single
Linq query expression! Our goal is to enumerate every flight that we defined earlier to make it
generate information about what is its position at specific points in time.

Each plane will move repeatedly back and forth between the towns specified with the From
and To properties, flying at the indicated speed and taking a break of a constant duration
between each leg; our expression will have to express it correctly. Let's proceed by performing
the following steps:

1.	 Let's start the declaration of our query expression using the following code:
var signals =
 from flight in flights.ToObservable()

The first necessary step is to use the ToObservable() extension method from Rx to
take our collection of flights and push it into the realm of observables where it will be
composed with other push streams.

Chapter 8

219

2.	 For each flight, we calculate some geometric information:
 let f = towns[flight.From]
 let t = towns[flight.To]
 let dx = t.X - f.X
 let dy = t.Y - f.Y
 let d = Math.Sqrt(
 Math.Pow(dx, 2) + Math.Pow(dy, 2))

Here, we are using the From and To properties to get the coordinates of the
two points each flight will be flying across, and we use them to calculate the
absolute distance and its latitudinal and longitudinal components, expressed in
latitude degrees.

This is not how real planes fly. We are treating the problem as if the Earth
was flat, but it's not, and we shouldn't use the Pythagoras theorem to
calculate the shortest path. Nevertheless, this approximation will work
fine for our goals, and it will allow us to concentrate on aspects that are
more relevant to this book. At the same time, the Google Map widget uses
a flattening projection of the Earth, so in our example, the planes will be
traveling along straight lines. This, again, is not how a real flight would look
like on a projective map, but that's not an issue for us.

3.	 Let's start doing some time-related computations, shown as follows:
 let time = d / flight.Speed
 let sampling = (double)1000 / flight.Period
 let steps = (int)(sampling*simulationFactor*time)
 + 1
 let sx = dx / steps
 let sy = dy / steps

We first calculate the time required for each flight to complete, then we calculate
the frequency of the transponder (normalized to samples per seconds = Hertz) that
we use to determine how many times a plane would notify its position for each leg
that it runs (that's steps, and we add 1 to the total to take both the starting and
destination points into account). The simulationFactor constant is used to
correct the number of steps. Finally, we measure how much space will separate each
transponder signal on both the longitudinal and latitudinal components.

4.	 We also want to know how many times the transponder will send signals while the
plane is down on earth waiting to take off again:
 let paused = (int)(0.5 * simulationFactor * sampling)

For simplicity, we make each stop half an hour long, and therefore, the number of
signals is easily computed, including the correction factor.

Building Complex Applications

220

5.	 We are ready to define the actual trajectory of each flight, starting with the outbound
leg, shown as follows:
 let outbound = from i in Enumerable.Range(0, steps)
 select new
 {
 Index = i,
 Landed = false,
 Touched = i == steps-1,
 Town = flight.To
 }

It's pretty simple, we generate as many samples as the number of steps that we
calculated earlier, and for each of them, we indicate the following:

�� The index of the step, which also indicates its current position on the
straight line on which it's running (if we imagine to divide that line by the
number of steps)

�� Whether the plane has landed

�� Whether it's the last sample

�� Its destination

6.	 We do something similar to generate the information to push when the plane is
waiting to take off again, shown as follows:
 let delay1 = from i in Enumerable.Repeat(steps,
 paused)
 select new
 {
 Index = i,
 Landed = true,
 Touched = false,
 Town = flight.To
 }

Here, we use the paused expression to determine how many signals to send
while waiting. For this sequence, the Index value will always be equal to the
steps value, which indicates that for all the time we're waiting, we're at the end
of the calculated trajectory.

7.	 We repeat the last two points for the inbound leg, shown as follows:
 let inbound = from i in Enumerable.Range(0, steps)
 select new
 {
 Index = steps - i,
 Landed = false,

Chapter 8

221

 Touched = i == steps - 1,
 Town = flight.From
 }
 let delay2 = from i in Enumerable.Repeat(0, paused)
 select new
 {
 Index = i,
 Landed = true,
 Touched = false,
 Town = flight.From
 }

Notice the Index value. For the inbound sequence, this is decreasing to go back
to the starting point, and for the delay2 sequence, it is always 0 to indicate that the
signals are coming out from the place where the flight first took off.

8.	 Now that we have the four components of a whole flight, we just concatenate them in
a single sequence, from which we then generate an array because later we'll access
its components by its position, as shown in the following code snippet:
 let route = outbound.Concat(delay1)
 .Concat(inbound)
 .Concat(delay2).ToArray()

9.	 We're now ready to introduce the time component, and for that, we just join our flights
and the related sequences we just produced with a sequence generator from Rx,
shown as follows:
 from st in Observable.Interval(
 TimeSpan.FromMilliseconds(flight.Period))

Observable.Interval generates an infinite stream whose values are pushed
down to the consumers at a defined frequency in time. In our case, of course, this
will be the period of the transponder for each plane. Whoever will subscribe to this
sequence will actually be free from any activity until Observable.Interval will
wake it up with a new signal. How things are actually implemented behind the scenes
to introduce this efficient, concurrent, and asynchronous behavior is out of scope
here, but it's definitely one of the main reasons you should put Rx in your tool belt.

10.	 From now on, it's as if the rest of our expression will be executed at regular intervals;
we just need to link the periodic samples to the information about the actual position
of the plane in order to produce what we need to push to the clients, as shown in the
following code snippet:
 let w = route[st%route.Length]
 let s = w.Index
 let x = f.X + sx * s
 let y = f.Y + sy * s

Building Complex Applications

222

 let landed = w.Landed
 select new
 {
 flight.Code,
 w.Touched,
 w.Town,
 Landed = landed,
 X = x,
 Y = y,
 Color = landed
 ? "black"
 : flight.Color,
 };

We first normalize our infinite stream of indices (st) towards the actual length of
each route, and then everything becomes quite straightforward, with a final select
statement producing all the necessary details that we need to send to the clients for
each sample. A landed plane will be shown in black. Otherwise, the color specified
with its definition will be used.

11.	 We're almost done; we just need a single consumer to actually make the generation
of signals happen, and the way we built the Go() method will guarantee us that only
one subscriber will be in place, shown as follows:
signals.Subscribe(
 flight =>
 {
 Clients.All.sample(flight.Code,
 flight.X, flight.Y,
 flight.Color, flight.Landed);
 if (!flight.Touched) return;

 Trace.WriteLine(
 string.Format("Notifying {0}...",
 flight.Code));
 Clients.Group(flight.Code).touched(flight.Code,
 flight.Town,
 DateTime.Now.ToLongTimeString());
 });

Chapter 8

223

The Subscribe() method allows us to define a consumer of signals. Each time
one of the signals will be pushed to the subscriber, all of its details will be collected
and notified to the connected clients by calling the sample callback on Clients.
All dynamically. If the plane has landed, we'll trigger a further notification using the
touched callback, targeting anybody who has subscribed to a group called after the
flight's code.

Please observe that the lambda expression used to define the subscriber will be
fully executed at each sample; this means that the Clients members will be
processed each time; therefore, both sets of the currently connected clients and the
connections that belong to the previously mentioned group will always be up to date;
this way, late connections will catch up with the current positions on the first signal
that is received.

12.	 Before leaving the Go() method, we eventually notify everybody that all the planes
have started flying, as shown in the following line of code:
 Clients.All.started(Flights);

The Go() method is now complete, and with that, the generation of the live stream
of data about the flights is complete as well, although a hub's method wasn't strictly
necessary in this case. More suited to a hub method is the task of exposing to the
users a way to register their interest in receiving notifications about the state of a
single airplane.

13.	 Let's add a Notify() method to the hub to ask for notifications:
public Task Notify(string code)
{
 Trace.WriteLine(
 string.Format("Asking to notify {0}", code));
 return Groups.Add(Context.ConnectionId, code);
}

The implementation uses the code of the flight to subscribe the caller to a group that
is named after the flight. This code matches what we saw earlier in the Subscribe
call to notify these subscribers.

14.	 We complete FlightsHub with an OnConnected handler, which will tell every new
client whether the flights are flying already or not:

public override Task OnConnected()
{
 Clients.All.started(Flying);

 return base.OnConnected();
}

Building Complex Applications

224

We can now move to the client-side code located in the flights.js file. We need to perform
some manipulations on the map to react on clicks on the markers that represent the planes,
in order to subscribe for notifications from them. Of course, we'll also need to set up the
SignalR callbacks and start the connection. The following steps show us the code, with just a
few brief comments, because most of it is plumbing code that is not strictly related to SignalR:

1.	 We start by defining some useful variables and functions, shown as follows:
$(function() {

 var hubs = $.connection.hub,
 flights = $.connection.flights,
 markers = {},
 subscribed = {},
 map = new google.maps.Map($("#map")[0], {
 center: new google.maps.LatLng(45, 8),
 zoom: 2
 }),
 buildIcon = function(color) {
 return {
 path: google.maps.SymbolPath.CIRCLE,
 scale: 8,
 strokeColor: color
 };
 };

 ...

});

2.	 We then define SignalR's callbacks, starting from sample. Here, we add code to
perform the following steps:

�� Add a marker for each plane the first time a signal arrives from it.

�� Move the marker at every subsequent signal.

�� Attack a click handler on each marker to subscribe to the notifications
from it.

The following is a code snippet that shows us all this:

 flights.client.sample = function (
 code, x, y, color, landed) {
 if (!markers[code]) {
 markers[code] = new google.maps.Marker({
 icon: buildIcon(color),
 map: map,

Chapter 8

225

 title: code
 });
 google.maps.event.addListener(
 markers[code], 'click',
 function () {
 var li = '<li class="subscribed" />';
 if (!subscribed[code]) {
 flights.server
 .notify(code)
 .done(function () {
 var $li = $(li)
 .text('Watching ' +
 code);
 $('#messages ul')
 .prepend($li);
 subscribed[code] = true;
 });
 }
 });
 } else if (markers[code].landed !== landed) {
 markers[code].setIcon(buildIcon(color));
 markers[code].landed = landed;
 }
 markers[code].setPosition(
 new google.maps.LatLng(x, y));
 };

3.	 The next callback is touched, as shown in the following code snippet, which is
triggered each time a plane touches land, and reaches each client who subscribed to
that particular plane. This is used to fill the list of notifications about each plane the
user has subscribed to:
 flights.client.touched = function (code, town, time) {
 var m = code + ' landed in ' + town + ' @ ' + time;
 $('#messages ul').prepend($('').text(m));
 };

4.	 The last callback to implement is started, as shown in the following code snippet,
which is received by each client when it first connects and when the flights start
flying. We use it to decide whether the Start button should be displayed or not:
 flights.client.started = function (flying) {
 $('#start').toggle(!flying);
 };

Building Complex Applications

226

5.	 Finally, we use the usual code to start the connection:

 hubs.start().done(function () {
 $('#start').click(function () {
 flights.server.go();
 });
 });

When the connection is ready, we bind the Start button to a click event handler,
which will ask FlightsHub to start the generation of the signals from the flights.

We're ready to test our application. We build the project, launch the application, and navigate
to the index.html page, which will display a map of the world and a Start button to make
the flights move. As soon as we click on it, a few circular markers will start moving on the map,
each one representing a different plane. We'll see how they change color according to the
state that a flight flies over, and we'll be able to click on them to receive notifications whenever
they touch land. We can also open multiple tabs pointing at the same address and appreciate
how all of them are updated in real time.

Chapter 8

227

The code of this recipe was pretty complex; however, the SignalR features that we've been
using were basic ones, which clearly demonstrate that, with SignalR, real-time messaging
features are not the most complex part of our application anymore.

Implementing a "pets finder" application
The previous recipe showed us how a map can be used to display live information, updated
at a relatively high frequency, in a scenario where the user is passive in practice and just
observes what a server is broadcasting. In this recipe, we want to explore a much more
interactive scenario, where the information displayed on the map is provided by the users.

This application can be used to place the name and a picture of a pet that has been lost on
a map. These details will be added to other users' maps in real time. Anybody observing the
map could drag-and-drop any marker on a different position to notify that the pet was there.
Finally, the user who first raised an alarm about a specific lost pet can declare that he/she
found it, and this action will correspond to the removal of the markers related to that specific
animal from all the connected maps. This is illustrated in the following screenshot:

From a SignalR's perspective, we'll use the following features:

ff Calling methods on a hub from the client

ff Triggering client-side callbacks from the server

ff Dependency injection

ff Custom authorization workflow

Building Complex Applications

228

ff Services' extensibility (replacing a default service)

ff Custom query string parameters

This example is quite interesting because it puts together a consistent amount of features
that we've been analyzing throughout the book.

Getting ready
Our application consists of the following:

ff A Hub called PetsFinderHub, which will be used to notify about lost pets' sightings
in real time and to subscribe to specific pets in order to get notifications about their
movements.

ff A custom service defined by the IPetsFinder interface, with a proper
implementation and a couple of supporting types. This will be the core of the
application, with the responsibility of storing information about the pets and
supplying it back to PetsFinderHub when required.

ff An authorization attribute called AuthorizeLoggedAttribute.

ff A custom implementation of IUserIdProvider.

ff A page for the client part, called index.html, with a Google Map on it.

ff A JavaScript file called pets.js that contains the client-side logic around the
interactions with SignalR and the Google Map, plus some extra bits to manipulate
images.

ff A style sheet called pets.css.

ff Some more stuff to put things together (the Startup class to set up dependencies
and start SignalR, proper server and client references, and so on).

In order to proceed, you'll have to build a new empty web application and call it Recipe50.
Before proceeding, you should be aware of the fact that this sample uses the new HTML5
FileReader API to read the content of an image file that is dropped onto a div element.
Only modern browsers support it, and therefore, this sample cannot work on older browsers.
Please check http://caniuse.com/filereader to check whether your browser will
support this sample.

How to do it…
First of all, we reference the Microsoft.AspNet.SignalR NuGet package to have
everything that we need to run SignalR in our application. We'll also use a Google Map widget
that requires a personal API key; for more details about it, please refer to the previous recipe.
Let's proceed with the following steps:

Chapter 8

229

1.	 We first add an index.html page to our project, with the following content:
<!DOCTYPE html>
<html>
<head>
 <title></title>
 <link type="text/css"
 href="/Styles/pets.css"rel="stylesheet"/>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script src="https://maps.googleapis.com/maps/api/js?
key=YOUR_API_KEY&sensor=false"></script>
 <script src="/signalr/hubs"></script>
 <script src="/Scripts/pets.js"></script>
</head>
 <body>
 <div id="map"></div>
 <div id="panel">
 <div id="login-panel">
 <label>Nickname:</label>
 <input type="text" id="user"/>
 <button id="login">Log in</button>
 </div>
 <div id="logged-panel">
 <label>Nickname:</label>

 </div>
 <div id="lost-panel">
 <div id="lost-panel-name">
 <h5>Lost your pet??
 What's its name?</h5>
 <label>Name:</label>
 <input type="text" id="name" />
 <button id="proceed">Proceed</button>
 </div>
 <div id="lost-panel-photo">
 <h5>Drop its photo here...</h5>
 <div id="photo"></div>
 </div>
 <div id="lost-panel-location">
 <h5>...and locate it on the map</h5>
 <p>
 Position your map in the right
 area, when ready click on the
 'Locate it!' button and then click

Building Complex Applications

230

 on the right position on the map.
 </p>
 <button id="lost">Locate it!</button>
 </div>
 </div>
 <button id="found">Found!</button>
 <ul id="messages">
 </div>
 </body>
</html>

The page starts with the usual references to JavaScript libraries, plus a reference to
the Google Maps endpoint and to a file called pets.js, which we'll add to the project
shortly. The body section of the page contains the div element for the map and a
series of panels that will be displayed or hidden according to the specific actions that
the user will perform on the application. It's pretty long, but there is nothing worth any
specific comment.

2.	 The page is styled using a file called pets.css, placed in the Styles folder:

html {
 height: 100%;
}
body {
 height: 100%; margin: 0; padding: 0;
}
#map {
 height: 100%; z-index: 1;
}

#panel {
 z-index: 10; position: absolute;
 top: 0; right: 0; width: 300px;
 margin: 30px; padding: 10px;
 font-family: "Helvetica";
 background-color: lightgreen; opacity: 0.7;
}
#messages {
 list-style-type: none;
}
#messages li {
 background-color: yellow;
 width: 100%; margin: 3px; padding: 2px;
}

Chapter 8

231

#photo {
 width: 240px; height: 240px; margin: 3px;
 background-color: red; border: 5px dotted lightgrey;
 z-index: 2;
}
#lost-panel, #logged-panel, #lost-panel-photo,
#lost-panel-location, #found {
 display: none;
}

Enough with markup and styling; let's move on to see how the server-side portion of the
application is actually designed.

1.	 Our code will be built around the concepts of pet and location. We add a file called
Pets.cs to the project, where we'll add all the types involved in the implementation
of the business rules of the application. Inside Pets.cs, we first add the Location
and Pet types, which are straightforward and do not need any particular explanation:
 public class Location
 {
 public Location(DateTime when, PointF where)
 {
 When = when;
 Where = where;
 }
 public PointF Where { get; private set; }
 public DateTime When { get; private set; }
 }

 public class Pet
 {
 private readonly ICollection<Location> _locations;

 public Pet(
 string user, string name,
 string photo, DateTime when)
 {
 User = user;
 Name = name;
 Photo = photo;
 When = when;
 _locations = new Collection<Location>();
 }

Building Complex Applications

232

 public string User { get; private set; }
 public string Name { get; private set; }
 public string Photo { get; private set; }
 public DateTime When { get; set; }
 public bool Found { get; set; }

 public string Id
 {
 get { return BuildId(User, Name, When); }
 }
 public IEnumerable<Location> GetLocations()
 {
 return _locations;
 }
 public Location AddLocation(Location location)
 {
 _locations.Add(location);
 return location;
 }
 public static string BuildId(
 string user, string name, DateTime now)
 {
 return string.Format(
 "{0}#{1}#{2}", user, name, now);
 }
 }

2.	 We then define our service contract, shown as follows:
 public interface IPetsFinder
 {
 Pet Lost(
 string user, string name,
 PointF location, string photo);
 Pet Seen(string id, PointF location);
 void Found(string id);
 IEnumerable<Pet> GetPets();
 }

These methods are there to notify about a new lost pet, add a new sighting, record a
finding, and enumerate all the pets recorded in the application.

Chapter 8

233

3.	 Now, let's implement the contract that we just described:
 public class PetsFinder : IPetsFinder
 {
 private readonly IDictionary<string, Pet> _pets =
 new Dictionary<string, Pet> ();

 public Pet Lost(
 string user, string name,
 PointF location, string photo)
 {
 var now = DateTime.UtcNow;
 var id = Pet.BuildId(user, name, now);

 if (_pets.ContainsKey(id)) return null;

 var pet = new Pet(user, name, photo, now);
 _pets.Add(id, pet);
 _pets[id].AddLocation(new Location(now,
 location));

 return pet;
 }

 public Pet Seen(string id, PointF location)
 {
 var pet = _pets[id];
 pet.AddLocation(
 new Location(DateTime.UtcNow, location));

 return pet;
 }

 public void Found(string id)
 {
 _pets[id].Found = true;
 }

 public IEnumerable<Pet> GetPets()
 {
 return
 from id in _pets.Keys
 let pet = _pets[id]
 where !pet.Found
 select pet;
 }
 }

Building Complex Applications

234

The service is simple, and it uses a dictionary to store information about the pets in
the memory. A proper implementation would, of course, use a more resilient system.
The rest of the code should be quite self explanatory.

Before getting to see the implementation of PetsFinderHub, let's quickly
implement a custom and the naïve authentication and authorization system; for this,
we'll override the IUserIdProvider service.

4.	 Let's add a class called UserIdProvider that contains the following code:

 public class UserIdProvider : IUserIdProvider
 {
 public string GetUserId(IRequest request)
 {
 return request.QueryString["user"];
 }
 }

We already saw this approach earlier; we use a custom query string parameter placed
on the SignalR endpoint by the client to transport that information about the current
user at every request. It's a simplified approach, of course, but it's enough for us.

Now that the application logic is ready, let's use it from the application hub using the
following steps:

1.	 Let's add PetsFinderHub to the project:
using System.Drawing;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe50
{
 [HubName("pets")]
 public class PetsFinderHub : Hub
 {
 private readonly IUserIdProvider _userIdProvider;
 private readonly IPetsFinder _petsFinder;

 public PetsFinderHub(
 IUserIdProvider userIdProvider,
 IPetsFinder petsFinder)
 {
 _userIdProvider = userIdProvider;
 _petsFinder = petsFinder;
 }

 ...
 }
}

Chapter 8

235

The constructor requires a reference of both IPetsFinder and IUserIdProvider
contracts, which are then stored in the instance fields. We put some dots to indicate
where the remaining methods will be added.

2.	 We then define how we connect to the hub, shown as follows:
 public override Task OnConnected()
 {
 foreach (var pet in _petsFinder.GetPets())
 {
 Clients.All.pet(new
 {
 pet.Id, pet.User, pet.Name, pet.Photo,
 Locations = pet.GetLocations()
 });

 }
 return base.OnConnected();
 }

The OnConnected override retrieves a list of the pets who the application has
already been notified about, each one with its sightings, and sends it to the caller by
triggering the client side pet callback.

3.	 When a pet gets lost, the user has to notify PetsFinderHub about it:
 public void Lost(
 string name, float latitude,
 float longitude, string photo)
 {
 var user =
 _userIdProvider.GetUserId(Context.Request);

 var location = new PointF(latitude, longitude);
 var pet = _petsFinder.Lost(
 user, name, location, photo);

 if (pet == null) return;

 Clients.All.pet(new
 {
 pet.Id, pet.User, pet.Name, pet.Photo,
 Locations = pet.GetLocations()
 });
 }

We first ask the _userIdProvider service to resolve the name of the
current user and then we supply the information about the pet who just got lost to
the _petsFinder service, which will properly store it. If everything goes fine, we
notify all the connected clients about this new lost animal using the pet callback.

Building Complex Applications

236

4.	 If someone has a chance to see one of the lost pets somewhere, he/she can notify
the application about its new position using the following code:
 public void Seen(
 string id, float latitude, float longitude)
 {
 var location = new PointF(latitude, longitude);
 var pet = _petsFinder.Seen(id, location);

 Clients.All.pet(new
 {
 pet.Id, pet.User, pet.Name, pet.Photo,
 Locations = pet.GetLocations()
 });
 }

After having contacted the _petsService service with the information related to the
new position of a specific pet, we notify all the connected clients about it, triggering
the client-side pet callback.

5.	 Eventually, and hopefully, a lost pet will be found, and the Found() method, shown
in the following code snippet, will allow us to notify the application about this event:
 public void Found(string id)
 {
 _petsFinder.Found(id);
 Clients.All.found(id);
 }

Similar to the previous methods, the connected clients will be notified about the
finding by the found callback.

6.	 The only bits that we are still missing are the ones that are needed to bootstrap
the application in the Startup class. We use the dependency injection strategies
that we learned earlier in Chapter 7, Analyzing Advanced Scenarios, to put all the
components together, as shown in the following code snippet:

 public void Configuration(IAppBuilder app)
 {
 GlobalHost.DependencyResolver.Register(
 typeof(IUserIdProvider),
 () => new UserIdProvider());

 var petsFinder = new PetsFinder();
 GlobalHost.DependencyResolver.Register(
 typeof(IPetsFinder),
 () => petsFinder);
 GlobalHost.DependencyResolver.Register(
 typeof(PetsFinderHub),

Chapter 8

237

 () => new PetsFinderHub(
 new UserIdProvider(), petsFinder));

 app.MapSignalR();
 }

Now that we are done with the server-side portion of the application, let's move back to the
client side to add the pets.js file to the Scripts folder and fill its content. We'll use the
following steps to do this:

1.	 We first add some useful variables:
$(function () {

 var hub = $.connection.hub,
 pets = $.connection.pets,
 map = new google.maps.Map($("#map")[0], {
 center: new google.maps.LatLng(
 40.760976, -73.969041),
 zoom: 14
 }),
 params = {},
 locations = {};

 ...
})

Among other things, here, we center the map on a specific location and set its initial
zoom level.

2.	 We add a few click event handlers to the buttons that are displayed over the map:
 $('#login').click(function() {
 params.user = $('#user').val();
 hub.qs = { user: params.user };
 hub.start()
 .done(function () {
 $('#nickname').text(params.user);
 $('#login-panel').toggle();
 $('#logged-panel').toggle();
 $('#lost-panel').toggle();
 });
 });
 $('#proceed').click(function () {
 params.name = $('#name').val();
 $('#lost-panel-photo').toggle();
 });

Building Complex Applications

238

 $('#lost').click(function () {
 params.adding = true;
 });
 $('#found').click(function () {
 pets.server.found(params.id);
 });

The only interesting line here is from the login button, where we use the qs
member of the hub variable to set the user member just before we start the
connection. This way, we guarantee that its value will be sent to the server at every
request, allowing the UserIdProvider method, which we defined earlier, to work
as expected.

3.	 When we are in the process of notifying about a new lost pet, one of the steps
consists of providing its picture by dropping an image file on a div element called
photo. The following is how this can be set up:
 $('#photo')
 .on('dragover', function () { return false; })
 .on('dragend', function () { return false; })
 .on('drop', function (s) {
 var e = s.originalEvent;
 e.preventDefault();
 drop(e.dataTransfer.files);
 $('#lost-panel-location').toggle();
 });

Later, we'll see the drop() function in detail; here, we just underline the fact that
we can easily send images back and forth with SignalR using their inline Base64-
encoded representation, which is what we do here.

At the moment of this writing, there are some limitations to this technique.
In particular, strings passed to a hub cannot exceed a limit in size whose
value might depend on the transport strategy. Inline images can easily
exceed this limitation, and therefore, before taking architectural decisions
on this feature, you should carefully verify its limitations.

4.	 We then need to handle the click events on the map, which are used to mark
where a pet got lost:
 google.maps.event.addListener(map, 'click',
 function (me) {
 if (!params.adding) return;

 pets.server.lost(params.name,
 me.latLng.lat(),me.latLng.lng(),
 params.image);

Chapter 8

239

 params.adding = false;

 $('#photo').empty();
 $('#lost-panel-photo').toggle();
 $('#lost-panel-location').toggle();
 });

All the details that have been collected about the lost pet so far are sent to the
PetsFinderHub, including a string that contains the Base64-encoded image.

5.	 We are ready to define SignalR's callbacks, starting from the one used to notify a
new sighting:
 pets.client.pet = function (lost) {
 if (locations[lost.Id]) {
 $.each(locations[lost.Id].markers,
 function(mi, m) { m.setMap(null); });
 }
 locations[lost.Id] = {
 id: lost.Id, markers: []
 };
 $.each(lost.Locations, function (li, location) {
 var image = new Image();
 image.src = lost.Photo;

 var marker = new google.maps.Marker({
 icon: framed(image, li ? 'green' : 'red'),
 map: map,
 title: lost.name,
 draggable: true,
 position: new google.maps.LatLng(
 location.Where.X, location.Where.Y)
 });
 google.maps.event.addListener(marker,
 'click', function () {
 var m = lost.Name +
 ' was here, time: ' +
 location.When;
 $('#messages')
 .append($('').text(m));
 $('#found').toggle(
 lost.User == params.user);
 params.id = lost.Id;
 });

Building Complex Applications

240

 google.maps.event.addListener(marker,
 'dragend', function(me) {
 pets.server.seen(lost.Id,
 me.latLng.lat(),
 me.latLng.lng());
 });
 locations[lost.Id].markers.push(marker);
 });
 };

For each location provided along the detail of the pet, a new custom marker is
created on the map. The custom marker will contain the picture of the pet, which
was built using the framed() function that we'll see later, and it will allow users to
interact with it in a couple of ways:

�� Click: This interaction will register the current user to receive notifications
about new events regarding the pet whose picture was clicked on. Such
notifications will be listed as text messages on the right-hand side of the
map.

�� Drag-and-drop: A marker can be dragged around on the map and then
dropped on a new position in order to notify a new location where the
corresponding pet was last seen. The drop event will trigger a call towards
the Seen() server-side method.

6.	 The found callback will remove all the markers of the rescued pet from the map:
 pets.client.found = function (id) {
 $.each(locations[id].markers, function (mi, m) {
 m.setMap(null);
 });
 locations[id] = {};
 };

7.	 Finally, we quickly list the helper functions that we used earlier:

 function drop(files) {
 var reader = new FileReader();
 reader.onload = function (event) {
 var image = new Image();
 image.src = event.target.result;
 params.image = resized(image);
 image.src = params.image;
 $('#photo').append(image);
 };
 reader.readAsDataURL(files[0]);
 }

Chapter 8

241

 function resized(img) {
 var canvas = document.createElement('canvas'),
 maxWidth = 180,
 maxHeight = 180,
 size = {
 width: img.width,
 height: img.height
 };
 size = size.width > size.height
 ? size.width > maxWidth
 ? {
 height: Math.round(
 size.height *
 maxWidth / size.width),
 width: maxWidth
 } : size
 : size.height > maxHeight
 ? {
 width: Math.round(
 size.width *
 maxHeight / size.height),
 height: maxHeight
 } : size;

 canvas.width = size.width;
 canvas.height = size.height;
 var ctx = canvas.getContext("2d");
 ctx.drawImage(img, 0, 0, size.width, size.height);
 return canvas.toDataURL("image/jpeg", 0.7);
 }
 function framed(image, color) {
 var canvas = document.createElement('canvas'),
 size = {
 width: image.width / 2 + 20,
 height: image.height / 2 + 20
 };

 canvas.width = size.width;
 canvas.height = size.height;
 var ctx = canvas.getContext("2d");

 ctx.beginPath();
 ctx.fillStyle = color;
 ctx.rect(0, 0, size.width, size.height);

Building Complex Applications

242

 ctx.fill();
 ctx.drawImage(
 image, 10, 10,
 size.width - 20, size.height - 20);

 ctx.fillStyle = "yellow";
 ctx.beginPath();
 ctx.moveTo(size.width / 2, size.height);
 ctx.lineTo(size.width / 2 + 7, size.height - 20);
 ctx.lineTo(size.width / 2 - 7, size.height - 20);
 ctx.closePath();
 ctx.fill();

 return canvas.toDataURL("image/jpeg", 0.7);
 }

The drop() function is interesting because it uses the new HTML5 FileReader API
to read the content of the image file dropped onto the div element named photo.
The resized() and framed() functions leverage the Base64-encoded image
format and the canvas capabilities to process the pictures in order to both send
them to PetsFinderHub on the server and use them to create custom map markers
on the client.

We are done and are now ready to test the application by building the project and opening
the index.html page in multiple windows. From each of these windows, we can log in to
the system and use the simple submission wizard to notify about a lost pet. We can drag-
and-drop markers around to let the application know about the new positions, and the owner
of the pet can eventually declare the pet as found. This way, its markers will be removed. All
these actions are constantly propagated to every connected map in real time. Clicking on a
marker will subscribe the user to text messages that alert about a new sighting related to the
corresponding pet.

Implementing a custom backplane
This recipe will be slightly different from the other ones used in this chapter. We'll not show
you any fancy application; instead, we will demonstrate how we can build a brand new custom
backplane and hook it into SignalR's pipeline.

The idea of a backplane is to support SignalR's broadcasting feature in scenarios where
we need to scale out the broadcast over multiple servers. We've already described the
backplanes made available out of the box with SignalR, but here we show you how we can
create our own backplane to distribute messages on top of a broadcasting system that we
should know very well by now SignalR itself!

Chapter 8

243

As explained in Chapter 7, Analyzing Advanced Scenarios, a backplane has to support several
instances of the same SignalR server, and it has to redistribute every outgoing message from
one of those instances to every server that it supports. This mechanism makes message
broadcasting work well even behind a load balancer, regardless of which concrete server
a client is connected to. In the end, what a backplane has to do is actually very similar to
what SignalR has been created for: broadcasting messages. This is why SignalR looks like a
realistic candidate for a backplane.

Such a backplane could be a good fit in the cases where speed, and not resiliency, is the most
important feature that we need from our backplane. Whenever our frontend servers have
to bear a relevant total traffic but the portion generated by SignalR is relatively small, such
a backplane could be an option, and we would be confident that we are not just moving the
problem as is on a different server. That said, this backplane should be seen as an exercise
and not as a solution, as is the case with other recipes in this book. This is an interesting idea
to develop in order to build a solid and production-ready component.

The following are the SignalR features that we'll leverage:

ff The .NET client

ff Calling methods on a hub from the client

ff Triggering client-side callbacks from the server

ff Registering new components into the hub's pipeline

ff The ScaleoutMessageBus component as the base class of our brand
new backplane

Getting ready
Our sample will consist of the following three different projects:

ff Recipe51: This is a simple SignalR-based sample web application that we want to
scale out. We'll need to create a new empty web application for this one.

ff Recipe51.Backplane: This is a generic SignalR-based broadcasting web application
that we can use to publish a stream of bytes that we want to redistribute across
frontend servers. We'll need to create a new empty web application for this one.

ff Recipe51.SignalRBackplaneMessageBus: This is a class library that contains
reusable components that can be used from any frontend application in order to
connect to our SignalR's backplane. We'll need to create a new class library project
for this one.

Building Complex Applications

244

How to do it…
Let's describe the three projects in the same order in which we listed them previously.

Recipe51 is just a target sample application that we want to scale out. We need to add a
reference to the Microsoft.AspNet.SignalR NuGet package in order to have everything
that we need in order to use SignalR.

The actual details of this application are not so important; any code would do. You might
either want to add a basic EchoHub with some dummy method, a client page that uses it, and
a Startup class with a standard bootstrap sequence, or, you might get some inspiration from
any previously written sample application. You might even directly reuse one of these; it's not
relevant. When the backplane code will be ready, we'll come back to this project to make use
of it from the Startup class.

The second project is called Recipe51.Backplane, and it's the actual implementation of
the backplane system. Again, we need to add the Microsoft.AspNet.SignalR NuGet
package, and after that, we'll add a hub called BackplaneHub and a Startup class with a
standard bootstrap sequence.

The code of our BackplaneHub will have to expose a couple of methods; the first one will
receive an array of bytes and will broadcast it to every connected client, the second one will
generate a unique numeric identifier each time it's called. Let's take a look at it:

using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace Recipe51.Backplane
{
 [HubName("backplane")]
 public class BackplaneHub : Hub
 {
 private static long _id = 0;
 private static readonly object Locker = new object();

 public void Publish(byte[] message)
 {
 Clients.All.Broadcast(message);
 }

 public long GetId()
 {
 lock (Locker)
 {
 return ++_id;
 }
 }
 }
}

Chapter 8

245

There is nothing special to be explained; we just notice the Broadcast callback triggered
on the Clients.All member. We handle the generation of unique identifiers with a static
member and a critical section; we are assuming that this backplane will run on a single
instance, and therefore, such a strategy will be good enough for our sample. Everything
else is trivial, and it reaches its goal of blindly redistributing every received message to any
connected observer, which is what a backplane is supposed to do.

We are ready to discuss the third and last project of this recipe, which is its real
core, Recipe51.SignalRBackplaneMessageBus. This assembly will contain the
implementation of IMessageBus, which will allow our client project to use the backplane that
we previously prepared.

Writing the actual (and simplified) backplane system was easy, but writing a sound
implementation of IMessageBus is more difficult. This is why SignalR offers us several useful
starting points to make things simpler. Let's proceed with the following steps:

1.	 We start by adding a class called SignalRBackplaneMessage to the project. Its
goal is to represent a scaleout message by exposing a couple of fields that contain
a unique identifier and the actual body of the message:
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.AspNet.SignalR.Messaging;

namespace Recipe51.SignalRBackplaneMessageBus
{
 public class SignalRBackplaneMessage
 {
 public ulong Id { get; private set; }
 public ScaleoutMessage ScaleoutMessage
 { get; private set; }

 ...
 }
}

2.	 The SignalRBackplaneMessage class will need to be serialized and de-serialized;
therefore, we add a couple of static helper methods to handle this concern. These
methods will use byte arrays, standard .NET types, and code usually involved in these
kind of operations:
 public static byte[] ToBytes(
 long id, IList<Message> messages)
 {
 if (messages == null)
 {

Building Complex Applications

246

 throw new
 ArgumentNullException("messages");
 }

 using (var ms = new MemoryStream())
 {
 var binaryWriter = new BinaryWriter(ms);

 var scaleoutMessage = new
 ScaleoutMessage(messages);
 var buffer = scaleoutMessage.ToBytes();

 binaryWriter.Write(id);
 binaryWriter.Write(buffer.Length);
 binaryWriter.Write(buffer);

 return ms.ToArray();
 }
 }

 public static SignalRBackplaneMessage FromBytes(
 byte[] data)
 {
 using (var stream = new MemoryStream(data))
 {
 var binaryReader = new
 BinaryReader(stream);
 var id = (ulong)binaryReader.ReadInt64();
 var count = binaryReader.ReadInt32();
 var buffer = binaryReader.ReadBytes(count);

 return new SignalRBackplaneMessage
 {
 Id = id,
 ScaleoutMessage =
 ScaleoutMessage.FromBytes(buffer)
 };
 }
 }

3.	 The second class of this library is SignalRBackplaneConfiguration, which will
be used to represent the configuration details that we'll need in order to initialize our
backplane:
 public class SignalRBackplaneConfiguration :
 ScaleoutConfiguration
 {
 public string EndpointAddress { get; set; }
 }

Chapter 8

247

We derive it from ScaleoutConfiguration to easily expose what's usually
needed while configuring scale-out scenarios, and we add a string property called
EndpointAddress to represent the address of the backplane that we want to
connect to.

4.	 The real heart of a backplane is its IMessageBus implementation, which we call
SignalRBackplaneMessageBus. In order to simplify a task that could be daunting,
SignalR exposes a base class called ScaleoutMessageBus, which we'll be using
here. The following is its skeleton:
using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Client;
using Microsoft.AspNet.SignalR.Messaging;

namespace Recipe51.SignalRBackplaneMessageBus
{
 class SignalRBackplaneMessageBus : ScaleoutMessageBus
 {
 private readonly HubConnection _connection;
 private readonly IHubProxy _hub;

 ...
 }
}

Once instantiated, a message bus will have to keep a connection towards the
actual backplane system; in this case, this is represented by one reference to
HubConnection and one to IHubProxy, both pointing to our SignalR-based
backplane.

5.	 Let's add a constructor for our type, shown as follows:
 public SignalRBackplaneMessageBus(
 IDependencyResolver dependencyResolver,
 SignalRBackplaneConfiguration configuration)
 : base(dependencyResolver, configuration)
 {
 _connection =
 new HubConnection(
 configuration.EndpointAddress);

 _hub = _connection.CreateHubProxy("backplane");

Building Complex Applications

248

 _hub.On<byte[]>("Broadcast", m =>
 {
 var message =
 SignalRBackplaneMessage.FromBytes(m);
 OnReceived(0,
 message.Id, message.ScaleoutMessage);
 });

 _connection.Start().Wait();
 }

The ScaleoutMessageBus base class does not have a default constructor, and
therefore, we have to adapt to what's available. We declare two arguments of type
IDependencyResolver and SignalRBackplaneConfiguration because both
are allowed to be passed to the base class constructor; in fact, the latter works too,
because it inherits from ScaleoutConfiguration.

What we do in the constructor is simple but vital for a fully working message bus:

�� We first create a HubConnection that points to the right URL that comes
from the configuration.

�� We create a hub proxy for backplane, which is the friendly name of
BackplaneHub.

�� We declare a callback on it called Broadcast, which matches the name
of the callback that the backplane system is calling for each message
it receives. The callback receives a serialized message, which is first
unpacked using the FromBytes helper method and is then forwarded to
the OnReceived() method that is inherited from ScaleoutMessageBus,
whose implementation does what's needed to actually trigger the necessary
calls on the target hub or persistent connection.

�� We finally start the connection and wait for it to be established before exiting
the constructor.

6.	 We're almost done; we just need to override the two available overloads of the
Send() method to define how to forward any incoming messages to the backplane,
shown as follows:
 protected override Task Send(
 int streamIndex, IList<Message> messages)
 {
 return Send(messages);
 }

 protected override Task Send(
 IList<Message> messages)

Chapter 8

249

 {
 if (_connection.State !=
 ConnectionState.Connected)
 return Task.FromResult(false);

 var newId = _hub.Invoke<long>("GetId").Result;

 var data = SignalRBackplaneMessage
 .ToBytes(newId, messages);

 return _hub.Invoke("Publish", data);
 }

The first override is simply forwarded to the second one because, in our simplified
implementation, we deal with just one logical stream of messages. The second
override returns a completed task whenever a message comes in when no
connection to the backplane is available. If that's not the case, it first asks the
backplane for a new unique ID, which is then used to generate a new backplane
message along with the list of incoming messages. The task that results from the
asynchronous invocation of the Publish() method on the remote hub is then
returned to the caller.

7.	 The last missing bits are needed to wire our new message hub into SignalR's pipeline:

using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Messaging;

namespace Recipe51.SignalRBackplaneMessageBus
{
 public static class DependencyResolverExtensions
 {
 public static void UseSignalRBackplane(
 this IDependencyResolver resolver,
 string endpointAddress)
 {
 resolver.UseSignalRBackplane(
 new SignalRBackplaneConfiguration
 {
 EndpointAddress = endpointAddress
 });
 }

 public static void UseSignalRBackplane(
 this IDependencyResolver resolver,
 SignalRBackplaneConfiguration configuration)

Building Complex Applications

250

 {
 resolver.Register(
 typeof(IMessageBus),
 () => new SignalRBackplaneMessageBus(
 resolver,
 configuration));
 }
 }
}

These extension methods for IDependencyResolver allow us to register a factory
method to inject an instance of our SignalRBackplaneMessageBus into SignalR's
pipeline as the IMessageBus to be used. We just need to call one of them from the
Configure() method of the Startup class used in the application that we want to
scale out.

Our projects are almost ready to be tested. At this point, we just need to reference
Recipe51.SignalRBackplaneMessageBus from our sample application, Recipe51, and
inside the Startup class, call the UseSignalRBackplane() extension method to plug the
new backplane into it, shown as follows:

 GlobalHost.DependencyResolver
 .UseSignalRBackplane("http://localhost:7526");

The URL that we are specifying points to our Recipe51.Backplane application; this means
that now Recipe51 uses it to deliver SignalR messages. If we launch it now, we'll see that
whatever implementation it contains works as expected.

Now, we can extend the test by having Recipe51 hosted by multiple IIS Express instances
running on different ports (as we repeatedly did in Chapter 7, Analyzing Advanced Scenarios,
when talking about backplanes). This way, we'll appreciate how clients connected to different
servers will still be able to exchange messages as if they were connected to the same
endpoint, thanks to the backplane that we hooked into it.

There's more…
Of course, building a production-ready backplane is not an easy task, and our implementation
does not have such a level of reliability. There are issues to be handled; for example, how to
recover missing messages in case of a disconnection and reconnection, which might need
better strategies. Nevertheless, we just demonstrated that it's doable, and the source code
available from SignalR's repository on GitHub is a huge source of ideas in this area too. Check
it out at https://github.com/SignalR/SignalR.

Chapter 8

251

Implementing a real-time error
notification system

A real-time notification system is often useful, if not necessary, to handle unexpected events
in order to make humans or their automated counterparts aware of what's going on while
things happen. An unhandled exception could well be one of those scenarios where such
a system could become interesting. In this recipe, we'll see how we can set up a sample
application so that it can intercept unhandled exceptions in a single central place and post
them to a monitoring system that will then use SignalR to broadcast the details about the
errors it receives to its users.

We will not need many features from SignalR; actually, the only feature that we'll really need
is the capability to invoke a client-side callback from outside any hub's method, thanks to the
hub context.

Getting ready
Our sample will consist of the following two different projects:

ff Recipe52: This is a simple and traditional sample web application with just one page
that raises an exception. In this application, we'll add a global exception handler, and
from there, we'll collect information about the error to post to the Recipe52.Errors
web application. We'll need to create a new empty web application to build this one.

ff Recipe52.Errors: A generic SignalR-based web application that we can use to
publish errors that come from monitored applications. Also, in this case, we'll start by
creating an empty web application.

How to do it…
Let's describe the two projects in the same order in which we listed them previously.

Recipe52 is just a sample application that generates errors; let's quickly illustrate the steps
that are needed to build it:

1.	 We start by adding a single page called index.cshtml, which will always throw an
exception:
@using System
@{
 throw new Exception("Something went wrong!");
}

Building Complex Applications

252

We use a Razor Web Page (.cshtml) in order to easily trigger a server-side
exception; therefore, we need to enable Web Pages support by adding the following
configuration key to our web.config file:

 <appSettings>
 <add key="webpages:Version" value="2.0" />
 </appSettings>

2.	 We then add a global.asax file, removing all the plumbing code added by the
Visual Studio template except for the Application_Error() method, which will
be triggered every time an unhandled exception will be thrown on the application:
 protected void Application_Error(
 object sender, EventArgs e)
 {
 HttpContext.Current.Error.Post(
 "Recipe52",
 new Uri(
 "http://localhost:15852/PostError.axd"));
 }

We are invoking an extension method called Post() on the Error member of
HttpContext.Current, which contains the last exception thrown on the current
request's thread. The goal of this method is to provide a way to post information
about the error to an external application. The method is supplied with a string that
contains the name of the throwing application and a target URL to which the details
of the error will be posted.

3.	 Of course, the Post() method we just used does not exist yet, so let's define it:

 public static class ExceptionExtensions
 {
 public static void Post(this Exception error,
 string application, Uri destination)
 {
 using (var wc = new WebClient())
 {
 var descriptor = new NameValueCollection
 {
 { "Application", application },
 { "Error", error.Message }
 };

 try
 {

Chapter 8

253

 wc.UploadValues(destination,
 descriptor);
 }
 finally
 {

 }
 }
 }
 }

Its implementation prepares a collection of key-value pairs that contain the name of
the application received as a parameter and the Message property of the exception
the method is invoked on. The collection is then posted to the destination URL using
the WebClient type and its UploadValues() method.

The source of errors is ready. Of course, in a real-world scenario, the Post() method would
probably belong to an external and reusable library, and maybe, it would post errors in an
asynchronous way, but the way we did this is enough to illustrate the concept.

Let's now move on to Recipe52.Errors, the actual monitoring application where, of course,
SignalR is a necessary component. As usual, we add it through the Microsoft.AspNet.
SignalR NuGet package before starting to add the components of the application. Perform
the following steps to do so:

1.	 We start by adding a persistent connection called ErrorsConnection, whose
content will be extremely simple, as shown:
 public class ErrorsConnection : PersistentConnection
 {
 }

The client page of our monitoring application will connect here, and then it will have
the receive() method of the connection object called whenever the server will
send data to them. We'll be using ErrorsConnection on the server side shortly.

We could have used a simple Hub and, if the monitoring application would need
more features, it would've been the most sensible option. However, in this case,
the implementation is so simple that we decided to use a persistent connection to
illustrate its usage in a real-world sample.

2.	 We also need, as usual, a Startup class that is generated using the corresponding
template and whose implementation is a simple bootstrap sequence for persistent
connection (exposed on the "/errors" endpoint), as shown in the following
code snippet:
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR<ErrorsConnection>("/errors");
 }

Building Complex Applications

254

3.	 The interesting code of this recipe happens in an ASP.NET Handler called Errors,
which we are going to add to the project using the template Visual Studio provides for
its creation, as shown in the following screenshot:

This handler can be targeted by any external application to post information about
their errors to the monitoring system. We just need to expose it by registering it in the
web.config file:

 <system.webServer>
 <handlers>
 <add name="PostError" verb="POST"
 path="PostError.axd"
 type="Recipe52.Errors.Errors" />
 </handlers>
 </system.webServer>

This new entry in the handlers section declares that an instance of our Errors
type will be invoked any time a client reaches an endpoint called PostError.axd
with an HTTP POST request.

4.	 After having seen how to create and wire the new handler, let's take a look at its
code, which is as follows:

 public class Errors : IHttpHandler
 {
 public bool IsReusable
 {

Chapter 8

255

 get { return true; }
 }

 public void ProcessRequest(HttpContext context)
 {
 var post = context.Request.Params;

 var application = post["Application"];
 var error = post["Error"];

 var connection = GlobalHost.ConnectionManager
 .GetConnectionContext<ErrorsConnection>()
 .Connection;
 connection.Send(
 new ConnectionMessage(
 connection.DefaultSignal,
 new
 {
 application, error
 }));
 }
 }

Just like any other ASP.NET Handler, Errors implements IHttpHandler; therefore,
it has to provide a property called IsReusable, which, in our case, can simply return
true and a method called ProcessRequest, which will be invoked every time an
HTTP request reaches it. The content of ProcessRequest is quite simple and is
as follows:

�� It first extracts the two fields that we are expecting in the POST payload from
any client that contacts these handlers: Application and Error.

�� Then, it gets an instance of ConnectionManager from GlobalHost,
and from there, it retrieves a connection context related to our
ErrorsConnection type, which is eventually used to send data to every
connected client in the form of an anonymous type instance that contains
the application name and the error message that comes from the posting
application.

We're almost done; now, we just need a simple client page that will receive all incoming errors
posted to our monitoring application in real time.

Building Complex Applications

256

We create a page called index.html and add the following content:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <script src="Scripts/jquery-2.1.0.js"></script>
 <script src="Scripts/jquery.signalR-2.0.2.js"></script>
 <script>

 $(function() {

 $.connection('errors')
 .received(
 function (e) {
 var message =
 e.application +
 ' failed with error: ' +
 e.error;
 $('#errors')
 .prepend($('').text(
 message));
 })
 .start();

 });

 </script>
</head>
<body>
 <ul id="errors">
</body>
</html>

The code is very simple; it just contains the necessary JavaScript references, an unordered
list in the body section of the page, and a piece of script to open a SignalR connection
after having registered a receive callback that will be invoked for every error descriptor
broadcasted by the server-side Errors handler. The callback will build a simple string with
some detail about the error, and it will prepend it to the unordered list on the page.

In order to test the monitoring application we have to build the Recipe52.Errors project,
launch it, and then navigate to its index.html page. While we keep that browser instance
around, we build and launch Recipe52, we navigate to its index.cshtml page, and we
observe the Yellow Screen Of Death (YSOD) that appears because of the exception it raises.
At the same time, on the browser window we opened earlier pointing at the Recipe52.
Errors application, we should see a message describing the same error and displayed at the
same time the error happens on Recipe52.

Chapter 8

257

There's more…
With this sample, you should have a general idea about how to build such a monitoring
system to notify errors in real time, but it's also true that there are a lot of details to take care
of if you want to provide a full-fledged solution to the problem. In case you are interested,
a similar solution already exists and is basically built on the same ideas that we just saw.
It's called ElmahR (http://elmahr.apphb.com/), and it's a real-time error-monitoring
dashboard that can be configured to display live information about errors that happen on
multiple monitored applications. The potential sources of errors just have to use ELMAH
(https://code.google.com/p/elmah/), a very well known library to intercept unhandled
exceptions and plug into it a module exposed by ElmahR.Elmah, which belongs to the ElmahR
project. ELMAH and ElmahR.Elmah are both available on NuGet, and together, they play the
same role of both the Error handler and the Post extension method from Recipe52, while
Recipe52.Errors corresponds to the ElmahR dashboard. For more details, you can check
its source code at https://bitbucket.org/wasp/elmahr/wiki/Home.

A
Creating Web Projects

In this appendix, we will cover the following topics:

ff Creating an empty ASP.NET web application

ff Creating an ASP.NET web forms application

ff Creating an ASP.NET MVC application

ff Creating an MVC controller and a related view

ff Creating an ASP.NET website

Introduction
Throughout the course of this book, we've been using various types of ASP.NET projects that
need a few steps to be correctly created in Visual Studio. In this appendix, we'll briefly review
the steps to create each one of them in case you are not yet used to it.

Creating an empty ASP.NET web application
To create an empty ASP.NET web application, ensure you have Visual Studio 2013 open; you
might want to create an empty solution or open an existing one where we can put the project
that we'll create. Let's prepare the ground using the following steps:

1.	 Create a new web application by navigating to File | New Project.

2.	 Select Web after navigating to Installed | Visual C#.

Creating Web Projects

260

3.	 On the central panel of the dialog box, select ASP.NET Web Application, give it a
name, and click on OK, as shown in the following screenshot:

4.	 On the following screen, select the Empty application template, leave all the
available options unselected, and then click on Create Project, as shown in the
following screenshot:

Appendix A

261

Creating an ASP.NET web forms application
To create an ASP.NET web forms application, ensure you have Visual Studio 2013 open; you
might want to create an empty solution or open an existing one wherein to put the project we'll
create. Let's prepare the ground by performing the following steps:

1.	 Create a new web application by navigating to File | New Project.

2.	 Select Web after navigating to Installed | Visual C#.

3.	 On the central panel of the dialog box, select ASP.NET Web Application, give it a
name, and click on OK, as shown in the following screenshot:

Creating Web Projects

262

4.	 On the following screen, select the Empty application template, activate the
Web Forms option, and then click on Create Project, as shown in the
following screenshot:

Creating an ASP.NET MVC application
To create an ASP.NET MVC application, ensure you have Visual Studio 2013 open; you might
want to create an empty solution or open an existing one wherein to put the project we'll
create. Perform the following steps:

1.	 Create a new web application by navigating to File | New Project.

2.	 Select Web after navigating to Installed | Visual C#.

3.	 On the central panel of the dialog box, select ASP.NET Web Application, give it a
name, and click on OK, as shown in the following screenshot:

Appendix A

263

4.	 On the following screen, select the Empty application template, activate the MVC
option, and then click on Create Project, as shown in the following screenshot:

Creating Web Projects

264

Creating an MVC controller and a
related view

Let's add a default controller by opening the context menu on our MVC web application and
then navigating to Add | Scaffold…. From there, let's select the MVC 5 Controller – Empty
option and give it a name, as shown in the following screenshot:

Our controller will have an Index() method; for our recipes, we'll just need to add a view
for that method in the same way we would do for every other controller action (we'll name it
index.cshtml), as shown in the following screenshot:

Visual Studio will create the specified file with some basic HTML content.

Appendix A

265

Creating an ASP.NET website
To create an ASP.NET website, ensure you have Visual Studio 2013 open; you might want
to create an empty solution or open an existing one wherein to put the project we'll create.
Perform the following steps:

1.	 Create a new website by navigating to File | New Web Site.

2.	 Select Web after navigating to Installed | Visual C#.

3.	 On the central panel of the dialog box, select ASP.NET Empty Web Site, give it a
name, and click on OK, as shown in the following screenshot:

Visual Studio will create the specified file with some basic HTML content.

B
Insights

In this appendix, we will cover the following topics:

ff Transport strategies

ff Asynchronous programming and SignalR

Transport strategies
As briefly mentioned a couple of times in this book, when a connection is started, SignalR
chooses a transport strategy to provide the logical persistent connection on top of which every
feature we described is made available. SignalR decides which strategy to use according to
the environment it runs on. The connection process starts with a traditional HTTP connection,
and from there the available options are checked in sequence until the best available option
is determined and used.

The first two strategies checked are based on HTML5 and are as follows:

ff WebSocket: This is an HTML5-related protocol that provides full duplex
communication channels over a single TCP connection. It provides the most complete
set of features and the best performance, but has strict requirements. This option
is available in modern web browsers only, and requires Windows Server 2012 or
Windows 8, and .NET Framework 4.5. For more details about WebSocket, you can
refer to http://www.websocket.org.

ff Server Sent Events: This strategy is based on EventsSource HTML5 support, which
allows a server to stream messages to connected clients. An EventSource instance
can be created from JavaScript, making it target a remote endpoint that can then
stream messages on the opened connection. Event handlers can be defined on the
EventSource instance to receive the messages pushed by the server. For more
details, you can check out http://www.w3.org/TR/eventsource.

Insights

268

When HTML5 is not available, two more strategies, commonly known as Comet, are
checked. More details about the Comet web application model are available at http://
en.wikipedia.org/wiki/Comet_(programming). The two strategies are as follows:

ff Forever Frame: This is a strategy based on the use of a hidden iframe where the
Chunked Encoding HTTP feature is used to send an indefinitely long stream of
bytes. It allows a server to start sending a response before knowing its total length,
therefore supporting incremental delivery of content.

ff Long Polling: This is a basic technique that involves opening a connection
and keeping it artificially alive to create the illusion of a persistent connection.
Asynchronous requests are initiated and kept open until data is available to be sent
to the client, or a timeout occurs. In both cases, a new connection is immediately
opened when the previous one ends; that's why the term polling can be used to
describe this technique. This is a generic description, but there are actually several
ways to implement this strategy.

In Chapter 3, Using the JavaScript Hubs Client API, and Chapter 4, Using the .NET Hubs
Client API, we illustrated the fact that developers can alter the probing sequence, making it
possible to have SignalR make different choices. That said, most of the times this is not the
recommended approach because the sequence is already optimized to guarantee the best
features and performance available for a given environment. What's important here is to
actually understand how and why a specific strategy is chosen, and then how such a strategy
works so that you might be able to diagnose and fix issues you might find in specific scenarios.

More details about connection management in general, and about how that relates to specific
transport strategies, can be found at http://www.asp.net/signalr/overview/
signalr-20/hubs-api/handling-connection-lifetime-events.

Asynchronous programming and SignalR
This book has no ambition of being an architectural one, and it does not go too deep into
technological issues because those would take a lot of space and distract the content from its
direct goal of delivering straightforward solutions to common problems. Nevertheless, the fully
asynchronous nature of SignalR deserves a couple of words and some reference material for
those interested in digging into it.

The trend in programming in the last few years has been pretty clear: asynchronicity rules.
Whether you are building a modern and reactive UI, a database-intensive backend, or a
distributed system, you want to optimize resources, and the first logical choice to achieve
that is avoid holding them if you don't use them. In other words, you never want any code to
be stuck waiting for something else, because blocked code does nothing while still holding
precious computational power that could be used for good in different ways.

Appendix B

269

This brings complexity, because it's clearly harder to know when a result is ready if we do not
wait for it anymore. Computer scientists have been working on these problems for a long time,
but it's just recently that mainstream platforms started supplying programming models more
sophisticated than classical callbacks, which do their work fine but inevitably lead to intricate
and unreadable code.

Nowadays, we have easy access to several better approaches that allow us to manage
asynchronous code better. One of those is the idea of a promise, or future value. This is an
object that represents a value that will be ready at some point in the future, and its availability
will happen asynchronously with respect to the logical thread of code that has a reference
on the promise itself. The great advantage of this model is the fact that promises can be
composed, leading to more natural and readable programs that end up looking sequential
even if they are totally asynchronous.

JavaScript does not support promises natively, but there are several libraries implementing
the pattern. One of those is the jQuery Deferred Object, which we have mentioned
here because it's the one used by SignalR. Another quite popular one is the Q library
(https://github.com/kriskowal/q).

On the .NET side, the Task API, available since Version 4.0, is an implementation of the
promise pattern that allows the usage of the Task-based Asynchronous Pattern (TAP), and
the async/await syntax from C# 5.0 greatly simplifies the composition of promises. What's
important here is the fact that most of the networking infrastructure available with .NET is
fully asynchronous and implements TAP.

SignalR, on the one hand, leverages and embraces such support from the networking
infrastructure, and on the other exposes itself the very same way, making sure things are
done the most efficient way possible behind the scenes while clients are enforced to do
the same by the model. On the server, methods are invoked when corresponding low-level
messages become asynchronously available, resulting in a highly scalable messaging
framework. On the client, the connection and hub's proxy objects expose methods that return
composable promises, leading developers to write clean and efficient code.

This is an incredibly vast topic we just wanted to briefly introduce; you can find a lot of material
about it on the Web for your investigations. The following are a few helpful links:

ff Futures and promises: http://en.wikipedia.org/wiki/Futures_and_
promises

ff jQuery Deferred Object: http://api.jquery.com/category/
deferred-object/

ff Task-based Asynchronous Pattern: http://msdn.microsoft.com/en-us/
library/hh873175(v=vs.110).aspx

Insights

270

ff Continuation Passing Style and Asynchrony in C# (blog post series by Eric Lippert):

�� http://blogs.msdn.com/b/ericlippert/archive/2010/10/21/
continuation-passing-style-revisited-part-one.aspx

�� http://blogs.msdn.com/b/ericlippert/archive/2010/10/28/
asynchrony-in-c-5-part-one.aspx

Index
Symbols
$.hubConnection() function 167
.NET application

SignalR Hub, connecting from 20-23
.NET Hubs Client API

client-side method, adding on proxy 90-92
client-side method, calling from server 90-92
connection transport strategies, setting up

86-88
errors, managing across complex asynchro-

nous workflow 93-95
Hub connection, starting 83-85
server-side Hub method, calling 88, 89
using 81, 82

A
Access Connection String (ACS) 156
ASP.NET Handler 254
ASP.NET project

MVC application 8
SignalR Hub, adding to 8-14
Web Forms application 8
website 8

ASP.NET web forms application
creating 261-263

ASP.NET website
creating 265

asynchronous programming 268
Authentication process 139
AuthorizeAttribute 141
AuthorizeRequest() method 145
Azure

used, for scaling out 152-159

B
broadcasting, Hub

to clients except specified ones 47
to clients in a group except caller 51
to connected clients 34
to connected clients except caller 45

BuildIncoming() method 185
BuildOutgoing() method 185

C
client-side method, JavaScript Hubs Client API

adding, on proxy 71, 73
calling, from server 71-73

client-side method, .NET Hubs Client API
adding, on proxy 90-92
calling, from server 90-92

complex applications
custom backplane, implementing 242
pets finder application, implementing 227
real-time error notification system,

implementing 251
real-time map of flying airplanes,

implementing 212, 213
room-based chat application,

implementing 194
shared whiteboard, implementing 204

complex asynchronous workflow, JavaScript
Hubs Client API

errors, managing 74-78
complex asynchronous workflow, .NET Hubs

Client API
errors, managing 93-96

Configuration() method 12

272

connections
connection lifetime, controlling 119-125
connection transient state, handling 125-129
cross-domain connection,

establishing 129-133
connection transient state

handling 125-129
connection transport strategies

Forever Frame 66
connection transport strategies, JavaScript

Hubs Client API
Long Polling 66
Server-Sent Events 66
setting up 66, 67
WebSocket 66

connection transport strategies, .NET Hubs
Client API

Long Polling 86
Server-Sent Events 86
setting up 86-88
WebSocket 86

console application 146
Console.Readline() method 23
createHubProxy() method 167
cross-domain connection

establishing 129-133
cross-origin requests 148
Cross-Origin Resource Sharing (CORS) 130
custom backplane

implementing 242-250
Recipe51 243
Recipe51.Backplane 243
Recipe51.SignalRBackplaneMessageBus 243

D
dependency injection

used, for replacing default behavior 177-181
dependency injection (advanced approach)

about 173
implementing 173-176

dependency injection (simple approach)
about 168
implementing 168-172

Disconnected event 121
DisconnectTimeout value 121
Document Object Model (DOM) 194

done() method 168
drop() function 242

E
EchoHub class 142
ELMAH

URL 257
ElmahR

URL 257
ElmahR.Elmah

URL 257
empty ASP.NET web application

creating 259, 260
enumerable 218
errors

handling 188-191

F
Forever Frame strategy 66, 268

G
GetHubContext() method 57
GetUserId() method 179
Google Maps JavaScript API 214
greetings() method 31, 57, 167

H
highly optimized application protocol 107
Hub. See SignalR Hub
Hub connection, JavaScript Hubs Client API

starting 62-65
Hub connection, .NET Hubs Client API

starting 83-85
hub pipeline

extending 181-187

I
IAssemblyLocator service 177
IIS Express instances 250
IJavaScriptProxyGenerator service 177
IMessageBus service 177
inline Base64-encoded representation 238
Inversion of Control (IoC) 58

273

J
JabbR

URL 203
JavaScript client

SignalR Hub, connecting from 18, 19
JavaScript Hubs Client API

client-side method, adding on proxy 71-73
client-side method, calling from server 71-74
connection transport strategies,

setting up 66, 67
errors, managing across complex

asynchronous workflow 74-78
Hub connection, starting 62-65
server-side Hub method, calling 68-71

JavaScript proxies
static files, generating for 136

jQuery Deferred Object 269
JSON.Net library 111
JsonProperty attribute 150
JSONP support

enabling 130

K
KeepAlive value 121

L
lifetime, of connection

controlling 119-125
Linq 218
Login() method 199
Logout() method 199
Long Polling technique 66, 268

M
MapSignalR() method 12, 156, 174
maxConcurrentRequestsPerCPu

parameter 152
messages, Persistent Connection API

exchanging, between server and JavaScript
client 111-114

exchanging, between server and .NET
client 114-117

sending, from server 104-107
sending, to server 108-111

messaging systems application 194
MVC controller

creating 264

O
observable 218
OnConnected() method 102, 122
OnDisconnected() method 122
on() method 167
OnReceived() method 110
OnReconnected() method 122
Open Web Interface (OWIN) 12
Owin hosting infrastructure

URL 146

P
Persistent Connection API

about 99
adding 100-103
messages, exchanging between server and

JavaScript client 111-113
messages, exchanging between server and

.NET client 114-117
messages, sending from server 104-107
messages, sending to server 108-111
registering 100
requests, authorizing 142-145
working 104

PersistentConnection class 106
persistent cookie 126
pets finder application

implementing 227-242
property bag 125
proxy-less connections

establishing 165-168

R
Razor Web Page 252
real-time error notification system

implementing 251-256
Recipe52 251
Recipe52.Errors 251

real-time map of flying airplanes
implementing 212-227

274

Redis
about 160
used, for scaling out 160-162

Remote Procedure Call (RPC) model 99
requestQueueLimit parameter 152
requests

authorizing, in self-hosting context 146-149
authorizing, on hub 139-142
authorizing, on persistent

connection 142-145
Resolve() method 57
return value, Hub method

using 58-60
room-based chat application

implementing 194-203

S
sayAnything() method 170
SayHello() method 129, 178
scaling out

Azure, used 152-159
Redis, used 160-163
SQL Server, used 163-165

scaling up
performing 150

self-hosting application
SignalR Hub, adding to 14-17

self-hosting context
requests, authorizing 146-149

semantic meaning 108
Server Sent Events 66, 267
server-side Hub method, JavaScript Hubs

Client API
calling 68-71

server-side Hub method, .NET Hubs Client API
calling 88, 89

shared whiteboard application
implementing 204-212

SignalR
about 7
asynchronous programming 268, 269
complex applications, building 193
connections 119
scaling up 150-152
transport strategies 267

SignalRBackplaneMessageBus 245

signalr.exe utility 138
SignalR Hub

adding, to ASP.NET project 8-14
adding, to self-hosting application 14-17
broadcasting, from outside Hub 54-57
broadcasting, to all clients in group except

caller 51-53
broadcasting to, all connected clients 34-36
broadcasting, to clients except specified ones

47-50
broadcasting, to connected clients except

caller 45-47
calling back the caller 30-33
connecting, from JavaScript client 18, 19
connecting, from .NET application 20-23
connection, adding to group 38-41
connection, removing from group 41-44
method, adding 27
method calls, counting 27-29
requests, authorizing 139-142
return value, using 58-60

SQL Server
used, for scaling out 163-165

start() method 168
stateChanged() method 123
static files

generating, for JavaScript proxies 136-138
static Main() method 14
subscribe() method 39, 40, 223

T
Task API 269
Task-based Asynchronous Pattern

(TAP) 32, 269
time 212
ToObservable() extension method 218
Translate() method 171
transport strategies

about 267
Server Sent Events 267
WebSocket 267

275

U
underlying networking protocol 107
unhandled exception 251
unsubscribe() method 44
UploadValues() method 253
UseServiceBus() method 156

W
web projects

ASP.NET MVC application, creating 262, 263
ASP.NET web forms application,

creating 261, 262
ASP.NET website, creating 265
empty ASP.NET web application,

creating 259, 260
MVC controller, creating 264

WebSocket
about 66, 267
URL 267

Windows Authentication host
mechanism 139

Windows Azure SDK
URL 153

Windows Azure Service Bus backplane 153

Y
Yellow Screen Of Death (YSOD) 256

Thank you for buying

SignalR Real-time Application Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

SignalR: Real-time
Application Development
ISBN: 978-1-78216-424-1 Paperback: 124 pages

Utilize real-time functionality in your .NET applications
with ease

1.	 Develop real-time applications across
numerous platforms.

2.	 Create scalable applications that are ready
for cloud deployment.

3.	 Utilize the full potential of SignalR.

ASP.NET 3.5 Application
Architecture and Design
ISBN: 978-1-84719-550-0 Paperback: 260 pages

Build robust, scalable ASP.NET applications quickly
and easily

1.	 Master the architectural options in ASP.NET
to enhance your applications.

2.	 Develop and implement n-tier architecture
to allow you to modify a component without
disturbing the next one.

3.	 Design scalable and maintainable web
applications rapidly.

Please check www.PacktPub.com for information on our titles

ASP.NET Site Performance
Secrets
ISBN: 978-1-84969-068-3 Paperback: 456 pages

Simple and proven techniques to quickly speed up your
ASP.NET web site

1.	 Speed up your ASP.NET website by identifying
performance bottlenecks that hold back your
site's performance and fixing them.

2.	 Tips and tricks for writing faster code and
pinpointing those areas in the code that
matter most, thus saving time and energy.

3.	 Drastically reduce page load times.

Microsoft SQL Azure:
Enterprise Application
Development
ISBN: 978-1-84968-080-6 Paperback: 420 pages

Build enterprise-ready applications and projects with
SQL Azure

1.	 Develop large scale enterprise applications
using Microsoft SQL Azure.

2.	 Understand how to use the various third-party
programs such as DB Artisan, RedGate, ToadSoft,
and so on developed for SQL Azure.

3.	 Master the exhaustive Data migration and Data
Synchronization aspects of SQL Azure.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding the Basics
	Introduction
	Adding a Hub to an ASP.NET project
	Adding a Hub to a self-hosting application
	Connecting to a Hub from a JavaScript client
	Connecting to a Hub from a .NET application

	Chapter 2: Using Hubs
	Introduction
	Adding a method to a Hub and counting the calls to it
	Calling back the caller from a Hub's method
	Broadcasting to all connected clients
	Adding a connection to a group
	Removing a connection from a group
	Broadcasting to all connected clients except the caller
	Broadcasting to all clients except the specified ones
	Broadcasting to all clients in a group except the caller
	Broadcasting from outside a Hub
	Using the return value of a Hub method

	Chapter 3: Using the JavaScript Hubs Client API
	Introduction
	Starting a Hub connection
	Setting up connection transport strategies
	Calling a server-side Hub method
	Adding a client-side method on the proxy and calling it from the server
	Managing errors across a complex asynchronous workflow

	Chapter 4: Using the .NET Hubs Client API
	Introduction
	Starting a Hub connection
	Setting up connection transport strategies
	Calling a server-side Hub method
	Adding a client-side method on the proxy and calling it from the server
	Managing errors across a complex asynchronous workflow

	Chapter 5: Using a Persistent Connection
	Introduction
	Adding and registering a Persistent Connection
	Sending messages from the server
	Sending messages to the server
	Exchanging messages between a server and a JavaScript client
	Exchanging messages between a server and a .NET client

	Chapter 6: Handling Connections
	Introduction
	Controlling the lifetime of a connection
	Handling a connection transient state
	Establishing a cross-domain connection

	Chapter 7: Analyzing Advanced Scenarios
	Introduction
	Generating static files for JavaScript proxies
	Authorizing requests on a Hub
	Authorizing requests on a Persistent Connection
	Authorizing requests in a self-hosting context
	Scaling up
	Scaling out with Azure
	Scaling out with Redis
	Scaling out with SQL Server
	Establishing proxy-less connections
	Introducing dependency injection
(simple approach)
	Introducing dependency injection
(advanced approach)
	Using dependency injection to replace a default behavior
	Extending the Hub pipeline
	Handling errors

	Chapter 8: Building Complex Applications
	Introduction
	Implementing a room-based chat application
	Implementing a shared whiteboard
	Implementing a real-time map of flying airplanes
	Implementing a "pets finder" application
	Implementing a custom backplane
	Implementing a real-time error
notification system

	Appendix A: Creating Web Projects
	Introduction
	Creating an empty ASP.NET web application
	Creating an ASP.NET web forms application
	Creating an ASP.NET MVC application
	Creating an MVC controller and a
related view
	Creating an ASP.NET website

	Appendix B: Insights
	Transport strategies
	Asynchronous programming and SignalR

	Index

