
www.allitebooks.com

http://www.allitebooks.org

Smarter Decisions – The
Intersection of Internet of Things
and Decision Science

Enter the world of Internet of Things with the power of
data science with this highly practical, engaging book

Jojo Moolayil

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Smarter Decisions – The Intersection of
Internet of Things and Decision Science

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1220716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78588-419-1

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author

Jojo Moolayil

Copy Editor

Tasneem Fatehi

Reviewer

Anindita Basak

Project Coordinator

 Shweta H Birwatkar

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Sonali Vernekar

Indexer

Mariammal Chettiyar

Content Development Editor

Sumeet Sawant

Graphics

Disha Haria

Technical Editor

Danish Shaikh

Production Coordinator

Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author
Jojo Moolayil is a data scientist, living in Bengaluru—the silicon valley of India. With over
4 years of industrial experience in Decision Science and IoT, he has worked with industry
leaders on high impact and critical projects across multiple verticals. He is currently
associated with GE, the pioneer and leader in data science for Industrial IoT.

 Jojo was born and raised in Pune, India and graduated from University of Pune with a
major in information technology engineering. With a vision to solve problems at scale, Jojo
found solace in decision science and learnt to solve a variety of problems across multiple
industry verticals early in his career. He started his career with Mu Sigma Inc., the world's
largest pure play analytics provider where he worked with the leaders of many fortune 50
clients. With the passion to solve increasingly complex problems, Jojo touch based with
Internet of Things and found deep interest in the very promising area of consumer and
industrial IoT. One of the early enthusiasts to venture into IoT analytics, Jojo converged his
learnings from decision science to bring the problem solving frameworks and his learnings
from data and decision science to IoT.

 To cement his foundations in industrial IoT and scale the impact of the problem solving
experiments, he joined a fast growing IoT Analytics startup called Flutura based in
Bangalore and headquartered in the valley. Flutura focuses exclusively on Industrial IoT
and specializes in analytics for M2M data. It is with Flutura, where Jojo reinforced his
problem solving skills for M2M and Industrial IoT while working for the world's leading
manufacturing giant and lighting solutions providers. His quest for solving problems at
scale brought the 'product' dimension in him naturally and soon he also ventured into
developing data science products and platforms.

 After a short stint with Flutura, Jojo moved on to work with the leaders of Industrial IoT,
that is, G.E. in Bangalore, where he focused on solving decision science problems for
Industrial IoT use cases. As a part of his role in GE, Jojo also focuses on developing data
science and decision science products and platforms for Industrial IoT.

I would like to sincerely thank my employers Mu Sigma, Flutura and GE for all the
opportunities and learnings I got to explore in decision science and IoT. I would also like
give deep thanks and gratitude to my mentors Mr. Samir Madhavan and Mr. Derick Jose,
without their efforts this book quite possibly would not have happened.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Anindita Basak works as Azure and big data consultant for one of the global software giant
and helps partners/customers to enablement of Azure SaaS solution architecture
development, data platform & analytics guidance implementation. She is an active blogger,
Microsoft Azure forum contributor and consultant as well as speaker. In her 8+ years of
experience lifecycle majorly worked in Microsoft .Net, Azure, Big Data and Analytics.
Earlier in her career, she worked with Microsoft as FTE as well as v-employee for various
internal Azure teams. She recently worked as technical reviewer for the following books
from Packt Publishing: HDInsight Essentials First Edition, HDInsight Essentials Second
Edition, Hadoop Essentials, and Microsoft Tabular Modeling Cookbook.

I would like to thank my mom and dad—Anjana and Ajit Basak—and my loving brother
Aditya. Without your help and encouragement I can't reach the goal of my life.

www.allitebooks.com

http://www.allitebooks.org

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: IoT and Decision Science 8
Understanding the IoT 9

IoT in a real-life scenario 10
Demystifying M2M, IoT, IIoT, and IoE 12
Digging deeper into the logical stack of IoT 15

People 16
Processes 16

Technology 17
Software 17
Protocol 18
Infrastructure 18

Business processes 18
Things 19
Data 19

The problem life cycle 20
The problem landscape 24
The art of problem solving 31

The interdisciplinary approach 32
The problem universe 33

The problem solving framework 34
Summary 39

Chapter 2: Studying the IoT Problem Universe and Designing a Use
Case 40

Connected assets & connected operations 41
The journey of connected things to smart things 43
Connected assets – A real life scenario 44
Connected operations – The next revolution 47

What is Industry 4.0? 47
Defining the business use case 50

Defining the problem 51
Researching and gathering context 52

Gathering context – examining the type of problem 53
Gathering context – research and gather context 53

www.allitebooks.com

http://www.allitebooks.org

[ii]

Research outcome 55
How is detergent manufactured? 55
What are the common issues that arise in the detergent manufacturing process? 55
What kind of machinery is used for the detergent manufacturing process? 56
What do we need to know more about the company, its production environment,
and operations? 57

Prioritize and structure hypotheses based on the availability of data 58
Validating and Improving the hypotheses (iterate over #2 and #3) 59
Assimilate results and render the story 60

Sensing the associated latent problems 61
Designing the heuristic driven hypotheses matrix (HDH) 63
Summary 64

Chapter 3: The What and Why - Using Exploratory Decision Science for
IoT 65

Identifying gold mines in data for decision making 66
Examining data sources for the hypotheses 66
Data surfacing for problem solving 68

End product related information 69
Manufacturing environment information 69
Raw material data 69
Operational data 70
Summarizing the data surfacing activity 78

Feature exploration 78
Understanding the data landscape 80

Domain context for the data 80
Exploring each dimension of the IoT Ecosystem through data
(Univariates) 83

What does the data say? 84
Exploring Previous Product… 89
Summarizing this section 95

Studying relationships 96
So what is correlation? 96
Exploring Stage 1 dimensions 101

Revisiting the DDH matrix 106
Exploratory data analysis 107

So how do we validate our findings? 109
So how does hypothesis testing work? 109
Validating hypotheses – category 1 111
How does the chi-squared test work in a nutshell? 112
Validating hypotheses – category 2 116

www.allitebooks.com

http://www.allitebooks.org

[iii]

What does a Type 1 error mean? 119
So what is ANOVA? 119

Validating hypotheses – category 3 121
So what is regression? 121

Hypotheses – category 3 124
Summarizing Exploratory Data Analysis phase 126

Root Cause Analysis 126
Synthesizing results 128
Visualizing insights 129
Stitching the Story together 131
Conclusion 132

Production Quantity 133
Raw material quality parameters 133
Resources/Machinery used in Stage 3 133
Assembly Line 133

Summary 134
Chapter 4: Experimenting Predictive Analytics for IoT 135

Resurfacing the problem – What's next? 136
Linear regression – predicting a continuous outcome 137

Prelude 138
Solving the prediction problem 138

So what is linear regression? 138
Interpreting the regression outputs 143

F statistic 143
Estimate/coefficients 144
Standard error, t-value, and p value 145

Residuals, multiple R squared, residual standard error and adjusted R
squared 146

What is the adjusted R-squared value? 148
Improving the predictive model 148

Let's define our approach 149
How will we go about it? 149
Let's being modeling 149
So how do we move ahead? 152
The important points to ponder are as follows: 156
What should we take care of? 157
So what next? 158

Decision trees 158
Understanding decision trees 158

So what is a decision tree? 159
How does a decision tree work? 159

www.allitebooks.com

http://www.allitebooks.org

[iv]

What are different types of decision trees? 160
So how is a decision tree built and how does it work? 160
How to select the root node? 162
How are the decision nodes ordered/chosen? 164
How different is the process for classification and regression? 165

Predictive modeling with decision trees 165
So how do we approach? 165
So what do we do to improve the results? 168
So, what next? Do we try another modeling technique that could give us more
powerful results? 173

Logistic Regression – Predicting a categorical outcome 174
So what is logistic regression? 174
So how does the logistic regression work? 176

How do we assess the goodness of fit or accuracy of the model? 181
Too many new terms? 182

Recap to the model interpretation 187
Improving the classification model 187

Let's define our approach 187
How do we go about it? 187
Let's begin modeling 188
So how do we move ahead? 192
Adding interaction terms 194
What can be done to improve this? 196
What just happened? 199
What can be done to improve the TNR and overall accuracy while keeping the TPR
intact? 199

Summary 200
Chapter 5: Enhancing Predictive Analytics with Machine Learning for
IoT 201

A Brief Introduction to Machine Learning 202
What exactly is ensemble modeling? 203
Why should we choose ensemble models? 203
So how does an ensemble model actually work? 204

What are the different ensemble learning techniques? 207
Quick Recap – Where were we previously? 207

Ensemble modeling – random forest 207
What is random forest? 208
How do we build random forests in R? 212

What are these new parameters? 214
Mtry 217
Building a more tuned version of the random forest model 218

[v]

How? 221
Can we improve this further? 221
What can we do to achieve this? 221

Ensemble modeling – XGBoost 222
What is different in XgBoost? 222

Are we really getting good results? 227
What next? 227
A cautionary note 228

Neural Networks and Deep Learning 228
So what is so cool about neural networks and deep learning? 229

What is a neural network? 229
So what is deep learning? 231
So what problems can neural networks and deep learning solve? 232
So how does a neural network work? 234
Neurons 234
Edges 236
Activation function 237
Learning 237
So what are the different types of neural networks? 238
How do we go about modeling using a neural network or deep learning technique? 240
What next? 245
What have we achieved till now? 245

Packaging our results 245
A quick recap 246
Results from our predictive modeling exercise 246
Few points to note 247

Summary 248
Chapter 6: Fast track Decision Science with IoT 249

Setting context for the problem 250
The real problem 251
What next? 251

Defining the problem and designing the approach 252
Building the SCQ: Situation – Complication – Question 252
Research 253

How does a solar panel ecosystem work? 253
Functioning 253
What are the different kinds of solar panel installations? 254
What challenges are faced in operations supported by solar panels? 254

Domain context 255
Designing the approach 256
Studying the data landscape 258

[vi]

Exploratory Data Analysis and Feature Engineering 259
So how does the consumption fare in comparison with the generation? 265
Battery 268
Load 270
Inverter 272
Assimilate learnings from the data exploration exercise 273
Let's assimilate all our findings and learnings in brief 274
Solving the problem 274
Feature engineering 275

Building predictive model for the use case 282
Building a random forest model 283

Packaging the solution 288
Summary 290

Chapter 7: Prescriptive Science and Decision Making 291
Using a layered approach and test control methods to outlive
business disasters 292

What is prescriptive analytics? 292
What happened? 292
Why and how did it happen? 293
When will it happen (again)? 293
So what, now what? 293

Solving a prescriptive analytics use case 295
Context for the use case 295
Descriptive analytics – what happened? 295
Inquisitive analytics – why and how did it happen? 297
Predictive analytics – when will it happen? 301
The inception of prescriptive analytics 302
Getting deeper with prescriptive analytics 304

Solving the use case the prescriptive way 305
Test and control analysis 305
Implementing Test & Control Analysis in Prescriptive Analytics 306
Improving IVR operations to increase the call completion rate 306
Reducing the repeat calls 307
Staff training for increasing first call resolution rate 307
Tying back results to data-driven and heuristic-driven hypotheses 308

Connecting the dots in the problem universe 310
Story boarding – Making sense of the interconnected problems in the
problem universe 313

Step 1 – Immediate 314
Step 2 – Future 315

[vii]

Implementing the solution 317
Summary 317

Chapter 8: Disruptions in IoT 319
Edge/fog computing 320

Exploring the fog computing model 323
Cognitive Computing – Disrupting intelligence from unstructured data 327

So how does cognitive computing work? 328
Where do we see the use of cognitive computing? 330
The story 331
The bigger question is, how does all of this happen? 332

Next generation robotics and genomics 334
Robotics – A bright future with IoT, Machine Learning, Edge & Cognitive
Computing 334
Genomics 337
So how does genomics relate to IoT? 338

Autonomous cars 339
Vision and inspiration 339
So how does an autonomous car work? 339
Wait, what are we missing? 342
Vehicle – to – environment 342
Vehicle – to – vehicle 342
Vehicle – to – infrastructure 342
The future of autonomous cars 343

Privacy and security in IoT 344
Vulnerability 344
Integrity 345
Privacy 345
Software infrastructure 346
Hardware infrastructure 346
The protocol infrastructure 346

Summary 347
Chapter 9: A Promising Future with IoT 349

The IoT Business model – Asset or Device as a Service 350
The motivation 351
Real life use case for Asset as a Service model 352
How does it help business? 353

Best case scenario 355
Worst case scenario 355
Neutral case 355

[viii]

Conclusion 355
Leveraging Decision Science to empower the Asset as a Service model 356

Smartwatch – A booster to Healthcare IoT 357
Decision science in health data 360
Conclusion 361

Smart healthcare – Connected Humans to Smart Humans 361
Evolving from connected cars to smart cars 363

Smart refuel assistant 365
Predictive maintenance 365
Autonomous transport 366
Concluding thoughts 366

Summary 366
Index 369

Preface
The Internet of Things and decision science are among the most trending topics in the
industry right now. The problems we solve today have become increasingly ambiguous,
uncertain and volatile, and therefore the means to solve them. Moreover, problem solving
has evolved from solving one specific problem using data science to the art of problem
solving using decision science. The Internet of Things provides a massive opportunity for
business to make human life easier which can only be leveraged using decision science.
Smarter Decisions – The Intersection of Internet of Things and Decision Science, will help
you learn the nuances of IoT and Decision and practically aid you in smarter decision
making by solving real-life Industrial & Consumer IoT use cases. The book gives
paramount focus on solving a fundamental problem. Therefore, the entire journey of
addressing the problem by defining, designing and executing it using industry standard
frameworks for decision science is articulated through engaging and easy-to-understand
business use cases. While solving the business use cases, we will touch base with the entire
data science stack that is descriptive + inquisitive + predictive + prescriptive analytics by
leveraging the most popular and open source software 'R'. By the end of this book, you'll
have complete understanding of the complex aspects of decision making in IoT and will be
able to take that knowledge with you onto whatever project calls for it.

What this book covers
Chapter 1, IoT and Decision Science, briefly introduces the two most important topics for
the book in the most lucid way using intuitive real-life examples. The chapter briefs about
IoT, its evolution and the key differences between IoT, IIoT, Industrial Internet, Internet of
Everything. Decision science is narrated by providing paramount focus on the problem and
its evolution in the universe. Finally we explore the problem solving framework to study
the decision science approach for problem solving.

Chapter 2, Studying the IoT Problem Universe and Designing a Use Case, introduces a real life
IoT business problem and aids the reader to practically design the solution for the problem
by using a structured and mature problem solving framework learnt in the preceding
chapter. The chapter also introduces the two main domains in IoT that is connected assets
and connected operations and various artefacts and thought leadership frameworks that
will be leveraged to define and design a solution for the business problem.

Preface

[2]

Chapter 3, The What and the Why – Using Exploratory Decision Science for IoT, focuses on
practically solving the IoT business use case designed in the preceding chapter using the R
software for exploratory data analysis. Leveraging an anonymized and masked dataset for
the business use case along with the hands on exercises aids the reader to practically
traverse through the descriptive and inquisitive phases of decision science. The problem's
solution is addressed by answering the two fundamental questions What and Why by
performing univariate, bivariate analyses along with various statistical tests to validate the
results and thereby render the story.

Chapter 4, Experimenting Predictive Analytics for IoT, enhances the solution of the business
use case by leveraging predictive analytics. In this chapter, we answer the question "when"
to solve the problem with more clarity. Various statistical models like linear regression,
logistic regression and decision trees are explored to solve the different predictive problems
that were surfaced during the inquisitive phase of the business use case in the preceding
chapter. Intuitive examples to understand the mathematical functioning of the algorithms
and easy means to interpret the results are articulated to cement the foundations of
predictive analytics for IoT.

Chapter 5, Enhancing Predictive Analytics with Machine Learning for IoT, takes an attempt to
improve the results of predictive modelling exercises in the preceding chapter by leveraging
cutting edge machine learning algorithms like Random Forest, XgBoost and deep learning
algorithms like multilayer perceptrons. With improved results from improved algorithms,
the solution for the use case is finally completed by leveraging the 3 different layers of
decision science: descriptive + inquisitive + predictive analytics.

Chapter 6, Fast track Decision Science with IoT, reinforces the problem solving skills learnt
so far by attempting to solve another fresh IoT use case from start to end within the same
chapter. The entire journey of defining, designing and solving the IoT problem is articulated
in a fast track mode.

Chapter 7, Prescriptive Science and Decision Making, introduces the last layer of the decision
science stack i.e. prescriptive analytics by leveraging a hypothetical use case. The entire
journey of evolution of a problem from descriptive to inquisitive to predictive and finally to
prescriptive and back is illustrated with simple and easy to learn examples. After traversing
the problem through prescriptive analytics, the art of decision making and storyboarding to
convey the results in the most lucid format is explored in detail.

Chapter 8, Disruptions in IoT, explores the current disruptions in IoT by studying a few
like fog computing, cognitive computing, Next generation robotics and genomics and
autonomous cars. Finally the privacy and security aspects in IoT is also explored in brief.

Preface

[3]

Chapter 9, A Promising Future with IoT, discusses about how the near future will radically
change human life with the unprecedented growth of IoT. The chapter explores the
visionary topics of the new IoT business models such as, AssetDevice as a service and the
evolution of connected cars to smart cars & connected humans to smart humans.

What you need for this book
In order to make your learning efficient, you need to have a computer with either Windows,
Mac, or Ubuntu.

You need to download and install R to execute the codes mentioned in this book. You can
download and install R using the CRAN website available at h t t p : / / c r a n . r - p r o j e c t . o
r g /. All the codes are written using RStudio. RStudio is an integrated development
environment for R and can be downloaded from h t t p : / / w w w . r s t u d i o . c o m / p r o d u c t s / r
s t u d i o /.

The different R packages used in the book are freely available to download and install for
all operating systems mentioned above.

Who this book is for
Smarter Decisions – The intersection of Internet of Things and Decision Science is intended for
data science and IoT enthusiasts or project managers anchoring IoT Analytics projects. Basic
knowledge of R in terms of its libraries is an added advantage, however the verbiage for
interpretation of the results will be independent of the codes. Any non-technical data
science and IoT enthusiast can skip the codes and read through the output and still be able
to consume the results.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

http://cran.r-project.org/
http://cran.r-project.org/
http://www.rstudio.com/products/rstudio/
http://www.rstudio.com/products/rstudio/

Preface

[4]

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

<Contextpath="/jira"docBase="${catalina.home}
/atlassian- jira" reloadable="false" useHttpOnly="true">

Any command-line input or output is written as follows:

 mysql -u root -p

Preface

[5]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Select System info from the
Administration panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / S m a r t e r - D e c i s i o n s - T h e - I n t e r s e c t i o n - o f - I n t e r n e t - o f - T h i n g s - a n d - D

e c i s i o n - S c i e n c e. We also have other code bundles from our rich catalog of books and
videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://github.com/PacktPublishing/Smarter-Decisions-The-Intersection-of-Internet-of-Things-and-Decision-Science

Preface

[7]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
IoT and Decision Science

The Internet of Things (IoT) and Decision Science have been among the hottest topics in
the industry for a while now. You would have heard about IoT and wanted to learn more
about it, but unfortunately you would have come across multiple names and definitions
over the Internet with hazy differences between them. Also, Decision Science has grown
from a nascent domain to become one of the fastest and most widespread horizontal in the
industry in the recent years. With the ever-increasing volume, variety, and veracity of data,
decision science has become more and more valuable for the industry. Using data to
uncover latent patterns and insights to solve business problems has made it easier for
businesses to take actions with better impact and accuracy.

Data is the new oil for the industry, and with the boom of IoT, we are in a world where
more and more devices are getting connected to the Internet with sensors capturing more
and more vital granular dimensions that had never been touched earlier. The IoT is a game
changer with a plethora of devices connected to each other; the industry is eagerly
attempting to untap the huge potential that it can deliver. The true value and impact of IoT
is delivered with the help of Decision Science. IoT has inherently generated an ocean of data
where you can swim to gather insights and take smarter decisions with the intersection of
Decision Science and IoT. In this book, you will learn about IoT and Decision Science in
detail by solving real-life IoT business problems using a structured approach.

IoT and Decision Science

[9]

In this chapter, we will begin by understanding the fundamental basics of IoT and Decision
Science problem solving. You will learn the following concepts:

Understanding IoT and demystifying Machine to Machine (M2M), IoT, Internet
of Everything (IoE), and Industrial IoT (IIoT)
Digging deeper into the logical stack of IoT
Studying the problem life cycle
Exploring the problem landscape
The art of problem solving
The problem solving framework

It is highly recommended that you explore this chapter in depth. It focuses on the basics
and concepts required to build problems and use cases. As hands-on exercises are not
added, I am sure most software engineers would be tempted to skip this and move to the
later chapters. The later chapters will frequently refer to concepts and points elucidated
here for more realistic context. Hence, it's very important to go through this chapter in
detail before moving on.

Understanding the IoT
To get started with the IoT, lets first try to understand it using the easiest constructs.
Internet and Things; we have two simple words here that help us understand the entire
concept. So what is the Internet? It is basically a network of computing devices. Similarly,
what is a Thing? It could be any real-life entity featuring Internet connectivity. So now,
what do we decipher from IoT? It is a network of connected Things that can transmit and
receive data from other things once connected to the network. This is how we describe the
Internet of Things in a nutshell.

IoT and Decision Science

[10]

Now, let's take a glance at the definition. IoT can be defined as the ever-growing network of
Things (entities) that feature Internet connectivity and the communication that occurs
between them and other Internet-enabled devices and systems. The Things in IoT are
enabled with sensors that capture vital information from the device during its operations,
and the device features Internet connectivity that helps it transfer and communicate to other
devices and the network. Today, when we discuss about IoT, there are so many other
similar terms that come into the picture, such as Industrial Internet, M2M, IoE, and a few
more, and we find it difficult to understand the differences between them. Before we begin
delineating the differences between these hazy terms and understand how IoT evolved in
the industry, lets first take a simple real-life scenario to understand how exactly IoT looks
like.

IoT in a real-life scenario
Let's take a simple example to understand how IoT works. Consider a scenario where you
are a father in a family with a working mother and 10-year old son studying in school. You
and your wife work in different offices. Your house is equipped with quite a few smart
devices, say, a smart microwave, smart refrigerator, and smart TV. You are currently in
office and you get notified on your smartphone that your son, Josh, has reached home from
school. (He used his personal smart key to open the door.) You then use your smartphone
to turn on the microwave at home to heat the sandwiches kept in it. Your son gets notified
on the smart home controller that you have hot sandwiches ready for him. He quickly
finishes them and starts preparing for a math test at school and you resume your work.
After a while, you get notified again that your wife has also reached home (She also uses a
similar smart key.) and you suddenly realize that you need to reach home to help your son
with his math test. You again use your smartphone and change the air conditioner settings
for three people and set the refrigerator to defrost using the app. In another 15 minutes, you
are home and the air conditioning temperature is well set for three people. You then grab a
can of juice from the refrigerator and discuss some math problems with your son on the
couch. Intuitive, isn't it?

IoT and Decision Science

[11]

How did it his happen and how did you access and control everything right from your
phone? Well, this is how IoT works! Devices can talk to each other and also take actions
based on the signals received:

The IoT scenario

Lets take a closer look at the same scenario. You are sitting in office and you could access
the air conditioner, microwave, refrigerator, and home controller through your smartphone.
Yes, the devices feature Internet connectivity and once connected to the network, they can
send and receive data from other devices and take actions based on signals. A simple
protocol helps these devices understand and send data and signals to a plethora of
heterogeneous devices connected to the network. We will get into the details of the protocol
and how these devices talk to each other soon. However, before that, we will get into some
details of how this technology started and why we have so many different names today for
IoT.

IoT and Decision Science

[12]

Demystifying M2M, IoT, IIoT, and IoE
So now that we have a general understanding about what is IoT, lets try to understand how
it all started. A few questions that we will try to understand are: Is IoT very new in the
market?, When did this start?, How did this start?, Whats the difference between M2M, IoT,
IoE, and all those different names?, and so on. If we try to understand the fundamentals of
IoT, that is, machines or devices connected to each other in a network, which isn't
something really new and radically challenging, then what is this buzz all about?

The buzz about machines talking to each other started long before most of us thought of it,
and back then it was called Machine to Machine Data. In early 1950, a lot of machinery
deployed for aerospace and military operations required automated communication and
remote access for service and maintenance. Telemetry was where it all started. It is a process
in which a highly automated communication was established from which data is collected
by making measurements at remote or inaccessible geographical areas and then sent to a
receiver through a cellular or wired network where it was monitored for further actions. To
understand this better, lets take an example of a manned space shuttle sent for space
exploration. A huge number of sensors are installed in such a space shuttle to monitor the
physical condition of astronauts, the environment, and also the condition of the space
shuttle. The data collected through these sensors is then sent back to the substation located
on Earth, where a team would use this data to analyze and take further actions. During the
same time, industrial revolution peaked and a huge number of machines were deployed in
various industries. Some of these industries where failures could be catastrophic also saw
the rise in machine-to-machine communication and remote monitoring:

IoT and Decision Science

[13]

Telemetry

Thus, machine-to-machine data a.k.a. M2M was born and mainly through telemetry.
Unfortunately, it didn't scale to the extent that it was supposed to and this was largely
because of the time it was developed in. Back then, cellular connectivity was not
widespread and affordable, and installing sensors and developing the infrastructure to
gather data from them was a very expensive deal. Therefore, only a small chunk of business
and military use cases leveraged this.

IoT and Decision Science

[14]

As time passed, a lot of changes happened. The Internet was born and flourished
exponentially. The number of devices that got connected to the Internet was colossal.
Computing power, storage capacities, and communication and technology infrastructure
scaled massively. Additionally, the need to connect devices to other devices evolved, and
the cost of setting up infrastructure for this became very affordable and agile. Thus came
the IoT. The major difference between M2M and IoT initially was that the latter used the
Internet (IPV4/6) as the medium whereas the former used cellular or wired connection for
communication. However, this was mainly because of the time they evolved in. Today,
heavy engineering industries have machinery deployed that communicate over the IPV4/6
network and is called Industrial IoT or sometimes M2M. The difference between the two is
bare minimum and there are enough cases where both are used interchangeably. Therefore,
even though M2M was actually the ancestor of IoT, today both are pretty much the same.
M2M or IIoT are nowadays aggressively used to market IoT disruptions in the industrial
sector.

IoE or Internet of Everything was a term that surfaced on the media and Internet very
recently. The term was coined by Cisco with a very intuitive definition. It emphasizes
Humans as one dimension in the ecosystem. It is a more organized way of defining IoT. The
IoE has logically broken down the IoT ecosystem into smaller components and simplified
the ecosystem in an innovative way that was very much essential. IoE divides its ecosystem
into four logical units as follows:

People
Processes
Data
Things

Built on the foundation of IoT, IoE is defined as The networked connection of People, Data,
Processes, and Things. Overall, all these different terms in the IoT fraternity have more
similarities than differences and, at the core, they are the same, that is, devices connecting to
each other over a network. The names are then stylized to give a more intrinsic connotation
of the business they refer to, such as Industrial IoT and Machine to Machine for (B2B) heavy
engineering, manufacturing and energy verticals, Consumer IoT for the B2C industries, and
so on.

IoT and Decision Science

[15]

Digging deeper into the logical stack of IoT
Now that we have a clear understanding of what is IoT and the similar terms around it, lets
understand the ecosystem better. For convenience, IoE will be referred as IoT while
exploring the four logical components of the stack in brief.

IoTs logical stack

When we deconstruct the IoT ecosystem into logical units, we have People, Processes, Data,
and Things. Lets explore each of these components in brief.

www.allitebooks.com

http://www.allitebooks.org

IoT and Decision Science

[16]

People
People or we interact with devices and other people on a daily basis. The communication
could be either People to People, People to Device, or Device to People. Considering People
as a separate dimension in the IoT ecosystem is an essential move as the complexity in
understanding this is really challenging. When any form of communication occurs where
People play a role on either end of the interaction, it embeds a unique pattern that is
intrinsic to the People dimension. Lets understand this better with an example. Most of us
use social networking sites such as Facebook, Twitter, LinkedIn, and so on, where we are
connected to multiple people/friends. Here, the communication paths are mainly People to
People. Considering the previous example, we had people to device and device to people
communication paths (communication between the smartphone and microwave).
Considering People as a dimension, everyone would differ in the way they interact with the
system. I might find the new interface of Facebook very difficult to use but a friend may
find it extremely easy. The real problem here is everyone is skilled, but the skillsets differ
from person to person. The characteristics of the interaction identified by a person may be a
representative for a very small community.

We have a population of six billion plus, and over 1/6th of them have already been
connected. With such a huge population consisting of a plethora of communities
representing people of different geographical areas, culture, thinking, and behavior,
defining one generic set of rules or characteristics to define people interaction is very
challenging. Instead, if we understand the People dimension in a more constructive way,
we can tap the opportunity to capture the behavior more accurately and help them benefit
from the ecosystem in the best way.

With the advent of IoT, we have sensors capturing information and characteristics at more
granular levels than ever before. Here, if we can accurately define People as a complete
dimension, personalized experience will be a complete game changer. The smart watch
industry is investing humongous efforts to get its offering more personalized; if it succeeds,
it will be a pivotal player in the coming revolution.

Processes
The most lucid definition for Processes would be everything required to deliver the right
information to the right person/system at the right time. A wide variety of things fall in the
Processes dimension that includes technology, protocols, business logic, communication
infrastructure, and so on. Broadly, they can be classified into two components-Technology
and Business Processes. Lets explore these two components in brief in order to understand
the Processes dimension in more detail.

IoT and Decision Science

[17]

Technology
The technology required in the Processes dimension of IoT comprises of the software,
protocol, and infrastructure. We will explore Technology by understanding its three broad
divisions for Processes.

Software
Software consists mainly of the operating system. Devices in IoT require a special kind of
an operating device. Smart devices such as the smart refrigerator, smart microwave, and
many others require an operating system running on them that can then enable it to be an
active component in the network. Tasks executed can vary from sending, processing, and
receiving data or executing instructions and sending signals to respective controllers within
the device for action. Now, the question is, why do these devices require a special operating
system? Why cant the existing rich flavors of Unix/Linux, Windows, Mac, or even Android
be used? The answer is the same as the reason that we used Android for smartphones and
not the existing OS back then. The devices that connect to the network in IoT are small or
sometimes tiny. Ideally, these devices would be equipped with less powerful computing
capabilities, lower memory, and lower battery life. It is almost impossible to run a fully-
fledged operating system on them. We need a specially designed OS that can take care of
the limited memory, processing power and battery life of the device and yet provide
maximum functionality to tag the device as a smart device. Google recently launched an
operating system for IoT devices called Brillo. Brillo is an Android-based embedded
operating system specifically designed for low power and memory-constrained IoT devices.
It provides the core platform services required for IoT devices along with a developer kit
freely available for developers/hardware vendors to get the OS running and build
additional services on their devices. Some similar examples would be Apple's Watch OS for
Apple Watch, Android Wear from Google for smartwatches, and others. Soon, we can
expect a vast community of devices running Brillo and a plethora of apps that can be
installed additionally for even better functionality (something very similar to the Google Play
store).

IoT and Decision Science

[18]

Protocol
Once the devices are software-enabled, we need to get a protocol in place that can help
them communicate with other heterogeneous devices in the network. To understand this
better, recollect the first example where we could defrost the refrigerator using our
smartphone. The smartphone needs to talk to the refrigerator that also needs to understand
what exactly is being communicated. With a huge variety of heterogonous devices, this
communication path just gets more and more complicated. Hence, we need to have a
simplified protocol in place where complicated process can be abstracted and the devices
can communicate with each other effectively. Google recently launched an open source
protocol called Weave. Weave is basically an IoT protocol that is a communications
platform for IoT devices that enables device setup, phone-to-device-to-cloud
communication, and user interaction from mobile devices and the web. It has ushered
productivity in the developers efforts by easing up device interoperability regardless of the
brand or manufacturer.

Infrastructure
Infrastructure can simply be defined as the integration of the operating system,
communication protocol, and all other necessary components to harmonize the
environment for an IoT use case. All major cloud infrastructure providers are now focusing
on providing an IoT-specialized environment. Google launched IoT Cloud Solutions,
Amazon launched AWS IoT, Microsoft launched Azure IoT Suite, and so on. All of these
solutions integrate the disparate systems together to make the ecosystem scalable and agile.
Digging deeper into these suites will be beyond the scope of this book.

Business processes
The second part of the Processes dimension is Business Processes. It basically covers the set
of rules and processes to govern the communication and operation of the devices connected
in the IoT ecosystem. There isn't a concrete definition till now that can be used here and the
discussion of the topic will be beyond the scope of this book. However, we will take a look
at this closely while solving an IoT use case in Chapter 3, The What And Why – Using
Exploratory Decision Science for IoT and Chapter 4, Experimenting Predictive Analytics for IoT.

IoT and Decision Science

[19]

Things
Things form the crux of the IoT ecosystem. They include any form of sensors, actuators, or
other type of devices that can be integrated into machines and devices to help them connect
to the Internet and communicate with other devices and machines. These things will be
always active during their lifetime and will sense events, capture important information,
and communicate them with other devices.

A typical example would be the refrigerator, TV, or microwave that we considered in the
previous use case. The sensors installed in these devices capture data and send
information/signals to other devices that can then be used to take action.

Data
Data is by all means the most value-adding dimension in the IoT ecosystem. Today, the
devices that are connected to the Internet are capturing tons and tons of data that can
represent the most granular-level details for the devices they are connected to. The
magnitude of this data is colossal. Storing and processing such vast and varied amounts of
data questions the fact whether the data is really valuable. In a true sense, most of the data
is transient in nature and loses its value within minutes of generation. With ever-improving
technology and computing capabilities, the amount of data processing and storage that the
devices are capable of today is great, but we can leverage this power to deliver better value
than just delivering raw data. Tons of algorithms can be executed and business rules can be
applied where a lot of value can be extracted from the data before sending it over to the
server. This requires the combination of multiple disciplines together to solve the problem
and deliver value.

IoT and Decision Science

[20]

To understand this better, consider the example of a pedometer installed in our smart
watch. Rather than just reporting the number of steps that we have walked, it can calculate
the amount of calories we have burned, average time taken for the activity, metrics like
deviation from the previous days activity, deviation from milestones, and other social
information such as how do we compare with our friends, and so on. To capture and
process all of this information locally and send the final results to the server that can be
directly stored for future actions requires the combination of multiple disciplines to make
the task efficient. Math, business, technology, design thinking, behavioral science, and a few
others would need to be used together to solve the problem. In reality, it would be futile to
send across all the raw data captured from devices to the servers assuming that it can be
leveraged for future use. A variety of new algorithms have been designed to ingest this data
locally and deliver only rich, condensed, and actionable insights in real time. We will
explore this in more detail with fog computing in Chapter 8, Disruptions in IoT. Smart
watches such as the Microsoft Band and self-driving cars such as Tesla Model S are the best
examples to understand the true scenarios where we can study the challenges of processing
data in real time for insights and actions. In all true sense, data is what essentially helps in
delivering the last mile value in the IoT fraternity. Hence, we need talent to deal with the
data as a separate dimension in the IoT stack.

The problem life cycle
You learned about IoT and explored its logical stack to understand more about People,
Processes, Data, and Things. The core agenda of this book is to solve IoT business problems
using Decision Science. Problem solving has been an art and has its origin ever since
mankind evolved. I would like to introduce The Problem Life Cycle to learn how the
problem keeps evolving. Understanding this topic is very essential to solve better problems
in IoT.

IoT and Decision Science

[21]

Every industry has been trying to solve a problem. E-retail solved the problem of
inconvenience in physical shopping for busy and working consumers, the printing press
solved the problem of mass producing documents for the consumers, and so on. A few
visionaries such as Apple Inc. have tried to solve a problem by first creating it. The iPod
and iPad were devices that were a part of this revolution. The biggest challenge in solving a
problem is that the problem evolves. If we take a deeper look at the problem life cycle, we
can understand that the problem evolves from a Muddy to Fuzzy and finally to a Clear
state and keeps repeating the cycle:

The problem life cycle

IoT and Decision Science

[22]

Lets take a simple example to understand this better. Consider the Marketing problem.
Every organization wants to promote their products and services better by marketing them.
Marketing has been a problem since ages. Lets assume that the inception of marketing
happened with the invention of the printing press. Initially, the problem for marketing
would be in the muddy phase, where a team of analysts would try to get the best strategy to
market a product or service in place. Back then, newspapers and print media were the only
medium, and the strategies and nature of the problem was very much limited to them.
When the problem is new, it is in the muddy stage; we have no clear idea about how to
solve it. We would try to understand the problem by experimenting and researching.
Gradually, we gain some knowledge about the system and problem and then define a
couple of best strategies and guidelines to solve the problem. This is when the problem
evolves to the fuzzy stage. Here, the solution for the problem is still not clear, but we have a
fair understanding of how to go about it. Finally, after a lot of research and experiments
from a large pool of people sharing their results and understandings, we might finally have
a concrete methodology in place that can be used as a complete guide to solve the problem.
This is when the problem reaches the clear stage. It is the pinnacle of the problem solving
methodology where we have a clear understanding about how to tackle the problem and
solve it. However, one fine day, a big disruption happens and the problem that was finally
in the clear state collapses and returns to the muddy stage. In the case of marketing, when
people aced the best strategies to advertise using print media and newspapers, it collapsed
with the invention of the radio. All of a sudden, the nature of the problem changed and it
required a radically different approach to solve it. The experts, who had concrete
approaches and strategies for the problem solving back then, had to revisit and start from
the beginning as the problem went back to the muddy stage. The problem life cycle kept
evolving, and this was repeated when television was introduced and again when social
media was introduced. Today, with the social media booming and expanding to newer
areas, we have the marketing problem currently stable at the fuzzy state. Soon, with the
advent of virtual reality and augmented reality, it is expected to roll back to the muddy
phase.

IoT and Decision Science

[23]

To get more real, lets relate the scenario with a more recent version of the problem.
Consider a social media analyst trying to solve a problem: optimizing targets for sponsored
ads that need to be placed in the Facebook newsfeed for a user based on his behavior. If we
find the user to be a football enthusiast, we would insert an ad into his newsfeed for a
sportswear brand. To keep things simple, assume that we are the first ones to do this and no
one has ever attempted this in history. The problem will currently be in the muddy state. So
logically, there would be no references or material available over the Internet for our help
and research. Our problem solving task begins by identifying the users interest. Once he has
been identified as a potential user with an interest in football, we need to place a sponsored
ad in his newsfeed. How do we discover the users interest? There are a variety of metrics
that can help us discover his interests, but for simplicity, lets assume that the users interests
will be identified purely by the Status Updates he posts on his wall.

We can then simply try to analyze the statuses updated by the person and define his
interests. If the word Football or names of any popular football players or football teams
appear more than a desired threshold, we can possibly say that he would be following
football and hence would be a potential target. Based on this simple rule, we create better
strategies and algorithms where our accuracy of finding the potential users can be reached
with the minimum amount of time and effort. Gradually, the problem moves from the
muddy stage to the fuzzy stage. We now have a good amount of understanding regarding
the problem. We may not have the best and most effective solution for the problem, but we
definitely have a fair idea to get started and find a solution without too much research.
Over a period of time, we, and many other similar folks, conduct various experiments,
publish various blogs and research papers of the results, and help others learn from our
methods and experiment more. Eventually, there would be a time when we will have
attempted the exhaustive solution paradigms and have the knowledge for the best and most
effective solution for any sort of analysis in that domain. Finally, it reaches its pinnacle
point-the clear stage.

IoT and Decision Science

[24]

One day, all of a sudden, Facebook and other social media giants launch a new feature.
Users can now share photos along with their status updates. A radical change will be seen
in the way the user will now use the social network. People tend to post more photos than
text updates. All the thought-leadership frameworks and research papers and blogs that
proved to be highly successful earlier now seem to be ineffective. We are not sure how to
analyze photos updated by the user in order to understand his interests. Unfortunately, the
problem goes back to the muddy stage. These big changes keep happening again and again.
After photos, it will be videos, then audios, and so on, and the cycle keeps repeating as
usual. Recently, the user behavior on social networks has dramatically changed. People post
more pictures than type any comment or status updates. These photos may or may not be
symbolic of the message that the user wants to convey. Sarcasm or satire may be the
objective. The memes that get viral over the Internet have no clear message embedded in
them. It may be sarcasm or simple smileys that the user wants to comment on. Analyzing
the meaning of these images (memes) to understand the actual message that the user wants
to convey with algorithms and computers to find out his interests is a challenging deal.

Hence, understanding the problem life cycle helps prepare us better for the evolution of the
problem and adapt the problem solving strategies better and faster.

The problem landscape
Two questions that will have definitely surfaced in our thoughts are as follows:

Why is understanding the problem life cycle really important?
How does this add any value to the IoT problem solving?

IoT and Decision Science

[25]

Lets see how this will be helpful. While solving a problem, understanding the current state
of the problem is essential for the analyst. Whenever we solve a problem, we would always
prepare for the next state of the problem life cycle knowing that change in the problems
current state is inevitable. If the problem is currently in the clear state, then the amount of
time and effort we would invest as a data scientist would be considerably less than if the
problem would have been in the muddy or fuzzy stage. However, the problem remains for
the least amount of time in the clear stage. The jump from clear to muddy is shorter
compared to any other transition in the problem life cycle. Being aware about the problem
life cycle, an organization/data scientist would then prepare better for radical changes that
are bound to happen in a short while. We would need to design our solution to be agile and
prepare for the next change. Similarly, if the problem is in the fuzzy stage, a lot of our
solutions will be designed in such a way that they can be productized for a particular use
case or industry. Finally, when the solution is in the muddy state, our solutions in problem
solving will be more of a service-based offering than a product. The amount of experiments
and research that we would need for the problem to be solved is highest in the muddy state
and least in the clear state:

The problem life cycle in brief

IoT and Decision Science

[26]

So how does this relate to IoT and Decision Science and the intersection of the two?
Decision Science has been a bit more widespread and prevalent in the industry than IoT.
There have been tons of experiments and research conducted on data to find insights and
add value that make Decision Science currently in the fuzzy stage. IoT, on the other hand, is
fairly new and requires loads of research and experiments to get tangible results, which
makes it in the muddy stage. However, when we talk about the intersection of the two, we
are dealing with a set of interesting problems. On one side, we have a fairly mature
ecosystem of Decision Science that has given tangible value to the industry through its
experiments whereas IoT is still nascent. The intersection of the two is a very promising and
lucrative area for business. It is in a position where it is steadily moving from the muddy to
fuzzy stage. Very soon, we will see tangible results from large-scale IoT use cases in the
industry that will immediately trigger the revolution for productization on Decision Science
for IoT. Decision Science for IoT is rapidly being experimented and the initial results seem
to be very promising. The era, where Decision Science for IoT will be in the fuzzy state, is
very near.

With this in mind, we can now get to the basics of problem solving while being prepared
for the use case to evolve into a fuzzy state. With the understanding of the problem life
cycle concrete, lets now explore the problem landscape in detail.

What is the problem landscape? Why do we need to bother about it?

A simple answer would be, understanding the current state of the problem is just one
dimension, but understanding the type of problem is a more essential part of problem
solving. Lets make this simple. To understand the problem landscape, refer to the following
image and try to visualize the problems on two dimensions-frequency and impact. Just like
any other scatterplot, this one can also be divided into four major areas:

Low impact: Low frequency
Low impact: High frequency
High impact: Low frequency
High impact: High frequency

Apart from these four components, we can identify one large spot/circle that has a flavor of
all these areas. Here, the problems can be with a high or low frequency and also a high and
low impact. So we name it the Region of Uncertainty:

IoT and Decision Science

[27]

The Region of Uncertainty

Lets understand what kind of problems appear in each of these boxes. Every organization
will have a plethora of problems; some of them occur very frequently and some of them
very rarely. Some may have a huge impact whereas some may have a small impact.
Consider a large organization with hundreds to thousands of employees. There are a couple
of problems where the frequency might be low and impact might also be very low. We
would generally tend to avoid solving these problems as they are not worth the effort. Some
problems, even though they may have a low impact, might have a huge frequency. They
would mostly happen on a daily basis. These problems are solved with the typical IT
solution approaches such as Support for Technology Infrastructure, CRM, attendance
management, employee leave application portal, and so on. There are some problems
where the impact will be extremely huge, but the frequency will be extremely low. Events
such as making the company public, acquiring a new company, or changing the business
model would happen probably once in a lifetime or once in a few years. These problems can
be solved from a consulting approach. Then there is one class of problems that has an
extremely huge impact and occurs very frequently, for example, a pricing model for
Amazon, Google's page rank algorithm, Search Engine Optimization, and others. These
problems again require a completely different approach to solve. Here, we would need an
approach that would be a combination of heuristics as well as algorithms blended with
products.

IoT and Decision Science

[28]

Apart from these four obvious types of problems, we will have a special set of problems
that has a flavor of all these types: moderate problems. Here, we might have a moderately
good impact and frequency. Solving these problems requires a special approach. These are
neither completely heuristic-based nor completely algorithmic. These are sweet spots for
businesses where the tangible results can be experimented and validated very early and
many companies can target for conceptualizations to deal with specific areas of the problem
landscape:

The problem landscape

When we explore the sweet spot, that is, the Circle of Uncertainty, we find that the
problems again are of a different nature. They could be any one of the following:

Descriptive: What happened?
Inquisitive: How and why it happened?
Predictive: When will it happen?
Prescriptive: So what/now what?

To understand the nature of the problem, we basically try to ask what question is the
solution answering. It could be what, how, when, why, and so on. Lets understand this
better with a simple example.

IoT and Decision Science

[29]

Consider a Loyalty Program launched by a retail giant such as Walmart, where customers
can use a Loyalty Membership Card to earn and burn cash points on each transaction. For
simplicity, lets assume that the campaign ran for around three months and the Director of the
Loyalty Program would like to know the answers to a few questions.

He would first like to know what happened?

This means how many people enrolled, how many transactions were recorded, how many
products were sold, how many points were earned or burned, how much profit was earned
during this season, how much revenue was generated, and so on. We basically get into the
details of what happened during the period.

The nature of the problem that we are trying to solve here is Descriptive. The entire
solution can be captured by asking one question-What happened?

Once he has a fair understanding of what happened, he would want to know about-Why it
happened in a few scenarios. For example, he will have observed that sales from one
particular geographical location, say Texas, have not increased in spite of the Loyalty
Program, so he would like to understand specifically, why did that happen? Here, the
problem solving will focus on understanding the reasons for no increase in sales in the
Texas area when other areas have performed much better. We would then try to
understand the Why question by digging deeper into the problem. We may study the offers
that were rolled out to Texas compared to other regions or analyze how targeting customers
and marketing campaigns differ between them and so on.

Here, the nature of the problem would be Inquisitive. The entire solution can be captured
by asking one question-Why did it happen?

After understanding the reasons for why the event happen, we would probably want to
take precautions to avoid failure due to the reasons found. Say, we found out that due to
bad services, a lot of customers churned out to other competitors. We would then try to
understand more about customer churn propensity where we would like to predict when
the customer might churn out, so that we can take preventive measures to keep the
customers happy.

Here, the nature of the problem would be Predictive. The entire solution can be captured by
asking the question-When will the event happen?

IoT and Decision Science

[30]

Finally, once we have a complete picture of the series of events that happened and why and
how it happened, we would like to take corrective measures to mitigate the perils of the
event. So we would then ask Now what/So what, where we would try to seek guidelines for
corrective actions. For example, we might have observed that due to bad service, a large
number of customers churned out to other competitors and we would like to run customer
retention programs and campaigns that could win back the churned customers.

Here, the nature of the problem would be Prescriptive. We can understand the entire
solution with the question, Now what/So what?

To understand the nature of the problem better from an IoT perspective, consider the
following example of an Oil and Gas Industry. Lets say that Shell, a leading oil company,
has subsea operations set up in one of its prime locations. It would then deploy tons of
machinery for the operations in order to extract oil from the reserves. In the IoT ecosystem,
all the machinery or assets here would form a connected network where machines are
equipped with a variety of sensors that can capture information about various real-time
parameters and communicate to other machines and a central server. Assume that you are
now the Operations Head for the plant and you are entitled with the responsibilities of
executing the operations smoothly and effectively. As the head of Operations, at the end of
the day, we would like to know what happened during the day in course of the oil
extraction process. This would be answering the question, What happened? We would
basically explore how much amount of oil was extracted, how many hours the machinery
was under operation, and how many man hours and machine hours were utilized. This
would be the basic set of analyses where the nature of the problem would be Descriptive.
During the analysis, we discovered that the total amount of oil extracted today was
extremely low compared to the threshold benchmarks and targets. We would then want to
know what exactly happened, why the production decreased, and what were the causes.
We would try to dig deeper into the problem and understand whether there was any issue
with the workforce, did any device/equipment have a downtime, or whether any machine
was underperforming. Here, the nature of problem would be Inquisitive, where we try to
answer, Why did the event happen? Similarly, when we identify that the root cause for the
problem was the downtime due to the failure of the drill machine deployed on the site, we
would then try to understand when the assets would fail in future so that we could prepare
in advance with maintenance and logistics to reduce downtime. A statistical model can be
built that predicts the failure of an asset based on the real-time dimensions captured from
the sensors to implement predictive maintenance for the assets to reduce downtime. This
would be a classic Predictive problem. Finally, when the failure was catastrophic, we
understood that we need to get a corrective action plan in place to reduce the effects to the
best extent. We would get logistics ready for periodic maintenance of assets and condition-
based maintenance for the machinery deployed on the site. Here, the nature of the problem
is Prescriptive.

IoT and Decision Science

[31]

In a nutshell, we have explored the problem landscape and studied various dimensions of
the problem. We studied how problems can be in different stages of the life cycle, how
problems can be defined based on their type as low and high impact and frequency, and we
also synthesized the nature of the problem, which can be Descriptive, Inquisitive,
Predictive, or Prescriptive. Now that we have understood how the problem can be defined,
lets move on to another important topic: understanding what it takes to solve a problem.

The art of problem solving
Now that we have a concrete understanding of how we can define the problem, lets try to
understand what it takes to solve a problem. There could be a problem that could possibly
be in any stage of its life, say fuzzy, the impact that it could create could be high with a
moderately high frequency, and the nature of the problem could be predictive. Such a
problem is really complicated if we try to understand it from its initial vibes. To make the
example sound more concrete, lets assume that a renewable energy (solar) provider has one
of its plants set up in a completely off-grid location to supply electric energy to a large
college campus for its daily operations. The problem to solve would be predicting the
amount of solar energy that would be generated based on weather and historic operational
parameters. As the operations are completely off-grid, the admin of the campus would be
keen to know the amount of energy that would be generated in the coming days so as to
take necessary precautionary measures in cases of low production and high consumption.
This would be a classic case of a predictive problem with a high impact and moderately
high frequency and still in the fuzzy state. We know a few things about how to go about but
no clear roadmap has been identified.

How do we solve this problem? What does it take in terms of skillsets or disciplines to get
started with solving the problem? Decision Science, on a high level, takes multiple
disciplines together to solve the problem. It generally takes the combination of math,
business, and technology to design and execute the initial version of the solution, and then
design thinking, behavioral science, and other disciplines to improvise the solution. Lets
understand how and why this is required.

IoT and Decision Science

[32]

The interdisciplinary approach
Solving the problem of predicting solar energy generation will initially require math skills
where we would apply a variety of statistical and machine learning algorithms to get the
predictions more and more accurate. Similarly, we would need technology skills to
program in one or more computer languages based on the infrastructure where the data
would be stored. The technology skills will help us extract data from various internal and
external sources and clean, transform, and massage the data to render in the format where
we can perform analysis. Finally, we will require business skills where we would have an
understanding on how the college operates during the day, which operations are the most
energy-consuming, how does the forecasted result add value for the college operations, and
how do they plan to take precautionary actions for survival. The business skills required
will make more sense if we would try to imagine a classic retail industry problem where we
are trying to forecast the sales at a store level. We would need to take into account a variety
of features and dimensions that are crucial from the business perspective but may be
statistically insignificant. For example, the customer value bucket (high / medium / low)
may appear insignificant mathematically during the analysis, but it would probably be one
of the most crucial variables for business that may persuade us to consider the problem
rather than ignore it.

Additionally, to get more and more granular in the problem solving phase, we would need
skillsets on engineering and other disciplines. In our example, where we try to predict
energy that would be generated in the future, a sound background of physics and
engineering that would aid us in understanding the functioning of the photovoltaic cells
and solar panel architecture and its engineering will be of great value when improving the
solution becomes the core objective.

Similarly, in some other use cases, we would need disciplines of behavioral science and
design thinking in more depth to study user behavior in specific scenarios and its
implications in the business context. Thus, to solve any problem, we would need a curious
mindset where our approach would be very interdisciplinary. With the use cases in IoT,
the level of granularity of data that gets captured using sensors is altogether different. This
mammoth and rich dataset now brings us the opportunity to deal with use cases at more
and more granular levels than before. We can talk about use cases as abstract as increasing
the product/asset life for an oil and gas refinery equipment or something as granular as
reducing the vibrations in the gears of a diesel engine.

IoT and Decision Science

[33]

The problem universe
Now that we have a fair understanding about what skillsets are required to solve the
business problem, lets try to understand how we go about solving the problem. Generally,
the initial vibes that we get from a problem is the complexity. Not every problem is
complicated; the simplicity of the problem is represented when it is broken down into
smaller problems and we study how these smaller problems are connected to each other.
Solution design gets easier when we think about one small problem at a time than the entire
big problem.

Lets say that we are trying to solve the problem of increasing sales for a retailing customer.
Here, increasing sales is the bigger problem that can be broken down into smaller and more
focused problems where we deal with one small problem at a time. Increasing sales for a
customer can be composed of smaller problems such as improving marketing campaigns,
optimizing marketing channels, improving customer experience, designing customer
retention programs, optimizing the supply chain model, and so on. The bigger problem can
always be broken down into smaller and more focused problems. Similarly, when we solve
one problem, it is also important to understand how these problems connect with other
problems in the universe. The solution of the current problem may have a direct impact on
another problem or solving this problem also requires solving the other connected problem.
Here, we are talking about the art of problem solving rather than solving specific problems.
Every problem is a part of a universe, where it may be connected to one or many other
problems and may have a direct or indirect impact with other problems. Understanding the
network of the problem is crucial before finalizing the design for our solution to the
problem.

When we map the smaller problems connecting with each other to create the bigger
problem, we have a universe of problems where each small problem can be identified with
its life stage, nature, and type. Then we can solve each of these problems using a different
approach meticulously drafted for its type and nature rather than using one generic
approach. An incremental step-by-step approach to problem solving is not only time-saving
but also impactful. The following diagram showcases the example discussed here visually.
We can see how large problems are essentially smaller problems interconnected to each
other:

IoT and Decision Science

[34]

The problem universe

The problem solving framework
You have learned about how the problem evolves through its life stages and how it can be
represented using its type and nature. We also studied how Decision Science and problem
solving require a curious mindset with an interdisciplinary approach for the solution. We
also explored how problems are actually interconnected in nature and internally composed
of smaller problems that can again be of a different type, nature, and life stage. Lets now go
ahead and study the problem solving framework.

The problem solving framework basically represents a blueprint for the entire solution
designed for the problem. Lets say that we are building a software or house; we would
basically have an entire list of items that we need to acquire as resources and steps to be
executed as per the plan for the end product to look as we have envisioned. Problem
solving is also a similar story. Here, the first step is to break down the problem into smaller
problems (in case the problem is a big one) and then gather an exhaustive list of hypotheses.
To solve a problem, we basically collect a plethora of hypotheses and then test them to get
results. Finally, we combine all the results together in such a way that we create a story
where we have an answer to the question that we are trying to answer in the problems
context. The hypotheses can be data-driven or heuristics-driven.

IoT and Decision Science

[35]

Lets take an example to understand how the problem solving framework looks. Consider
the case of a hydroelectric power plant, where we have a small setup of devices necessary
for the hydroelectric power generation: a turbine, generator, transformer, dam, penstock
with an intake control gate, and other essential ones. These devices have their regular roles,
such as the dam takes care of storing water for the hydroelectric plant, and there would be a
penstock that is basically a long intake pipe that carries the water from the reservoir
through controlled gates into a powerhouse that hosts the turbine. The turbine is a device
equipped with large blades that rotate when water falls on them, and finally the generator
generates AC electric energy from the rotation of these blades in the turbine. (Lets ignore
the physics behind this to an extent.) The transformer then converts the electric energy to a
higher voltage energy. In the entire flow, the gates of the penstock can be controlled to
change the rate of the flow of water into the powerhouse:

The hydro power plant diagram

www.allitebooks.com

http://www.allitebooks.org

IoT and Decision Science

[36]

So, what would be the problem?

You are the site engineer who has been asked the question: Why has the generation of
hydroelectric energy been low for the past one month? Assume that you have no physical
access to the location currently, but still you would first like to gather the maximum amount
of information before you begin working on the site when you have access. This would be a
scenario where you only have time at the site to fix the problem and not go there and then
find out the root cause by testing and inspecting a couple of things. This is a use case that
you can solve using data, data, and data. So, as a high-level approach, you would now use
every dimension of data and find out the root cause that is possibly dipping the energy
generation from the power plant.

Now that the context of the problem is clear, lets take a step back and try to understand
more about the problem and then enter the problem solving framework. In this problem,
we are trying to find out the root cause of an event-in a nutshell, we are trying to answer the
question, Why did the event happen? This indicates that it is inquisitive in nature.
Secondly, the problem is not radically new and neither has it been completely solved and
tested to have an exhaustive solution guideline for all problems. Therefore, the problem is
in the Fuzzy stage. Finally, the problem definitely has a high impact and is not a once-in-a-
lifetime or once-in-a-couple-of-years event. We can probably conclude that the problem has
moderate to high impact and moderate to high frequency. With the current landscape of
the problem, we should probably build a product for this problem with a permanent
automated solution. For now, lets explore the problem solving framework.

IoT and Decision Science

[37]

The framework is a very simple deal. If we are new to the business domain, we would first
gather knowledge around the business domain before starting with the problem. In this
scenario, we would explore the working of the hydroelectric workstation and how each
component in the plant contributes to the overall process. Then we start collecting the list of
hypotheses that can be a factor to the problems solution. So here, we lay down all the
factors that could possibly be a reason for the root cause of the problem we are trying to
solve:

Hydroelectric

In this scenario, we can think of a few factors that can be valid hypotheses for the root
cause. For example, there would contamination in the oil of the transformer or there could
be an oil spill. The rotors of the turbine could have overheated or the runners could have
eroded. The amount of water flowing into the penstock and the water levels set in the gate
control could be different, that is, water pressure in the penstock may be lower than usual,
the RPM of the turbine blades is lower, or the critical parameters for the turbine have been
operating at a lower value for a longer duration. Similarly, the critical parameters for the
transformer or generator could have been performing beyond the normal operating range
for a longer duration. Oil levels in the gears of the devices may be below the ideal point or
the devices may be operating at a temperature beyond the normal range. For these devices,
we would have multiple parameters in place that define the status of operation for the
devices and deviance from normal operations. A closer look at these parameters will help
us define the entire picture of the power plant. All of these factors that build our initial layer
of root cause analyses forms the collection of heuristic-driven hypotheses.

IoT and Decision Science

[38]

Once we have the heuristics-driven hypotheses defined, we have action items in place to
test what went wrong. We can individually test these hypotheses, evaluate the results from
them, and gather insights. Secondly, our collection of hypotheses is still not exhaustive. We
might have missed out on tons of important correlated factors that are probably latent in
nature and might only be visible when we explore the data in more detail. Lets keep the
data-driven hypotheses aside now. (This will be more realistic as we move to Chapter 3,
The What And Why – Using Exploratory Decision Science for IoT). Consider a usual problem
solving approach where we have collected a couple of heuristic-driven hypotheses,
performed exploratory data analysis for the data, and tested the hypotheses collected. We
would find that a few of the hypotheses that we designed earlier are not accurate as the
results were not intuitive. We may discard a few hypotheses and prioritize a few others. We
would also find a lot of new relationships between data dimensions that we had not
accounted for initially. Now, if we revisit the previous list of hypotheses, we would
probably have a version with better and more accurate hypotheses and also new
hypotheses that we uncovered during our data exploration exercises. The new hypotheses
may not be our final version. It may go through a series of iterations before it gets finalized.
The refined final list of hypotheses can be called the problem solving framework. This is
where the convergence of data-driven hypotheses and heuristic-driven hypotheses takes
place. This can be represented as a matrix or prioritized list of hypotheses, which needs to
be validated to solve the problem:

The problem solving framework

IoT and Decision Science

[39]

The initial list may have a few hypotheses that may not make sense to test as there may be
data limitations or they may be counter intuitive with a few latent data relationships that
we explored during our analysis. Once all the hypotheses have been tested, we will have
results gathered from various tests from them under a single roof. The next step is to
assimilate the results so that we can make sense of the story from the results. Synthesizing
the results assimilated, we may find the root cause for the event as a result of a few other
events. Lets say that while gathering results from our data, we might conclude that the
malfunctioning of the controlled gates in the penstock was the root cause. This might be
inferred from the critical parameters of the turbine and generator operating at lower
thresholds continuously for a prolonged stint. A few data tests on the water pressure and its
correlation with the value from the controlled gates differing over a period of time can be
an indicative value for the same.

In a nutshell, we have glanced through a very high-level problem with a structured
approach using the problem solving framework. The problem solving framework is a
simplified approach to design and draft the exhaustive hypotheses generated as a result of
the convergence of heuristics and data exploration. With the exhaustive list of hypotheses,
we conduct various data tests and assimilate results from them to synthesize and solve the
problem by gathering insights and creating a story. In the coming chapters, we will solve
real business problems using the problem solving framework and also understand each
incremental phase in more detail.

Summary
This chapter was an introduction to Decision Science and IoT. You learned about the basics
of IoT and how it evolved and understood the differences between ambiguous names such
as M2M, IIoT, IoE, and others. We studied the logical architecture of the IoT ecosystem by
considering IoE and learned how People, Processes, Data, and Things together form the IoT
ecosystem. We also discussed decision science and understood more about defining a
problem based on the current life stage as Muddy, Fuzzy, or Clear, based on its type as
Impactful and Frequent, and finally based on its nature as Descriptive, Inquisitive,
Predictive, or Prescriptive. We also studied that problem solving in decision science
requires an interdisciplinary approach using a combination of math, business, technology,
and so on. Finally, we also studied about the problem solving framework using a generic
example of a hydroelectric power plant.

In the next chapter, you will learn in depth about the IoT problem universe and use a
concrete example to understand the problem and design the blueprint for the problem
using the problem solving framework.

2
Studying the IoT Problem

Universe and Designing a Use
Case

IoT is spread across the length and breadth of the industry. It has touched every possible
industry vertical and horizontal. From consumer electronics, automobiles, aviation, energy,
oil and gas, manufacturing, banking, and so on, almost every industry is benefiting from
IoT. Problems arise in each of these individual business areas that need to be solved
connoting the industry it is addressing, and therefore people often segregate the wide
spectrum of IoT into smaller and similar groups. Thus, we see names such as Industrial IoT,
Consumer IoT, and so on being referenced quite often these days. Keeping aside these
broad divisions, we can simply divide the problems to solve in IoT into two simple
categories, that is, 'Connected Operations' and 'Connected Assets'.

In this chapter, we will study about the IoT problem universe and learn to design a business
use case by building a blueprint for the problem using the problem solving framework that
we studied in Chapter 1, IoT and Decision Science. We will do this by first understanding
Connected Assets and Connected Operations in detail with examples. We will then build
the foundation to solve an IoT business problem-designing a use case by first studying the
problem's context, identifying the associated latent problems, and finally designing it using
the problem solving framework.

Studying the IoT Problem Universe and Designing a Use Case

[41]

We will cover the following topics in this chapter:

Connected Assets and Connected Operations
Defining the business use case
Sensing the associated latent problems
Designing the heuristic-driven hypotheses matrix

By the end of the chapter, we will have complete context about the business problem that
we will solve and the areas where we need to dig deeper along with the roadmap we will
take to solve it step by step.

Connected assets & connected operations
With the swift progress of IoT in every dimension in the industry, the associated problems
also diversified into the respective domains. To simplify problems, industry leaders took
the most intuitive step by defining logical segregations in the IoT domain. Today, there is a
plethora of articles and papers published over the Internet, which cite different names and
classifications for IoT. As of now, we don't have any universally accepted classification for
IoT, but we do see different names such as Consumer IoT, Industrial IoT, Healthcare IoT,
and so on. All the IoT-related problems and solutions in the industrial domain were termed
as Industrial IoT and so on.

Before studying Connected Assets and Connected Operations, let's explore a simplified
classification for the IoT domain. This is definitely not the most exhaustive and widely
recognized one, but it will definitely help us understand the nature of the problem better:

Studying the IoT Problem Universe and Designing a Use Case

[42]

When we look at the entire IoT landscape, we can think about four broad areas where we
can help IoT evolve. These are groups of problems associated with consumers, industry,
environment, or infrastructure. As the name suggests, everything that can be tagged
directly to a consumer, namely, electronics, home appliances, healthcare, retail,
automobiles, and so on, where each of them can also individually represent a cluster of
problems can be classified as Consumer IoT. The problems in this domain would need to
be addressed in a different way as it interacts directly with the consumers. Similarly, the
industry vertical can also be visualized as the domain where the results can be directly
tagged to machines like the ones in the manufacturing and engineering industry. Heavy
engineering, smart factory, oil and gas, and energy domains now have machines talking to
each other and power IoT. The names go on and we have a never-ending list of industry
verticals, each showcasing a shared problem set for the domain.

When we look at the IoT problem landscape from a holistic perspective, it all boils down to
two simple areas:

Connected assets
Connected operations

Even though using a classification to represent a smaller domain while solving the problem
is always beneficial, at the broader level, any problem that exists in IoT can be directly
represented by one of these two categories. Let's now begin exploring the crux of the IoT
problem space-Connected Assets and Connected Operations

Studying the IoT Problem Universe and Designing a Use Case

[43]

The journey of connected things to smart things
The IoT revolution began by just connecting things to a network. There is an old saying that
says, Networking is the key to success in any business. The IoT fraternity is also loosely
based on this principle. Let's consider a simple analogy to understand this. Consider, you
are a software engineer and you are now eager to enter the analytics industry, but you are
completely new in this field and have barely any friends who can help you get started. So
you start researching over the Internet and assimilate a whole bunch of books and videos to
study about analytics. Then, after working diligently for three months, you apply for jobs
for analytics positions in multiple companies. You attend a couple of interviews and figure
out that you need more specialized preparations in some topics. You then keep learning
and attending interviews and then finally after a lot of attempts, you nail it. Let's say that
the whole process took you around six months; what could have been an easier alternative?
If you knew people in the analytics industry, one of them could guide you to learn the
required skillsets for the position open in their organization. The entire effort could have
been reduced to two months! That is a whole lot of saving in time. Networking helps you
receive the required information faster and easier, which in turn helps you take better
decisions and evolve faster.

The same holds true for machines and devices. The following diagram is a visual to
understand how legacy devices eventually evolved to become smart devices:

Connected assets

Studying the IoT Problem Universe and Designing a Use Case

[44]

Let's take the analogy to the field of IoT. What IoT essentially does as a first step in the
ecosystem is it connects the devices/things. Once they are connected, they can talk to each
other; once they talk to each other, they get smarter. To make it even simpler, consider the
air conditioner in your house. Earlier, it used to be a standalone device that needed to be
switched on/off whenever required. In course of time, they got connected to a network, and
now they can be controlled using a remote/smartphone or tablet connected to the Internet.
They have now become 'Connected Devices' and offer services to you at more convenience.
Let's say that you forgot to switch off the AC before leaving for work and you suddenly
realize it on the way. You could quickly turn it off using your smartphone while you are
still on the way to work. Finally, when devices are connected, they are provided with huge
amount of data that was initially unavailable. This data can be leveraged to take decisions
that make life even more comfortable. The connected AC, which could connect to your
smartphone through the Internet, can also connect to a sensor that detects the number of
people in the room and then change the settings automatically based on the data. So we
have a smart AC that automatically powers on when someone enters the room and changes
the settings when more and more people enter the room. Once devices are connected,
making them smart is the next agenda.

The same thumb rule applies for every other use case.

In today's world, we have smart connected devices booming up. Almost every other
business model has started realizing the potential value that can be reaped from smart
connected devices. It could just be your home automation or a mammoth factory machine;
there is definitely a gold mine that can be extracted if we have things connected to each
other.

Connected assets – A real life scenario
Let's take a real-life example to understand how Connected Assets will work for a large
organization. We will study the use case of a Coffee Making Machine to understand this
better. Consider any coffee making machine in the market, say, Sage Appliances is
planning to launch a new coffee machine called Caffeine Express that will be a part of the
connected assets experiment for the manufacturer. So how does the traditional business
work? Well, the company would sell the appliance to customers all over the world and set
up service centers at strategic points. For simplicity, let's assume that they sell their
appliances in just one country, hence they would preferably set up service care centers in
the capital or prominent cities. Let's say that it has set up service centers in a total of five
cities in a country.

Studying the IoT Problem Universe and Designing a Use Case

[45]

In the traditional business model, once the appliance is sold, the company has only limited
information about the sales or how the appliance is performing. It would probably know
about the total volume of sales that has happened till date and how much of these sales
happened online or through stores. They would also know which store/area sold how many
units and a few other simple details. Also, the company would understand how the
appliance is being used and its performance from user opinions over social media or the
customer service centers. However, from a holistic viewpoint, this information is still far
less than what is required:

Connected assets: the coffee machine use case

Now consider the IoT business model; assume that each of the appliances sold-Caffeine
Express – Coffee machine-is equipped with a GPS, Internet connectivity through Wi-Fi, and a
couple of sensors that can monitor the internal parameters. The GPS locates the device
geographically and the sensors collect periodic data from the appliance about how many
cups of coffee were brewed in a day and when they were brewed. It would also capture the
operational parameters of the machine such as the health index of the motor, temperature of
the device, amount of energy used, noise and vibration levels, and so on. All of this
information is then sent to the company's private cloud with the customer's consent. Now,
with IoT in the ecosystem, we have a whole new level of connectivity with the appliance
even after it is sold to the customers. An extremely rich source of data is now available to
the company that they can use to help the customer as well as the business. This is
technically a simple example for 'Connected Assets'. Here, each coffee machine is equipped
with Internet connectivity, sensors, and a GPS that can connect to the central server on the
private cloud of the company.

Studying the IoT Problem Universe and Designing a Use Case

[46]

So what exactly will happen if the devices are now connected; how does this help?

This is where Connected Assets bring in the difference. The earlier decisions taken by the
company were all driven by judgements, heuristics, and market research. The company
would have researched and experimented before finalizing where to set up the service
centers, which medium to target for marketing, which state/city to focus more on sales, and
so on. With IoT's connected assets, all these decisions can be made more accurate and data-
driven.

The company can now understand exactly how many units are sold in each geographical
area, how often they are used, how they are performing, and so on. The decisions taken
earlier might not be really accurate but all of that can now be validated with the data. Let's
say that the maximum sales of the appliance were observed in London and the company set
up a customer service center in North London. However, what if, from all the sales that
were observed in London, 90% of them were in South London? Assume that the customers
who are located in South London purchased them from North London to avail some offer.
The convenience of the end customer would have been dramatically improved had the
company set up the center in South London.

Similarly, the sensors installed in the appliance send periodic information to the company's
cloud about the usage and state of the device. This data could help the company understand
how the coffee machines are performing and if they are on the verge of breaking down. Are
they showing unusual usage? Are they heating up too much or are they consuming too
much power? An answer to all of these questions will help the company take better data-
driven decisions about how to fix them. They can be proactive in calling up the customer
and sending a technician before the device breaks down or educate the customer about the
malfunctioning appliance that consumes too much power proactively and fix it. It could
also help them serve the customer service center better with a planned inventory based on
the issues studied from the performance data.

With such a connected ecosystem, the customer and business both benefit in the long run.
The customers get world-class service at the least cost and business can be more lucrative
with reduced operational costs and planned activities.

Studying the IoT Problem Universe and Designing a Use Case

[47]

Connected operations – The next revolution
The second part of the IoT problem landscape is 'Connected Operations'. Generally,
organizations first begin with getting the ecosystem ready for connected assets. Once the
system is mature enough, the next level of connectivity is brought by connecting the
operations in the company. These operations could be everything associated with the
company-manufacturing, inventory, supply chain, marketing, transportation, distribution,
customer service, and so on. Imagine an organization that has all of these operations
connected to each other and streamline processes. The entire bottleneck areas can be
eliminated and the overall process can be very smooth, efficient, and cost-effective. The
industry is currently moving slowly toward this revolution; it's called Industry 4.0 and
sometimes also referred to as Smart Factory.

What is Industry 4.0?
The current era is the fourth Industrial Revolution and has been specifically triggered by
IoT. Looking back in history, the first form of revolution came when mechanization was
brought into the industry. Long back when the entire industrial work was done by laborers,
the early 18th century saw the first breakthrough when the factory was mechanized in the
textile industry. Tasks previously done laboriously by hand in hundreds of weavers'
cottages were brought together in a single cotton mill, and the factory was born. The second
industrial revolution (Industry 2.0) was born in the early 20th century, when Henry Ford
revolutionized the moving assembly line and steered mass production. These revolutions
brought humongous benefits to mankind with urbanization and money. Recently, we
witnessed the third Industrial Revolution (Industry 3.0) when information technology was
born. A plethora of things were made digital and IT played a pivotal role in transforming
the industry. The major organizations that we see worldwide are still a part of the third
Industrial Revolution.

Industry 4.0, that is, the fourth industrial revolution, started blooming with the boom of
Internet of Things. Connected Assets was the beginning that eventually led to the idea of
Connected Operations and conceptualized the idea of a smart factory. A smart factory
would be one where all operations could talk to each other and coordinate to take decisions
automatically in order to reduce operational overheads-a truly revolutionary industry.

Studying the IoT Problem Universe and Designing a Use Case

[48]

Let's take a simple example to understand how Industry 4.0–Smart Factory-will work. We
will consider the same example of the coffee machine used in the previous section. Consider
the scenario in the factory; we will be having multiple operations or processes. Assume that
the following processes are a part of the entire operations list, say, we have supply chain,
manufacturing, transportation, distribution, and customer service.

The life cycle of the operations can be visualized in the following diagram:

Legacy operations

Let's assume a simplified process.

The raw materials are sourced from multiple vendors, and once the required amount is
stocked for the manufacturing process, the system initiates the manufacturing of products.
Once the products are manufactured and packed, they are transported to warehouses in
various cities/states within the country. From these warehouses, the goods need to be
distributed to the various stores from where customers can purchase them. After using the
appliance for a while, some customers revert to the service care center for the issues they
come across. These products might need repair or replacement, which can then be sourced
back to the distribution chain. This is how a general model of a factory with various
operations looks like. A person would be in charge of each of the intermediate processes to
take a call on the immediate next step.

Studying the IoT Problem Universe and Designing a Use Case

[49]

Let's now understand how the connected operations will look in the smart factory:

Connected operations

What if all of these operations could actually talk to each other? With the communication
between these operations, they could also take decisions on their own to get the best and
most optimized results. Consider a scenario where once the raw material supplies are ready
in the factory's storehouse, the manufacturing process automatically initiates a process to
ingest the required raw materials from the source in the required amount for production.
The manufacturing operation can talk to the transportation operation; hence, based on the
products manufactured, the manufacturing operation automatically decides the type and
number of products to be transported to different locations. The transportation operation
receives the information from the manufacturing operation and automatically assigns the
load to respective trucks (vehicles for the transportation) and the associated driver gets
notified about the load that he needs to transport to the destination (warehouse) along with
the desired timeframe. The drivers quickly transport the loads to the respective
destinations. After the load arrives at the warehouse, the system automatically updates the
database about the stock arrival. The distribution operation would then receive the
information from the stores about which store requires how many and what kind of
products; the system automatically assigns smaller loads to each store and notifies the same
to each distributor. The products finally reach the store and are up for sale. Once the stock is
about to expire, the store/sales operations automatically notify the need for a fresh load and
the message eventually reaches the other operations.

This was a glimpse into the smart factory, that is, Industry 4.0, where every operation can
talk to other operations and take decisions to transform the legacy factory into a smart
connected factory.

Studying the IoT Problem Universe and Designing a Use Case

[50]

Defining the business use case
So far, we have explored what kind of problems arise in a typical IoT scenario and how they
can be classified into Connected Operations and Connected Assets. Let's now focus on
designing and solving a practical business use case for IoT. We will explore how we can
solve problems using the interdisciplinary approach of decision science in IoT.

We'll start with a simple problem in the manufacturing industry. Assume that there is a
large multinational consumer goods company, say, Procter & Gamble, who owns a plethora
of products. Consider their detergent product, Tide, to study our example. Tide is a
detergent powder that comes in liquid form as well, has a variety of scents, different
cleanliness levels, and so on. Assume that the company owns a plant in which one
production line (the assembly line in which the goods are manufactured end to end)
manufactures detergent powder. It manufactures 500 Kgs of detergent powder in a single
go. The operations head of the plant, John, has a problem and has now reached out to us to
help him. John feels that the quality of the detergent produced in the manufacturing process
is quite often not in sync with the required levels. Whenever the quality of the
manufactured detergent powder goes below the standard level, they have to discard it and
manufacture it all over again. This results in a huge loss of time and money. He is not sure
about the exact reasons for the issue; he feels it could be because of faulty machinery or
errors made by the laborers, but he's not really sure about the actual reason. John has
therefore reached out to us to check whether we can help him.

This is where decision science comes in action. A problem is identified and the solution to
the problem can help John take better decisions. We assure John that we would definitely
help in solving the problem. John heaves a sigh of relief and gets back to work. As he
leaves, he mentions that we can have a meeting with him the next day to discuss the
problem.

Doesn't this sound great? Let's quickly understand what it would take to solve the problem.
First of all, what we heard from John is just the problem statement (which is still raw and
needs a lot of improvement before we can term it as a problem statement). He mentioned
that the quality of the detergent manufactured many times is below the acceptable range
and hence needs to be discarded, which results in financial losses. Can we help him, what
are the different analytical operations that we can perform, how do we find out the reason
for bad quality, do we need to reduce financial losses or increase the quality of the produce.
Too many questions start bothering us. This is indeed a common scenario for everyone who
tries to solve a problem. Let's take a pause and understand how we can structure the
problem and understand it better.

Studying the IoT Problem Universe and Designing a Use Case

[51]

As a golden rule in problem solving, there are five simple and essential steps that we need
to plan and execute for any use case:

Defining the problem.1.
Researching and gathering context.2.
Prioritizing and structuring hypotheses based on the availability of data.3.
Validating and improving the hypotheses (iterate over steps 2 and 3).4.
Assimilating results and rendering the story.5.

Let's go step by step for our use case.

Defining the problem
The first step in any problem is to clearly define the problem. Let's define the problem by
framing the problem statement in the most succinct way we can. To accomplish this, we
will use a very famous framework, which is used by industry leaders such as McKinsey,
Mu Sigma, and others, to represent the problem in a structured way, called –SCQ-
Situation, Complication, Question.

To define the problem, we ask three simple questions:

What is the Situation, that is, the problem you are facing?
What is the Complication you face while solving it?
What Questions need answers to solve the problem?

When we gather answers to these three simple questions, we can frame the most lucid
representation of the problem statement. Let's go ahead and build an SCQ for this.

Studying the IoT Problem Universe and Designing a Use Case

[52]

The following image is a simplified Situation – Complication – Questions representation for our business
use case:

SCQ

We capture the situation in simple words and highlight the key complications that we face
while solving the problem. In this use case, we are not sure about what factors contribute to
the erroneous or low quality produce while manufacturing the detergent, and therefore we
highlight it as the key complication. To solve the problem, we need answers to a couple of
questions. Following up directly from the complication, we can understand the key questions
that need answers are: what factors contribute to the dip in quality and how do they affect
it? Once we have an understanding about how each factor affects the quality of the
detergent produced, we also need to understand what can be done to improve the detergent
quality. Finally, once the SCQ is clearly defined, we can take an easy shot at the resolution
required to solve the problem (which is represented in the box on the extreme right in the
preceding diagram).

The SCQ can be used to represent any problem with the least verbiage. Once the business
problem is clearly defined, we can proceed to the next logical step for problem solving, that
is, gather more context and generate an exhaustive list of hypotheses for the problem.

Researching and gathering context
Researching about the problem and gathering more and more context is a lengthy step. It
requires way more effort than we could imagine. Moreover, this is an iterative step as you
keep discovering newer things in the course of your analysis.

Studying the IoT Problem Universe and Designing a Use Case

[53]

For our use case, we are trying to solve a small problem for a detergent manufacturing
company. The company owns a manufacturing plant that has been bearing huge losses in
time and money due to the bad quality of produce. To understand what factors impact the
quality and how and solve the problem better, we need to understand the problem's context
in more depth. We will need the acumen about what is happening and, to a certain extent,
also why it is happening in the manufacturing process. To begin with, we can probably start
by understanding the operations of the manufacturing plant with the engineer's mindset,
trying to understand more about the operations and raw materials, and so on. Our research
can include learning about the detergent manufacturing process, what kind of raw
materials are used, how long it takes, and what machinery does the company use. However,
before we go into research mode, let's take a pause and analyze the kind of problem we are
solving.

As discussed in the first chapter, we'll analyze the type of the problem in three simple
dimensions-the life stage of the problem, frequency and impact of the problem, and nature
of the problem.

Gathering context – examining the type of problem
The problem is definitely not new; almost every other manufacturer would have come
across a similar issue and definitely tried experimenting to solve it. Additionally, it has not
been completely solved; there is humongous scope for the problem's solution to improve.
Hence, it is in the fuzzy state. The frequency of the problem is quite high, though not
extremely high. The frequency would vary from once a week to probably even once a day.
Similarly, the impact will definitely be moderately high as it delays the production process
resulting in loss of valuable time, energy, and resources. Therefore, the problem can be
defined as moderate frequency and moderate impact. To understand the nature of the
problem, we can analyze the questions that we are trying to answer. If we glance back to the
previous paragraph, we can notice that the question we are trying to answer is why/how-
this shows that the nature of the problem initially would be Inquisitive.

Therefore, we can conclude that the problem will require a bit of experimentation to explore
and understand as it is in the fuzzy state. Also, it is a very valuable problem to solve as the
impact and frequency both are moderately high. Finally, the nature of the problem as of
now is inquisitive; hence, we would need a forensic mindset to solve and find the root
cause. As the problem progresses, the findings in the solution may change the nature of the
problem-it could evolve from inquisitive to predictive or even prescriptive based on the
insights we capture from the analysis. This said, let's move on to understand the business
context about the use case.

Studying the IoT Problem Universe and Designing a Use Case

[54]

Gathering context – research and gather context
To solve problems better, it is crucial for us to do good ground research and accumulate
robust context about the problem. Understanding more about the company, manufacturing
environment, the manufacturing process and so on will add great value to our approach
and solution. Our research will include reading articles over the Internet, watching videos
to understand the high-level process, interacting with people/laborers to understand the
operations and more about the problem, and so on. Walking you practically through the
entire research is out of the scope for this book, but we will go through the high-level flow
for the research approach.

We start our research by studying the obvious gap in our problem-the Complication
defined in the SCQ. The complication then gives rise to a few questions that need answers
and there we are! We have our easy start ready.

Refer to the following diagram to visualize the flow of the research and context gathering
for our detergent manufacturing quality use case:

Research

We will start simply with the key question: What are the different factors that cause
erroneous produce during manufacturing the detergent?

Studying the IoT Problem Universe and Designing a Use Case

[55]

To answer the question, we can start our research on understanding the first area that
comes to your mind, that is, to study how detergent is manufactured in the industry. Once
we have a fair understanding about the process, we can spontaneously come up with
immediate areas that need research. Understanding how different raw materials affect the
end produce, studying the common issues faced during manufacturing, exploring more
about the machinery used in the process, digging deeper to understand the effects of the
raw materials, the role of operational environment and operational parameters in the entire
process, and understanding whether same raw materials from different vendors can cause
an issue. When we explore and research more on different topics, we get a deeper and
concrete understanding about the problem we are trying to solve. Let's assume the
following research outcome.

Research outcome
The following excerpts have been kept very short; an actual research for a problem will
render a huge download of context and answers to all your questions.

How is detergent manufactured?
(The following context details a generic detergent <ie>manufacturing</ie> process. The
way detergent is manufactured in a large industry will be quite different that cannot be
elaborated here for obvious reasons.)

Detergent is manufactured in four simple steps: saponification, removing glycerin,
purification, and finishing. The saponification basically involves heating animal fat and oil
with sodium hydroxide. Glycerin is then removed from the resultant solution, and then the
solution is purified by adding weak acids. Finally, detergent powder is prepared through
agglomeration, spray drying, and dry mixing, and preservatives, color, and perfume are
added to the power.

(Understanding the complex process of manufacturing can be abstracted at a high level for
now.)

What are the common issues that arise in the detergent
manufacturing process?
During the manufacturing phase, there is a variety of issues that can arise. These issues
could be related to the raw materials used or machinery used. It could also be issues related
to the operating conditions of the factory/place or the manufacturing process (recipe).

Studying the IoT Problem Universe and Designing a Use Case

[56]

In the case of detergent manufacturing, we observe common issues such as overheating,
incorrect proportion of raw materials, bad quality of raw materials, inappropriate operating
conditions of the factory, delay in processing, or machinery problems such as vibrations,
unclean containers, operational inaccuracy, and so on. All of these issues along with a few
latent ones contribute to the low quality of the end produce.

What kind of machinery is used for the detergent manufacturing
process?
The concerned production line in the manufacturing plant consists of multiple machines
such as mixers, blenders, and so on connected to each other with conveyor belts. The
machine processes the raw materials and then moves it to another in containers using the
conveyor belts. The detergent manufacturing process consists of 4-5 phases, of which each
phase can contain multiple machines. In the current scenario, we can assume that each
phase in the manufacturing process contains exactly one machine. Refer to the following
diagram to get a high-level overview of the system:

The manufacturing process

Studying the IoT Problem Universe and Designing a Use Case

[57]

Different raw materials such as animal fat, sodium hydroxide, coconut oil, and so on are fed
into the process using different containers. The system automatically consumes the required
amount of materials for the production. In the first phase, these materials are processed,
heated, and mixed to form a unified mixture. The mixture is then passed in containers to the
next phase through conveyors. In the second phase, the machine processes the mixture
solution to remove glycerin. Salt and a few other raw materials are added to the solution to
separate glycerin from it. In the third phase, the remaining impurities and water are
removed by adding weak acids. In the fourth phase, the machine adds preservative,
fragrance, and other required materials to the detergent produced. Finally, in the fifth
phase, the detergent is tested for various quality parameters. If the quality of the produce is
maintained in the desired levels, the product is sent for packaging, otherwise, it is discarded
and needs to be manufactured all over again.

What do we need to know more about the company, its production
environment, and operations?
The customer has multiple manufacturing plants spread across the globe and each plant has
multiple production lines. A production line in the manufacturing plant is the assembly line
that conveys the raw material through different machines and finally delivers the
manufactured product. Multiple consumer products are manufactured in the same plant as
there are close to 10 different production lines. Let's say one of these plants is in India
located in the city of Pune, where John heads the operations for the detergent product, Tide.
John's role is to head the manufacturing operations of multiple products for the company.
He is responsible for timely manufacturing and delivery of high-quality products for the
company with reduced operational cost and lower rejection rates. However, recently John
observed that the quality of the detergent manufactured is often below the acceptable level
and hence the plant has been incurring huge losses.

Studying the IoT Problem Universe and Designing a Use Case

[58]

Prioritize and structure hypotheses based on the
availability of data
Once we have gathered enough context about the problem, our next step is to get started
with hypotheses generation. We need to ideate and brainstorm as a team to capture what all
factors could possibly play a role in helping us find out the reasons for low-quality produce.
Such brainstorming sessions can be held in a group of three or more members. We begin by
penning down all the ideas on a paper or whiteboard, which we feel could be a potential
reason for the problem. After a small session, we take a pause and try to assimilate the
hypotheses that can be framed around the ideas we have listed on the whiteboard and then
try to contemplate how this will be useful. With a few good iterations, we can boil down
our hypotheses to the most important and effective ones. The ideal hypotheses list should
be mutually exclusive and collectively exhaustive, but there is a very high chance that we
might not get it, and this is absolutely fine. If we have a relatively exhaustive list of
hypotheses, our next step is to analyze the importance of each of the hypotheses that we
have listed and then assign a weight/priority to it based on its importance. Once all the
hypotheses are assessed and prioritized, we need to find out which of these hypotheses can
be validated with the data we have. This is a very important step as the solution for many
problems can halt here endlessly if the most important hypotheses for the problem cannot
be validated with data. It may so happen that we define the problem and frame an
exhaustive list of hypotheses by researching the context necessary for the solution and fail
to validate the most important ones due to lack of data. In such cases, it will not make any
sense to move ahead and solve the problem by validating the remaining less important
hypotheses as we will still miss out on the bigger picture.

In case we have data to validate a good chunk of important hypotheses, we can organize
them and start validating them one by one. The results may be counterintuitive in some
cases but we still need to consider them in framing the final story. For the current use case,
we are limiting the exploration of data from Chapter 3, The What and Why – Using
Exploratory Decision Science for IoT onward. Hence, in this chapter, we will only draft an
initial version of the hypotheses and refine it. Structuring and prioritizing of the hypotheses
based on availability will be explored in detail in the next chapter:

Hypotheses list

Studying the IoT Problem Universe and Designing a Use Case

[59]

The preceding image showcases a high-level list of hypotheses generated from the team's
brainstorming sessions for the problem statement. Around 12-13 hypotheses have been
listed for the problem. They come from simple ideas such as issues related to operational
parameters, raw materials, process-level issues, laborer issues, machinery issues, and so on
On each of these broad ideas, we can have a list of hypotheses that may sometimes be very
obvious or just an intuition. It is a good practice to collect all such possible hypotheses
combinations and later filter them as a team with solid reasoning.

In general, for an average problem, a brainstorming session can gather approximately 15-20
broad ideas or reasons for the issue, which will then result in around 50-60 odd hypotheses.
After a more detailed discussion and narrowed-down research, we may land up filtering
around 20-30 good constructive hypotheses. Finally, after prioritizing and checking for data
availability, we would have a handful of 15-20 hypotheses that can be validated with the
data. From this final prioritized list of 15, there would be around 5-6 very important and
critical hypotheses that we have identified and will form the major part of the story for your
solution.

Validating and Improving the hypotheses (iterate
over #2 and #3)
The next logical step in the problem solving process is to start validating the hypotheses one
by one from the final assimilated list. This would involve diving deep into the data to
perform a variety of analytical tests and checks. We would start initially with univariates,
then move on to bivariate, and even multivariate, analysis. Based on the hypotheses, we
may perform few statistical checks/hypotheses testing to validate our research and
heuristics. (In case, any of these terms-bivariate, univariates, or statistical tests-are new to
you, nothing to worry about. We will get into these topics in detail in the next chapter.) In
the course of the analysis, we may find numerous counterintuitive results and also there
would be cases where our initial understanding from our research needs to be updated.
This will result in tweaking the existing hypotheses and, in some cases, even adding or
removing a few hypotheses.

Studying the IoT Problem Universe and Designing a Use Case

[60]

Too much abstraction through text would be making things a bit difficult to fathom. Let's
take a small example to understand this step better. Assume that we are in a scenario where
we have our problem statement clearly defined, the research to solve the problem is
exhaustive, and we have drafted a final and prioritized version of the hypotheses. We now
dive deep into the data and start validating them using a variety of methods. Let's say that
we are in the process of validating the hypothesis: Bad quality of the raw material results in
bad quality of the end produce. This is a hypothesis that may seem very obvious. We would
expect that whenever detergent was manufactured in the plant and the quality of the raw
materials were not in sync with the expected quality, the quality of the end produce would
always be bad. However, what if we find the results completely counterintuitive? It may
happen because our research was incomplete; maybe the quality of the end produce gets
affected only if the quality of the raw material goes beyond an abnormal range. It could also
be the case that the quality parameters we have considered might not be exhaustive or may
not be the valid one to test our hypothesis. It could be any reason and we may or may not
have an answer to it. This is a very common scenario in the analysis. In such situations, we
take a pause in our analysis to explore data/hypotheses validation and get back to basics.
We refresh our heuristics by researching more focused and specific areas of interest. After
some research, we may find that the quality of the raw materials becomes critical if the
operating temperature is below a specific temperature. We would then tweak our
hypothesis so as to validate a more accurate one. In some cases, we might find something
even more interesting that we may add as a new hypothesis and sometimes also drop an
existing one.

Overall, this step in the problem solving process is an iterative one. It may take multiple
iterations to get a more improved and refined version of hypotheses results.

Assimilate results and render the story
This would ideally be the final step in our problem solving process. In many cases, a new
problem gets identified here and the course of analytics heads to a new direction. By the
time we reach this step, we would have all our refined and tweaked hypotheses tested. Our
heuristics and judgements based on our research and context gathering process will now be
having a more concrete answer. However, we have still not solved the problem! We need to
synthesize the results to complete the story and find reasons for the bad-quality detergent
manufactured. This is when we start storyboarding the results. We would have around
15-20 or sometimes fewer hypotheses validated with results. The results may be
counterintuitive or incomplete, but still it is important to gather all of them together to
understand how one result complements another and what is the root cause for all the
problems. A simplistic form of the story will be like the following section.

Studying the IoT Problem Universe and Designing a Use Case

[61]

(The following is just an example for our understanding and doesn't necessarily hold true
for any detergent manufacturing company or even our use case).

The major reason for the bad quality of the end produce while manufacturing detergent is
due to the inappropriate operational parameters and environmental factors of the
manufacturing plant. The machinery, when overloaded, doesn't produce the required
temperature to heat the raw materials, and the RPM of the mixer reduces by 20% resulting
in a semi-processed mixture solution from Phase 1. The quality gets further affected if the
input quantity of the two most important raw materials varies even by a fraction.
Furthermore, if the same raw material from different vendors have variations in input
quality parameters, it may uptick the bad quality of the end produce. Also, when the
machinery is overloaded, the processing delays by around 5% and also causes
inappropriate intermediate solutions.

Therefore, we can conclude that the losses in the detergent manufacturing plant are mainly
due to improper operational parameters that mainly resulted from overloaded machinery.
Similarly, quality variations within the raw material due to different vendors and
deviations in the input proportion of important raw materials also contribute to the bad
quality of the detergent manufactured. Also, we can positively say that the laborers' roles in
the bad quality produce is very minimalistic.

The storyboarding process is often tedious and, in most cases, requires inputs from the
business team who have more in-depth domain knowledge. There would be many cases
where a few results may be statistically significant but may not make any business sense.
There would be teams who would have extensive domain knowledge and can also help in
drafting the conclusion into a story more effectively. The final story will be best if framed in
a lucid way, which answers the question we drafted in the SCQ in the previous section. The
SCQ with the solution will be a complete summary of the problem we are trying to solve
with the end results/answer.

Sensing the associated latent problems
Problems in real life are often never solo; they are mostly interconnected with multiple
other problems. Decision science is also no exception to this feature. While solving a
decision science problem, we would often reach a point where we understand that solving
the associated problem is more important than the current problem. In some cases, solving
associated problems becomes inevitable in order to move ahead. In such cases, we would
not be able to practically solve the current problem until and unless we solve the associated
problems.

Studying the IoT Problem Universe and Designing a Use Case

[62]

Let's take an example to understand this better. Consider that while solving the problem to
identify the reasons for bad-quality detergent manufactured, we inferred that the vital
cause for the problem is the difference in raw materials from different vendors or because of
insufficient labor in the manufacturing plant (assume). In some cases, the machinery
downtime or inefficiency can also be vital reasons for the problem. In such cases, we are
often solving multiple problems, though we started with solving just one simple problem.
Problems are often interconnected in nature, and to solve the whole problem, we might
need to solve multiple problems creating a problem universe. In this scenario, we would
need to work on Vendor Management as a separate problem and Workforce Optimization
as another. In real-life scenarios also, we face a similar situation. In many cases, solving the
current problem might be less important as the bigger problem would be identified as
another problem.

In core IoT problems, sensing the associated problems in the big picture gets really difficult
as they are mostly latent. Sensing them to identify the problem universe becomes a bigger
challenge. While solving an IoT or any other problem, we would move ahead in steps by
breaking down the bigger problem into multiple smaller problems and then approaching
them individually. Sensing latent problems is one of the most challenging step in problem
solving. There is no predefined rule to identify associated latent problems in any problem
solving exercise. For a simplified start, it would be relatively beneficial to revisit the final
consolidated hypotheses list. We would need to go through the nuances of the hypotheses
that we framed based on our heuristics and research, especially in cases where the results
were counterintuitive while validating the hypotheses.

These areas can be used as a starting point for easy identification of associated latent
problems. We would then need to perform extensive deep dives into the data with cross-
dimensional analysis across every other dimension that we have in order to find any
relevant and interesting signals. Identifying these signals from noise will require in-depth
business and domain knowledge.

We'll consider revisiting this topic in more depth in Chapter 7, Prescriptive Science &
Decision Making. By that time, we will have solved enough use cases and experiments to
actually try and find latent signals from the problem to create the big picture.

Studying the IoT Problem Universe and Designing a Use Case

[63]

Designing the heuristic driven hypotheses
matrix (HDH)
Designing the framework for heuristics-driven and data-driven hypotheses forms the
foundation of the problem solving framework. The entire blueprint of the problem and
problem universe can be captured in this single framework. This isn't a fancy document or
any complicated tool. It's just a simple and straightforward way to structure and represent
the problem solving approach.

There are three parts to it:

Heuristics-driven Hypotheses Matrix (HDH)
Data-driven Hypotheses Matrix (DDH)
The convergence of HDH and DDH

The heuristics-driven hypotheses is the final and refined version of the hypotheses list that
we discussed earlier. The matrix captures every minute detail we need from the hypotheses.
It helps us prioritize and filter the hypotheses based on data availability and other results. It
also helps us gather all our results in one single place and assimilate in order to render a
perfect story. Once the entire HDH is populated, the initial part of the story rendering
becomes smooth and straightforward.

The HDH matrix captures the entire blueprint of the initial part of the problem. However,
as the problem evolves in scope and nature, we have different problems getting added to
the current problem. The hypotheses also evolves as we discover counterintuitive results
from our analysis. The evolved hypotheses and results are all captured in the DDH matrix.
The HDH and DDH together create one unified structure to represent and solve the
problem. The next steps and identification of associated problems and latent signals become
extremely clear to interpret and solve.

We will explore the DDH matrix and the convergence of DDH and HDH in more detail in
the next chapter when we will have the data, hypotheses, and results all in one place.

Studying the IoT Problem Universe and Designing a Use Case

[64]

The following is a sample snapshot for the HDH:

The heuristics-driven hypotheses matrix

Summary
In this chapter, you learned about the IoT problem universe by exploring Connected
Operations and Connected Assets in detail. You also learned how to design a business use
case for IoT using a concrete example to understand the detergent manufacturing problem
in detail and design a blueprint for the problem using the problem solving framework.

This was accomplished by designing the SCQ and understanding how to get started with
defining the problem holistically. We also studied about identifying the associated and
latent problems and finally explored how to design HDH for the problem.

In the next chapter, we will solve a business use case with a dataset using R. All the context
and research gathered in this chapter while defining the problem and designing it will be
used to solve the use case step by step.

3
The What and Why - Using

Exploratory Decision Science
for IoT

Problems in any given scenario always keep evolving and so does the solution. The
hypotheses that we define while solving the problem will refine with new findings, which
will then change the approach partially or completely. Hence, we need to keep our problem
solving approach very agile. The problems we solve are often interconnected in nature; a
big problem is often composed as a network of multiple smaller problems. These smaller
problems can germinate from completely disparate domains, so we would need to
accommodate diversity in our approach. Also, the solution can have different approaches
based on the problem's scenario. The approach could be top-down, bottom-up, or hybrid;
therefore, our solutions need to be flexible. Lastly, the problem can inflate to a mammoth
size, thus our solutions need to be scalable.

In this chapter, we will solve the business problem that we defined in Chapter 2, Studying
the IoT Problem Universe and Designing a Use Case using the problem solving framework. We
will use a masked and encrypted data set from a detergent manufacturing firm to solve the
problem. We will start with understanding the data and then try to answer the 'What and
Why' questions, that is, descriptive and inquisitive analytics. In the course of the analysis,
we might find counter intuitive results and latent patterns that we would not have
considered before. We will keep our approach agile by accounting the new insights and
dynamically adding the learnings to our solution. We will touch on the When question, that
is, predictive analytics, in the next chapter.

The What and Why - Using Exploratory Decision Science for IoT

[66]

In this chapter, we will cover the following topics:

Identifying gold mines in data for decision making (descriptive statistics)
Exploring each dimension of the IoT ecosystem through data (univariates)
Studying relationships (bivariate, correlations, and other statistical approaches)
Exploratory data analysis
Root cause analysis

By the end of the chapter, we will have explored and studied the data in depth, have
answers to the questions 'What and Why', and therefore surface the waves of descriptive
and inquisitive analytics. We will also draft the first version of the Data-driven Hypotheses
(DDH) Matrix and refine the previously designed Heuristics-driven Hypotheses (HDH).

Identifying gold mines in data for decision
making
As a first step, before we dig deeper into the data exploration and analysis phase, we need
to identify the gold mines in data. In the previous chapter, we designed the heuristic-
driven hypotheses (HDH) while defining the problem. We now need to revisit the list and
explore it to understand whether we are in a position to solve the problem using the data.
We will be able to do this by examining and validating the data sources for the identified
hypotheses. In case we do not have data to prove/disprove majority of our important
hypotheses, it would not add any value by proceeding any further with the current
approach. With data being available, we can get our hands dirty with codes for the solution.

Examining data sources for the hypotheses
If we take a look at the Prioritize and structure hypotheses based on the availability of data section
in the previous chapter, we can see that we have listed a couple of hypotheses that could be
potential areas to mine insights. The following image showcases the list:

The What and Why - Using Exploratory Decision Science for IoT

[67]

We have hypotheses surfacing incorrect proportions of raw materials being used,
operational inefficiency, delay between intermediate operations, labor skills, ambient
conditions, machine capacity, raw material quality, faulty machinery, machine cleanliness,
machine operations configuration, raw material vendor details, operational parameters, and
tool calibration-related topics. Let's quickly explore the data at a high level to understand
whether we have good data points to analyze and validate our hypotheses.

Data can be downloaded from the repository for this chapter from your Packt account. A
spreadsheet with the metadata for each column in the dataset is provided for reference.
Before we get there, let's try to understand what different types of data would be required
for our analysis. The answer would always be 'more the merrier', but based on our solution
design, we should at least identify a few important areas for the problem.

As we can observe from the hypotheses, we will require data providing information in the
following areas:

Raw material proportion / quantity / quality data: Data regarding what are the
different raw materials used, how much they were used, and were they used in
excess. Also, the quality of the raw material measured across the important
parameters.
Operational data: Manufacturing process-related data that captures delays
during processing, time exceeded or lost during processing, and so on.
Technician skillset data: Data capturing skillsets of workers/technicians who
handle the manufacturing process.

The What and Why - Using Exploratory Decision Science for IoT

[68]

Machine configuration and calibration data: Data capturing machine
configuration and calibration settings during the manufacturing process.
Vendor data: Data regarding information on the vendors for respective raw
materials.
Other data sources: Information regarding ambient conditions; external data that
could add value for the current exercise.

You can glance through the csv file containing metadata for the use case.

Now, let's take a look at the data to explore what sources are available and also examine to
what level they can be useful. The data provides a collection of 1,000 records representing
1,000 manufacturing processes. One row captures data that is corresponding to one
manufacturing order, which is a complete batch. In the detergent manufacturing industry,
the end product is manufactured in bulk and later catered to smaller packets. One
manufacturing order/batch could be for 1,000 Kgs of detergent or even more. This entire
batch is represented using a single row of data, which captures all the dimensions of the
manufacturing process.

So what dimensions does the data capture?

End product-related information: The product ID, product's name, required and
produced quantity, and product output quality parameters (four different
parameters)
Manufacturing environment information: Details regarding the site and
location, assembly line, and resources used
Raw material data: Details of the raw material and its quality parameters at each
stage of the manufacturing process
Operational data: Data for the manufacturing process regarding the processing
time, processing stages, indicators for delay at different stages, quantity of the
raw material consumed, stage-/phase-level quality parameter data, stage-/phase-
level processing time, and so on

The list seems pretty neat! What have we missed out?

The What and Why - Using Exploratory Decision Science for IoT

[69]

Data surfacing for problem solving
Though we have quite a good number of data points to move ahead, we do miss out data
related to vendor information for raw materials, skillsets of technicians, and machine
configuration data. However, our existing list is relatively rich enough to get started. With
the existing data, we can attempt to prove > 60% of our ideated hypotheses and majority of
them are very influential (high-priority). External data regarding ambient conditions and
other events can be captured from the Internet for specific cases. We will keep this for later
and now start with the data in more depth.

What dimensions do we have in each of the previously mentioned data sources?

End product related information
The end product for our use case is a detergent powder, that is, Tide (assume). Information
regarding how many Kgs of the detergent powder were supposed to be manufactured and
were manufactured along with four different end quality parameters (namely, Quality
Parameter 1, 2, 3, and 4) for the product are captured. These quality parameters decide how
good or bad the end product is, and therefore decide whether the produce can be accepted
or rejected.

Manufacturing environment information
A variety of machinery is used for the manufacturing process and often different products
are manufactured using the same resources/assembly lines at different times. A flag
indicating whether the previous product manufactured in the resource or machine was
similar or different. Similarly, processing time at each stage of manufacturing (usually 5-6
stages or phases are involved in the manufacturing of the product).

Raw material data
Details regarding the raw materials used, its quality parameters before the manufacturing
process, and intermediate quality parameters are captured. Let's say that in phase one, two
raw materials are mixed and processed to form one output, which is then sent to phase two
along with one or two other new raw materials, then quality parameters are measured and
captured before the manufacturing process for individual raw materials and also after each
stage for the combined mixture. Additionally, the required quantity/proportion of
individual raw materials and the actual consumed quantity of the raw materials in each
phase of the process are captured.

The What and Why - Using Exploratory Decision Science for IoT

[70]

Operational data
Operational data captures information regarding the time required for the processing in
each phase/stage. Details regarding the different processing stages and indicators for delays
at each individual stage are captured. In each stage, a stipulated amount of the raw material
is supposed to be consumed in accordance with the predefined recipe. Sometimes these
quantities are overridden by the operator/technician. Details regarding how much quantity
was supposed to be consumed and how much was consumed along with the tolerance level
for each individual raw material is captured.

Now that we have a detailed understanding of the data dimensions, let's get one step closer
to actually solving the problem.

To study what factors affect the output quality of the detergent, let's try to explore the entire
data dimension landscape. We will be using the R programing language to process and
visualize the data along with the IDE RStudio-both of which are free and available for a
wide variety of UNIX platforms, Windows, and Mac OS. The interpretation of results
shared will be independent of the codes. In case you are not technically sound with
programming, you can simply read through the codes or skip and read the results to
understand the steps; you won't miss out any details of the problem solving and result
interpretation steps.

We'll first import the data and explore the length and breadth of the dataset.

The data can be downloaded directly from my public repository (created for this book) or
we can use the csv file by downloading it from the Packt repository. For convenience, we'll
use the direct public repository link to get the data:

#Read data
url<-
"https://github.com/jojo62000/Smarter_Decisions/raw/master/Chapter%203/Data
/BO5341_IoTData.csv"

data<-read.csv(url)
#Check the dimensions of the dataset

 #Result

> dim(data)
[1] 1000 122

> colnames(data)[1:20]
 [1] "X" "Product_Qty_Unit"
 [3] "Product_ID" "Production_Start_Time"
 [5] "Output_QualityParameter1" "Material_ID"

The What and Why - Using Exploratory Decision Science for IoT

[71]

 [7] "Product_Name" "Output_QualityParameter2"
 [9] "Output_QualityParameter3" "Output_QualityParameter4"
[11] "ManufacturingOrder_ID" "AssemblyLine_ID"
[13] "Order_Quantity" "Produced_Quantity"
[15] "Site_location" "Manufacturing_StartDate"
[17] "Manufacturing_EndDate" "Manufacturing_StartTS"
[19] "Manufacturing_EndTS" "Total_Manufacturing_Time_mins"

Once the data is imported to the software, we check the size or dimension of the dataset. It
shows us 1000 x 122, which indicates that we have 1,000 rows of data and 122 columns.
Additionally, by exploring the names of the first 20 columns in the data, we can see Product
ID and Product Name, Output Quality Parameters, and a few other manufacturing process-
related columns. To understand how the data is organized, we need to explore the content
for each column:

As the number of columns is very high (>100), we will explore the data in
small chunks (20 columns at a time). We will be using a couple of
packages in R that are freely available over the Internet. To install a new
package in R, use the following command:

 > e.g. install.packages("package-name")

Once installed, you can load the package in memory using the 'library'
command:

>library(package-name)

> library(dplyr)
> glimpse(data[1:20])

Observations: 1,000 Variables: 20 $ X (int) 1, 2, 3, 4, 5, 6, 7, 8, 9,... $
Product_Qty_Unit (fctr) KG, KG, KG, KG, KG, KG, KG... $ Product_ID (fctr)
Product_0407, Product_040... $ Production_Start_Time (int) 40656, 201026,
81616, 202857,.. $ Output_QualityParameter1 (dbl) 380.0000, 391.0821,
386.162,... $ Material_ID (int) 1234, 1234, 1234, 1234, 1234... $
Product_Name (fctr) Tide Plus Oxi, Tide Plus Ox... $
Output_QualityParameter2 (dbl) 15625.00, 14202.98, 16356.87,.. $
Output_QualityParameter3 (dbl) 39000.00, 36257.61, 39566.61,. $
Output_QualityParameter4 (dbl) 7550.000, 7151.502, 8368.513,. $
ManufacturingOrder_ID (int) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,. $
AssemblyLine_ID (fctr) Line 2, Line 2, Line 2, Line.. $ Order_Quantity
(int) 3800, 3800, 3800, 3800, 3800,. $ Produced_Quantity (dbl) 0, 3140, 0,

The What and Why - Using Exploratory Decision Science for IoT

[72]

3800, 0, 4142,... $ Site_location (fctr) Pune, Pune, Pune, Pune, P... $
Manufacturing_StartDate (fctr) 20-02-2014 00:00, 24-02-201... $
Manufacturing_EndDate (fctr) 20-02-2014 00:00, 25-02-20... $
Manufacturing_StartTS (fctr) 20-02-2014 04:06, 24-02-20... $
Manufacturing_EndTS (fctr) 20-02-2014 10:06, 25-02-201.. $
Total_Manufacturing_Time_mins (int) 360, 1080, 180, 360, 240,...

We will be using a special package in R called dplyr for easy data engineering steps. The
glimpse command from the dplyr package gives us a close view into the dataset. Here, we
explore the contents of the first 20 columns and try to get a better sense of the data.

The first column X is an integer variable and a serial number. Let's validate this:

> length(unique(data$X)) #counting the number of unique values
[1] 1000

True, there are exactly 1,000 rows of data and the count of unique data points in the column
is also 1,000.

Product_Qty_Unit indicates the unit of measurement for the quantity of the product, that
is, detergent produced. Let's see what different units are used to measure the quantity of the
product:

> unique(data$Product_Qty_Unit)
[1] KG
Levels: KG

There is exactly one value for the column, hence we can conclude that all records have the
same unit of measurement for the product's produced quantity.

Product_ID & Material_ID uniquely identifies each product manufactured in the plant
and we can check for the distinct number of products in the dataset. However, in our
dataset, we have data for exactly one material and one product. Let's say that the product is
Apple iPhone 6S and material is iPhone 6S 64 GB. In our case, we have the material Tide
Plus Oxi, which is a detergent powder variant for the product Tide. The following code
explores the distinct count of Product_ID and Material_ID in the data and views the
value:

> length(unique(data$Product_ID))
[1] 1
> length(unique(data$Material_ID))
[1] 1
> length(unique(data$Product_Name))
[1] 1
> unique(data$Product_Name)
[1] Tide Plus Oxi

The What and Why - Using Exploratory Decision Science for IoT

[73]

Levels: Tide Plus Oxi

The Output_QualityParameter 1 to 4 columns capture the final output quality of the
product. These parameters together decide whether the end product can be accepted or
rejected. Let's explore the output parameters for our problem.

The following code gives a summary (quantile distribution) of the four columns:

> summary(data$Output_QualityParameter1)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 368.6 390.5 421.1 414.3 437.5 478.4
> summary(data$Output_QualityParameter2)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 12130 14330 15220 15280 16110 20800
> summary(data$Output_QualityParameter3)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 29220 35020 37150 37320 39650 48000
> summary(data$Output_QualityParameter4)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 5725 7550 8012 8029 8485 10600

As we can see, all four parameters are completely different in terms of range, values, and
distribution. Output Quality Parameter 1 mostly ranges from 350 to 500, whereas
Parameter 2 ranges between 12000 and 25000 and so on.

ManufacturingOrder_ID indicates a unique key for each manufacturing order. Our data
represents one row of data for each manufacturing order.

AssemblyLine_ID indicates on which line (the production line) was the product
manufactured. Generally, in any manufacturing unit, there would be multiple lines
manufacturing multiple products. Here, as we can see in the following code, we have two
distinct lines used for the manufacturing, that is, Line 1 and Line 2:

> unique(data$AssemblyLine_ID)
[1] Line 2 Line 1
Levels: Line 1 Line 2

Order_Quantity and Produced_Quantity indicate the required quantity for the order and
the actual produced quantity. Let's see if they are always the same or different:

> summary(data$Order_Quantity)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0 5000 5000 4983 5600 5600
> summary(data$Produced_Quantity)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0 4980 5280 5171 5757 8064
>#Let's summarize the absolute difference between the two

The What and Why - Using Exploratory Decision Science for IoT

[74]

> summary(abs(data$Produced_Quantity - data$Order_Quantity))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0 89.6 201.6 344.8 336.0 5600.0

The preceding code gives the summary (that is, quantile distribution) of Order_Quantity,
Produced_Quantity, and the absolute difference between the two. In most cases, the
required order_quantity is around 5,000 Kgs (refer median in summary of order_quantity),
but the produced quantity differs by a small fraction here and there. The summary of the
absolute difference between the produced and required quantity shows an average, that is,
mean of ~345 and median-50th percentile-at ~200, which indicates that there is definitely a
difference in most cases between the required and produced quantity.

Site_location gives us the location of the manufacturing plant where the product was
manufactured. In our use case, we have data for only one site (as our operations head is
responsible for only one location):

> unique(data$Site_location)
[1] Pune
Levels: Pune

Manufacturing_StartDate, Manufacturing_EndDate, Manufacturing_StartTS, and
Manufacturing_EndTS capture the start date, end date, start timestamp, and end
timestamp for each manufacturing order. Total_Manufacturing_Time_mins captures the
total processing time in minutes:

> summary(data$Total_Manufacturing_Time_mins)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0 180.0 240.0 257.8 240.0 2880.0

From the distribution of processing time, we can easily identify that there are outliers (the
huge difference between the 3rd quartile and maximum value), which we need to deal with
separately. There are possibly some anomalous data points that have a processing time as 0.

This was a quick glimpse at the first 20 columns of the dataset. Let's move ahead with the
next 20:

> colnames(data)[21:45]

 [1] "Stage1_PrevProduct" "Stage1_DelayFlag"
 [3] "Stage1_ProcessingTime_mins" "Stage1_RM1_QParameter2"
 [5] "Stage1_RM1_QParameter1" "Stage1_RM2_QParameter2"
 [7] "Stage1_RM2_QParameter1" "Stage1_RM2_RequiredQty"
 [9] "Stage1_RM2_ConsumedQty" "Stage1_RM2_ToleranceQty"
[11] "Stage1_ProductChange_Flag" "Stage1_QP1_Low"
[13] "Stage1_QP1_Actual" "Stage1_QP1_High"
[15] "Stage1_QP2_Low" "Stage1_QP2_Actual"

The What and Why - Using Exploratory Decision Science for IoT

[75]

[17] "Stage1_QP2_High" "Stage1_QP3_Low"
[19] "Stage1_QP3_Actual" "Stage1_QP3_High"
[21] "Stage1_QP4_Low" "Stage1_QP4_Actual"
[23] "Stage1_QP4_High" "Stage1_ResourceName"
[25] "Stage2_DelayFlag"

As we explore the next 25 columns, we see columns giving us more information about
stage-level details. All the attributes of stage one are suffixed with the word 'Stage1'. If we
explore all the columns ahead, we can understand that there are exactly five stages in the
manufacturing process for the current product of interest:

> #Identify the distinct Stages present in the data
> unique(substring(colnames(data)[grep("Stage",colnames(data))],1,6))
[1] "Stage1" "Stage2" "Stage3" "Stage4" "Stage5"

The preceding code first extracts the indices of column names that start with “Stage” and
the first six characters from the names and finally checks the unique ones.

For Stage 1, we have Stage1_DelayFlag indicating whether there was a delay in
processing Stage 1 during manufacturing; similarly, Stage1_ProductChange_Flag
indicates whether there was a product change while manufacturing, that is, whether the
previous product manufactured on the same machine was different or same:

> unique(data$Stage1_DelayFlag)
[1] No Yes
Levels: No Yes
> unique(data$Stage1_ProductChange_Flag)
[1] No Yes
Levels: No Yes

Stage1_RM1_QParameter1 captures values for the first quality parameter for the first raw
material used in Stage 1.

Decoding the naming convention is fairly straightforward-Stage-x. Here, x indicates the
stage of processing, which could be any value from 1-5. RM stands for Raw Material and
hence RM1 for Raw Material 1 and so on. QParameter1 indicates the quality parameter and
1 indicates the first one. Therefore, Stage1_RM1_QParameter1 indicates the first quality
parameter for the first raw material used in Stage 1. Similarly, Stage1_RM1_QParameter2
indicates the second quality parameter for the first raw material used in Stage 1.At a
particular stage, there could be multiple raw materials used and each of them could
individually have multiple quality parameters.

The What and Why - Using Exploratory Decision Science for IoT

[76]

Moving on, Stage1_QP2_Low indicates the second quality parameter for the resultant
combined mixture in Stage 1. The 'Low', 'High', and 'Actual' indicate the respective values
for each parameter. 'Low' indicates the upper control limit, 'High' indicates the upper
control limit, and 'Actual' indicates the actual value of the quality test for the resultant
mixture.

Similarly, Stage1_RM2_ConsumedQty indicates the quantity of Raw Material 2 consumed
in stage 1 and Stage1_RM2_RequiredQty indicates the required quantity for the respective
material. At each stage, each raw material will have a different quantity level for
consumption and tolerance level for variation. The required, consumed, and tolerance for
each individual raw material may or may not be available.

'Stage1_PrevProduct' captures the previous product that was manufactured on the machine
during the previous manufacturing order and Stage1_ResourceName indicates which
resource/machine was used for the process in Stage 1.

The same convention follows for the next stages, that is, Stage 2 to Stage 5.

Let's explore the details of Stage 1 in more detail:

> summary(data$Stage1_RM1_QParameter1)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 3765 4267 4275 4275 4319 4932
> summary(data$Stage1_RM1_QParameter2)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.400 3.361 3.394 3.394 3.454 4.230
> summary(data$Stage1_RM2_QParameter1)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 132.0 138.8 146.8 146.8 155.0 162.7
> summary(data$Stage1_RM2_QParameter2)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 41.29 46.53 50.22 50.22 52.76 68.82

For stage 1, we have two raw materials used, and for each of the raw materials, we have
two quality parameters measured. The values of each quality parameter are in a different
range.

Similarly, if we look at the required and consumed quantity for each raw material in Stage
1, we can see that there are minute differences, and in quite a few cases we can affirmatively
say that these are above the tolerance quantity:

> summary(data$Stage1_RM2_RequiredQty)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 300.0 450.0 450.0 443.7 504.0 504.0
> summary(data$Stage1_RM2_ConsumedQty)
 Min. 1st Qu. Median Mean 3rd Qu. Max.

The What and Why - Using Exploratory Decision Science for IoT

[77]

 291.0 448.5 451.5 442.9 505.7 505.7
> summary(data$Stage1_RM2_ToleranceQty)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 1.500 1.500 1.478 1.680 1.680

> Studying the summary of absolute difference between Required and Consumed
Quantity

> summary(abs(data$Stage1_RM2_RequiredQty- data$Stage1_RM2_ConsumedQty))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.000 1.500 1.500 2.522 1.680 10.080

On a similar note, after the processing in stage 1 is complete, we have a final mixture
created from Raw Material 1 and Raw Material 2. The Stage1_QP1_Low column has values
for the lower threshold of the quality parameter of the final mixture. Around four different
quality parameters are measured at each stage after the processing is complete:

> summary(data$Stage1_QP1_Low)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 180.0 188.3 195.5 203.1 217.4 254.8
> summary(data$Stage1_QP1_Actual)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 194.4 246.5 270.0 277.8 298.7 2760.0
> summary(data$Stage1_QP1_High)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 280.0 292.9 304.2 315.4 337.9 396.4

Lastly, we have the resource name that indicates the machine that was used for the
manufacturing process and information regarding the previous product manufactured. In
all, we have five distinct machines used in Stage 1 and around 26 distinct products that
were previously manufactured before manufacturing the current product:

> length(unique(data$Stage1_PrevProduct))
[1] 26
> length(unique(data$Stage1_ResourceName))
[1] 5

In a similar way, data dimensions for Stages 2, 3, 4, and 5 can be studied. The naming
conventions of the column names for each stage are in sync with Stage 1. A detailed self-
exploration of all columns before we move on to the exploratory data analysis step is
recommended.

The What and Why - Using Exploratory Decision Science for IoT

[78]

Finally, we can find a column named Detergent_Quality, which defines whether the
product manufactured was finally accepted as Good Quality or Bad Quality. This
dimension will be of great interest for our upcoming analyses. The following code
showcases the summary of the column. We can see that approximately 20% of the produce
is rejected due to bad quality:

> summary(data$Detergent_Quality)
 Bad Good
 225 775

Summarizing the data surfacing activity
Our data exploratory exercises to surface the data are still naïve. We just have a basic
understanding about what the hypotheses we could prove, what the data looks like, and
what information the data provides, and so on All these exercises give us a glimpse only
from a bird's-eye perspective. We explored the data dimensions of the manufacturing
process such as the location, product manufactured, produced and required quantity, and
other high-level details. For Stage 1, we explored the quality parameters of individual raw
materials used and the resultant mixture in stage 1. We studied the required and consumed
quantity for each raw material along with the respective tolerance level. We also peeped
into the various categorical factors such as stage delays, product change flags, and
processing time for the stage. Further self-exploration of all the data dimensions for Stages
2, 3, 4, and 5 is highly recommended.

Feature exploration
In our data surfacing activities, we glanced at the data at a broad level. With this
understanding, we can feasibly identify the promising areas in the data where we can dig
deeper. A thorough drill-down into the specifically identified sweet spots or pocket areas is
a very lucrative deal for every decision scientist. In this section, we won't be going into the
length and breadth of the deep dive; this would be explored more in the coming sections.
The current scope is to identify the sweet spots in data surfaced during our initial exercise.

The What and Why - Using Exploratory Decision Science for IoT

[79]

We'll first start by understanding the features for the drill-down, that is, 'Feature
Engineering', which is a process to create features/variables using domain knowledge.
While we explored the data at a high level, we saw some variables/columns in the dataset
that could add much value from a direct usage perspective. For example, the manufacturing
start date or end date is something that won't really add value from the initial vibes.
However, if we take a closer look, it could very much be possible that the day of the week
or the month of manufacturing can have an impact. Reasons could be various, and in many
cases the variation could be bare minimum in the end comparison; however, if one such
rare case blossoms in our use case, the benefits could be huge. To understand this better,
let's take the analogy of cooking. The time required to sauté food would have minute
variations based on seasons. In some specific manufacturing cases, such minute variations
can lead to erroneous produce; hence, studying the seasonality and taking preventive
measures accordingly for the process is an activity that becomes indispensable.

Similarly, there are a couple of variables that indicate the quantity of raw material
consumed, required, and tolerance level for each of the raw materials at different stages.
These are three different variables in the datasets, but we can render a new feature
indicating what percentage of deviance was observed in the raw material consumption
process. Try to think from a layman's perspective: one feature giving more powerful and
easily understandable results is far better than multiple variables together inferring the
same result. The process keeps evolving; in many cases, the features we create may not be
only domain knowledge-driven, but instead a combination of statistics and business
together. There might be scenarios where we need more powerful statistical techniques to
uncover latent features from the data that could help us understand the problem better.
Similarly, there are also completely statistical-driven features that can be created using
sophisticated algorithms such as PCA. These features may not be really intuitive from a
layman's perspective, but aid dramatically when we are trying to get deeper into the
problem (inquisitive and predictive).

In the coming sections and the next chapter, we will delve deeper into each of these
scenarios to solve our problem better.

The What and Why - Using Exploratory Decision Science for IoT

[80]

Understanding the data landscape
Adding context to the data

As of now, we have approached the data in the data way, that is, we have limited domain
knowledge for the data and problem. In this scenario, we understand the data from 1,000
feet above the ground. We need to come closer and understand the data from a more
domain- and process-oriented way so that we could solve the problem better. After
receiving the data, the normal approach in any decision science use case would be to
explore the data end to end. This covers diving deep into every dimension of the data and
then trying to uncover latent signals and patterns to understand how the problem can be
related using data-driven insights. What we miss out over here is the domain context! This
is the most important context. With more detailed domain context and process-level
information, we would be in a much better position to make sense out of the data.

The next step in identifying the gold mines in the data is to understand the domain and
process-level information associated with the data. The usual approach would have been to
perform initial data surfacing exercises and then approach the subject matter expert (SME)
or domain expert with the questions and clarifications in the data. Here, for convenience,
the required initial context and a few domain-related aspects are provided upfront. In a
general problem solving scenario, it is highly recommended to approach an SME with all
the consolidated questions required to get the complete data landscape.

Domain context for the data
The following excerpts provide domain knowledge about the data and problem in more
depth. In a real-life scenario, this task can be achieved with the help of a few domain
experts, data experts, and operation experts with a few verbal conversations and domain
research.

The company-P & G in our use case-is a leading consumer goods manufacturer and
manufactures a plethora of products across the globe. One of the many manufacturing units
of the company is located in Pune, India. Pune's manufacturing unit has around 10
assembly lines. (One assembly line is responsible for the manufacturing of one product end
to end.) Each of these assembly lines are equipped with multiple machines, that is,
resources, where each machine takes care of a phase/stage in the manufacturing process.
One assembly line can manufacture multiple products, such as detergents of different
brands can be classified as different products and can be manufactured on the same
assembly line.

The What and Why - Using Exploratory Decision Science for IoT

[81]

Our use case deals with the manufacturing of a detergent powder, that is, a variant of Tide
(assume). In a single process, around 5,000 Kgs of detergent powder is produced that can
then be packaged into packets of 1 kg/0.5 kg and so on. The manufacturing process is
partially automated; the technician responsible for the process can sometimes override a
few settings to overcome erroneous produce. To understand this better, let's understand an
analogy of cooking curry as an example. Consider that you are cooking tomato curry and
you are well aware of the recipe. Midway into your cooking exercise, you find out that you
have added too much water. You then heat and sauté the mixture for a little longer to get
the desired curry in your recipe. Sometimes you may add extra salt or spices when you find
out the same product from a different vendor has difference in taste. The same is applicable
to the detergent manufacturing process. Even though a major part of the process is
automated, it is possible that the same product can be manufactured in multiple ways and
still lead to the same result (properties).

The detergent manufacturing process in our use case is separated into five different
stages/phases. Each stage has a specific process to be completed. (While cooking noodles,
we can classify boiling noodles as Stage 1, then cooking veggies with spices as Stage 2, and
then finally sautéing boiled noodles with veggies as Stage 3.) Raw materials can be added at
different stages in the process. In our use case, Stage 1 has two raw materials getting mixed
together to form a mixture. This mixture is processed by heating for several minutes in a
machine. Once processed, the mixture is then passed on to stage 2, where the mixture is
then processed under different settings without adding any new raw materials (ingredients)
and then passed on to the next stage. In Stage 3, two new raw materials are added and then
the resultant mixture is processed for several minutes to create a new mixture. The output
of Stage 3 is then passed on to Stage 4 and Stage 5, where it is further processed under
different settings such as pressure/temperature and so on Finally, the output of Stage 5 is
the detergent produced in the manufacturing process.

The What and Why - Using Exploratory Decision Science for IoT

[82]

The following diagram captures the entire process at a high level:

The entire manufacturing process is monitored and controlled using the supervisory
control and data acquisition (SCADA) system. The outputs and properties of interest at
each stage during and after the process are available to the technician responsible for the
process. The data is collected through SCADA systems and then stored to other sources
where it can be used for investigation and analysis. In our use case, we are considering data
for only one product manufactured in one site located in Pune (India).

For security reasons, names of the raw materials and quality parameter names have been
masked. Similarly, values of the quality parameter have been scaled algorithmically to
change the visual representation but to keep the relationships intact. In case the values of a
few quality parameters seem to make no scientific sense, assume that the values are
masked.

The entire process for data acquisition, processing, and analyzing in the manufacturing
plant can be studied from the following figure:

The What and Why - Using Exploratory Decision Science for IoT

[83]

The manufacturing process is carried on in the factory where a technician is supervising the
overall process. The supervisor has access to a sophisticated software and system-
controlling infrastructure, which helps in monitoring the quality parameters and process-
related parameters in real time. Based on existing conditions, the technician may take a call
to heat or process for a longer duration in a particular stage. The data monitored during the
manufacturing process is then stored in a data warehouse, which can later be used for
investigation and analysis. The decision scientist then accesses the analytical warehouse
(analytically-ready data warehouse) for his analyses. The scientist extracts, processes, and
gleans through vast volumes of data to analyze and find patterns that aid in the decision
making process.

The process of creating analytical tables specifically tailored for use cases is called Data
Stitching (collating data from different sources together for a specific use case). Similarly,
the process of using these datasets to explore data, derive new data, and uncover latent
patterns is called Data Wrangling. Finally, the art and science of using the newly created,
derived, and existing datasets to find patterns, solve problems, and answer business
questions is called Decision Science.

The What and Why - Using Exploratory Decision Science for IoT

[84]

Exploring each dimension of the IoT
Ecosystem through data (Univariates)
Let's dig deeper into each dimension in the IoT use case to understand more realistically
what the data showcases. We will perform extensive univariate analysis to study and
visualize the entire data landscape.

What does the data say?
We visited the data dimensions while exploring the gold mines in data (in the previous
section) and understood that Product_Qty_Unit, Product_ID, Material_ID, and
Product_Name indicate that the columns contain a single value. Therefore, we conclude
that the data in the use case is provided for a specific product and its output is measured in
Kgs. Let's start exploring Order Quantity and Produced Quantity in depth. We initially
studied the data dimensions using summary commands that gave us the percentile
distribution. Let's take this one step further.

Order Quantity and Produced Quantity are both continuous variables, that is, a variable
that can have infinite number of values possible (say, any number between 0 and a million).
To study continuous variables, we can use a histogram or frequency polygon and study
how well the data is distributed:

#We will use the library 'ggplot2' to visualize the data
> library(ggplot2)

#Plot a Histogram for Order Quantity

> #setting Bin width to 500, as we have a range of 0 to 5000+
> ggplot(data = data, aes(data$Order_Quantity))
+geom_histogram(binwidth=500)

#Plot a Histogram for Produced Quantity
> ggplot(data = data, aes(data$Produced_Quantity))
+geom_histogram(binwidth=500)

The preceding code plots two separate histograms for the Order Quantity and Produced
Quantity variables. With just a simple glance, we can clearly identify that there are
differences between the two variables, but a bit difficult to do an apple-to-apple
comparison. The width of each bin in the plot is 500, and we can see that the values in
Produced Quantity are more spread across 2,500 to 7,500 than Order Quantity:

The What and Why - Using Exploratory Decision Science for IoT

[85]

To make the comparison easier, let's use a frequency polygon. A frequency polygon can be
used instead of a histogram in cases where we have to compare two data dimensions
together:

ggplot(data = data) +
geom_freqpoly(binwidth=500,aes(data$Order_Quantity),color="red",size=1) +
geom_freqpoly(binwidth
=500,aes(data$Produced_Quantity),color="blue",size=1)

www.allitebooks.com

http://www.allitebooks.org

The What and Why - Using Exploratory Decision Science for IoT

[86]

The preceding plot represents a frequency polygon showcasing the distribution of
Produced Quantity and Required Quantity on the same chart. As we can clearly identify
from the data, there is a small difference between the two variables. There is a small surge
in the frequency of order quantity between 5000-6000; the same surge is compensated with
a sag in the range 6000-7000, where the Produced Quantity leads Ordered Quantity. In a
nutshell, we can clearly conclude that, for many resources, when the order quantity was
~5,000 Kgs, the produced quantity was higher. Instead of using these variables as two
separate variables, we can create a feature and use it in further analyses:

>ggplot(data = data) +
 geom_freqpoly(binwidth=10,aes(abs(data$Order_Quantity -
data$Produced_Quantity)))

Observing the following plot, we can affirmatively say that there are quite a few records
with a 0-500 unit deviation from the actual order. Rather than using the two variables
separately, we can use the deviation in each manufacturing order. The new variable
conveys more information than the other two together. Similarly, we can also consider
creating a new category for the deviation, that is, high, medium, and low. We can look at
the distribution of the deviation; consider the first 30-40 percentile as Low, the next segment
as Medium, and the last segment as High approximately. There is a very high chance that
all the deviations in a similar range will be a result of similar behavior, that is, similar errors
or patterns in the manufacturing process. Therefore, defining a category to represent them
together will aid in easier analyses:

#Creating a new feature/segments for Quantity deviations

>temp<-(abs(data$Order_Quantity - data$Produced_Quantity))
>data$Quantity_Deviation<-ifelse(temp<= 150,"Low",ifelse(temp<=
300,"Medium","High"))

>ggplot(data, aes(x=Quantity_Deviation)) + geom_bar()

The What and Why - Using Exploratory Decision Science for IoT

[87]

The plot is placed on the left-hand side of the following diagram:

The figure on the left showcases the distribution of absolute deviation between the
produced and required order quantity, whereas the image on the right shows the histogram
for the derived feature, that is, Quality Deviation segments.

Next, let's explore the date- and time-related dimensions. We can see three variables in the
data, namely, Manufacturing_StartTS, Manufacturing_EndTS, and
Total_Manufacturing_Time_mins, which give details about the date and time for the
manufacturing. Even though we can use the processing time taken as an important variable,
the start and end timestamp won't really add value as the variable would probably be
having 1,000 distinct timestamps. Instead, if we try to create a feature where we can gather
information from less data, interpreting patterns will become phenomenally easier. We can
create features such as the hour of the day, day of the week, and month to understand
whether the variation in time will have any impact on the end problem. Also, if we create a
feature where we can overlay the processing time taken along with the seasonal feature, the
new resultant feature will be a very powerful dimension in our problem:

>
quantile(data$Total_Manufacturing_Time_mins,c(0.1,0.5,0.7,0.9,0.95,0.98,0.9
9,1.0))
 10% 50% 70% 90% 95% 98% 99% 100%
 180.0 240.0 240.0 300.0 360.0 600.0 842.4 2880.0

The What and Why - Using Exploratory Decision Science for IoT

[88]

Exploring the percentile distribution of processing time, we can clearly see that there is an
outlier (a huge jump from the 98th percentile to 100th percentile). As a thumb rule, to
remove outliers, we replace all values higher than the 98th percentile with the 98th
percentile. Without outlier treatment, there is a high chance that you might misinterpret the
data:

#Treating outliers, by replacing the values above 98th percentile with the
98th percentile

> threshold<-quantile(data$Total_Manufacturing_Time_mins,0.98)
> temp<-data$Total_Manufacturing_Time_mins
> temp<-ifelse(temp>threshold,threshold,temp)
> data$Total_Manufacturing_Time_mins<-temp
> quantile(data$Total_Manufacturing_Time_mins)

 0% 25% 50% 75% 100%
 0 180 240 240 600

The other variables that capture information at the manufacturing process level-Product ID,
Product Name, Manufacturing Order ID, Assembly Line ID, and Site Location-are variables
that were explored in the previous sections (Identifying gold mines). All other dimensions
provide us with context on the data such as the product being manufactured, the location of
the manufacturing plant, and so on As these dimensions have only one degree of
representation, that is, only one value, except for Assembly Line ID, it will not be of much
value to consider them in the onward journey. Assembly Line ID will be of use in further
analysis as it identifies the assembly line that was used to manufacture the product.

Moving on, let's explore the dimensions with an added level of granularity-stage-wise
processing. The following are the dimensions that represent the Stage 1 process:

> colnames(data[21:44])

 [1] "Stage1_PrevProduct" "Stage1_DelayFlag"
 [3] "Stage1_ProcessingTime_mins" "Stage1_RM1_QParameter2"
 [5] "Stage1_RM1_QParameter1" "Stage1_RM2_QParameter2"
 [7] "Stage1_RM2_QParameter1" "Stage1_RM2_RequiredQty"
 [9] "Stage1_RM2_ConsumedQty" "Stage1_RM2_ToleranceQty"
[11] "Stage1_ProductChange_Flag" "Stage1_QP1_Low"
[13] "Stage1_QP1_Actual" "Stage1_QP1_High"
[15] "Stage1_QP2_Low" "Stage1_QP2_Actual"
[17] "Stage1_QP2_High" "Stage1_QP3_Low"
[19] "Stage1_QP3_Actual" "Stage1_QP3_High"
[21] "Stage1_QP4_Low" "Stage1_QP4_Actual"
[23] "Stage1_QP4_High" "Stage1_ResourceName"

The What and Why - Using Exploratory Decision Science for IoT

[89]

We'll start with Stage1_PrevProduct and Stage1_ProductChange_Flag that represent
the previous product manufactured on the same assembly line and a flag indicating
whether the product manufactured was different. The product change flag is
straightforward and can be used directly for our analysis. It explains that around 35% cases
exist where the previous product manufactured on the same line was a different one. We
can hypothesize that the cases where we have a product change while manufacturing in the
same assembly line might have more errors due to the slight chemical effects of other raw
materials used earlier.

Exploring Previous Product…
To make our representation easier, let's find out the percentage of occurrences of each
individual Previous Product dimension (stage1):

>library(dplyr)
#Applying a group by operation using 'tapply' for aggregated count
> temp<-
as.data.frame(tapply(data$Product_ID,data$Stage1_PrevProduct,length))

> colnames(temp)<-"prev_product_count"
> temp$Product<-rownames(temp)

> temp$product_perc<-temp$prev_product_count/sum(temp$prev_product_count)

> temp<-arrange(temp,desc(product_perc))
> temp<-mutate(temp,cum_perc=cumsum(product_perc))

> nrow(temp)
[1] 26

> head(temp)

 prev_product_count Product product_perc cum_perc
1 469 Product_545 0.469 0.469
2 352 Product_543 0.352 0.821
3 30 Product_547 0.030 0.851
4 26 Product_546 0.026 0.877
5 18 Product_555 0.018 0.895
6 16 Product_563 0.016 0.911

The What and Why - Using Exploratory Decision Science for IoT

[90]

We can see that there are around 26 unique products that were previously manufactured on
the same line before manufacturing the product Tide. 26 is quite a big number-not sure
whether we will be able to find any pattern here. Let's look at how they are distributed in
the data. The preceding code aggregates the frequency count of the previous products and
calculates the percentage of the overall frequency. The product_perc column displays the
percentage of records each product caters in the data. Taking a cumulative sum of the
percentage and displaying the first six ordered rows, we see that there is a huge gap in the
percentage distribution of the previous products. Product_545 was manufactured ~50%
times before “Tide” on the same line. The top five products from the total of 26 contribute to
~90% of the data. We can consider either the top five and the rest 21 as 'Others' or only two
categories-Product_545 and All others-as the first one is phenomenally higher in percentage
than all others. Creating a new feature either with six categories, that is, top five and all
others or two categories, Product_545 and All others can be useful to understand the causes
of bad products. Clubbing together multiple categories and reducing the levels not only
reduces the noise in the data, but also makes pattern finding easier and more intuitive for
people as well as algorithms. For now, let's create both of these features; later we will figure
out which one would be better to use:

Creating the first feature:

>temp<-ifelse(data$Stage1_PrevProduct== "Product_545",
"Product_545","Others")
>data$Stage1_PrevProduct_1<-as.factor(temp)

>temp<-ifelse(data$Stage1_PrevProduct %in%
 c("Product_545","Product_543",
"Product_547","Product_546","Product_555"),as.character(data$Stage1_PrevPro
duct),"Others")

Creating the second alternative feature:

>data$Stage1_PrevProduct_2<-as.factor(temp)

>summary(data$Stage1_PrevProduct_1)
 Others Product_545
 531 469

> summary(data$Stage1_PrevProduct_2)
 Others Product_543 Product_545 Product_546 Product_547 Product_555
 105 352 469 26 30 18

The What and Why - Using Exploratory Decision Science for IoT

[91]

Similar to the overall processing time, we have outliers in the Stage 1 processing time; we
can treat the outliers in the same way that we did earlier using the 98th percentile cutoff:

> quantile(data$Stage1_ProcessingTime_mins,c(0.1,0.5,0.9,0.98,1))
 10% 50% 90% 98% 100%
 35.0380 50.1500 79.0500 136.1852 2578.4800

> threshold<-quantile(data$Stage1_ProcessingTime_mins,0.98)

> temp<-data$Stage1_ProcessingTime_mins
> temp<-ifelse(temp>threshold,threshold,temp)

> summary(temp)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.92 40.77 50.15 52.28 57.57 136.20
> data$Stage1_ProcessingTime_mins<-temp

Moving on, let's study the Raw Material Quality raw materials. In stage 1, there are two
raw materials used, and each of them have two individual quality parameters measured. As
explored in the previous section (identifying gold mines), all the quality parameters
measured for the raw materials are continuous in nature and the standard deviation is
much lower than the mean. Therefore, we will not require any major transformations to the
variable. At the most, we may need to standardize them during our predictive analysis
journey (more context in the next chapter).

The following codes aid in studying the mean, standard deviation, minimum, and
maximum of all the quality parameters for each raw material in Stage 1:

#creating a temporary dataframe
> sample<-data[,c("Stage1_RM1_QParameter1","Stage1_RM1_QParameter2",
+ "Stage1_RM2_QParameter1","Stage1_RM2_QParameter2")]
> t(apply(sample,2,function(x) c(min=min(x),max=max(x),sd=sd(x))))

 min max mean sd
Stage1_RM1_QParameter1 3765.00000 4932.332160 4274.782808 210.39327
Stage1_RM1_QParameter2 2.40000 4.229568 3.394041 0.2802995
Stage1_RM2_QParameter1 132.00000 162.657600 146.784481 8.62362
Stage1_RM2_QParameter2 41.28572 68.820011 50.222232 4.38986

Moving on to the next dimension, we have Stage1_RM2_RequiredQty,
Stage1_RM2_ConsumedQty, and Stage1_RM2_ToleranceQty. The names are intuitive
enough for us to understand how they help. Let's take a look at the first six rows of data to
get some more details:

> head(data[,c("Stage1_RM2_RequiredQty",
"Stage1_RM2_ConsumedQty","Stage1_RM2_ToleranceQty")])

The What and Why - Using Exploratory Decision Science for IoT

[92]

Stage1_RM2_RequiredQty Stage1_RM2_ConsumedQty Stage1_RM2_ToleranceQty
 1 300 292
 2 300 292
 3 300 292
 4 300 292
 5 300 292
 6 300 292

As we can see, it shows us the quantity of respective raw materials required and how much
was consumed along with the deviation that is allowed. The first six rows all seem to be
outside the normal consumption range. Let's create a feature called
Stage1_RM2_ConsumptionFlag that will indicate whether the consumption was normal
or abnormal based on the difference between the Required and Consumed Qty along with
the tolerance. We can notice that we have abnormal cases in around 50% of the cases:

> temp<-abs(data$Stage1_RM2_RequiredQty -
data$Stage1_RM2_ConsumedQty)
> temp<-ifelse(temp>data$Stage1_RM2_ToleranceQty,
 "Abnormal","Normal")
> data$Stage1_RM2_Consumption_Flag <-as.factor(temp)

> summary(data$Stage1_RM2_Consumption_Flag)

 Abnormal Normal
 489 511

Apart from the raw material consumption details and quality parameters, we have the
quality parameters for the resultant mixture in Stage 1 (also in all other stages). There are in
all four quality parameters measured for the mixture. The lower and higher threshold of
each quality parameter is also provided. Let's have a look at the data:

head(data[,32:34],3)
Stage1_QP1_Low Stage1_QP1_Actual Stage1_QP1_High
1 180.000 250.0000 280.00
2 181.035 231.3225 281.61
3 182.070 242.7600 283.22

The What and Why - Using Exploratory Decision Science for IoT

[93]

As we can see, for each quality parameter, we have the actual value along with the lower
and higher threshold for each row. Similar to the previous transformations, we can create a
new feature that represents whether the quality parameter was in the normal range or
outside the range:

> temp<-ifelse(data$Stage1_QP1_Actual > data$Stage1_QP1_Low &
data$Stage1_QP1_Actual > data$Stage1_QP1_High,"Normal","Abnormal")
> summary(as.factor(temp))

Abnormal Normal
 976 24

However, what we see here is that more than 90% of the readings are abnormal. Then it
wouldn't really add value if we just classify them as normal and abnormal. In such
scenarios, we can add more intelligence to the variable by showcasing the percentage of
deviation from the normal range. Let's say that the expected value was between 90 and 110
and the actual value was 140, then the % deviation from normal is mean (90,110) = 100 and
deviation from 100 is 40, therefore 40%.

Let's calculate the % deviation for Quality Parameter 1 for Stage1:

> temp<-(data$Stage1_QP1_High + data$Stage1_QP1_Low)/2
> temp<-abs(data$Stage1_QP1_Actual-temp)/temp
> data$Stage1_QP1_deviation<-temp
> summary(data$Stage1_QP1_deviation)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.04348 0.11300 0.13180 0.13040 9.67800

We do see outliers, ~900% deviation; we can process them in the same way that we did
earlier using the 98th percentile cutoff:

> threshold<-quantile(data$Stage1_QP1_deviation,0.98)
> temp<-data$Stage1_QP1_deviation
> temp<-ifelse(temp>threshold,threshold,temp)
> summary(temp)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.04348 0.11300 0.11280 0.13040 0.26090

> data$Stage1_QP1_deviation<-temp

The What and Why - Using Exploratory Decision Science for IoT

[94]

Similarly, based on the conditions, we can create features for the other three quality
parameters for the Stage 1 final mixture. The following code creates similar features for the
remaining three quality parameters in Stage 1:

#Extract the required column names
col_matrix<-t(matrix(colnames(data)[32:43],ncol=4,nrow=3))
#Iterate through loop for all the remaining 3 parameters
for(x in 2:nrow(col_matrix))
 {
 low<-col_matrix[x,1]
 high<-col_matrix[x,3]
 actual<-col_matrix[x,2]
 temp<-(data[,low] + data[,high])/2
 temp<-abs(data[,actual]-temp)/temp
 var<-paste0("Stage1_QP",x,"_deviation")
 print(var)
 data[,var]<-temp

 }

In a similar way, we can explore each dimension at the stage-level granularity and
transform the dimension to suit our needs better for all other stages (2, 3, 4, and 5).

It is recommended that you explore the remaining stage data dimensions
using a similar approach.

Finally, it's time to study the final outcome. The final mixture that is an output from Stage 5
is measured using four quality parameters. The end product is discarded or accepted on the
basis of these four parameters. Let's have a look at the output:

#Collecting all the 4 output parameters together
> a<-c("Output_QualityParameter1","Output_QualityParameter2",
"Output_QualityParameter3","Output_QualityParameter4")
> head(data[,a])

The What and Why - Using Exploratory Decision Science for IoT

[95]

From these four parameters, we have the final judgement on the manufactured product,
whether it can be accepted or rejected:

> sample<-data[,a]
> t(apply(sample,2,function(x)
c(min=min(x),max=max(x),mean=mean(x),sd=sd(x))))

 min max mean sd
Output_QualityParameter1 368.5864 478.445 414.2725 25.13131
Output_QualityParameter2 12127.8443 20796.288 15278.1903 1258.28580
Output_QualityParameter3 29222.8600 47995.730 37320.7930 3063.96085
Output_QualityParameter4 5724.6521 10595.364 8029.0012 643.45730

As we can clearly guess, the output quality parameters also have a standard deviation
lower than the mean.

From these four output quality parameters, we have the final quality of the detergent being
determined using some weighted algorithm. The final outcome can be viewed as follows:

> summary(data$Detergent_Quality)
 Bad Good
 225 775

Summarizing this section
In the entire exercise, we explored the different data dimensions in the IoT ecosystem in a
more granular way. We now have a more detailed understanding of what each dimension
has to offer and how we can use them further in our analysis. Next, we will explore the
relationships that exist between these different dimensions.

The What and Why - Using Exploratory Decision Science for IoT

[96]

Studying relationships
The end result of the produce from the manufacturing plant is whether it can be accepted as
a good quality product or discarded due to bad quality. This status for each manufacturing
exercise is identified in the data using the 'Detergent_Quality' dimension, which is
calculated using some weighted algorithm by taking into account the four output quality
parameters of the end detergent produced. Our end goal is to find out the reasons why the
final product was not accepted, which shows that we need to study why the output quality
was bad. The reasons could be many, but how do we identify them? This is when the task
of studying relationships is presented to the decision scientist. We have with us plenty of
independent variables that are either continuous or categorical. Trying to understand how
these independent dimensions eventually contribute to the end output is where we start
studying the relationship between them. The entire exercise can be simply defined as
bivariate analysis, that is, simultaneous analysis of two dimensions. Before getting into the
data, let's understand a few basic constructs and prerequisites required for bivariate
analysis.

So what is correlation?
Correlation is a statistical technique that can show whether and how strongly pairs of
variables are related. For example, height and weight are related-taller people tend to be
heavier than shorter people. The relationship isn't perfect, but with the results you can
understand how these two dimensions are related. In the example of height and weight, we
can say 'weight increases as height increases' and this will be true for most cases (exceptions
are inevitable).

The result of the correlation test is called the correlation coefficient (or “r”). It ranges from
-1.0 to +1.0. The closer r is to +1 or -1, the more closely the two variables are related.
Interpreting the correlation coefficient is straightforward. If the correlation coefficient
between height and weight is 0.8, we can infer that there is strong positive correlation
between the two; as height increases, weight also increases and vice versa.

The relationship between a student's absence records in school and his grades is, say, 0.75,
so we infer that there is a negative correlation between the student's absence record and his
grades. An increase in absence records will decrease his grades.

The What and Why - Using Exploratory Decision Science for IoT

[97]

Before we begin finding the correlation between the output quality parameters and
independent dimensions, let's take a step back and try to understand how we can interpret
the parameter as good or bad. In our use case, we have four output quality parameters for
the detergent manufactured. Let's try to understand how the output parameter compares
with the accept/reject flag:

> library(reshape2)
> library(dplyr)
 #Selecting the required variables
> sample<-select(data,
 Output_QualityParameter1,
 Output_QualityParameter2,
 Output_QualityParameter3,
 Output_QualityParameter4,
 Detergent_Quality)
> melted <- melt(sample, id.vars = c("Detergent_Quality"))

#Calculating the mean of the Quality parameter
#across the Detergent Quality

> dcast(melted,variable~Detergent_Quality,mean)

 variable Bad Good
1 Output_QualityParameter1 432.2532 409.0523
2 Output_QualityParameter2 16008.0896 15066.2840
3 Output_QualityParameter3 39101.2648 36803.8819
4 Output_QualityParameter4 8381.1793 7926.7560

#Calculating the Standard Deviation of the Quality parameter
#across the accept flag

> dcast(melted,variable~Detergent_Quality,sd)

 variable Bad Good
1 Output_QualityParameter1 6.430605 26.11407
2 Output_QualityParameter2 533.959565 1327.09995
3 Output_QualityParameter3 1401.156940 3218.63850
4 Output_QualityParameter4 285.606162 681.37160

The What and Why - Using Exploratory Decision Science for IoT

[98]

If we observe the mean and standard deviations of the quality parameters across the
Detergent Quality, then we can see that standard deviation between Good and Bad is quite
high. Just observing the mean values across the accept flag, we might conclude that the
lower the value of the parameter, the higher the chances of the produce being accepted. If
we closely observe the standard deviation, we can study that the relationship might not be a
simple and straightforward one. Consider Quality Parameter 1; looking at the mean, we can
assume that the higher the value of the parameter, the lower the chances of quality being
good, which means bad = 432 and good = 409. However, if we look at the standard
deviation, we can understand that there is a huge variation in the records that were Good,
that is, 26. This infers that approximately the range of good quality detergent can be 383 and
435, and “bad” can be approximately be identified in the range of 426 and 438. There is a
clear overlap between the good and bad records for the Output Quality Parameter1. A
similar story can be observed for the other three parameters also.

Moving on to the other variables, let's try to understand the main relationships between our
independent variables and the end outcome.

We have two main categories of independent dimensions: manufacturing process-level and
individual stage-/phase-level dimensions. In each of these categories, we have created a
couple of features that can help us gather more information than the individual dimensions.
Whenever we come across some interesting results, we will add the result to our
hypotheses list; this will eventually create our Data-driven Hypotheses Matrix.

For the manufacturing process, the most important dimensions that we have are Assembly
Line ID, total manufacturing time, and the feature that we created-order quantity deviation.
We'll start with the Assembly Line ID that is a categorical variable with two levels. Let's see
the percentage distribution of good and bad produce across the assembly lines. The
following code aggregates the count of records of Good/Bad quality produce across the
assembly line and then calculates the percentage of bad quality produce in each category:

> temp<- as.data.frame(
tapply(data$Material_ID,
list(data$AssemblyLine_ID,data$Detergent_Quality), length))
> temp$bad_perc<-temp$Bad/(temp$Bad + temp$Good)
> temp

 Bad Good bad_perc
Line 1 183 602 0.2331210
Line 2 42 173 0.1953488

The What and Why - Using Exploratory Decision Science for IoT

[99]

As we can see,the percentage of bad quality of produce is slightly higher in Line 1 than Line
2. The difference is not really high and we can't be very sure whether the following
observation is true or a data anomaly outcome. Irrespective of this, let's add this point to
our DDH matrix; we can later validate the result by digging deeper into this.

Let's understand the relationship of the other two dimensions:

#Studying the average time across Detergent Quality
> tapply(data$Total_Manufacturing_Time_mins,
data$Detergent_Quality,mean)
 Bad Good
 251.4667 244.1806

#Studying the Standard Deviation in time across Detergent Quality
> tapply(data$Total_Manufacturing_Time_mins,
data$ Detergent_Quality,sd)
 Bad Good
 90.06981 82.18633

The results do not show any significant relationship between the two. To confirm, let's
study the relationship between the two along with the four output quality parameters. The
following code visualizes the relationship between the manufacturing time and four output
quality parameters. The good and bad quality produce is distinguished with two different
colors:

> ggplot(data,
 aes(x=Total_Manufacturing_Time_mins,
 y=Output_QualityParameter1)) +
 geom_point(aes(color=Detergent_Quality))

> ggplot(data,
 aes(x=Total_Manufacturing_Time_mins,
 y=Output_QualityParameter2)) +
 geom_point(aes(color= Detergent_Quality))

> ggplot(data,
 aes(x=Total_Manufacturing_Time_mins,
 y=Output_QualityParameter3)) +
 geom_point(aes(color=Detergent_Quality))

> ggplot(data,
 aes(x=Total_Manufacturing_Time_mins,
 y=Output_QualityParameter4)) +
 geom_point(aes(color= Detergent_Quality))

The What and Why - Using Exploratory Decision Science for IoT

[100]

The results clearly show that there isn't any strong relationship between the two
dimensions. Let's explore the next dimension, order deviation (the feature we created in the
previous section):

> #Aggregating the data over Quantity_Deviation + Detergent_Quality
> # and creating a dataframe
> temp<-as.data.frame(
+ tapply(data$Material_ID,
+ list(data$Quantity_Deviation,data$Detergent_Quality),
+ length))
> #Calculating the percentage of Bad records in each category
> temp$Bad_Perc<- temp$Bad/(temp$Bad + temp$Good)

> temp

 Bad Good Bad_Perc
High 89 221 0.2870968
Low 74 293 0.2016349
Medium 62 261 0.1919505

The What and Why - Using Exploratory Decision Science for IoT

[101]

The results look very promising! We can observe that, when the deviation is high, the
percentage of bad produce is significantly high. Let's add this hypotheses to our DDH
matrix.

Moving on, let's study the stage-wise dimension. The following is the list of dimensions that
we explored in previous exercises. We'll begin with studying the dimensions stage-wise:

Stage Dimensions explored/created (features)

Stage 1 Previous Product, Product Change Flag, Delay Flag, Processing Time, Resources, Two x 2 quality parameters for
two raw materials, four Stage 1 output quality parameters (features)

Stage 2 Product Change Flag, Delay Flag, Processing Time, four Stage 2 output quality parameters (features)

Stage 3 Delay Flag, Resources used, Two x 2 quality parameters for two raw materials used, four Consumption Flags for
four Products (Features), Four Stage 3 output quality parameters

Stage 4 Previous Product, Delay Flag, Processing Time, Resources used

Stage 5 Product Change Flag, Delay Flag, Processing Time, three Stage 5 output quality parameters (features)

Exploring Stage 1 dimensions
Previously, we created two features for the Previous Product category,
Stage1_PrevProduct_1 and Stage1_PrevProduct_2:

> summary(data$Stage1_PrevProduct_1)
 Others Product_545
 531 469
> summary(data$Stage1_PrevProduct_2)
 Others Product_543 Product_545 Product_546 Product_547 Product_555
 105 352 469 26 30 18

The What and Why - Using Exploratory Decision Science for IoT

[102]

The difference between the two was only the number of categories. We'll study the feature
with more levels first and, based on the results, we can take a call on the next one. Similar to
the previous exploration, we'll try to study the percentage of bad records in each category:

> #Aggregating the data over Stage1_PrevProduct_2 + Detergent_Quality
> # and creating a dataframe
> temp<-as.data.frame(
+ tapply(data$Material_ID,
+ list(data$Stage1_PrevProduct_2,data$Detergent_Quality),
+ length))
> #Calculating the percentage of Bad records in each category
> temp$Bad_Perc<- temp$Bad/(temp$Bad + temp$Good)
> temp
 Bad Good Bad_Perc
Others 14 91 0.1333333
Product_543 85 267 0.2414773
Product_545 113 356 0.2409382
Product_546 3 23 0.1153846
Product_547 5 25 0.1666667
Product_555 5 13 0.2777778

The maximum records belong to the Product_543 and Product_545 categories; both have
no interesting trends. Therefore, we can move on without exploring the other feature.

The following code snippet aids in studying the relation between Delay Flag for Stage 1 and
Good/Bad Quality of the end produce:

> summary(data$Stage1_DelayFlag)
 No Yes
637 363
> #Aggregating the data over Stage1_DelayFlag + Detergent_Quality
> # and creating a dataframe
> temp<-as.data.frame(
+ tapply(data$Material_ID,
+ list(data$Stage1_DelayFlag,data$Detergent_Quality),
+ length))
> #Calculating the percentage of Bad records in each category
> temp$Bad_Perc<- temp$Bad/(temp$Bad + temp$Good)
> temp
 Bad Good Bad_Perc
No 147 490 0.2307692
Yes 78 285 0.2148760

Again, we can see no promising results. The percentage difference for bad quality produce
is low between the two categories.

The What and Why - Using Exploratory Decision Science for IoT

[103]

Let's now study the influence of raw materials used over the end quality of the detergent.
This was one of our most important hypotheses in our heuristics-driven hypotheses. The
raw material property is a continuous variable, so let's study the relationship between the
raw material and output quality parameter by computing the correlation between them:

> cor(data$Stage1_RM1_QParameter1,data$Output_QualityParameter1)
[1] 0.5653402
> cor(data$Stage1_RM1_QParameter1,data$Output_QualityParameter2)
[1] 0.4431995
> cor(data$Stage1_RM1_QParameter1,data$Output_QualityParameter3)
[1] 0.3992361
> cor(data$Stage1_RM1_QParameter1,data$Output_QualityParameter4)
[1] 0.4460737

The correlation tests indicate that there is barely any relationship between the two. To
investigate further, let's visualize the results to see if we could find something intuitive. The
following code plots the scatterplot between the two with the bad and good quality records
distinguished by color:

#Plotting a scatter plot of Raw Material Quality parameter and all 4 output
quality parameters
> ggplot(data,
 aes(x=Stage1_RM1_QParameter1,y=Output_QualityParameter1)) +
 geom_point(aes(color=Detergent_Quality))

> ggplot(data,
 aes(x=Stage1_RM1_QParameter1,y=Output_QualityParameter2)) +
 geom_point(aes(color= Detergent_Quality))

> ggplot(data,
 aes(x=Stage1_RM1_QParameter1,y=Output_QualityParameter3)) +
 geom_point(aes(color=Detergent_Quality))

> ggplot(data,
 aes(x=Stage1_RM1_QParameter1,y=Output_QualityParameter4)) +
 geom_point(aes(color= Detergent_Quality))

The What and Why - Using Exploratory Decision Science for IoT

[104]

As we can see, there is definitely a relationship between the quality parameters of Raw
Material 1 and output quality parameters of the end product. In a nutshell, we can
understand that most bad quality products are observed beyond a threshold in the data.
There is definitely an overlap between the good and bad products, and this could possibly
be due to some latent features that we have not observed till now. However, with the
preceding results, we can definitely add the observations to our DDH matrix.

If we observe the same visuals for the second quality parameter for Raw Material 1 across
the four different output quality parameters, we can see something very similar. The
relationship may not be really strong from a correlation perspective, but there definitely
exists some patter that can be useful for us to identify the root cause in our further analysis:

> ggplot(data,
 aes(x=Stage1_RM1_QParameter2,y=Output_QualityParameter1)) +
 geom_point(aes(color=Detergent_Quality))

> ggplot(data,

The What and Why - Using Exploratory Decision Science for IoT

[105]

 aes(x=Stage1_RM1_QParameter2,y=Output_QualityParameter2)) +
 geom_point(aes(color= Detergent_Quality))

> ggplot(data,
 aes(x=Stage1_RM1_QParameter2,y=Output_QualityParameter3)) +
 geom_point(aes(color= Detergent_Quality))

> ggplot(data,
 aes(x=Stage1_RM1_QParameter2,y=Output_QualityParameter4)) +
 geom_point(aes(color= Detergent_Quality))

Another feature that we created to understand how much deviation was observed in the
stage-level final quality parameters, that is, Stage1_QP1_deviation and others. Let's
quickly compute the correlation tests to observe whether there is any significant
relationship:

> cor(data$Stage1_QP1_deviation,data$Output_QualityParameter1)
[1] 0.05035061

The What and Why - Using Exploratory Decision Science for IoT

[106]

> cor(data$Stage1_QP1_deviation,data$Output_QualityParameter2)
[1] -0.05433026

> cor(data$Stage1_QP1_deviation,data$Output_QualityParameter3)
[1] -0.0584961

> cor(data$Stage1_QP1_deviation,data$Output_QualityParameter4)
[1] -0.03834813

As we can notice, the correlation tests indicate that there is absolutely no relationship
between the two dimensions. The same holds true for the other three Stage 1 quality
parameters. To be on the safer side, let's validate whether there is any pattern visible from
the scatterplots. The following visual showcases the scatterplot for Stage 1 Quality
Parameter 1 against the final output quality parameters (all four of them) and we can
conclude that there is no clear relationship or interesting pattern that can be studied:

The What and Why - Using Exploratory Decision Science for IoT

[107]

Revisiting the DDH matrix
As of now, we have explored in depth and studied all the important dimensions that were
at the manufacturing level as well as from Stage 1. The same approach can be extended to
study the dimensions in Stages 2,3,4, and 5.

Next, we have come across some results that were interesting and some that were not
interesting at all. We now take a pause to revisit the DDH to list all the hypotheses that we
collected during the data exploration and studying relationships phase:

Dimension Hypotheses

Order Deviation As the deviation between Order Quantity and actual Produced
Quantity increases, the chance of the bad quality detergent being
manufactured also increases

Assembly Line ID Line 1 has an overall higher chance of manufacturing more number
of bad quality detergent products

Stage 1 Raw Materials
properties

Raw material quality parameters have an impact on the end quality
of the detergent

Stage 3 Raw Materials
properties

Raw material quality parameters have an impact on the end quality
of the detergent

Stage 3 Resources Resources used during manufacturing in Stage 3 have an impact on
the end quality of the detergent

Stage 3 Delay A delay in manufacturing during Stage 3 has an impact on the end
quality of the detergent

Stage 3 Resources Resources used during manufacturing in Stage 4 have an impact on
the end quality of the detergent

The insights regarding Stage 3 and others that were not discussed earlier
were gathered while studying relationships in Stages 2, 3, 4, and 5.
Discussing each stage in depth is out of the scope for the book. It is
recommended that you explore these exercises before moving ahead.

The preceding hypotheses generated as a result of the data surfacing and studying
relationships exercises have rendered few hypotheses. However, these hypotheses are still
not concrete results. To get to a more realistic and confident answer, we need to prove these
results statistically. In the next section, we will take a closer look at how to validate these
findings.

The What and Why - Using Exploratory Decision Science for IoT

[108]

Exploratory data analysis
This part of the problem solving stack is also called “Confirmatory data analysis“.
Generally, the problems that we touch base over the Internet and other learning resources
explain a stack called “ECR” that can be extended as Exploratory Data Analysis +
Confirmatory Data Analysis + Root Cause Analysis. This is the same approach that we have
considered-Exploratory Data Analysis (EDA)-where we understand “What” happened,
then CDA, that is, Confirmatory Data Analysis, where we cement the results from our
exercises using statistical tests. Finally, we will answer the “Why” question using Root
Cause Analysis. In our current approach, we have the same approach but a slightly
different naming convention. We have broken down the steps into more granular ones:

The What and Why - Using Exploratory Decision Science for IoT

[109]

We have now reached the EDA phase, that is, we will now validate the insights and
patterns that we observed in the data. Let's start with understanding how we are going to
approach this. If we look back at the journey, we defined the problem, hypothesized the
different factors that could be a reason for the problem to exist, created a framework where
we can iterate, solve, and evolve the problem, explored and studied the data, and found
patterns that could be answers to our questions. We now need to validate our findings
using a variety of statistical techniques.

So how do we validate our findings?
We use a statistical technique called hypothesis testing, which will help us determine the
probability that the concerned hypothesis is true.

So how does hypothesis testing work?
A hypothesis test basically evaluates two mutually exclusive statements about a scenario to
determine whether the statement is best supported by the sample data. When we say that a
finding is statistically significant, it indicates that our hypothesis is true and not observed
by just an anomaly.

In our use case, we have identified a bunch of hypotheses/scenarios from the earlier
exercises. We'll test these hypotheses to understand whether they are valid or whether they
appear just due to mere noise in the data.

The techniques for hypothesis testing depend on the following points:

The type of outcome variable being analyzed (continuous or categorical)
The number of comparison groups in the investigation
Whether the comparison groups are independent

The What and Why - Using Exploratory Decision Science for IoT

[110]

Let's understand this better. We can have dimensions that are either continuous or
categorical, that is, Delay_Flag with values (Yes/No) is categorical whereas the
manufacturing time in minutes is continuous. For two independent categorical/continuous
or categorical + continuous variables, the kind of test that we would perform would be
different. Similarly, based on the number of comparison groups in the categorical variable,
the test would differ. For example, Delay_Flag has two values, that is, Yes/No whereas the
resource variable has multiple levels, say Resource 1, Resource 2, and so on. Finally, it is
also based on the comparison groups-whether they are independent or dependent. In our
use case, the data dimensions are independent. We can study dependent and independent
variables using the following example. Let's say that a drug company wants to test the
effectiveness of a new drug in reducing blood pressure; they would collect data from blood
pressure recordings of the same people before and after they receive a dose. These
dimensions are dependent as they are collected from the same people before and after the
test. When the data is collected from two separate groups-one from people who consumed
the drug and the other from people who have not consumed-the dimensions would be an
example of independent groups.

A cheat sheet to understand which statistical test should be used for our use case will look
like the following:

We'll get into the details of the required tests as and when required. Let's begin with a
simple one. The following table lists the different hypotheses along with their dependent
and independent variable type and the respective test required to validate them:

The What and Why - Using Exploratory Decision Science for IoT

[111]

Validating hypotheses – category 1
We'll start with the first one; Line 1 has an overall higher chance of manufacturing more
number of bad quality detergent products. To validate this test, we need to prove that there
exists a relationship between the two dimensions, that is, the Assembly Line dimension and
the End Quality of the Detergent are not two independent dimensions; instead there exists
some relationship between the two. Once, we have the relationship proved, we can
affirmatively say that the Assembly Line used in the manufacturing process does have an
impact on the quality of the detergent.

The What and Why - Using Exploratory Decision Science for IoT

[112]

Here, we have both dimensions as categorical variables, that is, Assembly Line ID has two
distinct values Line 1 and Line 2. Similarly, the quality of the detergent also is a categorical
variable with values Good/Bad. In such scenarios, where the dependent as well as
independent variables are categorical, we will use a statistical test called Chi Squared Test
of Independence. To perform the statistical test, we will need to build a null hypothesis and
alternative hypothesis. The null hypothesis H0 would essentially be the devil's advocate as
it always assumes that whatever we are trying to prove did not happen. Whereas the
alternative hypothesis (H1) assumes exactly the opposite of the null hypothesis.

In our test, we have the following features:

H0: There is no relationship between the Assembly Line used for the
manufacturing and the end quality of the detergent manufactured
H1: There is a relationship between the Assembly Line used for the
manufacturing and the end quality of the detergent manufactured

How does the chi-squared test work in a
nutshell?
Let's say that we have an outcome and a variable that we think might have an effect. (In our
case, the outcome is the quality of the detergent and the variable of interest is the Assembly
Line used.) We look at the observed values of the outcome, with and without our variable
of interest. We then calculate the expected values using a statistically derived formula. From
the result, we calculate the deviations from what we observed and it is highly likely that we
observe some deviations. We scale the deviations based on the expected values and adjust
for the number of sets of samples. The chi-square statistic is one measure of that deviation,
where we try to prove whether whatever we are observing is random or unlikely to be
random.

Renowned statisticians around the globe have already calculated a look-up table called the
chi-squared table. For an observed deviation, we can use the table to calculate the
probability that this deviation is due to chance. If that probability (p value) is very small,
then we can affirmatively conclude that the deviation can't be due to chance. There is
indeed some relationship between the variable of interest and outcome. We consider any p
value below 5% to be very small. On the other hand, if the p-value is greater than 5%, then
we conclude that the observations/relationship that we see is purely by chance and hence
there wouldn't be any relationship between the two. To summarize, we can say that the chi-
squared test is a measure of deviation compared against precomputed values that tell us
how probable these deviations are.

The What and Why - Using Exploratory Decision Science for IoT

[113]

The test is entirely automated in R; we don't need to code the process for the test. We will
use the chisq.test() function available in the stats package of R:

> #Creating a table of the frequency count for the two variables
> #that is, Outcome v/s Variable of Interest
> sample<-table(data$AssemblyLine_ID,data$Detergent_Quality)
> sample #View the actual table
 Bad Good
 Line 1 183 602
 Line 2 42 173
>
> #Perform the Chi Squared Test of Independence
> chisq.test(sample)

 Pearson's Chi-squared test with Yates' continuity correction

data: sample
X-squared = 1.1728, df = 1, p-value = 0.2788

As we can see, the result is p value = 0.27, that is, 27%, which is very high. We can easily
conclude that the null hypothesis is true, which means that the Assembly Line and Quality
of the Detergent produced are independent dimensions and there exists no relationship
between the two. Therefore, we can chuck one of the hypothesis from our DDH.

Before we move on, we need to perform a few more checks. The end quality of the
detergent is computed by combining the four output quality parameters of the detergent
using some weighted algorithm (which we are not aware about). The end result may be
'Bad' or 'Good' if one parameter gives an extremely out-of-range value. So, instead of trying
to find out whether there is a relationship between the end quality, that is, Good/Bad, and
Assembly Line, we can actually go ahead and find out whether there is a relationship
between Assembly Line and any of the Output Quality Parameters. Here, the kind of test
that we need to perform will be different as the type of dimension has also changed. We
have the same independent variable, that is, Assembly Line ID (categorical with 2 levels)
and a dependent variable Output Quality Parameter (continuous). You can consider any
one of the four. The chi-squared test that we used earlier will not be of use here. In such
cases, we perform the two-sample T test. (Refer to the cheat sheet in the previous section.)

The What and Why - Using Exploratory Decision Science for IoT

[114]

So what is the two-sample T Test?

The two-sample t-test is one of the most commonly used hypothesis tests. It is performed to
compare whether the average difference between two groups is really significant or if it is
due to random chance. In our case, the two groups are the one referring to the two different
Assembly Lines (Line 1 and Line 2). Using the test, we try to validate whether the two
dimensions are actually independent with no relation between them or whether they are
related and therefore Assembly Line has an impact on the respective output quality
parameter. The process of getting started with any hypothesis testing is exactly similar to
the one shown in the chi-squared test; we define a null hypothesis and alternate hypothesis.
As we have four different output quality parameters, we can individually test whether
there is a relationship between Assembly Line and any one of the output quality
parameters.

Hence, in our test, we have (for now consider Output Quality Parameter 1) the following
features:

H0: There is no relationship between the Assembly Line used for the
manufacturing and Quality Parameter 1 of the detergent manufactured
H1: There is a relationship between the Assembly Line used for the
manufacturing and Quality Parameter 1 of the detergent manufactured

Similar to the chi-squared test, we have the T test also automated with the t.test()
function in the stats package of R:

> t.test(data$Output_QualityParameter1~data$AssemblyLine_ID)

Welch Two Sample t-test

data: data$Output_QualityParameter1 by data$AssemblyLine_ID

t = -0.87375, df = 341.76, p-value = 0.3829

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
 -5.478854 2.108418

sample estimates:
mean in group Line 1 mean in group Line 2
 413.9102 415.5954

The result shows an extremely high p value; therefore, H0 is true and thus Assembly Line
and Quality Parameter 1 are two independent dimensions; that is, Assembly Line does not
impact Quality Parameter 1.

The What and Why - Using Exploratory Decision Science for IoT

[115]

Let's try performing T-tests for the other three output quality parameters in the same way
as we performed for Quality Parameter 1:

> t.test(data$Output_QualityParameter2~data$AssemblyLine_ID)

Welch Two Sample t-test

data: data$Output_QualityParameter2 by data$AssemblyLine_ID

t = -5.2088, df = 307.57, p-value = 3.487e-07

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
 -742.4911 -335.3277
sample estimates:
mean in group Line 1 mean in group Line 2
 15162.32 15701.23

> t.test(data$Output_QualityParameter3~data$AssemblyLine_ID)

Welch Two Sample t-test

data: data$Output_QualityParameter3 by data$AssemblyLine_ID

t = -6.4768, df = 315.18, p-value = 3.596e-10

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2067.649 -1104.125

sample estimates:
mean in group Line 1 mean in group Line 2
 36979.83 38565.71

> t.test(data$Output_QualityParameter4~data$AssemblyLine_ID)

 Welch Two Sample t-test

data: data$Output_QualityParameter4 by data$AssemblyLine_ID

t = -3.1554, df = 309.4, p-value = 0.001761

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
 -272.34233 -63.13942

The What and Why - Using Exploratory Decision Science for IoT

[116]

sample estimates:
mean in group Line 1 mean in group Line 2
 7992.937 8160.678

If you glance through the results and focus on the p value, we can see that it is very low
(much lower than 5%), which can be inferred as, the null hypotheses can be rejected.
Therefore, we can conclude that there is indeed an impact of Assembly Line over the
Output Quality Parameters 2, 3, and 4.

Therefore, we have validated our first and second hypothesis in the preceding matrix. Let's
move on to the third and fourth.

Validating hypotheses – category 2
The hypothesis is as the deviation between Order Quantity and actual Produced Quantity
increases, the chance of the bad quality detergent being manufactured also increases.

Similar to the previous hypothesis, we have two categories here: first, where the dependent
variable is the end outcome Good/Bad and second, where the dependent variable is one of
the four output quality parameters (continuous). The first scenario is exactly similar to the
previous hypothesis, that is, the independent and dependent variable both are categorical.
We can straightaway define our H0 and H1 and perform the chi-squared test using the
function available in R.

The null and alternate hypothesis can be defined as follows:

H0: There is no relationship between the Quantity deviation from Order quantity
and Produced quantity and end Quality of the detergent manufactured
H1: There is a relationship between the Quantity deviation from Order quantity
and Produced quantity and end Quality of the detergent manufactured:

> #Creating a table of the frequency count for the two variables
> #that is, Outcome v/s Variable of Interest
> sample<-table(data$Quantity_Deviation,data$Detergent_Quality)
> sample #View the actual table
 Bad Good
 High 89 221
 Low 74 293
 Medium 62 261
>
> #Perform the Chi Squared Test of Independence
> chisq.test(sample)

 Pearson's Chi-squared test

The What and Why - Using Exploratory Decision Science for IoT

[117]

data: sample
X-squared = 10.027, df = 2, p-value = 0.006646

The p value is a little above our desired cutoff, that is, 5%, which indicates that our null
hypothesis is true. Deviation in the quantity of the order produced has no impact on the
quality of the manufactured detergent. The essential problem with the chi-squared test is
that the way in which we categorize data needs multiple thoughts. Let's say that the
variable of interest was “age” and we have categorized age as five segments-0-18, 18 -35,
and so on. Chi-square will never be able to highlight whether the segments are meaningful
or not; it will only test based on the values in the provided segments.

If you recollect the data surfacing exercise, we have created this feature on the basis of
percentile values, that is, below 30 percentile is low, ~30 – 70 percentile is medium, and so
on. Let's adjust these numbers a bit, such that they are still in the approximate percentile
range but may be more meaningful in order to study the pattern:

> #Calculating the deviation between Order and Produced Quantity
> temp<-(abs(data$Order_Quantity - data$Produced_Quantity))
> data$Quantity_Deviation_new <-
as.factor(ifelse(temp<= 140,"Low",
 ifelse(temp<= 280,"Medium","High")))
#View the frequency of each category
> summary(data$Quantity_Deviation_new)
 High Low Medium
 351 365 284

Now that we have slightly modified the rule for creating the segments in the Quantity
deviation, let's perform a Chi Squared Test on the newly created dimension.

> #Creating a table of the frequency count for the two variables
> #that is, Outcome v/s Variable of Interest
> sample<-table(data$Quantity_Deviation_new,data$Detergent_Quality)
> sample #View the actual table
 Bad Good
 High 100 251
 Low 74 291
 Medium 51 233
>
> #Perform the Chi Squared Test of Independence
> chisq.test(sample)

 Pearson's Chi-squared test

data: sample
X-squared = 11.62, df = 2, p-value = 0.002998

The What and Why - Using Exploratory Decision Science for IoT

[118]

Now, we can clearly see that the p value has dipped below 5% and therefore we can reject
the null hypothesis. Thus, we can conclude that there is indeed a relation between the
Quantity deviation between order quantity and Produced Quantity and the end quality of
the detergent manufactured.

Moving to a more detailed view, we can now try to understand whether there is any
relation between the Qunatity_Deviation (new) dimension and each of the individual
output quality parameters for the detergent. When we explore the dimensions, we
understand that we have a categorical independent variable and continuous dependent
variable. The instant thought would be that we can try t-tests to validate it like the previous
hypotheses. Unfortunately, this won't work. Let's try it out after defining our H0 and H1.

Looking at the hypothesis, we can build our null and alternative hypothesis as follows:

H0: There is no relationship between the Quantity deviation from Order quantity
and Produced quantity and Quality Parameter 1 of the detergent manufactured
H1: There is a relationship between the Quantity deviation from Order quantity
and Produced quantity and Quality Parameter 1 of the detergent manufactured

If we try to perform a simple two-sample t test like the earlier scenario, we'll get the
following error:

> t.test(data$Output_QualityParameter1~data$Quantity_Deviation_new)
Error in t.test.formula(data$Output_QualityParameter1 ~
data$Quantity_Deviation_new) :
 grouping factor must have exactly 2 levels

Yes, t test can be performed only if the variable of interest has two levels, but in our case we
have three levels (high / medium / low). So how do we move ahead?

One simple trick would be to create three different dummy variables, that is, one for High,
another for Medium, and so on. Then perform three separate tests on each of the variables
and try to conclude whether our null hypothesis can be rejected. However, there is a huge
flaw in this method that deals with the issue of Type 1 error.

The What and Why - Using Exploratory Decision Science for IoT

[119]

What does a Type 1 error mean?
In the process of hypothesis testing, there are chances that, due to data issues, we might end
up rejecting a null hypothesis even when it is right or we might fail to reject a null
hypothesis even when it false. These two cases can be called as Type 1 and Type 2 errors:

T-tests are easier to perform, but Type I error is the reason that we need to move on to a
better technique because the more hypothesis tests you use, the more you risk making a
Type I error and the less power a test has. There is no disputing that the t-test changed
statistics with its ability to find significance with a sample, but for cases where our variable
of interest has more than two means, we need to use ANOVA.

So what is ANOVA?
Analysis of Variance (ANOVA) is a statistical method used to test differences between two
or more means. In fact, we can also use ANOVA instead of t test when the variable of
interest has only two levels (with some assumptions).

To perform the anova test, we can use the aov() function provided with the stats package
of R:

> #Output Quality Parameter 1
> anova_model<-
aov(data$Output_QualityParameter1~data$Quantity_Deviation_new)
> summary(anova_model)
 Df Sum Sq Mean Sq F value Pr(>F)

The What and Why - Using Exploratory Decision Science for IoT

[120]

data$Quantity_Deviation_new 2 2007 1003.5 1.591 0.204
Residuals 997 628944 630.8

When we test ANOVA for the Quantity deviation and Output Quality Parameter 1, we can
see that the p value is higher than our acceptance range. Therefore, we can infer that there is
no relationship between the two dimensions, Quantity Deviation and Output Quality
Parameter 1:

> #Output Quality Parameter 2
> anova_model<-
aov(data$Output_QualityParameter2~data$Quantity_Deviation_new)
> summary(anova_model)
 Df Sum Sq Mean Sq F value Pr(>F)
data$Quantity_Deviation_new 2 1.061e+07 5306477 3.367 0.0349 *
Residuals 997 1.571e+09 1575814

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>

> #Output Quality Parameter 3
> anova_model<-
aov(data$Output_QualityParameter3~data$Quantity_Deviation_new)
> summary(anova_model)

 Df Sum Sq Mean Sq F value Pr(>F)
data$Quantity_Deviation_new 2 6.913e+07 34563909 3.702 0.025 *
Residuals 997 9.309e+09 9337352

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>

> #Output Quality Parameter 4

> anova_model<-
aov(data$Output_QualityParameter4~data$Quantity_Deviation_new)
> summary(anova_model)
 Df Sum Sq Mean Sq F value Pr(>F)
data$Quantity_Deviation_new 2 4815985 2407992 5.873 0.00291 **
Residuals 997 408807280 410037

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The preceding code performs the anova test on the variable of interests: Quantity Deviation
with three levels and the remaining three Output Quality Parameters. Observing the p
value from the result of ANOVA, we can reject the null hypothesis and can affirmatively
say that Quantity Deviation impacts the Output Quality Parameters 2, 3, and 4 for the
detergent manufactured.

The What and Why - Using Exploratory Decision Science for IoT

[121]

Validating hypotheses – category 3
The hypothesis is Stage 1 Raw Material quality parameters have an impact on the end quality of
the detergent.

We have completed performing statistical tests for two out of four categories that we have
assimilated till now. In each category, we came across a different type of test as we had
different kinds of independent and dependent variables. In the current category, we have
both independent as well as dependent variables as continuous. Therefore, we cannot use
the tests we have explored till now to validate our current hypothesis. If you refer to the
cheat sheet, we can find that we have to use regression to solve these set of problems.

So what is regression?
Regression analysis is a statistical process to estimate the relationships among variables.
More specifically, regression analysis helps one understand how the typical value of the
dependent variable changes when any one of the independent variables is varied while the
other independent variables are held fixed.

Thus, if we limit the scope to our current use case scenario, we can understand that
regression helps us identify whether there is any relationship between the independent
variables and dependent variable. We will be exploring regression in more depth, but for
the current scenario, let's limit the scope of regression as just a means to study the
relationships between our variables of interest.

For our hypothesis, we have two raw materials in Stage 1-each with two individual quality
parameters, that is, altogether four raw material quality parameters. Similarly, our second
hypothesis surfaces on the raw material parameters from Stage 3. Unlike stage 1, stage 3 has
four raw materials, but the quality parameters are available for only three of them. We have
(2+1+2) = 5 quality parameters for the raw materials.

We can combine all of these dimensions together into one single equation and then study
whether there exists a relationship between the dependent and independent variables. Also,
as we have four different output quality parameters as the dependent variable, we will
perform the test four times to gather the results:

> #Performing a regression model with
> #4 quality parameters from Stage 1 and
> #5 quality parameters from Stage 3
>
> regression_model<-lm(Output_QualityParameter1~
data$Stage1_RM2_QParameter1 +
 data$Stage1_RM2_QParameter2 +

The What and Why - Using Exploratory Decision Science for IoT

[122]

 data$Stage1_RM1_QParameter1 +
 data$Stage1_RM1_QParameter2 +
 data$Stage3_RM1_QParameter1 +
 data$Stage3_RM1_QParameter2 +
 data$Stage3_RM2_QParameter1 +
 data$Stage3_RM3_QParameter1 +
 data$Stage3_RM3_QParameter2 ,
 data=data)
> anova(regression_model)
Analysis of Variance Table

Response: Output_QualityParameter1
 Df Sum Sq Mean Sq F value Pr(>F)
data$Stage1_RM2_QParameter1 1 489966 489966 6551.5908 < 2.2e-16 ***
data$Stage1_RM2_QParameter2 1 696 696 9.3112 0.002338 **
data$Stage1_RM1_QParameter1 1 1671 1671 22.3399 2.615e-06 ***
data$Stage1_RM1_QParameter2 1 1307 1307 17.4746 3.169e-05 ***
data$Stage3_RM1_QParameter1 1 38932 38932 520.5839 < 2.2e-16 ***
data$Stage3_RM1_QParameter2 1 471 471 6.2975 0.012250 *
data$Stage3_RM2_QParameter1 1 6253 6253 83.6113 < 2.2e-16 ***
data$Stage3_RM3_QParameter1 1 10512 10512 140.5668 < 2.2e-16 ***
data$Stage3_RM3_QParameter2 1 7105 7105 95.0078 < 2.2e-16 ***
Residuals 990 74038 75

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we can observe from the results of the regression model, all the nine dimensions-five
raw material quality parameters from Stage 3 and four quality parameters from stage 1-
have a p value less than 5%, which means that we can reject our null hypothesis and
confirm that there is definitely an impact of raw material properties on the Output Quality
Parameter 1 for the detergent.

In the same way, let's study the relationship with the remaining three output quality
parameters:

The same preceding code with a different dependent variable, that is, Output Quality
Parameters 2, 3, and 4, can be used to view the results shared here.

#For Output_QualityParameter2
> anova(regression_model)
Analysis of Variance Table

Response: Output_QualityParameter2
 Df Sum Sq Mean Sq F value Pr(>F)
data$Stage1_RM2_QParameter1 1 679471149 679471149 807.4247 < 2.2e-16 ***

The What and Why - Using Exploratory Decision Science for IoT

[123]

data$Stage1_RM2_QParameter2 1 220054 220054 0.2615 0.609210
data$Stage1_RM1_QParameter1 1 7626898 7626898 9.0631 0.002674 **
data$Stage1_RM1_QParameter2 1 1865 1865 0.0022 0.962466
data$Stage3_RM1_QParameter1 1 28665642 28665642 34.0638 7.222e-09 ***
data$Stage3_RM1_QParameter2 1 16686 16686 0.0198 0.888048
data$Stage3_RM2_QParameter1 1 7902621 7902621 9.3908 0.002240 **
data$Stage3_RM3_QParameter1 1 21963781 21963781 26.0999 3.889e-07 ***
data$Stage3_RM3_QParameter2 1 2717698 2717698 3.2295 0.072628 .
Residuals 990 833113480 841529

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Performing a regression model for Output_QualityParameter3
> anova(regression_model)
Analysis of Variance Table

Response: Output_QualityParameter3
 Df Sum Sq Mean Sq F value Pr(>F)
data$Stage1_RM2_QParameter1 1 4040239678 4040239678 802.2017 < 2.2e-16

data$Stage1_RM2_QParameter2 1 928873 928873 0.1844 0.66769
data$Stage1_RM1_QParameter1 1 1806552 1806552 0.3587 0.54937
data$Stage1_RM1_QParameter2 1 154571 154571 0.0307 0.86097
data$Stage3_RM1_QParameter1 1 223809743 223809743 44.4381 4.354e-11

data$Stage3_RM1_QParameter2 1 14285485 14285485 2.8364 0.09246 .
data$Stage3_RM2_QParameter1 1 83651956 83651956 16.6093 4.960e-05

data$Stage3_RM3_QParameter1 1 23903953 23903953 4.7462 0.02960 *
data$Stage3_RM3_QParameter2 1 3612936 3612936 0.7174 0.39722
Residuals 990 4986074467 5036439

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Performing a regression model for Output_QualityParameter4
> anova(regression_model)
Analysis of Variance Table

Response: Output_QualityParameter4
 Df Sum Sq Mean Sq F value Pr(>F)
data$Stage1_RM2_QParameter1 1 188207474 188207474 883.5117 < 2.2e-16 ***
data$Stage1_RM2_QParameter2 1 187981 187981 0.8824 0.347761
data$Stage1_RM1_QParameter1 1 1472674 1472674 6.9132 0.008689 **
data$Stage1_RM1_QParameter2 1 50382 50382 0.2365 0.626845
data$Stage3_RM1_QParameter1 1 8718238 8718238 40.9265 2.434e-10 ***
data$Stage3_RM1_QParameter2 1 4720 4720 0.0222 0.881697
data$Stage3_RM2_QParameter1 1 2559058 2559058 12.0131 0.000551 ***
data$Stage3_RM3_QParameter1 1 789099 789099 3.7043 0.054558 .

The What and Why - Using Exploratory Decision Science for IoT

[124]

data$Stage3_RM3_QParameter2 1 741804 741804 3.4823 0.062324 .
Residuals 990 210891835 213022

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Unlike Output Quality Parameter 1, we have only a few relationships between the
remaining output quality parameters and the raw material quality parameters.

In an nutshell, output quality parameter 2 is impacted by five of the raw material
properties, Output quality parameter 3 by four of the raw material properties, and Output
quality parameter 4 only by three of the raw material quality parameters.

Therefore, we now have a more detailed picture of the issues as we understand how the
raw material quality parameters impact the overall quality of the detergent and how they
impact the individual output quality parameters.

Hypotheses – category 3
Resources used during manufacturing in Stage 3 have an impact on the end
quality of the detergent
A delay in manufacturing during Stage 3 has an impact on the end quality of the
detergent

Validating these hypotheses is now straightforward. Each of these cases have already been
encountered earlier. Both the hypotheses can be validated using the chi-squared test. Let's
quickly look at the results of these tests.

Hypothesis #1: Resources used during manufacturing in Stage 3 have an impact on the end
quality of the detergent:

> #Creating a table of the frequency count for the two variables
> #that is, Outcome v/s Variable of Interest
> sample<-table(data$Stage3_ResourceName,data$Detergent_Quality)
> sample #View the actual table
 Bad Good
 Resource_105 8 68
 Resource_106 15 55
 Resource_107 9 65
 Resource_108 88 298
 Resource_109 105 289

> #Perform the Chi Squared Test of Independence
> chisq.test(sample)

The What and Why - Using Exploratory Decision Science for IoT

[125]

Pearson's Chi-squared test

data: sample
X-squared = 14.741, df = 4, p-value = 0.005271

We see a similar issue like the one we encountered earlier, that is, the results are slightly
above 5%. To make our results more interpretable for the test, we can try to reduce the
number of groups and give it another try. As the number of records in Resources 105,106,
and 107 are comparatively low, we can club them together and perform the test again:

> #Transforming the variable
> data$Stage3_ResourceName_new<-
as.factor(ifelse(data$Stage3_ResourceName
%in% c("Resource_105","Resource_106",
 "Resource_107"),
"Others",
as.character(data$Stage3_ResourceName)))
> sample<-table(data$Stage3_ResourceName_new,
data$Detergent_Quality)
> sample #View the actual table
 Bad Good
 Others 32 188
 Resource_108 88 298
 Resource_109 105 289
> #Perform the Chi Squared Test of Independence
> chisq.test(sample)
 Pearson's Chi-squared test
data: sample
X-squared = 11.894, df = 2, p-value = 0.002614

As we can see, we now have the p value lower than our cutoff threshold, which can help us
in rejecting our null hypothesis. Therefore, the resources used in Stage 3 can have an impact
on end quality of the detergent.

Hypothesis #2: A delay in manufacturing during Stage 3 has an impact on the end quality
of the detergent:

> #Creating a table of the frequency count for the two variables
> #that is, Outcome v/s Variable of Interest
> sample<-table(data$Stage3_DelayFlag,data$Detergent_Quality)
> sample #View the actual table
 Bad Good
 No 115 437
 Yes 110 338
>
> #Perform the Chi Squared Test of Independence
> chisq.test(sample)

The What and Why - Using Exploratory Decision Science for IoT

[126]

 Pearson's Chi-squared test with Yates' continuity correction
data: sample
X-squared = 1.7552, df = 1, p-value = 0.1852

The p value is very high, therefore we accept our null hypothesis-delay in stage 3 does not
impact the end quality of the detergent.

Summarizing Exploratory Data Analysis phase
We have now finished the EDA phase, that is, validating results by performing a variety of
statistical tests on the various hypotheses or insights that we touch on during our initial
exercise. In the entire course, we have found a lot of different results; some were drafted
with our heuristics and some were drafted with our observation from the data. All of these
insights or observations are signals of what could be the problem. We went a step ahead
and validated statistically the fact that the signals that we see are real signals and not just
due to random data points. Now we have a list of dimensions that we are confident about
having an impact on the end outcome, that is, the quality of the detergent, but we still miss
out on one important thing. We need to study how these different dimensions affect the
problem, that is, the quality of the detergent. To understand this, we need to revisit the
previous four milestones in the current chapter's exercise (refer to the diagram in the
Exploratory Data Analysis section) and stich together the results by studying with a
forensic mindset to understand the why in the big picture. In the next section, we will
connect the dots by assimilating all our learnings from the exercise to stitch the results and
answer the why question of the problem.

Root Cause Analysis
We now begin our journey with answering the why question from all the insights we have
gathered till now. Let's assimilate all our results that we have validated in our EDA
exercise. Once we have all the results, let's try to simplify it to create a simple story that
helps us in answering the questions in a more lucid way.

The What and Why - Using Exploratory Decision Science for IoT

[127]

The following figure is an extended version of the DDH matrix we designed in the previous
section along with the results we found during our exercise:

Hypothesis Result Insight

Line 1 has an overall higher chance of manufacturing more
number of bad quality detergent products

FALSE Assembly Line has no impact on the end
quality of the detergent

Line 1 has an overall higher chance of deteriorating the
Output Quality Parameters in the detergent

TRUE Assembly line has an impact on Output
Quality Parameter 2,3, and 4

As the deviation between Order Quantity and actual
Produced Quantity increases, the chance of the bad quality
detergent being manufactured also increases

TRUE The orders with “High” deviation of
produced quantity have higher chances for
bad quality

As the deviation between Order Quantity and actual
Produced Quantity increases, the output quality parameters
deteriorates

TRUE The orders with “High” deviation of
produced quantity have an impact on the
Output Quality Parameters 2,3, and 4

Stage 1 Raw Material quality parameters have an impact on
the end quality of the detergent

TRUE *Results shared in the following text

Stage 3 Raw Material quality parameters have an impact on
the end quality of the detergent

TRUE

Resources used during manufacturing in Stage 3 have an
impact on the end quality of the detergent

TRUE Resources used during manufacturing in
Stage 3 have an impact on the end quality of
the detergent

A delay in manufacturing during Stage 3 has an impact on
the end quality of the detergent

FALSE Stage 3 delay has no impact on the quality
of the detergent

For the raw material quality parameters, the results can be summarized as follows:

For Output Quality Parameter 1: All nine raw material quality parameters have
an impact on the quality.
For Output Quality Parameter 2: Stage 1 RM1_QParameter1 and
RM2_QParameter1 have an impact. Stage 3 RM1_QParameter1,
RM2_QParameter1, and RM3_QParameter1 have an impact.
For Output Quality Parameter 3: Stage 1 RM2_QParameter1 has an impact. Stage
3 RM1_QParameter1, RM2_QParameter1, and RM3_QParameter1 have an
impact.
For Output Quality Parameter 4: Stage 1 RM1_QParameter1, and
RM2_QParameter1 have an impact. Stage 3 RM1_QParameter1 and
RM2_QParameter1 have an impact.

The results overall look very interesting; except for two, all the other hypotheses that we
framed have been validated statistically and the results are positive.

The What and Why - Using Exploratory Decision Science for IoT

[128]

Synthesizing results
So let's start simple; we'll first synthesize the results that we have on our plate one by one.

The problem statement revolves around the quality of the detergent manufactured in a
plant. The quality can be tagged as Good or Bad by combining the four final Output Quality
Parameters from the manufacturing unit. The Assembly Line used for the manufacturing
impacts three out of the four final output quality parameters, but still does not affect the
final end quality of the detergent. A very important point to notice. The algorithm used to
combine the four output quality parameter into the final Good/Bad is a weighted one (as
mentioned earlier). The fact that Assembly Line impacts three output parameters and still
does not impact the end quality could be a cue to understand that Output Quality
Parameter 1 has a higher weightage than all others. It could also be the scenario that the
impact that the 'Assembly Line' dimension has on the three output quality parameters
might not be strong enough to make a final impact on the quality. Let's make a note of this
point and move ahead.

There is usually a deviation between the planned quantity for the manufacturing order and
the actual quantity produced. The quantity deviation for a particular manufacturing order
is featured as High, Medium, or Low. The quantity deviation dimension has a heavy impact
on the end quality of the detergent. The orders with High deviation have higher chances to
produce a bad quality detergent. Similarly, the quantity deviation has an impact on three
out of the four quality parameters similar to the Assembly Line dimension.

The quality of the raw materials used in Stage 1 and Stage 3 have a strong impact on the
end quality. All the nine raw material quality parameters have an impact on Output Quality
Parameter 1. From the nine raw material quality parameters, the most important ones are
Stage1_RM1_QParameter1, Stage1_RM2_QParameter1, Stage3_RM1_QParameter1, and
Stage3_RM2_QParameter1. These four raw material quality parameters have major impact
on quality among the entire list. If we look at our previous section, “Studying
Relationships”, and refer to the visuals showcasing the correlation plots for Raw material
Quality parameters and output quality parameters, we can easily notice that all the errors,
that is, bad quality detergent, are produced when the value of the raw material quality
parameter exceeds a certain threshold. For example, refer to the “Exploring Stage 1
dimensions” subsection in “Studying Relationships”. If we observe the correlation plots for
all four output quality parameters and Stage1_RM1_QParameter1, we can clearly see that
the maximum number of data points have a value of ~4275 and majority of the bad quality
cases appear beyond the value 4275 for this parameter. A simple rule enforcing the value of
Quality Parameter 1 for Raw Material 1 from Stage 1 can be an easy approach to improve
the quality of detergent produced. The same can be studied for the other eight raw material
parameters.

The What and Why - Using Exploratory Decision Science for IoT

[129]

The following can be noted as a thumb rule for raw material quality parameters. The ones
featured as important have been added here:

The following values are jotted by merely observing the correlation visuals
like the ones studied earlier.

Raw Material Quality Parameter Max quality threshold

Stage 1- Raw Material 1 – Quality Parameter 1 4275

Stage 1- Raw Material 2 – Quality Parameter 1 145

Stage 3-Raw Material 1 – Quality Parameter 1 210

Stage 3-Raw Material 2 – Quality Parameter 1 540

Lastly, the 'Resources used in Stage 3' dimension also impacts the end quality of the
detergent. If we look back at the results of the EDA section, we can understand that
Resource_109 has major propensity toward bad quality produce. A thumb rule to fix
Resource_109 for cleanliness or any other domain-related attribute that we would not be
aware about or worst case scenario to avoid Resource_109 for the manufacturing process
will also help in reducing the bad quality produce.

Visualizing insights
To aid in faster root cause analysis, let's create a simple tree diagram that would simplify
visualizing all insights in one view. Once we have all our insights and recommendations
condensed and improved in one place, stitching a story would be an extremely easy task.

The What and Why - Using Exploratory Decision Science for IoT

[130]

The following diagram represents the factors that cause the bad quality of the produce. The
text below the factors elucidate how the factor affects the produce and what can be done to
reduce the perils of bad produce:

If we study the visual, we can quickly connect our initial steps of the problem solving
framework. In case you find it hard to recollect, it was called the SCQ-Situation
Complication and Question. Referencing the same old diagram, let's juxtapose our findings
and results to see how far we have reached.

The following diagram overlays our results and insights over the initial framework design.
It seems like we have everything we need to solve the problem:

The What and Why - Using Exploratory Decision Science for IoT

[131]

Yay, it looks very accomplished! Doesn't it?

Stitching the Story together
We have covered everything that we planned to. The last thing that would be left on our
plate is to stitch the final story together. So John (operations head) had initially approached
us with the problem where he mentioned that his manufacturing unit was facing huge
losses due to the bad produce of detergent.

We brainstormed on how we could help him and finally designed an SCQ that set the
context and objective of the problem to be solved. We then proceeded in a structured way to
explore, study, experiment, and visualize data to find out why the problem was happening.

The What and Why - Using Exploratory Decision Science for IoT

[132]

In our analysis, we found that the major culprits for bad quality produce of detergents are
defined by four simple dimensions, namely, Production Quantity deviation, Quality of the
raw materials used, the Assembly Line used for production, and the machinery used for the
manufacturing during Stage 3 of the process. In an attempt to study how these factors affect
the quality, we understood that there is a positive relationship between the production
deviation and probability of a bad quality produce. In a nutshell, the chances of
manufacturing bad quality detergent are very high if the deviation between the produced
quantity and order quantity is also high. Also, the quality of the raw materials used in Stage
1 and Stage 3 have a direct impact on the end quality of the detergent. Four of the nine
quality parameters measured have very high relationship with the end quality. There are
clear signals of bad quality produce when the quality of the raw materials are accepted
beyond a threshold.

The machinery used in stage 3 of the manufacturing process seems to be a troublemaker.
There are a few faulty operations in the machine that need to be fixed quickly to reduce bad
quality produce. Finding the issues associated with the entire machine will be an arduous
task, but as we know that one of the machines has a higher chance of producing a bad
quality product, we can now narrow down our fixes in the differences associated between
the machines used. Finally, the Assembly Line used for the manufacturing also has an
indirect impact on the quality. It could be a case where we have the assembly line impacting
the processing time or any of the above mentioned factors that then ultimately impacts the
quality. Identifying these intricacies and fixing them will further improve the detergent
quality.

Conclusion
We now have a simplified story in front of us for the problem that we are trying to solve.
The answers to the questions we framed in our initial problem definition phase have helped
us study the reasons for the problem. Let's quickly summarize the different actions we need
to suggest to John so that he can solve the problem and reduce the losses by mitigating the
perils of producing bad quality detergent.

The What and Why - Using Exploratory Decision Science for IoT

[133]

Production Quantity
There is often a huge gap between the quantities of detergent planned to be manufactured
and the actual quantity manufactured. The deviation has a huge impact on the end quality
of the detergent. An increase in deviation significantly increases the chances of
manufacturing bad quality detergent. Appropriate measures to plan out manufacturing
detergent in the required quantity rather than deviating from the proposed quantity to
incorporate eleventh-hour changes is highly recommended.

Raw material quality parameters
The quality of the raw materials used to manufacture detergent has an extremely high
impact on the quality of the detergent. It is clearly observed in the data that the quality of
raw materials beyond an identified threshold have an extremely high chance to produce
bad quality detergent. It is therefore recommended to use raw materials with quality
ranging within the standard/observed threshold range.

Resources/Machinery used in Stage 3
Resources used in the third stage of manufacturing have an impact on the quality of the
detergent manufactured. Identifying the exhaustive list of issues associated with the
machine may not be a feasible solution. However, as one specific resource demonstrates
higher propensity to produce bad quality, we can investigate the mere differences by
comparing the machines with the others that produce better quality detergent and then fix
them.

Assembly Line
The assembly line does not directly impact the end quality of the detergent, but still has a
strong impact on three of the four quality parameters. A study of the impact of Assembly
Line on other vital factors is highly recommended so that we could fix them and further
improve the detergent quality.

These recommendations can definitely help John in quickly taking actions to improve the
detergent quality and thereby reduce losses.

The What and Why - Using Exploratory Decision Science for IoT

[134]

Summary
In this chapter, we moved one step ahead in solving a real-life IoT business use case. Using
the blueprint of the problem that we defined in the previous chapter, we attempted solving
the problem in a structured way guided by the problem solving framework. After having
the business problem well-defined, we got our hands dirty by solving the business problem
using R. We started our journey with identifying gold mines in the data for decision
making, where we examined the data sources to understand what hypotheses can we prove
to solve our problem. We then validated the fact that we have a good amount of data to
solve the problem and studied more about the data to understand how the data can be used
in our use case. After gathering a fair amount of data and domain context, we explored each
dimension in the IoT ecosystem and studied what the data has to say. We performed
univariate analysis and also transformed the dimensions to create more powerful and
valuable dimensions. We then studied the relationships that exist in the data to understand
how different dimensions relate with the quality of the detergent manufacture by
performing bivariate analysis. After studying the relationships and collecting
signals/insight from the data, we validated our observations statistically to cement our
insights using a variety of statistical techniques such as hypothesis testing using Chi-square
tests, T tests, regression ANOVA, and so on With our results being validated, we
thoroughly synthesized our results and stitched together a story and designed
recommendations to mitigate the hurdles and thus answered all the key business questions
that we had drafted while defining the problem.

Thus, using a structured and matured methodology and combining multiple disciplines
such as math, business, and technology, we finally solved the problem. However, we are
not done yet. As we discussed earlier, the problem always evolves. The current problem can
be explored further by asking more powerful questions like 'When'. This is when we will
explore a different area of analytics called 'Predictive Analytics'. In the next chapter, we take
our problem solving skills one step ahead by answering the question when and therefore
explore predictive analytics in more depth.

4
Experimenting Predictive

Analytics for IoT
Humans solve a problem by asking a series of nested questions to themselves. When a
problem arises, asking Why, What, and How more and more number of times until all our
questions are answered helps us solve a problem. Decision Science is no different. The
entire stack of decision science, that is, Descriptive + Inquisitive + Predictive + Prescriptive,
is designed on the basis of the different kinds of questions we ask. The solutions we develop
get more and more powerful with the depth of the questions we frame Initially, we surface
the problem space by understanding 'what' has happened, then we get in deeper by
understanding how it happened. The solution to the problem becomes even more powerful
when you have an answer to the question when, and this is when we touch base with
Predictive Analytics. The ability to look into the future and then solve a problem is way
more powerful and effective than any other alternative.

In this chapter, we begin our journey with predictive analytics using a variety of statistical
techniques. We will continue on the same use case solved in the previous chapter and delve
deeper into the solution with the 'when' question. In the course of the problem's solution,
we'll explore a variety of techniques to predict the outcome based on the type of the
outcome event. We will start approaching the problem by understanding what problem we
are solving and what algorithm to use and why. You will then learn the fundamentals of the
statistical technique and practically solve a prediction problem. Finally, we'll assimilate the
results and tie back the insights to the story to strengthen the solution.

Experimenting Predictive Analytics for IoT

[136]

In this chapter, we will explore few simple algorithms such as linear regression, logistic
regression, and decision trees. In the next chapter, we will explore more advanced and
sophisticated machine learning techniques for predictive analytics. The current chapter will
focus on the following topics:

Resurfacing the problem – what's next?
Linear regression – predicting a continuous outcome
Decision trees – predicting the intuitive way
Logistic regression – predicting a binary outcome

Resurfacing the problem – What's next?
Before exploring the different techniques for predictive analytics, let's take a step back and
understand what's next in order to solve the problem better. After finding out the reasons
for the bad quality produce in the previous chapter, we assimilated all our learnings to draft
a story. John seemed to be very impressed with the solution. His team studied the different
factors that affected the quality of the detergent manufactured and brainstormed for
countermeasures to alleviate bad quality produce before manufacturing the detergent. The
team identified one critical output quality parameter-Output Quality Parameter 2-that
affects the end outcome the most and reached out to us to check whether we could build a
solution that would aid them in understanding the quality of detergent before the
manufacturing process. Had the team been aware beforehand about the end quality of the
detergent going to be manufactured, they could immediately have taken countermeasures
to improve the quality, if bad. The team could benefit a lot with visibility into the predicted
value of Output Quality Parameter 2 (critical quality parameter) or the actual end outcome
of the detergent-Good/Bad-before initiating the manufacturing process.

Experimenting Predictive Analytics for IoT

[137]

These are actually two separate problems. Let's understand the situation in a more layman
way by again taking the analogy of cooking. Let's say that you are cooking pasta and you
have all the necessary ingredients in the required amount readied on a plate before cooking.
Your friend, Rick, an expert chef with phenomenal experience in cooking a variety of
cuisines, visits your place while you are about to cook. Rick takes a closer look at the
different ingredients you have readied for the dish along with the quantity. He assumes
that you would be cooking as per the recipe, but based on the quantity and quality of the
ingredients, he makes an estimate on the rating for the taste of the dish that will be
prepared on a scale of 1-9 (9 being the best). After a close examination, he estimates that the
rating for the dish would be around 6.5 (average). You feel heartbroken and ask him why?
He smiles and points towards the turmeric powder and chilly powder that seems to be of a
little lower grade. Based on his suggestion, you change the turmeric and chilly powder by
borrowing some of a better quality from your neighbor. He then takes a closer look again
and says, Yes, this seems perfect! An 8.5 on 9 (excellent) You now feel confident and start
cooking for a delicious dinner.

Intuitive, isn't it? We wish we had a friend like Rick for every problem we try to solve.

John is also in need of such an expert who can assist the technician responsible for
manufacturing the detergent. The expert would examine upfront the readied ingredients,
that is, raw materials, and estimate the quality of the detergent that will be manufactured in
order to take preventive measures before the first step (if bad quality). The expert could tell
the technician that in case he plans to use the existing set of raw materials with the defined
quantities, then the end quality of the detergent will be around 670 units (assume). The
technician realizes that with such quality parameters, the chances that the detergent being
manufactured will be rejected are very high. He would quickly summon the person in
charge of the storehouse to replace some of the raw materials or probably change some
settings in the machine. This entire process can be boiled down to one simple word-
prediction. Having a view into the future helps everyone avoid getting into a problem. John
reached out to us to check whether we could build a system that could help the team with
answers to a few questions regarding the quality of the end produce. The answer is yes! We
can definitely help him in building a system that can predict the quality of the detergent
before being manufactured. Let's understand how we can do this.

There are two different types of problems that we can solve here based on the end outcome.
For the prediction method, we can predict either each individual quality parameter or the
end outcome-Good/Bad. The latter is a categorical outcome whereas the former is a
continuous outcome. Let's take a shot at solving both of these problems separately. Based
on the results, we can take a call on which would be a better model. We'll begin by trying to
solve the first problem: predicting as a critical one.

Experimenting Predictive Analytics for IoT

[138]

Linear regression – predicting a continuous
outcome
There are a variety of statistical techniques available that can be used for prediction. Their
usage is defined by the type of the dependent variable (continuous/categorical). A different
technique or algorithm is required to solve these two different categories. We can use linear
regression to predict a continuous variable and logistic regression for a categorical variable.
A plethora of other techniques are available for these cases, but let's start solving the
problem of predicting a continuous variable using linear regression.

Prelude
Before we begin understanding what we are going to build, let's take a moment to clearly
understand the requirements from John's team and also study about how they plan to use
the results. The team needs our help in building a system that can predict the actual quality
parameter (Output Quality Parameter 2) before the manufacturing process. The team of
technicians and store managers plan the production a day in advance by preparing and
staging the required raw materials and machinery to manufacture the detergent. The
system that we build should be capable of predicting the quality parameter (continuous) of
the end produce based on the available information, namely, raw material quantity and
quality dimensions, machine/resources identified, assembly line to be used, time/day for the
planned manufacturing, and so on. The operational data dimensions cannot be captured
while staging. The prediction of the end produce quality parameter before the
manufacturing process can aid the technician in taking quick countermeasures to mitigate
the chances of a bad quality produce. A comparison of the quality parameter prediction
with the benchmark along with the estimated impact from different factors can aid the
technician in implementing quick fixes such as changing raw materials with better quality
alternatives or fixing issues associated with machinery or the assembly line or any other
dimension identified as highly influential to improve the quality and thereby reduce losses.

Solving the prediction problem
To predict the quality parameter of the detergent manufactured, which is a continuous
variable, we can use a very famous and easy-to-use statistical technique called Linear
Regression. There are many other alternatives (even more powerful), but let's start with a
fundamental algorithm.

Experimenting Predictive Analytics for IoT

[139]

So what is linear regression?
Linear regression is a statistical technique that models the relationship between a
dependent variable and one or multiple independent variables by fitting a linear equation
to the observed data. It is the study of linear, additive relationships between variables.
When there is only one independent variable, it is called 'Simple Linear Regression', and
when multiple independent variables are studied together, it is called 'Multiple Linear
Regression'. In general, simple linear regression is rarely used; most use cases we deal with
in business will be for multiple linear regression. Therefore, from here onward, all
references made to linear regression will be a use case referring to multiple linear
regression. Let's quickly move on to solving the problem that we have on our plate. You'll
learn new concepts related to linear regression as and when we come across them.

The end outcome or dependent variable is Output Quality Parameter 2. The input variables
we choose need to be carefully selected as we are trying to build a prediction model that
will consider data points available before the manufacturing process has started. The use
case we are solving captures data dimensions throughout the manufacturing process.
Referring to the' Understanding data landscape' subsection in Chapter 3, The What and
Why – Using Exploratory Decision Science for IoT, will give you a more detailed idea about
which data dimensions are captured before, during, and after the manufacturing process.

From all the dimensions available, we can narrow down our selection to the following
dimensions: the manufacturing date, order quantity and produced quantity, (Production
quantity changes are made usually at the last minute before beginning the manufacturing
process.) assembly line and machine/resources used for the manufacturing process, raw
material quantity and quality, and so on. We will not be able to use dimensions such as
delay flags, overall and stage-wise processing time, stage-wise resultant mixture output
quality parameters, and others as these dimensions will only be available during or after the
manufacturing process. The other manufacturing process-level dimensions such as the site,
location, product, and so on can ideally be used, but in our case, as the data is a subset for
just one location and one product, it will not be valuable to consider them in the model
building exercise.

So, in a nutshell, we have to model a relationship to predict 'Output Quality Parameter 2' as
a function of raw material quantity and quality parameters, production quantity deviation
(feature), assembly line and machine/resources used at each stage, previous product-related
features, and manufacturing date- and time-related features.

To build a linear regression model, we can use the 'lm' function in the stats package.

Experimenting Predictive Analytics for IoT

[140]

The lm function is used to fit linear models. The following example shows you how to use
the function using R:

> # Linear Regression Example
> fit <- lm(y ~ x1 + x2 + x3, data=mydata)
> summary(fit) # show results

Here, y is the independent variable and x1, x2, and x3 are the independent variables. Once a
model is created, the results can be summarized using the summary function. Let's try
solving our use case using the dependent variable 'Output Quality Parameter 2' and a few
independent dimensions that we have:

Using a few random independent dimensions in the first step is not the
best method to start with. This is more to get you acquainted with the
technique. We will discuss about best practices and alternatives in the
coming exercises.

#Performing Linear Regression on a few independent variables
> fit<-lm(Output_QualityParameter2~
 #The Production Quantity deviation feature
 data$Quantity_Deviation_new +
 #The Production Quantity deviation feature
 data$Stage1_PrevProduct_1 +
 #Stage 1 Raw Material Quality Parameters
 data$Stage1_RM2_QParameter1 +
 data$Stage1_RM2_QParameter2 +
 data$Stage1_RM1_QParameter1 +
 data$Stage1_RM1_QParameter2 +
 #Machine/Resources used in a Stage
 data$Stage3_ResourceName_new +
 data$Stage1_ProductChange_Flag+
 #Flag indicating Normal/Abnormal consumption
 data$Stage1_RM2_Consumption_Flag
 ,
 data=data
)
> summary(fit)

Experimenting Predictive Analytics for IoT

[141]

Too many results to interpret? No worries if the preceding output was difficult to interpret.
We'll explore the important aspects of the results step by step. Take a look at the different
components highlighted; we'll start with them and eventually understand others in depth.

Experimenting Predictive Analytics for IoT

[142]

Let's begin by understanding what exactly we will achieve. In linear regression, we are
identifying a relationship between one dependent variable and multiple independent
variables. The relationship will help us determine the value of the dependent variable when
we have the values of the corresponding independent variables and the impact of each
independent variable on the dependent variable. In a nutshell, we have two simple results:
the predicted value of dependent value and the quantified impact from each individual
independent variable.

So how do we get this?

The linear regression equation is as follows:

Where:

For any specific scenario, if we have the values of the independent variables (say, raw
material quality parameters) and their estimates, that is, the impact of the variable on the
dependent variable (Output Quality), we can predict the value of the output quality. The
intercept is a constant that is the value at which the fitted line crosses the y axis.

There are a few broad areas such as the formula, residual deviance, intercept, estimates,
standard error, t value and p value of the independent variables and intercept, residual
standard error, and R-squared and F Statistic that we need to understand so that we can
interpret the output. We'll first understand these topics before we delve into the regression
exercise.

Experimenting Predictive Analytics for IoT

[143]

Interpreting the regression outputs
The whole process of linear regression is based on the fact that there exists a relation
between the independent variables and dependent variable. In case this is not true, then
there is absolutely no need to move ahead. However, if there exists at least one variable that
has a relationship with the dependent variable, then we need to find the estimates for the
independent variable to construct the equation. With the estimates (coefficient) and
intercept calculated, we can construct the equation that can aid us in predicting the
dependent variable.

Before we predict the value of the dependent variable, we need to know a few important
points: how correct are the estimates and how accurate are the predictions. To help us
understand these important questions, the regression output provides us with a variety of
test results and estimates. Examining the results of these tests and estimates, we can
understand the goodness of fit, that is, how well has the relationship between the
dependent variable and independent variable been defined. The broad topics that we
discussed in the previous section are a part of the results that help us understand the
goodness of fit. Let's explore these results one by one.

F statistic
The first step in linear regression is to check whether there is a relationship between
independent variables and the dependent variable. This is tackled using the same approach
we saw in the previous chapter-hypothesis testing. We will define a null hypothesis and
alternate hypothesis as follows:

H0: No relationship exists between the dependent and independent variables
H1: At least one of the independent variables are related

To test the hypothesis, we calculate the F statistic. The F statistic is used to test whether a
group of variables are jointly significant (similar to the t statistic from t test, which confirms
whether a single variable is statistically significant). From the results of the regression, you
can notice the last highlighted result, “F-statistic: 78.81 on 11 and 988 DF, p-value: <
2.2e-16”. The overall p value is way lower than our desired cutoff-5%-and F statistic can be
interpreted as the higher the better. If the F statistic is closer to 1, then there is a very high
chance that the null hypothesis is true. In this case, as the F statistic is larger than 1, we can
comfortably reject the null hypothesis. A quick question that would arise while interpreting
the F statistic is, how large should the F statistic be to reject the null hypothesis?

Experimenting Predictive Analytics for IoT

[144]

As a thumb rule, we can call out (n = number of rows of data, p = number of independent
variable); when n is very large that is, n > (p*20) [at least 20 cases for each independent
variable;: if the F statistic is even a little above 1, it is enough for us to reject the null
hypothesis. With a lower n, we need a higher F statistic to reject the null hypothesis.

Moreover, the F statistic is always studied along with the overall p value. With the
preceding results, we can conclude that it is highly unlikely for the null hypothesis to be
true. Therefore, we can reject the null hypothesis and affirmatively mention that there exists
a relation between at least one of the independent variables and dependent variable and
move ahead to model the relationship.

Estimate/coefficients
Once we establish the fact that there is scope for the relationship to be modeled, we move
on to the most important part of the results, that is, estimates for each independent variable
that help us quantify how much does each independent variable impact the end dependent
variable:

Coefficients:
 Estimate
(Intercept) 2299.1744
data$Quantity_Deviation_newLow 97.1952
data$Quantity_Deviation_newMedium -70.0664
data$Stage1_PrevProduct_1Product_545 252.0285
data$Stage1_RM2_QParameter1 84.1166
data$Stage1_RM2_QParameter2 -16.5414
data$Stage1_RM1_QParameter1 0.3223
data$Stage1_RM1_QParameter2 15.4425
data$Stage3_ResourceName_newResource_108 384.2826
data$Stage3_ResourceName_newResource_109 -149.8731
data$Stage1_ProductChange_FlagYes -29.5209
data$Stage1_RM2_Consumption_FlagNormal -367.6675

Experimenting Predictive Analytics for IoT

[145]

The preceding code shows you a small part of the regression output result shared earlier.
The estimates show how much and how do they impact the dependent variable. A positive
estimate indicates that, for every unit increase of the respective independent variable, there
is a corresponding increase in the result and vice versa. As we can see, all the independent
variables used in the regression equation (formula) have an individual estimate computed,
but we can see that for the categorical variables like Stage 3 Resource name, the dimension
has internally converted them to binary flags with the respective estimates. This is because
linear regression only handles continuous variables, and therefore every categorical
variable is internally coded as a binary flag. Along with the independent variables, we also
see 'Intercept'. Intercept can be simply called the point where the regression line meets the y
axis that can also be interpreted as the expected mean value of Y when Xs are 0. To
understand this better, let's say that you are modeling height as a function of age and
gender. Gender is a categorical variable (which will be coded internally as 1 and 0), say
gender =1 for male and 0 for female. Therefore, the variance when the values of X is zero is
taken care by the intercept.

Standard error, t-value, and p value
Looking at the estimates, we may not be able to directly assert the results even though we
have confirmed that there exists a relationship between the independent variables and
dependent variable. We are not sure whether each variable has an impact. To confirm
whether the estimates of each of these variables are significant, we have results from a
variety of tests performed over the estimates such as standard error, t test, p value, and
others. Let's look at how to interpret them:

Experimenting Predictive Analytics for IoT

[146]

The objective in using all these results is to validate whether there exists a relationship
between the dependent variable and each independent variable. In order to prove this,
standard errors are calculated and the null hypothesis is framed as: no relationship exists
between x and y. We then determine whether the estimate is truly far away from 0. If the
standard error of the estimate is small, then relatively small values of the estimate can reject
the null hypothesis. If the standard error is large, then the estimate should also be large
enough to reject the null hypothesis. To prove the hypothesis, we compute the t statistic,
which measures the number of standard deviations that the estimate is away from 0.
Alternatively, we compute the p value for each individual independent variable that will
help us confirm whether there was any relationship between x and y. The entire process is
made easy to interpret by examining the presence of '*' at the right-hand side of the result.
Take a closer look at Stage 1 RM2 Quality Parameter 1 and 2. More number of asterisks
indicate a lower p value that cues for higher chances for a relationship between the variable
and output as well as the estimates to be true.

Similarly, once we have details about which dimension has a stronger relationship with the
outcome as well as how it impacts, we need few more overall statistics that can help us
understand the goodness of fit. If we glance at the results of regression (provided at the
beginning of this section), we can see Residuals, Multiple R Squared, Residual Standard
Error, and Adjusted R Squared. Let's understand these results better.

Residuals, multiple R squared, residual standard
error and adjusted R squared
Residuals can be defined as the difference between the actual and predicted value for the
dependent variable. The lower the residuals will tend to be, the closer we make the
predictions. The first result shown in the output (after the formula) is the percentile
distribution of residuals. After predicting the value on the existing data, if we look at the
percentile distribution of the residuals-errors-we can understand how they look:

Residuals:

 Min 1Q Median 3Q Max
 -2632.6 -591.7 4.0 503.2 5064.6

Experimenting Predictive Analytics for IoT

[147]

The residual ranges from -2632 to 5064, that is, approximately a range of 7,500 units. The
dependent variable has a mean of ~15000 and if the prediction can have an error of 7500, it
will barely add any value. However, if we take a closer look, we can see a clearer picture;
Median = 4 and additionally, the 25th percentile to 75th percentile has a maximum range of
~1000 units. Therefore, we can understand that a major chunk of our data is predicted with
a maximum error of 1,000 units, which seems a fair prediction (definitely not the best; this
experiment was just the first iteration of an exercise). The same can be studied better with
the residual standard error showcased toward the end:

Residual standard error: 923.4 on 988 degrees of freedom

Residual standard error is the standard error on the residuals that represent the average
distance that the observed values fall from the regression line. In a nutshell, it is the
standard deviation for regression that helps us understand how wrong the regression
model is on average using the units of the response variable. Smaller values are better
because that indicates that the observations are closer to the fitted line. Therefore, we can
infer from the preceding results that, for the response variable with a mean value of 15000,
we predict with approximately 923 units of error. These results are decent enough as there
is a tangible portion of variance being explained with lower residuals.

Multiple R-squared is another measure for the overall goodness of fit. Sometimes it is
preferred more than the residual standard error due the interpretation advantages,
although it completely depends on the persona. R-squared is the statistical measure of how
close the data is to the fitted regression line. It is also known as the coefficient of
determination or coefficient of multiple determination for multiple regression; R-squared =
Explained variation / Total variation. It is calculated by taking the residual from predictions
into account, but the results are independent of the scale of the response variable. Like
previously, we had 923 units of error on an average for the response variable; here, if we do
not know the scale of the response variable, we can make no sense from the result and
sometimes we may even misinterpret the error impact while mentally calculating the error
scale. R-squared, however, is independent of the scale of the response variable and
therefore intuitive and easy to interpret:

Multiple R-squared: 0.4673, Adjusted R-squared: 0.4614

As we can see, the value of R-squared is 0.46, that is, 46%, which is not a great score. We can
infer that only 46% of the entire variance is actually explained by the regression model. (A
ballpark figure for a good R-squared value will completely depend on the business use
case.) Along with the R-squared value, we can also spot the adjusted R-squared value that is
slightly lower than R-squared.

Experimenting Predictive Analytics for IoT

[148]

What is the adjusted R-squared value?
The adjusted R-squared examines the variance explanatory power of regression models that
contain different numbers of independent dimensions.

Suppose you compare a 10 independent dimension model with a high R-squared to a model
with one independent dimension. Does the first model have a higher R-squared because it's
better? Or is the R-squared higher because it has more independent variables/dimensions?
This is where we use the adjusted R-squared value. The adjusted R-squared is a modified
version of R-squared that has been adjusted for the number of independent dimensions in
the model. The adjusted R-squared increases only if the new dimension improves the model
more than would be expected by chance. It decreases when a predictor improves the model
by less than expected by chance. The adjusted R-squared can be negative (very rare). It is
always lower than the R-squared. A huge difference in the R-squared and adjusted R-
squared shows that many dimensions considered in the regression exercise are not aiding in
explaining the variance for the dependent variable.

So far, we have explored in depth about linear regression with the use case that we touched
base on in the previous chapters. We understood in detail when and why is linear
regression used and we studied about how to use it in R. We also interpreted the outputs to
study the overall goodness of fit as well as the smaller individual dimensions. We will now
dig deeper into linear regression for the same use case to improve the results by improving
the goodness of fit and thereby amplifying the overall prediction power.

Improving the predictive model
The preceding exercise was an attempt to understand the regression model. We can now
move ahead to get a better and more accurate version of the prediction model. To
understand the overall goodness of fit, we will consider R-squared along with adjusted R-
squared and the residual standard error.

Experimenting Predictive Analytics for IoT

[149]

Let's define our approach
There are multiple ways to approach the modeling problem. Let's say that from a list of 25
odd dimensions/predictors, we can begin by adding the predictors one by one and observe
the differences and improvements to the overall model. This is called 'Forward selection'.
We can also go the other way round, by starting with all the variables in a first iteration and
then eliminating the less valuable predictors based on the results retrieved. This approach is
called Backward Elimination. There is another approach where a combination of both the
methods are used to build the best model. Either options are good; we'll use the backward
elimination approach.

How will we go about it?
We'll select all the variables that have been identified as important in the previous chapter.
We'll then run an iteration of linear regression with all independent predictors and then try
to improve the results. Using the p-value and estimate, we can identify how important each
predictor is in defining a relationship with the dependent outcome and then eliminate the
ones that add zero or low value. We will perform some data transformations on the
predictors to further improve the results, and finally we will test our results on an unseen
dataset to check how good the model in prediction is.

Let's being modeling
We'll start by executing an iteration with all possible predictors for the use case:

For this specific use case, we won't be using every possible variable
available in the data. The reason being the nature of the solution to be
used. John's team needs a solution where they can predict the output
quality parameter of the detergent before the manufacturing process. A
couple of dimensions that we used in the previous chapter are dimensions
that are captured during the manufacturing process. To build a solution
that caters to John's needs, we need to consider only those dimensions as
predictors that will be available before the manufacturing process.

Experimenting Predictive Analytics for IoT

[150]

For example, stage-wise processing time, delay flags, and Raw Material
Consumption Flags are captured only after the manufacturing process has
completed the respective stages. We can use raw material quality
parameters, resource details, product details, planned quantity and to-be-
produced quantity, product change flags, and so on.

#Building a Linear Regression Model
fit<-lm (Output_QualityParameter2~
 #Overall Process dimensions
 data$Quantity_Deviation_new
 +data$AssemblyLine_ID
 +data$Stage1_PrevProduct_1

 #Stage 1 Raw Material Parameters
 + data$Stage1_RM1_QParameter2
 + data$Stage1_RM1_QParameter1
 + data$Stage1_RM2_QParameter2
 + data$Stage1_RM2_QParameter1

 #Stage 3 Raw Material Parameters
 + data$Stage3_RM1_QParameter1
 + data$Stage3_RM1_QParameter2
 + data$Stage3_RM2_QParameter1
 + data$Stage3_RM3_QParameter2
 + data$Stage3_RM3_QParameter1

 +data$Stage3_ResourceName_new
 +data$Stage1_ProductChange_Flag
 ,
 data=data
)

Experimenting Predictive Analytics for IoT

[151]

As we can see, compared to the previous results, we have a fairly better goodness of fit. The
residual standard error has reduced from 923 to 884 and the R-squared has increased from
0.46 to 0.51. The results are still not great, though better than the previous iteration.

Experimenting Predictive Analytics for IoT

[152]

So how do we move ahead?
The significant variables in the list have been highlighted; as the next step, we can either
drop the insignificant variables and fine-tune the significant variables further to improve
the goodness of fit or we can take a shot at improving both insignificant as well as
significant predictors. The results may or may not be fruitful, but if something turns
significant, that's a huge value add. Data transformation is a trial and error approach.
Applying transformations on the predictors or dependent variable in some cases helps the
variance to be more intuitively captured. The transformations can be in any form, such as
square(x2), cube (x3), exponential (ex), log transformations, and so on. These transformations
can be applied to the predictors or dependent variable or both.

If we take a closer look at the results, we can observe that only five of the nine raw material
quality parameters are significant. Data transformations may or may not be valuable; the
results can be validated only with a trial and error approach. We can try all combinations of
data transformations on the predictors, dependent variable, or both and finally choose the
combination that renders the best results.

It is recommended that you execute various linear regression iterations to
see the differences in results with different transformations. The following
showcased result is the output for one of the various iterations executed
for different types of mathematical data transformations.

Unfortunately, in our use case, data transformations are not really boosting the results.
Even if we try a variety of combinations of different data transformation operations, we
barely see a big difference. Here is the best result captured from multiple iterations:

Experimenting Predictive Analytics for IoT

[153]

The raw material quality parameters for Stage 1 and Stage 3 have been transformed using a
cubic operation and finally the dependent variable has been transformed using a log
operation. Over the iterations, while performing these transformations, a few continuous
predictors that were not significant were eliminated from the model. The elimination of
categorical variables can be tricky and would again need a trial and error combination. In
case the elimination of insignificant categorical variables leads to the deterioration of
results, they are added back to the list. (The concept has been elaborated in interpretation of
the Intercept results in the previous section.) We can see that two raw material quality
parameter predictors have been eliminated. Finally, we can notice that the results have
improved by a very small margin. We have adjusted R-squared that is slightly better than
the previous version. (The residual standard error is 0.057, which is very different from the
previous version. This is because we have performed a log operation on the dependent
variable.)

Experimenting Predictive Analytics for IoT

[154]

Apart from improving the goodness of fit, data scientists also take efforts to reduce
multicollinearity. A statistical phenomenon in which two or more predictor variables in a
multiple regression model are highly correlated. The presence of multicollinearity would
result in the misinterpretation of estimates for each of the predictors. Let's say that if
estimate of A is 5 and estimate of B is 7 and say A and B are correlated, then the estimate of
5 doesn't represent the true impact of A on the dependent variable. The estimate would be a
shared variance of A and B. In cases where one is interested in studying the impact of each
dimension on the end outcome, removing multicollinearity is a must. However, in this
exercise, we are more focused on the accuracy of the prediction.

To further improve the goodness of fit or accuracy of the prediction, we'll need to study and
observe interaction effects. An interaction occurs when an independent variable has a
different effect on the outcome depending on the values of another independent variable;
that is, a situation in which the simultaneous influence of two variables on a third is not
additive.

It can be understood from the following equation:

There are scenarios where two independent variables may not define much variance, but
when considered together, explain significant amount of variance. In our exercise, we can
consider the raw material properties on a higher priority for interaction study. There are
more sophisticated techniques to detect automated variable interaction (discussing this in
detail would be beyond the scope of the book). For now, we can consider the raw material
quality parameters as a combination. We can try multiple combinations from the list of nine
raw material quality parameters and check whether the interaction is significant (using p
value) and then study the overall model accuracy improvement.

The following results showcase the results of the best modeling iteration from a variety of
combinations for interaction variables tried out. We have considered interaction between
multiple raw material quality parameter combinations and chosen the iteration that gave
the best accuracy. A few insignificant variables have been eliminated and a few have still
been retained. The residual standard error is the least and the adjusted R-squared is the
highest. In the following showcased iteration, we have considered a combination of
interaction variables in the raw materials quality parameters, transformed processing time,
base raw material quality parameters, and the log transformed dependent variable.

The interaction variables have been highlighted in yellow:

Experimenting Predictive Analytics for IoT

[155]

Experimenting Predictive Analytics for IoT

[156]

The results have improved but still not reached an ideally good model. We would need at
least 70% of the variance to be explained so that we can consider this a good model (the
more the merrier). We see a small increase in the number of significant variables and fairly
improved overall results, that is, the residual standard error has reduced (comparing the
previous iteration) and the adjusted R-squared has also increased. Though the results are
still early, let's take a pause and understand what we have learned.

The important points to ponder are as follows:
We are now aware that the results we saw in the previous chapter are useful and
also significant in understanding the relationship between the independent and
dependent variables
A few variables that were not significant were transformed mathematically to
boost significance
There is a scope for interaction variables and it helps in explaining more variance

While we have looked into the results separately from the regression exercise, we have not
validated it on a new unseen dataset. This is an important step as we may fail to get the
same results when the model is scored on a new dataset. If that is the case, we need to
rework to get a more improved version of the model that works similar to the trained
datasets. To validate the model in the new dataset, usually a test and train approach is
taken where the data is split randomly into 70:30, 80:20, or 90:10 train and test samples. The
current exercise has been performed on the entire dataset, so let's keep a sample of 10%
aside for the testing and rerun the same model for prediction.

To test the results on the new data, we can use Mean Absolute Percentage Error (MAPE)
and calculate the R-squared on the test dataset. These results together will help us in
assessing the model on new datasets:

set.seed(600)
#Creating a 10% sample for test and 90% Train
test_index<-sample(1:nrow(data),floor(nrow(data)*0.1))
train<-data[-test_index,]
test<-data[test_index,]

#new_fit :We fit the model 'new_fit' on the train dataset using the same
formula used in the previous iteration. Codes have been ignored here.

#Define functions to calculate MAPE and R Squared
mape <- function(y, yhat)
return(mean(abs((y - yhat)/y)))

Experimenting Predictive Analytics for IoT

[157]

r_squared<-function(y,yhat)
 return(1 - sum(abs(y-yhat)^2)/sum((y-mean(y))^2))

#Predict the output from the Model
#Since, we performed a log operation on the dependent variable,
We would need to take a exponential of the prediction to get the end
Predcition

predicted<-exp(predict(new_fit,test))

#Calculate R Squared
> r_squared(test$Output_QualityParameter2,predicted)
[1] 0.4837209

> mape(test$Output_QualityParameter2,predicted)
[1] 0.04446882

From the results, we can see that the MAPE is around 4% and the overall R-squared value
on the test dataset is 0.48, which is a bit less compared with the results that we had for the
training sample, but still the difference is not huge. The results indicate that they are almost
in sync with the results we expected (in comparison to the training data). This indicates that
the model has overall good generalization capabilities that infers that the model will fairly
work as per expectations on any new unseen data. However, the overall results are still not
great enough to tell John that we have nailed it. We still need much better accuracy and
lower errors in prediction so that his team can extract value from the results.

What should we take care of?
Attempts to improve results further using the same technique will require
strenuous efforts; we can instead use a more powerful algorithm or technique
that can give us better results
Data transformation, feature engineering, and study of interaction among
variables can further help in boosting accuracy power
Alternative options to change the modeling outcome, that is, predicting the end
outcome (Good or Bad Quality) or predicting each individual quality parameter
needs to be evaluated and considered

Experimenting Predictive Analytics for IoT

[158]

So what next?
The results that we have achieved so far-even though incrementally have been favorable-
but at an overall level, we are able to explain just ~55% of the overall variance. This is
probably just an inch higher than random probability (50%). To improve the results further,
there are a variety of options where we can reach a notch further using linear regression,
but the efforts will be strenuous. To get better results using a more fast-paced and agile
method, we can explore using a more powerful technique for the same prediction exercise.
Using a new techniques helps getting more favorable results in most cases as it uncovers
some latent relationships that may not have been straightforward in linear regression.
Therefore, to improve results further, we'll explore another new technique, decision trees,
for the same use case.

Decision trees
Decision trees is a commonly used technique in data mining to create a model that predicts
the value of a target (or dependent variable) based on the values of several input (or
independent variables). There is a variety of decision tree algorithms available with small
changes here and there. We will be using a very popular version of a decision tree called
Classification and Regression Trees (CART). It was introduced in 1984 by Leo Breiman,
Jerome Friedman, Richard Olshen, and Charles Stone as an umbrella term to refer to
classification and regression types of decision trees. Using decision trees, we can predict
either a categorical variable or continuous variable. Based on the type of dependent
variable, we use a regression tree (for a continuous outcome variable) or classification tree
(for a categorical outcome). The CART has a small variation in the internal working of the
algorithm. For our current exercise, we will be using regression trees. Later, we'll look into
the differences between classification and regression trees. So let's begin by understanding
the nuances of decision trees.

Understanding decision trees
Let us understand decision tress in more detailed way.

Experimenting Predictive Analytics for IoT

[159]

So what is a decision tree?
In a nutshell, it is a data mining algorithm that is used to predict categorical or continuous
outcomes based on training samples. It does so by creating a flowchart-like structure in
which each internal node represents a “test” on an attribute (for example, whether flipping
a coin results in heads or tails), each branch represents the outcome of the test, and each leaf
node represents a class label (decision taken after computing all attributes). The path from
root to leaf represents the rules.

How does a decision tree work?
A decision tree implements a very simple algorithm. The following image can be a simple
visualization for decision trees:

It works by breaking data from the root node into smaller and smaller subsets while
incrementally building an associated decision tree. The final result is a tree with a root node,
decision nodes, and leaf nodes, as shown in the preceding image. Decision nodes create a
rule and leaf nodes deliver a result. The final result is a simple and intuitive flowchart that
can be mentally mapped to a list of questions and rule-based answers.

Experimenting Predictive Analytics for IoT

[160]

What are different types of decision trees?
There is a wide variety of decision tree types. Each have small variations in the way they
approach the problem. We will be using the most popular and widely-used decision tree
called CART:

The differences are minimum; in most cases, one technique is an updated version of the
other one. ID3 or Iterative Dichotomiser 3 was one of the earlier versions that was then
followed by C4.5 and so on. The differences were the incremental updates and
improvements in most cases. For example, the earlier versions couldn't handle numeric
variables, and the updated versions had support for the same and a few other optimization
improvements.

So how is a decision tree built and how does it work?
The overall algorithm can be explained in five simple steps:

Select the root node1.
Partition the data into groups2.
Create a decision node3.
Partition data into respective groups4.
Repeat until node size > threshold or features = empty5.

Experimenting Predictive Analytics for IoT

[161]

Let's consider a very simple example to understand the algorithm. Consider a case where
you are trying to predict the average number of working hours for an employee when you
are provided with the dimensions 'Dress code' and 'Gender' for each employee. The
example can be visualized using the following image:

The root node is the 'Dress code' feature, and the grey-colored boxes are the groups/levels
for each feature. The yellow-colored box gives the average value of the working hours for
all the data dimensions in the respective partition.

Experimenting Predictive Analytics for IoT

[162]

Let's say that there are 100 observations for the training in all. We set a threshold of 30 data
points or more in each node for further splitting. Therefore, the partitioning stops when
there are 30 or less data points in a node or the features (independent variables) are empty.
The root node-Dress code-is selected algorithmically (we'll explore how in detail later) and
the data is partitioned into respective groups. So we have 25 for 'Casuals', 20 for 'Business
Casuals', and 55 for Formals. Once a feature is assigned and data is partitioned, then we
move on to the respective group that can be split. In this case, we have 'Casuals' and
'Business Casuals' with < 30 observations, and so it won't be considered for further splitting.
'Formal' has >30 node size and therefore we place the next feature Gender under 'Formal'.
These 55 observations are further partitioned into Male and Female. This process continues
till the features are empty or node size is less than a predefined threshold. Each of the grey
boxes is a terminal node where the result is calculated. In regression trees, as the outcome is
continuous, the result is the average of all the data points in the respective terminal nodes.
The average number of working hours for a partition is showcased in amber color. In the
preceding example, let's say that we have an employee whose Gender is 'Male' and Dress
Code is 'Casual', then if we traverse through the tree we can find that the average number of
working hours for the employee is 12. Similarly, if dress code = 'Formal' and Gender =
'Female', then the average number of working hours = 8. This is how a decision tree is built
and works to predict the end outcome. We are still left with a couple of questions that need
clarity to understand how the decision trees work in detail.

A few questions that would surface in our thoughts would be as follows:

How to select the root node?
How are the decision nodes ordered/chosen?
How does the tree treat continuous variables?
How different is the process for classification and regression?

Answers to these questions will help us understand the entire process of decision trees in
more detail. Let's tackle them one by one.

How to select the root node?
The algorithm to calculate the root node in regression trees and classification trees is
different. For regression trees, the algorithm calculates the Standard Deviation Reduction
(SDR) of the feature with respect to the dependent variable. Take a look at the following
example. Consider the following data as the training data for the algorithm:

Sr. No Dress code Gender Working hours

1 Formal Male 10

Experimenting Predictive Analytics for IoT

[163]

2 Business Casual Female 11

3 Casual Male 12

4 Formal Male 9

5 Business Casual Female 14

6 Casual Male 9

…….

100 Casual Male 15

We have two features and one continuous outcome, Working Hours.

Standard Deviation Reduction (SDR) can be calculated as follows:

(SDR)= Standard Deviation(Outcome) – Standard Deviation(Outcome, Feature)

Calculating the standard deviation of a single numeric variable is straightforward. The
standard deviation of two variables can be calculated as the multiplicative sum of
probability of each group and standard deviation of each group.

Let's say that we are calculating the standard deviation, Sd(Dress Code, Working Hours):

Sd(Dress Code, Working Hours) = P(Formal) * Sd(Formal) + P(Casual) * Sd(Casual) +
P(Business Casual) * P(Business Casual)

Let's assume that Sd(Working Hours) = 15, and the frequency count of dress code across
groups and the respective standard deviation is as follows:

Dress Code Working Hours Standard Deviation Count

Formal 1.4 55

Business Casual 1.9 20

Casual 2.8 25

Total 100

Then, Sd(Dress Code, Working Hours) = P(Formal) * Sd(Formal) + P(Casual) * Sd(Casual) +
P(Business Casual) * P(Business Casual) = (55/100) * 1.4 + (20/100) * 1.9 + (25/100) * 2.8

Therefore, Sd(Dress Code, Working Hours) = 1.85.

Experimenting Predictive Analytics for IoT

[164]

Now calculating SDR is straightforward:

(SDR)= Standard Deviation (Outcome) – Standard Deviation (Outcome, Feature)

= 15 – 1.85

SDR = 13.15

Similarly, the SDR for other features are also calculated and the root node is chosen as the
one with the largest SDR.

How are the decision nodes ordered/chosen?
Once the root node is selected and data is partitioned across its groups, the next feature is
placed under eligible groups of the root node. Eligibility is calculated based on the node
size threshold. The feature selected is the next feature with the highest SDR. The node is
terminated if it has lesser number of data points than the threshold. The following image
shows you the flow of features based on the SDR:

Experimenting Predictive Analytics for IoT

[165]

How does the tree treat continuous variables?

Continuous variables are a special case. Ideally, the decision trees work only on categorical
features, but the continuous features can be added to the decision by converting it to a
categorical feature. This is done by an algorithm called binning and is done automatically in
the R packages we use. Binning can be easily understood by taking into consideration the
Age dimension. Age can have any values between 0 and 100 (assume). We can easily
categorize the age dimension into five bins or groups such as 0-18 years, 19-35 years, 36-65
years, and above 65 years. The same can be extended to other numeric features.

How different is the process for classification and
regression?
The main difference between the classification tree and regression tree algorithm is the
means used to select the root node and order the decision nodes. In regression trees, we use
SDR, whereas in classification trees, we use Entropy. Similarly, the node termination rule
for a regression tree is a finite number of data points, whereas in classification trees, it is the
homogeneity of the outcome, which means that all data points in the partition should have
the same outcome. We'll explore more about entropy and the working of the classification
tree in the next chapter.

Predictive modeling with decision trees
Now that we have a detailed understanding about decision trees, let's continue solving the
same problem (solved in the previous section) with the new algorithm. There is a variety of
packages available in R that can help in building decision trees; we'll use the RPART
package (an extension of CART).

So how do we approach?
Unlike linear regression, decision tree execution in R will not give us clear results of how
accurately the model predicts the outcome. We will need to test and find the results on our
own. We can use the MAPE and R-squared value to understand how accurately the models
are built. Moreover, the biggest advantage of decision trees is the ability to visualize the
constructed tree. It becomes extremely simple and intuitive for a layman to consume the
results. We'll first execute one simple iteration with the initial list of features that we used in
linear regression. Decision trees cannot handle interaction variables (Though we can
indirectly create a new interaction variable and add it to the decision tree model, the
interpretation will not be intuitive.):

Experimenting Predictive Analytics for IoT

[166]

#Building a Decision Tree in R using rpart package
library(rpart)
fit<-rpart(Output_QualityParameter2~

 #The Production Quantity deviation feature
 Quantity_Deviation_new +

 #The Production Quantity deviation feature
 Stage1_PrevProduct_1 +

 #Raw Material Quality Parameters
 Stage1_RM1_QParameter2 +
 Stage1_RM1_QParameter1 +
 Stage1_RM2_QParameter2 +
 Stage1_RM2_QParameter1 +
 Stage3_RM1_QParameter1 +
 Stage3_RM1_QParameter2 +
 Stage3_RM2_QParameter1 +
 Stage3_RM3_QParameter2 +
 Stage3_RM3_QParameter1 +

 #Machine/Resources used in a Stage
 Stage3_ResourceName_new +
 Stage1_ProductChange_Flag
 ,
 data=train,control=rpart.control(minsplit=20,cp=0.1)
)

#Predicting the values from the newly created model
predicted<-predict(fit,test)
mape(test$Output_QualityParameter2,predicted)
[1] 0.0449977

r_squared(test$Output_QualityParameter2,predicted)
[1] 0.4308113

The parameter control in the rpart function helps in defining additional
details. minsplit = 20 is defined so that if a node has less than or equal to
20 training samples, then the node will not be split further. Similarly, cp is
defined as a complexity parameter. Any split that does not decrease the
overall lack of fit by a factor of cp is not attempted. For instance, with
regression trees, this means that the overall R-squared must increase by cp
at each step. The main role of this parameter is to save computing time by
pruning off splits that are obviously not worthwhile.

Experimenting Predictive Analytics for IoT

[167]

If we observe the results, we can clearly see that the results have actually deteriorated
compared to the previous model-a tiny decrease in the MAPE and overall R-squared for the
test dataset.

But why?

Let's try to visualize the tree that was constructed by the model:

#Installing the required packages
install.packages('rattle')
install.packages('rpart.plot')
install.packages('RColorBrewer')

#Loading the installed packages
library(rattle)
library(rpart.plot)
library(RColorBrewer)

#Plotting the Regression Tree
fancyRpartPlot(fit)

As we can see, the tree has selected only two distinct nodes in all-
Stage3_RM2_QParameter1 and Stage3_RM1_QParameter1. Therefore, the algorithm has
internally dropped other features as it couldn't find a feature and an optimal split where it
was also adding value to explain the overall variance.

Experimenting Predictive Analytics for IoT

[168]

So what do we do to improve the results?
If we plan to fine-tune the regression tree, we can play around with parameters such as cp,
minsplit, maxdepth, minbucket, and a few more. Let's try tuning the cp parameter. Ideally,
the cp parameter is a threshold to decide whether a particular feature should be added to
the tree or not. The algorithm internally executes iterations to find the amount that the R-
squared has improved when the feature was added. If the value is not significant, then we
move ahead. One would wonder that if adding a feature to the tree may add only a small
improvement to the R-squared, then why ignore it? Won't multiple small increments be a
valuable one?

This is where we need to understand the concept of overfitting. Overfitting is a scenario
where the model works perfectly on trained data compared to a simple model, but fails
miserably on test data. Such scenarios occur when the model fails to generalize patterns.
Failing to ignore noise in the data, that is, generalizing the model, will result in extremely
complicated rules. Let's look into this. We'll rerun an iteration of the decision tree model
with the cp parameter value set to 0.001. Now the features that the algorithm dropped while
constructing the tree will be considered:

#Executing another Decision Tree Iteration
library(rpart)

fit<-rpart(Output_QualityParameter2~

 #The Production Quantity deviation feature
 Quantity_Deviation_new +

 #The Production Quantity deviation feature
 Stage1_PrevProduct_1 +

 #Raw Material Quality Parameters
 Stage1_RM1_QParameter2 +
 Stage1_RM1_QParameter1 +
 Stage1_RM2_QParameter2 +
 Stage1_RM2_QParameter1 +
 Stage3_RM1_QParameter1 +
 Stage3_RM1_QParameter2 +
 Stage3_RM2_QParameter1 +
 Stage3_RM3_QParameter2 +
 Stage3_RM3_QParameter1 +

 #Machine/Resources used in a Stage
 Stage3_ResourceName_new +
 Stage1_ProductChange_Flag
 ,
 data=train,control=rpart.control(minsplit=20,cp=0.001)

Experimenting Predictive Analytics for IoT

[169]

)
predicted<-predict(fit,test)

mape(test$Output_QualityParameter2,predicted)
[1] 0.04104942

r_squared(test$Output_QualityParameter2,predicted)
[1] 0.53973

There seems to be a small improvement in the R-squared and MAPE, but is this for real?

Let's have a look at the tree that is constructed by the algorithm:

> fancyRpartPlot(fit)

Experimenting Predictive Analytics for IoT

[170]

As expected, the algorithm has added almost all the features available, but we can barely
see anything. The results showcase improvement compared to the previous iteration, but
this is purely due to chance. If we consider another 90:10% random sample for the training
and testing, we might get completely opposite results. The following code performs the
tenfold cross-validation exercise to validate whether the results we got in one of our
iterations is actually better or purely by chance.

A tenfold cross-validation exercise is basically a process where we divide the data into 10
equal partitions and then use nine partitions, that is, 90% to train and the remaining
partition, that is, 10% to test. The process is repeated 10 times with a different partition
chosen every time for the testing. In case we observe spurious results, the same can be
validated using the k fold cross-validation exercise (k is any number, say 10):

#Creating 10 fold cross validation sample
k=10 #Defining the number of partitions

#Creating an identifier to assign a partition index
set.seed(100)
data$id <- sample(1:k, nrow(data), replace = TRUE)

list <- 1:k

results<-vector()
for (i in 1:k){
 # remove rows with id i from dataframe to create training set
 # select rows with id i to create test set
 trainingset <- subset(data, id %in% list[-i])
 testset <- subset(data, id %in% c(i))

 fit<-rpart(Output_QualityParameter2~
 #The Production Quantity deviation feature
 Quantity_Deviation_new +

 #The Production Quantity deviation feature
 Stage1_PrevProduct_1 +

 #Raw Material Quality Parameters
 Stage1_RM1_QParameter2 +
 Stage1_RM1_QParameter1 +
 Stage1_RM2_QParameter2 +
 Stage1_RM2_QParameter1 +
 Stage3_RM1_QParameter1 +
 Stage3_RM1_QParameter2 +
 Stage3_RM2_QParameter1 +
 Stage3_RM3_QParameter2 +
 Stage3_RM3_QParameter1 +

Experimenting Predictive Analytics for IoT

[171]

 #Machine/Resources used in a Stage
 Stage3_ResourceName_new +
 Stage1_ProductChange_Flag,
 data=trainingset,control=rpart.control(minsplit=20,cp=0.001)
)

 yhat<-predict(fit,newdata = testset)
 y<-testset$Output_QualityParameter2
 a<-r_squared(y,yhat)

 #Appending the R Squared results to a vector
 results<-as.vector(c(results,a))
}

mean(results)
[1] 0.4526883

min(results)
[1] 0.1588772

max(results)
[1] 0.6123546

Have a look at the results; after performing tenfold cross-validation on the model, we can
clearly see the huge variation in results. The overall R-squared could be something as low
as 0.15 or as high as 0.61. Therefore, we need a more stable value for cp.

Fortunately, the model output gives a CP table as one of its parameters:

head(fit$cptable)
 CP nsplit rel error xerror xstd
1 0.471497076 0 1.0000000 1.0011024 0.05081692
2 0.015820550 1 0.5285029 0.5309135 0.03556166
3 0.015320589 3 0.4968618 0.5209064 0.03475611
4 0.010957717 4 0.4815412 0.5108439 0.03451988
5 0.008642251 6 0.4596258 0.5081714 0.03460857
6 0.007985705 7 0.4509835 0.4938715 0.03388218

Experimenting Predictive Analytics for IoT

[172]

The cptable showcases the results of various internal iterations with the values of cp and the
corresponding error terms captured. We can choose the value of cp that has the least error
among others and then we can prune the tree. Pruning is a process where specific branches
or nodes are removed from the tree to reconstruct an optimized tree. You learned that there
is a high chance of overfitting and getting poor results with a higher number of nodes
(branches) in a tree. Therefore, choosing the most optimized value of cp and reconstructing
the tree by pruning the nodes that do not add enough importance can help overcome
overfitting to a small extent. Let's give it a shot:

#Find the CP parameter value with the least error
best_cp<-fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"]
best_cp
[1] 0.004459267

#Prune the exisitng model
new_fit<-prune(fit,cp=best_cp)

#Predict using the new model
yhat<-predict(new_fit,newdata = testset)
y<-testset$Output_QualityParameter2

r_squared(y,yhat)
0.5461565

mape(y,yhat)
0.04234978

Again, we do see a better R-squared than the previous iteration and almost similar MAPE,
but is this still good?

No, we are almost at the same position where we were in linear regression. The results
haven't shown any significant improvement.

Experimenting Predictive Analytics for IoT

[173]

So, what next? Do we try another modeling technique
that could give us more powerful results?
We probably can, but hold on. There are many use cases where we can find the best results
by changing the modeling technique than to keep tuning to improve the existing one. Of
course, it doesn't mean that we keep changing modeling techniques without looking into
the details of how the existing model can be improved and why it is failing. However, in
some cases, we can achieve better results faster by trying out a new technique rather than
exhaustively tuning the same existing model. In our use case, we did this already. We
started solving our prediction problem with a simple linear regression technique and after a
few experiments with poor results, we moved on to explore decision trees and
experimented further. We still haven't reached satisfactory results, so what's next? Shall we
try another technique that is more powerful and may give us better results?

As mentioned earlier, yes we can, but let's wait a bit more. Rather than trying a new
machine learning technique or exhaustively trying to tune the exiting models, why don't we
try something different?

Recalling John's request, he had mentioned that his team needs a solution where they can
predict the outcome before the manufacturing process so as to take corrective
countermeasures. We have four output quality parameters and one resultant detergent
quality outcome (calculated algorithmically from the four output parameters)-Good or Bad.
Instead of predicting the numeric outcome, Output Quality Parameter 2, we can try to
predict a categorical outcome, Detergent Quality.

The overall exercise will be slightly different as we would be predicting a categorical
outcome rather than a numeric or continuous outcome. Let's park the experiments to try a
more powerful machine learning technique to predict the numeric outcome for the time
being (we'll try this in the next chapter) and meanwhile let's attempt to create a simple
model where we can predict a categorical outcome.

Experimenting Predictive Analytics for IoT

[174]

Logistic Regression – Predicting a
categorical outcome
Let's shift our focus to building a predictive model that will now take a different step. We
started by solving the prediction problem that can predict a continuous outcome, but we
didn't achieve great results. John's team requires a solution that they can leverage to predict
the end quality of the detergent being manufactured. It could be achieved in multiple ways;
the first one was to predict the most critical output quality parameter and the second was to
predict the actual end outcome, Good or Bad. Both the methods have their own advantages
and disadvantages. Predicting the continuous outcome, Output Quality Parameter 2,
actually gives us a sneak peek to understand the actual quantified deviation from the
benchmark, say below or above 60%. Such crisp information aids the technician in taking
more accurate corrective countermeasures.

On the other hand, predicting the categorical outcome, Good/Bad Quality, has its
interpretational advantage. A layman can easily interpret the results without any
benchmark comparison or relative measurement. However, at the same time, it doesn't give
a quantified measure of how good or bad the quality is. To build a predictive model for a
binary categorical outcome, we will use a very simple and popular algorithm called logistic
regression.

So what is logistic regression?
Logistic regression is a statistical technique used to develop predictive models with
categorical dependent variables having dichotomous or binary outcomes. (In our use case,
the dependent variable is detergent quality). Similar to linear regression, the logistic
regression models the relationship between the dependent variable and one or more
independent variables. Logistic regression measures the relationship between the
categorical dependent variable and one or more independent variables by estimating
probabilities using a logistic function, which is the cumulative logistic distribution. There
are other variants of logistic regression that focus on modeling a categorical variable with
three or more levels, say X, Y, and Z and a few others. For now, let's focus on the scenario
where we model an outcome that is binary-Good or Bad.

Experimenting Predictive Analytics for IoT

[175]

Unlike linear regression, logistic regression models for the log of odds ratio or the
probability of the event to happen. Let's understand this better. Everything starts with the
concept of probability. Let's say that the probability of success of some event is 0.8. Then the
probability of failure is 1 – 0.8 = 0.2. The odds of success are defined as the ratio of the
probability of success over the probability of failure. In our example, the odds of success are
0.8/0.2 = 4. That is to say that the odds of success are 4 to 1. If the probability of success is
0.5, that is, a 50-50 percent chance, then the odds of success are 1 to 1.

The equation for logistic regression can be defined as follows:

To predict the probability of the event to happen, we can further solve the preceding equation as follows:

Discussing the mathematical background and derivation of the equations is out of scope for
the book. Before we begin getting our hands dirty on logistic regression, we'll take a pause
and try to contemplate a few important and things. We did mention at the beginning of the
section that we cannot use linear regression to model categorical variables, but why? What
if we could encode the outcome as 1 for Good and 0 for Bad?

Suppose that we are trying to predict the winning chances of a basketball team for a
tournament based on the team's attributes. In this simplified example, there are three
possible diagnoses: yes, no, and maybe. We can consider encoding these values as a
quantitative response variable Y, as follows:

1: Yes

2: No

3: Maybe

Experimenting Predictive Analytics for IoT

[176]

With this coding, we can perform linear regression to predict Y as a function of the
predictors X1, . . .,Xn. However, the biggest problem with this coding technique is
interpreting the ordering of the outcomes. With 'no' between 'yes' and 'maybe', the model
will infer that the difference between 'Yes' and 'No' is the same as the difference between
'No' and 'Maybe', which is not something we can be sure of. Moreover, if the sequence is
reversed or changed for 'Yes', 'No', and 'Maybe', it would completely change the
interpretation for the model in which case it wouldn't make sense to use linear regression
for categorical variables.

On the other hand, for our use case, we have a binary flag where the preceding argument
can somehow be abstracted, saying that the prediction values between 0 and 1 can be used
as a proxy for the probability. This scenario will also not hold true as there would be
predictions outside the range of 0 and 1, say -5, which would make the overall
interpretation very difficult.

So how does the logistic regression work?
Keeping aside mathematical complications, we'll touch base on one simple topic-Maximum
Likelihood. In statistics, maximum-likelihood estimation (MLE) is a method of estimating
the parameters of a statistical model with given data. To put it simply, we can say that for a
fixed set of data points and statistical model, the method of maximum likelihood selects the
set of values of the model parameters that maximizes the likelihood function, that is, it
maximizes the “agreement” of the selected model with the observed data. Once the
parameters of the model are determined, we can plug the values into the equation and get
our predictions in no time. The process of MLE is iterative.

Let's now quickly get our hands dirty by building logistic regression models. We'll touch
base on new topics and unknown results as we proceed. To perform logistic regression on
the existing data, we'll use the glm() function available in the stats package of R. To start,
we'll use the same set of predictors that we used in the previous exercise:

 fit<-glm(Detergent_Quality~
 #The Production Quantity deviation feature
 Quantity_Deviation_new +

 #The Production Quantity deviation feature
 Stage1_PrevProduct_1 +

 #Raw Material Quality Parameters
 Stage1_RM1_QParameter2 +
 Stage1_RM1_QParameter1 +
 Stage1_RM2_QParameter2 +
 Stage1_RM2_QParameter1 +

Experimenting Predictive Analytics for IoT

[177]

 Stage3_RM1_QParameter1 +

 #Machine/Resources used in a Stage
 Stage1_ProductChange_Flag,
 data=train,
 family = "binomial"
)

The family = "binomial" command tells R to use the glm function to fit a logistic
regression model. (The glm() function can fit other models too; we'll look into this later.)

Similar to linear regression and regression trees, we can use the summary command to see
the model results:

summary(fit)

Call:
glm(formula = Detergent_Quality ~ Quantity_Deviation_new +
Stage1_PrevProduct_1 +
 Stage1_RM1_QParameter2 + Stage1_RM1_QParameter1 +
 Stage1_RM2_QParameter2 +
 Stage1_RM2_QParameter1 + Stage3_RM1_QParameter1 +
 Stage1_ProductChange_Flag,
 family = "binomial", data = train)

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.15433 0.09734 0.13489 0.88196 1.36402

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 44.8389526 5.0582122 8.865 < 2e-16 ***
Quantity_Deviation_newLow 0.1205316 0.2382435 0.506 0.613
Quantity_Deviation_newMedium 0.2632456 0.2599262 1.013 0.311
Stage1_PrevProduct_1Product_545 -0.3469915 0.2224928 -1.560 0.119
Stage1_RM1_QParameter2 -0.6242709 0.3973832 -1.571 0.116
Stage1_RM1_QParameter1 -0.0005502 0.0006402 -0.859 0.390
Stage1_RM2_QParameter2 -0.0416442 0.0284004 -1.466 0.143
Stage1_RM2_QParameter1 0.0103492 0.0330121 0.313 0.754
Stage3_RM1_QParameter1 -0.1763619 0.0314876 -5.601 2.13e-08 ***
Stage1_ProductChange_FlagYes -0.1831766 0.3778035 -0.485 0.628

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 840.51 on 799 degrees of freedom
Residual deviance: 569.85 on 790 degrees of freedom

Experimenting Predictive Analytics for IoT

[178]

AIC: 589.85

Number of Fisher Scoring iterations: 7

Let's study the results from the logistic regression one by one. The first part shown in the
result is the regression call (formula), that is, expressing the regression of the dependent
variable over the independent variables.

Model checking (goodness of fit) is just as important in logistic regression as it is in classical
linear models or any other model. The ingredients for goodness of fit are again the residuals
or differences between observed and fitted values. Unlike the case of linear models, we now
have to make allowance for the fact that the observations have different variances. There are
different types of residuals used, such as the 'Pearson Residual', 'Deviance Residual', and so
on. The glm() function computes the Deviance Residual. For the ith observation, the
deviance residual is the signed square roots of the ith observation to the overall deviance:

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.15433 0.09734 0.13489 0.88196 1.36402

It is calculated as follows:

Observations with a deviance residual in excess of two may indicate lack of fit. The output
in logistic regression by default calculates the deviance residuals, and the first part of the
results is the summary of distribution of deviance residuals.

Moving on, we have the most important part of the results-estimates for each independent
variable-that helps us quantify how much does each of the independent variable impact the
end dependent variable:

 Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 44.8389526 5.0582122 8.865 < 2e-16 ***
Quantity_Deviation_newLow 0.1205316 0.2382435 0.506 0.613
Quantity_Deviation_newMedium 0.2632456 0.2599262 1.013 0.311
Stage1_PrevProduct_1Product_545 -0.3469915 0.2224928 -1.560 0.119
Stage1_RM1_QParameter2 -0.6242709 0.3973832 -1.571 0.116
Stage1_RM1_QParameter1 -0.0005502 0.0006402 -0.859 0.390
Stage1_RM2_QParameter2 -0.0416442 0.0284004 -1.466 0.143
Stage1_RM2_QParameter1 0.0103492 0.0330121 0.313 0.754
Stage3_RM1_QParameter1 -0.1763619 0.0314876 -5.601 2.13e-08 ***

Experimenting Predictive Analytics for IoT

[179]

Stage1_ProductChange_FlagYes -0.1831766 0.3778035 -0.485 0.628

The preceding figure shows a small part of the logistic regression output results shared
earlier. The estimates show how much and how they impact the dependent variable; that is,
the coefficients give the change in the log odds of the outcome for a one-unit increase in the
predictor variable. A positive estimate indicates that, for every unit increase of the
respective independent variable, there is a corresponding increase in the log of odds ratio
and the other way for a negative estimate. We can note that all the independent variables
used in the regression equation (formula) have an individual estimate computed, but for the
categorical variables like Stage 1 Product Change Flag, the dimension has internally
converted them to binary flags with the respective estimate. This is because logistic
regression handles only continuous variables, and therefore every categorical variable is
internally coded as a binary flag. Along with the independent variables, we also see
'Intercept'. Intercept is the log of odds of the event (Good or Bad Quality) when we have all
the categorical predictors having a value as 0.

To understand how good the estimates are, we have a series of results calculated by the glm
function and provided along with the estimates. We can see the standard error, z value, and
p-value along with an asterisk indication to easily identify significance. The ultimate goal in
using all these results is to validate whether there exists a relationship between the log odds
of the event and independent variable. In order to prove this, standard errors are calculated
and the null hypothesis is framed as: no relationship exists between x and log odds of the
event. We then determine whether the estimate is truly far away from 0. If the standard
error of the estimate is small, then relatively small values of the estimate can reject the null
hypothesis. If the standard error is large, then the estimate should also be large enough to
reject the null hypothesis. To test the significance, we use the 'Wald Z Statistic' to measure
how many standard deviations the estimate is away from 0. Alternatively, the p value helps
in interpreting the results more intuitively. The significance of the estimate can be
determined if the probability of the event happening by chance is less than 5%.

The reason to use Wald Z statistic instead of T Statistic (used in linear regression) is based
on the way we have calculated the estimates. In linear regression, the estimates were
calculated using the technique called OLS (Ordinary Least Squares), but in logistic
regression, we use the MLE technique (as discussed earlier). The choice of the test statistic
depends on how the standard error of the coefficients has been calculated.

Experimenting Predictive Analytics for IoT

[180]

Looking at our results, we can see that only the intercept and the Stage3 RM1 QParameter 1
predictor is significant but not the rest. The reasons can be easily studied by comparing the
estimates and standard error. If the standard error of the estimate is small, then relatively
small values of the estimate can reject the null hypothesis, and we see many cases that have
higher standard errors for smaller estimates:

 Null deviance: 840.51 on 799 degrees of freedom
Residual deviance: 569.85 on 790 degrees of freedom

Moving on, we can see two types of deviance results shown below the estimates for the
predictors, namely, Null Deviance and Residual Deviance. Deviance is actually the measure
of goodness of fit of a generalized linear model (logistic regression in our case) or rather, it's
a measure of badness of fit-higher numbers indicate a worse fit. The glm function in R
reports two forms of deviance-the null deviance and residual deviance. The null deviance
shows how well the response variable is predicted by a model that includes only the
intercept (grand mean), and the residual deviance shows how well the response variable is
predicted by the proposed model (the model we submitted). Interpreting the deviances is
very easy; a very small null deviance indicates that the null model explains the data very
well. This is the same with the residual deviance as well. The difference between the null
deviance and residual deviance indicates how much value the independent variables add to
the goodness of fit. A higher difference between the two clearly indicates that the
independent predictors help in explaining the data to a great extent. In our example, we see
that null deviance is 840 on 799 degrees of freedom whereas the residual deviance is 569 on
790 degrees of freedom. This indicates that with the addition of nine predictors, there was a
huge drop in the overall residual, which shows that there is a good amount of variance
being explained by the predictors.

Below the null and residual deviance, we can see the AIC results, that is, Akaike
Information criterion, another metric used to study the goodness of fit across models:

AIC: 589.85

In our example, we can see that the AIC value is 589, which can be used as a comparison
metric with the AIC of the other iterations of the model building exercise. If the other model
has a lower AIC value, we can infer that the new model has a better goodness of fit
compared to the current one.

Experimenting Predictive Analytics for IoT

[181]

Lastly, we can see the number of Fisher scoring iterations used for the model to converge.
The logistic regression calculates the estimates using the MLE, which requires multiple
iterations. It starts with a tentative estimate and tries to improve it based on the results of
each iteration. The algorithm then looks around to see if the fit can be improved using
different estimates instead. If so, it moves in that direction (say, using a higher value for the
estimate) and then fits the model again. The algorithm stops when it doesn't perceive that
moving again would yield much additional improvement. This line tells you how many
iterations were executed before the process stopped and output the results:

Number of Fisher Scoring iterations: 7

We have by far explored the various results showcased in the logistic regression's output,
which helped us in understanding the estimate or impact of the predictors in predicting the
outcome-detergent quality. However, have we missed out something? Unlike linear
regression, we didn't have any overall goodness of fit metric for logistic regression, such as
the R-squared and F statistic. We didn't have any metric or statistic that could give us a
holistic picture for the model built.

How do we assess the goodness of fit or accuracy of
the model?
We definitely cannot use MAPE and we also cannot calculate R-squared for logistic
regression. To have a holistic view about the picture, we need to calculate a few additional
things. We'll use the confusion matrix and ROC curve to solve our problem.

What is the confusion matrix and ROC curve and how does it help?

A confusion matrix is a table used to analyze the performance of a model (classification).
Each column of the matrix represents the instances in a predicted class while each row
represents the instances in an actual class or vice versa. Similarly, the Receiver Operating
Characteristic (ROC) curve is a standard technique to summarize classification model
performance over a range of trade-offs between true positive (TP) and false positive (FP)
error rates. The ROC curve is a plot of sensitivity (the ability of the model to predict an
event correctly) versus 1-specificity for the possible cutoff classification probability values.

Experimenting Predictive Analytics for IoT

[182]

Too many new terms?
Let's tackle them one by one. We'll start with exploring the confusion matrix. To build the
confusion matrix, we will need to predict the outcomes for a sample test dataset. We can
use the 'predict' function in R to predict the probability of getting a 'Good' quality outcome
for the detergent. If the probability is > 0.5, we assume that it is Good; otherwise, we assume
that it is Bad:

predicted_probability<-predict(fit,newdata=test,type="response")
summary(predicted_probability)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.3417 0.5376 0.7065 0.7599 0.9913 0.9961

predicted<-as.factor(ifelse(predicted_probability>0.5,"Good","Bad"))
actuals<-test$Detergent_Qualitytable(actuals,predicted)
 predicted
actuals Bad Good
 Bad 15 35
 Good 16 134

We can see the quantile distribution of the probabilities; the 25th percentile shows us 53%,
which indicates that a majority of our results are predicted as Good and very few as Bad.
This is also aligned with the data as we had only around 20% of the data with Bad quality
cases.

The following image shows the sample confusion matrix for the preceding prediction:

Here, each row indicates the actual value and each column indicates the predicted value.
We can read each row of the matrix as the sum of actuals; the first row can be read as out of
all the 'Bad', 15 were correctly predicted as 'Bad' and another 35 were predicted incorrectly
as 'Good'. Similarly, each column can be read as the sum of predicted, that is, the first
column can be inferred as out of all the predicted 'Bad', 15 were correctly predicted as 'Bad'
and 16 were incorrectly predicted as 'Bad'. Based on the actual and predicted values, there is
another name given for each of the columns in the confusion matrix as follows:

Experimenting Predictive Analytics for IoT

[183]

True Positive (TP): When it is predicted as TRUE and is actually TRUE
False Positive (FP): When it is predicted as TRUE and is actually FALSE
True Negative (TN): When it is predicted as FALSE and is actually FALSE
False Negative (FN): When it is predicted as TRUE and is actually FALSE

The preceding confusion matrix is overlaid with the nomenclature and is showcased here:

An exhaustive list of metrics that are usually computed from the confusion matrix to aid in
interpreting the goodness of fit for the classification model are as follows:

Overall accuracy: Overall, how often is the classifier correct?

 (TP+TN)/total = (15+134)/200 = 0.75

Misclassification rate or error rate: Overall, how often is it wrong?

 (FP+FN)/total = (16+35)/200 = 0.25 [equivalent to 1 – Accuracy]

True positive rate: When it's actually true, how often does it predict true?

 TP/(TP + FN) = 134/(16+134) = 0.89

 Also known as Sensitivity or Recall

False positive rate: When it's actually False, how often does it predict True?

 FP/(TN+FP) = 35/(15+35) = 0.7

Specificity or true negative rate: When it's actually no, how often does it predict
no?

 TN/actual no = 15/(15+35) = 0.3 [equivalent to 1 – False Positive Rate]

Experimenting Predictive Analytics for IoT

[184]

True precision: When it predicts yes, how often is it correct?

 TP/total predicted 'Good' = 134/(35+134) = 0.79

False precision: When it predicts 'Bad', how often is it correct?

 FN/total predicted 'Bad' = 15/(15+16) = 0.48

With the preceding results, we get a fair holistic view of the model performance. We can
clearly understand where our model performs poorly and where it performs well. Based on
the results, we can further take a call on how to optimize our model. For the current results,
we can clearly see that even though we have a decent overall accuracy, we fail to predict
correctly most 'Bad' cases. In context to our use case, our main objective is to predict the
'Bad' as well as 'Good' quality detergent beforehand correctly. An equal priority for both is
defined.

In a nutshell, our model has a very high False Positive Rate (FPR) and low TNR (True
Negative Rate). We can clearly see that the model predicts many 'Bad' cases incorrectly as
'Good'. How can we improve this? We chose the probability cutoff at 0.5 for Good and Bad;
does this have an impact on the results?

Yes, it does. Let's see how it affects. In most average cases, the probability cutoff for the
True and False scenario is chosen as 0.5, but we can definitely choose a higher or lower
cutoff based on the use case. These use cases are very industry- and domain-specific. It all
depends on what is more important to you-True Positive Rate (Sensitivity) or True Negative
Rate (Specificity) or both. There are use cases where predicting the True events as True
becomes increasingly important for business; say, a retail chain trying to identify their high-
value customers. It may be relatively okay for the model to predict a non-high-value
customer as a high-value customer, but predicting a high-value customer as a non-high-
value customer may cause huge losses to their business. In such cases, the demand is for
higher Sensitivity. Similarly, there are use cases when predicting 'False' events as False
becomes extremely important for business; say, a healthcare center is predicting cancer
patients. It may be relatively fine to predict a patient without cancer as True, but predicting
a patient with cancer as False will be life-threatening! In such cases, there is a very high
demand for Specificity. A study of Specificity and Sensitivity is used to choose the optimum
cutoff for any use case.

Experimenting Predictive Analytics for IoT

[185]

In our use case, we have an equal importance for both the events. For John's business, it is
equally important to predict a True event as True and False event as False. Therefore, we
will need higher overall accuracy without a big compromise over Sensitivity or Specificity.
To understand the best probability cutoff value in order to get the highest accuracy, we can
use the accuracy function in R to get a visual of how overall accuracy fares for different
cutoff levels:

library(AUC)
actuals<-test$Detergent_Quality
plot(accuracy(predicted_probability,actuals))

The plot showcases the overall accuracy for the model across different probability cutoffs.
As we can see, there is a gradual dip in the overall accuracy after ~0.5. Therefore, our initial
probability cutoff was more or less the best chosen cutoff.

Similarly, to understand visually how our model is performing, we can use the ROC curve.
As mentioned earlier, the ROC curve is a plot of sensitivity (the ability of the model to
predict an event correctly) versus 1-specificity for the possible cutoff classification
probability values. Interpreting the ROC curve is again straightforward. The ROC curve
visually helps us understand how our model compares with a random prediction. The
random prediction will always have a 50% chance of predicting correctly; after comparing
with this model, we can understand how much better is our model.

Experimenting Predictive Analytics for IoT

[186]

The following code plots the ROC curve for the model fitted previously:

library(AUC)
plot(roc(predicted_probability,actuals))

The diagonal line indicates the accuracy of random predictions and the lift from the
diagonal line towards the left upper corner indicates how much improvement our model
has in comparison to the random predictions. Observing the preceding plot, we can see that
the model is quite above the diagonal and has much better accuracy than a random model.
Models having a higher lift from the diagonals are considered to be more accurate models.

Experimenting Predictive Analytics for IoT

[187]

Recap to the model interpretation
So far, we have delved deep into the logistic regression modeling exercise. We executed a
basic iteration and learned how to interpret the results. You learned how we can quantify
the impact of each independent predictor on the net outcome, that is, log odds ratio of the
event, and studied other metrics that would help us in understanding the holistic picture of
the model's goodness of fit. We calculated the confusion matrix and also visualized the ROC
curve. By far, the results that we got are not great. Though we have a decent overall
accuracy, our model has a very high False Positive Rate and therefore fails in correctly
predicting the 'Bad' outcomes. We would now try tuning the model to improve its
performance and predict with better True Positive Rate and True Negative Rate.

Improving the classification model
The preceding exercise was an attempt to understand the logistic regression model. We'll
now focus on improving our model to get better and more accurate results. To understand
the overall goodness of fit, we'll consider the overall accuracy, TPR, and TNR.

Let's define our approach
Similar to linear regression, we can start modeling using the 'Forward Selection', 'Backward
Elimination', or a combination of both. We'll use the backward elimination method.

How do we go about it?
We'll start with the final list of predictors that have been identified as important in our
overall analysis till now. We'll then run an iteration of logistic regression with all
independent predictors and then try to improve the results. Using the p-value and
estimates, we can identify how important each predictor is in defining a relationship with
the dependent outcome and then eliminate the ones that add zero or low value. We will
perform some data transformations on the predictors to further improve the results and
finally, we will test our results on a dataset to check the goodness of fit of our data using a
variety of metrics and tests.

Experimenting Predictive Analytics for IoT

[188]

Let's begin modeling
We'll start with the list of predictors that have been identified as important in our overall
analysis. After fitting the model, we'll predict the outcomes with probability cutoff as 0.5
and calculate the different measures for goodness of fit:

fit<-glm(Detergent_Quality~

 #The Production Quantity deviation feature
 Quantity_Deviation_new +
 AssemblyLine_ID +

 #The Production Quantity deviation feature
 Stage1_PrevProduct_1 +

 #Raw Material Quality Parameters
 Stage1_RM1_QParameter2 +
 Stage1_RM1_QParameter1 +
 Stage1_RM2_QParameter2 +
 Stage1_RM2_QParameter1 +
 Stage3_RM1_QParameter1 +
 Stage3_RM1_QParameter2 +
 Stage3_RM2_QParameter1 +
 Stage3_RM3_QParameter2 +
 Stage3_RM3_QParameter1 +

 #Machine/Resources used in a Stage
 Stage3_ResourceName_new +
 Stage1_ProductChange_Flag,
 data=train,
 family = "binomial"
)
summary(fit)

Experimenting Predictive Analytics for IoT

[189]

Experimenting Predictive Analytics for IoT

[190]

#Creating a Function to predict and calculate TPR,TNR, Overall accuracy
from the confusion matrix

prediction_summary<-function(fit,test)
 {
 #Predicting results on the test data, using the fitted model
 predicted_probability<-predict(fit,newdata=test,
type="response")
 print("Distribution of Probability")
 print("")

 print(summary(predicted_probability))
 predicted<-as.factor(ifelse(predicted_probability>0.5,
"Good","Bad"))

 actuals<-test$Detergent_Quality

 confusion_matrix<-table(actuals,predicted)
 print("Confusion Matrix :-")
 print(confusion_matrix)
 print("")

 #Calcualting the different measures for Goodness of fit
 TP<-confusion_matrix[2,2]
 FP<-confusion_matrix[1,2]
 TN<-confusion_matrix[1,1]
 FN<-confusion_matrix[2,1]

 #Calcualting all the required
 print(paste("Overall_accuracy ->
 ",(TP+TN)/sum(confusion_matrix)))
 print(paste("TPR -> ",TP/(TP+FN)))
 print(paste("TNR -> ",TN/(TN+FP)))
 print(paste("FP -> ",FP/(TN+FP)))

 }

#Viewing the results together

#Calling the function to view results
prediction_summary(fit,test)

#Results
[1] "Distribution of Probability"
[1] ""
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.2747 0.5274 0.7977 0.7527 0.9927 0.9982

Experimenting Predictive Analytics for IoT

[191]

[1] "Confusion Matrix :-"
 predicted
actuals Bad Good
 Bad 20 30
 Good 24 126
[1] ""

[1] "Overall_accuracy -> 0.73"
[1] "TPR -> 0.84"
[1] "TNR -> 0.4"
[1] "FP -> 0.6"

The highlighted predictors have been identified as the significant ones. We can see that only
the intercept and two other predictors-Stage 3 RM1 QParameter 1 and Stage3
ResourceName-are significant. The overall results have improved slightly compared to our
first exercise.

We have an additional significant variable; the residual deviance has reduced from 569.85
on 790 degrees of freedom to 545.17 on 783 degrees of freedom. The overall AIC has
improved from 589 to 579. The overall accuracy seems to have reduced but the True
Negative Rate has increased from 0.3 to 0.4, the overall FPR (False Positive Rate) has
reduced from 0.7 to 0.6, and the improvement is relatively better. We will need to
continuously improve our overall accuracy, TPR, and TNR and thereby reduce FPR.

Experimenting Predictive Analytics for IoT

[192]

So how do we move ahead?
The significant variables in the list have been highlighted; as a next step similar to linear
regression, we can either drop the insignificant variables and fine-tune the significant
variables further to improve the goodness of fit or we can take a shot at improving both
insignificant as well as significant predictors. We will also try data transformations on the
continuous predictors using a trial and error approach as applying transformations to the
predictors or the dependent variable helps the variance to be more intuitively captured in
some cases. The transformations can be in any form, such as square(x2), cube (x3),
exponential (ex), log transformations, and so on. These transformations can be applied only
to the predictors.

If we take a closer look at the results, we can observe that only one of the nine raw material
quality parameters is significant. Data transformations may or may not be valuable; the
results can be validated only with a trial and error approach. We can try all combinations of
data transformations on the predictors and finally choose the combination that renders the
best results.

It is recommended that you execute various logistic regression iterations
to see the differences in results with different transformations. The
following showcased result is the output for one of the various iterations
executed for different types of mathematical data transformations.

Similar to linear regression, we do not see any specific improvement from data
transformations. Moreover, data transformations has only deteriorated the goodness of fit
to a certain extent. The following result showcases one of the iterations where data
transformations were tried:

> #the variable fit has the best iteration in the experiments
> summary(fit)

Experimenting Predictive Analytics for IoT

[193]

Experimenting Predictive Analytics for IoT

[194]

#Calling the Prediction Summary Function, we created earlier
prediction_summary(fit,test)
[1] "Distribution of Probability"
[1]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.2780 0.5291 0.7953 0.7526 0.9927 0.9983

[1] "Confusion Matrix :-"
 predicted
actuals Bad Good
 Bad 19 31
 Good 24 126
[1]
[1] "Overall_accuracy -> 0.725"
[1] "TPR -> 0.84"
[1] "TNR -> 0.38"
[1] "FP -> 0.62"

We have tried square operation, cubic operation, and many log operations on the data.
Overall, we can clearly see a small drop in the TNR and increase in the TPR compared to
our previous iteration. The results are comparatively bad. The overall accuracy has also
dropped by a small margin.

Adding interaction terms
As we didn't get any better results with the data transformation exercise, let's try adding
interaction variables. Interaction variables, as discussed in linear regression, occur when an
independent variable has a different effect on the outcome depending on the values of
another independent variable, that is, a situation in which the simultaneous influence of
two variables on a third is not additive.

This can be understood from the following equation:

Y= β0 + β1A+ β2B + β(A B)+ �

The following iteration showcases the result of one of the comparatively better models from
a variety of combinations for the interaction variables tried out. We have considered
interaction between multiple raw material quality parameter combinations and chosen the
iteration that gave the best accuracy. A few insignificant variables have been eliminated and
a few have been retained. We can see that the AIC has reduced significantly and the
residual deviance has also reduced:

>#fit contains the Logistic Regression iteration with Interaction variables
>summary(fit)

Experimenting Predictive Analytics for IoT

[195]

#Calling the Prediction Summary Function, we created earlier
prediction_summary(fit,test)

Experimenting Predictive Analytics for IoT

[196]

[1] "Distribution of Probability"
[1]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.2780 0.5291 0.7953 0.7526 0.9927 0.9983

[1] "Confusion Matrix :-"
 predicted
actuals Bad Good
 Bad 19 31
 Good 24 126
[1]
[1] "Overall_accuracy -> 0.725"
[1] "TPR -> 0.84"
[1] "TNR -> 0.38"
[1] "FP -> 0.62"

In spite of having a comparatively better model with the goodness of fit measure, we still
get similar results for TPR, TNR, and overall accuracy. Again, we do not see any good
results. We don't see any improvements in our results and the confusion matrix remains
exactly the same. Our model still has a very high FPR and low TNR.

What can be done to improve this?
One issue with the data is that the distribution of Good and Bad detergent quality samples
is skewed. Around 80% of our data is Good quality and the remaining is Bad quality. Our
prediction models are failing with a high FPR because it is not able to identify the Bad
quality samples clearly. The training is skewed toward Good quality samples and hence the
model does fairly good in predicting them, but fails when it comes to predicting Bad quality
samples correctly.

The following code shows the distribution of “Good” and “Bad” quality samples across the
overall dataset:

tapply(data$Detergent_Quality,data$Detergent_Quality,length)

 Bad Good
 225 775

#We can see only ~20% of the data belongs to "Bad" samples.

One way in which we can try fixing this is by oversampling or taking a stratified balanced
sample to train. The problem for high false positive and low true negative is probably due
to the skewed training of Good quality samples. We can provide a stratified training sample
to the logistic regression model, rather than providing the existing 80% training sample, to
see whether it makes any difference.

Experimenting Predictive Analytics for IoT

[197]

The new stratified training sample will have 50% Good quality and 50% Bad quality
samples. The following code creates a stratified training sample from the existing training
sample. Once the new model is fit, we will validate the results using the same old test
dataset:

#Function to create a stratified sample
#Here, df = Dataframe,
group = The variable on which stratification needs to be done.
maximum number of sample for each level in group

stratified = function(df, group, size) {
 require(sampling)
 temp = df[order(df[group]),]
 if (size < 1) {
 size = ceiling(table(temp[group]) * size)
 } else if (size >= 1) {
 size = rep(size, times=length(table(temp[group])))
 }
 strat = strata(temp, stratanames = names(temp[group]),
 size = size, method = "srswor")
 (dsample = getdata(temp, strat))
}

#Counting the number of "Good" and "Bad" rows in the data
a<-tapply(train$Detergent_Quality,train$Detergent_Quality,length)
size<-a["Bad"]
print(size)

#We create a new training sample, with the same number of "Good" and "Bad"
Quality samples.

stratified_train<-stratified(train,"Detergent_Quality",size)

#Checking the frequency of Good and Bad samples
summary(stratified_train$Detergent_Quality)
 Bad Good
 175 175

#Fitting the model on the new stratified Training sample

#Ignoring the codes to fit

#Printing summary
> summary(fit)

Experimenting Predictive Analytics for IoT

[198]

> prediction_summary(fit,test)

[1] "Distribution of Probability"
[1]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01273 0.22640 0.49960 0.58490 0.99580 1.00000

[1] "Confusion Matrix :-"
 predicted
actuals Bad Good
 Bad 49 1
 Good 52 98

[1]
[1] "Overall_accuracy -> 0.735"

Experimenting Predictive Analytics for IoT

[199]

[1] "TPR -> 0.653333333333333"
[1] "TNR -> 0.98"
[1] "FP -> 0.02"

The model summary looks pretty much the same, except for the AIC and residual deviance,
for which the differences are huge. It seems like there has been a drastic improvement in the
results. However, when we take a look at the prediction summary, we'll be surprised.

The overall accuracy has increased by a small fraction and the TPR has dropped by quite
some range, but the TNR rate has reached almost 100% and the FPR has reached 0.02. The
results look very surprising.

What just happened?
Our earlier models were trained on a sample that was skewed in the distribution of 'Good'
and 'Bad' samples (80:20). The model that learned from this data learned how to predict the
'Good' sample quite well, but miserably failed to predict the 'Bad' quality samples. This
indicates that our understanding about the model's learning limitation was true. Due to a
skewed training sample for “Good”, the model could not learn the patterns for “Bad”
easily. With a stratified sample in place, we can see that there is a huge difference in the
results. The model now predicts almost 100% 'Bad' quality samples correctly. However, a
major problem is that the preceding results can't be justified as better because there is a
huge drop in the TPR; moreover, the results may be overfitting. If we try the model iteration
using a different test sample, we might probably see a different result. We'll temporarily set
aside the overfitting issue and learn about it in the next chapter. We now need to improve
the TNR and overall accuracy while having the TPR also intact or at least good. The current
iteration of the model has improved the overall accuracy and TNR, but there is a huge
compromise in the TPR.

What can be done to improve the TNR and overall
accuracy while keeping the TPR intact?
Using a stratified training sample has helped us improve the TNR, but we need to achieve
high TNR along with a high TPR. Our model needs to learn the nuances of the 'Bad' sample
more intuitively. Stratification helped, but not completely. Can we have our model learn the
prediction of 'Bad' and 'Good' better without compromising the TPR and goodness of fit?
This is when we need to step into machine learning. With machine learning, we have a
variety of cutting-edge and state-of-the-art algorithms that can help us in achieving better
results. We'll explore a few of these interesting techniques in the next chapter.

Experimenting Predictive Analytics for IoT

[200]

However, there are alternative ways to improve the same in logistic
regression with a little extra effort. We would need to explore
regularization in more depth and achieve the same with quite a lot of
effort. However, the regularization topic in logistic regression is extremely
vast and would make it difficult to do justice in a small section of a
chapter.

Summary
In the current chapter, we took our problem solving skills one step ahead by trying to
answer the question 'When'. In an attempt to provide John's team with a more powerful and
actionable solution, we touched base on the predictive stack of data science. We analyzed
the problem and found two different ways to solve the same problem-one being a
regression problem (predicting a continuous outcome) and the other being a classification
problem (predicting a categorical outcome). We started by solving the problem to predict
the output quality parameter for the detergent before being manufactured. We used Linear
Regression and also experimented the same problem with CART, that is, Decision trees.
You learned about the functioning of the algorithm in detail (keeping the mathematical
aspect aside) and experimented with a variety of techniques to improve the accuracy, but
didn't achieve favorable results.

We then experimented with the alternative approach, where the same problem was defined
in a new way that then changed the overall type of the problem statement-classification. We
attempted to solve the problem using a very famous and easy-to-implement statistical
technique, Logistic Regression. You learned the nuances of the algorithm and understood
how to interpret the results using R. We experimented with a variety of iterations to
improve the results and, toward the end, we got some promising signals. We have still not
achieved good results, but we see a ray of hope where we can improve. To improve the
results further, we will require more powerful algorithms that can learn latent signals and
give more accurate results. To achieve this, we'll use a bunch of machine learning
techniques in the next chapter. We'll try to build a valuable and actionable solution for
John's team and create an impact in the manufacturing firm.

In the next chapter, we'll focus on cutting-edge machine learning algorithms that can take
our results to a more accurate level. With machine learning, we'll take our decision science
and analytical skills to a more sophisticated level.

5
Enhancing Predictive Analytics
with Machine Learning for IoT

The predictive stack for analytics is an extremely wide and varied domain. Many
ambiguous buzz words and disciplines can be associated with this field. Statistical
modeling, machine learning, artificial intelligence, neural networks, deep learning,
cognitive computing, and the list goes on. The variety of definitions available for each of
these disciplines makes it difficult to articulate the similarities and differences between
them. Our initial exercises were aligned towards statistical modeling; we will now focus
more on machine learning. The difference between the two is mainly the school that they
originate from. Statistical modeling comes from the mathematical school whereas machine
learning evolved from computer science.

In this chapter, we'll enhance our predictive analytics skills using cutting-edge machine
learning algorithms that will help us predict with better accuracy. From the time we started
solving the problem, we have made incremental progresses in the solution, but our
solutions still haven't reached the maturity level, which John's team can leverage to take
action. Our focus in this chapter will be to get our solutions more mature so that they can
solve the problem better and add value to John's team. The current chapter will cover the
following topics:

A brief introduction to machine learning
Ensemble modeling – random forest
Ensemble modeling – XGBoost
Neural networks and deep learning

Enhancing Predictive Analytics with Machine Learning for IoT

[202]

A Brief Introduction to Machine Learning
Machine learning is not a very well-defined term in the industry. There is a variety of
definitions available in multiple textbooks and e-resources. The general difference between
statistical modeling and machine learning is a much talked about topic but is still a very
ambiguous term. At a high level, we can call machine learning an advanced layer in the
predictive stack of decision science; an area where powerful algorithms and techniques use
data to learn patterns and relationships to predict an outcome.

We started our predictive journey using statistical modeling. You learned how to
implement and use various statistical models such as linear regression, logistic regression,
and decision trees. We'll now try solving the same problem using more advanced
algorithms that will give us better results. Before we start, we still want to know: what is
machine learning and how is it different from statistical modeling?

In a single sentence, machine learning can be defined as an algorithm that can learn from
data without relying on rules-based programming, whereas statistical modeling can be
defined as the formalization of relationships between variables in the form of
mathematical equations. Machine learning has more relaxed rules when compared to
statistical modeling. In machine learning, there are relatively less assumptions made about
the underlying data. (We didn't give much focus on assumptions about the data in our
previous exercises.)

Also, Machine learning is comparatively powerful in leveraging the learning with the
increasing amount of data. However, statistical models have a learning saturation. Let's take
a simple example to understand this better. Let's say that you have built a model using
1,000 training samples (assuming that 1,000 is a good enough number for a model to learn)
and get around 60% overall accuracy for a classification scenario. If you add more training
samples, 2,000 instead of 1,000, in most cases, we can normally expect to get a slightly better
accuracy than previously. Let's assume that the overall improvement is around 3%. The
issue with statistical models is that this improvement doesn't scale with the addition of
more and more training samples beyond a point. Let's say that you achieved the best results
with 10 K training samples, then there is a very high chance that the overall accuracy will
barely improve in case you add another 10 K samples to the training set. This is where we
say models reach a learning saturation. There isn't a mathematical proof for the reason but
it is a general observation while modeling. Machine learning techniques, however, are
much better in leveraging the large datasets for improved prediction. There are fairly high
chances that you will observe better results with an increased training data size compared
to statistical models to a great extent.

Enhancing Predictive Analytics with Machine Learning for IoT

[203]

A special area in machine learning and statistics is called Ensemble modeling, that is, the
art of using multiple learning algorithms to obtain better predictive performance. A major
reason for machine learning techniques to improve accuracy with more and more training
samples is through ensemble modeling. Let's explore ensemble modeling a bit more.

What exactly is ensemble modeling?
An ensemble is a learning technique to combine multiple weak learners/models to produce a strong
learner. In a nutshell, it is the art of building multiple models and then combining the results
from all models algorithmically to get a better result. A simple example of an ensemble
model is the Random Forest algorithm (having multiple CART models; we will explore more of
this in the next section). The performance is much better compared to an individual CART or
decision tree model. The algorithm classifies a new object where each tree gives “votes” for
that class and the forest chooses the classification having the most votes (over all the trees in
the forest). In the case of regression, it takes the average of the outputs of different trees.

Why should we choose ensemble models?
In real life, we often see that a group of people are more likely to make better decisions
compared to individuals, especially when group members come from diverse backgrounds.
The analogy holds true for machine learning too. An ensemble basically combines multiple
weak learners/models to produce a strong learner. The diversity in each model is
introduced through bootstrapping-the process of randomly sampling with replacement. On
a general note, each model will be provided with a different sample to train; therefore, each
model learns in a slightly different way and thus reduces variance error.

The major benefits of ensemble modeling are as follows:

Improved prediction
Improved stability in the model

The fact that many weak learners together deliver more accurate results than one strong
model alone holds true in majority of the cases. Secondly, bringing in diversity through
bootstrap aggregation-taking random samples with replacement for each model-helps
reducing noise and improves generalization capabilities of the model to a great extent. With
better generalization capabilities, the results from the ensemble model help in giving better
accuracy and more stability.

Enhancing Predictive Analytics with Machine Learning for IoT

[204]

So how does an ensemble model actually work?
In a theoretical scenario, we can create an ensemble-multiple models for the same task that
are completely heterogeneous, say a group of classification trees and logistic regression
models or some other technique. However, mostly we develop an ensemble using the same
class of technique, say an ensemble of only classification trees or only logistic regression
models. We can decide on the number of models we plan to create and then combine the
results from each model using some method (mostly voting).

Consider our current scenario, where we are building a classification model using a
universe of 1,000 training samples. Instead of building one model, let's build 100 models of
the same type, say classification trees. Firstly, a bootstrap aggregation process creates 100
training sets from the 1,000 training samples using random selection with replacement.
Each training set can be created with around 60% of the original size (not a fixed number; it
can be defined by the user). Therefore, we'll have 100 different training sets each having
around 600 training samples. We can then build 100 models using the training set assigned
to the respective models. Each model built using the bootstrapped training set will have
small variations in the way the tree gets constructed. The overall process remains exactly
the same like we discussed in the previous chapter, but as the training data for each tree
will be slightly different, each tree will have a slight difference in its overall construction.

Enhancing Predictive Analytics with Machine Learning for IoT

[205]

After all the models are built, we can then use them to classify the testing sample. For each
test, we'll have 100 results instead of one, which we can combine using votes. Let's assume
that we tried to classify a test case for 'Good' or 'Bad' and while testing it, used the 100 trees
we built; we get 70 trees with 'Good' and the rest 20 with 'Bad' as the outcome. Then we can
affirmatively conclude that the end quality for the test case is 'Good'. A general voting
algorithm is considered to get the maximum voted outcome as the end outcome. In the case
of regression, where we predict a continuous outcome, the results from all the models can
be averaged to give the final answer. This process can also be called Bagging. The overall
process can be visualized in the following image:

Enhancing Predictive Analytics with Machine Learning for IoT

[206]

In some cases, we have another technique used for ensemble modeling called 'Boosting'.
Unlike bagging, the boosting process works iteratively and improves each model to learn
the previously misclassified samples in a better way. In the process of boosting, rather than
building all the models in parallel, the models are built iteratively. The first model is built
using the entire training data and the next model runs on a random sample and weighted
training dataset. The weighting is done in such a way that the misclassified samples by the
previous model are given an added weight so that the model learns to predict the
misclassified samples better. The process continues and iterates for a definite number of
times. The resultant model will ideally have the lowest misclassification rate. There is a
variety of boosting algorithms developed by statisticians across the globe. The differences
among most of them is in the method used to calculate weights for the misclassified cases.
The overall boosting process can be visualized in the following image:

Another means of creating an ensemble model is 'Stacking'. The stacking process is very
similar to boosting. Initially, the models are trained using the available data, then a
combiner model is trained to make a final prediction using all the predictions of the other
models as additional inputs.

Enhancing Predictive Analytics with Machine Learning for IoT

[207]

What are the different ensemble learning techniques?
There are many popular ensemble techniques used for classification and regression:

Bagging: Bagging and random forest
Boosting: Adaboost, gradient boosted machines, and XGBoost

The most popular ones are Random Forest and XgBoost. Random forest is basically an
advanced version of bagging, whereas XgBoost is based on the principles of boosting and is
an advanced version of Gradient Boosted Machines (GBM). Both have been widely used in
the industry for a variety of use cases and have delivered improved results in accuracy and
stability.

In this chapter, you'll learn and implement predictive modeling using random forest and
xgboost.

Quick Recap – Where were we previously?
In the previous chapter, we tried to build a classification model using logistic regression. In
a series of experiments, we used a stratified balanced training sample to increase the TNR,
that is, True Negative Rate. We did achieve this, but at the cost of a lower TPR, that is, True
Positive Rate. We need to improve our results by increasing the TNR and TPR and therefore
increasing the overall accuracy. In this chapter, we take our predictive analytics skills one
notch higher by learning and implementing two very popular machine learning techniques
in ensemble modeling.

Ensemble modeling – random forest
Random forest is an extremely popular machine learning technique that is used mainly for
classification and regression. As the algorithm builds multiple decision trees, we have
already covered a substantial part of the foundation required for random forest. Let's
quickly understand the algorithm and solve our previous problem better.

Enhancing Predictive Analytics with Machine Learning for IoT

[208]

What is random forest?
Random forest is a machine learning technique built on the principle of ensemble modeling.
It builds an ensemble of decision trees with each tree having a randomly chosen subset of
features; hence the name Random + Forest. Random forest is basically an advanced version
of the bagging algorithm. In bagging, we build multiple decision trees with a bootstrapped
training sample selected with replacement from the entire training set. In random forest, the
addition of randomness is taken one step further. Here, from the entire list of features only
a predefined number of features are chosen randomly for each tree. Let's say that we have a
total of 15 features in all, then each tree will be assigned randomly selected five or six (a
fixed predefined number) features along with a bootstrap training sample chosen with
replacement. The addition of randomness in features for each tree helps random forest
achieve better stability than decision trees and bagging algorithms.

A new degree of randomness associated with the features as well as the training sample
helps the random forest algorithm to deliver more powerful results and leverage the
surplus training data in the most effective way. At the crux of the algorithm, we have
decision trees being built to form a forest. The process of building a decision tree is exactly
the same as we discussed in Chapter 4, Experimenting Predictive Analytics for IoT. Once all
the trees are trained with their respective features and training samples, we can now predict
results from n trees rather than one (n being the number of trees built in the forest, a finite
number). To get the final result, the results from n trees is converted to a single result by
majority voting.

Moving on, let's understand how a classification tree is constructed in the random forest
algorithm. By the way, there is no difference in how a classification tree is built in a normal
circumstance and in the random forest algorithm. Overall, the entire process is exactly the
same as we studied for the regression trees except for the selection of root nodes and
subsequent decision nodes. In the previous chapter, we studied how regression trees are
constructed in CART in detail. It calculates the Standard Deviation Reduction (SDR) of all
the features with respect to the dependent variable. The root node is chosen as the feature
that has the maximum SDR and the feature with the next highest SDR as the next node and
so on. For the classification tree, as the dependent variable is categorical, we cannot
calculate the SDR; instead we calculate entropy and the information gain for each feature
with respect to the dependent variable. The root node is selected as the feature that has the
maximum information gain with respect to the dependent variable.

A decision tree, as discussed earlier, is built top-down from a root node and involves
partitioning the data into subsets that contain instances with similar values (homogenous).
The algorithm uses entropy to calculate the homogeneity of a sample. If the sample is
completely homogeneous, the entropy is zero and if the sample is equally divided, it has an
entropy of one.

Enhancing Predictive Analytics with Machine Learning for IoT

[209]

Let's understand in detail how the root node and the other nodes are selected for the
construction of the classification tree.

Consider the following sample dataset. It is similar to the example we considered in the
regression tree in Chapter 4, Experimenting Predictive Analytics for IoT. The difference being
the dependent variable; here, it is categorical, that is, 'Employee Type' with two levels-
Techie and Corporate:

Sr. No. Dress code Gender Employee type

1 Formal Male Techie

2 Business Casuals Female Corporate

3 Casuals Male Techie

4 Formal Female Corporate

5 Business Casuals Female Techie

6 Casuals Male Corporate

……..

100 Casuals Male Techie

To build a decision tree, we need to calculate two types of entropy-the entropy of the
dependent variable and entropy of each independent variable with respect to the
dependent variable. This can be done using frequency tables.

Entropy using the frequency table of one attribute:

Here, c is the number of different classes in the variable.

Consider the distribution of Employee type in the overall dataset looks like the following
table:

Enhancing Predictive Analytics with Machine Learning for IoT

[210]

Enhancing Predictive Analytics with Machine Learning for IoT

[211]

Then, we can calculate the entropy of the dependent variable as follows:

Entropy (Employee type) = Entropy(27,73)

= – (0.27) * log2 (0.27) – (0.73) * log2(0.73)

= -(- 0.51) – (- 0.33) = 0.84

Similarly, to calculate the entropy of a feature variable with respect to the dependent
variable, assume the following distribution of Employee Type across the 'Dress Code'
variable:

We can then calculate the entropy of the feature variable as follows:

E(Employee type, Dress Code)

= P(Formal)*E(10,14) + P(Business Casuals)*E(21,8) + P(Casuals)*E(42,5)

= 0.24 * 0.98 + 0.29*0.85 + 0.47*0.48

= 0.71

With the two types of entropies, we can now calculate the information gain for each feature
using the following formula:

Information Gain (Y,X) = Entropy(Y) – Entropy(Y,X)

Therefore, Information Gain (Employee Type, Dress Code)

=Entropy(Employee Type) – Entropy(Employee Type, Dress Code)

= 0.84 – 0.71 = 0.13

Enhancing Predictive Analytics with Machine Learning for IoT

[212]

In a similar way, the information gain for all other features are calculated and the feature
with the maximum information gain with respect to the dependent variable is chosen as the
root node, the next highest feature as the next node, and so on. Information gain aids the
tree in defining the best node to be chosen as the root node and the subsequent decision
nodes.

The overall process for classification trees remains very similar to regression trees.

How do we build random forests in R?
R has a package built exclusively for the random forest algorithm and is called
'randomforest'. It comes with the required functions to build the entire model with a few
lines of code. Let's build a rudimentary random forest model to learn the know-how and
then move on to build better and improved versions.

The following code builds a random forest model for the same training dataset that we used
in the previous chapter for logistic regression experiments and showcases the summary of
the model. Take a closer look at the highlighted section in the codes and results:

library(randomForest)
set.seed(600)
#Creating a 20% sample for test and 80% Train
test_index<-sample(1:nrow(data),floor(nrow(data)*0.2))
train<-data[-test_index,]
test<-data[test_index,]

#Building a random forest model
fit<-randomForest(Detergent_Quality~
 #The Production Quantity deviation feature
 Quantity_Deviation_new +

 #The Production Quantity deviation feature
 Stage1_PrevProduct_1 +

 #Raw Material Quality Parameters
 Stage1_RM1_QParameter2 +
 Stage1_RM1_QParameter1 +
 Stage1_RM2_QParameter2 +
 Stage1_RM2_QParameter1 +
 Stage3_RM1_QParameter1 +
 Stage3_RM1_QParameter2 +
 Stage3_RM2_QParameter1 +
 Stage3_RM3_QParameter2 +
 Stage3_RM3_QParameter1 +

Enhancing Predictive Analytics with Machine Learning for IoT

[213]

 #Machine/Resources used in a Stage
 Stage3_ResourceName_new +
 Stage1_ProductChange_Flag,
 data=train,
 ntree=50,mtry=5,replace=TRUE,importance=TRUE
)

> fit
Call:
 randomForest(formula = Detergent Quality ~ Quantity_Deviation_new +
Stage1_PrevProduct_1 + Stage1_RM1_QParameter2 + Stage1_RM1_QParameter1 +
Stage1_RM2_QParameter2 + Stage1_RM2_QParameter1 + Stage3_RM1_QParameter1 +
Stage3_RM1_QParameter2 + Stage3_RM2_QParameter1 + Stage3_RM3_QParameter2 +
Stage3_RM3_QParameter1 + Stage3_ResourceName_new +
Stage1_ProductChange_Flag, data = train, ntree = 50, mtry = 5, replace
= TRUE, importance = TRUE)

 Type of random forest: classification

 Number of trees: 50

No. of variables tried at each split: 5

 OOB estimate of error rate: 16.25%

Confusion matrix:

 Bad Good class.error
Bad 107 68 0.3885714
Good 62 563 0.0992000

Let's try to understand what we have done here. Most of the codes and results seem pretty
much the same. Let's look at the new things one by one.

We use the inbuilt randomForest function in the package by the same name to build the
model. The calling style remains exactly the same. However, we see a few parameters that
we didn't touch on earlier, that is, ntree=50, mtry=5, replace=TRUE, and importance=TRUE.

Enhancing Predictive Analytics with Machine Learning for IoT

[214]

What are these new parameters?
At a high level, random forest provides us with an option to choose the number of trees we
would like to build in the ensemble model and also gives us an option to choose the number
of features that should be randomly chosen for each tree. We chose five, that is, mtry =5. A
good ballpark number for the mtry hyperparameter will be to consider the nearest number
to the square root of the total number of features. In our exercise, we have around 14
features and the dependent variable, so ideally three or four would have been a better
choice. We can choose the best value using a trial and error method, but the randomForest
package internally provides us with a tool to play around and select the most optimum
value for mtry. We'll explore this in a while. Similarly, the next set of hyperparameters that
are new in the code are replace=TRUE and importance=TRUE. The replace option provides
us with the choice of whether sampling should be done with or without replacement. As a
thumb rule, it is always good to have the replacement set to TRUE while sampling. The
model is bound to be more stable in most cases. (There are also cases where this might not
be the best choice.) The importance = TRUE parameter provides the importance score (GINI
index as well Mean Decrease in accuracy) for each feature used in the model. Using the
variable importance, we can more easily identify which features are adding more value to
the overall model. In case we have too many features, say quite a few of them are barely
adding any value, we can use the variable importance plot (a function provided by the
random forest package) to visualize the variable importance and therefore take a better
choice in elimination of variables.

Apart from the parameters used in the preceding model iteration, there are a few more that
we'll be using in further iterations such as bag fraction, class weight, and a few more. We'll
explore these options as and when we use them. There are many more parameter options
available that you can explore using the R help command (?randomforest).

Enhancing Predictive Analytics with Machine Learning for IoT

[215]

Let's move on to interpret the summary results. The first part showcases the calling style
formula used for the model. Next, we see a statement that mentions the type of modeling
used in the iteration. We are building a classification model and hence the type of random
forest is classification. Next, it calls out the number of trees built in the model. We chose 50
trees; we can actually choose a higher number as the dataset we are using is quite small in
size and can be easily handled by a normal machine with decent RAM. Choosing an
extremely high number of trees for the model won't add an equivalent incremental value to
the accuracy, but still around 1,000-2,000 trees is a good number to have. We see the
number of variables used to split the data into partitions in each tree as five. Finally, we see
two important measures used in the model, that is, OOB estimate and the confusion matrix
built from predictions made on the training dataset. The OOB estimate is nothing but the
out-of-bag estimate. Each tree is trained on around 2/3rd of the training set sampled
randomly with replacement. The remaining 1/3rd can be used for cross-validation. The OOB
error estimates showcase the results from cross-validation done on all the trees internally.
Lastly, we see the confusion matrix along with class error rates.

In random forest, there is actually no need to test the model on an unseen data as internally,
the OOB error estimate provides a fair and unbiased metric to infer the model's prediction
capability. Still, let's try to check the results on our remaining 20% data set aside for the
testing.

The following code is a prediction_rf_sumary function similar to the
prediction_summary function that we built in the previous chapter. The only difference
here is that we directly take the prediction rather than predicting the probability and then
classifying it as 'Good' or 'Bad'. The function finally outputs the metrics we have been using
so far, that is, Overall Accuracy, True Positive Rate (TPR), True Negative Rate (TNR), and
False Positive Rates (FPR):

prediction_rf_summary<-function(fit,test)
{
 #Predicting results on the test data, using the fitted model
 predicted<-predict(fit,newdata=test,type="response")
 actuals<-test$Detergent_Quality
 confusion_matrix<-table(actuals,predicted)
 print("Confusion Matrix :-")
 print(confusion_matrix)
 print("")
 #Calcualting the different measures for Goodness of fit
 TP<-confusion_matrix[2,2]
 FP<-confusion_matrix[1,2]
 TN<-confusion_matrix[1,1]
 FN<-confusion_matrix[2,1]
 #Calcualting all the required
 print(paste("Overall_accuracy ->",(TP+TN)/sum(confusion_matrix)))

Enhancing Predictive Analytics with Machine Learning for IoT

[216]

 print(paste("TPR -> ",TP/(TP+FN)))
 print(paste("TNR -> ",TN/(TN+FP)))
 print(paste("FP -> ",FP/(TN+FP)))
}

#Viewing the results together
>prediction_rf_summary(fit,test)

[1] "Confusion Matrix :-"

 predicted
actuals Bad Good
 Bad 29 21
 Good 17 133

[1] ""
[1] "Overall_accuracy -> 0.81"
[1] "TPR -> 0.886666666666667"
[1] "TNR -> 0.58"
[1] "FP -> 0.42"

As we can see, the results in random forest are relatively better than the results from logistic
regression. Compare the iteration in logistic regression, where we used the normal training
sample and not the stratified balanced training sample. We had an overall accuracy of 0.72,
TPR of 0.84, TNR of 0.38, and FPR of 0.62.

The first iteration in building a random forest model has given us an increased overall
accuracy of 0.81, TPR of 0.88, TNR of 0.58, and reduced FPR of 0.42. The results seem far
better, but have we still reached our goal? Not yet, but we are close and the results
definitely look promising.

What do we need to do to further improve the overall accuracy, TPR, and TNR and reduce
the FPR? Remember the point where we halted our experiments in logistic regression? We
used a stratified balanced sample for the training and saw a phenomenal improvement in
the TNR but a huge dip in the TPR. We understood that the model was previously not able
to learn the patterns to predict the TNR effectively. We therefore used a stratified balanced
training sample and noticed that the model was able to predict TNR much better but it
came at the cost of reduced TPR. To improve TNR while not compromising on the TPR, we
can leverage a machine learning technique that could help us in achieving this.

In random forest, we have a parameter option called class weight that is used to signify an
added weight to the training samples where the distribution of a particular class is skewed.
It helps in learning the class with a lower number of samples better without compromising
the other class.

Enhancing Predictive Analytics with Machine Learning for IoT

[217]

So let's build an improved version of the random forest model. Where do we start? What
parameter settings would give us the best results? Let's discuss this one by one.

Mtry
We discussed that the best value for mtry is the square root of the overall number of
features in the model. In our case, we have around 14 features. So do we choose 3, 4, or 5?
We can move further using either a trial and error method or an inbuilt tool in the same
package where we can see the results for each value of mtry:

#Creating a vector with all the predictors
x<-c('Quantity_Deviation_new','Stage1_PrevProduct_1',
 'Stage1_RM1_QParameter2', 'Stage1_RM1_QParameter1',
 'Stage1_RM2_QParameter2', 'Stage1_RM2_QParameter1',
 'Stage3_RM1_QParameter1', 'Stage3_RM1_QParameter2',
 'Stage3_RM2_QParameter1', 'Stage3_RM3_QParameter2',
 'Stage3_RM3_QParameter1', 'Stage3_ResourceName_new',
 'Stage1_ProductChange_Flag')

#Tune the model
mtry <- tuneRF(train[x],train$Detergent_Quality, ntreeTry=200,
stepFactor=1.5,improve=0.01, trace=TRUE, plot=TRUE)

#Since the sampling is done randomly, different iterations might #render
different results

mtry = 3 OOB error = 14.25%
Searching left ...
mtry = 2 OOB error = 15.75%
-0.1052632 0.05
Searching right ...
mtry = 4 OOB error = 17%
-0.1929825 0.05

Enhancing Predictive Analytics with Machine Learning for IoT

[218]

We can see that with mtry =3, we get the best results, that is, the lowest OOB error rate. So
let's freeze the value of mtry at 3.

Building a more tuned version of the random forest
model
To improve our model further, we can have a few things fixed easily. The ntree parameter
decides the number of trees in our forest. As our dataset size is relatively small and most
computers have relatively high computing power, we'll set this to 5,000. Maybe such a high
number won't add an appropriate value but still won't cause any harm.

Secondly, our dataset is an unbalanced sample, that is, we have Good and Bad samples in
the ratio 80:20. As we saw previously, our model failed to have a good TPR with a balanced
stratified sample. Therefore, we need to think about a better approach to train our models.
As using a 50:50 ratio reduced the TPR to a great extent, why don't we change the training
sample ratio to something like 60:40 or 70:30? Increasing the Bad samples by a small margin
and decreasing the Good samples ratio by a small margin will definitely help us achieve a
better performance than the highly unbalanced samples. We can achieve this by creating a
modified training dataset.

Enhancing Predictive Analytics with Machine Learning for IoT

[219]

Lastly, even though replacement works really well in most cases for random forest, it may
not be the most recommended step when we have a highly unbalanced training sample.
Sampling without replacement in unbalanced samples will be useful; otherwise, samples
from the smaller classes will contain many more repetitions and the class will still be
underrepresented.

Finally, classwt helps us set the prior probabilities for the training samples of the classes in
each tree while sampling. Setting this value helps us stratify the training sample for each
tree in a more strategic way.

Let's build a model with the newly tuned settings:

set.seed(600)
data$y<-ifelse(data$Detergent_Quality=="Good",1,0)
test_index<-sample(1:nrow(data),floor(nrow(data)*0.2))
train<-data[-test_index,]
test<-data[test_index,]

#Creating a modified training dataset with Good:Bad ratio as 66:33
new_train<-stratified(train,"Detergent_Quality",175)
subset<-train[sample(rownames(train[train$y==1,]),350),]
new_train<-rbind(new_train[new_train$y==0,1:ncol(train)],subset)

#Building a random forest model
fit<-randomForest(Detergent_Quality~
 #The Production Quantity deviation feature
 Quantity_Deviation_new +
 #The Production Quantity deviation feature
 Stage1_PrevProduct_1 +
 #Raw Material Quality Parameters
 Stage1_RM1_QParameter2 +
 Stage1_RM1_QParameter1 +
 Stage1_RM2_QParameter2 +
 Stage1_RM2_QParameter1 +
 Stage3_RM1_QParameter1 +
 Stage3_RM1_QParameter2 +
 Stage3_RM2_QParameter1 +
 Stage3_RM3_QParameter2 +
 Stage3_RM3_QParameter1 +
 #Machine/Resources used in a Stage
 Stage3_ResourceName_new +
 Stage1_ProductChange_Flag,
 data=new_train, classwt = c(0.4, 0.6),
 ntree=5000,mtry=3,replace=FALSE)

#.Training sample: Approximately 66:33 ratio for Good:Bad

Enhancing Predictive Analytics with Machine Learning for IoT

[220]

> fit

Call:
 randomForest(formula = Detergent_Quality ~ Quantity_Deviation_new +
Stage1_PrevProduct_1 + Stage1_RM1_QParameter2 + Stage1_RM1_QParameter1 +
Stage1_RM2_QParameter2 + Stage1_RM2_QParameter1 + Stage3_RM1_QParameter1 +
Stage3_RM1_QParameter2 + Stage3_RM2_QParameter1 + Stage3_RM3_QParameter2 +
Stage3_RM3_QParameter1 + Stage3_ResourceName_new +
Stage1_ProductChange_Flag, data = new_train, ntree = 5000, mtry = 3,
replace = FALSE, classwt = c(0.4, 0.6))
 Type of random forest: classification
 Number of trees: 5000
No. of variables tried at each split: 3

 OOB estimate of error rate: 21.71%

Confusion matrix:
 Bad Good class.error
Bad 131 44 0.2514286
Good 70 280 0.2000000

> prediction_rf_summary(fit,test)

[1] "Confusion Matrix :-"

 predicted
actuals Bad Good
 Bad 42 8
 Good 29 121

[1] ""
[1] "Overall_accuracy -> 0.815"
[1] "TPR -> 0.806666666666667"
[1] "TNR -> 0.84"
[1] "FP -> 0.16"

We can clearly see that our results have fairly improved. We have above 80% accuracy for
TPR and TNR as well as the overall accuracy. This is by far the best result that we have
achieved in our predictive modeling and machine learning experiments.

Let's take a pause and contemplate whether the current results add value to the overall
business and can we showcase the results to John?

By all means, Yes. We have certainly created valuable and actionable results for John's team
to go ahead.

Enhancing Predictive Analytics with Machine Learning for IoT

[221]

How?
For simplicity, let's assume that the data we have is the universal set of data for detergent
manufacturing orders. We have 1,000 orders where 225 cases had Bad quality detergent
produce and the rest, Good quality. So, in a nutshell, the 225 Bad quality cases resulting to
around 20% of the overall quantity of detergent manufactured had to be discarded resulting
in operational losses. With our predictive solution in place, the team responsible for the
manufacturing can achieve reduced operational losses by taking counter measures for the
cases where Bad quality produce was identified before manufacturing.

Let's nail this in simple math.

We have 80% TPR, that is, from all the actual Good quality produce, we correctly predicted
that 80% of them were going to yield Good quality after manufacturing.

We have 80% TNR, which shows that from all the actual Bad Quality Produce, we have
correctly predicted 80% of them. Therefore, we have given actionable means to reduce 80%
of the overall 20% bad quality produce-16%. This means that for the remaining 4% bad
quality produce, our model predicted incorrectly as Good quality. These 4% cases are what
we have missed in the overall picture.

Therefore, we can see a tangible value addition to John's team where they can take
actionable measures to reduce the bad quality produce.

Can we improve this further?
Even though we have achieved relatively good results, we still have a scope for
improvement. Our solutions can be enhanced further if we can drop the FPR and FNR, that
is, False Negative Rate.

What can we do to achieve this?
There is a variety of measures associated with improving a model to a better extent. This
includes more and more feature engineering, adding new data dimensions if possible,
capturing more and more data, that is, increasing training sample size, tuning the model,
and calibrating the hyperparameters to generalize better. Discussing these topics would
require more advanced statistical and domain skills that will be difficult to elaborate in the
scope of this book. Hence, we pause our results here momentarily.

As a next step, you will learn and build a few more powerful and popular machine learning
and artificial intelligence modeling techniques.

Enhancing Predictive Analytics with Machine Learning for IoT

[222]

Ensemble modeling – XGBoost
XGBoost, that is, Extreme Gradient Boosting, is a very popular machine learning ensemble
technique that has helped data scientists across the globe to achieve great results with
phenomenal accuracy. XGBoost is built on the principles of ensemble modeling and is an
improved version of the Gradient Boosted Machine algorithm. In general, the XgBoost
algorithm creates multiple classifiers that are weak learners, which means a model that
gives a bit better accuracy than just a random guess. The learner in the ensemble model can
be a linear or tree model that is built iteratively with random sampling along with an added
weight from the learnings of the previously built model. At each step, a tree is built and the
cases where the tree has failed to classify an outcome correctly is assigned a corresponding
weight. The next iteration of model building learns from the mistakes of the previous
model. At each step, the weight of an incorrect prediction is calculated using an algorithm,
say mean squared error for regression or a logistic loss for classification. The next iteration
makes an attempt to reduce the loss and so on. Eventually, the last iteration would probably
have the best results for the prediction problem.

What is different in XgBoost?
Boosting in ensembles has always been a very hot and favorite topic for data scientists, but
is also usually criticized for overfitting. Gradient Boosted Machines (GBM) were among the
popular choices for classification and regression problems as they provide the analyst an
extensively customizable framework to build predictive models. XgBoost is an enhanced
version of GBM where it builds more stable models by reducing the chances of overfitting
to a great extent. It does so by leveraging an inbuilt penalty logic for complexity. It is a
simple mechanism to heavily penalize complexity at every iteration and therefore reduce
complexity about as much as reducing the bias. This heavily reduces the chances for the
model to overfit. Basically, regularization is a feature that was newly added to XgBoost
when compared to the legacy GBM to render favorable results. Moreover, the speed of
converging in Xgboost has been greatly improved and therefore allows one to iterate and
tune faster.

Let's quickly build an xgboost model for the same problem that we tried in random forest.
We'll use the 'xgboost' package that will have the necessary functions to build the model.

The xgboost package in R provides us with a function with the same name to train the
model. This function, however, accepts only numeric values. Therefore, the categorical
variables in our dataset such as Quantity Deviation, Product Change flag, and others all
have to be converted to a numeric variable. We can do this using one-hot coding, that is, a
binary flag for the respective class.

Enhancing Predictive Analytics with Machine Learning for IoT

[223]

Also, as we previously saw our results being favored for a weighted balanced sample for
the training, we'll continue to use the same-a training sample with 66.66% 'Good' and the
rest as 'Bad':

#Modelling for XgBoost

#Importing the required libraries
library(xgboost)
library(Matrix)
set.seed(600)

#Converting the target variable to a binary 1/0 flag
 # that is, 1 = Good and 0 = Bad
data$y<-ifelse(data$Detergent_Quality=="Good",1,0)

#Collecting all numeric features together
features<-c(
'Stage1_RM1_QParameter2', 'Stage1_RM1_QParameter1',
'Stage1_RM2_QParameter2',
'Stage1_RM2_QParameter1', 'Stage3_RM1_QParameter1',
'Stage3_RM1_QParameter2',
'Stage3_RM2_QParameter1', 'Stage3_RM3_QParameter2',
'Stage3_RM3_QParameter1')

#Collecting all categorical features together
categorical<-c('Quantity_Deviation_new','Stage1_PrevProduct_1',
 'Stage1_ProductChange_Flag','Stage3_ResourceName_new')

#Creating a 20% sample for test and 80% Train
test_index<-sample(1:nrow(data),floor(nrow(data)*0.2))
train<-data[-test_index,]
test<-data[test_index,]

#Stratifying the training sample to get 50:50 training samples
new_train<-stratified(train,'Detergent_Quality',175)

#Creating a 66:33 ration training sample for Good:Bad
subset<-train[sample(rownames(train[train$y==1,]),350),]
new_train<-rbind(new_train[new_train$y==0,1:ncol(train)],subset)

#Converting the training and test datasets into sparse datasets
 #This takes care of creating binary variables for each categorical
variable
train.sparse<-sparse.model.matrix(y~.-1,
data=new_train[,c(features,'y',categorical)])
test.sparse<-sparse.model.matrix(y~.-1,
data=test[,c(features,'y',categorical)])
#Training an XGBoost model with the resampled training data

Enhancing Predictive Analytics with Machine Learning for IoT

[224]

xgb <- xgboost(data = train.sparse,
 label = new_train$y,
 objective="binary:logistic",
 eta = 0.1,
 max_depth = 12,
 nround=100,
 subsample = 0.8,
 colsample_bytree = 0.6,
 random.seed = set.seed(100),
 nfold=20,
 eval_metric = "error",
 nthread = 3,booster="gbtree",
 early.stop.round = 10,
 verbose = TRUE
)

The preceding code pretty much follows the same process as earlier. Additionally, it
converts the training and testing datasets to a sparse matrix so as to work with the xgboost
implementation in R. Let's have a closer look at the model building code. We see quite a few
new hyperparameters in the model building function call, such as objective, eta,
max_depth, eval_metric, and so on. Let's discuss them step by step.

XGboost's implementation in R is a very customizable framework. It allows the data
scientist to choose and customize a couple of parameters for improved performance. Most
of these parameters have default values if the data scientist doesn't wish to tune.

The first few options are exactly as they seem to be; data indicates the option for the
training set and label indicates the target/dependent variable. The Objective function helps
us define the type of model we are building; here, we attempt to build a classification model
and therefore we set objective as “binary:logistic”. For regression, we would have set it to
“reg:linear”. The eta parameter helps us control the learning rate, that is, it scales the
contribution of each tree by a factor of 0 < eta < 1 when it is added to the current
approximation. This is used to prevent overfitting by making the boosting process more
conservative. A lower value for eta implies a larger value for nrounds, that is,the number of
iterations. Similarly, a low eta value means that the model is more robust to overfitting but
slower to compute. The default value is set to 0.3; in our experiment, we have set it to 0.1
and taken a considerably higher value for the number of iterations. Max_depth defines the
maximum depth for the tree; the default value is set to 6 and we have chosen a slightly
higher value of 12.

Enhancing Predictive Analytics with Machine Learning for IoT

[225]

Subsample defines the ratio of the training instance, that is, the fraction of observations to
be randomly sampled for each tree. Setting it to 0.5 means that xgboost will randomly
collect half of the data instances to grow trees that eventually aid in preventing overfitting.
Colsample_bytree decides the maximum number of features to be randomly selected for
each tree. The default value is 1; we have set it to a slightly lower value of 0.6 to add
randomness to each tree. The eval_metric parameter defines the metric to be used for the
validation data. The default option set for classification is 'error' and 'rmse' for regression.
The boosting process is improved based on the results of the evaluation metric. The booster
parameter defines the type of the model for each iteration. We have two options to choose
for now: gbtree for a tree or gblinear for linear models. For most scenarios, we can blindly use
gbtree as a better option to build the ensemble model.

The early.stop.round helps xgboost decide when to stop iterating in the case of bad results
for a defined number of rounds. In some cases, boosting iterations deliver poor results
compared to the previous iteration. In such scenarios, it is better to kill the further iterations
and choose the recent best iterations for the model. Early.stop.iteration defines the number
of iterations to observe before stopping in the case of poorer results. After each iteration, the
xgboost algorithm prints the stats on the screen for us to interpret the model improvements.
We can disable this by setting Verbose = 0. Similarly, we also have an option to set the
number of parallel threads to be selected for the xgboost algorithm to process. Ignoring this
parameter will result in xgboost taking an automatically selected optimum value for
parallel processing.

Now that we have an understanding of how to build the algorithm, let's use the model to
predict the outcomes in our test dataset:

#Creating a function to predict the outcome
#And also calculate the TPR, TNR, FPR and overall accuracy
print_xgb_summary<- function(xgb,test.sparse,test)
 {
 y_pred <- predict(xgb, newdata=test.sparse)
 y_pred<-ifelse(y_pred>0.5,"Good","Bad")
 print(a<-table(test$Detergent_Quality,y_pred))
 print(paste("Overall accuracy ->",(sum(a[1,1],a[2,2])/sum(a))))
 print(paste("TPR ->",(a[2,2]/sum(a[2,1],a[2,2]))))
 print(paste("TNR ->",(a[1,1]/sum(a[1,1],a[1,2]))))
 print(paste("FPR ->",(a[1,2]/sum(a[1,1],a[1,2]))))
 }

#Showcasing the results
print_xgb_summary(xgb,test.sparse,test)

 y_pred
 Bad Good
 Bad 45 5

Enhancing Predictive Analytics with Machine Learning for IoT

[226]

 Good 30 120

[1] "Overall accuracy -> 0.825"
[1] "TPR -> 0.8"
[1] "TNR -> 0.9"
[1] "FPR -> 0.1"

Have the results improved when compared to the random forest results?

Hmm, looks like it.

If we take a closer look at all the metrics-overall accuracy, TPR, FPR, and TNR-we can see
that the TNR has improved quite a bit. The solution can still be concluded as a fairly
improved result or at par with the previous results.

Tuning our results further would need exploring the variables better and playing around
with the hyperparameters for more regularization. Xgboost provides us with a plethora of
options to tune and regularize; discussing all of them is beyond the scope of the book. We'll
try another attempt by changing a few parameters. We'll increase the scope of
early.stop.iteration and eta, and we'll try playing around with maximum depth,
subsampling, and column sample parameters:

#Training an XGBoost model with the resampled training data
xgb <- xgboost(data = train.sparse,
 label = new_train$y,
 objective="binary:logistic",
 eta = 0.1,
 max_depth = 15,
 nround=200,
 subsample = 0.6,
 colsample_bytree = 0.8,
 random.seed = set.seed(100),
 nfold=20,
 eval_metric = "error",
 nthread = 3,booster="gbtree",
 early.stop.round =20,
 verbose = TRUE
)
print_xgb_summary(xgb,test.sparse,test)
 y_pred
 Bad Good
 Bad 42 8
 Good 30 120
[1] "Overall accuracy -> 0.81"
[1] "TPR -> 0.8"
[1] "TNR -> 0.84"
[1] "FPR -> 0.16"

Enhancing Predictive Analytics with Machine Learning for IoT

[227]

We don't see any further improvement; instead, we see a slight dip in the overall accuracy.
We can keep exploring other tuning parameters available in the xgboost implementation in
R and execute a series of experiments on a trial and error basis to see where we can improve
our results. Moreover, before affirmatively concluding that the results we received in
xgboost by far are good, we need to do a simple check to validate whether this holds true in
most cases.

Are we really getting good results?
Boosting algorithms are prone to overfitting; xgboost has, however, improved this
immensely compared to its predecessors but still there are chances for overfitting, especially
when the data is imbalanced.

To validate this, we'll quickly check the results using the prediction on the training dataset:

#Using the previously define function to predict on the training dataset
print_xgb_summary(xgb,train.sparse,new_train)

 y_pred
 Bad Good
 Bad 173 2
 Good 0 350

[1] "Overall accuracy -> 0.996190476190476"
[1] "TPR -> 1"
[1] "TNR -> 0.988571428571429"
[1] "FPR -> 0.0114285714285714"

We can clearly see that the results are highly overfitting. Even though we got favorable
results in the test dataset, but there seems to be a huge difference between the results of the
training and testing dataset. With this overfitting model, we can't really leverage the results
we achieved in the test dataset as it is highly prone to give completely different results if we
use another small test sample.

Similarly, boosting algorithms may also be highly unstable, which means getting different
results while iteratively building a model using the same data and parameters.

Therefore, taking this model ahead will result in a very unstable prediction power as we
might see completely different results with another testing sample. Therefore, we conclude
the results from random forest as the best results by far and move ahead.

Enhancing Predictive Analytics with Machine Learning for IoT

[228]

What next?
The first step to get the best results in predictive analytics is delving deeper into the data
like we did in Chapter 3, The What and Why – Using Exploratory Decision Science for IoT-in
fact even more. Exploring really deep into the data coupled with strong business domain
knowledge will aid a data scientist in creating new features that will draft the story. Taking
these learnings to the modeling technique and improving the results by regularizing and
calibrating the model using a variety of methods will help us get the best.

Before we conclude our results and convey it to John, we will give one last attempt with an
advanced and very promising area in the field of machine learning and artificial
intelligence-Neural Networks and Deep Learning. Inspired from the model of the human
brain, neural networks and deep learning have proven the capability to render robust
solutions by studying complicated relationships in the data at ease. Limiting the scope of
our book, we'll study the nuances of neural networks and deep learning and also
understand its different types and applications in today's world. Once we have a sound
understanding of the topic, we'll build a few simple deep learning models on our existing
use case and see if there are any improvements.

A cautionary note
Neural networks and deep learning are extremely vast and complicated topics. Exploring
and experimenting such a vast topic in depth will be beyond the scope of this book. The
following section will be a preliminary and early introduction to the topic. The objective of
introducing the topic and experimenting our use case is solely to give you a fair idea on
how to get started. You are encouraged to further explore and learn these topics.

Neural Networks and Deep Learning
Neural networks and deep learning have been a promising area in machine learning and
artificial intelligence over the last two decades. The recent growth has been phenomenal as
we can see the industry using them to solve a variety of problems that were previously
difficult. We have been knowingly or unknowingly using applications in our daily life that
have been built using these sophisticated technologies. The Google Now, Apple's Siri, or
Microsoft Cortana voice-enabled digital assistant applications have all been developed
using powerful deep learning techniques. Similarly, the face detection feature that you
would have noticed while uploading your photos to Facebook, real-time language
translation tools, and so on have been developed using the latest and most powerful neural
networks and deep learning techniques.

Enhancing Predictive Analytics with Machine Learning for IoT

[229]

So what is so cool about neural networks and
deep learning?
Essentially, we have always used a computer to build software and applications to ease our
lifestyle. The predictive algorithms that we build have taken a step ahead by solving
problems that were relatively complicated for a human being to solve. However, there is a
class of problems that is easily solved by humans but gets extremely difficult for a computer
to solve. These problems were initially focused mainly on the vision- and speech-related use
cases. When we do a Google search on “cars in yellow color”, it shows us results with many
images of a car in yellow color. For a human being to distinguish and classify an image with
this criteria, that is, “car in yellow color”, is a very easy task, but it used to be an extremely
challenging task for aiding the ability for a computer to recognize and distinguish.

It all starts with how a human brain processes information received in the form of visuals
and speech/audio. A human brain is composed of an extremely dense network of biological
neurons that process and pass information to other connected neurons in a fraction of a
second. Many such interconnected neurons together help in solving a set of problems.

The initial attempts to aid the computer in recognizing image/video visuals or speech/audio
clips have failed miserably. The process of training a computer to learn these patterns was a
mammoth and extremely complicated task. Neural networks and deep learning was an
attempt to solve such problems by mimicking a highly simplified version of the human
brain. In recent years, the advancement in these areas has been colossal and we have
tangibly seen how it impacts our day-to-day life. Let's understand these complicated terms
in a more simplified way.

What is a neural network?
A neural network, in the simplest form, can be defined as “a computing system made up of
a number of simple, highly interconnected processing elements, which process information
by their dynamic state response to external inputs”. In a nutshell, neural networks create a
network of highly interconnected neurons-simple processing units-by mimicking a highly
simplified version of the human brain to solve problems. These neurons are usually
arranged into a number of layers. A typical feedforward neural network will have at a
minimum an input layer, hidden layer, and output layer. The input layer nodes correspond
to the number of features or attributes you wish to feed into the neural network. These are
similar to the features/dimensions we would use in the linear and logistic regression
models. The number of output nodes correspond to the number of items you wish to
predict or classify. The hidden layer nodes are generally used to perform nonlinear
transformations on the original input attributes.

Enhancing Predictive Analytics with Machine Learning for IoT

[230]

Neural networks were initially built to solve problems in the area of speech and visuals, but
has now been leveraged in almost every other field for phenomenal problem solving
capabilities.

The following image shows a simple neural network with a single hidden layer:

It's a simple neural network with three inputs, two outputs, and one hidden layer (multiple
hidden layers are also possible) with four neurons. Each connection in the preceding image
has a weight associated with it. Each neuron receives an input from the preceding node,
processes some information based on a function, and passes the information to the next
node. The final output nodes will have the result. The learning process for the neural
network is done using a simple algorithm like backpropagation, where it tries to reduce the
error by changing the weights associated with each connection between the neurons.

Enhancing Predictive Analytics with Machine Learning for IoT

[231]

To simplify the overall process, compare the preceding image with the example we used
earlier to learn decision trees, that is, predicting whether an employee is a Techie or
Corporate. The three input nodes can be features such as dress code, age, and gender and
the final output will have one node for Techie and one node for Corporate. Based on the
value in the final node, we can take a call for yes or no.

So what is deep learning?
In a nutshell, deep learning can be defined as a neural network with many more hidden
layers (it is definitely a lot more than this; we'll discuss this in a while). As you can see, in
the previous example, we have a neural network with a single hidden layer. Most neural
networks have 2-3 hidden layers at the most. Deep neural networks, however, are much
deeper than neural networks in the real sense. They can be as deep as 25-30 layers to solve a
complex voice recognition problem.

Deep learning is an advancement in the field of neural networks. A quick question would
arise to many of us: what is the actual need to classify a neural network with many hidden
layers as deep learning; aren't they pretty much the same?

The answer would be a 'yes' as well as 'no'. Let me explain. The initial attempts to build a
neural network had the sole vision of solving complex problems that were not achievable
using the existing techniques. The highly simplified model of the human brain built using
programming helped the model learn complicated features and patterns that helped in
early success. A simple thought that triggered was that having more numbers of hidden
layers will help the model learn more complicated features and patterns and therefore solve
more complex problems. This was, however, not true. Attempts to train and build neural
networks with multiple layers for almost two decades have rarely been successful. There
was absolutely no benefit leveraged from the addition of more than one hidden layer,
mainly because of the “vanishing gradient” effect.

The discovery of a different approach in training the lower layers in a neural network that
then passes on the processed information to the upper layers in a problem-agnostic manner
helped leverage the power of multiple layers in solving more complex problems. This
advancement helped neural networks achieve a different level of success in solving
problems with huge complexities. This is how deep learning was born, taking the name
from the deep layers built in the neural network to learn complex functions.

Enhancing Predictive Analytics with Machine Learning for IoT

[232]

The following diagram shows a deep neural network with three hidden layers along with
one input and output layer:

So what problems can neural networks and deep
learning solve?
Neural networks and deep learning together have solved revolutionary problems. The
benefits have been clearly seen in our day-to-day activities. All of us have benefitted from
the problems solved by deep learning in some way or the other. Here are a few broad
examples of the areas where neural network and deep learning technologies have solved
problems:

Regression: Our plain old vanilla problems have been taken a notch
further by leveraging deep learning techniques to solve the problems
Classification: The classification problems for binary and multiclass
classification have seen phenomenal improvements by leveraging the
deep learning techniques

Enhancing Predictive Analytics with Machine Learning for IoT

[233]

Pattern recognition:
Finding patterns in text, videos, and images
Speech detection, that is, conversion of speech to text and text to
speech
Language translation for speech and text
Video analytics for sports and forensics

Some major milestones can been seen recently in the advancement of the software
applications that we use on a daily basis.

Google Translate with video helps you use your phone to view a signboard or other boards
in a different language to convert it to another language in real time. Accuracy of speech-to-
text conversion has seen phenomenal improvement. Image analysis and pattern detection
have made tools like Google Photos very intelligent. Sequenced photographs are
automatically detected to create short animated movies. Searching your image gallery has
now options to search by image, background, or person.

Enhancements in sports videos such as real-time path tracing of the ball in cricket and
augmentation of extra information in the video aids the audience to consume information at
ease. The autonomous cars and drones, auto-pilot feature in planes, self-guided missiles,
and so on have been enhancing our life in one way or the other.

Suggestions while shopping on an e-commerce website, autocompletion features while
typing text in your phone, the spellcheck and grammar check tools in different software,
and so on all leverage deep learning techniques.

A variety of features that you might have missed out like your smart AC that reduces
power consumption, the brightness of your smartphone's screen being auto-adjusted, and
the auto-enhancements to your selfies and photos all have a touch of deep learning in it.

We will, however, use deep learning techniques to continue the problem solving exercise on
the same page where we left Xgboost. We'll try to see whether we get any enhanced results
for our use case using neural networks and deep learning.

Enhancing Predictive Analytics with Machine Learning for IoT

[234]

So how does a neural network work?
We'll start understanding the different components in a neural network in brief. A simple
neural network can fundamentally be broken into four main areas:

Neurons
Edges (connections)
Activation function
Learning

Let's discuss them one by one.

Neurons
The following image shows you the representation of a biological neuron in the brain.
Looking at the most important parts, we have axons, dendrites, and neurons:

Enhancing Predictive Analytics with Machine Learning for IoT

[235]

Biological neurons pass signals or messages to each other via electrical signals or impulses.
Adjacent neurons receive these signals through their dendrites. Information flows from the
dendrites to the main cell body-the axon-to the axon terminals. In simple words, biological
neurons are computation machines passing messages between each other about various
biological functions. The preceding image represents two neurons connected to each other.

The crux of a neural network is a mathematical node, unit, or neuron, which is a simple
processing element. The information received in the input layer neurons is processed using
a mathematical function and then passed to the neurons in the hidden layer. This
information is again processed by the hidden layer neurons and passed to the output layer
neurons. An important point to note is that the information or message is processed via an
activation function. The activation function mimics brain neurons where it may or may not
send a signal based on the strength of the input signal. The result from the activation
function is then weighted and sent across to each connection in the next layer.

The whole process can be visualized in the following diagram:

The image on the right-hand side represents one of the neurons from the neural network's
hidden layer. It receives three input connections and each connection has a weight
associated with it. The values from the input nodes are multiplied with the weight and a
summation of all the weights and inputs is then passed to the activation function.

Enhancing Predictive Analytics with Machine Learning for IoT

[236]

The summation function can be represented as follows:

Where:

n is the total number of incoming neurons
Wij is the weight of the connection from ith neuron to the current neuron, that is, j
Xij is the output from the input neuron (ith neuron)
Bij is the bias

Bias is similar to the concept of intercept that you learned earlier in a linear and logistic
regression model. It allows the neural network model to shift the activation function
“upward” or “downward”. This helps the neural network be more flexible and therefore
deliver more robust and stable results.

Edges
Edges represent the connection between two neurons in two adjacent layers. It could be
between an input layer and hidden layer, between two hidden layers, or between a hidden
layer and output layer. Each edge carries a weight that is equivalent to the relevance of the
input neuron in deciding the feature:

Enhancing Predictive Analytics with Machine Learning for IoT

[237]

Activation function
The activation function helps the neurons in the hidden layer introduce non-linearity into
the network. The activation function is applied to the result of the summation function and
the output passed to the next neuron or neurons in the next layer. It stimulates the firing or
non-firing nature of the biological neuron. The biological neuron basically passes an
electrical signal to the next neuron based on the input signals it has received. To get a
similar functioning in the neurons in a neural network, we can design it to limit the output
of the neuron, usually to values between 0 to 1 or -1 to +1. In most cases, the same activation
function is used for every neuron in a network. Almost any nonlinear function does the job;
although for the backpropagation algorithm, it must be differentiable and it helps if the
function is bounded.

Among many choices, the sigmoid function is the most widely-used activation function. It
is an S-shaped differentiable activation function. It is popular mainly due to the
computational efficiency it delivers as it is easily differentiated.

Apart from the sigmoid function, a few other popular activation functions used are the
linear function, hyperbolic tangent function, softmax function, Rectified Linear unit (ReLU),
and others.

Learning
Unlike the algorithms that we explored previously, neural networks have a slightly
different learning process. The learning process is iterative in nature, and with each
iteration, it tries to improve the weight of the edges so as to reduce the error and get closer
to the result. The process continues until the results fall below a prespecified threshold.

One of the most popular learning algorithms used for neural networks is the
backpropagation algorithm. (There are many more.) It was developed during the early days
and is still used widely. It uses gradient descent as the core learning mechanism. The
algorithm starts by assigning random weights to each edge in the network. It then calculates
the edge weights by making small changes and gradually making adjustments determined
by the error between the result produced by the network and the desired outcome.

The algorithm applies error propagation from outputs to inputs and gradually fine-tunes
the network weights to minimize the sum of error using the gradient descent technique.

Enhancing Predictive Analytics with Machine Learning for IoT

[238]

The algorithm for backpropagation learning can described as follows:

Initialize the weights for edges: Each edge is randomly assigned a weight to get
started. This can also be defined by the user.
Feedforward: The message is processed and passed forward through the network
from the input to hidden and output layer via node activation functions and
weights.
Calculate error: The result from the network is compared to the actual known
output. If the error is lower than a predefined threshold, the neural network is
trained and the algorithm terminated; otherwise, it is propagated.
Propagate: The weights of the edges are modified based on the error calculated at
the output layer. The algorithm propagates the error backward through the
network (therefore the name backpropagation) and computes the gradient of the
change in error with respect to changes in the weight values.
Adjust: The weights of the edges are adjusted using the gradients of change with
the sole objective of reducing the error. The weights and biases of each neuron
are adjusted by a factor based on the derivative of the activation function.

This is how the neural network learns while it is trained. Each cycle through this learning
process is called an epoch.

So what are the different types of neural networks?
Based on the architecture of the neural network, there is a variety of neural networks
established by scientists over the globe. The most popular ones that we have are as follows:

Feedforward neural network: A feedforward neural network is an
artificial neural network where connections between the units do not
form a cycle. It was the first and simplest type of artificial neural
network devised. The information moves in only one direction,
forward, from the input nodes through the hidden nodes (if any) and
to the output nodes; for example, Perceptrons and MLP.

Enhancing Predictive Analytics with Machine Learning for IoT

[239]

Recurrent neural network: A Recurrent Neural Network (RNN) contains at least
one feedback connection so that the activations can flow round in a loop. This
enables the networks to do temporal processing and learn sequences, for
example, performing sequence recognition/reproduction or temporal
association/prediction. Examples of RNN are Elman Networks, Jordan Networks,
and others:

Convolutional neural network: In convolutional neural networks (CNN), every
layer acts as a detection layer for the presence of specific features or patterns
present in the original data. The first layers in a CNN detect features that can be
recognized and interpreted relatively easy. The later layers detect smaller
features that are more abstract and usually present in many of the larger features
detected by the earlier layers. The last layer of the CNN is able to make
classification by combining all the specific features detected by the previous
layers in the input data.

Enhancing Predictive Analytics with Machine Learning for IoT

[240]

How do we go about modeling using a neural network
or deep learning technique?
The R programming language has numerous packages where we can get started to build
deep learning models. The most popular ones are neuralnet, AMORE, H20, RSNNS, and a
few more. For our use case, we'll use a very popular implementation of a feedforward
neural network called Multilayer Perceptron (MLP) available in the RSNNS package.

MLP is an advanced and improved implementation of a perceptron, that is, an algorithm
that is the simplest form of feedforward neural networks. A perceptron has only one hidden
layer of neurons whereas MLP, as the name suggests, has multiple hidden layers. MLP has
a lot of advantages over perceptrons; it can handle data better and model complex relations
more easily as it can distinguish data that is not linearly separable. Moreover, a two-layer
backpropagation network with sufficient hidden nodes has been proven to be a universal
approximator.

Occasionally, the multilayer perceptron fails to settle into the global minimum and instead
finds itself in one of the local minima. This is due to the gradient descent strategy followed.
Additionally, due to this, sometimes we get very unstable models. Unstable models can be
defined as a scenario where each iteration of the model with exactly the same parameter
settings on the same data gives very different results.

We'll start building the MLP deep learning models and try to see whether they render better
results than our previous solutions.

An MLP handles only numeric data. Therefore, we will be creating binary flags separately
and also normalizing the numeric data points before training the neural network:

library(RSNNS)

#creating a binary flag for the categorical variables
data$Quantity_Deviation_new_High<-
ifelse(data$Quantity_Deviation_new=="High",1,0)
data$Quantity_Deviation_new_Medium<-
ifelse(data$Quantity_Deviation_new=="Medium",1,0)
data$Quantity_Deviation_new_Low<-
ifelse(data$Quantity_Deviation_new=="Low",1,0)

data$Stage1_PrevProduct_1_Product_545<-ifelse(data$Stage1_PrevProduct_1 ==
"Product_545",1,0)
data$Stage1_PrevProduct_1_Others<-ifelse(data$Stage1_PrevProduct_1 ==
"Others",1,0)

data$Stage3_ResourceName_new_Resource_108<-
ifelse(data$Stage3_ResourceName_new=="Resource_108",1,0)

Enhancing Predictive Analytics with Machine Learning for IoT

[241]

data$Stage3_ResourceName_new_Resource_109<-
ifelse(data$Stage3_ResourceName_new=="Resource_109",1,0)
data$Stage3_ResourceName_new_Others<-
ifelse(data$Stage3_ResourceName_new=="Others",1,0)

data$Stage1_ProductChange_Flag_Yes<-
ifelse(data$Stage1_ProductChange_Flag=="Yes",1,0)

#Creating the test and train sample
set.seed(600)
#Creating a 20% sample for test and 80% Train
test_index<-sample(1:nrow(data),floor(nrow(data)*0.2))
train<-data[-test_index,]
test<-data[test_index,]

#Collecting the newly created variables together
binary_categorical<-
c("Quantity_Deviation_new_High","Quantity_Deviation_new_Medium",
"Quantity_Deviation_new_Low","Stage1_PrevProduct_1_Product_545",
"Stage1_PrevProduct_1_Others","Stage3_ResourceName_new_Resource_108",
"Stage3_ResourceName_new_Resource_109","Stage3_ResourceName_new_Others",
 "Stage1_ProductChange_Flag_Yes")

#Collecting all the numeric features together
features<-c(
'Stage1_RM1_QParameter2', 'Stage1_RM1_QParameter1',
'Stage1_RM2_QParameter2',
'Stage1_RM2_QParameter1', 'Stage3_RM1_QParameter1',
'Stage3_RM1_QParameter2',
'Stage3_RM2_QParameter1', 'Stage3_RM3_QParameter2',
'Stage3_RM3_QParameter1')

#Taking a 66:33 training sample for Good:Bad
new_train<-stratified(train,"Detergent_Quality",175)
subset<-train[sample(rownames(train[train$y==1,]),350),]
new_train<-rbind(new_train[new_train$y==0,1:ncol(train)],subset)

#Normalizing all the numeric columns in the data and then combining with
the cateogrical data
train.numeric<-normalizeData(new_train[,features])
train.numeric<-cbind(train.numeric,new_train[,binary_categorical])

#Normalizing all the numeric columns in the data and then combining with
the cateogrical data
test.numeric<-normalizeData(test[,features])
test.numeric<-cbind(test.numeric,test[,binary_categorical])

Enhancing Predictive Analytics with Machine Learning for IoT

[242]

Y<-new_train$y
X=train.numeric

fit<-mlp(x=train.numeric, y=Y, size = c(5,3),
 maxit = 100,
 initFunc = "Randomize_Weights",
 initFuncParams = c(-0.3, 0.3),
 learnFunc = "Std_Backpropagation",
 learnFuncParams = c(0.1, 0),
 updateFunc = "Topological_Order",
 updateFuncParams = c(0),
 hiddenActFunc = "Act_Logistic",
 shufflePatterns = TRUE,
 linOut = FALSE)

The codes used are pretty much the same; we have added a few extra snippets to manually
create the binary flags for the four categorical variables in our selection as MLP handles
only numeric data. Also, we have normalized the continuous variables in the dataset using
an inbuilt function available in the RSNNS package.

Finally, we take a rebalanced 66:33 ratio training sample for the Good:Bad like our previous
experiments. The function call for the mlp neural network is highlighted in the preceding
code. We'll quickly touch base on the newly seen parameters here. The size parameter
defines the number of neurons in each hidden layer. For the current iteration, we have
defined two hidden layers with five and three neurons in the respective layers. The maxit
parameter defines the upper limit for the maximum iterations that the neural network
should execute to find the best estimates for the weights of the edges. The initFunc
parameter defines the initialization function to initialize the weights of the edges in the
network. In most cases, it is best to go ahead with random weights. Assigning the function
as “Randomize_Weights” tells the mlp function to take care of the process.

The learnFunc parameter defines the learning algorithm for the network. We can choose
“Std_Backpropagation”, that is, the learning algorithm you learned a while back. It is the
most popular and widely-used learning function. There are a few other options also
available within the package, which you can give a try. We need to define the activation
function for the neurons in the hidden layer. We have a few other options such as SCG
(Scaled Conjugate Gradient), Rprop, Quickprop, and others. Each learning technique comes
with its own advantages and disadvantages that can be leveraged based on the variations in
the data. Lastly, the linout option is set to false as we are modeling for a classification case
and not a linear regression use case.

Enhancing Predictive Analytics with Machine Learning for IoT

[243]

We have selected the number of neurons and layers pretty randomly. A general thumb rule
can be defined as the lower the number of neurons in each layer, the lower are the chances
of overfitting. We can use a trial and error method to see and validate what number of
layers and neurons will be best suited for the neural network. As mentioned earlier, a
network with two layers have been universally showing great results. Therefore, we also
choose two hidden layers for the network.

Let's now try to see how good our model predicts on the test data. We'll construct a function
similar to the previous model that will predict and calculate our metrics of interest, that is,
TPR, TNR, FPR, and overall accuracy:

print_mlp_summary<-function(fit,test.numeric, test)
{
 yhat<-predict(fit,test.numeric)
 yhat<-ifelse(yhat>0.5,1,0)
 confusion_matrix<- table(test$y,yhat)
 print("Confusion Matrix :-")
 print(confusion_matrix)
 TP<-confusion_matrix[2,2]
 FP<-confusion_matrix[1,2]
 TN<-confusion_matrix[1,1]
 FN<-confusion_matrix[2,1]
 print(paste("Overall_accuracy ->",(TP+TN)/sum(confusion_matrix)))
 print(paste("TPR -> ",TP/(TP+FN)))
 print(paste("TNR -> ",TN/(TN+FP)))
 print(paste("FP -> ",FP/(TN+FP)))

}

print_mlp_summary(fit,test.numeric,test)

 yhat
 0 1
 0 40 10
 1 42 108

[1] "Overall_accuracy -> 0.74"
[1] "TPR -> 0.72"
[1] "TNR -> 0.8"
[1] "FP -> 0.2"

Enhancing Predictive Analytics with Machine Learning for IoT

[244]

We don't really see great results. The results are relatively poor when we compare it with
our previous iteration. Our overall accuracy, TPR, and TNR all have dipped by a small
fraction in comparison with our previous results. Before we go ahead and finalize our
results, we still need to finalize whether the model is stable and whether it overfits.

We'll need to test the prediction results with our training data to check whether there is a
huge difference in the result:

> print_mlp_summary(fit,train.numeric,new_train)

[1] "Overall_accuracy -> 0.811428571428571"
[1] "TPR -> 0.768571428571429"
[1] "TNR -> 0.897142857142857"
[1] "FP -> 0.102857142857143"

We can observe that the results are slightly overfitting, but still better than what we
previously saw in Xgboost. Probably, the results are also unstable. We can check this by
iterating the model execution a couple of times using the same parameter setting and data.
If the results vary too much, we can conclude that the model is also unstable.

The following result is the output of another iteration of the model building exercise with
the same training dataset and hyperparameters:

[1] "Confusion Matrix :-"

 yhat
 0 1
 0 43 7
 1 43 107

[1] "Overall_accuracy -> 0.75"
[1] "TPR -> 0.713333333333333"
[1] "TNR -> 0.86"
[1] "FP -> 0.14"

The results are fairly similar; therefore, we can say that the model is relatively stable, does
not overfit to a great extent, and has an overall average performance. However, we can't
publish the preceding results as the best results and hand it over to John's team. They are
not the best results that we have got so far; we have another model-random forest-that gives
us the best result for the current exercise. We can either tune our deep learning model
further to deliver better and more stable results or we can go back and choose any of the
previous experiments and tune the model better.

Enhancing Predictive Analytics with Machine Learning for IoT

[245]

What next?
We will now take a break in our predictive analytics experiments and assimilate our
learnings from all the exercises and put forward our best results. The experiments to tweak
and tune can go on forever. We will, therefore, take the best results we have achieved by far
in the predictive analytics stack.

What have we achieved till now?
We started solving the problem by surfacing the predictive stack in analytics. We started
solving the problem in the previous chapter using linear regression to predict one of the
critical output quality parameters for the detergent manufactured. We then tried using a
more powerful yet simple algorithm to predict the continuous variable. We still didn't see
any major improvements in our results, and so we alternatively tried modeling for a binary
outcome. We built classification models using a very simple technique called logistic
regression and saw promising results to experiment more. We saw a ray of hope to improve
the model accuracy using a balanced sample.

We then leveraged cutting-edge algorithms in machine learning to learn the patterns in
order to predict the chances of a 'Bad' quality detergent better. We used ensemble machine
learning models such as random forest and XgBoost. We got the best results in our entire
journey with random forest-above 80% TPR, TNR, and overall accuracy. The boosting
algorithms, however, didn't favor good results as they couldn't fit the data in a generalized
way. Finally, we explored and experimented with the basics of neural networks and deep
learning to take a shot at improving results. We got fairly good results, but not better than
random forest.

We can, therefore, take our random forest model to John's team for the prediction problem
they are trying to solve in order to reduce the bad quality detergent produce in the plant.

Packaging our results
Let's quickly package our findings and learnings as a solution for John's team. We'll have a
quick recap for the entire problem solving journey for the detergent quality use case.

Enhancing Predictive Analytics with Machine Learning for IoT

[246]

A quick recap
It all started when the manufacturing plant for a giant consumer goods company located in
Pune, India faced heavy losses in business due to frequent bad quality detergent being
manufactured. John, the operational head, reached out to us to check whether we could
help him find out the reasons for the bad quality detergent manufactured. We used the art
of problem solving and studied in detail the dynamics of the problem. We spent quality
time understanding the problem and then defined the problem using a very famous
industry artefact, SCQ.

After defining the problem, we brainstormed on the different factors and designed various
hypotheses that could help us in solving the problem. We designed the high-level yet
exhaustive solution/blueprint for the problem using a structured framework-the problem
solving framework. We then dived into the data and validated the different hypotheses we
designed using the problem solving framework. Finally, we assimilated all our learning
from the hypotheses testing exercise and laid out the reasons to the problem to John.

John was impressed by the solution and his team had a better understanding of the problem
and reasons that played a pivotal role in it. John's team further reached out to us to check
whether we could help his team even better by building a predictive solution that could
help them take better and more targeted decisions before the manufacturing process and
thereby reduce losses.

We then surfaced the predictive stack of analytics for problem solving. We discussed,
experimented, and practically implemented linear regression, logistic regression, decision
trees, machine learning techniques such as random forest and xgboost, and deep learning
techniques such as multilayer perceptrons. From all our experiments, we got the best results
from the random forest model. We achieved above 80% overall accuracy, above 80% True
Positive Rate (predicting Good quality detergent correctly), and above 80% True Negative
Rate (correctly predicting a Bad quality detergent produce).

Results from our predictive modeling exercise
With our predictive model in place, we can help John's team take countermeasures in 80%
of the cases where the chances of a bad quality produce is high. Therefore, the operational
team now has an opportunity to tackle and mitigate 80% of the overall 20% bad quality
detergent manufactured. This will directly help them reduce the bad quality detergent
produce from ~20% to 4% that can translate to approximately 16% increment in the $
revenue.

Enhancing Predictive Analytics with Machine Learning for IoT

[247]

Few points to note
In the entire problem solving journey, we took a very simple approach. There could be
many different or even better alternative paths. The differences could be in the way we
defined the problem or even in the techniques and statistical tests used in the solution.
When our results from a machine learning or statistical technique were not encouraging, we
quickly moved on to experiment with another one. This approach definitely works but may
not be the best or most ideal way. There is a variety of methods to fine-tune a model further
by regularizing and calibrating the models to a great extent without choosing another
technique. Drafting these approaches is a very vast topic to which we can't do justice with a
small section in our chapter. The learning path taken during the book was focused on
engaging and building a variety of skillsets to solve a problem.

Similarly, in our use case, we saw the best results from the random forest model; this
doesn't imply that the random forest model will always surpass the other techniques we
discussed or are available in the industry. The results were purely a function of the data we
used for our use case. Different use cases will have different dimensions in data and
altogether different patterns for which a different technique might fit the best. It is always
recommended to explore the data to a great extent to understand the patterns and test with
different techniques to see which one delivers the best results. Trial and error testing has
always given a very easy and fast means for many data scientists to achieve great results.

Lastly, the iterations required in a predictive modeling exercise to see good results and
improve it further are very high. The iteration we studied here is just a glimpse of many
iterations tried, which failed. It is highly recommended that you practice and experiment
exhaustively to improve the results and master predictive analytics.

Enhancing Predictive Analytics with Machine Learning for IoT

[248]

Summary
In this chapter, we took our predictive analytics skillset to a notch higher. You learned and
practically implemented sophisticated cutting-edge machine learning and deep learning
algorithms to improve our results in the predictive power. We studied ensemble modeling
techniques in machine learning such as random forest and extreme gradient boosting,
xgboost. You also learned the basics of neural networks and deep learning using
Multilayered Perceptrons, that is, MLP. In the overall exercise, we achieved better and
improved results for our use case to predict the end quality of the detergent before the
manufacturing process. We built a valuable solution for John and his team with an
opportunity where they could take immediate actions to mitigate the bad quality produce
and reduce the overall losses by 16%.

In the next chapter, we will reinforce our problem solving and decision science skills by
solving another IoT use case in a fast-track mode. We'll revisit the decision science journey
within a single chapter and ace the problem solving skillsets by the end of the chapter. In
the next chapter, we will focus on solving an IoT use case for a renewable energy industry
giant pioneering in producing solar energy.

6
Fast track Decision Science

with IoT
Decision science differs from data science in the path of problem solving on a variety of
factors. Though this can be a never-ending debate, decision science can be aligned more on
the front of solving problems using a structured framework that is inquisitively driven by
business questions, and data science can be defined as a more sophisticated version of data-
driven analytics and modeling. Our problem solving approach is more aligned with
decision science.

In Chapter 2, Studying the IoT Problem Universe and Designing a Use Case you learned in
depth about an IoT business use case. We then defined the problem and designed an
approach to solve it using the 'problem solving framework'. It helped us build the blueprint for
the problem solving task in detail. In Chapter 3, The What and Why -Using Exploratory
Decision Science for IoT we practically tried solving the problem using the approach drafted
in Chapter 2, Studying the IoT Problem Universe and Designing a Use Case. We had answers
to our 'what' and 'why' questions and therefore designed a simplified solution for the
problem. In Chapter 4, Experimenting Predictive Analytics for IoT we touched base with
predictive analytics to take the solution one step ahead and answer the question 'when'. In
Chapter 5, Enhancing Predictive Analytics with Machine Learning for IoT we used cutting-
edge machine learning algorithms to improve our predictive accuracy and solve the
problem better.

Fast track Decision Science with IoT

[250]

The entire exercise for problem solving took us four chapters, where we took a detailed step
in each phase to understand the different means to solve it. In this chapter, we will solve an
all new IoT use case from a new domain. We'll wrap up the solution for the entire use case
by the end of the chapter and assimilate our learnings to draft the solution. We will go
through the same fashion of problem solving, that is, defining the problem and approach
using the structured problem solving framework. We'll then get our hands dirty with the
data exploration phase and solve the problem in a very quick and agile way. By the end of
the chapter, we will reinforce our learnings on problem solving in decision science in a fast-
track mode.

This chapter will cover the following topics:

Setting the context for the problem
Defining the problem and designing the approach
Performing exploratory data analysis and feature engineering
Building a predictive model for the use case
Packaging the solution

Setting context for the problem
Let's start fresh with another new IoT use case from the renewable energy domain. Let's
assume that a multinational conglomerate giant has forayed into the field of renewable
energy to provide solar energy as a service for off-grid locations. The company aims to
provide end-to-end solar energy setup in areas where drawing an electric cable for power is
much more expensive than arranging diesel for a generator. Tropical countries in Africa
will be a perfect example for this scenario. Consider a small village in Uganda where there
is an abundance of solar energy but no electricity; many small to medium organizations rely
on diesel-powered generators for daily operations. The operational expenses for these
organizations would go beyond break-even as a huge cost is incurred in transporting and
arranging diesel, maintaining and servicing the diesel generators time to time, and
purchasing the required diesel to generate electricity.

The company engineered a solution where an organization of any size and power
requirements can be self-sustained by generating clean and cost-effective energy from the
sun for their daily operations. Solar panels are set up on the roof of the building or in the
premises of the organization. The remaining infrastructure is set up in one of the rooms of
the building to connect the battery, inverters, and other logistics. During the day, solar
panels charge the battery and provide power for the lighting and powering of the
instruments and other devices in the building.

Fast track Decision Science with IoT

[251]

The real problem
The major hurdle in the solution is the certainty whether the solar energy generated will be
enough to power the operation for the next day.

The admin head of the company is responsible for taking care of everything that would be
required for smooth operations during the day. As the generation of solar energy is
completely dependent on the weather conditions, it is important to make arrangements for
diesel to operate the generator if there isn't enough energy produced. Business will incur
huge losses if the solar panels are unable to produce sufficient energy due to bad weather
conditions or the operations that consumed more than usual energy to serve urgent
business requirements.

To solve the problem, there are multiple ways one could use. The company could either
overengineer the infrastructure so that the chances of running out of energy is the least, that
is, doubling the capacity than required. However, this solution is not at all viable. It will not
be a profitable deal to overengineer every solar tech installed. Alternatively, the admin head
could be asked to be prepared with a tank of diesel in advance to provide backup using
generators in events of low energy generation. This would also not be a viable solution for
the admin head as keeping backups everyday would also be an expensive deal.

To solve the problem intuitively, the company has reached out to us to help them close the
open ends with a cost-effective and viable option. A simple solution would be a tool that
predicts whether the solar energy produced for a day will be sufficient for the day's
operation-at least one day in advance.

In a nutshell, if the admin head is informed today that tomorrow it is highly likely that the
energy generated will not suffice the activities for the day, he will be in a better position to
make arrangements for the diesel required to operate the generator without incurring
business losses.

What next?
Now that we have enough context about the problem, we need to define the problem and
design it in a more detailed way using the frameworks that we studied earlier. Unlike the
previous use case, the problem here is much more focused and clear. We know pretty much
what exactly we need to solve. Here, more specifically, we will be answering the question
'when' and therefore our data exploration and research will be slightly different than the
previous use case. Further, to design the approach and study the problem landscape, we
will need access to a subject matter expert who can help us understand the problem better
and provide answers to our questions from a more domain-intrinsic view.

Fast track Decision Science with IoT

[252]

Defining the problem and designing the
approach
To define the business problem, we'll use the SCQ framework that we used in Chapter 2,
Studying the IoT Problem Universe and Designing a Use Case. It will help us clearly define the
current situation, complications, and key question. After defining the problem, we'll
research, ideate, and brainstorm to design the approach for the problem.

Building the SCQ: Situation – Complication –
Question

With the SCQ, we have clearly defined the problem by detailing the situation,
complications, and questions that need answers along with the 'resolution'.

To design the approach in more detail, we will need to research and ideate a lot of things
related to the domain. Moreover, we will need access to an SME who can provide us with
insights about how the internal system works in a location where the infrastructure is
deployed.

Fast track Decision Science with IoT

[253]

Research
To study the problem in detail, we need to study the dynamics of the problem better. We
need to study how solar panel setups work in general, the different types of solar panel
installations, problems that are faced during normal operations, and so on. Also, a fair
understanding about the solar panel ecosystem and different components will be an added
advantage.

Here is a curated list of questions along with a brief explanation. (The discussions with an
SME and Internet research will help in curating the following results.)

How does a solar panel ecosystem work?
A solar panel ecosystem consists of different assets such as a solar panel that converts solar
energy to electric energy when exposed to sunlight, a battery to store the energy when
charged by the panel, an inverter to convert the DC power from the battery to AC, and so
on. A few components could directly use the DC power from the battery; the rest would use
the AC power via the inverter.

Functioning
When the sun rays are incident on the solar panel, it allows the photons, or particles of light,
to knock electrons free from atoms, generating a flow of electricity. Solar panels actually
comprise of many small units called photovoltaic cells. Many cells linked together make up
a solar panel. The electricity generated is stored in the battery or sometimes directly
provided for use (when the battery is fully charged or generation is in surplus). A charge
controller prevents the battery from overcharging. The required power for an operation
could be DC or AC, based on the type of the device. In case of an AC load, the required
power can be drawn from the inverter (which converts DC power from the battery to AC)
or directly from the battery for DC power.

Fast track Decision Science with IoT

[254]

The following image showcases an overview of a basic:

What are the different kinds of solar panel installations?
The differences in the different types of solar panel installations can be basically be
identified by the support of the grid. Some setups may be completely off-grid solutions, that
is, there is no support of the grid at all. So if the battery dries off, then there is no other
source of energy.

Some have grid support; they can be configured to charge the battery from the grid in cases
where there is no battery power or energy or can also send the surplus energy generated to
the grid when the battery is fully charged and no other loads require additional energy.

What challenges are faced in operations supported by
solar panels?
Off-grid solutions face the biggest challenges when the system has no other means of
generating energy other than the sun. In case the battery dries up, the only alternative is to
set up a generator wait till the next sunrise.

Fast track Decision Science with IoT

[255]

The other versions where there is grid support, the battery can be charged using the grid for
surplus requirement in cases of low energy generation or heavy consumption. Also, the
surplus energy generated can be fed back to the grid when the battery is fully charged.

Similarly, regular cleaning of panels is required to keep the panels non-dusty.
Accumulation of dust and other dirt particles reduces the exposure of sun rays and
therefore reduces the amount of energy generated

Domain context
The preceding research notes give us a high-level idea about the solar panel setups. You are
encouraged to explore and research more. Now that we have a fair idea about the solar
panel and its infrastructure, let's get deep into the domain to understand the finer details
about the problem.

The company has set up solar panel installations at multiple locations in the tropical
countries as a part of their early experiments. These locations are basically catering to small
to mid-size organizations where 2-3 kilowatt capacity panels are enough for their daily
operations. We have data from one such plant located in a tropical country in a completely
off-grid area. The plant is a hospital that has around 20 beds for patients and can cater to
basic medical amenities for around 50 patients a day. There are in all three loads drawing
power from the solar infrastructure in the hospital. The AC load provides power to the
medical instruments, computers, and other equipment, the DC load powers the external
lights, and another DC load powers the internal lights. The solar panels are placed on the
roof of the building that is two-story high. A room on the first floor houses the remaining
infrastructure for the setup, that is, the inverter, battery, charge controller, and cables.

There are sensors installed in various components of the solar infrastructure to measure a
variety of parameters. The solar panel is equipped with sensors to measure the voltage,
instantaneous power, current, and energy generated. Similarly, the battery is also equipped
with a sensor to measure voltage, power, and current parameters. The inverter has another
sensor that measures similar parameters. An ambient sensor measures the temperature of
the panel and an irradiance sensor measures irradiance on the panel. Irradiance is nothing
but the total amount of sunlight incident on the panel. The panel is a 3 KW panel that is off-
grid and has no support for grid charging or discharging. Maintenance of the battery,
inverter, and panels happens in scheduled intervals.

Fast track Decision Science with IoT

[256]

In case the battery dries up, the admin in charge of the hospital makes arrangements for
diesel to operate the generator. The nearby locations have no fuel stations and therefore it
takes around 1-2 hours for an individual to arrange diesel from a distant fuel station.

Designing the approach
With sufficient domain context, we can now start brainstorming and ideating the different
factors that would affect the situation where there was no power to support the routine
operations in the clinic. Let's capture the factors in a map similar to Chapter 2, Studying the
IoT Problem Universe and Designing a Use Case:

There could be a variety of reasons for which the solar energy generated falls short for
consumption on a particular day, that is, power outages. The preceding factor map captures
the reasons that could potentially be a cause for the issue. It might be due to low solar
energy generated either due to faulty configuration of the panels, dust accumulation, or
cloudy ambient conditions. Similarly, the consumption could also be on the higher end for
that particular day or the previous 3-4 days, or it could be a combined effect of both, that is,
low generation of solar energy and higher consumption of energy for the current day or
past few days. The inverter could also be a potential cause for the sudden discharge of
power due to faulty operations; similarly, issues could also arise due to faulty batteries or
low battery energy remaining for the previous day.

As the problem is more focused on a predictive track, we probably need not create a
hypotheses matrix to prioritize and collect all our hypotheses. Instead, we can use the
preceding list of factors to understand how to solve the predictive problem. We can
leverage each and every data dimension we have to build a predictive model for the
solution. A few dimensions or factors that we brainstormed and captured in the preceding
image may not be available in the data. We will refurbish our factor/dimension list once we
have a complete understanding about the data landscape.

Fast track Decision Science with IoT

[257]

Next, as a part of designing our approach, we can lay out the steps that we need to execute
to solve the problem. We have defined the problem and identified the factors that could be
a potential reason for the issue. We should now explore the data landscape to understand
what kind of data we have and how we can use it. We will then conduct exploratory data
analysis on the data to uncover patterns that can be leveraged to build the predictive model
better. Our domain knowledge and results from the exploratory data analysis can be further
leveraged to create features, that is, feature engineering. With a variety of features and
predictors for the model in place, we can engineer the data specifically for the use case. As
the data granularity is at a sensor level and data is being captured at a minute level, we will
require data engineering to tame the data. We will finally build machine learning/predictive
models for our use case where we will try to predict whether the next day will be '0', that is,
energy sustained or '1', that is, no energy sustained; therefore, cueing the admin head that
backup would be required for the next day's operation.

The whole approach can be visualized in the following flow diagram:

Fast track Decision Science with IoT

[258]

Studying the data landscape
The data for our use case is captured from various sensors installed in the different assets of
the solar panel ecosystem. These sensors capture data at every minute level and push it to
the cloud. We have a dump of the sensor data for a variety of parameters from the cloud for
four months from one location.

The following diagram can be used to visualize the solar panel architecture and the sensors
that capture different data points:

The sensors are installed above and below the solar panels, in the battery, before and after
the inverter, and finally in the loads. (A load is similar to one endpoint of energy consumption
measured as an individual unit. Say, in a four-story building, each floor could be considered as a
load.) Altogether, these sensors help in capturing the voltage, instantaneous power, current
of the solar panel, battery, and individual DC loads. The amount of energy consumed by
the AC loads and two DC loads and the amount of energy generated by the solar panel is
also captured. The sensor above the solar panel captures the solar panel temperature and
the irradiance (insolation). As mentioned earlier, the current solar panel installation
considered in our use case does not have grid support and therefore, there is no charging or
discharging of energy to the grid.

Fast track Decision Science with IoT

[259]

The sensors measuring energy generated by the solar panel and consumed by the AC and
DC loads measure the amount of energy generated/consumed in the respective time
interval between two records, that is, ~1 minute.

Exploratory Data Analysis and Feature
Engineering
We will now focus on diving deep into the data and performing exploratory data analysis.
The following code downloads the data from my public Git repository and creates a data
frame. We'll start by exploring the data at a high level:

>#Read Solar Panel IoT use case CSV data from public repository

>url<-
"https://github.com/jojo62000/Smarter_Decisions/raw/master/Chapter%206/Data
/Final_SolarData.csv"

>#Load the data into a dataframe
>data<-read.csv(url)

>#Check the dimensions of the dataframe
>dim(data)
[1] 119296 23

>#Take a glimpse into each column of the dataframe
>str(data)

'data.frame': 119296 obs. of 23 variables:
 $ location : Factor w/ 1 level "Peru": 1 1 1 ...
 $ date_time : Factor w/ 119308 levels "2015-12-02
00:01:40",...
 $ solarvoltage : num 0 0 0 0 0 0 0 0 0 0 ...
 $ solarcurrent : num 0 0 0 0 0 0 0 0 0 0 ...
 $ solarenergy : num 0 0 0 0 0 0 0 0 0 0 ...
 $ solarpower : num 0 0 0 0 0 0 0 0 0 0 ...
 $ batteryvoltage : num 98.8 98.5 98.6 98.6 ...
 $ batterycurrent : num 0 0 0 0 0 0 0 0 0 0 ...
 $ batterypower : num 0 0 0 0 0 0 0 0 0 0 ...
 $ load_energy1 : num 0.01 0 0 0.01 0 ...
 $ load_power1 : num 192 185 176 189 179 ...
 $ load_current1 : num 1.01 0.98 0.93 1.01 ...
 $ load_voltage1 : num 189 188 188 189 189 ...
 $ load_energy2 : num 0.01 0 0 0 0 ...
 $ load_power2 : num 71.7 81.3 87.8 78.3 ...

Fast track Decision Science with IoT

[260]

 $ load_current2 : num 0.38 0.43 0.46 0.46 ...
 $ load_voltage2 : num 189 188 188 189 189 ...
 $ inverter_input_power : num 0.52 0.52 0.66 0.42 ...
 $ inverter_output_power : num 0.32 0.32 0.45 0.22 ...
 $ inverter_input_energy : num 0.01 0 0.03 0.01 ...
 $ inverter_output_energy: num 0 0.01 0.01 0.01 0 ...
 $ irradiance : int 0 15 0 0 0 30 0 0 ...
 $ temperature : num 38.4 38.4 38.4 38.4 ...

The data loaded is a data frame with 119,266 rows and 23 columns of data. If we look at
what kind of data we have in these columns using the str command, we can see that,
except for date_time and 'location', all other variables are numeric. The location contains
only value, that is, 'Peru' and we have date_time capturing the timestamp and is unique
for each row.

Let's see how many days' data we have and how they are distributed:

>#Load the R package required for date operations
>library(lubridate)

>#Convert the string to a timestamp format
>data$date_time<-ymd_hms(data$date_time)

>min(data$date_time)
[1] "2015-12-02 00:00:27 UTC"

>max(data$date_time)
[1] "2016-03-14 22:26:52 UTC"

We have data for approximately 3.5 months. However, do we have data for everyday
between this time period? Let's have a look:

>#Counting the number of distinct days in the data
>length(unique(date(data$date_time)))
[1] 104

>#Calculating the difference between min and max date time values
> difftime(ymd_hms(max(data$date_time)),ymd_hms(min(data$date_time)))
Time difference of 103.9342 days

Yes, we do have data for everyday for the time period.

Fast track Decision Science with IoT

[261]

Let's move on to the core parameters in the data one by one. To visualize the data, let's
consider a sample for a single day to see how the parameters behave over time. Based on
our findings, we'll further explore for a longer time period.

We'll start with solar panel parameters, that is, Solar Voltage, Solar Power, Solar Energy,
and Solar Current:

>#Selecting the Solar panel related parameters
>cols<- c("solarpower","solarvoltage","solarenergy","solarcurrent")
>summary(data[,cols])

 solarpower solarvoltage solarenergy solarcurrent
 Min. : 0.0 Min. : 0.00 Min. :0.000000 Min. : 0.000
 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.:0.000000 1st Qu.: 0.000
 Median : 0.0 Median : 0.00 Median :0.000000 Median : 1.170
 Mean : 508.3 Mean : 81.55 Mean :0.008706 Mean : 3.123
 3rd Qu.:1130.6 3rd Qu.:182.39 3rd Qu.:0.020000 3rd Qu.: 6.300
 Max. :2981.0 Max. :198.75 Max. :3.230000 Max. :18.350

We can see that the minimum is zero for all solar panel parameters and the maximum can
be seen as varying for different parameters. The data looks somewhat sparse and this is
expected. The solar panels will be active only in the presence of the sun, which is around
10-12 hours a day. Let's try to visualize how the parameters behave over the time of a day:

>#Select any one day for a sample
>day<-"2015-12-12"

>#Subset the data for the sample day
>sample<-data[date(data$date_time)==day,]
>summary(sample[,cols])

 solarpower solarvoltage solarenergy solarcurrent
 Min. : 0.0 Min. : 0.00 Min. :0.000000 Min. : 0.000
 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.:0.000000 1st Qu.: 0.000
 Median : 0.0 Median : 0.00 Median :0.000000 Median : 0.000
 Mean : 459.1 Mean : 85.21 Mean :0.007726 Mean : 2.522
 3rd Qu.: 993.3 3rd Qu.:184.02 3rd Qu.:0.010000 3rd Qu.: 5.370
 Max. :2173.6 Max. :191.62 Max. :0.090000 Max. :12.790

Fast track Decision Science with IoT

[262]

The summary of the solar panel parameters for a single day looks pretty much in sync with
the overall dataset. Let's look at the distribution of these parameters for a single day:

>library(ggplot2)

>#Plotting 4 line charts for the 4 different parameters
>ggplot(sample,aes(x=date_time,y=solarvoltage))+geom_line()
>ggplot(sample,aes(x=date_time,y=solarcurrent))+geom_line()
>ggplot(sample,aes(x=date_time,y=solarpower))+geom_line()
>ggplot(sample,aes(x=date_time,y=solarenergy))+geom_line()

The preceding plot uses a sample day's data, that is, 12th December, 2015. As expected, we
can see that the parameters have a finite value only when the sun shines. The x axis plots
the time of the day, and we can see that the sun shines and the solar panel is active for
around 12 hours, that is, approximately 6 A.M. to 6 P.M. The amount of energy generated
(top row of the plot on the right-hand side) is calculated for every one-minute interval. Let's
plot a pareto chart to study the cumulative generation across the day:

> sample$solarenergy_cumsum<-cumsum(sample$solarenergy)
> ggplot(sample,aes(x=date_time,y=solarenergy_cumsum))+geom_line()

Fast track Decision Science with IoT

[263]

The generation starts at 6 A.M. and continues till 6 P.M. in the evening. Overall for a day,
we can see around 9-10 units of energy being generated. The generation curve is
highlighted in the plot using the red dashed box.

So we see that all solar panel parameters are alive when the sun shines enough to generate
some finite energy from the panel. Approximately, we can conclude that for the considered
location, the sun shines for around 12 hours. Let's see how the energy generation varies
across days in the time period:

>library(dplyr)

>#Calculate Total Solar energy generated for each day
>data$date<-as.Date(data$date_time)
>new<-data %>% group_by(location,date) %>%
 summarise(total_senergy=sum(solarenergy))

>summary(new$total_senergy)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 4.960 9.275 10.030 9.987 10.900 13.020

Fast track Decision Science with IoT

[264]

The distribution clearly shows that most days we have around 9-10 units of energy
generated. Let's plot a line chart for the entire time period. This will help us understand
seasonality and trend in the time period:

> ggplot(new,aes(x=date,y=total_senergy)) +
 geom_line(colour="blue",size=1)+
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold")) +
 geom_hline(yintercept = 11,colour="red") +
 geom_hline(yintercept = 8,colour="red")

We can see that for a major time period, solar energy generated is between 8 and 11 (taking
a slightly wider window) units. There are surges (sudden increase) and sags (sudden
decrease) without a consistent pattern. However, overall we see a small dip from February
to March and then a steep increase.

Fast track Decision Science with IoT

[265]

So how does the consumption fare in comparison
with the generation?
We have three different loads for consumption-two DC loads and one AC load. Let's study
how the consumption data looks. Similar to solar energy, the load energy is also calculated
for a one-minute time interval. We can aggregate this data to a day level to study the
patterns. First, let's try to study how the consumption looks at a minute-level distribution:

Load is a term used to define an identified source for consumption. In a
four-storied building, one could define each floor as one load. In our use
case, the AC consumption and DC consumption is segregated and the DC
consumption is further segregated as interior and exterior lighting.

>cols<-c("load_energy1","load_energy2","inverter_input_energy")
>summary(data[,cols])

 load_energy1 load_energy2 inverter_input_energy
 Min. :0.00000 Min. :0.00000 Min. :0.000000
 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.000000
 Median :0.00000 Median :0.00000 Median :0.000000
 Mean :0.00298 Mean :0.00161 Mean :0.004202
 3rd Qu.:0.01000 3rd Qu.:0.00000 3rd Qu.:0.007000
 Max. :2.01000 Max. :0.27000 Max. :1.162000

The overall distribution for consumption parameters is comparable to the solar energy
generation patterns. The data overall seems very sparse.

The following codes takes a sample day's data to study the distribution:

>day<-"2015-12-12"

>#Collecting the consumption related parameters
>cols<-c("load_energy1","load_energy2","inverter_input_energy")

>#Taking a sample day's data
>sample<-data[date(data$date_time)==day,]

>#Calaculating cumulative sum for the consumption parameters
>sample$load_energy1_cumsum<-cumsum(sample$load_energy1)
>sample$load_energy2_cumsum<-cumsum(sample$load_energy2)
>sample$inverter_input_energy_cumsum<-
 cumsum(sample$inverter_input_energy)

>library(reshape2)
>a<-melt(sample,id.vars="date_time",
 measure.vars=c("load_energy1_cumsum","load_energy2_cumsum",

Fast track Decision Science with IoT

[266]

 "inverter_input_energy_cumsum"))

>#Plotting all 3 consumption trends for a day together
>ggplot(a,aes(x=date_time,y=value,group=variable,colour=variable)) +
 geom_line(size=1) +
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold"))

The consumption trends for load 1 and load 2 and the AC inverter load can be seen as a
linearly increasing trend. The highest consumption can be observed for load 1 and the
lowest for load 2; the inverter fares in-between. Let's also see how energy generation
compares with the combined consumption from all three loads together:

>#Calculating the energy consumed and generated at a day level
>new<-data %>% group_by(location,date) %>%
 summarise(total_solarenergy=sum(solarenergy),
 total_load1energy=sum(load_energy1),
 total_load2energy=sum(load_energy2),

Fast track Decision Science with IoT

[267]

 total_invenergy=sum(inverter_input_energy)
)

>#Calculating the total consumption from all 3 loads together
>new$total_consumption<-new$total_load1energy+
 new$total_load2energy+
 new$total_invenergy

>summary(new$total_consumption)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 5.830 8.743 9.979 10.090 11.360 14.820

>#Creating a melted dataframe for combined plot
>a<-melt(new,id.vars="date",measure.vars =
 c("total_solarenergy","total_consumption"))

>#Plotting the generation and consumption trends at a day level
>ggplot(a,aes(x=date,y=value,colour=variable)) +
 geom_line(size=1.5) +
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold"))

Fast track Decision Science with IoT

[268]

We can see that there are enough cases when the generation was more than the
consumption and vice versa. In the scenarios when the overall generation was lower than
the combined consumption, the surplus energy from the battery is used. There would have
definitely been cases when the remaining battery energy also wouldn't have sufficed. In
such cases, it's a power outage situation.

Battery
Let's move on to explore the battery parameters. We have the battery voltage, current, and
power. Similar to the previous exercise, we'll start with the study of the distribution of the
parameters:

#Collecting the battery related parameters
>cols<-c("batterypower","batteryvoltage","batterycurrent")
>summary(data[,cols])

 batterypower batteryvoltage batterycurrent
 Min. : 0.00 Min. : 0.00 Min. : 0.000
 1st Qu.: 0.00 1st Qu.: 97.02 1st Qu.: 0.000
 Median : 94.13 Median : 98.77 Median : 0.970
 Mean : 421.16 Mean : 98.69 Mean : 4.171
 3rd Qu.: 885.87 3rd Qu.:100.53 3rd Qu.: 8.840
 Max. :2526.64 Max. :112.07 Max. :23.990

The battery voltage parameter seems pretty different when compared to the other parameters
of the solar panel and other battery parameters. It is comparatively less sparse. This is
expected as the battery voltage is alive throughout the life of the battery unless it dries off.
Battery Power and Battery current on the other hand are very similar to the behavior of the
solar panel parameters. They are active in the presence of sunlight (when the panel charges
the battery). Let's study the trend of the battery parameters for a sample day's data:

>day<-"2016-01-31"
>sample<-data[date(data$date_time)==day,]

>#Plot Battery Power across Time
>ggplot(sample,aes(x=date_time,y=batterypower)) +
 geom_line() +
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold"))

>#Plot Battery Voltage across Time
>ggplot(sample,aes(x=date_time,y=batteryvoltage)) +
 geom_line() +
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold"))

Fast track Decision Science with IoT

[269]

>#Plot Battery Current across Time
>ggplot(sample,aes(x=date_time,y=batterycurrent)) +
 geom_line() +
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold"))

If we take a closer look at the battery voltage trend, we can clearly study the battery
discharge and charge cycle. The x axis plots the time from morning 12 A.M. to 11.59 P.M.
for a particular day. We can see that the battery voltage decreases consistently from
midnight to sunrise. After sunrise, the battery voltage increases and decreases
intermittently till evening 5 P.M. This indicates simultaneous charge and discharge. After
sunset, the battery again continues to discharge consistently.

Fast track Decision Science with IoT

[270]

Load
Let's now take a look at the load parameters. We have two DC loads and one AC inverter
load. We have already seen the distribution of energy consumed by the loads, therefore
we'll explore the remaining parameters:

>cols<-c("load_power1","load_voltage1","load_current1")
>summary(data[,cols])

 load_power1 load_voltage1 load_current1
 Min. : 55.03 Min. :127.8 Min. :0.2900
 1st Qu.:134.18 1st Qu.:186.1 1st Qu.:0.7000
 Median :165.37 Median :187.3 Median :0.8800
 Mean :174.80 Mean :186.7 Mean :0.9307
 3rd Qu.:204.62 3rd Qu.:188.1 3rd Qu.:1.0800
 Max. :461.43 Max. :190.9 Max. :2.4800

Similarly, we'll take a look at the distribution of the parameters for Load 2:

>cols<-c("load_power2","load_voltage2","load_current2")
>summary(data[,cols])

 load_power2 load_voltage2 load_current2
 Min. : 0.00 Min. :127.8 Min. :0.1300
 1st Qu.: 75.29 1st Qu.:186.1 1st Qu.:0.4100
 Median : 97.33 Median :187.3 Median :0.5100
 Mean : 94.92 Mean :186.7 Mean :0.5043
 3rd Qu.:113.06 3rd Qu.:188.1 3rd Qu.:0.6000
 Max. :242.00 Max. :190.9 Max. :1.3300

Load 1 and Load 2 are quite different in the data perspective. If we take a closer look at the
load power parameters, we can see that Load 1 has been live almost throughout the time
period whereas Load 2 has been relatively sparse. This can be tied to the usage of the
respective loads. Load 1 is used for internal lighting whereas Load 2 is used for external
lighting. External lights will be used only when it is dark, that is, post sunset, whereas
internal lights will be used almost throughout the day in some form or the other, say, for
the operation theatre or others. Also, the voltage for Load 1 as well as Load 2 is exactly the
same. This is because both the loads are DC loads and are drawing power from the same
battery.

Fast track Decision Science with IoT

[271]

Let's plot the trend for the DC load's current and power parameters together for a sample
day's data:

>#Consider the sample dataset with 1 day's data
>#Create a melted dataframe for Load Current 1 and 2
>a<-melt(sample,id.vars="date_time",
 measure.vars=c("load_current1","load_current2"))

>#Plotting Load 1 and Load 2 parameters across time
>ggplot(a,aes(x=date_time,y=value,group=variable,colour=variable)) +
 geom_line() +
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold"))

>#Create a melted dataframe for Load Power 1 and 2
>a<-melt(sample,id.vars="date_time",
 measure.vars=c("load_power1","load_power2"))

>#Plotting Load 1 and Load 2 parameters across time
>ggplot(a,aes(x=date_time,y=value,group=variable,colour=variable)) +
 geom_line() +
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold"))

Fast track Decision Science with IoT

[272]

The power and current trends for the same load are very much comparable. Though on a
different scale altogether, the trends look very similar for the same load. This is because the
power has a linear relationship with the current when voltage is constant.

Inverter
Last but not least, we need to study the inverter parameters. The inverter has energy- and
power-related parameters captured. For both the parameters, we have input as well as
output metrics captured. This is provided because there would be a difference in the
parameter values that are provided as an input and output. Firstly, the inverter will require
some finite amount of energy for its operations and secondly there would be some losses
occurred during the conversion from DC to AC. We'll study the input power parameters as
we have already studied the energy consumption parameter:

>cols<-c("inverter_input_power")
>summary(data[,cols])
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0000 0.1900 0.1900 0.2936 0.3300 2.3200

We can see small amounts of sparsity in the inverter power data and this usually happens
when the supply is completely cutoff or there is absolutely no consumption. The AC loads
are used by the instruments and other equipment for the clinic. The usage patterns may be
intermittent. Let's have a look at the distribution of inverter power data for a sample day:

>cols<-c("inverter_input_power")
>summary(data[,cols])
>ggplot(sample,aes(x=date_time,y=inverter_input_power)) +
 geom_line(size=1) +
 theme(axis.text=element_text(size=12),
 axis.title=element_text(size=15,face="bold"))

Fast track Decision Science with IoT

[273]

The preceding plot of inverter input power for a sample day's data can help us understand
how intermittent the AC load consumption can be. It can vary on the basis of patient
treatment requirements.

Assimilate learnings from the data exploration
exercise
So far, we have explored the different parameters in the data landscape. In the exploratory
data analysis phase, we deep-dived into the different parameters for the solar panel,
battery, and DC and AC loads. What have we learned till now?

Fast track Decision Science with IoT

[274]

Let's assimilate all our findings and learnings in
brief
We studied the distribution of the solar panel parameters such as power, voltage, current,
and energy generated and found that the pattern is in accordance with the sun as we
expected from the sparsity in the data. To take our understanding to a better level, we
explored the time series trend of the parameters for a sample day's data. The behavior of all
these patterns were in sync with the sunrise and sunset patterns. Most parameters are active
while the sun shines, that is, approximately 6 A.M. to 6 P.M. We also looked at the
cumulative energy generation trend for a sample day across time and also across the time
period at a day level and found that energy generation increases almost linearly during
daytime (6 A.M. to 6 P.M.); additionally, the energy generation trend on a day-to-day basis
lacks consistency for a pattern. Around 8-11 units of energy are generated on a daily basis.

We then explored the energy consumption patterns from the two DC loads and one AC
load and all of them combined together. We saw that the maximum consumption was
mostly seen from Load 2 and the least from Load 1. AC loads were more or less in the
middle throughout. The study of total energy generated and total energy consumed on a
day-to-day basis revealed that there have been enough cases where energy generated for a
day was lower than the energy consumed and vice versa.

While studying the battery parameters, we saw that, except for battery voltage, the other
parameters behave in accordance with the solar panel behavior. The voltage of the battery
decreases while discharging and increases while charging that was seen consistent for a
normal day during the sun hours. Also, the power, current, and voltage parameters for the
DC loads are intermittent and completely depend on the kind of devices consuming energy.
As power is in a linear relationship with current, we can see a similar trend for both the
parameters.

Lastly, exploring the inverter parameters, we studied that the inverter power trends are
very intermittent again due to the sporadic use of the AC load during the day.

Solving the problem
Now that we have a decent overview of the data, we'll take a pause to contemplate what
problem we are solving and how we will solve it.

Fast track Decision Science with IoT

[275]

The major problem or the pain point faced by the clinic with the solar panel installations is
the uncertainty about the sustenance of energy for the next day. So basically, we need to
predict whether there will be enough energy for the next day or not. Finding which day
there was a power outage is something we cannot directly calculate from the data. This is
because, apart from the energy consumed and energy generated difference, there is also a
finite amount of energy stored in the battery from the past generation.

We have a separate dataset that has recorded the power outage scenario for the same time
period and location. The data is a power outage flag, say 1 or 0 (1 indicating that there was a
power outage) for each day. We therefore need to build a model where we can have all the
metrics or features at day level. With data at this level, we can engineer the data to predict
the condition for the next day based on different features, metrics, and other data points for
the current day.

Now the question is, what kind of features can we define/engineer to represent a day in the
considered location?

This is where we need to get our hands dirty with feature engineering. Let's see what
information/features we can draft firsthand from the data.

Feature engineering
First and foremost, the easiest and most important features we can create are as follows:

Total solar energy generated for a day
Total energy consumed for a day

Similarly, the behavior of many parameters has a close relationship with the sun's activity,
that is, the solar panel activity. There would be variations in the behavior of the solar panel
on a day-to-day basis as it is completely dependent on the sun. It will be important to
engineer features to condense this information in the most appropriate way.

Let's start with simple features that should add value. The maximum value for most
parameters on a day level will have relatively good variations. The minimum, however, will
be 0 for most of the parameters, so let's chuck this for now.

Similarly, the duration for which these parameters were active, such as the solar current
will be 0 in the absence of the sun, but will have values beyond the threshold when the sun
rays are powerful enough to generate energy, is valuable. It may happen that, due to cloudy
weather, the duration for which the solar panel received sufficient sunlight was
comparatively less, which affects generation and therefore could be a potential reason for
power outage the next day.

Fast track Decision Science with IoT

[276]

Additionally, the amount of energy present in the battery at the start of the day and end of
the day will be helpful in deciding the chances for a power outage the next day. We have
battery voltage values for every minute. This can be used to find out the percentage of
energy left in the battery at a particular instant.

The battery's maximum voltage is 112 and minimum is 88V. The battery is
never allowed to drop below 30% of its capacity for performance reasons.
Here, 112V indicates 100% energy and 88V indicates 30% energy. We can
therefore calculate the percentage of energy left in the battery at any given
instant with the voltage alone.

We have not touched base on the irradiance and temperature readings till now. Ideally, a
solar panel is designed to work best when it receives an irradiance of 1,000 w/m2 at 25° C.
An increase or decrease in temperature causes a small reduction in the energy generated;
similarly, an irradiance value below 1,000 w/m2 will also reduce the generation of energy.
We can encode this information as features for a day. Say, the duration for which we had an
irradiance of at least 1,000 w/m2 and if deviated, then how much? The average absolute
deviation of panel temperature from 25° C during the day will also be valuable.

The insight about the effect of temperature and irradiance on solar energy
generation, and thereby other parameters, is ideally assumed to be an
outcome of the research or domain context conversations with the SME.

Let's quickly build these features for the data.

We'll first try to find out the duration for which a parameter was above the specified
threshold. We have defined thresholds for different parameters. We have chosen 5 Amperes
for Solar Current, 120V for Solar Voltage, 1,000 Watts for Solar Power, 10 Amperes for
battery current, and 800 Watts for battery power. These values have been considered after a
small deep-dive into the data and SME consultation:

>a<- data %>%
 mutate(
 s_current_ts = ifelse(solarcurrent > 5,as.numeric(date_time),NA),
 s_voltage_ts = ifelse(solarvoltage > 120,as.numeric(date_time),NA),
 s_power_ts = ifelse(solarpower > 1000,as.numeric(date_time),NA),
 b_current_ts = ifelse(batterycurrent >
10,as.numeric(date_time),NA),
 b_power_ts = ifelse(batterypower > 800,as.numeric(date_time),NA)
)

Fast track Decision Science with IoT

[277]

We can now create a couple of features at a day level like the ones we discussed earlier:

>a<-a %>% group_by(location,date) %>%
 summarise(
 #Calculating the maximum values at a day level
 max_solarpower=max(solarpower),
 max_solarcurrent=max(solarcurrent),
 max_solarvoltage=max(solarvoltage),

 #Calculating the mean/avg values at a day level
 mean_solarpower=mean(solarpower),
 mean_solarcurrent=mean(solarcurrent),
 mean_solarvoltage=mean(solarvoltage),

 #Calculating the min and max of date_time
 #for conditional parameters
 s_current_min=min(s_current_ts,na.rm=T),
 s_current_max=max(s_current_ts,na.rm=T),
 s_voltage_min=min(s_voltage_ts,na.rm=T),
 s_voltage_max=max(s_voltage_ts,na.rm=T),
 s_power_min=min(s_power_ts,na.rm=T),
 s_power_max=max(s_power_ts,na.rm=T),
 b_power_min=min(b_power_ts,na.rm=T),
 b_power_max=max(b_power_ts,na.rm=T),
 b_current_min=min(b_current_ts,na.rm=T),
 b_current_max=max(b_current_ts,na.rm=T),

 #Calculating total energy at a day level
 s_energy=sum(solarenergy),
 l1_energy=sum(load_energy1),
 l2_energy=sum(load_energy2),
 inv_energy=sum(inverter_input_energy),

 #Calculating first and last battery Voltages
 fbat=first(batteryvoltage),
 lbat=last(batteryvoltage)
)

>#Converting the data time to the proper required format
>a <- a %>%
 mutate(
 s_current_min=
as.POSIXct(s_current_min,origin="1970-01-01",tz="UTC"),
 s_current_max=
as.POSIXct(s_current_max,origin="1970-01-01",tz="UTC"),
 s_voltage_min=
as.POSIXct(s_voltage_min,origin="1970-01-01",tz="UTC"),
 s_voltage_max=

Fast track Decision Science with IoT

[278]

as.POSIXct(s_voltage_max,origin="1970-01-01",tz="UTC"),
 s_power_min= as.POSIXct(s_power_min,origin="1970-01-01",tz="UTC"),
 s_power_max= as.POSIXct(s_power_max,origin="1970-01-01",tz="UTC"),

 b_power_min= as.POSIXct(b_power_min,origin="1970-01-01",tz="UTC"),
 b_power_max= as.POSIXct(b_power_max,origin="1970-01-01",tz="UTC"),
 b_current_min=
as.POSIXct(b_current_min,origin="1970-01-01",tz="UTC"),
 b_current_max=
as.POSIXct(b_current_max,origin="1970-01-01",tz="UTC"),
 weekdays=weekdays(date)
)

>#Adding final changes to the dataset
>a<-a %>%
 mutate(
 #Calculating the time duration in mins for the parameters with active
 #Value above threshold
s_current_duration=as.numeric(difftime(s_current_max,s_current_min),units="
mins"),
s_voltage_duration=as.numeric(difftime(s_voltage_max,s_voltage_min),units="
mins"),
s_power_duration=as.numeric(difftime(s_power_max,s_power_min),units="mins")
,
b_power_duration=as.numeric(difftime(b_power_max,b_power_min),units="mins")
,
b_current_duration=as.numeric(difftime(b_current_max,b_current_min),units="
mins"),

 #Calculating % battery remaining from the voltage
 fbat_perc=(100-(112-fbat)*2.916),
 lbat_perc=(100-(112-lbat)*2.916),

 #Calculating
 total_consumed_energy=inv_energy+l1_energy+l2_energy
)

Now that we have created most of our features, let's have a look at their distribution.

We have already studied the trend of energy consumed and generated on a day-to-day
basis. Let's have a look at the maximum and average values of the solar panel and battery
parameters at a day level:

>cols<-c("max_solarpower","max_solarcurrent","max_solarvoltage",
 "mean_solarpower","mean_solarcurrent","mean_solarvoltage")

>summary(a[,cols])

Fast track Decision Science with IoT

[279]

Except for maximum solar voltage, we can see a relatively good spread in the distribution.
This means that considering the maximum or mean value for a parameter at a day level, we
can expect some variation in the values that will eventually help us collate a few signals to
predict whether a power outage will happen the next day.

Moving on, we'll study the distribution of data for the duration of different parameters
above the defined threshold:

>cols<-c("s_current_duration","s_voltage_duration","s_power_duration",
 "b_power_duration","b_current_duration")
>summary(a[,cols])

Also, let's look at how the distribution of data looks for the battery percentage remaining at
the start and end of the day:

>cols<-c("fbat_perc","lbat_perc")
>summary(a[,cols])

 fbat_perc lbat_perc
 Min. :39.11 Min. :38.56
 1st Qu.:54.81 1st Qu.:54.77
 Median :58.75 Median :59.04
 Mean :57.95 Mean :57.69
 3rd Qu.:62.70 3rd Qu.:62.47
 Max. :71.83 Max. :68.89

Fast track Decision Science with IoT

[280]

Similar to the previous features, we can see that there is a relatively good spread across the
data for the remaining battery percentage at the start and end of the day.

Now, let's take a look at the data that was recorded by the clinic owner regarding power
outages while using the solar infrastructure:

>url<-
"https://github.com/jojo62000/Smarter_Decisions/raw/master/Chapter%206/Data
/outcome.csv"
>outcome<-read.csv(url)

>dim(outcome)
[1] 104 2

>head(outcome)
 date flag
1 2015-12-02 1
2 2015-12-03 1
3 2015-12-04 0
4 2015-12-05 0
5 2015-12-06 0
6 2015-12-07 0

>summary(as.Date(outcome$date))

 Min. 1st Qu. Median Mean 3rd Qu.
Max.
"2015-12-02" "2015-12-27" "2016-01-22" "2016-01-22" "2016-02-17"
"2016-03-14"

>#Check the distribution of 0's and 1's in the data
>table(outcome$flag)

 0 1
68 36

Fast track Decision Science with IoT

[281]

As we can see, the outcome data has recorded the outcome for power outages at a day level.
1 indicates that there was a power outage and O indicates no power outage, and we have data
for the same time period as our solar panel sensor data. From the entire 104 days' data,
there was a power outage for 36 days, that is, ~35% of the cases had unplanned power
outages when the consumption exceeded the energy generated and surplus energy in the
battery.

Let's get the complete data under one roof, that is, one data frame:

>columns<-
 c(
 "location","date",
 "s_current_duration","s_voltage_duration","s_power_duration",
 "b_power_duration","b_current_duration",
 "max_solarpower","max_solarcurrent","max_solarvoltage",
 "mean_solarpower","mean_solarcurrent","mean_solarvoltage",
 "fbat_perc","lbat_perc",
"s_energy","l1_energy","l2_energy","inv_energy","total_consumed_energy",
 "weekdays"
)

>#Convert the Date variable in Outcome data to a 'Date' format
>outcome$date<- as.Date(outcome$date)

>day_level<-a[,columns]
>day_level<-merge(day_level,outcome,on="date",how="inner")

>dim(day_level)
[1] 104 22

We have collected all the important variables/features that we created at a day level and
also merged the outcome for the day, that is, the flag indicating whether there was a power
outage for the day or not.

As we will be modeling to predict whether there would be a power outage the next day,
let's create a new variable that will indicate whether there was a power outage the
immediate next day. This can be easily done with a lead operation, that is, shifting all the
rows up by one. As the last row will have a missing value, we will remove the last row from
the data:

Fast track Decision Science with IoT

[282]

The data in the outcome dataset will indicate only whether there was a
power outage for the current day as per the dataset. However, we need to
predict the condition for the next day. We therefore take a lead operation
to get the cross-sectional data at the same level with access to the next
day's outcome.

>day_level$outcome<-lead(day_level$flag)
>day_level<-day_level[1:(nrow(day_level)-1),]

Next, we can probably start building predictive models and validate them using techniques
similar to the previous version.

There are multiple methods to solve the problem. As the data is in time
series format, most data scientists and statisticians would leverage ARIMA
or ARIMAX models for the same problem. We have chosen the following
method for convenience. Either methods can be leveraged.

Building predictive model for the use case
So far, we have defined the problem and designed the approach. We explored the data and
studied the patterns across a variety of parameters captured through the sensors. We then
engineered the data and created a couple of features that depict the day-level activities in an
enriched dimension. We now have the data with multiple predictors and the dependent
variable outcome (created by taking a lead operation on the flag, that is, indicator whether
there was a power outage the next day).

We are challenged with the vanilla classification problem with a binary outcome, that is, 1
and O.

As a part of the modeling exercise, we need to explore in depth the
variables for the classification model, study correlation, multicollinearity,
and other tests, and so on Covering the entire journey of getting data
aware for the predictive model building exercise would be out of scope for
the chapter. It is highly recommended to execute all the required checks
before modeling.

Fast track Decision Science with IoT

[283]

As it is a binary classification problem, we can choose any one of the algorithms that you
learned in the previous chapters, such as decision trees, random forest, logistic regression,
or even xgboost. In the current use case, though we initially had a huge dump of data, after
engineering and transforming the data, we are left with only ~100 days of data that
translates to 100 training samples in all. The number is quite low; it would have been great
if we had at least 500 training samples. A thumb rule can be considered as, for every
predictor, we should have at least 30 training samples, that is, if we have six predictors,
>180 training samples.

To build the model, we will start with the random forest model and give a try with one
more algorithm if required.

Building a random forest model
From the entire list of predictors that we have engineered, not all will be a real value add.
The variables chosen here are considered randomly; we'll try to improve the model
accuracy with backward selection.

Step 1: Start with all the variables:

>set.seed(600)
>train_sample<-sample(1:nrow(day_level),floor(0.7*nrow(day_level)))
>train<-day_level[train_sample,]
>test<-day_level[-train_sample,]
>library(randomForest)
>fit<-randomForest(as.factor(outcome)~
s_current_duration + total_consumed_energy + s_voltage_duration +
s_power_duration + b_power_duration + b_current_duration +
fbat_perc + lbat_perc + s_energy + l1_energy + l2_energy+
inv_energy + max_solarpower + max_solarcurrent +
max_solarvoltage + mean_solarpower + mean_solarcurrent+
mean_solarvoltage,
data=train,mtry=4,ntree=500,replace=TRUE)

Call:
 randomForest(formula = as.factor(outcome) ~ s_current_duration +
total_consumed_energy + s_voltage_duration + s_power_duration +
b_power_duration + b_current_duration + fbat_perc + lbat_perc +
s_energy + l1_energy + l2_energy + inv_energy + max_solarpower +
max_solarcurrent + max_solarvoltage + mean_solarpower + mean_solarcurrent +
mean_solarvoltage, data = train, mtry = 4, ntree = 500, replace = TRUE)
 Type of random forest: classification
 Number of trees: 500
No. of variables tried at each split: 4

Fast track Decision Science with IoT

[284]

 OOB estimate of error rate: 26.39%
Confusion matrix:
 0 1 class.error
0 45 5 0.1000000
1 14 8 0.6363636

>#Creating a function to summarise the prediction
>prediction_summary<-function(fit,test)
 {
 #Predicting results on the test data, using the fitted model
 predicted<-predict(fit,newdata=test,type="response")
 actuals<-test$outcome
 confusion_matrix<-table(actuals,predicted)
 print("Confusion Matrix :-")
 print(confusion_matrix)
 print("")
 #Calcualting the different measures for Goodness of fit
 TP<-confusion_matrix[2,2]
 FP<-confusion_matrix[1,2]
 TN<-confusion_matrix[1,1]
 FN<-confusion_matrix[2,1]
 #Calcualting all the required
 print(paste("Overall_accuracy -> ",(TP+TN)/sum(confusion_matrix)))
 print(paste("TPR -> ",TP/(TP+FN)))
 print(paste("TNR -> ",TN/(TN+FP)))
 print(paste("FP -> ",FP/(TN+FP)))
 }

>prediction_summary(fit,test)

[1] "Confusion Matrix :-"
 predicted
actuals 0 1
 0 15 3
 1 10 3
[1] ""
[1] "Overall_accuracy -> 0.580645161290323"
[1] "TPR -> 0.230769230769231"
[1] "TNR -> 0.833333333333333"
[1] "FP -> 0.166666666666667"

With the first iteration using all the variables, we can clearly see that we get very bad
results. In this exercise, we would like to predict the maximum correct cases for power
outages, thus we need to focus on TPR and a relatively good TNR.

Fast track Decision Science with IoT

[285]

As the TPR is extremely low, we can check with the distribution of the training data:

>table(train$outcome)

 0 1
50 22

The training samples are skewed toward 0 and therefore we have less samples for 1s. This is
somewhat similar to our previous use case; however, we had a skewed sample for 1s there.
To improve our learning rate, we can try a variety of techniques such as oversampling,
stratified sampling, boosting, and so on. For now, let's take a sample with a similar
distribution of the dependent variable so that the model learns to predict a 1 and 0 with
equal weightage. With this step, we are basically adding some extra weight to the 1s as we
have very less training samples:

>#Doubling the number of 1's
>new_train<-rbind(train,train[train$outcome==1,])

>table(new_train$outcome)

 0 1
50 44

#we have added more number of 1's to get the training sample almost
balanced

Let's now try to run the same model with all the variables on the new oversampled training
dataset:

>#Codes have been ignored for the model call
Call:
 randomForest(formula = as.factor(outcome) ~ s_current_duration +
total_consumed_energy + s_voltage_duration + s_power_duration +
b_power_duration + b_current_duration + fbat_perc + lbat_perc +
s_energy + l1_energy + l2_energy + inv_energy + max_solarpower +
max_solarcurrent + max_solarvoltage + mean_solarpower + mean_solarcurrent +
mean_solarvoltage, data = new_train, mtry = 4, ntree = 500, replace =
TRUE)
 Type of random forest: classification
 Number of trees: 500
No. of variables tried at each split: 4

 OOB estimate of error rate: 9.57%

Confusion matrix:
 0 1 class.error
0 41 9 0.18

Fast track Decision Science with IoT

[286]

1 0 44 0.00

> prediction_summary(fit,test)
[1] "Confusion Matrix :-"

 predicted
actuals 0 1
 0 14 4
 1 5 8
[1] ""
[1] "Overall_accuracy -> 0.709677419354839"
[1] "TPR -> 0.615384615384615"
[1] "TNR -> 0.777777777777778"
[1] "FP -> 0.222222222222222"

Studying the results from the test data, we can see relatively better results. We have
improved the TPR and overall accuracy with a small sacrifice on TNR. Let's try to drop the
predictors that are not adding much value. This can be studied using the varImpPlot tool in
the randomForest package:

>varImpPlot(fit)

Fast track Decision Science with IoT

[287]

Studying the MeanDecreaseGini from the variable importance plot, we can study the least
important variables defined by the random forest model. The top variables are the most
important ones for the model whereas the bottom ones are the least significant variables. To
improve the model, we'll eliminate a few less important variables and try tuning the model.
This step will be completely iterative and a trial and error experiment.

The following result is the outcome from one such iteration:

Call:
 randomForest(formula = as.factor(outcome) ~ s_current_duration +
total_consumed_energy + s_power_duration + b_power_duration +
b_current_duration + fbat_perc + lbat_perc + l1_energy + l2_energy +
inv_energy + max_solarpower + max_solarcurrent + max_solarvoltage +
mean_solarvoltage, data = new_train, mtry = 3, ntree = 100, replace =
TRUE, nodesize = 5, maxnodes = 5)
 Type of random forest: classification
 Number of trees: 100
No. of variables tried at each split: 3

 OOB estimate of error rate: 20.21%
Confusion matrix:
 0 1 class.error
0 36 14 0.2800000
1 5 39 0.1136364

> prediction_summary(fit,test)
[1] "Confusion Matrix :-"
 predicted
actuals 0 1
 0 13 5
 1 3 10
[1] ""
[1] "Overall_accuracy -> 0.741935483870968"
[1] "TPR -> 0.769230769230769"
[1] "TNR -> 0.722222222222222"
[1] "FP -> 0.277777777777778"

Fast track Decision Science with IoT

[288]

We can see small improvements in our results. The TPR, TNR, and overall accuracy have
improved by a small margin. However, as the number of samples used in the testing
sample is relatively low, we can't affirmatively conclude the results. There is scope for the
results to vary with another testing sample. The chances of such an event happening is quite
high as, with lower training samples, misclassification of even one or two samples can bring
about 10-20% change in the overall results. To get a better idea, we'll test the model using
the entire dataset and study the results:

>prediction_summary(fit,day_level)

[1] "Confusion Matrix :-"
 predicted

actuals 0 1
 0 54 14
 1 3 32

[1] ""
[1] "Overall_accuracy -> 0.83495145631068"
[1] "TPR -> 0.914285714285714"
[1] "TNR -> 0.794117647058823"
[1] "FP -> 0.205882352941176"

We can see that overall we achieved good results. There is a relatively good mix of TPR and
TNR along with the overall accuracy for the tuned version. If we consider an average
version, that is, neither as good as the results from the entire dataset, nor as low as the test
dataset, we can say that we have TPR ~ 70 and TNR ~ 75% and thus, ~75% overall accuracy.

There is humongous scope for improvements in the current model
building activity. However, the current exercise is restricted with the
preceding results for the solution. You are encouraged to iterate and tune
the model further.

Next, we'll package our result and see how we can draft a story for the use case.

Packaging the solution
We now have a model in place that gives us relatively good accuracy. As a ballpark figure,
we can say that we achieved an overall 75% accuracy with a TPR of 70% and TNR of 75%
(scope exists to improve this further).

Fast track Decision Science with IoT

[289]

How does it add up to the use case's revenue story? With our model in place, we can say
that we will correctly predict a power outage 7 out of 10 times. So we have saved the losses
that happen because of power outages by 70%. Now, we also incorrectly predicted a power
outage when it wasn't, that is, approximately 2.5 out of 10 times. Let's say that there was a
cost associated with stocking diesel when it was predicted that the next day will be having
power outages; this cost will tax the losses saved from the correct prediction (penalty).

The overall FPR is low and also the cost associated with stocking diesel for power outages is
generally much lower than the losses due to unplanned power outages. Therefore, we are
still in a good position to add value to the solution. Let's assume that the cost of stocking
diesel for the next day is $100 and the losses due to unplanned power outages is $300. Then,
for every 100 cases, there are approximately 35 cases that will have unplanned power
outages.

Therefore, total loss = 35 * 300 = $10500.

With the predictive model, we correctly predict 7 of 10 cases, that is, 24.5 of 35 cases.

Therefore, losses reduced = 24.5 * 300 = $7350.

With every incorrect prediction, we lose $100 for unnecessarily stocking diesel, that is, 2.5 of
10 time is 25 of 100 times = 25 * 100 = $2500.

Therefore, net losses reduced = 7350 – 2500 =$4850.

Now, comparing the net losses reduced ($4850) with the original losses ($10500), we have
reduced the losses by ~50% (46%).

This number is clearly tangible for a solar infrastructure use case.

Therefore, we can summarize that we have solved the problem of uncertainty in power
outages by reducing the losses by 50% (with assumptions) for the end customer.

Fast track Decision Science with IoT

[290]

Summary
In this chapter, we reinforced our decision science learnings by solving an altogether new
use case for the solar energy industry. We started on the same roots of problem solving by
defining the problem and designing the approach and blueprint for the problem. We
studied that the problem statement in our use case is much more specific and narrowed-
down compared to the previous use case. We solved the problem of uncertainty in power
outages from the solar tech. After having a clear definition of the problem statement, we
explored the sensor data from solar panels and infrastructure to find patterns and
associated signals. After gathering the ground context of the data and domain (through
research and an SME), we engineered features to solve our problem better.

We then leveraged these features and the machine learning algorithms that you learned in
the previous chapter to build predictive models that could predict the chances of power
outage from the solar panel infrastructure a day in advance. With basic business
assumptions, we packaged and validated the potential of our solution for the customer. By
predicting the chances of power outages from the solar tech in advance, we are able to
reduce the losses by 50%.

We have therefore traversed through the entire journey of problem solving in a fast-track
mode and reinforced our learnings on decision science for IoT. In the next chapter, we will
touch base on the next level of problem solving-prescriptive science. We will use a
hypothetical example and overlay real-life examples to understand how to outlive business
disasters.

7
Prescriptive Science and

Decision Making
Predictive analytics scales the power of analytics and decision making to a paramount level.
We can consider our daily life as an example. If we have an answer to the 'when' question, it
can help us take better decisions to secure our future. Visibility into the future makes life
easy for everyone. The same holds true for problem solving in decision science. The nature
of the problem can be descriptive, inquisitive, predictive, or prescriptive. Prescriptive
science or Prescriptive Analytics answers the question 'So what, now what?' and aims at
improving the outcome of the problem. We often ask this question after we see an issue in
the routine operations.

Prescriptive analytics is a fuzzy transition from the combination of descriptive, inquisitive,
and predictive analytics. The problem reaches a point where we continuously iterate
through different questions either to recover from a disaster or further improve the
solution. In this chapter, you will learn the nuances of prescriptive analytics using a
hypothetical example. You'll learn what actions can be taken to recover from a disaster or
further improve the solution using our learnings from the descriptive + inquisitive +
predictive stack. We will connect the dots and study the interconnected nature of a problem
in decision science in more detail as we complete the end-to-end problem stack.

Prescriptive Science and Decision Making

[292]

The following topics will be covered in this chapter:

Using a layered approach and test control methods to outlive business disasters
Tying back results to data-driven and heuristic-driven hypotheses
Connecting the dots in the problem universe
Storyboarding and making sense of the interconnected problems in the problem
universe
Implementing the solution

Using a layered approach and test control
methods to outlive business disasters
Prescriptive science results from the convergence of descriptive, inquisitive, and predictive
analytics. It is used as a layered approach and iterated till the time we reach a promising
solution. To understand the concept lucidly, let's simplify it by reconstructing the abstract
and ambiguous words in a layman's way.

What is prescriptive analytics?
Prescriptive analytics helps us answer the question 'So what, now what' in the problem
solving exercise, that is, it helps us improve the outcome. It is the final layer in the problem
solving stack that results from the convergence of the previous three types: descriptive +
inquisitive + predictive.

We'll consider a very simple example to study this in more detail. Consider a telecom giant
(say AT&T, Verizon, and so on) who provides multiple services such as broadband
connections, IPTV, mobile telephone connections, and so on The director of the Customer
Experience Team, say Mark, wants to solve a problem. The problem initially starts from the
first layer, that is, Descriptive Analytics where we try to answer.

What happened?
The team under him studied various reports and analyzed the data to find out that the
overall operational cost for the contact center (call center) has increased by 20%. This was
mainly due to heavy traffic in incoming calls from customers in the past few weeks from a
certain geographic area.

Prescriptive Science and Decision Making

[293]

Why and how did it happen?
There was congestion in the network for some areas of operation that resulted in slow
Internet speed, call drops, and so on. Irate customers have been continuously reaching out
to customer care executives with complaints and bill/refund issues.

When will it happen (again)?
The team explored the data and built various predictive models to predict when a customer
would make his next call (say after eight days) and forecasting models to predict the call
volumes expected in the upcoming weeks. The numbers show an alarming increase in the
number of calls to be handled by the customer care agents.

So what, now what?
The director of customer experience, Mark, is now under pressure. To solve the problem, he
needs his team to quickly fix the issues to mitigate a business disaster. The heavy call
volume will choke the bandwidth of the agents, increase call wait times for the customers,
registered complaints will be unresolved, and eventually pinch customer experience. Some
irate customers may even discontinue using the services and opt for a competitor's
services/products. This would result in huge business losses and also hamper the
company's brand value. Mark needs to take immediate actions to resolve the issues and
alleviate the impact of the disaster.

Now that we have an overall idea of the example, let's try to understand the answer to the
question 'So what, now what' in brief. The team has completed the initial set of analyses and
traversed through the descriptive, inquisitive, and predictive nature of the problem.
Therefore, we have answers to the 'What', 'Why', and 'When' questions. We now reach the
point when we ask 'so what…' (The heavy increase in call volume to customer service
agents will ultimately cause huge business losses.) and 'Now what…'. (The team needs to
take quick countermeasures to solve the problem and thereby alleviate the disaster.) As a
remedy, we will start small with a couple of small fixes, but by the time we solve them,
many new problems would be discovered. To solve these problems, we iterate through the
problem stack until we have a solution for the entire problem.

Prescriptive Science and Decision Making

[294]

Prescriptive analytics is therefore a result of the convergence of insights and answers
gathered from the entire problem stack. The entire process can be summarized using the
following image:

In a nutshell, prescriptive analytics can be defined as finding the best course of action for a
given situation.

Now that we have a sound understanding of prescriptive analytics, let's study a couple of
measures to see how the best recommended actions for a given situation can be derived.

Prescriptive Science and Decision Making

[295]

Solving a prescriptive analytics use case
Let's consider a hypothetical use case to closely understand the different approaches that
can be leveraged to outlive a business disaster. We will be using the layered approach to
solve the problem; that is, we will start from descriptive and then move on to inquisitive
and predictive solutions. Converging all the learnings from the three layers, we will
approach prescriptive analytics. In most cases, while solving problems using prescriptive
analytics, we touch base on newer problems. The layered approach iterates through each
problem in the entire stack and eventually solves the entire set of interconnected problems
in the problem universe. We studied about the interconnected nature of problems in
Chapter 1, IoT and Decision Science and Chapter 2, Studying the IoT Problem Universe and
Designing a Use Case.

We'll consider a use case from the telecom industry (hypothetical) on similar lines to the
example we studied earlier, but a bit more detailed and slightly different.

Context for the use case
A leading telecom giant with multinational presence provides mobile telephone services,
IPTV, and broadband services for consumers as well as corporates. The customer
experience team for the telecom giant operates a contact center with support for chat,
incoming voice calls, IVR, outbound campaigns, and e-mails to resolve customer
complaints. The director of the customer experience team, Mark, is responsible for smooth
operations with minimum operational cost without a compromise on customer satisfaction.

Let's frame the use case using the same set of questions as we did previously.

Descriptive analytics – what happened?
Mark recently studied that the operational cost for the call center has been surging due to
increasing call volumes. Let's take a closer look at this. What if the number of calls have
increased because the number of customers have also increased, or is it a seasonal pattern
where we observe a generally higher call volume during the year?

To conclude the finding, we need to slice and dice the data and confirm affirmatively
whether there is indeed an increase in the operational cost due to increased call volume. If
the call volume is due to the increasing customer base, then we can't justify increasing
operational costs due to increased call volume. As mentioned earlier, Mark's responsibilities
include maintaining smooth operations at minimum operational cost without
compromising on customer experience.

Prescriptive Science and Decision Making

[296]

The following visualizations showcase the results from the slice and dice operations on the
data (hypothetical data).

We'll first take a look at the annual call volume and the YoY (year on year) % increase in call
volume:

We can clearly see that there is a consistent increasing trend in the annual call volume when
considered for the past five years. The bars indicate the YoY% increase in the call volume
and it shows almost consistent increase. The least % increase was observed in the year 2012,
that is, 11%; in most cases, it shows a steady increase.

Can the increase in calls be due to increasing customers?

Yes, definitely. As the number of customers increase, the number of calls received in the
contact center will also increase. However, we need to check whether the increase in call
volume is proportional to the increase in customers or not. How can we check this?

To get an approximation of whether the increase in call volume was in proportion to the
increasing customer base, we need to define a normalized dimension or vector; basically, a
Key Performance Indicator (KPI) that is normalized with respect to the calls or customers.
We can define a KPI such as calls per customer-the total number of calls by the total
number of active customers.

Prescriptive Science and Decision Making

[297]

Let's plot the distribution of calls per customer across the years:

As we can see, even though the number of calls have increased as the customer base
increased, the number of calls per customer has definitely increased by a good percentage
from 2014 to 2015. This can help us confirm that overall there has been a significant increase
in the annual call volume for the contact center.

Next, we need answers for why has there been an increase in the overall annual call
volume? This means that we need to touch base with inquisitive analytics.

Inquisitive analytics – why and how did it happen?
To understand why the overall call volume increased, we need to follow the same vanilla
procedure. We will define the problem, brainstorm and hypothesize over a variety of
factors, and design the blueprint for the solution (problem solving framework). In the
exploratory data analysis phase, we will deep-dive into the data to find out the reasons for
the increase in call volume.

Prescriptive Science and Decision Making

[298]

Among all the hypotheses that we will collect, one of the factors will be 'repeat calls', that is,
customers calling in again and again for the same issue. A simple business rule that helps us
define a repeat call would be another call from the same customer within 48 hours. Our
hypothesis would be framed as, the calls per customer has increased that eventually
increased the annual call volume and this was mainly due to repeat calls from customers.
Customers called back again to get more clarity on the issue as it was not mentioned in the
first call.

This seems like a valid hypotheses. Let's deep-dive into the data to see how the distribution
of data looks:

Prescriptive Science and Decision Making

[299]

We can see that repeat calls contribute to ~20% of the overall call volume for each year.
However, is this still relevant? It could be in sync with the increasing call volume each year.
To validate our hypothesis, we will need one more view to study whether there was indeed
an increase in the repeat call rate. The following image showcases a plot of stacked bar
charts with the percentage of Repeat calls and First calls for the respective year:

Yes, we can now conclude that our hypothesis is true; that is, there is indeed an increase in
the repeat call rate year on year. This could be one of the potential reasons for the increase
of calls per customer in the current year.

However, if the customers are repeating a call, how are they repeating it? Is it for the same
reason or a different reason?

Usually, an incoming call is assigned a call type by the IVR or agent who is handling the
issue. A call type could be anything such as 'Internet not working', 'Slow Internet', 'Billing
Issue', 'Do not disturb activation', 'top-up plans', and so on. Now, the question is if a
customer calls for Internet Troubleshooting and calls again within 48 hours for a billing
issue, is it really a repeat call or just coincidence?

Prescriptive Science and Decision Making

[300]

Even though our hypothesis seems valid, we still need to check for more validity. If 20 out
of 100 calls are repeating (based on our business rule) and if 15-18 of them are repeating for
a different reason, then we can't really attribute repeat calls as one of the factors for the
increasing call volume. It could be a generic issue coincidentally being tagged as a repeat
call.

Let's take a look at the distribution of data for repeat calls with a more granular view on the
reason code, that is, same reason repeat calls and different reason repeat calls. We can
define a 'same reason repeat call' as an additional call from the same customer within 48
hours for the same reason and a 'different reason repeat call' for a different reason. So, if a
customer calls once for 'Slow Internet issue' and again within 48 hours for the same reason,
it would be 'same reason repeat call'; otherwise, if the same customer makes another call
within 48 hours for some other reason, say 'Billing Issue' or 'Top up plans', it would be
classified as a 'different reason repeat call'. The following chart shows the distribution of
repeat calls as same reason and different reason across the years:

We can note that majority of the repeat calls are for the same reason. Approximately 1/4th of
the calls repeat for a different reason that may be a genuine repeat or could be just a
coincidence. The following graph plots the stacked percentage distribution of same and
different reason repeat percentage calls across years and we can see that a different reason
repeat ranges between 20-30 in most cases:

Prescriptive Science and Decision Making

[301]

So we can affirmatively conclude that high repeat call rate is one of the factors that have
contributed to the increase in the overall call volume.

What next? We now have answers to 'What', 'Why, and How' for the problem. How can
predictive analytics help us?

Predictive analytics – when will it happen?
Mark now has a very fair understanding about the problem. His team has studied the root
causes for the problem and would now like to enhance the results using predictive
analytics. In a generic scenario, with the power of prediction, we can develop various
powerful and robust machine learning algorithms that will help in predicting the following:

Total number of monthly calls expected for the next six months: This will help the
team work toward optimizing staffing to handle a high volume of calls more
efficiently
Predicting the volume of monthly repeat call rate for the next six months:This
will give the team the visibility to act on reducing the repeat calls by studying the
patterns causing repeats

Prescriptive Science and Decision Making

[302]

Predicting the number of repeat calls that will be received in the immediate next
day: This will prepare the team with the skills required to learn the reasons for
repeats and take action on avoiding further repeats
Predicting in real time whether the customer will repeat call in the next 48 hours:
This will help in taking live action during the call to mitigate the chances for a
repeat call

For simplicity, let's assume the following results for the first three techniques in the
preceding list:

8-10% MoM (Month on Month) increase in the call volume for the next six
months
Around 10% MoM increase in the volume of repeat call rate for the next six
months
Approximately 10% increase in the number of repeat calls expected for the
immediate next day

The inception of prescriptive analytics
With this visibility into the future, Mark's team will have a concrete understanding for the
immediate next steps they would need to execute in order to improve business. This is
where prescriptive analytics starts surfacing in the problem solving journey.

Prescriptive activity starts once you have an understanding about what has happened or
you know what is probably going to happen. Consider an example in our day-to-day life.
Let's say that you are a third-year student in computer engineering. Your semester exams
are approaching in a month's time and you need to start preparing for the exam. Based on
your performance in the previous semesters, you have an understanding about your skills
in programming. Say, you ace at programming but struggle with computer networks. You
would then prepare accordingly by dedicating more time to study a computer networking
course. Similarly, let's assume that you got to know from your professor about a very easy
math exam and you already excel in mathematics. You will definitely spend less energy
preparing for the math exam. This is how prescriptive analytics works.

At a high level, you are trying to solve a problem and you have insights into the root cause
for the problem or you know probably what is going to happen next. You would then
tweak your solution accordingly to improve the outcome. Prescriptive analytics is an
iterative process and requires a lot of trial and error to optimize the outcome.

Prescriptive Science and Decision Making

[303]

In the preceding use case, we have an understanding about the nature of events that have
happened and insights about the events that are about to happen. As a part of the solution,
Mark would now work toward fixing things to mitigate the perils of a disaster. Let's see
what sort of damage will occur assuming that the predictions are 100% correct (though
predictions are not always 100% correct).

The incoming call volume from customers has seen a surge in recent times (past few
months) and, based on the predictions, it seems that there would be approximately 8-10%
month on month increase in the call volume. This cues for a huge resource crunch in the
customer service agents in the coming months. Currently, we have approximately 1.2 MN
calls a month from the entire customer base. If a consistent 8-10% MoM increase in the call
volume is expected for the next six months, we would receive on an average two MN
monthly calls post six months. If we do simple math, we'll understand that we need to
double the number of agents to accommodate the surplus calls. This is definitely not an
ideal situation. We can definitely increase the number of agents to solve the problem, but
this needs to be done cautiously without incurring huge operational expenses. The best way
would be to slightly increase the staffing capacity and simultaneously work toward
countermeasures to reduce the incoming calls.

So technically, we have two high-level solutions to solve the problem:

Increase the staffing capacity to accommodate more number of calls
Implement countermeasures to reduce the incoming calls

Countermeasures to reduce the incoming calls is a very broad topic; this would cover
multiple points as follows:

Making the IVR more robust to complete the call within the IVR
Setting outbound campaigns through e-mails and automated IVRs with solutions
for common issues
Resolving the technical issues immediately for which customers are frequently
calling
Educating the customers about the next steps on the call to avoid a repeat call
Releasing self-help guides over the Internet for customers to resolve trivial issues
on their own and so on

Prescriptive Science and Decision Making

[304]

We can see that a single problem has now been broken down into multiple smaller
problems. Each of these problems need to be solved individually and would probably
require an end-to-end problem solving method for each of them. Moreover, all of these
smaller problems are actually interconnected; we can't solve the main problem without each
individual problem being solved. You learned about the problem universe in Chapter 1,
IoT and Decision Science that detailed the nature of interconnected problems. The problem
universe can be studied in more detail when we reach the prescriptive analytics layer. The
following image depicts the interconnected problem universe for our problem:

Getting deeper with prescriptive analytics
To improve the outcome based on the results of the inquisitive and predictive analysis
phase, there are a variety of different methods. In business disasters, the team will be
usually running low on time as a resource and therefore the luxury of extensive trial and
error exercises will not be available. In order to keep the process agile and resilient, most
businesses use the A-B testing or quick test and control techniques to assess the
effectiveness of their solutions without impacting the entire business. Let's study a few
examples of implementing these strategies for our use case.

Prescriptive Science and Decision Making

[305]

Solving the use case the prescriptive way
As a part of the prescriptive analytics solution, businesses often need to validate how
effective the current prescription is. Will it cause huge damage, will the customer dislike it,
or will it actually improve the business? To find answers to all these questions, we
implement a very simple strategy called the 'Test and Control Analysis'.

Test and control analysis
In test and control analysis, we choose two sample tests randomly from the entire
population for the experiment. The only rule being that the two samples should be identical
in behavior; that is, if we choose samples of customers for the experiment, both the groups
should have a similar behavior, say, demographically or based on the customer type for
business. We will design a simple experiment: targeting customers using e-mails with
lucrative offers for a festive season. From the two sample groups that we have identified,
the experiment is conducted only on one of them; we call it the 'test' group. The other group
with no experiments conducted is called the 'control' group. We can study the impact of our
experiment by comparing the differences in the results from the test and control group.

Let's say that you want to test the effectiveness of an e-mail campaign on discount offers for
a retail outlet. You identify a test and control group for the experiment and send out e-
mails/mailers only to the test group. We will then see how differently the test group
behaved when compared to the control group. If the response from the test group was
much better than the control group, we can conclude that the effectiveness of the e-mail
campaign is positive, that is, people are enthusiastic about the offer. If there is no major
difference, we can conclude that the effect is neutral, that is, no major impact was seen from
the campaign. In some cases, an e-mail campaign may also have a negative impact where
the control group had a better response than the test group.

Using the test and control method, we can easily study the impact of different experiments
designed on smaller samples without rolling it to the entire population. Such experiments
help businesses take better decisions to improve the outcome for a problem that they are
solving with reduced risk. We can witness similar experiments quite often in real-life
scenarios. Facebook's recent 'Live Video' feature was initially rolled out to only a small
community and, based on the results and feedback, more and more users groups and
eventually everyone was given access to the feature.

Prescriptive Science and Decision Making

[306]

Implementing Test & Control Analysis in Prescriptive
Analytics
In our use case, we have reached a point where we have various insights from the
predictive analyses and a sound understanding about the root cause from the inquisitive
analysis. We have also designed a miniature problem universe that reflects the
interconnected nature of problems for the problem that we are solving. To keep moving, we
need to design a few experiments to improve the outcome, that is, reduce incoming calls.

Let's see what kind of experiments we can conduct to improve the outcome based on our
learnings in the inquisitive and predictive analytics phase. We'll touch base on a few of the
smaller problems identified in the problem universe.

Improving IVR operations to increase the call
completion rate
All incoming calls first pass through the IVR before reaching an agent. If we improve the
IVR operations, we can reduce the incoming call volume. To increase the IVR call
containment rate or completion rate, we need to identify the loopholes where customers are
transferring the call to an agent. A few broad areas can be identified where we can take
action by analyzing the IVR data:

Identifying frequent paths traversed by a customer
Studying frequent options for which a call was transferred to an agent
Nodes where the customer was confused to select an option (for example, the
language/verbiage was too complicated and so on)

Based on the findings, we can implement a few fixes that may help customers to finish the
call within the IVR. For example, adding the Spanish language as an option may reduce the
call transfers or adding a new application to the IVR, say, an option to automatically raise a
complaint for billing issues (which was previously not available) may reduce the incoming
call volume. However, in most cases, the stakeholders can't be cent per cent sure whether
these are the best techniques to solve the problem and improve the outcome. Therefore, as a
safe option, we can choose the test and control analysis option. We can test the new feature
with a small sample (test group) and compare the results with a control group. If the results
are favorable, that is, we see a higher call completion rate in the test group than the control
group, we can roll out the feature to larger samples.

Prescriptive Science and Decision Making

[307]

Reducing the repeat calls
In most cases, due to insufficient knowledge provided during the call, the chances of a
customer repeating the call is high. However, it would be difficult for an agent to reiterate
information again and again to all customers. Moreover, it will also increase the call
duration and therefore the operational costs. In a more optimized way, we can leverage the
machine learning model built in the predictive analytics phase to aid the agent better.

If the machine learning model can predict in real time, say within 15 minutes in a 20
minutes call, the agent handling the call can selectively take a better chance to educate the
customer about the next steps to avoid a repeat call. Targeting only the potential customers
will not cause a burden on the agent and will increase the overall call duration.

Similarly, if we can predict whether the customer will be repeating the call for a different
reason, the agent can take a better shot at pointing to a few e-resources for the customers'
self-help based on the nature of a call. Let's say if the call is identified for a slow Internet
connection issue and in most cases, a slow Internet issue call is followed up by a billing
issue call, then the agent can educate the customer about self-help resources to get
additional billing assistance. These measures can further help reduce a repeat call.

The same vanilla test and control methods can be used to assess the effectiveness of the
machine learning models and the agent's performance to reduce the repeat calls from
customers. The process can be implemented by selecting an appropriate test and control
group of customers and later studying the effectiveness of the experiment using a
comparative study.

Staff training for increasing first call resolution rate
Improving the agent's skillsets to handle the call better within the same call will also help
reduce repeat calls. Staff training is an expensive deal and therefore it can also be
experimented on using a test and control analysis method.

Prescriptive analytics is an iterative and exhaustive step with numerous experiments to
improve the outcome. In the cases of business disasters, the luxury of test and control will
not always be an option. In such cases, historic patterns and heuristics are used to conclude
the chances of the experiment to succeed and the experiment is rolled out to all the affected
operations at once.

Prescriptive Science and Decision Making

[308]

Tying back results to data-driven and heuristic-driven
hypotheses
In decision science, the problem solving exercise is a continuous process. This can be
evident from the problem universe diagram that we saw in the previous section. Each of
those smaller problems can again be broken into multiple smaller problems and connected
to a plethora of another set of problems. At every step, we become more aware about the
nature of the problem; that is, it gradually moves from the muddy phase to the fuzzy phase.
The more aware we are about the problem, the more means we have to solve the problem.
At this point, if we revisit the data-driven hypotheses (DDH) matrix and heuristic-driven
hypotheses (HDH) matrix, we will see the scope of a small improvement in all dimensions.
We can probably articulate better hypotheses, and we can see more granular ways to slice
and dice the data. Studying the results again from the data-driven hypotheses test, we can
interpret the results better and all in all we would feel that if we would now solve the
problem, we can solve it better. Many times, we will tangibly see the benefits of iterating
through the problem solving exercise and therefore iterate in a quick-fashioned way
through the entire problem solving journey. With the iteration, the solution for the problem
definitely witnesses an incremental improvement.

The trigger for the iteration in this journey to eventually improve the outcome and solving
the problem happens when we tie back our results and learn while revisiting the HDH and
DDH. The convergence of HDH and DDH and revisiting the matrix is a crucial point in the
decision science life cycle. All major innovations and breakthroughs have been observed
while revisiting the solution journey; in our case, we have a structure and a simplified
journey path articulated in a well-versed problem solving framework, that is, the HDH and
DDH matrix.

Let's assume that we have the problem solving framework for the current use case designed
similar to the ones that we designed in the use cases we solved in the previous chapters.
When we reach the prescriptive analytics phase, we will have touched base on many new
hypotheses and smaller problems than we would have in the beginning. Tying back these
results to the framework helps the problem evolve better. This is true for every problem
solved in the industry. The following image depicts the flow of the problem through
different phases:

Prescriptive Science and Decision Making

[309]

We can see that, as we progress through prescriptive analytics after an iteration of problem
solving, we will either revisit the DDH and HDH (defining a problem) or even identify a
new problem. Iterating through this cycle using the problem solving framework helps us
solve our problem faster and in a structured and more matured fashion.

When a new problem is identified in this process, it often has an association with the root
problem. It could be either a small problem derived from the current problem or a
completely different problem but still associated with the current problem. Designing the
problem universe, that is, an interconnected network of problems, is again a new problem.
We need to identify and assess the association of the newly identified problem with the
current problem by understanding the impact and its priority. In some cases, it may make
sense to pause solving the current problem and move on to the newly associated problem
because, without solving that, the current problem would hit a roadblock. Let's study in
brief the interconnected nature of the problems in the problem universe.

Prescriptive Science and Decision Making

[310]

Connecting the dots in the problem universe
If we take a look at the problem universe that we designed for our telecom giant's use case,
we can see that we have identified multiple problems. A few are basically the hypotheses
that we might have missed while brainstorming for HDH; additionally, due to limited
visibility of the domain, we might have missed out during the creation of DDH. After
reaching prescriptive analytics, we would have ideally finished one complete iteration of
the problem. At this point, we will have reinforced our understanding about the problem
and domain better. We can leverage this to improve the problem further with another
round of iteration, but in some cases, we might find out a few new problems that are
completely different from the current problem we are trying to solve. For our use case, refer
to the following problem universe:

The problems highlighted in red are actually new problems. Staff training and customer
education are smaller problems that can be categorized as enhancements to the current
problem for which we can revisit the DDH and HDH. However, the other four are new
problems that have some association with the current problem. For instance, improving
online resources for self-help is a completely different problem where we would deal with
the website, the Android and iPhone app, the user experience and design, and understand
customer navigation journey and website aesthetics. It requires the intersection of new
disciplines such as design thinking and behavioral science to study the user's behavior on
the website and so on. Solving this problem eventually has an impact on reducing the
incoming call volume but in itself is a completely different problem.

Prescriptive Science and Decision Making

[311]

Similarly, the other nodes, that is, 'Fixing technical issues' is more of a networking and
hardware problem, designing outbound IVR and e-mail campaigns is a marketing problem,
and so on. The true fact that all problems are interconnected in nature can be clearly studied
from the preceding example. The biggest hurdle that we face in such a scenario is
understanding what to prioritize. We are in a position where we can see the scope to
improve the current problem further as well as solve multiple new connected problems. In
such a situation, teams take a pause and prioritize on the available options. Here, solving all
of them is important but it may not be possible to solve all of them simultaneously, so
where do we start from?

A significant amount of domain knowledge and business sense will be required to take a
call in such situations. Teams work out on the immediate benefits and opportunity in each
new problem after each step. A small focus is spent on enhancing the current problem, and
a major focus is invested on solving a new problem that has the biggest impact. With
reference to our use case, we have identified four new problems:

Fixing the technical issues frequently faced by customers
Improving the IVR operations to increase the call completion rate
Improving online resources to aid in self-help solutions
Designing outbound IVR and e-mail campaigns with resolutions to the frequent
customer complaints

The list is not exhaustive but covers the high-level areas that can be touched base on right
after one iteration in the problem. With the limited business and domain knowledge we
have, we can assess and prioritize the preceding four new problems. Let's say that Mark's
team has 10 decision scientists on board and at a time at least 4-5 members are available for
a project, that is, solving one problem; we can say that Mark's team has the bandwidth to
solve two problems simultaneously. We now need to prioritize the problems in such a way
that they do not cause a deadlock. Let's say that we choose Improving IVR operations with
the highest priority, but midway realize that this problem has a huge dependency on
another problem we identified earlier, then we reach a deadlock where one team or the
other would need to halt operations till the dependency is over.

Assigning priority is a mammoth task and is generally done after thorough discussions and
analysis. For the preceding use case, we can say that the highest priority is to fix the ground
fundamental issues, that is, the issues casing network outages, slow Internet speed, and call
drop-offs. Once we have the fundamental problem solved, we can work toward improving
the IVR operations, then improve online resources for self-help, and finally design a robust
outbound campaign to resolve the issues in an automated way. The priority assigned is
based on the limited context provided for the use case. Real-life complications are
gargantuan. The problem universe will never be like the simplified version that we have
drafted.

Prescriptive Science and Decision Making

[312]

Connecting the dots in the problem universe is the art of prioritizing the problems and
enhancements to be solved first. It will be a rare scenario where the business will have the
bandwidth to solve all problems simultaneously. Designing a problem universe in such a
way that the associations and priority can be sensed in a glance makes solving the problem
easier. The following image depicts a simplified problem universe where one can interpret
the priority and level of association between interconnected problems:

As we can see, it is visually intuitive to make sense while connecting the dots. The
association strength can be visualized using the weight of the edge, and the color of the
edge can be used to denote the priority of the problem-red with the maximum priority and
blue with the least. Dashed edges are used to indicate enhancements where we need to
revisit the DDH and HDH whereas a solid line identifies new problems. Using this
simplistic visualization, an intuitive view of the problem universe can be depicted to aid in
easy consumption while connecting the dots.

Prescriptive Science and Decision Making

[313]

Story boarding – Making sense of the
interconnected problems in the problem
universe
The problem solving journey is very long and iterative in nature. Once we have designed a
version of the problem universe, we will have a fair understanding that solving the problem
will definitely take much longer than we anticipated. The process being iterative in nature
doesn't mean that seeing tangible results should take time. It becomes increasingly
important to evaluate the value from results derived so far and the results expected in the
roadmap designed.

In decision science, storyboarding (the art of conveying the results in the most lucid way) is
of paramount importance. In fact, it is in any problem, but here when we have a holistic
view of the problem, we know that the problem keeps evolving. At every step, it becomes
increasingly important to realize the value delivered and the value that will be delivered by
solving the connected problems. Storyboarding requires drafting the results in a sequence
such that it is simple yet intuitive and can be consumed by any stakeholder involved in the
project.

Adding dollar value to each milestone and showcasing the impact in pure numbers will
add an altogether different taste to the story.

Let's consider our telecom use case to understand this. We are currently at a point where we
have completed one iteration of the problem solving exercise and traversed through the
length and breadth of the problem solving stack in decision science; that is, we traversed
through the descriptive + inquisitive + predictive + prescriptive phase of decision science.
We have drafted a version of the problem universe and designed a minimalistic version of
the problem universe. We have connected the dots and have a fair understanding of the
next steps. We now need to represent our findings and results in a way that it captures the
value and provides enough meat for the next phase to be executed. Mark would need to
provide answers to the leadership team and his company to take the solution ahead.

Fixing technical issues such as network congestion and call drops has been
ignored in the following story as these actions are beyond the scope of the
customer experience team.

Prescriptive Science and Decision Making

[314]

We'll try to formulate the dollar value and opportunity in our use case and the roadmap
based on a few assumptions. Let's assume that the cost of handling one call for an average
duration by an average paid agent is $7. We have approximately one MN calls a month at
present and around 12 MN calls annually. Therefore, the annual expenses would be around
$84 MN.

With the current scenario-8-10% MoM increase in calls-we will see the monthly call volume
reach 1.5 MN by the end of the sixth month and a net increase of >two MN calls; that is, if
there were one MN calls per month in the next six months, the total call volume would be
around six MN. However, with an average 8-10% increase in calls every month, we would
have a total of ~8.2 MN instead of six MN. Therefore, the additional 2.2 MN calls will result
in an increased operational cost of $15 MN (assuming that the cost of each call is $7). Our
immediate objective is to reduce the losses that will be incurred due to the increased call
volume and improve operational expenses.

We have identified a few areas for improvement and identified the next steps for the
roadmap. We now need to draft the dollar opportunity that we can seize with the current
results and how we can do so with our roadmap. Consider the total call volume for the next
six months, that is, 8.2 MN calls (worst case). A major call volume is building up due to the
increasing repeat call rate. We see around 25% of the total call volume as repeat calls from a
customer that translates to 25% of 8.2 MN, that is, ~2 MN calls costing more than $14 MN
operational expenses. Therefore, our immediate opportunity is to reduce the $14 MN
expenses from the repeat calls.

Step 1 – Immediate
We have built a machine learning technique that can predict in real time whether the
customer will repeat call in the next 48 hours. Furthermore, we will be able to predict
whether he will repeat for the same reason or a different reason. With such a model in
place, the agent who is answering live calls will be able to take a better attempt at avoiding
a repeat call. Let's say that we will be able to reduce around 60% of the repeat calls with this
method in place. This translates to 60% of two MN calls, that is, 1.2 MN calls, that is, $8.6
MN.

Prescriptive Science and Decision Making

[315]

Step 2 – Future
In an attempt to further reduce the incoming calls received, we plan to improve the IVR call
completion rate. This will result in more and more number of calls getting resolved within
the IVR without the agent needed to answer the call. With new improvements to the IVR,
we can expect around 25% reduction in the overall call volume. So instead of seven MN
calls for the next six months (7 MN = 8.2 MN – 1.2 MN:= the repeat calls reduced from step
1), we can expect a reduction of ~1.75 MN calls (25%).

Similarly, with even more long-term plans-improving online resources and setting up
outbound campaigns-we can expect an additional 15% reduction in the calls, that is, 15% of
5.2 MN (7 MN – 1.75 MN = 5.2 MN), which translates to ~0.8 MN calls.

All in all, we have an immediate opportunity to reduce the call volume from 8.2 MN to 7
MN calls with the repeat propensity prediction for a customer in real time, that is, 1.2 MN
calls = $8.6 MN.

With our future plans in place and expecting a moderate outcome, we can seize an
opportunity to reduce minimum 1.75 MN +0.8 MN calls in the incoming traffic by
improving the IVR operations and online resources for the customer's self-help. Therefore,
we have an opportunity to save 1.75 MN +0.8 MN = 2.5 MN calls x $7 = ~$18 MN. With our
business benefits drafted neatly, we can now pitch the story. Mark can use this strong use
case and benefits to convince the leadership team and CEO about the problem solution and
next steps.

The entire use case can be simplified in a simple story as follows:

The customer experience team has studied increasing call traffic from customers in the past
few months that has increased the operational expenses and also affected the consumer
experience. The team analyzed the various causes for the problem and understood that the
core reason for high call volume is mainly the increasing repeat call rate. The team
leveraged various forecasting and predictive techniques and studied that the call volumes
are expected to increase by 8-10% every month for the next six months. With such a heavy
surge in call volumes, the business expects to see additional 2.2 MN calls costing more than
a $15 MN increase in operational expenses.

Prescriptive Science and Decision Making

[316]

The team has proactively developed immediate measures to reduce the repeat call rate by
~60% in the next months, which reduces the operational expenses by $8.6 MN, and has laid
down concrete plans to further reduce operational expenses by $18.6 using a variety of
strategies to reduce call volumes by improving IVR operations and online resources for a
customer's self-help. The roadmap to solve the issue will not only help reduce the expected
increase in operational expenses, but will further reduce the cost than the current call
volume without compromising on consumer experience.

The story can be visually interpreted using the following simple flow diagram:

This storyboarding exercise will help Mark win his leadership team approval for his
strategy. Here, we have kept all the details very simple yet intuitive for the business
stakeholders to consume. The storyboarding exercise needs execution after every milestone
in the problem solving journey. A milestone can be considered the end of an iteration in the
solution stack, as we finished for our use case. Based on the storyboard, we can further
contemplate whether the benefits of the roadmap designed will be valuable for execution or
require modifications.

Prescriptive Science and Decision Making

[317]

Implementing the solution
The final step in our problem solving journey is to implement the solution. We discussed
about the implementation that would roll out immediately as per our plan; that is,
developing a solution where the agent will be notified in real time whether a customer will
repeat the call in the next 48 hours. To make the solution more actionable, we can design an
association rule table that will calculate the association between different call reasons
(categories). This will come in handy when the agent is notified that the customer will
repeat in the next 48 hours for a different call reason. The association rule table can then be
leveraged by the agent to understand the most probable reason for the repeat call and then
take additional steps to mitigate the chances of a repeat.

Once we have all the previous steps in place, implementing the solution is just following the
steps we designed as a part of our journey, that is, solving a business use case end-to-end.
When we finish one end-to-end iteration, we traverse through all the stages of the decision
science life cycle, once. At the end of the iteration, we define the roadmap for the next
journey; that is, we implement the current solution and get ready to evolve the solution
with the problem.

Reflecting on the entire process in the journey, we can be confident about the clarity of
thought that we have in order to move ahead. We know exactly what are we solving, why
we are solving it, and how we are solving it. With the storyboarding exercise that we have,
the entire journey formulated into the most concise format that can be consumed by every
business stakeholder in the most lucid way. With this, Mark would get a green signal from
his company to go ahead and so the process finishes part one and moves on to part two and
so on.

Summary
In this chapter, we touched base on the final stage of the problem solving journey-
prescriptive analytics. We borrowed a hypothetical use case from the customer experience
team of a telecom industry. To solve the problem, we leveraged the layered approach in
problem solving and quickly traversed through the descriptive, inquisitive, and predictive
path. You then learned about prescriptive analytics and saw how it can be leveraged to
enhance the outcome and answer the questions: So what, now what?

Prescriptive Science and Decision Making

[318]

To learn the decision making process in decision science, we studied how the problems
iterate in reality and how we can solve them better by revisiting the DDH and HDH matrix
in our problem solving framework. We further studied how problems are interconnected in
nature and how the evolution of a problem can be studied, captured, and proactively solved
in a structured way by designing the problem universe and connecting the dots to make
more sense of the problem. Finally, we studied how to confidently draft an intuitive yet
lucid story to represent our findings and next steps designed as a part of the roadmap to
solve the ever-evolving interconnected problem.

Therefore, so far we have explored all the phases of decision science and learned how to
solve problems for the Internet of Things industry using multiple use cases. In each use
case, we touched base with different types of analytical techniques used in decision science-
Descriptive, Inquisitive, Predictive, and finally Prescriptive. You also learned how to tackle
the problem while it progresses through its own life cycle-muddy to fuzzy to a clear state.

In the next chapter, we will learn about the disruptions in the industry with Internet of
Things. We will discuss in brief how IoT has instrumented a revolution in fog computing,
cognitive computing, and a few other areas.

8
Disruptions in IoT

With the Internet of Things paradigm sensing increasing penetration in every industrial
vertical, we have witnessed phenomenal disruptions in the IoT fraternity. Success stories
are shooting up in every industrial vertical by demonstrating the value and potential of IoT.
Artificial intelligence, machine learning, deep learning, robotics, genomics, cognitive
computing, fog computing, edge computing, smart factory, and a plethora of other
disruptions have emerged with IoT. We have directly or indirectly benefited from these
disruptions while leveraging the innovations in technology used in our daily chores. As
time progresses, we can affirmatively expect to scale this even better.

Connected assets and connected operations have now become a reality, and we will see
disruptions in IoT with the convergence of innovation from multiple disciplines. To name a
few, the increasing volume of data has fostered the growth of deep learning in IoT, edge
computing or fog computing has boosted the development of state-of-art smart assets, and
human thinking and machine intelligence together have disrupted new areas in industrial
and healthcare IoT. We have witnessed all the sci-fi fantasies we saw in the movies a decade
back now becoming a reality. In this chapter, you will learn in brief about a few of the
disruptions in IoT due to the convergence of innovations from other disciplines.

Disruptions in IoT

[320]

You'll learn the following topics in brief:

Edge/fog computing – exploring the fog computing model
Cognitive computing – disruptive intelligence from unstructured data
Next-generation robotics and genomics
Autonomous cars
Privacy and security in the IoT ecosystem

Edge/fog computing
The topic of fog computing has been getting a lot of traction in recent years. The concept has
been in the research and experimental phase for quite some time, but with the recent
growth of IoT, edge computing has starting evolving from the “Innovation Trigger” phase
to the “Peak of inflated expectation” phase (referring to Gartner's Hype cycle). The edge
computing concept got such phenomenal traction that Cisco coined the term fog computing
as an inspiration from the legacy architecture of cloud computing.

Let's understand the fog computing concept in layman terms.

Edge computing/fog computing is an architecture where the computing of data,
applications, and services is pushed away from the centralized cloud to the logical extremes
of the network, that is, the edge. This approach requires leveraging resources that may not
be continuously connected to a network such as laptops, smartphones, tablets, home
appliances, manufacturing industrial machines, sensors, and so on. There are a variety of
other names for the edge computing architecture such as mesh computing, peer-to-peer
computing, grid computing, and so on.

In the cloud computing architecture, the centralized server takes care of the entire
computing required for the application or device. However, with the IoT ecosystem,
following the same principle becomes increasingly cumbersome. Try to recollect the logical
stack of IoT that we studied in Chapter 1, IoT and Decision Science which is the IoT
ecosystem can be logically decomposed into four components-Data, Things, People, and
Processes. In the data dimension, we are aware that, even though gargantuan volumes of
data is being generated from the connected devices, most of this data is transient in nature;
that is, the value of the data is lost within a couple of minutes after generation. Therefore,
the art of processing this data to extract value from the data as soon as it is produced and
storing it for various analytical needs is altogether a different discipline.

Disruptions in IoT

[321]

Processing the data and extracting intelligent signals from it requires computing to be
pushed to the local nodes-devices. These devices are equipped with the minimum required
computing power and data storage facility to aid in the process. After computing, only the
rich and condensed yet reusable data is transmitted back to the cloud. If we would have
continued leveraging cloud computing in the IoT ecosystem, scaling the solutions and
infrastructure would have become an immediate bottleneck while keeping it a viable
process. Moreover, with the cloud computing architecture in place, transmitting such a
huge volume of data from the devices to the cloud and then processing and extracting data
for all devices would choke the network and require mammoth storage and computing
resources. Additionally, the data volumes are expected to double in a very short while.
Cloud computing would clearly not be a viable option for the IoT ecosystem, and that's
where a more viable and innovative solution was conceptualized that favors immensely for
the IoT architecture.

With fog computing in place, the computing power is pushed toward the extreme logical
ends, thereby making the devices self-sustained to a certain extent in taking smart
decisions. The storage and computing load on the centralized server can be reduced to a
fraction and results can be achieved faster as communication is also blazing fast, as only
rich and condensed data is sent to the server. With the disruption of fog computing in IoT,
we have witnessed a variety of new threads that have triggered innovation.

The following image demonstrates the fog computing architecture:

Disruptions in IoT

[322]

As we can see, multiple devices are clustered together to form a smaller network that is
connected to a single computing node. In some cases, a single device is allotted to a single
computing node rather than a cluster. We'll explore the fog computing model in detail with
a hypothetical use case and learn how IoT has embraced fog computing to deliver the state-
of-art smart connected devices, but first, let's cement our foundations of fog computing
using a very lucid example.

Let's assume that your mobile phone has a fitness application that keeps track of the
number of calories you burn in a day and gives you a daily report about how many calories
were burnt along with some statistics compared to your goal and historic performance. It
does so by calculating the number of steps you walk in a day. Your phone is equipped with
a variety of sensors such as a pedometer, accelerometer, and so on. These sensors can
capture data for every granular movement of the phone; that is, at a microsecond level, the
x and y coordinates of the phone can be captured.

Finding how many steps you walked in a day can be studied by capturing a pattern in the
sequence of the x and y coordinates. Let's say that the phone is in your pocket while you
walk; there is a slight uplift in the y coordinate while the x axis moves ahead. The plot of the
coordinate data from the sensors in the phone will form a pattern to detect a complete cycle
of walk. Using these patterns, we can count the number of steps walked by the user. The
following diagram illustrates this idea:

Disruptions in IoT

[323]

Now, if we try to think from a simple cloud computing perspective, the process would have
been to collect the entire log of data from the pedometer-~50 MB for one day and send it
across to the cloud server. The server then analyzes the data, detects the number of steps
walked, converts it to the number of calories burnt using some business rule, and sends the
results back to the mobile phone. If there are approximately 500 MN users, the volume of
data required to be sent to the cloud through the network and processed on the cloud can
take the network and computing and storage resources for a toss. However, if we use the
fog computing architecture, the mobile phone's internal computing power and storage
resources can be used to count the number of steps every 30 minutes of activity and discard
the granular log data. At the end of the day, the application on the smartphone can send the
aggregated sum of the number of steps walked by the user that would be around <<1 KB in
size.

Therefore, we can not only reduce the load on the centralized server, but also efficiently use
the existing resources to make a smarter and viable solution. The name fog computing was
used to get a sense of cloud computing extended to the edge like actual fog on Earth.

Exploring the fog computing model
Now that we have a fair understanding about fog computing, let's study a hypothetical use
case to understand how it works in a real-life scenario and what benefits it adds to the IoT
ecosystem. Fog computing, apart from making the cloud architecture scalable, adds a
plethora of benefits such as making the device connected to the network smarter in a
revolutionary way. We have been loosely defining the term 'smart devices'. In a simplified
way, we can define a smart device as a device that can take decisions on its own to improve
a particular outcome. For example, a smart AC that adjusts the room's temperature based
on the number of people present and the ambient conditions. It may also power off the
operations on its own to save energy consumption. These are basically decisions taken by
the device on its own by learning a couple of events and leveraging historic data. We refer
to these devices as smart devices.

Let's consider a use case from the manufacturing industry similar to the one we studied
earlier. Let's say that a large manufacturing firm has a plant setup in India to manufacture
detergent. The manufacturing process can be assumed to be similar to the use case
considered in Chapter 3, The What and Why – Using Exploratory Decision Science for
IoT which was a five-stage process where raw materials are added and processed at each
stage and the final output is collected from the last stage-stage 5. In each stage, there are
different machines that are used for the processing of raw materials, say a large industrial
mixer that will mix all the added raw materials together or a heater that will heat all the
ingredients together.

Disruptions in IoT

[324]

Consider one such machine from the entire process, say a mixer (vertical or horizontal
mixer), a machine that ingests different raw materials and mixes them to produce a
resultant mixture for the manufacturing process. The operation of the mixer would be that
it mixes the different raw materials ingested by spinning the drum at a predefined velocity
for a definite time. This machine consumes a finite amount of energy for its operations.

What if we make this device a 'smart mixer' leveraging the IoT ecosystem?

If we recollect the manufacturing use case studied earlier, we can understand that the use
case is already an IoT use case. A plethora of sensors are deployed to capture data for a
variety of parameters that are then sent to the server (cloud) for further analysis. We
studied earlier how we can leverage decision science and IoT to solve the problem of
improving the quality of the detergent produced. Let's take a small part of the use case a
little further by making the machines used for the process 'smarter'.

The mixer that we have considered for the use case consumes high power for its operations.
How do we improve the efficiency of power consumption?

This is where we touch base with fog computing.

Previously, the IoT architecture that we considered was leveraging the cloud to store and
analyze the data for decisions, but to make the asset/machine a 'smart machine', we need to
embrace the fog computing architecture; that is, adding the ability to compute the real-time
data streams locally and learn from historical signals to aid the machines in taking decisions
to improve an outcome. So what would be this outcome? Consider the scenario where we
are building a fog computing network by leveraging machine learning to optimize the
power consumption of the machine. Therefore, the machine will have the understanding to
take actions based on the current set of events to improve the outcome, power
consumption. The following image helps in visualizing the operations of the mixer:

Disruptions in IoT

[325]

As we can see, the mixer receives an input of different raw materials (RM1, RM2, and RM3)
used for the manufacturing process. The mixer then mixes the raw materials to form a
consolidated mixture by spinning the drub for a finite time at a predefined velocity. The
power consumption generally increases with the increased quantity of the input, time of
operation, speed at which the machine is operating, and so on. The interesting part here is
that we can improve power consumption of the machine as a function of a variety of
parameters than we can imagine. In a nutshell, we can develop a machine learning model
that can predict the consumption of power as a function of the operational parameters such
as torque, vibrations, rpm of the drum, temperature of the machine, pressure, and so on,
machine parameters, input raw material parameters such as quality parameters and quantity
parameters, and finally ambient conditions. It is certain that the power consumption
patterns will be seen differently under a different set of values for the considered
parameters.

Disruptions in IoT

[326]

We can build the algorithm as follows:

Power consumption = function (Operational parameters + Machine parameters + ambient
conditions + raw material parameters)

The algorithm can be developed by learning from the historic data stored in the cloud. Once
the algorithm is built, it can be deployed to the edge network where it can run in real time
to take decisions based on the learnings. The algorithm will be used to create a set of self-
learning equations that can then be leveraged to take self-decisions.

This self-learning would be something like the following (an oversimplified representation):

Temperature between x1 and x2 and Torque > x3 and …, then power
consumption = y1 := optimum
Temperature > x4 and …, then power consumption = y2 := 30% above optimum
Reduce temperature to x1 and x2

Based on these self-learning rules, the machine can adjust the operating parameters by
increasing or decreasing the settings to stay in the optimum power consumption mode. The
rules and learnings can be updated once in a while when the data is sent to the cloud and
the cloud updates the machine learning model using the new datasets. Once updated, it is
pushed back to the edge, and the edge nodes then leverage the updated model to update
the rules and further improve the outcome.

Today, we can witness fog computing on a more realistic scale in most personal computing
devices such as laptops, smartphones, smartwatches, and tablets. The most common
example would be the Windows 10 restart scheduler. After the updates are automatically
downloaded, the system studies the user's usage pattern to understand the most
appropriate time to restart the system and install the updates. The time when the user
usually has his laptop on but has the least activity is studied and the intelligent decision to
restart and install the updates is initiated. In the manufacturing and engineering industries,
fog computing in IoT is slowly picking up.

Disruptions in IoT

[327]

Therefore, leveraging the edge computing architecture, computing is pushed to the edge
nodes (logical extremes of the network) and this gives the machine the ability to sense real-
time data and take instant actions to mitigate business losses. In the preceding use case,
improving power consumption is just one of the possible outcomes to improve. Edge
computing can be used to do a variety of enhancements in real time such as mitigating asset
failure or improving output quality. Say, a rule has been learned that if the temperature
increases beyond x1, vibrations increase beyond x2, and the machine operates in this state
for over 10 continuous minutes, then the chances that the machine will break down will be
80% or a rule that states the optimum operational setting to get the best quality output from
the raw materials. Based on the rule, the machine will automatically take a decision to
change the operational settings to outlive the disaster or improve the quality of the
outcome. In a nutshell, by pushing computing to the edge, we push intelligence also to the
edge, thereby making devices or assets able to take self-decisions to improve an outcome
and become smart devices.

Cognitive Computing – Disrupting
intelligence from unstructured data
As we see evolution in connectivity, computing, and technologies, we see disruptions
continuing in the industry. IoT has been a blessed recipient of many disruptions due to its
charm. We have lately seen the evolution of cognitive computing in the IoT ecosystem.

Cognitive computing can be defined as the third era of computing where it solves problems
that have increased complexity and uncertainty, that is, the human kind of a problem. To
solve such problems, the systems have been designed to mimic the way the humans solve a
problem.

So on a general note, how do we learn? Humans learn from experiences. At any point of
time, there is a flow of information that we consume from the world. We learn how to react
to new situations based on our historic learnings; we teach ourselves how to learn. The
simplest evidence for this can be, say you are asked to solve a puzzle that you have never
heard before. How do you solve it? You think and recollect your understanding about the
situation, analyze the different paths you can take, and then finally choose the best one
based on some factor, say the confidence that the solution is the best. In such scenarios, your
brain continues to learn based on the new problems it has been exposed to. The more and
more diverse problems you have faced, the more you learn. Such problems are called
human problems as there is an extremely high amount of complexity, ambiguity, and
uncertainty to solve them.

Disruptions in IoT

[328]

Machines have never been designed to solve such problems. Every machine designed will
be solving a specific problem that will have complete clarity in its nature. For example,, a
car can only be used to drive from one point to another by a driver. It can never decide the
route to be taken on its own (ignore autonomous cars for the time being).

However, today we can take the same human approach for computers, that is, design
computers to learn on their own without explicit programming. Cognitive computing is
therefore called the third era of computing. The first era was made of tabulating machines
like the calculator, then came the second era where we could program the computer to do a
specific task. Finally, now we have the third era of computing where we can design
computers to solve problems by self-learning.

So how does cognitive computing work?
Designing cognitive computing requires massive computing power. The legacy systems,
where we leverage machine learning and deep learning techniques to predict a regression
line or classify an object was a very specific problem. To a certain extent, we need to define
the scope of the problem and substantiate enough data for the machine to learn to predict.
Moreover, this prediction is limited to the nature of the problem defined. An algorithm
designed to predict the sales for an organization will not be able to predict whether a cancer
patient will survive or not.

In cognitive computing, the system is designed in a way to learn how a human brain works
by mimicking how a brain works. The brain receives tons of information through its five
senses and learns how to react to different situations. Say, you accidentally touch the vessel
while making tea and burn your hands; the next time you would automatically be more
cautious as you have learned the implications. The event may be completely new, but has
now registered in your mind and will probably help you react in an improved way even in
a different scenario. Similarly, the computer also receives a vast pool of structured and
unstructured data and a continuous stream of events. It tries to find insights and learnings
by starting with a simple hypothesis and then validating the hypothesis using the data it
has access to. In process of validating the hypothesis, it may come across a counterintuitive
result; it will learn from these results and create a self-learning repository. Such systems
become increasingly beneficial for our daily activities. The overall process of cognitive
computing can be simplified with the following image:

Disruptions in IoT

[329]

It starts with a simple question that might be triggered with an event, that is, sensing
something new. The question is decomposed into a simplified hypothesis and if it is already
learned, the actions are synthesized and articulated for the scenarios leveraging the
knowledge base, and the result is drafted. The result can be a set of actions or an
information showcase. However, if the hypotheis has never been learned or validated in
history, the system reaches out to the vast pool of structured and unstructured data to
validate the hypothesis and find the best results. The learnings are then stored in the
knowledge base so as to help in future. The results are syntehsized and an actioable
outcome is drafted. The outcome, if not in sync with the expectation, is passed back to the
knowledge base.

To cement our understanding even further, the entire concept of cognitive computing can
be juxtaposed with a daily life use case. Refer to the preceding digram and juxtapose the
following components to the working of a cognitive computing example.

Disruptions in IoT

[330]

Let's assume that one day you develop a minor health issue, say an upset stomach
(Question). You are now trying to understand how to ease your pain. You try and recollect
in the past that you encountered a similar pain and the doctor prescribed medicine A,
which is readily available in the pharmacy store (KnowledgeBase). You quickly reach to the
store to purchase it. After consuming a tablet, you take a nap for your stomach to get better
(Synthesis to Action). An hour passes by, but you still don't feel good. You try to recollect
what you had for dinner yesterday, but you don't remember anything unusual. By now,
you have also starting feeling vomiting sensations and a headache (Outcome). You reach
out to the Internet to understand more about the situation and study that the symptoms are
indicating a viral fever spreading quickly in the vicinity (collection of unstructured and
structure data). You now know that the fever is due to the sudden climactic change and
many friends in your neighborhood are also experiencing the same. You now reach out to a
doctor for proper medications. You take the prescribed medications and get well in a while.
Now you know that there is a chance of your body having a headache and upset stomach
whenever there is a sudden climactic change (Knowledge base).

Where do we see the use of cognitive computing?
The uses of cognitive computing are expected to see a wide adoption in the IoT ecosystem
across industry verticals such as consumer products, healthcare, manufacturing, and so on.
To understand the uses, we'll consider a very simple example. Let's assume that you are a
working professional who uses a variety of smart connected devices in the IoT ecosystem.
Let's get a little more sci-fi; assume that your phone has an app like Google Now or Apple
Siri and can talk to you based on events. Let me walk you through a story where you can
experience phenomenal value from cognitive computing in IoT and later, we'll try to
understand in brief how it worked.

Disruptions in IoT

[331]

The story
You wake up early morning to go to your office. Your smartwatch notifies you that your
deep sleep time has increased by 20% due to the exercises you did during the week. You
feel fresh and go through your normal chores and leave for office on time. While you step
out of your house, the electricity goes into power saver mode. When you board your car,
the screen on the car dashboard notifies you that the usual route you take to office has
heavy traffic congestion and suggests an alternative route. You don't like traffic and
therefore opt for the alternative but longer route. When you are in your car, it knows it's
you. It sets the AC to your preferred setting, reads out the local news for the day from your
preferred news channels, automatically adjusts the seat as you like, and plays songs from
your favorite music station. You are still driving and your smartwatch has detected that you
missed having your breakfast today. The phone locates your coordinates and suggests the
best breakfast places on your way. As you always prefer South Indian food for breakfast,
the suggestion has listed all popular South Indian hotels for you. You park your car and
enter the hotel to order your regular choice; instantly your phone reminds you about the
'Power Tuesday offer' available at the restaurant on new varieties. You give the new dishes
a shot and thoroughly enjoy them. While billing, you don't use cash; the application in your
phone automatically selects the best credit card you have with the best offers for the deal
and completes the transaction. You reach office and start working on your assignment and
head back home for lunch as it is half-day at office. While heading back, you take another
new route based on the suggestions to avoid traffic. Midway, you get notified about the
happening places you can explore. You are a photography enthusiast and therefore your
phone notifies you about a very famous and beautiful church on the way. It collects the
reviews online and also tells you about your friends who had been there and their opinions.
You find it interesting and so you stop by. You are amazed by the beauty of the place and
use your phone to capture memories. When you finally reach home, you see that the lights
and AC had been powered off in your absence to save electricity. As you enter, all the
settings are initiated to make you feel comfortable. You switch on the TV and enjoy a
football match with some noodles for lunch.

What a comfortable life, isn't it?

Disruptions in IoT

[332]

The bigger question is, how does all of this
happen?
The answer is simple-it learns on its own. We have already witnessed many of these
innovations in our daily life. If you use an Android phone, you would have noticed that it
understands your daily route to the office and the time at which you travel. Triangulating
traffic and GPS data, it notifies you about better alternatives you can take. The flight tickets
in your mail are automatically read and it notifies you about the time when you should
leave your place to reach the airport on time. It also triangulates a multitude of information
from the web and other sources to find out whether your flight is delayed and so on. When
you land at your destination, it recommends the best hotels nearby, weather forecast, and
important places to visit.

Let's take a pause and try to understand how different things we saw in our sci-fi story can
actually happen. Today, we are living in a connected world. Directly or indirectly, we are
connected to so many things that we don't realize it. Our attachments to the smartphone
alone is enough to identify the kind of person we are and predict what we do on a daily
basis. Our attachment to the digital world is so deep that our behavior can be easily studied
with the data that is captured through our interaction with the digital world. Let's take a
step-by-step approach to understand how cognitive computing decodes the different
innovations on its own.

Disruptions in IoT

[333]

Your smartphone/smartwatch is aware about how you sleep. When you are in deep sleep,
your eye movements, the motion of the body, pulse of the body, and tons of other
parameters behave very differently when compared to you simply lying on the bed.
Tracking your behavior throughout the day, the smartwatch understands whether you are
in deep sleep or lying on the bed. The sensors installed in every room of your house is able
to understand the presence of a person, and triangulating this information with your
smartphone/smartwatch's presence, it understands it's you. Your periodic movements and
routine tasks show a pattern. Your house is now pretty much aware about when it can
expect you to step out of your house. You take the same route to office, say a 10 Km drive
on the highway. Your smartphone understands that you travel on the same route to your
destination on a daily basis. It automatically understands the time when you travel and the
time taken to travel. When it finds heavy traffic on your daily route, it proactively searches
for alternative routes that will take you to your destination. Your car can also understand
your presence and has studied the kind of adjustments you usually set for the AC, music
system, seat, and so on. It automatically sets it up for you and shows the latest news from
the collections that you usually browse on your phone or tablet. Your phone studies the
kind of places and restaurants you visit for breakfast, lunch, and dinner. It also understands
that you like South Indian restaurants than other cuisines as you often visit them more. As
you travel, whenever popular restaurants are located nearby, it notifies you about the
choices.

The process is simple; cognitive computing tries to learn on its own like any human would
do. You go to church every Sunday in the evening; it finds a pattern that around 4 P.M., you
leave from your place and travel to a particular location on every Sunday. The next time the
time of the day matches, it will notify you about the best time to leave from your place to
reach on time. It has learned that there is a pattern that it finds interesting. It tries to
validate the hypothesis using historic data and learns about the result. The next time it finds
a suitable scenario to utilize these learnings, it will use them. Cognitive computing is now
deeply integrated with the voice assistive applications you use on your smartphone like Siri
and Google Now. The more you use them, the more they are adapted to help you.

Disruptions in IoT

[334]

Next generation robotics and genomics
With increasing innovations in the industry due to IoT and other fields, every field senses a
new growth dimension in some way or other. With IoT booming, we saw edge computing
picking up in the industry. Edge computing played a pivotal role in industrial IoT,
enhancing a machine's operational efficiency and adding various other benefits. Edge
computing not only fostered the innovations in industrial IoT, but also cemented the
foundations for cognitive computing. Cognitive computing solutions boosted with the
simplified architecture of edge, providing a scale as an easier and hassle-free dimension
aided in phenomenal improvements to the robotics industry.

Robotics – A bright future with IoT, Machine
Learning, Edge & Cognitive Computing
Today, with cognitive computing, machine learning, edge computing, and IoT, we have the
robotics industry shaping up into a state-of-the-art technology. Robotics have been in place
and been used extensively in the manufacturing, automobile, and other industries. We have
already seen the benefits of robotics and automation in industries and today it is more
widespread. However, with the convergence of multiple domains, we see technological
innovations catapulting with cross-pollination among innovations from different industries.
The advancements in robotics have seen phenomenal growth by leveraging IoT, machine
learning, edge computing, and many other fields. The smart factory concept is now
becoming a reality. Robotics strengthened with context-aware and connected systems are
now doing wonders in the fourth industrial revolution.

Let's study in brief about how IoT plays a game-changing role in robotics.

The third industrial revolution brought in place automation at the core. We could program
machines and design them to work with four-decimal precision accuracy. The reduction in
operational time, efficiency in utilizing resources, and many other benefits have been
manifested with robotics and automation. With IoT, we are now in the connected world.
The machines today are aware about what's happening with other machines and are 'smart'
to take decisions on their own to improve an outcome. Robotics automation can take the
'smart' feature one level ahead by leveraging the disruptions in the industry.

Disruptions in IoT

[335]

Let's assume that you are responsible for the operation of a manufacturing plant that
produces soft drinks for consumers, say Coke. You have engineers in the plant who are
experts in automating the entire process using computer programs specifically designed
and coded for specific machines. Now assume that you have a new drink coming in the
market, say Diet Coke. Setting up the diet coke manufacturing line is done by modifying the
program for the regular coke. A few changes have to be incorporated that can change the
process to intake the new ingredients along with newly defined quantities and changes in
the operating process by a small percentage. Even though these changes are minimal, the
efforts required to set up the end-to-end automated plant will be mammoth. All the
machine/robots are interconnected and have a dependency on each other. Changing small
things here and there will require modification of the entire process by a substantial
fraction. Basically, the computer engineer would need to code in order to accommodate
every new change, even if it's a small one. As an improved way, what if we have robotics
that can learn how to react to small incremental changes on its own? Leveraging machine
learning, the gargantuan volumes of data from the industrial IoT ecosystem coupled with
cognitive and edge computing ushers in a whole new level of smartness in these robots.

Robotics can now be made smarter to learn to adapt to small changes instantly without an
engineer codifying the instructions. It understands how to tune the process to improve
operational and manufacturing efficiency. It knows how to change the routine operations to
accommodate new events. The necessity for human intervention to manually code every bit
of intelligence is no more required. The robots are smart enough to learn on their own. The
impact of robotics in business can also be witnessed when it is leveraged in areas such as
agriculture, mining, and so on. Innovations in the industry have made the availability of
robotics cost-effective and very affordable.

By far, the biggest advancement can be witnessed in the consumer's personal assistant
robots in IoT. We have watched it in many sci-fi movies and have loved it. Remember the
robot in the movie, Interstellar, who keeps assisting Cooper during the space travel?
Everyone wishes to have one for their personal use. It will be great if we had a personal
robot who could help us in our personal errands, daily activities, and also be a friend if
required. The biggest difficulty in bringing such things to reality was the challenge in
adding contextual information to a machine. Using a robot as a personal assistant becomes
increasingly tiresome if you need to elucidate the entire context for every activity in your
daily chores.

Disruptions in IoT

[336]

Let's assume that you have a robot who can assist you in your personal activities and is
capable of understanding and responding to human speech; we'll call him 'Tim'. You have
organized a party at home for your friends in the evening and you are busy making
arrangements for this. You have Tim to help you out. Think about this scenario: you need
Tim's help to order some food and beverages for the evening online. To get Tim working on
this task, you would need to command, “Tim, please order x, y, z and drinks from abc.com
and ask him to deliver to the address 'House number 543, 24th Main road, 5th cross, ABC
area, State, Country' on the name 'xxxx xxxx' and use my credit card 'xxxx-xxxx-xxxx-xxxx'
with the credentials 'xxxxx' and so on.” Think about adding such detailed information for
each task. Things are okay for once or twice but then it becomes increasingly frustrating to
take help. What if you miss out briefing some minor details? You may end up in a jeopardy.
Also try to imagine a scenario where you have to seek Tim's help in cooking; it is again a
mammoth task to get this done.

On the contrary, assume if the task was as simple as telling Tim to order pizza and coke for
the evening. Tim finds out the best deal available for your preferred pizza choices and uses
your credit card that has the best offer for the deal. Similarly, if you need Tim's help in
cooking, you can tell him to cook pasta for five people and Tim would do the rest. If there
isn't enough pasta or any ingredient is missing, Tim takes care of ordering the required
ingredients and materials for the cooking. Once the ingredients are available, Tim cooks the
pasta referring to the guidelines from your preferred website and customizations that you
usually prefer.

Such phenomenal automation and intelligence in robotics is only possible when it learns on
its own to understand contextual information. We can make it happen by leveraging
multiple disruptions in the tech industry such as IoT to capture data from every connected
device you use, machine learning and deep learning with semi-supervised algorithms to
learn from history and predict the future, and edge computing and cognitive computing to
leverage local decision-making power and contextual information to build smarter robotics.

The growth of intelligence and smartness in robotics have opened new horizons for their
uses:

Doctors are now leveraging smart robotics to assist in medical operations
Manufacturing industries have become agile to accommodate incremental
changes and enhancements to products in real time
Restaurants have started embracing robotics via drones for home delivery and
other services in restaurants

Disruptions in IoT

[337]

Heavy engineering and life-threatening tasks in mining and other industries are
smoothly completed using robotics
Personal assistant robots (like Tim in our example) are on the verge of becoming
a reality
Energy, oil and gas, and similar industries have increased the adoption of
robotics and IoT to foresee a day when fully automated rigs roll onto a job site
using satellite coordinates, erect 14-story-tall steel reinforcements on their own,
drill a well, then pack up, and move to the next site
Fishing industries in Tundra regions now embrace robotics to work in adverse
climates at ease

Genomics
The genomics discipline is not a direct recipient of the IoT industry, but the cross-
pollination of technologies has propelled advancements in the process by leveraging
genomics in the healthcare IoT. Genomics is a vast discipline that requires a sound
background in biology to study in-depth. We'll surface the topic at a 1,000 ft. view and
understand how IoT can foster genomics for a bright and healthy future.

Genomics is an area within genetics that concerns the sequencing and analysis of an
organism's genome. The genome is the entire DNA content that is present within one cell of
an organism. Experts in genomics strive to determine complete DNA sequences and
perform genetic mapping to help understand diseases. Studying the genome data-DNA-is
an extremely vast area. Virtually every human ailment has a significant relationship with
our genes. For a prolonged period, doctors were able to leverage genetics to study only
birth defects and a few other diseases. This was because studying these patterns was fairly
straightforward and studying anything more than this was unimaginable. However, today
with phenomenal computing and processing capabilities, the mammoth data collections
about human DNA can be leveraged by scientists and clinicians with powerful tools to
study the role that genetic factors and the environment play in much more complex
diseases.

Disruptions in IoT

[338]

So how does genomics relate to IoT?
IoT has a lot to offer in the healthcare industry, but the penetration of the digital dimension
in healthcare has not been at par with the technology industry. Most researchers and
doctors believe that if the healthcare industry overcomes the legacy technologies and
embraces the digital world, a plethora of opportunities would open up under a radically
new term “Internet of Bio Things”. Today, we barely have a fraction of the medical history
of the patient in digital form. However, had everything been digital in a way that
physicians could have accessed it using secure and private search engines, it would have
added tremendous value to the healthcare industry. There are processes streamlined to
digitalize future medical records and past hard copies, but this has its own challenges and
bottlenecks.

It is here that genomics can be leveraged. The Human Genome Project, which was led at the
National Institutes of Health (NIH) by the National Human Genome Research Institute,
produced a very high-quality version of the human genome sequence that is freely available
in public databases. Moreover, the data is completely anonymized. There are countless such
research databases of genomic information available today. Most are not connected to each
other, but would deliver more meaningful results if they were. A massive consortium of
scientists are trying to build tools that will make such repositories interoperable, which is in
itself a challenging deal. If these databases are connected not only to each other, but also to
other anonymized information curated from smartphones and smartwatches, each element
in that system would have infinitely more value than it does on its own.

The healthcare industry would then witness radical changes with these innovations. A
physician would understand more accurately the reasons for a particular illness that you
suffer from. The genome data coupled with other medical records can be leveraged to study
what diseases you are genetically prone to. Further analysis can be used to develop the best-
suited medicines for the disease you are suffering by virtually experimenting with the wide
array of medicines for the specific genetic structure.

Furthermore, this rich information, if utilized with proper security and regulations, can be
studied to help mankind benefit from world-class healthcare. Developing medicines can be
more customized for a set of population based on their genetic characteristics and so on.
However, this comes with its own challenges with security and privacy as the biggest
roadblock. We'll discuss more about privacy and security toward the end of this chapter.

Disruptions in IoT

[339]

Autonomous cars
The final topic that we will discuss in this chapter for disruptions in IoT is autonomous cars.
Autonomous cars have been surfacing the technology innovations for quite some time but
are yet to hit mainstream production. Most cars that have some sort of autonomous feature
are still limited only to the flagship vehicles from the premium carmakers. Google's self-
driving cars have been making news for a while and have seen quite a hefty progress in the
accuracy of self-driving. Autonomous cars are defined at the cusp of innovation in the
industry. It combines learnings from IoT, artificial intelligence, machine learning, cognitive
computing, and edge computing and delivers a world-class solution that has been fancied
for a really long time. We'll understand a few important aspects about autonomous cars in
order to understand the concept. We'll first touch base on the vision and inspiration for
which autonomous cars had been developed. We'll study about the miniscule forms of self-
driving car features already present in a couple of cars today. You'll then learn about how
an autonomous car works and how the IoT ecosystem and other technology disruptions
have been leveraged. Finally, we'll understand about how autonomous cars are going to
change the future of driving.

Vision and inspiration
Most people believe that autonomous cars were first developed to bring more ease and
comfort to human life; sure they do but this was still secondary. The true vision that
triggered an attempt to build self-driving cars came from the care for human life.
Approximately, 1.2 mn people die everyday and a significant portion from this number is
reported due to human errors, primarily car accidents. If you look at the biggest reason for
deaths among people aged 25 to 35, we can see accidents as the biggest contributor. To err is
human, so we can't really do anything beyond a point. Negligence and adrenaline rush is
bound to happen while driving no matter how strict the laws are. Self-driving cars as a
project, if successful, can help us reduce the deaths due to road accidents and therefore save
more lives. This was the inspiration that triggered many engineering companies and even
tech companies such as Google to develop a self-driving car. Today, we have seen success
stories from many companies. Google has been using self-driving cars to capture visual
imagery for Google Maps. Audi, Volvo, and recently Tesla have demonstrated their abilities
in developing self-driving cars. Even though we have seen substantial success in the area, it
will still take some time for mass production and industry-wide adoption. As of now, it is a
luxury feature available with the premium flagship cars. Now that we have a fair
understanding about autonomous cars, or self-driving cars, we'll move on to study how
they work.

Disruptions in IoT

[340]

So how does an autonomous car work?
The simplest assumption would be that it uses a variety of sensors. Yes, this is true, but how
many and how? To understand this in the most lucid way, just consider the case of you
driving the car and try to think about the things that you would need to be aware of.
Technically, the first and most important part would be the need to see the road, the second,
the surroundings, and finally the route. These three simple things can be achieved quite
easily using technology. Of course, the way the human brain perceives and understands
things while you drive is quite different, but still we can definitely achieve most of it.

A usual autonomous car will be having a few sensors or sonar systems, GPS, and a laser
imaging sensor, that is, LIDAR (Light illuminating detecting and ranging) on the roof. The
following diagram showcases a bare-bone version of the self-driving car:

Disruptions in IoT

[341]

The proximity sensors sense what objects are there nearby and the distance from them; this
can also be sensed using powerful SONAR systems and the LIDAR sensor, that is, the
sensor that measures distance by illuminating a target with a laser light and builds a 3D
map for the car to understand its immediate surroundings and understand the speed of the
moving objects in real time. Finally, the GPS helps the car understand where it is currently
located and where it needs to go (the route). Using a combination of the proximity sensors
to identify nearby objects, say within 100 m (the road), LIDAR sensor to create a 3D map
and understand the real-time speed of nearby objects (the environment), and finally, GPS to
navigate (route), the car can be made into a self-driving car. The following image shows a
sample image for a car sensing the surroundings using LIDAR:

https://en.wikipedia.org/wiki/Laser

Disruptions in IoT

[342]

Wait, what are we missing?
Things are definitely not as simple as they have been elucidated. There are numerous
challenges in executing this. Firstly, there are at least 8-10 proximity sensors that
continuously record data about their immediate surroundings. Triangulating information
from all of these sensors and studying the position of objects around the car requires deep
analysis and sophisticated algorithms. Controlling the speed of the car, braking system, and
steering based on the results from the sensor and imagery data is not a plain set of
conditional rules. It requires state-of-the-art algorithms that take a human-like call to make
decisions. Some cars leverage high-vision cameras to sense the ambient surroundings.
Sophisticated deep learning techniques are leveraged to extract features from the real-time
vision for the car and create a parallax vision. To aid its operations in quick turn-around
time, there are three different types of communication that helps in fostering the
intelligence for the self-driving car.

Vehicle – to – environment
It uses the sensors and laser imaging tools to understand the immediate surroundings and
therefore take decisions in self-driving.

Vehicle – to – vehicle
This type of communication would be possible once we have all self-driving cars or at least
smart cars on the road. The cars can emit signals about their understanding of the ambient
surrounding to other cars, say to the cars running immediately behind. These signals are
vital to self-driving cars as in some cases, the front vision and sensing capabilities are
limited or blocked due to the presence of another car in the vicinity. In such cases, signals
from the car in front can be leveraged to learn the surroundings more accurately.

Vehicle – to – infrastructure
This type of communication is also possible only in the future, say by the time we have
smart cities in place. Information about traffic signals, road congestion, and live traffic
updates can be passed on to cars in real time by the infrastructure to take more accurate
decisions while self-driving.

Disruptions in IoT

[343]

Today, some forms of self-driving cars are already established in the market. Mercedes
Benz, BMW, and other premium carmakers have added features such as auto-parking,
emergency braking, lane correction, and so on, which are smaller forms of self-driving cars.
These features with more intelligence and decision making power are leveraged to design
fully autonomous cars.

The future of autonomous cars
Google has been the pioneer to demonstrate fully autonomous cars; today many more are
up in the line. However, it is still quite far from viability. On another note, the future does
definitely look promising. We have already seen tangible results from the experiments in
self-driving cars. Today with the increasing adoption from other players and support from
the government and regulatory bodies to design standard communication channels and
protocols for cars to talk to each other, the infrastructure, mass production, and widespread
market penetration will become a reality very soon.

When we try to look at the future of autonomous cars, we find it a very hard game to guess.
All the fantasies we saw in sci-fi movies like iRobot have already become a reality. We have
seen state-of-the-art self-driving cars from multiple carmakers, so what can we expect in the
future?

The answer can be completed in one simple sentence: better integration with your
connected devices. As time passes, we will witness phenomenal changes in self-driving cars
as they deeply integrate in a more cognitive way to your digital world. You'll see the car
responding to your emotional changes, say playing music based on your mood, optimizing
the route to save fuel and time, reducing the chances of accidents to 0%, deep integration
with the smart city infrastructure, faster speeds while travelling, smart and collaborative
movements in congested roads, and many more.

Disruptions in IoT

[344]

Privacy and security in IoT
We have studied in brief about the disruptions in IoT and have explored how IoT has
opened up various new areas for innovation. We saw how edge computing, cognitive
computing, machine learning, artificial intelligence, and other disruptions have fostered
new areas like autonomous cars, next-generation robotics, and genomics, but we have
missed studying one vital dimension in IoT-privacy and security of the data. With great
detail about the data that can help us do wonders come great threats of security and
privacy. In IoT, the security and privacy requirements are paramount. There cannot be any
compromise in the IoT ecosystem to leverage the benefits to mankind. A small loophole is
enough to cause a disaster to large organizations, governments, and individual citizens.

Exposing the data in an IoT system will make the system vulnerable to cause disasters to
mankind. A user's medical data and digital data is extremely sensitive and confidential and
cannot be leveraged by anyone else without his consent. The risks associated with the
leakage of such confidential data can cause huge disasters to the individual and the whole
mankind. The following are some of the key challenges that need to be addressed in IoT
right away.

Vulnerability
With millions and millions of devices connected to the network in IoT, we have billions of
vulnerabilities exposed. The device that equips various sensors sends the data through
gateways into the infrastructure. Each of these data streams are vulnerable to
confidentiality. Exposing such granular-level data can raise tremendous security concerns
to different organizations. In a couple of industries, such information leaks can jeopardize
the entire organization.

The risks of leaking extremely confidential data such as fingerprint data used to
authenticate, passwords used for all online websites, net banking credentials, and so on can
cause massive financial losses to consumers. Even small loopholes like access to the motion
data of a phone can be tapped by hackers to detect what people type, which can be then
leveraged to study passwords and credit card details entered by users.

Disruptions in IoT

[345]

Integrity
The IoT infrastructure will continuously ingest high-velocity live streams of data from
different sensors installed in a plethora of devices. How sure can the system be about the
integrity of the data? What are the chances that the data has been compromised to mislead
the results inferred? Let's say that the solar panels data and consumption patterns from the
use case that we studied in Chapter 6 have been compromised. The end customer will get
zero visibility into what is happening at the site and misleading insights about the energy
sustainability till the next sunrise. Moreover, the consumer can also be falsely charged with
an unrealistic bill for the amount of solar energy generated. Such compromises will shatter
the business rather than providing additional revenues.

For the consumer electronic devices that are a part of the IoT ecosystem, hackers can access
messages and tamper them before sending them. There have been a few cases in large
organizations where hackers have barged the security layer and sent fraudulent e-mails
from the leadership team to multiple stakeholders to jeopardize business.

Privacy
Protecting consumer and organizational privacy becomes challenging with the increasing
adoption of IoT in the consumer and industrial domains. With increased connectivity and
smooth data transmission across devices, it becomes increasingly difficult to secure private
and confidential information from falling into the wrong hands. An illegitimate access to
your smartphone risks unwanted and undesired access to your private information such as
e-mails, photographs, text messages, and call logs. The kind of feeling we would have when
our personal and private texts and photographs are leaked is similar to the kind of feeling
an organization feels when private and confidential information is illegitimately accessed
by any unauthorized persons.

To address the challenges, we need to design systems that are robust and secure to mitigate
the risks associated with security and privacy in the IoT ecosystem. Here are a few, yet not
exhaustive, areas that need to be looked into to address the issues. There are three main
areas to add security as a dimension.

Disruptions in IoT

[346]

Software infrastructure
Software infrastructure includes the cloud network, edge network, and operating system on
the IoT device. A part of the software infrastructure has already scaled high in terms of
maturity in security, but edge and IoT's operating system are fairly new. It will require a
fair amount of time before we peak the security awareness and practices in the new
members of the software infrastructure. Key improvements are focused on device
authentication, stringent access and resource control systems for improved security, data
encryption, and so on.

Hardware infrastructure
Hardware infrastructure includes the sensors and devices that connect to a network.
Trusted computing plays a pivotal role in addressing challenges in hardware devices. In
trusted computing, the computer will consistently behave in expected ways, and the
behavior will be enforced by computer hardware and software. The scrutinized and
enforced behavior is rendered by designing the devices with a unique encryption key
inaccessible to the rest of the system.

The protocol infrastructure
The final dimension in the ecosystem that needs to be addressed for security and privacy
concerns is the protocol infrastructure. The communication and data transmission among
the connected devices is regulated and controlled via a protocol. Any loopholes or
backdoors in this layer can expose a billion means for hackers to exploit. Numerous
organizations today are opening up their ideas to build a more secure communication
protocol for IoT.

Disruptions in IoT

[347]

Summary
In this chapter, we studied the disruptions in IoT. We studied how the growth of IoT has
emerged innovations in different fields and how other fields have leveraged IoT directly or
indirectly to trigger disruptions in the market. We explored the fog or edge computing
model and saw how the IoT infrastructure can be scaled efficiently while still keeping it a
viable solution. To study the fog computing model in detail, we explored a hypothetical
use case similar to the manufacturing use case studied in earlier. We saw how connected
devices or assets can be designed to become state-of-the-art smart devices where
intelligence is pushed to the logical extremes of the network, promoting quick and
intelligent self-decisions to improve an outcome.

We explored cognitive computing, a fairly new but very promising and interesting area
emerged from the convergence of artificial intelligence, IoT, and edge computing. We saw
how machines can be designed to learn on their own and solve a human-like problem that
is uncertain, ambiguous, and complex. We hypothesized a simple sci-fi story (which is
almost reality now) and studied how cognitive computing has been leveraged to make
human life comfortable and also productive.

We then moved one step deeper into the disruptions from IoT; we studied how IoT,
artificial intelligence, fog computing, and cognitive computing together can be leveraged to
develop next-generation robotics. We understood in brief how the competencies in robotics
have evolved over the years and how IoT fostered the maturity of robotics in the industry to
innovate. We studied a small example using the Coke manufacturing plant to see how
robotics can be leveraged to reap the benefits of IoT and provide smart solutions. We also
took a brief look at genomics and studied at a high level how IoT and genomics together
can bring wonders to the healthcare industry.

Disruptions in IoT

[348]

Lastly, we explored in depth the autonomous car concept and delved deeper into its
conceptualization and studied how an autonomous car was designed. We explored how the
different pillars of the industry coupled with IoT and new disruptions were converged to
evolve even new disruptions in such a short while. We also studied how self-driving cars
leveraged the power of IoT, the beauty of the automobile industry, and the intelligence of
AI and cognitive computing coupled with the horsepower of fog computing to aid the
mind-boggling autonomous cars become reality. Finally, we studied, apart from the
phenomenal benefits, how privacy and security have opened up even more options for
hackers to vandalize the innovation by exploiting the system loopholes. We understood the
importance of building a robust and secure ecosystem to help IoT flourish, innovate, and
create newer disruptions in the industry to make human life secure, comfortable, and
productive.

In the next chapter, we will discuss how IoT has innovated and disrupted the industry to
lay the foundations for a promising future. We'll study the new business models that IoT
has opened up and how our routine life will witness revolutionary transformations.

9
A Promising Future with IoT

We have studied the length and breadth of IoT and decision science and also solved
multiple use cases to cement our thoughts foundationally. In the previous chapter, we
explored the disruptions in the industry due to IoT and studied how they fostered many
more disruptions where IoT played a pivotal role. In this final chapter, we will study how
IoT would deliver a promising future for mankind. This chapter will focus on emphasizing
the importance and impact of smarter decisions in IoT by showcasing a glimpse into the
promising future that has been triggered by IoT. We will start by studying an extremely
important business model that emerged in the industry with the inception of IoT, that is, the
Asset as a Service or Device as a Service model. Combined together, the asset and device
models cover the consumer as well as the industrial sectors to offer cost-effective solutions
for customers and higher revenues for business.

We will also understand in brief how IoT is going to meticulously render a promising
future for us by exploring in detail about the smartwatch and the evolution of smart
healthcare and smart cars. We will explore in brief how the smartwatch will play a game-
changing role in the healthcare industry and study the evolution of connected cars to smarts
cars and connected humans to smart humans. By the end of the chapter and the book, we
will have successfully completed our first steps with IoT and decision science and get ready
for the astounding journey with smarter decisions.

Overall, to orchestrate our journey in smarter decisions, we have studied in detail about
IoT, learned the art of defining, designing, and solving an IoT problem, and also explored
the disruptions in IoT. Finally, we will now focus on the future of IoT.

A Promising Future with IoT

[350]

In this chapter, we will cover the following topics:

The IoT business model – asset/device as a service
Smartwatch – a booster to healthcare IoT
Smart healthcare – connected humans to smart humans'
Evolving from connected cars to smart cars

The IoT Business model – Asset or Device
as a Service
The Internet of Things started with the simple concept of Connected Devices and
Connected Assets. A small network of connected devices made a lot of tasks easier and
intuitive that were not feasible earlier. Gradually, connected devices/assets opened up new
opportunities with smart devices/assets. In no time, the evolution paced up, and we had a
tangible implementation of smart devices in every dimension of consumer electronics,
home appliances as well as industrial assets. As the technology matured, the concept of
smart factory evolved, that is, Industry 4.0 or the fourth industrial revolution, and
eventually smart connected operations became a reality that was complemented with
success stories from different parts of the globe.

The Asset as a Service model has its roots in the vanilla 'lease model' widely adopted in the
world. You can lease your house, vehicle, or some appliance for a while and earn money for
the time period it was utilized, say a week or month. The idea of leasing out your house
was fairly straightforward, but when it comes to leasing out your car or a machine in the
factory, the model has its own challenges. You would probably take very good care of your
car, but when you lease it, the chances that the person would be equally careful is not
guaranteed. Let's say that he drives your car with excessive luggage and drives recklessly.
Overspeeding, drifting, acceleration while braking, and many other driving habits can
cause serious damage to your car and can go completely unnoticed in the near future. The
lease amount will never make up for the latent damages to your car and therefore makes it
a non-viable solution. The same story is valid for industrial assets. There are only a few
dimensions that can be used to measure the true quantified usage for the lease amount,
such as time, the distance travelled, or some industrial measures like manufacturing
quantity to calculate the usage for the assets and so on. There is a lack of clear and concrete
means to capture most of the dimensions that could help in defining the true usage during
the lease period.

A Promising Future with IoT

[351]

IoT has seen widespread adoption. Installing a wide variety of sensors along with the
ability to connect to a network and communicate to other devices makes the entire idea of
capturing the true usage and damages to the asset or device a reality. A plethora of sensors
installed that capture data at the most granular level required, say every microsecond, can
be leveraged in newer avenues that were not initially contemplated. This is usually called
disruption due to convergence, that is, innovation in one area triggers innovations and
disruptions in associated and non-associated fields. The best example to understand this
would be the invention of the radio. The radio was actually invented 20 years after radio
waves were discovered. The discovery of radio waves were never aimed to invent the radio,
but disruption spread its waves across the industry over time. Let's understand in brief
about the Asset as a Service model in IoT with a practical example and how it will change
the dynamics of the industry in no time.

The motivation
In this fast changing world, change is the only constant. This is definitely a cliché, but holds
perfectly valid for the model. The modes and means for business used by various industries
have seen phenomenal changes in a very short stint. Business processes had to evolve to
meet the ever-increasing and dynamic requirements from the consumers. In such a
constantly evolving world, it becomes increasingly difficult for businesses to make huge
investments for the required infrastructure. For example, consider the taxi aggregator
company, Uber, who has made availing cab services easier than ever. Let's assume that the
company owns all the vehicles as a part of the business strategy. With increasing business,
they would have to purchase more and more number of cars to meet business requirements.
Finally, a day would come when the company would own around 10 MN cars for its
services and, say the world would have no more petrol/diesel reserves. The automobile
industry would then see a radical change with the development of electric or solar powered
cars. At this point, for Uber to replace the existing 10 MN cars with new electric cars would
be a mammoth cost and make it completely unviable. However, what if the company had
leased out the cars rather than owning them? It would be extremely convenient for them to
replace the fossil fuel cars with the new electric cars.

A Promising Future with IoT

[352]

Business requirements evolve and result in radical changes with disruption. With the
advent of technology, the evolution of changes have become faster. In such a dynamic
world, for any business, it would not be a great option to heavily invest in the
infrastructure. It would make economic sense to have an agile strategy to accommodate
newer and improved assets in the business services as the requirements evolve. The
industry therefore expects to see a huge shift in the trend from owning assets to leasing
assets, that is, leveraging the asset as a service business model. The advent of IoT has made
designing an economic and strategically viable business model a reality by leveraging the
asset as a service model.

The new business model helps consumers keep their costs low and evolve faster with new
requirements with a manifold increase in revenue per asset in the longer run. Say a
company sells a device (like a laptop) for $800. It can instead lease it on a quarterly
subscription for $100 for the first two years and then $60 for the next three years, thereby
making > $1500 in five years. Consumers who require a laptop for only six months would
always leverage the 'Laptop as a Service' model rather than purchasing it and then selling it
after use.

Real life use case for Asset as a Service model
Let's take a simple use case relating to our everyday life and understand in detail how
beneficial the asset as a service model can be for consumers as well as business
stakeholders. Consider that you are the CEO of a multimillion dollar company and you
crave for luxury cars. You love to drive the latest luxury model from premium carmakers
and therefore you end up selling your old car and buying a new car almost every year. Over
a period of time, you realize that the resale value gets tarnished as it is a used car and you
bear significant losses due to frequent car change plans. You are rich and you can definitely
afford these losses for your passion, but still it would be great if you could find a better and
cost-effective alternative. You then get to know about ABC Company (hypothetical) that
provides 'Luxury Cars as a Service'. The company offers a program where you can use a car
as long as you want and only pay for the usage. Let's say that you use a 7 Series BMW for
one year, you would pay a premium only for the services you used in the time period. The
company has designed an algorithm that takes into account the time for which you used the
car + the number of miles you drove + the impact on the car quality (like damages) to
calculate the total amount. You do a simple math and understand that this amount is
significantly lower when compared to the losses incurred while selling the car. You find it
awesome!

A Promising Future with IoT

[353]

This model can immensely help you in reducing the losses incurred while getting a new car
and also relieves you of the effort required in reselling your car and its necessary
paperwork. You can change your car every year and opt for the latest and best model
available in the industry. Say you are a big fan of BMW; every year in the month of January,
you will see a new model that you would like to use. 'Luxury Car as a Service' is your best
companion. The consumer can opt for a more cost-effective plan whereas the car company
can earn more money in the longer run and also be safe from latent damages to the car.
With a wide range of sensors installed, the company can understand whether you have
overspeeded or caused any damages to the car internally or externally. All damages caused
can be accounted and you need to pay for it. Overall, this business model proves a boon for
consumers as well as business.

Consider a parallel scenario for an asset that is not as expensive like a luxury car; the model
still holds a viable solution. The asset/device as a service model can be extended to any
device or machine in any price range.

How does it help business?
We have already studied how leveraging 'Asset as a Service' has helped consumers as well
as businesses in the longer run. Let's explore in brief how it will really work. Today, most
businesses are agile. They are always in a state where there exists a need for quick
experimentation at scale. New businesses can be set up at an alarming speed if the
environment is conducive for the business to grow. Earlier for a big multinational company
to start their business in a new country, it was a fairly difficult process to complete the
operational overheads. Once the initial process is completed, we need to set up an office
space and source logistics for our operations. Here starts our mammoth investment.

The biggest hurdle in setting up, expanding, or even experimenting a new form of business
is the time and capital investment that it consumes. Let's say that we are a U.S.-based large
brewery chain, and as a part of our expansion program, we are focusing on new markets for
additional business. The team has found a lot of potential in Bangalore, India for the
brewery. We are not really sure about whether starting a new brewery outlet in Bangalore
would be successful, but it is definitely worth giving a try.

A Promising Future with IoT

[354]

To start the operations, we need a huge capital investment. Investment would cover the cost
for the purchasing of the logistics required to brew beer, such as containers and machines
for the malting, preparing the mash, brewing the wort, fermenting, pasteurizing, and finally
packaging. Say we can purchase these machines locally and integrate them easily to build
the automated brewing machine. The cost for the entire setup, that is, only machinery,
would be around $5 Mn. Finally, renting a 5,000 sq. ft. place and purchasing assets such as
computers, air conditioners, music systems, LED monitors, kitchen equipment, dish
washers, and almost everything else required to start operations would cost another $5 MN.
So, investing $10 Mn in a new business and risking everything without certainty about the
success of the brewery would be a big reason to worry. Not taking a risk is a bigger risk as
we may miss out on lucrative business opportunities. Let's assume the worst case scenario;
we start business operations and realize within six months that the business can no longer
sustain the competition from local players and it would be ideal to close operations. Selling
back all the acquired logistics and reverting to previous operations would render a
substantial loss. There is a very high chance that we may only fetch $3.5-4 MN after the
resale of all the assets purchased for the operations within six months. Overall, we can
understand that time and capital investment cause a big hurdle for many existing business
to experiment with new avenues.

What if we could get rid of most of these pain points and alleviate the risks by a huge
chunk? Yes, this could be possible if we leverage the Asset as a Service model. For this use
case, assume that there is a business partner who can provide us with everything required
for our brewery operations as a service by leveraging the powerful IoT ecosystem. We
probably need to provide a security deposit of $2 Mn and only pay for the services we use.
Every asset provided by the company will be installed with a plethora of sensors to monitor
and measure the usage at the most granular levels. The means to detect any damage to the
machine or inappropriate usage that may reduce its efficiency, in fact everything required
to quantify the usage of the machine/asset at the most granular level, is set up at the
location. The 'Asset as a Service' model can now be leveraged to build a business model that
will contract to charge you on the total pitchers of beer brewed keeping aside the damage
cost (example). Therefore, we have nothing to worry about the infrastructure setup and
only pay for the services we have used. The operational cost would now be a nominal fee
that would increase as we scale your operations.

After a considerable time period in business, say six months, based on the business
conditions, there are basically three outcomes that we would have. Let's contemplate how
each of them can be catered to.

A Promising Future with IoT

[355]

Best case scenario
Operations are doing really well and we see a lot of traction from customers. We are now
confident about continuing and expanding our business further. We can either continue to
use the Asset as a Service model and scale rapidly, or, to increase the profit margin, we can
now confidently invest money in the business and grab more profits.

Worst case scenario
We understand that there is huge competition from other players and it is becoming
increasingly difficult to survive operations while making a profit. It seems like closing
down operations in Bangalore for the time being makes more sense. We can then end the
contract with the company for their assets used. They would charge us around $2 MN for
the usage and a small portion for the overall depreciation of the assets and return 90% of
our security deposit. We have now lost altogether only ($2 MN + $1 MN from your deposit),
that is, $3 MN. It is definitely a loss, but still much better than the other way round. Had we
purchased all the required assets and sold them back, we would have probably lost around
$6-7 MN.

Neutral case
Our business has fared pretty decently but we may still need some more time before we can
confidently take a call to quit or scale operations. We can now continue using the same
model for another six months, which would cost another $2 Mn.

Conclusion
All in all, the Asset as a Service model mainly helps businesses quickly experiment, start, or
scale business with minimized investment and reduced risks. On the other hand, the party
providing the services has a lucrative deal to reap three-fold profits from each asset in due
course of time.

A Promising Future with IoT

[356]

The same holds true for consumers. The Device as a Service model can be implemented in
consumer electronics and home appliances. There are a variety of devices that we use only
for a short while but still we end up purchasing them. Say, we purchase a DSLR and only
use it for 30 days in all, including our travel and vacations during a year. Won't it be great if
we could use DSLR as a service and only pay a fraction of the price for our actual use? Also,
we would have the ability to use the latest DSLR available in the market every time we take
a vacation. Cost effectiveness becomes the de facto objective in the Asset as a Service model.

Leveraging Decision Science to empower the
Asset as a Service model
Decision science becomes indispensable when we touch base with IoT. The Asset as a
Service model has received phenomenal traction in the industry due to the visibility it
provides in usage patterns of the asset and device. However, the decision making process is
still hazy and requires advanced analytics with decision science to deliver what would be
required for the success of the business model.

Understanding damages, measuring the usage of the asset, studying the impact on
efficiency, and depreciation of the asset holistically is a mammoth task. The industry uses
the grey box model, that is, the combination of the physics/thermodynamics of machine
processes and math together to define and understand the machine usage as a new
fundamental unit. The grey box model combines the learning from math and couples it
with the universal learnings leveraged in thermodynamics, physics, and other related fields
of the industry to study an event. To make it simple, let's consider the case of driving a car.
We all know that reckless driving, overspeeding, and acceleration during braking hampers
the efficiency of the engine. However, it is an extremely difficult task to determine whether
any of these events have actually caused damage to the engine or car using a data-driven
strategy. Identifying these events is fairly easy, but quantifying the impact of these events
on the engine is an extremely difficult task. We just cannot devise a rule like acceleration
while braking for more than 10 seconds causes 0.5% damage to the overall car. It requires
combining the learnings from deep industrial processes, physics, thermodynamics,
automobile engineering along with decision science to design a process that can quantify
the effects of the events on the asset.

A Promising Future with IoT

[357]

'Asset as a Service' and 'Device as a Service' business models are soon set to change the
business dynamics radically. The widespread adoption of these business models in
consumer electronic devices as well as industrial machinery has already starting gathering
success stories. Very soon, we will witness widespread adoption for the same.

Smartwatch – A booster to Healthcare IoT
The healthcare industry is experiencing a serious technology boom with the inception of
IoT. Connected devices are continuously being leveraged in healthcare to innovate solutions
and reduce costs. Smart hospitals and other innovations have been conceptualized where
doctors and patients have a digital connection that can aid faster access to health records
and other details that can be used to study the current and historic conditions of the patient
precisely. Also, as we studied in Chapter 8, Disruptions in IoT with the growth of IoT and
the emerging disruptions, the use of genomics for better healthcare solutions is already
being practiced.

At the same time, we can see the smartwatch industry gathering a lot of traction. The
smartwatch is basically a watch that can connect to different devices such as your
smartphone, other smartwatches, and other smart devices. It is generally equipped with a
wide variety of sensors and does much more than showing time. Sensors such as an
accelerometer, gyroscope, pedometer, heart rate monitor, ambient temperature, barometric
sensor, magnetometer, oximetry sensor, skin conductance and temperature sensor, and also
GPS have been installed in smartwatches to collect and process data at the most granular
level (almost every microsecond). All these sensors combined together reveal many unseen
dimensions about human behavior that can be beneficial for the healthcare industry. The
smartwatch is more prominent today among athletes and sports enthusiasts, but this will
soon change. Mainstream consumers are expected to embrace the adoption of smartwatches
for an enhanced lifestyle.

A Promising Future with IoT

[358]

The smartwatch can keep track of the number of steps you walk and understand the
amount of calories you burn, it can tell you whether you are undertaking too much physical
stress or not, and it can also study the amount of sleep your body needs. Mostly, we have
an abstract understanding about all these events, but these details can be very specific for
different individuals. There are new advancements in the sensor technologies that can
analyze your heart rate, sweat, and body temperature and leverage the data for a variety of
medical diagnostics that can help you stay healthy. The following diagram shows a high-
level picture of what kind of data is captured and how physicians and healthcare research
professionals leverage the data:

A Promising Future with IoT

[359]

The preceding figure explains the futuristic view of smartwatches. The market is positive
about significant improvements in the smartwatch technology that will be able to sense
your daily habits such as eating, working, and sleeping habits and analyze human behavior
with more precise details. You can expect to get real-time recommendations from your
smartwatch for the best-eating habits to boost your energy levels and stay fit. It can study
and analyze the sweat on your body and recommend the appropriate quantity and the time
when you should consume water or energy drinks to stay energetic. It can study your heart
rate and walking speed and recommend you to slow down or speed up. It can study your
sleeping patterns and recommend that you sleep more if you are falling short. To a certain
extent, the eating habits and nutritional quality of the food can also be studied using
advanced sensors. There are sensors that can understand how stressed you are by studying
your breathing patterns. These details can then be sent across to your personal doctor who
can leverage your complete medical history and current lifestyle with high precision to
recommend medicines for your illness.

Next, we can also expect smartwatches to predict in advance the chances of you falling prey
to fatal diseases and thereby reducing the chances of death. We can also expect critical alerts
to your dear ones when you are in medical emergencies. All in all, we can see a
revolutionary change in the healthcare industry primarily because of the smartwatch. The
story doesn't end here. This rich and informative data from consumers can be leveraged by
research professionals to study more about diseases. The medical research organizations
have always faced the scarcity of volunteers in medical assessments for the research study.
Tech leaders like Apple have stepped ahead to devise infrastructure where people can
volunteer and contribute to medical researches using the smartwatch and smartphone.

A Promising Future with IoT

[360]

Decision science in health data
Leveraging sensors to capture data from the smartwatch and communicating it to other
devices is only one part of the story. The exciting part is finding signals from data to aid
decision making. The smartphone sends you recommendations to improve your health, for
which it needs to sense, process, and analyze data using a plethora of algorithms from
machine learning, artificial intelligence, and edge and cognitive computing. It again
requires a decision scientist to leverage additional skills from multiple disciplines such as
healthcare and behavioral science along with others. The art of converting digital
impressions to user behavior, extracting meaning from the behavior, and finally providing
recommendations require a decision scientist to don multiple hats. Results captured from
the heart rate monitor and analyzing sweat can be leveraged to recommend periodic
consumption of water or energy drinks to keep the body energy and fluid levels
maintained. The study of breathing patterns can help us understand whether the person is
frustrated, stressed, or experiencing a medical emergency. Establishing the trigger points
for such events is again not based on simple conditional rules derived from aggregated
study of data. The overall process can be summarized in the following figure:

A Promising Future with IoT

[361]

The data captured from the smartwatch is anonymized and stored in a central repository. It
is further studied and analyzed using a variety of artificial intelligence self-learning
algorithms to define the normal and abnormal behavior for people. The algorithms sense
the presence of these patterns in the user's health data and respond in real time by
combining the learnings to orchestrate the best course of actions and recommendations. A
combination of neuroscience, biology, healthcare, and various other disciplines is leveraged
to design self-learning algorithms that can aid humans in living a healthy life.

Conclusion
Smartwatches have revolutionized the healthcare industry with IoT and the disruptions
that emerged from it. The benefits have already been validated by the industry and
continue to evolve phenomenally. In the coming days, we will see widespread adoption of
the smartwatch in the community, which will then help mankind benefit from better health
and a secured and improved lifestyle.

Smart healthcare – Connected Humans to
Smart Humans
The title may sound weird, but it definitely doesn't mean that we are not smart. Yes, we are
already smart individuals, but the 'smart' in this context refers to the smartwatch that
identifies an individual. We have already studied how the smartwatch has added
phenomenal value to the healthcare industry. Most of us have already used the smartwatch
or fitness trackers like Nike's Fitbit, Apple's Watch, and many more from other brands. We
have always used these devices to track our health and exercise plan or study the calories
burnt and so on. We call the smartwatch an integral part of the IoT fraternity, but we still
missed out on emphasizing an extremely vital mode of communication in the smartwatch,
that is, smartwatch-to-smartwatch communication.

A Promising Future with IoT

[362]

Yes, the communication between different smartwatches can help us take the smartness in it
to the next level. When smartphones can talk to each other and take decisions based on the
data signals, it can pretty much change our lifestyle. With the widespread adoption of
smartphones, it became increasingly easy for us to reach out to our near and dear ones. We
no more need to worry whether our children have reached home safely after the journey or
panic when they are late in arriving. We can simply call up and understand where they
have reached and what took them such a long time. With smartphones, the communication
became closer and the impact was pretty much visible on our lifestyle. The smartwatch too
can be leveraged for the same story, though the communication would be more for health
reasons.

Let's say that you are a family of six, like husband, wife, two children, and grandparents.
Each member owns a smartwatch. You are the husband and you would love to keep track
of your family's health. The smartwatch can provide you with real-time feed on the health
alerts of your near and dear ones. At the end of the day, you get an update informing you
whether your children had enough exposure to sunlight during the day, whether everyone
had sufficient nutrients consumed for the day, and so on. You can also be informed whether
your parents (grandparents) had their medicines on time. With these rich and informative
real-time updates about your family, you can take the best measures with the least efforts to
ensure that everyone in your family stays fit.

Your lifestyle would be completely different with such an environment. Consider the
following scenario to understand the impact of the 'smart human' evolution in healthcare.
You start adding more leafy vegetables to your family's diet based on the recommendations
from the smartwatch that studied the need for more nutrients in your children's diet. You
have a complete idea about your parents' (grandparents) blood sugar level who are
suffering from diabetes. The watch gives you updates about when you need to arrange for
insulin injections for them. Your wife is very busy with her work in office and therefore she
barely found time to work out in the gym for the past 10 days. You are now aware about
your wife's lagging fitness goals and you lend a helping hand in her work to ensure that she
gets back to the workout routine and stays healthy. Your parents are old; the watch can do
the best in worst case scenarios. It will send out quick alerts to you and your wife when
your parents need medical attention. All in all, you have the best knowledge with the least
efforts. Every informative signal that needs your attention is provided right away in the
most concise format and you can be confident about doing the best to keep your near and
dear ones fit.

A Promising Future with IoT

[363]

Doesn't this sound great? Imagine how convenient and wonderful it would have been if all
of us had such an amazing childhood. Things would have been really easy for our parents
to take care of us. With time, we will see the smartwatch connections spread more like a
social network. Your friends can also be sent alerts if required for an emergency. Just like
Facebook gives you a heads-up when one of your close friend is in your nearby vicinity, the
smartwatch can be leveraged to give a heads-up to your best friends in case you are in need
for a medical emergency. The GPS data can be triangulated and the nearest friends who can
quickly reach your physical location can be of great help. Simultaneously, signaling your
personal doctor and the nearby hospital to quickly make arrangements for your emergency
can be automated.

Life gets easier and more comfortable to live with such technologies being widely used. The
higher the number of smartwatch users in the market, the better the connection between
users. Unlike just a connection, we share our health/life with others to take a better decision,
and therefore the name 'Smarter Humans' where you take data-driven smart decisions to
stay healthy.

Evolving from connected cars to smart cars
We touched base on the healthcare industry in more detail by understanding how the
smartwatch can be a game changer. Leveraging the increased adoption of the smartwatch
helps in evolving from connected humans to smart humans. The same success story holds
true for multiple industries. We have witnessed the transformation of dumb assets into
connected assets and its evolution to smart assets. We will explore the last topic of the book
to understand how IoT has laid foundations for a promising future. We'll study the
evolution of connected cars to smart cars.

A Promising Future with IoT

[364]

Today, this topic is more of a concept and has seen only a fraction of the possibilities
adopted in reality. The autonomous car is also a part of this evolution, but there are many
more things that are possible. In the previous chapter, we studied how the autonomous car
was born from the disruptions in the industry due to IoT. We studied in brief about the
improved integration of the autonomous cars with our daily use connected gadgets. If we
recall the definition of smart devices that we studied in Chapter 1, IoT and Decision Science
we defined a smart device as any device that is connected to multiple other devices and can
take self-decisions to improve an outcome. Here, the outcome could be one or many. In the
evolution of connected cars to smart cars, the number of outcomes the car tries to improve
by taking self-decisions increases by a scale. The smart car will be more than just a car that
takes you from A to B. It will be a luxury, which is meticulously crafted for you. The
following figure illustrates how different features that improve an outcome have emerged
during the evolution of connected cars to smart cars:

A Promising Future with IoT

[365]

Let's try to imagine the different possible outcomes that the smart car would improve. A
few points that would cross our thoughts right away would be autonomous driving, auto-
engine tuning for improved life and performance, auto-parking, and so on. In Chapter 8,
Disruptions in IoT we studied a hypothetical example to understand how cognitive
computing disrupts the IoT industry to learn like humans and integrate with other services
to provide better services. Taking parallels to the use case, we can understand that the smart
car will basically be able to add context as a dimension to learn and improve outcomes that
will make human life easy. Here are a few features that can be expected to be a smart car
feature very soon.

Smart refuel assistant
While driving long distances, we often miscalculate the refueling interval. We may either
end up halting multiple times or fall short of fuel while driving. The smart car can study the
mileage of the car and understand how far the car will travel without refueling.
Triangulating this information with the GPS data, it can find out the best and nearest fuel
station to refuel. It can work as simple as alerting the driver to refuel at the fuel station
located in the next five miles; otherwise, the car may run out of fuel as there are no fuel
stations for the next 50 miles.

Predictive maintenance
It can understand the performance of the car using a variety of metrics such as engine
efficiency, emission, vibration and oil levels, heating levels, torque, and many more.
Usually, we take a ballpark estimate and service our cars roughly every 1,000 miles, but in
reality it can be much less or more. Smart cars can leverage a grey box model combining
machine learning, artificial intelligence, and various disciplines in automobile engineering
to discover the best time for maintenance considering the end objective to optimize
performance and yet be cost-effective.

A Promising Future with IoT

[366]

Autonomous transport
The next big thing after autonomous driving is autonomous transport. You can ask your car
to drop your children to school and come back, or you can ask your car to pick you up from
the airport and drop you home. Automated transport will be a revolutionary move but
would need the maturity curve of cognitive computing and artificial intelligence to be more
robust. A combination of these technologies can be used by the smart car to understand
human requests like 'drop me to the airport'. It can understand your home location and
your parking. It can autonomously take decisions to reach the airport on time to pick you
up based on your flight timings and the traffic data. If you take the train everyday to travel
to your office, it can learn the appropriate time to pick and drop you to the station on time.

Many more innovations are bound to surface the smart car technology. Our life is going to
be merrier than we imagined and dreamed through the sci-fi movies that we watched a
decade ago. The smart car and autonomous transport is an ambitious project and will
definitely take some time to mature and become available for consumers, but when it
comes, the impact and adoption will be mammoth.

Concluding thoughts
Looking at the future to study how promising the world is going to be, we have only
affirmative answers. The thought-provoking fact that we often ponder would be where did
the trigger happen and how did so many things bloom that every industry and every nook
and corner embraced technology to build the foundation of a smart and promising future.
The answer is just one word-IoT. To understand why IoT is the core reason for every
upcoming innovation, just contemplate over the triggers in human history that helped
mankind evolve.

In the ancient days, the invention of fire and wheel was the revolutionary breakthrough that
throttled inventions and discoveries in the human race. In the past few centuries, the
invention of industrial machines, printing press, and computer was the revolutionary
breakthrough that catapulted growth and transformation in every corner. In recent years, it
was the birth of the Internet that revolutionized the world and today it is the 'Internet of
Things'. The disruptions and breakthroughs with IoT that we discussed in Chapter 8,
Disruptions in IoT that render a promising future to the world are only a small collection of
examples. The exhaustive list would be gargantuan and beyond the scope of any book to
cover. The whole idea to draft the last two chapters was to emphasize the importance and
scale of the impact that decision science would deliver via IoT. The use cases that we tried
to solve in earlier chapters are the building blocks for the revolution in IoT.

A Promising Future with IoT

[367]

Summary
In this chapter and this book, we have navigated through a beautiful journey of building
smarter decisions from IoT when it intersects with decision science. We started our humble
journey by understanding the fundamentals of decision science, the Internet of Things, and
industry-standard frameworks to solve a problem. We spent quality time to understand the
problem more concretely by studying the different dimensions that can be used to define a
problem. In the second chapter, we touched base with two important areas of the IoT
problem universe-Connected Assets and Connected Operations. You learned to design the
approach and draft the blueprint for a problem using the problem solving framework. We
leveraged a real IoT use case from the manufacturing industry where we tried to solve the
problem of improving the quality of the manufactured product.

In Chapter 3, using the R software, we practically attempted to solve the business use case
we defined and designed in Chapter 2. You learned the nuances of descriptive and
inquisitive analytics. By performing a variety of exploratory data analyses to test our
previously defined hypotheses and validating them with various statistical techniques, we
articulated the required answers for the 'what' and 'why' questions.

In Chapter 4, we entered the world of predictive analytics and learned to build statistical
models such as linear regression, logistic regression, and decision trees. You learned how
the problem evolves from a descriptive to inquisitive and predictive phase and developed
solutions that could help us see the future and answer the 'when' question. In Chapter 5, we
further explored the predictive analytics area by leveraging machine learning and deep
learning to improve our results. By the end of the chapter, we completed one iteration of the
problem solving journey while it evolved through the descriptive to inquisitive to
predictive phases.

In Chapter 6, we cemented our foundations in decision science by leveraging another
iteration of problem solving. We attempted to solve another IoT use case from the
renewable energy industry. We quickly designed and developed the business problem with
our learnings of the problem solving framework and practically solved it leveraging
predictive analytics. In Chapter 7, we touched base on the final phase of a problem in the
decision science stack, that is, prescriptive analytics. We studied the phenomena of
prescriptive analytics by exploring a hypothetical use case from the telecom industry. We
studied how the business leverages the answers to 'why' and 'when' questions to outlive a
disaster, that is, take prescriptions. We understood the entire journey of the problem in
decision science and explored in brief how business connects the dots in the problem
universe. We also studied the art of storyboarding to validate and showcase our results in
the most consumable and lucid format.

A Promising Future with IoT

[368]

Finally, in Chapter 8, we explored the disruptions in industry with the inception of IoT. We
explored a handful of examples to study how IoT has accelerated disruptions in various
disciplines and how they contribute their innovations to the world. We studied about fog
computing, cognitive computing, next-generation robotics and genomics, and the concept
of autonomous cars. We understood in brief how one disruption triggers another disruption
and eventually how the benefits of all new disruptions are converged to the ecosystem. In
Chapter 9, we studied how the disruptions in IoT are going to build the foundation of a
smart and promising future for mankind. We explored the nuances of the 'Asset as a
Service' and 'Device as a Service' business models and also understood more about IoT
healthcare and studied the evolution of connected humans to smart humans and connected
cars to smart cars.

In a nutshell, we studied the intersection of IoT and decision science and the importance
and impact of smarter decisions by taking a sneak peek into the future of the connected
world.

Index

A
activation function 237
adjusted R-squared 147, 148
Analysis of Variance (ANOVA) 119
Apple's Siri 228
Asset as a Service model
 about 349, 350, 351
 business support 353, 354
 decision science, leveraging 356, 357
 motivation 351, 352
 use case 352, 353
associated latent problems
 sensing 61, 62
autonomous cars
 challenges 342
 future 343
 innovations 339
 inspiration 339
 vehicle-to-environment communication 342
 vehicle-to-infrastructure communication 342,

343
 vehicle-to-vehicle communication 342
 vision 339
 working 340, 341
AWS IoT 18
Azure IoT Suite 18

B
backpropagation learning
 algorithm 238
Backward Elimination 149
bagging 205
binning 165
bivariate analysis 96
boosting 206
bootstrapping 203

Brillo 17
business model
 Asset as a Service model 350, 351
business use case
 problem solving 50, 51
business, Asset as a Service model
 best case scenario 355
 conclusion 355, 356
 neutral case 355
 worst case scenario 355

C
Chi Squared Test of Independence 112
chi-squared test
 performing 112, 113
Classification and Regression Trees (CART) 158
classification model
 defining 187
 improving 187
 interaction terms, adding 194
 limitation 199
 machine learning, implementing 199
 performing 188, 191
 results, validating 196, 199
 significant variables, identifying 192
 testing 187
classification tree 208
classification
 versus regression 165
cognitive computing
 about 327, 328
 designing 328, 330
 process 332, 333
 real life example 331
 using 330
Confirmatory data analysis 108
connected assets 45

[370]

 about 41, 42
 real life scenario 44
 revolution 43, 44
connected operations
 about 41, 42
 Industry 4.0 47, 48, 49
 revolution 47
Consumer IoT 41, 42
convolutional neural network (CNN) 239
correlation 96, 97, 98, 99

D
data sources
 examining, for hypotheses 66, 67, 68
Data Stitching 83
data surfacing
 activity, summarizing 78
 end product related information 69
 for problem solving 69
 manufacturing environment information 69
 operational data 70, 74, 75, 76, 78
 raw material data 69
Data Wrangling 83
data-driven hypotheses (DDH) 34, 63, 66
data
 context, adding 80
 domain context 80, 81, 82, 83
 feature exploration 78, 79
 gold mines, identifying 66
Decision Science 83
decision science
 about 249
 implementing, in health data 360, 361
 leveraging, for Asset as a Service model 356,

357
decision trees
 about 158, 159
 classification, versus regression 165
 decision node, selecting 164
 exploring 160, 161, 162
 functions 159
 predictive modeling 165
 root node, selecting 162, 163
 types 160
deep learning

 about 231, 232
 model, building 240, 243, 244
Descriptive problem 30
detergent manufacturing use case
 common issues 55, 56
 conclusion 246
 machinery, using 56
 operations 57
 problem solving, with random forest 245
 problem, resurfacing 136, 137
 process 55
 production environment 57
 research outcome 54, 55
 results 245
 results, from predictive model 246
Device as a Service model 349
disruption due to convergence 351
dplyr 72

E
edge computing 320, 321, 322, 323
edges 236
ensemble modeling
 about 203
 benefits 203
 implementing 207
 learning techniques 207
 random forest 207
 working 204, 205, 206
 XgBoost 222
entropy 165
Exploratory Data Analysis (EDA)
 about 108
 chi-squared test, performing 112, 113
 hypothesis testing 109
 hypothesis testing, using 109, 110
 hypothesis, validating 112, 116, 118, 121,

124, 125
 regression analysis 121, 124
 summarizing 126
 Type 1 error 119
exploratory data analysis, for renewable energy use

case
 battery parameters, exploring 268, 269
 consumption fare, comparing 265, 268

[371]

 inverter parameters, exploring 272
 learnings, assimilating 273
 load parameters, exploring 270, 271, 272
 performing 259, 261, 262, 263, 264
 problem, solving 274, 275
 results, assimilating 274

F
false positive (FP) 181
feature exploration 79
feedforward neural network 238
fog computing
 about 320, 321, 322, 323
 use case 323, 324, 326, 327

G
genomics
 innovations 337
 with IoT 338
Google Now 228
Gradient Boosted Machines (GBM) 222
gradient descent 237
grey box model 356

H
Healthcare IoT 41
heuristics-driven hypotheses (HDH)
 about 34, 38, 66
 designing 63, 64
hypothesis testing
 about 109
 techniques 109

I
Industrial IoT (IIoT)
 about 9, 41
 demystifying 12, 14
Industry 4.0 47, 48, 49
Inquisitive problem 30, 53
Internet of Everything (IoE)
 about 9
 demystifying 12, 14
Internet of Things (IoT)
 about 8, 9, 10

 demystifying 12, 14
 in genomics 338
 in robotics 334, 335, 336, 337
 logical stack 15
 privacy 344
 real-life scenario 10, 11
 security 344
IoT Cloud Solutions 18

L
linear regression
 about 138, 139, 140, 142
 adjusted R-squared 146, 148
 continuous variable, predicting 138
 estimates/coefficients, calculating 144, 145
 F statistic, calculating 143, 144
 multiple R squared 146
 outputs, interpreting 143
 p value, interpreting 145
 prediction problem, solving 138
 predictive model, improving 148
 residual standard error 146
 residuals 146
 standard error, interpreting 145
 t-value, interpreting 145
logical stack, IoT
 data 19, 20
 People 16
 Processes 16
 things 19
logistic regression
 about 174, 175, 176
 assessing 181
 classification model, improving 187
 confusion matrix, building 182, 185, 186
 model, interpreting 187
 performing 176, 180, 181

M
machine learning
 about 202, 203
 ensemble modeling 203
Machine to Machine (M2M)
 about 9
 demystifying 12, 14

[372]

maximum-likelihood estimation (MLE) 176
Mean Absolute Percentage Error (MAPE) 156,

165
Microsoft Cortana 228
moderate problems 28
mtry 217
Multilayer Perceptron (MLP) 240
multiple R-squared 147

N
neural network
 about 229, 231
 activation function 237
 components 234
 convolutional neural networks (CNN) 239
 edges 236
 feedforward neural network 238
 learning 237, 238
 neurons 234, 235, 236
 recurrent neural network (RNN) 239
neural networks and deep learning
 about 228
 advantages 229
 cautionary note 228
 problem solving 232, 233
neurons 234, 235, 236

O
operating system 17

P
predictive analytics
 improving 245
predictive model, decision trees
 about 165
 fine tuning 168, 170, 172
 iteration, executing 165, 167
 modeling technique, modifying 173
predictive model, linear regression
 considerations 157
 defining 149
 improving 148, 149
 iteration, executing 149, 151
 new techniques, using 158

 significant variables, fine tuning 152, 154
 testing 156, 157
Predictive problem 30
prescriptive analytics use case
 about 292
 context 295
 descriptive analytics 295, 296, 297
 inquisitive analytics 297, 298, 299, 300
 IVR call completion rate, improving 315, 316
 predictive analytics, starting 303
 predictive analytics, using 301, 302
 prescriptive analytics, implementing 304
 prescriptive analytics, starting 302, 304
 problem, analyzing 293
 problem, exploring 293
 problem, identifying 292
 problem, solving 293, 294
 problems, prioritizing 310
 repeat calls, predicting 314
 solution, implementing 317
 solving 295
 storyboarding 313, 314
prescriptive analytics
 about 291, 292
 data-driven hypothesis, using 308
 for problem solving 305
 heuristic-driven hypothesis, using 308
 IVR operations, improving 306
 repeat calls, reducing 307
 staff training, for call resolution rate increment

307
 test and control analysis, implementing 305,

306
Prescriptive problem 30
prescriptive science 292
problem landscape 24, 25, 26, 28, 29, 30
problem life cycle 20, 21, 22, 23, 24
problem solving framework 34, 35, 36, 37, 38
problem solving
 about 31
 conclusion 247
 context, gathering 53
 context, researching 52, 54, 55
 hypotheses, improving 59, 60
 hypotheses, prioritizing 58

[373]

 hypotheses, structuring 58
 hypotheses, validating 59, 60
 interdisciplinary approach 32
 problem universe 33
 problem, defining 51, 52
 results, assimilating 60, 61
 story, rendering 60, 61
Processes, IoT
 Business Processes 18
 technology 17

R
R programing language 70
R-squared value 165
random forest
 about 203, 207, 208, 209, 211, 212
 building, in R 212
 improving 218, 219, 221
 measures 221
 mtry 217
 parameters, using 214, 215
Receiver Operating Characteristic (ROC) 181
recurrent neural network (RNN) 239
Region of Uncertainty 26
regression trees 208
regression
 about 121, 124
 versus classification 165
relationships, data dimension
 correlation 96, 97, 98, 99
 DDH matrix, revisiting 107
 identifying 96
 Stage 1 dimensions, exploring 101, 102, 103,

104
renewable energy use case
 about 250
 approach, designing 252, 256, 257
 data landscape, studying 258
 domain context 255, 256
 exploratory data analysis, performing 259
 feature engineering 275, 277, 281, 282
 predictive model, building 282, 283
 problem 251
 problem, defining 251, 252
 problem, studying 253

 random forest model, building 283, 285, 288
 solar panel ecosystem, working 253
 solar panel, functioning 253
 solar panel, installations 254
 solar panels, challenges 254
 solution, implementing 288, 289
residual standard error 147
residuals 146
robotics
 innovations 334
 with IoT 334, 335, 336, 337
Root Cause Analysis
 about 126
 assembly line, observing 133
 conclusion 132
 for problem solving 131, 132
 insights, visualizing 129, 130
 production quantity, identifying 133
 raw material quality parameters, observing 133
 resources/machinery, investigating 133
 results, synthesizing 128, 129
RPART package 165
RStudio 70

S
security
 hardware infrastructure 346
 in Internet of Things (IoT) 344
 integrity 345
 privacy concerns 345
 protocol infrastructure 346
 software infrastructure 346
 vulnerability 344
sigmoid function 237
smart cars
 autonomous transport 366
 conclusion 366
 evolution 363
 predictive maintenance 365
 smart refuel assistant, implementing 365
smart devices 323
Smart Factory 47, 48
smart mixer 324
smartwatch
 about 357, 358, 359

 communication mode 361, 362, 363
 conclusion 361
 decision science, implementing in health data

360, 361
stacking 206
Standard Deviation Reduction (SDR) 162, 163
storyboarding 313
subject matter expert (SME) 80
supervisory control and data acquisition (SCADA)

82

T
technology, IoT Processes
 infrastructure 18
 software 17
third era of computing 328
true positive (TP) 181
two-sample T Test 114
Type 1 error 119

U

univariate analysis
 data dimensions, exploring 84, 85, 86, 87, 89,

95
 performing, on data 84
 Previous Product dimension, exploring 89, 91,

93, 94, 95

V
Vendor Management 62

W
Weave 18
Workforce Optimization 62

X
XgBoost
 about 207, 222
 conclusion 228
 features 222
 model, building 222, 224, 225, 226
 overfitting, validation 227

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: IoT and Decision Science
	Understanding the IoT
	IoT in a real-life scenario

	Demystifying M2M, IoT, IIoT, and IoE
	Digging deeper into the logical stack of IoT
	People
	Processes
	Technology
	Software
	Protocol
	Infrastructure

	Business processes

	Things
	Data

	The problem life cycle
	The problem landscape
	The art of problem solving
	The interdisciplinary approach
	The problem universe

	The problem solving framework
	Summary

	Chapter 2: Studying the IoT Problem Universe and Designing a Use Case
	Connected assets & connected operations
	The journey of connected things to smart things
	Connected assets – A real life scenario
	Connected operations – The next revolution
	What is Industry 4.0?

	Defining the business use case
	Defining the problem
	Researching and gathering context
	Gathering context – examining the type of problem
	Gathering context – research and gather context
	Research outcome
	How is detergent manufactured?
	What are the common issues that arise in the detergent manufacturing process?
	What kind of machinery is used for the detergent manufacturing process?
	What do we need to know more about the company, its production environment, and operations?

	Prioritize and structure hypotheses based on the availability of data
	Validating and Improving the hypotheses (iterate over #2 and #3)
	Assimilate results and render the story

	Sensing the associated latent problems
	Designing the heuristic driven hypotheses matrix (HDH)
	Summary

	Chapter 3: The What and Why - Using Exploratory Decision Science for IoT
	Identifying gold mines in data for decision making
	Examining data sources for the hypotheses
	Data surfacing for problem solving
	End product related information
	Manufacturing environment information
	Raw material data
	Operational data
	Summarizing the data surfacing activity

	Feature exploration
	Understanding the data landscape
	Domain context for the data

	Exploring each dimension of the IoT Ecosystem through data (Univariates)
	What does the data say?
	Exploring Previous Product…
	Summarizing this section

	Studying relationships
	So what is correlation?
	Exploring Stage 1 dimensions
	Revisiting the DDH matrix

	Exploratory data analysis
	So how do we validate our findings?
	So how does hypothesis testing work?
	Validating hypotheses – category 1
	How does the chi-squared test work in a nutshell?
	Validating hypotheses – category 2
	What does a Type 1 error mean?
	So what is ANOVA?

	Validating hypotheses – category 3
	So what is regression?

	Hypotheses – category 3
	Summarizing Exploratory Data Analysis phase

	Root Cause Analysis
	Synthesizing results
	Visualizing insights
	Stitching the Story together
	Conclusion
	Production Quantity
	Raw material quality parameters
	Resources/Machinery used in Stage 3
	Assembly Line

	Summary

	Chapter 4: Experimenting Predictive Analytics for IoT
	Resurfacing the problem – What's next?
	Linear regression – predicting a continuous outcome
	Prelude
	Solving the prediction problem
	So what is linear regression?

	Interpreting the regression outputs
	F statistic
	Estimate/coefficients
	Standard error, t-value, and p value

	Residuals, multiple R squared, residual standard error and adjusted R squared
	What is the adjusted R-squared value?

	Improving the predictive model
	Let's define our approach
	How will we go about it?
	Let's being modeling
	So how do we move ahead?
	The important points to ponder are as follows:
	What should we take care of?
	So what next?

	Decision trees
	Understanding decision trees
	So what is a decision tree?
	How does a decision tree work?
	What are different types of decision trees?
	So how is a decision tree built and how does it work?
	How to select the root node?
	How are the decision nodes ordered/chosen?
	How different is the process for classification and regression?

	Predictive modeling with decision trees
	So how do we approach?
	So what do we do to improve the results?
	So, what next? Do we try another modeling technique that could give us more powerful results?

	Logistic Regression – Predicting a categorical outcome
	So what is logistic regression?
	So how does the logistic regression work?
	How do we assess the goodness of fit or accuracy of the model?
	Too many new terms?

	Recap to the model interpretation
	Improving the classification model
	Let's define our approach
	How do we go about it?
	Let's begin modeling
	So how do we move ahead?
	Adding interaction terms
	What can be done to improve this?
	What just happened?
	What can be done to improve the TNR and overall accuracy while keeping the TPR intact?

	Summary

	Chapter 5: Enhancing Predictive Analytics with Machine Learning for IoT
	A Brief Introduction to Machine Learning
	What exactly is ensemble modeling?
	Why should we choose ensemble models?
	strong /So how does an ensemble model actually work?/strong
	What are the different ensemble learning techniques?
	Quick Recap – Where were we previously?

	Ensemble modeling – random forest
	What is random forest?
	How do we build random forests in R?
	What are these new parameters?
	Mtry
	Building a more tuned version of the random forest model
	How?
	Can we improve this further?
	What can we do to achieve this?

	Ensemble modeling – XGBoost
	What is different in XgBoost?
	Are we really getting good results?
	What next?
	A cautionary note

	Neural Networks and Deep Learning
	So what is so cool about neural networks and deep learning?
	What is a neural network?
	So what is deep learning?
	So what problems can neural networks and deep learning solve?
	So how does a neural network work?
	Neurons
	Edges
	Activation function
	Learning
	So what are the different types of neural networks?
	How do we go about modeling using a neural network or deep learning technique?
	What next?
	What have we achieved till now?

	Packaging our results
	A quick recap
	Results from our predictive modeling exercise
	Few points to note

	Summary

	Chapter 6: Fast track Decision Science with IoT
	Setting context for the problem
	The real problem
	What next?

	Defining the problem and designing the approach
	Building the SCQ: Situation – Complication – Question
	Research
	How does a solar panel ecosystem work?
	Functioning
	What are the different kinds of solar panel installations?
	What challenges are faced in operations supported by solar panels?

	Domain context
	Designing the approach
	Studying the data landscape

	Exploratory Data Analysis and Feature Engineering
	So how does the consumption fare in comparison with the generation?
	Battery
	Load
	Inverter
	Assimilate learnings from the data exploration exercise
	Let's assimilate all our findings and learnings in brief
	Solving the problem
	Feature engineering

	Building predictive model for the use case
	Building a random forest model

	Packaging the solution
	Summary

	Chapter 7: Prescriptive Science and Decision Making
	Using a layered approach and test control methods to outlive business disasters
	What is prescriptive analytics?
	strong /What happened?/strong
	Why and how did it happen?
	When will it happen (again)?
	So what, now what?

	Solving a prescriptive analytics use case
	Context for the use case
	Descriptive analytics – what happened?
	Inquisitive analytics – why and how did it happen?
	Predictive analytics – when will it happen?
	The inception of prescriptive analytics
	Getting deeper with prescriptive analytics

	Solving the use case the prescriptive way
	Test and control analysis
	Implementing Test & Control Analysis in Prescriptive Analytics
	Improving IVR operations to increase the call completion rate
	Reducing the repeat calls
	Staff training for increasing first call resolution rate
	Tying back results to data-driven and heuristic-driven hypotheses

	Connecting the dots in the problem universe
	Story boarding – Making sense of the interconnected problems in the problem universe
	Step 1 – Immediate
	Step 2 – Future

	Implementing the solution
	Summary

	Chapter 8: Disruptions in IoT
	Edge/fog computing
	Exploring the fog computing model

	Cognitive Computing – Disrupting intelligence from unstructured data
	strong /So how does cognitive computing work?/strong
	strong /Where do we see the use of cognitive computing?/strong
	strong /The story/strong
	strong /The bigger question is, how does all of this happen?/strong

	Next generation robotics and genomics
	Robotics – A bright future with IoT, Machine Learning, Edge & Cognitive Computing
	Genomics
	So how does genomics relate to IoT?

	Autonomous cars
	Vision and inspiration
	So how does an autonomous car work?
	Wait, what are we missing?
	Vehicle – to – environment
	Vehicle – to – vehicle
	Vehicle – to – infrastructure
	The future of autonomous cars

	Privacy and security in IoT
	Vulnerability
	Integrity
	Privacy
	Software infrastructure
	Hardware infrastructure
	The protocol infrastructure

	Summary

	Chapter 9: A Promising Future with IoT
	The IoT Business model – Asset or Device as a Service
	The motivation
	Real life use case for Asset as a Service model
	How does it help business?
	Best case scenario
	Worst case scenario
	Neutral case
	Conclusion

	Leveraging Decision Science to empower the Asset as a Service model

	Smartwatch – A booster to Healthcare IoT
	Decision science in health data
	Conclusion

	Smart healthcare – Connected Humans to Smart Humans
	Evolving from connected cars to smart cars
	Smart refuel assistant
	Predictive maintenance
	Autonomous transport
	Concluding thoughts

	Summary

	Index

